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An automatic dialog simulation technique to 
develop and evaluate interactive conversational 

agents
David Griol1, Javier Carbó, and José M. Molina

Group of Applied Artificial Intelligence (GIAA), Computer Science Department,
Carlos III University of Madrid, Leganés, Spain

During recent years, conversational agents have become a solution to provide straightforward and
more natural ways of retrieving information in the digital domain. In this article, we present an
agent based dialog simulation technique for learning new dialog strategies and evaluating con
versational agents. Using this technique, the effort necessary to acquire data required to train the
dialog model and then explore new dialog strategies is considerably reduced. A set of measures has
also been defined to evaluate the dialog strategy that is automatically learned and to compare
different dialog corpora. We have applied this technique to explore the space of possible dialog stra
tegies and evaluate the dialogs acquired for a conversational agent that collects monitored data
from patients suffering from diabetes. The results of the comparison of these measures for an initial
corpus and a corpus acquired using the dialog simulation technique show that the conversational
agent reduces the time needed to complete the dialogs and improve their quality, thereby allowing the
conversational agent to tackle new situations and generate new coherent answers for the situations
already present in an initial model.

INTRODUCTION

As we move toward a world where all the information is in the digital
domain, it becomes necessary to provide straightforward ways of retrieving
it. To achieve this goal, it is necessary to provide an effective, easy, safe,
and transparent interaction between the user and the system. Thus, it is
important to identify which modality or combination of modalities would
be optimal to present the information and to interact with the user. To
do so, in recent years there has been an increasing interest in simulating
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human-to-human communication, including the so-called conversational
agents in multiagents systems (McTear, 2004; López-Cózar and Araki, 2005).

Conversational agents have became a strong alternative for providing
computers with intelligent and natural communicative capabilities. A con-
versational agent is a software that accepts natural language as input and
generates natural language as output, engaging in a conversation with
the user. To successfully manage the interaction with the users, conversa-
tional agents usually carry out five main tasks: automatic speech recogni-
tion (ASR), natural language understanding (NLU), dialog management
(DM), natural language generation (NLG), and text-to-speech synthesis
(TTS).

Spoken interaction can be the only way to access information in some
cases, for example, when the screen is too small to display information
(e.g., hand-held devices) or when the eyes of the user are busy with other
tasks (e.g., driving; Weng et al., 2006). It is also useful for remote control of
devices and robots, especially in smart environments (Menezes et al., 2007).
One of the most wide-spread applications is information retrieval. Some
sample applications are tourist-and-travel information (Glass et al., 1995),
weather forecast over the phone (Zue et al., 2000), speech-controlled tele-
phone banking systems (Melin, Sandell, and Ihse 2001), conference help
(Bohus et al., 2007), and so forth. They have also been used for education
and training, particularly in improving phonetic and linguistic skills; assist-
ance and guidance to F18 aircraft personnel during maintenance tasks
(Bohus and Rudnicky, 2005); and dialog applications for computer-aided
speech therapy with different language pathologies (Vaquero et al., 2006).
Finally, one of the most demanding applications for fully natural and
understandable dialogs is embodied conversational agents and compa-
nions (Brahnam, 2009; Bailly, Raitt, and Elisei 2010).

The application of statistical approaches to the design of this kind of
agents, especially regarding the dialog management process, has attracted
increasing interest during the last decade (Young, 2002; Griol et al., 2008;
Paek and Horvitz, 2000; Williams and Young, 2007). Statistical models can
be trained from real dialogs, modeling the variability in user behaviors. The
final objective is to develop conversational agents that have a more robust
behavior and are easier to adapt to different user profiles or tasks.

The success of these approaches depends on the quality of the data
used to develop the dialog model. Considerable effort is necessary to
acquire and label a corpus with the data necessary to train a good model.
A technique that has currently attracted an increasing interest is based
on the automatic generation of dialogs between the dialog manager and
an additional module called the user simulator, which represents user inter-
actions with the conversational agent (Schatzmann et al., 2006; Paek and
Horvitz, 2000). This way, a very important application of the simulated
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dialogs is to support the automatic learning of optimal dialog strategies
(Schatzmann et al., 2006).

In this article, we present an agent-based dialog simulation technique
to automatically generate the data required to learn a new dialog model
for a conversational agent. We have applied our technique to explore dia-
log strategies for the DI@L-log conversational agent (Black et al., 2005),
designed to collect monitored data from patients suffering from diabetes.
In addition, a set of specific measures has been defined to evaluate the
main characteristics of the acquired data and the new dialog strategy that
can be learned from them. The results of the comparison of these measures
for an initial corpus and a corpus acquired using the dialog simulation
technique show how the quality of the dialog model is improved once
the simulated dialogs are incorporated.

