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inmensa contribución a esta tesis. Aunque suene a tópico, la mayor parte de los
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Abstract

In this thesis we focus on the development of energy-efficient adaptive algorithms

for Wireless Sensor Networks. Its contributions can be arranged in two main lines.

Firstly, we focus on the efficient management of energy resources in WSNs equipped

with finite-size batteries and energy-harvesting devices. To that end, we propose a

censoring scheme by which the nodes are able to decide if a message transmission is

worthy or not given their energetic condition. In order to do so, we model the sys-

tem using a Markov Decision Process and use this model to derive optimal policies.

Later, these policies are analyzed in simplified scenarios in order to get insights of

their features. Finally, using Stochastic Approximation, we develop low-complexity

censoring algorithms that approximate the optimal policy, with less computational

complexity and faster convergence speed than other approaches such as Q-learning.

Secondly, we propose a novel diffusion scheme for adaptive distributed estimation

in WSNs. This strategy, which we call Decoupled Adapt-then-Combine (D-ATC), is

based on keeping an estimate that each node adapts using purely local information

and then combines with the diffused estimations by other nodes in its neighborhood.

Our strategy, which is specially suitable for heterogeneous networks, is theoretically

analyzed using two different techniques: the classical procedure for transient analysis

of adaptive systems and the energy conservation method. Later, as using different

combination rules in the transient and steady-state regime is needed to obtain the best

performance, we propose two adaptive rules to learn the combination coefficients that

are useful for our diffusion strategy. Several experiments simulating both stationary

estimation and tracking problems show that our method outperforms state-of-the-art

techniques in relevant scenarios. Some of these simulations reveal the robustness of

our scheme under node failures.

Finally, we show that both approaches can be combined in a common setup: a

WSN composed of harvesting nodes aiming to solve an adaptive distributed estima-

tion problem. As a result, a censoring scheme is added on top of D-ATC. We show

how our censoring approach helps to improve both steady-state and convergence per-

formance of the diffusion scheme.
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Resumen

La presente tesis se centra en el desarrollo de algoritmos adaptativos energéticamente

eficientes para redes de sensores inalámbricos. Sus contribuciones se pueden englobar

en dos ĺıneas principales.

Por un lado, estudiamos el problema de la gestión eficiente de recursos energéticos

en redes de sensores equipadas con dispositivos de captación de enerǵıa y bateŕıas

finitas. Para ello, proponemos un esquema de censura mediante el cual, en un mo-

mento dado, un nodo es capaz de decidir si la transmisión de un mensaje merece

la pena en las condiciones energéticas actuales. El sistema se modela mediante un

Proceso de Decisión de Markov (Markov Decision Process, MDP) de horizonte in-

finito y dicho modelo nos sirve para derivar poĺıticas óptimas de censura bajo ciertos

supuestos. Después, analizamos estas poĺıticas óptimas en escenarios simplificados

para extraer intuiciones sobre las mismas. Por último, mediante técnicas de Aproxi-

mación Estocástica, desarrollamos algoritmos de censura de menor complejidad que

aproximan estas poĺıticas óptimas. Las numerosas simulaciones realizadas muestran

que estas aproximaciones son competitivas, obteniendo una mayor tasa de convergen-

cia y mejores prestaciones que otras técnicas del estado del arte como las basadas en

Q-learning.

Por otro lado, proponemos un nuevo esquema de difusión para estimación dis-

tribuida adaptativa. Esta estrategia, que denominamos Decoupled Adapt-then-Combine

(D-ATC), se basa en mantener una estimación que cada nodo adapta con información

puramente local y que posteriormente combina con las estimaciones difundidas por

los demás nodos de la vecindad. Analizamos teóricamente nuestra estrategia, que es

especialmente útil en redes heterogéneas, usando dos métodos diferentes: el método

clásico para el análisis de régimen transitorio en sistemas adaptativos y el método

de conservación de la enerǵıa. Posteriormente, y dado que para obtener el mejor

rendimiento es necesario utilizar reglas de combinación diferentes en el transitorio y

en régimen permanente, proponemos dos reglas adaptativas para el aprendizaje de

los pesos de combinación para nuestra estrategia de difusión. La primera de ellas está
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basada en una aproximación de mı́nimos cuadrados (least-squares, LS); mientras que

la segunda se basa en el algoritmo de proyecciones afines (Affine Projection Algorithm,

APA). Se han realizado numerosos experimentos tanto en escenarios estacionarios

como de seguimiento que muestran cómo nuestra estrategia supera en prestaciones

a otras aproximaciones del estado del arte. Algunas de estas simulaciones revelan

además la robustez de nuestra estrategia ante errores en los nodos de la red.

Por último, mostramos que estas dos aproximaciones son complementarias y las

combinamos en mismo escenario: una red de sensores inalámbricos compuesta de

nodos equipados con dispositivos de captación energética cuyo objetivo es resolver

de manera distribuida y adaptativa un problema de estimación. Para ello, añadimos

la capacidad de censurar mensajes a nuestro esquema D-ATC. Nuestras simulaciones

muestran que la censura puede ser beneficiosa para mejorar tanto el rendimiento

en régimen permanente como la tasa de convergencia en escenarios relevantes de

estimación basada en difusión.
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1
Introduction

In this chapter, we start providing an overview of Wireless Sensor Network (WSN)

technologies and applications. Later, we focus on their limitations and constraints

as a motivation for the presented work. Then, the main contributions of the thesis

dissertation are introduced. Finally, we include the organization of the dissertation

as a point of reference for readers.

1.1 Background

In 2003, the Massachusetts Institute of Technology classified Wireless Sensor Net-

works (WSNs) as one of the top ten emerging technologies that would change the

world [87]. It is their capability to provide distributed, real-time interaction with the

physical world which has attracted attention from a wide range of disciplines. Since

then, WSNs are slowly becoming an integral part of our lives and paradigms such as

Internet of Things (IoT) or Smart Cities, which are technically supported by WSNs,

have been classified as strategic development areas by the European Union [38, 39].

1



CHAPTER 1. INTRODUCTION

Figure 1.1: Sensor node architecture. A sensor node comprises 4 subsystems: A

processing unit, several kinds of sensor units to collect data, a communication unit

and a power supply, usually a battery.

Nevertheless, the realization of existing and potential applications of WSNs requires

the development of technologies at least in three different research areas: sensing,

communication and computation (including hardware, software, and processing algo-

rithms). Moreover, the combined advancement of these three areas is fundamental in

order to fully exploit this technology in a variety of application domains.

1.1.1 Wireless sensor networks

A sensor node is an autonomous electronic device with embedded sensing, data pro-

cessing and communication capabilities. The typical architecture of a sensor node,

shown in Fig. 1.1, comprises four subsystems: a processing unit, a communication

unit, a power supply unit —usually a battery— and one or more sensing units. The

diversity of available sensors for this kind of platforms is huge: temperature, humid-

ity, pressure, light, sound, vibration, motion, radiation, chemicals [2, 71]; enabling

a significant number of potential applications. Nodes work as information sources

which interact with the physical environment and sense, measure, or gather detailed

information from some physical entities of interest, performing, when required, simple

2



1.1. BACKGROUND

(a) Crossbow Imote2 (b) Libelium Waspmote

Figure 1.2: Examples of sensor nodes. (a) Crossbow Imote with a battery module;

(b) Libellium Waspmote with acoustic sensor.

processing on the extracted data, and transmitting it to remote locations. Table 1.1,

which has been adapted from [2], displays a summary of the characteristics of some

popular sensor platforms. The communication units of all platforms are based on the

IEEE 802.15.4 standard [12, 64] for low-power wireless personal area networks, some

notable exceptions being Mica2, which appeared before the standard, and Shimmer3,

based on Bluetooth. Figure 1.2 displays some examples of node platforms.

Table 1.1: Sensor node platforms and characteristics

Mote Type Manufacturer CPU RAM Radio Freq. (kbps)

Mica2 Crossbow 16 MHz 4 kB 433/868/916 MHz 38.4 kbps

MicaZ Crossbow 16 MHz 4 kB 2.4 GHz 250 kbps

Tmote Sentilla 16 MHz 10 kB 2.4 GHz 250 kbps

Imote2 Crossbow 13-416 MHz 256 kB 2.4 GHz 250 kbps

Shimmer3 [111] Shimmer 24 MHz 16 kB BT/2.4 GHz 1 Mbps

WaspMote [70] Libelium 14 MHz 8 kB 2.4 GHz 250 kbps

Hence, a Wireless Sensor Network is the collection of a variable amount of inter-

connected sensor nodes, ranging from hundreds to thousands, deployed either directly

inside the phenomenon of interest or close to it [2]. Such sensors can be scattered on

the ground, underground, in the air, under water, in vehicles, inside human bodies

or embedded in structures or buildings. Once sensor nodes are deployed, they are

3



CHAPTER 1. INTRODUCTION

SINK INTERNET 
AND

SATELLITE

USER

Figure 1.3: Typical WSN topology. In this kind of topology there is one or various

sink nodes to which all the other nodes send their data in a multi-hop manner.

supposed to require minimal support for their functioning. This minimal support

forces sensor network protocols and algorithms to possess self-organizing capabilities.

Nodes should be capable of organizing themselves into a network, forming a (possibly

dynamic) topology, and being able to control it.

In the typical WSN topology, see Fig. 1.3, there exists a destination node (also

known as Fusion Center or sink) which collects all the data sensed by the rest of the

nodes. This sink node is usually a more powerful device and is able to communicate

with the user through conventional network services, e.g., the Internet. As seen in

Fig. 1.3, sensor nodes do not work independently, but serve as relays of other nodes

in the network. Since nodes are often resource-constrained, a considerable reduction

in transmitting power can be easily obtained from node cooperation. That is the

reason why most WSNs are multi-hop networks.

Apart from just relaying information to the sink node, there can be a further level

of cooperation: nodes can process their data cooperatively, combining information

from multiple sources. This cooperation introduces the concept of distributed com-

4



1.1. BACKGROUND

puting and processing. Thanks to their processing capabilities, nodes can transmit

partially processed data instead of raw data, removing the redundant information

of the captured data through in-network aggregation and local compression. Such

collaboration among sensors, can lead to topologies where there is no sink node any-

more and all information is processed inside the network, which comes out as a more

fault-tolerant approach.

1.1.2 Applications of wireless sensor networks

In the last years, due to the variety of sensors that can be incorporated into WSNs,

many academic and commercial applications have been studied. This section is just

a brief overview of these applications to provide readers with some insights of the po-

tentials of WSNs. We will categorize the spectrum of applications into six categories:

• Environmental. An interesting area of application is environmental monitor-

ing. WSNs allow us to obtain large amount of data of a natural phenomenon

in wide or difficult to access areas. The range of applications in this scope goes

from precision agriculture [22, 23] and animal tracking [137] to meteorological

and pollution studies [32] or planetary exploration [95].

• Industry. Networks of wired sensors have long been used in industrial plants.

However, the cost of deployment of these sensors has limited their applications.

Consequently there is a benefit from turning to a wireless system. Some com-

mercial applications of WSNs are product quality monitoring, inventory man-

agement, factory process control, or real-time nuclear plant monitoring [72, 76].

• Health. There is also a growing interest in biomedical applications of WSNs.

The development of implanted devices and smart wearable sensors opens the

door to applications such as patient monitoring [79], diagnostics [40], or drug

administration [30].

• Military. WSNs can also be an integral part of military Command and Con-

trol (C2) systems. The rapid deployment, self-organization and fault tolerance

characteristics of WSNs make them a very promising technology in a number

of C2 applications. Some of them are monitoring friendly forces, battlefield
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surveillance, reconnaissance of opposing forces or nuclear, biological and chem-

ical attack detection. Some successful examples are the Smart Dust DARPA

project [126], Sniper Detection system [37], or the VigilNet project [58].

• Home. Apart from the most obvious surveillance applications, there are also

interesting WSNs’ applications related to Smart Grid in the household. WSNs

can provide end-users with more information about their appliances usage or

water and electricity consumption and consequently improve energy, gas and

water efficiency at home [50].

• Smart city. The aim of smart cities is to make a more efficient use of town

telecommunication, energy and transport resources for the benefit of its inhabi-

tants and businesses. Some successful use cases of WSNs in this area are smart

parking, monitoring of parking spaces availability in the city [56]; structural

health monitoring of vibrations and material conditions in buildings, bridges

and historical monuments [68]; or Smart Lighting, intelligent and weather adap-

tive illumination in street lights [25].

In Fig. 1.4, you can find visual examples of some of these applications: An ap-

plication of stress monitoring with a Shimmer 3 GSR Unit [111], part of an ongoing

work by Francisco Hernando-Gallego [59]; an Smart Parking system that informs

about available spaces in the streets in downtown Santander (Spain)[18, 56]; a struc-

tural health monitoring system in San Francisco (USA) which measures vibrations

on Golden Gate Bridge [68]; and an animal tracking project, ZebraNet, which has

produced significant improvements in WSNs algorithms and protocols [137].

Whatever the application, WSNs must solve any of the following main problems:

• Detection problem. In many cases the detection of a particular (usually rare)

event is the initial step before any other type of processing. Sometimes it is even

the final objective of the network, for example in a surveillance or monitoring

system, where an alarm is turned on if a particular event is detected.

• Estimation problem. In other cases, the objective of WSNs is to estimate

from the collected measurements the state of some variables of interest, e.g., the

position of some target or the parameters needed to map a spatially sampled
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Figure 1.4: Example of applications of WSNs. Top left: Stress monitoring with

Galvanic Skin Response (GSR) and Blood Volume Pressure (BVP) sensors. Top

right: Smart Parking in Santander (Spain) taken from [18]. Bottom left: Structural

monitoring of Golden Gate Bridge, San Francisco (USA) taken from [68]. Bottom

right: ZebraNet animal tracking project taken from [137].

field. In addition, such state may change in time, in which case the network has

to deal with a tracking problem, and should be able to timely react to those

dynamics.

Detection and estimation are, in fact, the two main problems in classical statistical

signal processing [93], but the constrained resources and distributed nature of WSNs

introduce new challenges to that topic. The techniques presented in this thesis could

be applied to detection problems, as we did in [46], but in this dissertation we will

focus on estimation scenarios.

1.1.3 Wireless sensor network constraints

Wireless Sensor Networks have a number of limitations due to constrained resources

of sensor nodes. In this section, we describe some of these constraints with special

focus in energy as a crucial limiting resource.
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Computation and memory constraints

Analyzing the characteristics of some popular sensor node platforms, showed in Ta-

ble 1.1, we can see that the standard CPU speed and RAM memory of these nodes

is extremely limited. Although some of them have the possibility of adding some

extra Flash memory, the complexity of the algorithms that run in the nodes is signif-

icantly constrained both in computation power and memory. This limitation forces

the network to communicate with more powerful devices to handle heavy compu-

tations unless distributed processing algorithms, where the computation burden is

shared among the nodes, are developed.

Communication constraints

Most sensor nodes communicate using the IEEE 802.15.4 standard in the physical

and Medium Access Control (MAC) layers and the Zigbee specification in the network

layer [64, 12]. Both standards are conceived for low-power and, consequently, short-

range communications. The typical range in IEEE 802.15.4 is around 100 m, so it

is usually unfeasible to have a direct link between all the sensor nodes and the sink

when we have a WSN covering a wide area. Consequently most WSNs are multi-hop

networks. Similarly, when developing distributed processing algorithms, it must be

taken into account that this short range also limits the number of neighbors of a node,

i.e., the number of other nodes to which it can communicate directly.

Energy constraints

Even if one is able to overcome the previous limitations there is an additional problem

in WSNs: They are usually composed of battery-powered nodes. That means that

the operational lifetime of the network is limited when the batteries cannot be easily

replaced. In some cases, this replacement is impractical because of the huge number

of sensors which form the network, in other cases it is even unfeasible, e.g. when

nodes are deployed underground, under water, or embedded in building structures

[99].
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1.2 Motivation

From the overview above we find a number of limitations that restrain the further de-

velopment of applications of WSNs. The following approaches could help to overcome

those limitations.

1.2.1 Extending the network lifetime

It is known that even with the standard low-power protocols of WSNs, the most en-

ergy demanding task in WSNs is communication [99]. Because of that, a great number

of methods to minimize the energy expenditure due to communication processes have

been proposed in the literature. Most of this research is oriented to produce energy-

efficient hardware, building ultra-low-power microcontrollers, and energy-aware com-

munication protocols [99]. Significant gain can be obtained by designing efficient

physical layer protocols, e.g., designing energy-efficient modulations [110] and cor-

rectly allocating power [138]. Regarding the MAC layer, energy can be saved with

low duty-cycle MAC protocols, i.e., nodes are put in a low-power sleep mode when-

ever communication is not needed. There are two obvious trade-offs here. Firstly, if

the sleep-wake pattern is very fast, a significant amount of energy is consumed by just

these switchings, making this strategy inefficient. Secondly, if the nodes are left in

sleep mode for a long time they may not gather some data that could be important

for the application. That makes the design of these protocols a difficult task, but

there have been some successful proposals such as LEACH [129], TRAMA [101] or

S-MAC [133]. From the network layer perspective, energy saving can be obtained

by designing routing protocols that take energy cost into account, and not only the

network throughput or delay, see [1] for a detailed review of routing algorithms for

WSNs.

All these approaches are in some way Cross-Layer, i.e., the algorithms make use

of information fed-back from different layers of the communication model to improve

performance. Since WSNs are not general purpose networks, but conceived with a

particular application in mind, it makes sense to use application-based metrics in

the optimization of lower-level protocols. Some works explicitly follow this approach

[3, 78, 121]. In all of them the physical, MAC, and network layer protocols are jointly

built following some higher level metric, usually a balance between some measure of
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network performance and network lifetime.

Finally, a complementary approach to improve the energy efficiency in WSNs

consists in carrying out a more efficient and intelligent data processing. The simplest

approach is data aggregation, i.e., nodes can aggregate their sensed or received data to

reduce the number of communicated packages [4]. In more advanced schemes, nodes

can integrate the received information in a distributed processing scenario [74, 130]. In

addition, nodes can be intelligent enough to censor their own measurements. These

last two approaches are explained in detail as they constitute, together with the

introduction of the disruptive technology of harvesting nodes, the starting point for

this thesis.

1.2.2 Censoring schemes in WSNs

Not all the messages in a WSN have the same importance. In many practical sce-

narios, it makes sense to attribute a particular significance, priority, relevance, utility

or Quality of Information (QoI) [136] value to the messages in the network. Conse-

quently, in order to enlarge the network lifetime and optimize its performance, sensors

nodes could weigh up: a) The potential benefits of transmitting information and b)

the energy cost of the subsequent communication process.

Probably, one of the first works that took this approach is [100] by Rago et al. In

that work, a censoring strategy for distributed detection in (wired) radar networks was

proposed. This was a novel approach with respect to previous works that proposed

different compression strategies for similar scenarios [115, 124]. In such scenarios

the scarcest resource was bandwidth but in [6] Appadwedula et al. applied a similar

censoring strategy for decentralized detection in WSNs, already with energy efficiency

in mind.

In the last years, there has been significant interest in censoring low-importance

data in various scenarios, such as distributed detection [21], distributed estimation

[130], spectrum sensing [80], or medical applications [75]. Finally, in the works of

Arroyo-Valles et al. [9, 10] a Markov Decision Process (MDP) was proposed as a

general technique to design censoring algorithms. In an MDP, the environment is

modeled as a set of states and there exist one or more agents that can take actions

that modify the current state of the environment. An immediate reward is assigned
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to the agent for each action in each state and the agent objective is to optimize some

long-term aggregated reward [15, 96]. This kind of model is an extremely useful

optimization tool for systems where sequential decisions under uncertainty have to

be taken and, for that reason, we will also use it in this work.

1.2.3 Harvesting devices

No matter what techniques are used, a battery-powered node will eventually deplete

its batteries. Since battery substitution is often unfeasible, a more recent approach

to this problem is to use energy harvesting nodes. These devices are able to obtain

energy from the environment, from sources such as solar, indoor lighting, vibrational,

thermal, chemical, electromagnetic, etc. [36, 65, 91, 97, 99, 102, 112]. This approach

provides a promising future of self-sustainable networks with virtually perpetual op-

eration lifetimes. However, even when nodes are capable to harvest energy, the avail-

ability of ambient energy is usually scarce and stochastic. Hence, energy-efficient

strategies are still critical to achieve good network performance. The use of censoring

for WSNs composed of harvesting devices seems a useful energy management strat-

egy and has not been sufficiently explored. Hence, in this thesis we will focus on

developing censoring algorithms for harvesting WSNs. As previously announced, we

use an MDP to model the system and derive our censoring algorithms.

1.2.4 Distributed signal processing

Additionally, in most real-world applications the nodes only perform some data gath-

ering for the subsequent transmission to some more powerful sink node. That ap-

proach makes sense as nodes have low computation and memory capabilities and we

cannot expect them to perform complex processing tasks. However, as nodes are

supposed to be densely deployed in the area of interest, they could benefit from local

interactions in order to obtain a number of advantages with respect to non-cooperative

strategies:

• Robustness. When there is only one sink node, there is a single point of

failure; i.e., if the sink node fails, all the network gets disconnected. In-network

processing is a way to significantly improve the robustness of the network —the

performance of the whole network is not compromised if any node fails.
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• Efficiency. When the processing is performed in a distributed manner and

nodes only communicate with their neighbors, there can be a notable reduction

in the number of communications, as nodes do not have to relay all the data to

a sink node. This turns into a more efficient use of network energy.

• Immediacy. If the nodes in the network are not only sensor nodes but also

actors, i.e. they have to respond in some way to the information they are

gathering; then it is evident that delaying such response can be troublesome

for some applications. In a distributed processing scheme, nodes have a more

immediate access to the information they need to take decisions and they need

no feedback from a fusion center.

• Privacy. In some cases, the information that the sensor nodes gather can be

sensitive and there can be some privacy issues in communicating it throughout

the network. In a distributed processing scheme, nodes can only share some

processed version of the data in a way that their privacy is preserved.

In this direction, there are a number of researchers working in collaborative in-

network signal processing where spatial cooperation is exploited. Nevertheless, this

approach opens a number of interesting questions: How can we achieve low-complexity

adaptive in-network processing? How must the cooperation among the nodes be?

Does this communication need to be synchronous? How can we combine information

from different nodes? What happens when we have nodes that are not working

correctly? Again, this thesis tries to answer some of these questions.

