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Abstract

Power transformers are one of the most important components in an electrical system.

Knowing their condition is essential to meeting the goals of maximizing the return of

the investment and reducing the total cost associated with transformer operation.

As is well known, moisture has a strong influence on the performance of cellulose-

oil systems in power and distribution transformers. An excessive water content accel-

erates the paper ageing rates, increases the presence of partial discharges (PDs) and

decreases the dielectric strength of the insulation.

Traditionally the insulation system of a power transformer is composed of oil

impregnated paper and pressboard as well as mineral oil acting as dielectric fluid and

coolant.

In recent years, the use of natural esters as an alternative to mineral oil has in-

creased considerably in distribution transformers and, although less usual, some ex-

periences are starting to be reported on its use in power transformers. Natural esters

are synthesized from a vegetable base, as the seeds of soya, sunflower, rapeseed, etc.

They have greater affinity for water than mineral oils due to the fact of hydrogen bonds

existing on molecules of natural esters.

The behaviour of moisture inside the transformer insulation is a key aspect in

loading studies. If the insulation operates drier the ageing of the paper rate is lower,

and thus higher operating temperatures would be acceptable for solid insulation. Cel-

lulose and oil have a very different behaviour with regard to moisture; cellulosic ma-

terials are hydrophilic while oil is highly hydrophobic. In consequence water in trans-

formers is mainly contained in cellulosic insulation. However, the distribution of mois-

ture between paper and oil is not static, but depends on the transformer operation

condition, and specially on the temperature reached by the different materials.
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Moisture migration inside cellulosic insulation is a complex process involving

heat and mass transfer phenomena. However, as the thermal time constant is much

smaller than the diffusion time constant, moisture migration can be modeled as a dif-

fusion process, using Fick’s second law. The diffusion coefficient of cellulosic materials

depends on moisture concentration, and thus Fick’s equation becomes non-linear and

the application of a numerical method is required to solve it.

In this work, the moisture dynamics inside transformers insulated with natural

esters have been studied. Different experiments have been developed to obtain solu-

bility curves of natural esters and drying curves of cellulosic materials.

In addition, theoretical models based in finite elements, and an optimization pro-

cess were used to obtain the moisture diffusion coefficients for different materials.

As a final result of the thesis, a multi-physical model is proposed that allows

studing the dynamic behavior of moisture inside a transformer, insulated with mineral

oil or with natural esters, under real operation.
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Resumen

Los transformadores de potencia son los componentes más importantes de un sistema

eléctrico. Conocer su condición de funcionamiento es fundamental para maximizar el

retorno de la inversión y reducir el coste total asociado a la operación y el manten-

imiento del transformador.

Como es bien sabido, la humedad tiene una fuerte influencia en el rendimiento

del sistema celulosa-aceite en los transformadores de distribución y potencia, el con-

tenido excesivo de agua acelera el envejecimiento del papel, aumenta la presencia de

descargas parciales (PDs) y disminuye la resistencia dieléctrica del aislamiento.

Tradicionalmente el sistema de aislamiento de un transformador de potencia se

construye a partir de papel y cartón prensado impregnado en aceite mineral, que actúa

como fluido dieléctrico y refrigerante.

En los últimos años, el uso de ésteres naturales como una alternativa al aceite

mineral ha aumentado considerablemente en transformadores de distribución y aunque

menos habitual, se está comenzando a implementar su uso en transformadores de po-

tencia. Los aceites o ésteres naturales se sintetizan a partir de una base vegetal, como

es semillas de soja, girasol, colza, etc. Estos fluidos tienen mayor afinidad por el agua

que los aceites minerales aislantes debido al hecho de presentar enlaces de hidrógeno

en sus moléculas

El comportamiento de la humedad en el interior del aislamiento del transfor-

mador es un aspecto clave en los estudios de capacidad de carga. Si el aislamiento

opera seco la tasa de envejecimiento del papel es menor y por lo tanto aceptaría una

mayor temperatura de funcionamiento. La celulosa y el aceite tienen un compor-

tamiento muy diferente con respecto a la humedad; los materiales celulósicos son

hidrófilos mientras que el aceite es altamente hidrofóbo. En consecuencia la mayor
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humedad en un transformador está contenido en su aislamiento celulósico, sin em-

bargo la distribución de la humedad entre el papel y el aceite no es estática, sino que

depende de la condición de funcionamiento del transformador y principalmente de la

temperatura alcanzada por los diferentes materiales.

La migración de humedad en el interior del aislamiento celulósico es un proceso

complejo que implica la transferencia de calor y de difusión. Sin embargo, como la

constante de tiempo de transferencia de calor es mucho menor que la constante de

tiempo de difusión, la migración de humedad puede ser modelada como un proceso

de difusión, utilizando la segunda ley de Fick. El coeficiente de difusión de materiales

celulósicos depende de la concentración de humedad y por lo tanto la ecuación se

convierte en no lineal y se necesita implementar un método numérico para resolverlo.

En este trabajo, se ha estudiado la dinámica de humedad dentro de transfor-

madores aislados con ésteres naturales. Diferentes experimentos han sido desarrolla-

dos para obtener las curvas de solubilidad de los ésteres naturales y curvas de secado

de materiales celulósicos.

Adicionalmente, se utilizaron modelos teóricos basados en elementos finitos y

un proceso de optimización para calcular los diferentes coeficientes de difusión de

humedad para diferentes materiales.

Como resultado final de la tesis se propone un modelo multifísico que permite

estudiar el comportamiento dinámico de la humedad en el interior del transformador,

aislado con aceite mineral o con ester natural, en condiciones de funcionamiento reales.

vi



Contents

Agradecimientos i

Abstract iii

Resumen v

Contents xi

List of figures xviii

List of tables xx

1 Introduction 1

1.1 Moisture in transformer insulation . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Moisture in cellulosic insulation of transformer . . . . . . . . . . 2

1.1.2 Moisture equilibrium in paper-oil system . . . . . . . . . . . . . . 5

1.2 Esters fluids for electrotechnical use . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Fluid type and history . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.2 Solubility of water in natural esters . . . . . . . . . . . . . . . . . 7

1.2.3 Moisture dynamic in natural ester . . . . . . . . . . . . . . . . . . 7

1.3 Scope of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Outline of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 A review of moisture diffusion coefficients in transformer solid insulation 11

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Modelling moisture dynamics within transformer solid insulation . . . . 12

2.2.1 Moisture diffusion model adopted in the thesis . . . . . . . . . . 14

2.3 Moisture diffusion coefficient studies . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Coefficients of Ast . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

vii



2.3.2 Coefficients of Guidi and Fullerton . . . . . . . . . . . . . . . . . . 17

2.3.3 Coefficients of Howe and Asem . . . . . . . . . . . . . . . . . . . 19

2.3.4 Coefficients of Foss . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.5 Coefficients of Du . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.6 Coefficients of García . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.7 Diffusion coefficient for natural-ester-impregnated insulation . . 24

2.4 Comparison of the proposed coefficients . . . . . . . . . . . . . . . . . . . 24

2.5 Experimental validation of the coefficients . . . . . . . . . . . . . . . . . . 27

2.5.1 Experiments on non-impregnated insulation . . . . . . . . . . . . 28

2.5.2 Experiments on oil-impregnated insulation . . . . . . . . . . . . . 30

2.5.3 Validation process . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 Determination of moisture equilibrium curves of paper-ester systems 39

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Methodology applied to obtain the moisture equilibrium curves . . . . . 41

3.3 Experimental procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.1 Water saturation limits of insulating liquids . . . . . . . . . . . . 45

3.4.2 Moisture equilibrium curves determination . . . . . . . . . . . . . 48

3.5 Parametrization of the equilibrium curves . . . . . . . . . . . . . . . . . . 49

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 Particle Swarm Optimization and Genetic Algorithm 53

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Particle Swarm Optimization (PSO) . . . . . . . . . . . . . . . . . . . . . 55

4.3 Genetic Algorithm (GA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4 Diffusion coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.5 Experimental results and discussions . . . . . . . . . . . . . . . . . . . . . 62

4.5.1 Optimization times . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5.2 Root mean square deviation (RMSD) . . . . . . . . . . . . . . . . 63

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

viii



5 Diffusion coefficient in transformer mineral-oil impregnated pressboard 69

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2 Drying experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2.1 Experimental process . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2.2 Drying curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3 Determination of the moisture diffusion coefficient . . . . . . . . . . . . . 74

5.3.1 Moisture diffusion modelling . . . . . . . . . . . . . . . . . . . . . 75

5.4 Parameters calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4.1 k parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4.2 D0 parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.5 Proposed diffusion coefficients . . . . . . . . . . . . . . . . . . . . . . . . 79

5.6 Validation of the coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.6.1 Validation using experimental drying curves involved in the pa-

rameter determination process. . . . . . . . . . . . . . . . . . . . . 82

5.6.2 Validation of the diffusion coefficients with other temperatures

and insulation thickness. . . . . . . . . . . . . . . . . . . . . . . . . 83

5.6.3 Comparison of the coefficients with the values reported by other

authors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6 Moisture diffusion coefficients of pressboard impregnated with natural es-
ters 87

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.2 Experimental methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.2.1 Experimental process . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.2.2 Drying curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.3 Theoretical model for determining moisture diffusion coefficient . . . . . 92

6.4 Parameters calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.4.1 k parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.4.2 D0 parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.5 Proposed diffusion coefficients . . . . . . . . . . . . . . . . . . . . . . . . 95

6.6 Validation of the coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . 97

ix



6.6.1 Validation with temperatures and insulation thickness involved

in the coefficient determination process. . . . . . . . . . . . . . . . 97

6.6.2 Validation with temperatures and insulation thickness not con-

sidered in the coefficient determination process . . . . . . . . . . 98

6.6.3 Comparison of the coefficient with the values reported by other

authors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7 Moisture dynamics model 103

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.2 Moisture dynamic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.2.1 Thermal model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.2.2 Moisture diffusion modelling . . . . . . . . . . . . . . . . . . . . . 109

7.2.3 Development of the moisture dynamic model . . . . . . . . . . . 112

7.3 Moisture dynamics on a transformer insulated with vegetable oil. Case

studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.3.1 Case 1. Load step . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.3.2 Case 2. Cycle load proposed in IEEE Std C.57.91-2011 . . . . . . . 119

7.3.3 Case 3. Overload and further disconnection . . . . . . . . . . . . 123

7.4 Moisture dynamics in a transformer insulated with mineral oil . . . . . . 127

7.4.1 Case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.4.2 Case 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.4.3 Case 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

8 Conclusions 135

8.1 General conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

8.2 Main contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8.3 Beyond PhD Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

8.4 Publications, research projects and international stays . . . . . . . . . . . 138

8.4.1 Publications in scientific journals . . . . . . . . . . . . . . . . . . . 139

Bibliography 151

x



A Assessing the use of natural esters for transformer field drying 153

A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

A.2 Theoretical analysis of the process . . . . . . . . . . . . . . . . . . . . . . 156

A.2.1 Theoretical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

A.2.2 Simulation of the drying model . . . . . . . . . . . . . . . . . . . . 157

A.3 Experimental study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

A.3.1 Test plant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

A.3.2 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

A.3.3 Test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

A.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

A.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

B Effect of the insulation thickness on the water mobility inside transformer
cellulosic insulation 169

B.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

B.2 Modelling moisture transport inside cellulosic materials . . . . . . . . . 172

B.3 Experimental evidence of thickness influence on water mobility . . . . . 173

B.3.1 Experimental procedure . . . . . . . . . . . . . . . . . . . . . . . . 174

B.3.2 Experiments on non-impregnated samples . . . . . . . . . . . . . 175

B.3.3 Experiments on oil-impregnated samples . . . . . . . . . . . . . . 176

B.3.4 Determination of the diffusion coefficient . . . . . . . . . . . . . . 178

B.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

B.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

xi





List of Figures

1.1 Schematic (a) and microscopic view (b) of cellulosic transformer insula-

tion. Taken from [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Differents uses for cellulose insulation. Taken from [1]. . . . . . . . . . . 4

1.3 Biodegradability of various insulating fluids. Taken from [2]. . . . . . . . 6

1.4 Natural ester fluid versus mineral oil saturation curves. Taken from [3].

(a) Modified with permission from Doble Engineering Company. (b)

Source: IEEE Std C57.106-2002. . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Experimental and calculated moisture profiles from adsorption experi-

ments at 22 ◦C and 50% relative humidity. Taken from [4]. . . . . . . . . 18

2.2 Samples used by Howe: (a) pressboard, (b) manila paper. Taken from [4]. 19

2.3 Experimental setup used by Du and moisture concentration profiles.

Taken from [4]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Simulation of the drying of a 5 mm thick section of non-impregnated

Kraft paper, using different coefficients. . . . . . . . . . . . . . . . . . . . 26

2.5 Simulation of the drying of a 5 mm thick section of oil-impregnated

Kraft paper, using different coefficients. . . . . . . . . . . . . . . . . . . . 27

2.6 Moisture in paper as a function of relative humidity of the ambient by

Jeffries. Taken from [5]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.7 Illustration of pan filled with insulation in TGA oven. Taken from [6]. . . 30

2.8 Insulation test sample details: aluminium core (1), paper insulation (2),

heating element lead (3) and internal insulation temperature sensor (4).

Taken from [7]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.9 RMSD of Du’s coefficient for non-impregnated pressboard. . . . . . . . . 33

xiii



2.10 Simulated and measured drying curves using Du’s moisture diffusion

coefficient for non-impregnated pressboard. . . . . . . . . . . . . . . . . . 33

2.11 RMSD of Foss’s and Ast’s coefficients for non-impregnated Kraft paper. 34

2.12 Simulated and measured drying curves using Foss’s and Ast’s moisture

diffusion coefficient for non-impregnated Kraft paper. . . . . . . . . . . . 35

2.13 Simulated and measured drying curves using Foss’s and Guidi’s mois-

ture diffusion coefficient for oil-impregnated Kraft paper. . . . . . . . . . 36

3.1 Environmental chamber used in the solubility experiments. . . . . . . . 44

3.2 Calculated moisture content in oil at different temperatures and relative

humidities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 Water solubility of vegetable and mineral oil as a function of tempera-

ture and the linearised values using the Arrhenius equation. . . . . . . . 47

3.4 Moisture equilibrium curves for paper-oil system in natural esters and

mineral oil. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1 General scheme of the optimization process. . . . . . . . . . . . . . . . . 59

4.2 Diagram of PSO algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 General scheme of the optimization process. . . . . . . . . . . . . . . . . 61

4.4 Experimental drying curves and estimated drying curves using D ob-

tained by PSO and GA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.5 RMSD using moisture diffusion coefficient for both optimization meth-

ods determined. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.6 PSO results from 3 mm thick samples dried at 60 oC. . . . . . . . . . . . . 65

5.1 Pressboard sample single layer . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2 Drying plant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3 Sample support and sample container of the drying plant. . . . . . . . . 73

5.4 Moisture content in oil during the drying experiments. . . . . . . . . . . 74

5.5 Experimental drying curves at different thickness and temperatures. . . 74

5.6 Geometry used in the Finite Element Model (FEM). . . . . . . . . . . . . 76

5.7 Plotted D0 average values . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

xiv



5.8 Experimental and estimated drying curves obtained at 80 ◦C and 2 mm

sample thickness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.9 RMSD using the different moisture diffusion coefficients proposed in

this work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.10 Experimental and estimated drying curves obtained at different temper-

atures and sample thicknesses. . . . . . . . . . . . . . . . . . . . . . . . . 84

6.1 Experimental drying curves of 1 mm thick pressboard for both kinds of

natural ester. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.2 Plotted D0 average values for Biotemp. . . . . . . . . . . . . . . . . . . . 94

6.3 Moisture diffusion coefficient for vegetables and mineral oil, 3 mm sam-

ple thickness, 70 oC and variable concentration. . . . . . . . . . . . . . . . 96

6.4 Experimental and estimated drying curves obtained for case 1 and case 2. 98

6.5 Experimental and estimated drying curves obtained on samples 2.5 mm

thick dried with Biotemp at 85 ◦C. . . . . . . . . . . . . . . . . . . . . . . 99

6.6 Experimental and estimated drying curves of a 3 mm pressboard im-

pregnated with both natural esters and dried by HO. . . . . . . . . . . . 101

7.1 Transformer thermal diagram that shows the temperature distribution

along the winding height and the oil temperature distribution inside the

transformer tank. g is the rated average winding to average oil temper-

ature gradient, and Hg is the Hot-spot factor. Taken from [74]. . . . . . . 105

7.2 Load cycles for normal loading and planned loading beyond nameplate.

Taken from [8] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.3 Example of actual load cycle and equivalent load cycle. Taken from [8] . 106

7.4 Outline of the diffusion model. . . . . . . . . . . . . . . . . . . . . . . . . 111

7.5 General scheme of the moisture dynamic model. . . . . . . . . . . . . . . 112

7.6 Load cycle and ambient temperature used in case 1. . . . . . . . . . . . . 117

7.7 Temperatures distribution calculated for case 1. . . . . . . . . . . . . . . . 117

7.8 Moisture content in Biotemp and cellulose in steady state obtained from

moisture dynamic model in case 1. . . . . . . . . . . . . . . . . . . . . . . 118

xv



7.9 Moisture content in cellulose in operation (cm) and steady state (ce) ob-

tained from moisture dynamic model in case 1. . . . . . . . . . . . . . . . 118

7.10 Moisture content in oil (considering the insulating fluid Biotemp) in op-

eration and steady state obtained from moisture dynamic model in case

1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.11 Load cycle and ambient temperature used in case 2. . . . . . . . . . . . . 120

7.12 Temperatures distribution calculated for case 2. . . . . . . . . . . . . . . . 120

7.13 Moisture content in Biotemp and cellulose in steady state obtained from

moisture dynamic model in case 2. . . . . . . . . . . . . . . . . . . . . . . 121

7.14 Moisture content in cellulose in operation (cm) and steady state (ce) ob-

tained from moisture dynamic model in case 2. . . . . . . . . . . . . . . . 121

7.15 Moisture content in cellulose in operation (cm) and steady state (ce) after

one month obtained from moisture dynamic model in case 2. . . . . . . . 122

7.16 Moisture content in Biotemp in operation and steady state obtained from

moisture dynamic model in case 2. . . . . . . . . . . . . . . . . . . . . . . 122

7.17 Moisture content in Biotemp in operation and steady state after one

month obtained from moisture dynamic model in case 2. . . . . . . . . . 123

7.18 Load cycle and ambient temperature used in case 3. . . . . . . . . . . . . 124

7.19 Temperatures distribution calculated for case 3. . . . . . . . . . . . . . . . 124

7.20 Moisture content in Biotemp and cellulose in steady state obtained from

moisture dynamic model in case 3. . . . . . . . . . . . . . . . . . . . . . . 125

7.21 Moisture content in cellulose in operation (cm) and steady state (ce) ob-

tained from moisture dynamics model in case 3. . . . . . . . . . . . . . . 126

7.22 Moisture content in Biotemp in operation and steady state obtained from

moisture dynamics model in case 3. . . . . . . . . . . . . . . . . . . . . . 126

7.23 Moisture content in Biotemp in saturation vs instantaneous moisture.

Case 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.24 Comparison of moisture content in steady state in Biotemp and in Min-

eral Oil. Case 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.25 Instantaneous moisture content in cellulose (cm) in Biotemp and in Min-

eral oil. Case 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

xvi



7.26 Comparison of moisture content in steady state in Biotemp and in Min-

eral Oil. Case 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.27 Instantaneous moisture content in cellulose (cm) in Biotemp and in Min-

eral oil. Case 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.28 Comparison of moisture content in Biotemp and Mineral Oil. Case 3. . . 131

7.29 Moisture content in Mineral oil in saturation. Case 3. . . . . . . . . . . . 131

7.30 Instantaneous moisture content in cellulose (cm) in Biotemp and in Min-

eral oil. Case 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

A.1 Calculated drying curves of a 5 mm insulation considering HO drying. . 158

A.2 Calculated drying curves of 5 mm insulation at 70 oC considering differ-

ent moisture contents in oil. . . . . . . . . . . . . . . . . . . . . . . . . . . 159

A.3 Drying plant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

A.4 Pressboard samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

A.5 Experimental drying curves of pressboard at 70 oC. . . . . . . . . . . . . 163

A.6 Comparison between drying a sample 3 mm thick with mineral oil and

with natural ester. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

A.7 Moisture content in oil during the drying process at temperature 70 oC. . 165

A.8 Drying curves obtained when drying with the natural ester Biotemp at

70 oC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

A.9 Comparison of the drying process with two different ester fluids. . . . . 166

B.1 Experimental drying curves for non-impregnated Kraft-paper insula-

tions stacks 2 mm thick. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

B.2 Schema for non-impregnated Kraft paper insulation samples for drying

experiments in the TGA oven. . . . . . . . . . . . . . . . . . . . . . . . . . 176

B.3 Drying plant, general scheme. . . . . . . . . . . . . . . . . . . . . . . . . . 177

B.4 Pressboard samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

B.5 Flow chart of the optimization process used to find the parameters of

the diffusion coefficient. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

B.6 D0 as function of temperature and thickness for non-impregnated mate-

rials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

xvii



B.7 D0 as function of temperature and thickness for oil-impregnated materials.181

B.8 Impregnated pressboard sample formed by multiple layers. . . . . . . . 183

B.9 Drying curves of oil-impregnated pressboard’s insulations of 3 mm thick. 183

B.10 Experimental and estimated drying curves of non-impregnated insula-

tions of 2 mm thick paper, dried at 60 ◦C. . . . . . . . . . . . . . . . . . . 185

B.11 RMSD values from drying curves of non-impregnated pressboard, using

the moisture diffusion coefficient proposed by Du. . . . . . . . . . . . . . 186

B.12 Estimated drying curves of pressboard barrier of 5 mm thick, dried by

the hot oil drying method with oil circulating at 60 ◦C and 10 ppm. . . . 186

xviii



List of Tables

2.1 Diffusion coefficient values determined by Howe for moisture concen-

trations c between 1 and 4% of total weight. . . . . . . . . . . . . . . . . . 20

2.2 Diffusion coefficient values determined by Asem in paper and press-

board obtained from wetting experiments for moisture concentrations c

between 1 to 4% of total weight. . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Diffusion coefficient values determined by Asem in paper and press-

board obtained from drying experiments for moisture concentrations c

between 1 to 3% of total weight. . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Values of the diffusion coefficient parameters determined by Foss. . . . . 21

2.5 Mineral oil impregnated and non-impregnated Kraft paper samples used

by García. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6 Comparison of the moisture diffusion coefficients proposed by various

authors for Kraft paper and pressboard. . . . . . . . . . . . . . . . . . . . 25

2.7 Kraft paper and pressboard samples for TGA experiments. . . . . . . . . 29

3.1 Summary of the temperatures and relative humidities characterized in

the solubility experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Biotemp and Bioelectra technical characteristics. . . . . . . . . . . . . . . 45

3.3 Nytro Taurus technical characteristics. . . . . . . . . . . . . . . . . . . . . 45

3.4 Water content of the three fluids at 50% of relative humidity (expressed

in ppm) obtained from the solubility experiments. . . . . . . . . . . . . . 45

3.5 Calculated water saturation content (100% of relative humidity) of the

three fluids expressed in ppm. . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.6 Parameters A and B of equation 3.2 calculated for both natural esters

and mineral oil. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

xix



4.1 Parameters used for PSO. . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Parameters used for GAs. . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3 Summary of the conditions used in the experiments. . . . . . . . . . . . . 62

4.4 Optimization times using PSO and GA. . . . . . . . . . . . . . . . . . . . 63

5.1 Summary of the conditions used in the experiments. . . . . . . . . . . . . 72

5.2 D1 and D2 values obtained by fitting curves. . . . . . . . . . . . . . . . . 79

5.3 Summary of the conditions used in the validation experiments. . . . . . 83

5.4 Comparison of Diffusion Coefficients. . . . . . . . . . . . . . . . . . . . . 85

6.1 Summary of the conditions used in the experiments. . . . . . . . . . . . . 90

6.2 D1 and D2 values obtained by fitting curves for both natural esters. . . . 95

6.3 D1 and D2 as a function of thickness. . . . . . . . . . . . . . . . . . . . . 95

6.4 Drying times for different samples thickness at 70 oC, 8% initial moisture

content, 0.5% final moisture content, and 10 ppm in oil. . . . . . . . . . . 97

6.5 Summary of the conditions used in the validation experiments. . . . . . 98

7.1 Exponents used in temperature determination equations. . . . . . . . . . 107

7.2 Data of the transformer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.3 Transformer insulation system weights. . . . . . . . . . . . . . . . . . . . 115

A.1 Main methods used to dry transformers in the field. . . . . . . . . . . . . 155

A.2 Advantages and disadvantages of the different drying methods. . . . . . 155

A.3 Parameters A and B for different insulating fluids provided by IEEE

Standard C57.147-2008. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

A.4 Experimental testing conditions. . . . . . . . . . . . . . . . . . . . . . . . 162

A.5 Approximate drying times required to achieve moisture content lower

than 1 % when using natural ester (E) or mineral oil (M) as drying agents. 164

B.1 Drying conditions used to obtain the drying curves for non-impregnated

insulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

B.2 Drying conditions used to obtain the drying curves for oil-impregnated

insulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

xx



Chapter 1

Introduction

Transformer is one of the most important and expensive equipment in the electrical

power system. Most power and distribution transformers rely on dielectric liquids

as an insulating medium and for heat transferring purposes. The dielectric liquid

more commonly used is the mineral oil, which is produced from the middle range

of petroleum-derived distillates. In the last years the interest in the application of nat-

ural and synthetic ester to electric equipments as a substitute of mineral oil has grown

significantly [9]. At present, these fluids are mainly being used in the range of small to

medium distribution transformers [3], but some experiences in big power transformers

are reported as well [10].

Ester fluids are biodegradable liquids and present some other good properties,

as their high fire temperatures that make them a valuable alternative to mineral oils.

On the other hand, they present some disadvantages like their high cost, high viscosity

and oxidation rates [2].

One of the differential properties of natural ester is that they are able to absorb

a much greater amount of water than mineral oils [11]. This fact would affect the

moisture distribution in the oil-paper insulation and the moisture dynamics processes

inside the transformer.
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This thesis provides a study about the moisture dynamics in transformers in-

sulated with natural esters. The work involves an experimental study in which the

moisture migration processes in transformers insulating materials were studied under

static and dynamic conditions. New diffusion coefficients are proposed to characterize

the moisture dynamics in ester-impregnated pressboard insulation. An optimization

method based on particle swarm (PSO) was used for determining the moisture diffu-

sion coefficients and the results were compared with the coefficients obtained using

the optimization process based on a genetic algorithm (GAs). Finally, a multi-physical

model is proposed that links the thermal and mass transfer processes in the trans-

former. The model allows the simulation of the global behaviour of the moisture within

the transformer insulation under different operating conditions.

