
Universidad Carlos III de Madrid
Escuela Politécnica Superior

Departamento de Informática
Doctorado en Ciencia y Tecnología Informática

Tesis Doctoral

A Framework for Context-Aware
Sensor Fusion

Enrique David Martí Muñoz

Dirigida por

Jesús García Herrero

José Manuel Molina López

19 de junio de 2015

This work is distributed under the Creative Commons 3.0 license. You are free to copy, distribute and
transmit the work under the following conditions: (i) you must attribute the work in the manner specified
by the author or licensor (but not in any way that suggests that they endorse you or your use of the
work); (ii) you may not use this work for commercial purposes, and; (iii) you may not alter, transform, or
build upon this work. Any of the above conditions can be waived if you get permission from the copyright
holder. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for further details.

E-mail: emarti@inf.uc3m.es

Telephone: +34 91 856 1320

Address:

Grupo de Inteligencia Artificial Aplicada
Departamento de Informática
Universidad Carlos III de Madrid
Av. de la Universidad Carlos III, 22
Colmenarejo 28270 — Spain

http://creativecommons.org/licenses/by-nc-nd/3.0/
mailto:emarti@inf.uc3m.es

A Framework for Context-Aware Sensor Fusion
Autor: Enrique David Martí Muñoz

Directores: Jesús García Herrero
José Manuel Molina López

Firma del Tribunal Calificador:

Nombre y Apellidos Firma

Presidente: D. .

Vocal: D. .

Secretario: D. .

Calificación: .

Colmenarejo, de . de 2015.

A los que siempre me acompañáis,
aun estando muy lejos.

Contents

Abstract 13

Resumen 15

Agradecimientos 17

1 Introduction 1

1.1 Basic concepts . 1

1.1.1 Sensor fusion . 1

1.1.2 Context . 2

1.1.3 Relation between fusion and context 3

1.2 Motivation . 4

1.3 Goals . 5

1.4 Structure of the document . 6

2 State of the art 7

2.1 Sensor Fusion . 7

2.1.1 Models, architectures and frameworks 7

2.1.2 Fusion Systems with adaptation capabilities: JDL Level 4 14

2.1.3 Processing architectures in distributed systems 15

2.1.4 Types of fusion . 18

2.1.5 Sensor fusion techniques . 18

2.2 Context-aware computing . 23

2.2.1 Architectures for context-aware computing 23

2.2.2 Context acquisition . 24

2.2.3 Context modeling and representation 26

4 0. Contents

2.2.4 Context management and access . 27

2.3 Context in information fusion processes . 29

2.3.1 Context-aware architectures for information fusion 30

2.3.2 Previous works in the research group 31

3 Proposal: adaptive framework for context-aware sensor fusion 33

3.1 Preliminary concepts and analysis . 33

3.1.1 Uses of Context Information in Sensor Fusion systems 33

3.1.2 Ontologies as a tool for adaptive systems meta-description 36

3.1.3 Automatic sensor and algorithm selection 40

3.1.4 A note on coupling, modularity and automatic adaptation 41

3.2 System scope and requirements . 42

3.3 Proposal . 44

3.3.1 Fusion solution components: Data Nodes 45

3.3.2 Modeling the components of the problem and the solution 49

3.3.3 Architectural components. Modules 56

3.3.4 Designing a sensor fusion solution within this proposal. Workflow . . . 59

3.4 Conclusions . 60

3.4.1 Review of requirements . 60

3.4.2 Domain of application . 61

3.4.3 Extensibility . 62

4 Application to maritime surveillance scenario: Design 65

4.1 Scenario requirements . 65

4.2 Initial fusion solution design . 66

4.2.1 Architectural solution . 67

4.2.2 Message processors (Data Nodes) . 67

4.2.3 Algorithms to implement . 69

4.2.4 Zonal splitter for spatial configuration 69

4.2.5 Generating fusion quality metrics . 70

4.3 Describing elements of the problem . 70

0.0. Contents 5

4.3.1 Problem space and sensors . 70

4.3.2 Context . 74

4.4 Evolving the design towards a self-adaptive solution 76

4.5 Conclusions . 78

5 Application to vehicle navigation in urban environment: Design and Experi-
ments 79

5.1 Introduction . 80

5.1.1 Fusion of GNSS/IMU for navigation 80

5.1.2 Challenges . 80

5.2 Proposal . 82

5.2.1 Sensors . 83

5.2.2 Notation and conventions . 85

5.2.3 Design of initial solution . 86

5.2.4 Context variables. Description and acquisition 93

5.2.5 Using context to improve sensor fusion 97

5.2.6 Formal model of the system . 103

5.3 Experiments . 109

5.3.1 Context-aware fusion algorithms using on-board sensors 109

5.3.2 Context-aware fusion algorithms using smartphone 121

5.3.3 Context-aware adaptability . 127

5.4 Conclusions . 129

6 Conclusions 131

6.1 Contributions . 131

6.2 Differences between using the proposed framework and ad-hoc system design . 132

6.3 Benefits of using context information in the fusion process 133

6.4 Computational performance questions . 134

6.4.1 Performance penalty associated to framework usage 134

6.4.2 Scalability . 135

6.5 Future work . 136

6 0. Contents

Appendix A Filtering algorithms 137

A.1 Kalman Filter . 138

A.2 Unscented Kalman Filter . 139

A.3 Particle Filter . 141

A.3.1 Formal description . 141

References 149

List of Figures

2.1 LAAS architecture for design and implementation of real time mobile robots . . 12

2.2 Omnibus Model . 13

2.3 Processing architectures in distributed systems. Taken from (Benaskeur et al.,
2007) . 17

2.4 (Baldauf et al., 2007) Architectures for context-aware system development . . . 24

3.1 Architecture of the context-based adaptive sensor fusion system 44

3.2 Virtual sensors abstraction in a smartphone equipped with Android OS. Step
counter sensor can represent a real piece of hardware or a software process over
accelerometer data . 46

3.3 A widget encapsulates a functionality minimizing the parts of it exposed to the
outer world. 46

3.4 Problem-Space description is a basic component of the Fusion Adaptation Module. 50

3.5 Hierarchy of classes in the problem-space description ontology 50

3.6 Object properties in the problem-space description ontology 52

3.7 Data properties in the problem-space description ontology 53

3.8 The resource description ontology, highlighted in the figure, has been integrated
in our example with the description of the problem space. This way, concepts
and properties can be reused to provide a homogeneous treatment of every Data
Node in the system. 55

4.1 Selected processing scheme for the solution. Each sensor is processed individually,
and local results are fused together by a global tracker. 67

4.2 Selected processing scheme for the solution. Each sensor is processed individually,
and local results are fused together by a global tracker. 68

4.3 Zonal splitter processor divides input data in chunks (according to geographical
location) that are processed using a different algorithm/configuration. Partial
results are merged back to compose the output. 70

8 0. List of Figures

4.4 Definition of the GlobalTracker class in problem-space ontology. OWL restric-
tions are used to express the features and constraints identified during solution
design: it accepts a single AIS tracker and an unlimited number of radar track-
ers, has 4 slots for configurable algorithms that fulfill an specific function, and
generates global tracks and events used to calculate quality metrics. 73

4.5 Object properties used to define the problem space. They are organized according
to its domain class. 73

5.1 Urban canyon creates a degraded GPS environment where signals are blocked
and reflected. 81

5.2 Mid-cost sensors as mounted in the roof of the test vehicle. 83

5.3 System architecture for the initial non-adaptive solution. 87

5.4 Sensor refinement module. 88

5.5 Calculation of elevation angle from two GPS measures. 91

5.6 Sample accelerometer readings featuring two stops around t=[0;15] and t=[430;460]
seconds. Bias combined with gravity effect makes the raw signal not adequate
for detecting stops. 95

5.7 Sensor refinement module. 98

5.8 Instantiation of the designed adaptive navigation solution into the proposed
framework . 102

5.9 Hierarchy of classes in the problem-space description ontology 104

5.10 Object properties in the problem-space description ontology 105

5.11 Data properties in the problem-space description ontology 105

5.12 Context description ontology for the ground vehicle navigation experiment . . . 106

5.13 Values of the EnergyPolicy class are defined as individuals 107

5.14 Classes are populated with individuals representing objects the Fusion Adaptation
module can manage . 107

5.15 Annotating individuals with object and datatype properties allow to describe
the required problem space information . 108

5.16 Sample accelerometer readings, processed signal, and output of the car stop
detection module. This figure shows the validity of the applied strategy. 109

5.17 Output of the trajectory analysis module: straight movement detection using
accelerometer readings. 110

0.0. List of Figures 9

5.18 Accelerometer bias can be corrected during stops if elevation angle has been
already determined. 111

5.19 Expected standard deviation of GPS-obtained elevation angle, depending on
vehicle speed and fix horizontal accuracy (simulation, 10 million iterations per
point). 112

5.20 Non-underground parking area with zero satellite visibility and inactive DGPS
mode using a constant value. 113

5.21 Underground parking lot experiment . 114

5.22 Effect of complex urban canyons in UKF performance 115

5.23 Sample trajectory: urban area entrance. 116

5.24 Effect of complex urban canyons in GNSS measures 117

5.25 Sample trajectory: complex urban canyon. 118

5.26 Sample trajectory: complex urban canyon. 119

5.28 Trajectory followed by the test car. Results presented here are based on this
record. 121

5.29 Number of satellites over time. 122

5.30 Comparison of Novatel GPS (green) and smartphone (red) raw fixes. Detail. . 123

5.31 Distance between GPS fixes from Smartphone/Novatel devices, compared with
the self-reported accuracy (one standard deviation). 124

5.32 Accelerometer readings with the vehicle stopped. Note that bias is not corrected
on these samples. 124

5.33 Gyroscope readings with the vehicle stopped. 125

5.34 Compared angular rate on mid-cost and smartphone gyroscope (subsampled
for the sake of clarity). The comparison exposes anomalies, as the smartphone
signal becoming noisier around t = 410s , or a 0.3 seconds delay from t = 370s
to the next straight fragment, around t = 390s. 126

5.35 Sample of stop detection output, compared for both sensors. 126

5.36 Sample of straight motion detection output, compared for both sensors. 127

5.37 Sample fusion solution for getting vehicle position and linear speed 128

5.38 Sample fusion solution for getting high-accuracy location and stop detection . . 128

10 0. List of Figures

A.1 Comparative chart of several filtering algorithms, considering two variables: how
complex/powerful is the probability distribution used to described the estimated
state of the system, and the expressiveness of the prediction model supported
by the filter. 137

A.2 Advantages of the Unscented Transform over other linearization methods. Taken
from (Wan and Van Der Merwe, 2000). 140

A.3 State estimation calculated as the mean value of random samples, drawn
according to the posterior probability distribution. Other solution, as the sample
with a higher density (trying to find the peak of the real density function) offers
poor results with asymmetric probability distribution. 144

A.4 Illustration of the sampling importance resampling process, inside the working
cycle of a particle filter. Adapted from (Van der Merwe et al., 2000). 146

List of Tables

3.1 Set of OWL statements equivalent to Sensor Y produces data type Z at 5 Hz
with high accuracy . 52

5.1 Sensor refresh rates . 85

5.2 Summary of context variables used in the ground vehicle navigation solution. . 93

5.3 Rules for determining energy policy. 96

5.4 Rules for determining smartphone placement 97

5.5 Contextual constraints on sensor set and algorithms 101

5.6 Available sensors . 106

5.7 Algorithm for estimating the error of calculated elevation angle from two GPS
fixes. 111

5.8 Observed noise levels of IMU components. 125

12 0. List of Tables

Abstract

Sensor fusion is a mature but very active research field, included in the more general
discipline of information fusion. It studies how to combine data coming from different

sensors, in such way that the resulting information is better in some sense –more complete,
accurate or stable– than any of the original sources used individually. Context is defined as
everything that constraints or affects the process of solving a problem, without being part of
the problem or the solution itself. Over the last years, the scientific community has shown a
remarkable interest in the potential of exploiting this context information for building smarter
systems that can make a better use of the available information.

Traditional sensor fusion systems are based in fixed processing schemes over a predefined
set of sensors, where both the employed algorithms and domain are assumed to remain
unchanged over time. Nowadays, affordable mobile and embedded systems have a high sensory,
computational and communication capabilities, making them a perfect base for building sensor
fusion applications. This fact represents an opportunity to explore fusion system that are bigger
and more complex, but pose the challenge of offering optimal performance under changing and
unexpected circumstances.

This thesis proposes a framework supporting the creation of sensor fusion systems with
self-adaptive capabilities, where context information plays a crucial role. These two aspects
have never been integrated in a common approach for solving the sensor fusion problem before.
The proposal includes a preliminary theoretical analysis of both problem aspects, the design
of a generic architecture capable for hosting any type of centralized sensor fusion application,
and a description of the process to be followed for applying the architecture in order to solve a
sensor fusion problem.

The experimental section shows how to apply this thesis’ proposal, step by step, for creating
a context-aware sensor fusion system with self-adaptive capabilities. This process is illustrated
for two different domains: a maritime/coastal surveillance application, and ground vehicle
navigation in urban environment. Obtained results demonstrate the viability and validity of the
implemented prototypes, as well as the benefit of including context information to enhance
sensor fusion processes.

14 0. Abstract

Resumen

La fusión de sensores es un campo de investigación maduro pero no por ello menos activo,
que se engloba dentro de la disciplina más amplia de la fusión de información. Su papel

consiste en mezclar información de dispositivos sensores para proporcionar un resultado que
mejora en algún aspecto –completitud, precisión, estabilidad– al que se puede obtener de las
diversas fuentes por separado. Definimos contexto como todo aquello que restringe o afecta
el proceso de resolución de un problema, sin ser parte del problema o de su solución. En los
últimos años, la comunidad científica ha demostrado un gran interés en el potencial que ofrece
el contexto para construir sistemas más inteligentes, capaces de hacer un mejor uso de la
información disponible.

Por otro lado, el desarrollo de sistemas de fusión de sensores ha respondido tradicionalmente
a esquemas de procesado poco flexibles sobre un conjunto prefijado de sensores, donde los
algoritmos y el dominio de problema permanecen inalterados con el paso del tiempo. En la
actualidad, el abaratamiento de dispositivos móviles y embebidos con gran capacidad sensorial,
de comunicación y de procesado plantea nuevas oportunidades. La comunidad científica comienza
a explorar la creación de sistemas con mayor grado de complejidad y autonomía, que sean
capaces de adaptarse a circunstancias inesperadas y ofrecer un rendimiento óptimo en cada
caso.

En esta tesis se propone un framework que permite crear sistemas de fusión de sensores con
capacidad de auto-adaptación, donde la información contextual juega un papel fundamental.
Hasta la fecha, ambos aspectos no han sido integrados en un enfoque conjunto. La propuesta
incluye un análisis teórico de ambos aspectos del problema, el diseño de una arquitectura
genérica capaz de dar cabida a cualquier aplicación de fusión de sensores centralizada, y la
descripción del proceso a seguir para aplicar dicha arquitectura a cualquier problema de fusión
de sensores.

En la sección experimental se demuestra cómo aplicar nuestra propuesta, paso por paso,
para crear un sistema de fusión de sensores adaptable y sensible al contexto. Este proceso de
diseño se ilustra sobre dos problemas pertenecientes a dominios tan distintos como la vigilancia
costera y la navegación de vehículos en entornos urbanos. El análisis de resultados incluye
experimentos concretos que demuestran la validez de los prototipos implementados, así como
el beneficio de usar información contextual para mejorar los procesos de fusión de sensores.

16 0. Resumen

Agradecimientos

Esto va a ser largo, pero os vais a tener que aguantar. Cuando uno entra en una vida tan
plenamente como lo habéis hecho vosotros en la mía, debe atenerse a las consecuencias.

Quiero abrir los agradecimientos con unas palabras para Jesús, mi director, por enseñarme
a ser mejor en mi trabajo a través de su ejemplo impecable, por su atención al detalle que es la
base de la auténtica excelencia. Por ser un pozo de paciencia frente a todos esos desórdenes,
dudas, retrasos y desastres que le he ido poniendo delante de los pies, y meterme en el camino
cuando me empezaba a desviar. Gracias a José Manuel, por su clarividencia y resolución para
saber en medio minuto qué está mal, por qué, y cómo arreglarlo. No sólo me has ayudado en
la realización de la tesis sino que me has enseñado a pensar de forma distinta y, creo, mejor.
Gracias a los dos por ser de esos “jefes” que sabes que van a hacer lo que esté en su mano (y
a veces también lo que no lo está) por cuidar de quienes tienen a su cargo.

Eterno agradecimiento a David “GPS master”. Siempre recordaré los paseos en coche, con
tu talante inmejorable y todo lleno de cables: has sido la mejor ayuda posible. También a
Nando, por su colaboración en la recogida de datos. Esto habrá que celebrarlo: no todo van a
ser conciertos de U2 en Chicago, pero algún bicicleteo podrá caer, digo yo. Gracias al resto del
GIAA y habitantes del campus: Miguel Ángel (que me metió en este embolado), Antonio, Mar,
Eli, Carmela, Iván... perdonad que no siga, ¡sois tantos! Os voy a echar de menos.

Un hueco especial para mi “familia adoptiva”, mi hermano Javi, mi mamá María Elena y
mi papá Miguel. Habéis logrado que vuestro hogar sea también el mío, y eso es mucho decir.
Puede que sin vosotros también estuviese donde estoy, pero sin duda alguna sería mucho menos
feliz. Javi, es imposible agradecer lo que hemos aprendido, reído y caminado juntos. Quizá la
mejor manera sea seguir haciéndolo durante unos cuantos años más, pongamos 50 o 60.

Rebeca, contigo sobran las palabras, de modo que ni lo voy a intentar. Sólo gracias. Tú
sigue saltando de sueño en ilusión y pintando vidas con tu magia. Sabes que siempre me tendrás
a tu lado, por muchos kilómetros y meses que separen nuestros caminos. Esto se extiende a mi
gente de Tramacastilla. A Sara, porque hemos compartido tanto que asomarme a sus ojos es
como mirar al espejo... ¡y lo que nos queda!, a Fer, Ale, Tamy, Pedro, Marcos, Vicente, Sofi y
todos los demás. A pesar de todo, hay rincones fuera del tiempo y el espacio en los que reímos
todos juntos.

A mis compañeros de tatami y de vida. Javi, Isa (¡“sobri” Luna!), Dani y Miri, vosotros
sois especiales a muchos niveles, y siempre constituiréis un motivo para regresar donde quiera

que os halléis. A Kp (¡y Olga y Luna!), sensei, maestro, amigo, sin todos esos años a tu lado
no sería quien soy... ¡Os!

A la Asociación del Crimen Organizado (así, sin nombres): los delitos pueden prescribir
para la Justicia, pero seguirán frescos en mi memoria. Gracias a vosotros el trabajo ha sido
menos trabajo, y lo que no es trabajo... me ha dejado ratos de los que te llevas en el último
paseo en barca. Espero seguir disfrutando de vosotros, por separado y en pelotón.

Elena, Raúl, Isa, Marta, Iván... nos hemos conocido de adultos, pero en el fondo siempre
seremos una panda de niños jugando en la tierra. Quiero tener cerca vuestras conversaciones,
consejos y abrazos, siempre. Emi, tú vas aparte porque contigo también me faltan (o me sobran)
palabras. No sé si eres consciente de lo importante que ha sido tu apoyo durante estos años, de
modo que quiero dejar aquí registrado que el 49% de esta tesis lleva tu marca. Siento no llegar
al 50, pero es que tiene que seguir siendo mía.

A los más importantes, mi familia. Papá, mamá: todavía me maravillo por la fortuna que
supone ser hijo vuestro. Gracias por vuestros amor, esfuerzos y desvelos, por darme lo necesario
para llegar hasta aquí, por haberme hecho quien soy. Alex, hermano: te tolero.
(¡es broma! no concibo la vida sin saber que estás ahí, tu ayuda incondicional, sentido del
humor... aunque tampoco te tolere tanto, no te vengas arriba).
Tíos, primas, abuelas, gracias también a vosotros. Dicen que la familia no se elige, pero creo
que a mí me dejaron hacer trampas.

Y para finalizar, a mis dos abuelos, donde quiera que estén. Especialmente a mi yayo
Arsenio, que sé que habría dado cualquier cosa por ver este momento. Esta va por ti.

Os quiero.

Kike
Colmenarejo, junio de 2015.

20 0. Agradecimientos

1
Introduction

The main goal of this dissertation, as stated in the title, is to define a Framework supporting
and guiding the construction of context-aware sensor fusion systems. This is, sensor fusion
systems that can integrate information describing its context, with two potential benefits: (a)
make the fusion products better in some sense (b) increase robustness through adaptation to
changing circumstances.

Along this section we will introduce some basic concepts required to understand this work.
Next, these concepts are put together so that we can identify the needs and problems motivating
this dissertation. The chapter is closed with the goals set for our work.

1.1 Basic concepts

Two are the basic building blocks of this work: sensor fusion and context information. This
section introduces them briefly, along with a discussion on how they are related.

1.1.1 Sensor fusion

Sensor fusion is a subdiscipline of Data Fusion (also known as Information Fusion). Let us
explain in detail what is Data Fusion before entering on details about the sensor part. We will
use the definition found in the preface of (Liggins et al., 2008):

Multi-sensor data fusion seeks to combine information from multiple sources
(including sensors, human reports, and data from the Internet) to achieve inferences
that cannot be obtained from a single sensor or source, or whose quality exceeds
that of an inference drawn from any single source.

2 1. Introduction

Lacking an official definition, though, many authors have opted to include their own
formulations on their works. The most relevant ones are compiled and analyzed in (Boström
et al., 2007).

Data fusion discipline aims to obtain the best description of a situation, from information
that can be partial, insufficient, imprecise or unreliable. With that purpose, it borrows
techniques from numerous fields of computation from the most simple mathematical operations,
to challenging computational problems as decision taking, planning or automatic knowledge
extraction from text.

This work is limited to sensor fusion, a branch of data fusion concerning data acquired
exclusively from sensors, as opposed to data generated by human beings (also called ”soft
sensors”) or extracted from databases as the Internet —semantic analysis of text, vague or
abstract descriptions of complex situations—. However, since we will include context data, we
can refine the previous statement by limiting this thesis to “low level information fusion” as
defined in (Waltz and Llinas, 1990): information related with individual entities, as opposed
to the “high level information fusion” that has to deal with the relation between entities, its
meaning and consequences.

Sensor data is directly related with the physical magnitudes of real world entities, such
as speed, weight, location, color or luminosity, which is characterized for having a lower
abstraction level. It is usually presented as numeric vectors or discrete categories that makes
its interpretation easier, although subject to different problems: noise, incompleteness, being
partial and represent huge volumes requiring special processing techniques.

In data fusion systems with multiple stages, sensor fusion occupies the first ones because
of its relation with the real world. It prepares raw data to be used by fusion processes with a
higher abstraction level.

1.1.2 Context

The Royal Academy of Spanish Language defines context as the physical or situational environ-
ment in which a fact is considered. However, the definition of this term is usually adapted to
fit the specific problems of the field in which it is considered: context has to be defined in a
particular context.

The survey (Bazire and Brézillon, 2005) gathers and analyzes over 150 definitions for
”context” in different disciplines including sociology, psychology and computation. Authors
searched for the common terms and concepts, reaching the following general description:
context is the set of restrictions affecting the behavior of a system embedded in a certain task.
For this work, we have selected a definition that suits better the problem of sensor fusion:

1.1. Basic concepts 3

Context is everything that constraints or affects the process of solving a problem,
without being part of the problem or the solution itself.

This is, the context of a system is composed by a set of internal or external factors that
are difficult to anticipate and model, so that they cannot be easily integrated in a traditional
algorithmic solution to the problem. In some circumstances, nonetheless, the context has a
significant impact in the behavior of the system can be important enough to invalidate solutions
not taking it into account.

Context-aware computing represents the best example of the application of contextual
information to computing systems, where an automated system try to infer the situational
information (context) of human users, in order to provide them with relevant services without
requiring explicit actions on their side. Context aware computing is a mature discipline with
solid, well-founded theory on the modeling, representation, processing and use of context. Thus,
in spite that the motivation of this dissertation differs from that of context-aware systems, we
consider it a helpful starting point for developing some of the foundational concepts of our
dissertation.

1.1.3 Relation between fusion and context

Information fusion systems are defined and operated in open environments, and are consequently
immerse in a context that can have a great influence on them, as explained before. Detecting
this context and reacting to changes on it is a key capability for fusion systems that can deliver
consistent performance in the real world. According to (Steinberg and Rogova, 2008), context
can be used in Information Fusion to:

• Refine ambiguous estimates

• Explain observations

• Constrain processing, either cueing/tipping-off or in managing fusion or management
processes

In the last two decades, a great number of works have been published around the inclusion
of context information in data fusion algorithms. Thanks to that knowledge, results are better
(more precise, fast and/or adequate) and fusion systems have improved their robustness and
flexibility because they can adapt themselves to the environment. It is possible to find groups of
interest focused on handling context information to improve high level fusion processes. As an
example, the 8th edition of the International Conference of Information Fusion (2007) hosted
an ”Special Session on Context Information in Data Fusion”.

4 1. Introduction

There is not a clear consensus, however, when dealing with sensor fusions systems and its
lower level of abstraction. It is possible to find works where context is applied to sensor fusion
processes, but the proposed solutions are valid only for very specific problems and they make a
limited use of the context.

In the past, synergies between fusion and context have been used in the opposite direction:
context-aware computing systems use sensor fusion techniques for extracting contextual data
with higher accuracy and reliability, as argued in Huadong Wu dissertation (Wu, 2003). This
same work postulates that the loop can be closed for further benefits: use inferred context
information to improve the sensor fusion process, which is the proposal developed by this thesis.

As a side note, the distinction between what is a variable of the problem and what is
context becomes fuzzier as systems grow in size, complexity and abstraction level. For example,
meteorological information is clearly a contextual factor for a fusion process that tries to track
the motion of a vehicle based on some sensors. It could indirectly constraint the mobility of
the vehicle, but the basic sensor fusion processes are completely independent and still valid.
However, weather forecast can be a fundamental piece of information for a high level fusion
process that is considering the probability of a foreign army attacking a facility, while still being
information about what ”surrounds” the problem itself.

1.2 Motivation

The paper (Snidaro et al., 2013) reviews the most important elements on the way to creating
adaptive fusion systems that made an extensive use of context information. It identifies two
needs to be satisfied by the scientific community:

• Developing a methodology for the inclusion and exploitation of context information in
fusion systems.

• Design a context-aware fusion architecture that integrates context knowledge for a better
understanding of the observed entities and to adapt itself to changes in the environment.

Our thesis is that Sensor Fusion systems, even those dealing only with low level information,
can benefit from the use of context information for two purposes: automatic adaptation to
the environment and enhance the quality of the resulting fusion products. The efforts of the
scientific community on this field have been sparse, focused on small and concrete problems, and
insufficient until the present. The proposed solutions are so specific that they can sometimes
lose their validity if one of the sensors is substituted with a different model with slightly different
technical specifications, or under subtle changes in the environment.

Sensor fusion discipline needs a solid theoretical proposal for the application of context
information. This proposal must account for all the involved factors: what can be considered

1.3. Goals 5

context information, how should it be acquired, represented and stored, how to use it for
improving fusion processes, and the problems or difficulties derived from such use.

A second point of interest comes with a shifting/expanding market for data fusion systems.
From its beginnings over 40 years ago, data fusion has been mostly applied in military
environments. Over the last few years, the advent of smartphones as portable computing
platforms with extensive sensing capabilities represents a whole new world of possibilities. This
short period of time has been sufficient to develop thousands of applications for tracking
physical activity, augmented reality or monitoring user health.

Developing this kind of applications in a mobile device poses several challenges. In first
place, smartphones are equipped with sensors that have been designed to be small, power
efficient and cheap. Such sensors provide low quality data (compared with higher end sensors).
On the other hand, mobility means that some sensors can be subject to periods of degraded
quality and outages: GPS does not work underground, and light sensors can be useless when
the device is in a bag.

Sensor fusion can be used to improve poor quality data, and context information is useful
to detect abnormal sensing conditions. Combining both disciplines can lead to adaptive fusion
schemes that react against unexpected problems and adapt their strategy in order to provide
the best data under a wide range of conditions.

1.3 Goals

Taking as starting point the needs identified in the motivation, we have determined the following
list of goals for this work:

1. Analyze the different ways in which context information can be applied to sensor fusion
processes. Establish a clear and solid theoretical proposal, supported by experiments.

2. Develop a framework that supports the creation of adaptive, context-aware sensor fusion
systems. It will be composed of both theoretical tools (models and guides) and software
modules with generic tools useful for developing this kind of systems.

3. Implement functional prototypes which demonstrate the validity of our proposal. This
includes:

• Select applications of interest. Analyze the related state of the art.

• Study the set of sensors to be used. Implement data gathering processes.

• Design one or several algorithmic proposals that can use sensor data for solving the
problem.

6 1. Introduction

• Identify context information useful for improving the fusion process. Integrate that
information into the solution.

• Analyze the strengths of the context-aware solution with respect to a traditional
sensor fusion scheme.

In order to satisfy these goals, it is necessary to make an in-depth study about architectures
and models used in information fusion and context management. The acquired knowledge will
serve as basis for our proposal, which should combine aspects of the two disciplines.

The basic building blocks of a sensor fusion system are the low level techniques in charge of
doing the actual fusion: the fusion algorithms. The framework must define a proper interface
(input, output) for optimal information flow. Also, fusion algorithms determine how context
information can be used, a factor that will affect the design.

1.4 Structure of the document

Chapter 2 introduces the two principal topics of this dissertation, sensor fusion and context
information, covering their most important concepts and conducting a review of the relevant
state-of-the-art. We are interested in the architectural and design aspects of existing information
fusion systems that can help building a framework with the characteristics enumerated before.
The second part of the chapter reviews the use of context in computer sciences, following a
similar structure. The focus here is put in the management of context information: architectures
and mechanisms used to acquire, store and disseminate contextual data. We will also analyze
the problems related with context information, namely the uncertainty, the relevance, its
accuracy over time and other questions as its pedigree (origin of the data).

Chapter 3 describes our proposal: the design of a framework for context-aware sensor fusion.
Chapters 4 and 5 Another chapter describes the different cases of study used for developing and
testing the framework. The first one takes an already implemented fusion system, and explains
how the proposal can be used to enhance the solution by including context information, and
also to improve the flexibility and robustness of its design. The second scenario designs and
implements an adaptive context-aware sensor fusion solution that is then tested and analyzed.

The last part of the thesis reviews the list of goals, checks that they have been satisfied
and proved through the proposed experiments, and provides some concluding remarks about
the advantages of including context information in the design of sensor fusion systems.

2
State of the art

This chapter contains a review of the relevant literature in the fields of data and sensor fusion
and context-aware computing, including previous efforts to bind them in a meaningful way.

2.1 Sensor Fusion

In this thesis we are interested in two different aspects of sensor fusion: high level organiza-
tional aspects and low level techniques. Organizational aspects include conceptual models,
architectures and frameworks that can be used to define and create sensor fusion systems.
By analyzing the related literature we expect to find ideas and examples that can guide us
on developing our own framework. We should also identify limitations in those approaches,
primarily related with the incorporation of contextual knowledge in the fusion processes.

Our interest in low level algorithms is purely instrumental: we need to understand how
information is used and transformed in order to create an effective tool. Furthermore, the
implemented prototypes require a bottom layer in charge of performing the sensor fusion task.

2.1.1 Models, architectures and frameworks

2.1.1.1 Definitions

Let us define and clarify the differences among these three terms before starting the analysis of
existing literature. This work follow the proposal of (Llinas, 2010) with minor modifications:

Model
A conceptual tool that provides a way to understand or approach a problem. Models
are composed by definitions of the elements involved in the problem and its solution,
descriptions or rules guiding the relationships between those elements, and criteria for
categorizing relevant knowledge.

8 2. State of the art

Models are useful because they provide a common framework for reasoning and exchanging
information about the problem. It does not facilitate mechanisms for solving concrete
problems. e.g. Joint Directors of Laboratories (JDL) Fusion model organize data and
processes based on their abstraction level, describing their role in a general data fusion
application created to support human beings in decision taking processes.

Architecture
Defines a (hardware and/or software) structure that is useful for creating solutions to a
problem. An architecture can be considered as a model (previous definition) whose goal
is to describe the parts composing the solution, and how those parts are organized and
related.

Architectures can describe different organizational aspects, including physical distribu-
tion (centralized, distributed), physical/process topology (ring, hierarchical) or process
organization (layered, Model-View-Controller).

Framework
Conceptual structure that can be used as support or guide in the construction of a
system with a real application. It is defined in (Llinas, 2010) as “partial realization of an
architecture, that can be used as the base for building concrete solutions”. In spite of not
constituting a solution to concrete problems, it differs from models and architectures in
that frameworks include tools and generic functionality.

In the domain of software, a framework usually implies what is known as “control
inversion”: solutions are implemented by creating pieces of software that are plugged in
the structure of the framework, but it is the framework itself who guides the processing.
Control inversion is actually quite variable: it depends on the purpose of the framework
and how specific it is –bound to a restricted type of problems.

Library
A collection of software tools and utilities, useful for solving a certain type of problems. A
library is different from a framework in that its components do not imply any processing
structure or stream. They are individual, independent tools.

2.1.1.2 Relevant works

This section presents models, architectures and frameworks together despite the differences
among them, because it is difficult to classify some of the existing works in a single category.
Moreover, most of the existing literature does not make such distinction and uses the three
terms equally, so that we prefer to follow the trend to avoid confusions.

As stated in section 2.1.1.1, some models are strongly focused in concrete aspects of the
problem to be solved, so that they complement each other and makes direct comparison more

2.1. Sensor Fusion 9

difficult. It is important to keep this fact in mind, since our design will be driven by the use of
context information but we shall keep other aspects in mind.