1.3 Objectives and Main contributions

The objective of this thesis is to contribute to the development of energy-efficient

adaptive algorithms for Wireless Sensor Networks. In that sense, the main objectives

of this work are:

1. To develop low-complexity censoring algorithms for energy harvesting WSNs.

Our approach takes the following considerations into account:

• Stochastic, scarce nature of environmental energy. The algorithms

should be able to handle uncertainties in the harvested energy without
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prior knowledge of its distributions. In addition, the algorithms should be

able to handle non-stationarities.

• Different quality of information. The censoring scheme has to take

into account the different relevance/importance of the messages in the

network to take the decisions. The distribution of those data importances

is also a priori unknown.

• Low Complexity. The proposed strategy has to be able to work in an

online manner, in devices of low computational capabilities.

2. To design distributed and adaptive strategies for estimation in WSNs. Our

desired approach should have these characteristics:

• Tracking. The estimated variables can be time-varying, i.e., our approach

must be able to track variations in the estimated variables.

• Node diversity. Networks can be composed of nodes of different nature.

• Low Complexity. Due to the limited capabilities of sensor nodes, the

estimation has to be performed by low-complexity algorithms. In addition,

in order to keep the energy and bandwidth efficiency, the communication

among the nodes must be as scarce as possible.

• Asynchrony. The algorithms must work without an strict synchroniza-

tion among the nodes. In addition. the estimation scheme should be able

to work under node failures or when nodes censor their own estimations.

3. To unify the previous two techniques in a combined scheme, obtaining a cen-

soring strategy for adaptive diffusion networks equipped with energy harvesting

devices.

Thus, from the aforementioned objectives, the main contributions are summarized as

follows.

In the first part of the thesis, we focus on developing censoring strategies for har-

vesting WSNs. As our strategy should be able to handle the uncertainties on energy

and data distributions, we propose a censoring scheme based in Markov Decision Pro-

cesses (MDPs) [15]. MDPs have been successfully used in different WSNs problems,

where sequential decisions under uncertainty has to be taken, as shown in Chapter 2.
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In our approach, we firstly propose a model based on MDPs. Optimal policies

according to that model can be derived but they are complex to compute and assume

a priori knowledge of data and energy processes. Consequently, we firstly analyze

them in simple setups. Based on the insights obtained from that analysis, we propose

two low-complexity approximate schemes. The first one is a balanced strategy where

nodes try to level the average consumed and harvested energy. This strategy is

computationally cheap but suboptimal when finite batteries are taken into account.

The second one is based on stochastic approximation techniques. Simulations show

that this strategy is significantly better than other state-of-the-art algorithms, such

as model-free approaches based in Reinforcement Learning [113], in several relevant

scenarios.

In the second part of the thesis, we design distributed and adaptive strategies for

estimation in WSNs. Based on the objectives above, we have decided to focus on

the framework of adaptive diffusion networks [107]. We propose a novel distributed

estimation scheme which decouples the local learning and the fusion of information

received from the neighbors. This allows us to easily accommodate different esti-

mators in the network and to work with asynchronous networks. In addition, we

theoretically analyze our scheme using two standard techniques for adaptive systems

analysis.

Then, based on the theoretical and empirical studies we observe that the optimal

way of combining the information of nodes is different at the transient and at the

steady-state regimes. Consequently, different learning algorithms for the combination

weights are proposed and simulated in a number of stationary estimation and tracking

scenarios.

Finally, we propose a combined scheme where a censoring algorithm is added on

top of our diffusion scheme. In order to do so, we will propose a way of measure the

relevance of communications in diffusion networks. Preliminary simulation results

show the potential benefit of integrating censoring schemes in energy-constrained

diffusion networks.
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1.4 Thesis organization

This thesis dissertation is divided in 5 chapters and 4 appendices. In this chapter we

have presented the WSNs, their potentials and limitations, as a background for the

thesis work. We have also introduced the main contributions of the thesis. These

contributions are organized in the following three chapters and constitute the core of

this dissertation:

• Chapter 2 is devoted to develop censoring strategies for harvesting WSNs equipped

with finite batteries. After a state-of-the-art review, the modeling, optimiza-

tion, design and evaluation of censoring strategies is presented.

• Chapter 3 introduces the Decoupled Adapt-then-Combine diffusion scheme and

two adaptive rules to learn the combination parameters for that scheme. It also

starts with a state-of-the-art revision. Then, the proposed diffusion strategy

is theoretically studied and, together with the suggested combination rules,

compared with other state-of-the-art techniques.

• Chapter 4 unifies the censoring and diffusion approaches. In order to evaluate

the potential of this combined scheme, it is numerically analyzed in different

energy harvesting scenarios.

Then, in Chapter 5 the contributions of all the dissertation are summarized and

some future research directions are outlined. Finally, the dissertation is closed with

four appendices. Appendix A contains some proofs and derivations drawn from Chap-

ter 2, while in Appendix B we have placed the derivations needed for Chapter 3. Later,

Appendix C lists the acronyms used throughout the thesis and finally the publications

where part of the work of this thesis has been published are listed in Appendix D.
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2
MDP models for censoring in harvesting sensor

networks

In this chapter, we focus on designing optimal censoring policies for energy-harvesting

Wireless Sensor Networks (WSNs). As censoring is a decision-making process under

uncertainty we use a Markov Decision Process (MDP) to model it. Later, a model-

based stochastic approximation algorithm is proposed as a method to solve the previ-

ous decision process. We will show the good performance of our strategy with respect

to previous works, of which we present a detailed study in the next section.

The rest of the chapter is organized as follows. After the study of previous works in

Section 2.1, we present the mathematical model that describes the decision process in

Section 2.2. Then, in Section 2.3, we derive the optimal policy for that decision model

under some assumptions. The behavior of this optimal policy is analyzed in Section

2.4 in simplified but meaningful scenarios. Later, in Section 2.5, low-complexity ap-

proximated schemes are proposed to compute the optimal policy. Finally, the chapter

is closed with several numerical experiments to evaluate the proposed schemes.
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2.1 State-of-the-art in energy management in harvesting

sensor networks

Efficient management of energy resources is essential to operate WSNs equipped with

finite-size batteries and energy-harvesting devices [55]. Numerous works have de-

signed energy-saving strategies that account for the limited and stochastic nature of

the harvested energy. Many of them were aimed at solving general communication

problems such as utility-based cross-layer design [52], power allocation [61, 118], or

rate adaptation [66]. At the same time, in the field of WSNs there has been a grow-

ing interest in strategies that take into account the importance of the information

to be transmitted for the application at hand. The “importance value” can be, for

instance, the traffic priority of a routing protocol, the deviation from the mean in

distributed estimation [63], the likelihood ratio in decentralized detection [7], or the

difference among consecutive estimations in a tracking scenario [92]. Such strategies,

sometimes referred to as selective communication [9] or censoring strategies [7], as-

sume that nodes can evaluate/quantify the importance of the current message and

use it to decide whether transmitting or censoring it. To make the decision, additional

parameters such as the cost of the communication, the confidence that the message

will arrive to its destination, or the available energy resources, should also be taken

into account.

Since the aforementioned parameters are correlated across time, decisions, which

are made sequentially, should be designed to optimize the long-term behavior of the

system (for example, by maximizing the aggregated importance of all messages trans-

mitted by the WSN). The current “transmit vs. censor” decision changes the amount

of energy stored in the battery and, therefore, has an impact not only on the current

battery state, but also on future ones. Therefore, efficient policies have to balance

the benefits of an immediate reward with the (expected) impact of each decision on

future costs/rewards. From an algorithmic viewpoint, the design of such censoring

policies is a Dynamic Programming (DP) problem that, under certain assumptions,

can be modeled as an MDP.

An MDP is an optimization model for decision making under uncertainty [15, 96].

The MDP describes a stochastic decision process of an agent interacting with an
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environment or system. At each decision time, the environment stays in a certain

state and the agent chooses an action that is available at this state. After the action

is performed, the agent receives an immediate reward and the system transits to a

new state according to the transition probability. Consequently actions are chosen not

only to maximize the immediate reward but some kind of long-term aggregate reward.

For WSNs, MDPs are used to model the interaction between a wireless sensor node

(i.e., an agent) and their surrounding environment to achieve some objectives, e.g.,

optimize a transmission or routing decision in the WSN. In general, the resulting DP

problems are difficult to solve and approximate solutions are often required [15, 94].

There are several approaches in the literature to tackle these difficulties in the

context of communications with energy harvesting devices. The first one, which has

been called information-theoretic approach [120], assumes a full knowledge of the

environment dynamics. When assuming a “predictable” setting where one knows not

only the past, but also the future values of the state information (e.g., energy to be

harvested in the future instants), optimal off-line decision policies can be applied [119,

132]. Although such schemes serve as a benchmark or to obtain communication limits,

they do not cope well with many practical scenarios, where energy and packet-arrival

processes are not known in advance. Consequently, many works in the literature are

MDP based, where only some statistics of the processes need to be known. Focusing

in decision problems in harvesting WSNs, in [69] a Policy Iteration algorithm [15]

was used to estimate the decision policy maximizing the long-term average reward,

for a dual recharge/replace battery harvesting model with unitary transmission costs.

The scheme in [83] is also based on unitary costs and an average reward optimization.

This work and its later extension in [84] show that (a) the optimal transmission policy

applies a threshold over the importance values that is a decreasing function of the

available energy, and (b) a balanced policy is close to optimal. The balanced policy is a

simple scheme, also analyzed here, that takes into account the long-term distribution

of the energy harvested and ignores the instantaneous battery level [84].

The main drawback of these approaches is that they need to know the distributions

of the energy and packet arrival processes, which may not be available in practical

scenarios. In such cases, nodes have to be able to learn whatever information is

needed in real time. One approach to handle this problem, recently proposed in [19],
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is to apply Q-learning (a widely used stochastic method proposed in the context of

reinforcement learning [15, 94]) to solve the DP problem. But this approach has its

own problems. Since Q-learning is a model-free algorithm that tries to estimate the

value function in a non-parametric manner, it can result in a slow convergence and

high computational complexity when the size of the state space grows (the problem

is even more severe if the state space is continuous).

In this chapter, we propose a model-based stochastic approximation algorithm

to solve the previous difficulties. More specifically, we show that, under reasonable

assumptions on the battery dynamics, the optimal censoring policy is a threshold

function on the importance value. An ad-hoc stochastic approximation algorithm

[134] exploiting this property is developed that, compared with a conventional Q-

learning algorithm, is more efficient in terms of computational complexity, memory

requirements, and convergence speed.

It is important to remark that MDPs have already been used in similar prob-

lems for non-rechargeable WSNs [5]. Some of the possible decisions to take are the

transmission/delay of a message in a scheduling scheme [122], the control of transmit

power [51, 67] or even moving an actor/sensor node in detection problems to improve

the detection [90]. A more relevant approach for our case is the censoring algorithm

for non-rechargeable nodes proposed by Arroyo-Valles et al. for single-hop commu-

nications [9] and for local optimization of multi-hop networks [10]. These works, like

[69, 83, 84], assumed that the importance is a value assigned by the application in

hand. Some other contributions have recently focused in implementing these tech-

niques in more specific scenarios, such as decentralized estimation [8], decentralized

detection [46], or target tracking [92].

Compared to those scenarios with non-rechargeable batteries, e.g., [9, 10], the re-

sults in the harvesting scenario are substantially different. While, in a non-rechargeable

case, a censoring policy discarding messages whose importance is below a constant

threshold is quasi-optimal, censoring policies based on energy-dependent thresholds

are significantly more efficient in harvesting sensors. Finally, we have recently pro-

posed a cooperative censoring strategy for non-rechargeable sensor nodes [43]. In that

work, an MDP was proposed at a network level, i.e., the actions take the state and

the rewards for the whole network into account. Although this method is expected
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to obtain a better performance in multi-hop networks, it is difficult to derive imple-

mentable online algorithms and its generalization to the harvesting problem is not

straightforward either.

2.2 System model

In this section, we introduce notation, explain the mathematical model that describes

the dynamics of our system under a censoring policy, and formulate the objective to

optimize.

Our decision model is defined by four main components: a) a set of state variables,

b) a set of possible actions, c) a probabilistic model of the state dynamics (that

describes how future states depend on the current state and the actions taken), and

d) a reward model (that describes the immediate reward obtained when some action

is taken at a given state) [15]. As explained in the previous section, since we are

interested in maximizing the long-term reward and current actions have an impact

into the future states, our problem will fall into the DP framework. Moreover, because

the state dynamics are assumed Markovian, the problem will be modeled as an MDP.

2.2.1 Notation

Throughout this thesis, we use boldface lowercase letters to denote vectors and bold-

face uppercase letters to represent matrices. The superscript ‘T ’ represents the trans-

pose of a matrix or a vector. In addition, to simplify the arguments, we assume that

all the quantities are real. The notation used in this chapter is summarized in Table

2.1.

2.2.2 State vector

In this chapter we model each node as an individual decision agent. Consequently,

consider a node that receives a sequence of requests to transmit different messages.

The messages can be received from another node or generated from local measure-

ments. The state of the node will be characterized by two real random variables:

• e(n): the battery level at step (slot) n. It reflects the “internal state” of the

node.

21



CHAPTER 2. MDP MODELS FOR CENSORING IN HARVESTING SENSOR
NETWORKS

Table 2.1: Summary of the notation used in Chapter 2

n Temporal epoch or slot index

s(n) State vector of the node, takes values in the set S
e(n) Battery level at slot n

x(n) Importance value of the message to be sent at slot n

a(n) Action about sending message at n, a(n) ∈ {0, 1}
π Policy. Sequence of actions performs by the node

b̂(n) Energy consumption at slot n. It depends on a(n)

h(n) Energy harvested at slot n

b(n) Remaining energy cost, discounting harvested energy

r(n) Reward given to the node at slot n

w(n) Success index for transmission at slot n

γ Discount factor for the computation of long-term reward

Vπ(s) Value of policy π starting at state s

W (s) Success probability of transmission at state s

τ(e) Decision threshold

λ(e) Reduced value function

• x(n): the importance of the message to be sent at step n.

Following the typical terminology in MDP models, the state vector of the node is

defined as s(n) = [e(n), x(n)]; i.e., the state vector contains all and only the informa-

tion that is available at the node to make a decision at time n. The set of all possible

states is denoted as S.

To facilitate exposition, n is considered an epoch or slot index, which starts when

the node has to decide whether to censor or transmit a message (either received

from one of its neighbors or generated from its sensing devices) and ends when the

next message is received. Besides transmitting or censoring the message, during

each epoch the node (eventually) collects some energy from the environment. This

approach, which is used by many authors, implies that the actual duration of each

slot n is stochastic. Clearly, the results in the paper also hold true if the system

operates with a constant sampling period (the only modification required is to set
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Figure 2.1: Data and energy operation model. At each time epoch n the node receives

a message and a decision about censoring or transmitting it has to be made, according

to the importance of the message x(n) and the energy state e(n). During that epoch

the node may harvest some energy h(n) and eventually it will consume some energy

b̂(n) according to its action.

x(n) = 0 for the time instants n where no message has been received). In Fig. 2.1

you can find a diagram of this data and energy operations.

Note that, besides e(n) and x(n), the node could use additional information to

make decisions. This information can be local (the packet length, the state of the

communication channel) or belonging to other (neighboring) nodes. Additional local

information can be easily incorporated into the formulation, provided that the state

dynamics are similar to those of e(n) and x(n); see, e.g., [10]. Incorporating informa-

tion about the state or the eventual actions of neighboring nodes (e.g., battery levels,

or information about their censoring policy) will lead to a better network operating

point but it raises issues such as the accuracy and the cost of acquiring non-local

information (exchange of information requires, for example, additional energy con-

sumption). In this work we focus on the design of separate (per-node) censoring

policies, so we will work with local information. As we will see in Section 2.3, the

success index variable defined in Section 2.2.5 could be used as a mean to couple the

decisions across the network —see [10] for details.
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2.2.3 Actions and policies

At each time epoch n, the sensor node must take an action (decision) a(n) about

sending the current message (a(n) = 1), or censoring it (a(n) = 0). A forwarding

policy π = {a(1), a(2), . . .} at a given node is a sequence of decision rules, which are

functions of the state vector; i.e.,

a(n) = πn [s(n)] = πn [e(n), x(n)] . (2.1)

2.2.4 State dynamics

Next, we describe the model for the stochastic processes e(n) and x(n) that form

the state vector. The energy consumed at each time epoch depends on the taken

action. Let cost b̂(n) denote the energy consumed by the node and h(n) the amount

of energy (if any) harvested by the node since the last action a(n−1). Then, e(n+1)

can be written recursively as e(n + 1) = φB

[
e(n)− b̂(n) + h(n)

]
, where φB(e) =

max(0,min(e,B)) is a clipping (projection) function that guarantees that the energy

stored in the battery is never negative, nor exceeds its maximum capacity B1.

Cost b̂(n) may include the cost of data sensing (if the sensor is the source of the

message), the cost of data reception (when data come from other nodes), the cost of

idle periods, or whatever other costs incurred since the last action. When a(n) =

1, b̂n includes the previous costs plus the cost of transmitting the message. This

statistical model allows us to deal with a broad range of scenarios: stochastic packet

arrivals, communications over fading channels, packet losses, or automatic repeat

request (ARQ) schemes, to name a few. In those networks, the energy consumption

during node communications can vary depending on the amount of retransmissions

required for a successful packet arrival. The range of values and statistical model for

h(n) depend on both the type of harvesting device and the source of energy considered

[65]. To simplify notation, we define b(n) = b̂(n) − h(n), so that battery dynamics

can be rewritten in a more compact form as

e(n+ 1) = φB [e(n)− b(n)] . (2.2)

1Similar models are used in related works [55, 83]. For example, [83] use a slightly different model,

e(n+ 1) = min{max{e(n) − b̂(n), 0} + h(n), B}, which assumes that the energy recharge happens

at the end of the decision slot. Using this alternative model does not state special difficulties, and

would not change the qualitative analysis in this thesis.
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Note that high values of harvested energy can render b(n) negative.

2.2.5 Rewards

The reward at time n is given by

r(n) = a(n)w(n)x(n), (2.3)

where w(n) ∈ {0, 1} denotes the success index (a binary variable taking value 1 if

the transmission is successful, and zero otherwise). Thus, the reward r(n) that each

node receives is a positive value x(n) if and only if it decides to transmit the message

(a(n) = 1) and the transmission is successful (w(n) = 1). Otherwise, the reward is

zero.

The meaning of the success index w(n) depends on the application scenario. In

general, a reasonable choice is to set w(n) = 1 if and only if the message is properly

received at its final destination. However, in multi-hop networks, the information

about the reception of messages at the sink node may not be available to all nodes

along the route. In such a case, other (suboptimal) choices for w(n) are possible. For

instance, in [10] it is shown that setting w(n) = 1 if the neighboring node forwards

the transmitted message can be nearly as effective as using the actual information

from the sink. Another (simpler) way to decouple the decisions between nodes is just

setting w(n) = 1 when the node is able to transmit a message, as proposed in [9].

This choice is optimal in single-hop networks with star topology. In any case, the

optimal policy in Section 2.3 will demonstrate that the optimal action depends on

w(n) or, to be more precise, on the knowledge of w(n) available at the agent making

the decision.

2.2.6 Problem formulation

Our transmission policies will be designed so that the expected aggregate reward is

maximized. Following a standard approach in DP, the discount factor 0 < γ < 1

is considered [15] and, based on it, the expected aggregate reward at each node is

defined as

Vπ(s) = E

{ ∞∑
n=0

γnr(n)

∣∣∣∣∣s(0) = s

}
= E

{ ∞∑
n=0

γna(n)w(n)x(n)

∣∣∣∣∣s(0) = s

}
. (2.4)
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The optimal transmission policy is then

π∗ = arg max
π

Vπ. (2.5)

Note that only messages successfully transmitted by the nodes are relevant in (2.4).

Eq. (2.4) states a DP problem with infinite horizon (because all future time instants

are considered) and discounted cost (due to the presence of γ which penalizes future

rewards exponentially) [15]. Indeed, Vπ(s) is typically referred to as either value func-

tion or reward-to-go function. Mathematically, the presence of γ eases the existence

of a stationary policy that optimizes (2.4); see, e.g., [15].

Other objectives are possible in DP problems. The most popular ones are either

assuming a finite horizon and optimize only up to that horizon, or assuming an infinite

horizon but maximizing a long-term average reward [15]. This second approach is

followed by Michelusi et al. ([82, 83, 84, 85]) but we decide to use the discounted cost

in (2.4) because it is, in general, better behaved and the derivation of the policies is

somewhat less intricate, requiring fewer assumptions (see, e.g., [15]). Second, from a

practical point of view, discounted infinite-horizon formulations are able to handle a

larger class of uncertainties about the future. In particular the proposed algorithms

can work in short-term stationary environments (see again [15]). Additional details

will be given in the ensuing section.

2.3 Optimal stationary policy

This section is devoted to design stationary solutions that solve the DP formulated in

Section 2.2.6. Since the objective in (2.4) depends on the stochastic processes x(n),

b(n), and w(n), assumptions on the stationarity of such processes are required. The

relationships among the main variables in the MDP are represented in the graphical

model in Fig. 2.2. Arrows in this model encode direct dependency relationships

between variables: the action is a function of the state, the success index depends

only on the state (and also on a(n), which is a deterministic function of the state),

the consumed or harvested energy depends on the taken action, and the energy at the

next state depends on the current battery level and the energy consumed or harvested

at time n. The model assumptions underlying the graphical model representation in

Fig. 2.2 and that will be used in our analysis, are the following:
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… 

x(n) 
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e(n+1) a(n+1)

w(n+1)

s(n+1)

b(n+1)

… 

… 

Figure 2.2: Graphical model relating the dependencies among the main variables in

the MDP.

A2.1- the process x(n) ≥ 0 is independent, identically distributed (i.i.d.) and inde-

pendent of e(n).

A2.2- b(n) is independent of x(n), e(n), and all its previous history, given the ac-

tion, a(n), and p(b(n)|a(n)) (being p the probability density function) does not

depend on n.

A2.3- w(n) is independent of all its previous history, given e(n) and x(n), and

p(w(n)|e(n), x(n)) does not depend on n.

