
This is a postprint version of the following published document:

Rosa, T. de la, S., García-Olaya, A., Borrajo, D. (2013). A case-based
approach to heuristic planning. Applied Intelligence, vol. 39, no. 1, pp. 184-
201. Avalaible in http://dx.doi.iorg/10.1007/s10489-012-0404-6

© 2013 Springer

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/30276805?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://link.springer.com/journal/10489�
http://dx.doi.iorg/10.1007/s10489-012-0404-6�
http://e-archivo.uc3m.es/

A case-based approach to heuristic planning

Tomás de la Rosa · Angel García-Olaya · Daniel Borrajo

Abstract Most of the great success of heuristic search as
an approach to AI Planning is due to the right design
of domain-independent heuristics. Although many heuris-
tic planners perform reasonably well, the computational cost
of computing the heuristic function in every search node is
very high, causing the planner to scale poorly when increas-
ing the size of the planning tasks. For tackling this prob-
lem, planners can incorporate additional domain-dependent
heuristics in order to improve their performance. Learning-
based planners try to automatically acquire these domain-
dependent heuristics using previous solved problems. In
this work, we present a case-based reasoning approach that
learns abstracted state transitions that serve as domain con-
trol knowledge for improving the planning process. The rec-
ommendations from the retrieved cases are used as guidance
for pruning or ordering nodes in different heuristic search al-
gorithms applied to planning tasks. We show that the CBR
guidance is appropriate for a considerable number of plan-
ning benchmarks.

Keywords Case-based reasoning · Automated planning ·
Search algorithms

T. de la Rosa (�) · A. García-Olaya · D. Borrajo
Departamento de Informática, Universidad Carlos III de Madrid,
Av. Universidad 30, Leganés, Madrid, Spain
e-mail: trosa@inf.uc3m.es

A. García-Olaya
e-mail: agolaya@inf.uc3m.es

D. Borrajo
e-mail: dborrajo@ia.uc3m.es

1 Introduction

Automated Planning is an area of the Artificia Intelli-
gence focused on findin solutions to problems in a domain-
independent way. A planning problem is a computational
task whose inputs are a set of actions that can be applied
in the environment, an initial state and a set of goals to be
reached. The aim of Automated Planning is to fin a plan
that transforms the initial state of the environment into a dif-
ferent state where the goals are met. Automated Planning
systems have been successfully applied to real world prob-
lems such as planning space missions [21], management of
fir extinctions [4], control of underwater vehicles [20] or
web service compositions [18]. Heuristic search in the state
space is one of the most successful approaches to solve au-
tomated planning problems. Heuristics in planning are com-
puted in a domain-independent way, using information ex-
tracted from the domain definition the state to be evaluated,
and the goal set. These heuristics usually estimate the dis-
tance between the current state and a state where goals are
achieved. The estimate is used as guidance for selecting the
next node in a search algorithm. Many heuristic planners in-
tegrate this basic idea. They derive heuristics from the relax-
ation of action negative effects such as [15] and [3]; or from
causal graphs, such as [13]. Some other researchers have de-
veloped techniques for complementing or modifying these
planners, such as [5, 22, 26].

Although heuristic planners perform reasonably well in
many benchmark domains, they suffer from scalability prob-
lems due to the computational cost of computing the heuris-
tic. Indeed, these planners spend most of the planning time
computing the heuristic function, since they have to obtain
an estimate for every node in the search process. Usually,
a single heuristic estimation can be computed in polynomial
time. However, the total planning time grows exponentially

1

because the number of expanded states grows exponentially
too and the search algorithm needs to evaluate all of them,
including non-interesting ones (i.e., nodes that do not appear
in any solution plan). The problem of useless node evalua-
tions are exacerbated in domains where the heuristic func-
tion is misleading or has poor quality. To tackle this problem
different learning techniques have been used to improve the
performance of planners. In fact, the community has a re-
newed interest for applying machine learning techniques to
state-of-the-art planners. An example of this interest is the
Learning Track organized in the 2008 International Plan-
ning Competition (IPC). The system CABALA [8], one of
the competitors, was based on the ideas presented next.

In this article we present a learning technique that
acquires domain-dependent knowledge from previously
solved plans, with the aim of helping planning algorithms
to avoid useless node evaluations. We have developed this
technique using a Case-Based Reasoning (CBR) approach.
We store the experience provided by solving previous easy
problems, and then, when a new problem is being solved,
we retrieve the most similar situation in order to recom-
mend most promising nodes for the search algorithm to ex-
plore. These recommendations allow search algorithms to
skip some useless node evaluations and therefore speed up
the search. We also present the evaluation of this approach in
eight planning benchmarks. The results show that the tech-
nique is useful for improving heuristic planners, especially
when they are using greedy search algorithms.

In the following sections we describe the approach, or-
ganized as follows. The next section explains the plan-
ning model. Then, we formalize the representation used for
domain-dependent knowledge. Afterward, we explain the
cycle of reasoning from a CBR perspective [1]. In that sec-
tion, we explain how the learned knowledge is used in differ-
ent heuristic algorithms. Then, we present an experimental
evaluation of the approach in eight planning benchmarks. Fi-
nally, we discuss related work and present our conclusions.

2 Planning model

The base planning model of this approach is the STRIPS
formalism. In a domain D, the state space S for a problem,
and the set of actions A are define in terms of predicate
symbols Y , operators (action schemas) O and the set of ob-
ject constants C given for a specifi task. A state s ∈ S is
the set of facts (state literals) that are true in a given in-
stant. Each fact in s is an instantiation of a predicate sym-
bol y ∈ Y in the form y(c1, . . . , cn) where ci ∈ C. An op-
erator op ∈ O, that has m parameters, can instantiate into
action a ∈ A in the form op(c1, . . . , cm) with ci ∈ C. Ad-
ditionally, each action a ∈ A is define in terms of three

sets of facts (pre(a),add(a),del(a)), where pre(a) are the
preconditions that should be true for the action to become
applicable, add(a) are the facts that become true when the
action is executed, and del(a) are the facts that are no longer
true after the action execution. If an action a is applied in
a state s, denoted by apply(a, s), the resulting state will be
s ′ = (s − del(a)) ∪ add(a).

A planning task in D is define as the tuple (C, I,G),
where C is the set of constants for instantiating S and
A, I ∈ S is the initial state and G is the set of facts
(a partially define state) that represent the goals. Solv-
ing a planning task implies findin a plan π = {a1, . . . , an}
such that, if applied consecutively starting from the initial
state, it leads to a state where all the goals are true, i.e.,
G ⊆ apply(an,apply(an−1, . . . ,apply(a1, I))).

Moreover, we defin additional functions to handle the
case base representation used later, namely:

– pred(l) = y is the predicate symbol of the fact l
– arg(l) = (c1, . . . , cn) are the arguments of the fact l
– opt(a) = op is the operator of the action a

– argop(a) = (c1, . . . , cm) are the parameters of the action a

Some parts of our model depend on features from the
relaxed plan heuristic [15]. In general, heuristics based
on delete relaxation compute their estimation by consid-
ering a relaxed version of the planning task, which is the
same planning task, but using a variation of the action
set A (i.e., it does not contain the del(a) set). In partic-
ular, the aim of the relaxed plan heuristic is findin a re-
laxed plan π+ that solves the relaxed planning task. The
relaxed plan is extracted from a Relaxed Planning Graph
(RPG). An RPG is a sequence of proposition and action
layers P0,A0,P1,A1, . . . ,Pn−1,An,Pn. The firs proposi-
tion layer, P0, contains the propositions in the state to be
evaluated, s. Then, each action layer contains all applica-
ble actions given the previous proposition layer. The posi-
tive effects of all actions in a layer are included in the next
proposition layer. Thus, each proposition layer contains the
set of achieved propositions so far. Hoffmann and Nebel
[15] showed that a relaxed plan can be extracted from an
RPG in polynomial time. The relaxed plan extraction al-
gorithm selects in each proposition layer the facts marked
as goals and then selects actions from the previous layer
that achieve the goals, including as new goals the precondi-
tions of the selected actions. This algorithm corresponds to
a backtracking-free version of the one used in the GRAPH-
PLAN planner [2]. Hoffmann and Nebel [15] also introduced
the pruning strategy of the helpful actions. A helpful action
is an applicable action (i.e., it belongs to the f rst action layer
in RPG) that achieves a fact marked as a goal (or sub-goal)
during relaxed plan extraction. For an extended description
of heuristic planning refer to [12].

2

3 Definition

A typed sequence is the basic piece of knowledge used by
our CBR algorithm. We present a set of definition first

Definitio 1 Given a state s, an object sub-state is the set
of state literals in which the object appears as an argument.
The sub-state for the object o in the state s is denoted by

so = {
l | l ∈ s ∧ o ∈ arg(l)}

For instance, suppose that in the Blocksworld domain we
have a state s = {(on A B) (ontable B) (clear A) (hold-
ing C)}. We say that the object sub-state for block A is {(on
A B) (clear A)}.

Definitio 2 A property of an object o in a literal l is the
position of o in l. It will be represented as a predicate symbol
subscripted by a number representing the argument position
in the state literal.

