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Abstract

The ever-increasing power of supercomputer systems is both driving and enabling the emergence of new problem-solving methods that require
the efficient execution of many concurrent and interacting tasks. Swift/T, as a description language and runtime, offers the dynamic creation and
execution of workflows, varying in granularity, on high-component-count platforms. Swift/T takes advantage of the Asynchronous Dynamic
Load Balancing (ADLB) library to dynamically distribute the tasks among the nodes. These tasks may share data using a parallel file system, an
approach that could degrade performance as a result of interference with other applications and poor exploitation of data locality. The objective
of this work is to expose and exploit data locality in Swift/T through Hercules, a distributed in-memory store based on Memcached, and to
explore tradeoffs between data locality and load balance in distributed workflow executions. In this paper we present our approach to enable
locality-based optimizations in Swift/T by guiding ADLB to schedule computation jobs in the nodes containing the required data. We also
analyze the interaction between locality and load balance: our initial measurements based on various raw file access patterns show promising
results. Moreover, we present future work based on the promising results achieved so far.

Keywords Locality, In-memory storage, Swift/T, workflows

I. Introduction

Storage systems represent one of the main bottlenecks in modern
high-performance systems and are expected to pose a significant
challenge when building the next-generation exascale systems [2].
Large-scale storage systems are likely to be hierarchical [4], a con-
figuration that will probably be achieved by exploiting data locality
and asynchronously moving data among hierarchy levels [7].

In order to extract maximum performance from the new hard-
ware, exascale systems will require new problem-solving ap-
proaches. One of the most promising candidate approaches is the
many-task paradigm relying on a workflow model. In this paper we
propose a solution using Swift/T, a programming model and run-
time developed at Argonne National Laboratory that simplifies the
development and deployment of many-task applications on large-
scale systems. To expose and exploit data locality in Swift/T, we use
Hercules, a distributed in-memory store based on Memcached. Her-
cules offers Swift/T workers a shared storage in which I/O nodes
can be dynamically deployed for increasing data locality, while scal-
ing better than traditional shared file systems. Additionally, the per-
formance can be isolated from the shared file-system load peaks, a
feature that will be especially important on exascale systems where
several applications can be running concurrently.

II. Swift/T

Swift [11] is a programming model and runtime engine that permits
users to easily express the logic of many-task applications by using
a high-level language called Swift. The latest Swift implementation,
called Swift/T [12], can quickly launch tasks in any of the available
workers using the dataflow model Turbine.This model can be de-
ployed and distributed and can generate tasks with the throughput
required by next-generation exascale systems [13].

As seen in Figure 1, Swift/T comprises three main components:
the Swift compiler, the Turbine engines, and the Asynchoronous Dy-
namic Loud Balancing (ADLB) module [8]. The first step consists
in converting the Swift code into Turbine code. The Swift language
is a scripting language that can easily used to describe parallel al-
gorithms. A Swift program specifies different leaf tasks with their
input and output clearly characterized. These tasks can be written
in the Swift language or can be independent programs written in
any other language, treated by Swift as black boxes.

The second step is the identification of dependencies in the Tur-
bine code. Independent tasks can be run in parallel, while data-
dependent tasks will be held by the Turbine engines until every de-
pendency is fulfilled. When a task is ready to run, it is dispatched
to the ADLB load-balancing module. The Turbine engines can run
on any number of nodes for additional load balancing.

In the third step, the ADLB module schedules the tasks to be
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Figure 1: Architecture of the Swift/T runtime. Swift code is compiled
into the Turbine code evaluated by the engines; workers execute leaf task
applications.

launched on the available workers. When a task finishes, ADLB
collects the results and notifies any Turbine engines subscribed to
the outputs from that task. Upon notification, the Turbine engines
update the data dependencies and release any remaining tasks that
are ready to run.

input_files
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final_file

SFS / HERCULES

Figure 2: Scheme of a typical many-task workflow application: a protein-
docking simulation. The output of one task is the input of the next task.

For a better understanding of the applications representative for
Swift/T, Figure 2 shows an example of a workflow application. The
application is a typical protein-docking workflow, in which a mas-
sive number of files describing protein characteristics are to be pro-
cessed in order to evaluate how each combination of files docks.
For this purpose, three different modules are applied consecutively,
represented in the figure as boxes.

The docking module, written in C, evaluates two protein files
and generates a temporary output file containing their combination.
The match module, written in Java, takes the output of the previous
file and determines whether the combination is correct, classifying
it with a label and writing it to an output file. The merge application,
written in Swift, uses all the files generated by the match application
and merges them in a single file counting the number of labels of
each kind. This file is the final output of the application. A snippet
of the source code sample of this application is shown in Figure 3.