1.1 Moisture in transformer insulation

Moisture is one of the variables that deserves more attention in transformers. Exces-

sive water level in the insulation increases the presence of partial discharges (PDs),

reduces the dielectric strength of the insulation, accelerates the paper ageing rates and

increases the risk of failure of the equipment. Being able to predict the behaviour of

moisture within the transformer insulation is important to optimize the transformer

operation, the maintenance programs, and the life remaining of the transformer could

be estimated.

1.1.1 Moisture in cellulosic insulation of transformer

Cellulose is the most commonly used solid insulation in power and distribution trans-

formers. It is an inhomogeneous material consisting of a maze of fibers, interfiber and

intrafiber spaces, as shown in figure 1.1 [1, 12]. One of the disadvantage of cellulosic

material for electrical use is that it is highly hygroscopic and needs to be processed
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after the transformer manufacturing to reach moisture levels lower than 0.5-1%.

During the transformer life, the water content of its insulation always increases,

because of the degradation of the molecular chain by thermal stresses and oxidative

processes [13], and also because of water ingress by the conservator or through leaks

in the tank. Therefore, it is common to find moisture levels in the solid insulation

between 4 - 6% in weight in older transformers. However, it is not unusual to find

high humidity levels in newer transformers as well, for example, in those that have

been subjected to on-site repairs.

Figure 1.1: Schematic (a) and microscopic view (b) of cellulosic transformer insulation.
Taken from [1].

The cellulosic insulation structure consists of the HV and LV insulation, support

structures, winding tubes, spacer blocks, and formed items for end closing. Figure 1.2

shows a close-up view of a Kraft paper tape-wrapped HV transformer coil (core type)

(a) and pieces formed from pressboard for structure of power transformer (b).

Because of the hydrophobic nature of oil and the hydrophilic character of cellu-

lose, water is absorbed in the paper in a proportion of 1% in oil versus 99% in cellulose

and a greater amount of water is usually concentrated in the thick cellulosic insulation

[13]. In some cases free water can be found spread on the bottom of the transformer

tank, on the core, in the radiators, etc. This can result from suction of rainwater through
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poor sealing or from condensation of excessive moisture in the oil during a cooling cy-

cle. Free water will very slowly move to the cellulosic insulation as it dissolves into the

oil.

(a) Power transformer coil structure. (b) Formed pieces from pressboard.

Figure 1.2: Differents uses for cellulose insulation. Taken from [1].

The life expectancy of the transformer is extremely related with life expectancy

of cellulosic insulation and this largely relies on the amount of moisture inside of the

solid insulation. According to the IEEE standard C57.91-2011 [8], a transformer with

moisture content in its insulation of greater than 4% is too wet to be operated safely.

When high water contents are found in units with a significant remaining service life,

it is common to schedule drying treatments that are usually performed in the field.

According to [13], there are three sources of excessive water in transformer insu-

lation:

• Residual moisture in the thick structural components not removed during the

factory dryout or moistening of the insulation surface during assembly, generally

reduced by evacuation of the tank.

• Ingress from the atmosphere (breathing during load cycles, site erection process)

• Ageing (decomposition) of cellulose and oil.
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1.1.2 Moisture equilibrium in paper-oil system

In the dynamic operation of a transformer the moisture distribution tends towards

equilibrium and the steady state conditions depend on temperature, geometry and

moisture content of the insulation. The temperature distribution of a transformer is re-

lated to its load and the atmospheric temperature. If atmospheric temperature or load

changes, oil-pressboard insulation will work under transient temperature condition.

In this case, water will move from oil to cellulose or from cellulose to oil. Hence, mois-

ture diffusion between oil and paper insulation is continuously taking place during

transformer operation because of the load changes [14].

With increasing temperature the water solubility in oil increases while the water

adsorption capacity of cellulose decreases. Thus the equilibrium process forces water

molecules to migrate from cellulose to oil. At decreasing temperatures the cellulose

materials again take up water molecules from the oil [13]. There are several moisture

equilibrium curves proposed that represent the relationship between moisture in oil

and paper insulation system at different temperature levels, the most representative

are published in [15, 16, 17, 18]. They will be explained in following chapters.

1.2 Esters fluids for electrotechnical use

As is well known, the insulating fluid is one of the essential components to ensure

proper operation of the transformers. They must guarantee a good insulation of var-

ious parts of the equipment while ensuring its cooling. Nowadays, there is growing

interest in and usage of natural esters for transformer applications, these fluids are cur-

rently being used in high voltage technological applications including a range of small

distribution class transformers to medium power transformers, circuit breakers and

components of pulsed power systems [3].
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One of the most important properties of these oils is their biodegradability, they

are biodegradable at 95 - 100% and non toxic; they present lower aquatic or earth dan-

ger than conventional mineral oils [19]. Figure 1.3 shows the good biodegradability of

ester based insulating liquids.

Figure 1.3: Biodegradability of various insulating fluids. Taken from [2].

1.2.1 Fluid type and history

Experimental investigation of vegetable oils as insulating liquid began around the

early 1900s, although the use of mineral oils has been justified until now by its wide

availability, its good properties and its low cost. However, with environmental issues

now becoming extremely important, the use of a product with high biodegradability

is becoming extremely attractive, therefore for several years, developments have been

in progress in order to permit a replacement of mineral oils by materials based on veg-

etable oils.

The availability of synthetic ester as well as natural ester fluid, or so-called ’veg-

etable ester fluid’ can be seen as a solution to solve this problem. The use of vegetable

fluids took place mainly in the USA for distribution transformers. In Europe, they have

been used for almost 20 years.
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The growing interest in the vegetable oil-based dielectric fluids is also motivated

by their properties like the electrical strength and viscosity followed by dissipation

factor [20]. Otherwise, natural esters are also widely used for their ability to operate at

higher temperatures while providing enhanced safety.

Unfortunately, natural esters are not as resistant to oxidation as mineral oils. For

this reason, their application in freebreathing transformers and other equipment (e.g.,

bladderless conservator design) is not recommended and all practical measures should

be taken to avoid continuous, long-term exposure (years) to unlimited air exchange,

particularly at operating temperatures.

1.2.2 Solubility of water in natural esters

Water may be present in insulating fluids in several forms, water in solution cannot be

detected visually and is normally determined by either physical or chemical methods.

In figure 1.4, natural esters have significantly higher water saturation values (approx-

imately 15 to 20 times at room temperature) than mineral oil at a given temperature.

Figure 1.4 shows the relative moisture saturation of natural esters compared to con-

ventional mineral oil according to [3].

1.2.3 Moisture dynamic in natural ester

To date not many authors have studied the dynamic behaviour of moisture inside

ester-insulated transformers. The most important studies have focused in moisture

diffusion coefficients and equilibrium curves [18, 21, 22].

In [21], Zhang proposed an expression for the moisture diffusion coefficient of

Kraft paper impregnated with a natural ester. Zhang’s equation is based on the em-

pirical equation proposed by Guidi in [23] and considers the dependence of the coeffi-
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cient with temperature and moisture concentration. As far as the author of this thesis

knows, that is the only reference available on the determination of diffusion coefficients

in ester-insulated materials.

Figure 1.4: Natural ester fluid versus mineral oil saturation curves. Taken from [3].
(a) Modified with permission from Doble Engineering Company. (b) Source: IEEE Std
C57.106-2002.

On the other hand, different authors have recently published works regarding

the determination of the equilibrium curves in ester-cellulose systems. Jovalekic ob-

tained moisture equilibrium curves using natural esters as insulating liquids and high

density (HD) pressboard and Nomex as cellulosic material [17]. Vasovic developed

moisture equilibrium curves using natural esters and a combination of Kraft paper

and pressboard as cellulosic insulation [18].

1.3 Scope of Thesis

The main objective of the PhD thesis is to study the dynamic behaviour of the moisture

in the transformers insulated with natural esters, and to compare this behaviour with

that of transformers insulated with mineral oil. To achieve this, some specific objectives

have been proposed below:
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• To determine experimentally the equilibrium curves of the oil-paper systems in

transformers insulated with natural esters.

• To determine the moisture diffusion coefficients in transformer insulation im-

pregnated with natural ester and with mineral oil.

• To develop theoretical models to represent the moisture dynamic inside trans-

formers insulated with natural esters as a function of the load profile.

• To compare the moisture dynamics in transformers insulated with natural esters

and with mineral oils.

1.4 Outline of Thesis

This thesis has been written as a series of independent articles with its own structure

like introduction, development and conclusions.

In this first chapter a general introduction to the work is presented, the main

objectives are exposed and the outline of the thesis is shown too.

In the second chapter a review of the moisture diffusion coefficients proposed by

other authors to describe the behaviour of moisture in transformers solid insulation is

done.

In the third chapter, the experimental determination of solubility curves and the

moisture equilibrium curves in natural and mineral paper-oil system is presented.

In the fourth chapter, the methodology applied to obtain the diffusion coeffi-

cients of the different materials is described. An optimization process based in Particle

Swarm Optimization is proposed, which is novel with regard to previous works per-

formed in this field [24, 25, 26]. A comparison between Particle Swarm Optimization
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(PSO) and Genetic Algorithm (GA) is presented in the chapter.

In the fifth and sixth chapters the moisture diffusion coefficients of transformer

pressboard are determined. To this end pressboard impregnated with mineral oil and

with two different natural esters was characterized. The results obtained in these chap-

ters allows making a comparative study of the moisture dynamics in pressboard im-

pregnated with the different fluids.

In the seventh chapter a moisture dynamic model for transformers insulated with

natural esters is proposed as result of all the work performed during the thesis.The

model allows estimation the moisture dynamics inside the transformer insulation un-

der real operation if the load profile and the transformer parameters are known. This

kind of model can help to take decisions related with the transformer operation and

maintenance, different study cases are presented in the chapter.

Finally a conclusion chapter is included which shows the general conclusions

obtained in the thesis, the main contributions, the publications derived from the work

and the further works that could be tackled beyond this thesis.
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Chapter 2

A review of moisture diffusion
coefficients in transformer solid
insulation

2.1 Introduction

In order to understand moisture dynamics inside cellulosic insulation, a mathematical

model of diffusion may be used. The model is based on Fick’s second law [27, 28],

and its main parameter is the moisture diffusion coefficient. Although the accuracy of

the models depends greatly on the value of the diffusion coefficient, its experimental

determination is not easy.

Several researchers have estimated the moisture diffusion coefficient in cellulosic

insulation such as Kraft paper or pressboard, employing diverse methodologies. Dif-

ferent values of the diffusion coefficient can be found in the literature, presented as

mathematical expressions, tables, or experimental curves showing the dependence of

the coefficient on local moisture concentration and temperature. Most of this work was

carried out more than 25 years ago.

In 1966 Ast [29] published values for the coefficients in one type of cellulose insu-
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lation for several moisture concentration levels and temperatures. In 1974 Guidi and

Fullerton [23] proposed a mathematical expression for the diffusion coefficient in cel-

lulosic insulation as a function of local moisture concentration and temperature. This

equation has been widely referenced in the literature and several researchers [30, 31, 32]

determined parameter values to be substituted in Guidi’s equation for various insula-

tion materials.

This chapter presents a review of the moisture diffusion coefficients for trans-

former solid insulation that have been proposed by various researchers.

2.2 Modelling moisture dynamics within transformer solid
insulation

Moisture accumulation inside a transformer may be due to moisture ingress through

seals, cellulosic insulation degradation or oil oxidation as explained in the first chapter.

Because of the hydrophilic nature of cellulosic insulation and the hydrophobic nature

of oil, the moisture accumulates mainly in the cellulosic insulation. However, its dis-

tribution between oil and insulation depends on the transformer operating conditions,

particularly temperature.

Moisture accumulation in the insulation can lead to hazardous operating condi-

tions and reduces the life expectancy of the transformer. To minimize the amount of

water in the insulation, new transformers are subjected to a drying process prior to

filling with oil. In service drying may also be necessary during the transformer life.

To optimize the drying processes, it is important to use accurate mathematical

models that predict the evolution of the moisture profiles in the solid insulation dur-

ing drying [27, 28, 33]. Such models are also useful for the analysis of moisture dynam-

ics within operating transformers and for the development of sensors to measure the

12



moisture content in the insulation [30, 33].

Moisture migration inside cellulosic insulation is a complex process involving

heat transfer and mass diffusion. However, as the heat transfer time constant is much

smaller than the diffusion time constant, moisture migration can be modeled as a dif-

fusion process, using Fick’s second law [30, 32, 33].

Water inside transformer insulation can move as vapor, through the interfiber and

intrafiber spaces (see figure 1.1), or as liquid by capillarity, molecular (or Knudsen) flux,

or superficial diffusion. In order to model water movement, the diffusion coefficients

associated with these mechanisms must be known [12, 34, 35, 36].

An additional term, describing the change of state from liquid to vapor and vice

versa inside the solid insulation, is required. Zhang [37] developed a model based on

the laws of conservation of mass and considered water diffusion in only one direction,

similar to the movement of moisture inside solid insulation [27]. Thus

∂W
∂t

=
∂

∂x

(
DW · ∂W

∂x

)
− I (2.1)

∂V
∂t

=
∂

∂x

(
DV · ∂V

∂x

)
+ I (2.2)

where W is the concentration of liquid water, V is the concentration of water

vapor per volume unit (kg/m3), DW and DV are the respective diffusion coefficients

(m2/s), and I is the mass of moisture that changes from one phase to the other per unit

time and volume during the diffusion process (kg/m3s).

Unfortunately, it is not easy to determine the diffusion coefficients for liquid and

vapor water separately or the amount of water changing state during the process.

However, the model may be simplified by eliminating the term I, combining (2.1) and

(2.2), and using the total water concentration, i.e., liquid plus vapor. Then
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∂c
∂t

=
∂

∂x

(
D · ∂c

∂x

)
(2.3)

where D is the effective moisture diffusion coefficient in the solid insulation, c

is the local total moisture concentration, t is the time and x is the distance into the

material in the direction of moisture movement.

The effective diffusion coefficient in (2.3) may be interpreted as a combination

of the coefficient corresponding to vapor water moving mainly through the interfiber

pores and the coefficient corresponding to liquid water moving mainly through the

intrafiber pores [12, 34, 35, 37]. Combining the two coefficients is equivalent to consid-

ering the solid as a homogeneous material in which the diffusion resistance is indepen-

dent of position when temperature and moisture concentration are constant through-

out the material [36]. The effective diffusion coefficient in cellulosic insulation is de-

pendent on moisture concentration and temperature, and has been used by all authors

studying moisture dynamics in transformer solid insulation.

2.2.1 Moisture diffusion model adopted in the thesis

During this thesis, a model based in the solution of equation 2.3 with adequate bound-

ary conditions has been adopted, using, to this end, the finite elements method (FEM).

The FEM computation tool Comsol Multiphysics has been used in this work.

In order to implement the model, some assumptions should be made [27].

1. Moisture diffusion is a very slow process, since water must travel through solid

insulation until attaining the surface where it is absorbed by oil. Mass transport

processes are much slower than heat transfer and fluid-dynamic processes taking

place in the transformer. In other words, Schmidt and Lewis numbers in the oil

are:
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Scoil =
νoil
Doil

=
µoil

ρoilDoil
� 1 (2.4)

Leoil =
αoil
Doil

=
koil

ρoilCpoilDoil
� 1 (2.5)

where ν is cinematic viscosity, µ is the dynamic viscosity, ρ is the oil density, α is

the thermal diffusivity and Cp is the specific heat of the oil. Also, the equivalent

Lewis number considering now pressboard properties 1 is:

Lepresb =
αpresb

Dpresb
=

kpresb

ρpresbCppresbDpresb
� 1 (2.6)

Therefore, the temperature in the entire transformer (insulation and oil) and ve-

locity field in the oil can be considered in steady state during the transient mois-

ture diffusion within the insulation.

2. The height of the transformer active part, is typically more than one meter, whereas

the thickness of the insulation in a real transformer (even thick insulation) is only

a few millimetres thick. From this, concentration gradients in the transverse di-

rection are much higher than those in the longitudinal direction (∆C/e � ∆C/h)

and thus, diffusion in the longitudinal direction can be neglected. Therefore, the

problem will be studied by means of one dimensional (1-D) models representing

insulation sections. 2-D simulations only increase the computational cost without

improving the final results.

Additionally, the way moisture is absorbed by oil from the paper surface must be

established. To stablish the boundary condition to solve equation 2.3 it must be con-

sidered that water absorption on the surface of the insulation behaves as a convective

process. Howe in [39] showed that water interchange on paper-oil contact surface is

much faster than moisture diffusion processes within solid insulation. Therefore, the

equilibrium concentration is achieved very fast on the surface and this equilibrium

concentration can be assumed as the boundary condition to solve the slow transient

1Schmidt number and Lewis number represent respectively the ratio between the momentum diffu-
sivity and the mass diffusivity and the ratio between the thermal diffusivity and the mass diffusivity.
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diffusion in the interior of the insulation. Equilibrium moisture can be obtained from

the moisture equilibrium charts, which will be widely discussed in chapter 3.

This model is used in this chapter to compare and validate the moisture diffusion

coefficients proposed by several authors. The same model will be also applied in chap-

ters 4, 5 and 6, to the determination of the new expressions for the diffusion coefficient

proposed in this work.

2.3 Moisture diffusion coefficient studies

Coefficients for moisture diffusion in Kraft paper and pressboard, non-impregnated

with oil and oil-impregnated, can be found in the technical literature. The experimental

procedures followed by the various researchers differ, as do the resulting coefficients.

2.3.1 Coefficients of Ast

The first diffusion coefficient measurements in transformer insulation, specifically in

Kraft paper (type A50P281A), were published by Ast in 1966 [29]. The experimental

procedure was the so called permeation method, in which one side of a paper sheet was

exposed to air at 0% relative humidity (maintained using anhydrous calcium sulfate)

and the opposite surface was exposed to air at constant relative humidity (maintained

using a saline regulator). The rate of moisture migration from the wet side to the dry

side of the paper was determined periodically by measuring the loss of mass of the

saline regulator. The measurements were made for three paper thicknesses and various

temperatures. The mathematical model used by Ast was based on Fick’s first law:

F =
dQ
dt

= −D · dc
dx

(2.7)
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where F is the moisture flux per unit area per unit time, Q is the mass of moisture

per unit area, c is the moisture concentration, and D is the effective diffusion coefficient

Ast made two important assumptions. The first was that each surface remains

in equilibrium with its own atmosphere, equivalent to assuming that diffusion takes

place through an infinitesimal thickness of paper. The second was that the moisture

concentration varies linearly across the paper thickness. The latter is not strictly true,

because the diffusion coefficient in cellulosic materials depends on the moisture con-

centration, and consequently the moisture concentration profile is not linear.

2.3.2 Coefficients of Guidi and Fullerton

Guidi and Fullerton [23, 31] used a diffusion model to estimate the drying times of

power transformers in the factory, and to determine the moisture adsorption rates for

the transformer insulation when exposed to the atmosphere. They proposed the em-

pirical relationships (2.8) and (2.9) for the dependence of the diffusion coefficient of oil

through impregnated paper on local moisture concentration and temperature:

D(c,T) = D0 · ek·c (2.8)

D0 = DG · eEa

(
1

T0
− 1

T

)
(2.9)

Combining (2.8) and (2.9) yields,

D = DG · e
[
k·c+Ea

(
1

T0
− 1

T

)]
(2.10)

where D is the diffusion coefficient (m2/s), c is the local moisture concentration

(kg of H2O/kg), T is the temperature (K), T0 is the reference temperature (298 K), k is a
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dimensionless parameter, DG is a pre-exponential factor (m2/s), and Ea is the activation

energy of the diffusion process (K).

The specimens under test consisted of multiple layers of Kraft paper impreg-

nated with oil. Moisture-adsorption experiments were performed on dry samples us-

ing an environmental chamber, and moisture-desorption experiments were carried out

on previously moistened samples dried under vacuum.

The moisture concentrations at various depths were determined using the Karl

Fischer method, at various stages during wetting or drying, and the values of local

concentration of moisture as a function of depth [c(x)] were fitted to a high-order poly-

nomial.

Figure 2.1 shows the measured moisture concentrations and the fitted concentra-

tion profiles at 50% relative humidity and 22 ◦C used in their experiments.

Figure 2.1: Experimental and calculated moisture profiles from adsorption experi-
ments at 22 ◦C and 50% relative humidity. Taken from [4].

Guidi and Fullerton determined the diffusion coefficient using the equations for

the concentration profiles and (2.11), given by Crank [38], which they later related to

the moisture concentration and the temperature using (2.8) and (2.9). They obtained
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k = 0.5, DG = 6.44 · 10−14 m2/s and Ea = 7,700 (K) in (2.10) (for oil-impregnated Kraft

paper).

D(c) = − 1
2t

· dx
dc

∣∣∣∣ · ∫ c

c0

x · dc (2.11)

2.3.3 Coefficients of Howe and Asem

Howe determined the moisture diffusion coefficient for manila paper and the longi-

tudinal diffusion coefficient for pressboard [39]. In both cases the samples were not

oil-impregnated. The pressboard samples, 70 mm long, 50 mm wide, and 15 mm thick,

were compressed between a pair of steel plates under a pressure of 500 kN · m−2, ap-

proximating the forces to which pressboard components in transformer insulation are

typically subjected (figure 2.2). In this configuration water migration was assumed to

occur only in the longitudinal direction.

The manila paper samples consisted of 50 layer strips, 12 mm wide and 0.045 mm

thick, wound over a copper tube that was 21.5 mm in diameter and 178 mm long. The

total thickness of the insulation was thus 4.5 mm (figure 2.2).

Figure 2.2: Samples used by Howe: (a) pressboard, (b) manila paper. Taken from [4].
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Both types of sample were dried under vacuum at 113 ◦C for four days in an oven

fitted with a liquid nitrogen cold trap, so that nearly complete drying of the insulation

could be assumed. Subsequently the samples were subjected to a wetting process in a

environmental chamber at 64 ◦C and 44% relative humidity. During the wetting pro-

cess the average moisture concentration was determined by weight measurements and

the moisture concentration profile at various stages of the wetting process obtained.

Using the finite difference technique and curve fitting, the diffusion equation

was solved, yielding the diffusion coefficient values shown in table 2.1 for moisture

concentrations between 1 and 4% of total weight in paper and between 1 and 3% in

pressboard.

Table 2.1: Diffusion coefficient values determined by Howe for moisture concentra-
tions c between 1 and 4% of total weight.

D (m2/s)
c (%) Pressboard Manila paper

1 (4.5 ± 2.0) · 10−10 (0.6 ± 0.15) · 10−11

2 (1.8 ± 0.9) · 10−10 (0.9 ± 0.2) · 10−11

3 (0.9 ± 0.5) · 10−10 (1.3 ± 0.4) · 10−11

4 — (2.5 ± 0.8) · 10−11

Following the same methodology, Asem [32] determined diffusion coefficients for

oil-impregnated paper and for non-impregnated paper and pressboard. The samples

were pre-moistened in a environmental chamber at 60 ◦C and 44% relative humidity

and dried in an oven at 80 ◦C. The oven was fitted with a cold trap, which created a

pressure gradient of water vapor around the samples and thus accelerated moisture

desorption from the insulation.

The measurements were repeated at atmospheric pressure and in a vacuum oven

at a pressure of 1.3 N · m−2 (1.3 · 10−5 bar). In the case of oil-impregnated paper the

moisture concentration was determined by the Karl Fischer method. The diffusion

coefficients obtained by Asem [32] from wetting and drying experiments are presented

in tables 2.2 and 2.3, respectively. It is important to point out that Howe and Asem did

not determine the dependence of the coefficients on temperature because all tests were
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done at 80 ◦C.

Table 2.2: Diffusion coefficient values determined by Asem in paper and pressboard
obtained from wetting experiments for moisture concentrations c between 1 to 4% of
total weight.

D (m2/s)
c (%) Compressed pressboard Non-impregnated paper Impregnated paper

1 (11.0 ± 5.75) · 10−10 (0.74 ± 0.36) · 10−11 (0.54 ± 0.34) · 10−11

2 (5.3 ± 2.5) · 10−10 (1.18 ± 0.58) · 10−11 (0.82 ± 0.48) · 10−11

3 (3.6 ± 1.7) · 10−10 (1.64 ± 0.78) · 10−11 (1.22 ± 0.58) · 10−11

4 (2.7 ± 1.3) · 10−10 (2.16 ± 0.92) · 10−11 (1.94 ± 0.74) · 10−11

Table 2.3: Diffusion coefficient values determined by Asem in paper and pressboard
obtained from drying experiments for moisture concentrations c between 1 to 3% of
total weight.

D (m2/s)

c (%)
Non-impregnated paper

(atm pressure)
Non-impregnated paper

(vacuum)
Impregnated paper

(vacuum)
1 2.4 ·10−10 4.2 ·10−10 2.2 ·10−10

2 3.8 ·10−10 6.9 ·10−10 4.2 ·10−10

3 5.6 ·10−10 10.7 ·10−10 6.8 ·10−10

2.3.4 Coefficients of Foss

Foss determined a set of parameters for the empirical equation (2.10), using the exper-

imental data obtained by other workers for impregnated and non-impregnated Kraft

paper. Most of the procedure is described in internal company reports, and therefore

some details are not available. However a general description of the work may be

obtained from [31]. Table 2.4 summarizes the parameters reported by Foss.

Table 2.4: Values of the diffusion coefficient parameters determined by Foss.

k DG (m2/s) Ea (K)
Oil-impregnated Kraft paper 0.5 1.34 ·10−13 8,074

Non-impregnated Kraft paper 0.5 2.62 ·10−11 8,140
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2.3.5 Coefficients of Du

Du [30, 40] determined the moisture diffusion coefficient for non-impregnated press-

board as a function of temperature and moisture concentration. She used an interdigi-

tal dielectrometric sensor that determined the moisture concentration profiles in sam-

ples subjected to a moisture adsorption process. Figure 2.3 (a) shows the experimental

setup schematically.

(a) Experimental setup. (b) Moisture concentration profiles calcu-
lated from dielectrometric measurements
on nonimpregnated pressboard samples.

Figure 2.3: Experimental setup used by Du and moisture concentration profiles. Taken
from [4].

A pressboard sample, initially free of moisture, was exposed on one side to an air

flow with controlled humidity and temperature. To ensure unidirectional diffusion,

the other exposed faces were sealed with silicone glue. Using the sensor the moisture

concentration profile was determined every two hours over a 28 hour period. Figure

2.3 (b) shows concentration profiles after various adsorption times.

To determine the dependency of the diffusion coefficient on temperature and

moisture concentration, the experiment was repeated for 1.8 and 3% initial equilibrium

moisture concentrations and over the range 30 to 70 ◦C in 10 ◦C increments.

To analyse the experimental data, Du used Fick’s second law, this equation was
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solved by applying the finite difference method. Finally, Du obtained k = 0.45, DG =

6.70 · 10−13 m2/s and Ea = 7,646 (K) for non-impregnated pressboard. She also fitted

Ast’s data to (2.10) and obtained DG = 2.25 · 10−11 m2/s, k = 0.1955 and Ea = 8,834 (K)

for non-impregnated Kraft paper.

