-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by Universidad Carlos Il de Madrid e-Archivo

-dNEsus

Network for Sustainable Ultrascale Computing

Proceedings of the First International Workshop on Sustainable
Ultrascale Computing Systems (NESUS 2014)
Porto, Portugal

Jesus Carretero, Javier Garcia Blas
Jorge Barbosa, Ricardo Morla
(Editors)

August 27-28, 2014

https://core.ac.uk/display/30276986?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Jose Luis Gonzalez, Victor J. Sosa-Sosa, Jesus Carretero, Luis Miguel Sanchez 53

Content Delivery and Sharing in Federated
Cloud Storage

J.L.GoNzALEZ!, VICTOR J. Sosa-Sosal, Jesus CARRETERO?, LUIs MIGUEL SANCHEZ

2

Cinvestav-Tamps, Mexico

loseluig@ac.upc.es,! visosa@tamps.cinvestav.mx

University Carlos III, Spain

2luismiguel.sanchez,jesus.carretero@uc3m.es

Abstract

Cloud-based storage is becoming a cost-effective solution for agencies, hospitals, government instances and scientific centers to deliver and share
contents to/with a set of end-users. However, reliability, privacy and lack of control are the main problems that arise when contracting content
delivery services with a single cloud storage provider. This paper presents the implementation of a storage system for content delivery and sharing
in federated cloud storage networks. This system virtualizes the storage resources of a set of organizations as a single federated system, which is
in charge of the content storage. The architecture includes a metadata management layer to keep the content delivery control in-house and a
storage synchronization worker/monitor to keep the state of storage resources in the federation as well as to send contents near to the end-users. It
also includes a redundancy layer based on a multi-threaded engine that enables the system to withstand failures in the federated network. We
developed a prototype based on this scheme as a proof of concept. The experimental evaluation shows the benefits of building content delivery
systems in federated cloud environments, in terms of performance, reliability and profitability of the storage space.

Keywords Content delivery, Virtualization, Storage federation, fault-tolerant

I. INTRODUCTION

Space agencies, hospitals, government instances, news agencies and
scientific centers not only are producing huge amount of contents
but also they need to distribute them to different communities or
population segments through the Internet [1].

Cloud storage approach has becoming a cost-effective solution for
building dynamic and elastic online content delivery(CD) systems[2].
Organizations can contract a CD service with a provider through
self-service and self-organizing web applications and their users can
retrieve the contents in any time from anywhere by using almost
any device.

However, organizations and users still have concerns about un-
available service[3], lost data risks [4] and lack of controls over data
management [5] when using cloud storage. Organizations and users
are quite justified in expressing their concerns about data storage
and management in the cloud because a user rejects her legitimate
expectation to privacy when she voluntarily relegates private content
to a third-party [6].

Vendor dependence lock-in is another problem that has caused
a big concern among organizations. This problem arises when one
organization contracts with a single cloud provider the storage and
management of all the data. This becomes a real problem when
the organization decides to change the cloud provider or the cloud
provider pulls out of the market[7]. In the first scenario it is not
clear that other provider could handle the content delivery in its
current state because of software dependencies. In the latter, the
organization depends on the window offered by the provider to the
clients for migrating their data to another provider. In both scenarios,
the more data stored in the cloud the more economic impact on the
costs suffered by the organizations.

The federated cloud model enables organizations to create a
shared cloud storage based on strategic partnership policies[8]. In
this model, a set of organizations cooperates for building a shared
storage space to serve requests of other members that are in either
failure or saturation circumstances. This model improves the reliabil-
ity of the CD services as a federation member can withstand failures
of their site by using the resources of partners for serving their user
requests. Federation also enables the organizations to preserve au-
tonomy and privacy even when a portion of their infrastructure has
been used by the partners experimenting site failures.

This paper presents the implementation of a system for content
delivery and sharing in Federated Cloud Storage. This system vir-
tualizes the storage resources of a set of organizations as a single
federated system, which is in charge of the content storage. The
architecture includes a metadata management layer to keep the
content delivery control in-house and a storage synchronization
worker /monitor to keep the state of storage resources in the fed-
eration as well as to send contents near to the end-users. It also
includes a redundancy layer based on a multi-threaded engine that
enables the system to withstand failures in the federated network.