The remainder of this article is organized as follows. Next section
reviews different approaches related to the simulation of multiagent sys-
tems. This section focuses on the description of statistical techniques for
user simulation and conversational agents. The third section of the paper
describes the proposed agent-based dialog generation technique. The fol-
lowing section describes the measures defined for the evaluation of our
proposal. The fifth section describes the practical application of our pro-
posal for the DI@L-log conversational agent. ‘‘Evaluation Results’’ shows
the results obtained for the different measures for an initial corpus and a
corpus acquired using the proposed dialog simulation technique. Some
conclusions and future work lines are described in the last section.

RELATED WORK

The study of multiagent systems (MAS) focuses on systems in which
many intelligent agents interact with each other. Agents are considered
to be autonomous entities characterized by a set of properties including
social ability, reactivity, and proactiveness (Wooldridge and Jennings, 1995).
The behavior of each of these agents determines the global operation and
evolution of the system. The specification of agents’ behaviors can be con-
sidered to be composed of two elements (Bandini, Manzoni, and Vizzari
2009), the representation of the set of agent actions and the environment
in which they are situated.

The term computer simulation is defined in Bandini, Manzoni, and
Vizzari (2009) as ‘‘the usage of a computational model to gain additional
insight into a complex system’s behavior (e.g., biological or social systems)
by envisioning the implications of the modeling choices, but also to evalu-
ate designs and plans without actually bringing them into existence in the
real world.’’
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Agent-based simulation (ABS) is a relatively recent modeling technique
widely used to model these complex systems with applications in many
disciplines ranging from logistics optimization (Weyns, Boucké, and
Holvoet 2006), biological systems (Bandini et al., 2006), traffic conditions
(Balmer and Nagel, 2006), pedestrian simulation (Ballinas-Hernández,
Muñoz-Melendez, and Rangel-Huerta 2011), urban planning and simula-
tion (Navarro, Flacher, and Corruble 2011), social sciences (Pavón et al.,
2008), and economics (Windrum, Fagiolo, and Moneta 2007). Detailed
studies can be found in Macal and North (2010); Bandini, Manzoni, and
Vizzari (2009); Heath, Hill, and Ciarallo (2009).

The use of ABS models can be attributed to different causes, for
instance, the system has still not fully completed, ethical reasons (e.g., the
safety of humans would be involved), practical reasons (e.g., reduce the time
and costs that are required to develop and evaluate the system), and so forth.

Despite this extreme heterogeneity of simulated realities and research
areas, the different approaches usually share the common viewpoint on
the modeled system based on the analytical unit as represented by an indi-
vidual agent acting and interacting with other entities in a shared environ-
ment (i.e., the overall system dynamics are defined in terms of the result of
individual agents’ actions and interactions). This way, models of this kind
are characterized by the presence of agents performing some kind of beha-
vior in a shared environment. Thus, the main elements in the simulation
model are agents with a possibly heterogeneous behavior, the environment
that provides perceptions and enables their actions, and mechanisms of
interaction among agents involving the exchange of information and the
effects of the perceptions and corresponding actions decided on by the
different agents.

Considering the growing interest of adapting agent-based approaches
to modeling and simulation, the number of software frameworks specifi-
cally aimed at supporting the realization of agent-based simulation systems
is not surprising. These kinds of frameworks often provide not only abstrac-
tions and mechanisms for the definition of agents and their environments,
but also additional functionalities for the management of the simulation,
its visualization, monitoring, and the acquisition of data about the simu-
lated dynamics. A first category of these platforms provides general-purpose
frameworks in which agents mainly represent passive abstractions interact-
ing in an overall simulation process (e.g., NetLogo; Wilensky and Rand,
2012). A second category of platforms is based on general-purpose pro-
gramming languages providing very similar support tools (e.g., Repast;
North, Collier, and Vos 2006). A third category of platforms represents
an attempt to provide a higher level linguistic support, trying to reduce
the distance between agent-based models and their implementations (e.g.,
SimSesam; Klügl, Herrler, and Oechslein 2003).
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User Modeling and Natural Language Processing

Research in techniques for user modeling has a long history within the
fields of language processing and conversational agents. The main purpose
of a simulated user in this field is to improve the usability of a conver-
sational agent through the generation of corpora of interactions between
the system and simulated users (Möller et al., 2006), reducing time and
effort required for collecting large samples of interactions with real users.
Moreover, each time changes are made to the system, it is necessary to
collect more data in order to evaluate the changes. Thus, the availability
of large corpora of simulated data should contribute positively to the devel-
opment of the system.

