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This work examines the mechanisms governing the fragmentation of ductile rings
expanding  at  very  high  strain  rates.  Based  on  previous  works  three  different 
methodologies have been addressed, namely: fully 3D finite element computations
of the radial expansion of ductile rings, numerical simulations of unitary axisymm
etric cells with  sinusoidal  spatial  imperfections  subjected  to  tensile  loading  
and  a  linear  perturbation  technique  derived  within  a  quasi-1D  theoretical  
framework.  The  results  derived  from  these  three  different  approaches  allow  
for  identification  of  a  critical  wavelength  which  dictates  the  fragmentation  
of  ductile  rings  expanding  at  very  high  strain  rates.  This  critical  wavelength  
is  revealed  quite  independent  of  the material  properties  but  closely related to 

the ratio (L0/ϕ0)critical ≈1:5 where L0 is the fragment size and ϕ0 is the diameter of 
the circular section of the ring. This work highlights the fundamental role played 
by material inertia in the fragmentation at very high strain rates, setting aside the 
mechanisms associated to the classical statistical theories.

1. Introduction

Understanding the fragmentation of solids and structures subjected to high velocity impacts or blast loadings has
importance in aerospace industry, military applications, civil engineering and geophysical applications. Meteoric cratering,
explosive behaviour of projectiles or orbital debris impact on spacecraft structures are examples of situations in which to
preserve the integrity of structures subjected to strain rates within the range 4104 s�1 becomes crucial.

From the early studies in this area – dating in the late 18th century – to the present time, an intense debate on the
causes which reside behind the fragmentation of solids has been carried out. Particularly, over the last decades large
efforts have been made with the aim of describing the inherent or induced flaws causing dynamic failure and
fragmentation and its interrelation with the loading conditions.

The characterization of impact fracture and fragmentation emerged as a challenge in experimental mechanics.
Niordson (1965) developed a device for the rapid expansion of thin rings to determine materials properties at high strain
rates. Compared to the uniaxial impact tensile test (K�arman and Duwez, 1950; Clark and Wood, 1950) wave disturbances
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are eliminated due to the symmetry of the problem (Fyfe and Rajendran, 1980; Hu and Daehn, 1996; Altynova et al., 1996).
The material stretches during loading until homogeneous deformation fails at large strain, leading to flow localization in
the form of multiple necking and subsequent fragmentation. From the pioneering work of Niordson (1965), the capability
of the expanding rings method to determine fragmentation characteristics of ductile materials has been exploited by
several laboratories (Grady and Brenson, 1983; Gourdin, 1989; Altynova et al., 1996; Hu and Daehn, 1996; Juanicotena and
Llorca, 1997; Grady and Olsen, 2003; Zhang and Ravi-Chandar, 2006, 2008; Janiszewski and Pichola, 2009; Janiszewski,
2012). Within the typical range of expansion velocities attained in this test – from 50 to 300 m/s – the experimental results
show that the strain to failure of ductile materials is enhanced by the expansion velocity (Hu and Daehn, 1996; Altynova
et al., 1996; Janiszewski, 2012). Moreover, the failure pattern is revealed velocity dependent too, leading to an increasing
number of necks and fragments with testing velocity. The experimental evidence revealed that the number of necks
formed exceeds the number of fragments. In a recent series of papers, Zhang and Ravi-Chandar (2006, 2008) used a high-
speed camera system to obtain high-spatial resolution images showing the ring deformation and fragmentation processes.
Through the images recorded it was identified that the onset of fragmentation is caused by the development of a part of
the nucleated necks and is completed by extension fracture through the hardened material within these necked regions.
The arrested necks result from the arrival of a relieving stress wave from a nearby fracture which removes the driving force
before fracture is completed. Thus, from experimentation two fundamental issues arise in the deformation and
fragmentation of solids at high strain rates:

1. The physical foundations dictating the increasing ductility with loading rate.
2. The mechanisms governing the necking and fragmentation patterns.

It has been established that increasing ductility in the dynamic regime is controlled by both, inertia and material
constitutive behaviour.

� Inertia effect: The role played by material inertia in strain localization has been addressed by Grady (1982) which
developed a theoretical model bringing out the stabilizing role played by local inertia effects in fragmentation
processes. Meanwhile, Rajendran and Fyfe (1982) glimpsed the stabilizing effect of inertia in the growth of necks
represented by geometrical imperfections. Fressengeas and Molinari (1985) developed a stability analysis within the
theoretical framework of a 1-D model for uni-axial tension. The study clearly differentiated static and dynamic cases,
highlighting the stabilizing effect of inertia on the material behaviour at high strain rates. Somewhat later, Knoche and
Needleman (1993) evaluated the influence of material inertia on failure initiation in the round bar tensile test using
finite element simulations. They succeeded pointing out the non-linear relation between inertia and necking strain.
Han and Tvergaard (1995) revisited the findings brought by Knoche and Needleman (1993) and confirmed by FE
simulations the effect of material inertia delaying necking formation in plane strain tensile test specimens. More
recently, it is worth noting a number of theoretical and numerical works that have provided additional verification of
the benefits provided by material inertia to delay necking formation (Pandolfi et al., 1999; Sørensen and Freund, 2000;
Becker, 2002; Mercier and Molinari, 2003, 2004; Zhou et al., 2006c).

� Constitutive behaviour effect: The role played by the constitutive behaviour of the material may be split into the effect
of strain hardening and the effect of rate sensitivity both helping to stabilize material behaviour. This was reported by
Gosh (1977) who examined theoretically tensile instability and necking in materials showing strain and strain rate
dependences of flow stress. The effect of rate sensitivity retarding tensile localization received further attention in the
work of Hutchinson and Neale (1977). In this work a non-linear analysis is developed, emphasizing the strong influence
of a small degree of material rate sensitivity on necking formation. Moreover, Fressengeas and Molinari (1985)
demonstrated the destabilization of plastic flow by thermal softening, i.e. by decreasing strain hardening. Somewhat
later, Hu and Daehn (1996) conducted numerical simulations of rapid radial expansion of rings for viscoplastic
materials. They glimpsed the complexity of the interplay between strain hardening and strain rate hardening and they
analysed the combined effect of strain and strain rate on necking retardation. In recent years, a number of papers has
provided further understanding of the interplay between material behaviour and necking formation (Mercier and
Molinari, 2004; Zhou et al., 2006c; Rusinek and Zaera, 2007; Xue et al., 2008; Mercier et al., 2010; Vadillo et al., 2012).