2.3.6 Coefficients of García

García [41, 25, 42] proposed moisture diffusion coefficients for mineral-oil-impregnated

and non-impregnated Kraft paper as a function of temperature, moisture concentration

and insulation thickness. He was the first author who considered the effect of the in-

sulation thickness in the moisture migration inside the cellulosic insulation. He used

thermogravimetric analysis on non-impregnated Kraft paper samples, and a hot circu-

lation drying process on mineral-oil impregnated Kraft paper.

The conditions applied to mineral oil-impregnated and non-impregnated Kraft

paper samples used by García during his drying experiments are summarized in table

2.5.

Table 2.5: Mineral oil impregnated and non-impregnated Kraft paper samples used by
García.

Kraft paper (Non-Impregnated) Kraft paper (Impregnated)
Thickness (mm) 1, 2, 3 and 4 1, 3 and 5

Temperature (oC) 40, 50, 60, 70 and 80 60, 70, 80 and 85

To find the parameters k and D0 of the moisture diffusion coefficient, García used

an optimization process based in genetic algorithms. The moisture diffusion coeffi-

cients proposed for these materials are shown below:

D(Non−impregnated−Kra f tpaper) = 3.1786 · l−3.665 · e

(
0.32458·c− 8,241.76·l−0.254

T

)
(2.12)

D(Impregnated−Kra f tpaper) = 0.5 · e(0.5·c− 10,193−264.7·l
T ) (2.13)
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In these equations, the insulation thickness (l) is expressed in millimetres, c is the

concentration of moisture in paper, and T is the temperature in K.

Moisture diffusion dependence of cellulose insulation on geometric properties

like thickness has not been reported in literature until García’s works as it is shown

in 2.12 and 2.13. He was the first author who includes the effect of the thickness in a

mathematical model to study the water mobility inside cellulosic insulation. This can

be explained because in the general diffusion theory, the moisture diffusion coefficient

is considered an intrinsic property of the material and therefore it is only affected by

local conditions like temperature and moisture concentration [43].

The work made by García has been used as a reference to establish the experi-

mental procedures and the theoretical models proposed in this thesis.

2.3.7 Diffusion coefficient for natural-ester-impregnated insulation

In [21], Zhang proposed an expression for the moisture diffusion coefficient of Kraft

paper impregnated with a natural ester. That is the only reference available about dif-

fusion coefficients of cellulose impregnated with ester fluids. Zhang solved Fick’s sec-

ond law by applying the finite difference method. He obtained the following param-

eters for Guidi’s equation using the results of his experiments on ester-impregnated

Kraft paper: k = 0.497, DG = 7.34 · 10−14 m2/s and Ea = 6,940 (K). The validation of the

moisture diffusion coefficient proposed by Zhang is described in chapter 6.

2.4 Comparison of the proposed coefficients

The values of DG, k and Ea obtained by the workers mentioned above are summarized

in table 2.6, Asem’s and Howe’s coefficients are not included in the table since they did
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not propose a mathematical expression but a series of values.

Table 2.6: Comparison of the moisture diffusion coefficients proposed by various au-
thors for Kraft paper and pressboard.

Authors Insulation type k DG (m2/s) Ea (K)
Guidi Oil-impregnated Kraft paper 0.5 6.44 ·10−14 7,700
Foss Oil-impregnated Kraft paper 0.5 1.34 ·10−13 8,074
Foss Non-impregnated Kraft paper 0.5 2.62 ·10−11 8,140
Du Non-impregnated pressboard 0.45 6.70 ·10−13 7,646

Ast(*) Non-impregnated Kraft paper 0.195 2.25 ·10−11 8,834
García Non-impregnated Kraft paper 0.32458 3.1786 · l−3.665(**) —
García Oil-Impregnated Kraft paper 0.5 0.5(**) —
Zhang Oil-impregnated Kraft paper (***) 0.497 7.34 ·10−14 6,940

(*) Calculated by Du from Ast’s experimental data.
(**) Only paremeters k and DG have been determined.

(***) Using natural ester.

In order to compare the different coefficients, the drying process of a 5 mm coil

of Kraft paper non impregnated, and impregnated with mineral oil was simulated by

means of the model described in section 2.2.1. The simulation process involved the

resolution of Fick’s second law using Comsol Multiphysics, considering the following

assumptions:

• A homogeneous initial moisture concentration of 3%.

• An equilibrium moisture concentration of 0.5% at the boundary between the pa-

per and the surrounding medium.

• A constant temperature of 62 ◦C throughout the paper. This temperature was

used by Howe and Asem in their experiments.

The results for non-impregnated paper are shown in figure 2.4, using the coeffi-

cients tabulated in table 2.6. Figure 2.4 (a) shows the moisture concentration profiles

after 5 hours of drying, and figure 2.4 (b) shows average moisture concentrations as

functions of drying time.
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It can be seen (figure 2.4 (a)) that Howe’s coefficients yield slower moisture des-

orption, and after 100 hours, equilibrium has still not been reached (figure 2.4 (b)). It

can also be seen that the drying curves estimated using Foss’s and Ast’s coefficients

are similar; in both cases the time required to reach moisture concentration equilib-

rium was close to 15 hours. This result is perhaps not surprising because both sets of

coefficients were derived from the same experimental data. The drying time predicted

from the Asem coefficients is approximately 40 hours.
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(a) Moisture concentration profiles after drying
for 5 hours.
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(b) Average moisture concentrations as func-
tions of drying time.

Figure 2.4: Simulation of the drying of a 5 mm thick section of non-impregnated Kraft
paper, using different coefficients.

Figure 2.5 shows the results of the simulations for mineral oil-impregnated paper.

The moisture concentration profiles shown in (a) are those estimated after 20 hours of

drying. Figure 2.5 (b) shows the average moisture concentrations as a function of the

drying time. Asem’s coefficient for oil-impregnated paper in table 2.3 leads to moisture

equilibrium after 50 hours of drying whereas the other three coefficients do not predict

moisture equilibrium even after 300 hours of drying.
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of drying.

0 50 100 150 200 250 300
0.5

1

1.5

2

2.5

3

Time (h)

c m
 (%

)

 

 

Foss
Guidi
Asem (Table 2.2)
Asem (Table 2.3)

(b) Average moisture concentrations as functions
of drying time.

Figure 2.5: Simulation of the drying of a 5 mm thick section of oil-impregnated Kraft
paper, using different coefficients.

2.5 Experimental validation of the coefficients

As was shown in the previous section, the estimations of the coefficients proposed by

the different authors differ significantly. In order to determine the precision of the

available coefficients, García, Villarroel et al. performed an experimental study on

different materials. The full study is reported in [7], however, the main aspects of it are

summarized in this section.

Drying experiments were carried out on oil-impregnated and non-impregnated

Kraft paper and pressboard samples at various temperatures and for several insulation

thicknesses. The verification of the diffusion coefficients was performed by using the

data obtained from two sets of drying experiments:

• For non-impregnated insulation, thermo-gravimetric experiments were performed

determining the weight of a sample while being dried.

• For impregnated Kraft paper, drying experiments were carried out in hot oil in

which samples were periodically extracted and analyzed by Karl Fischer method.
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2.5.1 Experiments on non-impregnated insulation

To validate the moisture diffusion coefficients for non-impregnated Kraft paper and

pressboard proposed by the various researchers, drying tests were carried out using a

thermo-gravimetric analyzer (TGA). This method has been used by several researchers

[44, 45] in analyzing the drying processes in various materials, for example, food and

construction materials.

A TGA continuously monitors the weight of a sample subjected to a temperature

profile selected by the user. In the case of non-impregnated insulation samples, the

weight loss is related to the loss of water, and thus with the rate of drying of the sample.

Thermo-gravimetric experiments were carried out using a thermo-gravimetric

analyzer TA model Q500 on several thicknesses of Kraft paper and pressboard sub-

jected to various drying temperatures.

Before starting the TGA experiments, the samples were prepared with an specific

initial moisture content by placing them in a environmental chamber under controlled

temperature of 35 ◦C and relative humidity of 70% for pressboard and 30 ◦C and rel-

ative humidity of 67.5% for Kraft paper. The wetting conditions were established ac-

cording to Jeffries’s curves (figure 2.6) [5].

The moisture content of non-impregnated Kraft paper and presspoard samples

before the drying process was calculated as percentage mass of absorbed water per

mass of dry sample using following equation (2.14):

WH2O =
mh − md

md
· 100 (2.14)

where WH2O is absorbed water (%), mh is mass of conditioned sample (g) and md

is mass of dried non-impregnated sample (g).
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Figure 2.6: Moisture in paper as a function of relative humidity of the ambient by
Jeffries. Taken from [5].

To determine the drying rate of the different materials, multiple layers of Kraft

paper and single layers of pressboard were stacked into a pan with a single opening at

the top to ensure unidirectional diffusion during the TGA experiments.

The conditions applied to the Kraft paper and pressboard samples during the

drying experiments are summarized in table 2.7.

Table 2.7: Kraft paper and pressboard samples for TGA experiments.

Kraft paper Pressboard
Thickness (mm) 1, 2, 3 and 4 1, 2 and 3

Temperature (oC) 40, 50, 60, 70 and 80 40, 50, 60, 70, 80, 90, 100 and 120

The pans, filled with the insulation were introduced into the TGA oven (figure

2.7), where they were dried under controlled temperature until full moisture desorp-

tion. During the tests, dry nitrogen was circulated through the oven to prevent oxida-
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tion of the materials and to ensure a moisture-free atmosphere.The loss of mass of the

samples was continuously monitored during the drying experiments.

Figure 2.7: Illustration of pan filled with insulation in TGA oven. Taken from [6].

2.5.2 Experiments on oil-impregnated insulation

To carry out drying experiments on oil-impregnated samples, a drying plant was con-

structed to achieve moisture desorption by circulating hot and dry oil. General scheme

and operation of this drying plant will be explaining in detail in following chapters

For the validation of the coefficients of oil-impregnated paper experiments were

performed on insulation specimens of 1, 3, and 5 mm thicknesses obtained by paper

sheets of 0.1 mm thickness wound on an aluminium core (figure 2.8). The core is fit-

ted with stoppers at the top and bottom limiting moisture desorption in longitudinal

direction.

The specimens were submerged in oil at room temperature and at atmospheric

pressure for a minimum of one week. Finally, the oil-impregnated test specimens were
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reintroduced into the environmental chamber to re-wet the insulation prior to the dry-

ing experiments.

Figure 2.8: Insulation test sample details: aluminium core (1), paper insulation (2),
heating element lead (3) and internal insulation temperature sensor (4). Taken from
[7].

The drying experiments consisted of subjecting the specimens previously wet-

ted and impregnated with mineral oil, to a constant flow of hot dry oil. The moisture

content before and after the drying process of oil-impregnated Kraft paper was deter-

mined by using Karl Fischer titration method according to the international standard

IEC 60814 [46], which determines the average moisture throughout the thickness of the

samples.

During the whole drying process, samples were periodically extracted from the

specimens to determine the moisture evolution. To validate the diffusion coefficients

for oil-impregnated paper, specimens of three thicknesses (1, 3, and 5 mm) were dried

by oil circulation at four temperatures (60, 70, 80, and 85 ◦C).
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2.5.3 Validation process

The experiments described in previous sections were simulated using finite element

described in section 2.2.1, and with the different diffusion coefficients included in table

2.6.

The difference between the simulated and the experimental curves was quanti-

fied by the root mean square deviation (RMSD) (2.15) applied to the complete drying

time:

RMSD =

√
1
n

n

∑
i=1

[
cm−est(ti)

− cm−exp(ti)

]2
(2.15)

where n is the number of experimental measurements, cm−exp is the measured

average moisture concentration, cm−est is the estimated average moisture concentra-

tion and ti is the instant of the drying experiment when the i-th measurement was

performed.

Validation of the coefficients for non-impregnated pressboard

As described in previous sections, drying experiments were performed using TGA to

validate Du’s coefficient. These experiments were simulated by finite element analy-

sis applying Du’s coefficient to (2.10), and the difference between the measured and

simulated drying curves was calculated using (2.15).

It can be seen that the RMSDs are very different (figure 2.9) and as large as two

orders of magnitude, depending on temperature and sample thickness. It is observed

that lower RMSDs between measured and simulated drying curves are obtained with

the experiments performed on 1 mm thick samples. For thicker samples, the results of

Du’s coefficient were worse.
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Figure 2.10 shows two simulations, 2.10 (a) corresponds to a measurement per-

formed on a 1 mm thick sample dried at 60 ◦C, the RMSD obtained is 0.13 and the sim-

ulated values show good agreement with the experimental ones. Figure 2.10 (b) shows

the same comparison on a 2 mm thick sample dried at 70 ◦C, the RMSD obtained is

0.92, and the simulated values show poor agreement with the experimental ones, with

drying times estimated by Du’s coefficient being one-third of the actual times, i.e., 500

verses 1,500 minutes.
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Figure 2.9: RMSD of Du’s coefficient for non-impregnated pressboard.
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(b) 2 mm thickness at 70 ◦C.

Figure 2.10: Simulated and measured drying curves using Du’s moisture diffusion
coefficient for non-impregnated pressboard.

It is evident that Du’s coefficient works well when it is applied to thin samples
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while the estimation of the moisture diffusion for thick samples is poor. To understand

this result, it must be remarked that all the diffusion experiments performed by Du for

the determination of her coefficient were carried out on samples of 1.5 mm thickness,

and the obtained results seem to indicate that the coefficient is valid in the thickness

range studied, whereas the obtained results are poorer when applied to thicker insula-

tion.

Validation of the coefficients for non-impregnated Kraft paper

In the case of non-impregnated Kraft paper, two different coefficients have been pro-

posed by Foss and Ast (table 2.6), and both are based on Guidi’s equation (2.10).

These coefficients are used to simulate the TGA drying experiments of Kraft paper

samples dried at various temperatures (table 2.7). The RMSDs between the simulated

and measured values when Foss’s or Ast’s coefficients are used are shown in figure

2.11.
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Figure 2.11: RMSD of Foss’s and Ast’s coefficients for non-impregnated Kraft paper.

The experimental and simulated curves for two different cases are plotted in fig-

ure 2.12. It can be seen in figure 2.12 that Foss’s coefficient is more accurate in most
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cases, especially at low temperatures.
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Figure 2.12: Simulated and measured drying curves using Foss’s and Ast’s moisture
diffusion coefficient for non-impregnated Kraft paper.

Validation of the coefficients for oil-impregnated Kraft paper

The moisture diffusion coefficients proposed by Foss and Guidi were validated on sam-

ples of oil-impregnated Kraft paper of various thicknesses and oil temperatures. The

RMSDs for the diffusion coefficients are significantly higher than those simulated for

non-impregnated insulation. Possible reasons for the increased RMSD include the un-

certainty in the Karl Fischer measurements and the discrete rather than continuous

moisture measurements during the drying experiments.

On the other hand, the determination of the moisture diffusion coefficient in oil-

impregnated materials is complex, and the obtained expressions are less precise com-

pared with those on non-impregnated samples. It may also be observed that Guidi’s

coefficient provides better estimates than does Foss’s coefficient. The comparison be-

tween the measured and estimated values for two simulations is shown in figure 2.13.

The simulations correspond to a 5 mm thick sample dried in oil at 60 ◦C and a 3 mm

thick sample dried at 70 ◦C.
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Figure 2.13: Simulated and measured drying curves using Foss’s and Guidi’s moisture
diffusion coefficient for oil-impregnated Kraft paper.

From the plots shown in figure 2.13, the moisture level after the drying process

was about 3 %, in both cases, and the time to attain this level was nearly 25 days for

the 5 mm sample at 60 ◦C (figure 2.13 (a)) and about 20 days for the 3 mm thick sample

dried at 70 ◦C (figure 2.13 (b)).

In the two simulations, the estimated curves using both moisture diffusion co-

efficients predicts a moisture level of 3% too fast. This estimation could be considers

erroneous because doesn’t have good agreement with the experimental ones.

2.6 Conclusions

The diffusion coefficient is an important parameter that allows modelling the mois-

ture dynamics in transformer solid insulation. In order to obtain precise estimations is

essential to use accurate, using accurate diffusion coefficients. Various workers have

obtained coefficients for Kraft paper and pressboard using diverse methodologies.

One of the more widely accepted expressions for the coefficient is the empirical
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equation (2.10) proposed by Guidi. It incorporates the dependence of the coefficient

on temperature and moisture concentration. Several workers have determined values

of k, DG and Ea for different materials. The methodologies applied were diverse, and

the resulting coefficients sometimes differed substantially for the same material.

In this chapter a revision of all these coefficients has been performed, including

a comparison of their predictions. In a previous work, the author of the thesis and his

supervisors performed an experimental validation of the coefficients. The main results

of that work are summarized in this chapter as well.

As a general conclusion, it appears that the available coefficients to model mois-

ture dynamics in transformer insulation are not as precise as would be desirable in all

the studied conditions. It is also important to remark, that, to date, no author have

proposed an expression for the diffusion coefficient of mineral-oil impregnated press-

board. Moreover, it has been verified, that the literature on moisture diffusion coeffi-

cients in ester-impregnated materials is very scarce.

In the following chapters of the thesis new coefficients are determined for press-

board impregnated with natural esters and with mineral oil.
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Chapter 3

Determination of moisture equilibrium
curves of paper-ester systems

3.1 Introduction

As was discussed previously, being able to determine the moisture content of the solid

insulation of a transformer is highly desirable to optimize the operation and main-

tenance of the equipment. Unfortunately the direct measurement of this variable is

not an easy task, because of the difficulties involved in taking solid insulation sam-

ples from in service transformers. Different techniques are used nowadays to estimate

moisture content of transformer solid insulation, as the application of dielectric re-

sponse measurements [47] or the application of on-line monitoring systems [48].

Several authors have developed equilibrium curves that allow calculating the

moisture content of paper when the temperature and the moisture in oil are known.

The curves are based in the fact that the amount of water accepted by cellulose and

by oil depends on the temperature. While cellulose’s affinity for water decreases as

the temperature increases, the behaviour of the oil is the opposite. In consequence, the

moisture will migrate from one material to the other when the temperature changes

[13].
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It should be noted that moisture-equilibrium curves are only valid under equi-

librium conditions. In real operation the temperature of a transformer is related to its

load and to the atmospheric temperature and so, equilibrium conditions would not be

generally attained.

Most of the equilibrium charts available to date are based on mineral oil-paper

insulation. Recently, some curves have been proposed for ester-cellulose systems as

well.

The moisture-equilibrium curves for mineral oil-paper insulation system were

first reported by Fabre and Pichon in 1960 [49]. The curves were obtained by direct

measurement of the moisture content of oil and oil-impregnated pressboard.

Another set of moisture equilibrium curves were proposed by Oommen in 1983

[50], which were obtained by combining the moisture sorption data of non-impregnated

paper with the moisture sorption data of oil under different temperatures.

Oommen’s indirect method is based on the principle that the equilibrium curves

represent the same relative saturation for the oil and for the paper at the same temper-

ature.

Several authors have used the method proposed by Oommen to develop addi-

tional curves in mineral-oil-cellulose systems, as Griffin [51], Du [15], and most re-

cently Maik Koch in [52].

As previously discussed, ester fluids are much more hygroscopic than mineral

oils, which are hydrophobic . In consequence the moisture equilibrium curves of ester-

cellulose systems will be very different from those of mineral oil. Some authors have

proposed curves for these materials.

In 2011 Jovalekic et al. [17] obtained moisture equilibrium curves using mineral
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oil, natural esters and synthetic esters as insulating liquids.

In 2014 Vasovic et al. [18] developed moisture equilibrium curves using mineral

oil and natural esters as insulating liquids, and Kraft paper and pressboard as cellulosic

insulation.

In this chapter the equilibrium curves of a mineral oil and two natural esters

are determined using the indirect method proposed by Oommen [50]. To obtain the

curves, experiments were done focused in studying the water saturation limits of the

different insulating liquids.

The proposed curves are later used to determine the diffusion coefficients of

mineral-oil impregnated and ester-impregnated pressboard, and as a boundary con-

dition of the dynamic model proposed in chapter 7.

3.2 Methodology applied to obtain the moisture equilib-
rium curves

The equilibrium curves determined in this thesis were obtained using the method pro-

posed by Oommen in [50, 53].

The method is based on a simple physical law, the relative moisture content Wrel

in adjacent materials become equals under equilibrium conditions. The surrounding

medium could be air or oil, supposed they are at the same temperature and pressure.

Wrel,cel = Wrel,oil = RH (3.1)

where Wrel,cel is the relative moisture content of the cellulose (%), Wrel,oil is the
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relative moisture content of the oil (ppm), and RH is the relative humidity of the sur-

rounding air (%).

In consequence, the paper-oil equilibrium curves can be obtained by combining

the moisture in oil versus relative humidity curves in air with moisture in paper versus

relative humidity curves in air, according with the following steps:

1. Plot isotherms showing percent moisture in paper vs. relative humidity.

2. Obtain water saturation levels in oil as a function of relative humidity.

3. Combine the two sets of data obtained in steps 1 and 2 to obtain a new set of

isotherms

To achieve point 2 it is necessary to determine the solubility curve of the insulat-

ing fluid that is being studied. The water solubility for oil can be expressed in Arrhe-

nius forms as:

LogWS = A − B
T

(3.2)

where Ws is the saturation solubility of water in oil in ppm and T is the temper-

ature in Kelvin, and A and B are the parameters dependent on the properties of the

fluid.

The method described above has been used in this chapter to determine the equi-

librium curves of different systems, i.e. paper-mineral oil and paper-natural ester flu-

ids. The solubility equations of the different fluids were obtained experimentally as

will be explained next. To define the equilibrium condition in paper, Jeffries curves,

shown in figure 2.6, were applied [5].
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The relation between the moisture content in oil and the relative humidity of the

surrounding air can be expressed as follows:

W = Ws · RH (3.3)

where W is the moisture content of the oil (ppm), Ws is the water saturation sol-

ubility of the oil (ppm) at temperature T, and RH is the relative humidity of oil, which

is equal to the relative humidity of the surrounding air (%).

3.3 Experimental procedure

Solubility experiments were carried out on different kinds of fluids at various temper-

atures and 50% of relative humidity, these experiments are summarized in table 3.1. In

all cases new materials were used for the experiments. The experiments were done in

an environmental chamber, shown in figure 3.1.

Table 3.1: Summary of the temperatures and relative humidities characterized in the
solubility experiments.

Insulating liquids Temperatures (oC) RH (%)
Mineral oil

30, 40, 50, 60, 70 and 80 50Biotemp
Bioelectra

For this work, eighteen solubility experiments were performed on two kinds of

natural esters and on mineral oil. 50 ml of the three analysed fluids were put in glass

containers inside the environmental chamber. Humidity and temperature were set to

a constant value until the equilibrium was reached between the environment and the

fluids.

The moisture content in oil samples was measured every two days until the equi-

librium was reached. A sample was considered to be in equilibrium, when its moisture

43



content remained constant for 6 days. All the moisture measurements were performed

using Karl Fischer titration method, according to the international standard IEC 60814

[46].

Figure 3.1: Environmental chamber used in the solubility experiments.

The natural esters used in this work were Bioelectra by Repsol and Biotemp by

ABB, whose technical characteristics are shown in table 3.2. Also, the mineral oil Nytro

Taurus, by Nynas, was used to determine and compare the solubility curves of mineral

oil with those of natural esters. The technical characteristics for this oil are shown in

table 3.3. All the oil samples used in this work were new.

44



Table 3.2: Biotemp and Bioelectra technical characteristics.

Biotemp Bioelectra
Viscosity at 40 oC 45 cSt 39.2 cSt
Moisture content 150 ppm 150ppm

Flash point min limit 330 oC 330 oC
Pour point max limit -15 oC -26 oC
Dielectric Breakdown 65 kV 65 kV

Power Factor 0.2 % 100 oC 0.3 % 100 oC
Source Sunflower seed Sunflower seed

Table 3.3: Nytro Taurus technical characteristics.

Method Value
Viscosity at 40 oC ISO 3104 10 mm2/s
Density at 20 oC ISO 12185 0.870 kg/dm2

Flash point min limit ISO 2719 152 oC
Pour point max limit ISO 3016 -48 oC
Breakdown voltage −−− −−−
- Before treatment IEC 60156 30 kV
- After treatment IEC 60156 70 kV

3.4 Results

3.4.1 Water saturation limits of insulating liquids

Table 3.4 shows the results obtained from the solubility experiments summarized in

table 3.1. As is explained in [17], the water content in oil have a linear increase with the

relative humidity in the oil. In order to calculate the water saturation content in all oils,

the data obtained in the solubility experiments (table 3.4) were extrapolated according

with the equation (3.3).

Table 3.4: Water content of the three fluids at 50% of relative humidity (expressed in
ppm) obtained from the solubility experiments.

Temperature (oC)
Insulating liquids 30 40 50 60 70 80

Mineral oil 38 58 80 119 171 228
Biotemp 575 699 837 1001 1182 1330

Bioelectra 590 720 860 1030 1210 1405
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Figure 3.2 shows the calculated water content in oil for both natural esters, and

the mineral oil used in this work for the entire range of relative humidities.
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(a) Biotemp.
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(b) Bioelectra.
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(c) Mineral oil.

Figure 3.2: Calculated moisture content in oil at different temperatures and relative
humidities.

As it was mentioned in the previous paragraph, the water saturation limits of the

three fluids were calculated from the experimental data obtained in the lab using the

equation 3.3, finding the values shown in table 3.5.

As can be seen, both natural esters have similar saturation limits, while the sat-

uration limit for mineral oil is considerably lower than those of natural esters. This

is due to the polar composition of mineral oil, their non-polar molecule structure is

not able to establish a Van Der Vaals bond with water, as was explained before in this

chapter.
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Table 3.5: Calculated water saturation content (100% of relative humidity) of the three
fluids expressed in ppm.

Temperature (oC)
Insulating liquids 30 40 50 60 70 80

Mineral oil 75 115 160 238 342 455
Biotemp 1152 1397 1673 2003 2363 2660

Bioelectra 1180 1440 1720 2060 2420 2810

Figure 3.3 (a) shows the water saturation values of all kinds of oils used in this

work, for the mathematical description of the saturation curves, a function can be used

as seen in equation (3.2). The Arrhenius equation was used to determine the water

saturation parameters A and B for the different fluids used in this work (figure 3.3 (b)).

The parameters found in each case are given in table 3.6.
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Figure 3.3: Water solubility of vegetable and mineral oil as a function of temperature
and the linearised values using the Arrhenius equation.

Table 3.6: Parameters A and B of equation 3.2 calculated for both natural esters and
mineral oil.

A B
Biotemp 5.67 791

Bioelectra 5.74 808
Mineral oil 7.44 1,686
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3.4.2 Moisture equilibrium curves determination

To establish the moisture equilibrium curves of oil-paper, the moisture in paper vs. rel-

ative humidity curves of figure 2.6 and the moisture content in oil vs. relative humidity

(figure 3.2) were combined using the equation 3.1, as is explained in section 3.2. The

obtained curves are shown in figure 3.4. Figure 3.4 (a) and 3.4 (b) show the curves of a

paper-Biotemp and a paper-Bioelectra system, while figure 3.4 (c) shows the obtained

curves for a paper-mineral oil system. As can be seen ester fluid are able to adsorb a

much greater amount of water under the same conditions of temperature and moisture

in paper.
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(a) Biotemp.