JDL Model The JDL Model (Llinas et al., 2000) was presented at the beginning of the
90s as a conceptual framework for developing data fusion systems. It is composed by layers
representing processes of increasing abstraction level. This model aims to provide a common
language for unambiguous communication between groups of interest. This is remarked in
(Liggins et al., 2008), p.26, since the “layer” terminology can mislead the reader:

The diagrammatic arrangement of the levels and the nomenclature used were
not intended to imply a hierarchy, a linearity of processes, or even a process flow. [...]
parallel processing of these subprocesses and level skipping can and does take place.
The model is still useful, for the levels serve as a convenient categorization of data
fusion functions and it does provide a framework for understanding technological
capability, the role fusion plays, and the stages of support for human decision
making

After its last review, the model defines the following levels:

• Level 0: Sub-object assessment. Raw signal process for getting refined sensor information.
e.g. translate pixels to blobs in an image/video signal.

• Level 1: Object assessment. Use sensor information for extracting data about individual
entities. e.g. identity, position, speed.

• Level 2: Situation assessment. Analysis of relationships between individual entities. e.g.
clustering techniques for discerning groups.

• Level 3: Threat assessment. Project current situation into future, to identify threats,
vulnerabilities and opportunities.

• Level 4: Process refinement. A metaprocess that monitors the whole system and optimizes
its response.

• Level 5: Cognitive refinement. Interaction between fusion systems and human users. e.g.
data visualization, decision support tools.

Although the model does not imply hierarchy or process flow, it is quite common to find
data fusion applications following the order defined here. As a reference, sensor fusion implies
levels 0 and 1 of JDL model.

10 2. State of the art

Waterfall The waterfall process model (Markin et al., 1997) is derived from the software
engineering methodology with the same name. It proposes a chain of processes, where each
action is based in the products of its ancestor and will forward its results to the next action.

It is divided in 6 layers: the two first can be identified with level 0 in JDL model, next
two with level 1. The last two layers are equivalent to levels 2 and 3 respectively. This model
represent the most natural and direct approach for doing data fusion. Its main problem is that,
because of its strict sequentiality, lacks feedback. Our proposal will be far from this model,
since feedback is a powerful tool for building adaptive systems.

Intelligence Cycle Defined in (Shulsky and Schmitt, 2002), makes emphasis in the general
steps common to all data fusion processes. It is composed by 5 steps repeated in cycle, closing
a loop that makes feedback possible. These steps are:

1. Planning and direction: determines “information requirements” of the process.

2. Collection: acquisition of the required information.

3. Collation: align collected information. This step involves data transformation, temporal
scale resizing, etc.

4. Evaluation: the proper data fusion processes, where information is analyzed and trans-
formed. The result of this analysis is new data with a higher abstraction level (usually
called “intelligence”), that can be directly applied for solving problems.

5. Dissemination: the created intelligence is distributed over the system, to be used in later
cycles.

2.1. Sensor Fusion 11

Boyd Control Loop (OODA) The origin of this control loop is a set of slides used by Boyd
during an informal presentation in 1959. It is defined from a classical decision support scheme
(OODA) used in military information systems (Angerman, 2004), but the affinity of those
systems with data fusion makes it possible to extend its application to the latter.

The loop is composed by four steps:

• Observe: Data acquisition and pre-processing (level 0 JDL)

• Orient: Actual fusion processes(levels 1-3)

• Decide: Comparable to JDL level 4.

• Act: this part is out of the scope of JDL model. It is referred to actions over the real
world, performed by entities that are not part of the data fusion system.

It is important to notice that this model is not focused in the data, but in the process. It is
helpful to put data fusion systems in context, to identify the purpose they serve to.

LAAS LAAS is the acronym for “Laboratoire d’Analyse et d’Architecture des Systèmes”, it
was developed as an integrated architecture for design and implementation of mobile robots
operating in real time conditions. It is intended to improve the amount of code that can be
reused when developing this kind of software. It is included in many sensor/data fusion surveys
because robotic systems do extensive use of fusion techniques.

Low- and mid-level sensor fusion processes (JDL 0-2) are located in the functional level
on this proposal, while high level processes (JDL 3) take place in the decision level. LAAS
defines a design guide for robotic systems, but it is considered an architecture and not a model
because it includes utilities (reusable software modules) for the implementation.

It defines a layered architecture where information flows strictly between adjacent levels.
This is too rigid for our purposes of feedback and context information dissemination, but we
will take into account this reference for its ideas regarding code reusing.

Dasarathy Model The model proposed in (Dasarathy, 1997) approaches the creation of
fusion systems from the perspective of data transformation. Information is classified into three
abstraction levels. Authors state that this classification is repeated in many independent works
over the years. The levels are:

• Data: raw information, as provided by sensors

• Features: intermediate level information

12 2. State of the art

Figure 2.1: LAAS architecture for design and implementation of real time mobile robots

• Decisions: symbols, statements, beliefs.

Dasarathy points that fusion processes act both as a bridge that transform information between
levels, and for creating new information with the same level of abstraction. This results in five
different categories: 3 intra-level and 2 inter-level:

• DAI-DAO (Data Input, Data Output)

• DAI-FEO (Data Input, Feature Output)

• FEI-FEO (Feature Input, Feature Output)

• FEI-DEO (Feature Input, Decision Output)

• DEI-DEO (Data Input, Decision Output)

The original work applies this categorization in the design of several processing architectures
with different features.

2.1. Sensor Fusion 13

Omnibus Presented in 1999 (Bedworth and O’Brien, 2000) as an effort for creating a data
fusion model with all the desirable features of previous proposals, getting rid of their problems.

It starts with a cyclic process inspired by Intelligence Cycle and Boyd control loop. Each
level is refined by adding the definitions of Waterfall model, conveniently restructured so that
each step can be identified with a level of JDL and Dasarathy models.

Figure 2.2: Omnibus Model

In words of the authors, feedback is explicit in this model, and what is more important:
it tackles the problem of nested fusion cycles, where a step of the process can, internally, be
another full fusion cycle. The result has a higher detail compared with previous works, since
it tries to define the logical steps in the fusion process, how those steps are related, and the
abstraction levels of the information.

The idea of nested cycles allows complex flows of information, in spite that feedback is
limited to injecting the results of the last step into the first one of the next cycle. The way in
which information flows inside the fusion process is a key aspect of our proposal. Because of
this, Omnibus model constitutes a fundamental reference of this work.

DFuse DFuse is a framework for developing distributed sensor fusion systems (Kumar et al.,
2003). It has been designed to work in heterogeneous wireless networks, assuming a fixed
network topology and full time sensor availability.

The network is composed by source nodes, fusion points and sink nodes. When a fusion
point does not get input data from a source on time, it can work over a partial subset to give
an approximate result.

This framework includes two components:

14 2. State of the art

• Fusion module: an API of fusion algorithms/procedures.

• Placement module: defines the location of the required functionalities (nodes and fusion
points) inside the physical network (hardware elements).

DFuse facilitates the last part through a tool for automatic deployment of fusion applications
in physical networks. It works from a graph that defines the fusion system, and the code for
each functionality.

The principal drawback of DFuse is one of its requirements: the network must be static
(not changing) and reliable. Other disadvantage is that the hardware in which the system is
deployed shall be capable of timestamping messages in a consistent way. Last, the size of
the software makes impossible its use in tiny devices as motes, although current technology is
expected to make this inconvenient less important over time: the original work (Kumar et al.,
2003) presents a case of study running on PDAs with at least 32MB RAM and a 200MHz
ARM processor. This power is currently available in devices the size of a coin.

DFuse works in a different domain than our problem, both in the goals and in the set of base
assumptions. However the idea of abstracting components as interrelated nodes that consume
and/or produce information is very important for our proposal, to the point of constituting one
of the cornerstones of the flexible architecture.

2.1.2 Fusion Systems with adaptation capabilities: JDL Level 4

Any fusion application with self-adaptive capabilities will include (by definition) processes
belonging to Level 4 of the JDL model (Process Refinement). The article (Azimirad and
Haddadnia, 2015) identifies the different aspects of process refinement, and cites some techniques
used to implement them:

• Performance evaluation: measures of performance and utility theory.

• Process control: multi-objective optimization (through linear programming, goal pro-
gramming or other methods).

• Source requirement determination: involves sensor modeling.

• Mission management: using knowledge-based reasoning techniques.

Level 4 is considered to close the loop of the fusion process. However, as stated by (Blasch
and Plano, 2002), its functions usually do not involve actual information fusion processes
but rather taking decisions from a set of indicators –decision intelligence (DECINT). In high
level systems, this is translated into resource retasking to better support mission goals. Such

2.1. Sensor Fusion 15

inference can be complex in multilevel information fusion systems, which is the reason why Level
4 is not present in many information fusion systems. These are the conclusions of (Liggins et al.,
2008) (chapter 27, p. 692): it analyzes a total of 79 fusion systems, to find that only 9 provide
Level 4 capabilities, although none of them was operational at the time of writing the book
(just as part of R&D initiatives). Partial support for Level 4 is more common, understanding
it as the extraction of performance measures that can be applied locally to some concrete
processes of the fusion system, or interpreted by human operators to execute manual process
refinement actions.

There are some theoretical frameworks for creating fusion systems with full-scale adaptive
features. The article (Solano et al., 2012) defines the elements (primitives) of a fusion problem
through semantic, temporal and geospatial features. These primitives are processed by a
recombination workflow that maximizes the data exploitation value chain, in what is called a
Recombinant Cognition System. The work presented by this thesis is, in some way, similar to
previous proposal, in the sense that we will provide a formal definition of available primitives
that enable automatic reasoning processes for enhancing the quality of the fusion.

Level 4 capabilities are easier to implement in sensor fusion applications. The gap between
resources and output products is smaller considering the number of steps and the abstraction
level. This statement is supported with arguments by our proposal (chapter 3) and demonstrated
through examples (chapters 4 and 5).

2.1.3 Processing architectures in distributed systems

This work is proposed for centralized fusion systems, where all sensors and computing elements
share location and are part of the same device. However, our design should be extensible to
distributed systems, where the composing elements are in different locations and can also move
around.

Compared with centralized schemes, distributed fusion systems bring new possibilities but
its implementation pose several challenges regarding communication capabilities (availability,
bandwidth), failure tolerance or adaptability to changes in the environment or in the goals to
be accomplished.

The following list introduces generic distributed processing architectures that have been
applied to data fusion (Benaskeur et al., 2007)(Hilal and Basir, 2014), sorted from more
restrictive to more flexible:

Centralized
All fusion processes are performed in a unique central node. Input data is acquired
by sensing nodes, that forward it (directly or through other nodes) to that central
node. The strengths of centralized schemes include simplicity (easy to implement) and

16 2. State of the art

minimum computational effort. Centralized processing makes possible an optimal use of
the available information, and keep the total computational effort reduced to a minimum.

On the other hand, they are less tolerant to failures because of their dependence on the
central node. Communication load is superior to other schemes, becoming a bottleneck
in many cases.

Hierarchical
This architecture organizes nodes in a tree-like structure. Information flows from the
leaves to the root. Intermediate nodes can process their input data to create intermediate
results that are then transmitted to their ancestors.

Hierarchical architectures fit naturally in chain-of-command structures, and is thus
frequently used in military environments. Root node gathers the final results and controls
the whole process. Command controls follow the opposite direction, flowing from the
root to the leaves.

The principal disadvantage of this scheme is its dependency on individual nodes: a blackout
in an intermediate node means losing its subtree. Apart from that, communication between
non-related nodes must pass through a common ancestor. If those are often required,
the system can incur in a communication overload.

Holonic
Holonic architectures are halfway between hierarchical and heterarchical. They sacrifice
the control capability of the first to get in exchange some of the flexibility and adaptability
of heterarchies.

This architecture is composed of autonomous functional units called “holons”, which
cooperate to reach system goals. Each holon is composed by one or more nodes
(processing or sensing), as well as other holons –in a recursive composition–. Ideally, a
holon is a software agent with autonomous decision/operation capabilities.

Holonic architectures can be reconfigured online, giving them a great adaptability and
failure tolerance. That flexibility comes at the cost of losing control over how the system
works. Even tasks with a clear execution plan can be solved in unpredictable ways,
because the result will depend on how holons negotiate and create coalitions.

Heterarchical
In heterarchical architectures, every pair of nodes can establish a direct communication
link. They lack a predefined structure, and each node is fully responsible of its internal
behavior and interaction with other elements.

This option is attractive for semi-collaborative complex systems where each node has
independent goals, but can also collaborate with other elements to help them –or ask
for assistance to fulfill its own. It is not adequate, however, for systems that have to

2.1. Sensor Fusion 17

satisfy a global agenda: managing links between nodes in a big system can become a
combinatorial problem, leading to chaotic behavior and a poor performance.

Figure 2.3: Processing architectures in distributed systems. Taken from (Benaskeur et al., 2007)

It is usually assumed, when a data fusion system is created, that the participating entities
do contribute to satisfy a common goal agenda in a coordinate manner. This can be not true
in some applications, where the entities are independent but can punctually collaborate.

Following this line, we find other “intermediate” proposals that have been extensively studied
in the field of multi-agent software systems. We are talking about federated and market-based
architectures.

A federated architecture can be described as a plain holonic organization, meaning that none
of its holons contains another holon, where each holon contains an intermediary agent managing
communications. This agent is responsible of both internal –between holon components– and
external communications –with other holons. Intermediary agents help reducing communication
complexity, at the cost of introducing a critical component that can represent a bottleneck.
On the other hand, control is far more consistent than in holonic architecture in exchange for
losing some of its scalability.

Market-based architecture adds management and organization features to the heterarchical
architecture. Lets assume a scenario where coexisting independent entities require and offer
services, resources or tasks, but the negotiation process is controlled by a number of “broker
agents”. These nodes gather information about the different nodes: what they offer and what
they need, and put them in contact following a bid system. Compared with plain heterarchies,
this partial centralization results in a higher performance at the cost of introducing a potential
bottleneck in broker nodes. This performance will depend on keeping the bid system properly
tuned.

This architecture is a great alternative for open systems where nodes can appear and
disappear. However, it does not provide –without important modifications– natural mechanisms
for controlling malicious behaviors.

18 2. State of the art

2.1.4 Types of fusion

The work (Durrant-Whyte, 1988) establishes a classification for the types of sensor fusion.
The first criterion is the number of sources, discerning between single sensor and multisensor
applications.

Single sensor systems make use of successive observations of a variable over time, along
with some knowledge about the dynamics of that variable. Combining both, it is possible to
refine the estimated value of that variable –or infer some others. A very simple example is
found in how a GNSS differential station estimate its location. It records position fixes over a
time window –the larger, the more accurate the result, but typically 24 hours–. Those fixes
have an error that is mostly caused by disturbances in some layers of the atmosphere. Then, it
makes use of previous knowledge. First, the station has a fixed location; second, the error of
the fixes can be approximated as a Gaussian distributed random variable. The best guess of
the real station location is obtained by applying least squares algorithm to the recorded fixes.

Multisensor fusion is more complex. Durrant-Whyte identified three different types, according
to the relation between input and output information:

Competitive
Combines data from multiple sensors observing the same magnitude at the same time
(redundancy). This type of fusion improves the accuracy of the obtained measure. For
example, a voting process can detect biased or defective measures that should be discarded.
The average value of several observations is another fusion method that can give a good
result in this case.

Complementary
Combine information of different features or aspects of a same entity, to achieve a more
complete description. (Wu, 2003) gives the example of combining pressure and airflow
to estimate the propulsive force of a jet nozzle.

Cooperative
Stereoscopic vision is the paradigmatic cooperative fusion application: two cameras
observe the same scene from slightly different angles to obtain depth information. Trian-
gulation from range-only sensors can be included in this same category.

2.1.5 Sensor fusion techniques

After introducing the general aspects of sensor fusion system construction, it is time to describe
the basic building blocks: the algorithms that do the actual fusion, mixing the information to
get accurate, meaningful and relevant results.

2.1. Sensor Fusion 19

We are classifying fusion algorithms in three big families: classic, statistical and computa-
tional intelligence algorithms. This section reviews the most important ones.

2.1.5.1 Classic algorithms

Under this denomination we group those simple fusion techniques that do not have a solid
theoretical background, such as calculating average or median values for a set of numerical
inputs. Voting processes are inside this category. Participating entities are asked to solve a
problem or to take a decision, and each one casts a vote. The final output is calculated from
the set of votes, either by majority or using more advanced processes as decision trees. We
can find an example in (Franz et al., 2002). This work proposes an architecture for vote based
decision taking in distributed environments.

2.1.5.2 Statistical methods

Statistical techniques try to overcome data uncertainty and incompleteness by using probabilistic
descriptions of the real world.

Bayesian theory Bayesian theory of inference evaluates the probability of a hypothesis using
some prior knowledge about it, together with evidences that provide new information about
the truth of the hypotheses. In a typical sensor fusion problem, the hypothesis is related with
the state or variable to be estimated. Sensor measures provide the evidence needed to refine
the estimation.

Bayesian inference has several disadvantages (Klein, 1999). A common hurdle is the difficulty
to determine prior probabilities, something that is worsened by the absence of mechanisms for
working with uncertainty (variables for which there is no available data). Bayesian reasoning
can be very complex in cases comprising multiple hypotheses, and it requires simultaneous
hypotheses must be mutually exclusive. These problems are partially alleviated by other tools
as Dempster-Shafer theory, a generalization of Bayesian theory that has been used for data
fusion in works as (Wu, 2003).

Filtering Filtering techniques are also based in Bayesian inference, but we consider it apart due
to its relevance in the field of sensor fusion. With a filtering algorithm, its is possible to obtain
an estimation x̂k of the unknown real state xk of a system, based in a mathematical model
f (·) of its predicted behavior and partial observations of the real state Yk = y1, y2, ... , yk−1, yk

taken over time.

20 2. State of the art

The problem can be expressed in formal terms as:

x̂k = E [xk] =
∫

(xk)p(xk |Yk)dxk (2.1)

Assuming the behavior of the system satisfies the first order Markov property, a filter applies
Bayesian inference recursively to refine its estimation of real state over time. Recursion is key
to reduce the computational requirements of filters.

Kalman Filter (KF) (Kalman, 1960) represents the paradigmatic example of a filter. It
provides a estimation of a system state described as a multivariate Gaussian probability
distribution. This estimation is optimal if: a the behavior (temporal evolution) of the system is
described by a linear system; b observations can be related with system state through a linear
transformation; c the error of each observation is independent from previous observations, and
is described by a zero-mean Gaussian multivariate distribution.

Authors have suggested numerous modifications and alternatives extending its application
domain to non-linear systems, as the Extended Kalman Filter (EKF) or the Unscented Kalman
Filter (UKF) (Uhlmann and Julier, 1997), or to non-Gaussian probability distributions as the
case of Particle Filter (PF) (Gordon et al., 1993).

Filtering algorithms play an important role in the experimental part of this thesis. Appendix A
explains in depth the Kalman, Unscented Kalman and Particle filters.

Dempster-Shafer Dempster-Shafer evidence theory is a generalization of Bayesian theory
that overcomes some of its limitations: a) allow union of hypothesis; b) does not require prior
knowledge c) include into computation events or probabilities that are not known.

The reasoning process starts with a set of basic, mutually exclusive hypotheses that cover
the full probability space. It builds a new set containing all the possible combinations of basic
events, and reasons over the elements of this set. Instead of using probability distributions, as
in Bayesian reasoning, a “belief” functions is defined. Dempster-Shafer theory includes the
operational mechanisms for working with belief functions, including the possibility of not having
information about some hypotheses.

Thanks to its advantages, this technique has been the choice for real time systems operating
in environments with a high uncertainty, as mobile robots (Murphy, 1998).

Fuzzy logic Fuzzy logic is an extension over classical logic that deals with variables defining
imprecise (fuzzy) categories, this is, where the limit between values are not clear. Although
there exist works on this topic since the decade of 1920, fuzzy logic is considered to be born
with this denomination in 1965, when L. Zadeh formulated its theory of fuzzy sets.

2.1. Sensor Fusion 21

Some authors have taken positions in favor of or against the use of fuzzy logic, using
arguments about whether it is needed, or it is a subset/superset of other tools. Apart from
these questions, fuzzy logic has proven to be a valuable asset, because variables, categories and
rules are formulated closely to how they exist in human thought.

As an example, temperature can be represented as a fuzzy set with five categories: cold, cool,
optimal, warm and hot. The correspondence between actual temperatures and the categories
depends on the application domain –the concept of “optimal” is different in the controller of
an air conditioning system and in a foundry oven. Imbuing the components –variables, rules–
with knowledge about the problem to solve simplifies the creation expert systems. On the other
hand, this complicates the creation of general purpose decisions tools based on fuzzy logic.

Because of its rule-based nature, fuzzy logic is easy to apply in high-level data fusion
processes. (Hall and McMullen, 2004) contains a discussion about the applicability of expert
systems based on fuzzy logic to data fusion. (Stover et al., 1996) presents a general purpose
architecture based on fuzzy logic, that can be applied to full data fusion problems (including
sensor fusion).

Fuzzy logic has also been successfully applied to low level data fusion problems. A first
approach consists on applying the rules of an expert system to low level data, for obtaining
fused information. (Solaiman, 1998) elaborates terrain maps from multisensor information.
Terrain fragments (pixels) are classified according to a set of fuzzy rules that compose a
context-sensitive reasoning process. In (Cohen and Edan, 2004) projects sensor measures over
a grid map, and applies a fuzzy reasoning system to create occupancy maps for navigation.

Fuzzy logic can also be used as small reasoning components plugged into a traditional
sensor fusion system. The fuzzy reasoning process works analyzes the data and affects the
behavior of the system or the final products of the fusion. The paper (Sasiadek et al., 2000)
takes a basic GPS/INS navigation system based on an EKF. It is augmented with a fuzzy
reasoning component able to detect when GPS is reporting positioning errors below the real
one. That information is used to modify the covariance matrix used to update the filter, leading
to better results. Wang and Gao describe in (Wang and Gao, 2005) how a fuzzy system can be
used to achieve high accuracy navigation using low cost sensors that have not been adequately
calibrated. The input of inertial sensors are fed into the fuzzy reasoner, which can discern
among types of motion (stopped, turn maneuvers, accelerations). This information is used to
change the prediction model of a KF.

2.1.5.3 Computational intelligence

This category encompasses a heterogeneous set of techniques which were born in the field of
Artificial Intelligence (AI), conveniently adapted to sensor fusion problems.

22 2. State of the art

Artificial Neural Networks (ANN) ANN are a family of automatic machine learning tech-
niques, inspired by the neural systems of animals. A network is composed by several intercon-
nected “neurons”, which receive an input and produce an output f (a) = b, a ∈ Rn, b ∈ Rm.

Generally speaking, we can consider ANN as a universal function approximator. Their
capabilities extend to multidimensional non-linear functions. The information about the
approximated function is coded in the network structure: which neurons are connected, and
the “weight” of those connections.

In the field of Data Fusion (DF), ANN have been used in those problems that make
direct use of their ability for pattern learning. Image fusion is an area with great potential
for ANN: (Li et al., 2006)(Wang et al., 2010)(Carpenter et al., 2005) use an ARTMAP type
network (Adaptive Resonance Theory (ART)) for fusing images that have been labeled using
inconsistent semantic criteria, at the same time that learns the relation between labels and how
their meanings overlap.

ANN have been used in robots to create grid occupancy maps from the fusion of sonar and
infrared sensors (Barbera et al., 2000). The problem of navigation was approached with ANN
in (Sharaf et al., 2005), a work proposing the use of Radial Basis Function Neural Networks
(RBF-NN) for fusion Global Positioning System (GPS) with Inertial Navigation System (INS)
sensors.

Evolutionary Algorithms (EA) Evolutionary algorithm encloses a family of metaheuristic
optimization techniques inspired by the theory of Natural Selection. These algorithms start
with a “population” (a set) of candidate solutions for the considered problem, whose “fitness”
(how good a solution they are) is evaluated. Best individuals are likely to reproduce in a larger
number than others with a low fitness, conforming a new “generation” of solutions. EA define
processes for introducing variability in the population, such as random mutations. The whole
process is cycled until a satisfactory solution is found.

EA can work in huge search spaces with a high dimensionality, even when the prob-
lem presents additional difficulties such as non-linearity, non-convexity, discontinuities, non-
differentiability, multimodality and/or noise. Due to its stochastic and domain agnostic nature,
EA are well suited to a wide variety of problems. They are difficult to apply to real time
problems as sensor fusion ones, however, since they require a high number of iterations to reach
good solutions.

The survey (Maslov and Gertner, 2006) presents a compilation of EA-based solutions to
data fusion problems. Most solutions are oriented to high-level DF, as selecting the set of
features to be extracted from a dataset to optimize the results obtained by a classification
algorithm.

2.2. Context-aware computing 23

2.2 Context-aware computing

Context-aware computing is the discipline where the concept of context has been best analyzed
and defined. It is also a mature discipline, making it makes a good starting point for acquiring
the basic concepts relating computation and context information. This section reviews the
existing literature in context-aware computing with special emphasis in two aspects: clarify the
concept of context (already introduced in 1.1.2), and explore existing architectural solutions for
managing context information (acquisition, representation, storage and dissemination).

In 1991 is published (Weiser, 1999) (we are referencing a reprint in a special issue dedicated
to Prof. Weiser), which is considered the seminal article of Ubiquitous Computing. It predicts
the birth of information systems integrated with the environment, so that users can benefit from
the services they provide without requiring any explicit interaction. The idea is alternatively
called Pervasive Computing.

The term ”Context-Aware Computing” appears for the first time in (Schilit and Theimer,
1994). That work postulates that the information we can sense from our close environment
(see, hear, touch) is useful for operating when non familiar conditions arise, as also to cooperate
with other agents presents in that environment.

Both disciplines are related since, in Ubiquitous Computing, users context is the starting
point to determine an agenda of actions, and how they must be carried out. However, context
information is something difficult to deal with. (Dey, 2000) cites the following reasons:

• Context is acquired from non-traditional devices, different from classical computer
peripherals.

• Getting meaningful and compact information may require complex processes for trans-
forming or abstracting raw input data. E.g. from a sound record to a statement ”John is
talking”.

• It may require mixing heterogeneous data from distributed sources.

• Context is dynamic: can vary over time, location and be influenced by the presence of
other agents.

Sensor fusion already faces, at least, two of these difficulties: acquisition from non traditional
devices, and mixing heterogeneous data from distributed sources.

2.2.1 Architectures for context-aware computing

We can find in (Baldauf et al., 2007) a detailed analysis of solutions for creating context-aware
computation systems, including architectures, processing models and how context information

24 2. State of the art

can be represented. Figure 2.4 reproduces a summary table included in the original work. An
architecture for context-aware computing is determined by three aspects:

• How context information is acquired (“Sensing” column in the figure)

• How context is modeled and represented (“Context processing” column in the figure)

• How context is accessed by system components (“Context model” column in the figure)

Figure 2.4: (Baldauf et al., 2007) Architectures for context-aware system development

Next sections explain the most relevant proposals regarding the three aspects above
mentioned, which ones do we consider more appropriate for our purpose, and the arguments
supporting the decision.

2.2.2 Context acquisition

The thesis (Chan, 2004) identifies three different approaches for acquisition of context informa-
tion:

Direct sensor access
Used in devices with sensors built in. The software accesses information directly from
source sensors, requiring some knowledge about drivers and APIs. This feature makes

2.2. Context-aware computing 25

it unsuitable for distributed systems. This method is also not scalable since it does not
provide control mechanisms for concurrent access to sensors.

Middleware infrastructure
A middleware is a layer of software that bridges the abstraction level gap between two
components, in this case the sensors and the software using it data. A sensor middleware
hides the low level details of sensors (synchrony issues, irrelevant parameters, trivial
data preprocess), allowing to create client software that is more extensible and reusable.
Most middleware infrastructures are designed as a “ translation layer” that changes the
terms of the communication with sensors. This means that the access to data sources
is still pretty direct, expected to have a low performance penalty, but does not provide
mechanisms making it suitable for distributed systems.

Context server
Represents a further step over the middleware approach that grants clients the access
to remote sources of data. Sensors are accessed by a central component, the context
server, that gathers and stores the data. Clients communicate with the server for
getting data. This approach is optimal for distributed systems, specially when clients are
resource constrained elements. The context server can take care of the resource intensive
operations related with accessing and pre-processing sensory data to extract the actual
context information. It also simplifies client implementation, that only have to stick to a
single communication protocol/interface for getting any kind of sensor data.

Figure 2.4 includes other paradigms for context access, although they can be considered
variations over one of the three major styles described above. The context broker agent of
CoBra architecture (Chan, 2004) is an extension of the context software for generating context
knowledge that cannot be inferred from single sensors (intentions, roles, spatial and temporal
relations). The author cite the potential bottleneck of a single context server, that in the case
of broker agents can be solved by creating a team of them that keep a coherent model of
context and a consistent knowledge base.

The Context Toolkit (Wu, 2003) propose using context widgets for acquiring context.
We explain the widget concept in section 2.2.4, since it is extensively used in the toolkit for
other purposes. Our proposal will gather context knowledge in a centralized repository that is
also responsible of some additional tasks. We can describe it as a mix of context server and
middleware infrastructure, because it is not (initially) prepared for working in a distributed
environment but the access to context is more similar to the server proposal.

26 2. State of the art

2.2.3 Context modeling and representation

Context information has to be transformed to a representation that allow to store and process
it. The six most relevant approaches are described in (Strang and Linnhoff-Popien, 2004):

Key-Value pairs
Is one of the simplest models for storing information. Keys are unique identifiers of an
entity or feature of interest, which are assigned a value. Key-value storage model has
recently gained popularity in NoSQL databases and big data applications, because it
allows to store unstructured data and searches are easy to make parallel. On the other
hand, the application accessing the data is responsible for knowing how data is structured.
Operations about how elements are related can be difficult to implement and have a
costly execution.

Markup scheme models
A hierarchical data structure relating attributes with content. Any language defined over
XML is a good example. Markup languages are usually well defined by a companion
scheme, and have limited capacity to express constraints such as basic data types and
ranges. One of its main drawbacks is that they lack a standard mechanism to merge
models, so that it is not easy to have partial descriptions that can be finally used together.

Graphical models
Some authors have used the Unified Modeling Language (UML) for modeling context,
as (Sheng and Benatallah, 2005). In (Henricksen et al., 2002), authors extend the
Object-Role Modeling (ORM), which is a technique for designing and querying relational
database models that represent a set of business rules using terms understandable for
non-technical users. They add persistence and source features to ORM facts and a
dependence indicator. While graphical models formality is poor, they are a strong option
to describe the structure of contextual knowledge, and are easily understandable by
humans.

Object Oriented approaches
Uses the principles of Object-Oriented design to model context. It has the advantages of
this programming model, as encapsulation or inheritance, and separates processing and
representation logics.

Logical Based Models
Using formal logic to model context requires defining facts (things that are known), and
rules that relate facts. This approach allow to apply automatic reasoning techniques to
infer new facts, as well as validate or remove existing knowledge.

2.2. Context-aware computing 27

Ontologies
An ontology is a tool that allows to define a conceptual schema describing a knowledge
domain. Ontologies are characterized for having a high expressiveness, allowing to
describe not only the concepts and how they are related, but also domain constraints and
assumptions that other tools cannot. Since knowledge is well structured and formalized,
it is possible to apply reasoning processes over ontologies. Finally, ontologies enhance
knowledge reusability: they can be merged and imported.

The work (Strang and Linnhoff-Popien, 2004) also analyze appropriateness of each modeling
approach, according to six different criteria: a) distributed composition, b) partial validation,
c) richness and quality of information d) incompleteness and ambiguity, e) level of formality,
and f) applicability to existing environments. They conclude that ontologies are the most
promising tool, although this does not discard any of the other methods for its use in ubiquitous
computing systems.

Not all the enumerated criteria are relevant for the construction of a centralized sensor
fusion system. Richness and quality of information is an important feature because our proposal
does not impose any restriction on the type of context that can be modeled. The representation
should also enforce non-ambiguity, and a high level of formality to make possible applying
automatic inference processes. According to the summary chart at the end of the survey,
ontologies are the best option for this set of criteria, and we will use it in the design of our
framework.

If we take a look at figure 2.4, we can see that ontologies are a popular choice for modeling
context. An additional advantage of ontologies is that they can be transformed if necessary
to other representations: the proof is that OWL ontologies can be physically stored in XML
and tern-based formats. However, our proposal does not enforce a particular representation.
The selected applications (chapters 4, 5) encourage mixing models when it has benefits for
the implemented system. In the car example, context information is represented through an
ontology, but it is processed by a rule-based reasoning system.

2.2.4 Context management and access

Another important aspect regards how context knowledge is disseminated across the system in
charge of using it. The thesis (Winograd, 2001), a paradigmatic work in the area of Context-
Aware Computing, cites three well differentiated styles for managing context information:

Blackboard
Blackboard architecture (Engelmore and Morgan, 1988) defines a centralized information
repository that can be read and modified (insertions and deletions). All the components
in the system access, thus, a shared information base.

28 2. State of the art

Blackboard architectures offer a subscription service for consumers wanting to be notified
when the information relevant to them appears or changes. While representing a popular
choice because of its simplicity, they have the drawback of not scaling properly to large
volumes of data or great number of consumers, as it happens with most centralized
systems.

Service-oriented (client-server)
The client-server approach is located in the opposite side of the spectrum than blackboard
architectures. Its components operate independently, without a global control facilitating
or regulating how information flows: service consumers are responsible of discovering
servers, connecting with them and managing how information is transmitted.

Among its disadvantages, we can cite the extra complexity added to each component,
and the larger computational load associated to accessing information access. This makes
service-oriented architectures a poor choice for systems where the low level components
are tightly coupled (connections never change and exchange large volumes of data). On
the other hand, they offer great robustness and flexibility: this is the reason why it
become the standard approach for building the Internet, including web page serving and
remote APIs.

(Hong and Landay, 2001) offers a good analysis of this architecture applied to context
management. However, most of the research on this architectural style is focused in the
complex aspects as automatic service discovering (Gribble et al., 1999).

Widget
Halfway between the two previous proposals, we can find the widget based architecture.
(Dey, 2000) is one of the most remarkable works using it.