We developed a prototype based on this system as a proof of
concept and its performance was compared with a fault-tolerant
distributed web storage as well as public and private File Hosting
Services.

A case study based on data obtained from the European Space
Astronomy Center (ESAC) for the Soil Moisture Ocean Salinity [9] is
presented as experimental evaluation. We distribute satellite images
to a set of organizations, from two countries spanning two continents
by using a federated Storage System (FSS). The end-users retrieved
images by using a FSS client.

The experimental evaluation shows the benefits of building con-

54

tent delivery systems in federated cloud environments, in terms of
performance, reliability and profitability of the storage space.

II. RELATED WORK

Content Delivery Networks (CDN) such as Akamai [10], Coral [11]
or Globule [12] cache small pieces of information and distribute
them to locations near who requests them. The final end-user ob-
serves a reduction of the latency and overhead in the content delivery
process.

The cloud-based storage services enable organizations to create
catalogs of contents based on URLs. The end-users can access the
catalog without simultaneous download restrictions by using any of
the web browsers, synchronizer based on HTTP streams or (S)FTP
applications. However, studies show that users prefer local storage
solutions than public solution when managing sensitive data [13].
Moreover, cloud-based storage services are based on a pay-as-you-
go pricing model, which apply rates based on the monthly stored
contents plus the penalizations stated at the service level agreement
(SLA) contracted. These conditions could lead to long-term costs.
For instance, EUMETSAT and EOSDIS transfer around 1 TB of
meteorological images per day, which might press organizations to
consider an alternative service.

In addition, Vendor lock-in problem could arise when the organi-
zation decides to change the cloud provider or the cloud provider
pulls out of the market[7](Nirvanix provides cautionary tale for
cloud storage).

In order to face up system failures, in this kind of approaches
the servers split the contents into chunks by applying a given
codification[13] and they distributes them according a given fault-
tolerant strategy. Nevertheless, the users and the organizations send
the whole contents to the storage services, which could produce
concerns about the way in which the privacy data is managed. In
addition, the encoding/decoding data and its distribution both rep-
resent an extra work to be performed by the organizations servers.

The distribution of data on several providers have been proposed
to avoid this type of problems [14]. Nevertheless, this kind of
solutions are only available for public providers and solutions taking
both the user and organization concerns into account are currently
required by organizations.

This system can configure federations by using either private or
public storage resources for organizations to deliver contents to end-
users. Moreover, the codification applied to content dispersion by
our system takes advantage of continuous flows and the multiple
cores available in current computers.

III. A STORAGE SYSTEM FOR CONTENT DELIVERY AND
SHARING IN FEDERATED CLOUD

A traditional content delivery system commonly includes stages such
as source, formatting, deliver and acquisition of contents. In the first
stage providers send a set of contents in raw format to the formatting
stage, in which a set of users performs a set of annotation tasks for
achieving manufactured contents, which are sent to a storage system.
In the phase of acquisition, the end users retrieves the contents from
the content delivery service by using a web application.

Our federated storage system (FSS) takes advantage of thee types
of technologies to improve the effectiveness of the aforementioned

Content Delivery and Sharing in Federated Cloud Storage

content delivery process. The first is a cloud storage federation tech-
nology [9] applied to a metadata manager for keeping the control of
content delivery in-house and enabling the organization to preserve
autonomy in failure scenarios. The second are publish-subscribe
patterns applied to a storage synchronization monitor, which en-
ables FSS to inform the user about new available contents and to
register the consume of each storage resource. The last one is the
multi-core technology applied to a redundancy layer based on a
multi-threaded engine for taking advantage of multiple cores of end-
users and providers computers to improve the performance of the
codification and dispersion of the federated fault-tolerant schemes
used by FSS in the CD service.