Uo(l) = pred(l)i | arg(l) = (c1, . . . , cn) ∧ o = ci (1)

For instance, on1 is the property define for the block A
in the literal (on A B), and on2 is the property for the block B.
Therefore, a predicate of arity n produces n properties. This
concept was originally introduced by [11], where properties
are used to derive domain types.

Since properties represent object positions in state literals
and each position has a particular domain type, we can use
properties for referring to objects in an abstract way. Thus,
we can transform an object sub-state into what we will call a
typed sub-state, using the properties for the literals that be-
long to an object sub-state. Since two or more literals can
produce the same property for an object, we use the concept
of collection as a generalization of the concept of sets. A col-
lection is an unordered group of elements where a particular
element can appear more than once.

Definitio 3 A typed sub-state is the collection of proper-
ties that abstracts an object sub-state. We will represent the
typed sub-state for an object o in the state s as:

ϕs,o = {
Uo(l) | l ∈ so

}
(2)

In the previous example, the object sub-state for block
A is transformed into the typed sub-state (on1 clear1). If we
apply the action (STACK C A) to the state in the example,
the new object sub-state for block A is [(on A B) (on C A)].
Therefore, the new typed sub-state becomes (on1 on2).

Since objects of a particular planning instance are not rel-
evant when recognizing generalized domain transitions, we
need to represent typed sub-states that abstract any valid ob-
ject sub-state in the domain.

Definitio 4 An arbitrary typed sub-state T is a property
collection that abstracts all possible object sub-states so that
produce equal ϕs,o, for an arbitrary object o.

For instance, the arbitrary typed sub-state T = (on1
clear1) represents all states where any block is on another
block and clear. The typed sub-state ϕs,o is related to an ob-
ject o, but T is related to all objects having the same typed
sub-state.

In a domain, we can identify common transitions of a
given object and associate them with the applied action, as-
suming that the object is a parameter of the action. Thus,

Definitio 5 A typed sub-state transition is a structure of
the form
〈

T ,op, T ′〉

representing an observed transition generated when a typed
sub-state wo,s is transformed into wo,s′ after applying an ac-
tion a such that op = opt(a). The action a is generalized to
its operator op since the other parameters are not relevant
for the object perspective of the representation.

Definitio 6 A typed sequence Q is a sequence of ordered
pairs of the form

Q = {
(T0,∅), (T1,op1), . . . , (Tn,op

n
)
}

that represents an object-centered abstraction of a plan, in
which each pair is an arbitrary typed sub-state with the op-
erator used to reach that typed sub-state.

A typed sequence is a way of summarizing the typed
sub-state transitions. For an object o and a plan π =
{a1, a2, . . . , an}, we can generate a typed sequence where
T0 = ϕI,o is the typed sub-state for the initial state, and each
Ti is the typed sub-state obtained from the state s reached
when the action ai is applied.

Since typed sequences focuses on particular objects, not
all actions in a solution plan may affect that object. Thus, we
defin a void operator (no-op) that substitutes the real one
in case the object is not a parameter of the corresponding
applied action. Therefore, in any sequence step (Ti , no-op),
we assume that Ti = Ti−1 and the action ai is not relevant
for the object generating the sequence. Additionally, we use
an integer, together with the no-op, to indicate the number of
times that irrelevant actions have been applied. This allows
us to maintain a compact representation of typed sequences.
Any action producing a no-op at the end of a sequence is not
taken into account, since the rest of the plan has no relation
with the particular object and there is no need to collect any
additional transitions for the object.

Figure 1 shows a complete typed sequence for an ob-
ject (block A) of type Block in the Blocksworld domain. The

3

firs pair in the sequence has the typed sub-state correspond-
ing to the initial state and it has no associated action. The
other pairs are generated as explained before. The action
(PICKUP C) produces a no-op action, because it does not
affect block A and the typed sub-state remains the same.

Definitio 7 Given a relaxed plan π+ = {a1, . . . , an}, the
relaxed plan footprint for an object o is the sequence of
pairs {(O1,o, T1), . . . , (On,o, Tn)} where Oi,o represents the
set of operators that affect object o in the layer i − 1 of the
RPG and add some properties for the collection Ti in layer i.
It is computed as

Oi,o = {
opt(a) | a ∈ π+ ∧ a ∈ Ai−1 ∧ o ∈ argop(a)

}

Each Ti = ϕs+
i ,o is the collection of added properties where

s+
i = {add(a) | a ∈ π+ ∧ a ∈ Ai−1}.

The relaxed plan footprint is a compact way of partially
representing a typed sequence. Thereby, the footprint can
serve as a retrieval key, since it can be computed at the be-
ginning of the planning process (i.e., after computing the
heuristic estimation of the initial state). The relaxed plan
footprint has two main differences with a normal typed se-
quence. First, it only keeps track of added properties through

Fig. 1 An example of a typed sequence in the Blocksworld domain

consecutive RPG layers in the relaxed plan of the initial
state. Second, it stores the associated operators by layers.
Therefore, there is no precedence relation among them. Fig-
ure 2 shows the computation of the relaxed plan footprint for
blocks A, B and C of the example in Fig. 1. The relaxed plan
for the initial state coincides with the real plan, even though
the relaxed plan footprint differs from the typed sequence
generated for the example.

4 CBR cycle

In this section we explain how typed sequences are used
in a complete CBR cycle [1]. This cycle comprises retain-
ing, retrieving, reusing and revising the cases of a particu-
lar domain. The learning system has been developed as a
trainer/advisor module that supports a heuristic planner dur-
ing the search process, as shown in Fig. 3. This system was
built within SAYPHI, a planning and learning framework in
which different learning techniques can be integrated with a
common planner [7, 8].

The system f ow is as follows. A set of training prob-
lems is solved by the heuristic planner, and the solutions are
used to generate typed sequences and populate the case base
(i.e., the “Retain” process in Fig. 3). In order to solve new
problems, modifie versions of the heuristic search algo-
rithms request similar sequences that match the initial state,
goals and relaxed plan footprint of the new problem (i.e.,
the “Retrieval” process). The retrieved sequences are used
to recommend node ordering or pruning according to the
states that reproduce the same transitions encoded in the se-
quences (i.e., the “Reuse” process). Finally, new solutions
and an evaluation score are used to recognize which types
are useful in the case base and update it accordingly (i.e., the
“Revision” process). Next, we give an explanation of each
phase.

4.1 Retain

This process manages the generation and maintenance of
the case base. Its main tasks consist of (a) the generation of
typed sequences from a set of training problems, (b) the case
storage in the case base structure and (c) the maintenance,

Fig. 2 An example of how to
compute the relaxed plan
footprint

A0 ∈ π+ s+
1 A1 ∈ π+ s+

2

Relaxed Plan (PICKUP A) (holding A) (STACK A B) (on A B)

(clear A)

(PICKUP C) (holding C) (STACK C A) (on C A)

(clear C)

Footprint A PICKUP holding1 STACK,STACK on1, clear1,on2
Footprint B ∅ ∅ STACK on2
Footprint C PICKUP holding1 STACK on1, clear1

4

Fig. 3 SAYPHI: a heuristic
planner supported by a CBR
system

which implies merging repeated sequences, deleting useless
ones, etc. From a more general point of view, all these tasks
represent the training phase of the learning system.

4.1.1 Storage

This task stores the generated sequences in domain-depen-
dent structures for later use. A case for a particular domain
D is a tuple {i, F , Q}, where i is a case number, F is the
relaxed plan footprint, and Q is the typed sequence. The re-
laxed plan footprint is computed after evaluating the initial
state with the heuristic function of the relaxed plan. Relaxed
plan footprints collect information that can help to recognize
similar sequences that differ from each other in their middle
steps.

4.1.2 Generalization

Once cases have been generated, a generalization process
tries to merge new sequences with previous ones. For this
purpose, we defin the concept of equal and equivalent se-
quences.

Definitio 8 Two typed sequences are equal if all their or-
dered pairs (Ti ,op

i
) are equal.

Definitio 9 Two typed sequences are equivalent if when
removing in both sequences all pairs (Ti ,op

i
) such that

op
i
= no-op, the resulting sequences are equal.

Thus, all pairs of equal or equivalent sequences are
merged in order to generate a new sequence. Figure 4

equivalent-sequences (Q, Q′): Qm typed sequence or null

Q = {(T0,∅), . . . , (Tn, an)}: Sequence in the case base
Q′ = {(T ′

0,∅), . . . , (T ′
m,a′

m)}: New sequence

i = 0; j = 0; Qm = {}
while (Ti �= null and T ′

j �= null)
if (Ti , ai) = (T ′

j , a
′
j) then

add (Ti , ai) to Qm

i = i + 1; j = j + 1
elseif (ai = no-op) then

i = i + 1
elseif (a′

j = no-op) then
j = j + 1

else
return null

return Qm

Fig. 4 The algorithm for merging two sequences

shows the algorithm for the merging process. If the function
equivalent-sequences returns a new sequence, it is stored in
the case base and the input sequences are removed. If the
new sequence is completely new (i.e., function equivalent-
sequences returns null), it is stored as is in the case base.