A Widget can be interpreted as an extension to software of device controllers: provides a
common interface for accessing and controlling its underlying elements. This simplifies
the process of connecting/disconnecting elements. The term ”widget” was first used in
the world of visual user interfaces. It makes possible creating applications with visual
interface that can change their aspect or work in different platforms without having to
modify the source code.

Widget based architectures require a global managing component, which must know all
the existing modules and how they are connected. We can see this as a service-oriented
approach where the discovery and negotiation parts reside in a central component. This
solution is modulable, scalable, and keeps the computational cost within acceptable levels
even for highly coupled systems.

Widget style is, among the three analyzed options, the most promising architecture for
our proposal. The reasons include that the developed framework aims to centralized systems

2.3. Context in information fusion processes 29

with potential for tight coupling between low level components (high refresh rates, large data
volumes), but we want to maximize the flexibility for changing how the composing elements are
connected. As in the Context Toolkit (Wu, 2003), the widget concept will be used for more
things apart from managing context.

2.3 Context in information fusion processes

The synergies between data fusion and context-aware computing have been explored with much
more attention in the latter discipline. This is a natural consequence of the usefulness of low
level data fusion techniques for generating the context information required by context-aware
algorithms.

However, data fusion community is increasingly aware of the importance of context informa-
tion as a fundamental tool for building systems able to operate in a real, open world. They need
to adapt to unforeseen situations and can also benefit from the exploitation of unstructured or
unexpected information.

Starting at the beginnings of data fusion discipline, it is relatively easy to find applications
that apply specific context information to improve results. As an example, (Blasch et al., 2013)
reviews some popular approaches for enhancing tracking processes by using context. In (Caron
et al., 2006), authors describe a GPS/IMU fusion navigation system with that adapts the fusion
solution depending on the ”context”, which is defined here as the validity status of GPS/inertial
measures. The system monitors the quality of input data, switching between filtering solution
depending on the available measures.

But it is the last decade when fusion community has intensified the efforts on that direction,
showing an explicit interest on exploiting context information. It is possible to appreciate that
trend by reviewing the proceedings of the International Conference on Information Fusion:

• 2007 (10th edition): special session on ”Context information in Data Fusion”.

• 2008 (11th edition): features (Ricquebourg and Delahoche, 2008), a paper about a
sensor-based application that exploits sensor redundancy and fusion consistency to detect
when a sensor is not working properly (providing degraded or invalid input).

• 2010 (13th edition): includes a special session ”Intelligent systems for context-based
information fusion”, supported by the argument that ”context-based information fusion
has matured during the last decade and many effective applications of this technology
are now deployed”.

• 2011-2012 (editions 14th, 15th): special sessions ”Context-based information fusion”.

30 2. State of the art

2.3.1 Context-aware architectures for information fusion

At the moment of writing this thesis, we could only find two architectures for data fusion
systems that take context explicitly into account.

2.3.1.1 DAFNE project

The DAFNE project (Ditzel et al., 2011) is an European initiative that “aims to design an
experimental distributed multi-sensor fusion engine that will combine data from heterogeneous
sensors in urban war-fare scenarios to enhance situational awareness during military operations.

Authors propose a layered architecture according to the levels of the JDL model, where
each layer manages a local base of context information that is used to configure the intra-level
processes. While context is cited as a factor for achieving operational flexibility, it receives a
very domain-specific definition in this work:

[...] relevant parts of the environment, such as geographical information and
databases or rules for classification and definition of threats.

The layered approach imposes an artificial restriction on not mixing information with
different abstraction levels. In a system using DAFNE engine, a level 0 sensor preprocessing
task could not use a level 2 contextual fact, and vice versa

We think that, in order to exploit the full potential of context information, fusion processes
must be capable of using available facts with any level of abstraction. Apart from that, level
4 processes (adaptation, refinement) are transversal so that they need contextual and fusion
information from all the different levels. These statements are adequately exemplified in the
experimental sections.

Taking into account these considerations, we can argue that DAFNE architecture does not
satisfy the motivation of this thesis.

2.3.1.2 Adaptive Architecture for Information Fusion

The system presented in (Llinas, 2010) defines a generic Information Fusion Framework strongly
focused in the creation of adaptive fusion processes. These adaptive processes represent the 4th
level of the JDL model and can affect every part of the fusion application, including algorithms
internal parameterization, the interaction between them, and sensor/resource management.

The components in charge of doing the adaptation are spread over the whole architecture,
and receive the name of ”adaptive logic” blocks. They combine information about current
system performance and relevant contextual data. This architecture is intended to serve fusion

2.3. Context in information fusion processes 31

systems covering all the levels of the JDL model, which requires solving complex problems as
bridging semantic gaps between processes or defining mechanisms that can resolve the relevance
of arbitrary context information for complex high level fusion processes.

Since this is an ongoing project that has not be fully defined, we can consider that it does
not collides with this dissertation. We will use, though, some of its ideas and points of view in
our proposal.

2.3.2 Previous works in the research group

This dissertation is written as part of the research conducted within the Applied Artificial
Intelligence Group from University Carlos III of Madrid. This group also develops other research
lines ranging from Ambient Intelligence (AmI) to multi-objective optimization or augmented
reality. The next paragraphs summarize the most relevant works mixing data fusion and context
information.

Automated video surveillance systems can use fusion techniques when they include multiple
cameras. The article (Sanchez et al., 2007) describes a video tracker augmented with a symbolic
reasoning layer that modifies its output, using specific context information. This proposal was
refined in (Gomez-Romero et al., 2011), which develops a framework for fusing prior (static)
context information coded according to an ontology with real time video data. The final product
is a high level interpretation of the observed situation. Some results have been obtained in
group activity recognition, as (Pozo et al., 2011).

The goal of (Cilla et al., 2011) is to improve the recognition of basic human activities (walk,
run, sit) in a multicamera system. A probabilistic model is developed with this purpose, which
describes the spatial context for each action, this is, in which camera and zone of the image is
more likely to observe the actions. It results in a higher recognition rate.

According to (Gomez-Romero et al., 2009), ontologies are the choice for representing
context information. This paper reasons why they are a flexible, powerful mechanisms that
is well suited for the type of symbolic reasoning used in higher levels of data fusion. That
conclusion was successfully proved in (Gomez-Romero et al., 2014), which describes a case of
study where video information is used for suspicious activity recognition in a harbor surveillance
scenario. The followed approach can be directly applied to other sensors such as radar.

The group has made efforts to consolidate the theoretical aspects of context based infor-
mation fusion. For example, (Gomez-Romero et al., 2010) provides a formal description for
how to use context information to improve high level data fusion processes. The work (Blasch
et al., 2013) identifies different ways in which context information can be used to solve a
target tracking problem (low level information fusion). Finally, (Garcia et al., 2011) discusses
the procedure followed in the design of a hybrid surveillance system for harbor areas, which

32 2. State of the art

combines context information two different reasoning processes: deductive reasoning about the
expected behavior of a boat taking into account its features, and abductive reasoning under
high uncertainty conditions.

In the line of AmI research, (Blázquez Gil et al., 2012a) presents a distributed architecture
for recognizing the context of smartphone users. This work is an example of data fusion oriented
to consumer market, although its results can be translated to other domains as monitoring
people with health issues that live on their own (Blázquez Gil et al., 2012b).

3
Proposal: adaptive framework for

context-aware sensor fusion

The introduction of this thesis (see section 1.3) establishes two goals that will be fulfilled in
this chapter. The first one is an analysis of the different ways in which context information can
be applied to sensor fusion processes. The second one is the development of a framework that
supports the creation of context-aware sensor fusion systems. We will cover the theoretical
parts first, since they will have a big impact in latter design decisions.

3.1 Preliminary concepts and analysis

3.1.1 Uses of Context Information in Sensor Fusion systems

Back in the introduction section, we specified that context information must be used in the
proposed framework for two different purposes: enhance fusion products thanks to an improved
understanding of the observed entities, and also creating systems that can adapt to changes in
the environment. In this section, we are going to detail where and how context information
can be used to achieve those goals.

The design and tools of the proposed framework shall facilitate the use of context information
in all the fusion related processes. The first step is, thus, defining which these uses are. Our
analysis starts from the conclusions of (Schilit and Theimer, 1994), which identifies four different
ways of context information in user-centered context aware systems:

• Proximate selection: emphasize or make easier to select those objects that are in the
same “locus” as the user. Locus is a term originally used in biology to refer to positions
of interest over genetic sequences, and most context-aware systems identify the concept
with the user physical location by default. An example of proximate selection: if a user

34 3. Proposal: adaptive framework for context-aware sensor fusion

wants to share the screen of his/her smartphone screen, a context-aware system should
present nearer displays first.

• Automatic reconfiguration: refers to the addition or removal of elements (drivers, devices,
software modules) and modifying how they are connected, depending on the context. In
a context-aware system may refer to user needs.

• Contextual commands: are those that can take into account context to modify their re-
sponse. For example, a contextual “print” command can automatically deliver documents
in the printer closest to the place where they will be used.

• Context-triggered actions: Can be defined as simple “IF-THEN” rules. This approach
works well for systems with a high level of abstraction, because it permits to translate
human knowledge in a very natural way. For example, Microsoft developed a research
prototype for smart homes following this concept (Dixon et al., 2012), where users can
program automatic actions such as “Turn on the lamp when room door is opened” using
their smartphones.

We propose a modification of these uses to better fit the domain of sensor fusion applications:
First change is changing “proximate selection” to “relevance based selection”. This requires
extending the concept of “locus” to the more generic idea of determining when a piece of
information, a sensor or an algorithm is useful in a certain situation.

The relevance of an element depends on its inherent features and also on the context.
Inherent features encompass factors that can be statically determined and are supposed to
remain stable along time, such as the features of the information it produces/consumes,
computational requirements or energy consumption. It is easy to exploit inherent features:
they have a low level of abstraction, can be hardcoded in the fusion logic or assumed as a
precondition for the design of the system.

Determining the relevance of context information is a much harder task, specially when
it has a high level of abstraction. These kind of difficulties are cited in (Liggins et al., 2008)
(p.447) as the main issues in Situation and Threat Assessment (levels 2 and 3 of the JDL
model), but they also apply to our problem:

• Weak ontological constraints on relevant evidence: it is difficult to model which informa-
tion is relevant on each situation, and how it is relevant.

• Weak spatio-temporal constraints on relevant evidence: it is difficult to establish for how
long an evidence is relevant/valid on each situation.

Context exploitation present an additional challenge: the same piece of information can
accept multiple representations differing on abstraction level or the point of view they are

3.1. Preliminary concepts and analysis 35

looked from. Thus, in order to adequately determine the relevance of some element under a
particular context, we need to express that context in a restricted and standardized format that
minimizes ambiguities and duplicities. In section 3.3.2 we present a proposal to use ontologies
for this purpose, together with a minimal language that describes both the domain of the
sensor fusion application and its context. Another option is to create a logic that can transform
information between equivalent representations, but this solution is completely domain-specific
and we will not explore it in this document.

This work assumes that the relevance of context is determined beforehand, either hardcoded
in the logics of the software, or expressed as part of the problem space description. Automatic
relevance determination is out of the scope of this work.

Automatic reconfiguration can be applied straightforward to sensor fusion domain, referring
to sensors, other information sources, and algorithms. A sensor fusion solution is a particular
arrangement of such elements, so automatic reconfiguration affects which of them are present
and how they are connected.

Contextual commands, in the sensor fusion domain, are identified with fusion algorithms
that can use context information to improve their output in some way. As it is explained in
section 2.3, this has been the classical use of context information to enhance fusion processes.
Contextual algorithms are defined as any other algorithm, declaring which context information
they can use so that the framework takes care of providing it.

The last considered used of context information, triggering actions, does not constitute a
separate case in Sensor Fusion domain in the sense that its implementation does not require
specific mechanisms. It can be considered a complementary aspect of the previous usages. The
actions in a sensor fusion system are sensor/algorithm management (automatic reconfiguration),
or something built into a fusion algorithm and, thus, part of a contextual command.

There are some additional aspects regarding how context is created, stored and used. In
(da Rocha et al., 2008), authors discuss the requirements of a middleware for context-aware
applications with ubiquity features. We are not interested in context-aware applications and
do not pursue ubiquity, but the paper presents some interesting thoughts. It defines 12
requirements, some of which are relevant for our case:

• Support for context evolution: the framework must support the inclusion of new context
types/concepts without affecting the execution of consumer processes.

• Extensible abstractions for accessing and using knowledge: the middleware should allow
access to context information through mechanisms that are adequate for the level of
abstraction of the target applications. It should allow the specification of new abstractions
in top of the existing base of knowledge.

36 3. Proposal: adaptive framework for context-aware sensor fusion

• Architectural independence: related with permitting access to context information from
different platforms (hardware or software). Although this is clearly defined with a
distributed scenario in mind —not our case—, we are interested in on-line integration of
sensor sets that can use context information for enhanced results.

• Decoupling between context management and inference mechanisms: authors argue that
the mechanisms for context inference must be decoupled from context management
infrastructures, because it results in a good trade-off of expressiveness, consistency,
computational efficiency and reusability.

These requirements will be at least partially integrated in the framework.

3.1.2 Ontologies as a tool for adaptive systems meta-description

Back in section 2.2.3, we identified ontologies as the right tool for describing problem space
and relevant context information. Ontologies have a good number of benefits as a knowledge
representation tool (Bürger and Simperl, 2008): they allow to describe concepts, domain
assumptions and constraints, and it is possible to apply automatic logical inference processes
over them. One of the most important and popular applications of ontologies is to define a
common vocabulary that ensures some degree of interoperability between automated systems,
and with this purpose they were chosen as the basic description tool for building the semantic
web (Shadbolt et al., 2006). Another advantage is that ontologies can be easily interpreted by
both humans and computer.

The paper (Lee and Zeigler, 2010) describes how the System Entity Structure (SES)
ontology framework can be used to improve how information is exchanged. The idea is to
enable centralized Data Fusion processes that acquire information from networked environments.
It is used to transform raw data to different (high-level) representations that satisfy the needs
of the various layers in a Data Fusion system.

Dockhorn-Costa dissertation (Costa, 2007) describes the fundamental concepts and struc-
tures for supporting the development of Context-aware applications. It contains a very detailed
and solid work on modeling, representing and using context information. It defends the use of
foundational ontologies for “representing conceptualizations that are truthful to reality”.

These and other works as (Wu, 2003) contain nice and clear examples on using ontologies
to describe context information and components of computational systems. The article (Chen
et al., 2003) describes two tools: the COBRA-ONT ontology for supporting context-aware
systems in an intelligent meeting room environment, and an inference engine for reasoning
about context information. Our proposal takes some of the ideas and principles of these works.

This work proposes the use of ontologies for representation purposes, but not necessarily for
inference or reasoning, because exploiting the knowledge in ontologies can require an excessive

3.1. Preliminary concepts and analysis 37

computational effort. This problem can be mitigated through the use of complementary
techniques as rule-based systems. In the experimental section 5 we demonstrate how to these
two techniques can be hybridized into a solution that combines their respective advantages.
Ontologies are also criticized for their high design cost, but we still encourage their use for
representing knowledge when reusability or interoperability between collaborating systems
are important features. This advantage is illustrated in the same experimental section: the
navigation system, mounted in a vehicle, discovers a smartphone that can contribute with its
sensors to the fusion process. Collaboration is possible because both platforms share a common
language for exchanging the required information.

3.1.2.1 Considerations about redundancy, ambiguity and non-orthogonality

When context information is applied to enrich the solution of a problem, the first step consists
in identifying which pieces of information are actually relevant. Secondly, it is necessary to
select its best representation, since any particular piece of information admits a potentially
infinite number of them.

As a rule of thumb, any representation of knowledge should be:

• Complete: there are not pieces of information that are relevant to the problem but cannot
be expressed using the selected representation.

• Unambiguous: each part or aspect of the selected representation, and any piece of
information expressed using it must have unequivocal interpretation.

• Non-redundant: a piece of information must have a unique representation in the system.

• Minimal: it has not superfluous elements.

When designing a representation for context knowledge, however, some of these requirements
can be either very difficult to hold or not adequate. The most notable case is unambiguity, which
can be solved by selecting a set of orthogonal features for representing data. Orthogonality
means that the value of one feature is not related with the values of the others, because
the features represent disjoint aspects of the reality. Several works have pointed that this is
extremely complicated for context information because of the complexity of the data, the mix
of abstraction levels and the implications it has on a problem.

The next list presents some of the difficulties associated or caused by how sources of context
information provide their data:

• Heterogeneity in abstraction level and language: radio communications in natural language
about a traffic accident, terrain altimetry as a matrix of numbers

38 3. Proposal: adaptive framework for context-aware sensor fusion

• Incompleteness and uncertainty on some features.

• Overlapped sources: two or more sources provide the same information. However, since
the data presented by the sources can have different abstraction level, and be partial and
uncertain, it can be very difficult to detect and eliminate the redundancy.

Because of these factors, the task of selecting an unambiguous and non-redundant representation
for context information can be far from trivial. Furthermore, such features can be not harmful
for the entities that will consume/use the information. Each algorithm in a sensor fusion
solution can require or prefer a representation that suits its internal abstraction level, granularity
or point of view of the problem.

Thus, a sensor fusion system can ask for the same piece of information expressed in different
ways simultaneously. As a conclusion, in spite that it is (in theory) possible to design a “perfect”
representation of context information, in most cases it is not practical because it introduces
technical difficulties and require actually more effort to exploit context knowledge. Designers
are encouraged to identify representation ambiguities and redundancies, and make sure that
the system implements mechanisms to avoid inconsistencies and contradictions in actual data,
and/or the potential inconsistencies have a bounded impact in the system.

3.1.2.2 Introduction to OWL/RDFS ontologies and RDF language

The examples used in this section and the ontologies created for the selected applications
are written using Web Ontology Language (OWL) (Lacy, 2005). OWL is constructed in top
of Resource Description Framework Schema (RDFS), a more basic language for describing
ontologies. In RDFS, a vocabulary (the terms vocabulary and ontology can be used indistinctly
in this context) is a set of descriptions of classes and properties. The ontology is populated with
individuals, that are elements defined and interrelated according to the rules of this vocabulary.
Both RDFS and OWL can be serialized using the XML representation of Resource Description
Framework (RDF) language (Brickley and Guha, 2004). We have chosen XML-RDF as vehicular
language because it is accepted by the majority of ontology edition and visualization tools, and
is easy to process with Jena library, written in Java language and part of the Apache tools.

In OWL and RDFS, a class is a category for individuals, quite similar to Object Oriented
Programming (OOP) (Object Oriented Programming) classes stripped from its behavior (only
data). Individuals can belong to several classes at the same time. For example, we can have
an ontology with classes Person and Child (Child is a subclass of Person) that is filled with
individuals John and Carl. John is an adult, so it has class Person, but Carl is a kid so it has
classes Person and Child.

1 <!-- Class Person -->

2 <owl:Class rdf:about ="# Person "/>

3.1. Preliminary concepts and analysis 39

3
4 <!-- Class Child as a subclass of Person -->

5 <owl:Class rdf:about ="# Child">

6 <rdfs:subClassOf rdf:resource ="# Person "/>

7 </ owl:Class >

8

9 <!-- Individuals John and Carl -->
10 <owl:NamedIndividual rdf:about ="#John">

11 <rdf:type rdf:resource ="# Person "/>
12 </ owl:NamedIndividual >

13 <owl:NamedIndividual rdf:about ="#Carl">
14 <rdf:type rdf:resource ="#Child"/>

15 <rdf:type rdf:resource ="# Person "/>

16 </ owl:NamedIndividual >

The other element of a vocabulary are properties. We are using two types of properties in
this work: object properties and datatype properties. Object properties are directed relations
between two individuals of the ontology, this is, they have a subject and an object. It is possible
to define a domain and a range for each property, which restrict the allowed classes for the
subject and object individuals. In our example, we can define the sample object property
“isParentOf” with domain Person and range Person, and use it to express that “John isParentOf
Carl”.

1 <!-- Define property . Domain and range are class Person -->

2 <owl:ObjectProperty rdf:about ="# isParentOf ">

3 <rdfs:domain rdf:resource ="# Person "/>

4 <rdfs:range rdf:resource ="# Person "/>

5 </ owl:ObjectProperty >

6

7 <!-- Add object property to individual John to state the relationship

8 with Carl (modifies previous declaration) -->
9 <owl:NamedIndividual rdf:about ="#John">

10 <rdf:type rdf:resource ="# Person "/>

11 <isParentOf rdf:resource ="#Carl"/>
12 </ owl:NamedIndividual >

Datatype properties relate individuals with literal values, and can be seen as the attributes/-
fields of classes in OOP languages. They also have a domain over the classes of the ontology.
An example is the property "hasAge", with range over the non-negative integers, so that we
can express that “John hasAge 28” and “Carl hasAge 5”.

1 <!-- Define datatype property .

2 Domain over class Person , range over non - negative integers -->

3 <owl:DatatypeProperty rdf:about =" hasAge ">
4 <rdfs:domain rdf:resource ="# Person "/>

5 <rdfs:range rdf:resource ="&xsd; nonNegativeInteger "/>

40 3. Proposal: adaptive framework for context-aware sensor fusion

6 </ owl:DatatypeProperty >
7

8 <!-- Add datatype property to individual declarations -->

9 <owl:NamedIndividual rdf:about ="#John">

10 <rdf:type rdf:resource ="# Person "/>

11 <isParentOf rdf:resource ="#Carl"/>

12 <hasAge rdf:datatype ="&xsd; nonNegativeInteger ">28 </ hasAge >
13 </ owl:NamedIndividual >

14 <owl:NamedIndividual rdf:about ="#Carl">
15 <rdf:type rdf:resource ="#Child"/>

16 <rdf:type rdf:resource ="# Person "/>
17 <hasAge rdf:datatype ="&xsd; nonNegativeInteger ">5</ hasAge >

18 </ owl:NamedIndividual >

OWL augments RDFS with additional semantic capabilities, including:

• Specify cardinalities of object relations and datatype properties.

• More interesting and complex ways to describe classes. Apply set operators, e.g. union
or intersection of classes. Define two classes as disjoint to indicate that no individual can
belong to both classes at the same time.

• Relationship between properties, that can be declared as transitive, symmetric, functional
and also define one property as the inverse of other (in the above example, we could
declare the object property “isSonOf” as inverse of “isParentOf”).

3.1.3 Automatic sensor and algorithm selection

As of today, we have not seen the advent of automatic tools for generating sensor or data fusion
solutions. The reason is that it is not a simple problem: the gains achieved by a fusion process
come either from adding new knowledge to that provided by the information sources (e.g. the
prediction model in a tracking filter, which gives information about how the target moves),
from using some knowledge about the information sources (characterizing the performance of
a GPS receiver under different circumstances and take that information into account during
fusion), or how sources are related (using a complementary filter for fusing a biased but fast
reacting gyroscope with an unbiased but slow magnetometer, and get an stabilized attitude
estimation).

Although part of this information can be potentially translated into rules, data or models,
most of it is implicitly integrated in the fusion solution as the selected architecture, algorithm
parameterization or embedded rules. Furthermore, there is not a clear methodology for reaching
this knowledge: it is determined through experimentation and testing, and is difficult to extract
(make explicit) afterwards.

3.1. Preliminary concepts and analysis 41

Regarding the use of sensors, some authors claim that most sensor fusion works need to use
all the sensors continuously because the more information is available, the better will be the
result. This is especially true when the proposed solutions exploit domain knowledge through
the subtle relations between sensors or problem variables.

Following the traditional approach of tailored solutions using all the sensors leads, however,
to highly coupled solutions that are less robust against (a) sensor failure/outage, (b) sensors
showing uncharacterized negative effects (c) external conditions invalidating prior knowledge of
the domain. While fully automatic algorithm selection is generally not an option, these concerns
have been expressed in previous works. For example, (Liu and Gingras, 2007) describes a system
that combines fault detection with data fusion to create a robust positioning navigation system.

The article (Cohen and Edan, 2008) presents a rule-based framework that selects the
most reliable sensors and most suitable algorithm for fusing sensor data in a mobile robot
platform. The framework does not require any preliminary knowledge about the sensors involved,
although the presented solution is limited to sensors whose measures can be translated to a grid
occupancy map –cameras and ultrasonic sensors in the experiment. That simplification provides
a homogeneous view of the sensory information, making possible to calculate comparable quality
metrics.

Another typical scenario consists on those systems that have severe performance constraints
(small devices, embedded hardware) or working under real time requirements. A feasible solution
consists in creating systems that count with a repository of preconfigured solutions, which can
be exchanged depending on the external conditions.

3.1.4 A note on coupling, modularity and automatic adaptation

Data fusion consists on making the best possible use of available information. With this purpose,
data sources are sometimes arranged in complex structures capable of exploiting subtle shared
synergies that, however, make the solution more dependent on specific sensor features, domain
assumptions and other prior information.

We can find an illustrative example in fusion algorithms for GPS/INS navigation, which are
categorized in the literature as loosely, tightly and ultra-tightly coupled solutions. The loosely
coupled solution (also called “cascaded solution”) is the most simple one: a navigation filter (as
the UKF used in section 5.2.3) integrates GPS calculated locations with the acceleration and
turning rates measures generated by the inertial sensor –this is, sensors operate separately, and
their measures are considered individually. This solution has several drawbacks (Wendel and
Trommer, 2004): GPS device needs at least four visible satellites in order to calculate a valid
solution, leaving the inertial sensor unaided when the available constellation falls below that
number. Also, most recursive filters assume uncorrelated errors between consecutive measures,
but this is not true for the GPS.

42 3. Proposal: adaptive framework for context-aware sensor fusion

Tight- and ultra-tight- coupled solutions (Petovello et al., 2007; Ravindra and Wang, 2005)
fuse kinematic information from the INS sensor with the low level (pre-measure) data available
at GPS device: the filtering algorithm processes the pseudoranges of individual satellites. If
the number of visible satellites is not enough to produce a fix, it is possible to predict recently
lost signals thanks to the inertial data, and generate a degraded GPS fix that still contains the
information of several real satellites. The difference between tight and ultra-tight versions is
that the first uses a separate tracking loop (filter) for each satellite, while the second funnels
all satellites down a single instance of a more complex filter. Coupled solutions have some
potential downsides: they require a higher implementation effort and their performance can be
more difficult to characterize (require extensive and intensive testing).

Loosely coupled algorithms are, in general, easier to use in adaptive solutions. They can
be described with simpler and smaller formal models, which are in turn easier to exploit. The
interaction between data sources take place at a more general or higher abstraction level
compared with tightly coupled solutions, making easier to integrate context information in the
internal logic to improve results.

Building a fusion system automatically from individual components (as the prototype
designed in chapter 5) is not an option for tight coupling schemes, and can even be dangerous
for loosely coupled ones. It is difficult to infer the performance of a fusion system from a
formal description of its components. In fact, current development of sensor fusion solutions
relies on heavy testing and experimentation phases. An adaptive system prepared to deliver the
best performance in real conditions would probably require a fine characterization of individual
configurations, and then be subject to strict constraints on how components can be connected.
In the end, it is a matter of granularity : define components as the smaller arrangement of
logical fusion operations that can be decoupled from other components while keeping some
features considered useful for the developed system.

Taking this consideration into account, it is possible to integrate tight-coupling components
in an adaptive solution by defining them as monolithic blocks whose internal logics are not
exposed in the formal model of the system. Context information can be used to take structural
decisions as activating or deactivating the block, and also to refine its output through an
adjacent loosely coupled layer that do some simple task as constraining the produced values.

3.2 System scope and requirements

The framework must satisfy the following requirements:

• Capable to host any kind of centralized sensor fusion solution.

3.2. System scope and requirements 43

• Simplify the design and implementation of flexible/adaptable sensor fusion solutions. The
flexibility of a solution is related with the following features:

– Robust against sensor outage/loss.

– Can incorporate new sensors.

– Supports sensors with features subject to change, as refresh rate or quality.

– Can adapt the produced solution to satisfy different requirements.

– Can adapt the processing scheme/parameterization to maximize the fitness of the
solution.

• Allow the collection, storage and dissemination of context information with no restrictions
on its type or abstraction level.

• Context consumers shall use context information as a finished product. The specific
mechanisms for acquisition and management will be kept hidden to fusion algorithms
and adaptation logics.

• Facilitate usage of context information for:

– Relevance-based selection: prioritize data sources, data elements and algorithms
according to their effective and potential benefit/usefulness.

– Automatic reconfiguration: use context to determine changes in the fusion solution
leading to a better performance. This information can be used to add or remove
elements present in the solution (sensors, algorithms), modify connections between
elements, or change the internal parameterization of configurable elements..

– Contextual fusion algorithms: provide relevant, up-to-date context to those algo-
rithms that can use it to improve their products.

– Contextual sensors: provide relevant, up-to-date context to those sensors or sensing
sets that can use it to improve their products.

Some aspects and applications are left out of the scope of this proposal. The design will
take them into account as possible as long as it does not interfere with any of the requirements
enumerated above.

• Critical and real time systems: the framework is not oriented to guaranteeing continuity
or quality of service. Real time functioning is not assured.

• Human-in-the-loop: the framework is oriented to pure automatic sensor fusion applications.
No mechanisms have been created to allow neither human intervention or usage of soft
data –humans as sensors.

44 3. Proposal: adaptive framework for context-aware sensor fusion

• Distributed systems: it is possible, using the proposed framework, to design solutions
where some sensors or parts of the fusion process take place in a distributed environ-
ment. Nonetheless, the framework does not include mechanisms oriented to distributed
fusion, such as those related with resource discovery, communication load/bottlenecks or
integrity/consistency checks.

3.3 Proposal

This section contains a detailed description of the proposed architecture, depicted in Figure 3.1.
It represents a complete rework over the fundamental concepts explored in early works of this
thesis (Martí et al., 2011a,c).

Figure 3.1: Architecture of the context-based adaptive sensor fusion system

The diagram shows four principal components. Two of them, Information Sources and Data
Fusion modules, compose the core elements of a regular sensor fusion solution: the sensors
that provide raw data to be fused, and the algorithms that combine and process that data to
generate a fused output. The other two have been created to accomplish the goals of this work.
The Fusion Adaptation Module configures the fusion solution that results in optimal results,
based on the desired fusion products, the features of the involved components, and relevant

3.3. Proposal 45

contextual information. It works over the components in the first two modules, selecting which
are active, their configuration and how they are connected. Finally, the Context Adaptation
Module is a centralized repository of contextual information. It is in charge of storing context
in the correct format, and includes the mechanisms used to disseminate context to elements
using it.

These modules have to be combined to create adaptable sensor fusion systems, where
context information is extensively used. In order to make this possible, we had to make our
way through the following steps:

• Define a formal system for characterizing the problem space: domain, constraints,
data/information types, sensors and algorithms.

• Define a formal system for describing the relevant context information and how it affects
the problem.

• Design a procedure that, given a problem specification, determines how to solve it using
some available tools. The solution has to be the best possible one, according to some
criteria expressed in the Problem Space Characterization.

• Combine the aforementioned elements in a generic framework for developing adaptive
sensor fusion problems

The next subsections address these questions in detail.

3.3.1 Fusion solution components: Data Nodes

The main components of a fusion solution are the sources providing information and the
algorithms that transform information (that we call “fusion nodes”). These components are
combined in an arrangement that generates the desired fused output.

In the way of creating modular fusion solutions, coupling between components must be
reduced to allow the composition of different functional combinations of sensors and algorithms.
This does not mean renouncing to the benefits of specialized solutions over well characterized
data, but designing components that can also work when their working conditions are not met
in spite of showing a lower performance. With this purpose in mind, we decided to build the
architecture around two important concepts of software design: virtual sensors and widgets.

• Virtual Sensors: described in (Indulska and Sutton, 2003) as software components that
provide a certain information, instead of hardware devices. In this thesis we understand
virtual sensors as a software component that provide data through an homogeneous
interface, hiding the specific mechanisms through which it is produced.

46 3. Proposal: adaptive framework for context-aware sensor fusion

We find an example in the Android OS API, that defines sensors for counting steps and
provide the gravity direction vector (figure 3.2). These virtual sensors can be backed by
hardware implementation (manufacturers are encouraged to implement step counting on
hardware to save battery) or be derived/composed by other information, but this fact is
transparent to the developer.

• Widgets: can be seen as reusable building blocks that encapsulate a functionality (Salber
et al., 1999)(figure 3.3). A widget exposes a well defined interface that can be used
to control it, feed the required input information and extract the produced outputs.
Widgets foster modularity and reusability. Modularity because splits the functionality
in independent blocks that can be replaced or modified, so that the behavior of the
system is adapted without requiring further changes in any of its surrounding elements.
Software encapsulated in a widget is more likely to be reused in different systems because
it depends only on input data without further functional dependencies. In the proposed
architecture, this last aspect can be changed when it is convenient for the purpose of the
sensor fusion system. For more details about this, read sections 3.3.2.1 and 3.3.3.3.

Figure 3.2: Virtual sensors abstraction in a smartphone equipped with Android OS. Step counter sensor
can represent a real piece of hardware or a software process over accelerometer data

Figure 3.3: A widget encapsulates a functionality minimizing the parts of it exposed to the outer world.

3.3. Proposal 47

Next sections combine these abstractions to define the Data Node entity. Data Nodes
represent the basic components of a fusion solution: sources of information and fusion algorithms.
It is important to notice that both categories, information sources and fusion nodes, are not
exclusive in the sense that some elements can be in both at the same time. Contextual sensors
–sensors that can receive additional information about the context to enhance their results–
can be considered sources of information and fusion nodes at the same time.

These abstractions are fundamental for our proposal. They are used with two purposes:
simplify the task of providing a formal and normalized description of the fusion system
components, and enabling automatic adaptation of the sensor fusion solution. Both aspects are
explored in next subsections and cases of use. Widget-based architectures are usually managed
by a centralized control component that acts as repository of available widgets and existing links
between components. In our case, the central component is the Fusion Adaptation Module,
described later in section 3.3.3.3.

3.3.1.1 Abstract information sources

A Sensor Fusion process, as defined in this thesis, makes use of sensory information and other
static or dynamic sources of data. This work propose to combine widget and virtual sensor
abstractions to achieve a unified description of information sources that can offer homogeneous
access to data. The combination of these two concepts have the following advantages:

• Consumers do not need to implement specific access methods for each type of source.
Virtual sensors share a common and simple interface.