Figure 1 shows an example of content delivery based on FSS. Raw
data is sent to providers, which perform a set of annotation tasks
for achieving manufactured contents. These contents are sent in the
form of a catalog to the metadata manager by using an agent of our
system. The metadata performs a push operation to split the |F|
into n = C1..Cn chunks, which are distributed to a set of storage
synchronization monitors that are members of the storage federation.
When the provider shares that content by publishing the catalog,
the end-users are notified and can retrieve the contents by using a
FSS client APP. This APP obtains the locations to retrieve the chunks
once the metadata manager verifies that the credentials of the client
are valid. The APP retrieves the chunks from the federated storage
and reconstructs the file in-house. As a result, the members of the
federation has no possibility to reconstruct any file without either
the authorization of the metadata manager or the collaboration of
other members of the federation.

III.1 A metadata management layer

This layer is a cloud image in charge of the metadata flows, which
includes the following modules for establishing management rules
for the content flows:

o Catalog manager. This module enables the organization to create
and manage catalog of contents. This module includes an
attribute-based policy for managing the access to the contents
listed in the catalog. It also enables authorized users, called
providers, to add new contents to the catalog.

Multi-tenant module. It manages end-users and providers ac-
counts and is also in charge of the controls of the catalogs
property. In this module, the contents of a given user account
are isolated and remains invisible to other accounts.

Publish and Subscribe server. It is in charge of the catalog publi-
cation and the subscriptions of contents. It serves the contents
orders sent by end-users and controls the location of each cata-
log in the federation. This module includes an alert system that
notifies to providers who is subscribing their contents and deliv-
ers the links to get access to published contents. It also includes
push and pull RESTful functions for storing and retrieving
contents form the federation.

This critical component is installed in-house by using cloud in-
stance placed at private cloud of the organization.

Jose Luis Gonzalez, Victor J. Sosa-Sosa, Jesus Carretero, Luis Miguel Sanchez 55

ar

.--p Agent ---__

-

Providers

want to Catalog }
deliver L"

Content |F| Shared
Folder

-~ Metadata Flow
= Content Flow

Ssas End-Users
want to
retrieve

Content |F|

Local
Folder

Figure 1: Content Allocation/Location in SkyStorage System.

III.1.1 A storage synchronization monitor

This module creates a database for managing the paths and access
methods of each storage resource assigned by an organization to the
federated cloud in the content delivery service. In order to observe
the conditions of the agreement of the federation, this database also
includes the consume metrics of each storage location. For instance,
the storage quotas of received contents from each partner and the
agreement characteristics for determining when a partner is ready
to receive redundancy.

This module registers the operations performed by FSS, providers
and end-users with each storage resource while an operational and
safety monitor keeps updating the statistics in the database.

An agent in this module manages the metadata of the storage
locations stores/retrieves contents by using the the redundancy layer.

IIL.2 A redundancy layer based on a multi-threaded
engine

We add redundancy to the original content by using a dispersion
algorithm called IDA [15]. This algorithm basically splits a given file
|F| into n redundant chunks, which must be distributed to n different
storage locations. In scenarios where some original locations are
unavailable and the user retrieves |F|, the algorithm recovers any
of m number of chunks from the available storage locations with
which the engine can reconstruct |F|. This means, it is granted that
|F| can be reconstructed when n > m and the unavailable locations
are n — 1.

This algorithm can be implemented with different combinations
of m and n parameters. This combination determines the codifi-
cation costs in terms of storage space and computation time. The
size of each resultant chunk is |F|/m, which results in a percent-
age excess of redundancy equal to (n — m)/m. Let us consider an
IDA implementation with parameters (n = 5;m = 3), in this case
|F| is transformed into five chunks and it can be reconstructed by
retrieving at least three chunks from any three different locations; as
a result, the system produces 66.7% of redundancy overhead, which
is less than one replica.

Table 1 shows the amount of extra capacity spent for n servers
when requiring m chunks (at least) to support fault-tolerance.

Table 1: IDA Parameters Combination m (chunks required for recovering
contents) and n (servers)

n(servers) m=1 m=2 m=3 m=4 m=5 m=6
n=2 100%

n=3 200% 50%

n=4 300% 100% 33.3%

n=5 400% 150% 66.70% 25%

n=6 500% 200% 100% 50% 20%

n=7 600% 250% 133.3% 75% 40% 16.7%

I11.2.1 Parallelism and Continuous Workflows

In order to save storage space, we use this algorithm in the content
delivery process instead of using several replicas. In terms of latency,
the client is retrieving (|F|/m) chunks of data, which is similar to
retrieve the whole file.

