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Resumen

Esta tesis se centra en las propiedades frecuentistas de los procedimientos Bayesianos dentro

de un amplio espectro de modelos estadı́sticos de dimensión infinita a través de métodos no

paramétricos Bayesianos. Se presentan tres ensayos sobre los aspectos asintóicos de la distribución

a posteriori en varios modelos estadı́sticos introducidos en tres capı́tulos.

En el Capı́tulo 2, dentro de un contexto de estimación Bayesiana de densidades, se construye

una distribución a priori del tipo Berstein-Dirichlet en el espacio de densidades multivariantes en

hipercubo unidad y se obtiene la tasa de convengencia de la distribución a posteriori correspondiente.

Se desarrolla un nuevo algoritmo de muestreo para este modelo basado en métodos de “slice

sampling” y se ilustra mediante datos simulados y reales.

En el Capı́tulo 3, se considera un enfoque semiparamétrico Bayesiano para un modelo de

regresión lineal con restricciones de momentos condicionales. La variable de error sigue una

distribución Gaussiana cuya varianza depende de los predictores. Se desarrolla un procedimiento

Bayesiano adaptativo en el que las distribuciones a priori sobre la función de desviación estándar

condicional se construyen cuidadosamente.

El Capı́tulo 4 está dedicado a la cuestión de la tasa de convergencia de la distribución a

posteriori en una amplia gama de modelos a priori. Teniendo en cuenta los problemas de estimación

en la frontera del soporte donde ningún modelo a priori puede cumplir los criterios habituales

para el análisis de la distribución a posteriori en muestras grandes, se desarrolla un nuevo criterio

que permite la selección de modelos a priori flexibles para contrarrestar estos problemas con

condiciones del modelo más fuertes, manteniendo además la propiedad de tasa óptima.
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Abstract

This dissertation focuses on the frequentist properties of Bayesian procedures in a broad spectrum

of infinite-dimensional statistical models via Bayesian nonparametric approaches. Three essays

concern the asymptotic aspects of posterior distribution in various statistical models presented in

the subsequent three chapters.

In the context of multivariate density estimation discussed in Chapter 2, a Bernstein-Dirichlet

prior is constructed in the space of multivariate densities on hypercube and the corresponding

posterior contraction rate is obtained. We implement this model through a novel sampling algorithm

based on a slice sampling scheme for the simulated and real data.

In Chapter 3, we consider a Bayesian semiparametric approach for a linear regression model

with conditional moment restrictions. The error variable follows a Gaussian distribution whose

variance depends on the predictors. An adaptive Bayesian procedure is performed when the

priors on the conditional standard deviation function are carefully constructed.

Chapter 4 is devoted to the issue of posterior convergence rate for a broad range of priors.

Motivated by the boundary support estimation problems where any constructed prior could not

meet the usual criteria for large sample analysis of the posterior distribution, we develop a new

yardstick that allows flexible prior selections to counteract these problems by the stronger model

conditions and meanwhile the rate optimality property is maintained.
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Chapter 1

Introduction

A primary purpose of statistics is to make some inference on the unknown quantities related to a

collection of measured data. This invites the assumption that the data is assumed to be generated

from some unknown underlying probability distribution. Usually we employ statistical models

or stochastic models to describe the random phenomenon and then analyze the data for the

estimation of quantities of interest. The observed data is a measurement denoted by X , taking

values in a sample space (X ,X ), where X is a Borel σ-algebra on a polish space X .

More specifically, a statistical model P is a class of probability measures over the sample space

(X ,X ). In most real problems, the collection of probability distributions is indexed by some

quantity, which is universally called a parameter. Denote the parameter by θ and the parameter

space, the class of all possible values of the parameter, by Θ. Given θ, the distribution of the

observation X follows some distribution denoted by Pθ, or say X|θ ∼ Pθ in an abbreviated form.

To put it briefly, the statistical model could be defined as,

P = {Pθ : θ ∈ Θ}.

The model P contains all the possible candidate distributions for the observation X , in which

statisticians provides reasonable explanations for the uncertainty. As such, the data, that have

1



2 CHAPTER 1. INTRODUCTION

been generated coinciding with some unknown distribution must be analyzed for statisticians to

attempt to learn about this unknown probability distribution and make some type of inference

about certain aspects of the distribution.

In many statistical problems, the distribution that generates the data is known except for

the values of finite-dimensional parameters or infinite-dimensional components. Consequently,

the statistical problem falls into two categories: namely parametric models and nonparametric

models. When it comes to the inferential procedures, two main statistical schools have emerged

along the way to treat the statistical problems in a different perspective during the history of

statistics. These two schools of thought are known as frequentist (classical) and Bayesian respectively.

One of the underlying postulates in the frequetist paradigm is that the experimental data is

generated in accordance with some probability distribution indexed by some unknown, fixed

parameter θ0. Frequentist statisticians does not permit any probability statement made about this

true parameter θ0. Classical inferential approaches have been well established to learn about this

unknown true parameter, such as maximum likelihood estimation, hypotheses testing, confidence

intervals and many other things. In this thesis, we employ the Bayesian nonparametric approach

to the statistical estimation problems.

1.1 Bayesian nonparametrics inference

1.1.1 Priors, posterior and Bayes’ rule

In the Bayesian paradigm, all unknown quantities are treated as random variables and a joint

distribution for all of them must be specified for the subsequent statistical inference. To this

aim, we need to formulate a so-called prior distribution Π for the parameter θ as well as the

conditional distribution of the data X given the parameter θ that we denote by Pθ. Hence the

joint distribution on the product space X × Θ is determined by the prior distribution and the

conditional distribution Pθ. This is a uniform framework for parametric and nonparametric

Bayesian statistics in which the unique difference lies completely in the dimensionality of the
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parameter. However, more attention should be paid to the nonparametric case since it is not easy

to build a proper prior for infinite-dimensional parameters. In the following, we provide a broad

overview of conditioning device and Bayes’ rule.

Let the parameter space Θ be a polish space equipped with a Borel σ-algebra B and a triple

(Θ,B,Π) be a probability space. A regular conditional distribution Pθ on the sample space

(X ,X ) is a Markov kernel, mapping from (Θ,B) into (X ,X ) satisfying,

(i) for each θ ∈ Θ, the mapping A→ Pθ(A) is a probability measure,

(ii) for each A ∈X , the mapping θ → Pθ(A) is measurable.

Then one could obtain a well-defined joint distribution for the pair (X, θ) on the product

measurable space (X ×Θ, X ×B) as follows,

Pr(X ∈ A, θ ∈ B) =

∫
B
Pθ(A) dΠ(θ), A ∈X , B ∈ B. (1.1)

This gives rise to two types of distributions: namely the marginal distribution of the data and the

so-called posterior distribution of the parameter.

Let B be equal to the full parameter set Θ, then the marginal distribution of the observation X

is given by,

Pr(X ∈ A) =

∫
Θ
Pθ(A) dΠ(θ), A ∈X . (1.2)

Assume that our model P is dominated by some σ-finite measure µ, then it is possible to

express the posterior distribution in terms of densities pθ = dPθ
dµ . Bayes’ rule then yields a version

of the posterior distribution as follows,

Π
(
θ ∈ B

∣∣ X) =

∫
B
pθ(X) dΠ(θ)∫

Θ
pθ(X) dΠ(θ)

, B ∈ B. (1.3)

Suppose that X = (X1, X2 . . . , Xn) and X1, X2 . . . , Xn is conditionally independent and identical
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distributed (hereafter abbreviated i.i.d) given θ, then the posterior distribution of the parameter θ

given the data X is,

Π
(
θ ∈ B

∣∣ X1, . . . , Xn

)
=

∫
B

n∏
i=1

pθ(Xi) dΠ(θ)

∫
Θ

n∏
i=1

pθ(Xi) dΠ(θ)

, B ∈ B. (1.4)

The posterior distribution of θ is typically viewed as a data-unpdated version of the prior Π. In

other words, the degrees of the belief for the unknown parameter can be altered by the observation

X via the conditioning mechanism. The amount of the information about θ stems from two

sources, namely the data and the prior. After observing the data, we could incorporate the

observation into the knownledge of learning about the parameter. Here the changes in knowledge

about the unknown quantity take place due to Bayes’ theorem.

The posterior distribution provides all we need for the statistical inference. Estimation, credit

regions and hypothesis testing, which consists of the Bayesian inferential problems, may then be

carried out via the posterior distribution. For example, we could obtain a Bayesian point estimator

of the parameter by using mean, median or mode of the posterior distribution. In particular, the

posterior mean is justified as a minimizer over the model relative to the common squared error

loss function. Other loss functions justify the use of the median or mode.

To apply the theory of Bayesian estimation, it is necessary to specify a prior for the parameter.

For parametric models, there are many available choices to select a prior distribution, such as

Beta, Gaussian and Gamma distributions, to name a few. Certain prior distributions in these

finite-dimensional models enjoy the nice conjugate property. For instance, beta distribution is a

conjugate prior distribution for samples drawn from a Bernoulli distribution. In this case, for

all observational values, the posterior at each state of sampling belongs to the family of beta

distribution.

However, the construction of a prior in infinite-dimensional models is more complicated.

Generally speaking, there are two driving factors behind it. On the one hand, formulating a prior
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in infinite-dimensional cases always involves the topological aspects but infinite-dimensional

space could support a great deal of diverse norm topologies so that it is difficult to accommodate

a sufficiently large support for the prior. In contrast to this, there exists one unique norm topology

in the finite-dimensional vector space where all norms are equivalent in a sense that they define

the same topology. On the other hand, Lebesgue measure gives us a typical candidate measure

that dominates a finite-dimensional model and then all the distributions in this setting could be

expressed in terms of probability densities for convenient treatment. In an infinite-dimensional

case, we could not find a default uniform measure to dominate the model.

1.1.2 Dirichlet process prior

In a seminar contribution Ferguson (1973) proposed a first nonparametric prior known as the

Dirichlet process prior that has become a popular tool in the area of Bayesian nonparametrics.

The Dirichlet process is thought of as the “normal” distribution of Bayesian nonparametrics as

well as a basic building block for priors in other infinite-dimensional objects. Also, the Dirichlet

process prior has become the default prior in the space of probability distributions. Prior to the

demonstration of the Dirichlet process, we begin with the introduction of the Dirichlet distribution.

DEFINITION 1.1 (Dirichlet distribution) Let Q = (Q1, Q2, . . . , Qk) be a random vector such that∑k
i=1Qi = 1 and Qi ≥ 0 for i = 1, 2, . . . , k. The k-dimensional random vector Q is said to

possess the Dirichlet distribution with parameter α1, α2, . . . , αk > 0 which we denote by Q ∼

Dir(α1, α2, . . . , αk), if it has the following density,

Γ(α1 + α2 + . . .+ αk)

Γ(α1) · · ·Γ(αk)
xα1−1

1 xα2−1
2 . . . x

αk−1−1
k−1 xαk−1

k ,

where x1, . . . , xk > 0 and
∑k

i=1 xi = 1.

The Dirichlet distribution is actually the multivariate generalization of the beta distribution.

DEFINITION 1.2 (Dirichlet Process, Ferguson (1973)) A random probability measure P on the

sample space (X ,X ) is said to follow a Dirichlet process DP(M,G0) with a base distribution G0
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on (X ,X ) and concentration parameter M , if for each finite measurable partition A1, A2, . . . , Ak

of X ,

(P (A1), P (A2), . . . , P (Ak)) ∼ Dir(MG0(A1),MG0(A2), . . . ,MG0(Ak)).

The Dirichlet process can be widely described as an infinite-dimensional generalization of the

Dirichlet distribution. It is a distribution over the space of all probability measures such that

any marginal distribution on the finite partition possesses a Dirichlet distribution. These two

parameters M,G0 in the definition of Dirichlet Process play intuitive roles. Roughly speaking,

the base distribution can be understood as the expectation of the Dirichlet process. That is to say,

E(P (A)) = G0(A) for each measurable set A ⊂ X . In addition, we could treat the concentration

parameterM as a measure of precision of the Dirichlet process. Actually, V ar(P (A)) = G0(A)(1−

G0(A))/(M + 1). More mass of the prior will be centered around the mean as the concentration

parameter M is larger.

It has been shown that the posterior of the Dirichlet process prior maintains the conjugate

property just as the finite-dimensional Dirichlet distribution. In other words, ifX1, X2, . . . , Xn|P ∼

P and P ∼ DP(M,G0), then the posterior distribution of P is given as follows,

P |X1, X2, . . . , Xn ∼ DP
(
M + n,

M

M + n
G0 +

∑n
i=1 δXi
M + n

)
(1.5)

where δXi is the Dirac function at Xi for i = 1, 2, . . . , n.

1.1.3 Construction of a Dirichlet process

Dirichlet process could be constructed through several methods. In this Section, we describe the

generalized Pólya urn scheme and stick-breaking representation that will be discussed in more

details in Chapter 2.

One construction of a Dirichlet process is related to the Pólya urn scheme. Consider an i.i.d

sequence X1, X2, . . . generated from some distribution P that possesses a Dirichlet process prior.

Its associated sequence of predictive distribution, such as, X1, X2|X1, X3|X1, X2, can be used
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as a convenient tool to demonstrate the structure of the Dirichlet process. Using the conjugate

property of the Dirichlet process, it can be easily shown that,

XN+1|X1, X2, . . . , XN ∼



δX1 with probability 1
M+N ,

δX2 with probability 1
M+N ,

...
...

δXN with probability 1
M+N ,

G0 with probability M
M+N .

(1.6)

This construction can be regarded as the continuous analog of the well-known Pólya urn scheme.

More explanations and demonstration about it could be found in more details in Ghosh and

Ramamoorthi (2003b).

Sethuraman (1994) described the Dirichlet process in another constructive way and proposed

a so-called stick-breaking construction to generate a sample from Dirichlet process. Suppose an

infinite sequence of weights {πk}∞k=1 is generated in accordance with the procedures given as

follows,

βk ∼ beta(1,M),

πk = βk

k−1∏
l=1

(1− βl)

Then it can be shown that the following random probability distributionG has a Dirichlet process

DP(M,G0),

G =

∞∑
k=1

πkδθ∗k , θ∗k ∼ G0 (1.7)

his construction makes clear the fact that all the random distributions drawn from the Dirichlet

process are discrete. The mechanism can be understood as the successive breaking of a stick of

length 1. We first break a random portion β of the stick and assign the weight π1 to this part

and recursively break the remaining stick in random to obtain π2, π3 and so on. This simple
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and neat description of Dirichlet process priors facilitates a wide range of extensions and novel

implementation procedures for the Dirichlet process.

When we want to estimate a density function in a Bayesian paradigm, Dirichlet process could

not be directly chosen as a desired prior in this case since it produces discrete probability distributions

exclusively. This can be remedied by a modification of Dirichlet process. A prior on densities

could be induced by assigning a Dirichlet process prior on the mixture distribution F . Antoniak

(1974) introduced Dirichlet process mixtures as the powerful Bayesian model for density estimation.

Given a class of kernels {ψ(·, µ) : µ ∈ Θ̃} indexed by the parameters, a mixture density is defined

by,

pF (x) =

∫
ψ(x, µ) dF (ψ), (1.8)

where F is a probability distribution on Θ̃.

The underlying idea springs from the facts that smooth densities could be obtained by convoluting

a probability distribution with kernels in a frequentist perspective. The kernel ψ may depend on

an additional parameter φ. This could induce a rich family of kernel mixture priors, for example,

the location-scale mixture prior and the Dirichlet Bernstein prior to name a few. The latter has

been used as a prior on the multivariate density discussed in Chapter 2 of this thesis.

1.2 Bayesian asymptotics

Any inference or any statement of beliefs about the parameter is conditionally dependent on

the choice of the prior. Especially in the context of Bayesian nonparametrics, the assessment of

the quality of the corresponding posterior should require special care since it is a challenging

task to define and technically regulate the priors in large dimensional spaces. Also, assigning a

prior on an infinite-dimensional parameter which could be some seemingly “correct” make the

posteriors easily tend to be unreasonable. Thus it could be better if the posterior could not be

greatly influenced by the specification of different priors. We then say that inference is robust if

the posterior is not seriously affected by the prior choices on which it is based. A tractable task
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is to discuss the asymptotic form of robustness. This approach helps us address the issue more

manageable. The investigation of the large sample properties of the posterior naturally arises to

assess the impact of a priori knowledge about the parameter on the posterior inference.

Another motivation for studying the asymptotic aspects of the posterior emerges from the

analogous treatment in the frequentist nonparametric inference where statistical procedures are

required to gain certain properties such as consistency, rate of convergence and minimaxity.

One would ideally like to expect the Bayesian procedures to maintain these desirable frequentist

properties.

To this end, we make the following assumption: the data is a random sample from some

unknown but fixed distribution governed by a true value of unknown parameter. We treat

Bayesian inference for the estimation problems from a classical perspective or develop the frequentist

asymptotic aspects of the posterior distribution.

In this Section, two main asymptotic properties of the posterior distribution, known as posterior

consistency and posterior contraction rate, will be established to quantify the effect of the priors.

1.2.1 Posterior consistency

Loosely speaking, posterior consistency entails that the posterior concentrates in every small

neighbourhood of the true parameter as the sample size of the data increases indefinitely. This

property could be viewed as the minimum requirement for Bayesian nonparametric inference

since it ensures that the truth could be extracted accurately from the posterior as long as a sufficiently

large amount of observations are collected. Bayesian nonparametric procedures become extremely

undesirable for lack of posterior consistency when an unlimited amount of information is available.

We begin with a formal definition for the notion of posterior consistency. Let the observation

X = (X1, X2, . . . , Xn) be a sample of size n drawn from an unknown true distribution denoted

by Pθ0 and consider a prior Π on the parameter space (Θ,B) equipped with a metric d. Let Pnθ0

and P∞θ0 denote the n-fold and infinite-fold true probability distribution Pθ0 respectively. The total

variance distance of two probability measures Pθ1 and Pθ2 on the sample space (X ,X ) is defined
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as,

dTV (Pθ1 , Pθ2) = sup
A∈X

|Pθ1(A)− Pθ2(A)| . (1.9)

If Pθ1 and Pθ2 admit the corresponding probability density functions pθ1(x) and pθ2(x) relative to

the Lebesgue measure respectively, then the Hellinger distance of probability measures Pθ1 and

Pθ2 is given as,

dH(Pθ1 , Pθ2) =

{∫ (√
pθ1(x)−

√
pθ1(x)

)2

dx

}1/2

. (1.10)

Sometimes dH(pθ1 , pθ2) is also used to denote the Hellinger distance.

DEFINITION 1.3 (Posterior consistency) A sequence of posterior distributions Π(·|X1, X2, . . . , Xn)

is said to be consistent at θ0 ∈ Θ with respective to some metric d if for every ε > 0,

Π(θ : d(θ, θ0) > ε|X1, X2, . . . , Xn)→ 0, (1.11)

either in Pnθ0-probability or P∞θ0 -almost surely .

Note that the notion of posterior consistency relies not only on the unknown true parameter

and the choice of the priors, but also on the version of the posterior distribution. We could neglect

the influence of the version of posterior choices in dominated case where a single version matters.

The metric d is often referred to the Hellinger distance or total variance metric. We then say the

posterior is Hellinger consistent at the true parameter θ0 if d is the Hellinger distance.

As early as the 1940’s, Doob’s pioneering work stated that consistency held except a null set

measured by the prior. Unfortunately, it did not identify the domain of the parameters where

posterior consistency takes place. Freedman (1963) showed that there was a huge null-set of

the prior where inconsistency occurs. Schwartz (1965) pioneered a new route to gain posterior

consistency by an appropriate control on the size of the model and mild conditions about a large

weak support of the prior in terms of Kullback-Leibler divergence.

The first requirement about controlling the size of the model can be generally understood

to recover the true parameter Pθ0 from the statistical model. There are several ways to satisfy
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this condition. One approach to make it accessible hinges upon the existence of a uniformly

exponentially powerful hypothesis test. This can be exhibited in the testing problems of the form,

H0 : θ = θ0 against H1 : θ ∈ {θ : d(θ, θ0) > ε}. (1.12)

The null hypothesis should be testable against parameters in {θ : d(θ, θ0) > ε}. A uniformly

exponentially powerful hypothesis test could be formulated as follows,

DEFINITION 1.4 (Uniformly exponentially powerful hypothesis test) We say a sequence of test

sequences {φn(X) : n = 1, 2, . . .} taking values in [0, 1] is uniformly exponentially consistent for

the testing (1.12) if there exists c > 0 such that for all ε > 0 and n = 1, 2, . . . ,

Pθ0(φn(X)) ≤ e−cn and sup
θ: d(θ,θ0)>ε

Pθ(1− φn(X)) ≤ e−cn. (1.13)

This test shows that both the type I and type II error probabilities tend to zero at an exponential

rate hence we could distinguish between θ0 and parameters in {θ : d(θ, θ0) > ε}. The latter

condition about the large weak support requires that for any ε > 0,

Π(θ : K(Pθ, Pθ0) < ε) > 0, (1.14)

where the Kullback-Leibler divergence between Pθ and Pθ0 is given as,

K(Pθ, Pθ0) = −
∫

log
dPθ
dPθ0

dPθ0 . (1.15)

THEOREM 1.5 (Schwartz (1965)) Assume that the true parameter θ0 is included in the parameter space

Θ equipped with a prior Π such that,

(i) the prior Π satisfies (1.14),

(ii) there exists a uniformly exponentially consistent test for (1.12).
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Then for every ε > 0,

Π(θ : d(θ, θ0) > ε|X1, X2, . . . , Xn)→ 0, in P∞θ0 -almost surely. (1.16)

This first requirement states that the prior should put positive mass to each small neighbourhood

of the unknown true parameter θ0. We say the priors possess the Kullback-Leibler property or the

parameter lies in the Kullback-Leibler support of the priors if Schwartz’s prior positivity condition

(1.14) holds. It plays a key role in the investigation of posterior consistency for a wide spectrum

of statistical models. A general discussion about the existence of the exponentially powerful tests

exhibited in the second condition can be found in Ghosh and Ramamoorthi (2003a).

Since a Kullback-Leibler neighbourhood always includes a Euclidean neighbourhood ball,

then the Kullback-Leibler support condition is always fulfilled in the parametric models for which

the priors have large support in the Euclidean topology. Also the weak neighbourhoods are

still large in the infinite- dimensional models. Such procedures will be problematic in stronger

topologies induced by the Hellinger distance or L1-distance widely as the loss function in the

context of density estimation. However, there are several possible remedies to this problem.

One popular method to treat this issue has been established with the aid of a sequence of sieves

that truncated the parameter space. Let the ε-covering number denoted by N(F , ε, d) that is the

smallest number of d-balls with radius ε needed to cover the space F . Consider a class of density

function denoted by F equipped with the Hellinger distance dH and a prior Π. The observations

X1, X2, . . . , Xn are assumed to be drawn from a true density p0 ∈ F .

THEOREM 1.6 (Ghosal et al. (1999)) Assume that for all δ > 0,

Π(p : K(p0, p) < δ) > 0, (1.17)

Furthermore, suppose that there exists a sequence of sets F1,F2, . . . such that for positive constants
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c1, c2, c3 and each sufficiently large n,

logN(Fn, ε, d) ≤ c3n, (1.18)

Π(F\Fn) ≤ c1e
−c2n. (1.19)

Then, for any ε > 0,

Π(p : dH(p, p0) > ε|X1, X2, . . . , Xn)→ 0, in P∞θ0 -almost surely. (1.20)

A similar idea of constructing appropriate sieves to give rise to consistency was carried out

by Barron et al. (1999) under slightly stronger conditions. Several comments on this result are

in order. The entropy condition (1.18) is an important ingredient to show Hellinger consistency.

The primary merit of using the sieve device is that it may be selected a compact set on which

a powerful exponentially test is built. Condition (1.19) states that the prior assigns a negligible

probability mass on the complement of the sieve. Notwithstanding, the prior should maintain

the Kullback-Leibler property exhibited in (1.17). Ghosal et al. (1999) deployed Dirichlet-normal

mixture priors on the class of density functions to illustrate this result. Alternative approaches to

deal with posterior consistency have been developed in the literature. We refer to the readers for

more details in Walker and Hjort (2001), Walker (2004) and Kleijn (2015) for the recent progress

on this topic.

1.2.2 Posterior contraction rate

Many procedures turn out to meet the criteria of posterior consistency, so more effort is taken

to differentiate between consistent procedures. A more finer asymptotic aspect than consistency

is known as the notion of posterior contraction rate. We may regard the notion of the rate of

posterior convergence as the natural extension or refinement of posterior consistency. Consistency

requires that the posterior shrinks to within any small ball centered on the true parameter. Here
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the speed of the convergence of the posterior quantifies arbitrarily small. But posterior contraction

rate is typically the speed that a shrinking ball centered around the true parameter while still

capturing the probability mass that goes to one. We present the precise definition for posterior

contraction rate as follows,

DEFINITION 1.7 (Posterior contraction rate) Consider a positive sequence (εn) such that εn ↓ 0, a

sequence of posterior distributions Π(·|X1, X2, . . . , Xn) is said to contract at θ0 ∈ Θ at a rate εn

with respective to some metric d if for each Mn →∞ as n→∞,

Π(θ : d(θ, θ0) > Mnεn|X1, X2, . . . , Xn)→ 0 in Pnθ0-probability. (1.21)

The main aspect of the definition above distinguishes from that of consistency is that the

radius of the shrinking ball depends on the sample size n. Any sequence that shrinked to zero

with a rate slower than εn is also a contraction rate. It would be appropriate to term this “ a rate

of posterior convergence”.

“For each Mn going to infinity” could be understood as Mn tends to infinity no matter how

slowly. Typically in large dimensional cases, choosing the constant sequence Mn also works well

for a large positive constant M . “Mn → ∞” matters specifically in the parametric models where

the posterior is needed to be scaled to a probability distribution supported on the full space.

A seminar work on the posterior convergence rate was carried out by Ghosal et al. (2000) that

developed a general theory under some weak conditions along the same spirit as Schwartz (1965).

Alterative approaches to address this issue involving somewhat stronger conditions can be found

in Shen and Wasserman (2001) and Walker et al. (2007).

We use D(ε,P, d) to stand for the ε-packing number of P . This is the maximal cardinality

of some subset in P where every pair is of distance at least ε. In view of (2.1) in Ghosal et al.

(2000), we could estimate the ε-packing numberD(ε,P, d) by ε-covering numberN(ε,P, d). The

following theorem about the posterior contraction rates marked a significant milestone in the

development of asymptotic theory in the context of Bayesian nonparametrics.
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THEOREM 1.8 (Ghosal et al. (2000)) Suppose that for a sequence εn with εn → 0 and nε2
n → ∞, a

constant C > 0 and sets Pn ⊂P , we have,

logD(εn,Pn, d) ≤ nε2
n, (1.22)

Π(P \Pn) ≤ e−(C+4)nε2n , (1.23)

Π
(
P ∈P : −P0 log

dP

dP0
< ε2

n, P0

(
log

dP

dP0

)2
< ε2

n

)
≥ e−Cnε2n . (1.24)

Then for sufficiently large M > 0, we have that,

Π
(
P ∈P : d(P, P0) > Mεn

∣∣ X1, . . . , Xn

)
−→ 0 in Pn0 -probability. (1.25)

These three sufficient conditions can be regarded as the quantitative refinement of those alluding

consistency. We provide a brief discussion of the conditions stated in this theorem. A more

detailed description has been given in Ghosal et al. (2000). The prior condition (1.24) plays a

crucial role in determining the rate. This condition put on the priors apart from the Kullback-Leibler

property in consistency requires a sufficiently large enough probability mass on the sharpened

Kullback-Leibler neighbourhood involving the second moment of the log-likelihood ratio. Intuitively,

the smaller variance P0

(
log dP

dP0

)2
would regulate the random variable p to fluctuate mildly, then

the prior mass on this shrinking ball could be controlled with an exponential low bound.

The entropy condition (1.22) reflects to some significant extent the model complexity and

ensures the existence of the exponentially powerful tests in a similar manner as that in consistency.

The condition (1.23) that assigns a negligibly tiny prior mass on the complement of the sieve is

not necessary especially in the cases that the sieve was chosen as the full model set itself.

