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Chapter 1

Motivation, introduction, and

summary of main results

The First and second Frobenius companion matrices appear frequently in numerical application,
but it is well known that they posses many properties that are undesirable numerically, which limit
their use in applications. Fiedler companion matrices, or Fiedler matrices for brevity, introduced
in 2003, is a family of matrices which includes the two Frobenius matrices. The main goal of this
work is to study whether or not Fiedler companion matrices can be used with more reliability
than the Frobenius ones in the numerical applications where Frobenius matrices are used. For
this reason, in this work we present a thorough study of Fiedler matrices: their structure and
numerical properties, where we mean by numerical properties those properties that are interesting
for applying these matrices in numerical computations, and some of their applications in the field
on numerical linear algebra.

The introduction of Fiedler companion matrices is an example of a simple idea that has been
very influential in the development of several lines of research in the numerical linear algebra
field. This family of matrices has important connections with a number of topics of current inter-
est, including: polynomial root finding algorithms, linearizations of matrix polynomials, unitary
Hessenberg matrices, CMV matrices, Green’s matrices, orthogonal polynomials, rank structured
matrices, quasiseparable and semiseparable matrices, etc (for a more detailed survey of the influ-
ence of Fiedler companion matrices in numerical linear algebra and matrix analysis see [104]).

In this introductory chapter we will present a brief introduction to Fiedler companion matrices.
Then, in order to motivate better the importance of Fiedler matrices and the study of their nu-
merical and structural properties, we will also summarize the areas in which Fiedler matrices may
play or are playing a relevant role. Finally, we will present a summary of the chapters presented
in this thesis and the main original contributions contained in them.

1.1 A brief introduction to Fiedler companion matrices

Fiedler matrices first appeared in the context of companion matrices of monic polynomials in [59].
Since in this work we are going to deal with companion matrices, we present in Definition 1.1 what
we mean by a companion matrix of a monic polynomial

p(z) = zn +

n−1∑
k=0

akz
k with ak ∈ C for k = 0, 1, . . . , n− 1. (1.1)

This definition is a particular case of the more general definition presented in [48] of a companion
form of grade � of a matrix polynomial.

1



2 CHAPTER 1. MOTIVATION, INTRODUCTION, AND SUMMARY OF MAIN RESULTS

Definition 1.1. Given a monic polynomial p(z) of degree n ≥ 2, a companion matrix of p(z) is a
matrix A ∈ Cn×n satisfying the following two properties:

(i) Each entry of the matrix A is either a constant α ∈ C, or a constant times one of the
coefficients of p(z), i.e., βaj for some β ∈ C and 0 ≤ j ≤ n− 1, and

(ii) the eigenvalues of A are equal to the roots of p(z), or equivalently, the characteristic polyno-
mial of A satisfies det(zI −A) = p(z).

The best well known examples of companion matrices of the monic polynomial (1.1) are the
matrices

C1 :=

⎡⎢⎢⎢⎢⎢⎢⎣

−an−1 −an−2 · · · −a1 −a0
1 0 · · · 0 0

0 1
. . . 0 0

...
. . .

. . .
...

...
0 · · · 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎦ and C2 :=

⎡⎢⎢⎢⎢⎢⎢⎣

−an−1 1 0 · · · 0

−an−2 0 1
. . .

...
...

...
. . .

. . . 0
−a1 0 0 · · · 1
−a0 0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎦ , (1.2)

known as the first and second Frobenius companion matrices of p(z), respectively. Notice that
C1 and C2 can be constructed directly from the coefficients of the polynomial p(z). The use of
companion matrices goes back at least to Frobenius (1879) in his “rational canonical form” of
a matrix [64]. Other similar Frobenius companion matrices that appear in the literature can be
obtained by transposition and/or by reversing the order of rows and columns of C1 or C2 [87, pp
194–200] and [99, p. 105].

Frobenius companion matrices are important in theory, in numerical computations, and in ap-
plications. For instance, MATLAB command roots computes all the roots of a polynomial by
applying the Francis’ implicitly-shifted QR-algorithm, or QR-algorithm for short, to a balanced
Frobenius companion matrix [113]. Frobenius companion matrices are also widely used in con-
trol theory and signal processing, for example, in the observable canonical form as well as the
controllable canonical form (see [95] and [99, Section 10.4] and the references therein). However,
as we commented before, it is well known that they have many properties that are undesirable
numerically.