4.2 Retrieval

Given a new planning task (C, I,G) for the domain D, the
retrieval process searches the case base for the most similar
cases to this task. Given that each planning state contains in-
formation on several objects, we retrieve one case for each

5

object in the planning task. For each object o in C, the fea-
tures used by the similarity function are:

– the object type of o

– the typed sub-state generated from the initial state: ϕI,o

– the typed sub-state generated from the set of goals: ϕG,o

– the relaxed plan footprint computed for the initial state:
{(O1,o, ϕs+

1 ,o), . . . , (On,o, ϕs+
n ,o)}

The object type is used to pre-select the subset of cases
corresponding to its type, so it is not directly used to com-
pute the similarity metric.

4.2.1 Similarity metric

The similarity metric used for typed sub-state comparisons
takes into account that the number of properties of an object
can vary depending on the size of the planning instance. Ac-
cordingly, we defin three levels or degrees of matching to
indicate how similar two typed sub-states are. We represent
typed sub-states T as pairs (X,m), whereX is the set of non
repeated properties in T , andm(x) is the function represent-
ing the number of times the element x ∈ X appears in T . For
instance, in the Logistics domain, if the object sub-state for
the truck Tr1 is s = {(at Tr1 Loc1) (in Pkg1 Tr1) (in Pkg2
Tr1)} the corresponding typed sub-state is (at1 in2 in2).
This typed sub-state can be written as ((at1 in2), (1 2)) un-
der this representation.

Definitio 10 Given two typed sub-states T1 and T2, ex-
pressed as pairs in the form (X1,m1) and (X2,m2), we de-
fin the matching level as follows:

1. There is a total match of T1 with T2, represented as
T1 � T2, when all properties in T1 are present in the same
amount in T2. Formally, this relation is define as

T1 � T2 ↔ X1 ⊆ X2 ∧ ∀x ∈ X1m1(x) = m2(x)

2. The relation T1 � T2 represents a partial matching of
T1 with T2, when all properties in T1 are present in T2,
but not all of them appear the same number of times. For-
mally, this relation is define as

T1 � T2 ↔ X1 ⊆ X2 ∧ ∃x ∈ X1m1(x) �= m2(x)

3. The relation T1 � T2 represents that T1 has no matching
with T2 because not all properties in T1 are in T2. For-
mally, this relation is define as

T1 � T2 ↔ X1 � X2

These relations are not commutative (i.e., T1 � T2 does
not imply T2 � T1). A typed sub-state generated for an ob-
ject in the new problem should be equal to the f rst/last step

in the stored sequence, or a subset of this step, but not the op-
posite. This is because typed sub-state of goals could be par-
tially define (goals are partially define states), but the last
steps of a stored sequence have the complete typed sub-state.
For instance, in the Blocksworld domain, the last step in the
sequence generated for block B in Fig. 1 is [(on2 ontable1),
stack]. However, if a block in a new problem does not need
to be on another block in the goals, the goal typed sub-state
is (on2) if the on-table predicate is not specifie as a goal,
which normally occurs. Therefore, considering the define
matching levels for the retrieval, T1 will refer to a typed sub-
state generated from an object in the new problem, and T2
will refer to a typed sequence in a stored sequence.

Relations in Definitio 10 can be extended to relaxed plan
footprints. Since relaxed plan footprints keep properties and
operators by layers, in the extension it is relevant to take
empty layers into account.

Definitio 11 Two relaxed plan footprints have a total
match if each pair (Oi,o, Ti) is equal in both footprints. Two
relaxed plan footprints have a partial matchwhen they have
a total or a partial match for each pair (Oi,o, Ti), after re-
moving in both sequences pairs such that Oi,o = ∅∧ Ti = ∅.

The similarity metric is define in terms of the match-
ing level for the initial and goal sub-states. The matching
level for the relaxed-plan footprints is used to break ties if
two cases obtain the same value for the similarity metric
with the new case. A tie in the similarity metric normally
occurs when two sequences have the same initial and goal
typed sub-states. Then, the tie needs to be broken taking into
account the intermediate steps, partially abstracted by the
relaxed plan footprint. Given an object o of the new plan-
ning task (C, I,G), the similarity metric is computed with
Eq. (3).

M(o, Qi) = 2W(ϕI,o, T0) + W(ϕG,o, Tn) (3)

where Qi is the sequence i in the case base of the same type
of o. The function W returns a numerical value for distin-
guishing relations described in Definitio 10. The match for
the initial typed sub-states is more relevant in the equation
because goal typed sub-states are partially defined More-
over, in any given planning task this value is 0 for many
objects (i.e., the object does not appear in any goal). For
simplicity we use the following equivalence for the match-
ing relations.

W(T1, T2) =

⎧
⎪⎨

⎪⎩

2 if T1 � T2

1 if T1 � T2

0 if T1 � T2

If there is a tie in the similarity metric, the function W is
applied to the footprints of each sequence, and the one with
greater value is selected.

6

sequence-selection (B, C, I , G): RQ replay-table

B: domain case base.
C: Set of constants (objects) in the planning task.
I , G: Initial state and goals.

RQ = ∅
for each o in C

K ← {k = {i, Fi , Qi} | k ∈ B and
k is of the same type as o}

K′ ← {k′ | k′ = argmax{i,Fi ,Qi }∈K M(o, Qi)}
F ′ ← rp-footprint(o, relaxed_plan(I,G))

kbest = argmax{i,Fi ,Qi }∈K′ W(Fi , F ′)
Add kbest to RQ

return RQ

Fig. 5 Algorithm for ranking and selecting typed sequences for a new
problem

4.2.2 Ranking and selection

The goal of the retrieval process is to build the replay ta-
ble. It is define as the set of pairs 〈Ti , oi〉, where Ti are
the retrieved sequences, and oi is the object it was retrieved
for. Figure 5 shows the pseudo-code for building the replay
table. For each object in the new problem, a subset of se-
quences maximizing the similarity metric is selected. Then,
from this subset, the sequence with the best match in the re-
laxed plan footprint is added to the replay table as the re-
trieved sequence for the object. The function rp-footprint
computes the relaxed plan footprint of the initial state for
the object o according to Definitio 7.

4.3 Reuse

The idea of reusing the knowledge kept in the typed se-
quence consists of replaying the typed sub-state transitions
during the forward state search. The retrieved sequences are
managed through the replay table, which keeps track of the
current step being followed for each sequence, as in previ-
ous work on case-based planning [25]. The advice given by
typed sequences is usually independent of the search algo-
rithm. Accordingly, we use the concept of a “recommended
node” to recognize a promising successor suggested by the
CBR component; that is, it reproduces a sub-state transition
for an object in the replay table. We denote the replay ta-
ble with the symbol RQ and the function next_step(RQ,o)

returns the next pair (Ti ,op
i
) of the sequence retrieved for

object o. Given a state s, the successors are represented as
pairs (s′, a), where s′ = apply(a, s). In order to recognize
whether a successor replays the current transition in the re-

trieved sequence for an object o, we defin a function:

Γ
(

RQ,o, s′, a
) =

⎧
⎪⎪⎨

⎪⎪⎩

1 If next_step(RQ,o) = (Ti ,op
i
)

∧o ∈ argop(a) ∧ opt(a) = op
i∧W(ϕs′,o, Ti) > 0

0 otherwise

Definitio 12 A recommended node is a candidate node
that reproduces the typed sub-state transition in the sequence
retrieved for a parameter (object) of the applied action in the
node. Formally, a successor (s′, a) is a recommended node
if:

∃o ∈ argop(a) | Γ (
RQ,o, s′, a

) = 1

Definitio 13 The recommendation ratio for a successor
is the level of recommendation of a node related to the to-
tal number of action parameters of that node. Formally, the
recommendation ratio for a successor (s′, a) is define with
the function

rcbr
(

RQ,s′, a
) =

∑
∀o∈argop(a) Γ (RQ,o, s′, a)

|argop(a)|
The recommended ratio is used for ranking successors in

search algorithms, with the aim of prioritizing those nodes
that replay the most sequences.

4.4 Advising heuristic search

The control knowledge given by the typed sequences can be
integrated within any heuristic search algorithm. There are
two basic strategies of using retrieved sequences:

– Pruning Strategy: a recommended node (if exists) can
be directly selected, discarding other successors. This acts
similar to a state-action policy.

– Ordering Strategy: a recommended node can be pre-
ferred for evaluation in a greedy algorithm that distin-
guishes between node generation and node evaluation.

In the following sections we present how these strategies
can be integrated into three search algorithms commonly
used in planning.

4.4.1 CBR hill-climbing

The f rst straightforward application of the pruning strategy
consists of directly selecting a recommended node when-
ever advice is available among the current state successors.
For instance, after a node expansion in the hill-climbing al-
gorithm, if a successor is recommended, it is selected and
no other evaluations are performed. If there is no advice,
all nodes are evaluated and the one with the best heuristic
estimation is selected. Figure 6 shows the complete pseudo-
code for this algorithm.