The theory of posterior contraction rates has been extended for the non-i.i.d statistical settings

discussed in Ghosal and van der Vaart (2007a). A greater range of priors could satisfy these

sufficient conditions in most statistical models. However, the prior condition on the shrinking

Kullback-Leibler neighbourhood here is somewhat restrictive. Bound support statistical problem,
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for example, could not meet this prior requirement. This provides a strong motivation behind

Chapter 4. We refer the reader to this Chapter for more details.

1.2.3 Optimality and adaptation

Some estimators that we shall use in this thesis achieve the optimal posterior convergence rate.

Informally speaking, this implies that no point estimator whether Bayesian or classical, can contract

at a faster rate. In fact, it could be shown that if the posterior contracts at the rate εn, the point

estimator that summarizes the location information about the posterior converges to the true

parameter at the same rate εn. It follows that the posterior contraction rate could not exceed the

minimax rate in terms of its speed. Thus that the posterior achieves the minimax rate could be

viewed as an ideal target.

In a frequentist paradigm the general theory of the so-called minimax rate has been well

established. A detailed introduction about the minimax rate has been given in Tsybakov (2009). It

is well known that the minimax rate is of the order n−α/(d+2α) in the context of α-regular function

estimation with d arguments. Frequentist adaptive procedures have been extensively developed

in the literature, see for example, Bickel (1982), Efroimovich (1986), a series of papers by Lepskii

(1991, 1992, 1993) or Tsybakov (2009) for a textbook treatment on this topic.

A Bayesian procedure is said to converge at the minimax rate if the posterior contraction rate

in some space agrees with the minimax rate. In most statistical models, this space is characterized

by a few hyperparameters, for instance, that describes the features of the model, such as the

regularity, the shape and the sparsity.

In general, the optimal Bayesian procedures rely heavily on the true value of these hyperparameters.

For example, in the context of α-smooth densities, we need to build a prior via the use of B-splines

where the choice of the number of the elements depends on the smoothness level α. A collection

of priors indexed by the regularity level α should be constructed. But the exact value of the

smoothness level of the unknown parameter is rarely known to us in a realistic situation. Therefore

a prior constructed for this target class will lead to a suboptimal rate at the true density if it is
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actually coarser or smoother than the hypothesized class. The failure of the regularity of the prior

matching that of the unknown true parameter prompts us to construct a prior that yields the

minimax rate but does not hinge on the information about the unknown regularity.

The posterior is called adaptive to all regularity levels if such a prior exists. From a Bayesian

view of point, adaptation received growing attention in the past decade. Early work on Bayesian

adaptation in an infinite-dimensional model has been done by Belitser and Ghosal (2003) where

the domain of unknown parameter is accountable. Later Bayesian adaptive procedures have been

established for various statistical models. The minimax concentration rate without an additional

logarithm item was obtained in Huang (2004) who treated nonparametric regression problem

using a wavelet basis. A wide range of Gaussian process priors could yield adaption for all

smoothness levels in the context of density estimation, nonparametric regression and classification

settings in van der Vaart and van Zanten (2009) and de Jonge and van Zanten (2010, 2012).

Other particular class of priors have been investigated by Scricciolo (2006), van der Vaart and

van Zanten (2009), Rousseau (2010), Kruijer et al. (2010), Shen and Ghosal (2012), Shen et al.

(2013), Norets and Pati (2014) and Belitser and Serra (2014), among others. Recent attention has

switched to alternative adaptive Bayesian techniques known as empirical Bayesian methods in

which these unknown hyperparameters are estimated from the data in a frequentist perspective.

These data-driven choices for the hyperparameters could give rise to better statistical inference.

More general discussions could be found in Szabo (2014) and Szabo et al. (2013).

1.3 Overview of thesis

In this thesis we focus on asymptotic aspects of the nonparametric Bayesian procedures. In

Chapter 2 we examine the posterior concentration rate in the context of multivariate density

estimation using Bernstein polynomial prior. Also an MCMC algorithm based on slice sampling

is developed to sample from the posterior. An extensive illustration for the proposed approach

is conducted using simulated data and real data. Chapter 3 centers on the adaptive Bayesian



18 CHAPTER 1. INTRODUCTION

procedure in a linear regression model where the error variance depends on the covariates. The

rate of posterior contraction is obtained without any priori knowledge of the regularity level of the

true error standard deviation function. Chapter 4 is mainly based on a work jointly written with

Professor Bas Kleijn at University of Amsterdam. We propose a general theory of the posterior

convergence rate in the statistical settings where the condition that priors shall assign a large

amount of mass on the shrinking balls fails. This result is illustrated in several statistical models.

1.3.1 Chapter 2

This Chapter introduces a new approach to Bayesian nonparametric inference for densities on the

hypercube, based on the use of a multivariate Bernstein polynomial prior. Posterior convergence

rates under the proposed prior are obtained. A novel sampling scheme for the estimation of the

posterior predictive density is developed. The algorithm is based on a stick-breaking representation

of the model as well as the use of slice sampling techniques. The approach is illustrated with both

simulated and real data examples.

1.3.2 Chapter 3

In this chapter we consider adaptive Bayesian semiparametric analysis of the linear regression

model in the presence of conditional heteroskedasticity. The distribution of the error term on

predictors is modelled by a normal distribution with covariate-dependent variance. We show

that a rate-adaptive procedure for all smoothness levels of this standard deviation function is

performed if the prior is properly chosen. More specifically, we derive adaptive posterior distribution

rate up to a logarithm factor for the conditional standard deviation based on a transformation of

hierarchical Gaussian spline prior and log-spline prior respectively.

1.3.3 Chapter 4

Most existing work primarily concerning the properties of posterior contraction rates relies heavily

on carefully chosen priors that meet some requirements. A typical condition imposed on the
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priors has been proposed in Ghosal et al. (2000), i.e.

Π
(
P ∈P : −P0 log

dP

dP0
< ε2

n, P0

(
log

dP

dP0

)2
< ε2

n

)
≥ e−nε2n , (1.26)

where (εn) is a positive sequence such that εn → 0 and nε2
n → ∞. We call priors satisfying

condition (1.26) above GGV priors. GGV priors play a crucial role in exploring the rate of posterior

contraction in a broad spread of statistical models.

In this Chapter, we try to relax this condition to accommodate a wide range of priors. To that

end, we formulate an alternative rates-of-posterior-convergence theorem, based on an approach

proposed in Kleijn (2015). The aim is to strengthen model conditions and gain flexibility in the

choice for a prior, while maintaining optimality of the posterior rate of convergence.
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Chapter 2

Bayesian multivariate Bernstein

polynomial density estimation

2.1 Introduction

Many real data samples possess characteristics such as multimodality, high skewness and kurtosis

which are not well modeled by standard parametric distributions. In such cases, nonparametric

modeling techniques might be preferable.

Although kernel density estimation techniques are the most popular approaches from the

classical viewpoint, see e.g. Silverman (1986), in certain situations, alternative approaches based

on approximating polynomials have been considered. In particular, Vitale (1975) developed a

Bernstein polynomial based density estimator for density functions on a closed interval and this

was extended to bivariate densities in Tenbusch (1994).

In the Bayesian context, most nonparametric density estimation is based on the use of Dirichlet

process or Dirichlet process mixture priors, see e.g. Hjort et al. (2010) for a general review of

the area. However, in the case of univariate densities on a closed interval, Petrone (1999a,b)

developed an alternative approach based on the use of a Bernstein polynomial based prior. Consistency

properties of the derived posterior distribution were examined in Petrone and Wasserman (2002).

21
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The convergence rate of the posterior was derived in Ghosal (2001) and further studied in Kruijer

and van der Vaart (2008). An extended Bernstein polynomial prior model was examined in

Trippa et al. (2011). Finally, software for Bayesian Bernstein polynomial density estimation was

developed in Jara et al. (2011).

However, much less effort has been devoted to the generalization of Bernstein polynomial

priors to the multivariate case. One exception is Zheng et al. (2010) where a multivariate Bernstein

polynomial prior is assumed for the spectral density of a random field. Also, posterior convergence

rates of certain bivariate Bernstein polynomial priors are derived in Kruijer and van der Vaart

(2008). In this Chapter, we derive the convergence rate of posterior distribution of a multivariate

Bernstein polynomial model under very general conditions. Nevertheless, the main contribution

of this Chapter is to introduce a stick-breaking representation of the model and develop a new

computational approach to implementing multivariate Bernstein polynomial density estimation.

The proposed algorithm is based on the slice sampling techniques for Dirichlet process mixture

models developed in Walker (2007) and Kalli et al. (2011). It is shown to be less sensitive in

computational time to large sample sizes and high variable dimension than the multivariate

version of the algorithm used in Petrone (1999a).

The rest of this Chapter is organized as follows. Firstly, in Section 2, we briefly outline

the properties of univariate Bernstein polynomials. In Section 3, we introduce the multivariate

Bernstein polynomial prior and derive the associated posterior convergence rates. In Section 4,

we present the multivariate Bernstein-Dirichlet prior and provide an algorithm to sample from

the posterior distribution, which is a direct generalization to the multivariate case of the approach

developed in Petrone (1999a). We discuss some of the computational inconveniences of this

procedure and then, we construct a different representation of the model, which allows us to

define a much more efficient sampling algorithm. Section 5 then illustrates our approach with

both simulated and real data examples and finally, some conclusions and extensions are provided

in Section 6.
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2.2 Univariate random Bernstein polynomials

Bernstein polynomials, introduced by Bernstein (1912), are well known to provide good approximations

to continuous functions on a closed interval. Let h(x) be a continuous and bounded, real function

defined on [0, 1]. Then, the Bernstein polynomial of degree k for h(x) is defined by:

B(x; k, h) :=
k∑
j=0

h

(
j

k

)(
k

j

)
xj(1− x)k−j . (2.1)

It is well known that, letting k tend to infinity, the Bernstein polynomial approximations converge

uniformly to h and, moreover, that their derivatives also converge to the corresponding derivatives

of h. More details and further results on the approximation properties of Bernstein polynomials

are provided in e.g. Lorentz (1986) and Phillips (2003).

Bernstein polynomials are particularly useful to approximate distribution and density functions

for variables defined on a closed interval. Let G be a distribution function on [0, 1] with G(0) = 0,

then it is easy to show that the k-th order Bernstein polynomial approximation to the corresponding

density function is given by a mixture of beta densities:

b(x|k,G) =

k∑
j=1

ωj;kβ(x|j, k − j + 1), (2.2)

where ωj;k =
[
G
(
j
k

)
−G

(
j−1
k

)]
,β(x|c, d) = Γ(c+d)

Γ(c)Γ(d)x
c−1(1 − x)d−1 is a beta density and in the

sequel, we omit to mention the argument to denote the beta density by β(·, ·).

Petrone (1999a,b) proposed the use of Bernstein polynomials to define a prior on the class of

densities on [0, 1], called the Bernstein polynomial prior. This assumes a random density of the form

(2.2), where k follows a discrete probability distribution p(k) and given k, ω1
k = (ω1;k . . . , ωk;k)
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follows a distribution function H1
k on the k-dimensional simplex,

∆1
k =

(ω1;k . . . , ωk;k) : 0 ≤ ωj;k ≤ 1, j = 1, 2, . . . , k,

k∑
j=1

ωj;k = 1

 .

Petrone (1999a,b) showed that if for all k, p(k) > 0 and the density of H1
k is positive for any point

in ∆1
k, then every distribution on [0, 1] is in the weak support of the Bernstein polynomial prior.

Also, Petrone and Wasserman (2002) showed that the posterior distribution corresponding to this

prior is consistent at any continuous true density, f0, on [0, 1].

Ghosal (2001) obtained the rates of convergence of the posterior distribution for the Bernstein

polynomial prior assuming that the weight ω1
k follows a Dirichlet distribution Dir(α1;1, . . . , αk;k)

where the parameters αj;k are bounded by some number M for all j and k. If the true density is

itself a Bernstein density, then the rate is close to the parametric rate n−1/2 log n. Otherwise, the

rate of convergence is n−1/3(log n)5/6, provided that the true density is strictly positive together

with bounded second derivative.

One important case of the Bernstein polynomial prior is the so-called Bernstein-Dirichlet prior,

which is defined by letting αj;k := M
(
G0( jk )−G0( j−1

k )
)

, where G0 is a probability distribution

function on [0, 1]. This is equivalent to assuming thatG follows a Dirichlet process prior,DP(M,G0),

which is independent from the prior probability p(k). Kruijer and van der Vaart (2008) have

obtained the adaptive rate of convergence under this prior for strictly positive and α-smooth true

densities when α ∈ (0, 2]. They also extend their results to the multivariate case that we will

consider in the next Section.

Regarding inference algorithms, the literature is much less developed. Petrone (1999a,b)

propose an MCMC algorithm to approximate the predictive density for the Bernstein-Dirichlet

prior. The results obtained are adequate but sometimes the algorithm can be very slow, especially

if the sample size is large. Alternatively, Petrone and Wasserman (2002) consider a different

approximation by computing the maximum likelihood density estimates for each k and the averaging

with respect to some weights derived from the BIC or AIC. All these algorithms are based on the
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introduction of auxiliary variables, Yi, independent and identically distributed according to G.

More specifically, for a sequence of exchangeable variables, {X1, X2, . . .} with values in [0, 1], the

Bernstein-Dirichlet prior is written hierarchically as follows:

Xi | k, Yi ∼ β (zk (Yi) , k − zk (Yi) + 1) ,

Yi | G ∼ G,

G ∼ DP(M,G0),

k ∼ p(k).

where

zk (Yi) :=

k∑
j=1

j I
(
j − 1

k
< Yi ≤

j

k

)
, (2.3)

and where I(·) is the indicator function. Note that the auxiliary variables Yi, provide the labels of

the components of the beta mixture, for any value of k.

In this Chapter, we will use similar auxiliary variables, but we will consider an alternative

specification for the prior model based on the stick-breaking representation of the Dirichlet process

by Sethuraman (1994). Observe that, using this approach, we can write the Bernstein-Dirichlet

prior as an infinite mixture of beta densities as follows:

f(x | k,ρ,y) :=
∞∑
s=1

ρsβ (x|zk(ys), k − zk(ys) + 1) , (2.4)

where ρ = (ρ1, ρ2, . . .) such that ρ1 = v1 and ρs = vs
∏s−1
l=1 (1 − vl),s = 2, 3, . . . , where a Beta

prior distribution is assumed for vl ∼ β(1,M), for l = 1, 2, . . ., and y = (y1, y2, . . .) such that the

baseline prior distribution G0 is assumed for ys, s = 1, 2, . . . .

Based on the stick-breaking representation of the Dirichlet process, Walker (2007) and Kalli

et al. (2011) propose MCMC schemes using slice sampling techniques to deal with the infiniteness
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in Dirichlet process mixture models. These procedures compared to traditional approaches based

on the original algorithm by Escobar and West (1995) produce better, faster and easier to implement

algorithms. Therefore, it seems reasonable to use these ideas for approximating the predictive

density under the Bernstein-Dirichlet prior.

In order to provide intuition for the reduction of computational cost, observe that using the

MCMC approaches of Petrone (1999a,b) and Petrone and Wasserman (2002), it is necessary to

sample n auxiliary variables yi for i = 1, . . . , n, where n is the sample size, and k weights,

(ω1,k, . . . , ωk,k) at each MCMC iteration given k. On the contrary, using the representation (2.4)

and the slice sampling ideas based on Walker (2007), in practice it is only required to sample a

finite number of mixture parameters (ρs, ys) for s = 1, . . . , s∗ at each MCMC iteration, where s∗

will be in general much smaller than the sample size n.

2.3 Multivariate random Bernstein polynomials

Let the m-dimensional unit hypercube be denoted by [0, 1]m. Then, the associated m-dimensional

Bernstein polynomial approximation at x = (x1, . . . , xm), for a continuous, bounded function h

on [0, 1]m is defined by:

B(x; k, h) :=

k∑
j1=0

. . .

k∑
jm=0

h

(
j1
k
, . . . ,

jm
k

)( m∏
r=1

(
k

jr

)
xjrr (1− xr)k−jr

)
. (2.5)

As in the univariate case, the Bernstein polynomials and their derivatives converge uniformly

to h and their corresponding derivatives as k → ∞. In the case that h = G is a multivariate

distribution function, then analogous to (2.2), the corresponding density approximation is given

by:

b(x; k,G) =
k∑

j1=1

. . .
k∑

jm=1

wj1j2...jm;k

m∏
r=1

β(xr|jr, k − jr + 1), (2.6)

wherewj1j2...jm;k =
∫ j1/k

(j1−1)/k · · ·
∫ jm/k

(jm−1)/k g(x1, x2, . . . , xm)dx1dx2 . . . dxm and where g is the corresponding

density function.
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In particular, the multivariate Bernstein density of order k in 2.6 could uniformly approximate

the smooth multivariate density functions with the error bounded by 1/k.

LEMMA 2.1 Let the probability density g be continuously differentiable on [0, 1]m with bounded determinant

of its associated Hessian matrix, then

sup
0<x1,x2,...,xm≤1

|g(x)− b(x; k,G)| = O(k−1). (2.7)

This property can easily be shown by observing that,

b(x; k,G) = kmE

(∫ (J1+1)/k

J1/k
. . .

∫ (Jm+1)/k

Jm/k
g(z) dz1 . . . dzm

)
, (2.8)

where z := (z1, z2, . . . , zm) and Jr ∼ Binomial(k − 1, xr) for r = 1, 2, . . . ,m. Also the proof of this

lemma is relegated to the Appendix.

It is straightforward to extend the results by Petrone (1999a,b) to the multivariate case to define

a multivariate Bernstein polynomial prior, see Zheng et al. (2010). This consists of a multivariate

random density defined on [0, 1]m given by (2.6), where k has probability mass function p(k), and

given k, the weights:

ωmk := {ωj1...jm;k : jr = 1, . . . , k; r = 1, . . . ,m} , (2.9)

follow a distribution Hk on the km-dimensional simplex:

∆m
k :=

ωmk : 0 ≤ ωj1...jm;k ≤ 1, jr = 1, . . . , k, r = 1, . . . ,m,
k∑

j1=1

. . .
k∑

jm=1

wj1j2...jm;k = 1

 . (2.10)

Similarly to the univariate case, it can be shown that every probability distribution on [0, 1]m lies

in the topology of weak convergence of the m-variate Bernstein polynomial prior provided that

p(k) > 0, for all k, and the density of Hm
k is positive for any point in ∆m

k , see Zheng et al. (2010).
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2.3.1 The convergence rate of the posterior distribution

In this Section, we derive the convergence rate of the posterior distribution of the multivariate

Bernstein polynomial prior, extending Theorem 2.3 of Ghosal (2001) to the multivariate case.

Similar to Ghosal (2001), we will assume that the km weights, given in (2.9), follow a Dirichlet

distributionDir(α11...1;k, α11...2;k, . . . , αkk...k;k), where the parameters, αj1,...,jm;k, are bounded above

by some finite number, M , for all jr and k, for r = 1, . . . ,m.

Assume that we observe an independent and identically distributed sample, X1, . . . ,Xn, where

Xi = (Xi1, . . . , Xim) are generated from a true m-variate density f0 ∈ P , where P denotes the

class of all probability density functions supported on [0, 1]m. Suppose P is equipped with a

Borel algebra F . Let P0 be the probability measure with density f0 and let dH(·, ·) and ‖ · ‖1 stand

for the Hellinger distance and L1-norm respectively. Then, following Ghosal (2001), given a prior,

Π on a set of m-variate densities, the posterior distribution is a random measure:

Π (f ∈ A | X1, . . . ,Xn) =

∫
A

∏n

i=1
f (Xi) Π(df)

/ ∫ ∏n

i=1
f (Xi) Π(df), (2.11)

whereA ∈ F . Assume a multivariate Bernstein prior and therefore, the prior on the density of the

observations is concentrated on the space
⋃∞
k=1 Bm

k where Bm
k is the set of multivariate Bernstein

densities of order k given by:

Bm
k :=


k∑

j1=1

. . .

k∑
jm=1

wj1j2...jm;k

m∏
r=1

β(xr|jr, k − jr + 1) : ωmk ∈ ∆m
k

 .

Then, under some conditions the following theorem establishes the corresponding posterior distribution

converges to some rate and the proof is given in the Appendix.

THEOREM 2.2 Let the true density f0 be bounded away from 0 and satisfy the assumptions stated in lemma

2.1. Consider a Bernstein polynomial prior for f satisfying the condition B1e
−β1km ≤ p(k) ≤ B2e

−β2km
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for all k and some constants B1, B2, β1, β2 > 0. Then for a sufficiently large positive constant M ,

Π
(
f : dH(f, f0) > Mn−1/(m+2)(log n)(m+4)/(2m+4)

∣∣∣X1, . . . ,Xn

)
→ 0 in Pn0 -probability.

2.4 The multivariate Bernstein-Dirichlet prior

In this Section, we introduce the multivariate Bernstein-Dirichlet prior which, similar to the univariate

case, is defined as a multivariate Bernstein prior where the unknown distribution function G in

(2.6) follows an m-dimensional Dirichlet process prior. Therefore, for a sequence of exchangeable

multivariate variables, {X1,X2, . . . ,}, with values on [0, 1]m, where Xi = (Xi1, . . . , Xim), this

prior model can be written hierarchically as follows:

Xi | k,G ∼ b(·; k,G) are conditionally i.i.d., (2.12)

k ∼ p(k),

G ∼ DP(M,G0),

where b(x; k,G) is as in (2.6) and the base measure, G0, is a multivariate distribution function

defined on [0, 1]m. This implies that the km weights, ωmk , defined in (2.9), follow a Dirichlet

distribution, Dir(α11...1;k, α11...2;k, . . . , αkk...k;k), with parameters given by,

αj1j2...jm;k := M

∫ j1/k

(j1−1)/k
. . .

∫ jm/k

(jm−1)/k
g0(x)dx1dx2 . . . dxm, (2.13)

where jr = 1, . . . , k, and r = 1, . . . ,m, and g0 is the probability density corresponding to the

Dirichlet base measure, G0.

Given this multivariate Bernstein-Dirichlet prior, we are now interested in sampling from the

predictive density of a new observation. The first attempt consists in extending the algorithm

by Petrone (1999a,b) to the multivariate case. Then, as in the univariate case, we introduce

a set of auxiliary variables, {Y1,Y2, . . . ,}, with values on [0, 1]m, which are i.i.d. according to
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the multivariate Dirichlet process G. Therefore, the model structure can be represented in a

hierarchical way as follows:

Xir | k, Yir ∼ β (zk (Yir) , k − zk (Yir) + 1) , for r = 1, . . . ,m, (2.14)

Yi | G ∼ G, (2.15)

G ∼ DP(M,G0), (2.16)

k ∼ p(k), (2.17)

where Yi = (Yi1, . . . , Yim) and the function zk(·) is defined in (2.3). Observe that the hidden

variable, Yi, provides information about which of the km components of the mixture (2.6) the Xi

comes from. Therefore,

Xi | Yi ∼
m∏
r=1

β (xir | jr, k − jr + 1) if Yi ∈
(
j1 − 1

k
,
j1
k

]
× . . .×

(
jm − 1

k
,
jm
k

]
.

Given an observed sample, x1, . . . ,xn, where xi = (xi1, . . . , xim), it is straightforward to

extend the hybrid Monte Carlo algorithm of Petrone (1999a,b) to the multivariate case as follows.

Firstly, select a starting value (y
(0)
1 , . . . ,y

(0)
n ). Then, repeat iteratively the following steps.

(i) Generate a value from the conditional posterior distribution of k which

is proportional to:

p(k)
n∏
i=1

m∏
r=1

β(xir; zk(yir), k − zk(yir) + 1).

(ii) For ν = 1, . . . , n :

(a) With probability q(ν) ∝Mb(xν ; k,G0), sample yν from the density:

ψ(y1, . . . , ym) ∝ g0(y)

m∏
r=1

β(xνr; zk(yr), k − zk(yr) + 1). (2.18)
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(b) With probability,

q(l) ∝
n∏
i=1

m∏
r=1

β(xνr; zk(yir), k − zk(yir) + 1),

for l = 1, . . . , ν − 1, ν + 1, . . . , n, and set yν = yi.

(iii) Sample the weights, ωj1...jm;k, for jr = 1, . . . , k, and r = 1, . . . ,m, from a

Dirichlet distribution with parameters, (αj1...jm;k +Nj1...jm;k), where αj1...jm;k

is defined in (2.13) and

Nj1...jm;k :=

n∑
i=1

m∏
r=1

I
(
jr − 1

k
< yir ≤

jr
k

)
. (2.19)

Given a posterior sample from this algorithm, the predictive density can be approximated by,

1

T

T∑
t=1

 k(t)∑
j1=1

. . .
k(t)∑
jm=1

w
(t)

j1j2...jm,k(t)

m∏
r=1

β(xr|jr, k(t) − jr + 1)

 , (2.20)

where T denotes the size of the posterior sample and k(t) and w
(t)

j1j2...jm;k(t)
denote, respectively,

the values of the polynomial order and the weights at each stage of the algorithm.

Some comments about the algorithm are in order. Firstly, step 1 above is straightforward, as

the distribution of k is defined on the positive integers. Then, we may compute the conditional

posterior probabilities on a large range, [1, kmax], or alternatively, define a Metropolis-Hastings

algorithm where a candidate, k̃ = k ± 1, is generated with 0.5 probability. Step 2 is also easy to

implement since the product of betas in (2.18) is stepwise constant in each hypercube,

(
j1 − 1

k
,
j1
k

]
× . . .×

(
jm − 1

k
,
jm
k

]
. (2.21)

However, this step can be computationally intensive, especially if the sample size is large since it

is required to sample a missing value from (yν | y1, . . . ,yν−1,yν+1, . . . ,yn) for each ν = 1, . . . , n.
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Finally, step 3 is also simple to carry out, but it may be very costly when the dimension, m, is

large since the number of weights to sample is km. Furthermore, observe that Nj1...jm;k, in (2.19),

counts the number of yi’s in each hypercube, (2.21), and this can be frequently zero if m is large

due to data sparsity, which can be viewed as a curse of dimensionality.

In the next Subsection, we will introduce a stick-breaking representation of the model which

will allow for the construction of a more efficient MCMC algorithm. This will be based on the slice

sampling techniques for Dirichlet process mixtures proposed in Walker (2007), which considers

the introduction of further auxiliary variables to handle with the infiniteness of the model. The

proposed algorithm will be shown to be less sensitive in computational time to large sample sizes

and/or variable dimension and also quite easy to implement. Further, it will not require the

sampling of km weights at each stage of the algorithm so that problems with data sparsity will be

avoided.

2.4.1 Stick-breaking representation

In this Section, we consider a different representation of the Bernstein-Dirichlet prior model

introduced in (2.14)-(2.17). Firstly, observe that given k, the model in (2.14)-(2.16) is a Dirichlet

process mixture, as introduced in Antoniak (1974), of independent beta densities driven by certain

parameters, Yi. Therefore, using the stick-breaking representation of Sethuraman (1994), we

may rewrite the multivariate Bernstein-Dirichlet prior as a countably infinite mixture model of

independent beta densities on the unit hypercube as follows:

f(xi|k,Ω,Θ) =

∞∑
s=1

ρs

m∏
r=1

β (xir|zk(ysr), k − zk(ysr) + 1) , (2.22)

where Ω = (ρ1, ρ2, . . .) is an infinite set of weights such that ρ1 = v1 and ρs = vs
∏s−1
l=1 (1 − vl),

where a Beta prior distribution is assumed for vs ∼ β(1,M), for s = 1, 2, . . ., and where Θ =

(y1,y2, . . .) is an infinite set of multivariate parameters, where ys = (ys1, . . . , ysm), for s = 1, 2, . . .,

such that each ys follows the baseline multivariate prior distribution G0 and zk(·) is defined in



2.4. THE MULTIVARIATE BERNSTEIN-DIRICHLET PRIOR 33

(2.3).

Note that there is a difference between how missing variables, ys, are introduced here and

in the previous algorithm. Observe that above, given a sample of multivariate observations,

{x1, . . . ,xn}, there were a set of associated missing data, {y1, . . . ,yn}, which were i.i.d. from G.

On the contrary, using the specification in (2.22), these missing variables are viewed as parameters

such that each observation, xi, is governed the same set of infinite parameters, Θ = (y1,y2, . . .),

for i = 1, . . . , n.

