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ABSTRACT

This paper tackles the problem of automatic brain tumor classifica-
tion from Magnetic Resonance Imaging (MRI) where, traditionally,
general-purpose texture and shape features extracted from the Re-
gion of Interest (tumor) have become the usual parameterization of
the problem. Two main contributions are made in this context. First,
a novel set of clinical-based features that intend to model intuitions
and expert knowledge of physicians is suggested. Second, a system
is proposed that is able to fuse multiple individual scores (based on a
particular MRI sequence and a pathological indicator present in that
sequence) by using a Bayesian model that produces a global system
decision. This approximation provides a quite flexible solution able
to handle missing data, which becomes a very likely case in a realis-
tic scenario where the number clinical tests varies from one patient
to another. Furthermore, the Bayesian model provides extra informa-
tion concerning the uncertainty of the final decision.

Our experimental results prove that the use of clinical-based fea-
ture leads to a significant increment of performance in terms of Area
Under the Curve (AUC) when compared to a state-of-the art referen-
ce. Furthermore, the proposed Bayesian fusion model clearly out-
performs other fusion schemes, especially when few diagnostic tests
are available.

Index Terms— Brain Tumor, MRI, clinical-based features, Ba-
yesian fusion.

1. INTRODUCTION

Magnetic Resonance Imaging (MRI) is the diagnostic tool that
currently offers the most sensitive non-invasive way for detection
and diagnosis of brain neoplasms. According to the World Health
Organization (WHO), brain tumors characterization is based on both
their histological grade of malignancy (I-IV), and their type (primary
or secondary) [1]. While the classification of the tumor grade is of-
ten simple for an experienced radiologist, the differentiation between
more aggressive primary tumors (grade IV) and metastases could be
more challenging [2]. In addition, this accurate diagnosis is essential
because the management and prognosis of these type of tumors are
very different [3].

Computer-Aided Diagnosis systems (CAD) have been develo-
ped that help physicians to make more accurate decisions. Typically,
these systems use a Region Of Interest (ROI) segmentation method,
followed by a feature extraction/selection procedure that feeds ma-
chine learning algorithms carrying out the lesion classification

Concerning the description of the ROI, most of these systems
make use of traditional general-purpose texture-based image featu-
res: (Laplacian of Gaussian Filters [4], Gabor Filters [5], GLCM sta-
tistics [6], LBP/VAR histograms [7], etc.). These features model the
texture of the ROI by means of filter banks at several scales and

orientations, and have been successfully used in many computer vi-
sion tasks [8] [9] [10]. It has not been until the last years, when some
recent approaches have introduced some specific clinical-based des-
criptors [11][12]. These type of descriptors are directly derived from
the intuitions of the radiologists, and therefore model their expert
knowledge about the problem. However, they were still very few in
comparison to the general-purpose features, and sometimes they la-
cked of strong connections with the pathological information that
radiology experts use in their diagnostics.

Another common limitation of current CAD systems for brain
tumor type characterization is their lack of flexibility since they re-
quire exactly the same fixed set of clinical tests in all the cases (in
most approaches, tumor area in T1 and T2). Therefore, in case an
additional information is available, it is filtered out by the system.
In contrast, if any of the images belonging to the fixed input set is
not available (it has been not possible for the radiologists to make
the associated clinical test), traditional CAD systems cannot make
decisions about the case. However, in practice, many other MRI se-
quences (Fluid Attenuation Inversion Recovery or FLAIR, T1 after
intravenous contrast agent administration) and some potential pat-
hological indicators (enhancement, necrosis, edema, neovasculari-
zation, bleeding, etc.) are studied by physicians, and are frequently
used to make their diagnosis.

To overcome the aforementioned limitations, in this paper we
present a system for brain tumor classification with two important
contributions: 1) we propose a rich set of clinical-based features that
model properties of various pathological indicators used by physi-
cians in their diagnosis. As we will show in the experimental section,
this new set of features improves the traditional system performance
working with general-purpose features. And 2) we propose a novel
Bayesian fusion scheme that integrates the outputs of independent
classifiers working on particular MRI sequences and pathological
indicators. Bayesian fusion successfully handles the absence of in-
formation (missing clinical tests), and becomes a natural framework
to model the uncertainty around the predictions what, as we will
show in the paper, provides valuable information to physicians for
both decision making and staff training purposes.