Simulated data can be used to evaluate different aspects of a conver-
sational agent, particularly at the earlier stages of development, or to deter-
mine the effects of changes to the system’s functionalities (e.g., evaluate
confirmation strategies or introduce errors or unpredicted answers in
order to evaluate the capacity of the dialog manager to react to unexpected
situations). A second usage is to support the automatic learning of optimal
dialog strategies using statistical methodologies. Large amounts of data are
required for a systematic exploration of the dialog state space, and corpora
of simulated data are extremely valuable for this purpose.

Two main approaches can be distinguished in the creation of simulated
users: rule based and data or corpus based. In a rule-based simulated user the
investigator can create different rules that determine the behavior of the sys-
tem (Chung, 2004; Lin and Lee, 2001; López-Cózar et al., 2003). This
approach is particularly useful when the purpose of the investigation is to
evaluate the effects of different dialog management strategies. In this way
the investigator has complete control over the design of the evaluation study.

An alternative approach, often described as corpus based or data based,
uses probabilistic methods to generate the user input, with the advantage
that this uncertainty can better reflect the unexpected behaviors of users
interacting with the system. Statistical models for modeling user behavior
have been suggested as the solution to the lack of the data that is required
for training and evaluating dialog strategies. Using this approach, the dia-
log manager can explore the space of possible dialog situations and learn
new, potentially better strategies. Methodologies based on learning user
intentions have the purpose of optimizing dialog strategies. A summary
of user simulation techniques for reinforcement learning of the dialog
strategy can be found in Schatzmann and colleagues (2006).

Studies done by Eckert, Levin, and Pieraccini (1997; 1998) introduced
the use of statistical models to predict the next user action by means of
an n-gram model. The proposed model has the advantage of being both
statistical and task independent. Its weak point consists of approximating
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the complete history of the dialog by a bigram model. In Levin, Pieraccinin
and Eckert (2000), the bigram model is modified by considering only a set
of possible user answers following a given system action (the Levin model).
Both models have the drawback of considering that every user response
depends only on the previous system turn. Therefore, the simulated user can
change objectives continuously or repeat information previously provided.

Scheffler and Young (2001a; 2001b) propose a graph-based model. The
arcs of the network symbolize actions, and each node represents user deci-
sions (choice points). In-depth knowledge of the task and great manual effort
are necessary for the specification of all possible dialog paths.

Pietquin and Dutoit combine characteristics of the Scheffler and Young
model and Levin model. The main objective is to reduce the manual effort
necessary for the construction of the networks (Pietquin and Dutoit 2005).
A Bayesian network is suggested for user modeling. All model parameters
are hand selected.

Georgila, Henderson, and Lemon propose the use of hidden Markov
models (HMMs), to define a more detailed description of the states and
consider an extended representation of the history of the dialog (Georgila,
Henderson, and Lemon 2005). Dialog is described as a sequence of
Information States (Bos et al., 2003). Two different methodologies are
described for selecting the next user action, given a history of information
states. The first method uses n-grams (Eckert, Levin, and Pieraccini 1997),
but with values of n from 2 to 5 to consider a longer history of the dialog.
The best results are obtained with 4-grams. The second methodology is
based on the use of a linear combination of 290 characteristics in order
to calculate the probability of every action for a specific state.

Cuayáhuitl and coauthors present a method for dialog simulation based
on HMMs in which both user and system behaviors are simulated
(Cuayáhuitl et al., 2005). Instead of training only a generic HMM model
to simulate any type of dialog, the dialogs of an initial corpus are grouped
according to the different objectives. A submodel is trained for each of
the objectives, and a bigram model is used to predict the sequence of
objectives.

A data-driven user intention simulation method that integrates diverse user
discourse knowledge (cooperative, corrective, and self-directing) is presented
in Jung and colleagues (2011). User intention modeling is based on logistic
regression and Markov logic framework. Human dialog knowledge is designed
into two layers, domain and discourse knowledge, and integrated with the
data-driven model in generation time. A methodology of user simulation
applied to the evaluation and refinement of stochastic dialog systems is pre-
sented in Torres, Sanchis, and Segarra (2008). The proposed user simulator
incorporates several knowledge sources, combining statistical and heuristic
information to enhance the dialog models by an automatic strategy learning.
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In Schatzmann and coauthors (2007), a new technique for user
simulation based on explicit representations of the user goal and the user
agenda is presented. The user agenda is a structure that contains the pend-
ing user dialog acts that are needed to elicit the information specified in
the goal. This model formalizes human–machine dialogs at a semantic level
as a sequence of states and dialog acts. An Expectation Maximization (EM)-
based algorithm is used to estimate optimal parameter values iteratively. In
Schatzmann, Thomson, and Young (2007), the agenda-based simulator is
used to train a statistical Partially Observable Markov Decision Processes
(POMDPs)-based dialog manager. The main drawback of this approach is
because of the large state space of practical spoken dialog systems, whose
representation is intractable if represented directly. Although POMDPs
outperform MDP-based dialog strategies, they are limited to small-scale
problems, because the state space would be huge, and exact POMDP
optimization is intractable (Williams and Young, 2007). As described in
the following section, our proposed dialog simulation technique is based
on iteratively building a statistical user and dialog model by modifying
the probabilities associated to each user and system response each time a
dialog is successfully simulated. A set of stop conditions is applied to
automatically discover whether a simulated dialog has completed the
predefined objectives.