7

Figure 7 shows an example of how typed sequences are
replayed in CBR hill-climbing when solving a problem in
the Blocksworld domain. The top of the illustration shows

CBR-Hill-Climbing (I,G, RQ): plan

I,G: Initial state and goals
RQ: replay table

s ← I ; solved = false
while (s �= null and not solved)

if G ⊆ s

then solved = true
else

S′ ← expand-node(s)
if max rcbr(RQ,s′, a) > 0 then

s ← argmaxs′∈S′ rcbr(RQ,s′, a)

evaluate h(s)
else

evaluate h(s′),∀s′ ∈ S′
s ← argmins′∈S′ h(s′)

if solved
return path (I, s)

else
return failure

Fig. 6 A hill-climbing algorithm guided by CBR recommendations

the configuratio of the initial and fina state. At the bottom,
there is a plan that solves the problem along with the four
retrieved sequences, one for each block in the problem. In
this domain, all objects are of type Block. Next, we explain
how the replay occurs. The search tree in this algorithm only
considers helpful actions. The search can also be followed
using the search tree in Fig. 8.

1. The only two successors of the initial state, (UNSTACK
A B) and (UNSTACK C D), have both recommended
ratio 1, because their two arguments match the transitions
in their respective sequence. Both actions are correct for
findin an optimal plan. The search selects the action
(UNSTACK A B) since it appears f rst after the node
expansion.

2. Action (PUTDOWN A) matches the third step in the se-
quence retrieved for block A. It has ratio 1. The action
(STACK A C) has ratio 0, because it does not match
the transition for block A or block C.

3. Actions (PICKUP B) and (UNSTACK C D) have ra-
tio 1. The second one is preferred because in this ac-
tion two sequences are being followed (i.e., sequences
for block C and D). When a tie in r occurs, it is solved
preferring the action that replays more sequences.

4. Action (PUTDOWN C) is selected because it has ratio 1.
(STACK B C) has ratio 0. The action (STACK C A)
has ratio 1

2 because block C does not match, but the
current transition of block A does, since it is expecting

Fig. 7 Example of replaying typed sequences in the CBR Hill-Climbing algorithm

8

Fig. 8 The search tree resulting for the replay process of the example
in Fig. 7. Nodes in gray are helpful actions not selected by the recom-
mendations

to have a block on it in the transition {(ontable1 on2),
stack}.

5. Actions (PICKUP B) and (PICKUP D) have ratio 1.
In this situation we can clearly appreciate how the prun-
ing of the helpful actions technique chooses a small and
coherent set of successors (i.e., picking up block A or
C are not considered as successors). Both actions in the
helpful action set are correct. Action (PICKUP B) is
selected because of the expansion order.

6. Action (STACK B D) has ratio 1
2 , because block B

matches, but block D does not. Actions (STACK B C)
and (STACK B A) have ratio 1. In this situation, the
right choice is selected by chance (i.e., it appears f rst in
the successors). Action (STACK B A), even with ra-
tio 1, could produce a wrong choice in the search. This
action appears as helpful because it reaches the sub-goal
of having the robot arm empty, which is needed later.

7. Action (PICKUP D) with ratio 1 is the only successor.
8. Action (STACK D C)with ratio 1 is the only successor.

With this action the problem goals are reached.

4.4.2 CBR EHC

This algorithm modifie the Enforced Hill-Climbing algo-
rithm (EHC) [15] to take advantage of the greedy feature
in terms of node evaluations. EHC performs a breadth-firs
search from a node s until it find a node s′ that has a better
heuristic value. This process repeats iteratively until findin

the goals or running out of successors. States in the same
breadth level are evaluated in the order given by the parent
node expansion. This means that if in a certain breadth level,
a state improving the heuristic estimation is evaluated first
the rest of evaluations can be avoided. The modificatio for
EHC that integrates CBR recommendations affects the eval-
uation node ordering. After a node expansion, each succes-
sor is evaluated only if it is a recommended node. Otherwise,
the evaluation is postponed and the node is placed into a de-
layed list. If none of the recommended nodes improves the
current heuristic estimation, the rest of successors are eval-
uated and the algorithm continues normally.

This modificatio to EHC seems interesting because it
keeps the same layout for the algorithm, giving the oppor-
tunity of avoiding useless node evaluations. The main draw-
back is that CBR-EHC still relies upon the heuristic func-
tion. Therefore, the domain topology and the existence of
different types of plateaus [14] will affect the fina perfor-
mance of this algorithm. Suppose that EHC needs to expand
the breadth-firs search until a certain depth d in order to es-
cape a plateau. If there is only one node at depth d that im-
proves the heuristic estimation, the evaluation of this node
(if marked as recommended) can avoid the rest of evalua-
tions. On the other hand, if all nodes at depth d are plateau
exits, matching states for findin a CBR advice becomes a
waste of time. Accordingly, only an experimental evalua-
tion can determine the benefi of this technique in certain
domains.

4.4.3 CBR WBFS

The Weighted Best-First Search (WBFS) is another algo-
rithm commonly used in forward heuristic planning. The
CBR version tries to use the typed sequence recommenda-
tions to break ties in the evaluation function f (n) = g(n) +
wh × h(n). In order to keep the same layout for the algo-
rithm, we just modify the evaluation function with the for-
mula:

f (n) = g(n) + wh × (
h(n) + 1− hcbr (n)

)

where hcbr (n) returns the recommended ratio computed for
the successor (s′, a) in n. The idea consists of modifying the
value that h(n) contributes to the standard formula. Thereby,
a recommended node (if any) will be preferred to continue
the search. The new evaluation function is only useful when
wh > 1 because otherwise the algorithm will not take advan-
tage of the new ordering imposed to f (n). Let us consider an
example with an admissible heuristic. If sg is a goal state, all
generated nodes that hold f (n) < g(sg) should be evaluated
before stopping the search, therefore it does not make sense
to order the evaluation of these nodes. Although the relaxed
plan heuristic is non-admissible, some experimental evalua-
tions have shown a similar effect. Nevertheless, WBFS with

9

wh > 1 has the effect (which increases with bigger wh) of
not reconsidering specifi nodes while it is descending in
the search tree. This means that the node ordering is rele-
vant and preferring more promising nodes could affect the
fina performance.

CBR-WBFS has some differences with greedy algo-
rithms as CBR-Hill-Climbing or CBR-EHC. In greedy
search algorithms, a single replay table can keep track of the
current step of sequences. However, in CBR-WBFS, nodes
being expanded can belong to different paths, so it is neces-
sary to keep track of the current step of the replay table fol-
lowed in each path. Therefore, in WBFS-CBR, each node
holds a set of references indicating the current step being
followed at that node.

4.5 Revising typed sequences

This process consists of revising which types in a case base
contribute to the improvement of the CBR planning algo-
rithms. The refinemen of domain types is relevant to the
CBR cycle because sequences of certain types can be mean-
ingless. For example, in transportation domains such as Lo-
gistics, objects being transported can generate sequences
that store knowledge like {Load-in-Vehicle, no-ops,Unload-
from-Vehicle}. This information clearly stores the process of
moving packages. However, the domain type for places (lo-
cation) can generate sequences with transitions that do not
hold anything relevant in the problem. Package locations are
represented with predicate at, in the form (at object place).
Thus, the typed sequences generated for the object place
will only keep different occurrences of the at2 property, and
these type of sequences do not necessarily contribute to a
right advice during the replay process.

Accordingly, we have designed a refinemen process that
evaluates how a domain case base performs in comparison
to the same case base but removing sequences of specifi
types. Figure 9 shows the pseudo-code that determines the
best set of types for a domain given a validation set of prob-
lems V and the planning algorithm α (i.e., one of the CBR
variations presented in the previous section). The function
evaluate_set runs the problems in V with the algorithm α

using the sequences of types in Tj . The function score gives
the score to Tj types using the performance time metric used
in the IPC-2008, explained in the next section. The Revising-
Types algorithm reproduces a hill-climbing algorithm using
score as the evaluation function. The algorithm ends when
the best set of types is equal to the set selected in the previ-
ous iteration.1

1As the evaluation metric used in IPC-2008 takes into account the per-
formance of other planners/configuration (relative scoring), the best
set of types of an iteration is included in the candidates of the next
iteration.

Revising-Types (B, T ,V ,α): types

B, T : domain case base and domain types
V : validation set
α: planning algorithm

T ′ ← T ; Tbest ← ∅
while (T ′ �= Tbest and T ′ �= null)

Tbest ← T ′
candidates← {T ′}
for each ti ∈ T ′

T−ti ← T ′ − ti
Add T−ti to candidates

for each Tj ∈ candidates
evaluate_set (V ,α,Tj)

T ′ ← argmaxTj ∈candidates score (V ,Tj)

return Tbest

Fig. 9 The algorithm for refinin domain types

Finally the case base B is updated by removing all se-
quences that belong to types not present in the outcome of
the revising-types function.

5 Experimental evaluation

This section presents the experiments we have done to
evaluate the case-based approach to heuristic planning. We
have evaluated this approach in eight STRIPS benchmarks.
Two of them (Matching Blocksworld and Parking) were
used in the IPC-2008 Learning Track. The rest of them
(Blocksworld, Logistics,Depots,Mystery’, Satellite, Rovers)
are benchmarks commonly used in the planning commu-
nity. These six domains belong to f ve different domain
classes according to Hoffmann’s domain topology [14],2
which guarantees a reasonable domain variety for evalua-
tion. All domains have random problem generators available
in IPCs webs. These generators were used to create different
problem sets during training and test phases.