The explanation of the necking and fragmentation patterns experimentally observed has been addressed basically by
two different methodologies: statistical analyses and stability analyses.

� Statistical analyses: The starting point of the statistical analyses is the seminal work of Mott (1947) who attempted to
capture the characteristic circumferential spacing of fractures – and their statistical distribution in spacing – in metallic
casing subjected to rapid expansion. Mott postulated that fragmentation proceeds through the random spatial and
temporal occurrence of fractures resulting in a distribution in fragment lengths. Thus, Mott attributed the distribution
of fragment sizes to statistical variability in the strain to failure of the material and obtained this distribution through
an estimate of the propagation of the unloading or release waves from each fracture event. Further improvements and
extensions to the original developments of Mott have been conducted by Grady and co-workers in successive works



(Grady, 1981; Kipp and Grady, 1985; Grady and Olsen, 2003). The analyses reinforced the idea of the statistical
character of the fragmentation process for velocities ranging from 50 to 300 m/s. They captured the fragment size
decrease with increasing loading rate and mass density observed in experiments. The analysis also reflected the
increasing fragment size with fracture energy which allows to provide explicit expression for the time to fracture and
the fracture strain. Interestingly, the statistical theories have also found application in predicting the fragmentation of
brittle solids. The outstanding works of Hild et al. (2003) and Zhou et al. (2005, 2006a, 2006b) rely on the developments
of Mott and Grady to provide further explanations on the characteristic fragments size distributions found in brittle
solids. Similar to the observations reported for ductile materials, the authors stated that as the loading rate increases
both the fragments size and the fragment statistical scatter decrease.

� Stability analyses: The work of Hill and Hutchinson (1975) served as departure for the stability analyses. In this paper
they developed a quasi-static bifurcation analysis for a rectangular plate strained under plane strain tension. It was
reported that neglecting the role of material inertia short wavelength modes could not be developed and long
wavelength modes were favoured. Somewhat later Fressengeas and Molinari (1994), Guduru and Freund (2002),
Mercier and Molinari (2003) and Zhou et al. (2006c) showed that the multidimensional character of the stress state in a
necked region has a damping effect on short wavelength modes. Moreover, Sørensen and Freund (1998) and Shenoy
and Freund (1999) extended the work of Hill and Hutchinson (1975) to dynamic analysis, adding a perturbation of a
given wavelength to the fundamental solution. The role of inertia suppressing the long wavelength modes was
revealed. This conclusion agreed with previous findings reported by Fressengeas and Molinari (1994) who demon-
strated that inertia slows down the growth of long wavelength perturbations. This leads to the selection of a dominant
wavelength at each time of the deformation process which dictates the necking spacing. In recent works Mercier and
Molinari (2004) and Mercier et al. (2010) applied stability analyses to capture the number of fragments and necks
observed experimentally (Altynova et al., 1996; Mercier et al., 2010) in the rapid expansion of rings and hemispheres.
Within the higher loading velocities for which there were available data – � 300 m=s – the perturbation analyses
produced results in rather good agreement with the experimental evidence. However, the difference between
theoretical predictions and experiments arises with the impact velocity decrease. Mercier and Molinari (2004) detected
that this disagreement obeys to limitations of the stability analyses which do not account for the unloading waves
created in the experimental testing which are responsible for slowing down part of the nucleated necks. This suggests
that the stability analysis may show better predictive ability as the loading rate increases. At very high strain rates
unloading is minimal since the released wave generated by any localization or fracture may not travel far enough
quickly to inhibit further nucleation at neighbouring locations (Zhou et al., 2006c). This suggest that if the loading rate
is sufficiently high the fragmentation may not be explained by statistical analyses.

Thus, this paper aims to shed light on the mechanisms of fragmentation at very high loading velocities. It is sought to
demonstrate the deterministic character of the fragmentation process at sufficiently high strain rates. For that task three
different methodologies to describe the radial expansion of ductile rings are applied:

1. Relying on the experimental configuration reported by Grady and Olsen (2003) the radial expansion of ductile rings is
simulated using a 3D finite element model. The numerical model has been validated with experimental data and then
extended for a range of loading velocities exceeding that available from experimentation. Full 3D computations are a
suitable approach to the experimental fragmentation problem. The numerical simulations allow for determining the
values of the neck spacing and fragment size upon wide ranges of loading velocities.

2. Relying on the computational model developed by Xue et al. (2008) a circular cross section ring subjected to a radial
expansion and with geometrical periodic perturbations is modelled as a unitary axisymmetric cell with sinusoidal
imperfection having periodic boundary conditions. A number of computations have been run over a range of cell
lengths, loading rates, material behaviours and imperfection amplitudes. Unitary cell computations allow for
determining the relationship between necking strain and neck spacing, the latter dictated by the cell length. The cell
length with the smaller necking strain defines the configuration of minimum energy dissipation; this is the dominant
neck spacing.

3. Relying on the formulation reported by Zhou et al. (2006c) the boundary-value problem of a radially expanding thin
ring is formulated. Within a quasi-1D theoretical framework, the equations governing the stretching process of the
expanding ring are derived and solved using a linear perturbation method. Stability analyses allow for theoretical
determination of the dominant wavelength (wavelength with the fastest grow rate) to be compared with the neck
spacing obtained from previous approaches.

Confrontation of results obtained from these three independent methodologies seeks to obtain a unified vision of
multiple necking phenomenon.

The paper is organized as follows. In Section 2 the fully 3D finite element model is built and the numerical results are
shown. In Section 3 the unitary periodic cell model is presented and computed for different loading cases. In Section 4 the
stability analysis is developed and the results interpreted for different loading rates. Section 5 compares the results
obtained from the three methodologies addressed. The concluding section outlines the main outcomes of this study.



2. Three dimensional finite element modelling of the dynamic expansion of ductile rings

In this section, the radial expansion of ductile rings is simulated following the fully 3D numerical approach reported by
Rusinek and Zaera (2007). This configuration has been shown effective in reproducing the fragmentation mechanics of the
ring expansion problem.