Nevertheless, the codification of the redundant chunks produces
computation overhead while the distribution of chunks produces
latency, which could be a problem depending on the network char-
acteristics.

In order to reduce the effects of overhead and latency on the
encoding/decoding procedures, we proposed and implemented an
IDA codification technique based on parallel and continuous flows
called Continuous Workflows.

We defined a distribution workflow based on the IDA encoding
procedure. This workflow has been designed for providers to deliver
contents to the federated storage by using push operations. This
workflow includes an acquisition stage that receives a service key as
input parameter. This key reports the construction of this workflow
to metadata manager and enables the engine to obtain n relative
URLs mapping n different containers. This engine stores each chunk
that will produce this workflow by using a relative URL, which
includes an anonymized name that will be the identifier of that
chunk in the assigned container. This means that this chunk is
managed as a file by the container/provider. This stage starts when
reading the content that will be distributed by the workflow and
ends up when sending both the content and the URLs to the next
stage.

The transformation stage creates as many process as cores in the
computer where the engine has been launched to split the content
into n redundant chunks. This stage adds redundancy to each chunk
and sends the obtained results to the transport stage. This stage

56

Table 2: The characteristics of Agents Clients

PCs and Cloud Instances Cores RAM
Agents
UC3M-Cloud 5 Instances 2 4GB
UC3M-Colme 2 PCs 4 (i7) and 2 (i5) 4GB
Cinvestav 5 Instances 4 8GB
Clients
UC3M-Cloud 2 Instances 4 4GB
UC3M-Colme 2 PCs 7 (i7) and 4 (i5) 4GB
Cinvestav 5 Instances 2(3) and 3(2) 2(1GB) and 3(4GB)

writes the results, sent by the previous stage, in n streams created
by using the relative URLs. This stage closes the streams when the
encoding of each chunk is done and reports to the engine the found
errors if any.

We also defined a retrieving workflow based on the IDA decoding
for end-users to retrieve contents from the storage federation.

In this workflow, the acquisition stage receives as input parameter
the name of the content that will be retrieved by the workflow,
creates one file |F| whit this name by using the local file system
and sends m relative URLs to the pipeline. The transformation stage
creates as many process as cores available and sends the URLs to the
transport stage which creates m streams by using the URLs, reads
the chunks and sends the results to the pipeline. The Transformation
stage receives data, starts the reconstruction of the content and sends
the results to the pipeline.The acquisition stage writes the received
data in the file |F|.

The goal of this technique is to use all the processing power
available in the computer where the engine is placed for enhancing
the performance of the content workflow as it represents the highest
costs in a CD service.

This multi-threading version improves the performance of en-
coding and decoding tasks by taking advantage of multiple cores
commonly found in current devices. This technique allows the en-
gine to reduce the codification overhead making feasible to introduce
a fault-tolerant scheme in the CD process. The implementation of
CD as continuous flow allows the engine to avoid writing chunks in
the local disks.

We implemented the transformation stage by using TBB technol-
ogy [16] and the transportation stage by using Curl libraries [17].

IV. THE PROTOTYPE

We consider a scenario where a set of organizations build a CD
service in a cloud federated network by using our FSS. The federa-
tion includes three members that are represented by the following
acronyms UC3M-Colme, UC3M-Cloud and Cinvestav. UC3M-Cloud
located in Leganes, UC3M-Colme located in Colmenarejo (both cities
near to Madrid, Spain). Cinvestav is located in Northeastern Mexico.

The UC3M-Cloud is in charge of the metadata manager and all the
members have installed a image of the storage monitor and including
a set of agents of the multi-threaded engine. We have launched a set
of client images in the infrastructure of all the members with which
the end-users retrieve the contents published by a source.

Table 2 shows the features of the storage infrastructure shared by
each organization as well as the agents and clients included in this
prototype.

Content Delivery and Sharing in Federated Cloud Storage

V. EXPERIMENTAL EVALUATION

We defined two evaluation scenarios: In the first we evaluated the
performance of the federated storage system(FSS) with a synthetic
workload while in the second we conducted a study case in which
apply our FSS to the content deliver by using a set of real images.