Some independence assumptions may be oversimplifying for some applications: in

particular, the independence of the importance values can be non realistic in sce-

narios where consecutive sensor measurements are correlated. Also, the harvested

energy can be time-correlated when it depends on environmental variables that span

over several epochs (on the other hand, the energy harvested by wind sensors is

oftentimes modeled as i.i.d. [24]). Nonetheless, it is worth mentioning that: i) in-

corporating time-dependence into our model (while preserving Markovianity) does

not state special difficulties, though it would imply some extra computational load

and memory requirements, ii) the independence of b(n) with respect to x(n) or e(n)

can be relaxed without entailing a big penalty in terms of complexity [10]; iii) due

to the presence of the discount factor γ, stationarity can be relaxed to short-term

stationarity (more specific comments will be provided in this section after presenting
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the optimal solution); and iv) the stochastic schemes proposed in Section 2.5 will be

able to handle non-stationarities.

Under the previous assumptions and due to the recursive definition of e(n) given

by (2.2), the state dynamics are Markovian. Hence, the tuple (S,A, P, r), where S
is the set of states, A = {0, 1} is the finite set of possible decisions (actions), P is

the transition probability measure that can be expressed as p(s(n+ 1)|s(n), a(n)) =

p(e(n+ 1)|e(n), a(n))p(x(n+ 1)), and r is the instantaneous reward function, con-

stitutes an MDP. As a result, the existence of a Markovian and stationary optimal

policy π∗ is guaranteed [15, 96].

Since Bellman’s work in 1952 [13], it is know that the value function associated

with the optimal policy has to satisfy the so-called Bellman’s optimality equation [15]

Vπ∗(s) = max
a∈{0,1}

E
{
r(n) + γVπ∗(s(n+ 1))

∣∣a(n) = a, s(n) = s
}
, (2.6)

which can be used to obtain the optimal decision rule. This is accomplished by

Theorem 1. All expectations in the following are computed over x(n), b(n) and w(n),

unless otherwise stated through the conditional operators.

Theorem 1 Under A2.1-A2.3, it holds that (2.4) is maximized by a stationary policy

a(n) = π∗(s) satisfying

a(n) = u {W [e(n), x(n)]x(n)− τ [e(n)]} , (2.7)

where u is the Heaviside step function, W (e, x) = E{w(n)|e(n) = e, x(n) = x} is the

success probability and the threshold function τ is defined recursively through the pair

of coupled equations

τ(e) =γ
(
E{λ [φB(e− b(n))]

∣∣a(n) = 0} − E{λ [φB(e− b(n))]
∣∣a(n) = 1}

)
, (2.8)

λ(e) =γE{λ [φB(e− b(n))]
∣∣a(n) = 0}+ E{(W [e, x(n)]x(n)− τ(e))+}, (2.9)

with (z)+ = max{z, 0}, for any z.

The auxiliary function λ(e) represents the expected value function for an initial

battery e(0) = e, i.e.,

λ(e) = E{Vπ∗(s)|e(0) = e}. (2.10)

28



2.3. OPTIMAL STATIONARY POLICY

Proof: See Appendix A.1.

This theorem comes from the direct application of Bellman’s equation to a case

where some part of the state, x, is uncontrollable, and the “reduced” value function

λ only depends on e. A discussion on this kind of problems can be found in [16,

Chap. 6.1]. Focusing for now on (2.7), the theorem establishes that censoring decisions

are made by comparing the expected instantaneous reward W [e(n), x(n)]x(n) with

an energy-dependent threshold τ [e(n)]. The threshold quantifies the loss of the future

reward associated with the transmission. In other words, the value of τ [e(n)] is the

difference between the future reward if a(n) = 0 (and thus transmission energy is

preserved) and that if a(n) = 1. Clearly, the expected future reward will be higher

if the energy stored in the battery is higher (because more transmissions can be

afforded), so that λ(·) is an increasing function of e and τ(·) is always positive. This

implies that the optimal policy compares the instantaneous and future rewards and

acts accordingly. Moreover, the instantaneous reward depends on the (expected)

value of the success index, confirming that the optimal action depends not only on

e(n) and x(n), but also on w(n).

Due to A2.1-A2.3, the policy in Theorem 1 is stationary. As a result, the optimal

censoring policy (mapping from state variables to actions) does not depend on the

specific time instant, but only on the value of the state variables. As mentioned

earlier, the presence of γ opens the door to deal with non-stationarities as long as

the state information is stationary in the short-term. Intuitively, the reason is that∑∞
n=0 γ

n can be safely approximated by
∑N

n=0 γ
n with N < ∞ (for instance, for

γ = 0.95 and N = 100 the error in the approximation is less than 1%). Provided that

the processes are stationary during at least an interval of length N , using the results

in Theorem 1 will lead to a small error. In such a case, the censoring policy would

need to be recomputed every time the distribution of the random processes changes.

Although Theorem 1 holds for any cost and importance distributions, it does not

provide a clear intuition on how such distributions influence the optimal policies.

Additionally, the resulting equations are difficult to solve (even if the involved expec-

tations can be computed). The remaining of the chapter is devoted to handle some of

these issues. In Section 2.4, we consider several simplifying assumptions that render

the theoretical analysis more tractable, so that we can get further insights on the
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behavior of the optimal solution. Finally, in Section 2.5 we design low-complexity

stochastic approximations to the analytical schemes that can be applied in general

scenarios (not only to those in Section 2.4).

2.4 Analysis of the optimal policy

In this section, we will analyze different aspects of the optimal policies. In the first

subsection, we will derive recursive expressions to compute these optimal policies. In

the second subsection, we will obtain the steady-state energy distributions and assess

their impact on the optimal policies. To facilitate the computation of the optimal

schemes, we will consider three additional simplifying assumptions:

A2.4- process w(n) does not depend on x(n).

A2.5- the energy variables are discretized, so that e(n), b(n), and B take integer

values. As a result, the energy space is approximated by a finite space, but

the approximation error can be minimized by choosing the energy resolution

ε small enough, though at the expense of increasing the memory requirements

and the computational complexity. Discretization is a widely used approach to

deal with continuous-state DP problems.

A2.6- the success probability can be written as

W (e) = P{b(n) ≤ e
∣∣a(n) = 1}. (2.11)

In words, the transmission is successful if the node has energy enough to trans-

mit the message. This is the case if, for example, the communications are error

free. In the presence of path losses, (2.11) also holds if the message is retrans-

mitted until a confirmation is received - the path-loss probability would modify

the distribution of the energy cost b(n), but not the formal expression in (2.11).

Alternatively, if retransmissions are finite (or zero) path losses can be accom-

modated by just multiplying the right-hand side of (2.11) by the packet loss

probability. This equation is specially suited to single-hop communications. In

multi-hop networks, it is suboptimal because it does not consider whether the
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message is eventually forwarded through the network up to the sink. Nonethe-

less, the equation decouples variables across nodes, simplifying the derivation

of analytical expressions that can be useful even for scenarios where it entails a

loss of optimality.

Note that these assumptions are only needed to have a simple scenario where the op-

timal policy can be computed, and consequently to get some insights on its structure

and performance. Once that goal is achieved, they will be relaxed in the following

sections.

2.4.1 Optimal policies for particular cases

Under assumptions A2.1 and A2.2, the selective transmitter given by (2.7), (2.8) and

(2.9) can be described by the following set of discrete equations

a = u

(
x− τ(e)

W (e)

)
(2.12)

τ(e) = γE{λ(φB(e− b))
∣∣a = 0} − γE{λ(φB(e− b))

∣∣a = 1} (2.13)

λ(e) = γE{λ(φB(e− b))
∣∣a = 0}+W (e)E

{(
x− τ(e)

W (e)

)+
}

(2.14)

Note that, since b(n) and a(n) are stationary, index n has been dropped to simplify

notation in (2.12), (2.13), and (2.14).

Even in this simplified scenario, (2.13) and (2.14) cannot be solved analytically,

so that neither the reduced value function, λ, nor the transmission threshold, τ , can

be found in closed form. However, the considered assumptions reduce the size of the

state space and thus, facilitate the implementation of classic DP iterative methods,

such as Value Iteration and Policy Iteration [15, 94, 96]. For example, using Value

Iteration and with l denoting an iteration index, the optimal schemes can be found

iterating the equations

τl(e) = γE{λl−1(φB(e− b))
∣∣a = 0} − γE{λl−1(φB(e− b))

∣∣a = 1} (2.15)

λl(e) = γE{λl−1(φB(e− b))
∣∣a = 0}+W (e)E

{(
x− τl(e)

W (e)

)+
}

(2.16)

where τ0(e) and λ0(e) are arbitrary initial values. This iteration is repeated until

convergence (‖λl − λl−1‖ is small enough), which is guaranteed.
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To gain some insights, next we numerically solve and analyze the optimal solu-

tion for different scenarios with stochastic energy costs. We consider the case when

E{b|a = 0} < 0, which implies that nodes can discard messages to recharge batteries

during operation and, thus, the lifetime can be extended indefinitely. To be more

meaningful, we will assume a scenario where each decision epoch can be split into a

variable number of fixed-duration time slots, and b is decomposed as

b = nS · bI + bR − h+ a ·∆, (2.17)

where nS is the number of time slots since the last decision, bI is the (stand-by)

energy consumed from battery during each time slot, bR is the cost of receiving or

sensing the current message, h is the amount of energy harvested since the last node

decision, a is the action, and ∆ is the incremental cost of deciding a = 1. We assume a

lossy channel where retransmission trials are repeated until the message is successfully

received at destination. Thus,

∆ = nT bT (2.18)

where bT is the cost of each transmission trial and nT is the number of transmission

trials.

We have simulated a scenario where bR = 2, bI = 1 and nS follows a geometric

distribution (2.19) with mean 1/p = 2.

P{ns = k} = (1− p)kp (2.19)

We assume a very poor channel, so that transmission trials fail with probability 0.4.

The cost of each transmission trial is set to 4. This configuration tries to simulate

WSN configurations where the energy cost of transmitting a message is substantially

higher than that of sensing or receiving a message. The amount of harvested energy, h,

is also stochastic. We assume that the amount of harvested energy can be decomposed

as h =
∑m

i=1 hi, where hi are i.i.d. variables accounting for the battery recharged at

each time slot i. During each time slot, the probability of a nonzero battery recharge

is ph = 1/3, and, when hi > 0, hi is also geometrically distributed with mean mh.

Three different values of mh, namely, 5, 10 and 15, have been explored. For these

values, the corresponding values of

b0 = E{b|a = 0} (2.20)
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are −0.1, −3.4, and −6.7, respectively. Finally, an i.i.d. exponential importance

distribution with unit mean was assumed, and γ = 0.999.

Fig. 2.3(a) shows the threshold function for each value of b0. Note that, except

for very small values of e, threshold τ(e) is a decreasing function of e (for very small

values of e, the influence of W (e) in (2.12) is non-negligible and, consequently, it is

more difficult to understand the behavior with respect to e). This can be explained as

follows: for small values of e, the node increases the threshold to avoid that messages

with low importance deplete batteries. For e close to the maximum battery load,

there is almost no benefit of refusing transmission, because the battery cannot be

indefinitely charged and, thus, only very unimportant messages are censored. Addi-

tionally, as b0 gets smaller (more negative), τ gets smaller too. The reason is that

faster battery recharge allows for a higher transmission rate.

Fig. 2.4 illustrates the effect of changes in the battery size, B, in the threshold

function for the second test-case (mh = 10 and b0 = −3.4). Here, we also show

as a baseline a constant threshold policy τ̄ (horizontal dotted line), whose value is

chosen so that the average (long-term) energy consumption coincides with the average

harvested energy, without considering the battery limits. This simple policy, which

is related to the “energy neutral operation” concept proposed in [65], is analyzed

in different works, either under the name of balanced policy (BP) in [83] or under

the name of non-adaptive balanced policy (NABP) in [55, 84]. Using this approach,

the problem reduces to estimate the constant threshold τ̄ that renders E{b} = 0,

assuming B =∞. This condition can also be written as

E{b|a = 0}FX(τ̄) + E{b|a = 1} [1− FX(τ̄)] = 0 (2.21)

with F−1
X being the cumulative distribution function of x. This equation is solved for

τ̄ = F−1
X

(
b1

b1 − b0

)
, (2.22)

where b1 = E{b|a = 1} and F−1
X is the inverse of the cumulative distribution function

of x.

2.4.2 Asymptotic behavior: steady-state distributions

In this subsection, we will focus on asymptotic behavior, so that the effects of the

initialization are disregarded.
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Figure 2.3: (a) Optimal thresholds for a harvesting node with B = 100, stochastic

energy costs, a unit-mean exponential importance distribution and γ = 0.999, for

different values of b0. (b) The value function λ(e) for the same setup.

Using elementary Markov Chain properties [17], it can be shown that, under some

general conditions, the statistical distribution of the battery level converges, as n goes

to infinity, to a stationary distribution φ that is the solution of (I−P)φ = 0 subject

to φi ≥ 0 and
∑B

i=0 φi = 1, where P is the transition probability matrix with entries

pij = P{e(n) = j
∣∣e(n− 1) = i}, i, j = 0, . . . , B (2.23)

and where, for notational convenience, we started the matrix indexing at 0.

Using the stationary distributions, the expected performance of a selective trans-
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Figure 2.4: Optimal thresholds for a harvesting node with b0 = −3.4, bT = 4, expo-

nential importance distribution and γ = 0.999, for different values of the battery size.

The horizontal dotted line shows the constant threshold value balancing the average

energy consumption with the recharging rate.

mitter can be computed as

V ∗ = lim
n→∞

∞∑
t=n

γt−nE{a(t)w(t)x(t)}. (2.24)

Leveraging A2.3, and using (2.7), equation (2.11) can be substituted into (2.24) to

yield,

V ∗ =
1

1− γE{a(t)w(t)x(t)} =
1

1− γ
B∑
e=0

E
{
a(t)w(t)x(t)

∣∣e(t) = e
}
φe (2.25)

Taking into account that w(t) does not depend on x(t), a(t) and e, the expectation
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in the sum can be computed as

E{a(t)w(t)x(t)
∣∣e(t) = e} =E

{
w(t)x(t)

∣∣a(t) = 1, e(t) = e
}
P{a(t) = 1|e(t) = e}

=E
{
w(t)

∣∣a(t) = 1, e(t) = e
}
E
{
x(t)

∣∣a(t) = 1, e(t) = e
}

· P{a(t) = 1
∣∣e(t) = e}

=W (e)E
{
x(t)

∣∣a(t) = 1, e(t) = e
}
P{a(t) = 1

∣∣e(t) = e}

=W (e)E
{
x(t) · u

(
x− τ(e)

W (e)

)}
(2.26)

Defining function g as

g(τ) = E{u(x− τ)x}, (2.27)

and substituting (2.26) into (2.25) we arrive at

V ∗ =
1

1− γ
B∑
e=0

g

(
τ(e)

W (e)

)
W (e)φe (2.28)

To compute φ, one has to compute first the transition matrix P, which depends

on the censoring policy [cf. (2.23)]. This is accomplished in Appendix A.2.

It is important to remark here that, strictly speaking, optimizing (2.25) is only

equivalent to optimizing (2.4) (our objective) when γ → 1. Nevertheless, studying

(2.25) is useful to evaluate the long-term performance of our strategy.

Additionally, we compute the expected performance of the balanced policy (2.22)

based on a constant threshold τ̄ . For such constant threshold, τ(e) = τ̄W (e), and

(2.28) can be simplified as

Vτ̄ =
g(τ̄)

1− γ
B∑
e=0

W (e)φτ̄ ,e. (2.29)

Finally, for a non-selective transmitter, τ̄ = 0, g(τ̄) = E{x} and

V0 =
E{x}
1− γ

B∑
e=0

W (e)φ0,e. (2.30)

Fig. 2.5 shows the expected discounted reward [cf. (2.24)] for mh ranging from

1 to 29 (equivalently b0 = [−12, 2]) and for ph = 1/3. Fig. 2.6 illustrates a similar

behaviour for a scenario with bT = bR = 2 and ph = 0.04. In the horizontal axis

we show the corresponding value of b0 (average energy consumption when there is
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Figure 2.5: Expected performance for a scenario with stochastic energy costs and

high refill probability ph = 1/3, as a function of b0. Battery size is set to B = 100

and exponential importance distribution with unit mean, and γ = 0.999.

no transmission). The figures demonstrate that: as b0 increases, the performance of

the balanced transmitter (BAL) deteriorates much faster than the one of the optimal

transmitter (OPT), being even worse than that a non-selective strategy (NS). This

effect is more noticeable in Fig. 2.6, where the harvesting is more occasional (lower

probability of refill). Another relevant behavior is observed on the left region of Fig.

2.5 (very negative values of b0). In that region, the energy harvesting is enough

to compensate on average the communications costs, so that OPT, BAL and NS

obtain the same performance. As energy decreases censoring is needed, but still

OPT and BAL perform closely. Fig. 2.6 also shows that, even in situations where

the transmissions costs are similar to reception costs, the performance of OPT is

noticeably superior to BAL and NS. From both figures, we can conclude that there

are some scenarios where the performance of BAL is far from optimal.
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Figure 2.6: Expected performance for a scenario with stochastic energy costs and low

refill probability ph = 0.04, as a function of b0. Battery size is set to B = 100 and

exponential importance distribution with unit mean and γ = 0.999.

2.5 Stochastic approximate schemes

The analysis in the previous sections provided insights on the behavior of optimal

censoring policies in harvesting sensor nodes. However, the optimal policies pre-

sented so far are computationally very expensive, so that they can not be easily

implemented in real time by sensors with limited computational capabilities. In this

section, we present different ways to develop suboptimal adaptive stochastic schemes

that reduce the computational complexity and, additionally, are able to deal with

non-stationarities.

2.5.1 A stochastic approximation to the optimal policy

The threshold-based optimal policy presented in Section 2.3 stands on two main as-

sumptions on the energy dynamics: (a) neither the energy consumption nor the

recharge depend on the importance value, but only on the taken action, and (b)
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in the linear regime (i.e., with the exception of the battery saturation points) the

variation of the energy stored in the battery does not depend on the current battery

level.

The main difficulty to obtain the optimal solution using the value iteration method

proposed in (2.15) and (2.16) is the computation of the expectations involved. But

if we assume again that e(n) is discrete2, they can be stochastically approximated in

a sample-based manner.

In order to do so, we will represent the policy as an instance of Robbins-Monro

algorithm [134] and use stochastic approximation techniques to get our algorithm.

First of all, we will decompose cost b(n) as

b(n) = b0(n) + a(n)∆(n) (2.31)

that is, b0(n) represents the energy consumption when a message is censored (a(n) =

0) and ∆(n) represents the incremental cost of transmitting a message. In addition,

it is useful to write (2.15) and (2.16) in matrix form. Let us define vectors τ =

(τ(0), τ(1), . . . , τ(B))T , λ = (λ(0), λ(1), . . . , λ(B))T , and ω = (W (0), . . . ,W (B))T ,

and the vector of success indexes wb = (u(0− b), u(1− b), . . . , u(B− b))T . We assume

in the following that vectors are indexed from 0, in such a way that, for instance,

λe = λ(e). Also, we define the transformation λ′ = Tbλ such that λ′e = λφB(e−b) . In

Appendix A.3 we derive the following adaptive rules as an instance of Robbins-Monro

algorithm [134]

ωn+1 = (1− ηn)ωn + ηnwb0,n+∆n , (2.32)

αn+1 = (1− ηn)αn + ηnTb0,nλn, (2.33)

βn+1 = (1− ηn)βn + ηnTb0,n+∆nλn, (2.34)

λn+1 = (1− ηn)λn + ηn
(
γαn + [x(n)ωn − γ (αn − βn)]+

)
, (2.35)

τn+1 = γ(αn+1 − βn+1) (2.36)

where we have defined the auxiliary vectors α, β. ηn stands for the learning step size,

which can be set either to diminish with time (for instance in stationary scenarios

where one wants τ (n) to converge to a fixed function) or to a small constant (for

2Even if not discrete, a common strategy to deal with the estimation of continuous (state) policies

is to discretize the input state and use linear interpolation.
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adaptation to changes in non-stationary scenarios). The step size must be chosen in

order to balance a good convergence speed and a low steady-state error, but always

satisfying the Robbins-Monro step-size conditions for convergence [134],

∞∑
n=0

ηn =∞, and
∞∑
n=0

η2
n <∞.

Note that, at each iteration, the above rules update all components of vector λ,

i.e., the whole estimate of λ(e) is updated for all values of e. Thus, the computational

load and memory requirements grow linearly with the number of discrete energy

values. Neither the importance nor the energy distribution are required to be known

to use (2.32), (2.33), and (2.34). Instead, they are run every time a sample of b0(n)

or ∆(n) is observed. Regarding the observability of b0(n) and ∆(n), some remarks

are in order:

• When a(n) = 0, ∆(n) is not observed, and βn cannot be updated.

• When a(n) = 1, we assume that the sensor can measure the energy level right

before taking the necessary actions to transmit the packet. Thus, the node can

measure an intermediate energy level e(n′) = φB(e(n)−b0(n)), that can be used

to estimate b0(n) and ∆(n), as follows:

– If there is no battery underflow or overflow, then b0(n) = e(n′)− e(n) and

∆(n) = e(n+ 1)− e(n′).

– If there is battery depletion (e(n+ 1) = 0), αn, βn and ωn are not up-

dated.

– If there is battery overflow (e(n+ 1) = B), we estimate b0(n) and ∆(n) as

b̃0(n) = e(n)− e(n′) and ∆̃(n) = e(n+ 1)− e(n′).

Note that the cost estimates under battery overflow are biased, and more involved

imputation methods, see e.g. [53], could be applied to solve this issue, but this is

left for future work. In Table 2.2, we summarize the main steps required to run the

stochastic approximate policy (SAP) algorithm.
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SAP algorithm

INPUTS: Initial battery e0, γ, and η

Initialize ω0 = 0, λ0 = 0, α0 = 0, β0 = 0.

At each time step n, at the sensor node:

1. Sense or receive a message of importance x(n).

2. Harvest energy h(n) and consume b̂0(n), (b0(n) = b̂0(n)− h(n))

Energy after sensing e(n′) = φB(e(n)− b0(n)).

3. Decide about transmitting the message:

a(n) = u
[
ωe(n) · x(n)− τe(n)

]
.

4. Consume additional cost ∆(n) if a(n) = 1,

b(n) = b0(n) + a(n)∆(n)

e(n+ 1) = φB(e(n)− b(n)).

5. Approximate b0(n) as b̃0(n) = e(n′)− e(n)

and ∆(n) as ∆̃(n) = e(n+ 1)− e(n′).
6. Update λn according to (2.35).

7. If (e(n+ 1) > 0): update αn using (2.33) with b̃0(n).

If (a(n) = 1): update ωn and βn according to (2.32) and (2.34) using ∆̃(n).

