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Abstract

The fundamental purpose of robots is to help humans in a variety of difficult tasks,
enabling people to increase their capabilities of strength, energy, speed, memory, and
to operate in hazardous environments and many other applications. Service robots,
more precisely mobile manipulators, incorporate one or two robotic arms and a mobile
base, and must accomplish complex manipulations tasks, interacting with tools or
objects and navigating through cluttered environments. To this end, the motion
planning problem plays a key role in the ahead calculation of robot movements to
interact with its world and achieve the established goals. The objective of this work
is to design various motion planning methods in order to improve the autonomy of
MANFRED-2, which is a mobile robot fully developed by the Robotics Lab research
group of the Systems Engineering and Automation Department of the Carlos III
University of Madrid.

Mobile robots need to calculate accurate paths in order to navigate and interact
with objects throughout their surrounding area. In this work, we have developed
motion planning algorithms for both navigation and manipulation. The presented
algorithms for path planning are based on the Fast Marching Square method and
include a replanner with subgoals, an anytime triangular planner, and a nonholo-
nomic approach. The replanner with subgoals starts by generating a smooth and safe
global path with the Fast Marching Square method. Then, this path is divided into
multiple subpaths separated by equidistant nodes (defined by topological or metric
constraints). After that, the obstacles information is progressively added and modi-
fications are made only when the original path is unreachable. The most important
advantage with respect to similar approaches is that the generated sub-paths are al-
ways efficient in terms of smoothness and safeness. Besides, the computational cost
is low enough to use the algorithm in real-time. The anytime triangular planner,
such as “Anytime” algorithms, quickly finds a feasible but not necessarily optimal
motion plan which is incrementally improved. One important characteristic that this
type of algorithms must satisfy is that the path must be generated in real-time. The
planner relies on the Fast Marching Square method over a triangular mesh structure.
Different variants are introduced and compared under equal circumstances that pro-
duce different paths in response time and quality, which leads us to an additional



consideration. As in the field of benchmarking it is becoming increasingly difficult to
compare new planners approaches because of the lack of a general benchmarking plat-
form, improvements to existing approaches are suggested. Finally, the nonholonomic
approach is presented. It is based on the Fast Marching Square method and its appli-
cation to car-like robots. In order to apply the proposed method, a three dimensional
configuration space of the environment is considered. The first two dimensions are
given by the position of the robot, and the third one by its orientation. This means
that we operate over the configuration space instead of the bi-dimensional environ-
ment map. Besides, the trajectory is computed along the configuration space taking
into account the dimensions of the vehicle. In this way, it is possible to guarantee
the absence of collisions. The proposed method is consistent at local and global scale
because it guarantees a motion path solution, if it exists, and does not require global
replanning supervision when a local trap is detected.

Once a mobile robot has reached a goal location, it usually triggers the servo-
motors enclosed inside its robotic arm to manipulate a target. The manipulation
algorithms presented in this work include the adaptation of trajectories, a planner
with adaptive dimensionality, and an implementation of a dimensionality reduction
approach inside a nuclear device. The adaptation of manipulation trajectories enables
the robot to accomplish a task in different locations by using Evolution Strategies and
forward kinematics. This approach avoids all the inconveniences that inverse kinemat-
ics imply, as well as the convergence problems in singular kinematic configurations.
The planner with adaptive dimensionality reduces the complexity of high-dimensional
path planning. First, a Rapidly-exploring Random Tree trajectory is generated using
the full degrees of freedom of the robotic arm. Then, a geometry as a closed tube
is built around the path line and the Fast Marching Square method is applied from
start to goal using three dimensions inside the surface. The resulted three dimen-
sional path is converted to full degrees of freedom with the inverse kinematics of
the robot. The result is a smoother and safer path, visually more human friendly.
Additionally, the search space is reduced, and therefore, also the planning time and
the memory requirements. The application inside the nuclear device, similarly to the
previous approach, reduces the degrees of freedom of the problem (but this time to
two dimensions due to the mostly planar nature of the robot). The manipulation path
is smooth and safe in an environment where safety must be the primarily objective.
The motion planning algorithms have been tested in numerous experiments. The fast
response of the methods allows its application in real-time tasks.
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Resumen

El propédsito fundamental de los robots es ayudar a los humanos en tareas dificiles,
lo que permite a las personas incrementar sus capacidades de fuerza, energia, veloci-
dad y memoria para trabajar en entornos peligrosos y en una inmensa variedad de
aplicaciones. Los robots de servicio, puntualmente los manipuladores moéviles, incor-
poran uno o dos brazos robodticos y una base movil, y deben ser capaces de realizar
tareas complejas de manipulacion, interactuando con herramientas u objetos y nave-
gando a través de entornos con obstaculos. Para este fin, el problema de la planifi-
cacion de movimientos juega un rol clave en el calculo anticipado de los movimientos
del robot, para interactuar con su mundo y realizar las tareas establecidas. El obje-
tivo de este trabajo es disenar diversos métodos de planificacién de movimiento con
el fin de mejorar la autonomia de MANFRED-2, un robot mévil que fue desarrollado
completamente en el grupo de investigacion del Laboratorio de Robdtica del Depar-
tamento de Ingenieria de Sistemas y Automatizacion de la Universidad Carlos I1I de
Madrid.

Los robots moviles necesitan calcular de antemano trayectorias precisas para poder
navegar e interactuar con objetos en su entorno. En este trabajo, hemos desarrollado
algoritmos de planificaciéon de movimiento para navegacion y manipulacién robética.
Los algoritmos presentados para la planificacién de trayectorias de navegacion se
basan en el método de Fast Marching Square (FM?) e incluyen un replanificador con
sub-objetivos, un planificador triangular de tipo interrumpible (en inglés este enfoque
es mejor conocido como Anytime), y un enfoque no holonémico. El replanificador con
submetas comienza generando una trayectoria global de curvas suaves y segura con
FM?2, entonces este camino es dividido en multiples subtrayectorias separadas por
nodos equidistantes (definidos por restricciones topolégicas o métricas). Después de
esto, se actualiza progresivamente el entorno con obstaculos detectados por los sen-
sores; solo se realizan cambios cuando la trayectoria original resulta inalcanzable. La
ventaja mas importante con respecto a enfoques similares es que las sub-trayectorias
generadas son siempre eficientes en términos de suavidad y seguridad. Ademas, el
coste computacional es lo suficientemente bajo como para utilizar el algoritmo en
tiempo real. El planificador triangular interrumpible, como algoritmo “Anytime”,
encuentra rapidamente una trayectoria de navegacion valida, pero no necesariamente
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Optima, a continuacion, de forma incremental se va mejorando segin haya tiempo
hasta llegar al éptimo. La capacidad mas resaltante de este tipo de algoritmos es
la de generar trayectorias en tiempo real. El planificador se basa en el uso de FM?
sobre una estructura de malla triangular. Se presentan diferentes formas de construir
el mallado y se comparan en igualdad de circunstancias los diferentes caminos pro-
ducidos en tiempo de respuesta y calidad, lo que generdé una contribucién adicional.
Debido a la falta de una plataforma general de evaluacién robusta, en el campo de la
evaluacion de trayectorias es cada vez mas dificil comparar nuevos planificadores, por
consiguiente se sugieren mejoras a los enfoques existentes. Finalmente, se presenta
el enfoque no holénomo, que se basa en FM? y su aplicacién en robots méviles con
sistemas de direccién similares a la de los coches. Para aplicar el método propuesto,
se considera un espacio de configuracion tridimensional del entorno, donde las dos
primeras dimensiones vienen dadas por la posicién del robot y la tercera dimension,
por su orientacion. Esto quiere decir, que operamos en el espacio de configuraciones
en vez de en el mapa bidimensional del entorno. Ademas, la trayectoria se calcula en
el espacio de configuraciones teniendo en cuenta las dimensiones del vehiculo, de esta
manera es posible garantizar la ausencia de colisiones. El método propuesto es con-
sistente a nivel local y global, ya que si existe una soluciéon se garantiza encontrarla,
y no requiere de supervision global para reiniciar una planificacion cuando se detecta
un bloqueo a nivel local.

Una vez que el robot mévil ha alcanzado la ubicacion requerida, se suelen accionar
los servomotores que estan dentro del brazo robético para manipular un objeto. Los
algoritmos de manipulacién presentados en este trabajo incluyen la adaptacién de
trayectorias, un planificador con dimensionalidad adaptable, y una implementacion
de un método de reduccién de la dimensionalidad dentro de un dispositivo nuclear. La
adaptacion de las trayectorias de manipulacion permite al robot realizar una misma
tarea con diferentes ubicaciones y orientaciones haciendo uso de una Evolution Strat-
egy v la cinematica directa del robot, este enfoque evita todos los inconvenientes que
implican utilizar la cinemética inversa, asi como los problemas de convergencia en con-
figuraciones cinematicas singulares. El planificador con dimensionalidad adaptativa
reduce la complejidad de la planificacion de trayectorias de manipulacion con muchas
dimensiones; en primer lugar, una trayectoria RRT se genera utilizando todos los
grados de libertad (DOF) del brazo robético, a continuacién, una figura geométrica
en forma de tubo cerrado se construye alrededor de la linea de la trayectoria y se
aplica FM? dentro de la superficie desde el inicio hasta el objetivo utilizando tres di-
mensiones, la ruta 3D resultante se convierte con la cinematica inversa del robot. El
resultado es un camino mas suave y seguro, mas amigable a la vista humana. Ademas,
debido a que el espacio de bisqueda se reduce, también se reduce el tiempo de plan-
ificacién y los requerimientos de memoria. La aplicacién en el interior del dispositivo
nuclear, de manera similar al enfoque anterior, reduce los DOF del problema pero
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esta vez a dos dimensiones aprovechando la naturaleza mayormente plana del robot
utilizado. La trayectoria de manipulacion es suave y segura, lo que es conveniente en
un entorno donde la seguridad debe ser el objetivo principal. Los algoritmos de plan-
ificacién de movimiento resultantes han sido probados en numerosos experimentos.
La respuesta rapida de los métodos permite su aplicacién en tiempo real.
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2D - two-dimensional

3D - three-dimensional

6D - six-dimensional

ATFM2 - Anytime Triangular Fast Marching Square Method

CCD - Charge-Coupled Device

DAC - Digital-to-Analog Converters

DE - Differential Evolution

DOF - Degrees of Freedom

DSP - Digital Signal Processor

EA - Evolutionary Algorithms

ES - Evolution Strategy

FK - Forward Kinematics

FM? - Fast Marching Square

FM2-NH - Fast Marching Square Nonholonomic

FMM - Fast Marching Method

GA - Genetic Algorithms

GPS - Global Positioning System

IK - Inverse Kinematics

KNN - K-Nearest Neighbours

LSM - Level Set Methods

NN - Nearest Neighbor

PLC - Programmable Logic Controller

R&D - Research and Development

RRT - Rapidly-exploring Random Tree

RRT-Bidirectional or RRT-Connect - Rapidly-exploring Random Tree Bidirec-
tional

UC3M - Carlos IIT University of Madrid

VFM - Voronoi Fast Marching Method

VRML - Virtual Reality Modeling Language
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Introduction






In the moment the word robot was introduced by the Czech brothers Capek, the
human imagination flew years ahead. A future, where robots were able to work and
actuate as humans side by side was envisioned. The year was 1920 when the transition
of the industrial revolution was almost completed. A rural economy primarily based
on agriculture switched to an urban economy, industrialized and mechanized. The
hand production methods went to new machines, chemicals manufacturing and iron
production processes.

The writer Karel Capek introduced the word robot in his play R.U.R. (Rossum’s
Universal Robots). Tt was his brother, Josef Capek, who proposed the word “roboti”.
The word comes from robota, which in Czech means “hard work” or, in general,
“work”. In the play R.U.R., simplified people was created from a chemical protoplasm
process. They were very efficient but emotionless and lacked of original thinking. The
technology behind the robots is not described but modern concepts as androids are
depicted. The issue of whether the robots are being exploited is formulated, as well
as the fear of more advanced robots rising up against humans.

Even though the technologies in these stories were science fiction for those times,
one can imagine how all these futuristic ideas were taken for granted. A not very far
future with human-like robots capable of performing any human task was foreseen.
Although these capabilities are not still a reality, many advances have been made and
robotics is a extensively studied and researched field. An example of how robotics has
evolve can be appreciated in Figure 1.1, where the robotics developments of Honda *
since 1986 to date are shown.

Figure 1.1: Honda historic evolution of robot development.

One of the first difficulties that researchers had come to realize is the complexity
involved in robotics. To reproduce in robots some human tasks could result immensely
complex. To develop a human-like robot, or more specifically an autonomous robot,
many capabilities have to be included. Primarily, the perception and interaction with
the environment. In order to perceive the world, the robot must be provided with
some kind of sensors such as cameras, distance range lasers, and others such as force

'http://world.honda.com/ASIMO/history/
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sensors and microphones for more specific tasks. For the interaction, actuators are
needed to navigate through the environment and interact with objects, e.g. through a
robotic manipulator. Many different fields are involved in robotics, such as electronics,
software development, mechanics, mathematics, physics, and even psychology and
speech synthesis and recognition in the case of social robots.

Motion planning is among the most important research areas in robotics. It results
essential in order to navigate, physically interact or execute any kind of movement.
Path planning for robots has been studied extensively over the last three decades.
Large is the amount of planners that have been developed.

R-0.B-0.T. Comics

"H1IS PATH-PLANNING MAY BE
SUB-OPTIMAL, BUT IT'S GOT FLAIR."

Figure 1.2: A path planning comic.

The main difficulty in motion planning is the complexity including variables such
as time and control parameters. For example, finding an optimal trajectory in three
dimensions with polyhedral obstacles and bounded acceleration and velocity has been
proven to be Non-deterministic Polynomial-time hard or NP-hard (Donald [1]). In
computational complexity theory, the NP-hard are the most complex kind of prob-
lems. For this reason, most of the planners bias to find a path instead of a trajectory
(which includes time depending variables). Also, control parameters and additional
restrictions are not taken into account or loosen. The complexity of the problem grows
as dimensions are increased, which is better known as the curse of dimensionality. All
this has contributed to popularize the development and use of randomized planning
techniques. These techniques usually generate paths in short periods of time, but the



results tend to be suboptimal. A comic of path planning robots by Jorge Cham 2 can
be observed in Figure 1.2. Although it is a parodic comic, it will be shown in Section
2.1.1 that it is not very far from being truth for some algorithms.

An autonomous robot is a robotic system capable of accomplishing complex tasks
in uncluttered environments without human assistance. Learning and other capabili-
ties can be included to improve the performance of its assignments. The undertaking
of building an autonomous robot is very demanding, and it usually requires a group
of professionals. In the Carlos III University of Madrid (UC3M), the Robotics Lab
research group has built a mobile robot denominated MANFRED-2 [2] (Figure 1.3).
It is an autonomous mobile manipulator robot capable of performing navigation, lo-
calization, manipulation and obstacle avoidance tasks. MANFRED-2 is bundle with
a vision sensorial system, distance range lasers, a differential-type mobile base with
two degrees of freedom (DOF) and an anthropomorphic light arm with six DOF and
a force sensor in the wrist. The mobile base encloses a computer and all the elec-
tronic components needed to operate. The final purpose of the team working with
MANFRED-2 is to develop techniques to make it more robust, reliable, accurate, and
safe to work with.

Figure 1.3: Mobile manipulator robot MANFRED-2.

All the hardware and processes behind a mobile robotic system converge to achieve
motion and physical interaction with the environment. After the sensorial system
has committed the obtained data to the main process, the motion planners, or more
specifically the path planners, determine the route that the robot should follow to
execute a specific function. The plan specifies, in a sequence of space points, the

Zhttp://www.willowgarage.com/blog/
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pathway that the robot should follow to transfer from a start to a goal location.
This usually is represented by a line that is described by the base of the robot, in
navigation, or by the arm end effector, in manipulation. The planning can be made
in any dimension, being common 2D for navigation and 3D for manipulation with
inverse kinematics. More dimensions are used for full robotic arm DOF's that can
even include the base.

1.1 Objectives

This section provides the thesis objectives that will guide the dissertation and pro-
posed approaches.

1.1.1 General objectives

A case of study is defined for this work, a practical scenario where the mobile robot
MANFRED-2 has to move to an specified location. Then, a manipulation interaction
such as grasping a predefined object should be carried out. The general objective of
this work is to design various specific tools related to the motion planning problem.
The purpose of these developments is to improve the robot autonomy for the practical
case described in this paragraph.

1.1.2 Specific objectives

The practical scenario from the general objectives section is divided into subtasks de-
picted in Figure 1.4. This represents the work pipeline of the mobile robot MANFRED-
2 and the case of study for this research. The pipeline steps are described hereafter,
and the specific objectives concerning each phase are listed. Each objective repre-
sents a development for which a description and justification is provided. Mobile
robots path planning through dynamic and unstructured environments needs to be
performed very quickly so the displacement of the robot can be continuous and safe.
Most of the methods presented here are based on the Fast Marching Square (FM?)
method and all its good properties are inherited, generating smooth, safe, and efficient
paths. The FM? proposed by Garrido [3], is a method based on the Fast Marching
Method (FMM). First introduced by Sethian in [4], the FMM is a numerical method
for solving boundary value problems of the Eikonal equation.

The first step in the diagram represents the initial path planning. The function of
this step is to locate the robot in an specific location. A map of the robot environment
is assumed to be known a priori. These kind of maps are usually available as building
construction drawings or blueprints and they are a good reference, but they have to be
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Figure 1.4: Mobile manipulator robot MANFRED-2 work pipeline.

updated as elements may change in the human environments. The specific objectives
related to this phase are listed next:

e Anytime Triangular Fast Marching Square Method. The algorithms denomi-
nated “Anytime” are a time dependent approach widely used in robot motion
planning. They are also called interruptible algorithms because they can be
interrupted at any moment to get a result. The anytime algorithms start by
quickly generating a suboptimal path with Rapidly-exploring Random Trees
(RRT). RRT is a well known sampling-based planner which is widely used in
robotics because of its rapid response, but the resulting paths are suboptimal
and have to be improved. Then, this path is improved as time is available.
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Different variants are introduced and compared under equal circumstances that
produce different paths in response time and quality. This approach combines
two kind of methods (sampling-based and exhaustive search methods) to benefit
from both, getting a fast and more optimal planner. An additional contribution
is made, as comparing planners in robotics has become increasingly difficult be-
cause of the lack of a general benchmarking platform, improvements to existing
approaches are suggested. At the beginning, the study of the Anytime Trian-
gular FM? was supposed to expand to more dimensions for manipulation tasks.
However, a path planning with adaptive dimensionality method was proposed
instead and is presented here, and the rest of the work with triangular meshes
has been proposed as future developments.

e Fast Marching Square applied to Nonholonomic car-like robots. As the nature
of our robot base is nonholonomic, two nonholonomic approaches named Non-
holonomic Fast Marching Square (FM2-NH) are presented. The first approach
starts by pre-computing all the feasible and collision-free poses of the nonholo-
nomic car-like robot. Then, the FM? and the gradient method are used to
compute a smooth and reliable trajectory based on a velocity potential map.
The second one relies on the vector field of velocities computed in the first step
of the FM?2. These vectors are used to adapt the path planning to meet the
movement constraints of a car-like robot. Both approaches calculate smooth
and safe paths, while providing also with a control plan for the robot. To dif-
ferentiate both methods, the first one is called C-space FM2-NH and the second
one is the control-based FM?-NH. In addition, to generate optimal paths, the
method is able to provide the control parameters of the car-like robot while
maintaining quick time performance.

The second step is the navigation and replanning. This step concerns the execu-
tion of the previously generated path, here the laser scanner is used to update the
map environment. In this phase, the robot might find the first path unfeasible to
be completed. This could happen when a pathway has been blocked, or when the
accumulated error has driven the mobile robot too far from the path. Under these
scenarios, the path has to be replanned in order to adapt to the new circumstances.
The next specific objective follows this phase:

e Smooth motion replanner using FM2. Since a complete method is used, this
replanner generates paths that need no additional optimization time, which
represents an advantage with respect to anytime algorithms. Smooth and safe
paths are guaranteed to be generated every time in real-time. A sub-goals
approach is also included in order to avoid replanning entire paths, enabling its
use in large environments.
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The third step is the path planning for reaching the object to manipulate. Once
the robot has arrived to the goal location and it is near to the object, a path is
calculated to locate the arm’s end effector close to this object. The following specific
objectives are formulated for this phase:

o Adaptive Evolving Strategy for Dextrous Robotic Manipulation. The computer
onboard of a mobile manipulator is capable of recording the movements of cer-
tain manipulation task. These movements can be reproduced by steps to repeat
the complete operation. The downside of trying to execute a recorded manipu-
lation path is that the location and orientation of a robot may vary. Navigation
and localization systems are capable of getting the robot very near to a specific
location and orientation. However, disruptions are commonly introduced. This
approach solves this problem by adapting learned manipulation trajectories with
Evolution Strategies. In this way, it is possible for the robot to accomplish a
learned task from different positions. The approach avoids the use of inverse
kinematics, which is known to be incomplete for some robot configurations and
to generate convergence problems in singular kinematic configurations.

e Path planning with adaptive dimensionality. First, an RRT trajectory is gener-
ated using the full DOF of the robotic arm. Then a geometry as a closed tube
is built around the path line and the F'M? is applied from start to goal using
three dimensions inside the surface. The resulted 3D path is converted to full
DOF with the inverse kinematics of the robot. If the manipulation trajectory is
not feasible due to collisions, the geometric figure is expanded around the col-
lision space and a full DOF-based algorithm is executed in that segment. The
result is a smoother and safer path, visually more human friendly. Additionally,
the search space is reduced, and therefore, the planning time and the memory
requirements.

e Safe Motion Planning for a Nuclear Fusion Device Arm using Fast Marching
Square. The generated manipulation path is smooth and safe in an environment
where safety must be the primary objective. The resulting motion planning
algorithms is tested in numerous experiments. The fast response of the methods
allow its application in real-time tasks.

The fourth and fifth pictures in the digram represent the manipulation action. In
the present work, this specific task has been limited to grasping with a gripper, omit-
ting the complexity behind using an anthropomorphic robotic hand. This research
area is been covered by other PHD candidate, as well as all the modules needed by
the robot such as those of vision, localization, hardware, control software and others
are been studied by other researchers in our robotics group.
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1.2 Outline

This thesis is structured in six chapters and organized as follows:

Chapter 1. Introductory chapter that describes the project problems, proposed so-
lutions and thesis outline.

Chapter 2. The planning algorithms state of the art is reviewed in this chapter.

Chapter 3. In this chapter the path planning algorithms for moving the robot base
are presented. These algorithms comprised the following: two nonholonomic
approaches, these approaches have been named Nonholonomic Fast Marching
Square (FM2-NH). A replanning algorithm using FM?. An anytime planner
that relies on the FM? over a triangular mesh structure to improve an initial
RRT path.

Chapter 4. The path planning algorithms for manipulation operations are presented
in this chapter. These algorithms comprised the following: an algorithm for
adaptation of manipulation trajectories that enables the robot to accomplish a
task from different locations using evolution strategies. The paths are optimized
in position, orientation, and energy which at the same time improve the smooth-
ness. A planner that adaptively reduces dimensionality and, in consequence, the
complexity of high-dimensional path planning problem for manipulation. An
application of FM? with dimensionality reduction inside a nuclear fusion energy
vessel. Similarly to the previous approach, the DOF of the problem are reduced
(but this time to two dimensions due to the mostly planar nature of the robot).

Chapter 5. This section discusses results obtained from the experiments conducted
with all the path planning algorithms for navigation and manipulation tasks.

Chapter 6. Finally, Conclusions chapter recapitulates the contributions of the the-
sis. Furthermore, future research directions for the individual topics as well as
for the evolutionary robotics learning approach are discussed.

Additionally to the six chapters, the experimental platform MANDFRED-2 and
the used software tools are presented in Appendix A.
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Autonomous robots must navigate and interact with objects and people within
the environment. Therefore, the planning of motions becomes essential for the robotic
system. In mobile robotics, the principle behind the motion planning problem is to
guide a robot through an environment and interact with objects or tools, avoiding
obstacles and taking into account any restriction such as those of mobility and energy.
Motion planning has been a deeply researched area for several years. Some of the
most important approaches have been addressed from the robotic field. The problem
has been incrementally complicated by adding variables as obstacles, time, velocity,
acceleration, nonholonomic and other constraints implicated with the environment
and with the utilized mobile robot or vehicle.

In this section, the most important techniques related to the tools developed in
this work are reviewed. First, motion planning and more specifically path planning
are studied. Special attention is payed to the anytime algorithms and their relevance
in path planning for the tasks of navigation and manipulation of a mobile robot.
Then, the FMM-based techniques and their application to path planning are detailed.
Finally, a comparison of motion planning methods is included.

2.1 Motion Planning

The motion planning problem involves getting a robot to determine by itself how
to move while avoiding collisions with obstacles. Its original formulation, called the
piano mover’s problem, is imagined as determining how to move a complicated piece of
furniture through a cluttered house. It has been clear for several decades that getting
robots to reason geometrically about their environments and synthesize such plans is
a fundamental difficulty that occurs all over robotics. The problem can be formulated
as follows: let W denote the world or workspace of a robot A. The obstacle region
can be denoted by O, where O C W. A configuration ¢ is a valid transformation
for the robot. The set of all rigid-body transformations that can be applied to the
robot is called the configuration space or C-space. In other words, the C-space is the
space comprised by all the valid dispositions of a robotic system. The C-space used
in motion planning is described as a topological manifold. This description is much
simpler to define and manipulate than the one considered in control theory, which is
a differentiable manifold. The definition of an n-dimensional (topological) manifold
C' is a subset of R™ for n < m, such that every ¢ € C is contained in at least one
open subset of C' that is homeomorphic. (Homeomorphic means that for an open
set, say =, there exists a continuous, bijective function f : = — R" for which the
inverse f~! is also continuous to R™.) The intuition is that, in the local vicinity of
every ¢, a manifold behaves like R". Let A(q) C W denote a closed set of points
in the world occupied by the robot A when it is transformed to configuration ¢. A
configuration ¢ € C' places the robot into collision if and only if A(q) UO # 0 (the
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robot and obstacle are attempting to occupy at least one common point in W). The
space with only valid configurations that are free of collisions, is called the free space
and is defined as

Chree = {q € C|A(q) N O # 0}

Commonly, a method for detecting collisions is used to validate a configuration ¢,
such that g € C-space and g € C-free. This means there is no need to have knowledge
of C-free in advance. Although, it can be precomputed if the information of the
environment is available.

The classical motion planning is conducted over the C-space and it is better known
as path planning. Intuitively, a path is a sequence of states that start at a config-
uration, and travels from state to state along connections in space until an ending
configuration. Using the C-space, the basic path-planning problem can be accurately
defined: given a robot description A, an obstacle description O, a C-space C, an
initial configuration ¢; € C, and a goal configuration ¢¢, compute a continuous path
7:10,1] = Cfree with 7(0) = g7 and 7(1) = ¢q.

Figure 2.1: An example of the path planning problem in the C-space: connect q; to
¢¢ while remaining in C free [5].

Other less common formulation is the kinodynamic planning, which is the motion
planning in the state space (x) of the robot. A state in y is denoted by x, and it can be
defined as = = (q,¢). A trajectory is defined as a time-parameterized continuous path
7 :[0,T] = Xjree- Unlike the classical approach, the kinodynamic approach involves
the planning of trajectories that include differential and nonholonomic constraints
that must be satisfied. These constraints arise from conservations laws, an example
is the angular momentum conservation. The difference between x and C' is usually
a factor of 2 in dimension. The curse of dimensionality has already contributed to



2.1. Motion Planning 15

the success and popularity of randomized planning methods for C-space; therefore,
it seems that there would be an even greater need to develop randomized algorithms
for kinodynamic planning [6]. One reason that might account for the lack of prac-
tical, efficient planners for problems in y-space is that attention is usually focused
on obtaining optimal solutions with guaranteed deterministic convergence. Another
reason why randomized kinodynamic planning approaches have not appeared is that
kinodynamic planning is considerably harder owing to momentum. The unfeasibility
of this requirement for generic high-dimensional systems has led many researchers
to adopt a decoupled approach in which classical motion planning is performed and
trajectory design is optimized around a particular motion-planning solution.