0 500 1000 1500 2000

2

4

6

8

10

12

14

Moisture content in oil (ppm)

M
oi

st
ur

e 
co

nt
en

t i
n 

pa
pe

r (
%

)

 

 

30 ºC
40 ºC
50 ºC
60 ºC
70 ºC
80 ºC

(b) Bioelectra.

0 50 100 150 200
0

2

4

6

8

10

12

Moisture content in oil (ppm)

M
oi

st
ur

e 
co

nt
en

t i
n 

pa
pe

r (
%

)

 

 

30 ºC
40 ºC
50 ºC
60 ºC
70 ºC
80 ºC

(c) Mineral oil.
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Figure 3.4: Moisture equilibrium curves for paper-oil system in natural esters and min-
eral oil.
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Figure 3.4 (d) shows a comparison between both kinds of esters. As can be seen

their behaviour are very close and the equilibrium is attained at similar conditions

in both of them. However Bioelectra has a slightly bigger water absorption capacity

compared to Biotemp.

3.5 Parametrization of the equilibrium curves

In [54], Fessler proposed equation (3.4) to parametrize the equilibrium curves of min-

eral oil-paper insulation. This equation has been widely accepted and used by several

authors, as it eases the inclusion of the moisture equilibrium curves in simulation mod-

els.

Cequil = 2.173 · 10−5 · p0.6685
v · e(

42,725.6
T ) (3.4)

where Cequil is the equilibrium moisture in pressboard, expressed in %, and T is

the temperature in oil-pressboard interface.

An equation similar to (3.4) has been obtained to parametrize the equilibrium

curves of natural ester-paper systems. To this aim a fitting process was carried out us-

ing the curves in figure 3.4 obtainig equation 3.5. This equation allows the calculation

of moisture concentration in paper, knowing the moisture content in oil.

Cequil_vegetal = 1.18 · 10−18 · pv
3 · e(

16,570
T ) − 5.39 · 10−12 · pv

2 · e(
10,960

T )

+ 9 · 10−6 · pv · e(
5,418

T ) +
1, 004

T
− 3 (3.5)

where Cequil_vegetal is the equilibrium moisture in pressboard impregnated with

natural ester, expressed in %, T is the temperature in oil-pressboard interface.
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For both equations, pv is the partial pressure of water vapour, expressed in atmo-

spheres, and can be calculated from oil relative humidity RH as:

pv = RH · pv,sat =
ppm

ppmsat
· pv,sat (3.6)

where ppm is moisture concentration in oil expressed in parts per million (ppm)

and ppmsat and pv,sat are moisture concentration and partial pressure (atm) in satura-

tion condition of the oil [23]. The moisture concentration for saturation can be obtained

from the equation (3.2), and the partial pressure of the saturated water can be calcu-

lated by the correlation proposed by Foss in [55] (equation 3.7).

pv,sat =
Pc

760
· 10

[
( Tex−Tc

Tex )·
(

a+b·(Tc−Tex)+c·(Tc−Tex)3

1+d·(Tc−Tex)

)]
(3.7)

where pv,sat is the partial pressure (atm) in saturation condition, Pc is the critical

pressure of the water, Pc = 1, 65807 · 105 (mmHg), Tc is the critical temperature of

the water, Tc = 647, 26 (K), the parameters a = 3, 2437814, b = 5, 86826 · 10−3, c =

1, 1702379 · 10−8, and d = 2, 1878462 · 10−3 are constants.

3.6 Conclusions

A new set of curves is proposed in this chapter to determine the moisture equilibrium

in different systems of insulation. Curves for vegetable oil-paper and mineral oil-paper

systems were experimentally obtained.

A comparison is given for the moisture equilibrium curves of vegetable paper-

oil insulation and mineral oil-paper insulation. The result shows that the moisture

content in vegetable oil is much greater than that in mineral oil when sharing the same

moisture content in paper.
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The differences between the moisture equilibrium curves in vegetable paper-oil

insulation and mineral paper-oil insulation are mainly due to the fact that the ester

group in the molecules of vegetable oils has a strong ability to participate in hydrogen

bonding.

An equation to parametrize the curves in ester-paper systems is proposed, which

can be used to integrate the curves in theoretical models. This equation will be used in

the following chapters of the thesis.
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Chapter 4

Particle Swarm Optimization and
Genetic Algorithm

4.1 Introduction

From a classical approach, the experimental determination of the moisture diffusion

coefficient in most solid hygroscopic materials is a difficult task, because it is necessary

to know the evolution of the moisture distribution inside the insulation samples during

a moisture transient process such as drying or wetting [23, 30, 31, 32, 39].

In previous studies [6, 25, 42, 56], a new methodology to determine the moisture

diffusion coefficient in cellulosic insulations (Kraft paper and pressboard) was pro-

posed. Unlike the classical approach, this methodology required measurement of the

average moisture evolution in the insulation samples during drying (drying curve),

which is easier to carry out from the experimental point of view. However, to find

the moisture diffusion coefficient, this methodology needs an optimization process

whose objective function includes a diffusion drying model solved by the finite ele-

ment method (FEM drying model) which was implemented by means of the computa-

tional tool Comsol Multiphysics, according to that explained in section 2.2.1.
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Due to the presence of the FEM drying model, the objective function is not a

differentiable function; therefore, classical optimization methods based on the gradient

(e.g. Levenberg-Marquard or Newton-Raphson) cannot be used.

The optimization problem of finding the global minimum or maximum of a func-

tion has been an interesting research area for scientists and engineers. Genetic algo-

rithms (GA’s), as a branch of evolutionary algorithms, and particle swarm optimiza-

tion (PSO), as a branch of swarm intelligence, are some useful paradigms in such cases.

PSO and GA’s are population-based meta-heuristics, which means that both searches

are based on social components, but PSO is simpler than the GA in operation because

PSO does not realize mutation and crossover [57]. PSO works with real-numbers in

its operation, avoiding encoding and decoding binary strings, so making PSO easy to

implement with less dimensions to the problem compared with GA’s.

PSO is a global optimization algorithm for dealing with problems in which a best

solution can be represented as a point or surface in an n-dimensional space; it does not

need sort elements, as in the GA, and this also reduces the computational load when

the number of agents is large (typical of the GA).

As aforementioned, in the previous methodology, to determine the moisture dif-

fusion coefficient of cellulose insulations, an optimization process based on GA’s was

used. The convergence of the GA optimization process was determined by comparing

a pre-defined fitness value with the objective function output. The objective function

can be the Euclidean distance or the root mean square deviation (RMSD) between the

experimental drying data and those estimated from the FEM drying model.

Because of the way that the GA optimization process works, during the deter-

mination of the moisture diffusion coefficient, optimization of each experimental data

had to be repeated several times and after this it is necessary to carry-out statistical

analysis. For this reason, the determination of the moisture diffusion coefficient using

the optimization process based on GA’s took a long time. As an alternative to the GA,
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a PSO method was considered.

In this chapter, an optimization process for determining the moisture diffusion

coefficient of cellulosic insulations, based on the particle swarm method, was imple-

mented and validated. PSO reduces significantly the time spent in moisture coefficient

determination. Also, with the PSO algorithm, the statistical analysis required when the

optimization process based on the GA is used is unnecessary, this is because all par-

ticles are accelerated towards those particles within their communications grouping

which have better fitness values, so that the values of the parameters are considered

valid for the diffusion model [58]. Therefore, the PSO process can be considered as

an improvement to the methodology to determine moisture diffusion coefficients on a

transformer’s solid insulations.

The aim of this chapter is to use and compare two optimization techniques widely

used in the engineering and mathematics area for the determination of moisture diffu-

sion coefficients in cellulose insulation of transformers. It is not the intent of this work

to modify any of the optimization methods neither to question its efficiency since they

may vary depending on the problem to be solved.

4.2 Particle Swarm Optimization (PSO)

PSO was proposed in 1995 by Kennedy and Eberhart [59]. It is an optimization tech-

nique, inspired by flocks of birds and schools of fish to fly or swim synchronously;

such animal behaviour is used to search for solutions in optimization problems. PSO

is similar in some ways to the GA, but requires less computational bookkeeping and

generally fewer lines of code.

PSO comprises individuals, called particles that follow a trajectory with stochas-

tic components to find a solution in the search space of an objective function. Each
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particle represents a possible solution to the problem and its trajectory is defined iter-

atively with a velocity that has three major components:

• Social component: the effect of the best position found by all particles until the

current iteration; that is called the current global best position (Gbest).

• Cognitive component: the effect of the best position found by each particle until

the current iteration, called the current best for the i-th particle (Pbest), where i is

the index of each particle.

• Momentum component: introduces the effect of the previous velocity of each

particle; this is a modification of the original PSO, which was introduced by Shi

and Eberhart [60].

With this component, the PSO evaluates each n particle t times to update the

positions with the calculation of the velocity as shown in the following equations.

Vi(t+1) = ω · Vi(t) + C1 · R1

(
Pbest − Xi(t)

)
+ C2 · R2

(
Gbest − Xi(t)

)
(4.1)

Xi(t+1) = Xi(t) + Vi(t+1) (4.2)

where C1 and C2 are parameters to modify the weight of the social and cognitive

components, ω is the inertial coefficient and the learning coefficients, R1 and R2, are

random vectors drawn from a uniform distribution. When the algorithm finishes, all

particles converge on one solution. The appropriate choice of this inertial weight pro-

vides a balance between global and local exploration, and results in fewer iterations,

on average, to find a sufficiently optimal solution [61].

PSO has had wide acceptance in the research and engineering community due

to its easy implementation; when each particle has a simple behaviour and few opera-

tions to show the complexity of the whole particle swarm [62], every particle evaluates
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the objective function so making the computational load and run time depend on the

complexity of that function [63].

PSO works based on the social adaptation of knowledge, and all individuals are

considered to be of the same generation. One of the disadvantages of PSO is the fast

search causing the algorithm to become trapped in the local optimum [64].

4.3 Genetic Algorithm (GA)

As mentioned earlier Genetic Algorithms belong to the larger class of evolutionary al-

gorithms (EA), which generate solutions to optimization problems using techniques

inspired by natural evolution, such as mutation, selection, and crossover. The GA

works based on evolution from generation to generation, so the changes of individu-

als in a single generation based on swarm attitude are not considered [65]. As genetic

algorithms are not deterministic methods, there is no guarantee that the optimum re-

sult found is not a local minimum. The probability of finding a local minimum can be

minimized by introducing a high degree of randomness in the optimization process,

mainly during the generation of the initial population.

4.4 Diffusion coefficients

The methodology to determine the moisture diffusion coefficient of impregnated press-

board insulation involves three steps: the first consists of undertaking a drying exper-

iment in which the pressboard samples are subjected to a drying process by exposing

them to a hot and dry fluid flow. This drying method is called the hot-oil (HO) drying

method. The fluids used as the drying agents are the same as those used to impregnate

the pressboard samples.
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The second step of the methodology is to simulate the drying experiment; this is

carried out by means of a drying model based on Fick’s second law (equation 4.3), as

explained in chapter 2, and solved by the FEM.

∂c
∂t

=
∂

∂x

(
D · ∂c

∂x

)
(4.3)

where c is the local moisture concentration in the material (expressed in %) and

D is the moisture diffusion coefficient of the cellulosic insulation (expressed in m2/s).

Finally, the third step of the methodology for determining the moisture diffusion

coefficient consists of finding the parameters (k and D0) to the general expression of

D shown in equation (4.4), this general equation also has been mentioned in previous

chapters. This can be done by fitting the estimated drying curves obtained from the

FEM model to the experimental ones. This can be addressed as an optimization prob-

lem. As mentioned above, in the present chapter a basic PSO method and GAs were

developed.

D(c,T) = D0 · ek·c (4.4)

where D is the moisture diffusion coefficient, D0 (expressed in m2/s) is a pre-

exponential factor that determines the dependence of the moisture diffusion coefficient

with certain variables, for example, temperature, and k is a dimensionless parameter

relating the moisture diffusion coefficient with c.

As in the chapter 2, the agreement of the estimated average moisture concentra-

tion values of the drying curves calculated with the FEM model (cm−est) and the ex-

perimental (cm−exp) depends on the value of the parameters k and D0 used in the FEM

drying model, ti is the instant of the drying experiment when the i-th measurement

was performed. This condition was used to define the objective function (OF) of the

optimization process, which is the RMSD calculated from the following expression.
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RMSD =

√
1
n

n

∑
i=1

[
cm−est(ti)

− cm−exp(ti)

]2
(4.5)

The same optimization scheme was used to calculate the RMSD with the two

types of algorithms studied. Figure 4.1 shows the general optimization scheme used.

Figure 4.1: General scheme of the optimization process.

On addition, figure 4.2 shows a flow chart of the basic optimization process based

on particle swarm. The parameters used in the basic PSO algorithm are shown below

in table 4.1. The ω, C1 and C2 values used in this work are those proposed by Trelea in

[66], ω = 0.729, C1= C2=1.494.

Table 4.1: Parameters used for PSO.

Parameters Value
Number of particles 30

Iterations 50
Inertia weight 0.729

C1 and C2 1.494
Velocity max. ω−1

Velocity max. - Vmax

Despite the high robustness of PSO to obtain the k and D0 parameters of the

moisture diffusion coefficient using PSO ten optimizations following the procedure

59



described in figure 4.2 were carried out for each experimental drying curve to avoid

local minimums in searching of the OF.

Figure 4.2: Diagram of PSO algorithm.

Figure 4.3 shows a flow chart of the optimization process based on GA’s. The

parameters used for the GA algorithm are shown in table 4.2.

Due to the low robustness of the optimization method based on GA, evidenced

in the scattering of the OF outputs from all the individuals in any generation, repeti-

tion of the process several times is required for each experimental data, increasing the
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time spent on the optimization. Furthermore, to obtain a valid set of the parameters

k and D0 by using the optimization based on GAs, a subsequent statistical analysis is

necessary.

To obtain the k and D0 parameters of the moisture diffusion coefficient using GA

thirty optimizations following the procedure described in figure 4.3 were carried out

for each experimental drying curve.

Figure 4.3: General scheme of the optimization process.

Table 4.2: Parameters used for GAs.

Parameters Value
Population size 500

Generations 10
Fitness limit 0.5
Elitecount 5

Crossover Fcn. crossoverpoint
Mutation Fcn. mutationadaptfeasible

TolFun FitnessLimit/10
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4.5 Experimental results and discussions

In this section, the results obtained by applying the GA and PSO to find the parameters

k and D0 of the moisture diffusion coefficient are shown. Both optimization processes

were employed to find the parameters k and D0 corresponding to 39 drying curves ob-

tained from the experimental conditions summarized in table 4.3. Type 1 were press-

board samples impregnated with the mineral oil Nytro Taurus by Nynas, type 2 were

pressboard samples impregnated with the natural ester Bioelectra by Repsol and type

3 were samples impregnated with the natural ester Biotemp by ABB.

Table 4.3: Summary of the conditions used in the experiments.

Samples Drying temperatures (oC) Thicknesses (mm)
Type 1 60, 70 and 80 0.5 and 3Type 2 and Type 3 40, 50, 60, 70 and 80

4.5.1 Optimization times

Table 4.4 shows the optimization times required when applying both optimization

methods. It can be seen that the times required when the GA optimization method

is used, are considerably higher than those using PSO. This is because the GA requires

the optimization process to be applied at least 30 times, to find a set of valid values

of the parameters k and D0 for each experimental data. Unlike the GA, in PSO all the

particles are guided by the best global position, moving towards the minimum value

of the Objective Function. Therefore, the PSO process is required to be applied only

once, decreasing the time spent in finding the moisture diffusion parameters. Also,

when PSO is used, statistical analysis is not required.
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Table 4.4: Optimization times using PSO and GA.

Optimization times (minutes)
Sample type 1 Sample type 2 Sample type 3

Temperature Thickness PSO GA PSO GA PSO GA

40 oC
1 mm — — 30.78 634.21 46.31 880.80
2 mm — — 36.51 743.39 52.32 1090.42
3 mm — — 38.80 908.53 53.96 1071.3

50 oC
1 mm — — 35.79 543.13 39.57 637.98
2 mm — — 31.73 471.02 44.26 900.79
3 mm — — 33.45 444.10 47.46 996.50

60 oC
1 mm 50.48 1032.29 31.81 694.00 45.01 1192.46
2 mm 42.02 1026.13 33.98 780.22 45.65 1037.68
3 mm 43.57 1074.95 33.73 754.06 48.37 1207.65

70 oC
1 mm 38.83 903.43 32.52 801.34 43.16 634.39
2 mm 40.47 982.50 36.67 769.70 40.67 553.44
3 mm 44.40 848.13 45.82 854.13 44.41 571.10

80 oC
1 mm 35.79 721.66 35.35 786.80 40.47 604.58
2 mm 34.96 780.66 26.20 672.56 33.18 506.50
3 mm 34.40 621.17 26.83 1071.30 32.27 456.90

Average times 40.55 887.88 34.00 728.52 43.80 822.63

4.5.2 Root mean square deviation (RMSD)

Figure 4.4 shows two experimental drying data and the corresponding estimated dry-

ing curves obtained from the FEM model when the diffusion coefficient is calculated

using the parameters k and D0 obtained by using the GA and PSO methods.

In both cases, it can be seen that the estimated curves using the diffusion coeffi-

cient from the parameters k and D0 obtained by particle swarm fit better to the experi-

mental curves than those obtained when the diffusion coefficient was obtained by the

GA. The quality of the agreement is quantified based on the RMSD values. Validations

were undertaken for all the experiments summarized in table 4.3. Some of the RMSD

values obtained are show in figure 4.5.

As mentioned above, the PSO method is more robust than the GA method be-

cause, during the exploration of the search space, all particles guided by the best global
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position move towards the minimum value of the OF. This behaviour may be demon-

strated by the standard deviation which quantified the dispersion of the RMSD values

obtained for each particle in each iteration. A low standard deviation indicates that the

RMSD values tend to be very close to the mean; a high standard deviation indicates

that they are spread out over a large range of values. Therefore, by choosing an ap-

propriate number of particles and iterations, the PSO method does not need statistical

analysis, as is the case with the GA.
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(a) 70 ◦C and 2 mm sample thickness.
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(b) 80 ◦C and 3 mm sample thickness.

Figure 4.4: Experimental drying curves and estimated drying curves using D obtained
by PSO and GA.

According to the RMSD values shown in figure 4.5, PSO proved a better estima-

tion of the parameters k and D0 than GAs, because the values are lower than those

obtained using GAs. This trend continued in all experiments.

Figure 4.6 shows the standard deviation and the best RMSD of each iteration or

global best (Gbest) for the optimization process by PSO over the experimental data of

pressboard samples of 3 mm thick, dried at 60 oC using the three studied fluids.

Figure 4.6 (a) clearly shows the tendency of the value of the standard deviation

to decrease to the mean, increasing the number of iterations. This means that, for all

iterations, the particles follow a leader and approach the minimum value of the OF.
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Figure 4.5: RMSD using moisture diffusion coefficient for both optimization methods
determined.

Likewise, figure 4.6 (b) shows that the best position of the swarm improves with

increasing iterations. This means that the particles have a social behaviour and follow

a leader with the best position, also providing evidence that the minimum function

value with few iterations is reached (between 10 and 15). This behaviour was observed

for all thicknesses and temperatures studied in this chapter.
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Figure 4.6: PSO results from 3 mm thick samples dried at 60 oC.
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4.6 Conclusions

In this chapter, a new optimization process based on the particle swarm algorithm was

implemented and used to determine the moisture diffusion coefficients of impregnated

pressboard insulations.

The parameters of the moisture diffusion coefficient of three types of impreg-

nated pressboard insulations, obtained by the optimization method implemented in

this chapter, were validated by comparing the estimated and experimental drying

curves.

During validation, good agreement between the estimated and the experimental

drying curves was observed, which is evidence that the proposed optimization method

based on PSO is suitable for use in determining the moisture diffusion coefficients for

pressboard insulations.

The proposed optimization method was compared with the previous optimiza-

tion method based on GAs. The results show that, in all cases, the optimization times

using the particle swarm method are considerably lower than those using the GA

method.

The decrease in time when using PSO can be explained by the high robustness of

the particle swarm which is due to the social component of this technique.

The RMSD values obtained when the moisture diffusion coefficient was deter-

mined using PSO are, in most cases, lower than those obtained when the moisture dif-

fusion coefficients calculated by GAs are used. This means that the moisture diffusion

coefficients determined from the PSO method, are more accurate than those obtained

using GAs.
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Another advantage of the particle swarm method with respect to GAs is that,

when the PSO is used, it is not necessary to apply any statistical analysis to ascertain

the parameters of the moisture diffusion coefficient.

Decreasing the time spent on optimization and the better estimation of the mois-

ture diffusion parameters makes the proposed PSO method most suitable for the de-

termination of the moisture diffusion coefficients of pressboard insulations.
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Chapter 5

Diffusion coefficient in transformer
mineral-oil impregnated pressboard

5.1 Introduction

The different elements of the solid insulation of a transformer are usually classified into

thick and thin structures. Thick structures comprise about the 50% of the total mass of

the cellulose in the transformer [13], but they have a minor contribution to moisture

migration among the total insulation system because of the large time constant for the

diffusion processes at their typical operating temperatures. On the other hand thin cold

structures, which are those that operate at bulk oil temperatures (pressboard barriers,

end caps, etc) comprise 20 - 30% of the total mass of the cellulosic materials [13] and

retain large amounts of water. These elements are considered the main storage area of

water available for migration to oil.

Pressboard impregnation is important to ensure the minimum number of cavi-

ties are left inside the cellulose insulation and thereby dangerous partial discharges

avoided.To achieve this purpose, mineral oil has been used for many decades with

excellent results.
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Being able to model moisture migration processes is important to optimize the

maintenance investments and to improve the reliability of the equipments. As was

explained, moisture migration inside cellulosic insulation is governed by a diffusion

process that can be modeled by Fick’s second law [27, 28, 39] and whose basic param-

eter is the diffusion coefficient.

Some authors have reported moisture diffusion coefficients for Kraft paper which

have been widely accepted [26, 32, 55], but much less work has been done to charac-

terize the coefficients in pressboard [6, 30].

Although discrete values of the moisture diffusion coefficients have been reported

valid in oil-impregnated pressboard at some specific temperatures and moisture con-

centrations, no general equation for the coefficient is available [15]. The experimental

determination of the coefficients is complex, since it requires making moisture diffu-

sion experiments at different temperatures and insulation thickness involving large

experimental times.

The aim of this chapter is to determine a specific equation for the moisture diffu-

sion coefficient valid for a wide range of operating temperatures and moisture concen-

trations. The coefficient will be useful to simulate the moisture behaviour in the thin

cold structures of in-service transformers. This new coefficient has been determined

by using the methodology proposed in [26] and [6]. The experimental validation of the

proposed coefficient is also described in this chapter.

5.2 Drying experiments

Experiments were done on samples of pressboard impregnated with mineral oil. The

pressboard used during the experiments can be classified according to the international

standard IEC 641-3-1[67] as type B.3.1 and has a density of 1.19 g/cm3. Samples of
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thicknesses 1, 2 and 3 mm were tested. The test specimens, consisting in one layer of

pressboard, were cut to dimensions 40x100 mm, as is shown in figure 5.1.

Figure 5.1: Pressboard sample single layer

The four edges of each specimen were sealed with epoxy resin to prevent des-

orption of moisture through these sides during the drying process and ensure a one-

directional desorption through the top and bottom surfaces. Pressboard samples were

prepared with specific initial moisture content by placing them in a climatic chamber

under a temperature of 35 ◦C and 70% of relative humidity. Wetting conditions were

established according to Jeffries’s curves [40] to get equilibrium moisture around 9%.

After that, the test specimens were impregnated with oil by submerging the insula-

tion specimens in oil at room temperature at atmospheric pressure for a period of not

less than one week. Finally, the oil-impregnated test specimens were introduced again

into the climatic chamber to re-wet the insulation until the beginning of the drying

experiment.

The mineral oil used in this work was Nytro Taurus that conforms the IEC 60296

[68] whose technical characteristics are shown in table 3.3.

5.2.1 Experimental process

To carry out drying experiments on oil-impregnated samples, a drying plant was used

to achieve moisture desorption by circulating hot dry oil. Figure 5.2 shows the general

scheme and a photograph of the drying plant.
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Test specimens were subjected to experiments in the drying plant to obtain the

pressboard insulation drying curves under different conditions of temperature. This

experimental methodology has been proposed by García [7]. Several oil temperatures

and pressboard thickness were used as summarized in table 5.1 below.

(a) General scheme. Sample container (1), oil
filter (2), expansion vessel (3), heater (4), cir-
culating pump (5), flowmeter (6) and security
deposit (7).

(b) Photograph.

Figure 5.2: Drying plant.

Table 5.1: Summary of the conditions used in the experiments.

Samples Temperatures (oC) Thickness (mm) Density (g/cm3)
Pressboard 60, 70 and 80 1, 2 and 3 1.19

The drying experiments consisted of subjecting the test specimens, previously

wetted and impregnated with mineral oil, to a constant flow of hot dry oil (figure 5.3).

During all drying processes the oil flowing through the drying plant at a rate of 60 l/h,

this is to ensure that within one hour all the oil that can be contained in the plant passes

through the oil filter.

Before starting the experiments, one sample of each thickness was extracted from
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a test specimen and analyzed in the laboratory by Karl-Fischer (KF) titration described

in [46], to determine the initial moisture content throughout the thickness of the insula-

tion sample. Later on, one sample of each thickness of pressboard were daily extracted

from test specimens and analyzed to determine the evolution of the moisture concen-

tration during the drying process (cm−exp(t)).

(a) Sample support. (b) Oil circulation drying plant, sam-
ple container.

Figure 5.3: Sample support and sample container of the drying plant.

During the drying process the moisture content in oil was monitored by an EE381

sensor, from ELEKTRONIKA R©. Additionally, samples of mineral oil were analyzed

daily by KF titration. Figure 5.4 shows some measurements of moisture in oil regis-

tered during the different drying experiments 1.

5.2.2 Drying curves

Figure 5.5 (a) shows the drying curves obtained from samples of 3 mm thick subjected

to different oil drying temperatures (between 60 and 80 oC) and figure 5.5 (b) shows the

drying curves obtained on samples of different thickness at 60 oC. As expected, higher

oil temperature dries pressboard more quickly and thicker pressboard takes longer to

dry.
1The spikes in the curves correspond to the stops of the oil recirculation during the sample extraction.
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Figure 5.5: Experimental drying curves at different thickness and temperatures.

5.3 Determination of the moisture diffusion coefficient

The diffusion coefficient was assumed to be expressed by a general equation 5.1. This

general expression has been used to describe the process of moisture migration in dif-

ferent materials [36, 69, 70].
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D(c,T) = D0 · ek·c (5.1)

where c is the local moisture concentration of the insulation (expressed in % of

the cellulose dry weight), D0 is a preexponential factor (expressed in m2/s) that deter-

mines the dependence of the moisture diffusion coefficient with different parameters

e.g temperature, and k is a dimensionless parameter relating the moisture diffusion

coefficient with the local moisture concentration.