9. τn+1 = γ(αn+1 − βn+1).

Table 2.2: Description of stochastic approximate policy (SAP) algorithm.

2.5.2 Q-learning

An alternative design is to use universal stochastic approximation methods that do not

require any assumption on the state dynamics, like Q-learning [113, 127]. Q-learning

is a temporal-difference (TD) reinforcement learning method. These methods combine

dynamic programming with Monte Carlo ideas in such a way that they do not need

to model the environment dynamics [113]. They can be expected to outperform SAP

in scenarios where the above assumptions are too unrealistic. However, there is a

price to pay for this flexibility. The SAP algorithm leverages the structure of the

optimal decision to reduce the search space and speed up convergence. On the other

hand, Q-learning has to compute a Q value for each possible action and state (energy

41



CHAPTER 2. MDP MODELS FOR CENSORING IN HARVESTING SENSOR
NETWORKS

and importance value); as a consequence, the memory requirements may be too high.

Furthermore, at each iteration, the Q-learning algorithm only updates the estimate of

the value functions at the current state, and though convergence can be theoretically

guaranteed, it requires to visit all possible states infinitely often [128]. In practice,

for large state spaces, convergence to the optimal solution is difficult and learning

time is much larger than that of model-based approaches as it will be shown in the

numerical experiments in Section 2.6.

Our Q-learning implementation is a minor variation of the algorithm proposed in

[19, Eq. (8)] for a similar application. In order to be able to apply it to our setup,

we quantized the importance value, which is a real number, into a number of levels

(standard Q-learning needs a discrete state space), and apply the algorithm in [19].

This implementation uses an ε-greedy action selection method, i.e., the node takes

its best action at current state with probability (1 − ε) and a random action with

probability ε. Hence, there are two free parameters the learning rate η, and ε the

exploration probability in the ε-greedy action selection method. The whole algorithm

is summarized in Table 2.3.

2.5.3 Adaptive balanced transmitter

A further step to decrease computational complexity is to restrict the attention to

suboptimal policies that are easy to compute. A good candidate is the balanced policy

presented in (2.22). This policy estimates a constant (energy independent) threshold

that tries to balance (on average) the harvested and consumed energy under the

infinite battery assumption.

The main difficulty of solving (2.22) is that it requires knowledge of the importance

distribution. In most cases such a knowledge is not available, or the distribution

may not be stationary. In the next lines, we present a adaptive scheme to bypass

those problems. An equivalent method for obtaining an adaptive balance policy was

presented in the preliminary work in [49].

Upon defining ρ = b1
b1−b0

, equation (2.22) states that the constant threshold τ̄ is

the ρ-quantile of the distribution function of x, i.e., FX . Based on the results in [103],

which builds functions that are minimized at specified statistics, we can define the

following cost function whose expectation attains its minimum at the ρ-quantile of
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Q-learning based censoring algorithm

INPUTS: Initial battery e(0), γ, and η

Initialize Q1(x, e) = 0, Q0(x, e) = 0, for all x and e.

At each time step n, at the sensor node:

1. Sense or receive a message of importance x(n) and quantize it.

2. Harvest energy h(n) and consume b̂0(n), (b0(n) = b̂0(n)− h(n)).

3. Decide about transmitting the message using

ε-greedy action selection method.

4. Consume additional cost ∆(n) if a(n) = 1,

b(n) = b0(n) + a(n)∆(n).

e(n+ 1) = φB(e(n)− b(n)).

5. If (n > 1): Update Q function

If (a(n− 1) = 1):

Q1(x(n− 1), e(n)) = (1− η)Q1(x(n− 1), e(n))

+η(r(n− 1) + γmax{Q1(x(n), e(n+ 1)), Q0(x(n), e(n+ 1)})
Else:

Q0(x(n− 1), e(n)) = (1− η)Q0(x(n− 1), e(n)).

+η(γmax{Q1(x(n), e(n+ 1)), Q0(x(n), e(n+ 1)}).

Table 2.3: Description of censoring algorithm based on Q-learning.

some conditional probability density

J(x, τ̄) = ρ(x− τ̄)+ + (1− ρ)(τ̄ − x)+. (2.37)

To minimize (2.37) we implement a stochastic gradient method

τ(n) = τ(n− 1) + ηn {ρnu [x(n)− τ(n− 1)]− (1− ρn)u [τ(n− 1)− x(n)]} , (2.38)

where ηn represents, again, a learning step. Both b1 and b0 have also to be estimated

in order to calculate ρ. This can be easily accomplished using the sample mean.

In the following, this method will be referred to as Adaptive Balanced Transmitter

(ABT) and is summarized in Table 2.4.
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ABT algorithm

INPUTS: Initial battery e(0) and η

Initialize τ(n) = 0, n0 =, b0 = 0, n1 = 0, b1 = 0.

At each time step n, at the sensor node:

1. Sense or receive a message of importance x(n).

2. Harvest energy h(n) and consume b̂0(n), (b0(n) = b̂0(n)− h(n))

3. Decide about transmitting the message:

a(n) = u [x(n)− τ(n− 1)].

4. Consume additional cost ∆(n) if a(n) = 1,

• b(n) = b0(n) + a(n)∆(n)

• e(n+ 1) = φB(e(n)− b(n)).

5. Update estimated costs:

If (e(n+ 1) > 0):

n0 = n0 + 1,

b0 = ((n0 − 1)/n0)b0 + (1/n0)b(n).

If (a(n) = 1):

n1 = n1 + 1,

b1 = ((n1 − 1)/n1)b1 + (1/n1)b(n).

6. Compute ρn = min{max{ b1
b1−b0

, 0}, 1}.
7. Update τ(n) using (2.38).

Table 2.4: Description of Adaptive Balanced Transmitter (ABT) algorithm.

2.6 Simulation results

In this section, we run simulations to compare the performance of the three presented

stochastic policies: SAP, described in Table 2.2; Q-learning in Table 2.3; and ABT,

given by Table 2.4. In addition, a non-selective scheme (NS) is included as a baseline

and, when possible, the theoretical optimal performance (OPT), calculated as in

Section 2.4. Three sets of numerical experiments are simulated. The first one analyzes

a single-hop network with stationary energy harvesting processes. The second one

considers a non-stationary energy harvesting scenario, also with single-hop topology,
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where the statistics of the energy refill process vary in a periodical way. The third one

analyzes the behavior of the developed schemes in multi-hop networks. Although the

proposed algorithms are not optimal for that case, the idea is to test their performance

and compare them with other existing alternatives.

To run the experiments we assume that: 1) nodes have a way to measure the

energy consumed after each decision. 2) Performance is measured in terms of a

sample-based estimation (V̂ ) of the steady-state discounted aggregate reward received

at the destination, and, when possible, it is compared to the optimal discounted

value obtained using (2.28). V̂ is calculated as the discounted (γ-weighted) sum of

the importance values of the messages received at the sink during the second half

of the simulated horizon. 3) In all experiments, the value of the reward discount

factor γ is set to 0.999. 4) Message importances follow an exponential distribution

(with mean x = 2), which is a sensible approximation for several practical scenarios,

such as monitoring applications, where most messages are of low importance and a

small number of them (alarms) have a high importance. For the non-harvesting case,

[9, 43] found that these assumptions on the importance distribution were not very

critical, and the main conclusions in those papers also apply here. In any case, neither

ABT nor SAP nor Q-learning require prior information about the importance/energy

distributions.

2.6.1 Single-hop network

Stationary energy refill

The first set of examples is aimed at validating the ABT and SAP schemes. The

idea is to show that they are good approximations to the optimal decision rule. In

this section, a single-hop (cellular) network is considered. This allows us to assume

that if the energy available in the battery is greater than that required to transmit

a message, the message is successfully received at the sink. For this experiment,

the learning rate of both adaptive algorithms is set to ηn = 1/(1 + δ · n), with

δ < 1 denoting a small constant. Since all processes are stationary, convergence is

then guaranteed. For each of the schemes, the value of δ is selected to maximize

the value of V̂ . For the comparison with Q-learning, we quantized the importance

value into 100 different levels, used a learning rate η = 0.2, and random exploration
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Figure 2.7: Comparison between the SAP, ABT, and Q-learning algorithms.

with probability ε = 0.1 [94]. The energy refill values are drawn from a Bernoulli

distribution such that the harvested energy at each slot (if non-zero) is h = 30 with

a fixed probability of harvesting (the value of the probability will vary to simulate

different harvesting scenarios). Moreover, we use the cost model in (2.17) and (2.18),

with bR = 3, bT = 5, and assuming that the message is retransmitted until it is

correctly received (the package error probability is set to 0.3). As already pointed

out, by varying the value of the probability of refill, we vary the value of b0 and b1.

The results presented next are obtained after averaging 100 simulations with different

random message sequences and energy patterns.

Fig. 2.7 (where the probability of harvesting is 0.3, and therefore b0 = −6) con-

firms the expected behavior: i) the convergence speed of Q-learning (non parametric,

non model-based) is much slower than that of SAP and ABT; and ii) within the

simulated time horizon (note the logarithmic scale in the horizontal axis), Q-learning

does not converge to the optimal solution, mainly because it does not visit some of

the states (hence, the corresponding values of the action-value function can never be

properly estimated). Due to these limitations, Q-learning will not be included in any

further simulations. It is important to remark that the use of more complex rein-

forcement learning algorithms, e.g., based on function approximation schemes [128],

is likely to perform well in this class of problems. We consider this an interesting

research direction to be explored in future works.
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Figure 2.8: Performance in terms of V̂ of the proposed algorithm compared to the

theory for different b0 values in a single-hop network.

In Fig. 2.8, where the probability of harvesting varies from 0.001 to 0.5, we

plot the average performance V̂ versus b0 for SAP, ABT and NS, together with the

optimal performance (OPT) calculated using (2.28). It is clear that the SAP scheme

outperforms the ABT scheme for all tested cases. More importantly, the SAP scheme

achieves a performance very similar to that of the OPT scheme for all b0. Fig. 2.9

shows the estimated and optimum thresholds. In general they are close but in case

(b), where b0 = −9, the energy costs are typically underestimated (due to battery

overflows), and consequently the estimation of the threshold is biased. Nevertheless,

the performance of SAP is almost optimal (cf. Fig. 2.8).

In a nutshell, the simulations validate our approach for the tested scenarios and

demonstrate that the stochastic approximation is able to approximate the correct

thresholds and, consequently, achieves an almost optimal performance.

Non-stationary energy refill

Table 2.5 shows that, although our derivations assumed that the processes were sta-

tionary, our proposed scheme can be applied to non-stationary scenarios. Specifically,
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Figure 2.9: Estimation of τ obtained by the SAP (shaded area) and OPT (solid and

dashed line) schemes for (a) b0 = −3 and (b) b0 = −9. For the approximated τ , the

average value ±2σ is shown.

we simulate a periodic refill for which b0 is positive during some periods of time (when

the harvested energy does not compensate the operating cost) and negative during

others. The actual refill in each slot follows a Bernoulli distribution with probability

0.3 and with different h in the two regimes. This way, we simulate a simplified version

of a number of harvesting devices that have a periodical behavior with some random

component, such as solar energy harvesters.

Since the environment is not stationary, the learning rate is set to a constant

value that trades off convergence rate and (gradient) noise in “steady state”. In this
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SAP ABT NS

V̂

mean 1188.32 947.93 685.94

std 3.25 2.39 3.23

Table 2.5: Mean and standard deviation of V̂ achieved by the SAP, ABT and NS

algorithms in a non-stationary environment. Listed values were obtained by running

200 different simulations.
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Figure 2.10: Battery evolution (across time) of SAP, ABT and NS algorithms in a

non-stationary environment.

experiment, we use η = 0.5 for SAP and η = 0.05 for ABT, which are, respectively,

the values that empirically maximize V̂ . The use of an heuristic rule for step-size

selection in a real application is an important issue, but it is out of the scope of this

thesis.

As already mentioned, the results listed in Table 2.5 show that the benefits of our

stochastic approximation schemes also hold true in the tested non-stationary envi-

ronment. The time evolution of the battery load with time in Fig. 2.10 provides ad-

ditional insights. It shows that, when no censoring is applied, the battery of the node

is empty during long periods of time, leading to a poor performance. On the other

hand, the adaptive balanced transmitter (ABT) is able to keep some small amount

of energy in the battery during the low-refill periods and, hence, it achieves a bet-
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(a) (b) 

Figure 2.11: Example of network routing topology. In (a) all messages are routed to

sink node 11, which is connected to a power line and has no battery limitations. In

(b) we choose different nodes as sink nodes.

ter performance. More importantly, the proposed stochastic approximation method

is able to modify (adapt) rapidly enough the transmission threshold when the refill

pattern changes, so that it always has some battery to transmit important messages

and, hence, it obtains the best performance.

2.6.2 Multi-hop networks

In this section, we test our algorithms in a more complex scenario: a multi-hop

network with two different topologies. Fig. 2.11(a) represents a random tree topology

with a variable number of nodes, where all messages are routed through the tree to

the root (sink) node, which is assumed to be wired to a power line. The network

tree is randomly constructed so that for each node of index i, we choose with equal

probability one and only one node of index j (with j > i) to be connected with. The

tree graph can be understood either as the actual topology of a cycle-free network or

as the spanning tree obtained after running a specific routing protocol to a network

with cycles. On the other hand, Fig. 2.11(b) represents a squared-lattice network with

fixed number of nodes. In this case, the routing to the sink is fixed and computed

using the Dijkstra algorithm [34]. Although the simulated networks are relatively
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simple, they are useful to illustrate the interaction between the censoring strategies

across different nodes.

In addition, we consider a success index w(n) = 1 when the node is able to

transmit the message, consequently the scheme is suboptimal relative to the maxi-

mization of the discounted aggregated reward of the messages received at the sink. It

is also assumed that all nodes generate messages with the same probability, so that

nodes closer to the sink will handle more traffic. As in the previous subsection, the

importance of the messages is an exponential i.i.d. process with mean x = 2.

We simulated 6 different scenarios, all of them with fixed bR and bT , and without

channel losses. The harvesting is random and different harvesting probabilities are

considered. Scenarios 1, 2, and 3 correspond to a tree network [Fig. 2.11(a)] with 20

nodes (scenarios 1 and 2) and 10 nodes (scenario 3). The harvesting probability is

0.1 for scenario 1, and 0.5 for 2, 3. Scenarios 4, 5, 6 correspond to a grid network of

9 nodes (8 sensors and a sink). In scenarios 4 and 5, the sink is located at one of the

corners, e.g., node 9 in Fig. 2.11(b); while for scenario 6 it is at the center of the grid

(node 5 in Fig. 2.11(b)). The harvesting probability is 0.5 for scenario 4 and 0.9 for

scenarios 5 and 6. Fig. 2.12 shows the average of 200 simulations.

The results point out that, although SAP algorithm was not explicitly designed

for multi-hop networks, it achieves a better performance than that of the tested

alternatives. In fact, the gain of the SAP scheme relative to the ABT scheme in Fig.

2.12 in scenarios 2, 4, and 5 is much larger than that observed in the experiments

presented in the previous section. Hence, the combination of the local optimization

processes at each node has a positive global influence. Although the results are not

comprehensive, they serve as a preliminary validation. Designing decisions jointly

across nodes, accounting for the costs of exchanging information, or investigating the

effect of interference and medium access control are all aspects worth analyzing (for

example, [85] showed that balanced policies are suboptimal if interference is present),

but they are out of the scope of this thesis and are left as future work.

2.7 Summary

In this chapter, we have designed and analyzed a censoring scheme for WSNs with

harvesting devices. The problem has been modeled using the MDP framework and

51



CHAPTER 2. MDP MODELS FOR CENSORING IN HARVESTING SENSOR
NETWORKS

1 2 3
0

500

1000

scenarios

V̂

 

 

SAP
ABT
NS

4 5 6
0

500

1000

scenarios

V̂

 

 

SAP
ABT
NS

Figure 2.12: Performance in terms of V̂ of the two proposed algorithms and the non

selective method for 6 different multi-hop scenarios.

some assumptions were made in order to obtain a threshold-based optimal policy.

Some insights about these optimal policies were provided and suboptimal schemes

based on stochastic approximation were developed too. Numerical experiments con-

firmed the theoretical claims and showed the benefits of our approach with respect to

previous works, especially when the harvested energy is scarce. Finally, experiments

showed that these schemes perform well even if some of the assumptions under which

they were designed (i.e., stationarity, single-hop networks) do not hold.

A more detailed discussion of the results and some future research lines can be

found in Chapter 5.
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3
Decoupled diffusion for adaptive distributed

estimation in WSN

In this chapter, we propose a novel diffusion strategy for adaptive distributed es-

timation in sensor networks called Decoupled Adapt-then-Combine (D-ATC). Our

strategy, which is specially convenient for heterogeneous networks, is compared with

standard diffusion schemes. Such comparison shows the need of implementing adap-

tive combination rules to obtain a good performance in case of heterogeneous networks

for both strategies. Therefore, we propose two adaptive rules to learn the combina-

tion coefficients that are useful for our diffusion strategy. Two different theoretical

analyses and several experiments simulating both stationary and tracking estimation

problems show that our method outperforms state-of-the-art techniques, becoming a

competitive approach in different scenarios.

The rest of the chapter is organized as follows. We start presenting a survey

of related work in the field of adaptation and learning in networks. Then, the D-

ATC diffusion strategy is presented in Section 3.2 and we theoretically analyze its
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performance in Section 3.3. The learning rules for adapting network combiners are

derived in Section 3.4. Finally, we close the chapter with experimental results.

3.1 State-of-the-art in adaptive networks

Over the last years, adaptive diffusion networks have become an attractive and robust

approach to estimate a set of parameters of interest in a distributed manner (see,

e.g., [29, 44, 74, 107, 108, 109] and their references). Compared to other distributed

schemes, such as incremental [73] and consensus [109] strategies, diffusion techniques

present some advantages, e.g., they are more robust to link failures or they do not

require the definition of a cyclic path that runs across the nodes as in incremental

solutions [28]. Furthermore, they perform better than consensus techniques in terms

of stability, convergence rate, and tracking ability [108]. For these reasons, adaptive

diffusion networks are considered an efficient solution in several applications, such as

target localization and tracking [107], environment monitoring [108], and spectrum

sensing in mobile networks [33], among others. Moreover, they are also suited to

model some complex behaviors exhibited by biological or socioeconomic networks

[108].

Diffusion WSNs consist of a collection of connected sensor nodes, linked according

to a certain topology, that cooperate with each other through local interactions to

solve a distributed inference or optimization problem in real time. Each node is

able to extract information from its local measurements and combine it with the

information received from its neighbors [107, 108]. This is typically performed in two

stages: adaptation and combination. The order in which these stages are performed

leads to two possible strategies: Adapt-then-Combine (ATC) and Combine-then-

Adapt (CTA) [27, 74]. In both cases, the adaptation and combination steps are

interleaved with the communication of the intermediate estimates among neighbors.

It is also important to mention that in these diffusion schemes the adaptation and

combination steps are mutually dependent, i.e., the combined estimate is fed back

into the adaptation phase.

A key aspect in diffusion networks is the way nodes fuse neighbors information.

Indeed, the combination weights play an essential role in the overall performance of

the network. For instance, diffusion least-mean-squares (LMS) strategies can per-
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form similarly to classical centralized solutions when the weights used to combine the

neighbors estimates are optimally adjusted [107, 114, 140]. Initially, different static

combination rules were proposed such as Uniform [20], Laplacian [131], Metropolis

[131], and Relative Degree [26]. As neither of these rules take into account that

the nodes may be operating under different signal-to-noise ratio (SNR) conditions,

they result in suboptimal performance when the SNR varies across the network.

For this reason, some adaptive schemes for adjusting the combination weights (e.g.,

[114, 116, 135, 140]) have also been proposed in order to optimize the network per-

formance under these circumstances. Although these adaptive rules can reduce the

steady-state error with respect to a scheme with static combiners, some experiments

show a deterioration in the convergence behavior [135]. Consequently, some schemes

propose the use of different rules for transient and steady-state regimes, and include

mechanisms to switch from one rule to the other in an online manner [41, 135]. Partic-

ularly, in [41] we proposed a method to estimate the convergence time of the network

and, consequently, select different combination rules for transient and steady state.

Most of these works consider just the case of networks composed of homogeneous

nodes, i.e., nodes that implement the same adaptive rules with the same parame-

ters (filter length, step size, etc.). However, there are circumstances where the use

of heterogeneous nodes may be advantageous, e.g., recurring to nodes with differ-

ent adaptation speeds to improve the network tracking capability. In this case, the

previous approaches for adjusting the combiners fail, and there are presently no al-

ternatives for dealing with that problem in a general case.

For that reason, in this thesis we focus on an alternative diffusion scheme that

overcomes this important drawback. In our approach, which will be called Decoupled

ATC (D-ATC), the adaptation phase is kept decoupled from the combination phase,

i.e., the local estimation of each node is combined with the estimates received from

its neighbors, as in standard ATC, but the resulting combined estimation is not fed

back into the next adaptation step. This scheme presents a more clear separation

between the adaptation and combination phases. As it will be shown later, this

allows us to implement two different rules for the combination phase specially suited

for heterogeneous networks. With these rules we can obtain a significant improvement

in convergence and steady-state performance with respect to previous approaches,
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both in tracking and stationary scenarios. In addition, our proposal seems to be a

more natural scheme for asynchronous environments, which are receiving increasing

attention [139].

3.2 Decoupled Adapt-then-Combine diffusion scheme

3.2.1 Notation

As in the previous chapter, we use boldface lowercase letters to denote vectors and

boldface uppercase letters to represent matrices. The superscript ‘T ’ represents the

transpose of a matrix or a vector. Depending on the context, 0N represents an N×N
matrix or a length-N column vector with all elements equal to zero, and 1N is an all-

ones column vector with length N . The notation used in this chapter is summarized

in Table 3.1.

3.2.2 Description of the diffusion strategy

Consider a collection of N sensor nodes connected according to a certain topology,

as depicted in Fig. 3.1. Each node k shares information with its neighbors and we

denote this neighborhood of k, excluding the node itself, as N̄k, while Nk = N̄k∪{k}.
The network objective at every time instant n is to obtain, in a distributed manner,

a vector w(n) minimizing certain global cost function J [w(n)]. In particular, in this

work we consider the following setting: At every time instant n, each node k has access

to a scalar measurement dk(n) and a regression column vector uk(n) of lengthM , both

realizations of zero-mean random processes. We assume that these measurements are

related via some unknown column vector wo(n) of length M through a linear model

dk(n) = uTk (n)wo(n) + vk(n), (3.1)

where vk(n) denotes measurement noise and is assumed to be a realization of a zero-

mean white random process with power σ2
v,k and independent of all other variables

across the network. The objective of the network is to estimate the (possibly) time-

varying parameter vector wo(n).