• The fusion logic is isolated from sensor management details that are out of its scope, but
data sensors still expose a configuration interface that can be used by the fusion system
when it has an impact on performance or quality. This configuration interface can be
adapted to show virtual parameters directly related with the domain of the problem.

• Equivalent data sources are exchangeable at runtime. The change is transparent for
consumers, that receive an uninterrupted flow of incoming data.

• The same fusion system can be used with simulated, recorded and real time data. It only
requires implementing equivalent virtual sensors that adapt data from each source –real
sensors, recording file or simulation software.

• Basic signal pre-process can be built into the virtual sensor.

The process to abstract each type of information source can be different, although they are
basically a translation process. Let us give a brief description of the most relevant considerations
for each of them:

48 3. Proposal: adaptive framework for context-aware sensor fusion

Hardware sensors
The virtualization of a hardware sensor can be as simple as writing a wrapper that
translates the API exposed by the driver to the common interface of virtual sensors.
Depending on the sensor, it could take care of details as synchronous/asynchronous access
to devices or communication channels. It can also implement more complex processes,
as a combination of buffering and markers for granting several consumers simultaneous
access to stream-like information sources.

Recorded and simulated sensors
Using information that is stored in a file or has been synthesized requires additional logic
regarding time simulation. This aspect is responsibility of the implementation, which
must decide how to synchronize components, simulation speed and other details. An
example can be found in the last selected application, chapter 4, where all time related
operations rely on a custom timing library that keeps processes synchronized and allows
to simulate accelerated time frames for agile experimentation.

Context
In this proposal, context information is a mix of static and dynamic knowledge with
different abstraction levels. It will be difficult or even impossible to use the virtual
sensor approach to give access to some pieces of context knowledge, depending on how
they are represented. The Context Management module (section 3.3.3.2) is responsible
of deciding, based on the description of context, which variables will be accessible as
virtual sensors. As a general rule, this will be possible when the value of the variable
can be contextualized implicitly. For example, mapped information does not meet this
requirement, since it is necessary to specify the location whose value we are interested in.
The current activity of a device user or the weather at a known location, however, can
be abstracted as a virtual sensor.

3.3.1.2 Fusion nodes

We define as “fusion node” any (stateless or stateful) operation that receives an input and
produces an output, and can be used as part of the fusion system. This applies to actual
fusion algorithms, but also to other operations as unit conversion, external calibration tools
for the sensors and even logging/displaying tools. The difference between a fusion node and a
source of information is that the latter does not require any input to produce a real, meaningful
output, while the first defines its functionality based on the received input.

Most popular sensor fusion algorithms are easy to translate into the widget abstraction,
since they fit naturally the concept of a black box that takes some input data and produces
and output. Implementations need to care about synchronization and timing issues regarding

3.3. Proposal 49

the data entering and exiting the widget. This is the same consideration exposed in the
previous section 3.3.1.1. Virtual sensors do also follow the widget style, allowing to apply an
homogeneous management for all the components of the fusion system. Furthermore, virtual
sensors that feed on other processed data or that need a contextual input can define their
inputs just as any fusion algorithm.

3.3.2 Modeling the components of the problem and the solution

A fusion systems with automatic adaptation features needs full knowledge of the problem
to be solved. This knowledge is composed by the problem space –a concept including the
domain of application, the components of the solution (explored in the previous section) and
the relationships between these elements– and, in our case, contextual information. Specific
sensor fusion systems tend to embed adaptation-related knowledge in the structure of the
algorithms, but this has some has drawbacks: implicit logics can be difficult to interpret for a
human reader, its modification requires changing the code, and reduces the reusability of the
code in other solutions.

This theses defends explicit above embedded knowledge. We have proposed the use of
ontologies to describe the information required by Context Management (section 3.3.3.2) and
Fusion Adaptation (section 3.3.3.3) modules. According to the proposed architecture (see
figure 3.1), a context-aware sensor fusion system needs the following elements described:

• Problem-space (in the Fusion Adaptation module): basic notions about problem domain,
components of the solution.

• Resource sets: sources of information, generated data, features, requirements.

• Context: description of relevant context variables. Constraints, relationships.

This section identifies the information that has to be modeled and some important considerations.
We also propose, as an example, a minimal ontology that can be used to describe the basic
aspects of almost any adaptive sensor fusion system.

Figure 3.1 shows that the three descriptions are interpreted by the inference processes of the
Fusion Adaptation module. Our design presents them as separate components in an attempt
to increase system modularity, but they are just different aspects of a single language. At the
time of designing a sensor fusion solution within the proposed framework, it is necessary to
ensure that the different components are consistent, with special attention to the parts they
may have in common. For more details on this question, check section 3.3.4.

50 3. Proposal: adaptive framework for context-aware sensor fusion

3.3.2.1 Problem-space description

The problem space description, highlighted in figure 3.4, describes the domain of the problem
to be solved, the basic components that can be used in the solution, how solution components
are related between them and with the domain of the problem. It can also include other useful
semantics.

Figure 3.4: Problem-Space description is a basic component of the Fusion Adaptation Module.

Figure 3.5: Hierarchy of classes in the problem-space description ontology

In its most basic form, the domain of the problem can be defined as the types of information
(physical magnitudes, declarative knowledge) that are necessary for its formulation and for its

3.3. Proposal 51

solution. This definition can include features of interest as the accuracy, or the relationship
between units. Also, this ontology has to describe the available fusion/data nodes in the central
repository of elements. A proper description of data nodes require at least defining the data
types managed by the application, their features, and the additional features of data nodes.

Next, we will develop a basic Problem-space description ontology using OWL language that
is applicable to most generic sensor fusion problems. This ontology restricts problem description
to the types of data involved in the problem. Solution elements will be related with the domain
of the problem through the types of their input and output data –this is, this problem is seen
just as a mere transformation of data. Designers are responsible to use ontologies to define
the problem from the most useful point of view. In a problem like (Cohen and Edan, 2008)
where several algorithms for multisensor fusion are evaluated in parallel and the best one is
selected for the solution, the description of the problem space would include the criteria used
to evaluate performance. The work is focused in sensors whose measures can be assimilated
to grid-like maps, so this concept should appear in the description of the problem, along with
other issues as the size of the grid.

According to the introduction to the language in section 3.1.2.2, an OWL ontology defines
relevant concepts as classes, uses object properties for expressing relations between elements,
and individuals are attributed through datatype properties. Let us define these three types of
elements.

Classes: figure3.5 shows the hierarchy of classes used for this work. The top elements are
the most important concepts, while the subcategories are defined for further inference processes.
Let us describe the top classes:

• DataNode class are the basic building blocks of a fusion system. Since we are approaching
the problem from the point of view of transforming information, including information
sources as a subclass of DataNode helps to homogenize automatic reasoning processes.
The presented figure show several subcategories: Sensors –only information sources
considered here–, Data Conversion functions, Sensor Corrective actions and Fusion
Algorithms. These subcategories can help defining constraints or inference processes, as
"the roots of a fusion process have to be Sensors" or "a Fusion Process graph cannot
contain loops, except when the loop involves a sensor corrective action".

• DataType parent class categorizes the type of information managed by the system. The
figure show a further decomposition in Numeric, Image, Map, Symbolic and Text classes,
that can be used to express additional facts or constraints, or just to help human users
that have to interpret or edit the ontology. These classes will be populated with individuals
that represents the actual data types used in the system.

• DataProduct are auxiliary entities for representing attributed data production or con-

52 3. Proposal: adaptive framework for context-aware sensor fusion

sumption. In OWL ontologies, it is possible to use an Object Property to express that
a Data Node "produces" information of a certain Data Type. However, this relation
does not allow features as "Sensor Y produces data type Z at 5 Hz with high accuracy".
Data Product is an instrumental entity that can be placed between both classes and
be attributed with data properties that express the desired features. Thus, the above
statement can be reflected as the composition of several statements as shown in table 3.1.

Table 3.1: Set of OWL statements equivalent to Sensor Y produces data type Z at 5 Hz with high accuracy

Domain Property Range
Sensor Y produces DataProduct Z
DataProduct Z hasType DataType Y
DataProduct Z hasType DataType Y
DataProduct Z updateFrequencyInHz Integer “5”
DataProduct Z quality Literal “High”

Object Properties relate pairs of individuals of the ontology. In the example, we are
interested in two types of relations. in figure3.6, object properties have been classified according
to their domain class: properties of data nodes and properties of data products.

The first category links the processing (data) nodes with the data products needed at the
input and produced at the output. Remember that a data product is just a data type with
additional attributes. It includes the relations “produces” and “consumes”, expressing which
Data Products are the inputs and outputs of Data Nodes. The property "preconditionedTo" is
intended to describe arbitrary requirements for a Data Node being applicable, such as a certain
Data Node being active.

The second category, properties of data products, contains the property “hasType” that
relates a data product with a data type. Using OWL tools, we have defined the inverse relations
“producedBy” and “consumedBy”, that can be applied to data products.

Figure 3.6: Object properties in the problem-space description ontology

Data Properties allow to add literal values to individuals, which are somehow equivalent to

3.3. Proposal 53

the attributes in OOP. Data properties are very dependent of the application domain, so we do
not provide generic contents in the proposal. Figure 3.7 shows an example based in the ground
vehicle navigation scenario (see section 5.2.6), organized in three categories according to the
domain class.

Figure 3.7: Data properties in the problem-space description ontology

3.3.2.2 Resource set description (information sources)

The resource set is conformed by all the information sources that can be used to solve a sensor
fusion problem. In the proposed architecture, resources are organized in independent subsets
that can be incorporated to or removed from the fusion process online. These subsets have
to be described using a common language that can be understood by the Fusion Adaptation
module. The description has to define the sources of information (virtual sensors) provided by
the subset, features that are relevant for determining the applicability/suitability of a sensor in
a particular problem, and the constraints on the use of the sensor. The last part can be based
in context related concepts.

Depending on the problem domain, the description of a resource can cover the following
aspects:

• Data produced by the resources: hierarchy of types, relevant morphological aspects, and
others.

• Features of the data produced by the resources. They can be classified in static and
dynamic features:

– Static features are inherent to the resource and do not change over time, as the
range of temperatures produced by a thermometer or the guaranteed bias stability
of a gyroscope over time. This type of features can be described with datatype
properties and predefined for each type of sensor according to the typical values in
technical datasheets.

54 3. Proposal: adaptive framework for context-aware sensor fusion

– Dynamic features, on the other hand, describe observable qualities of the data
that change over time. This includes quality metrics produced by sensors with
self-assessment capabilities –confidence in the measure, data compression factor,
value of automatically tuned parameters–, and a description of characteristic errors
associated with a data product that are unknown but can be useful to take into
account for the problem –bias of an accelerometer, relation between sensitivity and
operation temperature.
Dynamic features can involve a more complex modeling, defining new classes and
creating object properties that indicate how the different elements relate.

• Description of configurable parameters, e.g. valid range of values, how changing the
parameter affects data features. Depending on the sensor it will be possible to define an
inverse schema, where the interface exposes the dynamic features that can be changed,
and an intelligent controller tunes the configurable parameters to achieve them. This
is a typical features of cameras that adapt aperture, sensitivity and exposure time (real
control parameters) automatically to get images with the desired brightness, focus and
stillness –a kind of virtual parameters.

• Operating conditions and other constraints indicating when the resource cannot be used
or the data provided will not be useful. Operating conditions can refer to external
circumstances, which may be related with context information either self-inferred or
provided. In the case studied in section 5, the accelerometer of a smartphone is used
to track the motion of a vehicle, but that information is only useful if the smartphone
is resting in the vehicle. Such condition can be inferred using the readings of the
accelerometer, but can also be reported by the smartphone if the screen is operative.

An example of constraints not related with the context is a resource set that defines
several virtual sensors based in different functioning modes of the same real device. In
that case, it might be interesting to express that the virtual sensors are mutually exclusive:
only one of them can work at the same time. This is the case of the windshield camera
in an intelligent vehicle: a far focus is useful for detecting pedestrians and getting road
images, while a near focus transforms the camera in a rain sensor that counts water
droplets in the windshield.

For the example shown here, the description of resource sets is developed over the previous
problem-space description. Sensors are defined as a subclass of DataNode, restricted to not
take any data input –the ontology allows to express such constraint defining a Sensor as a
subclass of the built-in type Restriction, that refers to datatype property “consumes” and type
DataProduct defining an exact cardinality of zero–. The class Sensor uses the same other
classes and properties defined in the problem space description, which can be used to describe
fully-attributed individuals in a format understandable by Fusion Adaptation module.

3.3. Proposal 55

Figure 3.8: The resource description ontology, highlighted in the figure, has been integrated in our example
with the description of the problem space. This way, concepts and properties can be reused to provide a
homogeneous treatment of every Data Node in the system.

3.3.2.3 Context knowledge description

There are two different scenarios regarding context. In the first one, context description responds
to the necessities and opportunities identified during the problem analysis/design phase. In
those cases where the solution is created from scratch, we recommend the creation of a context
knowledge representation specifically tailored for considered the domain, ample enough to
allow extensions of the problem. If, on the other hand, context information is provided by an
external system, we may have to reuse an existing contextual schema. In both cases, however,
determining relevant context information is a very domain-specific task. It is difficult to provide
a tentative taxonomy in this section, so we refer the reader to experimental sections.

The true power of context-aware sensor fusion systems comes from the ability to incorporate
previously unknown contextual information and use it to improve the solution. In a system of
limited reach as a sensor fusion solution, it can be unpractical to develop automatic processes
that can discover the relation between unknown context elements and the variables of the
problem. A good design choice is to design the description of the problem in such way that
pieces of contextual knowledge can include in their description the effect they have on the
problem or in the solution. For example, the description of a context-aware navigation system
can include constraints on the speed of the vehicle, and the algorithms be designed to take into
account arbitrary constraints. New context variables like traffic information can be automatically
incorporated in the solution just by being annotated with those constraints.

56 3. Proposal: adaptive framework for context-aware sensor fusion

3.3.3 Architectural components. Modules

Once the elements of the solution and the modeling languages have been explained, it is time
to describe the modules of the proposed architecture. This section details their purpose, the
specific functions they can be in charge of, how they are related with the rest of the modules,
and specific questions regarding their implementation.

3.3.3.1 Information sources module

This module accepts two different implementations. The first option is to define a central
control logic that manages the set of sensors and coordinates the addition, removal and/or
configuration of components. Using this alternative, the central control is the only element in
this module that can communicate with the Fusion Adaptation module. Among its advantages,
we can cite a better decoupling of functionalities.

Another option consist on having independent resource modules that communicate freely
with Fusion Adaptation module. This is the situation described in figure 3.1. This second option
overloads Fusion adaptation module with extra management logic that could be considered out
of its scope, but in small systems can simplify the decision of how to adapt the fusion solution,
and making that decision effective. Both scenarios support the same functionality. Since the
architecture is designed with centralized systems in mind, it is reduced to preferring one code
organization schema above the other.

The following list summarizes the functionalities this module is responsible of. We are
assuming it is implemented according to the first explained option, a central control logic that
manages the set of sensors. In other case, some of this functionalities will be transferred to the
Fusion Adaptation module:

• Discover resource sets. This process is not necessary in those sensor fusion applications
that rely on a predefined set of on-board/integrated sensors. In other cases, it can be
designed as an active process –search and query for resources– or as a reactive process
that responds to offerings and announcements from collaborative resource sets. Resource
discovery has sense in distributed scenarios, where the appearing/dissapearing resource
sets are located in different platforms.

• Read resource set descriptions. Integrate description and components in the system. This
process involves the Fusion Adaptation module regardless how this module is implemented,
since it will need the description of the resources for managing the fusion solution.

• Check resource availability and status. Detecting failures and outages is likely to require
an active control. An option is to implement a simple data quality control process.

3.3. Proposal 57

• Notify relevant changes to the Fusion Adaptation module. This includes addition and
lost of sensors and changes in their status.

Sensor configuration management is considered to be out of the scope of this module. That task
has a direct relation with the fusion process, and is assigned to the Fusion Adaptation module.
We can see that the central control logic, in the case it is implemented in the Information
sources module, does not isolate the actual resources from the Fusion Adaptation module as a
layered or a true modular architecture would do. We permit this leaky abstraction to reduce
the complexity of potential implementations.

3.3.3.2 Context management module

Context management module is in charge of keeping an updated record of the context relevant
to the fusion system. It is also in charge of satisfying the needs of contextual information of the
different components of the fusion system, in a suitable format and through adequate channels.
The actual functionality of the context management module will depend on the design of the
solution. The following list includes some possible functions:

• Manage context information acquisition process. This includes keeping track of informa-
tion sources and their state.

• Offer access to context variables through suitable mechanisms.

• Evolve/adapt context model and its relation with problem-space description, as new
sources of context with a suitable description are integrated in the system.

• Keep context information updated.

• Keep context information repository in a consistent state. Inconsistencies can have its
origin in different sensors contributing to the same contextual variable, and redundancies
or overlapped meanings in context representation.

• Control granularity, when applicable. This includes temporal granularity (e.g. the update
frequency of some variables) and spatial granularity (resolution of mapped data) among
other factors.

We have defined two channels for accessing the context information maintained by this
module: virtual sensors and subscription service.

Virtual sensors are linked to the context variable of interest. They can be integrated into
the fusion solution by the Fusion Adaptation Module as any other data node. They can be
read on demand or emit the corresponding value at a prefixed rate.

58 3. Proposal: adaptive framework for context-aware sensor fusion

Subscription service notifies updates in context variables to the interested entities. In our
case, the Fusion Adaptation Module can integrate these updates into its inference processes to
improve the selected fusion solution. Both options are well known programming patterns with
a simple implementation.

In this proposal, determining context relevance is responsibility of the Fusion Adaptation
module, which relies in the description of the problem space. This factor limits the flexibility of
the solution for incorporating new, unforeseen knowledge, although it can be partially alleviated
if incoming context information is annotated with constraints or those variables of the problem
it affects, as we explained in section 3.3.2.3. When the domain of the problem is more complex,
the context database is large or poorly structured, and context mixes a wide range of abstraction
levels –a normal scenario in full-scale information fusion systems– this solution is not applicable.

In those cases, it might be useful to develop an automatic strategy for determining context
relevance. As an example, (Llinas, 2010) propose a query-based middleware that can infer and
return the context information that is related with a situation, region or entity of interest.

3.3.3.3 Fusion adaptation module

The Fusion Adaptation module is the cornerstone of the architecture. This central component
combines all available information (problem space description, information sources and context
knowledge) to orchestrate the fusion process.

The proposed architecture accepts a large number of implementations, but the typical work
cycle of a Fusion Adaptation module prepared to exploit the full potential of the proposed
architecture comprises the following steps:

• Initialization:

– Load problem space specification.

– Initial load of context knowledge and resource set specification.

– Subscribe to relevant context sources.

– Determine initial solution and configure it using repository of elements, virtual
sensors from resource set and virtual sensors provided by context management
module.

• Reactive adaptation logic: triggered on context/resource/goal set events.

– Context event: the adaptation logic is notified about a change in the value of a
relevant context variable, or new contextual knowledge is added.

3.3. Proposal 59

– Resource event: added/removed sensor information is updated in the problem space
description. If a sensor currently in use is lost or if a new sensor is added, adaptation
manager will consider switching to a different configuration. For other events as
–data features have changed, data quality has detected an anomaly– the actions
range from changing sensor parameterization to changing the algorithms or the used
sensors.

– Goal event: the goals of the system (the desired data products) have changed. Goals
can change requesting different products, or preferring quality in some variables
above others.

• Proactive adaptation logic: involves monitoring the results of the fusion system to
determine if there is a problem with any of the components of the fusion. Another
approach is to routinely evaluate several alternative solutions in parallel and switch to
the best one.

3.3.4 Designing a sensor fusion solution within this proposal. Workflow

The structure of the architecture, together with the assumptions made and the selected approach
to a context-aware sensor fusion solution, enforce a particular order in the creation of such a
system. In particular, the design will be strongly guided by the explicit modeling of the problem
space, context and resources using ontologies.

Previous section 3.3.2 explained how our proposal is to build a unique description language
that is composed by several parts (context, sensors, problem space) that can be plugged
together, although each part responds to a different aspect of the problem. If we assume
starting the design from zero (in many cases, it will be possible to reuse domain-specific
languages), this is a tentative order for the procedure:

• Identify the components of the problem (including sensors) and its solution, and draft suit-
able Problem Space and Resource Set description languages. When possible, contemplate
alternative solutions and algorithms that can work with different sets of sensors.

• Identify relevant context and how it affects the fusion solution. Draft the Context
Information description language.

• Define how can the different aspects/parts of that context be used on each part of the
fusion solution, both for adaptation and to improve the fusion processes. This analysis
can be used to refine the representational aspect of context information, which in turn
can affect the design of Problem Space description language.

• Define the capabilities and responsibilities of information sources module according to
the domain of the problem.

60 3. Proposal: adaptive framework for context-aware sensor fusion

• Design the adaptation logic. Purpose, desired capabilities, indicators/metrics guiding
the process, conditions that affect or trigger the adaptation process, algorithms used to
calculate solutions.

The procedure can be used as presented here to include posterior modifications into the
problem and its solution.

3.4 Conclusions

The proposed framework is well suited for centralized, autonomous sensor fusion applications
with high adaptive features that are not part of critical systems. Apart from depicting a general
architecture for creating such systems, we have drafted some tools and mechanisms that can
help in the creation of the involved components, and in gluing all the parts together.

One important contribution regards the definition and management of context information.
We have proposed a standardized representation along with minimal metadata necessary to
determine its relevance and to ensure that other components will be able to manage it.

3.4.1 Review of requirements

The following list reviews the requirement list proposed in section 3.2:

• This framework is, in principle, capable to host any kind of centralized sensor fusion
solution. The proposed architecture and tools do not impose any restriction related with
information types or processes. Next chapters 4 and 5 provide limited evidential support
for this statement, although further scenarios should be proposed to ensure it.

• We think that both the architecture of the system and the design procedure drafted along
this chapter do actually simplify the design and implementation of flexible/adaptable
sensor fusion solutions. Find next a review of the desired capabilities that are supported:

– Robustness against sensor outage/loss: the Fusion Adaptation Module can include
the logics in charge of reacting against these problems. Thanks to the homogeneous
access to sensors, sensor functional redundancy can be used to achieve seamless
functioning under outage or loss circumstances.

– Can incorporate new sensors: formal description of sensor sets through a predefined
ontology allow their integration into the fusion process as long as the Fusion
Adaptation Module is prepared to work with data they provide.

3.4. Conclusions 61

– Supports sensors with features subject to change, as refresh rate or quality: as long
as those features can be expressed in the corresponding Resource Set ontology and
interpreted by the Fusion Adaptation Module (if relevant), they are transparent to
the rest of the architecture. Fusion algorithms must support input data with varying
features, but this depends on their implementation (falls out of the reach of this
proposal).

– Fusion Adaptation Module can adapt the produced solution to satisfy different
requirements, and also adapt the processing scheme/parameterization to maximize
the fitness of the solution.

• The Context Management module allows the collection and storage of context information
with no restrictions on its type or abstraction level, thanks to the use of ontologies. This
information can be disseminated using the proposed mechanisms: virtual sensors and
subscription service.

• Context consumers receive context information as a finished product. The specific
mechanisms for acquisition and management are implemented by the original data
sources and the Context Management module, out of the scope of fusion algorithms and
adaptation logics.

• Context information can be used for:

– Relevance-based selection: context can be used by the Fusion Adaptation module
to decide how appropriate are algorithms and data sources on each case.

– Automatic reconfiguration: previous argument applies here.

– Contextual fusion algorithms: algorithms can be defined as having an additional
data inputs for specific context variables. This context is provided through a virtual
sensor made available by Context Management module.

– Contextual sensors: previous explanation applies here substituting fusion algorithms
for sensors, because both use the Widget abstraction that makes it possible.

3.4.2 Domain of application

This work is focused, as stated before, into low level data fusion but incorporating context
information. Among its features, we can cite:

• Autonomous functioning: this framework is oriented to the design of fusion applications
that can be used as a black box, without requiring user actions other than specifying the
desired output.

62 3. Proposal: adaptive framework for context-aware sensor fusion

• Flexibility: supports online addition/removal of components, including sensors and
processing algorithms.

• Graceful degradation: when properly used, the system can react to unexpected problems
with information sources and change to alternative solutions that minimize the impact in
functionality and quality.

• As a design principle, the fusion logic is kept totally isolated from context and configuration
logics. This has two benefits: improves the reusability of fusion algorithms in other fusion
systems, and facilitates migrating existing fusion solutions into the proposed framework.

3.4.3 Extensibility

Current work can be extended in two different directions: abstraction level and processing
topologies. Our proposal is restricted to JDL levels 0-1. This imposes restrictions in the
abstraction level of the involved data and, in consequence, simplifies the formalization work
described in this chapter. Extending the proposal to higher levels (2-3) has the following
implications:

• Problem-space description is relatively easy at current levels. It would be necessary to
define a formal representation for the inferences and data types managed at fusion levels
2-3. The differences at this level are more related with semantics than with pure format.
Ontologies represent an appropriate tool for this task, but such descriptions will be less
generalizable (more problem-specific) than at lower levels.

• The fusion adaptation logics will grow in complexity. This will most surely require further
decomposition/detail of the module, and probably the redefinition of some data/command
flows.

• Representing context information and determining its relevance will be harder. The
same considerations written for the problem-space description apply here. Also, since
the same piece of context information can have different representation depending on
the abstraction level or the interest of a potential consumer, the framework will need
reasoning processes able to translate to equivalent statements at different abstraction
levels.

This proposal, at current stage, can be used for building a network of cooperative fusion
systems. Our work (Martí et al., 2011a) suggest a multi-agent approach, where individual
fusion systems are built into autonomous software agents that interact with other agents in the
outer world. Software agents can offer and ask for services, namely raw and fused data. The
work developed in this dissertation provides the following facilities:

3.4. Conclusions 63

• A fusion system that can be asked for a particular fusion product, and automatically
configures itself for that purpose.

• A fusion system that can determine the data and features required to produce a particular
fusion product.

• A fusion system that can incorporate additional sources of information to improve
the quality of its output products. Virtual sensor abstraction simplifies the process of
integrating data from external sources.

• The basis for a common language that allows interaction between collaborating systems.

64 3. Proposal: adaptive framework for context-aware sensor fusion

4
Application to maritime surveillance

scenario: Design

This chapter explains the application of our proposal to a large scale maritime surveillance
scenario covering open sea with highly populated areas such as harbors and anchorage zones.
The system is composed by Automatic Identification System (AIS) stations and a set of coastal
radars with partially overlapped coverage areas, that can detect vessels up to several tens of
kilometers far from them. Radar contacts must be fused with the self-reported AIS messages
to build an accurate description of the vessels in the area. This task can be challenging in
complex scenarios as the densely populated harbors.

The operation is monitored from a central control room. Each sensor is assigned to
a human operator that in principle is responsible of adapting its functioning parameters
manually to optimize the output. The challenge in this scenario is to create a system that
makes the best possible use of available information, while being robust against unexpected
problems and changes in the configuration of the environment. Adaptability is a key factor
for accomplishing both goals: exploiting information optimally can be achieved by adapting
the employed algorithms and parameters, and robustness can be improved by minimizing the
impact of incidences related with the sources of information. Our proposal fits the needs of
this project. Let us define the requirements of the system to be created.

4.1 Scenario requirements

The maritime surveillance system must satisfy the following requirements:

• It must not be limited in size of covered area.

• It must be capable to manage several tens of radars and AIS stations.

66 4. Application to maritime surveillance scenario: Design

• It must be capable to process in real time at least 1000 vessels, detected by whichever
combination of sensors.

• Sensors can be added or remove from the process online. Sensor configuration can be
changed externally, and the system must react accordingly to keep the quality of the
fusion products.

• Fusion solution has to be configurable online (while the system operates). Configuration
includes:

– Change fusion algorithms and their parameterization.

– Changes can be applied over limited spatial regions, to improve the results in
conflictive areas without affecting its performance in the rest of the coverage. This
means that the system must be able to operate applying a heterogeneous set of
algorithms and parameters simultaneously to the observed zone.

• The fusion system has to generate indicators of the quality of the fusion, including at
least:

– Number of tracks, coasted tracks (not updated in the last cycle).

– Number of created and deleted tracks (per cycle), including unexpected deletions,
i.e. losing a track within sensor coverage.

– Number of false radar detections (cannot be associated with an existing track)

– Residual of the filters used to track vessels.

4.2 Initial fusion solution design

Based on the specification, we proposed the processing scheme shown in figure 4.1, where
each sensor is assigned to a tracker that generates a local output. Local trackers send their
interpretation of the situation to a central tracker (Global Tracker in advance) that combines
them into the set of tracks that best describes the situation.

The decision of generating local solutions for each sensor that are combined later is
suboptimal. However, these outputs can be used by the operators to monitor the process and
decide how to adapt the parameterization of their sensors. Also, the fusion logic is better
modularized using this approach: local trackers take care of the usual tracking process, that
involves data preprocessing, solving the association problem and obtaining position/course/speed
estimates for the tracks. The global tracker decides which local tracks represent the same
vessel, and combines them to obtain a better estimation.

4.2. Initial fusion solution design 67

Figure 4.1: Selected processing scheme for the solution. Each sensor is processed individually, and local
results are fused together by a global tracker.

4.2.1 Architectural solution

Following the recommendation of this thesis’ proposal, every component of the fusion system
has to be abstracted as a Widget. We went one step forward and designed a message-based
fusion system: pieces of information are considered to be messages that circulate between
components. Every component of the solution is defined as a message processor capable of
receiving, interpreting and sending messages.

The proposal places the adaptation logics of the system in a central control component. In
this scenario, adaptation comes from an external source –human operators–, but we will prepare
our solution to switch to a fully automated schema when necessary. The Fusion Adaptation
module, thus, is in charge of connecting the components that will work autonomously afterwards
and will be configured according to messages passing through the system. The adaptability of
the solution includes adding or removing local trackers (if the availability of associated sensors
change). However, each tracker follows a fixed processing scheme that cannot be changed, as
illustrated in figure 4.2. Blue boxes aligned over the arrow represent the fixed steps of the fusion
cycle, and red boxes represent configurable components of those steps. As an example, we have
implemented three association strategies that can be used indistinctly: Munkres (or Hungarian
algorithm), Probabilistic Data Association (PDA) and Joint Probabilistic Data Association
(JPDA) algorithms.

4.2.2 Message processors (Data Nodes)

The message passing architecture allows simplifies the interface between components, and give
an homogeneous treatment to the different types of messages –quality metrics, tracks, sensors
measures, configuration commands. The interface of a message processor is reduced to two
functions: (a) connect its output to other message processor, and (b) accept an incoming

68 4. Application to maritime surveillance scenario: Design

Figure 4.2: Selected processing scheme for the solution. Each sensor is processed individually, and local
results are fused together by a global tracker.

message.

There are four types of message processor, depending on how they process and generate
data:

• Synchronous: a message is processed as soon as it is received. The same thread does the
acquisition and the processing tasks. This mode is not adequate for heavy tasks, because
the message processor remains blocked until the job is finished and will not respond to
other incoming messages.

• Asynchronous: incoming messages are queued on an internal buffer. A worker thread
processes the messages as soon as possible following a predefined policy as FIFO or
priority based.

• Event-triggered: messages are queued as in the asynchronous mode, but not processed
until a certain activation message is received. In this moment, all the messages will be
processed. This is useful for tasks that require a batch processing scheme, e.g. the fusion
cycle of a radar local tracker, which needs to consider all radar contacts at the same time
to solve the association problem, and is triggered when radar antenna has completed a
rotation.

• Time based (or cyclic): buffered messages are processed when a timer expires. Timer is
reset right after expiring.

These categories apply also for the output of the message processor. Generated messages can
be sent synchronously, or being buffered to be sent as soon as possible, on a certain event or in
a cyclic fashion.

One additional advantage of this modular and asynchronous design is that it exploits the
power of multiprocessor architectures.

4.2. Initial fusion solution design 69

4.2.3 Algorithms to implement

For a first version, the following alternative algorithms have been selected for implementation:

• Distance calculation for the association process: one algorithm per type of tracker.

• Data association: Munkres, PDA, JPDA.

• Filtering algorithm: Kalman Filter, Interactive Multiple Model Filter (IMM).

• Track creation and deletion policies: N-out-of-M criterion, AIS time-based deletion
criterion.

• Global track recombination policy: custom algorithm based on client specification.

• Global track component extraction policy: custom algorithm based on client specification.

• Global track state estimation: Gaussian mix of components, priority-based.

4.2.4 Zonal splitter for spatial configuration

Spatial configuration involves applying different algorithms to the elements of the fusion process
depending on their geographical location. Assuming a message-passing architecture, zonal
configuration can be seen as a flow control problem where input data is split according to its
location. Each branch sends the elements of a particular zone to the corresponding processing
node, that applies a particular fusion algorithm with the selected parameterization. Figure 4.3
describes this process. Left part shows the problem from the point of view of the architectural
components: zonal splitter is configured to assign a processing node (and its complementary
configuration profile) to different geographic zones. Right side of the figure shows the data
flow view of the problem, where input data is split before being forwarded to actual processing
nodes, and results are combined into an output that is consistent with the structure of the
original input.

The proposed mechanism makes zonal configuration transparent to precedent and subsequent
processes, that do not need to take into account if the node they are feeding or are fed by is a
zonal splitter or a regular algorithm. The same can be stated about the underlying algorithms
used by the zonal splitter, that do not need to prepare their input or output in a way that is
different from the regular use.

Zonal splitter logic, however, has to know how to combine outputs in the case the internal
process requires it. For example, a zonal splitter for association algorithm has to assemble the
generated association submatrices into a single matrix that will be sent as a message. However,
tracks are represented as individual messages, so that a zonal configuration that affects the

70 4. Application to maritime surveillance scenario: Design

filtering algorithm just have to forward the updated output tracks without having to combine
partial outputs.