Following Walker (2007), we now introduce a uniform latent variable ui over [0, 1] to convert

the infinite mixture representation, (2.22), into a finite mixture representation as follows:

f(xi, ui|k,Ω,Θ) =
∞∑
s=1

I(ui < ρs)
m∏
r=1

β (xir|zk(ysr), k − zk(ysr) + 1) ,

=
∑

s∈A(ui)

m∏
r=1

β (xir|zk(ysr), k − zk(ysr) + 1) ,

where the set A(ui) := {s : ui < ρs}, which is clearly a finite set. Observe that integrating over

ui, we obtain the original infinite mixture density, (2.22). Also, given ui, the number of mixture

components is finite,

f(xi|ui, k,Ω,Θ) =
1

Ri

∑
s∈A(ui)

m∏
r=1

β (xir|zk(ysr), k − zk(ysr) + 1) ,

where Ri :=
∑∞

s=1 I(ui < ρs), is the number of elements in the set A(ui). Finally, the marginal

distribution of ui is uniform on the interval [0, ρs], with probability ρs.

Then, we may introduce a further latent label variable, di, indicating to which of these finite

mixture components belongs each observation:

f(xi, ui, di|k,Ω,Θ) =I(ui < ρdi)

m∏
r=1

β (xir|zk(ydir), k − zk(ydir) + 1) .
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Therefore, the complete likelihood function based on the sample X = {x1,x2, . . . ,xn} is:

l(k,Ω,Θ|X,u,d) =

n∏
i=1

m∏
r=1

I(ui < ρdi)β (xir|zk(ydir), k − zk(ydir) + 1) .

where u = (u1, u2, . . . , un) and d = (d1, d2, . . . , dn).

Now, we can construct an MCMC algorithm to sample the posterior parameter distribution as

follows. Firstly, select a starting allocation, d(0) = (d
(0)
1 , . . . , d

(0)
n ). Then, simulate a Markov chain

by repeating iteratively the following steps.

(i) Sample a finite number of weights (ρ1, . . . , ρs∗) jointly with (u1, . . . , un).

(a) Sample from vs ∼ β(ns + 1, n −
∑s

l=1 nl + M) for s = 1, . . . , d∗, where d∗ =

max{d1, . . . , dn} and ns =
∑n

i=1 I(di = s) and set ρs = vs
∏s−1
l=1 (1− vl).

(b) Sample ui by simulating from U(0, ρdi) for i = 1, . . . , n.

(c) If necessary, generate more weights, ρs, from the prior, by simulating

from vs ∼ β(1,M), until
∑s∗

s=1 ρs > 1− u∗, where u∗ = min {u1, . . . , un}.

(ii) Sample the mixture parameters, ys, for s = 1, . . . , s∗, by simulating from:

f(ysr| · · · ) ∝ f0(ysr)
∏
i:di=s

β(xir; zk(ysr), k − zk(ysr) + 1). (2.23)

independently for r = 1, . . . ,m. If there is no di equal to s then sample

ys from G0.

(iii) Sample the allocation variables, di, for i = 1, . . . , n, by simulating from:

P (di = s| · · · ) ∝ I(ui < ρs)

m∏
r=1

β(xir; zk(ysr), k − zk(ysr) + 1). (2.24)
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(iv) Sample k by simulating from the following full conditional distribution:

P (k| · · · ) ∝ p(k)

n∏
i=1

m∏
r=1

β(xir; zk(ydir), k − zk(ydir) + 1). (2.25)

A few comments on this algorithm are in order. Firstly, step 1 is from Walker (2007) and

Papaspiliopoulos and Roberts (2008) and only requires to sample from beta and uniform distributions.

Step 2 is easy to sample as the product of betas is a stepwise function on [0, 1] . Note that, the value

of s∗will be in general smaller than the sample size n, and therefore, this step will be usually faster

than step 2 in the algorithm based on Petrone (1999b) introduced before. Step 3 is the standard

sampling approach for indicator variables in mixture models and it consists of sampling from

which of the finite mixture components verifying (ui < ρs) comes each observation. Finally, step

4 is similar to step 1 from the previous algorithm and can be undertaken similarly.

Finally, given a posterior sample from this algorithm, the predictive density can be approximated

using the sampling ideas by Walker (2007) as follows. At each iteration, sample a uniform U(0, 1)

variable, v, and select the mixture component, s′, such that,
∑s′−1

s=1 ρs < v <
∑s′

s=1 ρs. Then,

consider the parameters, ys′ , for this mixture component. Thus, the predictive density is approximated

with:
1

T

T∑
t=1

ρ
(t)
s′

m∏
r=1

β
(
xr|zk(t)

(
y

(t)
s′r

)
, k(t) − zk(t)

(
y

(t)
s′r

)
+ 1
)
, (2.26)

where T denotes the size of the posterior sample, ρ(t)
s′ the weight of the sampled mixture component

at the t-th iteration, y(t)
s′r are the elements of y

(t)
s′ , which are the parameter of the sampled mixture

component at the t-th iteration and, finally, k(t) is the value of the polynomial order at the t-th

iteration.

Observe that the main advantage in the estimation of this predictive density compared to

(2.20) is that it is not required to evaluate the posterior distribution for the km weights, ωkm , in the

Bernstein polynomial which, besides being a very large number of elements to sample, there may

be a lot of weights with very small values when the data is sparse, leading to numerical problems
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with the algorithm.

2.5 Simulations and empirical applications

In this Section, we undertake several simulation studies and a real data example to illustrate the

performance of the proposed nonparametric Bayesian approach. For simplicity in the visualization,

we only consider examples in the two-dimensional case in order to better illustrate the accuracy

in density estimation.

In all cases, we impose the following noninformative prior assumptions. For the baseline

distribution, F0, we assume a uniform distribution on [0, 1]2. We also set the smoothing parameter

to be M = 1, as suggested in Petrone (1999b), in order to express a small degree of belief in

the prior guess. Finally, we assume the following hierarchical prior structure for the Bernstein

polynomial degree k:

k − 1 | λ ∼ Poisson(λ),

λ ∼ Gamma(a, b).

Observe that this prior structure is consistent with the assumptions in theorems 3.1, where it is

required a strictly positive prior probability for all possible values of k. Also, in order to avoid a

prior sensitivity to the choice of λ, we further assume a Gamma hyperprior where we might set

for example a = 1 and b = (n
1
3 − 1), where n is the sample size. This implies that the prior mean

for k is n
1
3 , which is the value suggested for k in Sancetta and Satchell (2004) in the bivariate case.

The proposed MCMC algorithm described in Section 4 is run using 100 000 iterations and

discarding the first 50 000 as burn-in iterations.

2.5.1 Simulated data

Firstly, we consider simulated data from the bivariate beta distribution proposed in Olkin and

Liu (2003). This is a continuous variable with support on the unit square and it is a generalization
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of the univariate beta distribution function to the bivariate case. The bivariate beta distribution,

β2(x, y; a, b, c), is derived by considering the joint distribution of two random variables:

X :=
U

U + V
, Y :=

V

V +W
,

where U , V and W are three independent standard gamma distributions with respective shape

parameters, a, b and c. Clearly, the marginal distributions of X and Y are beta distributions,

β(x; a, c) and β(y; b, c), respectively. This model can describe a wide range of densities on the unit

square and can be easily generalized to the multivariate case.

Figure 2.1 shows the estimated predictive density, using (2.26), and true density for 200 data

points simulated from a bivariate beta distribution β2(x, y; 5, 10, 10). The predictive and true

marginal densities are also shown. We can see that the proposed Bayesian density estimation

method based on Bernstein polynomials and using slice sampling provide a good fit to the data.

We have also compared these results with those obtained using the multivariate extension of

the hybrid Monte Carlo algorithm of Petrone (1999a,b) described at the beginning of Section 4. As

expected, the predictive distributions are almost identical to that shown in Figure 2.1. However,

we have observed some differences in the mixing performance of the two algorithms as illustrated

in Figure 2.2, where the trace plots and histograms of the posterior sample for k obtained with

both algorithms are shown. Observe that the proposed slice sampling method seems to better

explore the state space and, in particular, the tails of the posterior distribution. Nevertheless, the

main difference between these two approaches is the computational cost. For this example, the

computing time was of one hour and a half using the proposed slice sampling algorithm, while

the hybrid Monte Carlo method took four hours using in both cases self programmed code in R

2.15.2 (R Development Core Team 2011) on a computer with a 3.4 Ghz core.

In order to illustrate the flexibility of the model, we now consider 200 simulated data from a

mixture of bivariate beta densities β2(x, y; 5, 10, 10) and β2(x, y; 5, 1, 5) with equal weights. Using

the same prior specifications as before, the proposed slice sampling algorithm is run for these
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Figure 2.1: Predictive and true densities obtained from 200 simulated data from a bivariate beta distribution
β2(x, y; 5, 10, 10) (left) and marginal distributions (right) using the proposed slice sampling algorithm.
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Figure 2.2: Trace plots and histograms of the posterior sample for k using the proposed slice sampling algorithm and
the multivariate extension of the hybrid Monte Carlo algorithm by Petrone (1999a,b) obtained from simulated data
from a bivariate beta distribution.
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Figure 2.3: Predictive and true densities obtained from 200 simulated data from a mixture of bivariate beta distributions
β2(x, y; 5, 10, 10) and β2(x, y; 5, 1, 5) with equal weights (left) and marginal distributions (right) using the proposed
slice sampling algorithm.

data using the same number of iterations. The true and predictive joint densities are illustrated

in Figure 2.3. The marginal predictive and true densities corresponding to mixtures of univariate

beta distributions are also shown. We can observe that also in this mixture case there is a good fit

to the true densities.

As before, we have compared these results with those obtained using the hybrid Monte Carlo

method leading to similar predictive densities. However, in this case the differences in the mixing

performance of the algorithm are more pronounced as shown in Figure 2.4. Also, while the slice

sampling algorithm required less than two hours and a half, the hybrid Monte Carlo took more

than three hours and a half.

Finally, we have also tried alternative prior specifications. In general, there is little sensitivity

of the density estimations to the choice of the concentration parameterM . Similar to the univariate

case in Petrone (1999b), the predictive densities get somewhat closer to the uniform prior distribution

for larger values of M . On the other hand, as we would expect, there is slightly more sensitivity
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Figure 2.4: Trace plots and histograms of the posterior sample for k using the proposed slice sampling algorithm and
the multivariate extension of the hybrid Monte Carlo algorithm by Petrone (1999a,b) obtained from simulated data
from a mixture of two bivariate beta distributions.

to the prior specification for k. We have observed that using prior distributions for k concentrated

on small values, such as a Poisson prior distribution with small mean, lead to smoother predictive

densities than using a uniform prior on a closed interval, as observed for the univariate Bernstein

model in Petrone (1999b). As noted earlier, k plays a similar role in the Bernstein polynomial to

the bandwidth in kernel density estimation. This is the main reason to define a hierarchical prior

structure for k as introduced at the beginning of this Section.

2.5.2 Real data example

In this Section, we illustrate the proposed Bayesian density estimation method based on Bernstein

polynomials and using slice sampling to examine the relationship between the percentage of

forest area (% of land area) and percentage of agricultural nitrous oxide emissions (% of total)

in 127 countries in 2010. The data are available from http://data.worldbank.org/. Nitrous

oxide is naturally present in the atmosphere, however, human activities in agriculture such as

http://data.worldbank.org/
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fertilizer use and waste and savannah burning are increasing the amount of this gas in the atmosphere.

The impact of nitrous oxide emissions on warming the atmosphere is over 300 times that of carbon

dioxide per unit weight. Therefore, it is interesting to examine the influence of the percentage

forest area in the reduction of these emissions.

Figure 2.5 shows the scatter plot of these data together with the estimated joint density using

the proposed Bernstein polynomial model with the same prior assumptions and MCMC iterations

as in the simulation examples. We can observe that the model identifies three main clusters of

countries. Firstly, there is a large group corresponding to those countries with more than 10% of

forest area where there is a clear negative relationship between the percentage of forest area and

the nitrous oxide emissions. Secondly, there is a fairly large group with less than 10% of forest area

but comparatively a large percentage of nitrous oxide emissions. Finally, there is a small group of

countries with a low percentage of forest area and a low percentage of nitrous oxide emissions.

Finally, Figure 2.6 shows the estimated marginal distributions of the percentage of forest

area and the percentage of nitrous oxide emissions. We can observe that the distribution of the

percentage of forest area has two modes, one is zero and the other is close to 0.4. The nitrous

emissions percentage distribution is left-skewed with a mode close to 0.8. It seems that the model

is flexible enough to capture adequately the different shapes of these distributions.

2.6 Conclusions and extensions

In this Chapter, we have extended the Bernstein-Dirichlet prior introduced in Petrone (1999a,b)

for densities on a closed interval to the multivariate case and have obtained the convergence

rate of the associated posterior distribution. Moreover, we have introduced a new algorithm for

sampling from the posterior distribution. Various extensions are possible.

Firstly, although here we have defined the multivariate Bernstein polynomial using a single

k, in principle it is possible to consider different values k1, . . . , km for the different components of

x. This might be useful from a practical viewpoint if some variables are more spread than others.
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Figure 2.5: Predictive joint density of the percentage of forest area and percentage of agricultural nitrous oxide
emissions obtained from a data base of 127 countries in 2010.
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Secondly, following Tenbusch (1994), it would be interesting to consider multivariate Bernstein

densities on the triangle which might be more appropriate for modeling the joint density of

various proportions of the same quantity. Finally, the multivariate Bernstein polynomial provides

an asymptotic model for a copula, see e.g. Sancetta and Satchell (2004) so that it can be used to

model the dependence structure of a multivariate distribution. Then the use of a Bernstein-Dirichlet

prior for the copula could be combined with standard, Bayesian nonparametric priors for the

marginals to provide a general, nonparametric approach to multivariate data modeling. Work is

in progress on these problems.
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Chapter 3

Bayesian linear regression with

conditional heteroskedasticity

3.1 Introduction

We consider Bayesian estimation of the linear regression model that imposes conditional moment

restrictions. A useful framework like E(Y |X) = X ′β0 or Y = X ′β0 + ε, E(ε|X) = 0 is widely

formulated to analyze a number of statistical and econometric models. It is well-known that

the procedure of estimating the parameters of interest could be expected to be efficient provided

more information about the conditional error distribution is known. In this Chapter, we propose

a Bayesian semiparametric method for consistent estimation of the regression coefficients and

the standard deviation function when the error term is subject to a normal distribution with

associated variance that is dependent on covariates.

The primary purpose of this Chapter is to investigate the asymptotic frequentist properties

of the corresponding posterior distribution by putting a prior on the regression coefficients and

the standard deviation in this linear model. An analysis of the asymptotic behavior of Bayesian

methods in infinite-dimensional statistical models is important, such as posterior consistency,

rate of posterior convergence, rate-optimality and adaptation properties and Bernstein-von Mises

47
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phenomenons, which reflect a sense of Bayesian robustness, namely that the prior does not have

an impact on the posterior distribution too much when the amount of information collected in

the data or the number of observations grows indefinitely.

In recent years, there has been substantial research in Bayesian nonparametrics on the development

of this mathematical, asymptotical theory for a wide range of statistical models, see, for example,

Ghosal et al. (1999, 2000); Ghosal and van der Vaart (2001, 2007b,a), to name a few. However, it

has been studied very little in the linear models with predictor-dependent error densities. Norets

(2015) established a semiparametric version of Bernstein-von Mises theorem under misspecification:

the posterior credible regions of the regression coefficients are asymptotically equivalent to the

frequentist ones and also this posterior inference is efficient even though the data generating

process is not normal. Pelenis (2014) considered the kernel stick-breaking mixtures to model the

conditional error distribution and demonstrated posterior consistency of the conditional error

density and the finite regression coefficients for these kernel mixture priors. Also, Wang (2013)

studied posterior consistency for the heteroscedastic nonparametric regression models by relaxing

the assumptions of linearity in the model, with a substitution of an unknown, smooth regression

function. There is a noticeable absence of rate adaptation results in these regression settings.

In this Chapter, we plug this gap and take up the investigation of this rate adaptive procedure,

in order to provide a theoretical underpinning of the Bayesian approach to explore the possible

accuracy at maximum capacity and assess the well-balanced spread of the underlying prior distribution

across a continuum of regularities of the functions considered. Adaptive convergence rates for

Bayesian nonparametric estimation in various statistical models have been established by Huang

(2004), Scricciolo (2006), Belitser and Ghosal (2003), van der Vaart and van Zanten (2009), Rousseau

(2010), Kruijer et al. (2010), de Jonge and van Zanten (2010, 2012), Shen and Ghosal (2012), Shen

et al. (2013), Norets and Pati (2014) and Belitser and Serra (2014), among others.

A broad class of priors have been explored to yield adaptation across all smoothness levels.

Recently, priors based on splines have received much attention to the construction of probability

distribution on infinite-dimensional spaces. Various groups of researchers have worked with
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univariate splines or its corresponding tensor-product splines in the multivariate case as a useful

block to construct a prior. For example, Huang (2004) built a prior on the discrete mixture of

splines to develop a theorem on adaptive convergence rates in the context of regression and

density estimation. de Jonge and van Zanten (2012) discussed priors on multivariate functions

by choosing an appropriate probability distribution on the partition size and Gaussian prior on

B-spline coefficients in the tensor-product B-spline expansions. Shen and Ghosal (2012) constructed

a prior using finite random splines with a prior distribution on the number of terms. Belitser and

Serra (2014) investigated an extension of these results involving spline-based priors by endowing

a probability distribution on the location of the knots instead of assuming them to be equally

spaced. This enables us to build a wide spectrum of priors on the conditional standard deviation

of the regression error terms. It is widely known that the posterior distribution contracts at a

rate of the order n−α/(2α+d) (up to an additional logarithm factor) for a α-smooth functions of

d-variables, which agrees with the optimal rate of the estimators in the frequentist context. In

other words, a fully rate-adaptive procedure can be obtained across all smoothness levels if that

holds. One possible explanation of this phenomenon is that there is a sufficiently large amount

of prior mass around the function of interest with total smoothness levels. We will show that the

corresponding posterior converges at the optimal rate up to a logarithm factor without a priori

knowledge of the smoothness levels of the conditional standard deviation.

From the practical point of view, diverse algorithms for normal linear regression where the

error variance depends on the predictors have been exhibited in Yau and Kohn (2003) and Chib

and Greenberg (2013) which considered transformed splines to model the variance and Goldberg

et al. (1997) where a transformed Gaussian process prior was considered. Markov Chain Monte

Carlo simulations carried out in these papers performed well in these models with flexible specifications

for error variance. Here we center on the theoretical aspects in Bayesian normal regression

models.

The Chapter is organized as follows. In Section 2 we give a general overview of the notation

and a brief outline of the model we are studing. In Section 3 we provide a preliminary review
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on the notions of spline functions, univariate B-splines and tensor-product B-splines as well

as its associated approximation properties. In Section 4, we show that the optimal posterior

convergence rate can be achieved using two types of spline priors: one based on conditional

Gaussian tensor-product spline prior or a hierarchical Gaussian spline prior, and the other built

on log-spline prior that stems from finite random spline expansion with a random number of

terms. We conclude with a brief discussion and some technical lemmas, all containing proofs as

well as auxiliary theorems are delegated to the Appendix.

3.2 General model setup

In this Section, we take a detailed description of the notation and then describe our model.

3.2.1 Notation

For any a, b ∈ R, denote bac to be the largest integer strictly smaller than a. Similarly, define dae

to be the smallest integer which is strictly greater than a. We write a ∨ b, a ∧ b to stand for the

maximum and the minimum between a and b respectively. Set a+ = a ∨ 0.

Let η = (β, σ) and the true value η0 = (β0, σ0). Denote the conditional density function

N(β, σ2(x)) by fxη and let fxη0 be the true conditional density functionN(β0, σ
2
0(x)). The Kullback-Leibler

divergence between η and η0 in this case is then defined as,

K(η, η0) =

∫
X

∫
Y
fxη0(y) log

fxη0(y)

fxη(y)
dy dG0(x), (3.1)

V (η, η0) =

∫
X

∫
Y
fxη0(y)

(
log

fxη0(y)

fxη(y)

)2

dy dG0(x), (3.2)

whereX ,Y are the domains that will be specified later andG0(·) is a general distribution function.

The ε-Kullback-Leibler neighborhood around η0 for any ε > 0 is expressed as,

Kε(η0) = {η : K(η, η0) < ε}. (3.3)
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We define the Hellinger metric between η and η0 in this case as,

dH(η, η0) =

∫
X

∫
Y

(√
fxη(y)−

√
fxη0(y)

)2

dy dG0(x). (3.4)

We use the naturalL2-norm with respect to the distribution functionG0(·) to measure the distance

between η and η0:

d2(η, η0) =

{∫ b

a

(
[(β − β0)Tx]2 + [σ(x)− σ0(x)]2

)
dG0(x)

}1/2

, (3.5)

and denote the neighborhood of η0 with respect to the distance function d2(η, η0) as follows:

Uε(η0) =

{
(β, σ) :

∫ b

a

(
[(β − β0)Tx]2 + [σ(x)− σ0(x)]2

)
dG0(x) > ε

}
. (3.6)

We use the notation . to stand for somewhat inequality up to a constant. To compare two

functions, for example, g1, g2, we denote g1 . g2 . g1 by g1 � g2. Let ‖ · ‖2 and ‖ · ‖∞ denote the

Euclidean norm and supremum norm respectively.

We now take a brief account of the definitions in the context of multivariate functions, especially

describe the appropriate notions of smoothness in this multivariate case. Let’s denote the space

of continuous functions f on [0, 1]d by C
(
[0, 1]d

)
, equipped with the supremum norm ‖f‖∞. For

a multi-index α = (α1, α2, . . . , αd), let the sum |α| =
∑d

i=1 αi and the mixed partial derivative

operator is defined as,

Dα =
∂|α|

∂xα1
1 · · · ∂x

αd
d

. (3.7)

For α > 0, the Hölder space Cα
(
[0, 1]d

)
stands for the collection of functions f on [0, 1]d with

mixed partial derivative Drf ∈ C
(
[0, 1]d

)
of all orders up to |r| ≤ bαc satisfying,

|Drf(x)−Drf(z)| ≤ C‖x− z‖α−brc2 , (3.8)

for some positive constant C, each x, z ∈ [0, 1]d. Meanwhile, denote the norm on the Hölder class
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Cα
(
[0, 1]d

)
by,

‖f‖Cα([0,1]d) = ‖f‖∞ +
∑

r: |r|=bαc

‖Drf‖∞. (3.9)

3.2.2 Restricted moment models

Suppose we observe a real-valued sample (X1, Y1), (X2, Y2), . . . , (Xn, Yn) whereXi is a d-dimensional

covariate, Yi is the response variable and (Xi, Yi) ∼ P0 for i = 1, 2, . . . , n. The data generating

process satisfies Y |X = x ∼ N(x′β0, σ
2
0(x)) for some unknown true parameter β0 ∈ Θ ⊂ Rd,

unknown true conditional variance function σ2
0 and all x ∈ X = [0, 1]d. In other words, this

linear model could be described as,

Yi = X ′iβ0 + εi, i = 1, 2, . . . , n. (3.10)

where error variables εi|Xi = xi ∼ N(0, σ2
0(xi)) for all xi ∈ [0, 1]d, i = 1, 2, . . . , n. In this

semiparametric model, the unknown parameters are (β, σ(·)) where the finite-dimensional parameter

β is of interest and σ(·) is the infinite-dimensional nuisance parameter. Crainiceanu et al. (2007)

studied a more general model with heteroscedastic errors using the penalized splines for the

regression part. Our model could be rewritten as (Θ×M, B×F ) equipped with Borel σ-algebras

B and F on Θ andM respectively, where,

M = {σ(·) : [0, 1]d → (σ, σ)}. (3.11)

is a polish space on X and also is assumed to contain the true conditional standard deviation

σ0, 0 < σ < σ <∞. Let Π denote the total prior for the pair (β, σ) on (Θ,M) which is defined by

Π(dβ, dσ) = Πβ(dβ) × Πσ(dσ) where Πβ and Πσ are corresponding independent priors on β and

σ respectively. Here we leave the distribution of covariates denoted by G0(·) unspecified since it

is ancillary and also of our interest is to focus on the conditional distribution. The corresponding
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posterior distribution for (β, σ) given the data (X1, Y1), (X2, Y2), . . . , (Xn, Yn) is denoted by,

Π(·|(X1, Y1), (X2, Y2), . . . , (Xn, Yn)).

In view of Bayes’ theorem, the posterior is given by,

Π(B|(X1, Y1), (X2, Y2), . . . , (Xn, Yn)) =

∫
B L(β, σ; (X1, Y1), (X2, Y2), . . . , (Xn, Yn)) Π(dβ, dσ)∫
L(β, σ; (X1, Y1), (X2, Y2), . . . , (Xn, Yn)) Π(dβ, dσ)

,

(3.12)

where the likelihood function L(β, σ; (X1, Y1), (X2, Y2), . . . , (Xn, Yn)) could be written as,

n∏
i=1

1√
2πσ(Xi)

exp

(
−(Yi −X ′iβ)2

2σ2(Xi)

)
. (3.13)

Usually the posterior mean can be regarded as a Bayesian estimator of the unknown pair

(β0, σ0). If this Bayesian estimator is consistent, the further concern is then of interest to consider

the finer aspects of this posterior distribution or quantify the rate at which it contracts around the

true unknown parameter, namely, posterior convergence rate. More precisely, for a given positive

sequence (εn) going to zero, the posterior distribution is said to converge to the Dirac-mass at

(β0, σ0) at the rate εn, if, as n→∞,

Π
{

(β, σ) : dH((β, σ), (β0, σ0)) > Mεn
∣∣ (X1, Y1), (X2, Y2), . . . , (Xn, Yn)

}
−→ 0 in Pn0 -probability,

(3.14)

for a sufficiently large M > 0. Here this assertion of the definition is in-probability statement that

holds under the true distribution typically governed by the true parameter pair (β0, σ0).

The main objective is to construct some priors for Θ × M to show that the corresponding

posterior converges at an optimal rate at (β0, σ0(·)) ∈ Θ×M. Here the prior does not depend on

the information about the unknown smoothness levels of the true conditional standard deviation

function σ0(·). So the so-called rate-adaptive procedure is obtained across all the regularity levels.



54 CHAPTER 3. BLR WITH CONDITIONAL HETEROSKEDASTICITY

3.3 A preliminary introduction to Splines

In this Section, we will provide a general overview on spline function supported on unit hypercube

following by a brief introduction on the splines defined on the unit interval [0, 1]. More extensive

treatment on this subject could be found in Schumaker (2007).

3.3.1 Spline function on the unit interval

A spline function on [0, 1] is essentially viewed as a generalization of the polynomial function on

the unit interval. It is a piece polynomial function but enjoy the properties of global smoothness

on its domain.

More specifically, let q,K be two fixed natural numbers and partition the unit interval [0, 1]

intoK equally spaced subintervals [(k−1)/K, k/K] for k = 1, 2, . . . ,K. Consider a spline function

with the order q greater than 2, that is, all polynomials with its domain coinciding with one of

those subintervals are of the degree smaller than q − 1 and this spline function is globally q − 2

times continuously differentiable on [0, 1].

Let SK be the collection of all splines of order q with simple knots at the points {k/K : k =

1, . . . ,K − 1}. It can be seen that SK forms a J = (q + K − 1)-dimensional linear space. The

so-called B-splines BK
1 , B

K
2 , . . . , B

K
J , which can be found in de Boor (2001), are used to give a

convenient basis in this space. The concrete function forms of these B-splines are negligible to

us. The primary properties of these B-splines closely used in this Chapter are that B-splines are

always nonnegative, each basis function is supported on a tiny interval with its length at most

q/K and the sum of all B-splines evaluated at any given point in the domain is equal to one. In

other words, they constitute a partition of unity, i.e.

J∑
i=1

BK
i (x) = 1,

for each x ∈ [0, 1].
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3.3.2 Tensor-product spline on [0, 1]d

In this Subsection we introduce spline functions on multi-dimensional domains with the help of

multivariate polynomials. The construction of the linear space of such multivariate splines relies

heavily on the spline space SK in the unit interval described above. In fact, this linear space on

[0, 1]d is a tensor-product of the univariate linear space on [0, 1]. More precisely, a unique direction

denoted by a variable is assigned to each linear space in the tensor-product and then we obtain

the multivariate polynomials supported on some tiny rectangles by taking the multiplication of

polynomials with respect to one single variable defined on some small intervals.