5.1 Training phase

For each domain we generated a training set of 20 prob-
lems using the random problem generators. These problems
are of small size so that it is possible to fin a good quality
plan in reasonable time. Each problem was solved with EHC
and then, the solution was refine with a Depth-First Branch
and Bound (DFBnB) using a time bound of 60 seconds. The
best-cost solution found by DFBnB was used to generate the

2The Matching Blocksworld and Parking domains have not been clas-
sifie in the domain topology because [14] was published prior to the
IPC 2008 Learning Track.

10

typed sequences in order to populate the domain case base.
The time for generating typed sequences is negligible with
respect to the time bound (60 s) for solving each problem.
The computational cost of generating a typed sequence is
linear in the plan length, and the number of sequences is
bounded by the number of objects. We have also generated
a validation set of 20 problems for type refinement After a
case base was generated with the training set, the revising-
types algorithm was executed to obtain the best set of types.
Then, we removed from the case base all typed sequences
belonging to a type not present in the set of best types.

5.2 Evaluation metrics

For each domain we have computed the number of solved
problems. We have also evaluated the different planning
algorithms with the metrics used in the IPC-2008 Learn-
ing Track. These metrics measure planning performance in
terms of quality (plan length) and CPU Time. Final scores
in both metrics are the sum of points given to each problem
in a particular domain. For the quality metric, a planner con-
figuratio receivesN∗

i /Ni points, whereN∗
i is the minimum

number of actions in any solution returned by a planner for
the problem i, and Ni is the number of actions returned by
the evaluated configuratio for the problem i. If the evalu-
ated planner does not solve the problem, it receives 0 points
for this problem. The score for a problem is in the range of
[0, 1]. Likewise, the time metric is computed giving a plan-
ner configuratio T ∗

i /Ti points, where T ∗
i is the minimum

time used by any planner for solving the problem i, and Ti is
the time used by the evaluated planner for solving the prob-
lem i. The planner receives 0 points if it does not solve the
problem.

5.3 Test phase set up

For the Matching Blocksworld and Parking domains we
have used the 30-problem sets from the target distribution
given to the competitors. These distributions have the same
difficult as the sets used in the competition. For the rest of
the domains, we have built a test set of 30 problems of incre-
mental size, using the random problem generators. We have

not used the competition sets because, on the one hand, they
have a different number of problems, which makes the com-
parison with the current metric unfair. On the other hand, the
improvements in planning techniques and hardware process-
ing speed have made those sets less attractive for evaluation
purposes. For instance, the set used for the Logistics domain
in 2000 had 41 goals as the hardest problem. The set used in
this evaluation has a maximum of 120 goals.

For the evaluation we used a time bound of 900 seconds
for each problem, as did the IPC 2008 Learning Track. The
whole experiment was run in an Intel Core 2 Quad CPUwith
3 Gb of memory-bound for the process. All tested configu
rations share the same parsing and pre-processing functions,
as well as the relaxed plan heuristic. Therefore, the real dif-
ference comes from the algorithms. The planning algorithms
tested in the evaluation were:

– HC: The hill-climbing algorithm with the helpful ac-
tions pruning and a chronological backtracking when the
search process runs out of candidates.

– CBR-HC: The CBR Hill-climbing algorithm, imple-
mented with the same features of HC.

– EHC The Enforced Hill-climbing algorithm with the
helpful actions pruning.3

– CBR-EHC The CBR-EHC algorithm implemented with
the same features of EHC.

– WBFS The Weighted Best-First Search without helpful
actions pruning. It uses a wh = 3. Bonet and Geffner [3]
reported that wh values between 2 and 10 do not produce
significan differences.

– CBR-WBFS The CBR-WBFS algorithm implemented
with the same features of WBFS.

5.4 Results

Table 1 presents the number of solved problems in the eight
evaluation domains for all tested configurations The best

3This planning configuratio differs from FF search algorithm, because
we do not activate the WBFS when EHC fails. This allows us to recog-
nize in which circumstances EHC is performing well alone.

Table 1 Solved problems for
the evaluated planning
configuration

Domains HC CBR-HC EHC CBR-EHC WBFS CBR-WBFS

Blocksworld 17 18 9 8 8 9
Matching-bw 0 0 0 0 6 6
Parking 21 25 12 12 7 7
Logistics 16 21 26 25 7 8
Mystery’ 9 20 25 27 22 23
Depots 25 27 29 29 21 22
Satellite 27 29 19 22 10 9
Rovers 28 27 22 27 9 8

Total 143 167 142 150 90 92

11

Table 2 Scores for CPU Time
metric Domains HC CBR-HC EHC CBR-EHC WBFS CBR-WBFS

Blocksworld 10.21 14.41 1.34 2.24 2.33 2.53
Matching-bw 0.0 0.0 0.0 0.0 3.25 6.00
Parking 14.64 23.59 1.15 4.17 0.53 0.51
Logistics 2.30 12.58 19.45 17.77 0.25 0.40
Mystery’ 4.34 17.91 10.74 21.64 2.41 2.84
Depots 12.04 18.41 17.97 22.32 2.55 3.16
Satellite 10.69 25.75 8.76 16.58 0.22 0.17
Rovers 18.93 26.55 10.32 21.07 0.37 0.27

Total 73.15 139.20 69.73 105.79 11.91 15.88

Table 3 Scores for quality
metric Domains HC CBR-HC EHC CBR-EHC WBFS CBR-WBFS

Blocksworld 6.31 8.48 7.46 6.60 7.64 8.53
Matching-bw 0.00 0.00 0.00 0.00 5.77 6.00
Parking 13.12 15.67 10.09 10.48 6.76 6.29
Logistics 4.94 10.47 25.49 20.82 7.73 8.80
Mystery’ 6.97 16.10 20.86 25.72 20.91 20.84
Depots 7.56 7.96 25.60 26.86 20.31 21.09
Satellite 21.87 22.73 16.91 20.97 9.79 8.78
Rovers 22.21 21.99 21.39 26.22 8.88 7.81

Total 83.28 103.83 127.68 141.18 86.86 87.13

result per row is presented in bold. The last row shows
the sum of solved problems for each configuration CBR-
HC was the algorithm that solved the most problems. Note
also that each CBR algorithm solved more problems than
its standard version. CBR-HC solved 24 more problem than
HC, which shows the benefi of the CBR pruning strategy.
CBR-EHC solved 8 more problems than EHC, revealing a
discrete improvement when using the ordering strategy in
greedy search. However, CBR-WBFS only solved 2 more
problems than WBFS, indicating that CBR is more appro-
priate for greedy search algorithms than for best f rst tech-
niques.

We give a detailed analysis for each domain further in this
section. Table 2 shows the fina scores using the time met-
ric. Each domain can receive from 0 to 30 points. Getting the
score of 30 means that the planner solved thirty problems in
the test set and no other planner solved any problem in less
time. The last row presents the sum of the scores obtained
in each domain. CBR-HC was the algorithm that got the top
score for the time metric. As in solved problems, each CBR
algorithm obtained better results than its normal algorithm,
especially for greedy search algorithms (in those algorithms
the CBR version got double the score than its correspond-
ing non-learning version). Even when the number of solved
problems is the same or fairly similar, CBR-HC and CBR-
EHC could solve the same problems in less time. The main
reason for this improvement is the reduction in the number

Table 4 Node evaluation average for problems solved by Hill-
Climbing and CBR Hill-Climbing

Domains Common HC CBR-HC

Blocksworld 15 3823.5 3235.0
Matching-bw 0 * *
Parking 21 3270.9 2681.4
Logistics 16 11016.4 7139.8
Mystery’ 9 73412.1 39.7
Depots 25 1836.5 1859.5
Satellite 27 4039.8 1902.7
Rovers 26 1931.0 1329.9

of evaluations during the search. Likewise, Table 3 shows
the scores using the quality metric. Again, each CBR algo-
rithm improved its standard version. In this case CBR-EHC
got the top score. This difference arises, as we will see later
in this section, because in some domains HC and HC-CBR
obtained plans of poor quality.

Table 4 presents the node evaluation average obtained by
HC and CBR-HC in problems solved by both configuration
(indicated by the “common” column). CBR-HC evaluated
fewer nodes in six out of eight domains on average. We do
not show a comparison in the Matching Blocksworld do-
main, because no configuratio solves any problem. Like-
wise, Table 5 shows the node evaluation average for EHC
and CBR-EHC in problems solved by both configurations

12

Table 5 Node evaluation average for problems solved by EHC and
CBR-EHC

Domains Common EHC CBR-EHC

Blocksworld 7 3543.1 2176.4
Matching-bw * * *
Parking 10 10456.3 4847.5
Logistics 12 1592.6 4643.9
Mystery’ 25 1120.1 2647.6
Depots 29 3627.4 1531.2
Satellite 19 1992.6 1055.1
Rovers 22 2629.1 1036.4

Table 6 Node evaluation average for problems solved by WBFS and
CBR-WBFS

Domains Common WBFS CBR-WBFS

Blocksworld 8 2104.5 3491.5
Matching-bw 6 20878.2 7791.9
Parking 6 11479.3 7049.3
Logistics 7 19724.4 7396.3
Mystery’ 22 16136.5 12872.3
Depots 21 20676.5 10898.7
Satellite 9 5859.1 8636.9
Rovers 8 5585.8 10867.1

In this case, CBR-EHC was better in f ve out of eight do-
mains. Finally, Table 6 shows the node evaluation
average for WBFS and CBR-WBFS. Although CBR-
WBFS was better in f ve domains, we do not consider
these results as relevant as before since in many domains
the number of commonly solved problems is small when
compared to the problem set size. In the following
sections we explain the results for each domain separately.