2.1.1 Motion Planning Algorithms

Early approaches of motion planners were focused on local planning, where the next
action takes priority over the high level plans and motions are calculated and executed
as soon as possible. This means that path planning is done while the robot is moving.
Thereby, this approach is sometimes called real-time obstacle avoidance. Among these
local planning approaches are the potential field-based techniques, where the robot
environment maps are filled with repulsive forces which push the robot away from
obstacles and attractive forces that pull it toward its goal location [7], the curvature
velocity [8], and Dynamic Window [9] approaches, where planning is made in the
control space to generate dynamically feasible actions. Fuzzy logic has been widely
used in robotics to develop reactive controls [10, 11]. An example with a mobile
robot can be found in [12]. The major disadvantage of these approaches is their
susceptibility to local minima, guiding the robot to suboptimal goals [13].

Further improvements to the local minima issue were implemented in algorithms
by incorporating global as well as local information in [14, 15, 16, 17]. Although
these approaches improve the avoiding of local minima, their simple local planning
can still cause the robot to get trapped or to execute paths very far from optimal.
Subsequent approaches have focused on improving this local planning by using more
sophisticated local action sets that better follow the global value function [18, 19,
and by generating sequences of actions to perform more complex local maneuvers
20, 21]. The most complex of these approaches are able to perform very precise local
maneuvering, but are limited by the mismatch between their powerful local planning
and their approximate global planning, resulting once more in a tendency to local

minima [13]. Some of the most widely known path planning methods are presented
in Table 2.1.

Over the last few years, a number of methods have also been proposed based on
systematic discretization of the environment and applying efficient graph searches or
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using highly informative heuristics to guide the search for feasible paths. An exam-
ple using fuzzy cognitive maps can be found in [34]. However, the computational
complexity of generating feasible plans over large distances is high, and current ap-
proaches are restricted to either small distances, fairly simple environments or highly
suboptimal solutions [13].

The techniques more related to this work will be reviewed in the next sections.
The RRT method is very relevant because is used as a reference for comparative pur-
poses, and sometimes even as part of our methods. The F M[2], core of the proposed
techniques, will be also analyzed in detail.

2.2 Path-Planning Algorithms

In most solving approaches the planning problem is discretized and the state space
is considered finite. When it is not finite, it will at least be countably infinite (i.e.,
a unique integer may be assigned to every state). Therefore, no geometric models or
differential equations will be needed to characterize the discrete planning problems.
The basic idea is that each distinct situation for the world is called a state, denoted by
x, and the set of all possible states is called a state space, X. For discrete planning, it
will be important that this set is countable; in most cases it will be finite. In a given
application, the state space should be defined carefully so that irrelevant information
is not encoded into a state. On the other hand, it is important that X is large enough
to include all information that is relevant to solve the task.
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Figure 2.2: The state transition in a gridmap for an example problem that involves
walking around on an infinite tile floor [35] (left). Equivalent graph representation of
the gridmap on the left (right).

Space representations of all kinds can mainly be classified into two categories,
which are metric maps and topological maps. Metric maps are characterized by a
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representation where the position of the obstacles is indicated by coordinates in a
global frame of reference, each grid point has integer coordinates of the form (i, j).
Let X be the set of all integer pairs of the form (4, j), in which i,j € Z (Z denotes
the set of all integers). Let U = (0,1),(0,—1),(1,0),(—1,0). Let U(z) = U for all
x € X. The state transition equation is f(z,u) = & 4+ u, in which z € X and v € U
are treated as two-dimensional vectors for the purpose of addition. Also, each point
grid has a value that defines regions that can be occupied or not by obstacles or goals
[36], [37]. In Figure 2.2 (left), an example of endless tiles gridmap is shown. In this
example, the movements from one grid point to other go either up, down, left or right,
but some implementations also include diagonal moves.

In Figure 2.3, an example of a gridmap with a path is shown. The black squares
are the obstacles, the yellow circle is the start, the red cross is the goal and the blue
line is the path.

Ll

Figure 2.3: Example of a path in a gridmap. The path is depicted as a blue line.

Topological maps, also known as relational maps, represent the environment with
connectivity information, typically in the form of graphs that connect landmarks or
places with special features [38],[39]. The graphs are comprise of vertexes connected
by edges that have numeric weights attached to them. The edges settle the valid
moves between nodes. Edges are also called arcs or lines and they are not necessarily
straight lines; vertexes are also called nodes or points. A graph is defined as an
ordered triple G = {V(G), E(G), I}, where V(@) is a nonempty set, F(G) is a set
disjoint from V(G), and I is an incidence relation, that is, a subset of V(G) x E(G)
that associates an unordered pair of elements of V(G). Elements of V(G) are called
the vertices of G, and elements E(G) are called the edges of G. The incidence relation
I is required to be such that an edge is incident with either one vertex (in which
case is a loop) or two vertices. For example, if for an edge e of G, Ig(e) = {vy,v2},
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then the connection is written Ig(e) = v1v9. Graphs can be directed or undirected
according to wether or not their edges have orientation. A directed graph or digraph is
an ordered triple G = {V(G), E(G), I}, with E(G) a set of ordered pairs of vertices,
called directed edges or arrows. An undirected graph is one in which edges have no
orientation. The edge (a,b) is identical to the edge (b, a), i.e., they are not ordered
pairs, but sets u, v of vertices.

Discrete planning is defined by the following elements:

1. A nonempty state space X, which is a finite or countably infinite set of states.
2. For each state x € X a finite action space U(x).

3. A state transition function f that produces a state f(z,u) € X for every x € X
and u € U(z). The state transition equation is derived from f as 2’ = f(z,u).

4. An initial state x; € X.

5. A goal set Xg C X.

It is often convenient to express the above formulation as a directed state transition
graph. The set of vertices is the state space X. A directed edge fromx € X toz’ € X
exists in the graph if and only if there exists an action v € U(x) such that 2’ = f(z,u).
The initial state and goal set are designated as special vertices in the graph, which
completes the representation of the above formulation in a graph form.

Figure 2.4: Example of a path over a metric graph map. The gray thick line
represents the taken path.

A gridmap can also be viewed as a special case of a graph, where the grid points
are the vertexes and the possible grid connections the edges. See Figure 2.2 (right)
for a graph representation of a gridmap. Further, many actual representations use
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both a topological and a metric component. In Figure 2.4, an example of the use of
both approaches for path planning is shown. A graph is used over a floor blueprint
to connect specific locations of the rooms. The cost between rooms coincide with the
distances between vertexes.

In our work, the grid-based map has been chosen to represent the environment.
Both metric and topological references have been developed for indicating subgoals.
By using grids we already have a discrete environment representation, which is a great
advantage because all is set to be used in the generation of the velocity potential map
and in the FMM for path planning. A velocity potential map of the environment
represents the admissible velocity at discrete cells in the workspace. This map of
the environment gives a grey scale that is darker near the obstacles and walls (black
means zero speed) and more clear far from them (white means a predefined maximum
robot speed).
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Figure 2.5: A metro topological map and a metric map.

Examples of more common topological and metric maps in our daily life are shown
in Figure 2.5. The metro map on the left of the figure is composed of the underground
stations (nodes) and the connections between them (vertexes). The metric map on
the right of the figure contains a two-dimensional spatial model, which represents a
particular portion of a land.

2.2.1 Graph Search Algorithms

This section presents several search algorithms, each of which constructs a search tree.
Each search algorithm is a special case of the algorithm in Section 2.2.1. Most of these
are just classical graph search algorithms [40]. An important requirement for these



20 Chapter 2. State of the Art

or any search algorithms is to be systematic. If the graph is finite, this means that
the algorithm will visit every reachable state, which enables it to correctly declare in
finite time whether or not a solution exists. To be systematic, the algorithm should
keep track of states already visited; otherwise, the search may run forever by cycling
through the same states. Ensuring that no redundant exploration occurs is sufficient
to make the search systematic [5].

General Graph-Search Algorithm

The first family of path-planning algorithms presented in this section, perform path
search through a graph [5]. Graph search algorithms can be used directly on topologi-
cal and metric topological maps, because these representations are essentially graphs.
An important requirement for these or any search algorithms is to be systematic. If
the graph is finite, this means that the algorithm will visit every reachable state, which
enables it to correctly declare in finite time whether or not a solution exists. To be
systematic, the algorithm should keep track of states already visited; otherwise, the
search may run forever by cycling through the same states. Ensuring that no redun-
dant exploration occurs is sufficient to make the search systematic. In other words,
the requirement to be systematic is that, in the limit, as the number of iterations
tends to infinity, all reachable vertices are reached, see Figure 2.6 (right).
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Figure 2.6: Some algorithms focus on one direction (left), which may prevent them
from being systematic on infinite graphs. When the search carefully expands in
wavefronts, then it becomes systematic (right).

In Graph-Search Algorithms X¢ is a set of goal vertices that represent acceptable
termination states for the path, and X; is a set of possible starting locations. In the
presented figures, the sets X; and X contain only one vertex each for simplicity.
During graph-search, an algorithm starts at X; and attempts to find a path to Xg,
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or vice versa, by exploring from node-to-node via edges. It is known as forward
search when the search is conducted from X; to Xg, and backward search when the
search is conducted from X to X;. Bidirectional search starts at both X5 and X;
and attempts to connect the two searches somewhere in the middle. Multi-directional
search starts at Xg and X as well as other random or intuitive locations and attempts
to link the searches together in such a way that a path is found between X; and Xg.
Algorithm 1 gives a general template of search algorithms, expressed using the state-
space representation.

Algorithm 1 Graph-Search Algorithm

Input: Q, z;, z¢

Output: SUCCESS or FAILURE.
1: add x; to the open-list () and mark as visited
2: while @) not empty do
3: x4 remove a node from the open-list ()

4: if x € ¢ then

5: return SUCCESS

6: for all u € U(z) do

7: '+ f(x,u)

8: if (2’ not visited) then

9: Mark 2’ visited

10: add 2’ to the open-list )
11: Set back-pointer from z’ to x
12: else

13: Resolve Duplicate

14: end if

15: end for

16:  end if

17: end while
18: return FAILURE

At any point during the search, there will be three kinds of states:

1. Unvisited: States that have not been visited yet. Initially, this is every state
except xy.

2. Dead or closed: States that have been visited, and for which every possible next
state has also been visited. A next state of x is a state 2’ for which there exists
au € U(x) such that 2 = f(x,u). In a sense, these states are dead because
there is nothing more that they can contribute to the search; there are no new
leads that could help in finding a feasible plan. Some approaches use a variant
in which dead states can become alive again in an effort to obtain optimal plans.
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3. Alive or open: States that have been encountered (visited), but possibly have
unvisited next states, are considered alive. Initially, the only alive state is x;.

The set of alive states is stored in a list (), which is called the open-list. Initially,
() contains the initial state ;. A while loop is then executed, which terminates only
when @ is empty. This will only occur when the entire graph has been explored
without finding any goal states, which results in a FAILURE. In each while iteration,
the highest ranked element, x, of () is removed. If x lies in zq, then it reports
SUCCESS and terminates; otherwise, the algorithm tries applying every possible
action, u € U(x). For each next state, ' = f(z,u), it must determine whether 2’
is being encountered for the first time. If it is unvisited, then it is inserted into @Q;
otherwise, there is no need to consider it because it must be either dead or already
in ().

In order to produce a plan, which is a sequence of actions that achieves the goal.
In line 8, an statement that associates x with 2z’ its parent is executed. This is
performed each time, thereby, one can simply trace the pointers from the final state
to the initial state to recover the plan. For convenience, one might also store which
action was taken, in addition to the pointer from z’ to x.

In lines 8 and 9 is determined whether 2’ has been visited and the state value is
updated to visited. For some problems the state transition graph might actually be
a tree, which means that there are no repeated states. In this case, there is no need
to check whether states have been visited. If the states in X all lie on a grid, one
can simply make a lookup table that can be accessed in constant time to determine
whether a state has been visited.

One final detail is that many search algorithms will require a cost to be computed
and associated with every state. If the same state is reached multiple times, the
cost may have to be updated, which is performed in line 13, if the particular search
algorithm requires it. Such costs may be used in some way to sort the priority queue,
or they may enable the recovery of the plan on completion of the algorithm. Instead
of storing pointers, as mentioned previously, the optimal cost to return to the initial
state could be stored with each state. This cost alone is sufficient to determine the
action sequence that leads to any visited state. Starting at a visited state, the path
back to x; can be obtained by traversing the state transition graph backward in a
way that decreases the cost as quickly as possible in each step. For this to succeed,
the costs must have a certain monotonicity property, which will be introduced later
in this section. Note that the method of choosing x from the open-list on line 3
has not been specified. This is the only significant difference between various search
algorithms and it is defined by the particular function used to sort ). The next two
subsections describe naive methods of choosing = that are well known. Subsequent
subsections cover more complicated techniques.
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Breadth first

Breath-first search attempts to make the search-tree as broad as possible, as quickly
as possible [40].

Algorithm 2 Breadth-First Search
Input: @, X;, X¢
Output: SUCCESS or FAILURE.
1: for all x € X; do
2:  Q.push_back(x)
3: end for

4: while ) not empty do

5. x < Q.pop_top()

6: if x € X5 then

7: return SUCCESS

8: for all u € U(x) do

9: ' < f(x,u)

10: if (2’ not visited) then
11: Mark z’ visited

12: Q.push_back(x")

13: Set back-pointer from z’ to x
14: end if

15: end for

16: end if

17: end while
18: return FAILURE

The algorithm specifies the open-list @) as a First-In First-Out (FIFO) queue
which selects states using the first-come, first-serve principle. This structure adds
open nodes to the back of the queue, and visits nodes off the front of the queue.
This way, nodes are expanded in the same order they are discovered. This causes
the search frontier to grow uniformly and is therefore referred to as breadth-first
search. All plans that have k steps are exhausted before plans with k + 1 steps are
investigated. Therefore, breadth first guarantees that the first solution found will
use the smallest number of steps. As regards to the Algorithm 1 in line 13, when a
state has been revisited there is nothing to do. Since the search progresses in a series
of wavefronts, breadth-first search is systematic. In fact, it even remains systematic
if it does not keep track of repeated states (however, it will waste time considering
irrelevant cycles). Pseudo-code for breadth-first search is displayed in Algorithm 2.
The function push-back() in line 12, adds a discovered node to the back of the queue.
In figure 2.7, a sequence example of the Breadth-First algorithm and the resulting
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path is illustrated. Although it is not considered by this algorithm, the green squares
are points with higher cost to traverse.

Figure 2.7: Breadth-First path planning sequence. The blue squares are alive nodes.
The red star is X; and the purple cross is Xg. Wavefronts are drawn through same
level nodes. The obtained path is the light color line in the bottom right image.

Breadth-First Search is complete in a finite graph. It is incomplete in a countably
infinite graph; however, it will find a solution if one exists (i.e. is resolution complete).
This method is usually more useful when X; only includes a few nodes. However,
breadth-first search may be inefficient in large graphs and/or high dimensional spaces.
The asymptotic running time of breadth-first search is O(|V |+ |E|), in which |V | and
|E| are the numbers of vertices and edges, respectively, in the state transition graph.
This assumes that all basic operations, such as determining whether a state has been
visited, are performed in constant time. In practice, these operations will typically
require more time and must be counted as part of the algorithm’s complexity.
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Depth first

By making the open-list @ a stack (Last-In, First-Out; or LIFO), aggressive explo-
ration of the state transition graph occurs, as opposed to the uniform expansion of
breadth-first search. The resulting variant is called depth-first search because the
search dives quickly into the graph. Breadth-first search, the method described in
previous subsection, is more methodical than depth-first search. The pseudo-code for
depth-first search is displayed in Algorithm 3. The functions push-top() and pop-top()
place a node on the top of the stack and remove a node from the top of the stack,
respectively

Algorithm 3 Depth-First Search

Input: Q, X;, X¢

Output: SUCCESS or FAILURE.
1: for all x € X; do

Q.push_top(x)
3: end for

N

4: while @) not empty do

5. x < Q.pop_top()

6: if xr € X then

7: return SUCCESS

8: for all w € U(x) do

9: ' f(x,u)

10: if (2’ not visited) then
11: Mark z’ visited

12: Q.push_top(x')

13: Set back-pointer from 2’ to x
14: end if

15: end for

16: end if

17: end while
18: return FAILURE

The preference of the Depth-First search is toward investigating longer plans very
early. Although this aggressive behavior might seem desirable, note that the par-
ticular choice of longer plans is arbitrary. Actions are applied in the forall loop in
whatever order they happen to be defined. Once again, there is no work to do if a
state is revisited and else command is omitted from line 14. Given a finite graph,
depth-first search is complete. However, in a countably infinite graph may behave
like Figure 2.6 (left), under these circumstances depth-first search is not complete
and may not even find a solution when one exists. The search could easily focus on
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one direction and completely miss large portions of the search space as the number of
iterations tends to infinity. The running time of depth first search is also O(|V|+|E]|).

Dijkstra

Dijkstra’s algorithm [22] is one of the earliest discovered optimal best-first search
algorithms. It is a method for finding single-source shortest paths in a graph, and
it is also a special form of dynamic programming. In figure 2.8, a sequence example
of Dijkstra’s algorithm is illustrated. In contrast to breadth first and depth first
algorithms, the higher cost of green cells is considered.

0.1 i i i
H EEEN
EEEEE
b4

Figure 2.8: Sequence of Dijkstra’s algorithm. The blue squares represent the alive
nodes, the green grid points are slower points,

In the algorithms described up to this point, there has been no reason to prefer
one action over any other in the search. Dijkstra’s algorithm assumes that distances
l(e) (nonnegative cost) are known for all edges e € F in the graph representation
of a discrete planning problem. The cost I(e) could be written using the state-space
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representation as [(x, ), indicating that it costs {(z,u) to apply action u from state
x. The total cost of a plan is just the sum of the edge costs over the path from the
initial state to a goal state. The pseudo-code for Dijkstra’s algorithm is displayed in
Algorithm 4. The priority queue @), will be sorted according to a function C': X —
0, 00, called the cost-to-come. For each state x, the value C*(x) is called the optimal
cost-to-come from the initial state ;. This optimal cost is obtained by summing edge
costs, [(e), over all possible paths from z; to  and using the path that produces the
least cumulative cost. If the cost is not known to be optimal, then it is written as

C(z).

Algorithm 4 Dijkstra’s

Input: Q, z;, Xg

Output: SUCCESS or FAILURE.
1: Q.insert(x;,0)
2: while @) not empty do

30 < Q.get_best()

4. if z € X then

5: return SUCCESS

6: for all u € U(z) do

7: '+ f(x,u)

8: if (2’ not visited) or C(z') > C*(x) 4+ I(z,u) then
9: Mark 2’ visited

10: C(a') = C*(x) + l(z,u)

11: Q.insert(z’,C(z"))

12: Set back-pointer from z’ to x
13: end if

14: end for

15:  end if

16: end while
17: return FAILURE

The cost-to-come is computed incrementally during the execution of the search
algorithm in line 10. Initially, C*(z;) = 0. Each time the state x’ is generated, a cost
is computed as C'(z') = C*(x)+1(e), in which e is the edge from z to z’ (equivalently,
we may write C(z') = C*(x) + l(x,u)). Here, C'(2") represents the best cost-to-come
that is known so far, but we do not write C* because it is not yet known whether z’
was reached optimally. Due to this, some work is required a vertex is revisited. If z’
already exists in (Q, then it is possible that the newly discovered path to z’ is more
efficient. If so, then the cost-to-come value C'(z’) must be lowered for 2/, and () must
be reordered accordingly.
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Once z is removed z; from @Q using Q.get_best() in line 3, the state becomes dead,
and it is known that x cannot be reached with a lower cost. Thereby, the C'(z) finally
becomes C*(z) for some state x. This can be intuitively argued by induction as
follows. For the initial state, C*(z) is known, and this serves as the base case. Now
assume that every dead state has its optimal cost-to-come correctly determined. This
means that their cost-to-come values can no longer change. For the first element, z,
of @, the value must be optimal because any path that has a lower total cost would
have to travel through another state in (), but these states already have higher costs.
All paths that pass only through dead states were already considered in producing
C(z). Once all edges leaving z are explored, then x can be declared as dead, and the
induction continues.

The running time of the algorithm is O(|V|log |V| + |E|), in which |V| and |E|
are the numbers of edges and vertices, respectively, in the graph representation of the
discrete planning problem. This assumes that the priority queue is implemented with
a Fibonacci heap, and that all other operations, such as determining whether a state
has been visited, are performed in constant time. If other data structures are used to
implement the priority queue, then higher running times may be obtained. Dijkstra’s
Algorithm is complete for finite graphs and resolution complete for countably infinite
graphs. Note that if I(e) = 0 for all e € E' then Dijkstra’s algorithm degenerates into
breadth-first search.
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Figure 2.9: Dijkstra’s path-planning wavefront (left). A* path-planning wavefront
(right).
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A-star

The A* (pronounced ay star) search algorithm [23] is an extension of Dijkstra’s al-
gorithm that tries to reduce the total number of states explored by incorporating a
heuristic estimate of the cost to get to the goal from a given state. Let C'(x) denote
the cost-to-come from z; to z, and let G(x) denote the cost-to-go from z to some
state in zg. It is convenient that C*(z) can be computed incrementally by dynamic
programming; however, there is no way to know the true optimal cost-to-go G*, in
advance. Fortunately, in many applications it is possible to construct a reasonable
underestimate of this cost.
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Figure 2.10: Dijkstra’s path-planning wavefront (left). A* path-planning wavefront
(right).

Suppose that the cost is the total number of steps in the plan. If one state has
coordinates (i,7) and another has (i, j), then |/ — i| 4+ |j’ — j| is an underestimate
because this is the length of a straightforward plan that ignores obstacles. Once
obstacles are included, the cost can only increase as the robot tries to get around
them (which may not even be possible). Of course, zero could also serve as an
underestimate, but that would not provide any helpful information to the algorithm.
The aim is to compute an estimate that is as close as possible to the optimal cost-to-
go and is also guaranteed to be no greater. Let é*(l‘) denote such an estimate. The
pseudo-code for the A* algorithm is displayed in Algorithm 5.

The A* search algorithm works in exactly the same way as Dijkstra’s algorithm.
The only difference is the function used to sort (). In the A* algorithm, the sum
C*(2") + é*(il}/ ) is used, implying that the priority queue is sorted by estimates of the
optimal cost from x; to xg. The A* search algorithm performs search where cost is
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Figure 2.11: A* path planning example in a map with different costs.

defined as:

Clz)=C"(a")+G*(z) = min {C(z) +l(z,u)} + G*(z) (2.1)

(ueU(z))—a’

In Figure 2.9, the wavefronts for both Dijkstra and A* can be appreciated in a
path planning example. If G (x) is an underestimate of the true optimal cost-to-go
for all x € X, the A* algorithm is guaranteed to find optimal plans [41, 42]. As G*
becomes closer to G*, fewer vertices tend to be explored in comparison with Dijkstra’s
algorithm. This would always seem advantageous, but in some problems it is difficult
or impossible to find a heuristic that is both efficient to evaluate and provides good
search guidance.

In Figure 2.10, a path planning example where Dijkstra generates a better path
than A* (the way down from start is considered as a diagonal for Dijkstra’s path).
Note that when G*(z) = 0 for all z € X, then A* degenerates to Dijkstra’s algorithm.
In any case, the search will always be systematic. An example of path planning in
map with different cost is presented in Figure 2.11.

2.2.2 Sampling-based Planning Algorithms

The sampling-based planning algorithms presented in this section are very similar to
the family of search algorithms summarized in Section 2.2.1. The main difference
lies in the local planning method step, in which applying an action, u, is replaced
by generating a path segment, 7. Another difference is that the search graph, G, is
undirected, with edges that represent paths, as opposed to a directed graph in which
edges represent actions. Although it is possible to make these look similar by defining
an action space for motion planning that consists of a collection of paths.
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Algorithm 5 A*

Input: Q, z;, X

Output: SUCCESS or FAILURE.
1: Q.insert(xy,0)
2: while ) not empty do

3 x <+ Q.get_ best()

4: if x € Xg then

5: return SUCCESS

6: for all u € U(x) do

7: ' f(x,u)

8: if (' not visited) or C(z') > C*(x) + G*(2') then
9: Mark 2’ visited

10: (') = C*(a') + G*(a')

11: Q.update(z’, C(z"))

12: Set back-pointer from z’ to x
13: end if

14: end for

15:  end if

16: end while
17: return FAILURE

PRM

The Probabilistic Roadmaps (PRMs) method addresses the motion planning as a
multiple-query problem [5]. Numerous initial-goal queries are fed to the algorithm,
while keeping the robot model and obstacles fixed. This changes the basic motion
planning approach, where it was assumed that a single initial-goal pair was given to
the planning algorithm. The original paradigm of the method was introduced in [25].
It is intended to solve the motion planning problem between any given pair of points.
In this context, it makes sense to invest substantial time to preprocess the models so
that future queries can be answered efficiently.

The main and most critical task of the planner is to build a topological graph called
roadmap. Once this sampling-based graph is constructed, the paths from multiple
initial-goal queries can be quickly generated on the roadmap from each of ¢; and ¢q.

In the basic method, a topological graph is represented by a pair G(V, F) in
which V' is a set of vertices and FE is the set of paths that map into C'free. Under
the multiple-query philosophy, motion planning is divided into a preprocessing and a
query phase, which are explained as follows:

Preprocessing Phase: During the preprocessing phase, substantial effort is
invested to build G in a way that is useful for quickly answering future queries. For
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this reason, it is called a roadmap, which in some sense should be accessible from
every part of C free.

Algorithm 6 Roadmap Construction
Input: N, K
Output: G.
1: G.init();i « (0)
2: while: < N do
if a(i) € Cfree then
G.add_vertex(a(i));i < i+ 1;
for all ¢ € Neighborhood(a(i),G, K) do
if (not G.same_component(«a(i),q)) and connect(a(i),q) then
G.add_edge(a(i), q)
end if
end for
10:  end if
11: end while

In Algorithm 6, an outline of the basic preprocessing phase is presented. In Figure
2.12, the iterative algorithm for creating the roadmap is illustrated.

Figure 2.12: Tllustration of the sampling-based roadmap algorithm. The roadmap is
build by connecting new samples, «(i) to neighbor vertices [5].

The algorithm utilizes a uniform, dense sequence a. A sequence, as opposed
to a set, is called dense if its underlying set is dense. K is the number of closest
neighbors to examine for each configuration. In each iteration, the algorithm must
check whether a(i) € C free. If a(i) € Cobs, then it must continue to iterate until a
collision-free sample is obtained. Once a(i) € C free, then in line 4 it is inserted as a
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vertex of G. The next step is to try to connect «(7) to K nearby vertices, ¢, of G. Each
connection is attempted by the connect function, which is a typical local planning
method explained later in Algorithm 10. In most implementations, this simply tests
the shortest path between «(i) and ¢. If the path is collision-free, then connect returns
true. As the algorithm iterates through the loop, more and more vertices are added
to the graph G and components may be created. A component is a subgraph in which
any two vertices are connected to each other by paths, and which is connected to no
additional vertices in the supergraph. Observe that in Figure 2.14 the roadmap is
divided in two components, one with yellow lines and other very small with light blue
lines. The same component condition in line 6 checks to make sure a(i) and ¢ are
in different components of G before wasting time on collision checking. This ensures
that every time a connection is made, the number of connected components of G is
decreased.

Several possible implementations of line 5 for selecting neighboring samples can
be made. In all of these, it seems best to sort the vertices that will be considered
for connection in order of increasing distance from «(i). This makes sense because
shorter paths are usually less costly to check for collision, and they also have a higher
likelihood of being collision-free. If a connection is made, this avoids costly collision
checking of longer paths to configurations that would eventually belong to the same
connected component.

Vig)

Figure 2.13: The visibility of the ¢ configuration, V' (q), is the set of points reachable
from q (left). An example of visibility roadmap: guard vertices are shown in black,
and connectors are shown in white [5].

Several useful implementations of neighborhood are:

1. Nearest K: The K closest points to «(z) are considered. This requires setting
the parameter K.

2. Component K: Try to obtain up to K nearest samples from each connected
component of G. A reasonable value is K = 1; otherwise, too many connections
would be tried.
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3. Radius: Take all points within a ball of radius r centered at a(i). An upper
limit, K, may be set to prevent too many connections from being attempted.
Typically, K = 20. A radius can be determined adaptively by shrinking the ball
as the number of points increases. This reduction can be based on dispersion
or discrepancy, if either of these is available for a. Note that if the samples
are highly regular (e.g., a grid), then choosing the nearest K and taking points
within a ball become essentially equivalent. If the point set is highly irregular,
as in the case of random samples, then taking the nearest K seems preferable.