OUR AGENT-BASED DIALOG SIMULATION TECHNIQUE

Our proposed architecture for providing context-aware services by means
of conversational agents is described in Griol and coauthors (2010). It con-
sists of five different types of agents that cooperate to provide an adapted
service. User Agents are configured into mobile devices or PDAs. Provider
Agents supply the different services in the system and are bound to Conver-
sational Agents that provide the specific services. A Facilitator Agent links the
different positions to the providers and services defined in the system. A
Positioning Agent communicates with the Aruba positioning system to
extract and transmit positioning information to other agents in the system
(Sánchez-Pi et al., 2007). Finally, a Log Analyzer Agent generates user profiles
that are used by Conversational Agents in order to adapt their behavior,
taking into account the preferences detected in the users’ previous dialogs.

The interaction with the different agents follows a process that consists
of the following phases:

1. The Aruba positioning system is used to extract information about the
positions of the different agents in the system. This way, it is possible to
know the positions of the different User Agents and thus extract
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information about the Conversational Agents that are available in the
current location.

2. The Positioning Agent reads the information about position (coordi-
nates x and y) and place (Building and Floor) provided by the Aruba
Positioning Agent by reading it from a file, or by processing manually
introduced data.

3. The Positioning Agent communicates the position and place informa-
tion to the User Agent.

4. Once a User Agent is aware of its own location, it communicates this
information to the Facilitator Agent in order to find out the different
services available in that location.

5. The Facilitator Agent informs the User Agent about the services avail-
able in this position.

6. The User Agent selects the services in which it is interested.
7. Once the User Agent has selected a specific service, it communicates its

decision to the Facilitator Agent and queries it about the service provi-
ders that are available.

8. The Facilitator Agent informs the User Agent about the identifier of
the Conversational Agent that supplies the required service in the
current location.

9. The User Agent asks the Conversational Agent for the required service.
10. Given that the different services are provided by context-aware Conver-

sational Agents, they ask the User Agent about the context information
that would be useful for the dialog. The User Agent is never forced to
transmit its personal information and preferences. This is only a
suggestion to customize the service provided by means of the Conver-
sational Agent.

11. The User Agent provides the context information that has been
required.

12. The conversational agent manages the dialog, providing an adapted
service by means of the context information that it has received.

13. Once the interaction with the Conversational Agent has finished, the
Conversational Agent reads the contents of the log file for the dialog
and sends this information to the Log Analyzer Agent.

14. The Log Analyzer Agent stores this log file and generates a user profile
to personalize future services. This profile is sent to the Conversational
Agent.

In this article, we focus on the simulation of the User and Conversa-
tional Agents to acquire a dialog corpus. In our dialog generation tech-
nique, both agents use a random selection of one of the possible
responses defined for the semantics of the task (expressed in terms of
user and system dialog acts). At the beginning of the simulation, the set
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of system responses is defined as equiprobable. When a successful dialog is
simulated, the probabilities of the answers selected by the the conver-
sational agent simulator during that dialog are incremented before begin-
ning a new simulation.

One of the main problems that must be considered during the interac-
tion with a Conversational Agent is the propagation of errors through the
different modules in the system. The recognition module must deal with
the effects of spontaneous speech and with noisy environments; consequ-
ently, the sentence provided by this module could incorporate some errors.
The understanding module could also add its own errors (which are mainly
a result of the lack of coverage of the semantic domain). Finally, the sem-
antic representation provided to the dialog manager might also contain
certain errors. Therefore, it is desirable to provide the dialog manager with
information with regard to the parts of the user utterance that have been
clearly recognized and understood and the parts that have not.

In our proposal, the user simulator provides the Conversational Agent with
the semantic representation associated to the user input together with its con-
fidence scores (Garcı́a et al., 2003). To do this, an Error Simulation Agent has
been implemented to include semantic errors in the generation of dialogs.
This agent modifies the dialog acts provided by the user agent simulator once
it has selected the information to be provided to the user. In addition, the
error simulation module adds a confidence score to each concept and attri-
bute in the semantic representation generated for each user turn.