Figure 4.3: Zonal splitter processor divides input data in chunks (according to geographical location) that
are processed using a different algorithm/configuration. Partial results are merged back to compose the
output.

4.2.5 Generating fusion quality metrics

Fusion quality metrics are calculated from individual events of interest (as creating or deleting
a track) or as statistics over some data variable (as the average filtering residual, that requires
the residual of each track in the system). The message-passing architecture allow to generate
events or individual data elements at the place of the fusion system where they are easier
to calculate, and send them wrapped as messages through the network. A special message
processor gathers them and calculates the related metrics.

4.3 Describing elements of the problem

We are following here the procedure described in section 3.3.4, that models first the problem
space and the elements of the solution.

4.3.1 Problem space and sensors

We have used Protege to create a simple ontology that describes the domain of the problem and
the elements of the solution. It is composed of a total of 50 classes, organized in 4 conceptual
groups –that are also classes:

4.3. Describing elements of the problem 71

• Domain: elements belonging to the real world, physically or conceptually. Contains
the physical sensor stations (radar and AIS), a single observable entity Vessel and the
geometry-related notions Area and Point. These classes are enough to define the problem
in its current version, and can be easily expanded later if needed.

• Message Processor: the same message processors identified during the design phase of
the initial solution. This category comprises actual fusion elements as trackers and virtual
sensors, as well as other auxiliary tools e.g. for visualizing the generated tracks, or for
saving data to files.

• Message: entities or pieces of information that circulate between processors. They are
equivalent to the DataType and DataProduct classes used in the example at section 3.3.2.1.
Based on the initial analysis of the problem, we have identified as messages the inputs of
the problem (RadarPlot, AISPlot and ConfigurationMessage), the outputs (GlobalTrack
as the final product of the fusion process), intermediate fusion products as the result of
the local tracking (RadarTrack and AISTrack) and the information related with quality
metrics, as identified in section 4.2.5 (QualityEvent and QualityMetric).

• Algorithm: configurable parts of the tracking system. Trackers, as shown in figure 4.2,
define a structure with “slots” where fusion algorithms are plugged in. We have created
a class for each slot that is populated with the algorithms that fulfill that function. For
example, the class AssociationAlgorithm is parent of Munkres, PDA and JPDA classes.

Algorithm can be implemented as Message Processors, but we considered more appropriate to
specify them as separate categories in the ontology because it responds better to the proposed
solution. Message processors are used by the central component to automatically adapt the
structure of the sensor fusion solution (e.g. changes in the sensor set), while algorithms
are related with the quality of the fusion products. Furthermore, according to the initial
specification, algorithm configuration is determined by human operators.

These classes are complemented with some object properties used to express how elements
relate and placing constraints on those relationships (figure 4.5). We explain next the meaning
of these properties and how they are used. They are grouped according to the domain class of
the property.

• Message processor properties:

– generatesMessageType: used to indicate that a message processor is a direct source of
messages of a certain type –that is, the processor creates the information associated
to those messages. For example, a RadarLocalTracker generates RadarLocalTrack
messages.

72 4. Application to maritime surveillance scenario: Design

– processMessageType: used to indicate that a message processor is interested in a
type of message and/or specialize in processing it. This means that it will not simply
forward those messages, but rather generate a derived product from them. Taking
the previous example of a RadarLocalTracker, it processes RadarPlot messages to
generate the declared RadarLocalTracks instead. These properties give a hint of
how processors can be connected when the requirements of an element are related
with the output of another one, as suggested in section 3.3.2.1 with the properties
“produces” and “consumes”.

– receivesMessagesFrom and sendMessagesTo: the initial solution describes a rigid
processing pipeline for the fusion-related components (sensors and trackers). These
complementary properties are used describe the mandatory relationship between
processors, e.g. a RadarLocalTracker receives messages from a RadarSensor and
sends its output to a GlobalTracker.

• Tracker properties: it contains a single property called usesAlgorithm. It is used to define
the internal processing structure of trackers, i.e. the slots where algorithms are plugged,
as shown in 4.2. An example can be shown in figure 4.4, where this property is used to
define 4 slots for configurable algorithms.

• Track properties: contains inverse properties hasComponentOf and isComponentOf. They
are used to express that global tracks are composed of radar and AIS local tracks, and
restrictions as the limit of a single AIS track per global track. Such restriction is displayed
in Protege as in the previous example of “usesAlgorithm” (in the ”SubClass Of” part of
the class description), and the associated XML/RDFS code is the following:

1 <Class rdf:about =" GlobalTrack ">

2 <rdfs:subClassOf rdf:resource ="Track"/>
3 <rdfs:subClassOf >

4 <Restriction >
5 <onProperty rdf:resource =" hasComponent "/>

6 <onClass rdf:resource =" AISTrack "/>
7 <maxQualifiedCardinality rdf:datatype ="&xsd; nonNegativeInteger ">

8 1

9 </ maxQualifiedCardinality >

10 </ Restriction >

11 </ rdfs:subClassOf >

12 </ Class >

• Domain properties: at this point, it is populated by a single property coversArea, that
can be used to link sensors with their coverage area in case it is useful for doing spatial
reasoning.

4.3. Describing elements of the problem 73

Figure 4.4: Definition of the GlobalTracker class in problem-space ontology. OWL restrictions are used
to express the features and constraints identified during solution design: it accepts a single AIS tracker
and an unlimited number of radar trackers, has 4 slots for configurable algorithms that fulfill an specific
function, and generates global tracks and events used to calculate quality metrics.

Figure 4.5: Object properties used to define the problem space. They are organized according to its domain
class.

74 4. Application to maritime surveillance scenario: Design

The proposed classes and properties are useful as a static description of the domain, but
have a limited applicability to further automatic inference processes. Next section presents
a representation for the relevant context information, and after that we will review how the
combined language can be used to enable automatic algorithm selection, and which extensions
are required for more advanced reasoning processes.

4.3.2 Context

According to the original specification, it is not necessary to extract or use context in this
problem: human operators are responsible of sensor parameterization and algorithm selection.
However, in preparation for possible extensions, we used technical meetings to gather information
about the criteria used to determine sensor parameterization and algorithm selection.

Radars have a large number of parameters that can be configured separately, but analysts
have decided that it requires a trained expert to know how they must be combined in order to
get the desired result. This problem by defining profiles (combinations of parameters) that are
specific for environmental situations or to improve the obtained information in some aspect.
More concretely, we have identified the following profiles:

• Standard profile. Works well in the general case, achieving a good balance between
update rate, detection ratio, discerning close vessels and other quality measures.

• Rainfall.

• Reduce noise. Related with the preprocessing software of the radar, uses a more aggressive
filtering profile that eliminates false positives at the risk of discarding a true target.

• Follow fast targets. Mostly affected by antenna rotation speed.

• Determine boat size. Requires azimuthal –angular– accuracy and avoid dispersing energy
to flood adjacent cells.

• Discern close targets. Requires detecting small angular gaps between boats.

Weather is an important contextual factor. Apart from affecting the optimal parameters for
vessel detection, rainfall affects radar coverage by reducing the reach of the signal in a way that
cannot be compensated by parameterization. Closely related with the weather, the state of the
sea is known to affect radar performance. Waves can occlude small boats, and also generate
false positives that have to be filtered out. The state of the sea can be characterized using the
Douglas scale. It combines two numerical codes that describe waves: one for the wind waves
(generated by the wind blowing directly over the area where waves are considered) and the

4.3. Describing elements of the problem 75

swell (not caused by wind but by weather systems, generates regular interval waves that have a
long wavelength and travel long distances).

Our context representation contains three environmental features represented as subclasses
of Environment: Rainfall, WindWaves and Swell. A potential Context Management module is
in charge of deciding the scale of values for these features. Since the system covers a large
extension, it may be necessary to specify environmental features by zones. For this purpose, we
will use the Area concept defined in the problem space ontology. We achieved this by creating
a new Area class in context ontology and declaring it equivalent to Area in problem space
ontology (we are showing here full IRIs that have been skipped in previous examples):

1 <Class rdf:about ="http: // www. semanticweb .org/maritime - surveillance /

2 ontologies /2015/4/ ms - context #Area">

3 <equivalentClass
4 rdf:resource ="http: // www. semanticweb .org/maritime - surveillance /

5 ontologies /2015/4/ problem -space#Area"/>
6 </ Class >

An alternative solution involves defining a separate ontology for common domain terms, that is
imported by problem space and context ontologies.

Several aspects of the design, including location of the radars, are affected by how vessels
are geographically distributed, and their expected behavior on each place. We are going to
discern four basic zones: harbor, anchorage, coast and open sea. Let us explain the relevant
facts about each one:

• harbor/port: contains anchored, stopped vessels. Anchored boats are densely packed
near piers and loading bays. Vessel density is higher that in other areas, and they are
expected to move slowly. Occlusions are frequent in this zone, causing radars to miss
detections. Terrain and other fixed elements can occlude targets too.

• anchorage: a zone outside the port where boats stop waiting before entering it, or for
other reasons. Density is also high, but less than in the port.

• coast: the band of water close to the coastline. Only small boats sail in these shallow
waters. Radars may not detect targets in the coast, making it a suitable route by
smugglers or pirates that want to avoid authorities control.

• open sea: any place not in the other zones. Boat in open sea are likely to be sailing at a
normal speed or doing other tasks (e.g. fishing).

We have created a Zone class and four subclasses, one per zone. Each class will be populated
with instances of the concept it represents in the scenario. Zones have an associated geographical

76 4. Application to maritime surveillance scenario: Design

location, that will be defined using the Area class. This fact is expressed by the object property
hasArea.

Some variables can be argued to be part of the problem space description rather than a
contextual piece of information. This applies, for example, to the functional zones (harbor,
anchorage, etc), that would most probably qualify as part of the problem domain if this system
aimed to cover Levels 2-3 of the JDL model. As reasoned in 3.3.2, these ontologies describe
parts of a bigger, common language. The optimal arrangement is more related with the
conceptual question of how we, as designers, prefer to approach the problem, than with the
functional possibilities of alternative choices.

In this case, we look for a design that solves current version of the problem –manual
adaptation of the fusion solution–, but takes into account future extensions for making the
system self-adaptive. With this purpose in mind, we decided to classify variables as part of
the context when they are not required by the original tracking/fusion solution, or when it is
information currently taken into account by human operators during manual adjustment of the
system. So, we are using the distinction between problem space and context as a mechanism
to separate the first implementation of the fusion system from information that might be used
in the future.

4.4 Evolving the design towards a self-adaptive solution

At this point, we have the base for implementing an adaptive sensor fusion solution that satisfies
the initial set of requirements. This section drafts a plan for evolving current solution to a
self-adaptive system that can change fusion algorithms and parameters according to different
criteria.

Some time after closing the design phase, we identified some worst case scenarios were
the performance requirements could not be met. They were related with the high asymptotic
complexity of some of the applied algorithms, as JPDA, that makes them unfeasible for large
problem instances and can block the system. We considered necessary to design a “graceful
degradation” strategy capable of keeping the fusion system working even if the produced
results have a lower quality. This fact was discussed during technical meetings, concluding
that operators are responsible of controlling that the selected processing scheme does not
exceed system capabilities. They keep the fusion system within the required performance
bounds applying some general rules as masking some sensors or avoiding costly algorithms in
densely populated areas, as well as using the spatial configuration capabilities of the system
for restricting high-cost algorithms to small areas where they are actually necessary –usually
responding to dynamic situations. Thus, the already designed zonal configuration features of
the system are a suitable tool for solving this problem.

4.4. Evolving the design towards a self-adaptive solution 77

We are going to solve this problem following the same approach used for generating
quality metrics (since performance indicators are a type of quality metric). Message processors
generate quality events that describe the time required to complete their tasks. These messages,
apart from being used to generate additional quality metrics, will be gathered by a processor
specialized on analyzing execution times that detects anomalies and sends alarms/events to
central control. The first step is to modify ontologies to add the concepts and relations related
with the computational performance problem. The modification involves the following actions:

• Create a subclass of QualityEvent for performance events: PerformanceQualityEvent.

• Create a subclass of Message for notifying performance related anomalies: Perfor-
manceAlarm.

• Make Algorithm a subclass of MessageProcessor so that we can define that Algorithm
generateMessageType PerformanceQualityEvent. In the first version of the problem space
ontology, Algorithm was defined as a separate class because it was conceptually clearer
to treat them as

• Create datatype property “generatedByProcessorWithId” with domain over individuals
of QualityEvent class, and range over an integer number (can be changed to match
the real data type of IDs). Add restriction to class PerformanceQualityEvent so that its
individuals include exactly one instance of this property.

• Create class PerformanceMonitor as a subclass of MessageProcessor. Add restriction to
express that it processes messages of type PerformanceQualityEvent (see 4.3.1 for an
example on creating OWL restrictions), generates PerformanceAlarm messages and that
it sends them to CentralControl processor.

• Modify CentralControl class to include the reciprocal restrictions.

The following step consists on implementing the automatic adaptation processes. Next, we
present two alternative solutions for the performance monitoring part. The general adaptation
process that optimizes the quality of the fusion will not be addressed here, as it is far more
complex and do not provide additional exemplary aspects about the use of the framework.

As explained before, the adaptive actions for keeping computation within required perfor-
mance bounds fall in two different categories: a background of static rules that constraint
the application of certain algorithms in crowded zones, and a dynamic strategy that checks
the execution time of individual processors to detect problems in real time. The static rules
are related with the Zones defined as part of the context ontology. One solution consists on
defining rules and constraints in the ontology, and reasoning directly over them. The work
(Gómez-Romero et al., 2015) describes the implementation of a reasoning process over an OWL

78 4. Application to maritime surveillance scenario: Design

ontology using Semantic Web Rule Language (SWRL) rules, for detecting abnormal vessel
behavior inside a port. It describes a problem with some similarities with ours, as a reasoning
process that involves geometric/geographic criteria and contextual information.

Central control module can, alternatively, load restrictions/rules from the ontology and
integrate them as part of the algorithm selection logic. The second part of the solution, the
dynamic strategy, is related with the implemented changes in the problem space ontology.
Algorithms generate quality events describing the time required to complete their tasks, or can
alternatively send those events at the beginning and end of a task. The performance monitor
receives those messages, detecting processes that consume too much CPU or that started
running a task too long ago but have not notified the end. Central control is alerted about
such situations, and can decide to stop a process or substitute it with a less costly algorithm.

4.5 Conclusions

This chapter describes how to apply this thesis’ proposal to build a sensor fusion system for
maritime surveillance. We have reviewed the major steps of the process: design a fusion
solution from a set of requirements; design the mechanisms that will be used to make the
system adaptable; describe the domain of the problem, the elements of the solution and context
information using ontologies; and finally modifying the system to include new requirements and
processes.

We have shown how ontologies can be used to provide a compact, unambiguous description
of some aspects of the problem and its solution. In our experience, using ontologies during the
design phase of the solution helped in the identification of a few inconsistencies, and resulted in
a cleaner result. The first version of the system (manual adaptation process) makes use of the
proposed software abstractions with good results: the system is more flexible thanks to them,
their impact in the computational performance of the system is negligible, and the software
makes a better use of multiprocessor computers due to the low coupling between algorithms.

5
Application to vehicle navigation in

urban environment: Design and
Experiments

Navigation in urban environments pose a challenge for GPS-based navigation systems. Buildings
and other obstacles affect the incoming satellite signals either blocking it and creating delayed
echoes. Traditional GPS navigation systems fuse location information with road maps to
improve the accuracy. This approach is still insufficient in urban scenarios with short, narrow
streets: trying to position series of low quality GPS fix over a dense grid of streets creates an
ambiguous situation.

In this chapter we explore the problem of mixed urban/road vehicle navigation without
maps. It has a great importance for forthcoming applications such as cooperative driving,
automatic maneuvers for pedestrian safety, autonomous urban vehicles, and collision avoidance,
among other Intelligent Transportation System applications.

This chapter illustrates how the proposed architecture can be used to build a system that
integrates context information to adapt its structure, to correct undesired effects in uncalibrated
sensors, and also as an additional source of information that improves the accuracy of the
algorithms.

The experimental part is based on a redundant set of sensors with heterogenous features:
a GPS receiver with differential capability and a mid-cost Micro Electro-Mechanical Systems
(MEMS) Inertial Measure Unit (IMU) that are mounted in the test vehicle, and a smartphone
that provides low quality versions of the same sensors and is placed inside the vehicle. Tests
take place in open road conditions with real traffic.

80 5. Application to vehicle navigation in urban environment: Design and Experiments

5.1 Introduction

5.1.1 Fusion of GNSS/IMU for navigation

Localization by Ground Navigation Satellite System (GNSS) has become a ubiquitous facility in
outdoor conditions. There are different enhancements for GNSS, usually classified in Ground-
Based Augmentation System (GBAS) and Satellite-Based Augmentation System (SBAS).
European Geostationary Navigation Overlay Service (EGNOS) is the European reference for
SBAS system, with 33 ranging and integrity monitoring stations, while Wide-Area Augmentation
System (WAAS) is the reference in USA, by the Federal Aviation Administration. GBA systems
consist of ground antennas which transmits differential corrections by VHF data broadcasts
to the receiver. An example is the US Local Area Augmentation System (LAAS), used in the
proximity of airports to guarantee maximum integrity in GPS position, but this idea is being
available in many other environments (Chae et al., 2010; Morales, 2008).

Besides the ubiquity of GNSS receivers, the recent advances in low-cost inertial sensors
based on MEMS technology has let them emerge as the other big reference technology for
navigation. The inertial navigators contain a set of accelerometers in orthogonal axes and
aligned gyroscopes which sense vehicle turn rates and accelerations in the body frame. The
processor obtains the attitude of vehicle by integrating angular rate measurements in time, and
then the position is computed and continuously updated with respect to an initial solution with
the projected accelerations measured on body frame.

So, GPS and INS sensor systems are complementary key technologies, and a carefully
designed sensor fusion process can be used to provide a navigation solution. This type of
systems can be explained in simple words as enhancing GNSS with dead-reckoning capability, so
that accurate navigation remains available for a certain amount of time when GNSS signal data
becomes unavailable or seriously degraded. However, experience indicates that this solution
can be very limited, and the time to support outages or degradation of GPS position is not
much longer than some tens of seconds due to very quick drifts in time. GPS/INS fusion is
vulnerable to residual errors so a continuous monitoring of the process is necessary to guarantee
that the quality of navigation is acceptable, minimizing the effect of these factors during GPS
availability drops.

5.1.2 Challenges

An important aspect to take into account is the need of using available low-cost sensors, in
order to develop scalable solutions, which can be implemented at large scale and facilitate new
driving coordination paradigms (Shladover, 2009). So, the basic sensing technologies must

5.1. Introduction 81

be improved by powerful data processing techniques to handle high-performance expectations,
resilient to main causes of faults and lacks of availability/integrity in sensors.

This system presents significant variations of quality and reliability depending on the
conditions and available enhancements. The accuracy is typically around 20 (1 sigma) in
urban outdoor conditions, depending on the number of available satellites and geometrical
configuration (dilution of precision, DOP), signal propagation through the atmosphere and
especially on the presence of a multipath,when a signal is reflected by elements in the environment
and the receiver receives the original one but also several echoes. The worst case of multipath
is referred as the “urban canyon” problem (Morrison et al., 2012), when there are almost
no satellites with direct visibility and receivers have to use signals bounced in walls of close
buildings, with the corresponding degradation or even loss of any solution. Figure 5.1 shows
the different problems arising in urban canyons. The vehicle (dot in the ground) has not direct
line of vision of the first satellite (left to right), but receives a reflected signal that introduces
an error in the computation of a position fix. Signal from second satellite reaches the vehicle
both directly but also after bouncing in the walls, forcing the receiver to identify and discard
the duplicate. Third satellite is completely blocked by the buildings.

Figure 5.1: Urban canyon creates a degraded GPS environment where signals are blocked and reflected.

The proposed system has two features that make this problem more complicated to solve,
and are thus key to understand the contribution of the work. The first one is that the sensing
system is a simple ensemble of low cost commercial off-the-shelf (COTS) sensors that can
be mounted anywhere in the target vehicle. This circumstance increases the difficulty of the

82 5. Application to vehicle navigation in urban environment: Design and Experiments

problem, since the sensors can be subject to additional dynamic effects that have not been
explicitly modeled -–such as rolling in corners due to the lateral acceleration.

The second feature is that the sensors have not been calibrated before executing the
experiments. Instead, the system automatically corrects those effects online. Continuous
self-monitoring and adaptation is necessary to work with the selected low cost sensors, in
order to compensate the varying biases and errors over time. The experimental results, with
approximately 50 km in different and representative conditions show the competitive performance
of the proposal.

5.2 Proposal

This section defines a fusion solution based on adaptive filters (KF, UKF), which are continuously
monitored by a contextual reasoning process, to provide improved performance. The system
features a cascaded architecture, separating attitude and kinematic filters, to create a loosely
coupled closed-loop scheme that continuously estimates the INS biases to correct them and
exploit whenever the GPS data is degraded or unavailable.

The main contribution is the proposal of a robust and adaptable solution, exploiting the
good trade-off between non-linear estimation and efficiency of UKF, and including explicit
domain knowledge to drive the algorithms.

The system includes explicit knowledge reasoning about vehicle dynamics, to adapt the
model to the real conditions. Conditions such as stops, straight motion, lane changes, turns,
roundabouts, can be integrated in the model or its associated reasoning processes. Besides,
there is a GPS monitoring system with rules depending on conditions based on extra information
(availability and age of differential corrections, number of satellites, Dilution Of Precision (DOP)
value, standard deviation, etc.). This is applied to weight the fusion parameters or switch
the bias estimation processes accordingly to the conditions. Additional external information,
such as the presence of blocking buildings and trees creating multipath problems could be
considered in a future step, together with the integration of static databases about road and
terrain elevation.

Other additional context information can be used to alter the structure of the solution,
as deciding the set of sensors to be used or selecting the set of algorithms returning the best
fusion solution.

5.2. Proposal 83

5.2.1 Sensors

5.2.1.1 Mid cost equipment for on-board platform

The vehicle is equipped with two sensors, a Novatel GPS receiver and a MicroStrain IMU. Both
sensors were mounted in a magnetized sheet of metal that can be attached to and removed
from the roof of any vehicle, as shown in Figure 5.2. This arrangement guarantees sensors will
not move during tests, and allows to correct position and alignment in case it is required.

Figure 5.2: Mid-cost sensors as mounted in the roof of the test vehicle.

GNSS Novatel OEM-1G The mid-cost GNSS solution is a Novatel OEMV-1G board. It
offers GPS+GLONASS L1 tracking, providing reliable positioning even in obstructed sky
conditions. The receiver is embedded on a Novatel compact enclosure (FlexPak-G2-V1G)
for outdoor applications as base station and vehicle position in urban environment. This
device can work in differential (DGPS) and single point position modes (SINGLE mode). The
experiments of this paper combine both. Maximum accuracy in single point mode requires
“optimal conditions”, which is translated into observing six or more healthy satellites and
relatively low multi-path (to assure enough quality of the received data).

IMU MicroStrain 3DM-GX2 We have selected a MicroStrain 3DM-GX2 IMU, which inte-
grates triaxial accelerometer, gyroscope and magnetometer. It is a high-quality MEMS-based
device in the price range of the few thousand dollars, so it is considered a mid-cost device
by some studies (Chao et al., 2010). It includes an internal Complementary Filter (Higgins,
1975) that fuses raw data into a stabilized attitude estimation. The accuracy of the calculated

84 5. Application to vehicle navigation in urban environment: Design and Experiments

orientation is around 0.5− 2.0 degrees according to manufacturer specifications. The proposed
experiments focus on raw gyro and acceleration data instead, since they are more suitable for
calculating the required pieces of contextual knowledge.

5.2.1.2 Low cost smartphone platform

Experiments are based on the data captured by an LG Nexus 5 smartphone. This high-end
terminal features a number of sensors that replicate the on-board platform. However, while
the on-board platform is designed to work exclusively for this system, the smartphone is an
auxiliary tool that offers a very limited availability. External factors as battery life, or being
used for other purposes (making calls, taking photos, playing games) will cause an interruption
of its service as data provider for the sensor fusion system. These causes are explored later in
section 5.2.4

GNSS QualcommWTR1605L GPS is integrated in the RF processor, QualcommWTR1605L
(2G+3G+4G-LTE+GPS). Apparently, these chipsets integrate some limited WAAS/EGNOS
functionality, improving horizontal location accuracy up to 3m (1 sigma) in optimal conditions.
This statement is not confirmed by the documentation available on manufacturer website,
although we have checked that the device reports horizontal errors within this bound of 3
meters.

Small GNSS devices, such as these type of chipsets in smartphones, have antennas with a
low gain and a limited computational power. This makes very difficult (or even impossible) to
get an initial estimation of the location. This problem is solved using Assisted Global Positioning
System (A-GPS) technologies, that use additional information to reduce dramatically the time
until the first position is calculated –something called Time To First Fix (TTFF). A-GPS
receivers communicate with external systems as cell network antennas that can provide a first
approximation of their geographical location, forward useful data about satellite constellation
or atmospheric perturbations, and even do some computations for the device.

Modern smartphones use advanced assistance technologies, that combine rough locations
from the cell network and nearby Wi-Fi networks with other data as barometric altitude. Nexus
5 includes a Bosch Sensortec BMP280 barometer, that can provide altitude with a relative
accuracy equivalent to +-1 m, and a temperature offset equivalent to 0.12m/K.

IMU InvenSense MPU-6500 Inertial measures are provided by an InvenSense R© MPU-
6500TM chipset. MPUs have been proposed by mobile sensor manufacturers as an evolution of
traditional IMUs that include powerful on-chipset processing/fusion algorithms to compensate
the lower quality of the sensors and reduce energy consumption. They generate the traditional
raw measures as well as a number of processed outputs such as attitude or step count

5.2. Proposal 85

Table 5.1: Sensor refresh rates

Refresh rate
IMU Maximum Configured

On-board 300 Hz 50 Hz
Smartphone 100 Hz (estimated) 50 Hz

Magnetometer Maximum Configured
On-board 300 Hz 50 Hz

Smartphone 100 Hz (estimated) 50 Hz
GPS Maximum Configured

On-board 10 Hz 1 Hz
Smartphone 1 Hz (variable) As fast as possible
Barometer Maximum Configured
Smartphone 1 Hz (estimated) As fast as possible

(podometer). The inertial measures can be complemented with readings of the AsahiKasei
AK8963 magnetometer.

Data is captured using a custom Java (Android) application. Sensors are accessed through
Android API, abstracting the real hardware and its details. The application sets sensors to
provide the highest possible update rate. Table 5.1 describes the compared refresh rates of the
employed devices.

5.2.2 Notation and conventions

Let us define, beforehand, some conventions and rules about notation followed over the rest
of the document. The coordinate reference systems used by the sensor fusion solution are
Cartesian, right-handed. World coordinates follow ENU convention. The origin is located near
Colmenarejo or Leganés Campus of the University Carlos III de Madrid, depending on the
experiment. All tests take place within a distance of 20 km from the origin of coordinates. The
three axes of world coordinate system will be referenced as X ,Y ,Z through the rest of the
document.

Both the IMU, GPS and vehicle are considered to share a common reference system, that
will be named as “Local”. Its axes are named X L,Y L,ZL, with X L following the motion
direction of the car (positive when the car moves forward, negative when reverse), Y L growing
towards the left side of the vehicle, and ZL pointing upwards. For simplicity, the origin matches
that one of the IMU. Raw GPS, accelerometer and gyroscope measures are transformed to
this reference system before being used by the system. The case of the smartphone is more
complex, since it is not completely attached to the structure of the vehicle. Device readings
follow Android local axes, which are transformed to our unified local coordinate system and
have to be aligned with the global axes afterwards. We have not included this difficulty in

86 5. Application to vehicle navigation in urban environment: Design and Experiments

the formulation of the problem: since the experiments are run offline, smartphone data is
preprocessed so that the framework does not need to take care of axis alignment details.

The word “attitude” is referred to the vehicle/IMU. It express the orientation difference
–rotation— between the local axes X L,Y L,ZL and world reference system X ,Y ,Z . This works
represent rotations either as matrices or as global Euler terns EulG [x , y , z]. The latter express
the attitude as a sequence of three rotations around global axes X ,Y ,Z . These individual
rotations are respectively named tilt, elevation and azimuth.

Gyroscope readings express angular rates around local axes X L,Y L,ZL. They will be also
referred as roll, pitch and yaw respectively.

5.2.3 Design of initial solution

Figure 5.3 shows the initial fusion solution, before adapting it to the context-aware adaptive
framework. This proposal does not take into account sensor redundancy, and follows a fixed
processing scheme. In general, information flows from left (sensors) to right (output of
estimation processes). Given the importance of context information for calibrating sensors, we
have included a module that provides context information to every other component in the
system. The attitude estimation is feed back into the sensor refinement process.

The figure shows how data moves around the system. Solid lines represent raw data as
captured by the sensors, blue dotted lines refers to refined sensor information –this that is,
original data that has been processed to compensate known errors, or to produce features that
summarize a number of raw values—. Finally, dashed lines are reserved for new data that has
been obtained by advanced processing techniques such as filters or reasoning algorithms. The
meaning of each data component will be detailed in the corresponding section, where it is
produced.

5.2.3.1 Estimation of 3D vehicle pose

Many navigation-related works describe the motion of ground vehicles using a 2D model, as
in (Rezaei and Sengupta, 2007), where GPS is combined with a wheel speed detector and a
gyroscope. This simplification works well when acceleration measures are not used or gravity
effect does not need to be corrected, and the error of using gyroscope readings in their own
frame of reference does not introduce significant errors due to the features of vehicle dynamics.

However, this simplification cannot be applied in many car driving conditions. The best
example is probably that one related with accelerometer readings and the effect gravity has
on them: a vehicle driving uphill at constant speed in a β degrees slope (elevation angle)
registers a residual acceleration along its local X L axis with magnitude accRx = g · sin(β), that

5.2. Proposal 87

Figure 5.3: System architecture for the initial non-adaptive solution.

is approximately 0 17 / 2 · for small angles β < 10 deg. This residual acceleration is large
enough to introduce important errors when the system has to predict vehicle state using only
inertial measures, even for short periods. The same can be applied to accelerations along
axis depending on the tilt of the vehicle, and to how gyroscope registers turns depending on
road features as the cant.

These arguments would be enough to justify a full state estimation, which can account for
the full spectrum of movements of a ground vehicle in the 3D space. The most straightforward
approach consists in applying a single filter that works with a constrained 6 Degrees of Freedom
(DoF) system. This solution can be found in some of the already cited works, as (Li and Leung,
2003; Zhang et al., 2005).

A two-stage solution has been preferred instead: the first block estimates the attitude of
the vehicle for correcting the inertial inputs, and the second one predicts its kinematics using a
simpler 2D model that take into account the motion constraints of a ground vehicle. It has
been shown that uncoupled solutions offer a poorer performance when compared with loosely-
and tightly-coupled formulations (Hafner et al., 2011). The reason that impelled us to select
the uncoupled solution is that it makes easier to apply the implemented sensor refinement and
context-based techniques.

Next sections describe the prediction and measurement models of the two state estimators,
those estimators, which will be used in two uncoupled UKFs. After that, the UKF algorithm has
been particularized to the problems of attitude and car kinematic trajectory, using the cascaded
architecture introduced before. In the following subsections, the particular state vectors and
non-linear dynamics of each subproblem are presented. For an introduction to the UKF, see
Appendix A.

88 5. Application to vehicle navigation in urban environment: Design and Experiments

Attitude estimation model Let us describe the attitude of the vehicle as a global Euler tern
= [ψ ϕ θ], where ψ is tilt, ϕ is elevation and θ is azimuth. This tern represents a sequence

of ordered rotations –first X, then Y, last Z— around the axes of world system of reference.

This part of the system, shown in Figure 5.4, estimates the tilt and elevation of the vehicle.
These two components contain all the necessary information for:

• Subtracting the effect of gravity from accelerometer readings,

• Translate local gyroscope readings to world system of reference –great importance during
turns where the car is tilted.

Figure 5.4: Sensor refinement module.

So, the state vector is = [ψ ϕ]. Given the gyroscope readings = [], which
represent the angular rates (in radians) around the local { } axes, the prediction
model for estimating the new attitude of the car after a time span follows the procedure
described below. First we detail the prediction model, which takes as control inputs the
gyroscope readings and carries out a numerical approximation, and then the observation model,
which needs external information to infer observations of these magnitudes. The estimates cast
by both models are then integrated with the UKF estimation process.

Since gyroscope readings represent a simultaneous rotation around the three local axes at
the marked angular rates. That means that the local reference system changes continuously
over time. For infinitesimal time increments, the simultaneous rotation is similar to applying
three sequential infinitesimal rotations around each one of the axes, with independence of the

5.2. Proposal 89

order. Using matrix form, this can be expressed as:

Mδ = M(X , δgx) ·M(Y , δgy) ·M(Z , δgz) =

=

1 0 0
0 cos(δgx) − sin(δgx)
0 sin(δgx) cos(δgx)

 ·

cos(δgy) 0 sin(δgy)
0 1 0

− sin(δgy) 0 cos(δgy)

 ·

cos(δgz) − sin(δgz) 0
sin(δgz) cos(δgz) 0

0 0 1

(5.1)

Where δgk represents the infinitesimal angle rotated after sustaining the gk angular rate
around axis K during the infinitesimal time δt. By integrating the differential rotation Mδ over
time, the total pose change can be obtained.

Our model performs a numerical approximation of this approach. First, the prediction time
span t is divided in n steps of duration d=t/n seconds. The pose change in any of the steps
is calculated as a sequential rotation of ugyr · d = [gx · d , gy · d , gz · d] radians around the
three axes, which results in the differential rotation matrix Md . The total pose change after
prediction time span is the n-th power of the differential rotation matrix, Mrot = Mn

d .

As a side note, our choice for n is such that the duration of the step is smaller than
d = 10−4 seconds. The obtained results were compared with those yielded by the widely
accepted quaternion kinematics equation, resulting in errors around one part per billion.