The remainder of this paper is organized as follows: Section 2 in-
troduces our model for brain tumor classification. Section 3 focuses
on the design of a novel set of clinical-based features and justifies
each descriptor from the experts’ knowledge. Our Bayesian fusion
scheme is later discussed in Section 4. Section 5 assesses the per-
formance of both the parameterization and global system, whereas
Section 5 draws our conclusions and states further work.

2. MODEL OVERVIEW

Our work considers 4 types of MRI sequences that are usually
included in the basic protocol used in the assessment of cerebral tu-
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Fig. 1. Block diagram of the proposed model for MRI-based brain
tumor classification.

mors: T1, T2, FLAIR and T1 3D after administration of intravenous
gadolinium-based contrast, as well as 6 pathological image variables
or indicators selected by expert radiologists that reflect histological
features of these tumors: tumor area, enhancement, necrosis, ede-
ma, neovascularization and bleeding. The proposed model for MRI-
based brain tumor classification is illustrated in Fig. 1. For each cli-
nical case, the physicians generate one or more pairs (sequence, in-
dicator) by manually labeling the ROI of each indicator (when it is
present according to the radiologist criterion) in that sequence where
the indicator is more noticeable or is particularly well-defined. Sin-
ce our system is able to handle missing data, it is not required that
all pairs (sequence, indicator) are available to make a decision about
a clinical case. In fact, in practice, just a few subset of the poten-
tial pairs is available for each clinical case (in average, 5.1 in our
dataset), and some of them are not even present in the whole dataset.

In the next step of the processing pipeline, the appearance of the
ROI in each labeled pair (sequence, indicator) m is described using
a set of features Fm (sec. 3). A particular (optimized) parameteriza-
tion Fm is obtained for each pair following a feature selection process
(sec. 5.1). Then, the resulting feature vector Fm will feed a classifier,
which we call an expert, implemented by a SVM with a nonlinear
RBF kernel. Each expert generates a real-valued output Xm, that re-
presents the expert opinion, and corresponds with the soft decision
function of the SVM: Xm ∈ (−∞,∞).

Finally, the whole set of available expert decisions Xm is then
processed by a Bayesian Fusion model (sec. 4) that provides three
measures of interest for the clinical case: a) the system decision Y ;
b) a set of individual expert opinions Om; and c) the uncertainty U
of the decision.

3. CLINICAL-BASED PARAMETERIZATION

In this section, we introduce the features that describe the ap-
pearance of the ROI in each pair (sequence,indicator). In general, we
consider two kinds of features: a) a set of classical general-purpose
filter banks, e.g. Laplacian of Gaussian Filters [4], Gabor Filters [5],
GLCM statistics( homogeneity, contrast, energy and correlation )
[6], LBP/VAR histograms [7], fractal dimension and lacunarity [13],
entropy, range and standard deviation filters; and b) a set of clinical-
based features, containing specifically tailored features that model
perceptions and intuitions of radiologists and other clinical experts.

Since they are a central point in the scope of this paper, we next
provide a description of the clinical-based features, focusing on how
they are derived from the experts’ intuitions. Hence, given the ROI
of an indicator in a sequence, we compute:

- Size relations: computed as areas, perimeters and their rela-
tions to those of other indicators. Size of Primary tumors tends to be
bigger when compared to other associated pathological evidences (
edema, enhancement, etc ).

- Scattering and complexity: measures the number of non-
connected regions that form a particular indicator along with their
shape regularity. Primary tumors are characterized by irregular
perimeters with scattered enhancement; whereas metastases are
generally more regular with a single region of enhancement. This
feature are related to the more infiltrative nature of gliomas [14].
Complexity measure includes regularity and three types of asym-
metry (rotational, mirror and circular) ) reflecting the histological
inhomogeneity of primary brain tumors [15].

- Compactness and annularity: these are features designed to
describe the whole enhancement and necrosis area. Metastasis tends
to have circular necrosis areas surrounded by annular enhancement,
while primaries are more decentralized and snaky.