5.4.1 The Blocksworld domain

The Blocksworld domain is a well-known domain in auto-
mated planning. The tasks consist of configurin towers of
blocks and placing them with an arm robot. Although it is
one of the oldest benchmarks, it is still considered a chal-
lenging one. The domain only has the Block type, there-
fore the refinemen process does not make any changes. The
case base only contains 26 sequences, revealing that from a
Block perspective, the set of possible transitions is restricted.
Figure 10 shows the possible transitions between differ-
ent typed sub-states in the domain. For instance, suppose
that a block on the table with a block on top (sub-state 5)
should finis on top of another block and clear (sub-state 2).
To reach this goal, it is necessary that the block becomes
clear and then held by the arm, before reaching the fina po-
sition. This example matches blocks B and D on the exam-
ple in Fig. 7. Using this knowledge, one can deduce a set

2: (on1 clear1) ⇔ 3: (holding1) ⇔ 4: (ontable1 clear1)
� �

1: (on1 on2) 5: (ontable1 on2)

Fig. 10 Possible transitions between typed sub-states in the Blocks-
world domain

of invariants for the domain. Nevertheless, typed sequences
have the advantage of only keeping the knowledge appear-
ing in a training example. For instance, the typed sequence
with transitions (1-2-3-4-3-2) represents a common behavior
for a block, which continuously appears in the training ex-
amples. By contrast, the sequence with transitions (5-4-3-2-
3-4), even though it can be deduced from a domain analysis,
never appears in a training example (i.e. in a good quality
plan, one does not pick a block up from the table, put it on
another block, and then place it back again on the table).

Regarding the results, CBR-HC solved one more prob-
lem than HC, but both algorithms produced plans of poor
quality. On the other hand, the rest of algorithms solved
fewer problems, just with a small improvement on CBR-
WBFS, which obtains the top score for the quality metric.
Although typed sequences seem to capture the right knowl-
edge for this domain, using them at planning time does not
offer a significan scalability improvement. First, there is a
strong goal dependency in this domain, which can not be
handled using an object-perspective approach as ours. Sec-
ond, CBR algorithms still rely on the heuristic function,
which is fairly misleading in this domain. In order to take
advantage of the key knowledge stored in Blocksworld se-
quences it is necessary to complement the search with an
additional technique such as a goal agenda or pre-computed
landmarks [16].

5.4.2 The matching Blocksworld domain

This domain is a variation of the Blocksworld where each
block has a polarity, either positive or negative. There are
also two arms with polarity. The main difference with the
standard Blocksworld is that if a block is held by an arm of
wrong polarity, the block becomes damaged and no other
block can be placed on the top of it. Blocks get damaged
when they are placed by a wrong polarity arm, but not when
picked up from the table or unstacked from other block.
This fact makes recognizing dead-ends a difficul task. Even
though there are alternative representations for this domain,
it was designed in this form, to analyze difficultie that arise
with the relaxed plan heuristic (i.e., the relaxed task never
damages a block, thus both the relaxed plan and the heuris-
tic estimation are wrong).

As in Blocksworld, tasks consist of placing towers of
blocks in specifi configurations The refinemen process
kept the Hand type and left out the Block type. This does
not make much sense because Block sequences capture the

13

right knowledge, including the properties block_positive1
and block_negative1 in their corresponding typed sub-states.
So, the learned knowledge is useless at planning time be-
cause of two reasons. First, Block sequences can not rec-
ognize UNSTACK and PICK-UP actions as dangerous, be-
cause in those steps blocks do not lose the solid1 property,
the one that indicates the block is not damaged. The block
loses this property in a following action if the used arm is of
the opposite polarity. The second reason is that the relaxed
planning graph does not take into account that blocks can be
damaged (this appears in the delete lists, not considered in
the computation of the relaxed planning graph). Therefore,
the relaxed plan is rather different than the needed one, leav-
ing the set of helpful actions incorrect. Thus, trying to rec-
ommend an action from a set of wrong ones is just a waste of
time. Even with Hand sequences, the results reveal that al-
gorithms using helpful actions pruning could not solve any
problem. WBFS and CBR-WBFS solve the same number
of problems, but CBR-WBFS gets top scores for time and
quality metrics.

5.4.3 The parking domain

This domain comprises a set of curb locations where a set
of cars can be parked. Each curb has the restriction of hav-
ing at most two cars parked. The tasks consist of moving
from one configuratio of parked cars to another config
uration of parked cars. The domain used in the IPC-2008
Learning Track has a f aw. A valid state can lead to an in-
valid state after applying the action MOVE-CURB-TO-CAR
using the same constant for the moved car and the destina-
tion car (i.e. the car where the car is moved to). For our tests
we used a modifie version of this domain including the pre-
condition (not (= ?car ?cardest)) in the action. Thereby, no
invalid states can be reached from a valid one. In the compe-
tition, heuristic planners could recognize these invalid states
as dead-ends. Nevertheless, the evaluation of these nodes is
useless because it is not possible to reach the goals from
them. The main consequence of the f aw is the overhead
caused by generating and evaluating the invalid states. We
preferred to work with the f xed domain, since that way we
can give a better interpretation of the scalability improve-
ment achieved by the learning techniques. The refinemen
process does not discard any type in this domain. Sequences
from both Car and Curb types were used for the test phase.
CBR-HC performed very well in this domain, solving four
more problems than HC. CBR-HC also got top scores for
time and quality metric. Getting 15.67 points in quality with
25 solved problem reveals the algorithm did not get good
quality plans. However, this ratio is acceptable when com-
pared with other domains. The rest of the algorithms solved
fewer problems, but each CBR algorithm performs better
than its standard version. The improvements in the three

Fig. 11 Percentage of solved problems in increasing evaluated nodes
in the Parkingdomain

CBR algorithms are due to a great reduction in the num-
ber of evaluated nodes, as can be appreciated in Fig. 11. The
x-axis (in logarithmic scale) represents the number of eval-
uated nodes. Each point in the y-axis indicates the percent-
age of solved problems, when evaluating at most x nodes per
problem. Thus, left-most lines indicate a better performance.

5.4.4 The logistics domain

This transportation domain is considered to be an easy
benchmark. The difficult of this domain comes when han-
dling a large number of objects. The tasks comprise moving
packages from different locations and different cities using
trucks within cities and airplanes among cities. The refine
ment process left out the City and Truck types, keeping the
Package, Location, Airport and Airplane types. In this case,
the relaxed plan footprint is crucial for retrieving the right
sequences. Suppose that a package in a location, producing
the typed sub-state (at1), needs to be in another location in
the goal state, which also produces the same typed sub-state.
Therefore, in this scenario, the only way of retrieving the
correct sequence for the package is identifying the middle
transitions it will have. Figure 12 shows all possible combi-
nations of places for delivering a package in Logistics. Wide
arrows indicate airplane movement and narrow arrows indi-
cate truck movements. In the list, the combinations 2 and 3
correspond to the same typed sequence. The rest of the com-
binations produce one sequence each. Different actions for
moving vehicles and properties achieved in different RPG
layers make footprints distinguishable. Moreover, the Pack-
age type has exactly f ve sequences. All of them are retrieved
correctly when solving new problems in Logistics.

14

1: airport ⇒ airport
2: location → airport
3: airport → location
4: location → airport → airport
5: airport ⇒ airport → location
6: location → airport ⇒ airport → location

Fig. 12 Different combinations of places for delivering a package in
the Logistics domain

Fig. 13 A generic invariant for
a cargo in theMystery’ domain

Regarding the results, CBR-HC solved f ve more prob-
lems than HC, but EHC got the best performance in terms
of solved problems and evaluation metrics. CBR-EHC does
not achieve any improvement, because the domain definitio
has the operators ordered in the right way such that prefer-
ring one successor for evaluation does not benefi the search
process. Thus, grounded actions for loading or unloading
packages from different vehicles appear before actions for
moving vehicles. Actions in the f rst group always improve
the heuristic value, so there is no need to re-order succes-
sors. Additional experiments using a Logistics version with
the inverted actions confirme this explanation. In this case,
CBR recommendations gave the right advice for sorting ac-
tions and therefore for improving EHC.

5.4.5 The mystery’ domain

This domain is a transportation domain also known as
Mprime. The tasks comprise moving objects among differ-
ent locations using vehicles of limited capacity and having
fuel limitation. The refinemen process selected the Cargo
type as the only useful one. The other types (i.e., Vehicle,
Location, Space, Fuel) were removed. Contrary to what hap-
pens in the Logistics domain, in theMystery’ domain all the
transported objects have the same sequence. This typed se-
quence corresponds to the known invariant shown in Fig. 13.