In standard ATC and CTA diffusion strategies, an adaptation and combination

phases are iterated to solve the estimation problem in an adaptive and distributed
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Table 3.1: Summary of the notation used in Chapter 3

N Number of nodes in the network

Nk Neighborhood of node k, including itself

Nk Cardinality of Nk
N̄k Neighborhood of node k, excluding itself

N̄k Cardinality of N̄k
b̄k Vector with the indexes of all nodes belonging to N̄k
b̄
(m)
k Index of the mth node connected to node k

wo(n) Unknown time-varying parameter vector

ψk(n) Local estimate of wo(n) (based only on local data at node k)

wk(n) Combined estimate of wo(n) at node k

{dk(n),uk(n)} Local desired value and regression vector at node k

vk(n) Local noise at node k

yk(n) Local output of node k

ξk(n) Local error of node k

c`k(n) Combination weight assigned by node k to the estimate

received from node ` ∈ Nk
ck(n) Vector with all weights assigned by node k to the estimates

from its neighbors

c̄k(n) Vector with the same entries of ck(n), excluding ckk(n)

manner. In particular the ATC scheme has the following two steps

φk(n) = f [wk(n− 1),uk(n), dk(n),θk(n)] , (3.2)

wk(n) =
∑
`∈Nk

c`kφ`(n). (3.3)

where an intermediate estimation φk(n) is calculated as a function of these elements:

the previous estimation wk(n−1), current local data {dk(n),uk(n)}, and a state vec-

tor θk(n) that incorporates any other information that is needed for filter adaptation.

Some typical choices for (3.2) are least-mean-squares (LMS), normalized least-mean-

squares (NLMS), Affine Projections Algorithm (APA) [106], etc. This estimation is

then shared with the neighbors and combined using the coefficients c`k, ` ∈ Nk.
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Figure 3.1: Example of diffusion network. At every time step n, each node k takes a

measurement {dk(n),uk(n)}. In this example, the neighborhood of node k is Nk =

{1, 3, �, k,N} and its cardinality is Nk = 5.

The diffusion scheme that we propose here, also iterates an adaptation and com-

bination phase. However, differently from standard ATC or CTA diffusion schemes

[107, 108], each node in our scheme preserves a purely local estimation ψk(n), which

is then combined with the combined estimates, w�(n−1), received from the neighbor-

ing nodes � ∈ N̄k at the previous iteration. Note that, although we have selected an

ATC approach as the basis of our algorithm, our scheme could be straightforwardly

extended to CTA. Consequently, the proposed diffusion scheme can be written as

follows

ψk(n) = f [ψk(n− 1),uk(n), dk(n),θk(n)] , (3.4)

wk(n) = ckk(n)ψk(n) +
∑
�∈N̄k

c�k(n)w�(n− 1). (3.5)

In the adaptation phase (3.4), an updated local estimation ψk(n) is calculated as a

function of: ψk(n − 1), {dk(n),uk(n)}, θk(n). As most adaptive filtering schemes

converge to unbiased estimations of the optimal solution in stationary scenarios, i.e.,

E{ψk(n)−wo} → 0 as n → ∞, we constrain all coefficients at each node to sum up to

one, so that the combined estimates from (3.5) satisfy the same property. In addition
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Figure 3.2: Block diagram of Decoupled ATC diffusion stategy, where the decoupled

adaptation phase has been highlighted by means of a dashed rectangle. In addition, we

have included a blue arrow showing a feedback of the previous combination weights,

ck(n− 1), into the block “update combiners” for such algorithms that compute them

recursively (as in Subsection 3.4.1).

to this, for reasons that we explain in Subsection 3.3.3, we also impose non-negativity

constraints on such combiners,

c`k(n) ≥ 0,
∑
`∈Nk

c`k(n) = 1, ∀k. (3.6)

These conditions on combination coefficients have also been considered in other dif-

fusion schemes available in the literature to guarantee certain stability properties.

In Fig. 3.2 we can see a schematic representation of the proposed diffusion strat-

egy, where the dashed rectangle highlights the decoupled adaptation phase. There are

some potential advantages of decoupling the adaptation step from the combination

phase:

• The inclusion of any adaptation algorithm to update local estimates is straight-
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forward, as it is to consider heterogeneous networks with nodes that implement

different adaptive filters. On the contrary, in standard ATC it is not so clear

how to accommodate networks composed of different estimators, because of the

feedback of the combined estimate in the adaptation step.

• Related to this, the adaptation phase of our scheme is not influenced by an

erroneous selection of the combination weights. In contrast, in standard ATC,

if the adaptation of the combination weights is suboptimal, the adaptation phase

of the diffusion algorithm can also get negatively affected.

• Since the adaptation of each node is completely independent of other nodes’

adaptation, we can more easily deal with synchronization problems or with

nodes that receive observations at different rates. Furthermore, the combination

stage can easily be modified to include the last available estimates received

from the neighbors so that a delay in a particular node does not slow down the

network.

In the next subsection, we analyze in more detail the characteristics of the pro-

posed diffusion strategy and compare it to the ATC approach for a simple network

with just 2 nodes. As we will see, both diffusion strategies can achieve similar per-

formance, during convergence and in steady state, provided that the combination

weights have been adequately chosen (for both schemes).

3.2.3 Comparison between ATC and D-ATC

Before presenting the full theoretical analysis of the new diffusion method, we have

carried out a toy experiment considering a small heterogeneous network composed

of two interconnected nodes differing just in their adaptation rate. We compare the

ATC scheme [107] and the proposed D-ATC scheme (Equations (3.4) and (3.5)) for

this setup, considering fixed combination weights for both diffusion schemes. Here,

we assume that an NLMS filter is used as the adaptation algorithm for both nodes.

As a consequence, the general Equation (3.2) becomes

φk(n) = wk(n− 1) + µ̃k(n)uk(n)
[
dk(n)− uTk (n)wk(n− 1)

]
, (3.7)
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where µ̃k(n) = µk/
[
δ + ‖uk(n)‖2

]
, µk is a step size, δ is a regularization factor to

prevent division by zero, and (3.4) becomes

ψk(n) = ψk(n− 1) + µ̃k(n)uk(n)ξk(n), (3.8)

where the local estimation error signals are

ξk(n) = dk(n)− uTk (n)ψk(n− 1) , dk(n)− yk(n), (3.9)

with yk(n) being the local output. For this toy experiment, we select step sizes

µ1 = 0.1 and µ2 = 1, for the first and second nodes, respectively.

In Figs. 3.3 and 3.4, we evaluate the steady-state and transitory performance of

ATC and D-ATC in terms of steady-state Network Mean-Square Deviation (NMSD)

and convergence rate respectively. The NMSD is defined as

NMSD(n) =
1

N

N∑
k=1

MSDk(n) =
1

N

N∑
k=1

E
{

[wo(n)−wk(n)]2
}
, (3.10)

where MSDk(n) is the mean-square deviation of each node k in the network at it-

eration n. The steady-state NMSD is defined as NMSD(∞) = limn→∞NMSD(n).

The convergence rate is calculated as the average slope of the NMSD learning curve

computed at its initial region (between iterations 200 and 250). There are some

interesting conclusions that can be extracted from this simple experiment:

• There is a pair of optimal combination weights in terms of convergence rate and

steady-state performance. In homogeneous networks, i.e., networks with nodes

that implement a common adaptation algorithm with the same set of param-

eters, it has been proven that any fixed combination weights in the standard

ATC algorithm provides the same convergence rate [41, 135]. However this is

not true for heterogeneous networks, as can be seen in the left panel of Fig. 3.4.

• The optimal combination weights for convergence and steady state are different

for both schemes.

• Both schemes can reach the same optimal performance if suitable combination

weights are chosen.

Consequently, one can use the most suitable diffusion scheme for the application

in hand, provided that we are able to select appropriate combination weights.
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Figure 3.3: Steady-state Network MSD for 2 nodes with different step sizes as a

function of the (fixed) combination weights c12 and c21.
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Figure 3.4: Network MSD convergence rate for 2 nodes with different step sizes as a

function of the (fixed) combination weights c12 and c21.

3.3 Theoretical analysis of D-ATC

In this section, we analyze the performance of the D-ATC diffusion strategy both

in stationary and non-stationary scenarios using two alternative techniques. In the

first subsection, we analyze the transient behavior of the network using the classical

analysis for adaptive systems [35, 57]. Later, we derive expressions for the steady-

state NMSD using the energy conservation method [105, 106]. Although, we assume

NLMS adaptation for all nodes, the analysis can be straightforwardly extended to

the LMS adaptation case.
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3.3.1 Data model and definitions

We start by introducing two assumptions to make the following analysis more tractable:

A3.1- Variations of the unknown parameter vector wo(n) follow a random-walk model

[106]. According to this widespread model, the optimal solution varies in a

nonstationary environment as

wo(n) = wo(n− 1) + q(n), (3.11)

where q(n) is a zero-mean, independent and identically distributed (i.i.d.) vec-

tor with positive-definite autocorrelation matrix Q = E{q(n)qT (n)}, indepen-

dent of the initial conditions ψk(0), wk(0), and of {uk(n′), vk(n′)} for all k and

n′. Although this model implies that the covariance matrix of wo(n) diverges

as n → ∞, it has been commonly used in the literature to keep the analysis

of adaptive systems simple [106] and, therefore, it is assumed throughout this

thesis. Additionally, assuming Q = 0M we can particularize the analysis for

the stationary case.

A3.2- Input regressors are zero-mean and have covariance matrix Rk = E{uk(n)uT
k (n)}.

Furthermore, they are spatially independent, i.e.,

E{uk(n)uT
` (n)} = 0M , k 6= `.

This assumption is widely employed in the analysis of diffusion algorithms and is

realistic in many practical applications [107]. Furthermore, the noise processes

{vk(n)} are assumed to be temporally white and spatially independent, i.e.,

E{vk(n)vk(n
′)} = 0, for all n 6= n′,

E{vk(n)v`(n
′)} = 0, for all n, n′ whenever k 6= `.

Additionally, noise is assumed to be independent (not only uncorrelated) of the

regression data u`(n
′), so that E{vk(n)u`(n

′)} = 0M , for all k, `, n, and n′.

As a result, ψk(n − 1) is independent of v`(n) and u`(n) for all k and `. This

condition matches well with simulation results for sufficiently small step sizes,

even when the independence assumptions do not hold [108]. A similar condition

can be observed in the behavior of stand-alone adaptive filters [57, 81, 86, 106]

and is widely used in analyses of diffusion schemes [107, 108, 114, 116, 140].
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As a measure of performance, we consider the MSD at each node and the NMSD, as

defined in (3.10).

3.3.2 Statistical transient analysis

In this section, we present a theoretical model for the transient performance of the

proposed D-ATC scheme for adaptive networks. In order to do so, we follow the

classical approach in adaptive systems based on the computation of cross-covariance

matrices [57]. We start by introducing two additional simplifying assumptions:

A3.3- The adaptation of the combination weights c`k(n) is slow when compared to

the adaptation of the local and combined estimates. Therefore, the correlation

between combination parameters and local and combined estimates can be dis-

regarded. This assumption holds when we have fixed combination coefficients.

In the case of time-varying combiners, like the ones in Section 3.4, this assump-

tion follows from observations: simulations show that the combination weights

converge slowly compared to variations in the input regressor uk(n), and thus

to variations on the local and combined estimates.

A3.4- Finally, for the computation of the combined estimates wk(n) [Eq. (3.5)], we

also assume that ψk(n) ≈ ψk(n − 1), k = 1, 2, . . . , N . This assumption makes

the analysis more tractable and does not affect the behavior of the proposed

diffusion algorithm, as observed by simulations. Note that this assumption

will not be employed when studying the behavior of the local estimates ψk(n)

[Eq. (3.8)].

To analyze adaptive diffusion strategies, it is usual to define weight-error vectors,

taking into account the local and combined estimates of each node, i.e.,

ψ̃k(n) , wo(n)−ψk(n), (3.12)

w̃k(n) , wo(n)−wk(n), (3.13)

with k=1, . . . , N . In addition, a-priori errors can be defined as

εk(n) = ξk(n)− vk(n) = uT
k (n)ψ̃k(n− 1), (3.14)
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using local estimates, and

ε̌k,`(n) = ξ̌k,`(n)− vk(n) = uT
k (n)w̃`(n− 1), (3.15)

for combined estimates, for k = 1, 2, . . . , N , and ` ∈ Nk, where ξ̌k,`(n) = dk(n) −
y̌k,`(n) is the error that would be obtained when filtering the observations available

at node k with the combined estimate received from node ` at the previous iteration.

Mean-square analysis

Subtracting both sides of (3.5) from wo(n), using (3.11), and applying Assumption

A3.4, we can approximate the weight-error vectors of the combined estimates as

w̃k(n)− q(n) =

=1︷ ︸︸ ︷ckk(n) +
∑
`∈N̄k

c`k(n)

wo(n− 1)− ckk(n)ψk(n)

−
∑
`∈N̄k

c`k(n)w`(n− 1)

= ckk(n)[wo(n− 1)−ψk(n)] +
∑
`∈N̄k

c`k(n)w̃`(n− 1)

≈ ckk(n)ψ̃k(n− 1) +
∑
`∈N̄k

c`k(n)w̃`(n− 1). (3.16)

Premultiplying both sides of (3.16) by their transposes, we obtain

‖w̃k(n)‖2 + ‖q(n)‖2 − 2qT (n)w̃k(n) ≈ c2
kk(n)‖ψ̃k(n−1)‖2

+
∑
`∈N̄k

∑
m∈N̄k

c`k(n)cmk(n)w̃T
` (n− 1)w̃m(n−1)

+ 2
∑
`∈N̄k

ckk(n)c`k(n)ψ̃
T

k (n−1)w̃`(n−1). (3.17)

Then, taking expectations on both sides of (3.17) and using A3.1, we arrive at

MSDk(n) , E{‖w̃k(n)‖2} ≈ E
{
c2
kk(n)‖ψ̃k(n−1)‖2

}
+
∑
`∈N̄k

∑
m∈N̄k

E {c`k(n)cmk(n)w̃T
` (n−1)w̃m(n−1)}

+ 2
∑
`∈N̄k

E
{
ckk(n)c`k(n)ψ̃

T

k (n−1)w̃`(n−1)
}
− E{‖q(n)‖2}. (3.18)
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where we have also used the independence between vector q(n) and all other variables

to set expectation E{qT (n)wk(n)} equal to zero. To solve (3.18) we first need to define

the cross-covariance matrices of the local, combined, and local-combined weight-error

vectors, i.e.,

S`m(n) , E{ψ̃`(n)ψ̃
T

m(n)}, (3.19)

W`m(n) , E{w̃`(n)w̃T
m(n)}, (3.20)

X`m(n) , E{ψ̃`(n)w̃T
m(n)}, (3.21)

so that we can compute

E{ψ̃T

` (n)ψ̃m(n)} = Tr[S`m(n)], (3.22)

E{w̃T
` (n)w̃m(n)} = Tr[W`m(n)], (3.23)

E{ψ̃T

` (n)w̃m(n)} = Tr[X`m(n)], (3.24)

where Tr(·) stands for the trace of a matrix.

Thus, under Assumption A3.3 and using (3.22)-(3.24), (3.18) can be rewritten as

MSDk(n)≈E
{
c2
kk(n)

}
Tr[Skk(n−1)]+

∑
`∈N̄k

∑
m∈N̄k

E {c`k(n)cmk(n)}Tr[W`m(n−1)]

+ 2
∑
`∈N̄k

E {ckk(n)c`k(n)}Tr[Xk`(n−1)]− Tr(Q). (3.25)

The network MSD can be estimated theoretically from the expression above by aver-

aging the local MSD of all network nodes.

To complete the analysis, we must obtain analytical expressions for S`m(n),

W`m(n), and X`m(n). Recursions for these cross-covariance matrices are provided,

with proofs, in Appendix B.

Finally, note that this analysis is valid for time-varying combination weights. Nev-

ertheless, obtaining a theoretical model of the cross-correlation between the different

combination weights is a very difficult task given their dependencies with the com-

bined estimation vectors, which are shared among network nodes at each iteration.

In [44] we presented a technique to obtain the optimal time-varying combiners and

compute the performance at the same time. The drawback of that analysis is that the

combiners computation is an ill-conditioned problem for some cross-covariance matri-

ces and, consequently, the initialization and regularization of those matrices needs to
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be carefully tuned. For that reason, in Section 3.5.1 we limit ourselves to analyzing

the performance for fixed combination parameters.

3.3.3 Energy conservation analysis

In this section, we analyze the performance of the D-ATC diffusion strategy in the

mean and mean-square sense and derive expressions for the steady-state NMSD in

stationary and nonstationary environments. Different from the previous analysis,

and thanks to the energy conservation method [106], we directly obtain steady-state

results, bypassing several of the difficulties encountered when obtaining them as a

limiting case of a transient analysis. Moreover, in order to simplify the analysis, the

combiners c`k(n) are assumed to be static.

First of all, for notational convenience, we collect all weight-error vectors and

products vk(n)uk(n) across the network into column vectors:

w̃(n)=col{ψ̃1(n), · · · , ψ̃N (n), w̃1(n), · · · , w̃N (n)}, (3.26)

s(n)=col{v1(n)u1(n), v2(n)u2(n), · · · , vN (n)uN (n)}, (3.27)

where col{·} represents the vector obtained by stacking its entries on top of each

other. Note that the length of w̃(n) is equal to 2MN , whereas the length of s(n) is

MN . We also define the length-(2MN) column vector

qa(n) = col{q(n),q(n), · · ·,q(n)}, (3.28)

and the following MN ×MN block-diagonal matrices containing the step sizes and

information related to the autocorrelation matrices of the regressors:

M(n) = diag{µ̃1(n)IM , µ̃2(n)IM , · · · , µ̃N (n)IM}, (3.29)

R(n) = diag{u1(n)uT
1 (n), · · · ,uN (n)uT

N (n)}, (3.30)

where diag{·} generates a block-diagonal matrix from its arguments and IM is the

M ×M identity matrix. Finally, we also define the following matrices containing the
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combination weights:

C1 = diag{c11, c22, · · · , cNN}, (3.31)

C2 =


0 c12 · · · c1N

c21 0 · · · c2N

...
...

. . .
...

cN1 cN2 · · · 0

 , (3.32)

and their extended versions

Ci , Ci ⊗ IM , i = 1, 2, (3.33)

where ⊗ represents the Kronecker product of two matrices.

In the following subsections we derive the three different types of analyses normally

carried out with energy conservation methods: 1) mean stability and convergence

analysis of the system, 2) mean-square convergence, and 3) steady-state mean-square

performance analysis.

Mean stability analysis

First, we present the mean convergence and stability analysis of our scheme. To do

so, we start subtracting both sides of (3.5) and (3.8) from wo(n). Under Assumption

A3.1, using (3.1) and recalling that ckk +
∑

`∈N̄k
c`k = 1, we obtain

ψ̃k(n)−q(n)=Ak(n)ψ̃k(n−1)−µ̃k(n)vk(n)uk(n), (3.34)

w̃k(n)−q(n)=ckkAk(n)ψ̃k(n−1)+
∑
`∈N̄k

c`kw̃`(n−1)− ckkµ̃k(n)vk(n)uk(n), (3.35)

where Ak(n) , IM − µ̃k(n)uk(n)uT
k (n).

From (3.34) and (3.35), using the definitions (3.26)-(3.33) and following algebraic

manipulations similar to those of [107], we obtain the following equation characteriz-

ing the evolution of the weight-error vectors:

w̃(n)− qa(n) = B(n)w̃(n− 1)− z(n), (3.36)
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where

B(n) ,

[
B11(n) 0(MN)

B21(n) B22

]
,

B11(n) = I(MN) −M(n)R(n),

B21(n) = CT
1 [I(MN) −M(n)R(n)],

B22 = CT
2 ,

z(n) , [M(n)s(n) CT
1M(n)s(n)]T .

Under Assumption A3.2, all regressor vectors uk(n) are independent of ψ̃`(n −
1) and w̃`(n − 1) for k, ` = 1, 2, · · · , N . Furthermore, independence of the noise

w.r.t. the rest of variables implies that E{s(n)} = E{z(n)} = 0M . Thus, taking

expectations on both sides of (3.36) and recalling that E{qa(n)} = 02MN , we obtain

E{w̃(n)} = E{B(n)}E{w̃(n− 1)}. (3.37)

A necessary and sufficient condition for the mean stability of (3.37) is that the

spectral radius of E{B(n)} is less than or equal to one, i.e.,

ρ(E{B(n)}) = max
i
{λi} ≤ 1,

where ρ(·) denotes the spectral radius of its matrix argument and λi, with i =

1, 2, · · · , 2MN , are the eigenvalues of E{B(n)} [107]. Since E{B(n)} is a block-

triangular matrix, its eigenvalues are the eigenvalues of the blocks of its main diago-

nal, i.e., the eigenvalues of E{B11(n)} and E{B22} [62].

Focusing first on matrix E{B11(n)}, we notice that it is also a block-diagonal

matrix, so the step sizes need to be selected to guarantee

ρ(E{B11(n)}) = max
1≤k≤N

ρ
(
IM − µkRk

)
≤ 1, (3.38)

where

Rk , E
{

uk(n)uTk (n)

δ + ‖uk(n)‖2
}
.

Condition (3.38) will be ensured if the step sizes µk satisfy [106]

0 < µk < 2, for k = 1, 2, · · · , N. (3.39)
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This condition, which is a well-known result for the NLMS algorithm [106], guarantees

that the local estimators {ψk(n)} are asymptotically unbiased, i.e., E{ψ̃k(n)} → 0M

as n→∞ for all nodes of the network.

For the spectral radius of B22 = CT
2 , we can rely on the following bound from [62]:

ρ(B22) ≤ ‖B22‖∞ = max
k

∑
`∈N̄k

|c`k|. (3.40)

A sufficient (but not necessary) condition to guarantee ρ(B22) ≤ 1 is to keep all

combination weights non-negative. In effect, since the sum of all combiners associated

to a node is one, using non-negative weights we have

ρ(B22) ≤ max
k

∑
`∈N̄k

c`k = max
k

(1− ckk) ≤ 1. (3.41)

When combiners are learned by the network, non-negativity constraints can be

applied at every iteration to ensure mean stability. Although our derivations show

that this is just a sufficient condition, we should mention that in [44, 45], where we

allowed combination weights to become negative, the network showed some instability

problems and the application of these constraints resulted in the removal of these

instability issues.