4. Visibility: A visibility roadmap is based on the principles o visibility between
nodes, and it defines two kinds of vertices: guards and connectors, see Figure
2.13. Guards are not allowed to see other guards. Connectors must see at
least two guards. The roadmap construction phase proceeds similarly to the
Algorithm 6. The difference is in how it determines whether to keep «(i) and
its associated edges in G. If the new sample, «(7), is not able to connect to any
guards, then «(i) earns the privilege of becoming a guard itself and is inserted
into G. When a new sample can connect to guards from at least two different
connected components of G, it becomes a connector. If neither of the previous
two conditions were satisfied, the case a(i) is discarded. This approach works
very hard to ensure that the roadmap representation is small yet covers C free
well.

Query Phase: During the query phase, a pair, ¢; and ¢q¢, is given. Each configu-
ration must be connected easily to GG using a local planner. Following this, a discrete
search is performed using any local planner, as it is for instance Dijkstra, to obtain a
sequence of edges that forms a path from ¢; to qg.

In the query phase, it is assumed that G is sufficiently complete to answer many
queries, each of which gives an initial configuration, ¢; , and a goal configuration, ¢g.
First, the query phase pretends as if q; and g were chosen from « for connection to
G. This requires running two more iterations of the algorithm in Figure 5.25. If ¢; and
g are successfully connected to other vertices in G, then a search is performed for a
path that connects the vertex ¢; to the vertex gg. The path in the graph corresponds
directly to a path in C' free, which is a solution to the query. Unfortunately, if this
method fails; it cannot be determined conclusively whether a solution exists. If the
dispersion is known for a sample sequence, «, then it is at least possible to conclude
that no solution exists for the resolution of the planner.

The success rate for PRM algorithm is reduced as the problem precision is in-
creased. Many planning problems involve moving a robot through an area with tight
clearance. This generally causes narrow channels to form in C free, which leads to
a challenging planning problem for the sampling-based roadmap algorithm. Find-
ing the escape of a bug trap is also challenging, but for the roadmap methods, even
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Figure 2.14: Example of an PRM search and generated path.

traveling through a single corridor is hard. For Figure 2.14, consider the scenario of
taking x; inside the blue component and zs inside the yellow component, then the
algorithm would not find a path.

RRT

The RRT is a sampling-based method that was first proposed by LaValle in [26]. It
is a data structured algorithm characterized by accomplishing quick searches in high-
dimensional spaces. The technique is approached as a search in the C-space C of the
robot. Commonly, it is 2D or 3D for path planning, and 6D or 7D for robotics arms
depending on their DOF. It can be n-dimensional. The space free of obstacles, Cye,
is represented directly in the environment. Normally, it can not be known in advance
if a configuration belongs to Cf,e.. However, there are collision detection algorithms
that given a valid configuration ¢ in C' can determine wether ¢ € Clyce.

The objective of the algorithm is to expand the tree 7 towards the unexplored
environment. The construction of the RRT is depicted in Algorithms 7 and 8. The
method receives the initial configuration g;,;, the number of vertices K to limit the
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grow of the RRT nodes, and the incremental distance Aq. The process starts in
Algorithm 7, the initial vertex is added to the tree 7 in line 1. The loop generates a
random configuration with a random number of vertex limited by K in line 3. This
result is passed to Algorithm 8 in the next line.

Algorithm 7 BUILD_RRT
Input: ¢, K, Ag
Output: 7
T init( Qi)
: for all k € K do
Qrand < RAND_CONF()
EXTEND(T; QTcmd);
end for
return T

S R Wy

Algorithm 8 EXTEND
Input: 7, ¢
Output: Reached, Advanced or Trapped.
L Gnear < NEAREST _NEIGHBOR(q,T)
2: if NEW _CONF(q, qnear, Grana) then
3: T.add_vertexr(gqnew)
4: T.add_edge(Gnear, Gnew)
5:  if @uew — g then
6: return Reached
7
8
9

else
return Advanced
end if
10: else
11:  return Trapped
12: end if

In line 1, the nearest vertex to the added configuration ¢ is found. Then, the
function NEW _CON F moves towards ¢ a predefined step of Ag. The collisions are
checked and, if the step is in Cf,ee, the configuration ¢ and its edge are added to
the RRT tree. Algorithm 8 returns Reached when g, is equal to q. Advanced, is
returned when ¢, # q. Trapped, is returned when ¢,., is not free of collisions.
Finally, the output of Algorithm 7 is the RRT tree 7 data structured. The basic
RRT is designed only to explore state space, but with a little modification it can be
tailored into a path planning method. Specifically, the loop in Algorithm 7 can be
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stopped when a ggoq; is reached. The tree can be traversed from gyoq to @int in order
to find a path.

In Figure 2.15, it can be observed an example of an RRT planner in 2D. The edges
and vertexes are presented as thin red lines. A rectangular robot is placed at each
node of the path. The generated path is the red thick line described by the shape of
the robot.

Figure 2.15: Example of an RRT search and generated path.

RRT-Bidirectional

The bidirectional version of the RRT was developed to directly suit path planning
problems (LaValle [28]). The RRT-Bidirectional, also called RRT-Connect, builds
two RRT trees, one starting in ¢, and other from ggoq. The goal of the method is
to find a common state to both trees. Given two configurations ¢ and ¢’ and a metric
distance between them p(q,q’'), they are considered to be common when p(q,q’) < €
for a metric p and € > 0.

The bidirectional RRT is described in Algorithm 9. It incorporates an additional
greedy approach to the basic RRT. Half of the times trees are grown to explore the
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state space, and the other times they are grown towards each other. The CONNECT
function is a greedy heuristic. This function is presented in Algorithm 10.

Algorithm 9 RRT_BIDIRECTIONAL
IHPUt: Qinit, dgoals K) Aq
Output: T

1: Ta.init(Ginit); Tb.init(qgoar );

2: for all £ € K do

30 Qrana & RAND_CONF()

4:  if not(EXTEN D(T4, Grana) = Trapped) then
5: if (CONNECT(Ty, Gnew) = Reached) then
6: Return PATH(T,, Tp);

7: end if

8: SWAP(Ta, Tp);

9:  end if

10: end for

11: Return Failure

Algorithm 10 CONNECT

Input: 7, g

Output: S
1: while not(S-Advanced) do
2. S <« Euxtend(T,q)
3: end while
4: Return S

For the bidirectional RRT method (Algorithm 9), the iteration loop starts in
line 2. A random configuration g,.,q is generated in line 3. In the following line,
the tree 7, is grown with the basic RRT function EXTEND (see Algorithm 8).
If the result is different from Trapped, the new configuration ¢,., is passed to the
function CON N ECT'. This function extends the tree towards the new configuration
of the other tree ¢,.,. The connect loop iterates until the result is either Reached
or Trapped. If the result is Reached, the algorithm returns the path. If the result is
Trapped, the trees are swapped and the loop is repeated.

In Figure 2.16, an example of an RRT-Bidirectional planner inside a 2D maze can
be observed. The edges and vertexes are represented as thin lines. The green lines
belong to the edges of the ¢;,;; tree that starts at the bottom left corner. The blue
lines belong to the edges of the ggoq tree that starts at the top right corner. A human-
like robot is placed at each node of the path. The generated path is the red thick
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line described by the shape of the robot. The RRT-Bidirectional generally performs
better than the basic RRT(for reference see Cohen[43]). However, they had similar
performance for this particular experiment of a maze with a unique solution. The
basic RRT had a little advantage in time response over the RRT-Connect. Although,
the RRT generated more states than the RRT-Bidirectional to obtain the solution.

Figure 2.16: Example of an RRT-Connect generated path trough a maze.

On the downside, the bidirectional approach generates a discontinuity in the union
between the two trees. This abrupt change in the direction of the path disfavors the
use of the method with nonholonomic vehicles.

Nonholonomic RRT

The nonholonomic variant of the RRT (RRT-NH), was introduced by LaValle and
Kuffner in the article titled “Randomized Kinodynamic Planning” [44]. It was the
original approach for the RRT, and it contemplated the steering constraints of a
car-like robot. In other words, a kinodynamic vehicle for which control parameters
have to be calculated. This usually adds two more dimensions to the path planning
problem, even though the calculations are often loosen. The curse of dimensionality
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has brought researchers to focus on planning methods in the C-space. The additional
parameters are built over the resulted path of these kind of methods. The C-space
motion planning, so-called classic, reduces complexity and usually offers guaranties
of convergence. In Figure 2.17, the nonholonomic problem is illustrated.

-
T

O

Figure 2.17: Constraints in a path of a non-holonomic vehicle [45].

As mentioned in the RRT-Bidirectional section, the bidirectional approach of the
RRT is not directly suited for nonholonomic vehicles. This is because the bidirectional
approach will normally generate a discontinuity in the trajectory at the place where
the two trees are connected. The authors of the method proposed some techniques
to perturb the generated path and make it continuous. Figure 2.18 (right) presents a
bidirectional run of the algorithm. The RRT-NH will need additional time to make a
coherent connection between trees regarding the nonholonomic constraints. This fact
could worsen the algorithm performance. Anyhow, in [45] they propose an approach to
nonholonomic planning with an RRT-Bidirectional. The method works as Algorithm
9, but when the CONN EC'T function is called, the tree structure advances until it
is trapped or the new node is within the reach of the nearest neighbor. In the case
of being in reach of the other tree, an attempt to connect both trees is made. The
connection is only possible is the nonholonomic constraints are met. If a solution is
found, the trees are combined and a solution path is returned. Otherwise, the new
configuration ¢, is removed from the tree structure and the algorithm continues.
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Figure 2.18: Example of RRT-NH searches and generated paths. On the left the basic
RRT-NH and on the right the bidirectional variant.

In Figure 2.18 (left), it can be observed an example of an RRT-NH planner in 2D.
The edges and vertexes are presented as thin blue lines. A rectangular robot, which
can only move in one direction, is placed at each node of the path. The generated
path is the red line and the contour of the robot. The method took 37.55 seconds to
generate the path and generated 695 states.

2.2.3 Anytime Algorithms

The anytime motion planning algorithms are methods that depend on time. First,
they must quickly find some motion plan that is feasible but not necessarily optimal.
Then, the plan is incrementally improved over time toward optimality. An important
aspect of the time-dependent algorithms is to determine the best instant to make
available the needed results. Certainly, the time consumed by an algorithm depends
on the complexity of the algorithm and other variables, such as dynamic inputs that
may or may not be available at a certain moment. In some applications, it may be
crucial to have a solution before an specific time threshold, no matter the quality
of the results. These kind of conditions are fulfilled by robotics navigation, where a
robot is usually moved slowly by safety reasons. Thus, to start the navigation as soon
as possible can earn valuable time, no matter the imperfections of the initial path.
Besides, to start the navigation with an optimal path does not guarantee the complete
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execution of the path as new obstacles could be introduced in the environment and
the path would have to be recalculated. Furthermore, the computational time for
calculating an optimal large path would be long, and all the time the robot would be
standing still. Under these circumstances, it is very likely for a robot navigating with
suboptimal paths to make it to the goal before one that calculates the optimal route.
Therefore, the requirement for the algorithm is to compute the best solution possible
in the available time. There should be a response whether this time is very reduced
or is greater than average. In Figure 2.19, a simulation of an anytime RRT algorithm
(left) and an a variant called RRT* are presented. The different colors represent the
time of the simulation when a better path is found.

e 1 | Ed ﬁme-l-- + f i I | End time l
Start time I

, iy
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Figure 2.19: Example of RRT anytime algorithms. On the left the basic approach
and on the right a more advanced RRT variant (RRT*). Figure taken from [32].

Any robotic motion planning algorithm intended for practical use must oper-
ate within limited real-time computational resources and incomplete and imperfect
knowledge of the environment. Such settings favor anytime algorithms.

Anytime algorithms, also called interruptible algorithms, were first mentioned in
1988 by Thomas Dean et al [46]. They can be interrupted at any moment and return
an answer. This approach favors robotic applications where having an answer too
late is equivalent to not having an answer at all. For instance, a robot that receives
objects from a conveyor with irregular frequency has to recognize an object coming
with enough time in order to pick it, or else it would be too late and the object
would already have passed by. Planning long paths can be benefited from these kind
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of algorithms because a mobile robot or car is able to gain time by start moving
right away and improving the path on the fly, specially due to the fact that speed is
often reduced for these applications. Another suitable area for anytime algorithms
is video games development [47]. For example, Artificial Intelligent (AI) characters
should calculate long paths, and standing still for long time while an optimal solution
is calculated would make the character look less intelligent and perhaps the player
would get bored waiting for the Al character to take action.

Anytime algorithms have been successfully applied to robotics races with real cars
and other robotic tasks in order to quickly generate a first path and to improve it
in an incremental way when time is available. In [48], an algorithm based on RRT
denominated Anytime Dynamic RRTs is introduced, but its generated paths are sub-
optimal, not soft, and bring the robot dangerously near obstacles. In [32], an anytime
motion planner was proposed using RRT*. This algorithm achieves asymptotic op-
timality without incurring in substantial computational overhead, but they assume
that the environment is known, which is unrealistic for environments where people
are constantly moving and objects location may change. Also the algorithm could
lead the robot through a suboptimal path if optimization time is too reduced, and
even though presented examples do not appear to be unsafe, safety is not mentioned.
Some of the feasible solutions produced by other planners tend to be far from optimal,
as mentioned in [32]

2.3 Evolutionary Strategies

In the chapter concerning manipulation (Section 4.1), a method to adapt already
learned manipulations paths is presented. The proposed approach is based on the
evolutionary strategies, which are iterative optimization methods which try to find
an optimal solution from stochastic small variations of the design variables [49]. Evo-
lutionary strategies are based on the principles of natural selection: the individuals
of a species mutate from generation to generation by small variation of their genes,
and only the best fitted to their environment will survive and be selected for further
reproduction. The analogy with the optimization problem is quite straightforward: a
set of design variables can be considered as the genes of an individual and the value of
the objective function for this set of design variables represents the fitness for survival
of the corresponding individual.

The basic implementation of the evolutionary strategy is composed of the following
steps:

1. An initial population of u parent individuals is selected at random and uniformly
in the feasible range of each design variable. Ideally, each initial parent should
hold the constraints.
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2. A population of X\ offsprings is created from mutation of the parents. For each
offspring, a parent is randomly selected, and each of its design variable b; is
mutated by adding a Gaussian random variable with zero mean and preselected
standard deviation o;

bi(of fspring) = bi(parent) + N(0,0;),i = 1,ny (2.2)

The standard deviation o; may be chosen for the whole population or may be
linked to the individual, in a similar manner as the design variables. A Gaussian
distribution insures that, like in the nature, small changes occur more frequently
than large ones.

3. The new parents are selected as the p individuals with the best fitness, thats
to say with the lowest cost function. The new parents may be chosen either
from the set of parents and offsprings (plus strategy p + A) or only from the
offsprings (comma strategy p, \).

4. The process of mutation-selection continues until a satisfactory solution is reached.
The convergence criterion will be explained later.

Some practical rules in the choice of the most important parameters are described
in the following subsections.

2.3.1 Size of the population

There is so far no accurate rule to determine the size of the parent population. A
good indication is to have as many or a few times as many members as the number of
design variables. On the other hand, some theoretical studies have been realized on
(1, \) strategies to estimate the optimal ratio A/u [50]. It has been shown that this
optimal ratio depends on the objective function and increases with its complexity. A
ratio A/u equal to 5 can be considered as a good starting point.

2.3.2 Step Length Control

The standard deviation o; plays an important role as it permits to control the speed
of convergence. As it also corresponds to the mean variation of the corresponding
parameter, it is often called the step length. Like in all optimization procedures,
the control of the step length is the most important part of the algorithm after the
recursion formula. The theoretical study of the two membered evolutionary strategy
[50] leads to the so-called success rule of Rechenberg, which stated that after every
ny, (number of design variables) iterations, check how many successes have occurred
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over the preceding 10 x n, mutations. If this number is less than 2 x n;, multiply
the step lengths by the factor 0.85; divide them by 0.85 if more than 2 x n; successes
occurred. For the initial value of the step lengths, Schwefel proposes to use the
following estimation

oAb

o; =

VN
where Ab; is the expected distance from the optimum for the corresponding design
variable. The accuracy on this initial value is not critical as the success law seems to
rapidly adapt the step length to a suitable value, at least when it is too large.

(2.3)

2.3.3 Recombinations

The basic evolutionary strategies can be enriched by adding a supplementary step of
recombination between the parents before mutation. Pairs of parents are randomly
selected and are recombined to yield a new set of u parents for mutation. According
to the chosen type of recombination, the design variables or the standard deviations
are determined as:

e The mean arithmetic or geometric value of the corresponding parameters of the
two selected parents (arithmetic or geometric recombination).

e The corresponding parameter of one or the other parent, selected at random
with equal probablity (discrete recombination).

Recombinations introduce the principle of sexual propagation which is expected to
be very favorable for evolution as only few primitive organisms do without it. As
mentioned before, it also offers the possibility to independently vary the step lengths
of each design variable.

2.3.4 Convergence Criteria

In the two membered strategy, the convergence criterion is based on the evolution of
the best value of the objective function along generations. The optimum is assumed to
be reached as far as the best value has not significantly changed in the last generations.
With the multimembered strategy, the criterion still becomes simpler. The optimum
is assumed to be reached as soon as the best individuals of a generation do not
differ too much with respect to their objective function values. If we denote 0,min
and 0,max the minimal and maximal values of the objective functions inside a given
parent generation, the iterative process will be stopped if

|w0,min¢0,mmc‘ < g, (24)
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A relative error criterion can also be used as

|¢O,minw0,maac’ < EwOa (25)

where 1)y is the mean value of the objective function in the considered generation.
To avoid endless processes, it is also safe to impose a maximum number of iterations
after which the optimization is automatically stopped, and eventually adapted for
further investigations.

2.3.5 Constraints

Ideally, the initial parent population should hold the constraints. However, it can
be difficult to find a uniformly distributed initial population which respects all the
constraints. This condition can then be dropped, the constraints being taken into
account through a penalty of the objective function as soon as a constraint is vio-
lated. In this way, the selection generally makes the parent population licit in a few
generations. Although simple, this approach wastes computation time in the first
generations and introduces the risk of having a population coming only from a small
number of licit initial parents. The problem of finding an initial licit population is
therefore often treated as a particular optimization problem whose cost function vy,
corresponds to the sum of the violated constraints

1, if =<0

U= S h0-000) withsw)={ g =) (2:6)

If an illicit starting point arises during the construction of the initial population,
the process is performed from that point, until all the constraints are satisfied. This
initialization step is easy to implement, as it uses only available tools, and yields a
well distributed population.

2.4 Robotic Manipulation

The action of manipulation can make reference to a modification or change of some-
thing by any mean. In robotics, it mostly refers to physically move an object, usually
in pick and place tasks. The process include many phases. The first one is reaching,
which involves planning a trajectory to place the end-effector of the robot in front or
at a distance where the robotic hand, clamp or other robotic tool can seize the object.
After it is reached, the robot has to grasp the object. This task takes into account
the form, weight, and the stiffness of the object. A trajectory has to be calculated
in order to close the robotic fingers with the adequate strength to hold the object
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avoiding to drop or smash it. This is often achieved with force sensors included in
the end-effector of the robot. When the object is correctly gripped by the robot, the
planner has to generate a trajectory to take the object to another location. Then,
a plan for opening the grasp is executed, releasing the object on the target location.
This plan has to consider the shape of the object in order to stand safely, as it could
be fragile (for instance a glass). In Figure 2.20, a mobile manipulator in a simulation
of space tasks can be observed. The figure was taken from the IEEE Spectrum?.

J._r.-hr 1

Figure 2.20: Mobile manipulator robot Justin from the German Aerospace Center
(DLR). Figure taken from IEEE Spectrum, reference at the footnote.

As can be observed, the stages involve in the manipulation task need the genera-
tion of many motion plans.

There are other forms of robotic manipulation, as pushing, throwing and other
specific applications, where the robot makes use of a tool. In this work, the robotic
manipulation presented in Chapter 4 will be mainly focused on the reaching process.

3http://spectrum.ieee.org/automaton/robotics/humanoids/space-justin
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2.5 Fast Marching Method

This section discusses the main concepts and techniques related to the FMM for
path planning in homogeneous and inhomogeneous environment maps, and how the
refraction map is calculated for the FM? method, which it is also explained. Instead of
presenting these search-based methods in Section 2.2.1, this entire section is devoted
to them as they are of great relevance to this work developments. The disadvantages
of using the basic FMM version and the benefits of using it with a velocities map are
also mentioned. Both methods, the FMM and the FM?, will be described in the next
sections. The FMM on triangular meshes and the FM? algorithm will be detailed in
Subsections 2.5.3 and 2.5.4 respectively.

(a) FMM expansion wave in 2D. (b) FMM expansion wave in 3D.

Figure 2.21: Representation of FMM expansion waves, where the third axis is the
Eikonal value calculated by the algorithm.

2.5.1 The Basic Method

The principle behind the FMM is the expansion of a wave. In two dimensions,
the method intuitively simulates the spreading of a thick liquid as it is pour into a
board, obtaining the time in which the front achieves every point of the grid. Similar
formulations have been used in other study areas like Fluids Mechanics, Molecular
Dynamics in relation to Electrostatic, Thermal Analysis, and more. Notwithstanding,
it is crucial to highlight that the most important and peculiar feature of the method
is how the wave expansion is calculated in reaching time for every cell in a grid. As a
consequence of its particular mathematical formulation, the outputted potential map
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of the method presents only a global minimum and no local minimum whatsoever.
There are many preceding graph search algorithms based on similar approaches like
Dijkstra and A* (see [22] and [23] respectively). These search methods have been
widely used and demonstrated. Conversely, they have been proven to be inconsistent
in the continuous space [51]. In Figure 2.21(a), the expansion of a wave is presented
in 2D. Figure 2.21(b) presents the expansion in 3D where the third axis is the Eikonal
distance from the source.

The FMM in an homogeneous environment generates, at same levels of the wave,
front interface points in circular form and centered around the source location. In
such case, all the points in the interface are reached at a given time homogeneously,
and the minimal path between two points in the space is always composed of straight
lines.

The method foundation is the same as the one behind Fermat principle in optics,
which states that a ray of light that goes through a prismatic glass always takes
the fastest path between any two points. In other words, it takes the minimum or
optimal path in time. The interface or wavefront can be a flat curve in 2D, a surface
in 3D, or even although it may not be possible to represent it graphically, the model
can be mathematically generalized to any number of dimensions. The time T is
calculated for every point as the wave advances and covers the gridmap. The front,
denominated I', advances always moving in the normal direction. The FMM allows
to receive even more than one source point as input, then the front wave is generated
from each source point. The interface origin points are initialized with 7" = 0 and
frozen state, according to the names of the algorithm states [4]. For obtaining the
geodesic path over a map the source point must be only one, which stands for an only
global minimum 7" = 0, implying that the rest of the values will be always greater
than zero. The speed F' is established by the velocity potential map, and may vary
from point to point but it is always positive, or equal to zero in obstacles grid points.
The values of the front are described by the Eikonal equation, as given by Sethian
27]:

1 = F(2)|VT ()] (2.7)

where z is a point in space, F'(x) is the speed of the wave for that position, and T'(x)
is the time required by the wave interface to reach x. Then, the velocity is inversely
proportional to the gradient magnitude of the arrival time function 7'(z):

1
== V1| (2.8)
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Algorithm 11 Algorithm of the FMM

Input: A grid map G of size m X n, source point x
Output: The grid map G with the T value set for all cells

{Initialization}

1: for all g;; € zp do

2: gUT +— 0;

3t gij.state <~ FROZEN;

4:  for all gi; € g;j.neighbours do

5: if gy = FROZEN then

6: skip;

7 else

8: i1 T < solveFikonal(gy);

9: if gp.state = NARROW BAN D then
10: narrow_band.update_position (g );
11: end if
12: if gkl.state = UNKNOW N then
13: gu-state < NARROW BAND;

14: narrow_band.insert_in_position(gx);
15: end if
16: end if
17 end for
{Loop}
18:  while narrow_band NOT EMPTY do
19: Gij < narrow_band.pop_first()
20: for all gi; € gij.neighbours do
21: if g,y = FROZEN then
22: skip;
23: else
24: gr- T < solveEikonal(gy );
25: end if
26: if gy.state = NARROW BAN D then
27: narrow_band.update_position(gy);
28: end if
29: if gp.state = UNKNOW N then
30: gu-state < NARROW BAND;
31: narrow_-band.insert_in_position(g);
32: end if
33: end for

34: end while
35: end for
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2.5.2 Implementation and Path Planning

The solution for the Eikonal equation can be computed iteratively over a gridmap.
The pseudo-code algorithm for the method is shown in Algorithm 11. Before going
into the details, we explain the different labels the cells of the gridmap can take:

e Unknown: cells whose T" value is not yet known because the wavefront has not
reached them.

e Narrowband: cells that may be part of the front wave in the next iteration.
They already have a T value assigned but it can change in future iterations of
the algorithm.

e Frozen: cells whose T value is fixed because they have been passed over by the
wave.

The algorithm has three stages: initialization, loop and finalization. In the ini-
tialization T' = 0 is set in the cell in which the wave originates and this cell is labelled
as frozen. Afterwards, all its Manhattan neighbours are labelled as narrow band and
T is computed for each of them. The iterator g;; is used to cover the grid wave. The
variable gy; is used to visit the Manhattan neighbours and calculate their T" values.

(a) Environment map. (b) FMM wave expansion and calculated path.

Figure 2.22: Example of FMM with the calculation of the path.

In each iteration of the loop in Algorithm 11, the Eikonal equation is solved for the
Manhattan neighbours (which are not labelled as frozen) of the cell in the narrow band
which has a lesser T" value, and this cell is then labelled as frozen. The narrow band
consists of an ordered list, from lowest to highest T" value, of its cells. The finalization
is reached when all the cells are labelled as frozen. The output is a potential map with
a reach time value (7') for every cell. If the descent gradient is applied, it leads to the
shortest path in time, which in a map with homogeneous velocity is the same as the
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shortest path in distance and it is called the geodesic. Figure 2.22 shows an example
of the resulted geodesic path after applying the FMM between two given points in a
2D environment. The darker red color represents the unknown or unexplored areas.

In path planning, the FMM expansion of the wave is applied directly over a plain
map. Albeit the result correspond to the minimum length geometrical path, the paths
are neither safe nor smooth.

2.5.3 Fast Marching Method on Triangular Meshes

The basic idea of this approach is related to the Fermat principle in optics, which
states that a ray of light that goes through a prismatic glass always takes the fastest
path between any two points. In other words, it takes the minimum or optimal path
in time. The interface or wavefront can be a flat curve in 2D, a surface in 3D, or
even although it may not be possible to represent it graphically, the model can be
mathematically generalized to any number of dimensions. The time 7' is calculated
for every point as the wave advances and covers the gridmap. The front denominated
I' always advances in the normal direction. The FMM allows receiving even more than
one source point as input, then the front wave is generated from each source point.
The interface origin points are initialized with 7" = 0 and frozen state, according to the
names of the algorithm states. For obtaining the geodesic path over a map the initial
point must be unique, which stands for an only global minimum 7" = 0, implying that
the rest of values will be always greater than zero. The speed F' is established by the
velocity potential map, and may vary from point to point but it is always positive
or equal to zero in obstacles. The first versions of the FMM were based on regular
orthogonal grids [52, 4]. Later, these algorithms were extended to general triangular
meshes [53]. Since triangular meshes are more flexible when describing shapes, this
version of the FMM was chosen.

In this section we introduce the FMM that is used in the proposed approach. Let
X be the surface defined by a triangle mesh and x a coordinate parameterization of
X,z :U — X. A distance map d(z) = dx(zo,z) is build with the FMM by solving
the Eikonal equation:

IVxd(z)fl, =1 (2.9)

where Vx represents the intrinsic gradient with the boundary condition d(z() = 0.
As said before, the FMM simulates a wavefront propagation calculating the time
or distance of arrival d(x) for every point of the map when the wave propagates with
constant, non-negative velocity. Let us suppose that a wave starts propagating at xg
with d(xzg) = 0. This point is already frozen (its value will never change). By open
points we call those points of the mesh which have not been visited yet by the wave
(d(xz) = 00). Finally, only the wave front points remain in the narrow band, which
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separates the frozen and open points. Algorithm 12 describes the procedure followed
by the FMM to generate the distance map d.