Having this typed sequence only in the replay table forces
CBR-HC to directly select action LOAD and UNLOADwhen-
ever they appear as candidates (i.e., no other recommenda-
tion could be given). Additionally, actions for moving ve-
hicles (MOVE) and actions for moving fuel (DONATE) are
applied taking into account the heuristic estimation. This ef-
fect allows the algorithms to safely skip evaluations when
actions for loading or unloading a cargo are part of help-
ful actions. The results show that CBR-HC solved 11 more
problems than HC. In general, CBR-HC found plans with
less node evaluations than HC. The great difference in the
average though, was due to a single problem that CBR-HC

solved with 56 evaluations, but HC evaluated more than 600
thousand nodes and took 412 seconds. Additionally, CBR-
EHC solved 2 more problems than EHC and it got top scores
for time and quality metrics.

5.4.6 The depots domain

The Depots domain is a combination of the Logistics and
Blocksworld domains. The tasks are comprised of trucks
transporting crates around depots and distributors. Using
hoists, crates must be stacked onto pallets or on top of other
crates at their fina destination. As useful types, the refine
ment process chooses the set {Crate, Depot, Hoist, Pallet,
Truck}. The Distributor type was left out. Both Depot and
Distributor represent places, so we could think that if one
of them is useless, the other is useless too. However, prob-
lems normally have more distributors, therefore the refine
ment prefer Distributor sequences because they produced
more overhead. Depot sequences were not discarded be-
cause having them did not degrade the performance, how-
ever they did not provide valuable knowledge. Regarding
the obtained results, EHC and CBR-EHC solved the same
number of problems, but CBR-EHC got a better time score
given that it reduces the number of evaluated nodes. It also
obtained a slightly better result in the quality score. CBR-
HC solved two more problems than HC. However, HC and
CBR-HC performed poorly in terms of quality, due to goal
interaction, which is relevant in this domain, as it is in the
Blocksworld domain. WBFS and CBR-WBFS performed
reasonably well, considering that they do not prune actions
that are not helpful actions (i.e., they have to handle more
nodes). CBR-WBFS solves one problem more than WBFS,
getting slightly better scores in terms of time and quality.

5.4.7 The satellite domain

This domain comprises a set of satellites with different in-
struments, which can be operated in different modes. The
tasks consist of taking images of certain targets in a partic-
ular format (mode). The refinemen process does not mark
any type as useless. Thus, all domain types (e.g. Satellite,
Instrument, Mode and Direction) were used in CBR algo-
rithms. HC-CBR solved more problems than any other al-
gorithm, and it also obtained the best scores for the time
and quality metrics. The difficult of a problem relies on
the number of objects, but tasks are essentially the same
as in simple problems. Accordingly, CBR-HC uses typed
sequences most of the time to directly select the next ac-
tion, producing a great reduction in the number of evaluated
nodes. Figure 14 shows the percentage of solved problems
when increasing the number of evaluated nodes per prob-
lem. We can appreciate that both CBR-HC and CBR-EHC
need much fewer nodes than their normal versions in order

15

Fig. 14 Percentage of solved problems when increasing evaluated
nodes in the Satellite domain

to solve the same percentage of problems. CBR-EHC ob-
tains a good improvement over EHC because the node evalu-
ation order is relevant in this domain. Actions such as CAL-
IBRATEmay be evaluated first since it always improves the
heuristic value of its parent state. However, the high branch-
ing factor makes both WBFS and CBR-WBFS a bad choice
for solving problems in this domain. This branching factor
is high because a satellite can point to any direction at any
time.

5.4.8 The rovers domain

This domain is a simplificatio of the tasks performed by
the autonomous exploration vehicles sent to Mars. The tasks
consist of navigating the rovers, collecting samples of soils
and rocks, and taking images of different objectives. The re-
finemen process left out theWaypoint type and kept the rest
of the types: Camera, Lander, Mode Objective, Rover and
Store. This is probably because Camera sequences keep the
information about taking images, and Store sequences about
samples. Thus, Waypoint sequences only produce overhead
in the recommendation computations. HC solved one prob-
lem more than CBR-HC, but CBR-HC showed a reduc-
tion in terms of time. These differences exist because CBR-
HC could solve many problems faster than HC. CBR-EHC
solved f ve more problems than EHC, revealing that the node
evaluation order is also important in this domain. The reduc-
tion in the number of evaluated nodes (see Table 5) allowed
the algorithm to scale better than EHC and therefore to solve
more problems. It also got the top score for the quality met-
ric. As happened in Satellite, WBFS and CBR-WBFS per-
formed significantl worse due to the high branching factor
imposed by not using the helpful actions.

5.4.9 Summary

The previous analysis shows that rather than having a gen-
eral rule for predicting the performance of CBR algorithms,
the result will depend on the domain representation and the
characteristics of its search space. CBR-HC performs well
in domains with a big branching factor and many solutions.
In these cases, CBR-HC can achieve a big reduction in the
number of evaluated nodes. This advantage reduces when
problems have strong goal ordering (i.e., there is a fewer
number of different solution paths). This weakness arises
because retrieved typed sequences are not related to each
other, and therefore the CBR algorithms have no informa-
tion about which sequence is the best one to replay at each
state, or which sequences should be replayed at the same
time.

On the other hand, EHC-CBR is also able to reduce the
number of evaluated nodes in several domains, and it is less
affected by the goal ordering issue than HC-CBR. Neverthe-
less, EHC-CBR partially relies on the heuristic function as
EHC does. Therefore, EHC-CBR will solve problems faster
than EHC where EHC can lead the search to a solution.
However both algorithms will perform poorly with a mis-
leading heuristic. Finally, results showed that WBFS-CBR
has no clear advantage over the other algorithms regardless
of the evaluated domain. In general, altering f (n) with a
CBR recommendation value does not pay off if many nodes
are expanded and evaluated anyway. For this reason we think
that our approach is more suitable for greedy search algo-
rithms rather than for best-firs ones, such as WBFS.

6 Related work

Typed sequences are closely related to the domain invari-
ants deduced with TIM [11]. The f rst versions of several do-
mains written in PDDL (Planning Domain Definitio Lan-
guage) do not have types in their definition Domain invari-
ants helped to discover implicit types in the domain, which
allows a GRAPHPLAN-like planner to instantiate a subset of
possible actions, while taking into account the constraints
that discovered types imposed. Nowadays, most domains
have the object types in their PDDL definition Domain in-
variants could be used to improve the guidance of a heuristic
planner, but to our knowledge it has not been tried yet. On
the other hand typed sequences have the advantage that they
only code an observed object type transition. A finit state
machine define from TIM can encode all valid transitions,
but not all of them may be part of a good plan. Additional
research is needed to clarify in which domains a deduced in-
variant or a learned sequence could represent different guid-
ance for a planner.

Our work is also related to OAKPLAN [23], a case-based
planner that uses kernel functions to retrieve a set of simi-
lar problems with their associated plans. Then, one of these

16

plans is adapted to provide a solution. The main difference
with our work is that their cases represent the whole plan-
ning problem while in our approach we can use informa-
tion from different problems since we retrieve a case for
every single object. Also, they perform case reuse as a lo-
cal search on the retrieved plan, while we use previous
cases to recommend nodes. Previously, other approaches
were integrated in learning-based planners. A relevant work
is PRODIGY/ANALOGY [25], where lines of reasoning are
transferred to the new problem, reproducing/replaying the
steps stored in the retrieved cases. Cases in ANALOGY rep-
resent the whole planning problem, therefore it is also differ-
ent to our approach which is object-centered. Many other re-
searchers have applied CBR to planning. The most relevant
ones are summarized in [24] and [6]. More recently, CBR
has been applied to hierarchical planning such as in HTN-
MAKER [17]. HTN-Maker learns new methods for decom-
posing hierarchical tasks. It tries to reduce the engineering
effort of designing the domain knowledge for controlling the
search, which in the case of hierarchical planning is written
within the action model. In our approach, the action model
is fi ed and the objective is to modify the search algorithm,
so we can use the learned knowledge to guide the search.

Regarding other learning techniques applied to planning,
the most representative vision comes from the set of par-
ticipants of the IPC-2008 Learning Track. The system CA-
BALA used typed sequences to support the generation of
lookahead states from a relaxed plan. It performed poorly
in the competition because the algorithm (not presented in
this work) strongly depends on the quality of the relaxed
plan. Other systems such as OBTUSEWEDGE [27], and
ROLLER [9], performed better. These systems learn a gen-
eralized policy [19], which is a function that maps a meta-
state to the action that should be applied. When it is hard
to induce such a target function, a lazy learning technique
such as CBR becomes an alternative for acquiring domain-
dependent knowledge.