The new vehicle attitude can be calculated as:

M(x)+t = M(x) ·Mrot (5.2)

Where M(x) depends on the reduced vehicle attitude xatt = [ψ,ϕ] expressed as a rotation
matrix. Note that pose change matrix post-multiplies the attitude because the rotations are
expressed around global axes. Transforming the resulting matrix M(x)+t to Euler notation
–again, around global axes— and discarding the azimuth values gives the new vehicle attitude
xatt(+t) = [ψ′,ϕ′].

Finally, UKF equations are applied to combine the prediction with asynchronous measures
and provide the estimated tilt and elevation angles.

Generation of tilt angle measures The tilt angle of the car can be calculated based on the
gravity transmitted to accelerometer Y L axis. As previously stated, the reading on this Y L

axis at a given time is:
accy = aLy + bLy + gLy + ny (16) (5.3)

Where:

90 5. Application to vehicle navigation in urban environment: Design and Experiments

• aLy is the real lateral acceleration associated to vehicle motion,

• bLy is the bias of the accelerometer on its Y axis,

• gLy is the effect of gravity in the local Y axis of the accelerometer,

• ny is a random sample distributed as white noise with variance σaccy .

During fragments where the vehicle is moving in a straight piece of road, the car will not
be subject to lateral accelerations and it is valid to assume that aLy = 0. Regarding the
random noise, it can be cancelled by averaging several measures representing the same effective
acceleration.

This also happens during straight motion. If bias has been corrected, we found that in these
fragments of trajectory accy = gLy . The effect of gravity can be calculated by transforming it
to local axes. Assuming that the attitude of the car is xatt = [ψ,ϕ], the rotation matrix that
performs such transformation is:

M(X ,ψ) ·M(Y , θ) =

=

1 0 0
0 cos(ψ) − sin(ψ)
0 sin(ψ) cos(ψ)

 ·

cos(θ) 0 sin(θ)
0 1 0

− sin(θ) 0 cos(θ)

 =

=

cos(θ) 0 sin(θ)

sin(ψ) sin(θ) cos(ψ) − sin(ψ) cos(θ)
− cos(ψ) sin(θ) sin(ψ) cos(ψ) cos(θ)

(5.4)

This matrix has to multiply the global-referenced gravity vector [0, 0, g]T . The Y component
of the transformed gravity vector will be − sin(ψ) · cos(θ) · g. The tilt and elevation angles of
a vehicle in normal road conditions are usually in the range [−5; 5] degrees, and hardly ever
exceed 10 degrees. This makes possible to apply the approximation cos(θ) ∼ 1.

Back to the reading under straight movement conditions, we have that:

accy = gLy = −g · sin(ψ) (5.5)

The tilt angle ψ can be calculated as arcsin(−accy/g). Thus, true tilt angle at time step t
can be estimated using the average accelerometer reading over a window of k samples taken
during straight motion as:

ψ = arcsin
(
−
∑

i=0..k−1 accy (t − i)
(g · k)

)
(5.6)

5.2. Proposal 91

Generation of elevation angle measures Raw elevation angle can be estimated using GPS
information of consecutive measures, as illustrated in Figure 5.5. Assuming that GPS measures
have been transformed to a Cartesian system of reference, we can calculate:

=
√

(2 − 1)2 + (2 − 1)2 (5.7)

= (2 − 1) (5.8)

δθ = arctan
()

(5.9)

This estimation of pitch angle is quite sensitive to the measurement conditions. In one hand, it
is important to use two GPS measures close enough in time so that the path of the vehicle
between them can be well approximated by a straight line, and also that the elevation angle has
remained near constant. On the other hand, the 3D points must be as separated as possible
so that the error of GPS does not have a large impact on the calculated elevation. Our GPS
device provides measures at a fixed rate of 1Hz. The distance between consecutive positions
will depend on the speed of the vehicle.

Figure 5.5: Calculation of elevation angle from two GPS measures.

5.2.3.2 Estimation of 2D vehicle kinematics

For locating the vehicle on surface, a 2-dimensional model is proposed. We assume no wheel
slippage. In this section, we define three different kinematic models. The first one is a near-
constant velocity linear motion model to be integrated in a Kalman Filter, that can be used if
IMU information is not available (only GPS measures). The other two models are non-linear
and, thus, will be used by the Unscented filter. They use a state vector = [() () ϕ] ,

92 5. Application to vehicle navigation in urban environment: Design and Experiments

where p(x), p(y) describe the position of the vehicle in the X-Y plane of world coordinates, v
is the linear speed of the vehicle and ϕ is the azimuth angle which marks its course.

The azimuth angle complements the output of the attitude estimation model, to form the
complete attitude vector of the vehicle. The prediction function takes the state of the system,
and a control input u = [ax ,ωz]T formed by the corrected (world coordinates, non-biased)
longitudinal acceleration of the car and yaw angular rate.

Near-constant velocity model The near constant velocity model assumes a straight motion
pattern where the attitude of the vehicle is aligned with its speed. It defines a state vector
x = [p(x), p(y), v(x), v(y)]T , where p(x), p(y) describe the position of the vehicle in the X-Y
plane of world coordinates, and v(x), v(y) represents the speed of the vehicle in the same
plane.

The prediction model is defined by the following matrix:

xt+�t = f (xt , �t) =

1 0 �t 0
0 1 0 �t

0 0 1 0
0 0 0 1

 (5.10)

Non-linear model for low angular rates The non linear model for low angular rates is
similar to the near-constant velocity model, but integrates as control input the inertial readings
of accelerometer and gyroscope. The kinematics of the vehicle are predicted using the following
simple model:

xt+�t = f (xt , �t, ut) =

p(x)t + vt · cos(θt) · �t
p(y)t + vt · sin(θt) · �t

vt + ax · �t
θt + ωz · �t)

 (5.11)

Non-linear model for turns During turns, the prediction function switches to an adaptation
of Ackermann steering model (Dwiggins, 1968) for four wheeled vehicles where the two frontal
can turn. According to this model, a vehicle with its wheels turned a fixed angle will describe a
circle.

The radius of this circle can be calculated as the quotient between the linear speed of the
vehicle and its angular rate R = v/ωz . This radius is the criterion for selecting between models.
The model for turns described here is selected when R < 100m, because the expected errors of
the simple model will be exceeded by those of the sensors and other estimation processes.

As both position and kinematic data are referred to the location of GPS/IMU sensors, we
consider the radius of the turning as the distance between the center of the rotation and the

5.2. Proposal 93

IMU. The origin for the rotation can be calculated as:

Prot =
[
p(x) p(y)

]T
− ~x · L + ~y · R (5.12)

Where L is the distance between the IMU and the center of the rear axis (L ≈ 1.3m in test
vehicle), R is the radius of the described circle, and ~x ,~y are unit vectors following the direction
of IMU local axes. These vectors can be expressed in world-reference coordinates using vehicle
azimuth angle, ~x = [cos(θ), sin(θ)] ,~y = [− sin(θ), cos(θ)].

The new location of the vehicle is the result of rotating the old one ω · �t radians around
Prot , this is:

Ploc =
[
(p(x)t
p(y)t

]
− Prot (5.13)

[
(p(x)t+�t

p(y)t+�t

]
=
([

cos(ωz · �t) − sin(ωz · �t)
sin(ωz · �t) cos(ωz · �t)

]
· Ploc

)
+ Prot (5.14)

Where the old position [p(x)t , p(y)t]T is then first translated so that the origin of the
rotation Prot is located at [0, 0]T , then a rotation matrix is applied, and the result is translated
back to world-referenced coordinates.

Speed and attitude are calculated as in the first formulation,

vt+�t = vt + ax · �t (5.15)

θt+�t = θt + ωz · �t (5.16)

5.2.4 Context variables. Description and acquisition

This application uses four context variables, summarized in table 5.2.

Table 5.2: Summary of context variables used in the ground vehicle navigation solution.

Variable Type Values
Vehicle motion condition Inferred Stopped, Motion straight, Motion turning
Vehicle environment Inferred Open road, Urban, Underground
Smartphone energy policy Provided Critical, Low, Normal, Plugged
Smartphone placement Inferred Resting, On-hand, Unknown

The motion condition variable is directly related with the state to be estimated, but we
decided to classify it as context for two reasons: first, because it has a higher abstraction
level compared with the rest of the data (symbolic vs. numeric) and their categorization can

94 5. Application to vehicle navigation in urban environment: Design and Experiments

require setting an arbitrary (subjective) threshold. Second, it is optional : fusion algorithms
do not actually need to know if the vehicle is stopped or turning, this information is used to
improve some aspects of the estimation process, as in the dynamic correction of sensor drifts
and estimation of vehicle pose.

This section details how context is generated and acquired. The uses of these context
variables are detailed in next section 5.2.5.3. Motion condition is split into two separate aspects:
if the car is stopped, and a trajectory analysis for deciding if motion follows a straight trajectory
or a curve.

Detect car stops The selected stop detection algorithm is solely based in IMU readings,
to improve the availability of the service –GPS is subject to outages—. Although using the
car acceleration values for this task could seem the most suitable approach, it is important
to notice that this sensor is subject to several effects that can cause some algorithms to fail.
First, accelerometer measures can be biased, and those biases are usually unknown to us –our
proposal tries to correct those effects online—. In second place, if the vehicle is not perfectly
stabilized then part of the gravity acceleration is usually transmitted to X L and/or Y L axes of
the accelerometer.

Both problems together makes very difficult (if not impossible) to estimate if the acceleration
of the car is zero at some point. This can be seen in Figure 5.6, especially in axis X L readings,
where the acceleration registered in the stops differs in 0.9m/s2 because in the second stop
the car is on a steep road (approx. 5 degrees).

However, a significant amount of vibrations are transmitted to the IMU while the vehicle
is in motion, even over the smoothest terrains. The three axes show a near constant reading
during the time spans where the car is not moving.

Thus, this sub-module uses the amplitude of accelerometer measures in a window of
time –maximum measured value minus minimum— as an indicator of a “flat” reading. The
advantages of the proposed method include:

• Simple and fast computation (maximum/minimum of a reduced amount of numbers)

• Independence of biases, attitude and other conditions

However, it requires setting a suitable threshold for determining when the car is stopped
(0.5m/s2 in our case). Although this can be easily set taking into account the expected random
error according to the manufacturer, more robust alternatives can use GPS position estimates
to enhance the stop detection and learn this threshold online.

5.2. Proposal 95

Figure 5.6: Sample accelerometer readings featuring two stops around t=[0;15] and t=[430;460] seconds.
Bias combined with gravity effect makes the raw signal not adequate for detecting stops.

Trajectory analysis Our system features a robust algorithm for detecting certain trajectory
features that have a special meaning. In this work, the implementation has been limited to
detecting where the car is driving over a lane in a straight fragment of the road, with no lateral
or longitudinal maneuvers. As well as it happened with car stops, this information can be
useful for additional fusion or sensor refinement processes, although it can be applied to more
advanced reasoning processes.

Turns are clearly indicated by the gyroscope yaw reading (around ZL axis), tightly related
with changes in the azimuth of the vehicle. Detection of straight movement takes the average
gyro reading in a window of time (typical values range from 0.5 to 2.0 seconds), and determines
a straight movement when the absolute value is under a threshold.

This detection requires, however, a non-biased gyroscope reading which is provided by the
sensor refinement module. The details are provided in next section.

Environment detection This context variable can be extracted directly from GPS quality
measures: number of satellites and accuracy. Its evolution over time can be used to provide an
stabilized estimate that can be used to adapt the navigation solution. We have defined three
values:

• Road: more than 6 satellites and accuracy within 2 times the smallest expected error
(around 1.5 meters for the Novatel receiver, 4 meters for the smartphone).

96 5. Application to vehicle navigation in urban environment: Design and Experiments

• Urban: Between 2 and 5 satellites, or error larger than double the smallest expected error.

• Underground: Less than 2 satellites, or no valid fix available.

Switching between modes requires several GPS updates with a different category. Current value
is set to 5 seconds. This value and the criterion are subject to change, although this refinement
is out of the scope of our experiments.

Smartphone energy policy Even when the smartphone is available, its battery level can
discourage its use as a set of sensors. We have defined the following levels of energy:

• Plugged: independently of the actual battery level, it is connected to a charger. Can be
used by the navigation system.

• Normal: allows a normal use of the smartphone for the next hours. Can be used by the
navigation system.

• Low: discourages its use as set of sensors, except in special cases when the adaptive
fusion system cannot find suitable alternative configurations.

• Critical: cannot be used under any circumstance. Battery reserved for other uses of the
phone.

While the three previous context variables had to be inferred from sensor readings, Energy
policy is extracted directly from the (numeric) battery level of the device and its charge status.
Both elements are provided by Android OS API. The above categories are calculated as in
table 5.3, but they can be redefined as desired.

Table 5.3: Rules for determining energy policy.

Energy policy Battery level Charging
Plugged any Yes
Normal level >= 50% No
Low 20% <= level < 50% No
Critical level < 20% No

Smartphone placement Smartphone inertial sensors readings are referred to the device local
reference system. We want to use it for determining vehicle kinematics, so they have to be
transformed to vehicle local reference system. This is only possible if the relative position and
attitude of both elements is fixed. Context variable “placement” gives useful information about
this fact.

5.2. Proposal 97

This variable is a mix of inferred and provided context. Table 5.4 describes its calculation.
As a rule of thumb, inertial measures will be used only when device is resting. Any other value
disregards its integration into the solution.

Table 5.4: Rules for determining smartphone placement

Accel./Gyro. indicator Screen Placement
Still Off Resting
Still On Unknown
Motion Off On-hand
Motion On On-hand
Undetermined Off Unknown
Undetermined On Unknown

The accelerometer/gyroscope placement indicator is based on discerning characteristic
patterns of vehicle motion from the rough, less stable readings related with a user having the
phone in their hands. An example of activity recognition from inertial readings can be found in
(Blázquez Gil et al., 2012a), but literature is plenty of examples as (Antos et al., 2014).

5.2.5 Using context to improve sensor fusion

This section details the expected usage of context in the sensor fusion system. We have tried
to cover all the applications of context information supported by the framework, in order to
test its aptitude.

5.2.5.1 Online sensor calibration

Sensors are subject to external and internal conditions which affect their performance in
different ways. Sometimes, the sensor itself will be capable of providing a self-assessment of
its observations quality, as in the case of GPS measures that include the number of available
satellites or the precision of the calculated solution.

For some others, however, it is necessary to apply external checks for detecting degraded
performance or faulty sensor conditions. An example can be found in inertial measures:
accelerometer and gyroscope readings are subject to a systematic deviation known as bias. In
micro-electronic based devices, such as the one used for these experiments, this deviation is is
stable at short/medium term, but suffers a slow drift related with factors such as the internal
temperature of the device.

98 5. Application to vehicle navigation in urban environment: Design and Experiments

This means that an initial calibration is not enough for keeping a system running over long
periods of time. The best solution involves monitoring the quality of sensor readings, and
calculating the parameters that correct them when possible.

In the original proposed system, sensor refinement is understood as a layer between the
sensors and any other process accessing their data (Figure 5.7). Some of the processes depend
on information that is only available in later components, in particular:

• Transforming local IMU readings to world frame of reference requires an estimation of
car attitude

• The algorithm for correcting gyroscope bias works is active when the car is not moving

This can be solved by introducing a feedback from latter layers. It must be checked that
there are no cyclic dependencies or that even under them the system will converge to a stable
solution.

Figure 5.7: Sensor refinement module.

Gyroscope bias correction Gyroscope bias can be corrected when the car is stopped: the
reading on each axis is its bias, plus a random perturbation which can be modeled as Gaussian
noise. Therefore, we can get bias is estimated as the average of the readings on each axis
over the period where the car is stopped (the reduction in noise variance will be inversely
proportional to the number of samples). So, the key to update biases in gyroscopes will be the
good inference of contextual information, triggering the process each time the car is stopped.

Accelerometer bias correction The case of accelerometer bias is much more complicated
than the gyroscope, due to the effect of gravity. With the vehicle stopped, the reading on the

5.2. Proposal 99

accelerometer axes is:
acc{x ,y ,z}L = b{x ,y ,z}L + RT · (g · ~z) (5.17)

Where b{x ,y ,z}L are the biases of the three local accelerometer axes, g is the magnitude of
the acceleration due to gravity, ~z is the unit vector which follows the direction of Z axis in world
coordinates and R is a rotation matrix that express the attitude of the IMU (RT transforms
from world-referenced to local-referenced coordinates).

According to the equation above, bias and rotation have to be determined simultaneously.
Solving this problem with no prior calibration represents a challenge, since degree-level errors
while determining the attitude can be compensated by drifting the estimated accelerometer
bias in a reasonable quantity.

Bias estimation is restricted in our model to the X L axis of the accelerometer, since this
reading is the one used in the kinematic model of the vehicle. It is possible to see that, if car
attitude R is expressed as global Euler tern (tuple of 3 elements), then azimuth angle can be
safely ignored. Let us parametrize the attitude of the IMU using only tilt and elevation angles,
R → Rψ,ϕ.

Applying the same reasoning process followed in (Rezaei and Sengupta, 2007), instant
accelerometer reading for X axis when the vehicle is stopped can be written as accX =
ba(X) + g · sin(ϕ), which leads to.

ba(X) = accX − g · sin(ϕ) (5.18)

Bias is estimated from accelerometer readings during stops, subtracting the expected effect
of gravity according to the estimated pose of the IMU.

5.2.5.2 Context-aware fusion algorithms

We have defined two algorithms that use context information to improve the result of the
fusion: the UKF for attitude estimation, and the UKF for kinematic estimation

We have described in 5.2.3.1 Attitude estimation uses the motion condition of the vehicle
(detected stops) as a marker to take absolute estimations of its tilt angle, based on the direction
gravity vector. Thus, the formal specification of this algorithm will require as input the context
variable that indicates if vehicle is stopped.

The Unscented Kalman Filter for kinematic estimation uses the straight motion indicator
to select the best prediction model. Stops are also taken into account to interpret inertial
measures differently and avoid a noisy output.

100 5. Application to vehicle navigation in urban environment: Design and Experiments

5.2.5.3 Adaptive fusion solution: sensor and algorithm selection

For this work, we implemented a simple Fusion Adaptation module that loads the specification
of information sources and data processing nodes, and generates a valid fusion solution that
provides the required outputs.

The last element in the figure is the Inference process, in charge of combining the available
solution elements to create the sensor fusion system expected to deliver the best performance
in the present conditions. It selects which sensors and algorithms are used, and how they
are connected. The optimal implementation depends on the domain of application and the
considered factors, e.g. contextual information and solution quality indicators. For this work,
we have chosen an event-triggered search process, where the terms of the search are affected
by contextual factors. The process is as following:

Event processing Fusion adaptation module receives an event. We have defined the following
events: (a) Some sensor is no longer available (b) A new sensor is available (c) Some context
variable has changed (d) The list of desired fusion products has changed.

Determine reach of the event The inference process determines how the received event
affects the elements of the solution. The effect can be direct, e.g. if a sensor is down, the
equivalent Data Node has to be marked as not available so that it is not used in a solution, or
indirect, e.g. in the selected case of use, some fusion algorithms cannot be used if the vehicle
is moving underground.

This information is ideally described as constraints or rules in the different ontologies used
to describe the problem. An inference process can be used for generic constraint reasoning.
Previously in this paper, we referenced the work (Gómez-Romero et al., 2015), which defines
rules using SWRL to reason directly over the domain ontology. Ontology-based reasoning is,
however, a computationally expensive choice. In this scenario, we overcame this problem using
the Drools rule-based system (de Ley and Jacobs, 2011): this library, written in Java, provides
a fast inference engine (implements the RETE algorithm). Rules can be defined in text files
that can be loaded dynamically, and the inference engine can use Java objects of the target
application as facts for the knowledge base.

The rules used in this case, shown in 5.5, have direct translation between SWRL and Drools
languages.

Compose sensor fusion solution Once the elements of the solution have been modified
according to the events, a new sensor fusion solution is composed. For this work, we chose
to restrict valid solutions to a tree: a directed graph with no loops. The list of desired fusion

5.2. Proposal 101

Table 5.5: Contextual constraints on sensor set and algorithms

Sensor Conditional Context
smartphone (any) INCOMPATIBLE EnergyPolicy == LOW
” (any) INCOMPATIBLE EnergyPolicy == CRITICAL
” accel. REQUIRES Placement == RESTING
” gyro REQUIRES Placement == RESTING
Algorithm Conditional Context
KFKinematic INCOMPATIBLE Environment == UNDERGROUND
UKFAttitude INCOMPATIBLE Environment == UNDERGROUND

products is fed into the system as a data node that consumes data without producing any
output. It is the root of the tree.

Solutions are composed through back-chaining, guided by a search algorithm that follows
a depth-first strategy. The leaves of the tree will be sensors (pure information sources), that
produce data without requiring any input. In many cases, there are several valid solutions for a
given set of conditions. Our implementation determines which is the best solution using a set
of rules which determine the suitability of each solution under different contexts. It comprises
basic checks such as avoiding self-connections and loops, as well as more advanced criteria as
maximization/minimization of numeric indicators –energy consumption, accuracy score.

5.2.5.4 Summary of adaptive solution

Once we have defined the elements of our solution, identified relevant contextual facts and
the desired adaptation mechanisms, we have a clearer picture of the whole system. Figure 5.8
shows the adaptive navigation solution, instantiated in the proposed architecture.

The figure specifically includes an external input specifying the goals of the system. These
goals are expressed as a list of wanted data products, this is, data elements with features
expressed using the terms of the ontology (quality, update frequency, etc.).

Context inference mechanisms have been represented as a set of Data Nodes in the Data
Fusion module that send results to context repository. The question of where this inference
mechanisms should be placed is an interesting matter of discussion, and with this purpose
we show the Energy Policy node duplicated in the smartphone sensor set. Its actual location
depends on the semantics of that context variable: if the values of energy policy can be
calculated according to the same criteria for several different applications and problem domains,
then it is interesting to keep this node in the resource set as a virtual sensor. However, if the
categorization is exclusive for this navigation problem, then it is right to place the node in the
Data Fusion module and calculate its value using Battery and Charging status values.

102 5. Application to vehicle navigation in urban environment: Design and Experiments

Figure 5.8: Instantiation of the designed adaptive navigation solution into the proposed framework

5.2. Proposal 103

As an additional consideration, the real implementation connects context inference nodes
directly to consumers, skipping the repository part. We decided to do that because the nature
of the contextual information used in this problem is instantaneous and keeping past values is
superfluous. However, this is just an implementation detail that can be changed as necessary.

5.2.6 Formal model of the system

The system relies in a formal model of Problem Space description, the set of sensors (resource
sets) and context. This model serves as a precise and shareable description of the system
features, but is also used by the defined adaptation processes.

We are going to build the formal model of the system over the sample ontology suggested
in the proposal, section 3.3.2.1, adequately adapted to the particularities of this problem.

5.2.6.1 Problem Space description

The problem space description, in this application, regards the elements that will populate the
Data Fusion module: Data Nodes (repository of algorithms), the data elements managed by
those Data Nodes, and the relevant features of these entities. This description is the base to
define the logics that will guide the automatic construction of fusion solutions by the Fusion
Adaptation module.

Classes The following description is built over an extension of the basic ontology described
in the proposal (section 3.3.2.1). We defined three basic classes: DataNode, for every piece
of logic that produces and/or consumes information (i.e. algorithms and sensors); DataType,
for the basic types of data managed by the system; and DataProduct, an auxiliary class for
attributing data types with features are properties relevant to the problem.

Since the Fusion Adaptation module give sensors (defined in the resource set) and algorithms
an homogeneous treatment, both have been defined as data nodes. However, to allow a better
categorization, this class has two subclasses, Operation and Sensor. The repository of algorithms
is composed by individuals of the subclasses of Operation:

• 1 Data Conversion algorithm: transforms GPS fixes (latitude-longitude using the WGS84
ellipsoid model) to local Cartesian coordinates referred to a given origin.

• 3 Fusion Algorithms:

– Kalman Filter that uses position measures to estimate position and speed of the
vehicle.

104 5. Application to vehicle navigation in urban environment: Design and Experiments

– Unscented Kalman Filter that calculates the attitude (orientation) from the position
and the angular rates of the vehicle.

– Unscented Kalman Filter using the position, angular rate and acceleration of the
vehicle to estimate its full kinematics. It combines the two non-linear models
described in section 5.2.3.2.

• 1 Sensor Corrective Action: estimates and compensates the bias of the gyroscope. It
requires knowing when the vehicle is stopped, and the raw (biased) angular rates.

• 2 Virtual Sensors for context data: a stop detector and a turn detector. The availability
of these sensors is determined automatically from the Context description ontology (see
next section). There is a potential virtual sensor for each context variable, but they have
not been integrated in the solution search process because are not useful as inputs for
fusion algorithms.

These algorithms have been inserted as individuals in the hierarchy of classes reproduced in
figure 5.9.

Figure 5.9: Hierarchy of classes in the problem-space description ontology

The data types can be extracted just considering the input and output data of every
sensor and algorithm in the system. We found 9 numeric types: acceleration3d, altitude,
angularRate3D, attitude3d, batteryLevel, latLon, linearSpeed, position3d and speed3d. The
system does also define 3 logical statements: isPhoneChargingStatement, isStoppedStatement
and isTurningStatement, related with the equivalent contextual variables.

The use of DataProduct will be shown later, after detailing the object and datatype
properties for the problem space ontology.

Object Properties This problem uses the same object properties defined in section 3.3.2.1
(reproduced here in figure 5.10) which serve as a description of how components can be
connected.

5.2. Proposal 105

Figure 5.10: Object properties in the problem-space description ontology

Datatype Properties Reproduced in figure 5.11, allow to add literal values to individuals.
Following the example of Object Properties, We have defined three categories depending on
the domain class.

The first category is represented by the super-property data-node-dataProperty. Fusion
Adaptation process works over active data nodes, so we have a property to define such status:
isActive, with range over boolean data type. Due to smartphone battery restrictions, solution
configuration logic is also aware of the power consumed by sensors and, optionally, algorithms.
Thus, we have defined energyConsumption property, with four possible values: high, medium,
low and none.

The super-property data-type-dataProperty contains two data properties: cardinality,
describing the size (number of elements) of a data type individual, and basic_type, that can be
used to indicate the type of its underlying data elements. These properties describe inherent
features of a type, but cannot be used to give information about the concrete features of the
data produced by a certain node.

This last use is responsibility of DataProduct elements, which are associated with properties
defined under the general data-product-dataProperty. We have identified 4 useful properties:
isBiasCorrected applies to inertial measures, isFiltered is a general statement to identify data
elements produced by a filtering algorithm, quality is a rough categorization in three levels (high,
medium, low) for the expected accuracy of sensor raw data, and finally updateFrequencyInHz
can be used to express the capacity of sensors and also the requirements of algorithms regarding
data rate (this information can be useful for parameterization purposes).

Figure 5.11: Data properties in the problem-space description ontology

106 5. Application to vehicle navigation in urban environment: Design and Experiments

5.2.6.2 Resource sets

This problem makes use of two difference resource sets, one for the sensors of the on-board
platform, the other for the smartphone. We plan to implement an automatic fusion solution
configuration process that gives an homogeneous treatment to fusion algorithms and sensors.
With this purpose, resource set description takes as base the Problem-space ontology –inheriting
useful data types, and object- and datatype properties–. Actual sensors re defined as individuals
of the ontology belonging to the Sensor class. The information introduced in the ontology is
summarized in table 5.6.

Table 5.6: Available sensors

On-board Product Quality Freq. Bias corrected
Gyroscope angular rate medium 100 Hz No
Accelerometer acceleration medium 100 Hz No

GPS Lat-Lon medium 5 Hz
Altitude medium 5 Hz

Diff-GPS Lat-Lon high 5 Hz
Altitude high 5 Hz

Smartphone Product Quality Freq. Bias corrected
Gyroscope angular rate low
Accelerometer acceleration low No

GPS Lat-Lon low 1 Hz
Altitude low 1 Hz

Battery sensor battery level

As stated above, sensors are represented of individuals of the Sensor class, Their data is
expresses as DataProduct individuals annotated with the correct datatype properties.

5.2.6.3 Context model

Context variables have been defined in the ontology following the specification described in
5.2.4. With that purpose, we have defined four classes grouped by the entity they are referred
to, as shown in figure 5.12.

Figure 5.12: Context description ontology for the ground vehicle navigation experiment

5.2. Proposal 107

Since context variables are symbolic, each class is populated with individuals representing
those values. Figure 5.13 shows an example for the smartphone energy policy context variable.

Figure 5.13: Values of the EnergyPolicy class are defined as individuals

Finally, figures 5.14 and 5.15 exemplify how ontology elements are combined to describe
the problem space. The first figure shows the algorithm and sensor repository after it has
been populated with all the elements defined for this solution. The other figure illustrates how
DataProduct is used to annotate sensors and algorithms with their requirements and products
as attributed data.

Figure 5.14: Classes are populated with individuals representing objects the Fusion Adaptation module can
manage

108 5. Application to vehicle navigation in urban environment: Design and Experiments

Figure 5.15: Annotating individuals with object and datatype properties allow to describe the required
problem space information

5.3. Experiments 109

5.3 Experiments

5.3.1 Context-aware fusion algorithms using on-board sensors

The experimental validation has been carried out in a set of representative scenarios to show the
reliability of the proposed system. In the first place, we present some results about contextual
analysis and sensor correction subsystems. The other results display the performance of the
filters when GNSS signals are unavailable or severely degraded in complex urban environments.

5.3.1.1 Evaluation of context reasoning and sensor correction subsystems

The stop detection algorithm is based in measuring the “roughness” of accelerometer output
over time. For this purpose, a window of 0.5 seconds proved to offer good results without
introducing a significant delay. Moreover, stops are useful when extend over a few seconds,
so that the delay is not usually important. Figure 5.16 shows the performance of the selected
algorithm over the second stop of previous trajectory, demonstrating its validity even with
biased inputs.

400 450 500 550 600 650 700

−2

0

2

Accelerometer reading

ac
ce

le
ra

tio
n

(m
/s

2)

400 450 500 550 600 650 700
0

1

2

3

am
pl

itu
de

 (m
/s

2)

time (s)

Max amplitude in last 0.5 s
Stop detected

Figure 5.16: Sample accelerometer readings, processed signal, and output of the car stop detection module.
This figure shows the validity of the applied strategy.

For the trajectory analysis part, the non-biased gyroscope reading around Z global axis
is used. This data element is provided by the sensor refinement module. In Figure 5.17 is
possible to see the raw output of the thresholding criterion that determines when the car is
following a straight motion pattern. The selected limit of ±0.5 degrees per second does not

110 5. Application to vehicle navigation in urban environment: Design and Experiments

completely guarantee a straight movement, but it rather indicates that the readings of the
other sensors will not be affected by some of the effects of curves, e.g. car inclination and
lateral accelerations. A further refinement has been implemented by interval analysis to discard
fragments shorter than a few seconds, to avoid those detections between linked turns.

Figure 5.17: Output of the trajectory analysis module: straight movement detection using accelerometer
readings.

It is interesting to see the two small interruptions of the straight movement around
t = [820; 825] and t = [840; 845]: they represent two consecutive changes of lane, the first one
to the right and the second back to the left. Readings from t = 860 in advance are part of a
curvy mountain road with brief straight segments, revealing a satisfactory performance even
with strong slopes.

With respect to bias drift, in this type of sensors is known to be caused by tempera-
ture changes, and thus is a slow process. The 15 stops detected in the experiments re-
turned a quite stable estimation of bg = [0.29,−0.31, 1.05]deg/s, with a variance var(bg) <
[0.01, 0.01, 0.02]deg/s. This can be explained because all the records were taken in the same
day, starting half an hour after the device was mounted and exposed to direct sun light
(temperature variations are known to affect the stability of the bias).

The use of dynamic adaption would have kept the gyroscope calibrated under any other
conditions. Taking into account these considerations, two indicators of algorithm performance
were examined:

5.3. Experiments 111

Table 5.7: Algorithm for estimating the error of calculated elevation angle from two GPS fixes.

Input 2 GPS measures
Output Estimated error of elevation angle

• Accuracy of dead-reckoning navigation.

• Bias estimation process should return similar values for car stops that are close in time,
but for which the elevation angle is different.

Figure 5.18: Accelerometer bias can be corrected during stops if elevation angle has been already determined.

The second point is illustrated in Figure 5.18, where the bias estimation process returns
an average value of 0.21m/s2 (blue circles in lower part) after correcting the effect of gravity
according to the estimated car elevation, which is close to zero in the first stop and close to 5deg
in the second one. The green circles during the second stop represent the raw accelerometer
reading, before correcting gravity effect.

Regarding the estimation of car elevation angle from GPS positions, the expected error
–depends on the random position error of the two consecutive GPS fixes– is difficult to describe
analytically, and is clearly not distributed as a Gaussian. The selected solution involved a Monte
Carlo simulation that describes the probability distribution function of the error. Its second
order statistic (variance) was calculated, for getting an approximate Gaussian description of
such error. The detailed procedure is described next:

Figure 5.19 shows the expected standard deviation of the calculated elevation angle

112 5. Application to vehicle navigation in urban environment: Design and Experiments

depending on the speed of the car and the accuracy of the GPS device. For a goal of under-
degree level error, the conditions have to be near optimal, with a good GPS accuracy (standard
deviation in the three axes around 1 m) and the car traveling at a high speed (over 10−15m/s).

Figure 5.19: Expected standard deviation of GPS-obtained elevation angle, depending on vehicle speed
and fix horizontal accuracy (simulation, 10 million iterations per point).

With respect to the whole navigation system, several complex scenarios have been selected
to assess the overall performance. These experiments include typical cases as stops or turns in
urban environments, enriched here with especially complex cases such as roundabouts with
different exits, turns in the banked road at mountain pass, underground parking areas, long
tunnels, driving under elevated pedestrian bridges, or short tunnels under motorways to change
direction.