We developed an IO_Launcher for producing publish, subscribe,
pull (Download) and push (Upload) operations. The API sends these
operations to the metadata manager. It assumes this artificial load
comes from real and valid users and captures the response time,
which is the only metric evaluated so far.

We captured the response time per each performed operation,
which helps us to determine the degree of satisfaction or end-users.
This time is measured from the publication/subscription moment
of a given content until the time point in which the storage service
retrieves that content, meaning that the request has been success-
fully dispatched. This time includes the streaming time, the network
round trip latency and the write/read time in the temporal paths.
This time also includes the time spent in subscription synchroniza-
tion. Finally, this time also could include codification time when
using redundancy.

VI. EXPERIMENTS PER EVALUATION SCENARIOS AND
REsuLTs

The preliminary results included in this section consider the evalua-
tion of the two scenarios previously defined.

VI.1 Performance evaluation of Federated storage
system

In this scenario, we evaluated a storage network created with UC3M-
Colme and UC3M-Cloud for testing the performance of FSS when
delivering and retrieving contents with different size file.

We have designed a synthetic workload scenario to test the redun-
dancy engine in which IO_Launcher sends an incremental load by
duplicating the file size from 512KB to 1GB.

We defined the following configurations in this scenario:

e Phoenix: In this configuration, users store and retrieve contents
by using an Online Distributed Web Storage System called
Phoenix[18]. We implemented Phoenix in the UC3M-Colme and
UC3M-Cloud organizations and it has been configured to apply
a fault-tolerant strategy to the contents based on dispersion of
information by using the IDA algorithm.

Private FHS: In this configuration, users store and retrieve con-
tents by using a Private Web File Hosting System. We have
implemented a Private FHS in UC3M-Colme organization in
which the contents are stored without producing and distribut-
ing redundancy.

e Amazon: In this configuration, users store and retrieve con-
tents by using an AWS Amazon instance with the standard
redundancy associated to a free account.

e FSS: We implemented our file distributor and acquisitor agent
in the UC3M-Colme and UC3M-Cloud organizations. This con-
figuration allows us to measure all the stages of the workflow
produced by our storage system.

Jose Luis Gonzalez, Victor J. Sosa-Sosa, Jesus Carretero, Luis Miguel Sanchez 57

T T T T T T T T
Amazon (Regular redundancy) —+—
Private FHS (No redundancy) ---x---
Phoenix (Dispersion) ------

FSS (D i g

200 -

a
S

=)
S

Response Time (sec)

50

et

5 1 2 4 8 16 32 64 128 256 512 1024
File Size MB

Figure 2: Response Time of Uploads

Fig. 2 shows, in vertical axis, the mean response time obtained
when a user sends contents of different sizes (horizontal axis) to the
online storage system.

Fig. 2 also shows that Private FHS yields the best performance
because it returns the control to the user when the file arrives to
the cloud. This means Private FHS does not generate redundancy
overhead, which improves the response time observed by the user.
Moreover, Private FHS is situated in Colmenarejo city while the
common users of this service are from both Madrid and Comenarejo.
This reduces latency because both cities are geographically close
to each other. Amazon configuration performs the same procedure
as Private FHS but it produces more delay because its servers are
located at Ireland.

Phoenix configuration produces the worst delay because it solves
the vulnerability window in which the user could loss data by
immediately splitting contents into chunks and distributing them
to cloud storage locations of the two organizations. Once this has
been performed, Phoenix returns the control to the synchronizer. As
a result, the user obtains data assurance and she can retrieve that
file even when the site of her organization is down.

The FSS performance is better than Amazon configuration (44% in
mean) when the file size <4MB because the locality compensates
the overhead of codification and, when the file size >4MB, Amazon
configuration is better than FSS (9.14% in mean) because FSS dis-
tributes five chunks per I/O request (66.7% more data than Amazon).
Nevertheless, this is a small increment because of FSS optimizes the
storage stages on the client-side. In addition, that increment can be
reduced or even eliminated by reducing the amount of distributed
chunks when applying the information assurance policies.