Algorithm 12 FMM over a triangular mesh
Input: non-obtuse triangular mesh (X, T'), source point .
Output: distance map d : X — R from the source point.
Initialization
for all x € X do
d(x) + oc;
end for
d(z) < 0;
frozen « xo;
narrow <— N (zg);{Neighbours of z¢}
open < X \ (frozen U narrow);
Loop
while frozen # X do

x1 < argmind(x);
renarrow
10:  for all t(z1,xe,23) € {(21,22,23) € T : 29 € frozen U narrow, xs € narrow U

open} do
11: narrow <— narrow U {zs};
12: Update(xy, x9,x3);
13:  end for
Remowve x1 from the unprocessed set
14:  narrow < narrow \ {x};
15: frozen < frozen U {z};
16: end while

The update function (line 12 of Algorithm 12) is a key component of the algorithm
because it is what differentiates the method from Dijsktra’s, making possible to use
it in a continuous surface [54]. The update process, which is shown in Algorithm 13,
is perform over two vertices of a triangle to calculate the time of arrival of the third
vertex. This enables the geodesics to follow the gradient of the distance map d(z),
and reach any vertex within the mesh.

The update process only works with non-obtuse triangular meshes. If there is any
non-obtuse triangle in the mesh, a possible solution is to connect the vertex 3 to
another point of the mesh [53].
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Algorithm 13 FMM update function
Input: non-obtuse triangle with xzi,29,x3, and the corresponding arrival times
dl7d27d3-
Output: Updated distance ds.
Vo= (11 — 33,79 — X3);
d = (dy,dy)";
Q= (V'V)
_ 150Qa+/(13,,Qa)* 17,1 Qlax1-(d7Qa—1) |
B 17, Q121 ’
n=V""T(d-p- lo);
if QVTn <0 then
ds < min{ds, p};
else
d3 — mil’l{dg, d1 + ||§U1H ,dg + HIQH},
end if

H
@

2.5.4 The Fast Marching Square Method

This section presents the fundamentals of the method used in the great majority of
the presented approaches. The FM? was first introduced by Garrido et al. in [29].
The method was presented as concerns for the FMM safety in path planning were
raised. An approach using Voronoi diagrams was proposed before by the same authors
in [55]. In spite of the safety offered by the Voronoi Diagrams, the calculated paths
often result unnecessarily long. Differently, the FM? is able to adjust the range of the
security distance or clearance and reduce the length of the paths.

The FM? takes advantage of the ability of the FMM to be calculated over an
anisotropic map environment. This means that not only the method is valid for maps
of zeros (obstacles) and ones (free space), but gray levels are also admitted in the
calculation. The intermediate values in the map function represent velocities. These
values influence over the Eikonal distance values. When the geodesic is determined,
the fastest map areas are drawn in the final path. Essentially, the FM? applies FMM
to an input environment map in order to create a velocities potential map. Then, over
this map, the FMM is applied a second time to expand a wave from a starting point
and until reaching the goal. The descend of the geodesic is calculated to determine
the pathway. In Figure 2.23, two examples of the FM? are shown.

The 2D maps on the left of Figure 2.23 represent the velocity potential maps.
Figures on the right are their respective expansion waves from a given start to goal
points. The latter velocities potential map was saturated to reduce the clearance.
The obtained paths are depicted in black for both cases.

The original FMM approach assumes the isotropy of the free space or, stated in
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Figure 2.23: Motion trajectories obtained by the FM?. Example of FM? with both
stages: the generation of the velocities map (left) and the calculation of the path
(right). The velocity potential map is saturated on the bottom example.

another way, the environment map has a uniform value for the entire environment
where obstacles are not present. Nonetheless, the FMM time arrival values can be
obtained over an uneven map. This concept was first demonstrated by Sethian et
al.[56]. This fact has been taken into account in the FM? method to define a velocity
potential map. This approach, produces paths with a safety distance from obstacles
that can be adjusted. In Figure 2.24(c), a path planning example between two points
in a 2D environment is presented. In (a), the resulted path of applying the FMM is
shown. In (c), the FM? path for the same experiment is shown, and (b) represents
its corresponding velocity potential map.

In the next paragraphs, the basic steps that comprise the FM? algorithm are
depicted:

1. FM?-1st step. A first run of the FMM is carried out with the map resulted
from the previous steps. The gridmap is passed as an input parameter. In
this particular case, the sources are all the obstacles present in the gridmap.
The output will be another gridmap with the arriving values, as indicated in
Algorithm 12, where the potential interfaces start from walls and obstacles.
This map is better known as velocity potential map, and as its name suggests it
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(a) Geodesic path with FM. (b) Velocity potential map. (c) Path with the FM? method.

Figure 2.24: Example of FM? with both stages: the generation of the velocity poten-
tial map and the calculation of the path.

establishes a maximum speed for every point in the map that should be taken
into account when moving the real robot. Furthermore, each cell value in this
potential map gives the distance to the nearest obstacle in time, data that can
be employed as a clearance metric because it is related to the geometric distance.
Besides, in the case of a breakdown, it can be understood as the time available
to stop the robot before colliding. Therefore, the velocity potential map also
provides a safety framework, not only by considering the distance to the closest
obstacle but also by providing a secure reference speed for each point of the path.
Figure 2.24(b) shows the FMM wavefront emerging from walls and obstacles,
which corresponds to the example environment velocity potential map.

2. Saturation of velocity potential map. As an additional step, the saturation of the
potential map was proposed in [57] to avoid getting too far from walls and other
obstacles. A safety distance is established and used to saturate the map. The
potential is the same for all the cells whose distance is greater than this safety
threshold. The reasoning here is that maintaining a clearance greater than a
predefined safety distance, would only increase the path length unnecessarily.
This mechanism has not been included here, but it is an option to consider
depending on the planner purpose.

3. FM?-2nd step. The last step of the FM? method is to generate an additional
FMM expansion over the potential map. The result of this step is a 3D surface
in the case of 2D planning, and for n dimensions the FMM potential will give
an additional axis n + 1.
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4. Gradient Descent. After calculating the potential map, in the case of a 2D
environment, the surface is used to obtain an optimal minimal path in expansion
time of the wave. This is done by following the gradient descent direction of
the wavefront potential from the target to the initial point. The obtained path
corresponds to the geodesic path of the surface, and the velocity for each point
is defined in the velocity potential map reference frame.

If the expansion of the wave were applied directly over a homogenous map without
the velocity potential map generated in the FM?2-1st step, the results would then
correspond to that of the shortest path, which is the basic FMM path and is neither
safe nor smooth (Figure 2.24(a)).

Summarizing, the FM? method guarantees to find a solution path if it exist, and
the result is optimal in length, safety distance and smoothness.

2.6 Comparison of Path Planning Methods

Regarding the methods explained in the last sections, some comparisons between
them are provided here to give the reader an idea about their capabilities.

Figure 2.25: Geodesic distance maps using a cosine modulation to denote the level
set. The Dijkstra algorithm generated map on the left, and the FMM on the right.

The RRT algorithm complexity is O(n logn) and presents no asymptotic opti-
mality. In practice, this algorithm generates far from optimal paths and does not
handle environments well when they have too many obstacles, which is very frequent
in navigation planning. In particular, it presents problems when trying to pass a
robot through a narrow passage. As was found in [43], where for this specific exper-
iment, the RRT obtained the lowest success rate, and the computational time arose
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to many seconds. In the RRT and its variations, safety is not considered beyond col-
lision checking. However, the advantage of the method is the ability to handle high
dimensional problems. This favors manipulation motion planning problems where the
arms usually have seven DOF. Additionally, the environment for manipulation often
presents very few obstacles, which quickens the convergence of the algorithm.

For search-based planners like Dijkstra, or A*, the problem is that they are not
consistent in the continuos space [54]. In Figure 2.25, the geodesic distance maps for
the Dijkstra and the FMM algorithms are presented. A cosine modulation was used
to denote the level set of the expansion wave. When comparing the A* method to the
FMM, the latter overcomes the first in path quality as exposed in [58]. Furthermore, if
the FM? is used for path planning the smoothness and safety parameters are improved.
The FM? method which is a newer and improved version of the FMM.

For path planning in continuos space with the Dijkstra algorithm, the first step is
to generate the geodesic map. Then, the metric incongruence triggers when calculat-
ing the geodesic path. In Figure 2.26, a path planning example is shown. The initial
point is the bottom left and the goal is the upper right. The green an red lines are
paths that can be found following the Dijkstra geodesic descent. It is clear that the
dashed black line is the optimal path for this example.

Figure 2.26: Geodesic valid paths for Dijkstra’s algorithm. The green and red lines
described the Dijkstra’s valid paths. The dotted black diagonal is the shortest path
that is not found by Dijkstra’s method.

The FMM solves the metric incongruence of the Dijkstra algorithm. The com-
putational complexity of this algorithm is O(n) as shown in [59]. Since the FM? is
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based directly upon FMM, it is also O(n). Both methods, being deterministic, gener-
ate consisting paths results each time. The FM? offers optimality for safety, softness
and path length parameters.
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Table 2.1: Well-known path planning algorithms.

Author (Year) Name Characteristics
Dijkstra, E. W. (1959)  Dijkstra Finds the shortest paths in a graph
[22] from a source to all vertices.
Hart, P. et al. (1968)  A* Extends Dijkstra algorithm to improve
[23] time performance by using heuristics.
Stentz, A. (1995) [24] D* Is a Dynamic A* that plans in real-
time and incrementally repairs paths
as environment information is up-
dated.
Kavraki, L. E. et al. PRM Takes random samples from space and
(1996) [25] attempts to connect these to other
nearby making paths.
LaValle, S. M. (1998) RRT Is a tree data structure and algorithm
[26] that efficiently explores space. See
Section 2.1.1.
Sethian, J. A. (1999) FMM An efficient search-based planner that
[27] expands a front. See Section 2.5.
Kuffner, J.J. and RRT- Also known as RRT-Bidirectional.
LaValle, S.M. (2000)  Connect Grows two RRT trees, the first from
[28] the start and the second from goal.
See Section 2.2.2.
Garrido, S. et al. FM?2 A safe sensor-based planner based on
(2007) [29] the Fast Marching Method. See Sec-
tion 2.5.4.
Sucan, I. and Kavraki, KPIECE Kinodynamic Motion Planning by
L. (2009) [30] Interior-Exterior Cell Exploration
Karaman, S. and RRT* An asymptotically optimal version of
Frazzoli, E. (2010) [31] RRT.
Karaman, S. and PRM* Based on PRM, it gradually increases
Frazzoli, E. (2011) [32] the number of connection attempts.
Janson, L. et al. (2013) FMT* A sampling-based motion planner

[33]

based on RRT* principle and the Fast
Marching Method.
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Mobile robots are often provided of wheels connected to servomotors, the mobile
base can be arranged so that the robot can move in any direction or in restricted direc-
tions as automobiles, these configurations are called holonomic and non-holonomic,
respectively. The main purpose of this kind of robots is to navigate through an en-
vironment and execute multiple tasks. For this reason, the robot is often equipped
with sensors and a robotic arm, enabling to acquire information of the environment
in order to avoid obstacles and interact with objects. Therefore, it is necessary to
calculate accurate paths in order to safely maneuver in cluttered environments.

The first and second objective of this work are covered in this chapter. These
objectives correspond to the path planning and replanning for moving the robot to
an specific location. These were presented with a work pipeline for the robot in the
introduction chapter. Some path planing approaches for achieving the safe navigation
of a mobile robot are presented hereafter, all of these make use of the FM? method.
The latter, is a path planning method known for generating safe and reliable paths
with good clearance. A correct implementation of the FM? method enables its use
in real-time applications with few dimensions. It is the case of path planning for
navigation where with two dimensions the execution time can be much faster than
any sampling-based method, specially in complex environments where high precision
is needed. These reasons justify the use of the FM? over other more popular methods
as the sampling-based that generate paths with random safety and may not converge
to a solution even when ones exists.

3.1 Smooth Path Replanning using FM?

The problem of path planning can be stated as finding a sequence of state transitions
through a map from some initial state to a goal state, or determining that no such
sequence exists. If during the traverse of the path, one or more transitions in the
map are discovered to be incorrect, the remaining portion of the path may need to be
replanned to preserve feasibility and optimality. It is clear that there is a necessity
of replanning efficiently as daily environments where mobile robots should work are
highly dynamic.

An important application for this problem, and the one that will serve as the
central example throughout this section, is the task of path planning for a mobile
robot equipped with a sensor, operating in a changing, unknown or partially-known
environment. The robot begins with an initial estimate of the path, but since the
environment is only partially-known or changing, some segments of the path are
likely to be unfeasible. As the robot acquires sensor data, it can update its map
and replan the optimal path from its current state to the goal. It is important
that the replanning works fast, since during this time the robot must either stop or
continue to move along a suboptimal path. Many replanning approaches for a mobile
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robot with a sensor have been proposed, but in every case the underlying planning
methods generate lower quality paths when compare to FM? in terms of safety and
smoothness. In the method proposed by Stentz [24], the A* is used to calculate paths
and as discussed in the state of the art section, there has been studies that proved the
FMM to be superior [58]. Because the FM? is based on the FMM, it inherits all of the
good properties and also improves the quality of the paths in smoothness, clearance
and thereby safety. An RRT based replanner is proposed by Fergurson in [60], again
as it has been and will be discussed later through this document, the sampling based
methods generate random paths with unpredictable safety properties. In the past,
planning was considered optimal when the minimum distance path was found [24].
Nowadays, the safety is a crucial factor as a mobile robot must operate within human
environments where the integrity of people as well as that of the often very expensive
robot must be guaranteed. For these reasons, the FM? method conciliates all of the
requirements that a modern path planner must have.

Algorithm 14 Anytime Fast Marching Square
map < load( free_map)
vmap < velocities_map(map)
full_path < fast-marching(map, vmap, start, goal)
nodes < path_nodes( full_path)
while (global goal # true) do
map < laser_scan/)
vmap <— velocities_map(map)
update_next_subgoal (subgoal)
if (obstacle_free( full_path,nodes.next()) then
move_forward(full_path)
else
full_path < fast_marching_next_node(. ..)
move_forward(full _path)
14:  end if
15: end while
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A path replanning algorithm in unstructured environments using the FM? method
is proposed in this section. The proposed strategy enables the robot to safely navigate
and by using subgoals reduces unnecessary calculations when replanning, which leads
the mobile robot to reach its goal in less time. Also, the robot’s onboard computer is
released more frequently in such a way that any other important processes are able
to execute.

The proposed method works in two steps. First, a smooth and safe global path is
generated. This path is divided in multiple subpaths separated by equidistant nodes
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(defined by topological or metric constraints). After that, the obstacles information
is added and a different path is calculated only when the original path is unreachable.
The recalculation of the path is made up to the next node, which reduces the com-
putational time. Different tests have been carried out in an indoor environment. The
most important advantage with respect to similar approaches is that sub-paths are al-
ways efficiently generated in one execution cycle in terms of smoothness and safeness.
Besides, the computational cost is low enough to use the algorithm in real-time.

3.1.1 Anytime Fast Marching Square Method

We have developed an approach using the FM? algorithm that solves the path re-
planning problem in a robust and efficient way generating smooth and safe paths.

In order to successfully plan a trajectory, the main idea is that the robot performs
updates of the environment using a sensor laser scanner. New obstacles are added to
the obstacles map with every scan. The velocities map is calculated and the FM? is
performed over this map. The FM? path replanning method is depicted in Algorithm
14.

lnnnngF'---l

Figure 3.1: Sequence for path replanning to subgoals.
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First of all, it is necessary to comment some details about the environment and
the robot’s characteristics. The environment has been modeled geometrically as an
occupancy grid map in two dimensions and the robot’s pose (the robot’s pose is
defined as the robot’s position and orientation: x, y, and yaw) is represented with the
cartesian coordinates and the horizontal orientation.

Algorithm 14 starts in line 1 by loading an environment map with the most un-
changing obstacles, such as walls and fixed objects like those screwed to the floor.
This map is usually equivalent to the building plans. The previous loaded map is
used in line 2 to generate its corresponding viscosity map. In line 3, the method uses
the previously generated viscosity map as the velocities map to generate the initial
global trajectory. This initial global path is segmented in equal portions by means
of Geometric or topologic specifications in line 4. The geometric strategy receives
the initial global path, which is a sequence of points in the map, and defines sub-
goals nodes by selecting one point every predefined constant number of steps. The
topology-based strategy, on the other hand, uses reference points in the environment
map, where the subgoals are set to the closest initial global path points to these
reference points.
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Figure 3.2: Initial Path calculated for the first proposed experiment.

In line 5, the robot is located at the starting point in the environment and the
iteration loop starts. The obstacles and velocities maps are updated in line 7 and 8.
When advancing through the global path, it may occur that the next node is not the
closest node, which would generate an inefficient path unless this case is detected and
corrected. This event can be figured out with the example illustrated in Figure 3.1.
In each frame, the magenta dots are samples of the initial path and the blue lines
correspond to the local plans to next subgoals. In the first image it can be appreciated
how the local plan coincides exactly with the global initial path. Then, divergence
between paths increases as new obstacles are discovered with the laser sensors. In the
last frame, the path is recalculated as consequence of an obstructed corridor. The
entire initial path for this example is presented in Figure 3.2. The new trajectory
leads the robot through adjacent rooms that are connected by an open door.

In Figure 3.3, a path planning sequence that resumes the one in Figure 3.1 is
presented. It illustrates the local planning when the robot passes through rooms and
goes back to the main corridor. In the first frame, the local plan to next subgoal
(blue path) would suppose to go south in the map and then to return east over its
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track. Thereby, in order to calculate a logical shorter path, the local panning goal is
updated to the nearest subgoal with the function update_next_node(). This is done
in line 8, the euclidean distance from the location of the robot, p, to the current and
to the next subgoal, gr and g1, are calculated

@ = min V(1 — g12)? + (P2 — gry)? (3.1)

the node with the minimum of the distances is taken as the new subgoal (). In the
sequence of Figure 3.3, it can be appreciated from the third frame up to the last one
how the path is modified by updating the replanning objective to subgoals nearer the
final goal.
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Figure 3.3: Sequence for path replanning to subgoals.

If the robot detects that the map has changed and that it is not possible to execute
the initial global path, then the path is recalculated up to the next subgoal node and
the global path is updated only in the affected segment. The robot moves forward
through the global path to the next free obstacles node (line 9 to line 14). The
robot displacement is computed considering its motion error. Thereby the executed
trajectory could differ from the first calculated, even in the case when the obstacles
map is the same as the pre-loaded map. This is taken into account in the experiments
made in the corresponding section. In this way, our method is capable of calculating
a smooth path while avoiding the obstacles at the same time.
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3.2 Anytime Triangular Fast Marching Square Method

The anytime approaches in robotics are based in two fundamental observations or
principles. The first is that it makes no sense to invest a lot of time in calculating a
path to then be discarded because the environment has changed. The second and most
important is that mobile robots move parsimoniously, which gives time to improve
initial paths.When the mobile robot is in an unstructured environment, it is necessary
to include real-time information about its surroundings to obtain safer paths. This
information is acquired by the robot by using a laser range finder. One important
characteristic that this type of algorithms must satisfy is that the path must be
generated in real-time. The anytime algorithms have been successfully applied in
robotics races with real cars and other robotic tasks in order to quickly generate a
first path and then improve it in an incremental way when time is available.

An anytime motion planner on triangular meshes is presented in this section, the
original approach was presented by Gémez et al. in [61]. Here, an anytime version and
many variations of the method are presented and deeper analysis and experiments are
carried out. Also, while developing this work, some flaws on the general formulation
for evaluating path planning methods were encountered. Thereby, a discussion is
conducted and some improvements are proposed in Section 3.4.

Q ROI vertex, Vroi
e} Internal vertex, Vm
@ Initial path vertex, Vp

Figure 3.4: Example of mesh generation using hexagons.

A correct implementation of the FM? method produces excellent computational
performance that enables its use in realtime applications. This assertion is true
under condition of few dimensions, for instance two and three degrees of freedom.
However when the dimensions are increased, the search space grows exponentially.
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For example, when a degree of freedom with 1000 configuration states is increased
to two the configurations are raised to 10 and to 10'® when increased to six degrees
of freedom. The latter one is a very frequent scenario in robotic manipulation that
increases the computational time to unfeasible rates. For this reason, the use of a
triangular mesh grid is proposed. This approach would reduce the size of the search
space and therefore the computational time.

(a) External and internal (b) Only external vertexes.
vertexes.

Figure 3.5: Octagons used for mesh generation.

Even though the method presented in this section was intended for robotic manip-
ulation, it was first implemented for 2D path planning for simplicity reasons. Latter,
due to technical difficulties with the implementation of triangular mesh grids in higher
dimensional spaces, a different approach for manipulation path planning was proposed
and it is presented in Section 4.2. This section is structured as follows. First, the
mesh generation process is detailed in Section 3.2.1. After that, the whole algorithm
is described in Section 3.2.2. The objective of the ATFM? algorithm is to improve the
scalability of the FM? planner, which is a very good method for generating smooth
reliable optimal paths. Even though the best solution in 2D path planning would
be to directly apply the FM? method, the approach presented here is addressed in
2D to reduce the demonstrations complexity and get a better understanding of the
algorithm. The method real target is high-dimensional problems as path planning for
six or higher Degrees of Freedom (DOF) robotic arms.

In the first step (Section 3.2.1), the RRT method is used to obtain an initial path.
Although the RRT planning results tend to be suboptimal, the method is highly
scalable in dimensions. In the following steps, the initial RRT path is used as a base
to reduce the exploration area for the triangular FM? algorithm. The steps of this
technique are explained in more detail below.

The basic idea behind an anytime motion planner is that the robot’s path could be
iteratively improved. This is a useful concept when there is time enough to compute
a new path because the robot’s movement is not too fast. An illustrative example of
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the advantages of using an anytime planner approach is presented in Figure 3.8.

3.2.1 Mesh generation

One of the algorithm main steps is to create a structure formed by triangles around the
outputted pathway nodes generated by the base planner, which in this case is the RRT
method. The structure with triangles, called mesh or more specifically triangle mesh,
is created over the original pathway to define what it is known as the Region of Interest
(ROI). Regular polygons are arranged on the original pathway, one polygon per node
and every polygon centered at each node. The distance between adjacent pathway
points has to be less than two times the polygons apothem, where the apothem is
defined as the distance from the center of a polygon to the midpoint of one of its
sides. This condition must be satisfied in order to guarantee the connection among
contiguous polygons. Since sampling-based algorithms as RRT already incorporate a
step length, which is the maximum distance between nodes, this condition is easily
achieved by defining an apothem greater than half the step length. Polygons of equal
size are then placed in every node as shown in Figure 3.4. The ROI is computed as
the area confined by the outline of the intersection between polygons. This stage will
reduce the FM? method exploration area and thus the computational time.

(a) External and internal (b) Only External vertices.
vertices.

Figure 3.6: Hexagons used for mesh generation.

The approach proposed for improving paths in [61] uses octagons as regular poly-
gons, adding eight external and eight internal vertices as shown in Figure 3.5(a).
These vertices are used to generate the triangle mesh. The external vertices coincide
with those of the octagon, and the internal ones are located at the middle point be-
tween the center of the polygon and each external vertex. The octagons edges and
the intersection with other polygons serve as the outline to define the ROI for the
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FM? method and then determine the gradient descent path. The algorithm achieves
to improve an initial pathway as benchmarking results will establish.

Some options that may speed-up the process are proposed for the anytime planner.
One possibility is to consider different types of polygons in this stage. It is advisable to
start with faster functions and then incrementally improve the path as far as possible
while the robot is moving. The list of polygons that have been used here is:

e Eight external and internal vertices, approach used in the original version.
Different options could be combined with this one, as will be described later in
this document. This polygon is shown in Figure 3.5(a).

e Eight external vertices, shown in Figure 3.5(b).
e Six external and internal vertices, shown in Figure 3.6(a).

e Six external vertices, shown in Figure 3.6(b).

Algorithm 15 Anytime Triangular FM? Method

1: rrt_path < generate_rrt_path(Init, Goal)

2: internal _vertices < generate_polygons(rrt_path)

3: external_vertices < generate_polygons(rrt_path)

4: ROI <« polygons_union(external vertices)

5. mesh_model «+ triangle_represent(rrt_path, internal_vertices, ROIT)
6: mesh_map <— combine_mesh_and_obstacles(mesh_model, obstacles)

7: velocieties_map < fast_marching(mesh_model)

8: fmm_path < calculate_geodesic(velocieties_map)

9: while (global goal # true) do
10:  fmm_path < validate_path(fmm_path)
11:  internal_vertices < generate_polygons(fmm_path)
12:  external_vertices < generate_polygons(fmm_path)
13:  ROI <+ polygons_union(external vertices)
14:  mesh_model < triangle_representation(rrt_path,internal vertices, ROI)
15:  mesh_map < combine_mesh_and_obstacles(mesh_model, obstacles)
16:  welocieties_map < fast_marching(mesh_model)
17:  fmm_path < calculate_geodesic(velocity_potential _map)
18: end while
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3.2.2 Anytime triangular motion planning algorithm

The ATFM? path planning method is depicted in Algorithm 15. The Figure 3.7 shows
some stages of this procedure. In the initialization stage, the output of the RRT
method is used to generate the initial path. After that, this path is continuously
updated (and improved) by the anytime planner.
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(d) Mesh Generation. (e) Obstacles forces. (f) FM? method over final map.

Figure 3.7: ATFM2 algorithm steps.
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In line 1, the sampling-based method generates the base path. As said before, the
sampling-based method is the RRT in this study, but any planner could also be used.
The vertices are generated in lines 2 and 3. These points belong to the external and
internal polygon vertices. In Figure 3.7(a), the RRT path points are depicted in blue,
the internal vertices in yellow, and the external ones in red. The area of the external
polygons is combined to compute the ROI in line 4. The red silhouette in Figure
3.7(b) is the union result which corresponds to the ROI. In line 5, the Constrained
Delaunay Triangulation (CDT) method is applied over the generated vertices and
inside the ROI in order to obtain a triangle mesh. Figure 3.7(c) shows the points that
the triangulation function receives, which is a set that is composed of the nodes of the
RRT path, the internal vertices, and the external ones if they belong to the border
of the ROI. The triangle mesh presented in Figure 3.7(d) is the result of applying
the CDT function. In line 6, the environment map with obstacles is combined with
the mesh model obtained in the previous phase. To finish the initialization stage,
the FM? method is applied inside the ROI by generating a velocity potential map in
line 7, and finding the geodesic path that improves the original path in line 8. The
velocity potential map is displayed in Figure 3.7(e).

The path obtained in line 8 is shown in Figure 3.7(f), where the black circles
represent the environment obstacles, the colors inside the ROI depict the FMM wave
expansion from the goal location to the start location, the black region inside the
ROI depicts the area that has not been reached by the expansive wave, the magenta
line is the RRT path, and the white line is the FM? path.

The anytime planning starts inside the while loop in line 9, when the computed
path is taken as an input that will be iteratively improved. Because the distance
between consecutive points in the FM? paths is not uniform but narrow in curves and
wider in straighter parts, the function validate_path (line 10) verifies that the path
fulfills the polygons connectivity requirement. Whenever the distance between path
nodes is greater than two times the polygons apothem, additional nodes are added to
the path by interpolating between nodes as many points as necessary. As before, the
internal and external polygons vertices are generated in lines 11 and 12, the external
polygons are combined to form the ROI, and the CDT method is applied in the next
line. Hereafter, the FM? method is applied inside the ROI and, in the next line; the
path that follows the geodesic is computed. The loop iteratively improves the path
until the global goal is achieved. This stopping condition is accomplished when the
path improvement between iterations is less than a significant proportion according
to the benchmarking parameters.

All the proposed polygons variations were tested several times and the experi-
mental results are presented in Section 5.2. The best results are obtained for the
six vertices variations in terms of computational time and path length, smoothness
and clearance; more details are given in the experimental section. Furthermore, as
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Figure 3.8: Improvement of the original path in the anytime motion planner.

discussed in the following paragraphs, the anytime approach produces better results
than the original method.

Anytime motion planning advantages:

As can be seen in Figure 3.8(a), the path is improved in length. Also, the benchmarks
will show improvement in smoothness and safety with respect to the initially generated
RRT path, and in the second iteration with respect to the path generated in the first
iteration with the FM? triangular approach. It should be noticed that the FM? path
goes through the outline of the light blue area around the middle of the path, meaning
that in this case, the length improvement is limited by the ROI. In a second iteration,
the algorithm receives the FM? path obtained in the first iteration and, as can be
seen in Figure 3.8(b), the ROI is rebuilt with the FM? pathway points, letting the
algorithm to further improve the path length. It can also be noticed that the second
iteration creates a more dense mesh because the FM? method produces more points
than the RRT. This figure intuitively exemplifies the fact that by confining the FM?
action area over an non optimal method such as the RRT, many optimized paths
are left out of reach. For this reason, the use of an anytime algorithm is suitable to
further improve the motion planning method.
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3.3 Fast Marching Square applied to Nonholonomic
car-like robots

A very relevant type of robot are the nonholonomic ones, which cannot move freely
in any desired direction. Mathematically this means that their movements have to
accomplish a set of constraints which are not imposed by the environment. A typical
case is the car-like robots or otherwise the robots based in commercial cars. In this
section, the FM2-NH approaches are described.