The first complex scenario includes a total GPS blackout in a non-underground parking. The
calculated position by GPS appears as a constant value whereas the vehicle is passing through
the parking area, which is not underground but has a roof that occludes the satellites (Figure
5.20). The standard deviations show a high value in the middle of the graph corresponding to

5.3. Experiments 113

this situation of non-available solution at the rover receiver. The right graph displays this effect
of inactive DGPS mode maintaining a constant value of differential age and zero satellites used
in the solution, when the vehicle is passing through the non-underground parking. It can be
observed at the parking exit that the receiver changes to SINGLE mode when the satellites
are visible. The left graph displays a gap of the trajectory caused by non-calculation of the
coordinates by the receiver that maintains the last calculation. The GPS blackout has a total
length of 56 seconds.

Figure 5.20: Non-underground parking area with zero satellite visibility and inactive DGPS mode using a
constant value.

At this point, and after more than 10 minutes running, the system has accurately determined
biases. Dead-reckoning conditions are not optimal, though, since at this point the last effective
measure of the pitch was received more than two minutes ago, so the attitude has been
maintained by the filter integrating IMU measures. Figure 5.21b shows that when GPS signal is
recovered (red stars), the positioning error of the filter is around 15 meters (blue circles). For
establishing a comparison, three other predictions are shown, corresponding to simpler solutions
where the sensors are not dynamically adjusted. They use IMU bias estimation with an error
around 0.05 degrees per second for the gyroscope and/or 0.02m/s2 for the accelerometer.

The estimation for gyroscope bias that the proposed system achieves is stable within 0.02
degrees per second. The error in position caused by the drifting attitude estimation is not
very important compared with that of the accelerometer. It is reasonable to conclude that
gyro bias estimation is accurate enough in our system. It is different for the accelerometer
bias, where an error of 0.2m/s2 has a much profound impact. It is worth remembering that
residual accelerations of a similar magnitude can appear spontaneously if the vehicle elevation
is estimated with a deviation of 1 degree.

As a conclusion, the results on this scenario show that the biases estimated by the proposed
system have been set correctly, and that small changes inside the expected IMU bias stability

114 5. Application to vehicle navigation in urban environment: Design and Experiments

can be the source of large errors.

(a) Vehicle trajectory

(b) Predicted trajectories

Figure 5.21: Underground parking lot experiment

The second scenario is related to a complex urban environment where the vehicle is passing
through urban canyons with low visibility of satellites. The Figure 5.24 shows cases with active
DGPS mode, cases with active DGPS and high values of differential ages, cases with inactive
DGPS mode and active SINGLE mode solution, and cases with zero satellites used in solution.
The trajectory can be observed in the left graph where the vehicle arrives to complex urban
canyons, and the rover receiver is changing frequently their mode depending on environment
conditions through complex urban environment. The accuracy is recovered at the exit of the
urban canyon and this effect is detected at the end of the middle graph. The right graph
displays the diversity of cases presented in this experiment, thus it is difficult to obtain optimal
conditions in complex urban canyons that can be solved by sensor fusion.

The sensor fusion solution is presented in Figure 5.22a, where red trajectory displays the
difficult calculation of positioning by rover DGPS system. Inaccuracies are caused by rover
navigation within complex urban area. The estimated solution using UKF filter is blue trajectory.
The reliability of UKF solution can be observed in detail for 175 seconds of initial trajectory:
figure 5.22b for the east coordinate and figure 5.22c for north component.

The effect of entering in an urban area is displayed in Figure 5.23a. Initially the DGPS
trajectory is the same that the UKF filter trajectory, but DGPS inaccuracy appears when the
rover is close to big trees and is entering in a soft urban environment. Figure 5.23b displays an
increase of DGPS East standard deviation caused to use four satellites in the solution with high
differential ages, and Figure 5.23c is the time-domain representation of the standard deviations
where the filter shows low positioning errors.

The movement of the vehicle in a complex canyon is displayed in Figure 5.25a, where close
buildings cause GPS and DGPS inaccuracies, and outages. The UKF solution is presented in

5.3. Experiments 115

(a) DGPS, GPS and Outages (red), and UKF solu-
tion (blue)

(b) Time-domain detail of East UKF solution (c) Time-domain detail of North UKF solution

Figure 5.22: Effect of complex urban canyons in UKF performance

116 5. Application to vehicle navigation in urban environment: Design and Experiments

(a) Rover trajectory entering in an urban area.

(b) Loss of accuracy in a soft urban environ-
ment (DGPS with 4 satellites) and UKF filter
solution

(c) Time-domain standard deviation evolu-
tions (DGPS and filter)

Figure 5.23: Sample trajectory: urban area entrance.

5.3. Experiments 117

5.25b (blue trajectory), and shows the filter reliability with a smooth trajectory that corresponds
to the real trajectory following by the vehicle, as can be observed in 5.25a. The GPS and
DGPS standard deviations are presented in 5.25c to show the positioning errors that are solved
by sensor fusion.

(a) GNSS fixes

(b) Error (1-σ) in lat/lon (c) Indirect quality indicators

Figure 5.24: Effect of complex urban canyons in GNSS measures

A third situation is shown in Figure 5.26a. This urban trajectory presents several inaccuracies
and the UKF filter solution displays again reliability to estimate the position. The difference

118 5. Application to vehicle navigation in urban environment: Design and Experiments

(a) Rover trajectory within complex urban canyon.

(b) DGPS and GPS solutions (red) and UKF
filter solution (blue).

(c) Standard deviations of DGPS and GPS:
East (upper blue bar) and North (lower green
bar).

Figure 5.25: Sample trajectory: complex urban canyon.

5.3. Experiments 119

with the former case is the use of the filter solution only for this trajectory, so the filter is
started at the beginning of this trajectory. The estimated positions by the filter are shown in
5.26b. In this case, the filter solution has again better precision than the GNSS device, and
time-domain standard deviations of 5.26c shows the performance of the filter.

(a) Rover trajectory within complex urban canyon.

(b) DGPS and GPS solutions (red) and UKF
filter solution (blue).

(c) Standard deviations of DGPS and GPS:
East (upper blue bar) and North (lower green
bar).

Figure 5.26: Sample trajectory: complex urban canyon.

The validation of the UKF filter solution is presented in Figure 5.27a. The validation
is based on the comparison of the DGPS precise trajectory as groundtruth with calculated
solution provided by the UKF filter. Figure 5.27b displays the validation experiment, where
DGPS deactivation is performed at the beginning of a roundabout and the reactivation is
at the end of the roundabout, so the UKF filter has a deactivated GNSS positioning for 15
seconds. In terms of correlation, both coordinates presents good results, the R2 values for
East and North coordinates are 0.9959 and 0.9904. The deviation of the real trajectory at
the end of roundabout is 7 meters as can be observed in 5.27c, where the East standard
deviations (DGPS and filter) are indicated as upper blue bar, and North as lower green bar. The
time-domain standard deviations of DGPS and filter are compared showing an increase of the
UKF filter errors from second 12 to second 27 (5.27d), the effect corresponds to deactivation
and reactivation of DGPS device.

120 5. Application to vehicle navigation in urban environment: Design and Experiments

(a) Roundabout with DGPS groundtruth. (b) DGPS trajectory (red) with deactivation
and activation and UKF filter solution (blue)

(c) Detail of UKF filter solution without 15
seconds of DGPS solution

(d) Time-domain standard deviation evolu-
tions

5.3. Experiments 121

5.3.2 Context-aware fusion algorithms using smartphone

In this part we compare the quality and features of smartphone sensors with the on-board
platform. We want to asses that they are usable as part of the navigation system, and check if
the automatic context inference processes offer comparable results.

The presented results are based on a single open traffic experiment, which was recorded
simultaneously by the mid-cost system and the smartphone. We drove the test vehicle in the
surroundings of Leganés Campus (Universidad Carlos III de Madrid), describing the 4.5km long
trajectory shown in figure 5.28. The experiment took for roughly 1100 seconds. According to
public altimetry maps, slope is in the range [−5%; 6%] with average value 1.7%. This trajectory
features a typical urban driving scenario in Spain: buildings around five floors high, narrow
streets, roundabouts, different types of pavement (including bumps), and regular speed/stop
patterns.

Figure 5.28: Trajectory followed by the test car. Results presented here are based on this record.

5.3.2.1 GPS quality

Before reviewing the quality of GPS devices, let us remark that the trace recorded by Novatel
GPS is quite atypical. The device was subject to blackouts between 5 and 50 seconds long
in relatively open places. It also triggered several alarms revealing problems in the calculated

122 5. Application to vehicle navigation in urban environment: Design and Experiments

solution (integrity warnings and singularity in covariance matrix among others). This was
probably caused by start recording data a short time after a cold start. However, we opted
to keep it since it proposes very interesting situations for further experiments. As a rule of
thumb, Novatel GPS fixes have a far superior quality compared with the smartphone. The
principal factor is most probably the antenna: satellite signal reception is much clearer. The
consequences can be observed in the number of satellites detected by each device (figure 5.29),
and also the number of satellites used by Novatel device when determining the last fix. In spite
that the constellation of the smartphone is reduced (never above 10 satellites), it is much more
constant: between 400 and 750 seconds, it never goes down 7 satellites. On the other hand,
Novatel device oscillates between 5 and 16 visible satellites.

Figure 5.29: Number of satellites over time.

The superior quality of Novatel fixes is illustrated in figure 5.30. It shows a piece of the
trajectory, as recorded by both sensors. It has been selected to be representative of remarkable
effects found in the full sample. Observation conditions are good: open sky, no severe multipath
problems. The vehicle enters the left part of the image, on the right (bottom) lane of the
street, and then turns right on the junction to disappear on the bottom. Later on, the car
reappears on the top-right side of the image, and drives back to the point where it first entered
into scene. The green trajectory corresponds to the date recorded by Novatel GPS device.
It is possible to discern on which lane the car is driving; maneuvers are clearly, accurately
depicted. This is characteristic of a system with a very low relative error. The red line represents
smartphone trace. Both relative and absolute errors are higher (unable to discern lanes, since
the two lines do cross several times), and maneuvers show some “inertia”, that is likely to be
caused by internal processing on the device –on-chip assisted GPS algorithms, operating system
corrections such as fusion/filtering/smoothing.

Establishing a comparison for both accuracies is a complex task, because we lack groundtruth

5.3. Experiments 123

Figure 5.30: Comparison of Novatel GPS (green) and smartphone (red) raw fixes. Detail.

data. An alternative solution is to align both series of GPS fixes to a common timeline and
compare their discrepancies with the accuracy information provided by the sensors. Data is
aligned by applying linear interpolation between consecutive fixes. The result for part of the
experiment is shown in figure 5.31 (the line for distance between fixes has been smoothed for a
clear visualization).

The difference between both GPS traces follows a segmented pattern. When satellite
visibility conditions are good, this difference is around a single standard deviation of the best
sensor (before t = 420s in the figure). The highest peaks are concentrated between t = 420
and t = 550, matching those Novatel fixes with the largest reported errors, that also happen
to have a large bias. We find reasonable to conclude that this punctual errors in the mid-cost
GPS system are the main cause of the error peaks in the plot.

5.3.2.2 Inertial measures quality

A comparative sample of accelerometer data along Y axis is shown in figure 5.32. It was taken
with the vehicle stopped, and illustrates the accuracy of each sensor. The calculated standard
deviation calculated for MicroStrain mid-cost device is four times lower than smartphone
readings. Gyroscope readings around the same axis, for the same period of time, are shown in
figure 5.33. Smartphone gyro shows a strong quantization effect, but its standard deviation is
surprisingly lower than that of mid-cost gyro. The quantization step (0.06deg/s) is consistent
with the 16 bit AD converter working over a scale of 2000deg/s. Setting smartphone gyro
on a lower scale (more suitable for vehicle navigation) would improve these results. However,
Android sensor manager documentation indicates that gyro maximum range must be at least

124 5. Application to vehicle navigation in urban environment: Design and Experiments

Figure 5.31: Distance between GPS fixes from Smartphone/Novatel devices, compared with the self-reported
accuracy (one standard deviation).

Figure 5.32: Accelerometer readings with the vehicle stopped. Note that bias is not corrected on these
samples.

5.3. Experiments 125

Table 5.8: Observed noise levels of IMU components.

Accelerometer Std. deviation
On-board 0.038m/s2

Smartphone 0.159m/s2
Gyroscope Std. deviation
On-board 0.171deg/s

Smartphone 0.118deg/s

1000deg/s, and it does not expose any method that can modify the setting. Changing the
range is probably not compatible with normal smartphone functioning. Table 5.8 compare the
average noise magnitude observed during stops for the different sensors.

Figure 5.33: Gyroscope readings with the vehicle stopped.

Figure 5.34 tries to gather in a single plot all the strange effects found in smartphone inertial
data. In first place, it is common that during maneuvers, as the one taking place between
t = 360 and t = 380 seconds (a roundabout), smartphone reading is temporarily delayed about
0.3 seconds. The delay starts at t = 370s and extends for 20 seconds. Later, at t = 410
seconds, smartphone gyro output becomes noisier for about a minute (standard deviation up
to five times higher). This happens in the three axes, and returns later to normal levels. The
best explanations for this behavior is that, while the mid-cost IMU is attached to the body
of the car, the smartphone lies free on a surface. Driving dynamics can affect how firmly the
smartphone rests on that surface, and this is translated into different vibration levels.

5.3.2.3 Automatic context extraction

Simple automated techniques can achieve comparable results for both sets of data. The best
candidate is an algorithm that:

126 5. Application to vehicle navigation in urban environment: Design and Experiments

Figure 5.34: Compared angular rate on mid-cost and smartphone gyroscope (subsampled for the sake of
clarity). The comparison exposes anomalies, as the smartphone signal becoming noisier around t = 410s,
or a 0.3 seconds delay from t = 370s to the next straight fragment, around t = 390s.

• Does not have a strong dependence on the quality of the sensor.

• Does not require prior calibration

• Is robust under sensor dynamic changes (e.g. bias drift, temperature offset)

An example is the algorithm for detecting vehicle stops. It works over accelerometer data,
split in chunks. The amplitude of each chunk (difference between maximum and minimum
value) is consistently low when the car is stopped, so that detection by means of thresholding is
possible. This algorithm is independent of the orientation of the sensor (even in a smartphone
that can change its position during the record), and works over biased data. The threshold
can be estimated automatically using only inertial data using simple statistics. As a side note,
chunk amplitude criterion is more consistent and clear than using the standard deviation of
the signal, as used in (Han et al., 2014). Below, figures 5.35 5.36 show relevant pieces of the
detected stops and straight fragments, after applying the same non-parameterized algorithms
to both sets of data (mid-cost equipment and smartphone).

Figure 5.35: Sample of stop detection output, compared for both sensors.

5.3. Experiments 127

Figure 5.36: Sample of straight motion detection output, compared for both sensors.

Results are comparable. In spite that the smartphone output is a bit more sensitive in the
case of stop detection, it allows to estimate the gyroscope bias with similar accuracy. The
proof is that the output of straight motion detection algorithm, that requires unbiased gyro
measures, is very similar for both sensors: the figure shows the only discrepancy found in the
whole trajectory, around t = 140s.

5.3.3 Context-aware adaptability

We have tested the system for a mixed urban and open road trajectory. The Fusion Adaptation
module is notified of relevant changes in the system:

• Addition and removal of sensors: smartphone is available only from t = 100s to t = 300s .

• Changes in relevant context: the trajectory starts in urban environment, switches to open
road around t = 150s and goes back to urban close to the end. The battery status of
the smartphone starts in ”plugged”, and switches to “critical” at t = 200s.

• Changes in the list of required fusion products. We start asking for position and linear
speed, change to only position but with high accuracy during the open road fragment.
At the end, we add turn detection to the list of desired products.

The adaptation module calculates a new solution right after detecting each change. We include
two sample solutions reached by the system. Fig.5.37 is a solution around t = 120s that
returns the vehicle position and its linear speed, with smartphone sensors available and moving
in a strict urban environment with poor GPS signal. The system chose to take the position
from a Kalman Filter, and use the Unscented Kalman filter to extract the speed.

The second solution, shown in Fig.5.38, describes a solution in open road environment where
the system is asked to produce a high-accuracy position and stop detection, with smartphone
in critical battery status. In this case, the solution includes the simple kinematic Kalman Filter
using the available differential GPS readings. The stop detection module, fed by the on-board
sensors (smartphone is not available due to battery status), is also connected to the output.

128 5. Application to vehicle navigation in urban environment: Design and Experiments

Figure 5.37: Sample fusion solution for getting vehicle position and linear speed

Figure 5.38: Sample fusion solution for getting high-accuracy location and stop detection

The response of the system is almost instantaneous as it detects a relevant change in
context information. There are some considerations regarding this function, though: current
implementation launches a full-scale search process that configures a sensor fusion solution
from scratch, requiring around a second of computing in a modern CPU. Depending on the
frequency of this process and the host platform, this time has to be lowered. A faster alternative
could work over the last solution, modifying only those parts that are actually affected by the
contextual change. Systems with severe power restrictions could rely on a set of fixed sensor
fusion schemas with reduced adaptive capabilities. An example can be found in chapter 4,
where the local trackers have a fixed structure with some configurable aspects.

Another aspect to take into account is the sensitivity of the adaptive strategies. Changing
the processing structure or switching algorithms usually involve a short initialization time span
where fusion products converge to their expected accuracy and stability. The adaptive logic
should consider system stability as another factor that affects the adaptation process, in order
to avoid continuous changes not leading to a significant improvement in the quality of the
fusion.

5.4. Conclusions 129

5.4 Conclusions

Along this section we have shown how to design, using the framework proposed in this thesis,
a sensor fusion system with self-adaptive features that makes use of context information to
enhance all its processes. This example demonstrates the capabilities of the architecture
designed in chapter 3, as well as the advantages of the tentative workflow as a systematic
process for buildings sensor fusion applications within the scope of the framework. Regarding
adaptive features, the application includes automatic selection of sensors and fusion algorithms,
as well as online sensor calibration. It shows how context information can be used to decide
how to adapt the system but also as an additional source of information that improves the
output of certain algorithms.

We conducted an extensive set of experiments that measures the performance of the
navigation system, both for each one of its parts and as a whole. Results show the superior
performance of context-aware fusion algorithms, and the robustness of the system against
malfunctions, degraded input information and changing conditions that would invalidate fixed-
schema solutions.

130 5. Application to vehicle navigation in urban environment: Design and Experiments

6
Conclusions

This last section reviews the work done, checking if the proposed goals have been accomplished,
and summarizes the contributions of this dissertation. These parts are complemented with
considerations that constitute a brief discussion of the thesis.

6.1 Contributions

The contributions of this thesis are mostly theoretical, although they are supported with
experiments over the implemented prototypes. We have identified the need for adaptable
sensor fusion systems, and the great potential that lays under the use of context information
for creating such systems. From this starting point we conducted an analysis on how context
information can be used to improve fusion results, both as an additional source of information to
be used by the fusion processes and as a set of factors that determine the optimal configuration
of the fusion system. A key point of the analysis involved identifying the difficulties and
conflictive aspects of modeling and exploiting context information. This analysis lead to a set
of conclusions that have been used to define a domain-agnostic framework for creating adaptive
context-aware sensor fusion applications. As far as we know after an exhaustive literature
review, this is the first attempt to create a general purpose architecture that includes context
information as an integral part of the sensor fusion process and proposes specific mechanisms
to maximize the adaptability of the system.

The architecture has been used for the development of two prototypes in very different
domains, demonstrating its applicability and showing that it is flexible enough for fitting a
broad range of sensor fusion problems. The first prototype is a wide area maritime surveillance
system, that tracks vessels fusing measures of radar sensors and AIS stations. This system was
required to operate with different fusion configurations (algorithms and parameters) in parallel
for different geographical zones. The zonal configuration should be modifiable online. We were
able to provide a flexible and effective solution within the conceptual frame of the proposed

132 6. Conclusions

architecture, scalable in the number of zones and sensors, and showing good stability around
transition zones. Additionally, the section shows how modeling domain, solution and context
knowledge explicitly makes easier to create a system that will be easy to augment later with
automatic adaptation capabilities.

The second prototype is a GPS/inertial navigation system for ground vehicles that can use
context information to improve location accuracy in urban scenarios, where GPS positioning
suffers from larger errors and can even be unavailable for short spans of time. Another
contribution of this thesis is the implementation of a self-adaptive fusion system where context
information is used to calibrate sensors as the vehicle moves (Martí et al., 2012). The system
can also take a redundant and dynamic set of sensors, select the most appropriate subset and
generate a fusion solution that combines them for getting the best solution according to the
goals of the system and the contextual circumstances.

6.2 Differences between using the proposed framework and ad-
hoc system design

This thesis proposes a framework as a set of conceptual tools that makes easier the design of
sensor fusion solutions that are context-aware and adaptive. In order to estimate the success
of this dissertation, we have to consider the advantages of using the recommended procedure
and conceptual structures at design time compared with the potential hurdle of having to
respect the imposed tools and structures (ontologies, widget style, virtual sensors) during the
implementation phase.

Two are the advantages introduced by our proposal at design time: first, the architecture
of the system is designed to avoid artificial dependencies between elements by splitting the
different aspects of the problem (sensor fusion process, management of the sensor fusion system
and context information) in separate modules and fostering encapsulation at the lowest possible
level (sources of data and fusion algorithms) through the widget and virtual sensor abstractions.
Using the proposed design, it is easier to use or integrate new data sources at any point in
the architecture. This is translated into reduced risks and effort to integrate into the system
potential changes in the specification of the problem, its domain or the context.

The second aid is methodical approach for designing systems that combine adaptability and
use of context information within the proposed framework. This method was loosely specified
in 3.3.4 as a series of tentative steps towards modeling the system using ontologies. Following
a methodology, even if it does not enter in deep details, reduces the risk of skipping or making
a wrong usage of important information.

One of the inconveniences of this framework is requiring explicit domain modeling. This can
represent a significant effort, specially when we introduce context information in the equation.

6.3. Benefits of using context information in the fusion process 133

Reaching a valid model is a complex task that involves a number considerations, as those noted
in section 3.1.2.1, that can be rather vague. The required modeling effort is proportional to
the complexity of the domain, but we also expect the benefits of having a formal model of the
problem to be directly proportional to this complexity. The usual approach in the industry is
having complex systems with a large number of implicit and hardcoded relations between its
elements, described by a set of heterogeneous technical documents. Modifying those systems
requires a deep knowledge of the documentation and system internals, making the process
prone to errors. So, apart from the possibility of automatic processing, having the problem
modeled with ontologies represents a valuable resource for developers and designer on the event
of introducing changes in the sensor fusion system.

Also, forcing modularity can be difficult or even impossible to attain on certain problems.
This principle is directly opposed with highly coupled solutions, that should be defined as a
single large module. If the fusion system is composed of a number of algorithms and sensors
entangled in a immutable, tight coupled scheme, then either the system can be considered as
not adaptable or the adaptation logic has to be restricted to other aspects (parameters).

As an example of the problem of forcing modularity, the maritime surveillance scenario
required us to combine Kalman and Interacting Multiple Model algorithms for filtering with
several association algorithms that include JPDA. Our first design attempt defined independent
modules for filtering algorithms and association strategies. However, we discovered that
decoupling these two steps is a very hard task: JPDA requires specific work with the independent
models and state vectors of the IMM filtering. A workaround for this problem, in our case,
consisted on defining a module for each possible combination of filter and association algorithms.

6.3 Benefits of using context information in the fusion process

Context information has been proved to be helpful for enhancing fusion systems in numerous
occasions, and confirming it was not among the goals of this work. Our experiments support the
validity of the proposed framework as a tool for including context without negatively affecting
its effectiveness.

The results presented in chapter 5 show the following benefits:

• Navigation accuracy: detecting stops and straight motion fragments allowed to apply
more specific prediction models, which in turn provided limited benefits on the numerical
accuracy of filtering algorithms.

• Online sensor calibration: without taking motion condition into account, it would be
harder or even not possible to remove inertial sensor biases using the proposed non-invasive

134 6. Conclusions

procedure. This means that the inclusion of context can make possible some things that,
otherwise, would simply not.

• Adaptive structure of the fusion solution: combining context information with a set of
rules has been proved as an effective mechanisms for configuring fusion solutions that
are appropriate regarding many different factors at the same time. Context can enrich
some processes with additional semantics that open new possibilities.

• Robustness against unexpected problems: the adaptation module reacts to neutralize
problems that would render useless any fusion solution with a fixed structure. It guarantees
achieves full-time availability, provided that the set of working sensors is sufficient to
support at least one of the proposed navigation solutions.

As long as we understand, the framework not only makes possible design and implementation
of solution that integrate context information with these benefits, but it also simplifies the
process.

6.4 Computational performance questions

The proposed requirements for the framework included two aspects related with the computa-
tional performance of the system. This framework, as any tool that imposes an structure and
additional processes, introduces a computation overload. The first requirement stated that this
overload must be negligible compared with the total amount of computation required by the
fusion process or at least not suppose a big penalty. The second requirement regards scalability:
if the fusion system grows in size (more sensors, more algorithms, larger context database),
the computational requirements as memory and processor use must grow accordingly. Next
subsections cover these questions in detail.

6.4.1 Performance penalty associated to framework usage

The use of ontologies is a controvert aspect of our proposal, especially when they have to be used
in strongly resource constrained portable devices. This question has been approached before in
(D’Aquin et al., 2010), that tests the time required to load and process small-medium ontologies
in the smallest existing netbook at the time of writing the paper. The conclusions indicate
that a small netbook can process small ontologies reasonably well (a few thousand triples
using a triple-based representation instead of the XML coding employed on our experiments),
although there seem to be tools better than Jena for lightweight ontology processing, as Sesame
(Broekstra et al., 2002).

6.4. Computational performance questions 135

We can discern two different processes regarding ontologies: initial load, and query execution.
The impact of the initial load is not as important as the cost of reasoning over the ontology,
because for small-sized ontologies that fit in memory is a one time task during the initialization
of the fusion system. However, it is important to take into account that the cited study
(D’Aquin et al., 2010) reports times close to one minute for mid-size ontologies when the load
process checks semantic assertions and executes additional inference processes.

Our recommendation is to avoid reasoning over the ontology except when that is not
possible. Since they are used in this work as the basis for a common language, resource
constrained systems should load data into an internal representation that supports the reasoning
processes. This approach has been shown in the experimental part.

Regarding the rest of the processes of the system, we will use as reference the maritime
surveillance application in section 4, because its performance oriented implementation using
C++ language. The message-passing implementation based on the Widget abstraction has
been tested under a wide set of conditions. We have observed that the computational load
of processes that are not directly related with the fusion process –message passing, system
configuration, management processes– represent around 1% of the total execution time in
scenarios with a heavy load. We consider this result satisfactory regarding the stated performance
requirements.

6.4.2 Scalability

The maritime surveillance scenario shows that the computational load associated to message
sending is proportional to the number of messages and length of the traversed chain of message
processors –linear complexity–. Our implementation, based on the Boost Signals library 1, was
able to send several million messages per second on a modern machine. This shows that the
Widget abstraction is a valid mechanism for low coupled architectures where the ratio number
of messages / amount of computation for processing them is low. Application that are highly
coupled or involve passing a big number of small messages that require barely no processing
should consider an alternative communication mechanism as shared memory pools, that can
still be compatible with the widget abstraction.

With respect to the number of sensors, scalability depends on the implemented managemen-
t/adaptation processes. In the maritime scenario, complexity is nearly-linear for the addition
of new sensors because the possibility of action is quite limited. In the ground navigation
application, however, adding new sensors and algorithms has a big impact on the automatic
selection of fusion solutions due to using a basic search strategy. The response time is kept
around a few seconds in a regular computer for algorithm repositories containing a hundred

1Documentation available at http://www.boost.org/doc/libs/1_58_0/doc/html/signals.html

http://www.boost.org/doc/libs/1_58_0/doc/html/signals.html

136 6. Conclusions

nodes. This should be improved for real time embedded systems, although there are a number
of strategies available for that purpose.

6.5 Future work

It would be interesting to design further experiments that can characterize how the quality and
properties of the fusion products change depending on the quality and availability of context
knowledge, e.g. when some variables are not available or their value is uncertain. This work,
actually, does not mention the problem of uncertainty in context information, but it is interesting
to approach it starting with a theoretical analysis and following with some experiments.

The presented proposal is restricted to centralized fusion systems. Its encapsulation
and abstraction mechanisms (virtual sensors, widgets) facilitate the development of limited
distributed system capabilities, but the architecture itself does not take into account the specific
aspects and problems related with distributed systems such as communication bottlenecks,
delays, and others.

An interesting future work consists on extending the solution to include mechanisms for
enabling distributed schemas. One possibility suggested in (Martí et al., 2011a) is to interpret
independent fusion systems as software agents that can create dynamic coalitions to exchange
information and services. The advantage of this solution is that it can be implemented by
adding an external layer of software over a fusion system built using this thesis proposal. More
coupled solutions involve, most probably, substantial changes at many of the defined levels and
would also place restrictions in the –at this moment unconstrained– core of the fusion solution,
the algorithms.

A
Filtering algorithms

This appendix covers the description of some of the filtering algorithms that have been used
during the development of this thesis. It starts with the most basic of the employed recursive
filters, the Kalman filter. After it we introduce the Unscented Kalman Filter, a non-linear
extension that produces more accurate estimations that competing unimodal techniques, and
the Particle Filter as a representative of sample based algorithms. Figure A.1 shows these and
more filtering algorithms according to some of their features.

Figure A.1: Comparative chart of several filtering algorithms, considering two variables: how complex/power-
ful is the probability distribution used to described the estimated state of the system, and the expressiveness
of the prediction model supported by the filter.

138 A. Filtering algorithms

A.1 Kalman Filter

Takes its name from Rudolph Kalman, considered to be its creator and one of the first developers
of its theoretical basis. A Kalman Filter calculates the optimal state estimation for systems
whose temporal evolution is described by a linear process subject to a zero mean, gaussian
distributed noise, and where the state is partially observable through measures that can be
described as a linear transformation of the true state and are also affected by a random samples
distributed as a multivariate gaussian noise.

Prediction Prediction uses the state estimation at current time [x+
t ;P+

t], and calculates the
prior estimation of the state at next time step [x−t+1;P−t+1]. ”Prior“ means that this estimation
does not incorporate and observation at that instant. Prediction requires applying the following
equations:

x−t+1 = F�t · x+
t P
−
t+1 = F�t · P+

t · FT
�t + Q, wt ∼ N (0,Q) (A.1)

Matrix F�t represents the linear prediction process. It is used to explore how the state
vector x+

t changes, and also to know how state uncertainty P−t grows over time when no new
observations arrive. Term wt is the Gaussian-like plant/process noise, described by covariance
matrix Q.

Update Kalman Filter update process incorporates the information contained in an observation
yt into state estimation in order to correct the prior estimation and to reduce its uncertainty:

x+
t = x−t + Kt · etP+

t = (I − Kt · H) · P−t (A.2)

Measure function has to be a linear transformation of the real state, as required for the
prediction model. Thus, it can be represented by a matrix H that multiplies state vector
(or state covariance matrix) to project its information into the observation space. The term
et is known as ”innovation“. It is the difference between the actual observation yt and the
observation we could expect from prior state estimation:

et = (yt − H · x−t) (A.3)

Kt is known as Kalman gain matrix, and is calculated as:

Kt = P−t H
T · (HP−t HT + R)−1

, vt ∼ N (0,R) (A.4)

Where vt is the observation noise as described by covariance matrix R.

Constrained to linear problems, the Kalman Filter cannot be applied to a large number of
relevant problems. Many alternatives have been proposed to overcome this obstacle. In the

A.2. Unscented Kalman Filter 139

next sections we will explore two of them in detail: the Unscented Kalman Filter, also known
as ”Sigma-Point“ Kalman Filter, and the Particle Filter.

A.2 Unscented Kalman Filter

The UKF is a member of the Kalman family. As the basic Kalman filter (Welch and Bishop,
1995), it is a recursive algorithm that estimates the state x̂k of discrete-time dynamic system
composed by a mix of partially observable and hidden variables. The estimation is described
as multivariate Gaussian distribution with mean xk and covariance Pk . These filters use a
mathematical description of how the system evolves over time, the prediction model f (·):

x̂k+1 = f (x̂k , uk , vk) (A.5)

Where uk is an input that complements the prediction model but does not provide any
information about the state by itself, and vk ∼ N (0;Rv) represents a process noise distributed
as a Gaussian with mean zero and covariance matrix Rv .

A series of measurements are received over time:

ŷk = h(x̂k ,wk) (A.6)

Which are observations of the true state transformed by a known measurement model h(·)
and perturbed by a random sample of the observation noise wk ∼ N (0;Rw) with the same
restrictions applied to process noise. The information provided by such observations is integrated
into the state estimation during the update step.

The UKF (Uhlmann and Julier, 1997; Van der Merwe et al., 2000) is an extension of the
original algorithm that allows using nonlinear models. Given a L-dimensional state, this filter
uses a set of 2L + 1 weighted sample points χ –called sigma points– that are deterministically
chosen according to the mean xk and covariance Pk of the state estimation:

χ0 = xk (A.7)

χi = xk +
(√

(L + λ) · Pk

)
i

, i = 1, ... ,L (A.8)

χi = xk −
(√

(L + λ) · Pk

)
i

, i = L + 1, ... , 2L (A.9)

Where λ = α2(L+κ)−L is a scaling parameter, and constants α,κ are the spreading of the
sigma points around the mean and a secondary scaling parameter respectively.

√
((L+ λ) · Pk)

is a matrix square root, and (·)i represents its i -th column.

140 A. Filtering algorithms

These points are propagated using the prediction function χ(k + 1)− = f (χk , uk). The
new state probability distribution x(k + 1)−,P(k + 1)− are calculated as the weighted mean
and covariance of the sigma points:

x−k+1 =
∑

i=0..2L
Wm

i · χ−i (A.10)

P−k+1 =
∑

i=0..2L
W c

i · (χ−i − x−k+1)(χ−i − x−k+1)T (A.11)

Where the weights for the mean W
(
i (m)) and covariance W (

i (c)) are given by:

W
(m)
0 = λ/(L + λ) (A.12)

W
(c)
0 = λ/(L + λ) + (1− α2 + β) (A.13)

W
(m)
i = W

(c)
i = 1

2 · (L + λ) , i = 1, ... , 2L (A.14)

Being β a parameter that controls the shape of the distribution (β = 2 optimal for Gaussian
distributions).