2.1. Numerical configuration

A Lagrangian 3D finite element model of the rapid expansion of ductile rings is built in ABAQUS/Explicit FE code. The
loading condition is a radial velocity V0 applied in the inner surface of the ring, which remains constant throughout the
entire process, Fig. 1, (Rusinek and Zaera, 2007; Vadillo et al., 2012). The initial condition is a radial velocity V0 applied to
all the nodes of the model. It should be noted that the initial condition is essential in order to avoid spurious propagation of
plastic waves through the thickness of the ring resulting from the abrupt motion of the inner face at t¼0 while the
reminder of the ring is initially at rest. Otherwise, for sufficiently intense waves, the generated plastic wave itself could
serve as the trigger for inducing a neck (Needleman, 1991; Xue et al., 2008). These initial and boundary conditions
guarantee the uniaxial tensile state in the specimen during loading. The mesh used shows radial symmetry. The ring has
been meshed using hexahedral elements (C3D8R in ABAQUS notation) whose aspect ratio is close to 1:1:1, Fig. 1. The
integral viscoelastic approach available in ABAQUS/Explicit (2010) has been used to prevent hourglass deformation modes,
the scale factor chosen for all hourglass stiffnesses was equal to one. It has been checked that the hourglass energy tends to
zero in all the calculations carried out. Five elements are placed along the thickness and width of the sample. The element
size is five times smaller than the smallest neck-free segment registered in the simulations. A mesh convergence study has
been performed; the time evolution of different critical output variables, namely stress, strain and necking strain, were
compared against a measure of mesh density until the results converged satisfactorily. In the numerical simulations the
material is defined as elasto-plastic with isotropic plastic hardening. Following the scheme for Huber–Mises plasticity
developed by Zaera and Fernández-Sáez (2006) the material definition is considered, in generalized form, strain, rate and
temperature dependent.

2.2. Comparison between finite element simulations and experiments: the case of U6N

Numerical simulations are conducted and compared with the fragmentation experiments performed by Grady and
Olsen (2003) on rings of uranium-6%-niobium (U6N). According to Zhou et al. (2006c), the material response is defined by
a constitutive model that includes power law strain hardening, power law strain rate hardening and linear thermal
softening:

sy ¼ s0ð1þAepÞn 1þ _ep

_er

� �m

ð1�BTÞ ð1Þ

Fig. 1. Finite element model used for the 3D ring expansion simulations.



It is assumed that the material behaves under adiabatic conditions and that the rate of temperature increase can be
calculated as follows:

rcv _T ¼ bs_ep ð2Þ

where r is the material density, cv is the specific heat and b is the Quinney–Taylor coefficient. The parameter values
characterizing the behaviour of material U6N are listed in Table 1.

The dimensions of the ring are Ri ¼ 15 mm in inner radius and e0 ¼ 0:75 mm in thickness of square cross section, Fig. 1.
At this point, no geometrical or material imperfections were introduced into the model (Rusinek and Zaera, 2007). The
localization is triggered by the numerical round-off which is sufficient to perturb the stress and strain fields. One should
note that, although numerical round-offs are essential to trigger flow localization, the nature of the necking pattern is
deterministic as recently discussed by Rodrı́guez-Martı́nez et al. (2013).

In order to describe the fragmentation of the ring, a failure criterion must be considered. In the computations the
material failure is defined by a constant value of the equivalent strain, ef ¼ constant, which leads to the element removal.
This type of failure criterion, previously adopted by Rusinek and Zaera (2007), has been shown effective to capture the
main aspects of the ring fragmentation. The condition that must be imposed to the failure strain is to be large enough to
not disturb plastic localization and necking inception. If such condition is fulfilled, the number of necks is not affected by
the failure strain level (Vela et al., 2011).

Finite element simulations are conducted using three different failure strain values, ef ¼ 1:5, ef ¼ 2:0 and ef ¼ 2:5. It has
been checked that such failure strain levels preclude excessive element distortion. The numerical simulations capture the
characteristic increase in the number of fragments with loading velocity, 25 m=soV0o300 m=s (which corresponds to
1667 s�1o _e0o20 000 s�1 since the initial strain rate is given by _e0 ¼ V0=Ri), independently of the failure strain
level considered, Fig. 2. The agreement between experiments and computations is rather satisfactory. However, the

Table 1
Parameter values characterizing the behaviour of material U6N, Eqs. (1) and (2), (Zhou et al., 2006c).

Symbol Property and units Value

s0 Reference yield stress (MPa), Eq. (1) 1000

A Strain hardening modulus, Eq. (1) 1.16

n Strain hardening exponent, Eq. (1) 0.25
_er Reference strain rate (s�1), Eq. (1) 10�6

m Rate sensitivity exponent, Eq. (1) 0.005

B Temperature sensitivity modulus ðK�1Þ, Eq. (1) 0.000833

r Density (kg/m3), Eq. (2) 17 300

E Young’s modulus (GPa) 174

n Poisson’s coefficient 0.3

cv Specific heat (J/kg K), Eq. (2) 117

b Quinney–Taylor coefficient, Eq. (2) 0.9

Fig. 2. Number of fragments upon loading velocity V0 and initial strain rate _e0. Comparison between experiments (Grady and Olsen, 2003) and finite

element results for three failure strains, ef ¼ 1:5, ef ¼ 2:0 and ef ¼ 2:5. Material: U6N. The dashed line refers to the number of fragments at the largest

velocity V0 ¼ 1500 m=s. The corresponding mean fragment size (measured in the reference undeformed configuration) is L0 ¼ 1:5e0 and will be seen to

play a crucial role in the following.



computations have not been limited to the range of loading velocities for which there is experimental data available, but
they have been extended for V04300 m=s. Thus, according to Fig. 2, it is possible to establish a classification of the
influence of the failure strain level on the numerical simulations attending to the loading velocity:

� Zone I: Comprises the range of loading velocities (may be defined by V0t1000 m=s in the present case) for which the
failure strain level plays a role on the number of fragments formed. The larger the failure strain the smaller the number
of fragments. The number of necks and the number of fragments increases almost linearly with loading velocity, being
the number of necks registered considerably larger than the number of fragments, Fig. 3. Such a noticeable difference
between number of necks and fragments matches with the experimental evidence and the theoretical considerations
reported elsewhere (Mott, 1947; Grady, 1982; Grady et al., 1984; Kipp and Grady, 1985; Grady and Olsen, 2003; Zhang
and Ravi-Chandar, 2008; Mercier et al., 2010). The number of necks is determined by recording the strain profile along
the perimeter of the ring. Then it is identified the number of excursions from the theoretical material deformation
which is given by ep ¼ lnðRðtÞ=RiÞ where R(t) is the time dependent ring radius. During loading, each material location
accumulates plastic strain until certain point, then it reaches failure or it is unloaded. Onset of strain localization (onset
of necking) is reached at the weakest sections of the ring which are determined by the numerical round-off – i.e.
numerical perturbations intrinsic to the FE analysis (Rusinek and Zaera, 2007; Lovinger et al., 2011). Once necking is
nucleated at a certain material point, a release wave is generated. This travels down the ring unloading regions
encompassed by the release waves. The region that is unloaded by the release wave cannot sustain further plastic strain
while other regions continue to experience radial expansion and hence are susceptible to necking development (Zhang
and Ravi-Chandar, 2006). The necks nucleated show rather heterogeneous distribution of grow rates. Most necks just
develop partially being arrested before reaching material failure as illustrated in Fig. 4. The interplay between necks
and failure locations due to unloading waves determines the number of fragments formed. This provides further
explanation to the role played by the failure strain level on the numerical simulations. Following Zhang and Ravi-
Chandar (2006), a general Weilbull probability density function fw of the form:

f wððL0=e0ÞnecksÞ ¼
k
l

ðL0=e0Þnecks�lmin

l

!k�1

exp � ðL0=e0Þnecks�lmin

l

 !k( )
ð3Þ

� was fitted to the measured normalized neck spacing ðL0=e0Þnecks. In previous expression k is the shape parameter, l is
the scale parameter and lmin represents the minimum normalized neck spacing. For example, the histogram of neck
spacing displayed in Fig. 5 is related to V0 ¼ 100 m=s and is fitted by the Weilbull law, Eq. (3). The mean neck spacing is
ðL0=e0Þnecks � 3:5 where L0 is the neck spacing measured in the reference undeformed configuration.

� Zone II: Comprises the range of loading velocities (may be defined by V0\1000 m=s in the present case) for which the
influence of the failure strain value on the number of fragments becomes negligible. The grow rate of the number of
fragments and necks considerably decreases upon the loading velocity. At the largest loading velocities considered, the
number of fragments and necks practically coincide and their dependence with the loading speed becomes strictly
reduced, Fig. 3. The number of fragments predicted tends to saturation, L0=e0 � 1:5. Here, as in Fig. 2, L0 ¼ 1:5e0
represents the value of the mean fragment size at the largest velocities. Within this range of loading velocities, more
fractures develop at shorter distances since the unloading generated by any localization may not travel far enough
quickly to inhibit further nucleation at neighbouring locations (Zhang and Ravi-Chandar, 2006). The fragmentation

Fig. 3. Finite element results. Normalized mean fragment size and normalized neck spacing upon loading velocity V0 and initial strain rate _e0. Failure
strain ef ¼ 2:0. Material: U6N. L0 is measured in the reference undeformed configuration.



process cannot be considered any more a random spatial and temporal occurrence. Equally spaced (almost) and equally
intense (almost) necks are formed (practically) simultaneously all along the ring which makes possible that most necks
nucleated develop until failure, Fig. 6. This suggests that the interplay between neighbouring necks is minimal which
explains that different values of the failure strain may provide very close numerical results. The Weilbull probability
density function, Eq. (3), has been fitted to a high loading velocity simulation, V0 ¼ 1600 m=s, Fig. 7, being the neck
spacing quite homogeneous. In comparison with Fig. 5 the mean neck spacing has been drastically dropped. This is
illustrated by the systematic reduction of the scale parameter l with loading velocity (see comparison between Figs. 5

Fig. 5. Finite element results. Normalized number of necks as a function of the normalized neck spacing ðL0=e0Þnecks . V0 ¼ 100 m=s. Fitting parameters in

Eq. (3). k¼ 4:714, l¼ 1:959 and lmin ¼ 1:818. Material: U6N.
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Fig. 4. Finite element results. Strain rate along (half of) the perimeter of the ring at different loading times. V0 ¼ 200 m=s. Failure strain ef ¼ 2:0. Material: 
U6N.
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and 7) which is consistent with the experimental observations reported by Zhang and Ravi-Chandar (2006). The mean
neck spacing is ðL0=e0Þnecks � 1:5.

Saturation in the number of fragments sheds light on the mechanisms which reside behind fragmentation at very high
loading velocities. When the number of fragments saturates the fragment size is rather constant suggesting that the
fragmentation mechanisms may not be explained by the statistical fragmentation theory of Mott (1947) and subsequent
developments of Grady and co-workers (1982, 1984, 1985, 2003).

Fig. 6. Finite element results. Strain rate along (1/5 of) the perimeter of the ring at different loading times. V0 ¼ 1300 m=s. Failure strain ef ¼ 2:0. Material: 
U6N.
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2.3. Non-hardening materials

In order to analyse the effect of the material description on the fragmentation process, ring expansion simulations are
performed considering non-hardening materials. Strain and temperature dependences of the material are precluded. Rate
independent and rate dependent behaviours are analysed, Table 2, being the material response defined by

sy ¼ s0

_ep

_er

� �m

ð4Þ

where s0 is the reference yield stress, _er is the reference strain rate and m is the rate sensitivity exponent. Changing the
constitutive law has two advantages: (1) it permits to evaluate the suitability of the dimensionless ratio L0=e0 for analysis
of the neck spacing, regardless the material description and (2) it facilitates further comparisons with the stability analysis
as it will be shown in Section 5. The dimensions of the ring are Ri ¼ 15 mm in inner radius and e0 ¼ 1:0 mm in thickness of
square cross section. To be noted that the thickness of the ring has been increased with respect to previous configuration.
This allows for analyzing the effect of the cross-section dimensions on the fragmentation. In other words, changing the
thickness of the ring permits to evaluate the suitability of the dimensionless ratio L0=e0 for analysis of the neck spacing,
regardless the ring dimensions. From this point on, the analysis relies on the reference material defined by the parameters
of Table 2 unless otherwise noted.

Let us start the analysis considering the rate independent material, Table 2. In Fig. 8 is depicted the normalized mean
fragment size and the normalized neck spacing upon loading velocity and initial strain rate. Again, once certain value of
loading velocity is exceeded (V0 � 1200 m=s in the present case) the number of fragments and the number of necks
practically coincide. Interestingly, here is highlighted that the saturation value, L0=e0 � 1:5, is that reported in Fig. 3;
although in such a case the cross section of the ring showed different dimensions and the material definition was strain,
rate and temperature dependent. To be pointed out that the development of a regular spacing between fragments,
insensitive to variations in the material properties at sufficiently high loading velocities, was glimpsed by Sørensen and
Freund (2000).

Next, the rate dependent material is considered in the computations, Table 2. Number of fragments and number of
necks match at V0 � 900 m=s. In comparison with the rate independent material, the loading velocity for which all the
necks nucleated lead to failure locations is slightly smaller, however, the saturation value keeps close to L0=e0 � 1:5.