Accordingly, the convenient basis for the linear space of tensor-product splines is the tensor-product

B-splines, which equal to the products of the corresponding B-splines on [0, 1]. Hence the tensor-product

space has dimension (q+K−1)d, for example, in the construction of the space SK defined above.

The advantage of introducing the tensor-product B-splines is that they inherit the nice properties

that univariate B-splines have as we shall see below.

In what follows, we consider a d-fold tensor-product space SK = SK ⊗ · · · ⊗ SK(d times) of

tensor-product splines defined on the unit cube [0, 1]d, that is partitioned equally into md cubes

Ik1 × · · · × Ikd . A function s : [0, 1]d → R is defined to be a tensor-product spline in SK if for each

such tiny cube, s possesses the following multivariate polynomial form,

q−1∑
k1=0

· · ·
q−1∑
kd=0

ck1...kd x
k1
1 · · ·x

kd
d . (3.15)

As was the case in the univariate spline space, the basis in SK is provided by the so-called

tensor-product B-splines as follows,

BK
j1...jd

(x1, . . . , xd) = BK
j1 (x1)BK

j2 (x2) · · ·BK
jd

(xd). (3.16)

It can be shown that SK has dimension (q +K − 1)d and these multivariate B-splines also form a
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partition of unity,
J∑

j1=1

· · ·
J∑

jd=1

BK
j1...jd

(x1, . . . , xd) = 1, (3.17)

for all xi ∈ [0, 1], i = 1, 2, . . . , d.

3.3.3 Approximation properties of tensor-product B-splines

It is well-known that the univariate B-splines in the space SK could approximate any function

of interest in Cα[0, 1], for example, at the rate J−α where J = q + K − 1. In other words, any

function with a smoothness level α in Cα[0, 1] could be approximated by a couple of B-splines,

BK
1 , B

K
2 , . . . , B

K
J with its associated approximation error controlled by the order J−α.

This idea also works in the multivariate case. How well tensor-product B-splines approximate

the generic function is uniquely determined by the target function’s smoothness level α and the

dimension of the linear space SK induced by the tensor-product B-splines if the order q of the

splines is chosen to be larger than the smoothness level α. The approximation ability in terms of

tensor-product B-splines is stated in the following lemma which provides an upper bound of the

approximation error with respective to the uniform distance.

LEMMA 3.1 (Shen and Ghosal (2014)) Let q, d, K ∈ N, α ∈ R, α ≤ q, J = q + K − 1. For any

function f ∈ Cα
(
[0, 1]d

)
, there exist θ = (θ00...0, . . . , θJJ...J) ∈ RJd and a positive constant C1 that only

depends on q, d and α such that,

∥∥∥∥∥∥f −
J∑

j1=1

· · ·
J∑

jd=1

θj1...jd B
K
j1...jd

(x1, . . . , xd)

∥∥∥∥∥∥
∞

≤ C1J
−α‖Dαf‖∞. (3.18)

Furthermore, if f > 0, then each element of θ could be chosen to be positive for a sufficiently large J .
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3.4 Adaptive posterior contraction results

Splines possess excellent approximation capabilities for smooth functions in the previous Section,

where the approximation error is completely controlled by the dimension of the spline space and

the smoothness level. More precisely, the error becomes smaller if the dimension grows and the

objective function is smoother. From the frequentist view of point, Stone (1994) showed that

the maximum likelihood estimator of the function in Cα([0, 1]d) achieves the rate of convergence

n−α/(2α+d). As indicated in de Jonge and van Zanten (2012), a Bayesian estimator for probability

densities or the regression functions in multivariate domains under weaker conditions also attained

the optimal contraction rate n−α/(2α+d). Simultaneously, they established that a type of Gaussian

process prior could yield the near-optimal adaptive posterior convergence rate, up to an additional

logarithmic factor when α is unknown.

In the next two Subsections, we consider spline-based priors for σ(·) in a variety of means.

In Subsection 3.4.1, we build a hierarchical Gaussian spline prior by putting Gaussian prior

weights on the coefficient and adding another hierarchical layer for the partition size involved in

the tensor-product B-splines. It follows that this hierarchical procedure achieves a near-optimal

adaptive contraction rate. Alternative log-spline priors with finite random tensor-product splines

and a random number of terms that also achieve the optimal adaptive rate of convergence will be

demonstrated in Subsection 3.4.2.

Throughout this Section, we consider the following condition on Πβ :

(A1) Its support is [β, β], where β < β and β, β ∈ (−∞,∞). For all ε > 0, there exists m1 > 0 such

that,

Π(‖β − β0‖2 ≤ ε) ≥ exp(−m1d log(1/ε)). (3.19)

In fact, this is a mild assumption on the prior of β. And several ordinary distribution examples

satisfy (3.19). More detailed and similar examples could be found in the discussion of the prior

for weights vector θ in Subsection 3.4.2.
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3.4.1 Hierarchical Gaussian spline prior

In this Subsection, a class of Gaussian process, whose sample path is defined by tensor-product

splines extensively discussed in the preceding Section, will be used for the construction of priors

on the conditional standard deviation in the linear model.

LetZ00...0, . . . , ZJJ...J be a series of i.i.d standard normal random variables, the random process

WK on [0, 1]d is given by

WK(x1, . . . , xd) =

J∑
j1=1

· · ·
J∑

jd=1

Zj1...jdB
K
j1...jd

(x1, . . . , xd), xi ∈ [0, 1], i = 1, 2, . . . , d. (3.20)

where {BK
j1...jd

(x1, . . . , xd) : ji = 1, . . . , J, i = 1, 2, . . . , d} is a group of tensor-product B-spline

basis of SK , J = q + K − 1, K is the partition size of the knots. de Jonge and van Zanten (2012)

has shown that {BK
j1...jd

(x1, . . . , xd) : ji = 1, . . . , J, i = 1, 2, . . . , d} formed an orthonormal basis of

the reproducing kernel Hilbert space (RKHS) HK associated with this Gaussian process WK and

also extensively exhibited the properties of the concentration function, which plays a crucial role

in determining the posterior convergence rate regarding to this Gaussian process prior induced

by the stochastic process WK .

In order that the corresponding posterior could be guaranteed to take on the asymptotic

properties, posterior consistency for example, the prior should have large enough support. The

tuning parameterK then should be required to vary with the sample size as well as the regularity

of the function of interest and the number of observations should also go to infinity. This prior,

the law of the Gaussian spline prior WK , depends explicitly on the unknown smoothness level of

the object. So this is not a desired rate-adaptive procedure.

We could remedy this problem if this partition sizeK is viewed as the so-called hyperparameter

and itself is endowed with a separate prior. In other words, we assign a probability distribution

on such an unknown tuning parameter and let the partition size be carefully selected through its

posterior distribution. In a Bayesian perspective, it is natural to treat this parameter as one type
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of hyperparameter and let it be estimated from the data via its posterior mean.

Let K̃ be an independent N-valued random variable, the hierarchical Gaussian process prior

is denoted by W K̃ , where W K̃ |K̃=K is described in (3.20). As prior on the standard deviation, we

employ the law Πσ of the process Ψ̃(W K̃), that is a transformation of the stochastic process W K̃ ,

where the link function Ψ̃ : R→ (σ, σ) is given by,

Ψ̃(W K̃) = Ψ(W K̃)(σ − σ) + σ, (3.21)

for the logistic or normal function distribution Ψ.

The following theorem follows from Theorem 4.2 in de Jonge and van Zanten (2012) that

presents the general rate of contraction results for Bayesian multivariate function estimation.

THEOREM 3.2 Assume that w0 = Ψ̃−1(σ0) ∈ Cα([0, 1]d) for some integer α less than q. Let the prior Πσ

be induced by the law of the stochastic process Ψ̃(W K̃), where the probability mass of this hyperparameter

K̃ for each K ≥ 1 satisfies:

C1 exp(−D1K
d logtK) ≤ P (K̃ = K) ≤ C2 exp(−D2K

d logtK), (3.22)

for some constants C1, C2, D1, D2, t ≥ 0. Suppose that for any ε > 0, log

{[
β−β
2ε

]
+ 1

}
≤ nε2 and also

the prior for the regression coefficient Πβ satisfies (A1). Let the largest eigenvalue of E(XiX
′
i) denoted by

λmax(E(XiX
′
i)) be bounded for i = 1, 2, . . . , n. Then, for a sufficiently large constant M > 0,

Π{η : dH(η, η0) > Mεn|(X1, Y1), (X2, Y2), . . . , (Xn, Yn)} −→ 0 in Pn0 -probability,

where,

εn = c(n/ log1∨t n)−
α

d+2α ∨ n−
α

d+2α (log n)
(1∨t)α
d+2α

+( 1−t
2

)+,

for a large enough positive constant c.

Note that if K̃d follows a geometric distribution with t = 0, then condition (3.22) is satisfied.
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Here the stochastic process prior Ψ̃(W K̃) implies a posterior rate of concentration on the space of

the standard deviation functions provided the true standard deviation has regularity level α less

than q. As indicated in de Jonge and van Zanten (2012), we keep the order q involved in the splines

fixed so that the prior could become simpler as well as easier for simulations computationally. A

common choice for q is 4 in practice.

The prior does not depend on the smoothness level α so our procedure is adaptive. If t

is chosen to be equivalent to one, the the rate εn becomes (n/ log n)−α/(d+2α), which coincides

with the optimal posterior convergence rate, up to an additional logarithm item, since the rate

n−α/(d+2α) for each α > 0 is the minimax convergence rate in the function class Cα([0, 1]d).

3.4.2 Log-spline prior

We consider a prior, in this Subsection, induced by a random series expansion in terms of tensor-product

B-splines as follows:

W J,θ(x) =
J∑

j1=1

· · ·
J∑

jd=1

θj1...jd B
K
j1...jd

(x1, . . . , xd), (3.23)

where θ = (θ00...0, . . . , θJJ...J) is a Jd-dimensional vector. A prior on h could be obtained by

assigning a probability distribution on the number of items J and the associated coefficient vector

θ of tensor-product B-splines discussed in Shen and Ghosal (2012) as follows:

(A2) We consider a prior for J satisfying,

exp(−c1j logt1 j) ≤ Π(J = j) ≤ exp(−c2j logt2 j), j = 1, 2, . . . , (3.24)

for some positive constants c1, c2 and 0 ≤ t1 ≤ t2 ≤ 1.

(A3) Given J , the prior for Jd-dimensional vector θ satisfies for each ‖θ0‖∞ ≤ H and a sufficiently
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small ε > 0,

Π(‖θ − θ0‖2 ≤ ε) ≥ exp(−c3J
d log(1/ε)), (3.25)

Π(θ 6∈ [−M,M ]J
d
) ≤ Jd exp(−c4M

t3), (3.26)

for some positive constants c3, c4, t3 and a sufficiently large M > 0.

Note that (A2) holds for geometric, Poisson and negative distributions when t1, t2 are carefully

chosen. And (A3) is fulfilled if we put independent gamma and exponential distributions on each

element of the vector θ. If the support of θ is a bounded and closed set, then multivariate normal

and Dirichlet distributions also meet (A3). We take the law of the following stochastic process as

the prior on the standard deviation σ:

Φ̃(W J,θ(x)) =
eW

J,θ(x)∫ 1
0 e

WJ,θ(x) dx
(σ − σ) + σ, (3.27)

where W J,θ(x) is defined in (3.23). The law of the process Φ̃ gives the so-called log-spline prior

for the infinite-dimensional parameter σ.

We now present the result about the posterior contraction rate based on the product prior

defined by Πβ and this log-spline prior.

THEOREM 3.3 Let w0 = Φ̃−1(σ0) ∈ Cα([0, 1]d) and the prior for the regression coefficient β, the number

of items J and the associated coefficients θ satisfy (A1), (A2) and (A3) respectively. Suppose that the

maximal eigenvalue of E(XiX
′
i) is bounded for i = 1, 2, . . . , n. Assume that we endow a prior on σ by the

law of the process Φ̃(W J,θ), then the corresponding posterior of η = (σ, β) contracts at the rate,

εn = n−α/(2α+d)(log n)α/(2α+d)−(t2−1)/2, (3.28)

in terms of the Hellinger distance dH .
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In fact, we apply Theorem 2 in Shen and Ghosal (2012) to our linear model in the presence of

the heteroscedasticity with this prior Πη to get this result. The optimal posterior convergence rate

relative to the Hellinger distance is obtained by carefully selecting some sequences J̄n, Jn, Mn, ε̄n

that satisfy the conditions stated in Theorem 2 of Shen and Ghosal (2012) in order to balance bias

and model complexity in our semiparametric model.

3.5 Conclusions

To summarise, we obtain an adaptive procedure in a flexible linear model with heteroscedastic

normally distributed errors. More specifically, under mild restrictions on the model and priors,

the posteriors of the conditional standard deviation and of the finite regression coefficients adapt

to the smoothness level of the underlying standard deviation function, which is assumed to be

contained in a nonparametric model. This result indicates that we could implement this Bayesian

procedure as if the regularity of the underlying function were known.

The alternative asymptotic property concerning in our normal linear regression model, the

Bernstein-von Mises theorem, has been developed in Norets (2015). Further research is warranted

for the investigation of the existence of the Bernstein-von Mises phenomenon in this semiparametric

model where the parameter of interest is the finite-dimensional regression coefficients, by directly

assigning a prior on the conditional error distribution with a zero mean restriction. The estimation

of the coefficients of interest in this setting that avoid the potential model misspecifications would

be efficient. Particularly challenging is how to model this conditional error density with the

imposition of moment restrictions. Moreover, the problem is compounded by the fact that the

appropriate constructions of the priors put on these conditional error densities, making it difficult

to obtain the semiparametric efficiency bound.

It would be interesting to extend the adaptive posterior concentration rate and Bernstein-von

Mises theorem in our model to that in the weakly dependent data. In infinite-dimensional models,

there are few results concerning these two important asymptotic properties in the weakly dependent
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cases. Maybe we could establish this asymptotic result under appropriate conditions on the prior,

an interesting future direction.
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Chapter 4

Alternatives for Ghosal Ghosh and Vaart

priors

4.1 Introduction

In Bayesian nonparametrics, the important aspects of the asymptotic behavior of the posterior

distribution are well established in a wide spectrum of statistical models. An early seminar

work on the weak consistency properties was carried out by Schwartz (1965) under some mild

conditions. Posterior consistency in stronger metrics was studied by Barron et al. (1999), Ghosal

et al. (1999) and Walker (2004). The general theme about the posterior contraction rate has been

developed by Ghosal et al. (2000) and Shen and Wasserman (2001) that demonstrated a finer

characterization of the posterior distribution concentrating around the true parameter provided

the prior is suitably chosen in the model.

In recent years, much efforts have been made on these long-standing topics of interest and

there has been remarkable progress on the asymptotic analysis of nonparametric Bayesian methods.

We refer to Ghosal and van der Vaart (2007a,b), Walker et al. (2007), van der Vaart and van Zanten

(2008, 2009) and Rousseau (2010) for further investigations in this area as well as Ghosal (2010)

for a concise review on these topics.

65
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Most existing work primarily concerning the properties of posterior contraction rates relies

heavily on the carefully chosen priors that meet some assumptions. A typical condition to impose

on the priors is proposed in Ghosal et al. (2000), i.e.

Π
(
P ∈P : −P0 log

dP

dP0
< ε2

n, P0

(
log

dP

dP0

)2
< ε2

n

)
≥ e−nε2n , (4.1)

where (εn) is a positive sequence such that εn → 0 and nε2
n →∞. We call the priors satisfying this

Kullback-Leibler property described in (4.1) above as GGV priors. Condition (4.1) requires that the

prior charges some specialized Kullback-Leibler neighborhood with a large amount of prior mass.

GGV priors play a crucial role in exploring the rate of posterior contraction in a broad swath of

statistical models. In other words, it suggests that in order to obtain the posterior contraction rate,

the prior shall put a sufficiently enough amount of probability mass around the true probability

distribution or spread on the model uniformly at some discretization level.

The lower bound for this sharpened Kullback-Leibler neighborhood was designed to bound

from below the denominator of the expression of the posterior distribution. Accordingly, one

could tackle the posterior distribution by means of a separate examination of its numerator and

denominator. Then one could formulate a rates-of-posterior-convergence theorem by additional

introduction of exponentially powerful test sequences mainly driven by the metric entropy number.

Hence a natural question arises. Could we deal with the numerator and denominator of the

posterior distribution simultaneously? What happens if the prior fails to meet this condition?

For instance, as argued in Kleijn (2015), any prior in the support boundary estimation could

not satisfy this requirement. Can we relax this standing criteria for prior choices to explore a

rates-of-posterior-convergence theorem?

The goal of this present Chapter is geared to address these issues on the basis of the approach

in Kleijn (2015) and provide an answer to these research questions by establishing some conditions

under which a rate-of-convergence-theorem can be explored for a greater class of priors. Here

we do not generalize conditions involving GGV priors or sharpen some assertion, but rather
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investigate a probable formulation of a new standard as a yardstick for the prior selection that

encompasses a number of well-chosen applied priors as our special cases and apply to a broad

class of statistical settings and then demonstrate that these flexible constraints put on the prior can

be slightly complemented by the stringent restrictions on the model. Other method to deal with

this similar problem in the context of a nonincreasing density on R+ where the Kullback-Leibler

property (4.1) fails has to be pointed out. The posterior contraction rate in this case has been

explored in Salomond (2013) by applying a truncated version of probability density function to a

mildly modified main result in Ghosal et al. (2000). But his reasoning is based on the key premise

that any monotone nonincreasing density on R+ admits a representation of a mixture of uniform

densities. We will discuss this case in our framework later.

The remainder of this Chapter proceeds as follows. In the next Section, we first present a

general result for the posterior convergence rate based on some unconventional minimax test

sequences which are related to a greater extent on the prior and then provide a concise description

of the existence and power of these tests. In Section 3, we show that GGV priors fall in our

formulation as special cases and we re-derive the GGV theorem in Ghosal et al. (2000) under some

assumptions on the model and also demonstrate the illustrations through several examples in

various statistical settings. In Section 4, we consider two cases in the separable models outside the

scope of the application of the main results stated in Section 2. The first case is formulated with the

help of sieves involving finite covers and the second formulation includes a similar summability

condition imposed on priors stated in Walker et al. (2007). The rate of convergence results for

the semi-parametric estimation of boundary support points for some density on R are given in

Section 5. We conclude with a discussion and the containing proofs and some complementary

lemmas are relegated to the Appendix.
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4.2 Main result

4.2.1 Notation

Some notations shall be geared up for the illustration and analysis in the subsequent Sections.

Suppose there is a sequence of observationsX1, X2, . . . , Xn drawn from an unknown distribution

function P0 associated with a density function p0, each taking values in a sample space (X ,X ),

where X is a Borel σ-algebra on X . Let Π be a prior probability measure defined on some Borel

σ-algebra B generated by a collection of probability measures in P that is dominated by a σ-finite

measure. The posterior distribution is the random probability measure given by,

Π
(
A
∣∣ X1, . . . , Xn

)
=

∫
A

n∏
i=1

p(Xi) dΠ(P )

/ ∫
P

n∏
i=1

p(Xi) dΠ(P ), A ∈ B. (4.2)

The expression above makes sense only if the denominator is non-zero Pn0 -almost surely. This

constraint on the denominator is equivalent to require that the following holds,

Pn0 � PΠ
n , for each n ≥ 1, (4.3)

where PΠ
n stands for the n-fold prior predictive distribution,

PΠ
n (A) =

∫
P
Pn(A) dΠ(P ), A ∈ σ(X1, . . . , Xn). (4.4)

Lemma 2.1 and Corollary 2.2 in Kleijn (2015) suggests that (4.3) is satisfied if some condition

imposed on the prior mass holds.

Let ε > 0 and d be a metric on P , the ε-bracketing number of P relative to metric d,N[](ε,P, d)

is regarded as the minimal brackets to cover P .

In the sequel, the computation of the integral P0(p/q)α will be throughout this Chapter, where

0 ≤ α ≤ 1 and p and q are associated probability density functions of the probability measures

P and Q in P . We assume that the indicator functions 1{p0>0}(x), 1{p>0}(x) and 1{q>0}(x) are
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considered as implicit factors throughout all calculations related to the density supports if necessary.

4.2.2 Main result

The following theorem as the main result of this Chapter, a generalization of Theorem 1.2 of

Kleijn (2015) for the posterior consistency property, concerns the rate of posterior contraction in

the model P .

THEOREM 4.1 Assume that there is a prior Π on (P,B) in which Pn0 � PΠ
n holds for each n ≥ 1.

Consider a sequence (εn) such that εn → 0 and nε2
n → ∞ as n → ∞. Let Vn = {P ∈ P : d(P, P0) >

Mεn} for M > 0. Suppose that for each n ≥ 1, {Vn,m}Nnm=1 is a finite cover of Vn such that,

Nn ≤ eLnε
2
n , (4.5)

for some positive constant L. If there exist a positive constant C̃ and some model subset Bn such that for

each 1 ≤ m ≤ Nn, supP∈Vn,m supQ∈Bn P0(dP/dQ) <∞ and,

inf
0≤α≤1

sup
Q∈Bn

sup
P∈co(Vn,m)

Π(Bn)−α/nP0

(
dP

dQ

)α
≤ e−C̃ε2n , (4.6)

then for a sufficiently large M > 0, we arrive at,

Π
(
P ∈P : d(P, P0) > Mεn

∣∣ X1, . . . , Xn

)
−→ 0 in Pn0 -probability. (4.7)

A few illustrations about the assumptions made in this theorem are in order. Condition (4.5)

requires that the number of model subsets that cover the complement of some metric ball should

not be too large. In fact, this requirement reflects the complexity of the model in some sense.

Specifically, in infinite-dimensional statistical cases, the packing number or the associated metric

entropy is considered as a concise expression of the model complexity. Broadly speaking, we

employ a sequence of small covering sets to partition the parameter space of interest to explore

exponentially powerful test sequences for the model, see theorem 4.2 for more details.
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Condition (4.6) is an appropriate uniform control of the Hellinger transform P0

(
dP
dQ

)α
over

some covering set and any neighborhood Bn of P0 as well as the prior factor Π(Bn)−α/n with a

sufficiently small exponential bound. Given a collection of covering sets on Vn, this condition

leaves a room for the flexible choices of Bn as well as prior Π and also strikes a balance between

lower bound on the prior mass on Bn and upper bound of the Hellinger transform.

We put the same model integrability condition just as stated in Kleijn (2015). This restriction

on the model may be thought of as a small price for the freedom to choose priors. Therefore

theorem 4.1 is exactly regarded as an extension of his results about posterior consistency to the

posterior contraction rates.

4.2.3 Posterior concentration

As argued in the previous Subsection, to obtain the rate of posterior contraction given a prior,

one needs to show that the corresponding posterior concentrates on small balls around P0 with a

radius of some order. Generally speaking, this order, a positive sequence decaying to zero, could

be viewed as a rate but the posterior can still capture most of the probability mass asymptotically.

The following theorem, on the basis of the techniques proposed in Kleijn (2015), which was

developed for establishing posterior consistency for a variety of statistical cases such as a prior

charging Hellinger balls as well as the scenario that violates the requirement of prior mass on

the Kullback-Leibler ball, asserts that the posterior contraction rate is determined provided a

sequence of tests on the covering sets of the complement exist.

THEOREM 4.2 Let X1, X2, . . . , Xn be i.i.d sample distributed from P0 ∈ P which is a metric space

equipped with some metric d and is also dominated by a σ-finite measure. Let Π be a prior on P such

that Pn0 � PΠ
n holds for all n ≥ 1. Consider Vn = {P ∈ P : d(P, P0) > Mεn} with M > 0 as well

as a positive sequence (εn) such that εn → 0 and nε2
n → ∞ as n → ∞. Assume that for each n ≥ 1,

{Vn,m}Nnm=1 is a finite cover of Vn such that,

Nn ≤ eLnε
2
n , (4.8)
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for some positive constant L. If for each n ≥ 1 and 1 ≤ m ≤ Nn, there exists a test φn,m such that for a

universal positive constant K,

Pn0 φn,m + sup
P∈Vn,m

Pn0
dPn

dPΠ
n

(1− φn,m) ≤ e−KM2nε2n , (4.9)

and for all P ∈ Vn,m,

Pn0 (dPn/dPΠ
n ) <∞, (4.10)

then for a sufficiently large M > 0, we have that,

Π
(
P ∈P : d(P, P0) > Mεn

∣∣ X1, . . . , Xn

)
−→ 0 in Pn0 -probability. (4.11)

Condition (4.9) plays a key role in determining the rate of posterior convergence by view of

this theorem. The main feature that this test distinguishes from the traditional one discussed in

Ghosal et al. (2000) is that the probability operator taken on in the type II error involves the prior

predictive distribution, hence the prior is naturally regarded as an important factor to build up

this test.

4.2.4 Existence and power of test sequences

A main element in the proof of theorem 4.2 is to construct some kind of nonparametric tests of P0

versus some alternative d-balls that have sufficiently small exponential bound on the probability

of the type I and type II errors, here d could be some general loss-functions besides the regular

Hellinger metric or total variation distance. Early theorization of the construction of exponentially

powerful hypothesis tests is traced back to Le Cam (1973, 1975, 1986) and Birgé (1983, 1984) who

applied the minimax theorem with the Hellinger entropy number to formulate some test for any

two pair convex set P0 and P1 of probability measures. To this aim, we explore an alternative

version on this theme in terms of the so-called Hellinger transform described extensively in Kleijn

(2003, 2015) and Kleijn and van der Vaart (2006, 2012).
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Define V n
n,m = {Pn : P ∈ Vn,m} and denote its corresponding convex hull by co(V n

n,m) and the

generic element in co(V n
n,m) by Pn.

LEMMA 4.3 Consider n ≥ 1 and a sequence of model subsets {Vn,m}Nnm=1. Assume that Pn0 (dPn/dPΠ
n ) <

∞ for all P ∈ Vn,m, 1 ≤ m ≤ Nn. Then there exists a test sequence (φn,m) such that,

Pn0 φn,m + sup
P∈Vn,m

Pn0
dPn

dPΠ
n

(1− φn,m) ≤ sup
Pn∈co(V nn,m)

inf
0≤α≤1

Pn0

( dPn
dPΠ

n

)α
, (4.12)

i.e. here the testing power embedded in some subset is appropriately bounded by means of the Hellinger

transform.

PROOF OF LEMMA 4.3

This lemma can be completed by the method analogous to that used in Lemma 2.2 in Kleijn (2015)

just replacing φn, V there with φn,m, Vn,m respectively. �

More specifically, the prior could be localized on some measurable set Bn with positive prior

mass that mainly centers on P0 in the same technical fashion as in Wong and Shen (1995); where

the construction of the sieve could lead naturally to some good approximation to P0. To this aim,

we introduce the local prior predicative distribution proposed in Kleijn (2015). Given a prior Π

and a measurable setBn such that Π(Bn) > 0, the local prior predictive distributionsQΠ
n is defined

as follows:

QΠ
n (A) =

∫
Qn(A) dΠ(Q|Bn), (4.13)

for each n ≥ 1 and A ∈ σ(X1, . . . , Xn). The following lemma makes use of the local prior

predicative distribution to further establish some more specific conditions on model and prior.

LEMMA 4.4 Fix n ≥ 1, consider Bn and a collection of model subsets {Vn,m}Nnm=1 in B. Assume that

Π(Bn) > 0 and for all P ∈ Vn,m, 1 ≤ m ≤ Nn,

sup
Q∈Bn

P0(dP/dQ) <∞, (4.14)
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then there exists a test sequence (φn,m) such that,

Pn0 φn,m + sup
P∈Vn,m

Pn0
dPn

dPΠ
n

(1− φn,m) ≤ inf
0≤α≤1

Π(Bn)−α
∫ [

sup
P∈co(Vn,m)

P0

(dP
dQ

)α]n
dΠ(Q|Bn). (4.15)

As a consequence, our main result, theorem 4.1, follows by invoking theorem 4.2 together

with lemmas 4.3 and 4.4.

4.3 Sufficiency of GGV priors

In this Section the room of sufficiency of GGV priors will be exploited relative to condition (4.6)

in theorem 4.1. We apply theorem 4.2 to encompass GGV priors under more stringent model

conditions.