As we can see, FSS offer the same reliability as Phoenix at reason-
able cost. Moreover, FSS preserves the original file in-house, which
means the contents can not be reconstructed by the administrators
of a given organization without obtaining some chunks from either
other organizations or the user device. When the users retrieving
contents by using FSS, we observed the same behavior that the
upload operations.

VI.2 Case study: Satellite Images delivery

This case study is based on data from the European Space Astronomy
Center (ESAC), located at Villafranca del Castillo (Spain), which is
in charge of the Soil Moisture Ocean Salinity or SMOS mission from

30 FSS‘(DiSpersion) J—
DCS (Mirroring) ------
DCS (No redundancy) ------

25

20

Response Time (sec)
=

Content Delivery Sequence

Figure 3: The response times of push operations for FSS and Distributed
Cloud Storage configurations

2009. This mission has generated a vast amount of contents, that
will be used to create the first Earth global salinity map. Our system
distributes images of the Sun of SMOS mission in FITS format to
end-users through the Internet with a mean size of 44MB. A set
of organizations and end-users, from two countries spanning two
continents, get the contents by using a client APP of our system.
The following three configurations were defined in this case study:

e DCS: In this configuration, the end-user can access the contents
by using an online distributed cloud storage system or DCS
that does not include any redundant information.

e DCS-Mirroring: We implemented DCS in the UC3M-Colme
and UC3M-Cloud organizations that includes a fault-tolerant
strategy based on simple mirroring. This means two replicas are
sent to the federated storage. The organization can withstand
the failure of one cloud storage site by using this configuration.

e FSS: In this configuration, the organization delivers contents to
interested users by using a FSS system, which was configured
with an IDA combination (n = 5,m = 3). This means the FSS
client retrieves three chunks each time the end-users subscribe
a published content. This IDA configuration allows the system
to withstand 2 failures.

FHS and Phoenix configurations are not considered in this study
as the first exposes security issues and the second produces more
overhead than its version multi-threaded version FSS.

In this scenario we configured a storage network federation in-
cluding UC3M-Cloud, UC3M-Colme and Cinvestav organizations.
UC3M-Cloud was in charge of metadata manager and master of the
content distribution role. In this scenario, a source sends images to
the content delivery service by using publish and subscribe patterns.
In this evaluation we define a push pattern in which the source sends
the contents to its near members (UC3M-Cloud, UC3M-Colme). We
defined two pull patterns. The first invoked by member that are not
near to the source (Cinvestav). This pattern has been configured as
a hot standby scheme in which each storage monitor worker of the
Cinvestav member has a partner in the UC3M-Cloud and UC3M-
Colme. Each worker of Cinvestav retrieves a chunk from its partner
when the master receives a publish pattern. The service is accessed
by the users of the members as single domain by using subscribe

58

patterns. Based on this unified interface, all users of all members
are supported even when the servers of their organization are not
available.

Figure 3 shows the mean response times observed by organi-
zations when they distribute contents to end-users by using the
mentioned configurations. Each point in this graph represents the
mean response time of ten push operations. This means that 120
contents, with a mean size of 44MB, were sent to the cloud storage
by the content delivery configurations. Figure 3 also shows that
the response times of DCS configuration are better than the FSS
configuration. Nevertheless, FSS configuration allows organization
to withstand the failure of one cloud site and the source, while DCS
is a single backup that can tolerate the failure of the source.

DCS-Mirroring improves the reliability of DCS configurations but
it introduces a considerable overhead in the response times. More-
over, this configuration sends the whole file, so privacy and legal
problems could arise. The FSS system distributes anonymized and
encoded chunks, which means that the FSS agent and client know
the locations of the chunks and are the only ones that can recon-
struct the contents. In addition, FSS only produces up 66.7% of
redundancy overhead while this overhead for DCS mirroring is of
100%.

VII. CONCLUSIONS

This paper presented the implementation of FSS: a system for con-
tent delivery and sharing in Federated Cloud Storage. This system
virtualizes the storage resources of a set of organizations as a single
federated system, which is in charge of the content storage. The
architecture of this system includes a metadata management layer
to keep the content delivery control in-house and a storage synchro-
nization worker/monitor to keep the state of storage resources in
the federation as well as to send contents near to the end-users. It
also includes a redundancy layer based on a multi-threaded engine
that enables the system to withstand failures in the federated net-
work. The experimental evaluation shows the benefits of building
content delivery systems in federated cloud environments, in terms
of performance, reliability and profitability of the storage space.