Mean-square convergence

We present next a mean-square performance analysis, following the energy conser-

vation framework of [106]. First, let Σ denote an arbitrary nonnegative definite

2MN ×2MN matrix. Different choices of Σ allow us to obtain different performance

measurements of the network [108].

Thus, computing the weighted squared norm on both sides of (3.36) using Σ as

the weighting matrix, we arrive at

w̃T(n)Σw̃(n)−w̃T(n)Σqa(n)−qT
a(n)Σw̃(n)+qT

a(n)Σqa(n)

= w̃T(n− 1)BT(n)ΣB(n)w̃(n−1) +zT(n)Σz(n)−2zT(n)ΣB(n)w̃(n−1).

(3.42)

As before, independence of the noise terms in z(n) with respect to all other vari-

ables implies that the last element in (3.42) vanishes under expectation. Furthermore,
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under Assumption A3.1, we can verify that

E{w̃T(n)Σqa(n)} =E{qT
a(n)Σw̃(n)} = E{qT

a(n)Σqa(n)} = Tr(ΣQa), (3.43)

where

Qa , E{qa(n)qT
a (n)} = J(2N) ⊗Q,

with J(2N) a 2N × 2N matrix with all entries equal to one. Defining the matrices

R̃k , E
{

uk(n)uT
k (n)

[δ + ‖uk(n)‖2]2

}
, (3.44)

S , diag{µ2
1σ

2
v1R̃1, µ2

2σ
2
v2R̃2, · · · , µ2

Nσ
2
vN

R̃N}, (3.45)

Z , E{z(n)zT(n)} =

[
S SC1

CT
1S CT

1SC1

]
, (3.46)

using (3.43), and taking expectations of both sides of (3.42), we obtain

E{‖w̃(n)‖2Σ} = E
{
‖w̃(n−1)‖2BT (n)ΣB(n)

}
+Tr(ΣZ)+Tr(ΣQa), (3.47)

where ‖x‖2Σ denotes the weighted squared norm xTΣx.

In order to make the analysis more tractable, we will replace the random matrix

B(n) by its steady-state mean value B = limn→∞ E{B(n)}, which is equivalent to

replacing matrix uk(n)uTk (n)/[δ + ‖uk(n)‖2] by its mean Rk. In a sense, this approx-

imation amounts to an ergodicity assumption on the regressors, which is a common

assumption in statistical analysis of adaptive filters [106]. Thus, (3.47) reduces to

E{‖w̃(n)‖2Σ} ≈ E
{
{‖w̃(n−1)‖2

BT
ΣB

}
+ Tr(ΣZ)+Tr(ΣQa). (3.48)

As in [108], the convergence rate of the series is governed by [ρ(B)]2, in terms of

the spectral radius of B. From Section 3.3.3, we can obtain a superior limit for ρ(B),

which is given by

ρ(B) ≤ max

{
max
k,i

[
1− µkλi(Rk)

]
, max

k
(1− ckk)

}
. (3.49)

Choosing µk into the interval (3.39) and imposing non-negativity constraints to the

combiners, ρ(B) ≤ 1 and the convergence of limn→∞ E{‖w̃(n)‖2Σ} is ensured. Fur-

thermore, from the superior limit (3.49) we can see that, in the worst case, our
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diffusion scheme would converge with the same convergence rate of the noncoopera-

tive solution, whose spectral radius is maxk,i
{

1− µkλi(Rk)
}

(considering that all the

nodes are adapted using NLMS). However, we will show by means of simulations that

in practice this limit is very conservative and the proposed diffusion scheme converges

much faster than the noncooperative solution.

Steady-state MSD performance

It it important to notice that variance relations similar to (3.48) have often appeared

in the performance analysis of diffusion schemes [108]. Iterating (3.48) and taking

the limit as n→∞, we conclude that (see, e.g., [117])

lim
n→∞

E{‖w̃(n)‖2Σ} ≈
∞∑
j=0

Tr[Bj
(Z + Qa)(B

T
)jΣ]. (3.50)

To obtain analytical expressions for the steady-state MSD of the network and of its

individual nodes, we will replace Σ by the the following matrices

Γ ,

[
0NM 0NM

0NM
1
N INM

]
, (3.51)

Υk ,

[
0NM 0NM

0NM Ek ⊗ IM

]
, (3.52)

where Ek is an N ×N zero matrix, except in the element (k, k), that is equal to one.

Replacing Σ in (3.50) by either Γ or Υk, the MSD performance of the network and

of its individual nodes can be expressed, respectively, by

NMSD(∞) ≈
∞∑
j=0

Tr[Bj
(Z + Qa)(B

T
)jΓ], (3.53)

MSDk(∞) ≈
∞∑
j=0

Tr[Bj
(Z + Qa)(B

T
)jΥk]. (3.54)

Since B is lower triangular, the matrix Bj
is given by

Bj
=

[
Bj

11 0(MN)

X̄ (j) Bj
22

]
, (3.55)
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being

X̄ (j)=

j−1∑
k=0

Bk
22B21B

j−k−1
11 =

j−1∑
k=0

[CT
2 ]kCT

1

[
I(MN)−L

]j−k
, (3.56)

where we have defined

L, lim
n→∞

E{M(n)R(n)} =diag{µ1R1, µ2R2, · · · , µNRN}. (3.57)

Replacing (3.55) and (3.46) in (3.53) and (3.54), we arrive at

NMSD(∞) ≈ 1

N

∞∑
j=0

Tr

[
X̄ (j)(S+Q)X̄ T

(j) + 2(CT
2 )j(CT

1S+Q)X̄ T
(j)

+ (CT
2 )j(CT

1SC1+Q)Cj2
]
, (3.58)

MSDk(∞) ≈
∞∑
j=0

Tr

[(
X̄ (j)(S+Q)X̄ T

(j) + 2(CT
2 )j(CT

1S+Q)X̄ T
(j)

+ (CT
2 )j(CT

1SC1+Q)Cj2
)
Ek ⊗ IM

]
, (3.59)

where Q = JN ⊗Q. Note that the NM × NM matrix Q is similar to matrix Qa,

but has half its size.

In order to compute the theoretical steady-state MSD using (3.58) and (3.59), we

still have to obtain approximations for matrices Rk and R̃k, which appear in X̄ (j)

and S, respectively. For this purpose, we assume that

A3.7- The number of coefficients M is large enough for each element of the matrix

uk(n)uT
k (n) to be approximately independent from

∑M−1
l=0 |u(n − l)|2. This

is equivalent to applying the averaging principle of [104], since for large M ,

‖uk(n)‖2 tends to vary slowly compared to the individual entries of uk(n)uT
k (n).

A3.8- The regressors uk(n), k = 1, 2, . . . , N are formed by a tapped-delay line with

Gaussian entries and the regularization factor is equal to zero (δ = 0). This is a

common assumption in the analysis of adaptive filters and leads to reasonable

analytical results [57].
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Under A3.7 and A3.8, we obtain the following approximations from [31]:

Rk ≈
Rk

σ2
uk

(M − 2)
, (3.60)

R̃k ≈
Rk

σ4
uk

(M − 2)(M − 4)
. (3.61)

Under these additional assumptions, we obtain a model to compute the steady-state

MSD of the network and of its individual nodes, which can be summarized as follows:

(i) compute the matrices of the combination weights using (3.31)-(3.33) and the ma-

trix Q, i.e, according to the environment variation; (ii) use the approximations (3.60)

and (3.61) in the computation of matrices S and X̄ (j), defined respectively by (3.45)

and (3.56); and finally, (iii) use these matrices in (3.58) and (3.59).

To sum up, in this section we have presented two alternative analyses for our diffu-

sion scheme. The first one is valid both for the transient and steady-state performance

but it is somewhat more involved to compute because of the recursive expressions of

cross-covariance matrices. In the second one, we bypass this problem using an energy

conservation approach, obtaining formulas for steady-state performance and bounds

on the convergence rate. This analysis also serves as a justification for using convex

combination weights, as this is a (sufficient) condition —together with the stability

of the individual nodes— for convergence.

3.4 Adaptive combiners for D-ATC scheme

As shown in Section 3.2, the implementation of adaptive combiners is crucial for het-

erogeneous networks, whose nodes operate under different conditions, e.g., different

step sizes in the adaptation step. For instance, in such case the combiners should

favor the diffusion of the estimates of the fastest nodes during network convergence,

whereas in steady state the network should favor the nodes with better SNR and

smaller adaptation step size, as they produce lower steady-state misadjustment.

In this section, we present two strategies for learning the combiners which are

suitable for our Decoupled ATC scheme. These two strategies are based on an ap-

proximate minimization of the Network Mean-Square Error at each step n, NMSE(n):

NMSE(n) =
1

N

N∑
k=1

MSEk(n) =
1

N

N∑
k=1

E{ξ̌2
k(n)}, (3.62)
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where ξ̌k(n) = dk(n)− y̌k(n) = dk(n)−uTk (n)wk(n−1) represents the error at node k

using combined estimates, while y̌k(n) stands for the corresponding combined output.

Since every node can only manage its own combination coefficients, and this only

affects the local MSE, MSEk(n), in the following we derive rules that precisely attempt

to minimize MSEk(n) at each node by relying on available local information. Note

that this approach contrasts with the strategies in [114, 116] where an approximation

or bound of the steady-state NMSD is minimized. Minimizing the NMSE indirectly

minimizes the NMSD as well, and has the advantage that approximations of (3.62)

can be easily obtained whereas the estimation of the NMSD would require access

to the (unknown) optimal vector. For this reason, MSE-based cost functions are

normally used in adaptive filtering as a design criterion.

Finally, let us emphasize that we are considering convex combination coefficients,

i.e., c`k ≥ 0 ∀k, ` ∈ {1, · · · , N} and
∑

`∈Nk
c`k = 1,∀ ∈ {1, · · · , N}. However, note

that a direct application of the algorithms below may give rise to values of c`k(n)

outside range [0, 1]. Therefore, in order to satisfy the non-negativity constraint of

Section 3.3.3 to guarantee stability (and also following the criterion of other works in

this field, e.g., [26, 107, 114, 116, 140]), we constrain the values of c`k(n) to remain in

the desired interval [0, 1] at each iteration. To do this, if any c`k(n) results negative

after its update, we simply set it to zero and then rescale the remaining combination

weights so that they sum up to one.

3.4.1 Affine projection algorithm

In this subsection we present an Affine Projection Algorithm (APA) for the stochastic

minimization of the MSE in (3.62). First, we stack the combination coefficients c`k

of node k, with ` ∈ N̄k, in a length-N̄k vector c̄k(n). Doing so, we can write

ckk(n) = 1−
∑
`∈N̄k

c`k = 1− 1TN̄k
c̄k(n). (3.63)

Then, defining y`k(n) = wT
` (n − 1)uk(n) and ỹ`k = y`k(n) − yk(n) with ` ∈ N̄k,

collecting all these differences into a column vector ỹk(n), and using (3.63), MSEk(n)

can be rewritten as

MSEk(n) = E
{[
ξk(n)− c̄Tk (n)ỹk(n)

]2}
. (3.64)
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Applying the regularized Newton’s method [106] to minimize (3.64), we obtain

c̄k(n) = c̄k(n− 1) + µc[εIN̄k
+ Rỹk

]−1[Rξk,ỹk
−Rỹk

c̄k(n− 1)] (3.65)

where µc is a step size to control the adaptation of c̄k(n), Rỹk
is the autocorrelation

matrix of vector ỹk(n), Rξk,ỹk
is the cross-correlation vector between ỹk(n) and ξk(n),

ε is a small regularization parameter to avoid division by zero, and IN̄k
represents the

N̄k × N̄k identity matrix, with N̄k the cardinal of N̄k.
Replacing Rỹk

and Rξk,ỹk
by their approximations based on averages over the L

most recent values of ỹk(n) and ξk(n) [106], we obtain a regularized affine projection

algorithm for the adaptation of c̄k(n):

c̄k(n) = c̄k(n−1)+µc[εIN̄k
+ỸT

k (n)Ỹk(n)]−1ỸT
k (n)[ξk(n)−Ỹk(n)c̄k(n−1)], (3.66)

where Ỹk(n) is an L × N̄k matrix whose L rows correspond with the last L values

of vector ỹk(n), and ξk(n) = [ξk(n), ξk(n − 1), · · · , ξk(n − L + 1)]T . This recursion

requires the inversion of an N̄k×N̄k matrix at each iteration, resulting in an attractive

implementation if the projection order L is larger than the number of neighbors of

node k, N̄k. Otherwise, if for any node N̄k > L, we can invoke the matrix inversion

lemma [106] to rewrite (3.66) as

c̄k(n) = c̄k(n− 1) +µcỸ
T
k (n)[εIL + Ỹk(n)ỸT

k (n)]−1[ξk(n)− Ỹk(n)c̄k(n− 1)], (3.67)

which requires the inversion of an L× L matrix.

Equations (3.66) —or (3.67)— and (3.63), constitute the ε-APA algorithm for

adapting the combiners at each node.

3.4.2 Least-Squares algorithm

In this subsection, we follow a Least-Squares approach. Instead of minimizing (3.62)

using a stochastic minimization algorithm as in the previous section, we replace

MSEk(n) by the following related cost function [106],

Jk(n) =

n∑
i=1

β(n, i)ξ̌2
k(n, i), (3.68)
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where β(n, i) is a temporal weighting window, and

ξ̌k(n, i) = dk(i)− yk(n, i), with (3.69)

yk(n, i) =
∑
`∈N̄k

c`k(n)y`k(i)+

1−
∑
`∈N̄k

c`k(n)

yk(i)
= yk(i) +

∑
`∈N̄k

c`k(n) [y`k(i)− yk(i)] (3.70)

representing the combined output of node k at time i when the outputs of all nodes

belonging to Nk are combined using the combiners at time n. Introducing (3.70) into

(3.69), we obtain

ξ̌k(n, i) = ξk(i) +
∑
`∈N̄k

c`k(n) [yk(i)− y`k(i)] . (3.71)

Taking now the derivatives of (3.68) with respect to each combination weight

cmk(n), with m = 1, 2, . . . , N̄k, we obtain

∂Jk(n)

∂cmk(n)
= 2

n∑
i=1

β(n, i)ξ̌k(n, i) [yk(i)− ymk(i)] . (3.72)

Replacing (3.71) in (3.72), setting the result to zero, and after some algebraic manip-

ulations, we obtain

n∑
i=1

∑
`∈N̄k

β(n, i)c`k(n)ỹ`k(i)ỹmk(i) =
n∑
i=1

β(n, i)ξk(i)ỹmk(i). (3.73)

We can then write for each node k a system with N̄k equations of the form (3.73)

that, introducing the usual matrix notation, reads

Pk(n)c̄k(n) = zk(n), (3.74)

where Pk(n) is a square symmetric matrix of size N̄k with components

[Pk(n)]p,q =

n∑
i=1

β(n, i)ỹ
(b̄

(p)
k ,k)

(i)ỹ
(b̄

(q)
k ,k)

(i), (3.75)

with p, q = 1, 2, . . . , N̄k. We introduce the index b̄
(p)
k which is the index of the p-th

neighbor of k. In addition, zk(n) is a column vector of length N̄k, whose pth element

is given by

z
(p)
k (n) =

n∑
i=1

β(n, i)ξk(i)ỹ(b̄
(p)
k ,k)

(i), (3.76)
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for p = 1, 2, . . . , N̄k. Thus, the solution of the problem is obtained from (3.74) using

Tikhonov regularization method [125] as

c̄k(n) =
(
Pk(n) + εIN̄k

)−1
zk(n), (3.77)

where a small regularization constant ε is required since Pk(n) could be ill-conditioned

[45]. Similarly to the case of combination of multiple filters [11], Pk(n) can be inter-

preted as the autocorrelation matrix of a vector ỹk(n) while zk(n) could be seen as

the cross-correlation vector between ỹk(n) and ξk(n).

Temporal weighting window

The selection of the temporal weighting window β(n, i) deserves some discussion.

Typical choices for this kind of window are the rectangular window with length L,

i.e.,

β(n, i) =

{
1, n−i < L

0, n−i ≥ L,
(3.78)

or the exponential window

β(n, i) = γn−i, (3.79)

where γ is a forgetting factor 0 ≤ γ < 1.

The choice of the window length L in the rectangular window is generally not

straightforward, and is subject to a well-known trade-off between convergence capa-

bilities (faster for small L) and steady-state performance (better for large L). First of

all, L� N̄k to guarantee that matrix Pk(n) is well conditioned. Secondly, we should

remark that the estimation of the optimal combination weights is itself a time-varying

problem and according to the literature [89, 88] there is an optimal window length

that depends on the particular filtering scenario.

Selection of forgetting factor γ in the exponential window suffers from a similar

trade-off but this window has two remarkable advantages with respect to a rectangular

one: 1) It is more efficient in terms of memory and computation; and 2) it allows a

recursive implementation. In addition, as we show in the experiments, it outperforms

other state-of-the art approaches.
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Figure 3.5: (a) Network topology for the simulation experiments: orange shaded

nodes are adapted with µk = 0.1 and the rest with µk = 1. (b) Noise power σ2
v,k at

each node in the network.

3.5 Simulation results

In this section, we present a number of simulation results to illustrate the behavior

of D-ATC and the proposed adaptive combiners rules in stationary and tracking

estimation scenarios. We simulate the 15-node network of Fig. 3.5, where, as in the

example of Section 3.2.3, all the nodes employ NLMS adaptation. The nodes step sizes

are taken as µk ∈ {0.1, 1} as illustrated in Fig. 3.5. The input signals uk(n) follow

a multidimensional Gaussian with zero mean and the same scalar covariance matrix,

σ2
uIM , with σ2

u = 1. Unless otherwise stated, the observation noise vk(n) at each

node is also Gaussian distributed with zero mean and variance σ2
v,k randomly chosen

between [0, 0.4] as shown in Fig. 3.5(b). For the stationary estimation problem, the

unknown parameter vector wo is a length-50 vector with values uniformly taken from

range [−1, 1]. As a tracking model, we use the one presented in equation (3.11).

Finally, in all the empirical curves, 500 experiments have been averaged.

First, we present a set of experiments with the aim to validate the theoretical

analyses of Section 3.3. Then, we compare the behavior of our rules to state-of-the-

art adaptive combination algorithms for standard ATC [116], both in stationary and

tracking scenarios.
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3.5.1 Validation of the theoretical analysis for D-ATC

In this section, we carry out some numerical simulations to validate the analyses

presented in Section 3.3. In order to do so, we compare the theoretical (according

to each model) and empirical performance for the nodes of a D-ATC scheme with

Metropolis combiners [107] in the stationary estimation scenario described above.

The metropolis rule is defined as

c`k =


1/max{nk, n`}, if k 6= ` are neighbors

1−
∑
m∈N̄k

cmk, if k = `

0, otherwise

(3.80)

where nk denotes the degree of node k, i.e., its number of neighbors.

Note that these weights are not optimal, as we can deduce from the preliminary

analysis of Section 3.2.3. However, this is not an issue since our objective in this

subsection is just to show that the analysis correctly predicts the performance of

each individual node, as well as the NMSD. Although we consider just the case

of Metropolis combination rule, other rules, e.g., uniform combiners, lead to similar

conclusions about the accuracy of the analyses.

Validation of transient analysis

Firstly, we carry out some numerical simulations to validate the transient analysis

of Section 3.3.2. Fig. 3.6(a) displays the curve for the network performance and

the theoretical MSD that is computed using (3.25). In Fig. 3.6(b) we also show

the theoretical and empirical steady-state MSD of each node. The deviation both in

convergence and steady state is not very significant and, more importantly, the model

predicts well the qualitative behavior of the network MSD and the time instants where

the MSD has roughly converged to −20 dB.

Validation of energy conservation analysis

Secondly, we aim to validate the steady-state model of Section 3.3.3 based on energy

conservation analysis. In Fig. 3.7, we plot the steady-state MSD for 4 different

scenarios where the step sizes µk and the noise variances σ2
v,k have been varied from
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Figure 3.6: Comparison between theoretical transient model (blue solid line) and

empirical performance (red dotted line with star markers) in terms of: (a) Network

MSD learning curve, and (b) steady-state MSD at each node.

those in Fig. 3.5, according to Table 3.2. From Fig. 3.7, we can conclude that the

matching between the analysis and the simulation is quite good, even for the case

with large step sizes, when the last part of assumption A2 in Section 3.3.1 is less

accurate.

We have also studied the accuracy of the model in tracking situations. In Fig.

3.8, we plot the steady-state NMSD for different speeds of change, i.e., values of

Tr{Q}. We can see that the matching is also quite good, in particular for fast speeds

of changes of the optimum solution, i.e., large Tr{Q}. For slow and medium speeds

we observe a mismatch up to 2 dB similarly to the stationary scenario depicted in

Fig. 3.7(a).

Scenario (a) Scenario (b) Scenario (c) Scenario (d)

µk µk/10 µk µk/10

σ2
v,k σ2

v,k σ2
v,k/10 σ2

v,k/10

Table 3.2: Settings of the scenarios simulated in Fig. 3.7. The settings of the

reference scenario (a) are described in Fig. 3.5.
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Figure 3.7: Comparison between theoretical model (blue solid line) and empirical

performance (red dotted line with star markers).

3.5.2 Stationary performance of D-ATC with adaptive combiners

Before comparing the performance of D-ATC and ATC with adaptive combiners we

study in Fig. 3.9 the sensitivity of the proposed combiner learning rules, APA and LS,

with respect to their parameters. Note that in this stationary scenario we have intro-

duced an abrupt change in the value of wo to analyze the reconvergence of the differ-

ent schemes. We observe that there is a trade-off between convergence/reconvergence

speed and steady-state performance in the selection of these parameters. In fact, we

can conclude that the influences of different parameters are coupled among them.

Regarding the forgetting factor γ in the LS rule, note that, when it is correctly

chosen (see Fig. 3.9(b)), we can obtain a large steady-state enhancement without

dramatically affecting the convergence. This was not the case with the rectangular

window [45], where instability issues prevented us from using a very small regulariza-

tion constant, and imposed a limit on the length the number of useful window sizes,

causing degradation in steady-state performance.