For the study presented in this article, we have improved this agent
using a model for introducing errors based on the method presented in
Schatzmann and coauthors (2007). The generation of confidence scores
is carried out separately from the model employed for error generation.
This model is represented as a communication channel by means of a
generative probabilistic model P ðc; au j ~aauÞ, where au is the true incoming
user dialog act, ~aau is the recognized hypothesis, and c is the confidence
score associated with this hypothesis.

The probability P ð~aau j auÞ is obtained by maximum-likelihood using the
initial labeled corpus acquired with real users, and it considers the recog-
nized sequence of words wu and the actual sequence uttered by the user
~wwu. This probability is decomposed into a component that generates a
word-level utterance from a given user dialog act, a model that simulates
ASR confusions (learned from the reference transcriptions and the ASR
outputs), and a component that models the semantic decoding process.

P ð~aaujauÞ ¼
X
~wwu

P ðauj ~wwuÞ
X
wu

P ð~wwujwuÞPðwujauÞ:

Confidence score generation is carried out by approximating
P ðc j ~aau; auÞ, assuming that there are two distributions for c. These two
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distributions are handcrafted, generating confidence scores for correct and
incorrect hypotheses by sampling from the distributions found in the train-
ing data corresponding to our initial corpus.

P ðcjaw; ~aauÞ ¼
P corr ðcÞ if ~aau ¼ au

P incorr ðcÞ if ~aau 6¼ au

�
:

The conversational agent simulator considers that the dialog is
unsuccessful when one of the following conditions takes place:

. The dialog exceeds a maximum number of system turns slightly higher
than the average number of turns of the dialogs acquired with real users.

. The answer selected by the dialog manager in the conversational agent
simulator corresponds to a query not made by the user simulator.

. A query to the database generates an error because the user agent simu-
lator has not provided the mandatory data needed to carry out the query.

. The answer generator generates an error when the answer selected by the
conversational agent simulator involves the use of a data item not pro-
vided by the user agent simulator.

A user request for closing the dialog is selected once the conversational
agent simulator has provided the information defined in its objective(s).
The dialogs that fulfill this condition before the maximum number of turns
are considered successful. Figure 1 shows the complete architecture for the
proposed dialog simulation technique.

FIGURE 1 Graphical scheme of the proposed agent based dialog simulation technique.
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MEASURES DEFINED FOR THE EVALUATION

For the evaluation of the quality of the dialogs provided by a conversati-
onal agent, we have defined a set of quantitative evaluation measures based on
prior work in the dialog literature (Schatzmann, Georgilia, and Young 2005; Ai
et al., 2007). This set of proposed measures can be divided into two types.

1. High-level dialog features: These features evaluate how long the dialogs
last, how much information is transmitted in individual turns, and how
active the dialog participants are.

2. Dialog style=cooperativeness measures: These measures analyze the fre-
quency of different speech acts and study what proportion of actions is
goal directed, what part is taken up by dialog formalities, and so on.

Six high-level dialog features have been defined for the evaluation of
the dialogs: the average number of turns per dialog, the percentage of dif-
ferent dialogs without considering the attribute values, the number of repe-
titions of the most seen dialog, the number of turns of the most seen
dialog, the number of turns of the shortest dialog, and the number of turns
of the longest dialog. Using these measures, we tried to evaluate the success
of the simulated dialogs as well as their efficiency and variability.

For dialog style features, we have defined and counted a set of system=
user dialog acts. On the system side, we have measured the confirmation of
concepts and attributes, questions to require information, and system
answers generated after a database query. On the user side, we have mea-
sured the percentage of turns in which the user carries out a request to
the system, provides information, confirms a concept or attribute, supplies
Yes=No answers, and other answers not included in the previous categories.

Finally, we have evaluated the behavior of our system with real users
considering the following measures for the evaluation:

1. Successful dialogs. This is the percentage of successfully completed
tasks. In each dialog, the user has to obtain one or several items of infor-
mation, and the dialog success depends on whether the system provides
correct data or incorrect data to the user.

2. Average number of turns per dialog (nT).
3. Confirmation rate. It was computed as the ratio between the number

of explicit confirmations turns (nCT) and the number of turns in the
dialog (nCT=nT).

4. Average number of corrected errors per dialog (nCE). This is the aver-
age of errors detected and corrected by the dialog manager. We have
considered only those errors that modify the values of the attributes
and that could cause the failure of the dialog.
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5. Average number of uncorrected errors per dialog (nNCE). This is the
average number of errors not corrected by the dialog manager. Again,
only errors that modify the values of the attributes are considered.