A typical protein-docking scenario involves thousands of differ-
ent proteins producing millions of possible combinations. Manu-
ally launching these combinations is tedious work, and classical
scripting languages do not have the capability to run independent

1 import string;
2 import files;
3
4 app (file f_output) dock (file f_in1, file f_in2)
5 {
6 "./docking" f_in1 f_in2 f_output;
7 }
8
9 app (file f_output) match (file f_input)

10 {
11 "java match" f_input f_output;
12 }
13
14 (file f_results) merge(file f_input[])
15 {
16 foreach f in f_input {
17 // Merge algorithm

18 }
19 }
20
21 main
22 {
23 file fin[];
24 file f_match[];
25 foreach fin1,i in fin{
26 foreach fin2,j in fin{
27 file f_tmp = dock(fin1,fin2);
28 index = i+j + j;
29 f_match[index] = match(f_tmp);
30 }
31 }
32 file f_out<"results.out"> = merge(f_match);
33 }

Figure 3: Example of Swift source code.

tasks in parallel. With the simple code from Figure 3, Swift/T eval-
uates the dependencies and runs millions of instances of existing
programs without requiring any change in the source code—not
even a recompilation if the code was previously compiled for the
machine on which it is supposed to run. File reads and writes are
made through a file system shared by every Swift/T worker node.

Currently, Swift/T uses distributed memory to store basic vari-
ables; but it requires a shared file system to store files, relying on
the distributed memory mechanism only for solving file dependen-
cies using file paths. As shown in Figure 3, this mechanism is used
even when the files are going to be part of a workflow: the output of
a task generates a temporary file used as the input of the next task.
Hercules can alleviate this I/O bottleneck by storing the files in the
main memory of the worker nodes. In addition to this problem, the
original Swift/T scheduler was not able to exploit data locations,
which prohibited the use of systems like Hercules. As shown in
Section IV, the ADLB scheduler, driven by Swift, can be guided to
exploit data locality and access Hercules files without network com-
munication, colocating the computation in the worker that contains
the data and obtaining performance improvements.

III. Hercules

The distributed memory space of Hercules [5] can be used by appli-
cations as a virtual storage device for I/O operations. We have
adapted this space for use as in-memory shared storage for the
Swift/T workers. Our approach relies on an improved version of
the Memcached [6] servers, which provide a storage solution for the
worker.

As can be seen in Figure 4, our solution consists of two levels:
client library and servers. On top is the client user-level library with
a layered design. Back-ends are based on the Memcached server,
extending its functionality with persistence and tweaks. Main ad-
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Figure 4: Hercules architecture. On the top is the client side, a user-level
library. On the bottom is the server side with the Hercules I/O nodes
divided in modules.

vantages offered by Hercules are scalability, ease of deployment,
flexibility, and performance.

Scalability is achieved by fully distributing data and metadata in-
formation among all the nodes, avoiding the bottlenecks produced
by centralized metadata servers, in cases of high metadata accesses
load. Data and metadata placement is calculated on the client side
by an algorithmic hashing. The servers, on the other hand, are com-
pletely stateless.

Ease of deployment and flexibility are tackled at the client side
by using a POSIX-like user-level interface (open, read, write, close,
etc.) in addition to the classic put/get approach in current NoSQL
databases. Existing software requires minimal changes to run with
Hercules. Servers can be deployed in any kind of Linux system at
the user level, and persistence can be easily configured by using
existing plugins or developing new ones.

Performance is achieved by exploiting the parallel I/O capabili-
ties of Memcached servers. Hercules is easy to deploy on as many
nodes as necessary, and every node can be accessed independently,
multiplying the total throughput peak performance. Furthermore,
each node can serve requests in a concurrent way thanks to a mul-
tithreading approach. The combination of these two factors results
in full scalability, in both the number of nodes and the number of
workers running on each node.

In addition to the default algorithmic hashing provided by Mem-
cached, we have designed two new custom placement algorithms.
The first algorithm is a locality-aware placement, capable of plac-
ing all the items related with one specific file in the same node.
Thus, if a task needs to access an existing file and is running on
the same node as the Hercules server containing the data, it can
access the whole file locally. Combining data locality and concur-
rent request serving, our solution can achieve intranode scalability,
serving requests in parallel from different workers running on the
same node—a common approach in current and future multicore

compute nodes—and avoiding the usual single network interface
bottleneck. The second algorithm has been designed but is not yet
fully developed; its objective is to take into account load factors (ca-
pacity, CPU load, burst peaks) when selecting the data placement.