LEMMA 4.5 Consider two model subsets B, V such that P0 ∈ B. Suppose that sup
Q∈B

sup
P∈V

P0(dP/dQ) is

finite. Given ε > 0, then,

sup
Q∈B
−P0 log

dQ

dP0
− inf
P∈V

{
−P0 log

dP

dP0

}
< −M̃ε2, (4.16)

if and only if,

inf
0≤α≤1

sup
Q∈B

sup
P∈V

P0

(dP
dQ

)α
< e−M̃ε2 , (4.17)

where M̃ is a positive constant. That is, B and V are strictly separated in Kullback-Leibler divergence

with a slightly small difference iff we could uniformly control the Hellinger transform of two probability

measures.

It is clear that the above lemma does not require any restrictions related to the second moment

of log-likelihood ratio P0

(
log

dP

dQ

)2
. Hence condition (4.16) offers us more room to explore the

rate of posterior contraction without any prior mass put on the ball involving the higher moments

of the Kullback-Leibler discrepancy. So we expect that condition (4.1) about GGV priors is sufficient

but maybe not necessary to determine the rate of posterior convergence.



74 CHAPTER 4. ALTERNATIVES FOR GHOSAL GHOSH AND VAART PRIORS

The following theorem precisely provides such an assertion in the preceding display without

requiring more of the prior on neighborhood concerning the second moment of the Kullback-Leibler

divergence.

THEOREM 4.6 Fix n ≥ 1, there exists a Kullback-Leibler neighbourhoodBn ofP0 in which supQ∈Bn P0(dP/dQ)

is finite for all P ∈ P . Let Π satisfy (4.1) for a positive sequence (εn) such that εn → 0 and nε2
n → 0 as

n→ 0 and also d be either the Hellinger distance or total variation metric on P . Assume that for M > 0

, Vn = {P ∈ P : d(P, P0) > Mεn} is covered by a number of Hellinger balls Vn,1, . . . , Vn,Nn with the

same radii εn, where Nn ≤ eLnε
2
n for some positive constant L. Then we have that, for a sufficiently large

M > 0,

Π
(
P ∈P : d(P, P0) > Mεn

∣∣ X1, . . . , Xn

)
−→ 0 in Pn0 -probability. (4.18)

So we have adapted GGV priors in our framework to obtain the rate of posterior contraction

under some additional model assumptions. This flexible formulation enables us to accommodate

a broad range of prior choices.

4.3.1 Hellinger prior

Generally speaking, under quite general assumptions on the model, theorem 4.6 examines the

posterior contraction rate if there exists one Kullback-Leibler neighborhood with a large amount

of prior mass. Since each Kullback-Leibler neighborhood is contained in a Hellinger ball, in this

Subsection we try to show the assertion in theorem 4.6 also holds under a weak assumption about

the prior charging Hellinger ball and more specific model conditions.

THEOREM 4.7 Suppose that there exist a positive sequence εn ↓ 0 and a positive constant C̃ such that for

each n ≥ 1,

N(εn,P, dH) ≤ eC̃nε2n . (4.19)

Given a prior Π and for each n ≥ 1, assume that there exist a Hellinger ball B′n with a ε′n radius and a
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positive constants L′ and C ′ such that for all Q ∈ B′n, P ∈P ,

∥∥∥dP
dQ

∥∥∥
2,Q
≤ L′, (4.20)

Π(B′n) ≥ e−C′nε′2n . (4.21)

If X1, X2, . . . , Xn constitute an i.i.d P0-sample, where P0 ∈P , then we get

Π
(
P ∈P : dH(P, P0) > Mεn

∣∣ X1, . . . , Xn

)
−→ 0 in Pn0 -probability, (4.22)

for a sufficiently large M > 0.

The finiteness of the covering number relative to the Hellinger distance dH in theorem 4.7

explicitly requires that (P, dH) is a totally bounded space. In this case we could construct a

so-called net prior under bracketing entropy conditions. Let (εn) be a positive monotone decreasing

sequence with its limit be zero. Fixed n ≥ 1, denote N[](εn,P, dH) by Nn. Consider a totally

bounded space (P, dH) dominated by a σ-finite measure µ, then there exist a finite collection of

functions {l1, u1, l2, u2 . . . , lNn , uNn} such that for every P ∈ P , lj < p < uj and dH(lj , uj) < εn

for some j ∈ {1, 2, . . . , Nn}. Now a prior Πn is characterized as a uniform measure put on a kind

of normalization sets Pn :=
{
u1/

∫
u1 dµ, . . . , uNn/

∫
uNn dµ

}
. Therefore, the infinite mixture

Π =
∑∞

n=1 λnΠn is regarded as the net prior on ∪∞i=1Pi where (λm) is a positive sequence such

that
∑∞

m=1 λm = 1. Here the support of this discrete prior includes all the upper brackets.

Given this prior Π constructed as above, the following variation of theorem 4.7 shows that

the corresponding posterior contracts at a rate around the true distribution with respective to the

Hellinger distance under some mild model conditions.

THEOREM 4.8 Let net prior Π be described as above and consider a positive monotone decreasing sequence

(εn) and a weighted sequence (λn) described above, such that for each n ≥ 1,

N[](εn,P, dH) ≤ nε2
n, (4.23)
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and as n→∞,

εn → 0,

nε2
n/ log n→∞, (4.24)

log λ−1
n = O(log n). (4.25)

In addition, if the model condition (4.20) in theorem 4.7 holds, then the claim (4.22) follows.

In the following three examples, we show that the corresponding posterior convergence rate

under some prior agrees with the optimal rate of frequentist estimators. In particular, we look

at Bayesian estimation of probability densities satisfying some regularity conditions, monotone

nonincreasing densities and distribution functions in interval censoring case 2.

EXAMPLE 4.9 Given some γ > 0, let P be a class of probability measures on [0, 1] with associated

probability densities p satisfying for any x ∈ [0, 1],

CL g(x) ≤ p(x) ≤ CU g(x) and ‖√p‖γ ≤ 1, (4.26)

where CL, CU are positive constants, g(x) is a known density function with support on [0, 1] and

‖ · ‖γ denotes the Hölder norm defined in Chapter 2.7 of van der Vaart and Wellner (1996).

Taking εn = n−γ/(2γ+1), by Corollary 2.7 in van der Vaart and Wellner (1996), the εn-bracket

entropy numbers relative to the norm ‖ · ‖γ for every 1 ≤ γ ≤ ∞ are bounded above by nε2
n. So

we could construct a net prior Π in this case. Evidently, we see that the conditions in theorem

4.8 hold, giving rise to a n−γ/(2γ+1)-rate of posterior contraction. What’s more, it coincides with

the optimal rate of the similar estimators in the frequentist context. Thus by theorem 4.8, the

corresponding posterior from this net prior built on the finite set of brackets converges to the true

distribution at the optimal rate.

EXAMPLE 4.10 Suppose we consider the problem of estimating a density function that is nonincreasing

on (0,∞). This theme was introduced in Khazaei and Balabdaoui-Mohr (2010) and Salomond
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(2013), which established posterior consistency and determined the rate of convergence under

the Dirichlet prior and the finite mixture prior respectively.

Given a density function g supported on (0,∞) and a sufficiently small positive constant C ′L,

let us consider the model P defined by,

P :=

{
p : p ↓,

∫ 1

0
p dµ = 1, C ′Lg(x) ≤ p ≤ C ′U g(x) for x ∈ (0,∞)

}
,

where C ′U is a positive constant. That is to say, the model P consists of all nonincreasing density

functions supported on (0,∞), which are dominated by a known probability density function.

According to Theorem 2.7.5 in van der Vaart and Wellner (1996), for any ε > 0, one could show,

logN[](ε, P̃, Lr(µ)) ≤ C̃ ′/ε, (4.27)

for each 1 ≤ r ≤ ∞, where P̃ := {√p : p ∈ P} and C̃ ′ is a positive constant that depends only

on r.

Put ε = εn = n−1/3, then the monotonicity of
√
p implies that ε-bracket entropy number

logN[](εn,P, dH) ≤ C̃ ′nε2
n. Then a net prior could be designed in this statistical model. By virtue

of the assumption that any nonincreasing density in P is dominated by a known density function,

the model condition (4.20) in theorem 4.7 is fulfilled. Notice that εn = n−1/3 is the optimal rate

of the frequentist estimator, therefore in view of theorem 4.8 this net prior constructed from the

finite approximation sets by means of brackets attains the optimal posterior contraction rate.

EXAMPLE 4.11 This example concerns the nonparametric Bayesian analysis in the field of survival

analysis, with a particular focus on the estimation of the life distribution functions of the censored

data from a Bayesian viewpoint, which often arises in a variety of contexts, such as medical

research, actuarial sciences and reliability theory.

Suppose a representative sample about the ages of people who are possible to get lung cancer

is observed during some period (say, 3 years). Two lung cancer tests are administered to each
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person in this sample within this specified period. LetX be the age at lung cancer with associated

distribution being F , and a pair of observation times (T1, T2) are the ages at which the person

is implemented by these two lung cancer tests with a joint distribution G and its associated

density g, and also X is independent with (T1, T2). In this context, we observe a n i.i.d. sample

{(Xi, T1i, T2i,∆1i,∆2i,∆3i)}ni=1, where ∆1i = 1{Xi ≤ T1i}, ∆2i = 1{T1i < Xi ≤ T2i} and

∆3i = 1{Xi > T2i}, i = 1, 2, . . . , n. For example, if one realization for the observation of person

j is (xj , t1j , t2j , δ1j , δ2j , δ3j), where δ1j = δ2j = 0 and δ3j = 1, then we know this person j has

not got lung cancer at up to age t2j and xj > t2j . The probability density can be computed by

considering three cases ∆1 = 1, ∆2 = 1 and ∆3 = 1 separately. Then the density at a realization

(t1, t2, δ1, δ2, δ3) is given by,

pF (t1, t2, δ1, δ2, δ3) = F (t1)δ1(F (t2)− F (t1))δ2(1− F (t2))δ3g(t1, t2). (4.28)

Moreover, some routine calculations show the likelihood at n i.i.d. realizations {(xi, t1i, t2i, δ1i, δ2i, δ3i)}ni=1

is:

Πn
i=1(F (t1i))

δ1i(F (t2i)− F (t1i))
δ2i(1− F (t2i))

δ3ig(t1i, t2i). (4.29)

Note that the likelihood is factorized into the conditional likelihood of (∆1,∆2,∆3) given a

pair of observation time (T1, T2) and the marginal likelihood g of this joint time (T1, T2), then the

marginal density g vanishes in the expression of the posterior distribution of the life distribution

F . Hence it is not necessary to specify a prior on the joint distribution G and in this case G could

be regarded as an known distribution distribution.

Assume that F supports on a compact interval, say, [0, 1] and F = Ψ(W ), where this link

function Ψ : R→ (0, 1) is the normal or logistic distribution function andW is a Gaussian process

chosen later. Given α̃ > 0, assume also that there is a true distribution F0 for which F0 = Ψ(w0),

where w0 ∈ Cα̃[0, 1]. Let the support of G be a closed interval strictly contained in (0, 1). Denote,

F := {F : F ∈ Cα̃[0, 1], ‖F‖α̃ ≤ 1 and F is a distribution function on [0,1]}.
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As prior on F , we consider the law Π of the transformed process W α̃ via F = Ψ(W α̃), where W α̃

is the modified Riemann-Liouville process given by,

W α̃
t =

bα̃c+1∑
j=0

Zjt
j +Rα̃t , t ∈ [0, 1], (4.30)

where Rα̃t is the Riemann-Liouville process with Hurst parameter α̃ defined by Rα̃t =
∫ t

0 (t −

s)bα̃c−1/2 dWs, t ≥ 0, bα̃c is the largest integer that is strictly smaller than α̃ and Z1, Z2, . . . , Zbα̃c+1

are i.i.d standard normal random variables which are independent of Rα̃t . As shown in Theorem

4.3 in van der Vaart and van Zanten (2008), the support of this process W α̃ is C[0, 1] and the

concentration function is smaller than ε−1/α̃ for each ε > 0 small enough. Hence according to

Theorem 2.1 in van der Vaart and van Zanten (2008), it turns out that,

Pr
(
‖W α̃ − w0‖∞ < 2εn

)
≥ e−nε2n ,

where εn = n−α̃/(2α̃+1). Using the elementary inequality (
√
a−
√
b)2 ≤ (a− b)2 for a ≥ 0, b ≥ 0, it

follows that,

d2
H(pF , pF0) =

∫ ∫ ∣∣∣F 1/2(t1)− F 1/2
0 (t1)

∣∣∣2 dG(t1, t2) +

∫ ∫ ∣∣∣(1− F (t1))1/2 − (1− F0(t1))1/2
∣∣∣2 dG(t1, t2)

+

∫ ∫ ∣∣∣(F (t1)− F (t2))1/2 − (F0(t1)− F0(t2))1/2
∣∣∣2 dG(t1, t2)

≤ 6 sup
t∈[0,1]

|F (t)− F0(t)|2 = 6‖F − F0‖2∞

≤ 6‖W α̃ − w0‖2∞.

where the last step follows the fact that the logistic function is differentiable with uniformly

bounded derivative. Taking the square root of both sides of the inequality above, we get,

dH(pF , pF0) ≤
√

6‖F − F0‖∞ ≤
√

6‖W α̃ − w0‖∞. (4.31)
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So the Hellinger distance between PF and PF0 could be bounded above by the uniform norm of

W α̃ − w0. Hence for εn = n−α̃/(2α̃+1) one could get,

N(εn, {pF : F ∈ F}, dH) ≤ N(εn/6,F , ‖ · ‖∞) ≤ eC′′nε2n/36,

Π{pF : dH(pF , pF0) ≤ εn} ≥ Π{F : ‖Wα − w0‖∞ ≤ εn/
√

6} ≥ e−nε2n/24,

whereC ′′ is positive constant. In addition, the model condition (4.20) in theorem 4.7 is automatically

satisfied since any distribution function in F is bounded between 0 and 1. Therefore, by theorem

4.8, the prior based on this transformed process W α̃ in the interval censoring case 2 yields the

optimal rate n−α̃/(2α̃+1).

4.4 Posterior contraction on separable models

The assumption that the existence of the finite number of model subsets to cover some measurable

set in theorems 4.1 and 4.2 is admittedly restrictive. Unbounded parameter spaces in the Euclidean

space, for example, do not coincide with this requirement. In this Section, we consider two

alternatives to circumvent those problems due entirely to the finiteness of the order of the cover.

The introduction of sieves that to a significant extent entails the model complexity to approximate

the model can be found in Subsection 4.4.1. In Subsection 4.4.2, the number of subcovers will be

allowed to be infinite accountable and the posterior convergence rate with respect to Hellinger

distance is achieved for a wide range of priors that meet a summability condition developed in

Walker et al. (2007). Meanwhile, we present a versatile version of Theorem 1 in Walker et al.

(2007).

4.4.1 Finite covers

In a polish space, a sieve could be naturally regarded as a useful device to support the prior

constructed in this space in a large part. A rate can be achieved by mild modifications on the

assumptions in theorem 4.1 with the aid of sieves.
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THEOREM 4.12 Suppose that there exist a positive sequence (εn) with εn → 0 and nε2
n →∞ as n→∞,

positive constants K,L and sets Pn ⊂P such that for sufficiently large n ≥ 1 and M > 0,

(i.) Vn ∩Pn = {P ∈P : d(P, P0) > Mεn} ∩Pn is covered by a finite number of measurable subsets

Vn,1, Vn,2, . . . , Vn,Nn , where Nn ≤ e
1
2
Lnε2n ;

(ii.) for each 1 ≤ m ≤ Nn, there is a test φn,m such that,

Pn0 φn,m + sup
P∈Vn,m

Pn0
dPn

dPΠ
n

(1− φn,m) ≤ e−Lnε2n ; (4.32)

(iii.) the prior mass on the complement of the set Pn such that,

Π(P\Pn) ≤ e−Knε2n ; (4.33)

(iv.) there is a model subset Bn with Π(Bn) ≥ e−
K
2
nε2n such that,

sup
P∈Vn∩Pc

n

sup
Q∈Bn

P0

(dP
dQ

)
< e

K
4
ε2n . (4.34)

If X1, X2, . . . , Xn constitute an i.i.d P0-sample, where P0 ∈P , then we get,

Π
(
P ∈P : d(P, P0) > Mεn

∣∣ X1, . . . , Xn

)
−→ 0 in Pn0 -probability, (4.35)

for a sufficiently large M > 0.

Conditions (i.) and (ii.) are analogous to conditions (4.8) and (4.9) of theorem 4.1 except that

the covering sets are deeply embedded in the sieves Pn. So that lemmas 4.3 and 4.4 that illustrate

the existence and power of test sequences also hold within a sequence of sieves. Condition

(iii.) that states the negligible prior mass outside the sieve is commonly used in the literature.

Besides, condition (iv.) requires a large amount of prior mass on some model set and the Hellinger

transform of the true distributionP0 and another probability measures defined on the complement
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of sieves and this model subset uniformly vanish at an exponential rate. The latter could be

typically viewed as a model condition.

Because of lemmas 4.3 and 4.4, we could formulate one alternative instead of condition (ii.)

in the preceding theorem. More precisely, the following corollary illustrates this point.

COROLLARY 4.13 Let the conditions (i.), (iii.) and (iv.) listed in theorem 4.12 hold as well. Assume that

there exists some positive constant K for every 1 ≤ m ≤ Nn, we have,

inf
0≤α≤1

sup
P∈co(Vn,m)

sup
Q∈Bn

P0

(dP
dQ

)α
< e−Kε

2
n , (4.36)

and for all P ∈ Vn,m, 1 ≤ m ≤ Nn,

sup
Q∈Bn

P0

(dP
dQ

)
<∞. (4.37)

Then the claim (4.35) follows.

4.4.2 Infinite countable covers

We employed a sequence of sieves to alleviate the situations lack of total bounded requirement

on the models by constructing a finite number of covering sets on a series of approximating

models in the previous Subsection. Another way to address this question is to construct an infinite

accountable number of covers. Following the approach in Walker et al. (2007), we center on the

separable models with respect to some metric in which there exists countable model subsets to

cover the model P . More particularly, as was the case in Walker et al. (2007), we treat the rates

theorem in Hellinger distance and a brief account for the definition of the Hellinger separable

model can be found in Kleijn (2015).

In order to utilize the summability condition explored in Walker et al. (2007) that essentially

imposes an upper bound for the prior mass, we formulate the equivalent version of theorem 4.4

in Kleijn (2015) that applies model subsets that display n-dependence.

THEOREM 4.14 For a given prior Π, let Pn0 � PΠ
n for each n ≥ 1. Assume that Vn = {P ∈ P :
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d(P, P0) > Mεn} is covered by an infinite countable number of model subsets Vn,1, Vn,2, . . ., whereM > 0

and (εn) is a positive sequence such that εn → 0, nε2
n →∞ and also there exist a sequence of measurable

subsets (Bn,i)i≥1 and a positive constant K ′ such that,

Π(Bn,i) ≥ e−K
′nε2n , (4.38)

and,

sup
Q∈Bn,i

P0

(dP
dQ

)
<∞, (4.39)

for all P ∈ Vn,i, i ≥ 1. Then we have,

Pn0 Π(Vn|X1, . . . , Xn) ≤
∞∑
i=1

inf
0≤α≤1

Π(Vn,i)
α

Π(Bn,i)α

[
sup

P∈co(Vn,i)
sup

Q∈Bn,i
P0

(dP
dQ

)α]n
. (4.40)

We will apply theorem 4.14 to present a generalization of theorem 1 in Walker et al. (2007)

in the following two corollaries. The first corollary requires the prior to meet the summability

requirement described in Walker et al. (2007) and also to admit a sufficient amount of probability

mass on some model set that is beyond the scope of the Kullback-Leibler neighbourhood. Furthermore,

we impose some model condition like that of (4.6).

COROLLARY 4.15 Let Bn,i = Bn for all i ≥ 1, n ≥ 1 and also the conditions stated in theorem 4.14 hold.

Additionally, suppose,

sup
P∈co(Vn,i)

sup
Q∈Bn

P0

(dP
dQ

)1/2
< e−K

′′ε2n , (4.41)

for some positive constant K ′′ > K ′. If there exist some positive constant K̃ and a positive sequence (εn)

such that εn → 0, nε2
n →∞ and the prior satisfies,

e−K̃nε
2
n

∞∑
i=1

Π(Vn,i)
1/2 → 0 as n→∞. (4.42)
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Then for i.i.d P0-distributed X1, X2, . . . , and a sufficiently large M > 0, we have,

Π
(
P ∈P : d(P, P0) > Mεn

∣∣ X1, . . . , Xn

)
−→ 0 in Pn0 -probability. (4.43)

The second one allows the prior to satisfy a slightly stronger summability condition stated in

Walker et al. (2007) with a large amount of probability mass on the Kullback-Leibler neighbourhood

instead.

COROLLARY 4.16 Let a prior Π and P be given and assume that P is separable with respect to the

Hellinger metric dH . For each n ≥ 1, there exists a Kullback-Leibler neighborhood Bn of P0 such that

supQ∈Bn P0

(
dP
dQ

)
≤ ∞ for each P ∈P and also Π(Bn) ≥ e−K̃1nε2n for some positive constant K̃1 and a

positive sequence (εn) with εn → 0, nε2
n →∞. Assume also there exists a positive constant K̃2 such that

for each β ∈ [0, 1],

e−K̃2nε2n

∞∑
i=1

Π(Vn,i)
β → 0 as n→∞. (4.44)

Then the claim (4.43) follows with the Hellinger metric dH instead of d there.

4.5 Marginal posterior contraction

Semiparametric is by now viewed as a special and vibrant research area in statistics due to its

novelty as well as the genuine scientific utility and intriguing theoretical complexity of models

arisen in its field. There has been well established for the asymptotic theory of the frequentist

semiparametric approaches, such as notions of optimality, asymptotically pivotal statistics, to

name a few; See Bickel et al. (1993) for more details. However, from a Bayesian perspective,

unfortunately few attempts have been developed for the asymptotic theory of Bayesian semiparametric

methods beyond Bickel and Kleijn (2012), Kleijn and Knapik (2012) and Kleijn (2015), and more

specifically, a Bernstein-von Mises theorem for LAN and LAE model under reasonably mild

conditions is elegantly investigated if the posterior distribution of the parameter of interest is

consistent. A further result along the line of this direction could be the establishment of posterior
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contraction rate involving this finite-dimensional parameter of interest. In this Section, we will

demonstrate the posterior contraction rate under some mild model conditions and reasonable

assumptions put on the prior.

To establish the basic framework, consider the model P := {Pθ,η : θ ∈ Θ, η ∈ H} where Θ is

an open subset of Rk equipped with some metric g and H is an infinite-dimensional nuisance

parameter space. We assume that P is dominated by some σ-finite measure defined on the

sample space (X ,X ) with associated probability densities pθ,η. The prior on P is induced by

a probability measure Π on Θ×H . The posterior distribution is said to contract at a rate εn if,

Π
(
{Pθ,η ∈P : g(θ, θ0) > Mnεn, η ∈ H}

∣∣ X1, . . . , Xn

)
−→ 0 in Pn0 -probability, (4.45)

for every (θ0, η0) ∈ Θ×H and all Mn →∞, as n→∞.

Additionally, the identifiability of the parameter θ is defined by means of an identity mapping

θ : P → Θ with θ(Pθ,η) = θ for all (θ, η) ∈ Θ×H . Hence the metric g in Θ could be characterized

by the following pseudo-metric d : P ×P → [0,∞),

d
(
Pθ,η, Pθ′,η′

)
= g(θ, θ′), (4.46)

for all θ, θ′ ∈ Θ and η, η′ ∈ H .

4.5.1 Density support boundary estimation

The properties of the boundary domain problem, such as consistency of parameter of interest,

have been explored from the frequentist perspective, see for instance the introduction of this

subject in Ibragimov and Hasminskii (1981), and more recently in a Bayesian viewpoint, such as

posterior consistency discussed in Kleijn (2015) and the Bernstein-von Mises property exhibited

in Kleijn and Knapik (2012). However, less is known about the rate of posterior contraction to our

best of knowledge. In this Subsection, a preliminary attempt is conducted to establish this result

under certain prior conditions for the nuisance space and the parameter space of interest, as well
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as some additional model assumptions.

Before moving on to major results, a basic specification of this model is introduced below. Our

model P = {Pθ,η : θ ∈ Θ, η ∈ H} is described by means of Lebesgue densities given as follows:

pθ,η(x) =
1

θ2 − θ1
η
( x− θ1

θ2 − θ1

)
1{θ1≤x≤θ2},

where (θ1, θ2) ∈ Θ and η ∈ H which is defined as a collection of Lebesgue probability densities

with their support in accordance with [0, 1]. Moreover, there exists a continuous, monotone

nondecreasing f : (0,∞)→ (0,∞) such that,

inf
η∈H

min
{∫ ε

0
η dµ,

∫ 1

1−ε
η dµ

}
≥ f(ε), (0 < ε < 1). (4.47)

Condition (4.47) is of paramount importance to determine the posterior contraction rate in this

scenario. This requirement on the nuisance space H indicates that a positive probability mass

shall be put on any neighborhood of parameters θ1, θ2, especially around its boundary. In this

context, the Bayesian estimation of the parameters θ1, θ2 is of primary interest and we need to

specify some priors on Θ and H to obtain the relevant asymptotic results for θ1 and θ2. The

following theorem states the rate of posterior convergence of the parameters θ1, θ2 with respect to

the Euclidean norm ‖ · ‖2 in R2.

THEOREM 4.17 Given β > 0, σ > 0, let Θ = {(θ1, θ2) ∈ R2 : 0 < θ2 − θ1 < σ} and f(x) = xβ .

Suppose there exist some positive constants L̃ and T, such that, for any n ≥ 1,

Π(Bn) ≡ Π
{
Q ∈P :

∥∥∥dP0

dQ
− 1
∥∥∥
s,Q

< δ2
n

}
≥ e−L̃nδ2n , (4.48)

sup
P∈P

sup
Q∈Bn

∥∥∥dP
dQ

∥∥∥
r,Q
≤ T, (4.49)

where δn =
[

1
2Tnσβ

]1/2, 1/r + 1/s = 1 and ‖ · ‖s,Q stands for the Ls(Q)-norm. If X1, X2, . . . form an
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i.i.d.-P0 sample, where P0 = Pθ0,η0 ∈P , then,

Π
(
‖θ − θ0‖2 > Mnεn

∣∣ X1, . . . , Xn

)
−→ 0 in Pn0 -probability, (4.50)

for every Mn →∞ as n→∞.

LEMMA 4.18 Let w : [0, 1]→ R be a continuous function and a weighted logistic density function on [0, 1]

is defined as,

pw(t) =
ew(t)g(t)∫ 1

0 e
w(s)g(s) ds

,

where g : [0, 1] → (0,∞) be a known probability function and denote its associated distribution function

by G. Then for any continuous functions v, w : [0, 1]→ R we have the following,

dH(pv, pw) ≤ ‖v − w‖∞ × e‖v−w‖∞/2.

Here we consider one example to illustrate the use of theorem 4.17. We particularly construct

the priors on the infinite-dimensional space H and finite-dimensional space Θ of interest that

meet (4.48) and the model condition (4.49) demonstrated in theorem 4.17 also holds.

EXAMPLE 4.19 Let a sequence of i.i.d sampleX1, X2, . . . distributed from some unknown distribution

function P0 = Pθ0,η0 with a Lebesgue density p0 supported on an interval [θ0,1, θ0,2] such that

0 < θ0,2 − θ0,1 < δ for a known δ > 0.

Given M > 0, define,

CM :=
{
h ∈ C[0, 1] : e−M ≤ h ≤ eM

}
,

and,

H :=

{
η(x) =

g(x)h(x)∫ 1
0 g(y)h(y) dy

: h ∈ CM , x ∈ [0, 1]

}
,
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where C[0, 1] denotes the class of continuous functions on [0, 1] and g : [0, 1]→ (0,∞) is a known

density function. Note that any element in H is the Esscher transform of the function in CM .

Take h(x) = eZ(x) for all x ∈ [0, 1], now a prior on nuisance spaceH is induced by considering a

stochastic process prior Z(x). Let U be a uniform random variable on [−M,M ] and W = {W (x) :

x ∈ [0, 1]} be a Brownian motion independent of U . The stochastic process Z(x) is defined as the

process U + W (x) conditioning on U + W (x) ∈ [−M,M ] for all x ∈ [0, 1]. Hence the process Z

has full support with respect to the uniform norm in CM . Assume that a prior distribution ΠΘ on

Θ admits a strictly positive and continuous Lebesgue density on its support. Of course, condition

(4.47) is fulfilled in this case with f defined by,

f(ε) = e−2M min
{∫ ε

0
g(x) dx,

∫ 1

1−ε
g(x) dx

}
, (0 < ε < 1).