To simulate the drying experiments, a diffusion model based in Fick’s second law

(equation 5.2) was assumed. Both equations below have been widely explained in the

previous chapters.

∂c
∂t

=
∂

∂x

(
D · ∂c

∂x

)
(5.2)

where c is the local moisture concentration in the material and D is the moisture

diffusion coefficient.

5.3.1 Moisture diffusion modelling

The dependence of the diffusion coefficient of cellulosic materials on moisture con-

centration makes the equation 5.2 non-linear and thus is recommendable to apply a

numerical method to solve it.

As said before, the edges of each test-specimen were sealed with epoxy resin to

prevent moisture desorption through the sides during the drying process and ensure

a one-directional desorption in transverse direction. Thereby, to simulate such pro-

cess a one-dimensional geometry was assumed to represent the simulated insulation

thickness (figure 5.6), as was explained in section 2.2.1.
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Figure 5.6: Geometry used in the Finite Element Model (FEM).

For the FEM simulation the pressboard was characterized by its moisture diffu-

sion coefficient. Model inputs were the pressboard sample temperature (T), the initial

moisture concentration (c0) of the pressboard sample, and the boundary conditions.

As aforementioned in chapter 3, the boundary conditions of the model were calculated

in both pressboard surfaces from Fessler’s approach (equation 5.3).

Cequil = 2.173 · 10−5 · p0.6685
v · e(

42,725.6
T ) (5.3)

where Cequil is the equilibrium moisture in pressboard, expressed in %, T is the

temperature in oil-pressboard interface, and pv is the partial pressure of water vapour,

expressed in atmospheres, whose determination was explained in section 3.5.

To evaluate the diffusion coefficient used in the simulations, the estimated mois-

ture content ( cest(ti)
) must be compared with the experimental values. It must be noted
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that the Karl Fischer determines the average moisture content in the whole thickness

of the insulation ( cm−exp(ti)
). In consequence, to proceed with the comparison the

estimated moisture should be averaged within the insulation thickness by means of

equation (5.4).

Cm−est(ti)
=

1
l

∫ x=1

x=0
Cest(x,ti)

· dx (5.4)

where l is the pressboard thickness in metres.

As was done in chapters 2 and 4, the difference between the measured and es-

timated values was quantified by the root- mean square deviation (RMSD) (equation

5.5).

RMSD =

√
1
n

n

∑
i=1

[
cm−est(ti)

− cm−exp(ti)

]2
(5.5)

The proximity of the estimated average concentration values calculated with the

FEM model cm−est(ti)
and the experimental ones cm−exp(ti)

depends on the value of the

diffusion coefficient used in the simulation.

To obtain the equation which best describes the moisture diffusion coefficient,

the parameters k and D0 of equation (5.1) that achieve a better agreement between

the experimental drying curves and their corresponding estimated curve should be

determined. This can be done by means of an optimization process.

According the results obtained in chapter 4, an optimization process based on

Particle Swarm Optimization (PSO) was applied to obtain the parameters k and D0 of

the equation 5.1.
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5.4 Parameters calculation

In this section, the results obtained by applying the PSO method to find the parameters

k and D0 of the moisture diffusion coefficient are shown, the range of these values are:

for k between 0.1 and 0.5, and for D0 between 1 · 10−15 and 1 · 10−10. These values

have been widely studied in previous works by several authors as was explained in

chapter 2. The optimization process was applied to the drying curves obtained from

the experimental conditions summarized in table 5.1.

5.4.1 k parameter

After applying the PSO method fifteen times to the experimental curves, the values

obtained for the parameter k did not show dependency on insulation temperature and

thickness, so it was considered to be constant. A value of 0.2, obtained as the average

of the individual k values, was assumed. This behaviour was also found in [42, 25, 6].

5.4.2 D0 parameter

Figure 5.7 shows D0 average values obtained for each temperature and insulation

thickness. D0 shows an exponential dependence with temperature. A dependence

of D0 with insulation thickness is also evidenced, as can be seen in figure 5.7.

Dependence of D0 with temperature can be expressed by equation 5.6, which is a

general expression relating the moisture diffusion coefficient dependence of different

hygroscopic materials with temperature [26].

D0 = D1 · e
(
−D2

T

)
(5.6)
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Figure 5.7: Plotted D0 average values

Table 5.2 shows a summary of the values of the coefficientsD1 and D2 obtained by

fitting the D0 curve (figure 5.7) to equation 5.6 for each thickness. An additional curve

fitting was performed considering the average value for the three tested thickness. The

regression coefficients R2 of the different fitting processes are shown in table 5.2.

Table 5.2: D1 and D2 values obtained by fitting curves.

Thickness (mm) D1(m2/s) D2(K) R2

1 2.34·10−9 3,168 0.98
2 4.47·10−8 3,857 0.97
3 2.89·10−7 4,349 0.98

Average 1.12·10−7 3,791 0.98

5.5 Proposed diffusion coefficients

Taking the average values in table 5.2 and substituting the values in equation 5.6, we

obtain an expression for D0, dependent on temperature but independent of the insula-

tion thickness (equation 5.7).

D0(T) = 1.12 · 10−7 · e(−
3,791

T ) (5.7)

Substituting the values of k and D0 (equation 5.7) in equation 5.1, an expression
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can be obtained (equation 5.8), which allows calculating the moisture diffusion coeffi-

cient in pressboard including the dependence with temperature and moisture concen-

tration but neglecting the dependence of this parameter with the insulation thickness.

D(c,T) = 1.12 · 10−7 · e(0.2·c− 3,791
T ) (5.8)

The dependence of D0 with thickness was already observed in Kraft paper [25]

and non-impregnated pressboard [6]. In appendix B, a deeper study is presented that

investigates the reasons of such dependence [43].

To take into account the influence of the insulation thickness in the expression of

the diffusion coefficient, the obtained values for D1 and D2 (table 5.2) were fitted as a

function of that variable.

Equations 5.9 and 5.10 were found to represent the dependence of D1 and D2

with the insulation thickness.

D1 = 2.5 · 10−9 · l4.3 (5.9)

D2 = 3164 · l0.29 (5.10)

In these equations, insulation thickness (l) is expressed in millimetres.

Substituting the values of D1 and D2 from equations (5.9) and (5.10) in equation

5.6, an expression can be obtained (equation 5.11) that includes the dependence of D0

on temperature and insulation thickness.

D0(T,l) = 2.5 · 10−9 · l4.3 · e
(
− 3,164·l0.29

T

)
(5.11)
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Substituting the values of k and D0 (equation 5.11) in equation 5.1, an expression

can be obtained (equation 5.12), which allows calculating the moisture diffusion co-

efficient in oil impregnated pressboard including the dependence with temperature,

moisture concentration and insulation thickness. Equations 5.8 and 5.12 are valid to

describe the moisture behaviour inside the pressboard insulation.

D(c,T,l) = 2.5 · 10−9 · l4.3 · e
(

0.2·c− 3,164·l0.29
T

)
(5.12)

where (l) is the insulation thickness expressed in millimetres, c is the concentra-

tion of moisture in paper in (%), and T is the temperature in K.

5.6 Validation of the coefficients

The proposed expressions for the moisture diffusion coefficient were validated by com-

paring the experimental data with the simulated ones when considering expressions

5.8 and 5.12 to characterize the diffusion processes in the pressboard.

As mentioned, no other author has reported any study to obtain the moisture

diffusion coefficient in oil impregnated pressboard, for this reason no comparison with

other coefficients can be carried out in this case.

The validation of the proposed diffusion coefficients were tackled in two stages.

Firstly the previous experimental drying curves (figure 5.5) used to determine the

moisture diffusion coefficients were simulated by using both proposed diffusion co-

efficients (equations (5.8) and (5.12)). The RMSD (equation 5.5) between the experi-

mental and the estimated drying curves were calculated to quantify the accuracy of

the estimations when the different proposed moisture diffusion coefficients are used.

Then, additional drying curves were experimentally determined on samples of
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different thickness and subjected to different temperatures than those applied during

the coefficient obtaining process. The drying curves were again simulated using both

proposed coefficients.

5.6.1 Validation using experimental drying curves involved in the
parameter determination process.

Figure 5.8 shows an example of the results obtained on a 2 mm thick sample subjected

to drying at 80 oC. As can be seen the moisture diffusion coefficient proposed that takes

into account the dependence on sample thickness fits much better to the experimental

drying curve. This trend is evident in all the performed validations.
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Figure 5.8: Experimental and estimated drying curves obtained at 80 ◦C and 2 mm
sample thickness.

Figure 5.9 shows the RMSD obtained when the previous experimental drying

curves were simulated by using the different moisture diffusion coefficients. As can be

seen the RMSD is low for all the cases.
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Figure 5.9: RMSD using the different moisture diffusion coefficients proposed in this
work.

5.6.2 Validation of the diffusion coefficients with other temperatures
and insulation thickness.

Validations were also performed with four additional experimental drying curves reg-

istered on samples with different thickness and subjected to drying temperatures that

were not used in the determination of the moisture diffusion coefficients (table 5.3).

Table 5.3: Summary of the conditions used in the validation experiments.

Samples Temperatures (oC) Thicknesses (mm)

Pressboard
60 0.5
70 0.5
85 1.5 and 3

Figure 5.10 shows the validation results performed on (a) 0.5 mm samples thick-

ness at 70 oC, (b) 3 mm samples thickness at 85 oC, (c) 0.5 mm samples thickness at 60
oC, and (d) 1.5 mm samples thickness at 85 oC.

As can be seen in figure 5.10, the drying curves simulated with the moisture diffu-

sion coefficient with dependence on thickness proposed in this work (equation (5.12))

fit better to the experimental drying curves than the curves simulated using the mois-
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ture diffusion coefficient without thickness dependency also proposed in this work

(equation (5.8)).
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(a) 70 ◦C and 0.5 mm sample thick-
ness.
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(b) 85 ◦C and 3 mm sample thick-
ness.

0 50 100 150 200 250 300 350
0

2

4

6

8

10

Time (h)

C
m

 (%
)

 

 

Experimental
Using Dc,T,l
Using Dc,T

RMSD = 0.59

RMSD = 2.30

(c) 60 ◦C and 0.5 mm sample thick-
ness.
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Figure 5.10: Experimental and estimated drying curves obtained at different tempera-
tures and sample thicknesses.

5.6.3 Comparison of the coefficients with the values reported by other
authors.

Although no other equations have been proposed for the diffusion coefficient of water

in oil-impregnated pressboard, Foss determined discrete values for temperatures 70
oC and 20 oC in an insulation of thickness 1 mm and moisture concentration 0.5% [15].

These values would not be useful to make simulations of moisture dynamics, since

D depends on moisture content, and they are only valid for a concentration of 0.5%

in weight. However, these values have been compared with those of the proposed
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coefficient (equation (5.12)), obtained when it is particularized for the considered tem-

peratures, insulation thickness and moisture concentration. The obtained values are

shown in table 5.4.

Table 5.4: Comparison of Diffusion Coefficients proposed by Foss and Diffusion Coef-
ficients proposed in this work for mineral oil impregnated pressboard for 1 mm sample
thick and C=0.5%.

Temperature D(c,T,l)(m2/s) DFoss(m2/s)
20 oC 9.8·10−15 8.5·10−14

70 oC 2.4·10−13 4.7·10−12

As can be seen, the values of the coefficient given by Foss in pressboard are higher

than those proposed in this work. In a previous work [7], the coefficients proposed by

this author on Kraft paper, impregnated and non-impregnated with oil, were validated

experimentally obtaining a similar result. The coefficients estimate a too fast desorp-

tion of moisture from cellulose to oil. It is not easy to explain the reasons of these

discrepancies, as that work was developed by a company and poor information about

it is available in scientific journals.

5.7 Conclusions

In this chapter the moisture diffusion coefficient of mineral-oil-impregnated press-

board has been experimentally determined.

No equation of moisture diffusion coefficient for this material have been reported

before, in spite of the importance of this material in the moisture migration processes

in the transformer.

The coefficients proposed in this work can be used to determine the time required

to complete a drying process in the field, as well as to simulate the moisture dynamics

during transformer operation.
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The coefficients were validated under different temperatures and using samples

of different thickness, demonstrating a great accuracy. They were also compared with

some experimental values referenced in the bibliography, finding that the new coeffi-

cients has a greater accuracy in the estimation of the experimental data.

Considering the influence of the insulation thickness on the diffusion coefficient

is fundamental to obtain accurate calculations of the moisture diffusion processes in

samples of different thickness.
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Chapter 6

Moisture diffusion coefficients of
pressboard impregnated with natural
esters

6.1 Introduction

Most power transformers nowadays rely on liquid dielectrics as an insulating medium

and for heat transfer. The dielectric liquid more widely used is the mineral oil, which

is produced from the middle range of petroleum-derived distillates [71]. The use of

mineral oil has been justified for decades by its wide availability, good properties, good

combination with cellulose and low cost. In recent years, the use of natural esters as

an alternative to mineral oil has increased considerably in distribution transformers

and, although less usual, some experiences are starting to be reported on its use in

power transformers as well. Vegetable insulating oils are almost fully biodegradable

(> 95 %) and have low toxicity; they have high flash points > 300 oC and fire point >

350 oC, they are considered environmentally friendly and fire-resistant substitutes of

insulating mineral oils for power transformers.

Natural esters have greater hydrophilicity than mineral insulating oils due to the

fact of hydrogen bonds existing on molecules of natural esters [9]. Moisture has a
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strong influence on the performance of pressboard-oil systems in power and distribu-

tion transformers. The presence of moisture accelerates the ageing processes of the

cellulosic insulation and also decreases its dielectric strength [47].

Moisture migration inside cellulosic insulation is governed by a diffusion process

that can be modeled by Fick’s second law and whose basic parameter is the diffusion

coefficient [56], this method has been widely tackled during previous chapters of this

thesis. The diffusion coefficient of moisture in a certain material depends on its phys-

ical properties. Different expressions can be used to simulate diffusion processes in

Kraft paper or pressboard impregnated or non-impregnated with oil.

The objective of this chapter is to find an expression for the moisture diffusion

coefficient of pressboard impregnated with natural ester.

Natural esters are synthesized from a vegetable base, e.g. seeds of soya, sun-

flower, rapeseed, etc. The different natural esters commercially available have differ-

ent origin and so they may have their own physical and chemical characteristics and in

consequence, the moisture diffusion coefficient could be different for each type of oil.

In this chapter the coefficients of pressboard impregnated with two different com-

mercial natural esters have been obtained. As will be proved, the moisture diffusion

coefficients are very similar because both natural esters have a sunflower seed basis.

In this chapter expressions for the moisture diffusion coefficients of pressboard

impregnated with two different natural esters have been obtained. The natural esters

included in the study are Bioelectra by Repsol and Biotemp by ABB, which are cur-

rently widely used by transformer manufacturers.

The coefficients proposed were obtained by means of the experimental method-

ology used previously in [56, 28, 41], and that has been widely described in previous

chapters. In addition, for determining the moisture diffusion coefficient parameters,
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the optimization process based in Particle Swarm Optimization (PSO) proposed in

chapter 4 has been used.

The obtained expressions are valid on a wide range of temperatures, moisture

concentrations and insulation thickness. The coefficients were validated and compared

with the ones proposed by Zhang in [21], which is the only reference available to date

about this topic.

6.2 Experimental methodology

As in the case of the study presented in chapter 5, the diffusion coefficients on ester im-

pregnated insulations were obtained on pressboard samples of type B.3.1 100% (Wood

Pulp Sulfated) [67] with density of 1.19 g/cm3. The samples consisted of a single layer

of pressboard cut to dimensions 40x100 mm.

The edges of each test-specimen were sealed with Epoxy resin aiming to emu-

late the behaviour of the pressboard insulation pieces on transformers, in which the

moisture diffusion occurs mainly on thickness direction [27]. (see figure 5.6)

The samples were firstly humidified in an environmental chamber and then they

were impregnated with ester fluids. The experiments were repeated for two different

ester fluids whose technical characteristics are shown in table 3.2.

6.2.1 Experimental process

As was explained before, to calculate the moisture diffusion coefficient of any material

it is necessary to use experimental data of diffusion processes carried out at different

conditions.
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The experimental data used in this work were derived from hot-oil drying exper-

iments (HO). Pressboard samples of different thickness, prepared with high moisture

contents were subjected to drying in the plant schematized in figure 5.2 and the evo-

lution of their average moisture content (drying curve) was determined. The drying

fluid that filled the deposit of the drying plant during the tests was the one used to

impregnate the samples.

The drying experiments consisted of subjecting the test specimens, previously

wetted and impregnated with natural ester, to a constant flow of hot and dry ester.

During all the drying processes the ester fluid flowed through the drying plant de-

scribed in section 5.2.1 at a rate of 60 l/h. That flow rate ensures that the whole amount

of fluid inside the plant passes through the filter within one hour. The drying plant was

designed to avoid contact of the natural esters with oxygen and thus to limit oxidation

processes. To this end a security deposit was included with a membrane that avoided

any contact between oil and air.

Before starting the experiments, one sample of each thickness was extracted from

a test specimen, and analyzed in the laboratory by Karl-Fischer (KF) titration, to deter-

mine the initial moisture content throughout the thickness of the insulation sample.

To determine the moisture diffusion coefficient of pressboard impregnated with

natural esters, ten drying experiments were performed. Different fluid temperatures

and sample thicknesses were considered as shown in table 6.1. The average time spent

in each experiment was one month.

Table 6.1: Summary of the conditions used in the experiments.

Natural ester Temperatures (oC) Thickness (mm)
Biotemp and Bioelectra 40, 50, 60, 70 and 80 1, 2 and 3

The experimental average moisture content in the pressboard samples (cm−exp),

was also determined using the Karl-Fischer titration method. One sample of each

thickness of pressboard was daily extracted from sample container and analyzed to
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determine the drying curve of the sample during the drying process.

Oil samples were also extracted and analyzed every day. Additionally, the mois-

ture content of oil was monitored with a moisture-in-oil sensor. Figure 5.4 shows the

evolution of moisture in oil during three whole drying process performed with both

natural esters and with mineral oil. As can be seen the moisture in oil remains rela-

tively constant because of the good performance of the filter incorporated by the dry-

ing plant.

6.2.2 Drying curves

Drying curves for all thicknesses and temperatures summarized in table 6.1 were ob-

tained for both kinds of natural esters. As an example, figure 6.1 shows the drying

curves for pressboard samples of 1 mm thick subjected to different drying temper-

atures. These curves show drying occurs more quickly at high oil temperature, the

same effect is visible in the other thickness.
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Figure 6.1: Experimental drying curves of 1 mm thick pressboard for both kinds of
natural ester.

91



6.3 Theoretical model for determining moisture diffusion
coefficient

The same procedure used in section 5.3 was applied for determining of moisture diffu-

sion coefficients in esters-impregnated pressboard, this coefficient was assumed to be

expressed by the general equation (6.1).

D(c,T) = D0 · ek·c (6.1)

where c is the local moisture concentration of the insulation (expressed in % of

the cellulose dry weight), D0 is a preexponential factor (expressed in m2/s) that deter-

mines the dependence of the moisture diffusion coefficient with different parameters

e.g temperature, and k is a dimensionless parameter relating the moisture diffusion

coefficient with the local moisture concentration.

The model inputs are the pressboard sample temperature (T), its initial moisture

concentration (c0), and the boundary conditions. As was explained in chapter 3, the

boundary conditions of the model for natural esters are different than the mineral oil,

and were calculated using equation (6.2). This equation represent the moisture equi-

librium conditions for ester-paper systems.

Cequil_vegetal = 1.18 · 10−18 · pv
3 · e(

16,570
T ) − 5.39 · 10−12 · pv

2 · e(
10,960

T )

+ 9 · 10−6 · pv · e(
5,418

T ) +
1, 004

T
− 3 (6.2)

where Cequil_vegetal is the equilibrium moisture in pressboard impregnated with

natural ester, expressed in %, T is the temperature in oil-pressboard interface, and pv

is the partial pressure of water vapour (atm), whose determination was explained in

section 3.5.

92



The output of the FEM model is the evolution of the local moisture concentration

(cest) during the whole drying process. To compare the simulation results with the

experimental data, is necessary to calculate the average moisture concentration of the

sample (cm−exp), this can be done by using equation (5.4).

6.4 Parameters calculation

To obtain the equation of the moisture diffusion coefficients (5.1), the parameters k and

D0 should be determined. To this end, the PSO based optimization method proposed

in chapter 4 was applied. The objective function used was the root- mean square devi-

ation (RMSD) (equation (5.5)), that quantifies the difference between the experimental

and estimated drying curves.

As was discussed in chapter 4, the application of the PSO optimization method

proposed in the thesis provides a single value of every parameter for each experimental

condition. This fact simplifies the analysis significantly and allows to skip the statistical

study, that was required when GA were applied.

6.4.1 k parameter

After applying the optimization process to the 15 experimental drying curves, 15 val-

ues of the parameter k were obtained. The analysis of these values did not suggest any

dependence of k with the temperature or insulation thickness. In consequence, as was

done in the case of mineral-oil impregnated pressboard, a representative value of k was

taken as the average of the 15 results obtained through PSO.

The obtained values for the parameter k are 0.20 for Bioelectra and 0.25 for Biotemp,

with a maximum standard deviation of 0.10 for both natural esters.
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6.4.2 D0 parameter

The average values obtained for the parameter D0 for Biotemp and Bioelectra, showed

dependence with the temperature and the insulation thickness. This dependence was

widely shown in previous works [6, 7, 41, 56]. Figure 6.2 shows D0 temperature de-

pendence for pressboard impregnated with Biotemp, similar behaviour occurs with

Biolectra.

The dependence of D0 with temperature can be fitted to equation (5.6), which

is a general expression that relates the moisture diffusion coefficient dependence of

different hygroscopic materials with temperature [7].
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Figure 6.2: Plotted D0 average values for Biotemp.

Table 6.2 shows a summary of the values of the coefficients D1 and D2 obtained

by fitting the D0 values obtained by PSO for both kinds of natural esters. As can be

seen, a clear dependence with the thickness is once again found.
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Table 6.2: D1 and D2 values obtained by fitting curves for both natural esters.

Biotemp Bioelectra
Thickness (mm) D1 (m2/s) D2 (K) D1 (m2/s) D2 (K)

1 1.90·10−7 4,450 1.70·10−7 4,440
2 2.20·10−6 4,520 1.20·10−6 4,462
3 2.90·10−6 4,570 3.84·10−6 4,481

6.5 Proposed diffusion coefficients

To obtain the equations of the moisture diffusion coefficient, D1 and D2 were expressed

as a function of thickness from the values of table 6.2. These equations are shown in

table 6.3, where insulation thickness (l) is expressed in millimetres.

Substituting D1 and D2 equations in (5.6) and then in (5.1), expressions for mois-

ture diffusion coefficient can be obtained. These equations are dependent on local

moisture concentration, temperature and insulation thickness.

Table 6.3: D1 and D2 as a function of thickness.

Biotemp Bioelectra
D1 1.2·10−7 · l−3.7 1.7·10−7 · l−4.5

D2 4,491·l−0.5 4,450·l−0.5

Equation (6.3) is valid in the case of pressboard impregnated with Biotemp while

equation (6.4) is applicable for pressboard impregnated with Bioelectra.

DBiotemp = 1.2 · 10−7 · l−3.7 · e
(

0.25·c− 4,491·l−0.5
T

)
(6.3)

DBioelectra = 1.7 · 10−7 · l−4.5 · e
(

0.2·c− 4,450·l−0.5
T

)
(6.4)

where (l) is the insulation thickness expressed in millimetres, c is the concentra-

tion of moisture in paper, and T is the temperature in K.

As can be observed, both equations are very similar; this is because both natural

esters have the same origin based on sunflower seed.
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Figure 6.3 compares the moisture diffusion coefficients of the pressboard impreg-

nated with the two natural esters and also the coefficient of pressboard impregnated

with mineral oil that was proposed in chapter 5. In Figure 6.3 samples of thickness 3

mm subjected to a temperature of 70 oC and variable moisture concentration between

1% and 8% were considered. As can be seen moisture diffusion coefficients increase

with moisture concentration and temperature, as was expected. It should be noted

that the coefficients of pressboard impregnated with both natural esters present a sim-

ilar behaviour, but this behaviour is very different to the moisture diffusion coefficient

of pressboard impregnated with mineral oil.
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Figure 6.3: Moisture diffusion coefficient for vegetables and mineral oil, 3 mm sample
thickness, 70 oC and variable concentration.

A higher moisture diffusion coefficient means that the oil can extract the mois-

ture with a higher rate from the sample of pressboard, which means that the sample

is dried faster in natural esters than in the mineral oil. As an example of the previous

results, table 6.4 has been included to compare the drying times for Biotemp and min-

eral oil in several particular cases. It can be observed how the drying times in press-

board impregnated with natural oil are lesser that those of pressboard impregnated

with mineral oil. Similar behaviour occurs with Bioelectra. A deeper study on the dry-

ing times of mineral-oil-impregnated and ester-impregnated pressboard is presented

in appendix A.

96



Table 6.4: Drying times for different samples thickness at 70 oC, 8% initial moisture
content, 0.5% final moisture content, and 10 ppm in oil.

Thickness (mm) Biotemp Mineral Oil
1 192 h 379 h
2 344 h 427 h
3 438 h 499 h

6.6 Validation of the coefficients

Equations (6.3) and (6.4), proposed for the moisture diffusion coefficient calculation,

were validated by comparing the experimental drying curves with the simulated ones.

The proposed moisture diffusion coefficients were also validated with additional

drying curves which were experimentally determined on samples of different thick-

nesses and subjected to different drying temperatures to those used during the coeffi-

cient determination. The estimated drying curves of these samples were obtained from

the FEM model, using the coefficients proposed in this chapter and also the coefficient

for Kraft paper proposed by Zhang et al in [21].

6.6.1 Validation with temperatures and insulation thickness involved
in the coefficient determination process.

Figure 6.4 shows two examples of the results obtained when the drying experiments

were simulated. Case 1 corresponds to samples 2 mm thick impregnated with Bio-

electra subjected to drying process at 80 ◦C. In the same way, case 2 corresponds to

samples 1 mm thick impregnated with Biotemp subjected to a drying process at 40 ◦C.

As can be seen the estimated drying curves fits very well the experimental ones when

the proposed moisture diffusion coefficients are used.

All experiments summarized in table 6.1 were simulated obtaining a low RMSD

for all cases. The best and the worst results obtained in the whole study are shown in
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figure 6.4 (i.e RMSD = 0.23 and RMSD = 0.82).
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Figure 6.4: Experimental and estimated drying curves obtained for case 1 and case 2.

6.6.2 Validation with temperatures and insulation thickness not con-
sidered in the coefficient determination process

Validations were also performed with experimental drying curves determined on sam-

ples of thickness and drying temperatures that were not used in the determination of

the moisture diffusion coefficients. The conditions of these additional experiments are

shown in table 6.5.