- Edge intensity: this feature describes the transition between
the boundary of the lesion and the healthy tissue. Primary tumors
are mainly composed by neurons which are visually similar to the
rest of the gray matter, but metastases are formed by cells from other
organs, so the intensity gradient along the border tends to be larger.

4. BAYESIAN FUSION OF EXPERT OPINIONS

4.1. Independent likelihood pool for fusion of expert opinions

Given a particular clinical case, the input to the fusion stage is a
feature vector X = {x1,x2, ...,xM} containing the soft outputs of the
M experts available for the case. The aim of this stage is to generate a
final output label Y , a measure of the uncertainty U of this decision,
and a measure of the experts’ individual opinions Om.

Bayesian models are a suitable paradigm to carry out the fusion
process of the outputs of several experts. Assuming that, conditioned
to the class j ( j = 0,1 for primary and metastasis, respectively), the
likelihood of the data provided by m-expert p(xm|y j) is independent
of that of any other different expert n (∀n �= m), we can easily factori-
ze the joint likelihood of the experts’ opinion p(X |y j). Hence, using
Bayes’ theorem, we can model the posterior probability of a class j:

p(y j|x1...xM) ∝ p(y j)
M

∏
m=1

p(xm|y j), (1)

that depends on the prior probability of the class p(y j), and the like-
lihood of the inputs p(xm|y j).

This model is known as Independent Likelihood Pool [16] and,
due to the factorization of the likelihood, allows us to implicitly
handle missing clinical tests.

As can be observed in (1), we need to define the distribution
that models the likelihoods of the expert outputs p(xm|y j). We used
Gaussian distributions to model the expert outputs: p(xm|y j) =
N(μ jm,σ jm), defined by their mean μ jm and standard deviation σ jm.
Modeling the expert outputs as Gaussian distributions, rather than
directly using their values, allows the model, not only to handle
missing data, but also to measure the uncertainty over the outputs of
the SVMs.

Up to now, the proposed Bayesian fusion scheme has modeled
just one source of uncertainty (that one directly coming from the
quality of the individual SVMs). However, we also aim to incorpo-
rate an additional source of uncertainty: that one coming from the
lack of enough training samples. To that end, we propose to introdu-
ce a priori distributions (μ0,σ0) over the parameters of the Gaussian
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Fig. 2. Examples of the distributions for 2 experts: the prior distri-
bution is shown in black dashed line, that of the metastasis class in
blue line, and that of the primary tumor class in red line.

likelihoods. For simplicity, conjugate prior distributions are used to
analytically derive closed expressions for the posteriors. Specifically,

the conjugate prior of the precision
(

λ jm = σ−2
jm

)
is a Gamma dis-

tribution, whereas the conjugate prior of the mean μ jm is a Gaussian
distribution conditioned on λ jm [17].

For the sake of brevity, we omit the algebra related to conju-
gate priors (the reader is referred to [18] and [19] for details). The
resulting update equations to estimate the Gaussian parameters are:

μ̂ jm =
∑n jm

i=1 x(i)
jm +β μ0

n jm +β

σ̂2
jm =

∑n jm
i=1

(
x(i)

jm− μ̂ jm

)2
+β

((
μ̂ jm−μ0

)2 +σ2
0

)

n jm +β
(2)

where n jm stands for the number of available data for the m-expert

and the class j; μ0 and σ2
0 are the initial values for the Gaussian

parameters (in our experiments, μ0 = 0 and σ2
0 small (σ2

0 ∼ 0.1); and
finally, the β parameter is a scaling factor that balances the influence
of the initial and the learned models (in our experiments, β = 1). It
should be noted that all the distributions, each one associated with an
expert and a class, have the same initial values μ0, σ2

0 , and scaling
factor β .

The underlying idea is that the accuracy of the Gaussian models
of the expert outputs increases with each new training data. In doing
so, we are able to manage the shortage of training data. For example,
if an expert provides us few training data p(xm|y j) (because this ex-
pert works with a sequence and indicator rarely labeled by the phy-
sician), the Gaussian distributions associated with this expert will
be very similar to those of the a priori distributions; and vice-versa,
if an expert gives us many training data, the Gaussian distributions
will highly depend on these data and the influence of the a priori
distribution will be lower.