Denote P0 = Pθ0,η0 and Q = Pθ,η with θ0 = (θ01, θ02) and θ = (θ1, θ2), and put,

Bn := {θ ∈ Θ, η ∈ H : ‖P0 −Q‖TV < δn}.

Now, the corresponding densities can be explicitly written in the following forms:

η(x) =
eU+W (x)g(x)∫ 1

0 e
U+W (y)g(y) dy

=
eW (x)g(x)∫ 1

0 e
W (y)g(y) dy

, (4.51)

pθ01,θ02,η0(x) =
1

θ02 − θ01
η0

( x− θ01

θ02 − θ01

)
1{θ01≤x≤θ02},

pθ1,θ02,η0(x) =
1

θ02 − θ1
η0

( x− θ1

θ02 − θ1

)
1{θ1≤x≤θ02},

pθ1,θ2,η0(x) =
1

θ2 − θ1
η0

( x− θ1

θ2 − θ1

)
1{θ1≤x≤θ2},

pθ1,θ2,η(x) =
1

θ2 − θ1
η
( x− θ1

θ2 − θ1

)
1{θ1≤x≤θ2}.
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Consider s = 1, then,

∥∥∥∥dP0

dQ
− 1

∥∥∥∥
s,Q

= ‖P0 −Q‖TV =

∫
|p0 − q| dµ.

Notice that applying triangle inequality for the total variation distance between pθ01,θ02,η0 and

pθ1,θ2,η yields,

‖pθ01,θ02,η0 − pθ1,θ2,η‖1 ≤ ‖pθ01,θ02,η0 − pθ1,θ02,η0‖1 + ‖pθ1,θ02,η0 − pθ1,θ2,η0‖1 + ‖pθ1,θ2,η0 − pθ1,θ2,η‖1,

that means the difference of these two densities in terms of total-variation metric is split into three

parts that we will discuss in details in the sequel separately.

For the first part, let θ1 < θ01 < θ02 and κ = θ01−θ1
θ02−θ01 together with κ ≤ ‖θ − θ0‖ ≤ δ̃/2, where δ̃

is small enough. Note that,

‖pθ01,θ02,η0 − pθ1,θ02,η0‖1

=

∫ θ02

θ01

∣∣∣∣ 1

θ02 − θ01
η0

( x− θ01

θ02 − θ01

)
− 1

θ02 − θ1
η0

( x− θ1

θ02 − θ01

)∣∣∣∣ dx+

∫ θ01

θ1

1

θ02 − θ1
η0

( x− θ1

θ02 − θ1

)
dx

=

∫ 1

0

∣∣∣η0(x)− 1

1 + κ
η0(x+ κ)

∣∣∣ dx+

∫ κ
1+κ

0
η0(x) dx

= I + II.

Direct calculation for (I) and using the property of uniform continuous of η0(x) on [0, 1] show

that,

I =

∫ 1

0

∣∣∣η0(x)− 1

1 + κ
η0(x+ κ)

∣∣∣ dx
≤ κ

1 + κ

∫ 1

0
η0(x) dx+

1

1 + κ

∫ 1

0

∣∣∣η0(x+ κ)− η0(x)
∣∣∣ dx

≤ 2κ

1 + κ
≤ 2‖θ − θ0‖.
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Similarly one could find,

II =

∫ κ
1+κ

0
η0(x) dx

≤ e2M κ

1 + κ
≤ e2M‖θ − θ0‖.

For the second part, let θ1 < θ2 < θ02, τ =
θ02 − θ2

θ2 − θ1
and τ ≤ ‖θ− θ0‖ ≤ δ̃/2, where δ̃ is sufficiently

small. Observe that,

‖pθ1,θ02,η0 − pθ1,θ2,η0‖1

=

∫ θ2

θ1

∣∣∣∣ 1

θ02 − θ1
η0

( x− θ1

θ02 − θ1

)
− 1

θ2 − θ1
η0

( x− θ1

θ2 − θ1

)∣∣∣∣ dx+

∫ θ02

θ2

1

θ02 − θ1
η0

( x− θ1

θ02 − θ1

)
dx

= III + IV.

A straightforward calculation for (III) and using the fact that η0(x) is uniform continuous on

[0, 1] again yield that,

III =

∫ θ2

θ1

∣∣∣∣ 1

θ02 − θ1
η0

( x− θ1

θ02 − θ1

)
− 1

θ2 − θ1
η0

( x− θ1

θ2 − θ1

)∣∣∣∣ dx
=

1

1 + τ

∫ 1

0

∣∣∣∣(η0

( x

1 + τ

)
− η0(x)

)
− τη0(x)

∣∣∣∣ dx
≤ 1

1 + τ

∫ 1

0

∣∣∣∣(η0

( x

1 + τ

)
− η0(x)

)∣∣∣∣ dx+
τ

1 + τ

∫ 1

0
η0(x) dx

≤ 1

1 + τ

∫ 1

0
τ dx+

τ

1 + τ

=
2τ

1 + τ
≤ 2‖θ − θ0‖.
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Analogously simple algebra for (IV ), one could get,

IV =

∫ θ02

θ2

1

θ02 − θ1
η0

( x− θ1

θ02 − θ1

)
dx

=

∫ 1

θ2−θ1
θ02−θ1

η0(x) dx =

∫ 1

1
τ+1

η0(x) dx

≤ τ

1 + τ
e2M ≤ e2M‖θ − θ0‖.

A direct computation for the third part guarantees that,

‖pθ1,θ2,η0 − pθ1,θ2,η‖1 =

∫ θ2

θ1

∣∣∣∣ 1

θ2 − θ1
η0

( x− θ1

θ2 − θ1

)
− 1

θ2 − θ1
η
( x− θ1

θ2 − θ1

)∣∣∣∣ dx
=

∫ 1

0
|η0(x)− η(x)| dx

= ‖η0 − η‖1

≤ 2h(η0, η)

≤ 2‖W − w0‖∞ × e‖W−w0‖∞/2,

where the last inequality is due to lemma 4.18 and the fact that η0(x) = ew0(x)+U0g(x).

Hence, the arguments in the preceding display imply that,

‖P0 −Q‖TV = ‖Pθ0,η0 − Pθ,η‖TV

= ‖pθ01,θ02,η0 − pθ1,θ2,η0‖1

≤ (4 + 2e2M )‖θ − θ0‖+ 2‖W − w0‖∞ × e‖W−w0‖∞/2.

Let K0 = 4 + 2e2M and 0 < δn < 4
√
e. Thus if,

‖θ − θ0‖ ≤
δn

2K0
and ‖W − w0‖∞ ≤ δn/(2

√
e),
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then it follows that,

K0‖θ − θ0‖+ 2‖W − w0‖∞ × e‖W−w0‖∞/2 ≤ δn/2 + δn/2 = δn.

Moreover, we could explore the lower bound of the prior on Bn, i.e. Π(Bn), as follows,

Π(Bn) ≥ Π
(
θ ∈ Θ, η ∈ H : K0‖θ − θ0‖+ L

′
0‖W − w0‖∞ × e‖W−w0‖∞/2 < δn

)
≥ Π

(
θ ∈ Θ, η ∈ H : ‖θ − θ0‖ <

δn
2K0

, ‖W − w0‖∞ × e‖W−w0‖∞/2 <
δn
4

)
= ΠΘ

(
θ ∈ Θ : ‖θ − θ0‖ <

δn
2K0

)
×ΠW

(
W : ‖W − w0‖∞ × e‖W−w0‖∞/2 <

δn
4

)
≥ ΠΘ

(
θ ∈ Θ : ‖θ − θ0‖ <

δn
2K0

)
×ΠW

(
W : ‖W − w0‖∞ <

δn
4
√
e

)
≥ ΠΘ

(
θ ∈ Θ : ‖θ − θ0‖ <

δn
2K0

)
× exp

{
−nδ

2
n

16e

}
≥ exp{−K2nδ

2
n}.

where K2 > 0 a sufficiently large constant. Since the prior probability density of θ is strictly

positive and continuous on its support, the first factor of the last second inequality is bounded

below by a constant multiple of δ2
n. Furthermore, this factor could be absorbed into the second

factor of this same inequality. Finally, it can be easily shown that the model condition (4.49) in

theorem 4.17 follows since every η in H satisfies e−2Mg(x) ≤ η(x) ≤ e2Mg(x) for all x ∈ [0, 1] and

a known density function g(x).

4.6 Discussion

As far as the property of the posterior contraction rate is concerned, one of the main conditions

appears to involve the GGV priors that charge a specialized Kullback-Leibler ball with a sufficient

amount of probability mass. Especially, taking into account the difficulty to construct and even

appropriately control the priors on infinite-dimensional spaces, a lack of flexibility in GGV priors

then limits its application to a wide range of statistical models. For instance, any prior involved
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in boundary support estimation does not belong to this class of GGV priors.

To conclude, this present study is preliminary research on the flexible criteria on the prior

at the cost of the relevant constraints on the model. A major finding is that we have explored

the possibility of examining the contraction properties of the posterior distribution under some

flexible condition for priors as well as stringent assumptions imposed on the model, followed by

a comparison with that described in Ghosal et al. (2000). This flexible selection criteria permits us

to tail the prior to act in accordance with Kullback-Leibler property stated in (4.1).

More specifically, it can be seen that the proposed approach encompasses the GGV priors

and the posterior under the prior built on bracketing approximation attains the optimal rate of

convergence in the context of the Bayesian nonparametric estimation of monotone nonincreasing

densities, some class of suitably chosen probability densities and the similar notion of optimality

is also demonstrated in Bayesian analysis of the interval censoring case 2 using a type of transformed

Gaussian process prior. Furthermore, it can be reasoned that semiparametric estimation of the

boundary support problem in violation of Kullback-Leibler requirement falls in this framework.

This kind of criteria for prior selection is still very much in its earlier stage and merits further

investigation. Much more also needs to be known about the translation of this freedom to select

priors into accommodating more choices for the loss functions, such as the uniform norm addressed

in Giné and Nickl (2011) and Rousseau (2013). This study should yield the optimal rate of

posterior contraction with respect to this uniform distance for future research.
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Chapter 5

Future Works

5.1 Bayesian nonparametric estimation of functions subjects to shape

restrictions

Shape restrictions often occur in a wide range of domains, such as monotonicity property entailing

in the proportional hazard function models and the imposition of the monotonicity and concavity

constraints on the indirect utility function playing a fundamental role in the estimation of the

demand and cost functions and a single minimum attained in the electricity consumption model

that characterizes the relationship between electricity demand and temperature, among others.

Both fixed-knot and free-knot regression spline models in a Bayesian context have been developed

for the nonparametric estimation of functions in the presence of shape constraints in Shively et al.

(2009) and Shively et al. (2011). In a frequentist side Wang and Ghosh (2012) proposed a general

framework on a basis of the Bernstein polynomials for the estimation of the shape restricted

nonparametric regression functions. More particularly, the Bernstein polynomials based estimators

maintained the shape constraints such as monotonicity, convexity or concavity and simultaneous

monotonicity and convexity via a series of linear restrictions on the associated coefficients.

This nice shape-preserving property that the Bernstein Polynomial enjoys could be further

exploited in the context of regression function estimation in a Bayesian paradigm. The natural

95
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way to impose shape constraints in a Bayesian context is through the prior distributions on the

coefficients of the Bernstein polynomial. Here we adopt the coarsened Bernstein polynomial

proposed by Kruijer and van der Vaart (2008) that segment the terms involved in Bernstein

polynomial expansion of the objective function into lower dimensional groups and keep the

coefficients within the groups be equal to each other. The modified version also retained the

desired properties of the original Bernstein polynomial. A bread spectrum of nonparametric

priors would be imposed on the coefficients that satisfy some linear constraints arisen from the

shape restrictions on the primitive function of interest.

Most studies up to now in the case have focus on some aspects of asymptotic properties such

as posterior consistency and posterior contraction rate. However, far too little attention has been

paid to the Bernstein-von Mises phenomenon in this case. Further research might establish the

Bernstein-von Mises property in the context of shape restricted function estimation that enables

us to construct approximate credible sets for the objective function which would be made feasible

by the popular Markov chain Monte Carlo algorithms.

5.2 Bayesian semiparametric inference of linear model with conditional

moment constraints

A linear regression model with conditional moment restrictions has been broadly documented

in the field of econometrics. A semiparametric Bayesian approach could be used to perform

an analysis of this model in the presence of conditional moment restrictions. The conditional

distribution of the error on predictors is modelled to be covariate dependent via a finite mixture

of normal distributions with the associated mixing probabilities be dependent on predictors.

One possible extension is to establish the Bernstein-von Mises property of this model by

relaxing the assumptions in Norets (2015) that the regression error terms conditional on the

covariates subjects to the normal distribution associated with the variance varying with predictors,

namely, heteroskedasticity variance. We consider a more general case to assign a prior on this
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conditional distribution directly on a basis of the approach proposed in Shen and Ghosal (2014)

instead of an induced prior on the distribution of error terms via endowing a probability distribution

on the variance in Norets (2015). Then this setup readily eschews the misspecification for the data

generating process of the error terms. It would be interesting to demonstrate that the limiting

distribution of the parameters of interest is asymptotically normal with its variance that attains

the semiparametric efficiency bound.

5.3 Bayesian nonparametric regression in the presence of endogeneity

The problem of endogeneity frequently occurs in the regression analysis of observational data

when the covariates are correlated with the error term. A number of sources for the endogeneity

issue include omitted variables, simultaneity and measurement errors. The estimation of regression

coefficients by standard regression methods in the presence of endogeneity could be biased and

inefficient.

The past decade has seen the rapid development of addressing the potential of the resulting

endogeneity bias in the nonparametric regression context in a classical perspective. See Blundell

and Powell (2003) for an extensive survey of nonparametric instrumental variable model (thereafter

called NPIV) and Chen and Pouzo (2013) for a recent development for this topic. However, there

have been a few investigations on asymptotic properties of posterior distributions in these models

in the context of Bayesian nonparametrics and much of the research up to now are limited in

a quasi-Bayesian method. Liao and Jiang (2011) proposed a unified framework for a general

conditional moment restriction model, of which NPIV model is a special case, to establish the

posterior consistency property on a basis of a quasi-Bayesian approach, and then Kato (2013)

explored a quasi-Bayesian analysis of the model, with emphasis on the theoretical properties of

quasi-posterior distributions. For the practical side, Wiesenfarth et al. (2014) presented a flexible

nonparametric approach for this model with one endogenous regressor and implemented it via a

Dirichlet process mixture prior.
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One possible direction would be to investigate the pure Bayesian analysis of this model by

endowing the nonparametric priors on the functions of interest. The respective asymptotic properties

could be established in the context of this NPIV estimation.



Appendix A

Appendix to Chapter 2

A.1 Proof of Theorems

A.1.1 Proof of Lemma 2.1

PROOF OF LEMMA 2.1

We useD1
i g to denote the partial derivative of them-dimensional function g relative to the argument

xi for i = 1, 2, . . . ,m, where the partial derivative operator of the multivariate function has been

defined in (3.7) of Chapter 3. An application of Taylor expansion of g(x) at point x = z together

with its integral expression in (2.8) yields that,

g(x)− b(x; k,G) = kmE

(∫ (J1+1)/k

J1/k
. . .

∫ (Jm+1)/k

Jm/k
(g(x)− g(z)) dz

)

= kmE

(∫ (J1+1)/k

J1/k
. . .

∫ (Jm+1)/k

Jm/k

(
m∑
i=1

D1
i g|x=z(xi − zi) +

1

2
(x− z)TH(z̃)(x− z)

)
dz

)
,

where z̃ := z + θz(x− z) for some θz ∈ (0, 1).

Let |trace (H(z̃)) | ≤ M1 for some M1 > 0 since the determinate of the Hessian matrix is

99
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bounded on [0, 1]m. Then one could obtain,

∣∣∣∣12(x− z)TH(z̃)(x− z)

∣∣∣∣ =

∣∣∣∣trace(1

2
(x− z)TH(z̃)(x− z)

)∣∣∣∣
=

∣∣∣∣trace(1

2
(x− z)T (x− z)H(z̃)

)∣∣∣∣
=

∣∣∣∣12(x− z)T (x− z) trace (H(z̃))

∣∣∣∣
≤ M1

2

m∑
i=1

(xi − zi)2.

Also the density g(x) admits second partial derivative on [0, 1]m, then there exists a positive

constant M2 such that for i = 1, 2, . . . ,m and z ∈ [0, 1]m,

∣∣D1
i g|x=z

∣∣ ≤M2.

Let M3 = max(M1/2,M2), then,

∣∣∣∣∣
m∑
i=1

D1
i g|x=z(xi − zi) +

1

2
(x− z)TH(z̃)(x− z)

∣∣∣∣∣
≤

m∑
i=1

[
M2|xi − zi|+

M1

2
(xi − zi)2

]

≤M3

m∑
i=1

[
|xi − zi|+ (xi − zi)2

]
.
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Hence,

|g(x)− b(x; k,G)| =

∣∣∣∣∣kmE

(∫ (J1+1)/k

J1/k
. . .

∫ (Jm+1)/k

Jm/k
(g(x)− g(z)) dz

)∣∣∣∣∣
≤M3k

mE

(∫ (J1+1)/k

J1/k
. . .

∫ (Jm+1)/k

Jm/k

m∑
i=1

[
|xi − zi|+ (xi − zi)2

]
dz

)

= M3kE

(∫ (J1+1)/k

J1/k

[
|x1 − z1|+ (x1 − z1)2

]
dz1

)

= O(1/k),

where the last step follows the similar arguments as (2.1) in Ghosal (2001). Thus we have proved

this lemma. �

A.1.2 Proof of Theorem 2.2

PROOFS OF THEOREM 2.2

DefineK(f0, f) =
∫

log f0
f dP0, V (f0, f) =

∫ (
log f0

f

)2
dP0 andN(ε, f0) = {f : K(f0, f) ≤ ε2, V (f0, f) ≤

ε2}.

THEOREM A.1 (Ghosal (2001)) Let Πn be a sequence of priors on F . Suppose that for positive sequences

ε̄n, ε̃n → 0 with nmin(ε̄n, ε̃n)2 →∞, constants c1, c2, c3, c4 > 0 and sets Fn ⊂ F , we have,

logD(ε̄n,Fn, d) ≤ c1nε̄
2
n, (A.1)

Πn(F \ Fn) ≤ c3 exp(−(c2 + 4)nε̃2n), (A.2)

Πn(N(ε̃n, f0)) ≥ c4 exp(−c2nε̃
2
n). (A.3)

Then for εn = max(ε̃n, ε̄n) and a sufficiently large M > 0, we have

Πn(f : dH(f, f0) > Mεn|X1, ..., Xn)→ 0 in Pn0 probability.

For k ≥ 1, let fk(x1, x2, . . . , xm) = b(x1, x2, . . . , xm; k, F0), whereF0 is the cumulative distribution
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function of f0. Note that fk is uniformly bounded away from 0 for all large k by (2.7).

Now letωm0
k be the set of weights associated with b(x1, ..., xm; k, F0) and letωmk be the weights

associated with b(x1, ..., xm; k, F ) in (2.9). Then,

| b(x1, x2, . . . , xm; k, F )− b(x1, x2, . . . , xm; k, F0) | ≤ km max
1≤i1,...,im≤k

|wi1i2...im;k − w0
i1i2...im;k|

≤ km‖ωmk − ωm0
k ‖1. (A.4)

Now, if ‖ωmk − ωm0
k ‖1 ≤ εm+1 and d1ε

−1 ≤ k ≤ d2ε
−1 for positive constants d1 and d2, then

sup
0<x1,x2,...,xm≤1

|f0(x1, x2, . . . , xm)− b(x1, x2, . . . , xm; k, F )| ≤ D1ε for some positive constant D1

and b(x1, . . . , xm; k, F ) is bounded away from 0 for sufficiently small ε. Now, for some positive

constant D2, dH(f0, b(·, · · · , ·; k, F )) ≤ D2ε and so (8.6) of Ghosal et al. (2000) implies that

b(·, · · · , ·; k, F ) ∈ N(C1ε, f0) for some positive constant C1. Hence,

N(C1ε, f0) ⊃ {b(x1, . . . , xm; k, F ) : ‖ωmk − ωm0
k ‖1 ≤ εm+1}.

Now let kn be such that,

b1

(
n

log n

)1/(m+2)

≤ kn ≤ b2
(

n

log n

)1/(m+2)

,

for positive constants b1 and b2 and ε̃n = k−1
n . Then Lemma A.1 of the Appendix in Ghosal (2001)

implies that there exist positive constants C3, C4, D and d such that,

Π(N(C1ε̃n, f0)) ≥ p(kn)C2 exp(−C3k
m
n log(1/ε̃n))

≥ B1 exp(−β1(1/ε̃n)m)× C2 exp(−C3(1/ε̃n)m log(1/ε̃n))

≥ D exp(−d(1/ε̃n)m log(1/ε̃n)).
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Hence ε̃n = n−1/(m+2)(log n)1/(m+2) satisfies condition (A.3). Let sn be an integer such that,

L1(1/ε̃n)m log(1/ε̃n) ≤ sn ≤ L2(1/ε̃n)m log(1/ε̃n),

for positive constants L1 and L2. Now note that,

L
′
1 n

m/(m+2)(log n)2/(m+2) ≤ sn ≤ L
′
2 n

m/(m+2)(log n)2/(m+2),

where we may choose L
′
1 = L1

2m+4 and L
′
2 = L2

m+2 . Let Fn :=
⋃ m
√
sn

r=1 Bm
r . Note that for positive

constants B3 and L,

Π(Fcn) ≤
∞∑

r= m
√
sn+1

ρ(r) ≤
∞∑

r= m
√
sn+1

B2e
−β2rm ≤ B3e

−β2sn ≤ B3 exp(−L(1/ε̃n)m log(1/ε̃n)).

and L can be made as large as required by choosing L1 large enough. As (1/ε̃n)m log(1/ε̃n) and

nε̃2
n have the same order, the condition (A.2) holds. Observe also that by virtue of (A.4), the

covering number D(ε,Bm
r , d) is bounded from above by the corresponding covering number of

the unit l1-simplex in Rrm for r = 1, 2, . . ., that is,

D(ε,Bm
r , ‖ · ‖1) ≤ D(ε/rm,∆m

r , ‖ · ‖1).

Moreover, in view of Lemma A.4 in Ghosal and van der Vaart (2001), one could get,

D(ε/rm,∆m
r , ‖ · ‖1) ≤

(
5 rm

ε

)rm−1

.
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Hence,

D(ε,Fn, ‖ · ‖1) ≤
m
√
sn∑

r=1

D(ε,Bm
r , ‖ · ‖1)

≤
m
√
sn∑

r=1

(
5 rm

ε

)rm−1

≤ m
√
sn

(
5 sn
ε

)sn−1

.

Then it follows that for some positive constants C and L3,

logD(ε,Fn, ‖ · ‖1) ≤ 1

m
log sn + sn log

5 sn
ε

≤ Csn log
5 sn
ε

≤ L3 n
m/(m+2)(log n)2/(m+2) log

5 sn
ε
.

Since the topology generated by the Hellinger distance and L1-norm in P is equivalent, then the

choice ε = ε̄n = n−1/(m+2)(log n)(m+4)/(2m+4) satisfies condition (A.1) and the posterior converges

at the rate n−1/(m+2)(log n)(m+4)/(2m+4). Hence the proof of this theorem is complete. �



Appendix B

Appendix to Chapter 3

B.1 Useful Lemmas for Chapter 3

To prove the main theorems in Section 3.4, we need the following supplementary lemmas. For

brevity of notations, we use the generic positive constant C throughout this Appendix.

LEMMA B.1 If x > 0, then the following inequality holds.

1−
√

2x

x2 + 1
≤ log x2 − 1 +

1

x2
. (B.1)

PROOF OF LEMMA B.1

Let us introduce a new function f(x) as follows,

h(x) = log x2 +
1

x2
+

√
2x

x2 + 1
. (B.2)

The claim holds if h(x) ≥ 2 for all x > 0. Note that the first derivative of h(x) could be written as,

h′(x) = 2(x2 − 1)

(
1

x3
− 1

2(x2 + 1)
√

2x(x2 + 1)

)
.

105
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Noting also that,

2(x2 + 1)
√

2x(x2 + 1)

x3
= 2
√

2

√
x

(
1 +

1

x2

)(
1 +

1

x2

)
≥ 2
√

2

√
x

1

2x
× 1 = 2 > 1.

Hence h′(x) ≥ 0 if x ≥ 1 and h′(x) < 0 otherwise. That is to say, h(x) attains the minimum at

x = 1. Using the fact that h(1) = 2 we then obtain h(x) ≥ 2 for all x > 0. So the proof of this

lemma is complete. �

The following lemma states that the order of the Hellinger distance between (β1, σ1) and

(β2, σ2) is controlled by the Euclidean distance of finite-dimensional parametric parts β1 and β2

as well as the uniform norm of the difference on infinite-dimensional parts σ1 and σ2.

LEMMA B.2 Let λmax(E(XiX
′
i)) be bounded by some positive constant m2 for i = 1, 2, . . . , n, then we

have,

d2
H(η1, η2) = 2− 2

∫
X

exp

{
− ((β1 − β2)Tx)2

4(σ2
1(x) + σ2

2(x))

} √
2σ1(x)σ2(x)

σ2
1(x) + σ2

2(x)
dG0(x)

≤ m2

4σ2
‖β1 − β2‖22 +

1

4
z

(
σ2

σ2

)
σ2

σ4
sup
x∈X

|σ1(x)− σ2(x)|2. (B.3)

PROOF OF LEMMA B.2

An application of the elementary inequality 1− ab ≤ 1− a+ 1− b for a ≤ 1 and b ≤ 1 yields,

d2
H(η1, η2) = 2− 2

∫
X

exp

{
− ((β1 − β2)Tx)2

4(σ2
1(x) + σ2

2(x))

} √
2σ1(x)σ2(x)

σ2
1(x) + σ2

2(x)
dG0(x)

≤
∫

X
2

(
1− exp

{
− ((β1 − β2)Tx)2

4(σ2
1(x) + σ2

2(x))

})
+ 2

(
1−

√
2σ1(x)σ2(x)

σ2
1(x) + σ2

2(x)

)
dG0(x)

≤
∫

X

{
((β1 − β2)Tx)2

2(σ2
1(x) + σ2

2(x))
+ log

(
σ2

1(x)

σ2
2(x)

)
− 1 +

σ2
2(x)

σ2
1(x)

}
dG0(x)

≤ 1

4σ2
λmax(E(XiX

′
i))‖β1 − β2‖22 +

1

4
z

(
σ2

σ2

)
σ2

σ4
sup
x∈X

|σ1(x)− σ2(x)|2,

where the penultimate inequality follows from the elementary inequality 1−e−x ≤ x for x ≥ 0 and
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lemma B.1. Thus the assertion follows by the assumption λmax(E(XiX
′
i)) ≤ m2 for i = 1, 2, . . . , n.

�

The following lemma states that we could bound the first and second moments of log-likelihood

ratio from above.

LEMMA B.3 Let λmax(E(XiX
′
i)) ≤ m2, where m2 > 0, then the following inequalities hold.