6. Error correction rate (%ECR). The percentage of corrected errors,
computed as nCE= (nCEþnNCE).

CASE APPLICATION: THE DI@L-LOG CONVERSATIONAL AGENT

DI@L-log is a spoken conversational agent that acts as a voice logbook
to collect home-monitored data from patients suffering from Type-2 dia-
betes (Black et al., 2005). The data collected by the system are the patient’s
weight, blood pressure (systolic and diastolic values), and sugar levels. The
system validates and analyzes the data, providing some immediate feedback
to the patients regarding their current progress as well as communicating
the results to doctors at the hospital who are able to review the patient’s
progress graphically and deal with any alerts generated by the system.

To apply our dialog simulation technique to this task, the definition of
the semantics was carried out considering the information that is required
to monitor the patients and inform them about their condition. Taking
into account the requirements of the task, an initial strategy was designed
for the DM. Figure 2 shows an example of a dialog acquired using this
strategy.

As can be observed, three different phases are present in every dialog.
First, there is an identification phase in which the system asks the user
about his login and password and then waits until the user says that he is
ready to provide the control data (S1 and S2 system turns). Second, the sys-
tem analyzes which data are required for the current user, taking into
account that the weight and sugar values are mandatory and the blood con-
trol is carried out only for specific patients (S3 to S10 system turns). In this
phase, the system requires the user to provide this data. Every item is con-
firmed after the user has provided its value. The user can provide only one
item at a time. In the last phase, the system consults the information that
the patient has provided during the current dialog and compares it with
the data that are present in a database that contains the values that were
provided in previous dialogs. By means of this comparison, the system is
able to inform the user about his=her condition and provide instructions
that take this into account (S11 system turn).

A corpus of 100 dialogs was acquired using this strategy. In order to
learn statistical models, the dialogs of the corpus were labeled in terms
of dialog acts. In the case of user turns, the dialog acts correspond to the
classical frame representation of the meaning of the utterance. For the
DI@L-log task, we defined three task-independent concepts (Affirmation,
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Negation, and Not-Understood) and four attributes (Weight, Sugar, Systolic-
Pressure, and Diastolic-Pressure).

The labeling of the system turns is similar to the labeling defined for the
user dialog acts. A total of twelve task-dependent concepts was defined,
corresponding to the set of concepts used by the system to acquire each of
the user variables (Weight, Sugar, Systolic-Pressure, and Diastolic-Pressure),
concepts used to confirm the values provided by the user (Confirmation-
Weight, Confirmation-Sugar, Confirmation-Systolic, and Confirmation-Diastolic),
concepts used to inform the patient about his condition (Inform), and three
task-independent concepts (Not-Understood, Opening, and Closing).

EVALUATION RESULTS

By employing the previously described agent-based architecture for dia-
log simulation, a set of 100,000 automatically labeled dialogs was acquired
for the DI@-log task. Table 1 summarizes the statistics of the acquisition of
this simulated corpus. A set of 11 different scenarios was defined to specify

FIGURE 2 An example of a dialog for the DI@L log task.
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the objectives of the simulation, taking into account whether the pressure
values are necessary and different possibilities for the generation of errors
and confidence measures. Given that the first and third phases of the dia-
log are mandatory and they always have the same structure, only the second
phase in which the system collects the different values to monitor patients
was taken into account for the simulation.

Figure 3 shows an example of a dialog from the acquired corpus. The
objective defined for the dialog was to collect the weight, sugar, and press-
ure values. The values defined in the scenario are 12, 11, 160, and 80,
respectively. Confidence scores generated by the error simulator agent
are shown between brackets. A sentence in natural language, which is
equivalent to the labeled system turn selected by the conversational agent
simulator, has been incorporated to clarify the explanation.

In this dialog, the conversational agent simulator begins asking the user
about his weight. Because a low confidence measure is introduced for the
value provided by the user agent simulator in U1, the conversational agent
simulator decides to confirm this value in S2. Then, this agent asks for the

TABLE 1 Statistics of the Corpus Acquisition for the DI Log System

Simulated dialogs 100,000
Successful dialogs 27,521
Different dialogs 1,573

FIGURE 3 A dialog extracted from the simulated corpus of the DI@L log task.
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sugar value. The user agent simulator provides this value in U3 and a high
confidence measure is assigned.