Table 6.5: Summary of the conditions used in the validation experiments.

Natural ester Temperatures (oC) Thickness (mm)
Biotemp 85 1.5, 2.5, 3.5 and 5

Bioelectra 50 1.5, 2.5 and 4

Validation for all the experiments summarized in table 6.5 was also performed.

The case with the minimum RMSD is shown in figure 6.5. The RMSD obtained in

the simulation of the whole set of experiments was into a range of 0.30 to 0.65 which

means that the moisture diffusion coefficients proposed in this work are valid and

allow obtaining accurate simulation values.
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Figure 6.5 shows the simulated and experimental data of the drying process of a

sample 2.5 mm thick dried with Biotemp at 85 oC.
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Figure 6.5: Experimental and estimated drying curves obtained on samples 2.5 mm
thick dried with Biotemp at 85 ◦C.

6.6.3 Comparison of the coefficient with the values reported by other
authors

So far, no moisture diffusion coefficient for natural ester impregnated pressboard has

been reported in the literature. In [21], Zhang et al proposed an expression for the

moisture diffusion coefficient of Kraft paper impregnated with a kind of natural ester.

Zhang’s equation is based on the empirical equation proposed by Guidi in [23] and

considers the dependence of the coefficient with temperature and moisture concentra-

tion (equation (6.5)).

D = DG · e
[
k·c+Ea

(
1

T0
− 1

T

)]
(6.5)

where T0 is the reference temperature (298 K), T is the insulation temperature

(also expressed in K) and c is the moisture concentration of the insulation (in % of dry

weight).
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Zhang carried out experiments on Kraft paper samples 3 mm thick (composed

of 60 paper layers of 0.05 mm each) impregnated with a type of rapeseed insulating

oil. The evolution of moisture distribution in time was determined with an adsorption

experiment. The values for Ea, DG and k parameters of moisture diffusion coefficient

proposed by Zhang were: k = 0.497, DG = 7.34 · 10−14 m2/s and Ea = 6,940 (K)

Zhang’s coefficient has been evaluated by simulating our experimental drying

curves. It is important to note that the coefficient proposed by Zhang does not consider

the dependence on thickness. To skip the effect of this variable in the validation of

the coefficient, the simulations have been limited to the experiments performed on

samples of 3 mm, the same as used by Zhang in his experiments.

Figure 6.6 shows the results obtained when the drying curves of a 3 mm sample

impregnated with Bioelectra and Biotemp dried at 60 oC and 50 oC respectivily are

estimated using Zhang’s coefficient (equation 6.5), and also using both proposed coef-

ficients (equations (6.3)(6.4)). As can be seen the estimations obtained with Zhang’s co-

efficient are far from experimental data, while the predictions when equations (6.3)(6.4)

were used are more precise. Further simulations were conducted to evaluate Zhang’s

coefficient at different temperatures obtaining similar results.

The bad behaviour of Zhang’s coefficient in the simulation of drying processes

of pressboard can be due to the fact that it was determined using a different cellulosic

material (Kraft paper instead of pressboard) and also with a different ester fluid (a type

of rapeseed) to those used in our experiments.

Another possible cause of the discrepancies may be that Zhang’s coefficient was

determined from adsorption experiments while the validations were done on moisture

desorption processes. As it is well known, a certain hysteresis exists between adsorp-

tion and desorption of moisture in cellulosic materials, although it does not seem to be

the explanation to such a big discrepancy.
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(a) 60 ◦C and 3 mm sample thickness. Using Bioelectra
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Figure 6.6: Experimental and estimated drying curves of a 3 mm pressboard impreg-
nated with both natural esters and dried by HO.

6.7 Conclusions

In this chapter the moisture diffusion coefficient for pressboard impregnated with two

different natural esters has been determined and validated. This work was carried out

on two natural esters widely used for transformer manufacture.
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A new optimization process, based in particle swarm, was applied that is fast and

accurate in determining the parameters of the diffusion coefficients.

The obtained expressions were similar for both esters, this is because the similar-

ities of the physical and chemical properties of the fluids. However, for better estima-

tion of the moisture migration process, it is desirable to use a coefficient specifically

obtained for the material under study.

The moisture diffusion coefficients proposed in this chapter consider a depen-

dency with temperature, moisture concentration and thickness of the samples. Al-

though considering thickness in the diffusion coefficient equation may be not so rigor-

ous from the physical point of view, it allows modelling the studied phenomena with

much more accuracy than when this variable is skipped.

The coefficients were validated under different temperatures and using samples

of different thickness, demonstrating a great accuracy. It was also compared with the

equation proposed by another author, demonstrating the effectiveness of the coeffi-

cients and the methodology used to derive them.

The coefficients proposed in this chapter can be used to determine the time re-

quired to complete a drying process in the field, as well as to simulate the moisture

dynamics during transformer operation.

Natural ester is much more hydrophilic than mineral oil, it leads the fluid to ab-

sorbing more moisture in the drying experiments and therefore they were performed

in less time. Additionally it can be concluded that due to this same condition, diffusion

coefficient is greater when using natural esters.
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Chapter 7

Moisture dynamics model

7.1 Introduction

In the last years the use of natural and synthetic esters is becoming habitual in dis-

tribution transformers. These fluids are biodegradable and present some other good

properties, as their high fire temperatures, that make them a valuable alternative to

mineral oils. These fluids have recently started to be applied to power transformers,

although their use is still sporadic mainly because of their cost and some disadvanta-

geous properties presented by them, as their high viscosity and their oxidation rates

[2].

One of the differential properties of these fluids is that they are able to absorb a

much greater amount of water than mineral oils, as was proved in chapter 3, one of

the variables that deserves more attention in power transformers, as its presence accel-

erates the paper ageing rates and increases the equipment risk of failure. However, as

the application of ester fluids to power transformers is still scarce, not much work has

been addressed about the moisture behaviour in cellulose-ester systems.

Cellulose and oil have a very different behaviour with regard to moisture; cellu-
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losic materials are hydrophilic while oil is highly hydrophobic. In consequence most of

the moisture in a mineral-oil filled transformer is absorbed in its cellulosic insulation.

However the distribution of moisture between paper and oil is not static, but depends

on the transformer operating condition, and mainly on the temperature reached by the

different materials.

In order to make a good estimation of the moisture dynamics inside transformers

in operation, it is necessary to take into account those parameters that could affect its

behaviour; specially the operating temperatures and the moisture content inside cellu-

losic materials. In this chapter, a moisture dynamics model has been developed which

includes the thermal and moisture dynamics phenomena within the transformer.

7.2 Moisture dynamic model

The moisture dynamic model proposed in this work is an integration of the thermal

model described in Annex G of the IEEE standard C57-91-2011 [8] and a moisture

model based in the solution of Fick’s second law imposing a set of dynamic bound-

ary conditions [56, 73]. For the integration of these two models. the computational

Finite Elements (FEM) tool Comsol Multiphysics and the software Matlab were used.

7.2.1 Thermal model

The thermal model of the Annex G of IEEE C57-91-211 [8], considers that the distribu-

tion of temperature on the transformer winding is linear (Figure 7.1).

As is well known the transformer winding hot-spot temperature is one of the

most critical parameters when defining the power transformer thermal conditions and

overloading capability beyond the nameplate rating.
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Figure 7.1: Transformer thermal diagram that shows the temperature distribution
along the winding height and the oil temperature distribution inside the transformer
tank. g is the rated average winding to average oil temperature gradient, and Hg is the
Hot-spot factor. Taken from [74].

According to the IEEE standard C57-91-2011 [8], the hot-spot temperature in a

transformer can be calculated as the addition of three components: the ambient tem-

perature rise, the top-oil temperature rise, and the hot-spot temperature rise over the

top-oil temperature, figure 7.1 [74] It is assumed that during a transient period the hot-

spot temperature rise over the top-oil temperature varies instantaneously with trans-

former loading and independently of time.

Figure 7.2, taken from [8], shows a load fluctuations throughout the day. For

normal loading or planned overloading above nameplate, a multi-step load cycle cal-

culation method is usually used.

An equivalent two step overload cycle as shown in figure 7.3, taken from [8], may

be used for determining emergency overload capability. The equivalent two-step load

cycle consists of a prior load and a peak load. This figure is also used for the purpose

of describing calculations to determine equivalent load cycles.
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Figure 7.2: Load cycles for normal loading and planned loading beyond nameplate.
Taken from [8]

Figure 7.3: Example of actual load cycle and equivalent load cycle. Taken from [8]

Calculation of temperatures

IEEE standard C57-91-2011 [8] proposes two different methodologies to calculate the

temperatures throughout the transformer for a certain load profile. The simplest one,

given in the clause 7 of that standard, is based in solving a first order differential equa-

tion that models the increase or decrease of temperature for a certain load. To deter-

mine the time constant of the oil and the winding, the model considers the exponents m

and n, that approximately account for changes in load loss and oil viscosity caused by
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changes in temperature. Values for the exponents used in these equations are shown

in table 7.1 1.

Table 7.1: Exponents used in temperature determination equations.

Cooling modes m n
ONAN 0.8 0.8
ONAF 0.8 0.9

Non-directed OFAF or OFWF 0.8 0.9
Directed ODAF or ODWF 1.0 1.0

An alternate method, which requires more complex computer calculation proce-

dures, is given in Annex G in [8]. This method is more exact in accounting for changes

in load loss and oil viscosity caused by changes in resistance and oil temperature, re-

spectively. The effect of a variable ambient temperature is also considered.

This method was used in this work because it has a greater accuracy in the calcu-

lation of the temperatures during transient loading [8].

Equations

The winding hottest-spot and oil temperatures are obtained from equations for the

conservation of energy during a small period of time, ∆t. The system of equations

constitutes a transient forward-marching finite difference calculation procedure. The

equations were formulated so that temperatures obtained from the calculation at the

prior time t1 are used to compute the temperatures at the next instant of time t1 + ∆t

or t2. The time is incremented again by ∆t, and the last calculated temperatures are

used to calculate the temperatures for the next time step. At each time step, the losses

were calculated for the load and corrected for the resistance change with temperature.

Corrections for fluid viscosity changes with temperature were also incorporated into

the equations. With this approach, the required accuracy is achieved by selecting a

1ONAN: Natural convection flow of oil, and natural convection flow of air. ONAF: Natural con-
vection flow of oil, and forced convection flow of air. OFAF: Forced convection flow of oil, and Forced
convection flow of air. ODAF: Directed convection flow of oil, and Forced convection flow of air.
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small value for the time increment ∆t and the programming approach is very simple.

The equations shown in this chapter are those that represent the temperatures of

the most critical points of the transformer. In order to calculate these temperatures, all

the equations proposed in the Annex G of IEEE standard C57-91-2011 [8] have been

used. The complete set of equations is not reproduced here because of the great num-

ber of expressions and symbols that would need to be displayed. This thesis have not

contributed to improve the thermal model or has made any change on it, but has just

implemented it according to the recommendations of the Annex G of IEEE standard

C57-91-2011 [8]. However, the full description of the model and the whole system of

equations used can be seen in [8].

The hottest-spot temperature

The hottest-spot temperature is made up of the following components.

ΘH = ΘA + ∆ΘBO + ∆Θ WO
BO

+ ∆Θ H
WO

(7.1)

where:

• ΘH is the winding hottest-spot temperature, oC.

• ΘA is the average ambient temperature during the load cycle to be studied, oC.

• ∆ΘBO is the bottom fluid rise over ambient, oC.

• ∆Θ WO
BO

is the temperature rise of oil at winding hot-spot location over bottom oil,
oC.

• ∆Θ H
WO

is the winding hot-spot temperature rise over oil next to hot-spot location,
oC.
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The top and bottom oil temperatures

The temperatures of the top and bottom oil are determined from following equations:

ΘBO = ΘAO −
∆Θ T

B

2
(7.2)

ΘTO = ΘAO +
∆Θ T

B

2
(7.3)

• ΘBO is the bottom fluid temperature, oC.

• ΘTO is the top fluid temperature, oC.

• ΘAO is the average fluid temperature in tank and radiator, oC.

• ∆Θ T
B

is the temperature rise of fluid at top of radiator over bottom fluid, oC.

The thermal model calculates the top-oil, hot-spot and bottom-oil temperatures

for the specified load profile. Additionally, it is able to calculate the temperature at any

specified height of the winding.

7.2.2 Moisture diffusion modelling

As is widely mentioned in previous chapters, the desorption of moisture from cellu-

lose to oil can be modelled as a diffusion phenomenon by means of Fick’s second law

(equation 7.4).

∂c
∂t

=
∂

∂x

(
D · ∂c

∂x

)
(7.4)
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where D is the effective moisture diffusion coefficient in the solid insulation, c

is the local total moisture concentration, t is the time and x is the distance into the

material in the direction of moisture movement.

As was explained in chapter 2, the transport of moisture inside the cellulose pro-

ceeds in the form of vapor and condensed water through the fibres and void spaces

that constitute the cellulose. The diffusion coefficient increases with moisture concen-

tration and decreases when moisture is reduced [26].

To solve Fick’s equation, the FEM commercial software Comsol Multiphysics 3.5a

was used. The initial moisture concentration and temperature of the insulation were

used as independent inputs to the moisture model.

The FEM diffusion model can consider either Kraft paper or pressboard as cellu-

losic insulation, including different expressions of the diffusion coefficient to charac-

terize the different materials. It can also consider several insulating fluids, as mineral

oils or natural esters that are represented by adequate boundary conditions. Taking

into account that moisture dynamics occurs in a unidirectional way, a one-dimensional

model was assumed. As will be explained latter, to estimate the moisture dynamics at

different heights of the winding, different simulations could be run.

Figure 7.4 shows a schematic of the implemented model. In the case represented

in this figure, one of the sides of the insulation is considered to be in contact with the

winding, and then no diffusion takes place on this side. However different situations

and geometries could also be easily studied by the model.

As was mentioned, the diffussion coefficients used in the model were those ob-

tained in chapters 5 and 6 of this thesis. This parameter characterizes the material that

is being studied by the model, and in particular determines the moisture diffusion rate

within the material for each operating condition.
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Figure 7.4: Outline of the diffusion model.

To simulate the moisture dynamics in mineral-oil-paper systems, the diffusion

coefficient was taken as equation 7.5, while to simulate natural-ester-paper systems,

equations 7.6 and 7.7 were considered.

DMineral = 2.5 · 10−9 · l4.3 · e
(

0.2·c− 3,164·l0.29
T

)
(7.5)

DBiotemp = 1.2 · 10−7 · l−3.7 · e
(

0.25·c− 4,491·l−0.5
T

)
(7.6)

DBioelectra = 1.7 · 10−7 · l−4.5 · e
(

0.2·c− 4,450·l−0.5
T

)
(7.7)

where c is the local moisture concentration of the insulation (expressed in % of

dry weight), D is the moisture diffusion coefficient (expressed in m2/s), and T is the

operation temperature.
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7.2.3 Development of the moisture dynamic model

The moisture dynamic model proposed is an integration of a thermal model set out

in IEEE standard C57-91-2011 [8] and the moisture diffusion model based on Fick’s

second law described in section 7.2.2. Figure 7.5 shows the flow chart of the model.

Figure 7.5: General scheme of the moisture dynamic model.

The transformer operating temperatures calculated with the thermal model will

be used as a starting point to calculate the evolution of the moisture inside the trans-

former, what will be done by solving Fick’s second law 7.4. The thermal model is ca-

pable of estimating oil operating temperatures at different heights of the transformer,

at different heights of the windings and also at the hottest-spot of the transformer.
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As was explained before, the moisture model considers a one-dimensional ge-

ometry to study the solid insulation. To calculate the moisture distribution at different

points of the transformer, several simulations must be run in parallel considering the

temperatures calculated for different parts of the winding, and specifying adequate

insulation thicknesses.

The instantaneous temperatures are used as an input of the moisture diffusion

model. They are used to calculate the instantaneous diffusion coefficient at each instant

of the simulation, and also to determine the boundary condition.

The boundary condition of the model should set the moisture content on the sur-

face of the solid insulation at each time. To establish the superficial moisture, the model

assumes that the surface of the paper reaches the equilibrium instantaneously for any

time.

The equilibrium condition, states how water would be splitted between paper

and oil at each working temperature and is established by the equilibrium curves that

were calculated in chapter 3. The curves are used in the model in their parametrized

form (equation 7.8 for mineral oil and equation 7.9 for natural esters).

Cequil = 2.173 · 10−5 · p0.6685
v · e(

42,725.6
T ) (7.8)

where Cequil is the equilibrium moisture in cellulose, expressed in %, T is the

temperature in oil-cellulose interface and pv is the partial pressure of water vapour,

expressed in atmospheres.

Cequil_vegetal = 1.18 · 10−18 · pv
3 · e(

16,570
T ) − 5.39 · 10−12 · pv

2 · e(
10,960

T )

+ 9 · 10−6 · pv · e(
5,418

T ) +
1, 004

T
− 3 (7.9)

where Cequil_vegetal is the equilibrium moisture in pressboard impregnated with
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natural ester, expressed in %, T is the temperature in oil-pressboard interface, and pv is

the partial pressure of water vapour.

An additional mass balance equation is necessary to determine the equilibrium

condition for a particular temperature. The equation 7.10, proposed by Frimpong in

[75] was used to this end, which assume that the total weight of water in the trans-

former does not vary although it is split between paper and oil in different proportions

as temperature changes.

Wtotal = Mcellulose ·
Cequil

100
+ Moil ·

PPMoil equil

1, 000, 000
(7.10)

where Wtotal is the total water in the transformer, expressed in kg, Mcellulose is the

weight of cellulose, expressed in kg, Moil is the weight of oil, expressed in kg, Cequil is

the final % weight of water in cellulose, and PPMoil equil is the moisture content in oil.

The equilibrium moisture in paper and oil (Cequil, PPMoil equil) calculated by solv-

ing the system of equations formed by 7.8 and 7.10, would be only reached if the trans-

former operates at constant temperature for a very long time. However, the determi-

nation of these variables is basic to establish the boundary condition required to solve

the dynamic model.

At every iteration, the paper surface is considered to have a moisture content

equal to the Cequil obtained for the temperature of this particular time instant, i.e.

the model assumes that the surface of the paper reaches the equilibrium in an in-

stantaneous way. The model solves Fick’s equation using the finite element method,

and with the aforesaid boundary condition, and calculates the moisture distribution

throughout the solid insulation at every iteration. The average moisture in paper Cm,

is then calculated using equation 7.11.

Cm−est(ti)
=

1
l

∫ x=1

x=0
Cest(x,ti)

· dx (7.11)
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where l is the pressboard thickness in metres.

Once calculated Cm, the instantaneous moisture content in oil can be also calcu-

lated using equation 7.10.

7.3 Moisture dynamics on a transformer insulated with
vegetable oil. Case studies

The moisture dynamic model proposed in this work has been tested in three different

cases that will be described next. Different loading profiles were simulated in a 52,267

KVA transformer, whose properties are shown in table 7.2. The data were taken from

[8]. Table 7.3 shows the transformer insulation system weights used in this model.

Table 7.2: Data of the transformer.

Parameters Value
Refrigeration ONAN/ONAF

Power 52,267 KVA
Core and coil weight 75,600 lb
Tank and radiators 31,400 lb

Gallons of oil 4,910
No load loss 36,986 W

Load loss 72.768 W
Total loss 109.755 W

Table 7.3: Transformer insulation system weights.

Parameters Value
Total cellulose insulation weight (kg) 3,023

Total mineral oil weight (kg) 31,500
Total natural ester weight (kg) 32,208

Initial moisture in solid insulation (% by weight) 4

In first place, the transformer was considered to be filled with the natural ester

Biotemp. It is important to mention that the thermal model applied to the study of the

ester-filled transformer is the one proposed in the annex G of the IEEE Std C.57.91-2011

[8] and has not been changed to consider the different properties of the fluid. This will
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probably introduce some error in the calculation of the temperatures from the load

profiles. A thermal model for ester-insulated transformers will be developed in the

future, as is explained in section 8.3.

In this case the solubility curve determined in chapter 3 for the ester Biotemp was

taken as equation 7.12.

LogWS = 5.67 − 791
T

(7.12)

The insulation thickness considered in the simulations is 3 mm, although the

multi-physical model can be applied to other insulation thickness as well. The model

can also simulate the temperature and moisture dynamics at any height of the winding,

but all the simulations were done considering the temperature of the top oil.

7.3.1 Case 1. Load step

The first case considers the load profile and ambient temperature shown in figure 7.6.

During the first five hours the transformer is considered to be out of service (load 0),

and then it worked at rated load for 19 hours. The ambient temperature had a constant

value equal to 25 oC for the whole simulated period.

Figure 7.7 shows the evolution of the temperatures in different points of the trans-

former during the simulated period. As can be seen, the temperature increases sharply

after the load step, and the system needs approximately 7 hours to reach the equilib-

rium.

Regarding the moisture dynamics, figure 7.8 shows the moisture in paper and

moisture in oil that would be attained in steady state condition for every operating

temperature. However, the dynamics of moisture in the oil-paper system has a large
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time constant, and the instantaneous values of moisture in cellulose and moisture in

oil are the ones shown in figure 7.9 and 7.10
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Figure 7.6: Load cycle and ambient temperature used in case 1.
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Figure 7.7: Temperatures distribution calculated for case 1.

Additionally, figure 7.9 shows the instantaneous moisture content inside the cel-

lulose during the operation cycle, which will be called from this section cm, and the

moisture content that would be attained for each temperature if the system would be

in steady state, which will be called from this section ce. The behaviour observed is
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while the temperature is increasing the moisture content in cellulose is decreasing un-

til reaches the equilibrium. To achieve this, the temperature must be constant during a

long time to reach the equilibrium.
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Figure 7.8: Moisture content in Biotemp and cellulose in steady state obtained from
moisture dynamic model in case 1.
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Figure 7.9: Moisture content in cellulose in operation (cm) and steady state (ce) obtained
from moisture dynamic model in case 1.

On the other hand, figure 7.10 shows the moisture content in Biotemp during

the operation cycle and the moisture content in oil in steady state. Opposite to the

cellulose, the moisture content in oil increases with the temperatures.

118



According with the figure 7.10, the moisture content in oil keeps increasing until

reaching the equilibrium. If the temperature remains constant for a long time, the

moisture content in oil in operation could be the same that the equilibrium one.
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Figure 7.10: Moisture content in oil (considering the insulating fluid Biotemp) in oper-
ation and steady state obtained from moisture dynamic model in case 1.

7.3.2 Case 2. Cycle load proposed in IEEE Std C.57.91-2011

In the second case, the load profile and ambient temperature shown in figure 7.11 was

considered. These profiles are provided in the Annex G of IEEE Std C.57.91-2011 as an

example of cyclical short term overload.

As can be seen in figure 7.12, the temperatures in the transformer follow the same

cyclical behaviour as the load, with an approximated time delay of two hours. The

hottest spot temperatures reached at some points of the simulation are higher than 100
oC, and so the loss of life of the insulation during these periods would be significant.

Figure 7.13, shows the moisture contents that would be attained in oil and pa-

per for each working temperature if the system would be in steady state. As can be

seen these steady state moistures varies in a cyclical manner as well. If the peaks. If
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the peaks of the temperatures and the instantaneous values of moisture contents in

Biotemp are compared, it can be stated that the time delay between both variables is

approximately 5 hours, figures 7.14 and 7.16.
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Figure 7.11: Load cycle and ambient temperature used in case 2.
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Figure 7.12: Temperatures distribution calculated for case 2.

In figure 7.14, the value of the instantaneous average moisture of the cellulose

changes cyclically with the temperatures, however, as can be seen it presents a down-

ward trend, due to the fact that the diffusion coefficient depends on temperature, and

in consequence the desorption of moisture from paper to oil (that occurs when the
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temperature increases) takes place at a higher rate than the process of adsorption of

moisture by cellulose that takes place when temperature decreases.
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Figure 7.13: Moisture content in Biotemp and cellulose in steady state obtained from
moisture dynamic model in case 2.
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Figure 7.14: Moisture content in cellulose in operation (cm) and steady state (ce) ob-
tained from moisture dynamic model in case 2.

Figure 7.15 shows the values of the instantaneous average and the steady state

of moisture in the cellulose changing cyclically with the temperatures after one month

of operation, during this time the instantaneous average value of moisture in cellulose

reaches a stable condition.
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Figure 7.15: Moisture content in cellulose in operation (cm) and steady state (ce) after
one month obtained from moisture dynamic model in case 2.

Likewise, figure 7.16 compares the instantaneous moisture content in Biotemp

during the operation cycle and the moisture content of oil in steady state. Despite

the moisture content is changing cyclically with temperature, it has a trend to increase

because the rate of the absorption in oil is higher than the rate of return to cellulose.

This trend keeps constant until the equilibrium is reached.
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Figure 7.16: Moisture content in Biotemp in operation and steady state obtained from
moisture dynamic model in case 2.

Similar behaviour can be found in figure 7.17, after one month of operation the
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instantaneous moisture content in Biotemp reaches a stable condition.
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Figure 7.17: Moisture content in Biotemp in operation and steady state after one month
obtained from moisture dynamic model in case 2.

7.3.3 Case 3. Overload and further disconnection

In the third and last case, a long term overload was considered, followed by a sudden

disconnection of the transformer. This case has been reported to be specially critical

when wet transformers are operated at low ambient temperatures. The load profile

and ambient temperature are shown in figure 7.18. As can be seen, a constant ambient

temperature of 5 oC was considered during the simulation. It is very difficult to find

load profiles as high as this in operating transformers, however the criteria to simulate

this case were based in the importance to know more about the saturation phenomena.

As can be seen in figure 7.19, when the transformer is overloaded, the tempera-

ture of the insulation rises to very high values. At the same time, oil becomes more

hydrophilic, i.e. its solubility increases, and part of the moisture of paper migrate to-

wards it. The migration rate is governed by the diffusion coefficient, that is high, and

the oil becomes able to admit a big amount of water. In consequence water will mi-

grate from paper to oil with a relatively fast migration rate, as the diffusion coefficient
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depends exponentially on temperature.
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Figure 7.18: Load cycle and ambient temperature used in case 3.
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Figure 7.19: Temperatures distribution calculated for case 3.

As with the previous cases, in figure 7.20, the steady state moisture in oil increases

according with the temperatures while the moisture content in paper decreases. For

the three load levels shown in this case, the behaviour of moisture content in oil as

cellulose were as expected. It is important to note that due the high load value (1.7

PU) the temperatures are too high during ten hours of operation and therefore the

migration of moisture from cellulose to the oil is higher than previous cases, figures

7.21 and 7.22.
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Figure 7.20: Moisture content in Biotemp and cellulose in steady state obtained from
moisture dynamic model in case 3.

Similar to previous cases, in figure 7.21, when the load changed after ten hours the

value of the average moisture of the cellulose also has changed keeping a downward

trend always looking to reach equilibrium, after thirty hours of operation, the load

changed to 0 PU then the temperatures start to decrease and the moisture content in

paper starts to increase. For the load profile used in this case neither the moisture

content in paper nor moisture content in oil can reach the equilibrium.