K(η, η0) ≤ m3

(
sup
x∈X

|σ(x)− σ0(x)|2 + ‖β − β0‖22
)
, (B.4)

V (η, η0) ≤ m4

(
sup
x∈X

|σ(x)− σ0(x)|2 + ‖β − β0‖22
)
. (B.5)

PROOF OF LEMMA B.3

A straightforward computation for K(η, η0) shows that,

K(η, η0) =

∫
X

∫
Y
fxη0(y) log

fxη0(y)

fxη(y)
dy dG0(x)

=

∫
X

∫
Y
fxη0(y)

1

2

{
log

σ2(x)

σ2
0(x)

− (y − β′0x)2

σ2
0(x)

+
(y − β′x)2

σ2(x)

}
dy dG0(x)

=

∫
X

1

2

{
log

σ2(x)

σ2
0(x)

− 1

}
dG0(x) +

∫ b

a

∫
Y
fxη0(y)

{
1

2σ2(x)
(y − β′0x+ β′0x− β′x)2

}
dy dG0(x)

=

∫
X

1

2

{
log

σ2(x)

σ2
0(x)

− 1 +
σ2

0(x)

σ2(x)
+

1

σ2(x)
(β0 − β)′xx′(β0 − β)

}
dG0(x)

≤ 2z

(
σ2

σ2

)
σ2

σ4
sup
x∈X

|σ(x)− σ0(x)|2 + σ−2λmax(E(XiX
′
i))‖β − β0‖22,

where the final line follows from lemma B.5. Thus the assertion (B.4) follows by taking,

m3 =

{
2z

(
σ2

σ2

)
σ2

σ4
, σ−2λmax(E(XiX

′
i))

}
.
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For V (η, η0), simple algebra delivers that,

V (η, η0) =

∫
X

∫
Y
fxη0(y)

(
log

fxη0(y)

fxη(y)

)2

dy dG0(x)

=

∫
X

{(
σ2

0(x)

σ2(x)
− 1

)2

+
σ4

0(x)

σ4(x)
(β0 − β)′xx′(β0 − β)

}
dG0(x)

≤ σ−2

∫
X

(σ2(x)− σ2
0(x))2 dG0(x) +

(
σ

σ

)4

λmax(E(XX ′))‖β − β0‖22

≤ 4σ2

σ2
sup
x∈X

|σ(x)− σ0(x)|2 +

(
σ

σ

)4

λmax(E(XiX
′
i)‖β − β0‖22.

Here we let,

m4 =

{
4σ2

σ2
,

(
σ

σ

)4

λmax(E(XiX
′
i))

}
,

therefore the assertion (B.5) follows. �

An immediate consequence from lemma B.3 implies that the following result holds.

COROLLARY B.4 Under the condition described in lemma B.3, we have,

max {K(η, η0), V (η, η0)} ≤ m5

(
sup
x∈X

|σ(x)− σ0(x)|2 + ‖β − β0‖22
)
, (B.6)

for some positive constant m5.

LEMMA B.5 Let z(t) =
t− 1− log t

(t− 1)2
be a positive decreasing function on (0,∞), then for any t ∈[

σ2

σ2 ,
σ2

σ2

]
, the following inequality holds,

4σ2

σ4 z

(
σ2

σ2

)
d̃2

2(σ, σ0) ≤
∫ b

a

(
σ2

0(x)

σ2(x)
− 1− log

σ2
0(x)

σ2(x)

)
dG0(x) ≤ 4σ2

σ4
z

(
σ2

σ2

)
d̃2

2(σ, σ0),

where d̃2
2(σ, σ0) =

∫ b
a (σ(x)− σ0(x))2 dG0(x).

PROOF OF LEMMA B.5

Observe that,

(t− 1)2 z

(
σ2

σ2

)
≤ t− 1− log t ≤ (t− 1)2 z

(
σ2

σ2

)
.
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Let t =
σ2
0(x)
σ2(x)

and notice that,

(σ2(X)− σ2
0(X))2

σ4(X)
z

(
σ2

σ2

)
≤ σ2

0(X)

σ2(X)
− 1− log

σ2
0(X)

σ2(X)
≤ (σ2(X)− σ2

0(X))2

σ4(X)
z

(
σ2

σ2

)
.

Therefore the claim follows by taking expectation with respect to the distribution function G0(x)

on the inequality above. �

LEMMA B.6 Given 0 < α ≤ q, and for each function f ∈ Cα[(0, 1)d], there exist some θ ∈ RJd and a

positive constant C that depends solely on q such that,

‖f − θT ξ‖∞ ≤ CJ−α‖D(α)f‖∞.

Futhermore, if σ < f < σ, every element of θ could be chosen to be between σ and σ.

PROOF OF LEMMA B.6

The first part is as same as that in Lemma 1 in Shen and Ghosal (2012). And the proof of the second

part goes throughout the part (b) of Lemma 1 in Shen and Ghosal (2012) by choosing f̃ = f − σ

and g̃ = σ − f . �

The following two lemmas state that the approximation error of the transform stochastic

process could be controlled by the corresponding primitive process with respective to the uniform

norm.

LEMMA B.7

sup
x∈X

∣∣∣Ψ̃(W (x))− Ψ̃(w0(x))
∣∣∣ ≤ C sup

x∈X
|W (x)− w0(x)| . (B.7)

B.2 Proof of Theorems

B.2.1 Proof of Theorem 3.2

Here we provide the proof of all the results developed in Section 3.4.
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PROOF OF THEOREM 3.2

We apply Theorem 4 of Ghosal and van der Vaart (2007a) to prove this theorem in a similar

manner as Lin and Dunson (2014). In particular, let,

Vn = {σ = Ψ̃(W ) : W ∈ Un}, (B.8)

where Un is a the measurable subset described in Theorem B.14. Now we determine the upper

bound on the entropy number on the sieve of the support of the product prior Πη = Πσ × Πβ .

Define,

Fn =
{

(σ, β) : σ ∈ Vn, β ∈ [β, β]d
}
. (B.9)

Since Ψ̃ is a one-to-one map from R to [σ, σ], then Vn ⊂ Un. Hence the number of εn-balls needed

to cover Vn is less than Un in terms of the uniform distance. That is,

logN(εn, Vn, ‖ · ‖∞) ≤ logN(εn, Un, ‖ · ‖∞), (B.10)

which is bounded by Dnε2
n by (B.45). To bound from above the entropy number on Fn, we

consider the covering number of the one-dimensional set {β1 : β1 ∈ [β, β]}. LetN =

{[
β−β
2εn

]
+ 1

}
,

the interval [β, β] could be partitioned into N sub-intervals with the equal length
β−β
N . We denote

all the middle points of these equidistant intervals by the set,

T =

{
β + i

β − β
2N

: i = 1, 3, . . . , 2N − 1

}
.

Then every equidistant interval could be covered by one neighborhood of some point in T with

radius εn. Thus the covering number of the set {β : β ∈ [β, β]d} is,

N
(
εnd

1/2, [β, β]d, ‖ · ‖2
)
≤ Nd.
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In view of (B.3), observe that if sup
x∈X

|σ(x) − σ0(x)| ≤ Cεn and ‖β − β0‖2 ≤ εnd
1/2, then we have

that,

d2
H(η, η0) . sup

x∈X
|σ(x)− σ0(x)|2 + ‖β − β0‖22,

≤ ε2
n(C2 + d).

Therefore, the εn(C2 + d)1/2-covering number of Fn is bounded by eDnε
2
n ×Nd, that is,

logN
(
εn(C2 + d)1/2, Fn, dH

)
≤ Dnε2

n + d logN.

Using the assumption log

{[
β−β
2εn

]
+ 1

}
≤ nε2

n we obtain,

logN
(

(C2 + d)1/2εn, Fn, dH

)
≤ (D + d)nε2

n.

We proceed to show that the prior Πη assigns a large amount of probability mass on some

specialized Kullback-Leibler ball of the true value η0. Let,

B∗(η0, εn) = {η : K(η, η0) < ε2
n, V (η, η0) < ε2

n}. (B.11)

We need to bound from below Π(B∗(η0, εn)). By corollary B.4, it follows that,

B∗(η0, εn) ⊃

{
η = (β, σ) : ‖β − β0‖2 ≤

D̃εn
2
, ‖σ − σ0‖∞ ≤

D̃εn
2

}
. (B.12)

for some constant D̃. Therefore the prior mass on B∗(η0, εn) could be lower bounded by,

Πσ

(
‖σ − σ0‖∞ ≤

D̃εn
2

)
×Πβ

(
‖β − β0‖2 ≤

D̃εn
2

)
.
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Applying lemma B.7 gives rise to,

Πσ

(
‖σ − σ0‖∞ ≤

D̃εn
2

)
≥ ΠW

(
‖W − w0‖∞ ≤

D̃εn
2C

)
,

which is greater than exp
{
− D̃2nε2n

16C2

}
. In view of the assumption on the prior of β, we have ,

Π(B∗(η0, εn)) ≥ Πσ

(
‖σ − σ0‖∞ ≤

D̃εn
2

)
×Πβ

(
‖β − β0‖2 ≤

D̃εn
2

)
,

≥ exp

{
−D̃

2nε2
n

16C2

}
× exp(−D̄nε2

n),

≥ exp(−D̃1nε
2
n),

for some positive constants D̄ and D̃1.

It remains to show that prior on the complement of the sieve is negligible. In fact, since {η :

η 6∈ Fn} ⊂ {σ : σ 6∈ Vn}, it is easy to say, by (B.44),

Πη{η : η 6∈ Fn} ⊂ Πσ{σ : σ 6∈ Vn} ⊂ ΠW {W : W 6∈ Un} ≤ exp{−nε2
n}. (B.13)

So the claim follows since all the three key conditions listed in Theorem 4 of Ghosal and van der

Vaart (2007a) are satisfied. �

In order to prove theorem 3.3, we first present a variant of main results stated in Shen and

Ghosal (2012) in the following two technical lemmas.

LEMMA B.8 Let,

ṼJn,Mn = {σ = Φ̃(W J,θ) : W J,θ = θT ξ, θ ∈ Rj , j ≤ Jn, ‖θ‖∞ ≤Mn}, (B.14)

W̃Jn,Mn = {(σ, β) : σ ∈ ṼJn,Mn , β ∈ [β, β]d}, (B.15)

d2(η, η0) =

{∫ 1

0
[σ(x)− σ0(x)]2 dG0(x)

}1/2

+ ‖β − β0‖2. (B.16)
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Assume that the conditions listed in Theorem 1 of Shen and Ghosal (2012) hold relative to uniform metric

‖ · ‖∞, then for some positive constants ã1, ã2, b̃, we have the following,

logD(εn, W̃Jn,Mn , d2) ≤ nε2
n, (B.17)

Π(W 6∈ W̃Jn,Mn) ≤ ã1 exp{−b̃nε̄2
n}, (B.18)

− log Π{η = (σ, β) : ‖σ − σ0‖2∞ + ‖β − β0‖22 ≤ ε̄2
n} ≤ ã2nε̄

2
n. (B.19)

PROOF OF LEMMA B.8

We omit the proof of assertions (B.17) and (B.18) since it is similar to the corresponding parts in

the proof of theorem 3.2. We are in a position to show (B.19). Observe that,

Π{η = (σ, β) : ‖σ − σ0‖2∞ + ‖β − β0‖22 ≤ ε̄2
n},

≥ Πσ

(
‖σ − σ0‖∞ ≤

ε̄n
2

)
×Πβ

(
‖β − β0‖2 ≤

ε̄n
2

)
,

≥ Πw

(
‖w − w0‖∞ ≤

ε̄n
2

)
× exp(−cd log(1/ε̄n)),

≥ exp
{
−a2nε̄

2
n

}
× exp(−b̃2nε̄2

n),

≥ exp(−ã2nε̄
2
n),

where ã2 = a2 + b̃2. The assertion (B.19) follows by taking logarithm transformation on both sides

above. We thus complete the proof of this lemma. �

LEMMA B.9 Suppose that the conditions except (B.40) listed in Theorem 2 of Shen and Ghosal (2012) hold

for the case r =∞, then the posterior distribution of η converges at rate εn with respective to the Hellinger

distance.

PROOF OF LEMMA B.9

Notice thatK(pf0 , pf ) and V (pf0 , pf ) exhibited in Theorem 2 of Shen and Ghosal (2012) are essentially

the same as K(η0, η) and V (η0, η) respectively described in (3.1) and (3.2). We employ the similar

arguments in the proof of Theorem 2 in Shen and Ghosal (2012) to show this lemma. It suffices to
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show that the following conditions stated in Theorem 4 of Ghosal and van der Vaart (2007a) hold.

logD(εn, W̃Jn,Mn , dH) ≤ b1nε2
n, (B.20)

Π(W 6∈ W̃Jn,Mn) ≤ b3 exp{−(b2 + 4)nε̄2
n}, (B.21)

Π(B∗(η0, ε̄n)) ≥ b4 exp{−b2nε̄2
n}, (B.22)

for some positive constants b1, b2, b3, b4, where W̃Jn,Mn is described in lemma B.8 andB∗(η0, ε̄n) =

{η : K(η, η0) < ε̄2
n, V (η, η0) < ε̄2

n}. It is easy to show (B.20) and (B.21) hold by the same arguments

used in the proof of Theorem 2 in Shen and Ghosal (2012). Now it remains to check (B.22). In fact,

observe that by corollary B.4,

B∗(η0, ε̄n) ⊃ {η = (σ, β) : ‖σ − σ0‖2∞ + ‖β − β0‖22 ≤ ε̄2
n}.

It follows that by (B.19) in lemma B.8,

Π(B∗(η0, ε̄n)) ≥ Π{η = (σ, β) : ‖σ − σ0‖2∞ + ‖β − β0‖22 ≤ ε̄2
n}

≥ exp(−ã2nε̄
2
n).

Then the proof of this lemma is complete. �

B.2.2 Proof of Theorem 3.3

PROOF OF THEOREM 3.3

In order to obtain the rate εn like this, we only need to apply lemma B.9 with the appropriate

choice of J̄n, Jn, Mn, ε̄n. It is easy to say that (B.38) and (B.39) described in Theorem 2 of Shen

and Ghosal (2012) in terms of tensor-product spline basis. An application of corollary B.4 yields

that,

max(K(η0, η), V (η0, η)) . (‖σ − σ0‖2∞ + ‖β − β0‖22).
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Meanwhile, lemma 3.1 implies the approximation error e(J) ≈ J−α. We proceed to determine

the rate εn as follows. Firstly, it follows that J̄−αn ≤ ε̄n and J̄n log n ≤ nε̄2
n by (B.39). Hence

we can choose Mn = n1/t3 , J̄n = (n/ log n)1/(2α+d) and ε̄n = (n/ log n)−α/(2α+d). Observe that

nε̄2
n . Jn logt1 n by (B.37), we can also choose Jn = n1/(2α+d)(log n)2α/(2α+d)−t2 . Noting also that

Jn log n . nε2
n by (B.38), so that we get the rate εn as n−α/(2α+d)(log n)α/(2α+d)−(t2−1)/2. Then the

proof of this theorem is complete. �

B.3 Auxiliary Theorems for Chapter 3

For easy reference, we collect some complementary results in the literature in aid of the proof of

the theorems in this present article.

THEOREM B.10 (Ghosal and van de Vaart (2007)) Let P (n)
θ be product measures and dn be defined as

follows:

dn(θ, θ′) =
1

n

∫
(
√
pθ,i −

√
pθ′,i)

2 dµi. (B.23)

Suppose that for a sequence εn → 0 such that nε2
n is bounded away from zero, some k > 1, all sufficiently

large j and sets Θn ⊂ Θ, the following conditions hold:

sup
ε>εn

logN(ε/36, {θ ∈ Θn : dn(θ, θ0) < ε}, dn) ≤ nε2
n, (B.24)

Πn(Θ\Θn)

Πn(B∗n(θ0, εn; k))
= o(e−2nε2n), (B.25)

Πn(θ ∈ Θn : jεn ≤ dn(θ, θ0) ≤ 2jεn)

Πn(B∗n(θ0, εn; k))
≤ enε2nj2/4. (B.26)

Then P (n)
θ Πn(θ : dn(θ, θ0) ≥Mnεn|X(n))→ 0 for every Mn →∞.

LEMMA B.11 (Shen and Ghosal (2012)) For any 1 ≤ p ≤ ∞, we have,

‖θT1 ξ − θT2 ξ‖r ≤
J∑
j=1

|θ1j − θ2j | max
1≤j≤J

‖ξj‖p ≤
√
J‖θ1 − θ2‖2Cp,J , (B.27)
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where,

Cp,J ≡ max
1≤j≤J

‖ξj‖p �

 1 p = 2
√
J p =∞

THEOREM B.12 (Shen and Ghosal (2012)) Let εn ≥ ε̄n be two sequence of positive numbers satisfying

εn → 0 and nε̄2
n → ∞ as n → ∞. For a function w0, suppose that there exist sequences of positive

numbers Jn, J̄n and Mn, a strictly decreasing, nonnegative function e(·) and a θ0,j ∈ Rj for any j ∈ N,

such that the following conditions hold for some positive constants a1, a′1, a2:

‖θ0,j‖ ≤ H, d2(w0, θ
T
0,jξ) ≤ e(j), (B.28)

Jn{log Jn + log a(Jn) + logMn + log(1/εn)} ≤ nε2
n, (B.29)

e(J̄n) ≤ ε̄n, log{1/B(J̄n)}+ c2J̄n log(2b(J̄n)/ε̄n) ≤ a2nε̄
2
n, (B.30)

A(Jn) ≤ a1 exp{−(a2 + 4)nε̄2
n}, Jn exp{−CM t3

n } ≤ a′1 exp{−(a2 + 4)nε̄2
n}. (B.31)

LetW = {w = θT ξ : θ ∈ Rj , j ≤ Jn, ‖θ‖∞ ≤Mn}. Then the following assertions hold:

logD(εn,WJn,Mn , d2) ≤ nε2
n, (B.32)

Π(W 6∈ WJn,Mn) ≤ (a1 + a′1) exp{−(a2 + 4)nε̄2
n}, (B.33)

− log Π{w = θT ξ : d2(w0, w) ≤ ε̄n} ≤ a2nε̄
2
n. (B.34)

THEOREM B.13 (Shen and Ghosal (2012)) Suppose that we have independent observations Xi following

some distributions with densities pi,w : i = 1, . . . , n respectively. Let w0 ∈ Cα(Ω0) be the true value of w.

let r be either 2 or∞. Let εn ≥ ε̄n be two sequences of positive numbers satisfying εn → 0 and nε̄2
n →∞

as n→∞. Assume that there exist a θ0 ∈ RJ , ‖θ0‖ ≤ H and some positive constants C1, C2 satisfying,

‖w0 − θT0 ξ‖r ≤ C1J
α(log J)s, s ≥ 0, (B.35)

‖θT1 ξ − θT2 ξ‖r ≤ C2J
K0‖θ1 − θ2‖2, K0 ≥ 0, for any θ1, θ2 ∈ RJ . (B.36)
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Assume that the prior on J and θ satisfy some conditions (A2) and (A3) in their paper. Let Jn, J̄n ≥ 2

and Mn be sequences of positive numbers such that the following hold:

Jn logt1 Jn ≥ 6nε̄2
n, log Jn + 6nε2

n ≤ c1M
t3
n , (B.37)

Jn{(K0 + 1) log Jn + logMn + log(1/εn) + log n} ≤ nε2
n, (B.38)

J̄−αn (log J̄n)s ≤ ε̄n, J̄n{logt2 J̄n + c2K0 log(J̄n) + c2 log(1/ε̄n)} ≤ 2nε̄2
n, (B.39)

ρn(w1, w2) . nC3‖w1 − w2‖r for any w1, w2 ∈ WJn,Mn and some constant C3 > 0, (B.40)

max
1≤i≤n

{K(pi,w0 , pi,w), V (pi,w0 , pi,w) } . ‖w1 − w2‖r, (B.41)

provided ‖w1−w2‖r is sufficiently small. Then the posterior of w converges around w0 at the rate εn with

respect to ρn.

THEOREM B.14 (de Jonge and van Zanten (2012)) Suppose that for every m ≥ 1,

C1 exp(−D1m
d logtm) ≤ P (M = m) ≤ C2 exp(−D2m

d logtm), (B.42)

for some constants C1, C2, D1, D2, t ≥ 0. If w0 ∈ Cr([0, 1]d) for some integer r ≤ q, then there exist a

constant C > 0, a constant D > 0 and measurable subsets Un of C([0, 1]d) such that,

P (‖W − w0‖∞ ≤ 2εn) ≥ exp (−nε2
n), (B.43)

P (W 6∈ Un) ≤ exp (−Cnε2
n), (B.44)

logN(2ε̄n, Un, ‖ · ‖∞) ≤ Dnε̄2
n, (B.45)

are satisfied for sufficiently large n, and for εn and ε̄n given by,

εn = c(n/ log1∨t n)−
r

d+2r ε̄n = n−
r

d+2r (log n)
(1∨t)r
d+2r

+( 1−t
2

)+, (B.46)

for c > 0 a large enough constant.
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Appendix C

Appendix to Chapter 4

C.1 Useful complementary Lemmas for Chapter 4

In this Appendix C.1 we will state some auxiliary lemmas to complement the main results in the

context.

Let P,Q ∈P and consider a prior Π and a measurable set B ∈ B such that Π(B) > 0, recall that

the prior predictive distribution PΠ
n and the local prior predictive distribution QΠ

n are two distributions

on n-sample space (X n,X n) respectively, defined by,

PΠ
n (A) :=

∫
P
Pn(A) dΠ(P ), (C.1)

QΠ
n (A) :=

∫
P
Qn(A) dΠ(Q|B), (C.2)

for all n ≥ 1 and A ∈ σ(X1, . . . , Xn). The next lemma describes the relationship between these

two distributions.

LEMMA C.1 For each A ∈ σ(X1, . . . , Xn) and each n ≥ 1, it holds,

PΠ
n (A) ≥ Π(B)QΠ

n (A). (C.3)

119
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That is, the prior predictive distribution is greater than the product of the local prior predictive distribution

and prior mass on a given measurable set in the model.

PROOF OF LEMMA C.1

Observe that for all n ≥ 1 and A ∈ σ(X1, . . . , Xn),

QΠ
n (A) =

∫
P
Qn(A) dΠ(Q|B) =

∫
Qn(A)

Π(B)
dΠ(Q ∩B).

Define νB(B′) := Π(B′∩B) for anyB′ ∈ B, then by Theorem 16.11 and Example 16.9 in Billingsley

(1995), we arrive at,

νB � Π,
dνB
dΠ

= 1B,

∫
D
f dνB =

∫
D
f1B dΠ =

∫
D∩B

f dΠ,

for any nonnegative measurable function f on (P, B) and all D ∈ B.

Hence it follows that,

QΠ
n (A) =

∫
P

Qn(A)

Π(B)
dνB(Q) =

∫
P

Qn(A)

Π(B)
1B dΠ(Q).

Now note that P ∩B ⊂P , we conclude that,

QΠ
n (A) ≤ 1

Π(B)

∫
P
Qn(A) dΠ(Q) =

PΠ
n (A)

Π(B)
.

�

The following lemma deals directly with the comparison between a collection of n-fold probability

measures in some measurable set with the Cartesian product of these n-copies of this same set.

LEMMA C.2 Let V n := {Pn : P ∈ V } = {P × P × . . .× P : P ∈ V }, then we have,

V n ⊂ V × V × . . .× V, (C.4)

co(V n) ⊂ co(V × V × . . .× V ). (C.5)
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PROOF OF LEMMA C.2

It is trivial that (C.4) holds. It remains to show (C.5). According to the definition of the convex

hull, co(V n) is the smallest convex set that contain V n. Since co(V × V × . . .× V ) is a convex set

that contains V × V × . . .× V , then we infer that (C.5) holds by (C.4). �

For sake of clarity, we denote the element in co(V n) by Pn and Pn is the generic element

included in V n.

LEMMA C.3 Let Qn � Pn0 for any Q ∈P and α ∈ [0, 1], then,

dQΠ
n

dPn
=

∫
P

dQn

dPn
dΠ(Q|B), (C.6)(

dQΠ
n

dPn

)−α
≤
∫

P

(
dQn

dPn

)−α
dΠ(Q|B). (C.7)

PROOF OF LEMMA C.3

Since Qn � Pn0 , the Radon-Nikodym theorem tells us that there is a Radon-Nikodym derivative

dQn

dPn0
for which,

QΠ
n (A) =

∫
A

dQn

dPn0
dPn0 ,

holds for allA ∈ σ(X1, . . . , Xn). Note that in view of the Fubini’s theorem, for anyA ∈ σ(X1, . . . , Xn),

one could find,

QΠ
n (A) =

∫
P
Qn(A) dΠ(Q|B)

=

∫
P

∫
A

dQn

dPn0
dPn0 dΠ(Q|B)

=

∫
A

[∫
P

dQn

dPn0
dΠ(Q|B)

]
dPn0 .

Then an application of the Radon-Nikodym theorem again gives,

dQΠ
n

dPn0
=

∫
P

dQn

dPn0
dΠ(Q|B).
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Note also that Pn � Pn0 and a straightforward computation shows that,

dQΠ
n

dPn
=

∫
P dQn/dPn0 dΠ(Q|B)

dPn/dPn0

=

∫
P

dQn/dPn0
dPn/dPn0

dΠ(Q|B)

=

∫
P

dQn

dPn
dΠ(Q|B).

Hence, (C.6) is as desired.

Now we turn to show(C.7). Define f : (0,∞) → R by f(x) = x−α. Notice that f is convex on

(0,∞) and applying Jensen’s inequality, one could get,

f

(
dQΠ

n

dPn

)
= f

(∫
P

dQn

dPn
dΠ(Q|B)

)
≤
∫

P
f

(
dQn

dPn

)
dΠ(Q|B).

Then (C.7) follows by substituting f with its associated explicit function form. Therefore the proof

of this lemma is complete. �

The following corollary is an immediate consequence of lemma C.3, which provides us a

further characterization of the Hellinger transform conditioning on some measurable set with

positive prior mass.

COROLLARY C.4

Pn0

( dPn
dPΠ

n

)α
≤ Π(B)−α Pn0

( dPn
dQΠ

n

)α
≤ Π(B)−α Pn0

∫
P

( dPn
dQn

)α
dΠ(Q|B). (C.8)

The following lemma states that Hellinger transform taken on covex hulls of V n admits a

factorization on convex hull of V .

LEMMA C.5

sup
Pn∈co(V n)

Pn0

( dPn
dQn

)α
≤
[

sup
P∈co(V )

P0

(dP
dQ

)α]n
. (C.9)

PROOF OF LEMMA C.5
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First of all, set,

d νP,Q,i :=
dP0

dQ
dPi, Pi ∈ V, i = 1, 2, . . . , J,

Q :=

{
νP,Q :=

∫
dP0

dQ
dP : P ∈ V

}
.

Suppose that Pn ∈ co(V n) be given, then there exist {Pn1 , Pn2 , . . . , PnJ } ⊂ V n and λ1, λ2, . . . , λJ ≥

0,
∑J

i=1 λi = 1 such that,

Pn =
J∑
i=1

λiP
n
i .

Next, observe that the left side of (C.9) could be written as,

sup

{∫ ( J∑
i=1

λi
dPni
dQn

)α
dPn0 : Pni ∈ V n, i = 1, 2, . . . , J

}
,

which is weakly less than,

sup

{∫ J∑
i=1

λi

(dPni
dQn

)α
dPn0 : Pni ∈ V n, i = 1, 2, . . . , J

}
≤

J∑
i=1

λi sup
Pni ∈V n

{∫ (dPni
dQn

)α
dPn0

}
.

And the right side of the inequality above is equal to,

J∑
i=1

λi sup
Pi∈V

{∫ [(dP0

dQ
dPi

)n]α(
dPn0

)1−α}
=

J∑
i=1

λi sup
νP,Q,i∈Q

{∫ (
d νnP,Q,i

)α(
dPn0

)1−α}
.

Moreover, the right side of the equality above is less than,

J∑
i=1

λi sup

{∫ (
d νnP,Q,i

)α(
dPn0

)1−α
: νnP,Q,i ∈ co(Q ×Q . . .×Q)

}

≤
J∑
i=1

λi ρα
(
Q ×Q . . .×Q, Pn0

)
≤

J∑
i=1

λi
[
ρα
(
Q, P0

)]n
=
[
ρα
(
Q, P0

)]n
,
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where the second inequality follows from Lemma 6.2 in Kleijn and van der Vaart (2006) and,

ρα
(
Q, P0

)
:= sup

νP,Q∈co(Q)
P0

(
d νP,Q
dQ

)α
.

Finally, simple algebra shows that,

ρα
(
Q, P0

)
= sup

P∈co(V )
P0

(
dP

dQ

)α
.

This concludes the proof of this lemma. �

If we replace V with a convex set Vn,m, then we easily draw an analogous claim of lemma C.5

by taking, co(Vn,m) = Vn,m.