The conversational agent simulator asks for the systolic pressure in S4.
An error is introduced in the value provided by the error simulator agent
for this parameter (it changes 160 to 150) and a low confidence measure
is assigned to this value. Then, the conversational agent simulator asks
the user agent simulator to confirm this value. The user agent simulator
rejects this value in U5 and the conversational agent simulator decides to
ask for it again. Finally, the conversational agent simulator asks for the dias-
tolic pressure. This value is correctly introduced by the user agent simulator
and the error simulator agent also assigns a high confidence level. Then,
the conversational agent simulator obtains the data required from the
patient; next, the third phase of the dialog carries out the analysis of the
condition of the patient and finally, it informs him.

High-Level Dialog Features

The first group of experiments covers the following statistical proper-
ties to evaluate the quality of the dialogs obtained using different dialog
strategies: (1) dialog length, measured as the number of turns per task;
number of turns of the shortest dialog; number of turns of the longest dia-
log; and number of turns of the most seen dialog; (2) different dialogs in
each corpus, measured as the percentage of different dialogs (different
labeling and=or order of dialog acts) and the number of repetitions of
the most observed dialog; (3) turn length, measured as the number of
actions per turn; (4) participant activity, measured as the ratio between sys-
tem and user actions per dialog. Table 2 shows the comparison of the dif-
ferent high-level measures for the initial corpus and the corpus acquired
incorporating the successfully simulated dialogs.

The first improvement that can be observed is the reduction in the
number of turns. This reduction can also be observed in the number of
turns of the longest, shortest, and most-seen dialogs. These results show

TABLE 2 Results of the High Level Dialog Features Defined for the
Comparison of the Dialogs for the Initial and Final Strategy

Initial strategy Final strategy

Average number of turns per dialog 12.9� 2.3 7.4� 1.6
Percentage of different dialogs 62.9% 78.3%
Repetitions of the most seen dialog 18 3
User turns of the most seen dialog 9 7
User turns of the shortest dialog 7 5
User turns of the longest dialog 13 9
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that improving the dialog strategy makes it possible to reduce the number
of necessary system actions. The greater variability of the resulting dialogs
can be observed in the higher percentage of different dialogs and less repe-
titions of the most-seen dialog obtained with the final dialog strategy.

We have observed that there is also a slight increment in the mean
values of the turn length for the dialogs acquired with the final strategy.
These dialogs are statistically longer; they showed 1.6 actions per user turn
instead of the 1.3 actions observed in the initial dialogs. This is also a result
of the better selection of the system actions. Regarding the dialog partici-
pant activity, Figure 4 shows the ratio of user-versus-system actions. Dialogs
in the final corpus have a higher proportion of system actions because the
systems needs to make a smaller number of confirmations.

Dialog Style and Cooperativeness

The experiments described in this section cover the following statistical
properties: frequency of different user and system actions (dialog acts) and
proportion of goal-directed actions (request and provide information) ver-
sus grounding actions (confirmations). We consider as well the remaining
possible actions. The histograms in Figure 5 show the frequency of the most
dominant user and system dialog acts in the initial and final strategy. In
both cases, significant differences in the dialog acts distribution can be
observed.

With regard to user actions, it can be observed that users need to
employ fewer confirmation turns in the final strategy, which explains the
higher proportion for the rest of user actions in this strategy. It also
explains the lower proportion of Yes=No answers in the final strategy, which
are mainly used to confirm that the system’s service has been correctly pro-
vided. With regard to the system actions, it can be observed that there is a
reduction in the number of system requests for data items. This explains a

FIGURE 4 Ratio of user versus system actions (color figure available online).
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higher proportion of turns to inform and confirm data items in the dialogs
of the final strategy.

Finally, we grouped user and system actions into categories in order to
compare turns to request and provide information (goal-directed actions)
versus turns to confirm data items and make other actions (grounding
actions), as shown in Figure 6. This study also shows the better quality of
the dialogs in the final strategy, given that the proportion of goal-directed
actions is higher in these dialogs.

FIGURE 5 Histogram of (a) user dialog acts and (b) system dialog acts (color figure available online).

FIGURE 6 Proportions of dialog spent on goal directed actions, ground actions, and the rest of
possible actions (color figure available online).
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Evaluation with Real Users

Finally, we evaluated the behavior of our system with real users using
the same set of scenarios designed for the user simulation. A total of 150
dialogs were recorded from interactions of six users employing the initial
and final dialog strategies. The evaluation was carried out by students
and lecturers in our department. The results of the objective evaluation
presented in Table 3 show that both systems could interact correctly with
the users in most cases. However, the final system obtained a higher success
rate, improving the results achieved with the initial strategy by 6% absolute.
Using the final system, the average number of required turns is also
reduced from 13.5 to 9.3. These values are slightly higher for both systems
because in some dialogs the real users provided additional information,
which was not mandatory for the corresponding scenario, or asked for
additional information not included in the definition of the scenario once
its objectives were achieved.