Table 2
Parameter values characterizing rate independent and rate dependent material behaviours, Eq. (4).

Symbol Property and units Rate independent material Rate dependent material

s0 Reference yield stress (MPa), Eq. (4) 500 500
_er Reference strain rate ðs�1Þ, Eq. (4) – 1000

m Rate sensitivity exponent, Eq. (4) – 0.01

r Density (kg/m3) 7800 7800

E Young’s modulus (GPa) 200 200

Fig. 8. Normalized mean fragment size and normalized neck spacing upon loading velocity V0 and initial strain rate _e0. Rate independent material

behaviour. Failure strain level ef ¼ 2:0.



Next, a random perturbation is assigned to each node of the initial mesh of the ring modifying the position of the nodes
in the unperturbed mesh to obtain a perturbed mesh framework. The purpose is to examine the role played by geometrical
imperfections of small amplitude (additional to the numerical perturbations intrinsic to the FE analysis) on the saturation
of the number of fragments. This is conducted by adding to the initial Lagrangian coordinates (X0,Y0 and Z0) of each node
(unperturbed configuration) random initial displacements (U,V,W) in each of the three directions.

The Lagrangian coordinates of the perturbed nodes in the whole mesh (X, Y and Z) are then obtained following a
Gaussian distribution characterized by a mean sm ¼ 0 and a standard deviation sdev of the form:

X ¼ X0þU, Y ¼ Y0þV , Z ¼ Z0þW

U,V ,W : random variables from a Gaussian distribution Nð0,sdevÞ ð5Þ
Three different cases are analysed: sdev ¼ 2� 10�6, sdev ¼ 1� 10�5 and sdev ¼ 2� 10�5 which correspond, respectively,

to spatial variations of 0.1%, 0.5% and 1% of the distance between two adjacent nodes in the former position. The larger the
standard deviation the greater the geometrical perturbation is.

In Fig. 10 is depicted the normalized mean fragment size upon loading velocity and initial strain rate for the former
configuration (unperturbed configuration) and the three configurations for which the mesh has been perturbed. At low
loading velocities the necking pattern is strongly dictated by the scatter of the geometrical perturbation, being the number
of fragments sharply reduced with increasing standard deviation. Increasing loading velocity diffuses deformation
throughout the material due to the emerging role played by inertia which delays flow localization. Then, the initial
geometrical perturbation becomes less relevant in the process of necking nucleation. However, one should note that the
larger the standard deviation the larger the mean fragment size even for the highest loading velocity considered.
Therefore, inertia is not able to suppress completely the role played by the mesh perturbation on the fragments size. This
behaviour can be explained keeping in mind that the initial imperfections have been introduced by perturbing the
displacement field at the nodes. Thus, the wavelength associated to these imperfections is of the order of the mesh-size –
rather short wavelengths – and therefore inertia effects may not have enough influence on them.

Up to here, the analysis suggests the existence of a critical wavelength which may be responsible for the fragmentation
at very high strain rates when inertia effects become dominant. The normalized critical wavelength ðL0=e0Þcritical may show
little dependence on the material description, on the dimensions of the sample cross section as well as on geometrical
perturbations of small amplitude.

3. Unitary periodic cell

3.1. Formulation

Following the computational model developed by Xue et al. (2008) for assessing the neck development of an infinite
plate under plane strain constraint, a circular cross section ring subjected to a radial expansion and with geometrical
periodic perturbations can be modelled as a periodic collect of unitary axisymmetric cells with sinusoidal spatial
imperfections following the expression:

f¼f0 1� d
2
cos

2pX1

L0

� �� �
ð6Þ

being d the amplitude of the imperfection, L0 the initial length of the cell, X1 the axial location of a point in the undeformed
configuration, and f0 ¼ 1 mm and f the initial unperturbed and perturbed cross diameter of the cell, respectively. Due to
the symmetry of the problem, only half of the cell needs to be analysed, Fig. 11.

Initial and boundary conditions are imposed corresponding to an initial axial loading rate _e0 ¼ V0=L0:

v1ðX1,X2,0Þ ¼ _e0X1

v2ðX1,X2,0Þ ¼� _e0
2
X2

u1ð0,X2,tÞ ¼ 0

v1ðL0=2,X2,tÞ ¼ V0=2 ð7Þ
Being v1 and v2 the components of velocity in X1 and X2 directions, respectively, and u1 the component of displacement

in X1 direction.
In order to avoid the abrupt jump in the stress field caused by application of the initial and boundary conditions

previously described, the material flow has been initialized in the whole domain with a value of stress in direction X1 equal
to s¼ s0ð_e0=_erÞm, Eq. (4). If neither the velocity nor the stress fields were initialized, for sufficiently high velocities the
generated wave could induce by itself a neck (Needleman, 1991; Xue et al., 2008).

The axisymmetric unitary cell is numerically solved using ABAQUS/Explicit (2010). Four-node axisymmetric elements
with reduced integration are used (CAX4R in ABAQUS notation). For all cases, near-square elements are uniformly
distributed through the cell corresponding with a value of fifty elements along the radius of the revolution model. As
aforementioned for the 3D numerical model of the ring expansion configuration, hourglass deformation modes have been



prevented using the integral viscoelastic approach available in ABAQUS/Explicit (2010). The rate dependent material
configuration is considered in the computations, Table 2.

3.2. Results

The amplitude of the imperfection is d¼ 0:0513, Fig. 11. According to Xue et al. (2008) localized necking is assumed to
start when deB=dt ¼ 0, where eB is the strain measured at the side B of the sample as illustrated in Fig. 11 and t refers to the
loading time. In other words, localized necking describes the stage of the loading process for which plastic flow is fully
concentrated in the neck region.

In Fig. 12 the localized necking strain is computed over a range of imperfection cell lengths for different loading rates.
Small ratios L0=f0 lead to large necking strains, which are practically independent of the loading rate. This is consistent
with the considerations reported by Mercier and Molinari (2003) who demonstrated that stress multiaxial effects damp
the short wavelengths. Moreover, large ratios L0=f0 lead to large necking strains at high strain rates. This agrees with the
conclusions derived by Fressengeas and Molinari (1994) who demonstrated that inertia is responsible for slowing down
the growth of long wavelengths. Combination of the stabilizing aspects of multidimensional effects on short wavelengths
and the stabilizing aspects of inertia on long wavelengths leads to the promotion of intermediate wavelengths which
determine the minimum necking strain, Fig. 12. Then, this minimum necking strain becomes larger with increasing
loading rate due to the emerging role of inertia. The concept of the cell length associated to the minimum necking strain is
tied to the minimum investment of energy required for the necking formation. Here should be noted that the cell length
associated to the minimum necking strain decreases with the loading rate running asymptotically to L0=f0 � 1:5. This
value is in close agreement with the aspect ratio L0=e0 which dictated the saturation of the number of necks and fragments
in the 3D simulations of the ring expansion problem reported in previous section, Figs. 3, 8 and 9.