In Fig. 2 two examples of this learning process are shown, each
one for a different expert. Specifically, the distributions of each
expert output given each class (primary tumor and metastasis) are
shown along with the a priori distributions. As can be observed,
when enough data is available the distributions clearly move apart
from the a priori distributions. Otherwise, they would stay close
to the a priori distributions expressing a high level of uncertainty.
Moreover, the actual overlap between the distributions for primary
tumor or metastasis for each expert clearly indicates its discrimina-
tion ability. In this particular case, expert 1 will likely discriminate
much better than expert 3.

In summary, the proposed method is able to model both the va-
riability of the expert opinion and the shortage of training data. Mo-
reover, if some sequence or indicator is not available, this absence
can be managed by simply not including the corresponding term in
(1).

Fig. 3. Evolution of the AUC as a function of the number of featu-
res selected for pairs {4,2} and {5,2}. AUCC denotes the proposed
feature set.

4.2. Further information provided by the Bayesian fusion model

Besides the final selected class, the previously described model
allows us to obtain some further information of great interest, such
as the uncertainty of its decision or the individual opinion of every
expert. These kind of additional information may be useful to assist
the physician who has to make the decision and even to contribute
to the education process of inexperienced physicians. In particular,
we propose to compute the following additional measures for each
clinical case.

Final system decision Y : it is calculated following (1); thus, if
the probability of primary tumor is higher than the probability of
metastasis p(y0|x1...xM) > p(y1|x1...xM), the selected class will be
primary tumor Y = 0, and vice-versa.

Individual expert opinions Om: computed as:

Om = p(y j|xm) ∝ p(y j)p(xm|y j), (3)

being j the final selected class. In particular Om tells how good the
decision would be if only the m-expert were used. Therefore, these
expert opinions lets us to know the sequences and indicators that
become essential to the final decision.

Uncertainty U of the final decision: defined as the mean de-
viation between the probability of every m-expert p(y j|xm) and the
final output of the fusion stage p(y j|x1...xM), where j is the selected
class:

U =

√√√√ 1

M

M

∑
m=1

(
p(y j|x1...xM)− p(y j|xm)

)2
(4)

This uncertainty measure provides some insight into the reliabi-
lity of the system decision.

5. EXPERIMENTAL RESULTS

5.1. Experimental Setup

Our dataset contains 97 clinical cases, 85 of them corresponding
to the most frequent type of primary tumors (gliomas) and 12 to me-
tastases. As previously mentioned, the average number of experts
per patient is 5.1. The number of training data available for each ex-
pert model varies according to the sequences and indicators that the
physicians decided to label for each clinical case. Furthermore, some
experts have been discarded since there are not enough metastases to
train and evaluate the corresponding models. In particular, in our ex-
periments we only consider those experts for which we have at least
10 primary tumors and 5 metastases, what leads to a set of 8 experts
in total.
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Ind. Seq. ΔAUCRΔAUCRΔAUCR ΔAUCGΔAUCGΔAUCG AUCCAUCCAUCC # clinic/# features

2 2 3.49 4.00 99.19 13/19

2 3 1.86 1.68 99.22 7/11

2 5 6.41 -3.59 88.20 5/6

3 5 4.44 1.09 87.19 6/15

4 2 8.93 10.10 97.97 4/5

4 5 3.26 2.20 93.89 4/10

5 2 5.05 6.30 95.19 3/14

5 3 -0.36 0.71 86.44 1/9

Table 1. Results regarding the compared feature sets for the 8 pairs
{sequence, indicator} considered. The AUC achieved by the propo-
sed system, AUCC, and the increments with respect to the other two
feature sets considered, ΔAUCR and ΔAUCG, are shown.

We have conducted our experiments following a well-defined
protocol. For each individual expert, we have designed the corres-
ponding model using a 5-fold cross validation, which has been used
to perform both the feature selection process and the selection of the
parameters of the SVM (C and γ , the width of our RBF kernel).