Figure 3.9: Three dimensional C-space of a car-like robot, where the third dimension
is the orientation.

The basic approach was published by Garrido et al. in [62]. Here, the original
approach is divided in two methods and studied in greater depth with further ex-
periments. Further contributions are made by presenting pseudo-code algorithms for
both methods and benchmarking results. Also the formulation for calculating the
control actions of the car-like robot is presented. We discuss the details on how to
apply the methods to car-like robots, and how safety and physics considerations are
taken into account to accomplish the robot path planning problem.

3.3.1 Nonholonomic Fast Marching Square in C-space

The first approach models the environment, in which the car-like robot has to move,
as a C-space. In this space, the two first dimensions consist on the position of the
robot and the third one is given by the orientation of the vehicle. If we compute a



76 Chapter 3. Path Planning for Robot Navigation

trajectory along this C-Space, it is possible to guarantee the absence of collisions.
In order to achieve this, we need to take into consideration two aspects: first, the
possible orientations of the vehicle at every position in the map; second, for each
orientation we need to take into account the dimensions of the vehicle in order to
know when collisions occur.

Algorithm 16 Algorithm of the C-space FM-NH
Input: A grid map G, starting point x;,;, goal point x 4,4, dimensions of the car d,
an obstacle grid-point A
Output: The calculated path p and the control actions U
{Initialization}
1. c_space_map < Create_c_space_map(G, d)
{FM2-NH 1st step: velocity potential map}
2: vp_map < FM M (c_space_map, \)
{FM2-NH 2st step}
3: fm2.map < FMM (vp-map, Tinit, Tgoal)
{Geodesic path and control actions}
4: p < Geodesic_path(fm2-map, Tinit, Tgoal)
5: U < Control_actions(fm2_map, path)

In order to consider the aforementioned aspects, some changes are introduced
in the computation of the map on which the FM2-NH algorithm is applied. The
necessary steps are:

1. Create configuration space map. In the first step, the poses that are not feasible,
depending of the orientation of the robot, are eliminated. Since in the path
computation step, the robot is intrinsically considered as a one cell body, we
need to enlarge the obstacles to assure non-collision paths. This enlargement
depends on the shape of the robot. The obstacles growth is performed by
adding a rectangular shape whose size is half the size of the car in both X and
Y dimensions. Besides, the rectangular shape to be added is turned with respect
to the orientation for which the configuration space is being calculated. Thus,
the safe navigation of the robot is ensured, and the expansion of the wave is
shrank due to the reduction of the free space. Furthermore, in the case of narrow
entrances that are inaccessible to the robot, the dilation of walls closes those
entrances, diminishes the wave expansion area, and in consequence reduces the
computation time. In this way, the remaining poses define the three dimensional
free configuration space. This step is computed n times, being n the amount
of different orientations of the robot for which the C-space is created. The
bigger n is chosen, the smoother trajectory will be computed, since the step
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in between orientations will be smaller. At the same time, the bigger is n, the
more computation time is needed for this step. An example of the output of this
step can be seen in figure 3.9, in which the third dimension is the orientation
of the robot and n = 20. The orientations are repeated above and below the
calculated values in order to permit manoeuvres.

Figure 3.10: C-space FM2-NH applied to the car-like robot in the university environ-
ment.

2. FM?-NH 1st step. A first run of the FMM is carried out with the C-space
map resulted from previous step. In this particular case the sources are all the
obstacles points present in the C-space map. The output will be another grid
map with the arriving values T, as indicated in Algorithm 11. This map is
better known as velocity potential map, and as its name suggests, it establishes
a maximum speed for every point in the map that should be taken into account
when moving the real robot.

As an additional step, a safety distance M from which the obstacles are not
taken into account can be established. This can be easily done since each cell
value in the velocity potential map gives the distance to the nearest obstacle in
time, which can be employed as a clearance metric because it is proportional
to the geometric distance [57]. Therefore, the velocity potential map can be
saturated, and all the grid point potential values greater than the predefined
safety distance M, are set to M (which also can be interpreted as the maximum
velocity allowed at that point). This enables the planer to maintain a prudential
distance from obstacles, while at the same time, the path length is shortened.
The reasoning here, is that maintaining a clearance greater than a predefined
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safety distance, would only increase the path length unnecessarily.

3. FM?-NH 2nd step. The last step of FM2-NH is to generate an additional FMM
wavefront over the velocity potential map. The obtained surface is used to
obtain an optimal minimal path in time expansion of the wave, by following the
minimum gradient direction of the wavefront potential from the target to the
initial point. Because we have modeled the environment taking into account the
orientations of the vehicle, the obtained trajectory corresponds to the geodesic
path of the surface along the car-like robot orientations.

Figure 3.11: C-space FM2-NH with saturated velocity potential map applied to the
car-like robot in the university environment.

In Algorithm 16, the C-space FM2-NH approach is presented in a pseudocode
language.

A result of a path obtained using the aforementioned steps is shown in Figure 3.10.
The corresponding C-space is represented in Figure 3.9. The top and the bottom
configuration values are connected because the angle wraps around 27 radians. It
can be seen that the resulting path respects the kinematics constraints imposed by
the vehicle, while trying to move as far as possible from obstacles. Since the C-space is
built iteratively placing the vehicle in every position and with many different possible
orientations, it is a slow task. However, it can be precomputed off-line and only has
to be done once per map.

Most of the times, it is not necessary to get as far as possible of obstacles like in
Voronoi diagrams. In Figure 3.11, the same rooms as in Figure 3.10 were set as initial
and goal locations. For this example, the velocity potential map was saturated with a
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sufficiently safe distance from obstacles. Therefore, the obtained path in Figure 3.11
is shorter than the one in Figure 3.10, and also maintains a distance to obstacles that
is safe enough.

In Figure 3.12, an example of the FM2-NH in C-Space is presented. The environ-
ment map is a representation of an Intel Research Center located in Seattle, the map
of this robotics laboratory is a common used benchmark dataset. For this example,
the velocity potential map was saturated in the execution of the method.

Figure 3.12: Execution of a path obtained with the C-space FM2-NH method. The
environment map is an intel lab located in Seattle, and the robot is a car-like robot.

3.3.2 Control-based Nonholonomic Fast Marching Square

A very relevant feature that has not been sufficiently highlighted in Section 2.5, is
that by using the gradient over the second potential, it is possible to calculate a vector
field whose field lines are the paths that go from each point to the target, moving
away from obstacles and walls in the map environment.

The velocity potential map is then used by the FM? to create a second potential
T(x). This new potential represents the arrival time of the wavefront, and in this
way the method gives the arrival time as the third axis. The wave is originated from
the goal point and continues to propagate until reaching the starting point, i.e., the
current position of the robot.

In the Control-based Nonholonomic Fast Marching Square the FM? second po-
tential is used to calculate the gradient values OX and OY associated to each grid
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point. The result of this operation is the OXY vector field of the motion plan. The
directions of the gradient vectors point away from obstacles. They follow paths across
the different environment points to converge to the goal point. The magnitude of the
vectors can be used to determined the velocity of the car-like robot, and so, the gra-
dient vectors can be used to move the robot forward. Figures 3.13 and 3.14 show a
car-like robot drawn over the vector field of the gradient vectors.
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Figure 3.14: Detailed representation of the vector field.

Car-like robots have a limited steering angle causing them to move along paths
of bounded curvature. In Figure 3.15 a car-like robot is presented, where R is the
center of the rear axis and is represented by its (x,y) coordinates. The angle 6 is the
car orientation respect to the OX axis. For the specification of the motion problem,
it is a necessary to consider the following nonholonomic constraint

7 cosl — x sinf =0
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and the car-like movement can be modeled, with unit length between the front and
rear axes of the wheels, as

T v cos¢ cosb 0 0
U v cos¢ sinf 0 0
0| = v sin¢ +10]vr+ 0] (3.2)
U 0 1 0
b 0 0 1

where the front wheels orientation is expressed by ¢, the car velocity by ©, and the two
control inputs are vy, v9 : the acceleration of the robot and the front wheels angular
velocity.

Figure 3.15: A car-like robot.

This model can be expressed as a constraint on the curvature radius of the path.
This constraint can be directly included in the algorithm using the vector field, in
form of limits during the path calculation. An interesting remark is that the variables
in equation 3.2 are given by the vector field, except for the control inputs vy, ve. This
means that these control inputs can be easily deduced and this way the method not
only gives the trajectory but also the control inputs to follow that trajectory. In
Figure 3.16, an example of the ¢ variable over a trajectory is presented. It can be
appreciated how the angle in radians fluctuates between 0 and 27 over time. The
dynamic of the car-like robot, as in the majority of planning methods deal with
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driftless control affine systems, which have the form

i = Z hi()u; (3.3)

where the state £ € X consists of the configuration variables and their derivatives,
h; is a vector field on the state space of X, and u = [uy...u,,|T € U is the vector of
the control variables. If the configuration is treated as the state, then x = ¢. This
equation is used to find the variable u necessary to make the control of the robot.
Since the method provides the positions, velocities and the vector field, the control
can be calculated. The Equation 3.3 can be solved for the control wi. In Figure 3.17,
the resulted control signal for a motion plan example is shown.

0 10 20 30 40 50 )
Time

Figure 3.16: Front wheels orientation ¢ vs. time for an example of the car-like robot
path planning.

In order to compute the complete path from the start to the goal position and
orientation, the path is incrementally generated, beginning from the initial pose, and
according to the following order:

e The front wheels are aligned with the vector field in the midpoint of the front
axis.

e The perpendicular lines to the front and rear wheels are considered and their
intersection is taken as center of the step movement.

e With the previously calculated center C', the vehicle is moved a circumference
arc of length proportional to the vector modulus correspondent to that point.



3.3. Fast Marching Square applied to Nonholonomic car-like robots

83

Algorithm 17 Algorithm of the Control-based FM2-NH

Input: A grid map G, starting point z;,;, goal point x 4.4, dimensions of the car d,

an obstacle grid-point A
Output: The calculated path p and the control actions U
{FM2-NH 1st step: velocity potential map}
1: vp_map < FM M (c_space_map, \)
{FM2-NH 2st step}
2. fm2-map < FMM ((vp-map, Tinit, Tgoat))
{Geodesic path}
3: path < Geodesic_path((fm2-map, Tinit, Tgoal))
{Initialiazation}
4: posItion <— Tingt
p.add(zini)
{Loop}
while (global_goal # true) do
¢ < Caculate_action(G, path, position, d)
position < Advance()
p.add(position)
10: U <« Caculate_control( fm2_map, position)
11: end while

o
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Figure 3.17: Control signal v vs. time for an example of the car-like robot path
planning.

The previous process is repeated from the new point until the destination point
is reached. The final point and orientation is always reached because the funnel
potential end at this point and orientation. Finally, the control inputs for the robot
can be computed for the whole trajectory. Figure 3.18 shows the result of applying
the algorithm for a parking manoeuvre.

Figure 3.18: Parking manoeuvre using Control-based FM?2-NH.

In Algorithm 17, the Control-based FM2-NH approach is presented in a pseu-
docode language.

The result of four examples generated with the control-based FM2-NH can be ob-
served in Figure 5.23. The location and orientation for the start and goal points were
randomly chosen. The presented map represents a cluttered environment frequently
used to test RRT algorithms. The results of the experiments are discussed in Section
5.3. The presented nonholonomic methods can be mixed with the anytime approach
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presented in Section 3.1.

3.4 Performance Parameters and Benchmarking Im-
provements

This section presents the different parameters used for the evaluation of the qual-
ity of the paths generated by the motion planning algorithms. The computational
complexity of algorithms is a common used metric in computer science, but in this
case it is not enough since the convergence performance of path planning algorithms
varies. In sampling-based methods, the convergence-time changes randomly and it
is influenced by the conglomeration of obstacles and the complexity of the task. For
the search-based methods, the convergence-time is increased according to the grow of
the exploration space size and the dimensionality of the problem. As flaws have been
found in particular cases when using the traditional formulas to calculate the bench-
marking parameters [43], some improvements are proposed in the next paragraphs.
The considered metrics are listed below:

o Computational times: The execution time is computed for each stage of the
planning method, whether the algorithm is calculating a path or optimizing in
some way an already generated path. The development of the algorithm under
similar architectures is taken for granted, since this metric depends greatly on
the programming language and the computational platform used for its execu-
tion.

e Path length: This parameter is the sum of the distances from one waypoint to
the next one in the planner state space. For instance, the results presented here
correspond to a 2D space where the sum of the Euclidean distances between
consecutive waypoints is an appropriate metric. Regarding benchmarking, the
path length is usually connected to the method performance since a shorter
path could represent a gain in energy and time. Nevertheless, this is not always
necessarily true because the clearance and hence the safety can be notoriously
affected when the path is the shortest possible. Besides, there are other factors
that could hinder the path such as the inclination of the terrain, the presence
of wind in certain zones, the roughness of the surface, water currents in aquatic
appliances, and other factors that could produce difficulties when moving. All
these factors could make a shorter path inefficient in energy and time. Fortu-
nately, in the FM? method, this kind of factors can be taken into account in
the velocity potential map.

e Path smoothness: The smoothness of a path refers to the amplitude of the angles
that are described while the robot follows the path. Concerns arise when robots
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turning control is limited to a certain angle. Even when the mobile robot’s base
is holonomic omnidirectional, small angles require less energy for its execution.
Furthermore, when the path is performed in the real robot, smooth trajectories
are more human friendly since they are more predictable, and rough paths seem
unpredictable and violent when turning. In [43], a “generic infrastructure for
benchmarking motion planners” is presented and, in particular, an equation to
measure the smoothness (denoted by ') is proposed:

1 n
/ 2
— § o 3.4
K n — 1) ( )

where n is the number of internal angles and «; are the internal angles formed
by each pair of consecutive segments in the path (a; and the turning angle are
supplementary angles). The above equation also can be formulated as

(3.5)

which represents the quadratic mean of the angles «;. Equation 3.4 is presented
by the authors as a general frame that can be adapted to specific scenarios or
robots. It is not easy to find weaknesses in this formula when using sampling-
based methods because they produce similar results. However, when using other
approaches such as the FMM-based planner, which is a search-based method,
some problems have been found. We will illustrate it with an example.

Consider a simple scenario where the robot has to advance through a corridor
and then turn right. Let us imagine that an algorithm generates a path with
11 points where all points advance in a straight line except one of them that is
a right turn of 1.57 radians (Figure 3.19(a)). The smoothness is #,,,, = 3.01
radians according to Equation 3.5. Now let us consider that another method
generates a path that describes a straight line and then smoothly turns nine
times with a; = 2.97 radians in every turn until reaching the goal (Figure
3.19(b)). For this second path, the smoothness is s, = 2.97 radians. Ac-
cording to the formulation above, the first path is the smoothest, but it becomes

clear that the smoothest path is the right one in Figure 3.19.

A modification is proposed to obtain a more robust parameter. The idea is that
those angles greater than v, radians will be saturated, taking into account that
these angles do not correspond to “real” turns. Moreover, when the robot is
navigating in a straight line, small angles caused by different sources of error will
not be considered in the equation. Therefore, the turning angles that actually
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(a) Single turn of 1.57 radians. (b) Small smooth turns.

Figure 3.19: Example to distinguish between smooth and non-smooth paths.

define how smooth is the path will have a greater influence on the formula. The
new equation can be formulated as

a;, Vi a; < by,

ws,W oy > 2ﬂs>

where 9 is the parameter that is used to measure the smoothness and v is a
threshold that has to be fixed. This formulation improves the benchmarking
results because it obtains a more refined value that enables a better comparison
between paths. Let us set ¥ to 2.967 radians for the previous example. The
smoothness is now Up.,, = 2.85 radians for the left path and 9,4, = 2.97
radians for the right one, which makes more sense according to the visual ap-
pearance of the paths.

Even though the new variable gives a better idea of the path smoothness, it has
been found that it can be necessary to define another parameter to measure the
presence of critical angles. For this reason, an additional parameter 7, has been

defined:
Ts = mm(&l) — Ws, (38>

where wy is the control limit angle of the robot or, in other words, the maximum
turn that the robot is able to perform. In the case of having a robot with a
holonomic omnidirectional base, this parameter could represent a high energy
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consumption or an inefficient angle. Returning to our example, 7s pqtn, = 0 if
w, is set to 1.57 radians. It means that at some point the robot reaches the
maximum turning angle. In this way the “reliability range” 7, would give us an
idea of the probability of the robot to execute the path. The larger this unit,
the more likely it will follow the path.

Clearance: This metric is related to the distance from the path points to the
closest obstacles, and it is determined by the average of the path points clear-
ances. It has also been defined in [43]:

1 n
c— — 52'7 39
7 n; (3.9)

where p. is the clearance and ¢; is the distance from the point i to the closest
obstacle. Consequently, this parameter is supposed to give the safety of the path
to some extent, but the manner in which it is calculated can lead to unreliable
results. For example, consider the path planning example shown in Figure 3.20,
where the minimum safety distance to obstacles is equal to 1.4 m.

a) Safe path. b) Unsafe random path.
(a)

Figure 3.20: Example to distinguish between safe an unsafe paths (clearance).

In Figure 3.20(a), all points are located at a distance of 1.5 m from the closest
obstacle. The path clearance is ficpen, = 1.5 m. Another planner generates
the path in Figure 3.20(b) with distances from 1.5 m up to 5 m for all points,
but one of them is located at 0.1 m from a wall. The clearance for this path is
He,pathy, = 3.15 m.

According to the general formulation proposed in [43], the path in Figure 3.20(b)
is more reliable and safe than the road presented in Figure 3.20(a), whereas
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the Figure 3.20(b) path is more likely to collide against a wall. Observing
the smoothness parameter, a similar procedure has been followed to fix this
problem. A maximum safety distance 1. has been defined to represent the
maximum distance from which the safety is not improved. Different thresholds
can be used depending on the constrains of the specific problem. For example,
it can be adjusted around a ten percent greater than the safety distance.

The new equation to obtain the clearance is defined as follows:

(SZ,VZ . 51 S wca
8 = (3.10)
¢C,Vi : 5@ > 1/10,

1 n
—— E ! A1
¢ n & 0 (3.11)

where ( is the new parameter to measure the clearance.

Analyzing the previous example, when ), is fixed to 1.54 m (ten percent greater
than the safety distance), we obtain (pun, = 1.5 m and (pgen, = 1.4 m.

This variable gives general information about the average safety of the path,
but it cannot be used to find particular points where the mobile robot could
collide against a wall. For example, in Figure 3.20(b), the path will be safe
according to Cpen,, but there is one point where there will be a collision. For
this reason, an additional parameter 7, has been defined:

7. = min(d;) — we, (3.12)

where w, is the navigation safety distance of the robot or, in other words, the
minimum distance from the obstacles when the navigation is safe. In this way
the “safety range” 7. would give us an idea of the probability of the robot to
execute the path without colliding. The larger this unit, the more likely it will
follow the path without colliding.

o Success rate: It is equal to the percentage of times an algorithm is able to
find a valid solution. Since the FM? planner is a complete and deterministic
algorithm, it will always find a solution as long as it exists.

Ideally, the paths to be compared should have the same distance between consec-
utive waypoints. In this way, the benchmarks could generate more reliable results,
since calculations would not be influenced by a significative difference in the number
of points. However, it is not always possible to satisfy this condition.
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All these metrics have been used to compare the planning algorithms in the ex-
periments chapter. In particular, different ratios have been computed to quantify the
relation between the RRT and the FM? approaches.
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The robotic manipulation is generally the final operation of the autonomous mobile
robots in order to move objects. The process often starts by navigating to locate the
robot in reach of the objects to manipulate; once the location and orientation of
the mobile base are proper for the task, additional systems are triggered to identify
objects and calculate a trajectory to grasp the target avoiding obstacles.

The third objective of this work is covered in this chapter. Once the robot is
located in a specific goal, the next step consists in reaching the object for its manip-
ulation. This action corresponds to the third objective presented in the introduction
chapter with a work flowchart diagram for the robot. Some approaches to obtain safe
and smooth manipulation trajectories for a mobile robot are presented hereafter. The
method proposed in next section includes manipulation of objects, which represents
the fourth and fifth frames in the proposed work pipeline from introduction. In Sec-
tion 4.2, a path planning algorithm with adaptive dimensionality is proposed. This
method employs both the RRT and the FM? to calculate and improve paths with re-
duced time and good properties. In Section 4.3, a simpler approach of the adaptation
of dimensions is presented in an implementation for a nuclear fusion device.

4.1 Evolving Strategy for Adapting Learned Ma-
nipulation Paths

A robot task can be represented as a set of trajectories conformed by a sequence of
poses. In this way it is possible to teach a mobile robot to accomplish a manipu-
lation task, and also to reproduce it. Nevertheless robot navigation may normally
introduce inaccuracies in localization due to natural events as wheel-slides, causing
a mismatch between the end-effector and the objects or tools the robot is supposed
to interact with. Inverse kinematics could be used to calculate the learned path new
configurations, but very often the calculations are difficult or not possible to obtained
as convergence problems may arise in singular kinematic configurations.

We propose an algorithm for adapting manipulation paths to different locations.
The adaptation is achieved by optimizing in position, orientation and energy con-
sumption. The approach is built over the basis of Evolution Strategies, and only
uses forward kinematics permitting to avoid all the inconveniences that inverse kine-
matics imply, as well as convergence problems in singular kinematic configurations.
Manipulation paths generated with this algorithm can achieve optimal performance,
sometimes even improving original path smoothness. Experimental results are pre-
sented to verify the algorithm.
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4.1.1 Evolutionary Path Adaptive Problem

For a mobile manipulator a task may be defined as a sequence of points in the Carte-
sian space defining a path, [63]. This sequence of joint configurations is defined as:

O =1{q), k=1,2,....N, (4.1)

where g, € R" is a vector of joint variables g ;,

(Tk,j = (Qk,h vy Qs 7q1€,n)T- (42)

The given path is denoted by €2;. This path describes the robot’s goal or task,
and may be obtained by learning methods through imitation, teleoperation, teaching
techniques or telemetrics systems. Figure 4.1, shows an example path of €2; for the
MANFRED-2 robot in the implemented 3D simulation environment.

y o _'—-,1{.

_,,f-'.,r.

Figure 4.1: Manipulation learned path €);.

By optimizing the end effector’s position and orientations errors a new path is ob-
tained for a predefined task. The trajectory is smoothened by considering the energy
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consumption, and it is determined by the sum of the manipulator joints displacements
as

() = 531Gk — | (4.3)

In evolving methods, the step length is the disturbance introduced to design vari-
ables in order to change and evolve them from initial to optimum positions. This
variation parameter is denoted by ¢. In manipulation planning, the end-effector’s
position can be changed in only one axis with a movement, while orientation axes
are hard coupled, varying all or at least two axes simultaneously when rotation over
an axis is executed. This makes orientation optimization harder and more compu-
tational time consuming than that of position, as small changes in position could
generate large variations in orientation. To overcome this problem, position mini-
mization is first made with a large step length o,; approximated to that proposed
by [50] and after position optimization target is reached, orientation minimization is
added to optimization with step length oy, that is ten times smaller. This strategy
results in improved convergence time of the algorithm.

Rechenberg’s success rule is used for controlling the size of o, [50]. After every
N, (number of design variables) iterations, the number of successes occurred over the
preceding 10N, mutations are revised. If this number is less than 2NV, step size is
multiplied by a factor of 0.85, or divided by 0.85 if more than 2V, successes occurred.

For the initial values of o, Schwefel proposes to use the following estimation:

0o Al

o: =

i /—Nb

where Ab; is the expected distance from the optimum for the corresponding design
variable. Notwithstanding as the accuracy for this initial o value is not critical because
the law of success seems to quickly adapt the step size, a generalized form is deduced
to approximate initial Schwefel values

(4.4)

o) = _ Adyy (4.5)
10(Ny + 1)
where Ad,, is the last node distance error in millimeters. The value obtained here
approximates experimental results average of Schwefel estimations that made no sig-
nificant differences on convergence times with respect to that of the exact estimation.
When optimizing orientation, step length in (4.5) is reduced by a factor of ten.
There is no accurate rule for determining an appropriate parent population size pu.
A good indicator is to have as many or a few times as many members as the number
of design variables; parent population size used here is N, = 6.
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On the contrary, some theoretical studies have been realized on (1, \) strategies
[50], where A is the offspring population size, to estimate the optimal ratio between
A/p. It has been shown that this ratio depends on the objective function and increases
with its complexity. A ratio A/u equal to 5 can be considered as a good starting point,
therefore an offspring population size of A\ = 30 is chosen here.

Total error is the sum of the position error at each path point £ =2,..., N, and
the orientation error in the last two nodes k = (N —1), N, with weights W; = 0.5 and
W5 = 1 respectively, attaches greater importance to the last point where the robot is
meant to perform the manipulation. Thereby, the joint configuration path must be
transformed into end-effector position and orientation coordinates through the robot
manipulator kinematic model. Position and orientation errors, denoted as Ep and
Ey, are defined as [63]

N
1
Ep(Q) = > by — il (4.6)
2Rmax k?:2
and
T
EO(Q> = % k§1 ’@lk - 90143‘7 (47)

where ((p;), (¢;)) are the desired position and orientation coordinates calculated by €2,
forward kinematics, and R,,,, is the robot manipulator’s maximum reach suggested
by [64] as a normalization value. The resulting optimal joint path (% minimizes the
total deviation with respect to §2;, and the optimization problem is realised by the
minimization of:

F(Q) = w1 Ep(Q) + waEo(Q) + wsC (). (4.8)

subjetc to:

C={Q]g(Q) <OAIK) =0},

where g and h are restrictions imposed by the mechanical joint limits of the robot
manipulator, and wy, wy and ws are weighting factors used according to task priorities.

4.1.2 Evolution Strategies Adaptation Algorithm

The path evolutionary adaptation is accomplished with an implementation of the
ES method denominated in [49]. The algorithm used to adapt the manipulation
path is illustrated in Algorithm 18, where P,, and Po, are parent and offspring
populations respectively, in generation g, and n; is the number of design variables,
which corresponds to the number of manipulator joints.
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Algorithm 18 Evolution Strategies
1: initialization Pg =0
2: evaluation Pg
3: while termination criterion # true do
4:  Poy < Evolutionary mutation

5:  evaluation Po,

6: P,.1 < selection(Po,JF,)

7. if optimal position = true then
8: reduce o

9: end if

10:  if g module(10n;) = 0 then

11: step length control

12:  end if

13: g+ g+1
14: end while

The (1 + A\)-EE presented in [49] is used with some modifications to address the
optimal path adaptation problem. A known initial manipulator configuration vector
E) is assumed, as well as a robot base location and orientation at learned path p;.

Consider an initial population of p parent individuals defined as in (4.1)

Po={Qig..., g, . Qugt,

where (; represents a floating point vector with size T'= N.n and g = 0, .. ., g the
generation number. In the scheme (u + \)-EFE the initialization process generates a
population of p random individuals distributed within the vector parameter bounds.
If the initial location is unknown, then the use of an uniform distribution would be
advisable to ensure the diversity of the population. Furthermore, if the initial joint
configuration ¢ is considered close enough to the learnt path initial node (k = 1),
then we can intuitively assume that the optimal solution must be near the learned path
2. This first estimation is included in the initialization process FP,—g, as the learnt
path perturbation with a Gaussian probability distribution at the configuration nodes

K = 2,..., N, reducing the convergence time. Therefore, the initialization process
can be expressed as
z if k=1
Qz - ql ? 1 =4 49
¢ {q_z,ZJrrandG(O,o—?), ifk=2....N (4.9)

where randg(0,0) is a Gaussian distribution random number generator with zero
mean and standard deviation o, and ¢t =1,..., u.
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Once the population has been initialized, mutation is used to build a A size off-
spring population. For each offspring, a parent is randomly selected, and each of its
design variables b; is mutated by adding a Gaussian random variable with zero mean
and a standard deviation o.

- .
Qg = s ifk=1, 4.10
e {q_ziwanda(o,a?), ifk=2,... N (4.10)

Where 7 = 1,..., A, the step length ¢ = o3; during the position optimization
phase and o = 7y,,, during the orientation optimization phase.