IV. Integrating Swift/T and Hercules

The objective of this work is to combine the Swift/T many-task run-
time with our Hercules storage system in order to perform I/O
operations in-memory instead of using default systemwide shared
file systems. The integration of Hercules and Swift/T takes advan-
tage of two features offered by each solution: (1) Hercules offers
an ad hoc distributed storage shared among all available workers,
using their main memory for storing data; and (2) Swift/T has an
experimental feature, called @location [14], that can be used to over-
ride the default scheduling, placing a specific task on any desired
worker node.

To integrate both features, we have developed a mechanism that
spawns one Hercules server on each of the worker nodes available
for Swift/T. We have implemented a function to easily determine
where a specific file is located or where it will be located if it has not
yet been written to expose data locality. We have used the @location
experimental feature to schedule read operations in nodes contain-
ing the required data and write operations in the nodes that are
going to contain the data to exploit data locality. The combination
of these three techniques enables users to perform any kind of read-
/write file operation querying the Hercules server running in the
same node, without needing network communication or disk oper-
ations.

Our solution also can be used as an ad hoc distributed in-memory
storage, resulting in easier deployment and better scalability than
conventional shared file systems provide. Furthermore, our ad hoc
storage can avoid the peak load performance penalties that occur
from sharing storage resources between different applications run-
ning on the same system, thus reducing the shared file system noise
in I/O operations.

V. Evaluation

To evaluate our integration of Swift/T and Hercules, we ran a se-
ries of tests on the Fusion cluster at Argonne National Laboratory.
This cluster has 320 nodes, composed of dual-socket boards with
quad-core 2.53 GHz processors and 36 GB of main memory. The
intercommunication networks are InfiniBand QDR (4 GB/s) and Gi-
gabit Ethernet.

For the evaluation, we developed a synthetic application with 64
tasks consisting of 32 tasks performing a file write of 2 GB each
and 32 tasks performing reads of the previously created 2 GB files.
We compared raw file reads/writes with GPFS, Hercules without
locality, and Hercules using data locality in all the tasks (all the I/O
operations were done inside the node, without using the network).
Hercules used the InfiniBand network over TCP/IP for I/O; the
GPFS file system has a peak performance of 3200 MB/s over the
InfiniBand network. We focused on two cases: scalability in the
number of nodes (launching one worker per node) and scalability
in the number of workers per node (with a fixed node setup).

As can be seen in Figure 5 and Figure 6, our solution scales bet-
ter than GPFS, especially when contention is high. In other words,
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Figure 5: Raw file write throughput per node comparison between our
proposed solution and GPFS, when scaling the number of nodes, running
one worker per node.

!"#$%&'()%*+,%-#$.%/%,%012%3%4567

8
9
:'
;
<
9
(
;
=%
(
$
:%
>
'
?
$
%*
@
1
A.
2

B

CDE

+EB

E,E

DBB

F%>'?$.%A%F%G':H$:. CI%>'?$.%A%CI%G':H$:. IF%>'?$.%A%IF%G':H$:.

0J!K L$:M;#$.3"N L$:M;#$.3#'MO="'>

Figure 6: Raw file read throughput per node comparison between our pro-
posed solution and GPFS, when scaling the number of nodes, running one
worker per node.

when many workers are trying to access the file system concur-
rently, Hercules takes advantage of the increased number of I/O
nodes launched and colocated with each worker to perform I/O
accesses in a parallel way, whereas GPFS shares its maximum band-
width between all the nodes. The throughput represented in both
figures corresponds with the throughput per node, resulting in
an aggregated throughput that scales with the number of worker
nodes. Hercules performs similarly over the network and locally,
probably because of the overhead of the TCP/IP stack even for lo-
cal accesses.

Figure 7 and Figure 8 show how when we increased the num-
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Figure 7: Raw file write throughput per node comparison between our pro-
posed solution and GPFS scaling the number of workers per node running
in a fixed 8-node setup.
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Figure 8: Raw file read throughput per node comparison between our pro-
posed solution and GPFS scaling the number of workers per node running
in a fixed 8-node setup.

ber of workers per node, fixing the number of nodes to 8, the
results are similar to the previous case: our solution scales better
with the number of workers, whereas GPFS performance is affected
by contention. Again, we note that the represented throughput is
measured per worker, which explains the performance hit of GPFS,
which has to share the available bandwidth among all the workers.

In this case, the locality-aware version performs better, because it
can serve more workers in parallel without contention. That behav-
ior is explained by the ability of the Hercules I/O nodes to serve
various workers in parallel thanks to the multithreaded implemen-
tation. When the queries are done inside the same node, there is
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no need for sharing the network interface, resulting in an improved
performance over remote queries using the InfiniBand network in-
terface over TCP. Requests can be served by the multithreaded Her-
cules I/O nodes using the loopback TCP stack, avoiding sharing the
available bandwidth.