Next, we compare our D-ATC scheme with adaptive combiners, with other state-
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Figure 3.8: Comparison between the analysis and the simulation in a tracking scenario

as a function of the logarithm of Tr{Q}.

of-the-art ATC algorithms with adaptive combiners: 1) ATC with adaptive combiners

proposed by Takahashi et al. [114], and 2) a newer approach by Tu et al. [107,

116]. We also include a baseline network where the nodes do not combine their

estimates. The free parameters of all algorithms are chosen to maximize the steady-

state performance while keeping a similar convergence rate and, for reproducibility,

are given in Table 3.3.

In Fig. 3.10, we can see that D-ATC with both adaptive rules (APA and LS)

significantly outperforms standard ATC. In Section 3.2.3 we saw that both ATC and

D-ATC can reach a similar performance provided that the combination weights are

correctly chosen. Consequently, our rules seem to be more effective in learning the

combination weights for this setup. Note that adaptive rules for learning the combi-

nation weights for standard ATC [114, 116] are derived for homogeneous networks,

i.e., considering that only the noise variance changes among the nodes. That explains

most of the gap between both approaches. Regarding the convergence rate, the gain

of the proposed scheme is not so significant but it still outperforms standard ATC

with adaptive combiners. This is not surprising, as their suboptimality in terms of

convergence has been made clear before, even for homogeneous networks [41, 44, 135].
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(a) D-ATC with APA adaptive combiners
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Figure 3.9: Influence of the parameters of the algorithm used for learning the adap-

tive combiners in a D-ATC diffusion scheme. (a) APA adaptive combiners. (b) LS

adaptive combiners.

3.5.3 Tracking performance of D-ATC with adaptive combiners

In this section, we analyze the tracking performance of our scheme with the two

proposed combination rules. We compare in Fig. 3.11 the performance of D-ATC

and standard ATC, both with adaptive combiners, for two speeds of change of the

optimal solution. The parameters of these simulations, shown in Table 3.3, are again

selected to optimize the steady-state performance, trying to keep the convergence

rate of all algorithms as close as possible. In fact the steady-state NMSD of D-ATC
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D-ATC ATC

APA LS ACW 1 [114] ACW 2 [116]

Stationary. Fig 3.10 L = 500 γ = 0.99 α = 0.2 ν = 0.1

ε = 10−6 ε = 10−12 ε = 10−6

µc = 1

Tracking. Fig 3.11.(a) L = 10 γ = 0.9999 α = 0.05 ν = 0.2

ε = 10−6 ε = 10−10 ε = 10−6

µc = 1

Tracking. Fig 3.11.(b) L = 500 γ = 0.99 α = 0.2 ν = 0.1

ε = 10−6 ε = 10−10 ε = 10−6

µc = 1

Table 3.3: Parameters of the adaptive combiners algorithms.

can be further improved but at the expense of a degradation on the convergence rate.

This is not true for ATC, whose steady-state error cannot be lowered for different

parameters.

From Fig. 3.11, we can conclude that D-ATC outperforms both ATC techniques

in terms of convergence and steady state, highlighting the behavior of the LS-based

algorithm in the fast tracking scenario (Tr{Q} = 10−4).

3.5.4 Performance under node failures

In the previous subsections, we have assumed that all nodes receive the estimates

from all neighbors at every iteration. Here, we present a set of experiments allowing

for node failure with a fixed probability. As a result of the failure of a node, its

estimation is not transmitted to neighbors, and nodes carry out the combination step

at every iteration by using the last received estimate from each neighbor.

In Fig. 3.12, we depict the network MSD for different failure rates: (a) 30%,

(b) 50%, and (c) 80%, considering a stationary scenario with the settings of Fig.

3.5. In the light of these results, we can conclude that both ATC and D-ATC —

with adaptive combiners— remain quite robust to node failures in terms of steady-

state performance. However, while D-ATC convergence remains unaffected, ATC

convergence deteriorates, being even slower than the non-cooperative strategy.
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Figure 3.10: Network MSD performance for a stationary estimation problem.
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Figure 3.11: Network MSD performance for a tracking problem.

3.6 Summary

In this chapter, we have proposed a novel diffusion scheme which is specially suitable

for heterogeneous networks. In this scheme, adaptation and combination are decou-

pled and nodes keep a fully local estimation. Although the optimal performances of

D-ATC and ATC are similar, the proposed APA and LS rules, in conjunction with the

diffusion scheme, seem to be very effective at optimizing network MSD. As a result,

in all the presented experiments, the proposed D-ATC diffusion scheme outperforms

standard ATC when both schemes use adaptive rules to learn their combiners. Finally,

we have showed the robustness of the proposed scheme to communication failures. A

more extensive discussion of the presented results, can be found in Chapter 5.
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Figure 3.12: Network MSD for the complex network when nodes are subject to ran-

dom failures at every iteration, with failure rate: (a) 30%, (b) 50%, and (c) 80%.
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4
Censoring in adaptive diffusion networks

In the previous chapters, we have presented two complementary contributions. Firstly,

we proposed a censoring strategy for energy management in harvesting sensor nodes.

Secondly, we introduced a diffusion scheme for adaptive distributed estimation that

decoupled the adaptation and combination phases, thus being suitable for networks

whose nodes do not share a common clock signal. Therefore, it is interesting to

combine these two contributions in a common scenario: a Wireless Sensor Network

(WSN) composed of harvesting nodes with finite batteries solving an adaptive dis-

tributed estimation problem.

There are few works in the literature of diffusion networks that explicitly take the

energy costs into account. A notable exception is [54] where game theory is use to

find an activation mechanism in diffusion networks. The algorithm in [54] works in

two timescales and an explicit utility of the communications in terms of energy must

be defined —which is very difficult, specially in the harvesting case. When using

the MDP model of Chapter 2, we can work at only one timescale and no explicit

“price” of energy, but just an importance measure, needs to be defined. As far as we
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know, the only similar scheme in the literature is [8], where they propose a censoring

strategy for standard Adapt-then-Combine (ATC) algorithm and non-rechargeable

WSNs.

Therefore, in this chapter, we present an energy-aware variation of the D-ATC

algorithm for WSNs composed of harvesting nodes. In order to do so, an importance

measure suitable for diffusion networks is proposed and a censoring algorithm based

on the the MDP methods in Chapter 2 is added on top of the estimation algorithms.

The presented preliminary numerical results show the potential of this combined

approach.

The rest of the chapter is organized as follows. In Section 4.1, we redefine the

signal and energy model taking into account the particularities of the distributed

estimation problem. In Section 4.2, the problem of how to assign the importance

to estimations transmitted by the nodes is studied, and an importance function is

proposed. Then, in Section 4.3, the chosen censoring algorithm is reviewed and the

whole Censored Decoupled Adapt-them-Combine (CD-ATC) scheme is summarized.

Finally, the chapter is closed with a section of numerical experiments to evaluate the

performance of this technique.

4.1 Signal and energy Model

Let’s assume a network of N nodes connected in some topology. Then, at each

time step n, each node k receives the previous estimations of the neighbor nodes,

wk(n−1), and access to some local data, {dk(n),uk(n)}, provided that it has enough

battery. With these data, it adapts the local estimation ψk(n), computes the impor-

tance xk(n) of the current message, and decides whether it transmits (ak(n) = 1) or

censors (ak(n) = 0) it. Then it combines ψk(n), using some possibly time-varying

combination weights, with the estimations received from its neighboring nodes. It

must be taken into account that some of the neighbors could have censored their

estimations. These tasks consume energy, which we will model using the following

energy costs:

• b0,k(n). Energy consumed by node k in slot n when sensing some new data. It

also contains the processing energy for the adaptation step. It is consumed at
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all time steps n.

• ∆k(n). Extra energy consumed by node k in slot n when transmitting an

estimation to the neighboring nodes. This transmission is assumed to be a

broadcast message, so that this value contains the cost of communication with

all the neighbors. This is only consumed if the message is not censored.

In addition, as the node is equipped with a harvesting device, it can harvest some

energy from the environment. We will assume that the node harvests some energy

hk(n) in the slot from time n to n+1 with probability ph. A node k with empty battery

cannot measure data, adapt its estimation or communicate it with its neighbors. In

such cases, as we did in the experiments in Subsection 3.5.4, the neighbors of k assume

that the estimation have not changed, i.e., wk(n) = wk(n − 1), in order to adjust

their combination weights.

Once defined the signal and the energy models, in the next section we propose

an importance measurement for this scenario. Then the whole proposed scheme is

summarized in Section 4.3.

4.2 Assignment of importance

As stated in Chapter 2, it is not trivial to decide how to measure the importance of the

information shared to the network. Different importance functions have been defined

in the literature for related detection and estimation problems in non-rechargeable

sensor scenarios. For instance, in the ATC censoring scheme of [8] the product of

local combination weight and distance between measurements is proposed as impor-

tance. Similarly, the difference between different measurements has been proposed

as importance in a tracking scenario based on data aggregation [92]. Finally, we pro-

posed in [46] to use as the importance function for decentralized detection problems

the difference of posterior probabilities given the current measurement.

In this thesis, we propose as importance function the decrement of the neighbor-

hood estimation error, defined as

xk(n) = max

 1

Nk

∑
j∈Nk

Jj(n)− Jk(n), 0

 (4.1)
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where Jk(n) is a local sample-based estimation of Mean-Squared Error (MSE) that

can be computed as

Jk(n) = (1− αx) · Jk(n− 1) + αx · ξ̌2
k(n− 1) (4.2)

where ξ̌k(n) = dk(n) − wT
k (n)uk(n), and αx ∈ [0, 1] is a smoothing constant. This

importance can be understood as an approximation to the decrement in the Mean-

Squared Error in the neighborhood that the combined estimation of node k, wk(n−1),

would achieve. When the estimation of node k, wk(n), is good, the smoothed squared

error Jk(n) will be lower than the average error of the neighbors 1
Nk

∑
j∈Nk

Jj(n), and

this estimation is important and probably should be shared. However, we identify

two drawbacks associated to this importance function:

1. Assumption A2.1 in Section 2.3 is no longer true, as xk(n) depends not only

on xk(n− t) for t > 0, but also on the decisions of other nodes in the network.

Part of these correlations could be taken into account augmenting the state to

include for example xk(n− 1), but in this chapter we choose to follow a simpler

approach.

2. Nodes have to share an additional scalar value, Jk(n). We do not considered

this as a problem since nodes can communicate it together with wk(n) which

could have a large amount of coefficients. In addition, note that some diffusion

schemes with adaptive combiners (e.g. [116]) assume a similar increment in

communication.

Although this is just an heuristic and further study of assignment of importance

is needed, this chapter is proposed as a proof of concept and we follow this simple

approach to show the potential of this combined strategy.

4.3 Censoring algorithm

In order to keep things simple, we use as censoring algorithm the Adaptive Balanced

Transmitter (ABT) presented in Section 2.5.3. Remind that this scheme is suboptimal

when the battery size is finite, but it is a computationally cheap adaptive censoring

algorithm. The basis of the algorithm is the computation of a constant threshold
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CD-ATC Scheme

INPUTS: Initial battery ek(0) and η for all k

Initialize τk(n) = 0, n0,k =, b̄0,k = 0, n1,k = 0, b̄1,k = 0 for all k.

At each time step n, and for each sensor node k:

1. Sense {dk,uk} and receive estimations of neighbors {w`(n− 1)}`∈Nk
.

2. Harvest energy hk(n) and consume b̂0,k(n), (b0,k(n) = b̂0,k(n)− hk(n)).

3. Compute importance xk(n) using (4.1).

4. Decide about transmitting the message:

ak(n) = u [xk(n)− τk(n− 1)].

5. Consume additional cost ∆k(n) if ak(n) = 1,

bk(n) = b0,k(n) + ak(n)∆k(n),

e(n+ 1) = φB [e(n)− bk(n)].

6. Update estimated costs, ρk(n) and τk(n) using (4.3).

7. If e(n+ 1) > 0:

Adapt local estimation ψk(n) using (3.8).

Update combination weights ck using Least-Squares algorithm (Section 3.4.2).

Update Jk(n) using (4.2).

Combine received estimations {w`(n− 1)}`∈Nk
with ψk(n) using ck.

Transmit combined estimation wk(n) and Jk(n) to the neighbors.

Table 4.1: Description of Censoring D-ATC scheme.

that balances the energy consumed and harvested. For convenience of reference, we

review here the formula for threshold computation (4.3):

τk(n) = τk(n− 1) + ηk,n
(
ρk,nu [xk(n)− τk(n− 1)]

− (1− ρk,n)u [τk(n− 1)− xk(n)]
)
, (4.3)

where subindex k has been included to represent the node index and ρk,n =
b1,k

b1,k−b0,k
has to be estimated as in Subsection 2.5.3 in a sample-based manner. Table 4.1 sum-

marizes the diffusion scheme together with the censoring algorithm, named Censoring

D-ATC (CD-ATC).
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Figure 4.1: (a) Network topology for the simulation experiments. (b) noise power

σ2
v,k at each node in the network (in log-scale).

4.4 Simulation Results

In this section, we will show simulation results to evaluate the potential of using a

censoring algorithm in diffusion schemes. In order to do so, we recur to the network

topology in Fig 4.1. All the nodes use an NLMS algorithm in the adaptation phase

with a common step size, μ = 0.1. The signal power and wo are the same as in

Section 3.5, the only difference among the nodes being their noise variances, shown

in Fig. 4.1.(b). In this topology, we have two subnetworks connected through node 4.

Nodes {1, 2, 3} are less noisy (σ2
v,{1,2,3} = 10−4), while nodes {5, 6, 7} are much noisier

(σ2
v,{5,6,7} = 0.5) and their steady-state performance is expected to be worse. Node 4

is a bridge between both subnets and has an intermediate noise variance σ2
v,4 = 0.01.

Consequently, node 4 should not be very selective so that the information flows from

the left to the right side.

Regarding the energy parameters, all the nodes have the same characteristics:

Battery Size B = 500, the sensing consumption b0,k(n) = 1, the transmission cost

Δk(n) = 2, and hk(n) is uniformly distributed in the range [2, 4]. Finally the prob-

ability of harvesting any energy takes two different values ph = {0.4, 0.8}. Fig 4.2

displays the Network MSD while Fig. 4.3 represents the steady-state MSD, MSDk(∞)

as defined in (3.10), for the two different harvesting probabilities ph. The simulated

schemes are a non-selective D-ATC (NSD-ATC), the D-ATC scheme without censor-

ing any information and the proposed CD-ATC. Note that in both schemes, whenever
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Figure 4.2: Network MSD performance for two different harvesting scenarios: (a)

ph = 0.4 and (b) ph = 0.8.
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Figure 4.3: Steady-state MSD for two different harvesting scenarios: (a) ph = 0.4 and

(b) ph = 0.8.

the battery of a node is depleted it drops the estimation. In addition we also display,

as a baseline, the performance of the standard D-ATC in the unconstrained scenario,

i.e., infinite amount of energy refill.

From both figures, we can conclude that censoring provides an obvious gain both

in convergence and steady-state performance. As expected the gain is larger when

the harvesting probability is lower, because in such case the NSD-ATC battery is zero

most of the time. In Fig. 4.3 we can see that the steady-state MSD of the nodes

tends to be more similar in CD-ATC than in the non-selective case where the lack of

energy degrades the combined estimation.
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Figure 4.4: Censoring threshold evolution for all the nodes in the network in two

different harvesting scenarios: (a) ph = 0.4 and (b) ph = 0.8.

In order to understand the behavior of the censoring scheme, we plot in Fig. 4.4

the evolution of the thresholds τk(n). In case (b), ph = 0.8, very little censoring —

small thresholds τk— is needed to compensate the energy consumption, and improve

the network performance. The evolution of τk(n) in case (a) is more interesting, where

two phases can be observed. In the transient, the thresholds converge to a similar

value —as convergence rate of the nodes does not depend on their noise variance—

and the slight difference among them depends just on the node degree. Then, when

nodes are about to reach the steady-state regime, all the thresholds quickly converge

to values that mostly depend on the noise variance.

4.5 Summary

In conclusion, we have proposed a censoring scheme for diffusion networks with nodes

equipped with harvesting devices. The good performance achieved by the combined

scheme suggests that a better design of the importance function or a more involved

decisions scheme, e.g., random policies, could eventually improve the performance of

standard D-ATC even in the unconstrained case. In some way, this connects with

the design of sparse combination schemes for diffusion networks, a topic that, as far

as we know, has not been deeply studied in the literature.
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5
Conclusions and future work

In this chapter, we summarize the main contributions of this thesis and discuss the

presented results. Then, we close the dissertation describing some of the future re-

search lines that this thesis opens.

5.1 Summary of contributions

The contributions of this thesis can be grouped into two main lines. In the first one,

we focus on proposing censoring schemes for sensor networks composed of harvesting

sensors. In the second one, we explore new strategies of distributed estimation based

on diffusion schemes. Finally, both approaches are assembled in a common setup.

Regarding the first part of the thesis, the main contribution is the design, anal-

ysis and evaluation of censoring schemes for Wireless Sensor Networks (WSNs) with

harvesting devices. Going into further detail:

• We model the problem using an infinite-horizon Markov Decision Process (MDP)
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that optimizes the expected aggregate reward.

• Under some convenient assumptions, mainly stationarity, we obtain a threshold-

based optimal policy. Although this solution is useful, the policy itself is difficult

to solve. As a result, we analyze the optimal policy in a simplified scenario where

we are able to compute it using Value Iteration.

• We approximate the optimal policy using Stochastic Approximation techniques

to obtain an implementable algorithm, Stochastic Approximate Policy (SAP).

This strategy is compared with a simpler algorithm, Adaptive Balanced Trans-

mitter (ABT), similar to other approaches in the literature and based on the

computation of an energy-independent threshold.

• The proposed method (SAP) is analyzed in a large number of scenarios includ-

ing scenarios where some of the assumptions under which it is designed (i.e

stationarity, single-hop networks) do not hold. It is also compared with state-

of-the-art approaches based on Q-learning, showing in all cases a significant

performance improvement.

In the second part of the thesis, we introduce a novel strategy for distributed

estimation in WSN, Decoupled Adapt-then-Combine (D-ATC), based in the popular

diffusion scheme for adaptive networks. The main contributions on this research line

are:

• We propose a novel diffusion scheme where the adaptation and combination

steps are decoupled. In this structure nodes keep an estimation, which is only

adapted from local data, and combine it with the combined estimations sent by

nodes in its neighborhood.

• We compare the new strategy with the standard ATC scheme, showing that

both schemes can perform similarly if suitable combiners are chosen.

• We theoretically analyze D-ATC using a variety of analysis tools: including

classical analysis approach based on the computation of cross-covariance ma-

trices, and the more recent energy conservation approach. This is, as far as we
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know, the only work where an adaptive network is studied under these two anal-

ysis approaches. In addition these analyses are valid both for stationary and

tracking scenarios, which are not usually considered in the analyses of adaptive

networks.

• Due to the need of time-varying combiners, we present two adaptive rules to

learn the combination weights for our D-ATC scheme. One of these rules is

based in a least-squares (LS) approach, and the other in affine projection algo-

rithm (APA).

• The performance of the diffusion strategy and the adaptive combination rules

are evaluated through numerical simulations, showing a significant gain with re-

spect to other state-of-the-art approaches. Besides, the proposed scheme shows

additional robustness with respect to previous approaches when we consider

failures or asynchrony in the nodes operation.

Finally, based in the good behavior of D-ATC under asynchronous communica-

tions, the previous approaches are put together in a common setup. In order to apply

the censoring scheme in the diffusion setup we have to choose a suitable importance

value for the messages (combined estimates) generated by the nodes. As a result,

we propose a sensible importance function based on smoothed local and neighboring

squared error. Some preliminary simulations are performed showing the potential of

censoring schemes in diffusion networks when energy is a limitation.

5.2 Discussion

Our first contribution is a censoring scheme for energy harvesting WSNs. We have

used an infinite-horizon MDP and proposed a model-based stochastic approxima-

tion scheme, SAP, which works better than current standard strategies, such as the

balanced scheme or Q-learning, in relevant scenarios. The main limitation of this

approach is that it is model-based, and when the assumptions of the model do not

hold the obtained policies will be suboptimal. This means that we do not have any

guarantee of optimality in scenarios with characteristics such as time-correlated en-

ergy refill, correlated data importance, multi-hop networks, etc. Although simulations
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show that the proposed algorithm works well in some of these scenarios, an approach

that explicitly models this phenomena is expected to work better.

Regarding the diffusion scheme, we have proposed D-ATC as an alternative to

standard diffusion schemes, such as ATC. Our scheme is specially suitable for hetero-

geneous networks and networks with asynchronous communications. However, there

are some issues that have not been solved in the present work. First of all, an explicit

consideration of the time-varying combination coefficients in the energy conservation

analysis could help to design new adaptive algorithms to learn the coefficients, sim-

ilarly to [116, 140]. In addition, incorporating the asynchronous communications or

the dynamic topology in the design and analysis of the diffusion strategy could also

provide intuitions that improve the performance of the algorithm in those situations.

Finally, the ATC algorithm has been analyzed in a number of problems different

to distributed estimation, e.g., multi-task learning, dictionary learning, etc. In this

work, we focus on the linear estimation problem and, consequently, do not provide

any guarantee of performance for those cases.

Finally, in Chapter 4 we have presented some preliminary results to show the

potentials of incorporating a censoring algorithm into a diffusion scheme. Although

the presented numerical simulations serve as a justification for this approach, we know

that the proposed solution has a number of limitations. The censoring scheme that

we used, ABT, can perform poorly in some scenarios as shown in 2.6. Moreover,

although we believe that the chosen importance function is a sensible approach, it is

just a heuristic. We would expect a larger gain from a more formal approach where

both the diffusion strategy and the censoring scheme are optimized together.

5.3 Future work

A number of future research lines can be extracted from the discussion above. We

provide below a list of some of them grouped by the different contributions of the

thesis. Firstly, regarding the paths suggested by the censoring scheme, we identify

the following:

• Data correlation. In Section 2.3, we assume i.i.d. importance values. As

we saw in Chapter 4, this could be not true in some meaningful scenarios.
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Proposing models that account for these dependencies, for example augment-

ing the state with more variables, could improve the performance of the cen-

soring schemes but would increase their complexity. Consequently, designing

low-complexity censoring algorithms that take data correlation into account

constitutes an interesting and challenging research path.

• Energy Correlation. A similar extension related to energy time-dependencies

could also be explored. One can think of several scenarios where the energy refill

has some seasonal component, for example solar energy. In such cases, more

complex energy models, e.g., Markov models, etc. [60, 84], could be proposed;

but the complexity would also increase significantly. Finding strategies that

reduce this complexity is also an appealing research direction.