Fig. 9. Normalized mean fragment size and normalized neck spacing upon loading velocity V0 and initial strain rate _e0. Rate dependent material

behaviour, Table 2. Failure strain level ef ¼ 2:0.

Fig. 10. Normalized mean fragment size upon loading velocity V0 and initial strain rate _e0 for the former configuration and the three configurations for

which the mesh has been perturbed. Rate dependent material behaviour. Failure strain level ef ¼ 2:0.



Inertia not only retards the onset of localized necking but also plays the role slowing down strain localization (Knoche
and Needleman, 1993; Han and Tvergaard, 1995). This is illustrated in Fig. 13 where the evolution of the force measured at
side B of the cell, see Fig. 11, as a function of the loading time for _e0 ¼ 90 000 s�1 and two different wavelengths,
L0=f0 ¼ 2:6 and L0=f0 ¼ 4:0, is depicted. The numerical results are compared with the homogeneous fundamental solution
given by

FðtÞ ¼ Fð0Þ L0
L0þV0t

� �mþ1

ð8Þ

This fundamental solution assumes that the cross section and the deformation are uniform at any time (absence of any
defect). Numerical computations and analytical solution find good agreement from the onset of loading up to the loading
time corresponding to localized necking deB=dt¼ 0. This period, during which the cell undergoes a quasi-uniform
elongation, is characterized by a monotonic decay of the mean force level upon time since the material does not strain-
harden. Once the condition deB=dt¼ 0 is fulfilled the numerical solution deviates significantly from the fundamental
homogeneous solution. This deviation is a manifestation of localized necking. From this point on, the role played by inertia
on slowing down the development of the instability becomes evident.

In the case of L0=f0 ¼ 2:6 the post-uniform elongation regime is characterized by a pronounced drop of the force. The
plastic flow rapidly localizes in a narrow zone at the middle of the cell, triggering material failure in a short period of time.
Comparatively, the instability development is considerably slowed down in the case L0=f0 ¼ 4:0.

The stabilizing effects of inertia in the post-uniform elongation regime can be understood by plotting the number of
localization points formed upon the cell wavelength, Fig. 14. Within the range of wavelengths less than or equal to the
critical one ðL0=f0Þcritical � 1:5, only a localization point is developed in the cell, no matter the loading rate value. However,
once the critical cell length is exceeded, it is feasible that the number of localization points formed in the cell in the post-
uniform elongation regime will be larger than one. This occurs if the strain rate is high enough for inertia to play a key role
in the loading process. Then, inertia induces a sharp minimum in the eB�L0=f0 diagram, Fig. 12. In such a case the number

Fig. 11. Cell model of an axisymmetric tensile specimen with a small geometric defect near X1 ¼ 0.

Fig. 12. Localized necking strain ðeBÞNecking upon the cell length L0=f0 for different initial loading rates e_0 where e_0 ¼V0/L0. Imperfection amplitude: d ¼ 0:0513. 
Imperfection amplitude: d ¼ 0:0513. Rate dependent material, Table 2.



of localization points formed tends to correlate with the ratio ðL0=f0Þ=ðL0=f0Þcritical where L0=f0 is the aspect ratio of the
considered cell and ðL0=f0Þcritical is the aspect ratio of the cell corresponding to the minimum necking strain. This reinforces
the idea of the existence of a critical wavelength which dictates the development of multiple necking in very high loading
processes. Following this idea, it should be noted here that some computations showed the formation of an even number
of localization points. In other words, under certain loading conditions the material location corresponding to the
maximum imperfection amplitude does not evolve as a localization point, the geometrical imperfection is vanished by the
stabilizing effect of inertia and the mean distance between localization points follows the critical cell length, see Fig. 14.

Thus, the analysis is extended to different imperfection amplitudes within the range 0:01rdr0:1. Fig. 15 shows the
necking strain ðeBÞNecking as a function of the cell length L0=f0 for different imperfection amplitudes d at high strain rate
_e0 ¼ 120 000 s�1. A drastic rise in the minimum necking strain is observed by decreasing one order of magnitude the
imperfection amplitude. However, such variation in the size of the defect involves only a small change in the critical cell
length associated to the minimum necking strain. The amplitude of the imperfection significantly affects the stress
multiaxiality effects enhancing the role played by the hydrostatic pressure in the necked region, however, the contribution
of inertia seems to remain rather unaffected. Thus, the critical wavelength that minimizes the necking strain increases
with imperfection amplitude.

4. Linear perturbation analysis

4.1. Formulation

Alternatively, the equations governing the stretching process of the expanding ring are derived within a quasi-1D
theoretical framework.

Details of the formulation can be found in Zhou et al. (2006c) and Vadillo et al. (2012), but we present here the main
equations for completeness. The ring expansion process is approximated to a cylindrical bar with cross-section radius r0,
area A0 ¼ pr20, and length L subjected to axial velocity V0 and uniform tensile strain rate _e. At time t and for any cross

Fig. 13. Force F(t) and strain eBðtÞ upon loading time t for e_0 ¼ 90 000 s�1. Imperfection amplitude: d ¼ 0:0513. (a) L0=f0 ¼ 2:6, (b) L0=f0 ¼ 4:0. Rate dependent material. 
Failure strain ef ¼ 2:0.



Fig. 14. Number of localization points as a function of the cell length L0=f0. Imperfection amplitude: d ¼ 0:0513. Rate dependent material.



section of the bar, X is the Lagrangian coordinate X ð0rXrLÞ, x is the Eulerian coordinate, v the current axial velocity, r
and A the current radius and cross-sectional area, respectively, and s the true stress. The fundamental equations of the
loading process are presented as follows:

@v

@X

� �
t

¼ ee _e

rA0
@v

@t

� �
X

¼ A
@s
@X

� �
t

þs @A
@X

� �
t

A¼ A0e
e

sy ¼Cðe, _eÞ
s¼ ð1þy�1Þ lnð1þyÞsy

y¼ 1

2
r

@2r

@x2

� �
¼ 2Að@2A=@x2Þ�ð@A=@xÞ2

8pA

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð9Þ

where e¼ ln ð@x=@XÞt
� �

, _e ¼ ð@e=@tÞ, sy ¼Cðe, _eÞ is the material yield stress and y is a geometrical parameter which gathers
the stress multiaxial effects tied to necked section (Bridgman, 1952; Walsh, 1984; Fressengeas and Molinari, 1985).