As in cases 1 and 2, figure 7.22 shows the moisture content in Biotemp during the

operation cycle and the moisture content in steady state, the moisture content in oil

increases with the temperatures and viceversa looking for reach the equilibrium, as it

is explained above for the load profile used in this case neither the moisture content in

paper nor moisture content in oil can reach the equilibrium.

Figure 7.23 shows the instantaneous moisture in oil and the saturation limit (i.e.

the maximum amount of moisture accepted by oil without being satured). The satu-

ration limit depends on temperature and can be calculated according to equation 7.12.

As can be seen, after disconnection of the transformer, there is a certain risk of satu-

ration of the oil. This would cause the presence of water in liquid phase within the
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transformer tank [13].
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Figure 7.21: Moisture content in cellulose in operation (cm) and steady state (ce) ob-
tained from moisture dynamics model in case 3.

10 20 30 40 50
0

250

500

750

1000

1500

Time (h)

M
oi

st
ur

e 
co

nt
en

t i
n 

oi
l (

pp
m

)

 

 

ppm in oil in equilibrium
ppm in oil

Figure 7.22: Moisture content in Biotemp in operation and steady state obtained from
moisture dynamics model in case 3.
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Figure 7.23: Moisture content in Biotemp in saturation vs instantaneous moisture. Case
3.

7.4 Moisture dynamics in a transformer insulated with
mineral oil

The simulations done in the previous section were repeated considering that the trans-

former is filled with mineral oil. This section intends to do a comparison of the mois-

ture dynamics inside the transformer using Biotemp and Mineral oil as insulating liq-

uids, based in the studied cases.

For mineral oil the solubility curve was taken as equation 7.13, , while for Biotemp

equation 7.12 was applied as was explained before.

LogWS = 7.44 − 1, 686
T

(7.13)
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7.4.1 Case 1

The same load conditions as for case 1, described in section 7.3.1, were applied to a

transformer insulated with mineral oil.

The main difference to highlight in this case is the high absorption capacity of

Biotemp against the Mineral oil. Figure 7.24 shows the moisture content in Biotemp

and Mineral oil in steady state. As can be seen, the values of moisture are more than

nine times higher in Biotemp than in mineral oil at high temperatures. Due that the sol-

ubility of these kinds of oils increase with the temperatures, natural esters can extract

much more water from cellulose at the same temperature than a mineral oil.
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Figure 7.24: Comparison of moisture content in steady state in Biotemp and in Mineral
Oil. Case 1.

On the other hand, all the explained above can be evidenced with the moisture

content in cellulose using both kinds of oils. At higher moisture content in oil, the

moisture content in cellulose must be lower and vice versa. Figure 7.25 shows the

moisture content in cellulose with a clear trend to stay in equilibrium during the load

cycle. It should also be noted, that the moisture migration rate, which is reflected by the

slope of the curves, is higher in the system insulated with Biotemp. This is due to the
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differences on the diffusion coefficients of both materials that where widely described

in previous chapters.

5 10 15 20
3.75

3.8

3.85

3.9

3.95

Time (h)

c 
(%

)

 

 

cm MINERAL

cm BIOTEMP

Figure 7.25: Instantaneous moisture content in cellulose (cm) in Biotemp and in Mineral
oil. Case 1.

7.4.2 Case 2

The same load conditions as for case 2, described in section 7.3.2, were applied to a

transformer insulated with mineral oil.

Similar behaviour to case 1 can be observed in case 2. The main difference be-

tween the two kinds of oils are the cyclical changes, again the moisture content in

Biotemp is higher than that mineral oil. The moisture content in cellulose is also chang-

ing with temperatures. Figures 7.26 and 7.27 show the moisture content in oil and

cellulose respectively.
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Figure 7.26: Comparison of moisture content in steady state in Biotemp and in Mineral
Oil. Case 2.
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Figure 7.27: Instantaneous moisture content in cellulose (cm) in Biotemp and in Mineral
oil. Case 2.

7.4.3 Case 3

The same load conditions as for case 2, described in section 7.3.3, were applied to a

transformer insulated with mineral oil.
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Similar behaviour to case 1 and case 2 can be observed in case 3. The moisture

content in the two kinds of oils and cellulose can be observed in figures 7.28 and 7.30

respectively.
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Figure 7.28: Comparison of moisture content in Biotemp and Mineral Oil. Case 3.

Figures 7.23 and 7.29 show the saturation condition for the two kinds of oils used

in this chapter.
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Figure 7.29: Moisture content in Mineral oil in saturation. Case 3.

In all cases, the moisture content in Biotemp is higher than in mineral oil. How-
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ever, in this case is interesting to observe the difference in the saturation conditions of

both kinds of oils. After the disconnection (30 hours), the mineral oil reaches saturation

levels higher than those of the natural ester (figure 7.23). This is due to a double effect.

On the one hand, the saturation limits of natural esters are much bigger that those of

natural oils (see equations 7.12 and 7.13).
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Figure 7.30: Instantaneous moisture content in cellulose (cm) in Biotemp and in Mineral
oil. Case 3.

Additionally, the diffusion coefficient is lower in mineral-oil impregnated insu-

lation, and the return of water to the cellulose is, in consequence more slow, which

increases the risk of saturation of the oil in this kind of situation.

7.5 Conclusions

In this chapter, a moisture dynamics model is developed, which allows the study of

the behaviour of moisture in cellulose insulation and insulating liquid. During the

real operation of a transformer, the moisture content of oil and paper is estimated in a

dynamic mode taking into account the temperature profile. No other dynamic model

of these characteristics has been proposed to date.
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The model proposed in this chapter is based on the integration of the thermal

model proposed in the Annex G of the IEEE loading guide C.57.91-2011 [8], and a

moisture model based on Fick’s second law.

This model has been used to simulate different operating conditions as overload

of the transformers, ambient temperature changes and different insulating liquids.

To implement the model, the specification of liquid transformer insulation is re-

quired, and also the moisture diffusion coefficients for different types of cellulose in-

sulation presented in this chapter.
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Chapter 8

Conclusions

This chapter presents the general conclusions of the thesis. In addition, the chapter

summarises the work’s main contributions and makes suggestions for future research.

Finally, the chapter lists the published articles based on the thesis research and ac-

knowledges the projects that have supported the research and the international stays.

8.1 General conclusions

This work shows a study about the moisture dynamics in transformers. A model was

developed to calculate the dynamic behaviour of water in transformer insulation. The

main parameter of this model is the diffusion coefficient.

Firstly a summary about the previous works regarding moisture diffusion coeffi-

cients on different materials, and the experimental methodologies used in those works

was done. The results obtained in this search have been used as reference or starting

point of this work. Few references were found for the moisture diffusion coefficient

of pressboard impregnated with mineral oil and with a natural ester, which were the

materials characterized in the thesis.
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Moisture diffusion coefficients for pressboard impregnated with two different

natural esters have been proposed and validated under different temperatures and us-

ing samples of different thickness, demonstrating a great accuracy. No other author has

proposed any moisture diffusion coefficient in pressboard impregnated with natural

ester considering the effect of the thickness of the samples. An expression for the dif-

fusion coefficient of mineral-oil impregnated pressboard has been obtained as well al-

lowing the comparison of the dynamic behaviour of moisture in both materials.

A new optimization method was proposed to be used in the determination of the

parameters of the coefficients. The method is based in the Particle Swarm algorithm

and has been proved to be more efficient than the Genetic Algorithms method that

was used in previous works. The results obtained using PSO were better than the

results obtained using GAs in all the evaluated cases. The optimization times using the

particle swarm method were considerably lower than those using the GA method. In

addition, the root-mean-square-deviation values obtained when the moisture diffusion

coefficient was determined using PSO were, in most cases, lower than those obtained

when the moisture diffusion coefficients calculated by GAs were used.

The moisture equilibrium curves of natural ester and mineral oil with cellulosic

insulation have been experimentally determined. A comparison between these curves

was done, finding that the moisture content in natural esters is much greater than that

in mineral insulating oil for the same temperature and the same moisture content in

cellulose. This is due to the fact that the ester group in the molecules of ester fluids has

a strong ability to participate in hydrogen bonding. The equilibrium curves were used

as a boundary condition of the moisture dynamics model.

Finally a multi-physical model has been developed that allows simulating the

coupled effects of temperature and moisture dynamics for a certain load profile. Dif-

ferent cases have been studied to compare the behaviour of these variables on mineral

oil insulated transformers and on natural ester insulated units. The model could also

be used in transformer maintenance (i.e. to determine the drying times of the trans-
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formers) or for life management purposes.

8.2 Main contributions

During this work different experimental and theoretical methodologies have been de-

veloped to study moisture dynamics inside transformers insulated with natural esters,

the original contributions of the work can be found below:

• An experimental methodology to determine solubility curves in dielectric flu-

ids has been developed and validated, involving experiments under controlled

temperature and relative humidity. The methodology has been applied to the

determination of the moisture solubility curves of natural esters and mineral oil.

• New moisture equilibrium curves have been obtained for cellulose-mineral oil

systems and cellulose-natural ester systems.

• A new optimization method has been proposed based in Particle Swarm that has

been demonstrated to be more efficient than other previously used methodolo-

gies.

• An expression for the moisture diffusion coefficients of mineral-oil impregnated

pressboard have been proposed and validated experimentally. As far as the au-

thor of the thesis knows, no other expressions for the moisture diffusion coeffi-

cient of mineral-oil-impregnated pressboard were proposed before.

• An expression for the moisture diffusion coefficients of natural-ester-impregnated

pressboard have been proposed and validated experimentally. Only one author

had proposed a coefficient for these materials before.

• A multi-physical model has been developed to study the dynamic behaviour of

the moisture in transformers impregnated with natural esters under real opera-

tion. The model has been applied to the investigation several cases, performing a
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comparison of the results when transformers are insulated with mineral oil and

when they are insulated with natural ester fluids.

8.3 Beyond PhD Thesis

The results and experience gained through this project suggest the following lines of

future research.

• Conduct an experimental validation of the moisture dynamics model on trans-

former prototypes subjected to variable load.

• Development of a model to estimate the temperature profiles in transformers

insulated with natural esters with more accuracy.

• Complete the model to include the calculation of the aging rate of the solid in-

sulation by the effect of the temperature and moisture under different loading

profiles.

• Apply the moisture dynamics model to the development of a moisture monitor-

ing system.

• Research the moisture dynamics on aged transformers.

• Apply the developed methodologies to the study and characterization of new

insulating materials.

8.4 Publications, research projects and international stays

Several of the results of this thesis have appeared in the following journal papers:
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8.4.1 Publications in scientific journals

1. R. Villarroel, D.F. Garcia, Maria A. Davila, Eduardo F. Caicedo. Particle Swarm

Optimization and Genetic Algorithm, application and comparison to determine

the moisture diffusion coefficients of pressboard transformer insulation. IEEE

Transactions on Dielectrics and Electrical Insulation, In press, (2015).

2. D. F. Garcia, R. Villarroel, B. Garcia, and J. C. Burgos. Effect of the Thickness on

the Water Mobility inside Transformer Cellulosic Insulation. IEEE Transactions

on Power Delivery, In press, (2015).

3. R. Villarroel, D.F. Garcia, B. Garcia, and J.C. Burgos. Moisture diffusion coef-

ficients of transformer pressboard insulation impregnated with natural esters.

IEEE Transactions on Dielectrics and Electrical Insulation, 22(1):581-589, 2015.

4. R. Villarroel, B. Garcia, D.F. Garcia, and J.C. Burgos. Assessing the use of nat-

ural esters for transformer field drying. IEEE Transactions on Power Delivery,

29(4):1894-1900, 2014.

5. R. Villarroel, D.F. Garcia, B. Garcia, and J.C. Burgos. Diffusion coefficient in trans-

former pressboard insulation part 2: mineral oil impregnated. IEEE Transactions

on Dielectrics and Electrical Insulation, 21(1):394-402, 2014.

6. R. Villarroel, D.F. Garcia, B. Garcia, and J.C. Burgos. Diffusion coefficient in trans-

former pressboard insulation part 1: non impregnated pressboard. IEEE Trans-

actions on Dielectrics and Electrical Insulation, 21(1):360-368, 2014.

7. D.F. Garcia, R. Villarroel, B. Garcia, and J.C. Burgos. A review of moisture diffu-

sion coefficients in transformer solid insulation - part 2: Experimental validation

of the coefficients. IEEE Electrical Insulation Magazine, 29(2):40-49, 2013.

The results of the thesis have been presented at the following conferences:
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1. R. Villarroel, D.F. Garcia, B. Garcia and J.C. Burgos. Studying the moisture dy-

namics in transformers insulated with natural esters. IEEE International Confer-

ence on Solid Dielectrics (ICSD). Bologne-Italy, 2013.

2. D.F. Garcia, B. Garcia, R. Villarroel and J.C. Burgos. A new methodology for de-

termining the moisture diffusion coefficient of transformer solid insulation. IEEE

International Conference on Solid Dielectrics (ICSD). Bologne-Italy, 2013.

3. R. Villarroel, D.F. Garcia, B. Garcia and J.C. Burgos. Comparison of the drying

times for kraft paper and pressboard in transformers factory drying. Interna-

tional Conference on Electrical Machine. Marseille-France, 2012.

4. D.F. Garcia, B. Garcia, J.C. Burgos and R. Villarroel. Transformer field drying

improvement by applying low-frecuency-heating. Bogotá-Colombia, 2012.

This PhD. thesis has been supported through the following research projects:

• Moisture dynamics in transformers insulated with natural esters, (DPI2012-35819).

2013-2015.

• Optimization of the drying processes of power transformers in field (DPI2009-

07093). 2010-2012.

During the thesis, the following research stays have been done:

• Institution: University of Valle. School of Electrical and Electronic Engineering.

Cali, Colombia. Start date: 17/11/2013. End date: 14/02/2014 (3 months). Sup-

ported by Univerisdad Carlos III de Madrid. Name of the grant: Mobility aids

for researchers in foreign or national research centres.
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Appendix A

Assessing the use of natural esters for
transformer field drying

A.1 Introduction

The presence of water in transformer insulation affects the equipment reliability in ad-

dition to its loading capability. On one hand, excessive water content increases the

presence of partial discharges (PDs) and decreases the dielectric strength of the in-

sulation.Moreover, water promotes the hydrolysis reactions that are the predominant

aging processes of the transformer insulation at working temperatures. Transformers

are subjected to the drying processes after manufacturing. However, since cellulosic

insulation is a highly hydrophilic material, some amount of water will still be present

after that.

The amount of water present in transformer insulation increases through the

years of service due to several underlying causes. In free-breathing transformers,

the rate of water contamination could be up to 0.2 % per year of service while in

membrane-sealed preservation systems, it increases at about 0.03 % to 0.06 % per year

[13]. Water contamination may also occur in the presence of poor gaskets or in the case

of field repairs involving oil draining that expose active parts to air. In addition, the
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aging process of the cellulose generates water, so that the water content of the trans-

former will increase through the years.

Because of the hydrophobic nature of oil and the hydrophilic character of paper,

water is absorbed in the paper in a proportion of 1 % in oil versus 99 % in cellulose,

and a greater amount of water is usually concentrated in the thick insulation [13]. Ac-

cording to the IEEE standard C57.91-2011 [8], a transformer with moisture content in

its insulation of greater than 4 % is too wet to be operated safely. When high water

contents are found in units with a significant remaining service life, it is common to

schedule drying treatments that are usually performed in the field.

Different drying methods are available to dry power transformers in the field

[76], but all of them involve two basic steps:

• Step 1: forcing the water to travel through the insulation thickness until reaching

its surface where it is removed by the drying agent.

• Step 2: extracting the water away from the transformer usually by a treatment of

the drying agent.

The first step is the one that requires more time to be completed. As is well

known, the diffusion of water inside the insulation can be accelerated by increasing

the temperature of the system. In some cases, the circulation of a hot drying agent (i.e.,

air or oil) is used to heat the insulation. Sometimes, additional heating is applied to

obtain higher drying temperatures and to reduce the drying times. Some commonly

used heating methods are low-frequency heating (LFH), based on forcing circulation

of current in the transformer windings, or hot-oil spray (HOS), that is usually applied

in combination with vacuum.

To remove water from the insulation surface, a dry environment must be created

around it. This is usually achieved by the application of the vacuum inside the tank,
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or by forcing the circulation of hot and dry oil or air through the transformer active

parts. The main differences between the available drying methods lies in the agents

that are used to remove the surface moisture, and in how the solid insulation is heated

to force the exit of water from its inner part to the surface. Table A.1 summarizes the

most relevant methods used presently. Some advantages and disadvantages of each

method can be seen in table A.2.

Table A.1: Main methods used to dry transformers in the field.

Method Drying agent Heating agent
Hot oil drying (HO) Hot dry oil Hot oil and LFH
Vacuum drying (VD) Vacuum Hot oil cycles, LFH and Hot oil Spray
Hot air drying (HA) Hot dry air Hot air

Table A.2: Advantages and disadvantages of the different drying methods.

Drying method Advantages Disadvantages
HO No deimpregnation Long drying times
VD Fast removal of surface water Deimpregnation of oil
HA Lower drying times Oxidation of oil

In previous works [27, 77, 78], the HO drying method was theoretically studied;

the main finding was that the drying times involved in the process are large and, in

consequence, this kind of drying processes is sometimes less effective. Also, experi-

mental studies showed much shorter drying times in the case of hot air (HA) drying

although, in this case, there is an increased risk of oil deimpregnation, as well as cel-

lulose oxidation. The improvement in the drying time achieved with HA drying is

due to the greater affinity of air for water in comparison to that of oil. This seems to

indicate that the use of a more hygroscopic fluid than mineral oil would be a way to

increase the efficiency of the HO drying diminishing drying times and obtaining lower

moisture contents in the solid insulation at the end of the process.

In recent years, the use of natural and synthetic esters is becoming common in

distribution transformers [2]. One of the properties of these fluids is that they are able

to absorb much greater amounts of water than mineral oils [72]. Some authors have

suggested that the use of this kind of fluid would be useful to reduce the drying times,

making the drying process more efficient [72, 11, 79]. In [79], a drying method based
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on the use of ester fluids is proposed as an alternative to HO drying. The method con-

sists of using vegetable oil only for drying purposes and, afterwards, the transformer

should be refilled with mineral oil for operation, since the transformer was designed

to be operated with mineral oil. In that paper, qualitative analysis is presented that

compares the equilibrium condition between paper and oil in both cases and reports

some preliminary experiments.

In this appendix, the improvement obtained by the use of ester fluids is quanti-

fied. To this aim, a theoretical model is used that simulates drying processes at differ-

ent temperatures considering drying with mineral oil and drying with natural esters.

Drying experiments were also performed using both drying agents in the laboratory at

different drying conditions. Finally, performances of different ester fluids were com-

pared.

A.2 Theoretical analysis of the process

A.2.1 Theoretical model

As aforementioned throughout this thesis, a model to simulate the HO drying process

of a transformer was presented. The model, based on Fickâs second law, is used to

study the mass transport problem in the transformer insulation. Because of typical

dimensions of the transformer insulation, the process was considered to be 1-D.

In chapter 5, section 5.3.1 the theoretical model used is very well explained. Ac-

cording with this model, the parameters A and B are constants that depend on the oil

properties. If mineral oil is used as a drying agent, parameters A and B could be taken

as 7.09 and 1,567 [15, 31]. In case of using a different drying agent, parameters A and

B corresponding to that fluid must be considered.
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IEEE Standard C57.147-2008 [3] provides two sets of values for A and B obtained

on two different ester fluids (table A.3). The standard concludes that the properties

of both of them regarding moisture solubility are very similar at the temperatures of

interest.

Table A.3: Parameters A and B for different insulating fluids provided by IEEE Stan-
dard C57.147-2008.

A B
Ester fluid 1 5.708 802
Ester fluid 2 5.332 684

A.2.2 Simulation of the drying model

Simulations were carried out considering a conventional HO drying process performed

with mineral oil as well as a HO drying using an ester fluid. Parameters A and B cor-

responding to ester fluid 1 in table A.3 have been considered. It is important to note

that the only difference introduced to simulate the drying process with mineral oil and

with a natural ester fluid was just the change in the boundary condition. The expres-

sion of the diffusion coefficient considered in all simulations was (A.1). This equation

was experimentally obtained by the authors in a previous work on samples of Kraft

paper impregnated with mineral oil [25].

D = 0.5 · e(0.5·c− 10057−133.7·l
T ) (A.1)

where c is the moisture concentration of the paper in percentage, l is the insulation

thickness in millimeters, and T is the insulation temperature in Kelvin.

Presently, experiments are being conducted to calculate the moisture diffusion

coefficient in cellulosic insulations impregnated with natural esters. This coefficient

may differ from that obtained for mineral-oil-impregnated materials, so the simulated

values shown in this section should be taken as approximate results. However, it may
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be noted that in the case of drying a transformer immersed in mineral oil with a natural

ester fluid, the results of the simulation would be pretty realistic since, in this case, the

fluid adsorbed in the insulation would be mineral oil.

First, simulations were done to determine the influence of the drying fluid in de-

ciding the rate of water removal at different temperatures. Drying processes were sim-

ulated at temperatures 60 and 80 oC. The analyzed specimen was a piece of cellulosic

insulation 5 mm thick,with a homogeneous initial moisture content of 3 %. Diffusion in

just one face of the insulation was considered since it occurs in the insulation of trans-

former windings or in the bushing leads. The moisture content of the oil during the

drying process was assumed to be 10 ppm, which is a typical value when a transformer

is being dried with HO in the field.

As can be seen in figure A.1, the use of natural esters improves the rate of drying

at both temperatures, although in the case of drying at 80 oC, the improvement is not

so significant (a). More important is the acceleration in water removal in case of drying

at 60 oC (b).
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Figure A.1: Calculated drying curves of a 5 mm insulation considering HO drying.

It is also interesting to note that the improvement obtained by the use of an ester
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fluid notably increases when the moisture content of the oil is not so low during the

drying process. This may occur during the drying process of large transformers with

large quantities of oil, so that the filter is not able to keep moisture at low enough val-

ues. In figure A.2, the drying curves at 70 oC, when drying with mineral and vegetable

oil, are shown for moisture contents in oil of 5 and 20 ppm. As can be seen, when the

moisture content of oil is very low, little improvement is achieved by substituting the

mineral oil by an ester, whereas in case of the drying process where moisture content

in oil was 20 ppm, an increase in the drying rate is observed while using an ester fluid.
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Figure A.2: Calculated drying curves of 5 mm insulation at 70 oC considering different
moisture contents in oil.

A.3 Experimental study

A.3.1 Test plant

The drying plant (figure A.3) was designed to reproduce the conditions of a real hot-oil

drying process. The specimen to be dried is introduced into a tank that is filled with

oil. Oil is continuously forced to circulate through a drying filter by means of a pump.
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The filter dries the oil, extracting the water that is released from the paper during the

drying process. Oil also passes through a heater where it is heated to a specified value.

Figure A.3: Drying plant.

The plant is provided with optical sensors to measure the temperatures of the

paper and oil, and it also incorporates a capacitive sensor to register oil moisture evo-

lution. The moisture sensor was installed in a pipe at the bottom of the plant that

connects the deposit and the drying filter and was recalibrated to determine the ppm

in the different fluids using Karl Fischer measurements. All of the variables are reg-

istered and controlled by means of an acquisition system allowing control of the oil

temperature.
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A.3.2 Sample preparation

Dynamics experiments were performed on pressboard samples prepared with a high

initial moisture level. The specifications of the evaluated pressboard were according to

the international standard IEC 641-3-1, being all of type B.3.1.

The test specimens were obtained from one layer of pressboard sheet. Pieces

of thicknesses 0.5, 1, 2, and 3 mm were evaluated during the experimental stage of

the work. The four edges of each specimen were coated with epoxy resin to prevent

desorption of moisture through these sides during the drying processes and to ensure

a unidirectional desorption only through the upper and lower surfaces (figure A.4).

(a) View 1 (b) View 2

Figure A.4: Pressboard samples.

Before being impregnated with oil, samples were humidified by placing them in a

climatic chamber under a temperature of 35 oC and relative humidity of 70 %. Wetting

conditions were established according to Jeffries’s curves [5] to obtain an equilibrium

moisture of about 9 %. After that, the test specimens were impregnated by submerging

them in mineral oil or natural ester at room temperature and atmospheric pressure for

a period of no less than one week. Finally, the oil-impregnated test specimens were

introduced again in the climatic chamber to re-wet them until the beginning of the

drying experiment.
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A.3.3 Test conditions

A first set of drying experiments was performed on pressboard samples of different

thicknesses impregnated with mineral oil. After that, the experiments were repeated

using a commercial natural ester fluid, Bioelectra. Temperatures and insulation thick-

ness used in the tests are summarized in table A.4.

Table A.4: Experimental testing conditions.

Fluid Temperature (oC) Pressboard thickness (mm)
Mineral oil 60, 70 and 80 0.5, 1, 2 and 3Ester

The samples were dried by hot-oil circulation in the test plant (figure A.3) and

during the whole process, pressboard samples were periodically extracted and ana-

lyzed with the Karl Fischer method [46]. The experiments were stopped when the

moisture determined on all of the samples was less than 1 % in weight.

In the case of experiments carried out with natural ester, the nitrogen atmosphere

was used during the extraction process with the aim of avoiding oxidation of oil. Di-

electric measurements were also carried out daily on oil samples extracted from the

tank to monitor their condition.

A.4 Results

As explained in the previous section, drying experiments were performed on press-

board samples of different thickness subjected to different temperatures (table A.4).

The same experimental conditions were applied to the HO drying process carried out

with mineral oil and to that using Bioelectra natural ester as a drying agent.

Figure A.5 shows the drying curves obtained on the samples of different thick-

nesses dried with mineral and vegetable oil at 70 oC. As expected, the drying times are
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greater for the thicker samples. If the drying times are compared for samples of the

same thickness, it is found that they are significantly shorter when drying them with

natural ester than those when they are dried with mineral oil.
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Figure A.5: Experimental drying curves of pressboard at 70 oC.

In addition, it must be remarked that, although the procedure of sample prepara-

tion was exactly the same for all samples, the resulting initial moisture contents were

slightly different in both cases (i.e., about 10 % in weight for the samples impregnated

with natural ester and about 9 % in those impregnated with mineral oil). The explana-

tion for these differences can be found in the rewetting process that the samples were

subjected to once impregnated with oil. During this part of the preparation process,

the mineral oil avoided adsorption of moisture, but the natural ester absorbed some

moisture, increasing the total moisture content of the sample.

To quantify the improvement achieved in the drying times with the change of

drying agent, the number of days required to dry the different samples to a level below

1 % in weight were calculated as shown in table A.5.

As can be seen, the drying times diminish in between 20 % and 70 % when dry-

ing with the natural ester. Although these data should be taken as an estimation, since

they are affected by slight differences in the initial moisture of the samples and be-
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Table A.5: Approximate drying times required to achieve moisture content lower than
1 % when using natural ester (E) or mineral oil (M) as drying agents.