Figure A.2: Advantages of the Unscented Transform over other linearization methods. Taken from (Wan
and Van Der Merwe, 2000).

The Unscented Kalman Filter models with great accuracy the result of a Gaussian distributed
state that is transformed by a non-linear process –some studies have shown that they keep

A.3. Particle Filter 141

3rd-order statistics of the real transformation–, using a fraction of the computational power
required by traditional sampling methods. Figure A.2 provides a visual comparison of the
Unscented transform process with the simpler (but extensively used) Extended Kalman Filter
and a sample based technique like the Particle Filter. For extended details on the basics of
Kalman-like filters in general and UKF in particular, the excellent (Van der Merwe et al., 2000;
Welch and Bishop, 1995) are recommended.

A.3 Particle Filter

Particle Filters, as formulated in the original work (Gordon et al., 1993), represents the most
general and powerful approach to the filtering problem. It is a good choice when the state
of the system follows a highly complex distribution (multimodality and discontinuities), its
temporal evolution or the observation model are highly non linear and/or stochastic, and the
uncertainties are also complex.

Particle filters are sequential recursive estimators based on Monte Carlo theory: they
approximate the real state probability distribution using a large number of random samples
They start with an estimation of the system state at time t, represented by a set of n particles:

p(xt)n ∼ xt ∼= x1
t , x

2
t , x

3
t , ... , x

n−1
t , xnt (A.15)

Where x it is the i−th particle used to approximate the probability distribution of the system
state. The prediction model f (·) is applied to each individual particle, x it+1 = f (x it) Prior state
estimation at next time step is represented by the new population of particles x̃−t+1, whose
distribution should be similar to the density function of the real state p(xt+1).

Each particle is assigned a weight proportional to the probability that particle has of
describing the real state. Actual state density is a combination of this weight with the
distribution of the particles in the state space (actual spatial density). The best estimation of
the state is calculated as the weighted average of the particles.

Computational cost is the principal drawback of Particle Filters. They can be used to
solve complex problems, but may require a huge number of particles to get accurate results.
Compared with the UKF, that needed 2L + 1 samples (where L is the dimensionality of state
space), a Particle Filter can require thousand of particles for problems with 4-6 dimensions
–navigation in 2D or 3D.

A.3.1 Formal description

This section explains how particle filters work, starting from the pure Bayesian theory of recursive
estimation –for which the Kalman-type filters are particular approximations–. From that point,

142 A. Filtering algorithms

we will discuss how Monte Carlo methods can be used to solve the estimation problem. Last,
we will explain the sampling and resampling techniques, that are used to reduce the number of
particles required to keep a good estimation of state probability distribution.

This section makes use of the following symbols (apart from those previously used):

• Yk = y1, y2, ... , yk−1, yk is the set of measures/observations up to instant k .

• Xk = x1, x2, ... , xk−1, xk is the set of states up to instant k

A.3.1.1 Recursive Bayes Estimation

The filtering problem is defined as knowing the state of a system at current time xk , given
all the available observations from the starting instant Yk . Since these observations are not
perfect (and maybe not even complete), the problem is redefined as calculating the probability
distribution of that state conditioned to the observed measures, p(xk |Yk). According to Bayes
theorem, this probability distribution can be expressed as:

p(xk |Yk) = p(Yk |xk) · p(xk)
p(Yk) (A.16)

We can extract last measure yk from the whole set, Yk = yk ,Yk−1, and reorganize terms as
following:

p(xk |Yk) = p(Yk |xk) · p(xk)
p(Yk) = p(yk ,Yk−1|xk) · p(xk)

p(yk ,Yk−1
(A.17)

= p(yk |xk ,Yk−1) · p(Yk−1|xk) · p(xk)
p(yk |Yk−1) · p(Yk−1)

Applying Bayes theorem to p(Yk−1|xk), we have:

p(xk |Yk) = ... = p(yk |xk ,Yk−1) · p(Yk−1|xk) · p(xk)
(p(yk |Yk−1) · p(Yk−1) (A.18)

= p(yk |xk ,Yk−1) · p(xk |Yk−1) · p(Yk−1) · p(xk)
p(yk |Yk−1) · p(Yk−1) · p(xk)

We can cancel common terms in numerator and denominator. Furthermore, observation
depend only in the state, so we can remove Yk−1 from the condition of the first term
(p(yk |xk ,Yk−1) = p(yk |xk). This gives the final result:

p(xk |Yk) = p(yk |xk) · p(xk |Yk−1)
p(yk |Yk−1) (A.19)

Where:

A.3. Particle Filter 143

• p(yk |xk) is the likelihood of an observation given current state. It is defined by the
observation model.

• p(xk |Yk−1) is state prior probability subject to the set of measures until the previous
time step. Can be expressed as

∫
p(xk |xk−1) · p(xk−1|Yk−1) dxk−1, being p(xk |xk−1) the

state probability distribution at current time step, conditioned to the state at previous
step. This last probability distribution is defined by the prediction function of the system.
Finally, p(xk−1|Yk−1) is the posterior probability of the state of the system at the previous
time step.

• p(yk |Yk−1) is the evidence. Can be calculated as
∫

(yk |xk) · p(xk |Yk−1) dxk .

The optimal solution to this problem involves solving some integrals. This is the point
where Monte Carlo theory can be used to make the problem tractable.

A.3.1.2 Perfect Monte Carlo method

We want to estimate a probabilistic state xk . With that purpose, we can evaluate the density
function p(xk |Yk) in concrete places of xk , but it is not possible to get an analytic expression
where we could apply continuous calculus tools:

E [xk] =
∫

(xk) · p(xk |Yk) dxk (A.20)

Monte Carlo theory transforms integrals into finite sums of random samples. We could
approximate the integral above by extracting random samples from i

k , so that they are mutually
independent and identically distributed to the probability distribution p(xk |Yk), and calculate
their average value:

E [xk] =
∫
xk · p(xk |Yk) dxk ≈

1
N

N∑
i=1

f (x ik), x ik ← i .i .d → p(xk |Yk) (A.21)

This value minimizes the mean square error to the random samples drawn and, thus, minimizes
the distance to the real state. This is illustrated in figure A.3.

A.3.1.3 Importance Sampling

Most times, however, generating samples according to posterior probability is either very costly
or not possible. ”Importance sampling“ is a suitable alternative: samples are extracted from a
different probability distribution q(xk |Yk) (receives the name of ”proposal distribution“) that is
easier to sample. Then, instead of taking the simple average of the samples, it calculates a

144 A. Filtering algorithms

Figure A.3: State estimation calculated as the mean value of random samples, drawn according to the
posterior probability distribution. Other solution, as the sample with a higher density (trying to find the
peak of the real density function) offers poor results with asymmetric probability distribution.

weighted mean according to the importance of each sample. Next we will develop this idea,
starting from the formulation above exposed for the estimation E [xk]:

E [xk] =
∫
f (xk) · p(xk |Yk) dxk =

∫
f (xk) · p(xk |Yk) · q(xk |Yk)

q(xk |Yk) dxk (A.22)

Applying Bayes to p(xk |Yk) yields:

E [xk] =
∫

f (xk) · p(xk |Yk) · q(xk |Yk)
q(xk |Yk) dxk =

∫
f (xk) · p(Yk |xk) · p(xk) · q(xk |Yk)

p(Yk) · q(xk |Yk) dxk

(A.23)
At this point, we are going to define weight (or importance) of a sample xk as:

wk(xk) = p(Yk |xk) · p(xk)
q(xk |Yk) (A.24)

Which allows to simplify the expression for the estimate into:

E [xk] =
∫

f (xk) · wk · xk · q(xk |Yk)
p(Yk) dxk (A.25)

Taking out parts that do not depend on the integration variable:

E [xk] = 1
p(Yk)

∫
f (xk) · wk · xk · q(xk |Yk) dxk (A.26)

A.3. Particle Filter 145

Now we can apply the substitution p(Yk) =
∫
p(Yk |xk) · p(xk) dxk , adding the term q(xk |Yk)/q(xk |Yk)

for the sake of simplicity. Result is:

p(Yk) =
∫

p(Yk |xk) · p(xk) · q(xk |Yk)
q(xk |Yk) dxk =

∫
wk(xk) · q(xk |Yk) dxk (A.27)

Which, applied to state estimation xk results in:

E [xk] =
∫
f (xk) · wk · xk · q(xk |Yk) dxk∫

wk · xk · q(xk |Yk) dxk
(A.28)

Monte Carlo theory transforms integrals into finite sums, as defined in the previous section:

E [xk] =
∫
f (xk) · wk · xk · q(xk |Yk) dxk∫

wk · xk · q(xk |Yk) dxk
≈

1
N

∑N
i=1

∫
f (x ik) · wk · x ik

1
N

∑N
i=1 wk · x ik

(A.29)

Although in this case the samples x ik must be distributed according to the proposal q(xk |Yk).
Using properties of sums, the expression can be transformed into:

E [xk] ≈
1
N

∑N
i=1 f (x ik) · wk · x ik

1
N

∑N
i=1 wk · x ik

=
∑N

i=1 f (x ik) · wk · x ik∑N
i=1 wk · x ik

=
N∑
i=1

f (x ik) · w̃k · x ik (A.30)

Being w̃k · x ik the normalized weights wk ·x ik∑N

i=1 wk ·x ik
. Thanks to working with Markovian

processes, we can transform weight calculation into a recursive formulation that does not need
the full series of measures but only the last one.

wk = wk−1
p(yk |xk) · p(xk |xk−1)

q(xk |Yk) (A.31)

As summary:

E [xk] =
N∑
i=1

f (x ik) · w̃k · x ik (A.32)

w̃k(x ik) = wk · x ik∑N
i=1 wk · x ik

(A.33)

wk = wk−1
p(yk |xk) · p(xk |xk−1)

q(xk |Yk) (A.34)

The last step is to select a suitable proposal distribution q(xk |Yk). The prior distribution

146 A. Filtering algorithms

of prediction function (| −1) is a very popular choice, because it simplifies weight update
expression into:

= −1
(|) · (| −1)

(|) = −1 · (|) (A.35)

However, its accuracy is low compared with other alternatives, because it does not incorporate
information from the last observation . The application of this distribution can increase the
variance of the population far above the optimal value, taking a large number of them into
zones with a very low density. As a result, the interesting parts of the probability function are
described by just a few particles, with a negative impact on the quality of results.

A.3.1.4 Resampling

The goal of a particle filter is to express the state probability distribution with maximum accuracy,
while reducing the number of particles to the minimum possible for keeping computational
requirements low. On the other hand, the variance of particle population grows unbounded
with time, leading to the problem of low-weighted particles we mentioned before. To avoid this
problem, the original design of Particle Filters include a step called population resampling. We
are going to explain this process using figure A.4, which is an adaptation of the classical work
taken from(Van der Merwe et al., 2000).

Figure A.4: Illustration of the sampling importance resampling process, inside the working cycle of a
particle filter. Adapted from (Van der Merwe et al., 2000).

A.3. Particle Filter 147

The population is resampled when weights variance grows over an acceptable limit. This
limit is often determined using the concept of “effective sample size” Ne� , applied when:

Ne� = 1∑N
i=1 (w i

k)2
> 0.5 (A.36)

There are numerous numerical methods that decide how population is resampled. Among
the most important, we can find systematic resampling, stratified resampling and residual
resampling. For more details, check(Douc and Cappe, 2005).

During the development of this thesis, we deepened in the study of resampling processes
for small-sized populations, applied to problems where process noise is small compared with
the density of particles. In those scenarios, particle filters suffer a problem known as sample
depletion, where particles no longer describe the state of the system with a sufficient accuracy.
For solving this problem, we proposed a technique called “Neighborhood-based Regularization
resampling” (Martí et al., 2011b,d). It improves the distribution of particles by filling empty
spaces between neighbor samples, reducing the required number of particles and avoiding
sample depletion in some scenarios.

148 A. Filtering algorithms

References

Angerman, W. S. (2004). Coming Full Circle with Boyd’s Ooda Loop Ideas: An Analysis of Innovation
Diffusion and Evolution. PhD thesis, Air Force Institute of Technology at Wright-Patterson Air Force
Base, Ohio.

Antos, S. A., Albert, M. V., and Kording, K. P. (2014). Hand, belt, pocket or bag: Practical activity
tracking with mobile phones. Journal of neuroscience methods, 231:22–30.

Azimirad, E. and Haddadnia, J. (2015). he Comprehensive Review on JDL Model in Data Fusion
Networks: Techniques and Methods. International Journal of Computer Science and Information
Security, 13(1):53–60.

Baldauf, M., Dustdar, S., and Rosenberg, F. (2007). A survey on context-aware systems. International
Journal of Ad Hoc and Ubiquitous Computing, 2(4):263.

Barbera, H., Skarmeta, A., Izquierdo, M., and Blaya, J. (2000). Neural networks for sonar and infrared
sensors fusion.

Bazire, M. and Brézillon, P. (2005). Understanding context before using it. In Dey, A., Kokinov, B.,
Leake, D., and Turner, R., editors, CONTEXT’05 Proceedings of the 5th international conference on
Modeling and Using Context, volume 3554 of Lecture Notes in Computer Science, pages 29–40, Berlin,
Heidelberg. Springer Berlin Heidelberg.

Bedworth, M. and O’Brien, J. (2000). The Omnibus model: a new model of data fusion? IEEE
Aerospace and Electronic Systems Magazine, 15(4):30–36.

Benaskeur, A., Mcguire, P., Brennan, R., Liggins, G., and Wojcik, P. (2007). A Distributed Intelligent
Tactical Sensor Management System. International Journal of Intelligent Control and Systems,
12(2):97–106.

Blasch, E., Garcia Herrero, J., Snidaro, L., Llinas, J., Seetharaman, G., and Palaniappan, K. (2013).
Overview of contextual tracking approaches in information fusion. In Pellechia, M. F., Sorensen, R. J.,
and Palaniappan, K., editors, SPIE Defense, Security, and Sensing, page 87470B. International Society
for Optics and Photonics.

Blasch, E. P. and Plano, S. (2002). JDL level 5 fusion model: user refinement issues and applications
in group tracking. In Kadar, I., editor, Proceedings of SPIE, volume 4729, pages 270–279. International
Society for Optics and Photonics.

Blázquez Gil, G., Berlanga, A., and Molina, J. M. (2012a). InContexto: Multisensor Architecture
to Obtain People Context from Smartphones. International Journal of Distributed Sensor Networks,
2012(2012):1–15.

150 6. References

Blázquez Gil, G., Luis Bustamante, A., Berlanga, A., and Molina, J. M. (2012b). ContextCare:
Autonomous Video Surveillance System Using Multi-camera and Smartphones. In Casillas, J., Martínez-
López, F. J., and Corchado Rodríguez, J. M., editors, Management Intelligent Systems. Advances in
Intelligent Systems and Computing, volume 171 of Advances in Intelligent Systems and Computing,
pages 47–56, Berlin, Heidelberg. Springer Berlin Heidelberg.

Boström, H., Andler, S. F., Brohede, M., Johansson, R., Karlsson, E., Van Laere, J., Niklasson, L.,
Nilsson, M., Persson, A., and Ziemke, T. (2007). On the definition of information fusion as a field
of research. Technical report, School of Humanities and Informatics, University of Skövde, Skövde,
Sweden.

Brickley, D. and Guha, R. (2004). RDF Vocabulary Description Language 1.0: RDF Schema.

Broekstra, J., Kampman, A., and Harmelen, F. V. (2002). Sesame: An Architecture for Storing and
Querying RDF Data and Schema Information. In Proceedings of the First International Semantic Web
Conference on The Semantic Web, pages 54–68. Springer-Verlag London, UK.

Bürger, T. and Simperl, E. (2008). Measuring the Benefits of Ontologies. In Meersman, R., Tari,
Z., and Herrero, P., editors, On the Move to Meaningful Internet Systems: OTM 2008 Workshops,
volume 5333 of Lecture Notes in Computer Science, pages 584–594. Springer Berlin Heidelberg, Berlin,
Heidelberg.

Caron, F., Duflos, E., Pomorski, D., and Vanheeghe, P. (2006). GPS/IMU data fusion using multisensor
Kalman filtering: introduction of contextual aspects. Information Fusion, 7(2):221–230.

Carpenter, G. A., Martens, S., and Ogas, O. J. (2005). Self-organizing information fusion and
hierarchical knowledge discovery: a new framework using ARTMAP neural networks. Neural Networks,
18(3):287–295.

Chae, H., Christiand, Choi, S., Yu, W., and Cho, J. (2010). Autonomous navigation of mobile robot
based on DGPS/INS sensor fusion by EKF in semi-outdoor structured environment. In 2010 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 1222–1227. IEEE.

Chan, H. (2004). An Intelligent Broker Architecture for Pervasive Context-Aware Systems. PhD thesis,
University of Mariland, Baltimore County.

Chao, H., Coopmans, C., Di, L., and Chen, Y. (2010). A comparative evaluation of low-cost IMUs
for unmanned autonomous systems. In 2010 IEEE Conference on Multisensor Fusion and Integration,
pages 211–216. IEEE.

Chen, H., Finin, T., and Joshi, A. (2003). An ontology for context-aware pervasive computing
environments. The Knowledge Engineering Review, 18(3):197–207.

Cilla, R., Patricio, M. a., Berlanga, A., and Molina, J. M. (2011). Improving the accuracy of action
classification using view-dependent context information. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6679 LNAI(PART
2):136–143.

Cohen, O. and Edan, Y. (2004). Adaptive fuzzy logic algorithms for sensor fusion mapping. In 2004
IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583), volume 3,
pages 2326–2331. IEEE.

6.3. References 151

Cohen, O. and Edan, Y. (2008). A sensor fusion framework for online sensor and algorithm selection.
Robotics and Autonomous Systems, 56(9):762–776.

Costa, P. D. (2007). Architectural Support for Context-Aware Applications. PhD thesis, Telematica
Instituut.

da Rocha, R. C. A., Endler, M., and de Siqueira, T. S. (2008). Middleware for ubiquitous context-
awareness. In Proceedings of the 6th international workshop on Middleware for pervasive and ad-hoc
computing - MPAC ’08, pages 43–48, New York, New York, USA. ACM Press.

D’Aquin, M., Nikolov, A., and Motta, E. (2010). How much semantic data on small devices? In
EKAW’10 Proceedings of the 17th international conference on Knowledge engineering and management
by the masses, pages 565–575. Springer-Verlag.

Dasarathy, B. (1997). Sensor fusion potential exploitation-innovative architectures and illustrative
applications. Proceedings of the IEEE, 85(1):24–38.

de Ley, E. and Jacobs, D. (2011). Rules-based analysis with JBoss Drools: adding intelligence to
automation. In Proceedings of ICALEPCS 2011.

Dey, A. K. (2000). Providing architectural support for building context-aware applications. PhD thesis,
Georgia Institute of Technology.

Ditzel, M., van der Broek, S., Hanckmann, P., and van Iersen, M. (2011). Dafne – a distributed and
adaptive fusion engine. In Corchado, E., Kurzyński, M., and Woźniak, M., editors, Proceedings 6th of
the Hybrid Artificial Intelligence Systems International Conference (HAIS), part 2, volume 6679, pages
100–109, Wroclaw, Poland. Springer Berlin Heidelberg.

Dixon, C., Mahajan, R., Agarwal, S., Brush, A. J., Lee, B., Saroiu, S., and Bahl, P. (2012). An
operating system for the home. In NSDI’12 Proceedings of the 9th USENIX conference on Networked
Systems Design and Implementation, page 25, Boston, MA. USENIX Association.

Douc, R. and Cappe, O. (2005). Comparison of resampling schemes for particle filtering. IEEE.

Durrant-Whyte, H. F. (1988). Sensor Models and Multisensor Integration. The International Journal
of Robotics Research, 7(6):97–113.

Dwiggins, B. H. (1968). Automotive steering systems. Delmar Publishers.

Engelmore, R. and Morgan, T. (1988). Blackboard Systems. Addison-Wesley Longman Publishing Co.,
Inc.

Franz, A., Mista, R., Bakken, D., Dyreson, C., and Medidi, M. (2002). Mr. Fusion: a programmable data
fusion middleware subsystem with a tunable statistical profiling service. In Proceedings International
Conference on Dependable Systems and Networks, pages 273–278. IEEE Comput. Soc.

Garcia, J., Gomez-Romero, J., Patricio, M., Molina, J., and Rogova, G. (2011). On the representation
and exploitation of context knowledge in a harbor surveillance scenario.

Gomez-Romero, J., Garcia, J., Kandefer, M., Llinas, J., Molina, J., Patricio, M., Prentice, M., and
Shapiro, S. (2010). Strategies and techniques for use and exploitation of Contextual Information in
high-level fusion architectures.

152 6. References

Gomez-Romero, J., Patricio, M., Garcia, J., and Molina, J. (2009). Ontological representation of
context knowledge for visual data fusion.

Gomez-Romero, J., Serrano, M. A., Garcia, J., Molina, J. M., and Rogova, G. (2014). Context-based
multi-level information fusion for harbor surveillance. Information Fusion, 21:173–186.

Gómez-Romero, J., Serrano, M. A., García, J., Molina, J. M., and Rogova, G. (2015). Context-based
multi-level information fusion for harbor surveillance. Information Fusion, 21:173–186.

Gomez-Romero, J., Serrano, M. A., Patricio, M. A., Garcia, J., and Molina, J. M. (2011). Context-based
scene recognition from visual data in smart homes: an Information Fusion approach. Personal and
Ubiquitous Computing, 16(7):835–857.

Gordon, N., Salmond, D., and Smith, A. (1993). Novel approach to nonlinear/non-Gaussian Bayesian
state estimation. Radar and Signal Processing, IEE Proceedings F, 140(2):107–113.

Gribble, S. D., Welsh, M., Brewer, E. A., and Culler, D. (1999). The multispace: an evolutionary
platform for infrastructural services. In ATEC ’99 Proceedings of the annual conference on USENIX
Annual Technical Conference, page 12. USENIX Association Berkeley.

Hafner, P., Wieser, M., and Kühtreiber, N. (2011). Quality Assessment of Different GNSS/IMS-
Integrations. Österreichische Zeitschrift für Vermessung & Geoinformation, pages 89–99.

Hall, D. D. L. and McMullen, S. A. H. (2004). Mathematical techniques in multisensor data fusion.
Artech House.

Han, H., Yu, J., Zhu, H., Chen, Y., Yang, J., Zhu, Y., Xue, G., and Li, M. (2014). SenSpeed: Sensing
Driving Conditions to Estimate Vehicle Speed in Urban Environments. In Proceedings of the IEEE
International Conference on Computer Communications.

Henricksen, K., Indulska, J., and A., R. (2002). Modeling Context Information in Pervasive Computing
Systems. In First International Conference on Pervasive Computing, pages 167–180. Springer-Verlag.

Higgins, W. (1975). A Comparison of Complementary and Kalman Filtering. IEEE Transactions on
Aerospace and Electronic Systems, AES-11(3):321–325.

Hilal, A. R. and Basir, O. A. (2014). A Scalable Sensor Management Architecture Using BDI Model
for Pervasive Surveillance. IEEE Systems Journal, PP(99):1–13.

Hong, J. and Landay, J. (2001). An Infrastructure Approach to Context-Aware Computing. Human-
Computer Interaction, 16(2):287–303.

Indulska, J. and Sutton, P. (2003). Location management in pervasive systems. In Conferences in
Research and Practice in Information Technology Series; Vol. 21, pages 143–151. Australian Computer
Society, Inc.

Kalman, R. E. (1960). A New Approach to Linear Filtering and Prediction Problems. Journal of Basic
Engineering, 82(1):35.

Klein, L. a. (1999). Sensor and Data Fusion Concepts and Applications. Society of Photo-Optical
Instrumentation Engineers (SPIE).

6.3. References 153

Kumar, R., Wolenetz, M., Agarwalla, B., Shin, J., Hutto, P., Paul, A., and Ramachandran, U. (2003).
DFuse : A Framework for Distributed Data Fusion. In Sensing Systems 2003, pages 114–125, Los
Angeles, California. ACM.

Lacy, L. W. (2005). Owl: Representing Information Using the Web Ontology Language. Trafford
Publishing.

Lee, H. and Zeigler, B. P. (2010). System Entity Structure Ontological Data Fusion Process Integrated
with C2 Systems. The Journal of Defense Modeling and Simulation: Applications, Methodology,
Technology, 7(4):206–225.

Li, M., Cai, W., and Tan, Z. (2006). A region-based multi-sensor image fusion scheme using pulse-
coupled neural network. Pattern Recognition Letters, 27(16):1948–1956.

Li, W. and Leung, H. (2003). Constrained unscented Kalman filter based fusion of GPS/INS/digital
map for vehicle localization. Intelligent Transportation Systems, 2003. . . . , pages 1362–1367.

Liggins, M. E., Llinas, J., and Hall, D. L. (2008). Handbook of Multisensor Data Fusion: Theory and
Practice. CRC Press, 2nd edition.

Liu, G. and Gingras, D. (2007). Adaptive and Reconfigurable Data Fusion Architectures in Vehicle
Positioning Navigation Systems. Technical report, Society of Automotive Engineers (SAE).

Llinas, J. (2010). A Survey and Analysis of Frameworks and Framework Issues for Information Fusion
Applications. In Graña Romay, Manuel and Corchado, Emilio and Garcia Sebastian, M., editor, Hybrid
Artificial Intelligence Systems, pages 14–23. Springer Berlin Heidelberg.

Llinas, J., Bowman, C., Rogova, G., Steinberg, A., Waltz, E., and White, F. (2000). Revisiting the
JDL Data Fusion Model II. Processing.

Markin, M., Harris, C., Bernhardt, J., Austin, M., Bedworth, P., Greenway, R., Johnston, R., Little, A.,
and Lowe, D. (1997). Technology Foresight on Data Fusion and Data Processing. Technical report,
Royal Aeronautical Society.

Martí, E., García, J., and Molina, J. (2011a). Opportunistic multisensor fusion for robust navigation in
smart environments. In User-Centric Technologies and Applications. Proceedings of CONTEXTS 2011
Workshop. Springer.

Martí, E., García, J., and Molina, J. M. (2011b). A Regularised Particle Filter for Context-Aware
Sensor Fusion Applications. In INFORMATIK 2011 - 41th Annual Conference of the Gesellschaft für
Informatik.

Martí, E. D., García, J., and Molina, J. M. (2011c). Context-awareness at the service of Sensor Fusion
Systems: Inverting the Usual Scheme. In Proceedings of the ISCIF Conference.

Martí, E. D., García, J., and Molina, J. M. (2011d). Neigborhood-based Regularization of Proposal
Distribution for Improving Resampling Quality in Particle Filters. In 14th International Conference on
Information Fusion (Fusion 2011), page 7, Chicago, USA.

Martí, E. D., Martín, D., García, J., de la Escalera, A., Molina, J. M., and Armingol, J. M. (2012).
Context-aided sensor fusion for enhanced urban navigation. Sensors (Basel, Switzerland), 12(12):16802–
37.

154 6. References

Maslov, I. V. and Gertner, I. (2006). Multi-sensor fusion: an Evolutionary algorithm approach.
Information Fusion, 7(3):304–330.

Morales, Y. (2008). Vehicle localization in outdoor woodland environments with sensor fault detection.
In 2008 IEEE International Conference on Robotics and Automation, pages 449–454. IEEE.

Morrison, A., Renaudin, V., Bancroft, J. B., and Lachapelle, G. (2012). Design and testing of a
multi-sensor pedestrian location and navigation platform. Sensors (Basel, Switzerland), 12(3):3720–38.

Murphy, R. (1998). Dempster-Shafer theory for sensor fusion in autonomous mobile robots. IEEE
Transactions on Robotics and Automation, 14(2):197–206.

Petovello, M. G., O’Driscoll, C., and Lachapelle, G. (2007). Ultra-Tight GPS/INS for Carrier Phase
Positioning in Weak Signal Environment. In Proceedings of the NATO RTO SET-104 Symposium on
Military Capabilities Enabled by Advances in Navigation Sensors.

Pozo, A., García, J., Patricio, M. A., and Molina, J. M. (2011). Group Behavior Recognition in
Context-Aware Systems. In Cabestany, J., Rojas, I., and Joya, G., editors, Advances in Computational
Intelligence, chapter Lecture No, pages 645–652. Springer Berlin Heidelberg, Berlin, Heidelberg.

Ravindra, B. and Wang, J. (2005). Ultra-tight GPS/INS/PL Integration: A System Concept and
Performance Analysis. GPS Solutions, 13(1):75–82.

Rezaei, S. and Sengupta, R. (2007). Kalman Filter-Based Integration of DGPS and Vehicle Sensors for
Localization. IEEE Transactions on Control Systems Technology, 15(6):1080–1088.

Ricquebourg, V. and Delahoche, L. (2008). Anomalies recognition in a context aware architecture
based on TBM approach. In Proceedings of the 11th International Confeerence on Information Fusion,
pages 63–70.

Salber, D., Dey, A. K., and Abowd, G. D. (1999). The context toolkit: aiding the development of
context-enabled applications. In Proceedings of the SIGCHI conference on Human factors in computing
systems the CHI is the limit - CHI ’99, pages 434–441, New York, New York, USA. ACM Press.

Sanchez, A., Patricio, M., Garcia, J., and Molina, J. (2007). Video tracking improvement using
context-based information. In 2007 10th International Conference on Information Fusion, pages 1–7.
IEEE.

Sasiadek, J., Wang, Q., and Zeremba, M. (2000). Fuzzy adaptive Kalman filtering for INS/GPS data
fusion. In Proceedings of the 2000 IEEE International Symposium on Intelligent Control. Held jointly
with the 8th IEEE Mediterranean Conference on Control and Automation (Cat. No.00CH37147), pages
181–186. IEEE.

Schilit, B. and Theimer, M. (1994). Disseminating active map information to mobile hosts. IEEE
Network, 8(5):22–32.

Shadbolt, N., Berners-Lee, T., and Hall, W. (2006). The Semantic Web Revisited. IEEE Intelligent
Systems, 21(3):96–101.

Sharaf, R., Noureldin, A., Osman, A., and El-Sheimy, N. (2005). Online INS/GPS integration with a
radial basis function neural network. IEEE Aerospace and Electronic Systems Magazine, 20(3):8–14.

6.3. References 155

Sheng, Q. and Benatallah, B. (2005). ContextUML: A UML-Based Modeling Language for Model-
Driven Development of Context-Aware Web Services Development. In International Conference on
Mobile Business (ICMB’05), pages 206–212. IEEE.

Shladover, S. E. (2009). Cooperative (Rather Than Autonomous) Vehicle-highway Automation Systems.
IEEE Intelligent Transportation Systems Magazine, 1(1).

Shulsky, A. M. and Schmitt, G. J. (2002). Silent Warfare: Understanding the World of Intelligence,
2nd ed. Brassey S, 3rd edition.

Snidaro, L., Visentini, I., Llinas, J., and Foresti, G. L. (2013). Context in fusion: some considerations
in a JDL perspective. In Proceedings of the 16th International Conference on Information Fusion,
pages 115–120, Istanbul. IEEE.

Solaiman, B. (1998). Multisensor/Contextual Data fusion through membership functions revision.
Application to land-cover SAR data classification. In Proceedings of the 1st International Conference
on Multisource-Multisensor Information Fusion, pages 673–680, Las Vegas. International Society of
Information Fusion.

Solano, M. A., Ekwaro-Osire, S., and Tanik, M. M. (2012). High-Level fusion for intelligence applications
using Recombinant Cognition Synthesis. Information Fusion, 13(1):79–98.

Steinberg, A. and Rogova, G. (2008). Situation and context in data fusion and natural language
understanding. In 11th International Conference on Information Fusion, pages 1–8, Cologne. IEEE.

Stover, J., Hall, D., and Gibson, R. (1996). A fuzzy-logic architecture for autonomous multisensor
data fusion. IEEE Transactions on Industrial Electronics, 43(3):403–410.

Strang, T. and Linnhoff-Popien, C. (2004). A Context Modeling Survey. In Workshop on Advanced Con-
text Modelling, Reasoning and Management, Sixth International Conference on Ubiquitous Computing,
pages 1–8.

Uhlmann, J. K. and Julier, S. J. (1997). A New Extension of the Kalman Filter to Nonlinear Systems.
In AeroSense: The 11th Int. Symp. Aerospace/Defense Sensing, Simul. and Controls, Orlando, FL.
SPIE.

Van der Merwe, R., de Freitas, N., Doucet, A., and Wan, E. (2000). The unscented particle filter.
Technical report, Cambridge University Engineering Department.

Waltz, E. L. and Llinas, J. (1990). Multisensor Data Fusion. Artech House, Inc.

Wan, E. and Van Der Merwe, R. (2000). The unscented Kalman filter for nonlinear estimation. In
Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control
Symposium (Cat. No.00EX373), pages 153–158. IEEE.

Wang, J.-H. and Gao, Y. (2005). Multi-sensor data fusion for land vehicle attitude estimation using a
fuzzy expert system. Data Science Journal, 4:127–139.

Wang, Z., Ma, Y., and Gu, J. (2010). Multi-focus image fusion using PCNN. Pattern Recognition,
43(6):2003–2016.

156 6. References

Weiser, M. (1999). The computer for the 21 st century. ACM SIGMOBILE Mobile Computing and
Communications Review, 3(3):3–11.

Welch, G. and Bishop, G. (1995). An Introduction to the Kalman Filter.

Wendel, J. and Trommer, G. F. (2004). Tightly coupled GPS/INS integration for missile applications.
Aerospace Science and Technology, 8(7):627–634.

Winograd, T. (2001). Architectures for Context. Human-Computer Interaction, 16(2):401–419.

Wu, H. (2003). Sensor Data Fusion for Context-Aware Computing Using Dempster-Shafer Theory.
PhD thesis, Carnegie Mellon University.

Zhang, P., Gu, J., Milios, E., and Huynh, P. (2005). Navigation with IMU/GPS/digital compass
with unscented Kalman filter. In IEEE International Conference Mechatronics and Automation, 2005,
volume 3, pages 1497–1502. IEEE.