Now let us set the initial and boundary conditions for a bar subjected to constant and uniform strain rate:

vðX,0Þ ¼ _e0X, V0ð0,tÞ ¼ 0, vðL,tÞ ¼ _e0L ð10Þ
According to Eq. (10), the system of equations given by Eq. (9) has the following homogeneous solution:

f 1 ¼ ðv1ðXÞ,e1ðtÞ, _e1ðtÞ,A1ðtÞ,r1ðtÞ,s1ðtÞ,y1ÞT ð11Þ
This defines the background state of the boundary value problem in the absence of flow instability.
A linear perturbation solution is intended adding the following small perturbation to the fundamental solution defined

by Eq. (11) at a given time t0 (Zhou et al., 2006c):

dfeixX ¼ ðdv,de,d_e,dA,dr,dy,dsÞTeixX ð12Þ
In previous expression x is the wavenumber and ðdv,de,d_e,dA,dr,dy,dsÞ are the differences between the actual

perturbed solution and the homogeneous solution.
Then, at a time t4t0 the perturbed solution of the aforementioned system of equations has the following form:

f ¼ f 1þdfeixXþZðt�t0Þ ð13Þ
where Z is the perturbation growth rate which is assumed constant with respect to time. According to Fressengeas and
Molinari (1985) this is consistent for perturbations whose variation is much faster than that of the background solution.

Introducing Eq. (13) into Eq. (9) and keeping only the first-order terms, a linear homogeneous system to obtain df is
derived.

A non-trivial solution for df can be derived if the determinant of the aforementioned system of algebraic linear
equations is equal to zero. This leads to the following quadratic expression in Z:

Z2þ _e1ðt0Þþ
x2

r0

e�2e1ðt0Þ @C
@_e

" #
Zþ x2

r0

e�2e1ðt0Þ @C
@e þs1ðt0Þ

A0e
�3e1ðt0Þ

8p x2�1

� �� 	
¼ 0 ð14Þ

Fig. 15. Necking strain ðeBÞNecking as a function of the cell length L0=f0 for different imperfection amplitudes d. Initial strain rate _e0 ¼ 120 000 s�1. Rate

dependent material.



At this point, the following dimensionless variables are introduced (Zhou et al., 2006c; Vadillo et al., 2012):

Z ¼ Z
_e1

, x ¼ r0x

Cðe, _eÞ ¼ s0 cðe, _eÞ, L ¼
ffiffiffiffiffiffiffiffiffiffiffi
s0=r

p
r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðe1, _e1Þ

p
_e1

wm ¼ _e1
cðe1, _e1Þ

� �
� @cðe, _eÞ

@_e , wn ¼
1

cðe1, _e1Þ

� �
� @cðe, _eÞ

@e ð15Þ

where Z is the dimensionless perturbation growth, x is the dimensionless wavenumber, s0 is a reference yield stress,
cðe, _eÞ is the dimensionless material yield stress, L is a dimensionless material parameter which gathers geometrical and
material effects, wm is the logarithmic rate sensitivity and wn is the dimensionless strain hardening parameter. It has to be
noted that in a dimensionless form of the equation of movement for the ring expansion problem, L

2
is the factor

multiplying the acceleration, thus representing the inertial resistance to motion. As L decreases the material behavior is
stabilized, delaying the formation and development of plastic instabilities.

Then, with the new dimensionless variables, Eq. (14) takes the following form:

Z2þð1þL2wmL
2
x
2ÞZþL

2
x
2
L2 wnþL3 x

2

8
�1

!
¼ 0 ð16Þ

where L¼ e�e1ðt0Þ.
In generalized form, the condition for the perturbation growth is xoð2=LÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1�wnÞ=L

p
. If this condition is fulfilled the

perturbation growth is defined by
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Imposing @Zþ =@x ¼ 0 in Eq. (17) the dominant wavenumber xc and the critical perturbation growth Zþ
c are determined

as

xc ¼
2Lð2þwm�2wnÞ�2wm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LðLþ8L

2ð1�wnÞð1�wnþwmÞÞ
q

L3ð1�2L
2w2

mÞ

2
4

3
5
0:5

Zþ
c ¼ Zþ ðxcÞ ð18Þ

To be consistent with the analysis derived in previous sections, non-hardening materials are considered wn ¼ 0. Then,
the condition for the perturbation growth becomes xoð2=LÞ

ffiffiffiffiffiffiffiffiffi
2=L

p
and Eq. (17) can be simplified as
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Leading to the following definition of the dominant wavenumber xc

xc ¼
2Lð2þwmÞ�2wm
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4.2. Results

The above mentioned linear perturbation method is applied to the ring expansion analysis previously approached with
the 3D ring expansion computations and the simulations of the unitary periodic cell. We consider that the instability
process (onset on necking) starts at t¼0 ðL¼ 1Þ. Then, from Eq. (19) the perturbation growth as a function of the
normalized perturbation wavelength ðL0=f0Þ for different values of initial strain rate, _e0, is plotted in Fig. 16 for the rate
dependent material. Note that the normalized wavelength is related to the dimensionless wavenumber x through
L0=f0 ¼ p=x. From this figure it can be seen that, irrespective to material properties (Vadillo et al., 2012), the critical value
of L0=f0 (corresponding to the maximum of Zþ ) tends asymptotically to p=2. Here should be noted that this value agrees
with the results obtained from the 3D ring expansion simulations and the finite element modelling of the unitary
periodic cell.

The selection of t¼0 as the onset of necking time is consistent with the high level of Zþ
c observed initially for all the

values of _e0 considered here (always greater than 5 form¼0.01 and even larger values form¼0). A value of the normalized
growth rate Zþ

c larger than 5 can be considered as indicative of a well developed instability process. It should be noted,
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that the rate of growth of perturbations is quite reduced for values of the rate sensitivity exponent a bit larger than
m¼0.01. In this case, the neck spacing determined at initial time by the linear stability analysis does not accurately
represent the neck pattern observed in the sample at later times.

We have checked for m¼0.01 the effect of the evolution of strain on the results. The value of the dimensionless critical
wavelength ðL0=f0Þcritical has been calculated in Fig. 17 in terms of the strain of the background solution e1.