Acknowledgment

The work presented in this paper has been partially supported by EU
under the COST programme Action IC1305, Network for Sustainable
Ultrascale Computing (NESUS) Nesus-members mailing list Nesus-
members@arcos.inf.uc3m.es https://www.arcos.inf.uc3m.es/ cgi-
bin/mailman/listinfo/nesus-members

REFERENCES

[1] T.]. Bittman and L. Leong. Worldwide archival storage solutions
2011-2015 forecast: Archiving needs thrive in an information-
thirsty world. pages 1-21, IDC. Market Analysis. October 2011

[2] http://aws.amazon.com/es/cloudfront/ Access 29 Sep 2014
[3] Google: Software bug caused gmail deletions (2011).

http:/ /www.pcmag.com/article2/0,2817,2381168,00.asp, Access
09 Sep 2014.

Content Delivery and Sharing in Federated Cloud Storage

[4] Storm clouds ahead. http://www.networkworld.com/news/
2009/030209-soa-cloud.html?page=1. Access 09 Sep 2014.

[5] http://www.itproportal.com/2012/07/04/power-outage-
generator-failure-responsible-for-instagram-netflix-blackout/,
Access 09 Jul 2013

[6] R. Chow, P. Golle, M. Jakobsson, E. Shi, J. Staddon, R. Masuoka,
and J. Molina. "Controlling data in the cloud: outsourcing com-
putation without outsourcing control". In Proceedings of the 2009
ACM workshop on Cloud computing security, pages 85-90, 2009.

[7] Report: Nirvanix customers have two weeks to get data out of
cloud: http:/ /www.networkworld.com/article/2170916/cloud-
computing/report-nirvanix-customers-have-two-weeks-to-get-
data-out-of-cloud.html

[8] J. L. Gonzalez, J. C. Perez, V. Sosa-Sosa, J. F. Rodriguez Cardoso,
and R. Marcelin-Jimenez. "An approach for constructing private
storage services as a unified fault-tolerant system". J. Syst. Softw.,
86(7):1907-1922, July, 2013.

[9] smos: Soil moisture and ocean salinit.

http:/ /www.esa.int/esalp/lpsmos.html. Access date: 23 jul
2013.

[10] J. Dilley, B. Maggs,]J. Parikh, H. Prokop, R. Sitaraman, and B.
Weihl. "Globally distributed content delivery". Internet Computing,
IEEE, 6(5):50-58, 2002.

[11] M.]. Freedman, E. Freudenthal, and D. Mazieres. "Democratiz-
ing content publication with coral". In NSDI, volume 4, pages
18-18, 2004.

[12] G. Pierre and M. Van Steen. "Globule: a platform for self-
replicating web documents". In Protocols for Multimedia Systems,
pages 1-11. 2001.

[13] R. Seiger, S. G, and A. Schill, Seccsie: A secure cloud storage
integrator for enterprises, in Proceedings of the 2011 IEEE 13th
CEC2011, pp .252-255.

[14] J. Spillner, G. Bombach, S. Matthischke, J. Muller, R. Tzschich-
holz, and A. Schill, "Information dispersion over redundant
arrays of optimal cloud storage for desktop users,"in Fourth IEEE
International Conference on Utility and Cloud Computing, 2011,pp.1-
8.

[15] M. O. Rabin. "Efficient dispersal of information for security,
load balancing, and fault tolerance".]. ACM, 36(2):335 348, 1989.

[16] A. Robison, M. Voss, and A. Kukanov, "Optimization via reflec-
tion on work stealing in tbb," in IPDPS. IEEE, 2008, pp. 1-8.

[17] libcurl, http://curl.haxx.se/libcurl/ Access date: 23 Sep 2014.

[18] J. L. Gonzalez and R. Marcelin-Jimenez, "Phoenix: Fault tolerant
distributed web storage." in Journal of Convergence, Section C:Web
and Multimedia, Vol.2, No.1, 2011.