The objective evaluation function is used to assign a cost value to each member
from parent and offspring populations: P, and Po,. The new parents P, ; are selected
from both populations as p individuals with the best fitness, i.e. individuals with the
lowest cost function.

Qigi1 = { Qjg, if f(QJ}g) < f(Qi,g) (4.11)

4, otherwise

The manipulator forward kinematics defined by an homogeneous transformation
matrix is calculated to obtain total cost function on (4.8). Homogeneous transform
is a four by four elements matrix that contains end-effector location used for (4.6)
and a rotation sub-matrix that is used to determine orientation error for (4.7), in this
way reduced computational time is achieved by avoiding exact angles calculation.

Optimization loop begins by minimizing the position error until a fitness value is
reached, and then orientation error is added to the cost function. During the next few
iterations the total error is incremented due to the influence of newly added criterion,
but then both criterion errors are gently improved as the generations evolve.

The only drawback in obtaining Eo from within the homogeneous transform is
that the calculated error in (4.7) is not directly proportional to the angle error since it
is the result of mathematical functions applied to the end-effector orientation angles;
therefore it can’t be used as a termination criterion. This issue is overcome by checking
angles after position fitness is reached. Termination criterion takes into account
only the position error until a fitness value is reached, then exact angles error is
evaluated, if orientation fitness is not reached the position fitness value is reduced and
minimization process continues. As both errors evolve together, orientation fitness is
found eventually.

To ensure generation of a feasible path, joint upper and lower limits need to be
revised during optimization process. Joint limits are mechanical constraints that
define the manipulator workspace, but also represent configuration values of reduced
dexterity and hence should be avoided in the execution of the task. In the case of a
boundary constraint violation, there are many solutions to replace values that have
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exceeded their limits, [65]. Here a simple strategy is used, resetting the out-of-bound
parameters with the exceeded bound value.

Finally mutation-selection process continues until convergence criterion is achieved
or until the maximum number of generations is reached.

4.2 Path Planning with Adaptive Dimensionality

Until now, many motion planning algorithms have been proposed in the world of
science, ranging from sampling-based and probabilistic planners [25, 66, 28, 6, 30, 32]
to search-based methods [22, 23, 67, 29]. The most frequently used approaches for
path planning rely on sampling-based methods. In Figure 4.2, an example of an
RRT path with a parabolic smoother can be appreciated. These planners are usually
fast, computationally inexpensive and dimensionally scalable. However, there are
two key disadvantages when using sampling-based techniques instead of search-based
approaches. First, the basis of the criterions used by the sampling-based methods does
not bear any kind of optimization of the solution by itself. The obtained solutions
randomly vary in path length, and the waypoints often get dangerously close to
obstacles. There are some smoothing techniques that improve the path to some
extend, but they are less effective in cluttered environments. Second, sampling-based
methods are not complete. Conversely, the search-based methods guarantee to find a
solution (they are complete) if it exist, and the algorithms are based on optimization
paradigms. At the least, the search-based algorithms give suboptimality bounds and
consistency in the solutions.

The search-based planners have just one disadvantage, which is that they become
computationally expensive when dealing with too many dimensions. Such is the case
of path planning with mobile manipulators, where the DOF of the robotic arm usually
ascend to seven dimensions. In [68], the authors presented an adaptive dimensional-
ity approach for path planning that uses the A* algorithm to calculate paths. The
results obtained by the authors achieved to reduce the dimensional complexity of
path planning with all the robot’s DOF. Hence, in order to generate a path, the
adaptive approach takes less time than the full-DOF planner. They conducted exper-
iments with the RRT-Bidirectional method in order to make a comparison between
both approaches. Even though the RRT-based algorithm performed faster than the
adaptive approach in less complex task scenarios, it took longer to compute and the
success rate dropped to 20% when the complexity of the manipulation problem was
increased. It has to be said that the presented experiments involved a very specific
and complex scenario rarely found in a human environment (a robot had to pass a
long stick through a fixed hole). The adaptive method, as it is based in a complete
search-based algorithm (A*), obtained a 100% success rate. When comparing the
A* method to the FMM, the latter overcomes the first in path quality as exposed
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Figure 4.2: The mobile manipulator MANFRED2 in a simulation environment (left).
Example of initial RRT-Bidirectional path (right).

in [58]. Furthermore, when using the FM? method (a newer and improved version
of the FMM), the smoothness and safety parameters are improved. In this work,
two adaptive algorithms that use FM? and RRT-Bidirectional are proposed. These
approaches are designed to perform quickly and combine the two planning methods
paradigms in human environments.

As corroborated by Pétres in [69], the curvature radius r of the FMM paths is
influenced by its cost function f. According to Caselles et al. [70], the curvature
radius r along the geodesic minimizing the functional [, f((s))ds is bounded by:

infplf}

Z s IV (4.12)

where the supreme of the subset |V f|| of the set D is the least element of D that is
greater than or equal to all elements of ||V f||, and the infimum is the least element
contained in D. The above equation states the relation between the cost function f
and the smoothness of the optimal path obtained with the method. The bound, or
limit of the curvature radius 7, of the path, can be incremented by smoothing the
f cost function. This result enables the FM? method to guarantee the smoothness of
the calculated paths. In the case of robot manipulation, the path line described by
the end-effector when executing a trajectory will not present peaks when using FM?2.
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4.2.1 Problem definition

In this section, the representation of the path planning problem corresponds to a
state-space S of dimensionality d. A state X in the robotic arm configuration is
defined in 4.2, and in 3D space by the euclidean coordinates. A set of transitions T' =
(Xi, X;)|Xi, X; € S, where (X;, X)) represents a valid transition between the states
Xiand Xj. Each transition incurs in a cost ¢(X;, X;) with ¢(X;, X;) > 0. A complete
path is conformed by a series of transitions and is denoted by 7(X;, X;), where X;
and X are the initial and goal state configurations respectively. The incurring cost
of executing a path will be ¢(m(X;, X)) and the path with minimum cost will be
denoted by 7*(X;, X;). The presented definitions are translated into a search-graph
problem with a graph GG, composed of weighted edges T" and vertexes S. The objective
of the path planning algorithm is to calculate a minimum cost path 7(X,, Xy) from
a given initial state X, to a goal X;. Additionally, a suboptimality constraint € can
be defined to establish an optimality goal of ¢(m(X,, X)) < e.c(7*(X,, Xy))

4.2.2 Adaptive Dimensionality Planner using FM?

The path planning problem will generally require to be calculated using all available
dimensions, and this is computationally expensive as dimensions increase. However,
most of the paths have long sections where it is possible to reduce dimensions due
to the problem structure, especially in uncluttered environments. In the case of
manipulators, the dimensionality of the problem can be reduced to 3D end-effector
paths and then the IK of the robot can be used to transform the solution to a full-
dimensional path. The planar manipulators can be reduced to 2D in most cases.
Whenever the dimensional reduced paths are not feasible to be converted into full
dimensions, the path has to be planed with all of the robot’s DOF. This may happen
due to configurations of the robot in collision or out of reach. Taking advantage of
these facts, the planning algorithm proposed in this section builds a state-space S
with transitions 7%¢. Where the dimensionality of the problem is reduced and the
full dimensional states are used as least as possible, but exclusively when a feasible
path is not found in the dimensional reduced space.

As in [68], a high-dimensional space S" and a low-dimensional space S" are
considered for path planning. The super indexes are used from now on to express a
particular characteristic of the variable. S and S are considered to have h and I
dimensions respectively, (b > [, [S"4| > |S"|). The S' space corresponds to a projec-
tion of the S"¢ space into a space with less dimensions. In manipulation planning, the
DOF of the robot are projected onto 3D as mentioned before. A mapping function
between S and S is defined as follows

Az Shd gl (4.13)
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to pass from the high to the low dimensional space. In the robot, this corresponds to
the forward kinematics of the manipulator’s end effector. Also, the inverse operation
is defined as A7! : S — S for mapping from the low dimensional states into the
equivalent high dimensional states:

AHXM) = X e SMINX) = X (4.14)

A~! corresponds to the inverse kinematics. A tube-like surface 7 of radius v and
thickness ¢ is built around the initial high-dimensional RRT-Bidirectional path .
The surface 7 is defined in G'¢ and thus consists of low dimensional states. A low
dimensional state X' € 7 if there exist a point X; € A(m,) such that the distance
between X' and X; is equal or greater than §, and equal or smaller than ~. The
euclidean metric distance in S is used for these measurements.

Algorithm 19 presents the proposed method using FM? with Adaptive Dimen-
sionality for manipulation. First, G! is assigned to G (line 1), as initially all the
adaptive state-space is low dimensional. An initial path is generated with RRT-
Bidirectional and saved in the variable 7, (line 1). This initial path is fullDOF and
executable, but as mentioned before it is far from optimal. The optimization process
starts by converting 7, to a low-dimensional space A(m,) (line 2). At the same line,
a tube-like surface 7 is created around 7, in the low-dimensional space. The surface
7 is stored in G% which in that moment is entirely low-dimensional and includes
the environment obstacles around the robot. In the next lines (lines 5 - 7), the FM?
method is used in the low-dimensional space to improve the previously generated path
7. First, a velocity potential map G*P™ is generated over the G with the FMM.
Then, a second FMM potential is generated from the end to the initial configuration
point inside G"P™. Finally, the gradient descent method is applied from the starting
point X, to the goal point X in order to determine the optimal low-dimensional path
7 y(Xo, X¢). In the loop (line 8), the adaptive path 7,(X,, Xy) is tracked to obtain a
high-dimensional and executable path 7%(X,, X) (line 9). If it is not possible to track
the entire adaptive path 7,(X,, Xf), then a high-dimensional region is added to Gad
at Xena, or the space is grown if it already was in a high-dimensional region (lines 10
- 16). In the case of being able to track the entire 7¥,(X,, Xr), a high-dimensional
and executable path 7%(X,, Xy) is returned and the algorithm is finished (lines 17 -
19). A new path 7},(X,, Xy) is calculated in every iteration of the algorithm (line
20).

In Algorithm 20 a variant to the proposed approach in Algorithm 19 is presented.
The difference between the algorithms is that the initial FM? path is generated di-
rectly over the low-dimensional space without the tube-like surface 7. This approach
generates a better path than the first approach in terms of path length. In contrast,
being based on low-dimensional data, it is more likely to fail to be tracked in high
dimensional spaces. The following is a detailed description of this algorithm. First,
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Algorithm 19 FM? with Adaptive Dimensionality for Manipulation
Gad — Gld

7, < RRT _Bidirectional(X,, Xy)

T < tubelike_sur face(\(m,))

G 7+ G

An FM? path is calculated in nest lines

5 G« FM M (GY)

6: GFM*  FMM (G, X,, X ;)

7. iy (Xo, Xp) < gradient_descent(GFM?, X,)
8

9

: loop
track 7,(X,, Xy) for executable path 7} (X,, X;)
10:  if 7X(X,, Xy) is not found then

11: let 7(X,, Xeng) be the returned path

12: if X4 is already within FullDOFRegion in G then
13: GrowFullDimRegion (G, \(X¢na))

14: else

15: AddFullDimRegion (G, A\( X pn4))

16: end if

17:  else

18: return 7 (X,, Xy)

19: end if

20:  search G for path 7*(X,, X;)
21: end loop
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G is assigned with G' (line 1), as initially all the adaptive state-space is low di-
mensional. An initial path is generated with the FM? method in the next lines (lines
2 - 4). First, a velocity potential map G*P™ is generated over the G with the FMM.
Then, a second FMM potential is generated from the end to the initial configuration
point inside G"P™. Finally, the gradient descent method is applied from the starting
point X, to the goal point X in order to determine the optimal low-dimensional path
i i(Xo, X¢). In the loop (line 5), the adaptive path 7 ,(X,, X;) is tracked to obtain
a high-dimensional and executable path 7*(X,, X;) (line 6). If it is not possible to
track the entire adaptive path 7 ,(X,, Xr), then a high-dimensional region is added
to G at X,,q, or it is grown if it already was in a high-dimensional region (lines 7 -
13). In the case of being able to track the entire 7,(X,, Xr), a high-dimensional and
executable path 7%(X,, X¢) is returned and the algorithm is finished (lines 14 - 16).
A new path 7 ,(X,, X) is calculated in every iteration of the algorithm (line 17).

Algorithm 20 FM? with Adaptive Dimensionality for Manipulation (2" approach)
1. G« Gl
An FM? path is calculated in next lines

2. G« FMM(Go?)

3 GFM*  FMM (G, X,, X;)

4: %, + gradient_descent(GF M? X,)

5: loop

6:  track 7, for executable path 7%(X,, X7)
7. if 7¥(X,, X;) is not found then

8: let m(X,, Xena) be the returned path
9: if X,,q is already within FullDOFRegion in G%¢ then
10: GrowFullDimRegion (G, \(Xena))
11: else

12: AddFullDimRegion(G X\ (Xcpna))
13: end if

14:  else

15: return 7} (X,, Xy)

16:  end if

17: search G for path 7*(X,, X;)

18: end loop

A third variant of the algorithm where the low and high dimensional path calcula-
tions are made using the FM? method can be envisioned. In this case, the algorithm
would be very similar to that presented by Gochev et al. [68]. The main difference
would be in the used search method, which in the algorithm presented by Gochev is
A* meanwhile in our approach would be FM?. As mentioned before, although the
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FM? takes more time to compute paths, it overcomes the quality of paths generated
by A*, which would lead to a planner moderatly slower but better in quality of paths.
This last approach is not evaluated here, and it is left as a future work.

4.3 Safe Motion Planning for a Nuclear Fusion De-
vice Arm using Fast Marching Square

Inside the Joint European Torus (JET) there are some heavy components that must
be replaced periodically, for which a robotic manipulator specifically designed to enter
the vessel is used. It is teleoperated from a safe control room due to the radioactivity
inside the vessel. As all maintenance is nowadays performed by remote control, a
highly trained team specialized in teleoperation is needed, and operations inside the
torus generally involve many work hours.

A strategy to generate the robotic manipulator-reaching path, reducing its di-
mensionality is proposed. It provides a smooth and safe path for the end-effector
positioning, increasing safety and efficiency. Further, a velocities map based on ob-
stacles proximity is generated in the path planning process, which could be used to
limit the robot velocity as an additional security measure.

4.3.1 Dimensional Reduced Fast Marching Square Method

In this section an algorithm that solves the path planning problem for the articulated
boom inside the torus of a tokamak fusion energy reactor, in a robust and efficient
way, generating smooth and safe paths, is explained.

The velocities map is calculated and the FM? is performed over this map. The
path planning method is depicted in Algorithm 21.

Algorithm 21 FM? method with dimensionality reduction for the JET environment.

1: map < load(free_map)

2: vmap < velocities_map(map)

3: full_path < fast_marching(map, vmap, start, goal)
4: while (global goal # true) do

5. move_forward(full_path)

6:  update_forward_kinematic(F K _path)

7. end while

First of all, it is necessary to comment some details about the environment and the
robot’s characteristics. The fundamental objective of the path planner presented here,
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is to generate a path for reaching the goal location with the articulated boom end-
effector. Considering the planar nature of the articulated boom, with the exception
of the last link which is curved but is not considered for the reaching method, it is
possible to reduce the six degrees of freedom to two dimensions. This reduction is
achieved by crosscutting the JET torus at the height of the articulated boom. A
2D slice map is obtained for use of the algorithm as the environment, this has been
modeled geometrically as an occupancy grid map in 2D and the robot’s end-effector
pose is represented with cartesian coordinates.

The algorithm starts by loading the obstacles map (linel). The velocities map is
generated (line 2). This map is based on obstacles proximity with a value for every
grid cell of the environment, and can be used to limit the robot’s joints velocity as
an additional security measure in the tokamak. The FM? is applied and the path is
generated (line 3). Then, the forwards kinematics path is generated by incrementally
moving forward the slider link of the articulated boom, and calculating the rest of
links position so each link follows the line (line 4 and 5). Algorithm finishes when
the end-effector reaches the goal position. The forward kinematics of the boom is
calculated geometrically by using trigonometry starting at the tip of the slider link
and moving forward to the rest of links until the end-effector is reached.
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Figure 4.3: Examples of FM? paths generation with different saturation values for
the velocity potential map.
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The sections of this chapter present the simulations, experiments and benchmark-
ings that were conducted for the proposed path planning algorithms, each approach
is exposed in a section.

5.1 Anytime Fast Marching Square

We have conducted experiments in a simulated environment taking into account the
physics of MANFRED-2. It has a rectangular shape base of 1.15 x 0.86 m, and a mass
of 129.55 kg. A SICK laser range finder is used for self localization and detection of
obstacles.

Figure 5.1: Sequence for distance measurement at every pointing direction within the
laser range scanner (top). Replanning and navigation sequence, the magenta points
represent the initial path (bottom).

In Figure 5.1 (top), a sequence of images illustrates how a laser scan is performed,
all the little green dots represent the laser ray measurements. The figures on the
top sequence represent the real environment with all obstacles. The sequence of
figures on the bottom shows how the incomplete initial map is updated with the new
obstacles. Figure 5.1 (bottom sequence) shows a sequence with the generated paths
obtained from replanning with AFM?2. The sequence on the right shows how the map
is updated with new detected obstacles. The blue lines represent the dynamic plans
to next sub-goals, and the magenta dots are samples of the initial path. The control
cycle is made every 0.05 secs and every 0.5 secs a laser swept is made. All experiments
have been developed in a simulated indoor environment: laboratories, corridors, and
offices of the Carlos III University of Madrid. The dimensions of the environment are
116x14 meters (the cell resolution is 12 cm).
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A first experiment is proposed starting from the upper left side of the map and
ending in the lower right side, see Figure 5.2(b). The complete obstacles map is shown
in Figure 5.5. Figure 5.4 presents the velocities map for the prior map, the velocity
reaches its highest values in the light areas and its minimum values in the darker
zones. The global path generated for the prior map is presented in Figures 5.2(a) and
5.2(b) with and without the wave propagation potential values respectively.
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Figure 5.2: Planned Path for the first proposed experiment.

Figures 5.2(b) and 5.2(c) are presented to demonstrate that it is possible to obtain
an executed global path different from the initial planned path. An experiment is
carried out to prove the veracity of this sentence, where the AFM? receives identical
prior map and obstacles map. First, the initial global path is generated in Figure
5.2(b), and then the robot starts to execute this path, updating the map with the
laser scan information. Given that the obstacles map is the same as the prior map, the
initial global path can be executed without additional recalculations. Even though,
the resulted executed global path in Figure 5.2(c) is slightly different from the initial
global planned path.This is due to the consideration of the robot physics and errors
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during the execution of the path. Unlike the initial global path calculation where the
robot is considered to be a point.
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Figure 5.3: Planned Path for the second proposed experiment.

The initial global path is executed until the robot discovers obstacles on the cor-
ridor, then recalculation of the path to the next sub-goal is accomplished. The robot
advances until it realizes that it is not possible to traverse the corridor and thereby it
is blocked. The next generated path goes through adjacent rooms as shown in Figure
5.2(c). This is the final executed path.

1A

! (HEERT

Figure 5.4: High contrast map.

The experiment is repeated with different number of sub-goals, the obtained data
is presented on Table 5.1. The subgoals are nodes from the initial path taken for
the local replanning. In this way the replanning is calculated to a point near the
location of the robot instead of the goal. The number of subgoals defines the interval
of nodes in the initial path to which subgoals are stablished. For one subgoal node,
that is replanning to the goal, the average time is 0.0787 secs and the sum of all
recalculations is 37.29 secs; against an average time 0.0237 and sum of times 11.471
secs when segmenting and using 55 subgoals. Results show that an improvement is
made in time when using subgoals. Greater differences could be appreciated with
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larger maps. Times are also quick enough for real-time. In regards with the number
of recalculations, there is not substantial differences in the table, but intuitively it is
related to the density of new obstacles.

Table 5.1: Performances obtained when planning with different number of subgoals
(All times in seconds).

Subgoal Nodes | Replanning | Av. Time | Sum times
1 474 0.0787 37.29
2 477 0.0807 38.486
3 474 0.0791 37.504
4 486 0.0777 37.752
5 484 0.0785 38.007
6 475 0.0778 36.962
7 479 0.0430 20.599
8 480 0.0762 36.594
10 550 0.0346 19.02
11 482 0.0779 37.541
14 478 0.0354 16.934
19 547 0.0248 13.539
28 483 0.0300 14.467
55 485 0.0237 11.471

A second experiment has been carried out. The obtained paths are presented in
Figure 5.3. The method provides smooth trajectories that can be used at low control
levels without any additional smooth interpolation processing.

5.2 Anytime Triangular Fast Marching Square and
Benchmarking Parameters

Several experiments have been conducted in a simulated environment to make an ad-
equate study of the algorithm and the benchmarking parameters. All the results are
presented in this section, but first it is important to remark the computational com-
plexity of the used algorithms. In the case of the FMM algorithm the computational
complexity is O(n) as shown in [59]. Since the FM? is based directly upon FMM, it is
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Figure 5.5: Obstacles map.

also O(n). The RRT algorithm complexity is O(n logn) and presents no asymptotic
optimality. As mentioned before the RRT is a probabilistic sampling-based algorithm,
while the FMM and the FM? methods are search-based.

In the experiments, different options have been compared according to the combi-
nation of polygons proposed in Section 3.2.1. The ROI is constructed with hexagons
or octagons, and it can contain only external vertices or both external and internal
vertices. In our experiments, the configuration with external polygons (only external
vertices) is called “external” and the configuration that contains internal and external
polygons is referred to as “complete”. Ten different paths have been tested for each
configuration. The combinations that have been tested are listed in Table 5.2. The
results will be discussed after one iteration and two iterations. Complete polygons
are used in the second iteration because the objective of the planner is to refine the
path.

Table 5.2: Combinations of polygons for ROI construction.

First Iteration Second Iteration

o External Hexagon ¢ Complete Hexagon

o Complete Octagon

o External Octagon ¢ Complete Octagon

o Complete Hexagon ¢ Complete Hexagon

o Complete Octagon

o Complete Octagon < Complete Octagon

First, the ROI is constructed. After that, the first iteration of the FM2-based
planner is executed over the triangular mesh and, at the end of this iteration, an
improved path is obtained. The anytime approach comes into action when additional
iterations are applied to further improve the path. This process continues until the
optimality constraints are met, the goal point is reached, or the improvement of
the current iteration is not significant. For simplicity, two iterations of the anytime
approach are used in this experiments. Figure 5.6 shows some trajectories after one
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Figure 5.6: Three samples of the ten different trajectories after one iteration. Config-
uration: external hexagons in the left paths and external octagons in the right one.
The red lines are the RRT paths, and the green lines are the ATFM? results.

iteration of the algorithm.

In Figure 5.7, some trajectories after two iterations are displayed. The first itera-
tion is executed according to Figure 5.6 and, then, the paths are computed again in
the second iteration. It can be easily observed that the RRT paths are improved in
the first iteration. The algorithm performance after two iterations will be measured in
this section. In order to do that, the benchmarking parameters introduced in Section
3.4 have been used. In addition, a comparison between the traditional parameters
and the new ones is given.

The box plots of Figure 5.8 show a comparison between the computational time
needed by the RRT planner to calculate the initial path and the computational time
needed by the ATFM? approach to refine the RRT path (ROI construction and FM?
path generation in one iteration). It can be appreciated that the time needed by
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Figure 5.7: Three samples of the ten different trajectories after two iterations. Con-
figuration of the second iteration: complete hexagons in the left paths and complete
octagons in the right one. The red lines are the paths obtained after one iteration
of the ATFM? method and the green lines are the paths after two iterations. First
iteration according to Figure 5.6.

the ATFM? method is much lower than the time required by the RRT technique to
generate the initial path, which is a logical result because the ROI drastically reduces
the search space. The ATFM? method needs milliseconds to obtain the results, while
the median time of the RRT algorithm is around 2.5 seconds. As a consequence, the
anytime algorithm can be executed in real-time while the robot navigates through
the environment.

Box plots are used to make a comparison between the ATFM? algorithm and the
RRT planner. The central band inside the box is the median. The bottom and top
of the box define the first and third quartiles. The ends of the whiskers represent the
most extreme points not considered outliers. The outliers are plotted with red crosses
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Figure 5.8: Computational times. Comparison between RRT initial path and ATFM?
refinement in one iteration.

when necessary. The benchmarking parameters are calculated for each method and
the ratio between these values is the variable that is used to compare both methods.
Bar graphs with the averages are drawn to study the reliability and safety ranges.
The following acronyms are used for the polygons:

b)).

e Hex(FE): external hexagon (Figure 3.6(
e Hex: complete hexagon (Figure 3.6(a)).

e Oct(E): external octagon (Figure 3.5(b)).

e Oct: complete octagon (Figure 3.5(a)).

The dash separates the configuration of the first iteration from the setup of the
second one. For example, Hex(E) — Oct means that an external hexagon is used in
the first iteration and a complete octagon is utilized in the second one.

The computational times after one iteration of the ATFM? method are presented
in Figure 5.9. The ratio ATFM?/RRT is equal to the computational time of the first
iteration of the ATFM? algorithm (ROI creation and FM? path generation) divided by
the computational time of the RRT planner (initial path). The fastest configuration
is Hex(F), which is a logical result because this configuration corresponds to the
lowest number of vertices.

For the second iteration, the computational times of the studied configurations
are shown in Figure 5.10. The computational time of the ATFM? method is now
equal to the sum of both iterations, including ROI creation and path generation
using the triangular meshes. As expected, the computational time is closely related
to the number of vertices. A higher number of vertices has a negative influence on the
computational cost. The fastest results are obtained with hexagons (Hex(E) — Hex).
Nevertheless, the median values of the proposed configurations are similar in all cases.
The computational times are fast enough to use the planner in real-time applications.

Next, the other benchmarking parameters (path length, smoothness ¢, and clear-
ance () are analyzed for the same configurations. As before, the quotients between
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Figure 5.9: Computational time ratios for the first iteration of the ATFM? method.
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Figure 5.10: Computational time ratios for the second iteration of the ATFM?
method.
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Figure 5.11: Path length ratios after one iteration of the ATFM? method.

the ATFM? and the RRT parameters have been represented in box plots (Ratio
ATFM?/RRT). In the case of the path length, ratios smaller than one indicate an
improvement of the path. For the smoothness and the clearance, higher ratios mean
better trajectories. Figure 5.11 shows the path length ratios after one iteration. The
best results are obtained with the complete configurations (Hex and Oct), but all of
them present similar values. It can be observed that the new path outperforms the
RRT initial path in all cases.
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Figure 5.12: Path length ratios after two iterations of the ATFM? method.

In Figure 5.12, the path length ratios after two iterations are detailed for different
configurations. As can be observed, all ratios present similar values. The best setup
is Hex — Hex. The median values are slightly reduced when compared to the results
after one iteration. As can be seen in the figure, there are outliers (red crosses) that
represent a great reduction of the path length in all configurations. These outliers
correspond to the path shown in Figure 3.8, where the ROI limits the optimization
of the path length in the first iteration. It must be emphasized that an increment of
the path length does not necessarily mean a deterioration of the path because there
are other properties that could be improved.

The smoothness after one iteration is analyzed in Figure 5.13. The traditional
formulation (k') [43] has been utilized in Figure 5.13(a) and the new parameter pro-
posed in this paper (9, with ¥, = 2.97 radians) has been computed in Figure 5.13(b).
The results indicate that Hex is the best configuration according to the smoothness
parameter. All ratios are higher than one, thus the smoothness of the RRT initial
path is improved after one iteration. This result was expected because the RRT
method does not consider the path smoothness and the FMM algorithm simulates a
wave expansion following a gradient descent through a velocity potential map.

The reliability ranges (75) were calculated with wys = 1.57 radians in Figure 5.14.
Positive values mean that the critical turning angle (ws) is not reached, and higher
values correspond to a better performance. In this case, a bar graph is drawn to
compare different types of polygons. The best value is obtained with the Oct config-
uration. The best medians of the worst turning angles are obtained with complete
polygons. The RRT path and the Oct(E) configuration present negative values. It
means that the median of the worst tuning angle is worse than the critical turning
angle, which is not a desirable situation.
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Figure 5.13: Smoothness ratios after one iteration of the ATFM? method.
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Figure 5.14: Reliability range. Comparison between the RRT initial path and the
ATFM? method after one iteration. Units in radians.
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Figure 5.15: Smoothness ratios after two iterations of the ATFM? method. Tradi-
tional approach (k).