• Multi-hop networks. The presented algorithms are designed for single-hop

networks. However they have also shown good performance in networks with

multi-hop topologies. Therefore, it seems reasonable to try search for optimal

censoring schemes at a network level. We have already proposed a censoring

scheme that is close to the optimal for non-rechargeable multi-hop networks

[43]. However, even in the non-rechargeable case, its implementation is difficult

and the extension to the harvesting case (where the optimal policy is no longer

constant) is non-trivial. Therefore, significant research could be done in this

direction.

• Incomplete state observation. A different approach to the previous prob-

lems is assuming the the actual state of the node —or the network in the

multi-hop case— is not observable, i.e., we assume that only a part of the state

or a related variable is observed. This kind of approach is also valid for example

to model more complex battery models. In these cases, the state-observation

model is a Hidden Markov Model (HMM) [98] and the MDP becomes a Par-

tially Observable Markov Decision Processes (PO-MDPs) [128]. This approach

is interesting because the optimization in this kind of models would produce

more sophisticated algorithms that could keep the complexity under control.

• Alternative stochastic schemes. Regarding the approximated schemes, a

possible approach is to develop more complex Reinforcement Learning algo-
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rithms [113]. As the state is continuous and the optimal policy has some iden-

tifiable shape —decreasing and smooth—, algorithms of reinforcement learning

with function approximation [128] seem to be a sensible approach. In those

methods, the value function is modeled using a parametric function and rein-

forcement learning schemes could be used to learn those parameters.

• Explore other WSNs tasks. Finally, in this work we have proposed a rea-

sonable importance function for a particular WSN task: distributed estima-

tion. The applicability of this scheme to other tasks demands the definition

of importance functions that represent the relevance of the communications on

that setup. In that sense, in [46] we presented some preliminary work on the

detection problem and defined a importance function for single-hop detection

networks. Since the assignment of the importance value is not a trivial design

decision, future work should include a deep analysis of each problem to be able

to apply the presented schemes in more scenarios.

If we focus now in the diffusion scheme, this work also opens a number of research

lines worth exploring.

• Theory for asynchronous adaptation. Strict synchronization is an unfea-

sible constraint in WSNs. As a consequence, we consider the robustness of our

scheme to this lack of synchrony a very valuable feature. However, it would be

really interesting to understand this behavior from a theoretical point of view.

In the case of standard ATC some results [139] have been published, and a

similar approach could be followed for our scheme.

• New adaptive combination rules. Studying novel combination rules can

be useful to further improve the performance of D-ATC. For example, the sim-

ulations in Section 4.4 may suggest that incorporating some sparsity in the

combination coefficients could be beneficial.

• Bayesian interpretation and combination. There is a growing interest

in bringing ideas from Bayesian or probabilistic machine learning to adaptive

filtering problems [48, 77, 123]. As the Bayesian modeling provides not only
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a point estimate but a full probability distribution —and consequently an un-

certainty measurement—, those interpretations could help for example in the

determination of the combination weights in adaptive networks.

• Generalize to more complex distributed processing tasks. In principle,

the extension of our strategy to more general distributed convex optimization

problems is straightforward. However, we do not have guarantee about its

performance anymore, and the conclusions of this thesis cannot be directly

applied. The study of the performance of D-ATC in these cases or more complex

ones, e.g., non-convex optimization, optimization with different minimizers in

each nodes, multi-task learning, etc, is a very interesting research path.

• Other areas. Here we have presented diffusion networks in the context of

WSNs but this is not at all their only potential area of application. In that

sense, the good features of D-ATC may make it suitable for applications such

as social networks, smart grid, cognitive networks, etc. Research about that

specific problems is needed in other to apply our strategy to them.

Finally, there are some research paths that are common for all the thesis:

• Censoring diffusion networks. We have proposed in this thesis a first ap-

proach of this problem but further study is needed. The main open question is

how much we can improve the performance of the network by using censoring

schemes. In order to do that, the effect of importance assignment, the use of

different censoring algorithms, and the effect of different combination schemes

has to be studied.

• Real-world tasks. In this thesis we focus on algorithms more that applications

but it is also important to evaluate these schemes in the resolution of real tasks.

We hope that our contribution helps to further develop the applicability of these

networks.

• Implementation in real sensors. In this thesis, we have focused on theoret-

ically analyzing and developing schemes and algorithms that take into account

some real limitations of WSNs. Nevertheless, the implementation of the algo-

rithms in real WSNs is a challenging task by itself and we have to consider

103



CHAPTER 5. CONCLUSIONS AND FUTURE WORK

it as future work. In addition, the problems derived from the real implemen-

tation are also a useful guide for future theoretical work that should not be

underestimated.
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A
Proofs and Derivations of Chapter 2

A.1 Proof of Theorem 1

Using (2.3), and for s = (e, x),

E{r(n)|a(n) = a, s(n) = s} = axW (e, x) (A.1)

where W (e, x) = E{w(n)|e(n) = e, x(n) = x}.
Also, using (2.2) and taking into account that x(n) is an i.i.d. sequence and

independent of e(n) (A2.1), and b(n) is independent of x(n) and e(n) given a(n)

(A2.2), we have that

E{Vπ∗(s(n+ 1))|a(n) = a, e(n) = e, x(n) = x}
=E{Vπ∗(φB(e− b(n)), x(n+ 1))||a(n) = 1, x(n) = x}
=aE{Vπ∗(φB(e− b(n)), x(n+ 1))|a(n) = 1}

+ (1− a)E{Vπ∗(φB(e− b(n)), x(n+ 1))|a(n) = 0}. (A.2)
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Joining (2.6), (A.1) and (A.2), and using as3),

Vπ∗(s) = max
a
{axW (e, x) (A.3)

+ aγE{Vπ∗(φB(e− b(n)), x(n+ 1))|a(n) = 1}
+ (1− a)γE{Vπ∗(φB(e− b(n)), x(n+ 1))|a(n) = 0}}.

Defining the threshold function

τ(e) = γ(E{Vπ∗(φB(e− b(n)), x(n+ 1))|a(n) = 0}
−E{Vπ∗(φB(e− b(n)), x(n+ 1))|a(n) = 1}). (A.4)

the optimal policy is a∗ = π∗(e, x) = u(xW (e, x)− τ(e)), which is equivalent to (2.7)

Note also that (A.4) can be written as

Vπ∗(s) = γE{Vπ∗(φB(e− b(n)), x(n+ 1))|a(n) = 0}+ [xW (e, x)− τ(e)]+ . (A.5)

Defining λ(e) as in (2.10), we get (2.8) and (2.9).

A.2 Derivation of Transition probability matrix

The entries of the transition matrix P for an arbitrary transmission policy based on

a generic threshold function τ(e) [cf. (2.23)] can be found (using the abbreviated

notation P{j|i, . . .} instead of P{e(n) = j|e(n− 1) = i, . . .}) as

pij =P

{
j|i, x(n− 1) ≥ τ(i)

W (i)

}
·
(

1− FX
(
τ(i)

W (i)

))
+ P

{
j|i, x(n− 1) <

τ(i)

W (i)

}
· FX

(
τ(i)

W (i)

)

=

 (1− Fb1(i))(1− FX) + (1− Fb0(i))FX j = 0

Pb1(i− j)(1− FX) + Pb0(i− j)FX 0 < j < B

Fb1(i−B)(1− FX) + Fb0(i−B)FX j = B

(A.6)

where Pb0 and Pb1 are the conditional probability mass functions of b given actions

a = 0 and a = 1, respectively, and Fb0 and Fb1 the respective cumulative conditional

probability functions. With some abuse of notation, we have abbreviated FX =

FX(τ(i)/W (i)).
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A.3 Derivation of the stochastic algorithm

Let us first define functions

α(e) = E{λ(φB(e− b0(n)))} (A.7)

β(e) = E{λ(φB(e− b0(n)−∆(n)))}. (A.8)

The solution (2.7) of the MDP can then be written as

a(n) = u [W (e(n))x(n)− γ (α(e(n))− β(e(n)))] , (A.9)

λ(e) = γα(e) + E{(W (e, x(n))x(n)− γ(α(e)− β(e)))+}. (A.10)

To derive the proposed algorithm as an instance of the Robbins-Monro algorithm

[134], we represent functions in vector notation.

Accordingly, we define λ = (λ(0), λ(1), . . . , λ(B))ᵀ, and let ω, α, β be the corre-

sponding vectorizations of W (e), α(e) and β(e). We also define the vector of success

indices

wc = (u(0− b), u(1− b), . . . , u(B − b))ᵀ (A.11)

and the transformation λ′ = Tbλ, such that λ′i = λφB(i−b)+1. Then, we can write

ω = E{wb0(n)+∆(n)} (A.12)

α = E{Tb0(n)λ} (A.13)

β = E{Tb0(n)+∆(n)λ} (A.14)

λ = γα+ E{(ωx− γ(α− β))+}. (A.15)

Now, defining vector

v = (ωᵀ,αᵀ,βᵀ,λᵀ)ᵀ (A.16)

and matrices

Mb0,b1 =


−I 0 0 0

0 −I 0 Tb0

0 0 −I Tb1

0 γI 0 −I

 (A.17)
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Nx =


0 0 0 0

0 0 0 0

0 0 0 0

xI −γI γI 0

 , (A.18)

eqs. (A.12) to (A.15) are equivalent to

E
{

(Nxv)+ + Mb0(n),b0(n)+∆(n)v + wb0(n)+∆(n)

}
= 0 (A.19)

where wb = (wᵀ
b ,0

ᵀ,0ᵀ,0ᵀ)ᵀ. The Robbins-Monro algorithm that solves (A.19) then

becomes [134]

v(n+ 1) = v(n) + η(n)
[
(Nx(n)v(n))+ + Mb0,b1(n)v(n) + wb(n)

]
, (A.20)

which is equivalent to (2.32)-(2.35).
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B
Proofs and Derivations of Chapter 3

Recurrent expressions for the cross-variance matrices

In this appendix, we obtain recurrent expressions for S`m(n) , E{ψ̃`(n)ψ̃
T

m(n)},
X`m(n) , E{ψ̃`(n)w̃T

m(n)}, and W`m(n) , E{w̃`(n)w̃T
m(n)}, assuming ` 6= m and

`=m, where ` and m represent nodes of the network.

In order to obtain a recursion for S`m(n), we must rewrite (3.4) in terms of the

weight-error vector ψ̃k(n). Thus, subtracting both sides of (3.4) from wo(n) and

replacing ξk(n) = uT
k (n)ψ̃k(n− 1) + vk(n), we obtain

ψ̃k(n) = [I−µ̃k(n)uk(n)uT
k (n)] ψ̃k(n−1)−µ̃k(n)uk(n)vk(n) + q(n), (B.1)

where I stands for the identity matrix of dimension M and

µ̃k(n) ,
µk

δ + ‖uk(n)‖2 . (B.2)

Multiplying (B.1) with k←` by its transpose with k←m, taking the expectations of

both sides, and using the fact that E{ψ̃k(n−1)qT (n)}=0 since the sequence {q(n)}
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is i.i.d. (Assumption A3.1), we obtain

E{ψ̃`(n)ψ̃
T

m(n)} ≈ E{ψ̃`(n−1)ψ̃
T

m(n−1)}

−

A︷ ︸︸ ︷
E{µ̃m(n)ψ̃`(n−1)ψ̃

T

m(n−1)um(n)uT
m(n)}

−

B︷ ︸︸ ︷
E{µ̃`(n)u`(n)uT

` (n)ψ̃`(n−1)ψ̃
T

m(n−1)}

+

C︷ ︸︸ ︷
E{µ̃`(n)µ̃m(n)u`(n)uT

` (n)ψ̃`(n−1)ψ̃
T

m(n−1)um(n)uT
m(n)}

+

D︷ ︸︸ ︷
E{µ̃`(n)µ̃mv`(n)vm(n)u`(n)uT

m(n)}

−
E︷ ︸︸ ︷

E{µ̃m(n)vm(n)ψ̃`(n−1)uT
m(n)}

−

F︷ ︸︸ ︷
E{µ̃`(n)v`(n)u`(n)ψ̃

T

m(n−1)}

+

G︷ ︸︸ ︷
E{µ̃`(n)µ̃mvm(n)u`(n)uT

` (n)ψ̃`(n−1)uT
m(n)}

+

H︷ ︸︸ ︷
E{µ̃`(n)µ̃mv`(n)u`(n)ψ̃

T

m(n−1)um(n)uT
m(n)}

+E{q(n)qT (n)}. (B.3)

Now, using Assumptions A3.2, A3.5 and A3.6 (see below), we can evaluate the

terms A-H of (B.3):

A- Recalling that Assumption A3.2 implies that ψ̃`(n− 1) and ψ̃m(n− 1) are inde-

pendent of um(n), the term A can be approximated by

A = E
{
E
{
µ̃m(n)ψ̃`(n−1)ψ̃

T

m(n−1)um(n)uT
m(n)|um(n)

}}
≈E

{
µ̃m(n)E

{
ψ̃`(n− 1)ψ̃

T

m(n− 1)
}

um(n)uT
m(n)

}
=S`m(n− 1)E{µ̃m(n)um(n)uT

m(n)}. (B.4)

We must obtain an approximation for

E{µ̃m(n)um(n)uT
m(n)} = µmE

{
um(n)uT

m(n)

δ+uT
m(n)um(n)

}
. (B.5)

To arrive at a simple model, we also assume that
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A3.5- The number of coefficients M is large enough for each element um(n)uT
m(n)

in the numerator to be approximately independent from the denominator∑M−1
l=0 |u(n−l)|2. This is equivalent to applying the averaging principle of [104],

since for large M , ‖um(n)‖2 tends to vary slowly compared to the individual

entries of um(n)uT
m(n).

A3.6- The regressors uk(n), k = 1, 2, . . . , N are formed by a tapped-delay line with

Gaussian entries and δ = 0. This is a common assumption in the analysis of

adaptive filters and leads to reasonable analytical results [57].

Under A3.5 and A3.6, (B.5) can be approximated as [31, 14]

E{µ̃m(n)um(n)uT
m(n)} ≈ µm

σ2
um(M − 2)

Rmm, (B.6)

and the term A as

A ≈ µm
σ2
um(M − 2)

S`m(n− 1)Rmm, (B.7)

where σ2
um is the variance of the input signal at node k.

B- Analogously, we obtain for B

B ≈ µ`
σ2
u`

(M − 2)
R`` S`m(n− 1). (B.8)

C- Under A3.2, it holds that

C = E {µ̃`(n)u`(n)uT
` (n)S`m(n−1)µ̃m(n)um(n)uT

m(n)} . (B.9)

Note that if the regression data of nodes ` and m are spatially independent (Assump-

tion A3.2) and under A3.5 and A3.6, (B.9) reduces to

C ≈ µ`µm
σ2
u`
σ2
um(M − 2)2

R``S`m(n−1)Rmm. (B.10)

For m = `, Rmm = R`` 6= 0 and therefore, (B.9) reduces to (see, e.g., [31, 14])

C ≈ µ2
`

σ4
u`

(M − 2)(M − 4)

[
2R``S``(n−1)R`` + Tr(R``S``(n−1))R``

]
. (B.11)

D- Under Assumption A3.2 and for ` 6= m, D ≈ 0. On the other hand, for m = `,

we get [106]

D ≈ µ2
`

σ4
u`

(M − 2)(M − 4)
σ2
v`

R``. (B.12)
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E-H- Under Assumption A3.2, all the terms E to H are M ×M null matrices.

From the previous results, (B.3) reduces to (B.13). Similarly, for m = `, we arrive at

(B.14).

S`m(n) ≈ S`m(n−1)− µmS`m(n−1) Rmm − µ`R`` S`m(n−1)

+ µ`µmR``S`m(n−1)Rmm + Q, (` 6= m) (B.13)

S``(n) ≈ S``(n−1)− µ`
[
S``(n−1) R`` + R`` S``(n−1)

]
+ µ2

`

M−2

M−4

[
2R``S``(n−1)R`` + R``Tr(S``(n−1)R``)

]
+ µ2

`

M−2

M−4
σ2
`R`` + Q, (B.14)

In order to obtain a recurrent expression for X`m(n) , E{ψ̃`(n)w̃T
m(n)}, we first

add q(n) to both sides of (3.16) with k ← m and transpose the resulting equation,

which leads to

w̃T
m(n) ≈ cmm(n)ψ̃

T

m(n− 1) +
∑
p∈N̄m

cpm(n)w̃T
p (n− 1) + qT (n). (B.15)

Then, we multiply (B.15) by ψ̃`(n) from the left, using (B.1) with k ← ` to multiply

the right-hand side. Taking expectations on both sides and using assumptions A3.1-

A3.3, we arrive at

E{ψ̃`(n)w̃T
m(n)} ≈ E{cmm(n)}E{[I−µ̃`(n)u`(n)u`(n)]}E{ψ̃`(n−1)ψ̃

T

m(n−1)}
+
∑
p∈N̄m

E{cpm(n)}E{[I−µ̃`(n)u`(n)u`(n)]}E{ψ̃`(n−1)w̃T
p (n−1)}+Q. (B.16)

Under Assumptions A3.5 and A3.6 [see Eq. (B.6)], (B.16) reduces to

X`m(n) ≈ E{cmm(n)}
[
I− µ`

σ2
u`

(M − 2)
R``

]
S`m(n−1)

+

[
I− µ`

σ2
u`

(M − 2)
R``

] ∑
p∈N̄m

E{cpm(n)}X`p(n−1) + Q. (B.17)

Using the definition of µ` [Eq. (B.21)] in (B.17), we arrive at (B.18).
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X`m(n) ≈ E{cmm(n)}[I− µ̄`R``]S`m(n−1)

+ [I− µ̄`R``]
∑
p∈N̄m

E{cpm(n)}X`p(n− 1) + Q. (B.18)

Finally, to obtain a recurrent expression for W`m(n) , E{w̃`(n)w̃T
m(n)}, we mul-

tiply (3.16) with k ← ` by its transpose with k ← m from the right and take the

expectations of both sides. After some algebraic manipulations under Assumptions

A3.1 and A3.3, we arrive at

E{w̃`(n)w̃T
m(n)} −Q ≈ E{c``(n)cmm(n)}E{ψ̃`(n− 1)ψ̃

T

m(n− 1)}
+
∑
p∈N̄`

∑
r∈N̄m

E{cp`(n)crm(n)}E{w̃p(n− 1)w̃T
r (n− 1)}

+
∑
r∈N̄m

E{c``(n)crm(n)}E{ψ̃`(n− 1)w̃T
r (n− 1)}

+
∑
p∈N̄`

E{cp`(n)cmm(n)}E{w̃p(n− 1)ψ̃
T

m(n− 1)}. (B.19)

Noting that E{w̃p(n−1)ψ̃
T

m(n−1)} = XT
mp(n−1), (B.19) can be rewritten as (B.20).

W`m(n) ≈ E{c``(n)cmm(n)}S`m(n− 1)

+
∑
p∈N̄`

∑
r∈N̄m

E{cp`(n)crm(n)}Wpr(n− 1)

+
∑
r∈N̄m

E{c``(n)crm(n)}X`r(n− 1)

+
∑
p∈N̄`

E{cp`(n)cmm(n)}XT
mp(n− 1) + Q, (B.20)

where we have defined

µk ,
µk

σ2
u,k(M − 2)

, (B.21)

with σ2
u,k being the variance of the input signal at node k, with k = 1, 2, . . . , N .
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C
Acronyms and abbreviations

• ABT. Adaptive Balanced Transmitter.

• ACW. Adaptive Combination Weights.

• APA. Affine Projection Algorithm.

• ATC. Adapt-then-Combine.

• BT. Bluetooth.

• C2. Command and Control.

• CD-ATC. Censoring Decoupled Adapt-then-Combine.

• CTA. Combine-then-Adapt.

• D-ATC. Decoupled Adapt-then-Combine.

• DARPA. Defense Advanced Research Projects Agency.
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• DP. Dynamic Programming.

• IEEE. Institute of Electrical and Electronic Engineers.

• IoT. Internet of the Things.

• LMS. Least Mean Squares.

• LS. Least Squares.

• MAC. Medium Access Control.

• MDP. Markov Decision Process.

• MSD. Mean Square Deviation.

• MSE. Mean Square Error.

• NLMS. Normalized Least Mean Squares.

• NMSD. Network Mean Square Deviation.

• NMSE. Network Mean Square Error.

• NS. Non selective.

• NSD-ATC. Non Selective Decoupled Adapt-then-Combine.

• QoI. Quality of Information.

• QoS. Quality of Service.

• SAP. Stochastic Approximate Policy.

• SNR. Signal-to-noise ratio.

• WSN. Wireless Sensor Network.
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D
List of Publications

In this appendix we list the publications where work related to this thesis has been

presented.

Journal Publications

1. J. Fernandez-Bes, M. T. M. Silva, J. Arenas-Garćıa, and L. A. Azpicueta-

Ruiz. Decoupled Adapt-then-Combine diffusion networks with adaptive com-

biners (UNDER REVIEW). [available at http://arxiv.org/abs/1504.01982v1]

2. J. Fernandez-Bes, R. Arroyo-Valles, J. Cid-Sueiro. Asymptotic Analysis of

Cooperative Censoring Policies in Sensor Networks. Ad Hoc Networks, 29(0):63-

77, Jun.2015.

3. J. Fernandez-Bes, J. Cid-Sueiro, A. G. Marques. An MDP Model for Censor-

ing in Harvesting Sensors: Optimal and Approximated Solutions. IEEE Journal

on Selected Areas in Communications, PP(99):1-1, 2015.
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combiners . Digital Signal Processing. 36:1-14, Jan. 2015.
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Mean-Squares Filter. In International Conference on Acoustics, Speech and

Signal Processing (ICASSP), 2015, Brisbane (Australia). May 2015.
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Garćıa. Estimación distribuida con redes de difusión: algoritmo con combi-
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nation Weights Over Adaptive Diffusion Networks. In International Conference
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Transmitters in Energy-Harvesting Sensor Networks: Optimal Solution and
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Garćıa. A Novel Scheme for Diffusion Networks with Least-Squares Adaptive

Combiners. In Machine Learning for Signal Processing (MLSP), 2012 IEEE

International Workshop on, Santander (Spain). Sep. 2012.
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Aware Greedy Selective Sensors. In Cognitive Information Processing (CIP),
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censoring for energy-efficient communications in sensor networks. In Machine

Learning for Signal Processing (MLSP), 2011 IEEE International Workshop on
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