7 Conclusions

We have presented in this article an alternative approach
to represent and use domain-dependent knowledge for han-
dling scalability issues in domain-independent planning.
The technique was developed within the case-based reason-
ing model, which involves saving, retrieving, using and re-
vising the learned knowledge. We can summarize the con-
tributions of this work as follows:

– Typed sequences: a compact way for abstracting plans
and their corresponding state transitions from an object-
centered perspective. Typed sequences can retain sub-
state transitions that commonly appear in problems,
which seems easier than deducing all possible sub-state
transitions from a domain analysis.

– Relaxed plan footprint: a retrieval key that is used to rec-
ognize the right sequences when they have differences
only in intermediate steps.

– CBR algorithms: Modification to heuristic algorithms
that allow us to integrate the knowledge given by typed
sequences in a soft fashion, which also takes into account
the guidance of the heuristic estimations.

Results on eight planning benchmarks showed the ben-
efit of using typed sequences during the search process.
Improvements obtained by different CBR algorithms were
due to the reduction in the number of evaluated nodes. Since
computing the relaxed plan heuristic is expensive in terms
of time, any technique that can alleviate this burden will
scale better in large problem instances. Accordingly, typed
sequences can be complemented with other techniques that
handle node evaluation issues. As future work we are plan-
ning to use CBR node recommendations to validate the ac-
tion policy of ROLLER [9]. The new algorithm will propose
a set of candidate actions to be applied using the relational
decision trees, and then will select the actions that replay a
typed sequence stored in the case base.

In addition, we want to research alternative representa-
tions for typed sequences, in order to enrich the information
they can encode. As discussed previously, the CBR algo-
rithms have no information of which sequence to replay firs
or which sequences should be replayed at the same time.
We want to include information from the causal graph of the
planning task [13] to handle this limitation. We also want
to enrich typed sequences for handling more complex do-
mains [10].

Finally, the planning community has some interest in
synthesizing plans that contain user preferences. This idea
is implemented through state preferences and giving rewards
or penalties to certain actions. Thus, as future work, we plan
to extend our approach by giving type sequences the possi-
bility of acquiring user preference knowledge. As done in
CBR algorithms, this information could be used to select or
prefer certain actions among the search candidates.

Acknowledgements This work has been partially supported by the
Spanish MEC projects PELEA: TIN2008-06701-C03-03 and PlanIn-
teraction: TIN2011-27652-C03-02.

References

1. Aamodt A, Plaza E (1994) Case-based reasoning: foundational is-
sues, methodological variations, and system approaches. AI Com-
mun 7(1):39–59

2. Blum A, Furst M (1995) Fast planning through planning graph
analysis. In: Mellish CS (ed) Proceedings of the 14th international
joint conference on artificia intelligence, IJCAI-95, vol 2. Morgan
Kaufmann, Montreal, pp 1636–1642

3. Bonet B, Geffner H (2001) Planning as heuristic search. Artif In-
tell 129(1–2):5–33

17

4. Castillo L, Fernández-Olivares J, García-Pérez O, Palao F (2006)
Bringing users and planning technology together. Experiences in
siadex. In: Proceedings of the 16th international conference on
automated planning and scheduling (ICAPS 2006). AAAI Press,
Menlo Park

5. Coles A, Fox M, Smith A (2006) A new local search algorithm for
forward-chaining planning. In: Proceedings of the 17th interna-
tional conference on automated planning and scheduling (ICAPS-
2007), Providence, RI, USA

6. Cox M, Muñoz-Avlia H, Bergmann R (2005) Case-based plan-
ning. Knowl Eng Rev 20(3):283–287

7. De la Rosa T, Jiménez S, Borrajo D (2008) Learning relational de-
cision trees for guiding heuristic planning. In: Proceedings of the
18th international conference on automated planning and schedul-
ing

8. De la Rosa T, Jiménez S, García-Durán R, Fernández F, García-
Olaya A, Borrajo D (2009) Three relational learning approaches
for lookahead heuristic planning. In: Working notes of ICAPS
2009 workshop on planning and learning, pp 37–44

9. De la Rosa T, Jiménez S, Fuentetaja R, Borrajo D (2011) Scaling
up heuristic planning with relational decision trees. J Artif Intell
Res 40:767–813

10. Della Penna G, Magazzeni D, Mercorio F (2012) A universal plan-
ning system for hybrid domains. Appl Intell 36:932–959

11. Fox M, Long D (1998) The automatic inference of state invariants
in TIM. J Artif Intell Res 9:317–371

12. Ghallab M, Nau D, Traverso P (2004) Automated planning, theory
and practice. Morgan Kaufmann, San Mateo

13. Helmert M (2006) The fast downward planning system. J Artif
Intell Res 26:191–246

14. Hoffmann J (2005) Where “ignoring delete lists” works: lo-
cal search topology in planning benchmarks. J Artif Intell Res
24:685–758

15. Hoffmann J, Nebel B (2001) The FF planning system: fast plan
generation through heuristic search. J Artif Intell Res 14:253–302

16. Hoffmann J, Porteous J, Sebastia L (2004) Ordered landmarks in
planning. J Artif Intell Res 22:215–278

17. Hogg C, Muñoz-Avila H, Kuter U (2008) HTN-MAKER: learning
htns with minimal additional knowledge engineering required. In:
Proceedings of the 20th AAAI conference. AAAI Press, Menlo
Park

18. Kuzu M, Cicekli NK (2012) Dynamic planning approach to auto-
mated web service composition. Appl Intell 36:1–28

19. Martin M, Geffner H (2004) Learning generalized policies from
planning examples using concept languages. Appl Intell 20:9–19

20. McGann C, Py F, Rajan K, Ryan H, Henthorn R (2008) Adaptative
control for autonomous underwater vehicles. In: Proceedings of
the 23rd AAAI conference. AAAI Press, Menlo Park

21. Nayak P, Kurien J, Dorais G, Millar W, Rajan K, Kanefsky R
(1999) Validating the ds-1 remote agent experiment. In: Artificia
intelligence, robotics and automation in space

22. Richter S, Westphal M (2010) The LAMA planner: guiding cost-
based anytime planning with landmarks. J Artif Intell Res 39:127–
177

23. Serina I (2010) Kernel functions for case-based planning. Artif
Intell 174:1369–1406

24. Spalazzi L (2001) A survey on case-based planning. Artif Intell
Rev 16:3–36. citeseer.ist.psu.edu/kettler94massively.html

25. Veloso M, Carbonell J (1993) Derivational analogy in PRODIGY:
automating case acquisition, storage, and utilization. Mach Learn
10(3):249–278

26. Vidal V (2004) A lookahead strategy for heuristic search plan-
ning. In: Proceedings of the fourteenth international conference on
automated planning and scheduling, Whistler, British Columbia,
Canada, pp 150–160

27. Yoon S, Fern A, Givan R (2008) Learning control knowledge for
forward search planning. J Mach Learn Res 9:683–718

Tomás de la Rosa is a Ph.D. Assis-
tant Professor at Unversidad Carlos
III de Madrid (UC3M). He received
his Ph.D. in Computer Science from
the UC3M in 2010. He is member
of the Planning and Learning Group
(PLG) at UC3M since 2005. He has
published 14 journal and conference
papers in the f eld of Automated
Planning and Machine Learning.
He was co-organizer of the Work-
shop on Planning and Learning in
the International Conference of Au-
tomated Planning and Scheduling
(ICAPS) in 2009. He has partici-

pated in 10 research projects funded by European Union and Spanish
research council, including 4 projects for transferring knowledge to the
industry.

Angel García-Olaya is Associate
Professor at Unversidad Carlos III
de Madrid (UC3M) since 2004. He
received his Ph.D. and B.Sc. in
Telecommunications from UPM in
2004 and 1999 respectively. He also
has a M.Sc. on Health Informatics
from University of Athens, 1997.
He is author of about 40 journal and
conference papers, in the field of
Telemedicine, Automated Planning
and Robotics, being awarded with a
prize of innovation in Telemedicine
by University of Santiago de Com-
postela in 2004 and with the Best

Paper Award in the 2011 Conference of the Spanish Association for Ar-
tificia Intelligence. He has participated in 15 research projects funded
by European Union and Spanish research council.

Daniel Borrajo is a University Pro-
fessor of Computer Science (CS)
at Unversidad Carlos III de Madrid
(UC3M) since 1998. He received
his Ph.D. in CS from Universi-
dad Politécnica de Madrid (UPM)
(1990, doctoral prize), and a B.Sc.
in CS (1987) also from UPM. He
has been also a pre- and post-
doctoral visiting researcher at the
CS Department of Carnegie Mel-
lon University (1989, 1993–1994,
2007–2008). He has been vicedean
(1996–2000 and 2004–2006) and
Head of the Department (2000–

2002). He founded the Plannning and Learning Group (PLG) in 2004
from the AI group at UC3M (since 1995). He has published over 160
journal and conference papers mainly in the f eld of machine learning
and problem solving (including planning). He has served as the Pro-
gram co-chair of the International Conference on Automated Planning
and Scheduling (ICAPS 2013), Conference co-chair of the Interna-
tional Symposium on Combinatorial Search (SoCS 2011 and 2012),
Conference co-chair of ICAPS 2006, and Program Chair of the Span-
ish Conference on Artificia Intelligence. He has been the coordinator
and researcher of more than 15 european, national and regional R&D
projects.

18