The smoothness after two iterations is checked in Figure 5.15 (traditional ap-
proach) and Figure 5.16 (new formulation). As can be seen in both figures, all ratios
are greater than one, which means that the smoothness is improved for all paths.
Besides, the smoothness is also improved when compared to the results after one
iteration. The best ratio is obtained with the Hex(E) — Hex setup (1.19 for x" and
1.15 for ), but no big differences are found when comparing different configurations.

When comparing the new formulation to the traditional one, the edges of the
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Figure 5.16: Smoothness ratios after two iterations of the ATFM? method. Proposed
formula (¢, with ¢; = 2.97 radians).
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Figure 5.17: Reliability range. Comparison between the RRT initial path and the
ATFM? method after two iterations. Units in radians.

boxes and the whiskers are closer to the median when the new formula is used. This
result was expected and gives more critical information about the parameter. An
interesting fact that can be appreciated in the figure is that the lowest values are
slightly higher with the new formulation.

The reliability ranges after two iterations are shown in Figure 5.17. Once again,
the best result is obtained with the Hex(FE)— Hex configuration. It can be concluded
that the reliability range is significantly improved after two iterations. The ranges
are greater than zero for all configurations, which means that the limit turning angle
is not reached.

The last metric that has been measured in these experiments is the clearance. The
results after one iteration are given in Figure 5.18(a) for u. and Figure 5.18(b) for ¢
and ¥. = 1.4 m. In both cases, the configuration with the highest median is Hex. An
interesting fact is that the Oct configuration presents a better ratio (close to the best
setup) with the new equation. This is a direct effect of the saturation included in the
proposed formulation. The best ratios are obtained with the traditional benchmark-
ing parameter. However, as discussed in Section 3.4, the new formula produces a
more reliable parameter. The best values of ¢ are slightly higher than one (complete
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Figure 5.18: Clearance ratios after one iteration of the ATFM? method.
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Figure 5.19: Safety range. Comparison between the RRT initial path and the ATFM?
method after one iteration. Units in meters.

polygons).

The safety ranges were calculated with w., = 1.1 m. In Figure 5.19, the results
after one iteration are shown. The best value is obtained for the Oct configuration,
followed closely by the Hex(F) and the Oct(E) structures. In all cases, the safety
ranges are positive and better than the safety range of the RRT initial path.

In Figure 5.20, the clearance ratios after two iterations using the traditional for-
mulation are presented. As can be seen, the Hex — Hex configuration achieves the
greatest value. In Figure 5.21, the same results are given for the new equation. As in
the traditional formulation, the Hex — Hex setup achieves the best clearance. Higher
ratios are obtained with the traditional parameter.

The safety ranges (7.) after two iterations are displayed in Figure 5.22. The best
result is computed for the Hex — Hex setting. The median is better than the median
of the RRT initial path in all cases, but there is one case in which the median of the
safety ranges is negative (Hex(F) — Hex).

Summarizing, this experiments show that the configuration with hexagons tends
to produce the best benchmarking results. Since the FMM needs to calculate the
potential for every vertex, the Hex(F) setup is the best option regarding the com-
putational cost. However, all configurations are fast enough to be used in real-time
applications. The Hex — Hex setting produces the shortest paths, but the difference
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Figure 5.20: Clearance ratios after two iterations of the ATFM? method. Traditional
approach (p).

Figure 5.21: Clearance ratios after two iterations of the ATFM? method.
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Figure 5.22: Safety range. Comparison between the RRT initial path and the ATFM?
method after two iterations. Units in meters.

is not significant to conclude that this option is better than the other ones. Consid-
ering the path smoothness and the reliability range, the best options are Hex and
Hex(FE) — Hex. Regarding the clearance, the best choices are Hex and Hex — Hex
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for the traditional formulation. Nevertheless, the best results are obtained with the
Hex — Oct structure when the new formula is applied. This fact suggests that includ-
ing more points may improve the path clearance. Therefore, using a polygon with
more vertices could be an interesting test to carry out in future experiments. The
highest safety ranges are computed for Oct and Hex — Hex.

5.3 Nonholonomic Motion Planning

In order to test the performance of the method and show its versatility, this section
presents several experiments and benchmarking results. In Figure 5.23, four paths
are generated using the Control-based FM2-NH with different initial and goal posi-
tions and orientations. It can be appreciated from the four scenarios in Figure 5.23,
that the obtained trajectories are smooth and safe from start to goal location. The
requirements of a good trajectory are fulfilled. An example of the velocity potential
field is shown in Figure 3.13. For a better perception of the details, the image has been
enlarged and vectors have been normalized. A close-up of the figure is presented in
Figure 3.14. The methodology exhibits desirable features and versatility, generating
trajectories that work properly for car-like robots.
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Figure 5.23: Different motion trajectories obtained with Control-based FM?2-NH.

In Figure 5.24 the same four scenarios of Figure 5.23 are taken. On this occasion,
the paths are generated using the C-space FM?-NH. The obtained trajectories are
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smooth and safe from start to goal location. The results are very similar to those
ones obtained using the Control-based FM2-NH method.
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Figure 5.24: Different motion trajectories obtained with C-space FM2-NH.

Different RRT paths are presented in Figures 5.26, 5.27, 5.28, and 5.29. All
of the RRT paths in these figures match the different objectives in Figures 5.23
and 5.24, regarding to initial and goal points (including orientations). Figure 5.26
matches its objectives with Figure 5.23 upper left FM2-NH path. Figure 5.27 has
the same objectives as Figure 5.23 upper right FM2-NH path. Figure 5.28 matches
those objectives of Figure 5.23 lower left FM?-NH path. Finally, Figure 5.29 has
the same objectives as Figure 5.23 lower right FM2-NH path. As appreciated in the
Figures, the FM2-NH methodology outperforms the quality of paths generated with
RRT-NH method. From a visual inspection, the FM2-NH generated paths seen safer,
smoother and shorter. These suspicions will be discussed in the next section, where
benchmarking parameters for path planners will be introduced.

5.3.1 Comparison of methods and benchmarkings

The common limitation of all the reactive navigation methods is that they cannot
guarantee global convergence to the goal location because they use only a fraction
of the available information (the local sensory information). Some researchers have
worked on introducing global information into the reactive collision avoidance meth-
ods to avoid local trap situations. This approach has been adopted by Ulrich [71],
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which uses a look-ahead verification to analyze the consequences of a given motion a
few steps in advance to avoid trap situations. Other authors exploit the information
about global environment connectivity to avoid trap situations (Minguez [72]). Those
solutions still maintain the classical two level approach, and require additional com-
plexity at obstacle avoidance level to improve the reliability. The proposed method is
consistent at local and global scale because it guarantees a motion path (if it exists),
and does not require global replanning supervision to restart a planning when a local
trap is detected or a path is blocked. Furthermore, the path calculated has good
safety and smoothness characteristics.

Most of the other methods give paths that are not smooth, even though they only
provide a few loose points united by segments of straight lines. The only methods
that give comparable results are based on harmonic functions (the solutions of the
Laplace equation) but they have the problem of slowness.

The RRT is suited for high degrees of freedom. It works well with six or seven DOF
in regards to computational time because it generates paths with quick response, but
the additional complexity supplied by the nonholonomic approach makes the RRT
to function less effectively. Our method has not been tested with higher degrees of
freedom, but for the problem addressed in this work (3 dimensions) good results are
obtained, as is set out in this section.

Figure 5.25: Trajectories with Control-base FM*-NH (left) and RRT-NH (right).

Figure 5.25 has two different simulations. On the left side the trajectory generated
by the FM2-NH is clearly shorter than the one calculated by the RRT on the right
hand side. The limitations of the RRT are specially important in this example, where
the results obtained are very poor. We can illustrate that with further comparisons
between the FM2-NH and the RRT paths in figures previously presented.

In order to provide metrics of the quality of the methods, the performance param-
eters introduced in Section 3.4 are employed [43]. The computational time, the path
length, the smoothness and the clearance parameters are briefly described below:

o Computational times: The execution time is computed for each stage of the
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Figure 5.26: Motion trajectories obtained with the RRT-NH for the first experiment.

planning method, whether the algorithm is calculating a path or optimizing in
some way an already generated path.

e Path length: This parameter is the sum of the distances from one way point to
the next one in the planner state space.

e Path smoothness: The smoothness of a path refers to the amplitude of the
angles that are described while the robot follows the trajectory.

1 n
/ 2
Z o 5.1
K= ,Eg i (5.1)

where «a; represents the angle between two consecutive segments of a path with
n segments.

e (learance: This metric is related to the distance from the trajectory points to
the closest obstacle, and it is defined as

1 n
c— — 52'7 52
pe = ;:1 (5.2)
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Figure 5.27: Motion trajectories obtained with the RRT-NH for the second experi-
ment.

where 0; represents the euclidean distance from the point ¢ of the path to the
closest obstacle and n is the number of points of the path.

e Success rate: It is equal to the percentage of times an algorithm is able to find
a valid solution. Since the FM?-NH planner is a deterministic algorithm, it will
always find a solution as long as it exists.

Box plots are used to present the benchmarking results in order to make a com-
parison between the FM2-NH and the RRT-NH planners. In the plots, the central
band inside the box is the median. The bottom and top of the box define the first
and third quartiles. The ends of the whiskers represent the most extreme points not
considered outliers. The outliers are plotted with red crosses when necessary.

Over twenty five experiments were conducted for each of the presented methods.
The benchmarking parameters were calculated for all of them. The box plots in
Figure 5.30 show the computational time required by both the the RRT-NH and the
Control-based FM2-NH methods in order to calculate a path. It can be appreciated
that the time needed by the Control-based FM2-NH is much lower than the time
required by the RRT technique to generate a path. The FM2-NH needs milliseconds
to obtain the results, while the median time of the RRT algorithm is around 15.1
seconds. As a consequence, our approach is able to recompute new trajectories very
fast, so that changes in the goal point could be addressed.
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Figure 5.28: Motion trajectories obtained with the RRT-NH for the third experiment.
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Figure 5.29: Motion trajectories obtained with the RRT-NH for the fourth experi-
ment.
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Figure 5.30: Computational time benchmarks for RRT-NH and the Control-based
FM?2-NH method.

In Figure 5.31, the computational time required by the RRT-NH is now compared
with the C-space FM2-NH approach. In this benchmark the time of the FM? based
method is rose to seconds. However, the time of the C-space FM2-NH is much lower
than that of the RRT-NH. The C-space FM2-NH needs in median 3.63283 seconds of
computational time.

In Figures 5.32 and 5.33, the ratio FM?-NH/RRT-NH is the variable used to
compare both methods. In this figure, the rest of benchmarking parameters (path
length, smoothness ¢, and clearance () are analyzed. The same configurations, initial
and goal locations and orientations, were taken. In the case of the path length, ratios
smaller than one would indicate that the FM2-NH is better. For the smoothness and
the clearance, higher ratios mean that the FM2-NH is superior.

In Figure 5.32, it can be observed that the path length ratio is smaller than one.
This means that the length of the paths generated with the Control-based FM?-NH
are smaller in median than those of the RRT-NH. It should be noticed, that for these
examples the velocity potential map was not saturated, which means that the length
of the FM2-NH approaches can be further reduced.

The smoothness ratio in Figure 5.32, approximates to one. Therefore, the paths
are similar in smoothness. This result was expected because the nonholonomic re-
strictions prevent the planners from taking pronounced turns. In the regular RRT
method the angle of the turns tend to be more violent. Finally, the clearance ratio
is greater than one, showing a significant advantage for the Control-based FM2-NH
over the RRT-NH. Naturally, this result was expected since the RRT methods do not
consider safety measures in their implementation, meanwhile the FM? based meth-
ods intrinsically include this parameter through the velocity potential map. In Figure
5.33, very similar benchmarking results were obtained for the C-space FM?-NH. Both
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Figure 5.31: Computational time benchmarks for RRT-NH and the C-space FM2-NH
method.

approaches generate consistent trajectories with desirable properties.

An additional advantage of the obtained implementation is the ease of including,
through the velocity potential map, other constraints such as uneven terrains, slopes,
friction, winds or currents in the case of underwater applications.

5.4 Adaptive Evolving Strategy

The proposed methodology is tested in a simulation environment with a non-redundant
mobile manipulator robot denominated MANFRED-2 [2], which consists of a six de-
grees of freedom (n = 6) anthropomorphic arm mounted over a two degrees of freedom
mobile base (n=2).

This robot was built at the Carlos IIT University of Madrid. Figure 5.34 shows the
MANFRED-2 robot in the implemented 3D simulation environment; our laboratory
was modeled with elements such as doors and small tools to test grasping and ma-
nipulation tasks, simulations include body dynamics to increase realism and assure
veracity.

The Denavit-Hartenberg parameters and joint limits for mobile manipulator MANFRED-
2’s robotic arm, are presented in Table 5.3.

The simulation environment software is used in order to obtain a convenient ma-
nipulation path €2, this is accomplished by actioning servomotors separately until a
desired pose is found. When a desired pose is reached, our software enables us to
save the robot’s configuration and move to the next point; each pose is saved to form
a manipulation path that can be then executed as a sequence of poses that lead to
the the goal reaching point.
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Figure 5.32: Path length, smoothness and clearance benchmarks for the ratio of

RRT-NH divided by the Control-based FM2-NH.

Table 5.3: MANFRED-2 robot Denavit-Hartenberg parameters and joint limits.
Art. | o | a;j(m) | 0; | d; q;’“ qj“-”

1 90 0 0 ]10.25(-90| 90
2 -9 04 0 0 0 | 180
3 1-90 0 901 0 |-90 | 90
4 90 0 0.35 [-90 | 90
5 |-90 0 0 [-90] 90
6 0 0 0.25-90 | 90

The €, path describes our known task with N = 6 points, as shown in Figure 4.1.
Forward kinematics is calculated using [73], obtaining the end-effectors position and
orientation {(g, Yk, 2k), (dr, O, Yx)} for each point k =1,2,...,6.

Table 5.4 shows the end-effector points coordinates for €2;. The robot location is
given by the parameters (xy,yp, 0) referenced to a point predefined on the simula-
tion map, where (xy,1,) determine the position coordinates in meters and 6, the
robot base orientation in degrees, position in z, is not included since the robot
base keeps the robotic arm at the same height all the time. For §;, the location
is pp = (—2.319, —2.138, 180°).

Learned path €2; is tested on the 3D simulation environment, results show how the
robot reaches an experimental tool. Subsequently, the door knob is grabbed when
the robotic hand is closed, and robot is capable of opening the door by moving its
base backwards.
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Figure 5.33: Path length, smoothness and clearance benchmarks for the ratio RRT-
NH divided by the C-space FM?-NH.

Table 5.4: End-effector learned path in Cartesian space.

’ k ‘ Xk ‘ \7 ‘ Zy, ‘ o ‘ O, ‘ Uy, ‘
11250 | 147.63 | -1000 —180° 0° —90°
2| 250 | 147.63 | -980.62 | 174.27° | 17.09° | —108.86°
3 | 250 | 284.83 | -923.95 | 156.88° | 28.39° | —131.93°
4 1250 | 402.01 | -834.35 | 131.93° | 28.39° | —156.88°
51250 | 491.23 | -718.62 | 108.86° | 17.09° | —174.27°
6 | 250 | 546.82 | -585.47 90° 0° 180°

Two new random locations are used to verify the algorithm’s effectiveness: p; and
P2, these locations are different in position and orientation from that of the known
path. An initial robot arm configuration ¢; = {0°,0°,0°,0°,0° 0°} is assumed for all
cases, and the offspring population size is A = 30 as proposed in Section 4.1.1. The
algorithm is executed 20 times for each location. Table 5.5 shows robot base locations
for €, 2 and 2.

Once initial population members are generated using (4.9), the algorithm starts
executing iteratively to minimize (4.8).

The mutation process of the candidate population is made via software, verifying
that the generated poses are collision free, as evolving candidates in real robots is
dangerous.

Position is optimized first with configuration parameters: F' = 0.012 and o in
accordance to (4.5). After fitness is reached, orientation is added to the objective
function with o reduced by a factor of ten; termination criterion of end effector error
to be less than 2.5 mm is being set. Test results are shown in Table 5.6.
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Figure 5.34: The MANFRED-2 robot in simulation environment.

Table 5.5: Position and orientation coordinates of robot base for €, {21 and {2,
Path | x(m) | y(m) 0
Q |-2.319 | -2.138 | 180.00°
Qp | -2.294 | -2.104 | 181.48°
Qo | -2.200 | -2.207 | 190.48°

For an execution of the algorithm at p;, a solution 2y is found after g = 120
generations in 1.5 seconds. In orientation terms an error of 2.98° is obtained on the
N —1 point, and 0.29° on the last one. This makes sense when we recall the weighting
factors for orientation optimization: W5 = 0.5 and Wg = 1. Lines described by the
learned and evolutionary algorithm adapted path are shown on Figure 5.35, it can
be seen that the adapted path fits position closely with a soften adaptation curve
when approaching to the known path; a position error of 1.78 mm is obtained in
last node for this test execution. Results showed that intermediate points presented
lower position errors and greater orientation errors than others because they are only
optimized in position, while last two nodes presented minimal orientation error.

All obtained manipulation paths are tested in the three-dimensional dynamic sim-
ulation environment as well as in the real robot where paths are executed and the
sequences are reached correctly. The door is opened when additional steps are exe-
cuted. The door knob had to be taped to increase the friction with the robot gripper
and enable turning, but beyond this detail, the simulation represented precisely the
real environment. Figure 5.37 shows a picture of the robot reaching the door knob.
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Table 5.6: Path generarion statistics for €2; and €.
Generated paths:

0 Qs
Number of tests 20 20
Mean convergence generation 186.2 261.8
Best convergence generation 31 40
Worst convergence generation 500 500
Mean convergence time 2.18s 2.71s
Best convergence time 0.59s 3.92s
Worst convergence time 4.87s 4.90s
Mean position error 1.96mm 1.73mm
Min. position error 0.76mm 0.28mm
Max. position error 2.72mm 1.22mm
Mean orientation error 0.7831°  0.3703°
Min. orientation error 0.5679°  0.0059°
Max. orientation error 1.1180°  0.8448°

The same perspective of Figure 4.1 could not be presented because of a wall next to
the robot’s arm.

Experimental results show that errors can be minimized so the robot can carry out
defined tasks. Time in worst-case scenario rose up to 4.9 seconds when reaching max-
imum generation ¢,,., = 500, which stays within the proposed real-time threshold.
Further investigation over our previous work [74] found that the forward kinematics
calculus library consumed most of the algorithm computational time. Therefore, a
more computationally optimal forward kinematics function was implemented reduc-
ing execution time significantly. When g,,,, is reached the fitness distance between
the best and the worst individuals in population is taken as the convergence criterion,
observe closely Figure 5.36 and 5.38.

On account of a reduced parent population size 1 = 6, lines on Figures 5.36 and
5.38 followed closely. Also an error peak when orientation optimization begins at
around generation 20 can be observed on Figure 5.38. This peak is less obvious on
Figure 5.36 because robot base orientation error is smaller in that case.
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Figure 5.36: Path fitness evolution for £2; through ¢,,.. generations.

5.5 Adaptive Dimensionality Motion Planning

This section presents the experiments that have been carried out to test the method
performance. The robot manipulator MANFRED2 has been modeled in a simulated
environment which takes into account the robot geometry and its dynamics.

The first experiment is implemented using Algorithm 19. In Figure 5.39 (left),
the initial path 7, generated with RRT-Bidirectional is presented. The algorithm
that generates this path includes a smoother that makes the path shorter and a little
smoother. As it can be appreciated in the figure, there are peaks and rough changes
of direction in the path. m, is taken as the input to the next phase of the method,
where a tube-like surface 7 is built around the path with closed endings. The FM?
method is used to generate a soft and secure path inside 7. The obstacles are taken
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Figure 5.37: Mobile Robot MANFRED-2 reaching a door knob.

into account though the velocity potential map G*7™. In Figure 5.39 (right), the
surface of 7 and the resulted FM? path (inside 7) can be appreciated.

The algorithm continues its execution within the loop and begins tracking the path
to obtain a fully executable path. For this particular example, the inverse kinematic
solver fails to find a solution for the first points. These misses of the inverse kinematic
solver are due to the initial configuration of the arm, which is totally extended and
hence in limited maneuverability. Then, the full dimensional space is grown by adding
regions to G around A(X,,q). The loop is executed three times until a solution is
found. In Figure 5.40 (right), the result of the algorithm for the first experiment in
the simulation environment can be appreciated. The red line represents the part that
was recalculated within S"*. The resulted path would comprise the red path until its
end. After that point, the path continues the blue line until the goal posture. m, is
drawn in the left side of Figure 5.40. The FM? path is in the middle and the final
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Figure 5.38: Path fitness evolution for €25 through ¢,,., generations.

executed path is on the right side. The obtained path is 27.52% shorter and 7.34%
smoother than the initial .

A second experiment is carried out with Algorithm 19. A retracted initial config-
uration for the arm was chosen in order to avoid the limitations of the reach and the
inverse kinematics solver. The initial path 7, is generated using RRT-Bidirectional,
as can be observed in the simulation environment in Figure 5.41 (left). Then, a tube-
like surface 7 is built surrounding m,. The FM? technique is used to generate a soft
and secure path inside 7 (middle of Figure 5.41). As expected, the inverse kinematic
solver is able to track the path and convert it to a high-dimensional space (S¢). The
executed path is drawn in blue in the simulation environment in Figure 5.41 (right).
The obtained path for this experiment is 5.18% shorter and 11.82% smoother than
the initial .

For the second approach (Algorithm 20), two experiments have been carried out.
The conditions of the conducted experiments (X,,Xy) are the same tested in the first
approach. First, the adaptive low dimensional path 77, is calculated from X, with
the extended arm configuration. The loop is started and the path is tracked. For this
experiment, 7, ,,, is entirely tracked and converted into a high dimensional space in
one execution of the loop. In Figure 5.42 (right), the result of the algorithm for this
experiment in the simulation environment can be appreciated. The obtained path for
this experiment is 31.04% shorter and 2.65% smoother than the path obtained with
Algorithm 19 under the same conditions.

Finally, a second experiment for Algorithm 20 is performed. The adaptive low
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Figure 5.39: The initial RRT-Bidirectional full-DOF manipulation path (left). The
3D manipulation path smoothed with FM? inside a tube-like surface (right).

* is calculated from X, with the retradted arm configuration.

dimensional path 7,

The loop is started and the path is tracked. For this experiment, 7, is entirely
tracked and converted into a high dimensional space in one execution of the loop.
In Figure 5.42, the result of the algorithm for this experiment in the simulation
environment can be appreciated. The obtained path for this experiment is 146.72%
shorter and 14.22% smoother than the path obtained with Algorithm 19 under the

same conditions.

Two adaptive dimensionality algorithms for path planning were presented in Sec-
tion 4.2. In order to test their performance, some experiments were conducted for
both algorithms in this section. The first method (Algorithm 19) achieves to im-
prove paths generated with RRT-Bidirectional in terms of smoothness and length.
The second one (Algorithm 20) generates shorter smooth paths by starting with a
low-dimensional FM? path. The approaches are able to iteratively convert the low-
dimensional calculations into high-dimensional executable paths. The clearance of
paths is considered in both approaches through the velocity potential map used by
the FM? method. The proposed algorithms, while working back and forth between
high and low-dimensional spaces, manage to quickly calculate feasible manipulation
paths.
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Figure 5.40: First experiment with Algorithm 19. The initial RRT-Bidirectional path
(left), the adaptive FM? approach (middle), and the executed path(middle).

5.6 Application of the F'AM/? Method in a Nuclear
Fusion Device

We have conducted experiments in a simulated environment taking into account the
physics of articulated boom and the JET torus.

A first experiment is proposed starting from initial position (all links at 0) and
ending in the upper left side, Figure 4.3. The global path generated for the 2D torus
map with the wave propagation potential values, is as presented in Figures 5.44.

It takes 0.2943 s for the algorithm to generate the path shown in Figure 4.3. In
addition it takes 1.742 s to compute the forward kinematics for the boom. Further
experiments are carried out using an RRT-connect algorithm to compare with the
proposed method. Results are presented in the Table 5.7.

Table 5.7: Performances obtained when planning with RRT.

Time | Points Number | Opt. time | Opts. points
63.32 4226 8.38 69
56.84 4226 6.47 69
52.35 4226 6.83 69
54.30 4226 6.78 69
52.27 4226 6.82 69

The path generation average time for the RRT planner for this task was 55.82
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Figure 5.41: Second experiment with Algorithm 19. The initial RRT-Bidirectional
path (left), the tube-like surface with the FM? path inside (middle), and the executed
path (right).

s and the optimization average time was 7.06 s. The RRT takes considerably more
time for generating a path than the F'M? method, additionally the generated paths
get dangerously close to obstacles even after optimization is performed. Furthermore
it was found that when the size of the entrance of the torus was reduced to its actual
width, RRT either took a very long time to generate a path (around 361s) or could
not find a solution.

The approach presented here provides smooth trajectories that can be used at
low control levels without any additional smooth interpolation processing, that can
be generated in real-time, and that can maintain distance as far as possible from
obstacles. Figure 5.45 presents a screen capture of the simulation environment where
the generated path is correctly executed.
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Figure 5.42: First experiment with Algorithm 20. The adaptive FM? path (left), and
the executed path in the simulation environment (right).

Figure 5.43: Second experiment with Algorithm 20. The adaptive FM? path (left),
and the executed path in the simulation environment (right).
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Figure 5.44: FM? map wave generation.

Figure 5.45: Goal position for JET’s articulated boom on the simulation environment.
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The objectives presented at the beginning of this work were accomplished with
the proposed approaches. The different algorithms for path planning in mobile robots
are the main contributions of this work. These algorithms solve the path planning
problem for robotic navigation and manipulation. The most important conclusions
regarding each method as well as the future works are presented in this chapter.

6.1 Robot Path Planning and Navigation

In this section, the most important conclusions related to the presented path planning
methods for navigation are discussed.

6.1.1 Smooth Motion Replanning using Fast Marching Square

A replanning strategy with subgoals that relies on the FM? method was presented in
this document. The indoor robot environment was considered to be partially known
because a prior map, equivalent to the building plans. The essential mechanisms used
in the method included the calculation of a velocity potential map with a saturation
to reduce planner distances and the FM? method to plan the trajectory towards the
goal. First a global path is generated using a prior map, then this full path is divided
into equal parts by means of topological or geometric sub-goals constraints. The
robot starts traversing the global path and updating the map with sensors data. If
executing the global path is not possible due to new obstacles, the path is calculated to
the next node and only the implicated chunk of global path is updated. The essence of
the algorithm is similar to the anytime algorithms logic, but unlike common anytime
planners, the proposed algorithm always generates optimal paths in terms of safety
and smoothness until reaching the target location.

The obtained results show that the FM? method can be used as an replanning
algorithm to obtain smooth and safe trajectories in unstructured environments. An
strategy to improve computational time is proposed, the trajectory is recalculated to
subgoals instead of to the last node every time. The low complexity of the algorithm
allows to use it in real time. Furthermore, the algorithm can directly be used with
raw sensor data to implement a sensor-based local-path-planning exploratory module.

6.1.2 Anytime Triangular Fast Marching Square Method and
Paths Benchmarking
An anytime motion planner that relies on the FM? method over a triangular mesh

has been presented in this document. Different types of polygons are used to generate
the ROI that is built from the initial path calculated with the RRT algorithm. After
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that, the initial trajectory can be iteratively refined with the ATFM2 technique. The
experimental results show that the anytime approach achieves to improve the quality
of the path in length, smoothness, and clearance.

In the field of benchmarking, it is becoming increasingly difficult to compare new
planners because of the lack of a general benchmarking platform. A discussion of
the most used benchmarking parameters and their corresponding calculation proce-
dures is given. Different weaknesses were found in the traditional formulation of the
benchmarking parameters when the method performance was analyzed. Therefore,
some improvements to existing approaches are suggested here. The new equations
have been tested in the experiments and the proposed formulation enables a better
comparison and evaluation of the paths quality.

The introduction of the ROI drastically reduces the search space. Thus, the
anytime algorithm can be run in real-time while the robot navigates through the
environment.

Analyzing the path lengths, the new trajectories outperform the RRT initial paths
in all cases. The shortest routes are obtained after two iterations, which lead us to
conclude that the anytime algorithm is an appropriate technique to be applied when
the objective is to optimize the robot’s path.

Several conclusions can be drawn when the smoothness is studied. The smooth-
ness of the RRT initial path is improved after one iteration. Besides, this property
is also enhanced after two iterations when compared to the results after one itera-
tion. Although the reliability range is negative after one iteration in one case, this
parameter is significantly improved after two iterations.