COROLLARY C.6

sup
Pn∈co(V nn,m)

Pn0

( dPn
dQn

)α
≤
[

sup
P∈co(Vn,m)

P0

(dP
dQ

)α]n
=
[

sup
P∈Vn,m

P0

(dP
dQ

)α]n
. (C.10)

C.2 Proofs of Theorems

C.2.1 Proofs for Section 2

PROOF OF THEOREM 4.2

For each n ≥ 1, let us first introduce a new test function as follows,

φn := max
1≤m≤Nn

φn,m,

Then according to assumption (4.9), it follows that,

Pn0 φn ≤
Nn∑
m=1

Pn0 φn,m ≤ e(L−KM2)nε2n ,

sup
P∈Vn

Pn0
dPn

dPΠ
n

(1− φn) ≤ min
1≤m≤Nn

sup
P∈Vn,m

Pn0
dPn

dPΠ
n

(1− φn,m) ≤ e−KM2nε2n .
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Next, observe that,

Pn0 Π(Vn|X1, . . . , Xn) ≤ Pn0 Π(Vn|X1, . . . , Xn)(1− φn) + Pn0 φn,

In addition, an application of the Fubini’s theorem yields,

Pn0 Π(Vn|X1, . . . , Xn)(1− φn) = Pn0

∫
Vn

dPn

dPΠ
n

(1− φn) dΠ(P )

=

∫
Vn

Pn0
dPn

dPΠ
n

(1− φn) dΠ(P )

≤ sup
P∈Vn

Pn0
dPn

dPΠ
n

(1− φn)

≤ e−KM2nε2n .

Hence, for a sufficiently large M > 0, one could find,

Pn0 Π(Vn|X1, . . . , Xn) ≤ e(L−KM2)nε2n + e−KM
2nε2n −→ 0 as n→∞.

We have thus proved this theorem. �

PROOF OF THEOREM 4.3

This lemma can be completed by the method analogous to that used in Lemma 2.2 in Kleijn (2015)

just replacing φn, V there with φn,m, Vn,m respectively. �

PROOF OF LEMMA 4.4

Suppose α ∈ [0, 1], observe that by lemma C.1,

PΠ
n (A) ≥ Π(Bn)QΠ

n (A),

for each n ≥ 1 and all A ∈ σ(X1, . . . , Xn). Using the fact that the function x 7→ x−α is convex on
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(0,∞) , we get that,

Pn0

( dPn
dPΠ

n

)α
≤ Π(Bn)−α Pn0

( dPn
dQΠ

n

)α
≤ Π(Bn)−α Pn0

∫ ( dPn
dQn

)α
dΠ(Q|Bn). (C.11)

Applying Fubini’s theorem together with the factorization of the Hellinger transform over the

convex hulls of products by Lemma 6.2 in Kleijn and van der Vaart (2006) gives that,

sup
Pn∈co(V nn,m)

inf
0≤α≤1

Π(Bn)−α
∫
Pn0

( dPn
dQn

)α
dΠ(Q|Bn)

≤ inf
0≤α≤1

Π(Bn)−α
∫

sup
Pn∈co(V nn,m)

Pn0

( dPn
dQn

)α
dΠ(Q|Bn)

≤ inf
0≤α≤1

Π(Bn)−α
∫ [

sup
P∈co(Vn,m)

P0

(dP
dQ

)α]n
dΠ(Q|Bn).

Here the last inequality follows lemma C.5. Combining (4.14) and (C.11) with α = 1 shows that

Pn0 (dPn/dPΠ
n ) < ∞ for all P ∈ Vn,m, 1 ≤ m ≤ Nn. According to (4.12), we have thus proved the

lemma. �

C.2.2 Proofs for Section 3

PROOF OF LEMMA 4.5

We firstly assume (4.16) holds. A Taylor expansion of P0

(
dP
dQ

)α
at α = 0 yields that for all α ∈

(0, 1),

sup
Q∈B

sup
P∈V

P0

(dP
dQ

)α
≤ 1 + α sup

α′∈(0,α]
sup
Q∈B

sup
P∈V

P0

(dP
dQ

)α′
log

dP

dQ
. (C.12)

Define,

z(α′) = sup
Q∈B

sup
P∈V

P0

(dP
dQ

)α′
log

dP

dQ
. (C.13)

It is easy to see that z(α′) is convex on [0, 1] which hence implies that it is also continuous on (0, 1)

and upper-semicontinuous at 0. Note that based on (4.16) and Lemma A.1 in the Appendix of
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Kleijn (2015), we see that,

lim
α′→0

z(α′) = sup
Q∈B

sup
P∈V

P0 1{p>0} log
dP

dQ
≤ sup

Q∈B
sup
P∈V

P0 log
dP

dQ

= sup
Q∈B
−P0 log

dQ

dP0
− inf
P∈V

{
−P0 log

dP

dP0

}
< −M̃ε2.

Let ε̃ = 1
2(−M̃ε2 − limα′→0 z(α

′)). As z(α′) is upper-semicontinuous at 0, for ε̃ > 0, there exists

0 < α0 < 1 such that,

z(α′) ≤ lim
α→0+

z(α) + ε̃ =
1

2
(−M̃ε2 + lim

α′→0
z(α′)) < −M̃ε2, (C.14)

for all α′ ∈ (0, α0]. Additionally, noting also that by (C.12) and (C.14),

inf
0≤α≤1

sup
Q∈B

sup
P∈V

P0

(dP
dQ

)α
≤ 1 + inf

0<α≤1
sup

α′∈(0,α]
z(α′) ≤ 1 + inf

0<α≤α0

sup
α′∈(0,α]

z(α′)

≤ 1 + inf
0<α≤α0

(−M̃ε2) = 1− M̃ε2 ≤ e−M̃ε2 .

Hence (4.17) follows. Conversely, we prove the other side by contradiction. Assume that the

assertion (4.16) does not hold, then applying Jensen’s inequality for the exponential function ex

yields,

sup
Q∈B

sup
P∈V

P0

(dP
dQ

)α
= sup
Q∈B

sup
P∈V

P0

(
e
α log dP

dQ

)
≥ sup

Q∈B
sup
P∈V

e
αP0 log dP

dQ

= exp

{
α sup
Q∈B

sup
P∈V

P0 log
dP

dQ

}

= exp

{
α sup
Q∈B
−P0 log

dQ

dP0
− α inf

P∈V

{
−P0 log

dP

dP0

}}
≥ e−αM̃ε2 .

Taking infinitum with 0 ≤ α ≤ 1 on both sides above, one could obtain,

inf
0≤α≤1

sup
Q∈B

sup
P∈V

P0

(
log

dP

dQ

)
≥ e−M̃ε2 ,
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which is contrary to (4.17). Therefore this completes the proof of this lemma. �

PROOF OF THEOREM 4.6

First of all, let us define the Kullback-Leibler Bn as follows:

Bn :=

{
P ∈P : −P0 log

dP

dP0
< ε2

n

}
.

Note that Vn is covered by some finite collection of Hellinger balls {Vn,i}Nni=1 of radii Mεn
2 . Thus for

every P ∈ Vn,i, 1 ≤ i ≤ Nn, we obtain,

−P0 log
dP

dP0
≥ d2(P, P0) >

M2ε2
n

4
.

Consequently,

sup
Q∈Bn

−P0 log
dQ

dP0
− inf
P∈Vn,m

{
−P0 log

dP

dP0

}
< (−M2/4 + 1)ε2

n,

for all 1 ≤ m ≤ Nn, hence (4.16) is fulfilled by taking M̃ = M2/4 − 1 for M > 2
√

2. Next, notice

also that Hellinger ball is convex and in order to get the exponential bound for the type I and type

II error probability, it is necessary to just upper bound the quantity below for each 1 ≤ m ≤ Nn,

inf
0≤α≤1

sup
Q∈Bn

sup
P∈Vn,m

Π(Bn)−α/nP0

(
dP

dQ

)α
.

Thus if the GGV priors assumption (4.1) holds, then,

Π(Bn) ≥ Π
(
P ∈P : −P0 log

dP

dP0
< ε2n, P0

(
log

dP

dP0

)2
< ε2n

)
≥ e−nε2n ,
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so that Π(Bn)−α/n < eαε
2
n ≤ eε2n since α ∈ [0, 1]. What’s more, lemma 4.5 guarantees that,

inf
0≤α≤1

sup
Q∈Bn

sup
P∈Vn,m

Π(Bn)−α/nP0

(
dP

dQ

)α
≤ eε2n inf

0≤α≤1
sup
Q∈Bn

sup
P∈Vn,m

P0

(
dP

dQ

)α
≤ e(−M2/4+2)ε2n .

An application of lemma 4.4 with K = M2−8
4M2 implies that (4.9) in theorem 4.2 holds. Thus we

have completed the proof of this theorem. �

PROOF OF THEOREM 4.7

Let us first consider the following two sets,

Vn :={P ∈P : dH(P, P0) > Mεn},

Bn :={Q ∈P : dH(Q,P0) <
ε2
n

2L′
∧ ε′n}.

Note that Vn ⊂ P and N(εn,P, dH) ≤ eC̃nε
2
n , then there exist a finite collection of probability

measures {P1, P2, . . . , PNn} ⊂ Vn such that,

Vn ⊂
Nn⋃
m=1

Vn,m,

where,

Nn ≤ eC̃nε
2
n ,

Vn,m := {P ∈P : dH(P, Pm) < εn}, m = 1, 2, . . . , Nn.

By the triangle inequality, one could see that for every P ∈ Vn,m, m = 1, 2, . . . , Nn,

dH(P, P0) ≥ dH(P0, Pm)− dH(P, Pm) > (M − 1)εn.
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Moreover, observe that for Q ∈ Bn, P ∈ Vn,m,

P0

(
p

q

)1/2

=

∫
p1/2p

1/2
0 dµ+

∫ (√
p0

q
− 1

)(
p

q

)1/2(p0

q

)1/2

dQ

≤ 1− 1

2
d2
H(P0, P ) + dH(P0, Q)

∥∥∥p0

q

∥∥∥
2,Q

∥∥∥p
q

∥∥∥
2,Q

≤ 1− 1

2
ε2
n(M − 1)2 + L′2

(
ε2
n

2L′
∧ ε′n

)
≤ exp

{
−1

2
ε2
n(M2 − 2M + 1− L′/2)

}
≤ exp

{
−1

2
ε2
n(M + 1)

}
.

whereM is chosen sufficiently large and the first inequality above follows from the Cauchy-Schwarz

inequality. Using the convex property of the Hellinger ball, one could obtain for each 1 ≤ m ≤ Nn

and a sufficiently large M > 0,

Π(Bn)−1/2n sup
Q∈Bn

sup
P∈co(Vn)

P0

(
dP

dQ

)1/2

≤ exp

{
C ′

2

(
ε2
n

2L′
∧ ε′n

)2
}

exp

{
−1

2
ε2
n(M + 1)

}
≤ exp

{
−1

2
ε2
nM −

1

2
ε2
n +

C ′ε4
n

8L′2

}
≤ exp

{
−1

2
Mε2

n

}
.

The last inequality follows from the fact that −1
2ε

2
n + C′ε4n

8L′2 < 0 when εn is small enough as n→ 0.

Notice that by the Cauchy-Schwarz inequality again, for each Q ∈ Bn, P ∈ Vn,

P0

(
dP

dQ

)
≤
∥∥∥p0

q

∥∥∥
2,Q

∥∥∥p
q

∥∥∥
2,Q
≤ L′2 <∞.

Therefore, we conclude that the claim (4.22) is as desired according to theorem 4.1 and lemma 4.4.

�

PROOF OF THEOREM 4.8

This proof can be proved in a similar way as shown in Theorem 3.1 in Ghosal et al. (2000). Write
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‖ · ‖2,µ for the norm in L2(µ). According to theorem 4.7, it suffices to show the following prior

condition holds.

Π(Bn) = Π{Q ∈P : dH(Q,P0) < εn} ≥ e−C
′nε2n .

where C ′ is a positive constant. Observe that given εn > 0, the bracketing number of P is finite,

then there exists a upper bracket un′ in Pn such that p0 < un′ and dH(p0, un′) < εn. Then taking

the squared root of the integral
∫
un′dµ, one could get,

1 =

(∫
p0 dµ

)1/2

≤
(∫

un′ dµ

)1/2

= ‖
√
un′‖2,µ ≤ dH(p0, un′) + ‖√p0‖2,µ ≤ εn + 1.

Let εn < 1, note also that by the triangle inequality,

dH

(
p0, un′/

∫
un′ dµ

)
≤ dH(p0, un′) + dH

(
un′ , un′/

∫
un′ dµ

)
≤ εn + (‖

√
un′‖2,µ − 1)2

≤ εn + ε2
n < 2εn.

So that the Hellinger ball {Q ∈ P : dH(Q,P0) < 2εn} contains at least one point un′/
∫
un′ dµ in

Pn that is defined as above. Hence,

Π({Q ∈P : dH(Q,P0) < 2εn}) ≥
λn
Nn
≥ exp(−nε2

n −O(log n)) ≥ exp(−2nε2
n).

Therefore taking change of variables on two sides of the inequality above, one could get,

Π(Bn) = Π({Q ∈P : dH(Q,P0) < εn}) ≥ exp(−nε2
n/2).

We thus proved this theorem by setting C ′ = 1/2. �
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C.2.3 Proofs for Section 4

PROOF OF THEOREM 4.12

For each n ≥ 1, let us first introduce a new test in the following,

φn = max
1≤i≤Nn

φn,i,

then we can bound the posterior distribution Π(Vn|X1, . . . , Xn) by,

φn + Π(Vn|X1, . . . , Xn)(1− φn). (C.15)

The expected value under the n-th posterior Pn0 of the first term above vanishes by (4.32), i.e.

Pn0 φn = Pn0 max
1≤i≤Nn

φn,i ≤
Nn∑
i=1

Pn0 φn,i ≤ Nne
−Lnε2n ≤ e−

1
2
Lnε2n ,

which goes to zero as n→∞.

Next, we split the second term of (C.15) in parts on Pn and its complement as follows,

Π(Vn ∩Pn|X1, . . . , Xn)(1− φn) + Π(Vn ∩Pc
n|X1, . . . , Xn)(1− φn). (C.16)

By the construction of the test φn, the first term in (C.16) under Pn0 could be written as,

Pn0 Π(Vn ∩Pn|X1, . . . , Xn)(1− φn) ≤
Nn∑
i=1

Pn0 Π(Vn,i ∩Pn|X1, . . . , Xn)(1− φn,i)

≤
Nn∑
i=1

sup
P∈Vn,i

Pn0
dPn

dPΠ
n

(1− φn,i)

≤ Nne
−Lnε2n ≤ e−

1
2
Lnε2n .
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Finally, applying (C.11) with α = 1 enables us to write out the second term in (C.16),

Pn0 Π(Vn ∩Pc
n|X1, . . . , Xn)(1− φn) ≤ Pn0 Π(Vn ∩Pc

n|X1, . . . , Xn)

=

∫
Vn∩Pc

n

Pn0
dPn

dPΠ
n

dΠ(P )

≤ 1

Π(Bn)

∫
Vn∩Pc

n

Pn0

∫
Bn

dPn

dQn
d(Q|Bn) dΠ(P )

≤ Π(Vn ∩Pc
n)

Π(Bn)
sup

P∈Vn∩Pc
n

sup
Q∈Bn

Pn0

(dPn
dQn

)
≤ Π(Pc

n)

Π(Bn)

[
sup

P∈Vn∩Pc
n

sup
Q∈Bn

P0

(dP
dQ

)]n
≤ Π(Pc

n)

Π(Bn)
eKnε

2
n/4,

which is bounded by e−Knε
2
n/4 by conditions (iii.) and (iv.). Since nε2

n →∞ as n→∞, so that all

the terms tend to zero. �

PROOF OF THEOREM 4.14

The proof of Theorem 4.4 in Kleijn (2015) goes through with a substitution of Vn, Vn,i and Bn,i for

V, Vi and Bi respectively. �

PROOF OF COROLLARY 4.15

An application of theorem 4.14 with α = 1/2 and choosingBn,i = Bn for each i ≥ 1, n ≥ 1 implies

that,

Pn0 Π(Vn|X1, . . . , Xn ≤ Π(Bn)−1/2
∞∑
i=1

Π(Vn,i)
1/2

[
sup

P∈co(Vn,i)
sup
Q∈Bn

P0

(dP
dQ

)1/2
]n

≤ e
1
2
K′nε2ne−K

′′nε2n

∞∑
i=1

Π(Vn,i)
1/2,

which tends to zero by applying (4.42) with K̃ = K ′′ − 1
2K
′. �

PROOF OF COROLLARY 4.16

Since P is Hellinger separable, then there exist an infinite countable number of model subsets

{Vn,m}m≥1 that cover Vn, where Vn = {P ∈P : dH(P, P0) > Mεn}, M > 0 and Vn,m = {P ∈P :
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dH(Pm, P ) < εn}, Pm ∈ Vn for m = 1, 2, . . .. Then applying the triangle inequality to give that,

inf
m≥1

inf
P∈co(Vn,m)

dH(P, P0) > (M − 1)εn.

Note that for each P ∈ co(Vn,m),m = 1, 2, . . .,

−P0 log
dP

dP0
≥ d2

H(P, P0) > (M − 1)2ε2
n.

Let’s choose Bn = {P ∈P : −P0 log dP
dP0

< ε2
n}, then one can obtain for m = 1, 2, . . .,

sup
Q∈Bn

{
−P0 log

dQ

dP0

}
− inf
P∈co(Vn,m)

{
−P0 log

dP

dP0

}
< −(M2 − 2M)ε2

n.

Noting also that (4.17) in lemma 4.5 holds with co(Vn,m) instead of Vn,m there as well, that is , for

m = 1, 2, . . .,

inf
0≤β≤1

sup
Q∈Bn

sup
P∈co(Vn,m)

{
P0

(
dP

dQ

)β}
< e−(M2−2M−1)ε2n .

Hence, invoking theorem 4.14 to give rise to,

Pn0 Π(Vn|X1, . . . , Xn) ≤ eK̃1nε2ne−(M2−2M−1)nε2n inf
0≤β≤1

∞∑
i=1

Π(Vn,i)
β.

Choosing M > 0 sufficiently large could guarantee that K̃2 = M2 − 2M − 1− K̃1 > 0, so that the

r.h.s of the preceding display goes to zero by (4.44). �
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C.2.4 Proofs for Section 5

PROOF OF THEOREM 4.17

Let εn = n−1/β and define,

g(θ, θ′) := max{|θ1 − θ′1|, |θ2 − θ′2|},

Vn := {Pθ,η ∈P : g(θ, θ′) > Mnεn},

for each θ := (θ1, θ2) ∈ Θ and θ′ := (θ′1, θ
′
2) ∈ Θ. Notice that Bn is contained in any Hellinger ball

around P0 and then Π(Bn) > 0 by (4.48), so that Pn0 � PΠ
n holds for all n ≥ 1 by Lemma 2.1 in

Kleijn (2015).

Applying Lemma A.1 in Kleijn (2015) with P ∈ Vn andQ ∈ Bn and Hölder’s inequality yields,

Π(Bn)−α/nP0

(dP
dQ

)α ∣∣∣∣
α↓0

= P0(p > 0),

Π(Bn)−α/nP0

(dP
dQ

)α ∣∣∣∣
α↑1

= Π(Bn)−1/n

(∫
dP0

dQ
1{p0>0,p>0,q>0} dP

)
≤ Π(Bn)−1/n

(
P (p0 > 0) +

∫ ∣∣∣dP0

dQ
− 1
∣∣∣1{q>0} dP

)
≤ Π(Bn)−1/n

(
P (p0 > 0) +

∥∥∥dP0

dQ
− 1
∥∥∥
s,Q

∥∥∥dP
dQ

∥∥∥
r,Q

)
< Π(Bn)−1/n

(
P (p0 > 0) + 1

2

(
εn
σ

)β)
.

Hence it is easy to see that,

inf
0≤α≤1

sup
Q∈Bn

sup
P∈co(Vn)

Π(Bn)−α
[
P0

(
dP

dQ

)α]n
,

is bounded above by,

min
{

sup
Q∈Bn

sup
P∈co(Vn)

[
P0(p > 0)

]n
, sup
Q∈Bn

sup
P∈co(Vn)

Π(Bn)−1
[
P (p0 > 0) + 1

2

(
εn
σ

)β]n}
. (C.17)
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That is to say that we just concentrate in two cases to characterize the bound of the Hellinger

transform above. Next, we just consider whether each element in (C.17) has the desired exponential

bound. Let P0 = P(θ0,1,θ0,2),η0 and P = P(θ1,θ2),η. It is possible to construct the covers of Vn in the

following:

Vn,+,1 = {Pθ,η : θ1 ≥ θ0,1 +Mnεn, η ∈ H},

Vn,−,1 = {Pθ,η : θ1 ≤ θ0,1 −Mnεn, η ∈ H},

Vn,+,2 = {Pθ,η : θ2 ≥ θ0,2 +Mnεn, η ∈ H},

Vn,−,2 = {Pθ,η : θ2 ≤ θ0,2 −Mnεn, η ∈ H}.

Now we explore the upper bound of (C.17) in these four cases above respectively.

(i) Let P ∈ co(Vn,+,1), here we consider the lower bound of P0(p = 0),

P0(p = 0) ≥
∫ θ0,1+Mnεn

θ0,1

p0(x) dx =

∫ θ0,1+Mnεn

θ0,1

1

θ0,2 − θ0,1
η0

( x− θ0,1

θ0,2 − θ0,1

)
dx

=

∫ Mnεn/(θ0,2−θ0,1)

0
η0(z) dz ≥

∫ Mnεn
σ

0
η0(z) dz ≥

(
Mnεn
σ

)β
,

the last inequality is derived from (4.47). Then we get,

(C.17) ≤ sup
Q∈Bn

sup
P∈co(Vn,+,1)

[
P0(p > 0)

]n ≤ [1− (Mnεn
σ

)β]n ≤ e−n(Mnεn
σ

)β
.

(ii) Let P ∈ co(Vn,−,1), assume that there exist some positive integer I and λ1, λ2, . . . , λI ≥ 0 such

that
∑I

i=1 λi = 1. Write Pi = Pθi,ηi with θi,1 ≤ θ0,1−Mnεn as well as ηi ∈ H , for all 1 ≤ i ≤ I . Here
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we take into account the lower bound of P (p0 = 0). Using (4.47), it is not difficult to see that,

P (p0 = 0) =
I∑
i=1

λi Pi(p0 = 0) ≥
I∑
i=1

λi

∫ θi,1+Mnεn

θi,1

pi(x) dx

=
I∑
i=1

λi

∫ θi,1+Mnεn

θi,1

1

θi,2 − θi,1
ηi

( x− θi,1
θi,2 − θi,1

)
dx

=
I∑
i=1

λi

∫ Mnεn/(θi,2−θi,1)

0
ηi(z) dz ≥

I∑
i=1

λi

∫ Mnεn
σ

0
ηi(z) dz ≥

(
Mnεn
σ

)β
.

Then we have,

(C.17) ≤ sup
Q∈Bn

sup
P∈co(Vn,−,1)

Π(Bn)−1
[
P (p0 > 0) + 1

2

(
εn
σ

)β]n
≤ eL̃nδ2n

[
1−

(
Mnεn
σ

)β
+ 1

2

(
εn
σ

)β]n
≤ eL̃n

(
εn
σ

)β
/2T e−n

(
Mnεn
σ

)β
+
n
2

(
εn
σ

)β
≤ e−Cn

(
Mnεn
σ

)β
.

The last inequality holds since (L̃/2T + 1/2)
(
εn
σ

)β − (Mnεn
σ

)β
< −C

(
Mnεn
σ

)β for some positive

constant C when Mn is chosen sufficiently large as n→∞.

(iii) LetP ∈ co(Vn,+,2), assume again that there exist some positive integer I and λ1, λ2, . . . , λI ≥

0 such that
∑I

i=1 λi = 1. Write Pi = Pθi,ηi with θi,2 ≥ θ0,2 + Mnεn and ηi ∈ H , for all 1 ≤ i ≤ I .

Observe that by (4.47),

P (p0 = 0) =

I∑
i=1

λi Pi(p0 = 0) ≥
I∑
i=1

λi

∫ θi,2

θi,2−Mnεn

pi(x) dx

=

I∑
i=1

λi

∫ θi,2

θi,2−Mnεn

1

θi,2 − θi,1
ηi

( x− θi,1
θi,2 − θi,1

)
dx

=
I∑
i=1

λi

∫ 1

1−Mnεn/(θi,2−θi,1)
ηi(z) dz ≥

I∑
i=1

λi

∫ 1

1−Mnεn/σ
ηi(z) dz ≥

(
Mnεn
σ

)β
.
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Then we obtain,

(C.17) ≤ sup
Q∈Bn

sup
P∈co(Vn,+,2)

Π(Bn)−1
[
P (p0 > 0) + 1

2

(
εn
σ

)β]n
≤ eL̃nδ2n

[
1−

(
Mnεn
σ

)β
+ 1

2

(
εn
σ

)β]n
≤ eL̃n

(
εn
σ

)β
/2T e−n

(
Mnεn
σ

)β
+
n
2

(
εn
σ

)β
≤ e−Cn

(
Mnεn
σ

)β
.

The last inequality follows since (L̃/2T+1/2)
(
εn
σ

)β−(Mnεn
σ

)β
< −C

(
Mnεn
σ

)β for some positive

constant C when Mn is chosen sufficiently large as n→∞.

(iv) Let P ∈ co(Vn,−,2), then θ0,2 ≤ θ0,2 −Mnεn. Note that, using (4.47), we see that,

P0(p = 0) ≥
∫ θ0,2

θ0,2−Mnεn

p0(x) dx =

∫ θ0,2

θ0,2−Mnεn

1

θ0,2 − θ0,1
η0

( x− θ0,1

θ0,2 − θ0,1

)
dx

=

∫ 1

1−Mnεn/(θ0,2−θ0,1)
η0(z) dz

≥
∫ 1

1−Mnεn/σ
η0(z) dz

≥
(
Mnεn
σ

)β
.

Hence we get,

(C.17) ≤ sup
Q∈Bn

sup
P∈co(Vn,−,2)

[
P0(p > 0)

]n ≤ [1− (Mnεn
σ

)β]n ≤ e−n(Mnεn
σ

)β
.

So that it follows that for C̃ = min (1, C),

inf
0≤α≤1

sup
Q∈Bn

sup
P∈co(Vn,·)

Π(Bn)−α
[
P0

(dP
dQ

)α]n
≤ e−C̃n

(
Mnεn
σ

)β
,

for Vn,· equal to Vn,+,1, Vn,−,1, Vn,+,2 and Vn,−,2. The assumption εn = n−1/β suffices to assure that

n
(
Mnεn
σ

)β →∞ and e−C̃n
(
Mnεn
σ

)β
→ 0 as n→∞.
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Therefore a combination of theorem 4.2, lemma 4.3 and lemma 4.4 implies that,

Π
(
g(θ, θ0) > Mnεn

∣∣ X1, . . . , Xn

)
−→ 0 in Pn0 -probability.

Since all the norms defined on the finite dimension space are equivalent, then (4.50) follows. Thus

the proof of this theorem is complete. �

PROOF OF LEMMA 4.18

Let us consider the following norm,

‖f‖2,G :=

{∫ 1

0
f2(t)g(t) dt

}1/2

=

{∫ 1

0
f2(t) dG(t)

}1/2

.

Note that pv(t) and pw(t) can be rewritten as follows:

pv(t) =
ev(t)g(t)

‖ev/2‖2,G
and pw(t) =

ew(t)g(t)

‖ew/2‖2,G
.

By the same arguments in the proof of lemma 3.1 in van der Vaart and van Zanten (2008), we see

that,

dH(pv, pw) =

∥∥∥∥∥ ev/2

‖ev/2‖2,G
− ew/2

‖ew/2‖2,G

∥∥∥∥∥
2,G

=

∥∥∥∥∥ev/2 − ew/2‖ev/2‖2,G
+ ev/2

( 1

‖ev/2‖2,G
− 1

‖ew/2‖2,G

)∥∥∥∥∥
2,G

≤
2‖ev/2 − ew/2‖2,G
‖ew/2‖2,G

.

Since |ev/2−ew/2| = ew/2|ev/2−w/2−1| < ew/2e|v−w|/2|v−w|/2, then the squared Hellinger distance

is further bounded from above by,

∫ 1
0 e

w(t)e|v(t)−w(t)||v(t)− w(t)|2 dG(t)∫ 1
0 e

w(t) dG(t)
≤ ‖v − w‖2∞ × e‖v−w‖∞ .
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Then this concludes the proof. �
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