For a given initial strain rate, the critical spacing between necks decreases with e1. This relation justifies values of
ðL0=f0Þcritical slightly smaller than p=2 as those reported in Fig. 15.

5. Discussion

The purpose is to combine the results obtained so far by the three different approaches (3D simulations, unitary cell
simulations and stability analysis) in order to provide an overview of the governing role played by the wavelength in the
fragmentation of ductile rings expanding at very high strain rates. It should be noted that here f0 is used to designate
indifferently the width of a square cross-section in the 3D simulations or the diameter of a circular-cross section in the
unitary cell simulations and stability analysis. The amplitude of the imperfection for the unitary periodic cell is d¼ 0:0513.
Non-hardening materials are considered and the strain of the background solution in the perturbation analysis is set to 0.
Results are obtained for small values of the rate sensitivity (mr0:01) for which the perturbation growth-rate is
quite large.

Fig. 18 depicts, upon loading velocity V0 and initial strain rate _e0, the wavelength L0=e0 which characterizes the
normalized neck spacing and the normalized mean fragment size in the fully 3D FE simulations of the ring expansion, the
cell-length L0=f0 which characterizes the minimum necking strain in the FE simulations of the unitary periodic cell and

Fig. 16. Dimensionless perturbation growth Z þ as a function of the normalized perturbation wavelength ðL0=f0Þ for different initial loading rates e_0. Rate 
dependent material.

Fig. 17. Critical normalized neck spacing ðL0=f0Þ
critical as a function of the strain of the background solution e1 for initial strain rates e_0 ¼ 30 000 s�1 and e_0 ¼ 120 000 s�1. 

Rate dependent material.



Fig. 18. The wavelength L0=e0 which characterizes the normalized neck spacing and the normalized mean fragment size in the fully 3D FE simulations of

the ring expansion, the cell-length L0=f0 which characterizes the minimum necking strain in the FE simulations of the unitary periodic cell and the

wavelength L0=f0 which characterizes the dominant wavelength in the linear stability analysis as a function of loading velocity V0 and initial strain rate
_e0. Rate independent material, Eq. (4) with r¼ 7800 kg=m3 and s0 ¼ 500 MPa.

Fig. 19. The wavelength L0=e0 which characterizes the normalized neck spacing and the normalized mean fragment size in the fully 3D FE simulations of

the ring expansion, the cell-length L0=f0 which characterizes the minimum necking strain in the FE simulations of the unitary periodic cell and the

wavelength L0=f0 which characterizes the dominant wavelength in the linear stability analysis as a function of loading velocity V0 and initial strain rate
_e0. Rate dependent material, Eq. (4) with r¼ 7800 kg=m3, s0 ¼ 500 MPa, m¼0.01 and _er ¼ 1000 s�1.

Fig. 20. The wavelength L0=e0 which characterizes the normalized neck spacing and the normalized mean fragment size in the fully 3D FE simulations of

the ring expansion, the cell-length L0=f0 which characterizes the minimum necking strain in the FE simulations of the unitary periodic cell and the

wavelength L0=f0 which characterizes the dominant wavelength in the linear stability analysis as a function of loading velocity V0 and initial strain rate
_e0. Rate dependent material, Eq. (4) with r¼ 17 300 kg=m3, s0 ¼ 500 MPa, m¼0.01 and _er ¼ 1000 s�1.



the wavelength L0=f0 which characterizes the dominant wavelength in the linear stability analysis. The material is rate
independent, Eq. (4) with r¼ 7800 kg=m3 and s0 ¼ 500 MPa. Within the range V0o900 m=s the difference between the
three approaches considered arises. The fragmentation can be approached by statistical analyses such as the classical
theory of Mott (1947). On contrary, within the range V04900 m=s the results obtained from the three approaches
converge in the prediction of a critical wavelength ðL0=f0Þcritical � 1:5 which determines the spacing between necks (and
the fragment size) when inertia is dominant in the loading process.

Identical representation, L0=f0 vs V0 and _e0 is conducted in Figs. 19 and 20. In these cases the material properties have
been varied. Fig. 19 concerns to the rate dependent material Eq. (4) with r¼ 7800 kg=m3, s0 ¼ 500 MPa, m¼0.01 and
_er ¼ 1000 s�1. Fig. 19 concerns the rate dependent material Eq. (4) with r¼ 17 300 kg=m3, s0 ¼ 500 MPa, m¼0.01 and
_er ¼ 1000 s�1. For both material configurations the three approaches predict a value for the critical wavelength
ðL0=f0Þcritical � 1:5. The difference seems to reside uniquely on the range of loading velocities for which this critical
wavelength applies.

6. Conclusions

In this paper, the analysis of ductile rings expanding at very high strain rates has been addressed using three different
methodologies: the 3D numerical simulations of the full problem, the analysis of a unitary periodic cell with loading and
boundary conditions consistent with the expanding ring and, finally, by a linear perturbation method.

The main conclusions are summarized as follows:

� Fully 3D numerical simulations: It has been reported that beyond certain loading velocity all the necks nucleated
develop until failure. Furthermore, the number of necks and the number of fragments saturate to the same limiting
value at high strain rates. Then, the mean fragment size corresponding to saturation obeys to the ratio between
fragments length L0 (measured in the undeformed reference configuration) and ring thickness e0 by the relation
ðL0=e0Þcritical � 1:5. This value shows little dependence on the material description as well as on the dimensions of the
sample cross section.

� Unitary periodic cell: It has been reported that combination of the stabilizing aspects of multidimensional stress effects
on short cell lengths and the stabilizing aspects of inertia on long cell lengths lead to the promotion of an intermediate
cell length which determines the minimum necking strain. In coincidence with the results derived from the 3D
numerical computations, this minimum necking strain is dictated by the relation ðL0=f0Þcritical � 1:5 where now L0 is
defined by the imperfection wavelength (cell-size) and f0 is the diameter of the circular cross section of the ring.

� Stability analysis: The analysis showed that at sufficiently high strain rates the selection of a dominant wavelength
which tends to ðL0=f0Þcritical � 1:5 occurs. This value finds strong correlation with the observations derived from the 3D
ring expansion simulations and the finite element modelling of the unitary periodic cell.

Thus, the results derived from the three methodologies addressed allow for identification of a critical wavelength which
dictates the fragmentation mechanisms of ductile rings expanded at very high strain rates. This critical wavelength is
revealed quite independent of the material constitutive model but closely related to material inertia by the ratio
ðL0=f0Þcritical � 1:5. The analysis provides a new interpretation of the mechanisms which govern the fragmentation of
ductile rings subjected to very high loading velocities.
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