Then, due to the limited size of the individual expert datasets, we
have evaluated our classifiers using the Leave-One-Out (LOO) ap-
proach. The advantage of LOO is twofold: 1) it obtains more stable
results since it maximizes the number of training samples for every
test sample; and 2) it obtains results for every sample in the dataset,
what allows us to train the fusion model over the whole set of clini-
cal cases. Finally, we have used the Area Under the Curve (AUC) to
assess the performance of our approach.

5.2. Experiments on feature sets

In this section we have assessed how the inclusion of clinical-
based features actually improves the system performance. Hence,
we have compared two feature sets: a General set (G) that includes
classical texture filter-banks (see Sec. 3), and a Complete set (C), that
incorporates the proposed novel set of clinical-based features (Sec.
3). Moreover, to provide comparisons with an state-of-the-art met-
hod, we have considered in our experiments a third feature set pro-
posed in [20] and [21] (R), which comprises many general-purpose
filter-banks and a reduced set of clinical-based features.

In order to analyze the evolution of the AUC as a function of
the number of features selected, we have repeated the whole process
50 times, varying the dimension of the feature vector from 1 to 20,
and compared the results achieved by the three considered feature
sets. Table 1 summarizes these results for each expert, i.e., for each
pair (sequence, indicator). To evaluate the improvement reached by
the proposed set (C), the mean increment of AUC with respect to
the state-of-the art reference (ΔAUCR) and to the general purpose
feature-based systems (ΔAUCG) has been measured (third and fourth
column). The fifth column includes the best AUC obtained by the op-
timal set of features. And finally, the last column shows the number
of slected clinical-based features with respect to the total number of
features in the optimal feature set.

Figure 3 illustrates, as an example, the evolution of the AUC as
a function of the the number of selected features for two particular
pairs (sequence, indicator), {2,2} and {5,2}.

As can be seen in Figure 3 and Table 1, the use of clinical-based
features produces a notable increment of the AUC with respect to
both the general-purpose and the reference sets for the same number
of features selected. Furthermore, the proportion of clinical-based
features over the total number of features is very significant in almost
every case.

Fig. 4. Performance of the proposed model for Bayesian fusion in
comparison with max, mean, and max-voting fusion schemes.

5.3. Experiments on the global system

Once our clinical-based parameterization has been assessed, we
aim to demonstrate how the proposed fusion scheme handles the
problem of missing data (absent clinical tests) and models the un-
certainty due to the scarcity of training data and the confidence on
each expert.

To this purpose, we have evaluated the performance of the global
system at classifying clinical cases for a different number of availa-
ble diagnostic tests (experts). In particular, given the whole dataset,
we randomly pick N % of the diagnostic tests for each case (ensuring
at least we have 1 diagnostic test per case) and run our system. In Fig.
4 we show the results of this experiment, comparing the performance
of our Bayesian fusion scheme to other well known fusion schemes
that can also handle missing data, namely: mean fusion, max fusion
and max-voting fusion.

As can be easily noticed, the proposed Bayesian fusion model
consistently outperforms the rest of the approaches. It is worth no-
ting how the performance of our fusion scheme is specially good
when the number of diagnostic tests is very low. From our point of
view, the rationale behind this fact is that for these values of N, the
number of training samples for each expert is very low, what pro-
duces an important increment of the uncertainty of the individual
SVM-based classifiers. Since our approach is the only one modeling
this uncertainty using Gaussian distributions and conjugate priors,
the confidence on the individual expert decisions is taken into ac-
count.

6. DISCUSSION

In this paper, we have proposed a complete system for brain tu-
mor classification from MRI-based images. First, we have introdu-
ced some clinical-based features that intend to model radiologists’
intuitions and, as shown in the experiments, notably improve the re-
sults, either increasing the classification performance or reducing the
total number of features required for classification.

Second, we have proposed a Bayesian fusion model that suc-
cessfully handles the problem of missing data, takes into account
the uncertainty of each expert, and provide useful information to the
radiologists. That is especially important because we consider a rea-
listic scenario where although an extended set of potential diagnostic
tests could be performed, just a small set of them is actually available
for each clinical case.

Further work focuses on the development of a larger dataset and
the development of more elaborated Bayesian fusion methods.
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