Time to c < 1 % (days)
80 oC 70 oC 60 oC

Thickness E M E M E M
3 mm 10 14 15 23 17 33
2 mm 6 11 11 14 13 29
1 mm 6 12 7 11 8 26

0.5 mm 3 5 7 9 6 20

cause of the fact that the drying curve is discrete, it is important to note that the greater

improvements appear in the case of the drying processes carried out at lower temper-

atures, as was observed in the simulation stage. The experimental data obtained at 60

and 80 oC on a 3 mm sample are shown in figure A.6 , where this aspect seems clear.
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Figure A.6: Comparison between drying a sample 3 mm thick with mineral oil and
with natural ester.

It is also interesting to compare the moisture content in the different oils during

the drying processes. As can be seen, the water content in both fluids is low because

of the action of the filter. The spikes in the curves correspond to the stops of the oil

recirculation during the sample extraction operations. Anyhow, it must be noted that

the ester fluid presented a higher moisture level, despite using the same kind of filter

for water removal (figure A.7).

164



0 100 200 300 400 500 600
6

8

10

12

14

16

Time (h)

M
oi

st
ur

e 
in

 o
il 

(p
pm

)

 

 

Bioelectra

Mineral Oil

Figure A.7: Moisture content in oil during the drying process at temperature 70 oC.

This seems logical because of much higher solubility of water in these fluids and,

consequently, the appreciably different equilibrium conditions between paper and oil.

Moreover, it must be remarked that the efficiency of the filter may be lower due to the

effect of the lower viscosity of ester fluids.

Finally, an additional drying process was carried out using the natural ester Biotemp

with the aim of comparing the effectiveness of different ester fluids for drying pur-

poses. This drying experiment was performed at temperature 70 oC, and for samples

of thickness 0.5, 1, 2, and 3 mm. The results of the process are shown in figure A.8.

A comparison of the results obtained when drying a 3 mm thick sample using both

natural esters is plotted in figure A.9.
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Figure A.8: Drying curves obtained when drying with the natural ester Biotemp at 70
oC.
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Figure A.9: Comparison of the drying process with two different ester fluids.

A.5 Conclusions

The use of natural esters has been proposed by several authors as a way to reduce

the time involved in the drying processes of power transformers in the field. This ap-

166



pendix quantifies the improvement achieved by this method. Simulations were done

by using a theoretical model solved by the finite-element method, and considering the

solubility of each fluid as a function of temperature to state the equilibrium condition.

In addition, drying experiments were carried out with mineral oil and use two differ-

ent natural esters. The main conclusions of the study are summarized as follows.

HO drying is a well-known drying method that has been used for years to process

transformers in the field. The main disadvantage of the method lies in the fact that

mineral oil is very hydrophobic and, consequently, the amount of water extracted in

each oil circulation is low and the drying time required is very high. Some authors

proposed using ester fluids for drying purposes, since they absorb amounts of water

of about 20 times greater than mineral oils.

Currently, the price of ester fluids is high; therefore, before using them for this

application, it is necessary to determinate whether the reduction of drying time that

may be achieved compensates for the investment that would be required. Moreover,

the safety of the method should be guaranteed.

As expected, the theoretical simulations and the laboratory experiments demon-

strated that the use of esters makes the drying process more efficient, enabling a reduc-

tion in the drying time. However, the improvement achieved is not equal for all tested

conditions. When the drying process is carried out at high temperature and low water

content in oil, the acceleration of the process seems to not be so significant to justify the

application of alternative fluids. On the other hand, when the drying temperature is

not so high, or the moisture content in oil cannot be kept within so low values, which

sometimes happens when a large transformer is dried in the field, the improvement

achieved turns out to be appreciable.

Better results are also obtained on thinner insulations, where the effect of the

boundary condition in the entire process is more significant. In the case of very thick

insulation, the largest part of the drying process is the removal of water from the inner
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part of the insulation to the surface of contact with oil where it is released. The duration

of this period mainly depends on temperature and less on the drying agent.

Different commercial natural esters were compared; and very similar behaviors

were observed between them.

Natural esters are more oxidation susceptible than mineral oils. The drying pro-

cedures must be carefully revised when using these fluids to guarantee that the drying

fluid is not degraded by contact with air or excessive temperature, since the presence

of sludge and acid in oil could be harmful for solid insulation.

This work should be completed to determine the effect of using different fluids in

HO drying in the final condition of the insulation, and to guarantee that the procedure

be safely applied. The manufacturers of these kinds of liquids claim that they are com-

patible with mineral oil and that it would be safe even to operate with mixtures of both

kinds of fluids. However, esters have different physical properties (dielectric, viscosity,

etc.) compared to mineral oil and the effect of the residual ester trapped in the wind-

ing after drying may alter the properties of the insulation. As a continuation of this

paper, tests are being developed to determine whether the different drying processes

performed at different temperatures and with the different fluids produce a significant

degradation of the solid insulation.
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Appendix B

Effect of the insulation thickness on the
water mobility inside transformer
cellulosic insulation

B.1 Introduction

The electrical insulation of most power transformers is composed of two parts: the

solid insulation based mainly of cellulosic materials like Kraft paper and pressboard,

and the liquid insulation. The fluid most widely used in power transformers is mineral

oil. Cellulose is a porous material so when cellulose is impregnated with oil, air in

internal cavities is replaced by oil.

Mineral oil is an excellent insulation that improves the dielectric properties of the

cellulose insulation when impregnates it. Additionally oil acts as a cooling agent help-

ing to evacuate the heat generated mainly in the transformer active parts (windings

and core) to the environment.

Water is harmful for the cellulosic insulation because it accelerates the ageing

process, reduces the dielectric margin and decreases the partial discharge inception

voltage. For these reasons, the moisture inside the solid insulation increases the prob-
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ability of unexpected failures of the transformer, causing a decrease in its reliability.

These failures can lead to service interruptions that could involve economic penalties

for the companies which add to the cost of transformer repairing and even to the cost

of infrastructure replacement if damaged Therefore is important to maintain the mois-

ture levels of the transformer cellulosic insulation within safe values. For this reason,

when a transformer is manufactured the active part is subjected to a drying process

before its impregnation with oil.

Nevertheless during transformer life, moisture in the transformer insulation in-

creases. The increase of moisture in the thin cellulosic insulation of transformers is

due to three mechanisms: The first mechanism is the residual moisture from the bulk

cellulosic insulation which is released during transformer operation. The second mech-

anism is moisture ingress from the atmosphere by direct exposure of the transformer’s

windings to the external environment, e.g. during repairs of the equipment as well as

by molecular flow through micropores in the tank. The third one is the chemical reac-

tions of cellulose degradation and oil oxidation, which provide water as a byproduct.

Because the oil is hydrophobic and the cellulosic insulation is hydrophilic, most

water remains in the solid insulation, affecting its life expectancy. The distribution of

moisture between the liquid and solid insulation is not static due mainly to the tem-

perature changes that take place during transformer operation. When the moisture

content in the transformer is too high the transformer may be subjected to a drying

process in field. Different drying technologies are available for field drying. One of

these technologies, the so called hot oil drying method, consists in forcing a circula-

tion of hot and dry oil through the transformer active part. The difference in relative

saturations, of water in oil and water in paper, forces moisture to exit from paper to oil.

Understanding and properly estimating the moisture dynamics in power trans-

former insulation is essential for improving the manufacturing process, operation and

maintenance of those equipments.
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Moisture dynamics inside the cellulose insulation can be estimated by using a

mathematical model of diffusion based on Fick’s second law [28]. This can be useful

to determine the transformer drying times and consequently to estimate the cost of the

drying process.

Also, moisture diffusion models, working together with thermal models, could

be used in the future as part of an on-line monitoring system, to estimate the moisture

distribution inside the transformer, during its operation stage. This information can be

useful to estimate the ageing of the transformer’s cellulosic insulation, and therefore

help to propose better strategies to manage this equipment.

The main parameter of the moisture diffusion model is the so-called moisture dif-

fusion coefficient. The accuracy of the model results depends on the value of moisture

diffusion coefficient used in the model [23, 32, 26].

Moisture diffusion coefficients of cellulosic insulation proposed by most authors

[30, 31, 39, 80], only consider the dependence with local temperature and local mois-

ture concentration, according to the behaviour of most hygroscopic materials. In these

works the influence of the thickness of the material on water mobility was not eval-

uated. However, the influence of the geometric properties of the material on water

mobility inside solid hygroscopic materials has been recently evidenced in some ex-

perimental works carried out on foodstuff [81, 82, 83, 84, 85, 86].

This appendix reports some experiments that show that the insulation thickness

affects the moisture diffusion inside cellulosic materials as well. Additionally it is

shown that, when this variable is incorporated in the expressions of the moisture diffu-

sion coefficient, the estimations of moisture dynamics obtained by means of diffusion

models are much closer to the experimental data than the estimations obtained by us-

ing the classical approach.

It should be noted that the thickness of the different cellulosic pieces that com-
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pounds the transformer solid insulation are widely variable, going from a few tenth of

mm, in the case of HV and LV winding insulation, and 70 mm - 80 mm in the case of the

pressboard barriers located between the HV and LV windings. In consequence, con-

sidering a diffusion coefficient valid for a single thickness would lead to great errors in

the simulations of the moisture dynamics.

B.2 Modelling moisture transport inside cellulosic mate-
rials

Moisture migration inside cellulosic transformer insulation is a complex process where

thermal transfer and mass transport phenomena are interlinked. However, as the ther-

mal time constant is much smaller than the moisture diffusion time constant, moisture

migration can be modelled as a diffusion process, using Fick’s second law [28].

Moisture migration proceeds in form of liquid and gaseous phases. Unfortu-

nately, it is not easy to determine a particular diffusion coefficient for every phase of

water (liquid and gas). Neither is it easy determining the amount of water changing of

phase during the process. Moisture diffusion when water is moving in unidirectional

way, as in the transformer’s solid insulation [27], is given by (B.1).

∂c
∂t

=
∂

∂x

(
D · ∂c

∂x

)
(B.1)

where D is the effective moisture diffusion coefficient in the solid insulation, c

is the local total moisture concentration, t is the time and x is the distance into the

material in the direction of moisture movement.

Equation (B.1) models the different mechanisms of water transport inside the

solid by using the so-called effective diffusion coefficient. That coefficient can be in-

terpreted as a combination of the coefficient corresponding to gaseous water mov-
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ing through the cellulose cavities and the one corresponding to liquid water moving

mainly through the cellulose fibres.

The value of the moisture diffusion coefficient of cellulosic insulation as Kraft-

paper or pressboard has been obtained by several authors employing diverse method-

ologies [23, 32, 30, 80]. Different values of the moisture diffusion coefficient can be

found in the literature represented by mathematical expressions, tables or simple ex-

perimental curves, relating the dependence of the diffusion coefficient with the lo-

cal moisture concentration and the insulation temperature. A review about the main

works aimed at determining the moisture diffusion coefficients on cellulosic insulation

can be found in [4, 7]. All the authors that studied moisture dynamics in transformer

solid insulation have considered an effective diffusion coefficient dependent only on

local variables (moisture concentration and temperature). Most authors use the em-

piric equation for the diffusion coefficient (B.2), proposed by Guidi in [23]. However

as above mentioned, in several works about moisture dynamics in foodstuff, moisture

mobility was shown to be also influenced by the sample geometry.

D = D0 · e
[
k·c+Ea

(
1

T0
− 1

T

)]
(B.2)

where D is the diffusion coefficient (m2/s), c is the local moisture concentration (kg

of H2O/kg), T is the temperature (K), T0 is the reference temperature (298 K), k is a

dimensionless parameter, D0 is a pre-exponential factor (m2/s), and Ea is the activation

energy of the diffusion process (K).

B.3 Experimental evidence of thickness influence on wa-
ter mobility

Evidence that thickness has an influence on the diffusion coefficient was found when

an experimental study was conducted to analyze the transformer’s drying processes
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both with non-impregnated cellulose (as in factory drying) and with impregnated cel-

lulose (as in field dryings). The aim of the study was to determine the moisture diffu-

sion coefficient of the following materials: impregnated Kraft-paper, non-impregnated

kraft paper, impregnated pressboard and non-impregnated pressboard. In this work

was observed that the estimates obtained by the models were not accurate enough and

so the estimated drying times do not coincide with the experimental ones.

B.3.1 Experimental procedure

The experiments carried out on mineral oil impregnated and non-impregnated Kraft

paper and pressboard insulations consisted in determining the evolution of the av-

erage moisture concentration (cm) in time, the so called drying curve, of insulation

samples of different thickness. Those drying curves were obtained during drying pro-

cesses performed at different temperatures. Figure B.1 shows some experimental dry-

ing curves for non-impregnated insulations of Kraft paper.

Figure B.1: Experimental drying curves for non-impregnated Kraft-paper insulations
stacks 2 mm thick.
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B.3.2 Experiments on non-impregnated samples

For non-impregnated insulation, the drying curves were obtained by means of a thermo-

gravimetric analyzer (TGA), TA model Q500. Drying experiments in the TGA consisted

in applying a determinate temperature to the humid samples while a nitrogen flux was

forced to circulate around these. During the experiment the loss of mass of the sample

is continuously registered and then the drying curve can be easily calculated.

To prepare moistened samples pressboard or paper samples were introduced in

a climatic chamber. The climatic chamber settings and the time that the samples re-

mained inside it were established to obtain a homogeneous moistening into the sam-

ples. The average moisture in Kraft paper samples, obtained after the aforementioned

moistening process was around 7.5 % whereas in pressboard was about 8.5 %.

To find the diffusion coefficient dependence with temperature and thickness,

isothermal drying experiments were carried out in the TGA at different temperatures

and on samples of different thickness. Table B.1 summarizes the drying conditions

used for non-impregnated insulation.

Table B.1: Drying conditions used to obtain the drying curves for non-impregnated
insulation.

Kraft paper Pressboard
Thickness (mm) 2, 3, 4 and 5 1, 2 and 3

Temperature (oC) 40, 50, 60, 70 and 80 40, 50, 60, 70, 80, 90, 100 and 120

Samples of non-impregnated insulation, were cut into circular pieces and placed

into a pan of Polytetrafluoroethylene (PTFE) with a single opening at the top whose

purpose is to force the moisture desorption in an unidirectional way (figure B.2). This

was made with the aim to emulate what happens in a real transformer where the mois-

ture desorption inside the solid insulation takes place mainly in transverse direction.

In the case of paper, the desired thicknesses were obtained by stacking multiple layers

of paper of 0.1 mm thick, whereas for pressboard a single layer manufactured with a

certain thickness was used.
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In the TGA experiments, the nitrogen flow allows quick moisture evaporation at

the insulation surface, causing the diffusion to be the prevalent phenomenon of mois-

ture reduction. As mentioned before TGA continuously records the sample loss of

mass during the experiment. As the loss of mass is due to the moisture desorption, the

recorded data can be used to determine the drying curve of the sample.

Figure B.2: Schema for non-impregnated Kraft paper insulation samples for drying
experiments in the TGA oven.

B.3.3 Experiments on oil-impregnated samples

In the case of oil-impregnated insulation an experimental drying plant (figure B.3) was

used to emulate the hot-oil drying method to dry transformers in field. For impreg-

nated insulation, samples of Kraft paper with different thicknesses were prepared by

winding paper layers 0.1 mm thick around an aluminium core. Same to the PTFE pan

in TGA experiments, the aluminium core forces the moisture desorption to be unidi-

rectional.

In the case of the pressboard, samples of different thickness were provided by

the manufacturer. In figure B.4 some of the pressboard samples tested in the hot-oil

drying plant can be seen. As can be appreciated the edges of the samples were sealed

with epoxy resin to force the moisture desorption towards the side faces, that is, as a

one-directional desorption.
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Figure B.3: Drying plant, general scheme. Sample container (1), oil filter (2), expansion
vessel (3), heater (4), circulating pump (5), flowmeter (6) and security deposit (7).

(a) View 1 (b) View 2

Figure B.4: Pressboard samples.
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The preparation of the samples for experiments in the hot-oil drying plant in-

cludes three steps: firstly the samples are pre-moistened in a climatic chamber. Then

they are impregnated with mineral oil by direct immersion of the samples at room tem-

perature. Finally the samples are re-moistened in the climatic chamber. The settings

of the climatic chamber and the times that the samples remain into the oil and into

the chamber are carefully established to obtain homogeneous moisture content in the

samples.

After applying the above mentioned process, the samples of impregnated Kraft-

paper reached an average moisture concentration around 8 % whereas in the press-

board samples, the average moisture value was approximately 9 %. To find the depen-

dence of the diffusion coefficient with temperature and thickness of the impregnated

insulation, drying experiments were carried out at different temperatures and using

insulation samples of different thickness. Table B.2 summarizes the drying conditions

tested in the experiments on impregnated insulation.

Table B.2: Drying conditions used to obtain the drying curves for oil-impregnated in-
sulation.

Kraft paper Pressboard
Thickness (mm) 1, 3 and 5 1, 2 and 3

Drying temperature (oC) 60, 70 and 80 60, 70 and 80

During the drying experiments on impregnated insulation, the drying curves

were determined by measuring the evolution of the average moisture concentration

in the insulation samples, this was carried out by means of the Karl-Fischer titration

method [46].

B.3.4 Determination of the diffusion coefficient

Once the drying curves were obtained, a drying diffusion model based on finite el-

ement method (FEM) was used to simulate each experiment [26]. In the simulation

models, the cellulose insulation was characterized by the moisture diffusion coeffi-
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cient. According to [36], diffusion coefficient was assumed to respond to a general

expression (B.3), valid for most hygroscopic materials.

D(c,T) = D0 · ek·c (B.3)

In (B.3), D is dependent on the local moisture concentration. The dependence of

the moisture diffusion coefficient on other variables as temperature can be included in

the parameter D0.

To determine the moisture diffusion coefficient of the cellulose insulation is nec-

essary to find the parameters D0 and k of equation (B.3). These parameters were found

using an optimization process based on genetic algorithms. The optimization pro-

cess finds the values of D0 and k by fitting the simulated curves, obtained from the

FEM drying model, to the experimental data. Figure B.5 shows the flow chart of the

optimization process used for obtaining the moisture diffusion coefficient. In [26] a

detailed description of this methodology can be found.

Figure B.5: Flow chart of the optimization process used to find the parameters of the
diffusion coefficient.
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After obtaining the values of the parameter D0, for each experimental drying

curve, the dependence of this parameter on different variables was studied and ex-

pressed as a mathematical equation. Figure B.6 shows the D0 curves, for non-impregnated

Kraft paper and pressboard insulation as a function of temperature and insulation

thicknesses, obtained after applying the aforementioned optimization process.

(a) Kraft paper (b) Pressboard

Figure B.6: D0 as function of temperature and thickness for non-impregnated materi-
als.

On the other hand, figure B.7 shows the D0 curves, for impregnated Kraft pa-

per and pressboard insulation as a function of temperature and insulation thicknesses,

obtained after applying the aforementioned optimization process.

In these figures it can be seen how the value of D0, increases with sample thick-

ness at a given temperature. Consequently, the value of the moisture diffusion co-

efficient and the moisture mobility inside the insulations rises with thickness. The

behaviour observed in pressboard and in Kraft paper is similar.

That dependence appears in all the different kinds of insulation tested in this

work, following always the same tendency: i.e. higher mobility for greater thicknesses.

The obtained values of D0 may be fitted by regression and including the expressions

found for D0 into (B.3), equations (B.4) to (B.7) results.
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(a) Kraft paper (b) Pressboard

Figure B.7: D0 as function of temperature and thickness for oil-impregnated materials.

D(NIpaper) = 3.18 · l−3.67 · e
(

0.32·c− 8,241.6·l−0.25
T

)
(B.4)

D(Ipaper) = 0.5 · e(0.5·c− 10,057−133.7·l
T ) (B.5)

D(NIpressboard)
= (2.37 · 10−3 · l4.96 + 5.24 · 10−3) · e

(
0.43·c− 27.43·l2.95+6,796

T

)
(B.6)

D(Ipressboard)
= 2.89 · 10−5 · l6.79 · e

(
0.2·c− 6,419·l0.27

T

)
(B.7)

where D is the diffusion coefficient (m2/s), c is the local moisture concentration

(kg of H2O/kg), T is the temperature (K), l is the insulation thickness (mm). (NI sub-

script corresponds with non-impregnated insulations while the subscript I with insu-

lations impregnated by mineral oil).

Equations (B.4) and (B.5) are the expressions of the moisture diffusion coefficient

for non-impregnated and impregnated Kraft paper insulation respectively, while equa-

tions (B.6) and (B.7) correspond to the non-impregnated and impregnated pressboard

insulation.
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B.4 Discussion

Moisture diffusion dependence of cellulose insulation on geometric properties like

thickness has not been reported in literature until now. No other author considered it

neither in his experiments nor in the mathematical models used. This can be explained

because in the general diffusion theory, the moisture diffusion coefficient is considered

an intrinsic property of the material and therefore it is only affected by local conditions

like temperature and moisture concentration.

However, several authors found experimental evidence in food materials, of the

moisture diffusion dependence on this geometric property, as was mentioned before.

The first experiments performed in this work were done on non-impregnated

Kraft-paper, and the samples of different thickness were prepared by changing the

number of paper layers stacked together. When the dependence on thickness appeared

it was assumed that it was a consequence of the different number of interfaces involved

in the migration process. This initial hypothesis was discarded after repeating the

experiments on pressboard samples. These insulations were composed of single layers

of pressboard manufactured with different thicknesses, and a similar behavior to that

observed in Kraft paper was found in this case.

Later experiments on pressboard samples, formed by multiple layers corrobo-

rated that the observed increase of the moisture diffusion coefficient with thickness

was due to internal conditions of the material and not to the interfaces between the

insulation layers.

Figure B.8 shows one of the multilayer pressboard samples and figure B.9 shows

the drying curves of oil-impregnated pressboard samples of thickness 3 mm, com-

posed by different number of layers. As can be seen, the evolution of the average

moisture concentration is very similar, despite of the different number of layers of the
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samples.

Figure B.8: Impregnated pressboard sample formed by multiple layers.

Figure B.9: Drying curves of oil-impregnated pressboard’s insulations of 3 mm thick.

According to the basic theory, the diffusion coefficient cannot be a function of

geometric properties, like length or thickness, as it is an intrinsic property of the ma-

terial, and thus should depend just on its physical properties i.e., permeability, poros-

ity, tortuosity and capillarity. Therefore, the increase in the moisture mobility with the

thickness of the samples that is observed in the experiments can be due to several com-

plex intrinsic and extrinsic factors which influence the transport of moisture inside the

cellulosic insulation material.
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The presence of the insulation thickness in the equation of the diffusion coeffi-

cient, can be explained by the fact that the assumed diffusion model does not fully

represents all the transport phenomena involved in the moisture migration through

the solid material (e.g. molecular diffusion, capillary motion, liquid diffusion through

solid pores, vapour diffusion in air-filled pores, Knudsen flow, vaporisation-condensation

sequence flow and others), and the consideration of the insulation thickness acts com-

pensating the inaccuracies of the diffusion model.

The inclusion of the thickness in the diffusivity equation may be not so rigorous

from the physical point of view, but it allows modelling the studied phenomena with

much more accuracy. The previous argument can be corroborated when experiments

are modeled taking into account the thickness insulation in the diffusion coefficient

equation and comparing it with the simulations obtained when it is not taken into

account.

Figure B.10 shows an example of the simulation in the case of a non-impregnated

2 mm sample dried at 60 oC. As can be seen, the estimations of moisture desorption

obtained from the diffusion model that uses the moisture diffusion coefficients depen-

dent on thickness are much more accurate than those obtained when the diffusion

coefficients that do not include this dependence are considered.

An interesting analysis can be done by using the coefficients proposed by Du [30]

to simulate the whole set of experiments performed on non-impregnated pressboard

that are included in table B.1. Du did a very rigorous work to obtain a diffusion coef-

ficient for non-impregnated pressboard and is considered one of the main references

in this topic. She performed drying experiments over pressboard of a single thickness

(1.5 mm) and proposed an empirical coefficient.

Figure B.11 shows the root mean square deviation (RMSD) obtained from (B.8),

used to compare the experimental and simulated drying curves.
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Figure B.10: Experimental and estimated drying curves of non-impregnated insula-
tions of 2 mm thick paper, dried at 60 ◦C.

RMSD =

√
1
n

n

∑
i=1

[
cm−est(ti)

− cm−exp(ti)

]2
(B.8)

where n is the number of experimental measurements, cm−exp is the measured

average moisture concentration, cm−est is the estimated average moisture concentra-

tion and ti is the instant of the drying experiment when the i-th measurement was

performed.

Each point of this plot corresponds to the simulation of the drying curve of a

pressboard piece of a certain thickness dried at a single temperature. As can be seen

simulations have better agreement with experimental values in the case of 1 mm insu-

lation pieces, as these were closer to the pieces used by Du in the determination of the

moisture diffusion coefficient. The error sharply increases with thickness, especially at

low temperatures.

Figure B.12 shows the drying curves of a 5 mm pressboard piece, which might

be representative of a power transformer drying process performed at a temperature

60 oC. The drying curve estimated using the diffusion coefficient proposed by Du is

extremely optimistic, leading to the conclusion that the thick insulation could be dried
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to a level of 2 % in just 40 h. This result would justify the programming of a short

drying process that would not be effective to remove the water of the inner part of the

thick insulation. The experimental results showed a much longer time required to dry

the thick insulation, that could be properly estimated considering the dependency on

thickness reported in this paper.
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Figure B.11: RMSD values from drying curves of non-impregnated pressboard, using
the moisture diffusion coefficient proposed by Du.
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Figure B.12: Estimated drying curves of pressboard barrier of 5 mm thick, dried by the
hot oil drying method with oil circulating at 60 ◦C and 10 ppm.
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B.5 Conclusions

In this appendix it is presented how the mobility of the moisture in cellulose insulat-

ing materials, represented by the experimental moisture diffusion coefficient, increases

with the thickness of the insulation. Although this behavior has not been considered

in the previous works reported on transformer insulation, it has been shown in studies

performed on several food materials.

The experiments reported in the paper allowed to show that this effect is due

to intrinsic conditions of the material and also to some extrinsic factors that are not

included in the diffusion model, and also allowed to discard that this behavior was

due to the interlayer spaces or voids.

The probable cause of the reported result can be found in the fact that the mois-

ture diffusion model is basically an approximation of the real transport phenomena

and thus the inaccuracy of the model might be limited by introducing the thickness

of the insulation in the equation of the diffusion coefficient used to characterize the

material in the model.

Although the inclusion of the insulation thickness in the expression of the mois-

ture diffusion coefficient may be not rigorous from the theoretical point of view, it can

lead to more accurate estimations of the water migration process. This allows improv-

ing the simulation of moisture migration in cellulosic insulations for practical applica-

tions, as the optimization of field and factory drying processes of transformers and the

development of moisture monitoring systems.

This work has also shown the importance of defining the range of validity of

the proposed equations for the diffusion coefficient. As has been demonstrated in this

work, the application of the classical expressions of the diffusion coefficient to simulate

moisture dynamics, in conditions away from the ranges of validity of the coefficients
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could lead to wrong results that could justify taking un-adequate decisions on the op-

eration of the transformers.
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