The confirmation and error correction rates were also improved by the
final system, as the learned strategy makes possible to require less
information from the user, reducing the probability of introducing ASR
errors. The main problem detected was that when there was a user input
misrecognized with a very high ASR confidence, this erroneous infor-
mation was forwarded to the dialog manager. However, as the success rate
shows, this fact did not have a considerable impact on the conversational
agent operation.

CONCLUSIONS

In this article, we have described a technique for exploring dialog stra-
tegies in conversational agents. Our technique is based on an automatic
dialog simulation technique to generate the data that is required to retrain
a dialog model. Dialogs are automatically labeled during the simulation,
using the semantics defined for the task. Successfully simulated dialogs
are automatically detected by means of the definition of a set of stop con-
ditions. The only requirements for applying our proposal are the definition
of the semantics of the task and this set of stop conditions. Thus, the adap-
tation to a new task is simplified. In addition, conversational agents are

TABLE 3 Results of the Objective Evaluation of the Initial and Final Dialog Strategies with Real
Users

Successful dialogs nT Confirmation rate ECR nCE nNCE

Initial strategy 91% 13.5 33% 82% 0.84 0.18
Final strategy 97% 9.3 25% 91% 0.88 0.09
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integrated into an architecture in which different agents cooperate to pro-
vide context-aware services by means of this kind of agents.

We have applied our proposal to the DI@L-log conversational agent,
which acts as a voice logbook to collect home-monitored data from patients
suffering from Type-2 diabetes. Different measures have been defined to
evaluate high-level dialog features, dialog style and cooperativeness, and
statistics of the acquired dialog corpora.

The results of the evaluation show that the proposed methodology can
be used to automatically explore new enhanced dialog strategies. Carrying
out these tasks with a nonautomatic approach would require a very high
cost that sometimes is not affordable. By means of the simulated dialogs,
the conversational agent reduces the time needed to completely fulfill the
dialogs, thereby allowing the conversational agent to tackle new situations
and generate new coherent answers for the situations already present in an
initial model. This way, the conversational agent can ask for the required
information using different orders, confirm these information items taking
into account the confidence scores, reduce the number of system turns for
the different kinds of dialogs, automatically detect different valid paths to
achieve each of the required objectives, and so forth.

As a future work, we are adapting a previously developed statistical dia-
log management technique to learn a dialog manager for this task and
evaluate the complete agent-based architecture with real users. We also
want to evaluate the influence of taking into account different context
information sources to improve the operation of an MAS developed with
our proposed architecture. Finally, we want to apply our proposal to more
difficult domains.
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Griol, D., N. Sánchez Pi, J. Carbó, and J. Molina. 2010. An architecture to provide 31 context aware
services by means of conversational agents. Advances in Intelligent and Soft Computing
79:275 282.

Heath, B., R. Hill, and F. Ciarallo. 2009. A survey of agent based modeling practices (January 1998 to
July 2008). Journal of Artificial Societies and Social Simulation 12 (4): 9.

Jung, S., C. Lee, K. Kim, D. Lee, and G. Lee. 2011. Hybrid user intention modeling to diversify dialog
simulations. Computer Speech and Language 25 (2): 307 326.
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López Cózar, R., A. D. la Torre, J. Segura, A. Rubio, and V. Sánchez. 2003. Assessment of dialogue
systems by means of a new simulation technique. Speech Communication 40 (3): 387 407.

Macal, C., and M. North. 2010. Tutorial on agent based modelling and simulation. Journal of Simulation
4:151 162.

20



McTear, M. F. 2004. Spoken dialogue technology: Towards the conversational user interface. London, UK:
Springer Verlag.

Melin, H., A. Sandell, and M. Ihse. 2001. CTT bank: A speech controlled telephone banking system an
initial evaluation. In TMH Quarterly Progress and Status Report (TMH QPSR) 1:1 27.

Menezes, P., F. Lerasle, J. Dias, and T. Germa. 2007. Humanoid robots, humanlike machines. Towards
an interactive humanoid companion with visual tracking modalities, 367 398. Advanced Robotic
Systems Int. and I Tech Education and Publishing.
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Pavón, J., C. Sansores, J. Gómez, and F. Wang. 2008. Modelling and simulation of social systems with
INGENIAS. International Journal of Agent Oriented Software Engineering 2 (2):196 221.

Pietquin, O., and T. Dutoit. 2005. A probabilistic framework for dialog simulation and optimal strategy
learning. IEEE Transactions on Speech and Audio Processing, Special Issue on Data Mining of Speech, Audio
and Dialog 14:589 599.
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