These tests demonstrate how our proposed solution scales bet-
ter than current state-of-the-art parallel shared file systems for I/O-
bound applications. We have also demonstrated how our solution
suffers less from contention and offers a more stable performance
when different applications share the same parallel file system. In
contrast, however, real-life applications usually mix computation
and I/O operations. This behavior results in less contention to the
shared file system and should be evaluated in the future. Another
issue that was exposed when evaluating our solution is related to
the overridden scheduling. Currently the @location functionality al-
lows only one specific node to be selected; but since the load is not
balanced among workers running on the same node, a load imbal-
ance can result, reducing the performance gains produced by the
improved throughput.

VI. Related Work

The increasing popularity of many-task computing and workflow
engines and the I/O bottleneck in such scenarios have led several
researchers to investigate this problem.

Parrot [9] is a tool for attaching existing programs to remote I/O
systems through the POSIX file-system interface, and Chirp [10] is
a user-level file system for collaboration across distributed systems
such as clusters, clouds, and grids. They are usually combined
to easily deploy a distributed file system ready to use with cur-
rent applications through a POSIX API. Many characteristics are
shared with Hercules: user-level deployment without any special
privileges, transparency through the use of a widely used interface,
and easy deployment using a simple command to start a new server.
Hercules, however, is designed to achieve high scalability and per-
formance by taking advantage of as many compute nodes as possi-
ble for I/O operations. Moreover, Hercules uses main memory for
storage improving performance in data-locality-aware accesses.

Costa et al. proposed using extended file attributes in MosaStore
[1, 3] to provide communication between the workflow engine and
the file system through the use of hints about the data. The work-
flow engine can provide these hints directly to the file system, or
the file system can infer the patterns by analyzing the data accesses.
The MosaStore approach is radically different from Hercules, using
a centralized metadata server instead of the fully distributed, easy-
to-use, and flexible deployment approach of our proposed solution.

The AMFS shell [15] offers programmers a simple scripting lan-
guage for running parallel scripting applications in-memory on
large-scale computers. The objective of this solution is similar to
the combination of Swift/T and Hercules, but Swift/T can auto-
matically solve data dependencies and launch tasks to workers in a
more efficient way by using distributed Turbine engines. AMFS and
Hercules also share the distributed metadata approach; the main
difference is that AMFS shell programs can explicitly specify in-
memory or persistent storage, whereas Hercules can be deployed
with persistence enabled in a transparent way for the programmer.

HyCache+ [16] is a distributed storage middleware that allows
I/O to effectively leverage the high bisection bandwidth of the high-

speed interconnect of massively parallel high-end computing sys-
tems. HyCache+ acts as the primary place for holding hot data
for the applications (e.g., metadata, intermediate results for large-
scale data analysis) and only asynchronously swaps cold data on
the remote parallel file system. Similarities between HyCache+ and
Hercules include their fully distributed metadata approach, use of
compute network instead of the shared storage network, and the
high scalability capabilities. HyCache+ relies on POSIX, however,
whereas Hercules offers the possibility of using a POSIX-like in-
terface and get/set operations. Moreover, HyCache+ focuses on en-
hancing parallel file systems in a generic way, whereas Hercules has
been designed to work specifically with a many-task engine, expos-
ing and exploiting data locality in current applications. HyCache+
and Hercules thus share similar ideas, but Hercules is ready to im-
prove many-task I/O performance by focusing on easy and flexible
deployment options.

VII. Conclusions

In this paper we have presented the integration of Swift/T and
Hercules in order to expose and exploit data locality in many-task
workflows. We have evaluated the capabilities of our solution for
raw file access. The approach achieves a substantial improvement
of throughput performance over that of the GPFS file system. In
addition, our solution can deploy as many I/O nodes as Swift/T
workers running the application, achieving better scalability than
possible with traditional static parallel file systems. Another advan-
tage of our solution is isolation from shared file system noise. In
the increasingly common case of various applications running at
the same time on the same system, our solution ensures isolation
of the I/O performance, independent of the file system load at any
specific instant.

To tackle the load imbalance issue, we are working on two new
approaches that can be combined. The first one will try to improve
the load balance of workers inside the same node. An improved
scheduler has been implemented in Swift/T, and we are evaluating
it with Hercules. The second approach focuses on load balance
among nodes. We are developing a new placement policy to map
data in a load-aware way, placing data in the less-loaded nodes or
in the nodes with more memory/capacity available. Moreover, to
better demonstrate the capabilities of our solution, we will evaluate
it with CCTW, a real MapReduce-like application.
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