Regarding the clearance, the best ratios are obtained with the traditional bench-
marking parameter. However, the new equation produces a more reliable parameter.
The best values for the new equation are slightly higher than one. In general, the
safety range is better when the new method is used, which has a positive influence
on the navigation safety.

Although the type of polygon has to be chosen depending on the objective of the
planner, the configurations with hexagons are the most promising ones according to
the experiments.

6.1.3 Fast Marching Square applied to Nonholonomic car-
like robots

Two different nonholonomic path planning approaches based on the FM? are pre-
sented in this document. They are both able to generate trajectories for nonholonomic
mobile robots with high quality, i.e., with smoothness and clearance properties.
Simulations and experiments evidenced how the C-space and the Control-based
FMZ2-NH outperforms the RRT-NH planner results. In the current study, comparing
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the FM2-NH methods showed that they generate considerable shorter paths in length,
and trajectories are more secure and smooth. Due to its random nature, the RRT-NH
planner exhibits several loops in trajectories which produce longer paths; on the other
hand, the deterministic quality of the FM? method (inherited by our methods) not
only produce more coherent paths without loops, but also guarantees the computation
of a solution if it exists, a criteria that is not met by the RRT-NH and all probabilistic
planners.

The computational complexity for the Fast Marching Method, as well as for its
successor, the FM? | is defined as linear O(n), where n is the number of grid points in
the environment map. Since the proposed method is based on the later method, the
FM2-NH methods are also highly efficient with a linear run-time complexity of O(n).

The FM2-NH make several noteworthy contributions to path planning. Neverthe-
less, the most remarkable is that the algorithms calculate not only good paths, but
also they provide the control variables needed to execute these trajectories.

6.2 Manipulation Planning

In this section, the most important conclusions related to the presented manipulation
planning methods are discussed.

6.2.1 Adaptive Evolving Strategy for Dextrous Robotic Ma-
nipulation

An adaptive robotic manipulation methodology built over ES has been presented.
The adaptation of manipulation paths for mobile manipulators is possible in real-
time, achieving optimal manipulation relative to position, orientation and energy
consumption. Given a learned manipulation path a new one is calculated when robot
base is in a different location from that of the learned path, minimal position and
orientation end-effector errors are obtained within the evolutionary process. Calculus
are simplified to reduce computational time. A forward kinematics function was
implemented for reaching optimal computational time, it implied a significant time
reduction for the execution of the algorithm. Granted that the algorithm needs no
inverse kinematics, singularities are avoided and convergence is guaranteed.

The experimental results showed the ability to apply the algorithm in real-time
for obtaining adapted manipulation paths, proving to be a feasible solution for mobile
robots manipulation problems. A computational time improvement was obtained by
first optimizing position until position error is minimized, and then orientation error is
added to the objective function with a reduced mutation step length until termination
criterion is fulfilled at the end of the process. In addition, the self-adjusting step length
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parameter was shown to perform efficiently compared to that of the DE algorithm.
It is advisable to prioritize minimizing factors according to tasks because there is a
proportional relationship between time and optimization parameters.

6.2.2 Path Planning with Adaptive Dimensionality

A manipulation path planning method with adaptive dimensionality is presented in
this work. The proposed algorithm generates an initial full-DOF path using the RRT-
Bidirectional method, and builds a tube-like surface surrounding the end-effector path
points. Then the FM? is applied to find a 3D path inside the generated surface.
The robot’s inverse kinematic is used to follow the previously generated FM? path.
In case of not been able to find a free of collision full-DOF path with the IK, the
method enlarges the surface around the conflicted path points. Then, a full-DOF
planning is executed only in the problem segment. The approach improves the initial
manipulation path in terms of smoothness, safety, and path length. Furthermore,
by suppressing the initial path peaks, the generated paths are visually more human
friendly.

6.2.3 Safe Motion Planning for a Nuclear Fusion Device Arm
using Fast Marching Square

A planning strategy using a dimensionality reduction and the FM? method is pre-
sented in this work. The algorithm generates a velocity potential map, which is
saturated with different values to control the relation between path length and clear-
ance. A path is generated from the robot’s initial posture to the goal position. First
a 2D map is obtained by crosscutting the JET torus at the height of the articulated
boom, which reduces the dimensionality of the problem. Then, the velocity potential
map is generated and a 2D path is calculated using FM?. Finally this full path is
followed closely by all the articulated boom links by means of the inverse kinemat-
ics. The output is a fully executable trajectory which leads the robot towards its
goal keeping a desired safety distance from obstacles. Unlike common planners, the
proposed algorithm always generates safe and smooth paths until reaching the target
location.

The obtained results show that the FM? can be used as a planning algorithm
to obtain smooth and safe trajectories in an unstructured environment. A strategy
to improve computational time is proposed, the dimensionality of the problem is
reduced.
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6.3 Future Developments

We are presently working on a number of extensions to our current work. The points
suggested as future work include:

e Different polygons could be considered to experiment with the ATFM2.

e Regarding the C-space and the Control-based FM2-NH, future work includes
combining both solutions and introducing some changes to make it possible to
use it in dynamic environments.

e Other planners could be implemented to generate the initial path in the ATFM2.
More properties could be analyzed and more experiments in different environ-
ments could be conducted. It would also be interesting to study the method
after three or more iterations, testing the convergence of the algorithm.

e For the adaptive manipulation method. First, the generation of paths with the
specification of only one goal configuration. Second, the use of efficient collision
detection to avoid obstacles. This can be implemented as another optimization
parameter, which when getting closer to obstacles will increase the error value.

Exploring these implementations, and conducting further analysis forms the basis
of our future work.
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The experimental platform MANFRED-2, fully developed at the Robotics Lab
of the Carlos III University of Madrid, is presented in this appendix. Most of this
information and figures have been taken from the work by Alvarez [75).

The mobile robot MANFRED-2 is a mobile manipulator whose purpose is to serve
as experimental platform for R&D in the mobile robots area.

One of the main objectives of this research is to build an autonomous robot for
an indoor office area. In other words, MANFRED-2 must be able to navigate au-
tonomously in an environment typically composed of a corridor and offices. For
example, one specific task that the robot must perform is to move from one room to
another by opening a door.

This robot has been built because it is necessary to have an experimental platform
with a robust and reliable hardware that allows researchers to focus on the real
problem: the implementation of an artificial intelligence that allows the robot to be
autonomous and perform multiple tasks.

The robot design is inspired by planetary rovers and communications satellites.
These systems are composed of several subsystems that need to be interconnected
to make the whole system work. These subsystems are: onboard computer, power
distribution system, sensors, drive system, etc. More instruments to explore the
surroundings, such as articulated arms, can also be implemented depending on its
application, but it is necessary to distinguish between the mobile platform and the
inserted accessories. One important characteristic is that the subsystems are designed
as independent units or boxes that are interconnected to each other by an internal
wiring.

Summarizing, the design of MANFRED-2 is based on independent units that
are interconnected to each other by using electric and mechanical interfaces. This
modular concept facilitates the integration, repair, and future expansion of the robot.

MANFRED-2 is presented in Figure A.1. It was also shown in Figure 1.3. It
has at most eight DOF. It is composed of a differential-type mobile base with two
DOF and an anthropomorphic light arm with six DOF'. It can execute multiple tasks.
The most typical ones are opening and passing through doors, obstacle avoidance,
and picking up and manipulating objects. In order to do that, the robot needs
all the basic capabilities to move safely and independently around the environment,
motor coordination between the base and manipulator, and sensory coordination to
manipulate objects.

As was previously said in this appendix, any robotic system consists of a set of
subsystems that enable (through networking) meeting the objectives for which it was
designed. These modules use the environment information to generate data that are
used to develop the movement skills in the robot’s base and the robotic arm. The
main components of the systems that constitute the mobile manipulator are described
in the following sections.
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Figure A.1: MANFRED-2, mobile manipulator with robotic arm.

A.1 Mechanical Design - Robot Structure

The design of the mobile robot must meet the following specifications: high mobility,
mechanical and electrical robustness, high repeatability in its movements, and easy
integration and repairing (modular concept).

A brief description of the mechanical design of MANFRED-2 and a breakdown
of the most important elements are given in this section. The mechanical design of
the robot’s base is also based on the robustness and reliability that must satisfy the
robot when it is performing a task. It is crucial that the the robot movement does
not cause instability or inaccuracy.

The base has also been designed following a modular philosophy which has two
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important advantages: it is easy to access to all elements of the mobile robot, and
the change of elements due to repairs or improvements is immediate.

The general design also focuses on the improvement of the structure rigidity.
The force distribution is more balanced than the distribution of the previous version
(MANFRED). The location of the base elements has been optimized in order to
counterbalance when the robotic arm is executing critical tasks, which means that
the distribution of the elements in the robot’s base gives stability to the mobile robot.

Some mechanical characteristics and their associated advantages are given below.
Some of them are compared to the previous version of the mobile robot.

e When the arm is at rest, it does not collide neither interfere with the base. If
the system runs out of power, the arm can fall freely without damage to itself
or to the base.

e The gravity center of the base has been moved closer to the ground. This implies
an improvement in the stability.

e The main mast has been extended to the bottom plate and more columns have
been placed between the plates. These changes give more rigidity to the system.

e [t has independent carcasses that are easy to remove and place. It is easier to
access to any component of the mobile robot.

e An internal communication system from the mast to the bottom plate has been
designed. This system is simple and facilitates the changes or incorporation of
new elements.

o All switches, buttons, and safety mushrooms are located in a single panel. This
allows an easy and fast access to each element of the control and security sys-
tems.

e A second robotic arm that will be added to the robot has been taken into
account, trying to make its future implementation as simple as possible.

e A height adjustment system for the drive wheels has been designed. This allows
an accurate calibration.

The robot’s weight and the weight of each one of its components are shown in
Table A.1. It is important to remark that most of the weight is concentrated in the
bottom part, which benefits the stability.

MANFRED-2 is formed by a metal structure that can integrate all the components
needed for operation (Figure A.2). It can be divided into three parts:
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Table A.1: MANFRED-2’s weight.

Element Unit weight (kg) Total weight (kg)
Batteries 15.40 61.60
Aluminum structure 29.00 29.00
Drivers 0.68 5.44
Computer 5.00 5.00
Electronic devices 2.75 2.75
DC-DC Converters 2.00 2.00
Carcasses 2.50 2.50
Caster wheels 0.42 1.26
Drive wheels 7.00 14.00
Wiring 6.00 6.00
Total 129.55

Figure A.2: MANFRED-2, lateral view.

e Mobile base:

The robot’s base is composed of two steel platforms with a diameter of 61 cm
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Figure A.3: Power supply system.

and a height around 65 cm. It is equipped with wheels that allow movement.
The battery system that generates the power to operate autonomously is also
stored in the base.

The motion system is included in the base. It has five wheels: three of them are
support wheels to improve the stability and facilitate the movement, and the
other two are drive wheels with brushless motors and their corresponding servo-
amplifiers. The drive wheels generate a differential displacement that allows the
robot to turn around its axis.

The power supply system that gives autonomy to the robot consists of batteries
that are located in the base. There are four batteries of 12 V connected in series
that provide a voltage of 48 V. The selected batteries are Power-Sonic PS-12450
B (Figure A.3), which provide an output voltage of 12 V and a capacity of 45
Ah.

In addition, as a security system, the robot has a monitoring system through a
PIC16F818 microcontroller that measures the voltage provided by the batteries
and the current flowing through them. This system can continuously commu-
nicate the power status to the control computer, as well as stopping the motors
in a controlled way in case of low voltage or too high current.

e Body:
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An structure that forms the robot body and holds multiple components has been
mounted on the base. The body contains all the wiring for connecting several
subsystems: arm to computer, power from battery to motors, and external
sensors. It has also the servo amplifiers associated with the arm.

This structure serves as dock for the robotic arm, the laser sensor, and the
computer vision cameras. The onboard computer that is responsible for add
intelligence to the robot is also inside this part of the robot. This computer
has the PMAC2-PCI card installed, which is a controller card that can control
jointly the eight DOF corresponding to the base and the manipulator arm.

Robotic arm:

The manipulator arm LWR-UC3M-1 is an essential element of the robot. It is
composed of rigid elements connected by revolution joints. Each joint gives an
additional DOF to the robot. The total number of DOF is six for the arm. It
has been designed to provide a remarkable flexibility to perform manipulation
tasks (grasping and and movement of objects) by combining the available DOF.

The robotic arm that is presented in Figure A.4 has been fully developed by the
Robotics Lab of the Carlos III University of Madrid. Its main characteristics
are:

Kinematic redundancy similar to the human arm.
Weight: 18 kg.

Maximum load capacity: 4.5 kg at the end of the arm.
Load/weight ratio: between 1:3 and 1 : 4.

Range: around 955 mm.

AN

The developed arm is mounted on the lateral side of the mobile robot in such a
way that the computer vision and the laser telemetry systems are not obstructed
by the arm. The arm joints are composed of DC brushless motors and Harmonic
Drives that reduce the speed and increase the torque.

Since the installed encoders obtain relative information (they provide informa-
tion about the motor current position with respect to an initial or home posi-
tion), an initial home function must be executed in order to fix the robotic arm
initial position. This facilitates the conversion between relative and absolute
positions. This function has been designed using the programming language
of the PMAC2-PCI. It establishes that the initial position of the robotic arm
is that one in which it is pointing straight to the ground. This position has
been chosen because it requires a low energy consumption because most of the
engines are not doing any work.
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Figure A.4: LWR-UC3M-1(robotic arm).
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Figure A.5: Hokuyo UTM-30LX (laser range finder).

A.2 Sensory System

The sensory system can transform the physical variables that characterize the environ-
ment into a data set that will be processed by other modules, such as the localization
system, the security system, and the motion planner, in order to increase the robot
intelligence and be able to execute certain tasks. This information will be provided
by the robot’s sensory system, which consists of the following elements:

e Laser telemetry subsystem:

Its aim is to provide the robot with information about its surrounding environ-
ment by measuring the distance to objects. This information is primarily used
in navigation and localization in order to model the workspace.

It is possible to use 2D or 3D data depending on the task characteristics and
the complexity and degree of occupancy of the workspace.

This subsystem is composed of the following laser range finders:

1. Hokuyo UTM-30LX with 270 opening degrees (Figure A.5) located in the
rear of the vehicle. It has a detection range that varies from 100 mm to 30 m
and a 25 ms period. Its angular resolution is equal to 0.25°. It is connected
to the computer through a USB2.0 interface. Its power consumption is 700

mA and 12 V, which makes it suitable for battery-powered systems such
as MANFRED-2.

2. SICK PLS with 180 opening degrees (Figure A.6). The original measure-
ments are 2D, but we have added a motor that lets it rotate up and down
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Figure A.6: SICK PLS (laser range finder).

Table A.2: SICK PLS technical characteristics.

Maximum range 80 m
Angular resolution  0.25° - 0.5° - 1° (variable)
Time response 26 ms
Distance resolution 10 mm
Transfer rate 500 kbaud
Power requirements 24V -6 A

(£45°), being able to obtain 3D measurements (it can also be observed in
the figure). The technical characteristics are summarized in Table A.2.

The 2D telemetry (horizontal plane parallel to the ground) can be used
during navigation around environments with few obstacles to safe compu-
tational time.

This sensor records 361 measurements in a planar sweep with medium
resolution (separation between measurements equal to 0.5°). The SICK
PLS measurement error is lower than 20 mm. This error is influenced by
two parameters: the measuring distance and the angle of the laser beam
shot (from 0° to 180°).

e Computer vision subsystem:

This subsystem helps in the manipulation of objects in 3D environments, which
is one of the abilities of MANFRED-2. In order to do this, it is necessary to
recognize the object to be manipulated, estimate its position and orientation
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Figure A.7: Color cameras. Left: SONY EVI-D100. Right: SONY B/N XC-ES50CE.

relative to the mobile manipulator, and determine the grasping point. It also
facilitates other tasks, such as opening doors, navigation, and localization.

The computer vision subsystem is composed of the following elements:

1. Color camera: SONY EVI-D100 (Figure A.7). This camera is employed
to recognize objects and estimate their positions relative to the robot. It
is located in the front of the mobile robot body.

2. Color camera: SONY B/N XC-ES50CE (Figure A.7). This is a mini-
camera that is situated on the wrist of the robotic arm. It is used in
manipulation tasks when the extreme of the arm is close to the object to
be manipulated and the field of vision of the other camera is obstructed
by the arm.

3. Time-of-flight camera (Kinect): the robot also incorporates a camera with
time-of-flight technology (Figure A.8) that obtains a 3D image composed
of an array of distances to different objects and color information. This
information can be fused with the data of the other cameras in order to
improve the manipulation capabilities.

e Force/torque sensor:

MANFRED-2 has a JR3 force/torque sensor (model 67M25A-U560, Figure A.9)
at the end of the robotic arm. Its purpose is to interact with the environment
in manipulation tasks. This sensor is situated between the end of the arm and
the clamp or terminal element.

This device has the following features:
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Figure A.9: JR3 67M25A-U560 (force/torque sensor).

— Maximum load capacity: 11 kg.
— Weight: 175 gr.

— Maximum operating frequency: 8 kHz.

The JR3 sensor provides force and torque data in three axes that can be used in
the force control loop of the mobile manipulator. It is based on a strain gauge
system and a Digital Signal Processor (DSP) acquisition system that allow
measurements with high bandwidth and signal-noise ratio. The main purpose
of this sensor is to perform manipulation tasks based on force or torque control,
such as opening doors, pulsation of switches, manipulating objects, etc.

e Motion sensors:

The main function of these sensors is to obtain information about the robot
location and the arm posture. This information is obtained by encoders that
are mainly coupled to the rotation axes of the motors. The relative or absolute
position of each motor is computed by using this information. The motion
sensors are high-resolution optical encoders of the HP company with reference
HEDS550.

These motion sensors are complemented by inductive sensors that perform an
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Figure A.10: PMAC2-PCI (controller card).

initial routine that is usually named as home in order to establish the absolute
position of each joint of the arm. This routine improves the safety and minimizes
the power consumption. The inductive sensors have a diameter equal to 3 mm
and a detection distance equal to 1 mm. Their basic principle is based on the
inductive detection of ferromagnetic materials by flux variation caused by their
presence near the sensor’s detection area.

A.3 Control System

MANFRED-2 has eight different motors to move its base (2) and its robotic arm
(6). It is necessary to have a continuous control of these engines when the robot is
navigating or it is moving its arm. This control is carried out by the PMAC2-PCI
controller card (Figure A.10).

The PMAC2-PCI is a Programmable Multi-Axis Controller card developed by
Delta Tau Data Systems®. It is a high performance device that can simultaneously
control up to eight axes with high precision. It has a high performance/price ratio,
with more than 1000 configuration variables and the high computing capacity of its
DSP. The DSP that is incorporated in the PMAC2-PCI is the DSP56002 of 24 bits
and operation frequency of 40 MHz.

‘http://www.deltatau.com
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Figure A.11: ACC-8E. Interface between the PMAC2-PCI and the devices.

This card offers multiple ways to control the motors. However, it has not been
designed to be connected directly to the devices. There is a set of additional cards
that can be used as interfaces . These cards are also offered by Delta Tau Data
Systems.

In the case of MANFRED-2, the additional card is the ACC-8E (Figure A.11).
Since each card can interact with two motors, it is necessary to implement four of
them. Each ACC-8E card is connected to the PMAC2-PCI through a 100-pin bus that
is called JMACH. Each ACC-8E card has four 18-bit Digital-to-Analog Converters
(DAC) that command two analog input drivers and must be fed with 15 V. It has also
two inputs to read the encoders and five inputs per axis that capture different types
of events: error signal, home signal (starting position), motor limits (two signals),
and user-defined signal (external events for a specific application).

The configuration of the PMAC2-PCI is a very laborious and tough task. There
are two available manuals, the “Software reference manual” and the “PMAC2 user
manual”, together with a program provided by the manufacturer, the “PEWIN32
PRO”, which runs under Windows. This software offers a set of tools to modify all
the configuration parameters of the PMAC2-PCI. Some of these tools are:

1. Terminal: it sends commands to the card in ASCII coding.

2. Watch window: it is a window where it is possible to view the variable values
in real time.

3. Tunning Pro: it configures the PMAC2-PCI parameters, such as: PID con-
trollers, filters, DAC calibration, and so on.

4. Position window: it displays the position of the motors, in counts of encoder,
and also their speed and tracking errors.

Finally, the controller card allows different types of programs:
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e Motion programs: the most common task of the controller card is to move
the motors according to a particular sequence of commands. These programs
are executed line by line by the controller card. They are called by a specific
command and, after that, they are executed once. It is possible to make a call
to another program or terminal commands. The controller card can store and
execute up to 256 motion programs.

e Programmable Logic Controller (PLC): the PLC programs exist because there
are some programs that must be executed continuously. For example, there is
a PLC program that computes the robot’s position given the encoders informa-
tion. These programs are written in the same way that the motion programs,
except that they are defined as PLC in their title. They are called and executed
in each cycle of the controller card.

e Motion commands: it is possible to send motion commands to the PMAC2-PCI
through the terminal. They are simple commands that allow the motion of each
motor. These commands were initially implemented to test the controller card,
but they can perform simple movements in a motion program.

A.4 Software

A.4.1 MATLAB

MATLAB (abbreviation of MATrix LABoratory)® is a numerical computing environ-
ment developed by MathWorks. It is oriented to projects that imply high computation
resources and graphical display. It allows multiple actions, such as: manipulation of
matrix and vectors, handling and plotting of functions and data, implementation of
algorithms, creation of graphical interfaces, and interfacing with programs in other
languages (C, C++, Java, and Fortran).

One additional advantage of this tool is that it is very easy to learn, not being
necessary to study a new language because the solutions are expressed by an easy
syntax (similar to C).

MATLAB includes a wide range of pre-built functions called “toolboxes”. These
toolboxes perform multiple operations of multiple areas of engineering and simulation,
such as: signal processing, control, statistics, financial analysis, symbolic mathemat-
ics, neural networks, fuzzy logic, system identification, dynamic systems simulation,
and so on. An additional package called “Simulink” offers a graphical interface for
these toolboxes. It allows the simulation of dynamic models.

5More information can be found in http://www.mathworks.es/products/matlab/.
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This tool is widespread in engineering, science, and economics. It has been re-
ported that it had around one million users in 2004. It is also widely used in academic
and research institutions.

All these features make MATLAB a suitable tool to be used for our purposes. All
the algorithms developed in this work have been implemented in MATLAB.

A.4.2 OpenRAVE

6

OpenRAVE was founded by Rosen Diankov at the Quality of Life Technology
Center in the Carnegie Mellon University Robotics Institute. It was inspired from
the RAVE simulator James Kuffner had started developing in 1995 and used for his
experiments ever since. The OpenRAVE project was started in 2006 and is a complete
rewrite of RAVE. It is actively being maintained at the JSK Lab at University of
Tokyo.

OpenRAVE provides an environment for testing, developing, and deploying mo-
tion planning algorithms in real-world robotics applications. The main focus is on
simulation and analysis of kinematic and geometric information related to motion
planning. OpenRAVE’s stand-alone nature allows is to be easily integrated into ex-
isting robotics systems. It provides many command line tools to work with robots
and planners, and the run-time core is small enough to be used inside controllers
and bigger frameworks. An important target application is industrial robotics au-
tomation. OpenRAVE includes a seamless integration of simulation, visualization,
planning, scripting and control. The plugin architecture allows users to easily write
custom controllers or extend functionality. Using OpenRAVE plugins, any planning
algorithm, robot control, or sensing-based subsystem can be distributed and dynami-
cally loaded at run-time; this distributed nature frees developers from struggling with
monolithic code-bases. Users of OpenRAVE can concentrate on the development of
planning and scripting aspects of a problem without having to explicitly manage
the details of robot kinematics and dynamics, collision detection, world updates, and
robot control. OpenRAVE provides a powerful Python API for scripting demos, which
makes it simple to control and monitor the demo and environment state. There are
also interfaces for Octave and Matlab.

OpenRAVE’s major design goals and features are:

Have a plugin-based architecture that allows users to expand its functionality
without having to recompile the base code. Most functionality should be offered as
plugins, thus keeping the core as simple as possible. Offer many motion planning
algorithm implementations that can be easily extended to new tasks. Make it easy to
debug components during run-time without having to recompile or restart the entire

6More information can be found in http://openrave.org/docs/latest_stable/.
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system in order to prevent flushing of the in-memory environment state. Allow the
OpenRAVE core to be used as a simulation environment, as a high-level scripting
environment, as a kinematics and dynamics backend module for robot con- trollers,
or as a manipulation planning black box in a distributed robotics environment. Al-
low simple planning knowledgebases to be generated, stored, and retried. Support a
multi-threaded environment and allow easy parallelization of planners and other func-
tions with minimal synchronization required on the user side. One of OpenRAVE’s
strongest points when compared with other planning packages is the idea of being
able to apply algorithms to any scenario with very little modification when robots
or target objects change. Users of OpenRAVE can concentrate on the development
of planning and scripting aspects of a problem without having to explicitly manage
the details of robot kinematics, dynamics, collision detection, world updates, sensor
modeling, and robot control.

OpenRAVE has been used for planning on many real robotics systems. Its architc-
ture makes it possible for planning-enabled robots to work consistently in a continu-
ously changing and unpredictable environment. Many new layer of functionality have
been developed that go beyond the basic kinematics, collision detection, and graphics
interface requirements of classic robotics libraries. It provides a set of interfaces that
let users modify existing functions and expand OpenRAVE-enabled modules without
having to recompile OpenRAVE or deal with messy monolithic code-bases.

A.4.3 Marilou Robotics Studio

Marilou is a simulation software that includes dynamics and it’s capable of modeling
almost any kind of robot and environment. A variety of hardware, like sensors,
actuators, cameras and lasers, are included. The simulator’s physical entity editor is
entirely graphical, facilitating robots creation. Robots are then easy to place in one
or more simulations in order to test embedded algorithms. The key features of this
software are presented next by areas:

Modeling

e Totally graphical handling of robots and environments models (physics parts
and 3D models).

e Modeling helpers, Refactoring tools, several document viewpoints.
e Rigid bodies and n-axis joints.

e Mechanical constraints.
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e Surface properties (reflection, shock, friction, incidence, rebound, behavior with
infra-red or ultrasound and more).

e Hierarchy and complex assemblies.

Libraries

e Embedded robotic components: motors, servo motors, odometers, force/torque
sensors, distance sensors (US, IR, Laser), laser range finders, Lidar, bumpers,
actuating cylinders/jack, air pressure forces, cameras, panoramic spherical cam-
eras, GPS, accelerometers/gyroscope, absolute compass and more.

o Off-the-shelf robotic equipment.
e Existing and virtual robots.

e Worlds.

Programming

e Robot programming using various languages (C/C++, VB#, J#, C#, C++
CLI and URBI) under Windows and Linux.

e Compatible with Matlab, Java and Intempora RT-Maps.

e Real/simulated compatibility layer on supported robots (allowing you to work
with the same language and software tools as on real robots).

e English and French documentation.

Simulation

e Real-time or accelerated simulation (RT-Multiplier).

Multi-robots.

Multiple embedded applications, centralized or distributed.

Acquisition/measurement cycles as low as 1 ms.

Gravitational forces.

3D spatial sound.

Interactions with running simulation.
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A.4.4 ROS

ROS (Robot Operating System)” is an open code operating system for robots devel-
oped by Willow Garage. As it is said in its website, “it provides libraries and tools
to help software developers create robot applications. It provides hardware abstrac-
tion, device drivers, libraries, visualizers, message-passing, package management, and
more. ROS is licensed under an open source, BSD license (Berkeley Software Distri-
bution, family of permissive free software licenses)”.

ROS is based on a set of processes or nodes that are individually executed and
linked by a communication infrastructure provided by ROS. This communication
can be synchronous (client-server) or asynchronous (continuous data sending). The
different data can be grouped into packages that are shared allowing a distributed
collaboration.

The most remarkable characteristics are the following: light and easy to export
(it has been exported to OpenRAVE, Orocos, and Player), programming language
independent (it can be implemented in the most common languages, such as C++
and Python), easy error correction (because it has a testing unit), and appropriate
in big systems with multiple modules.

It currently only works with Unix-based platforms. It has been extensively tested
on Ubuntu (operating system of MANFRED-2).

ROS has been implemented in MANFRED-2. All modules developed for the robot
must follow its guidelines.

"More information can be found in http://www.ros.org/wiki/.
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