In 2003, Fiedler expanded significantly the family of companion matrices associated with a
monic polynomial [59]. These matrices were named Fiedler matrices in [45]. The family of Fiedler
matrices includes C1 and C2 but, provided that n ≥ 3, it contains some other different matrices
and, in fact, many others when n is large. Every Fiedler matrix shares with C1 and C2 two key
properties: (i) its characteristic polynomial is p(z) in (1.1), and (ii) (n−1) of its nonzero entries are
equal to 1 and the remaining nonzero entries are equal to ai, for i = 0, . . . , n− 1, with exactly one
copy of each. In fact, they are easily constructible from the polynomial, without performing any
arithmetic operation, by means of a uniform template valid for all polynomials [47, Algorithm 1].
According to Definition 1.1, this justifies that Fiedler matrices are also called Fiedler companion
matrices.

The first key observation made in [59] towards the introduction of the family of Fiedler com-
panion matrices is that C1 and C2 have a simple factorization. For the monic polynomial p(z)
(1.1), if we define the n× n matrices 1

M0 :=

[
In−1 0
0 −a0

]
and Mk :=

⎡⎢⎢⎣
In−k−1

−ak 1
1 0

Ik−1

⎤⎥⎥⎦ , k = 1, . . . , n− 1, (1.3)

1Here and in the rest of this work Ij denotes the j × j identity matrix.
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then C1 = Mn−1 · · ·M1M0 and C2 = M0M1 · · ·Mn−1.
The second key idea in [59] was to notice that every matrix that can be obtained multiplying

the n matrices (1.3) in any order is similar to the Frobenius companion matrices (1.2). Hence, the
matrices (1.3) are the basic factors used to build all Fiedler matrices. In [59], Fiedler matrices are
defined as the product

Mσ = Mi1Mi2 · · ·Min ,

where σ = (i1, i2, . . . , in) is any possible permutation of the n-tuple (0, 1, . . . , n − 1). With this
notation we can state formally the key result proved by Fiedler.

Theorem 1.2. Given a monic polynomial p(z), all Fiedler matrices Mσ associated with p(z) are
similar to each other.

Since Frobenius companion matrices are particular examples of Fiedler matrices and the charac-
teristic polynomial of a matrix is invariant under similarity, then, we have that the characteristic
polynomial of all associated Fiedler matrices of p(z) is equal to p(z).

The third key observation is that some permutations may produce matrices with interesting
structures. Fiedler showed that we could generate a different companion matrix by arranging
the coefficients, alternating with zeros, along the super- and subdiagonal, together with ones and
zeros along the supersuper- and subsubdiagonal of a pentadiagonal matrix. In order to get this
companion matrix, consider the permutation τ = (0, 2, 4, . . . , 1, 3, 5, . . .) with all the even indices
gathered together and all the odd indices gathered together. Here is a 10× 10 example:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−a9 1 0 0 0 0 0 0 0 0
−a8 0 −a7 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 −a6 0 −a5 1 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 −a4 0 −a3 1 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 −a2 0 −a1 1
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 −a0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (1.4)

This Fiedler matrix is a pentadiagonal matrix for any degree n of the polynomial p(z). For high
degree polynomials, this companion matrix will have much lower bandwidth than the Frobenius
companion matrices, and may have potential advantages in numerical computations.

In summary, the family of Fiedler companion matrices has expanded significantly the available
set of companion matrices beyond the Frobenius ones. Moreover, Frobenius companion matrices
appear frequently in the literature on control and signal processing, polynomial root finding al-
gorithms, and bounds for roots of polynomial, and, therefore, it is natural to investigate whether
other Fiedler matrices are better suited for these applications than the Frobenius companion ma-
trices or not. Also, since the introduction of this family of matrices, the ideas in [59] have strongly
influenced the development of several lines of research. These lines of research include linearization
of matrix polynomials, and rank structured matrices. So Fiedler matrices provide opportunities for
further developments from both theoretical and numerical points of view.

1.2 Polynomial root-finding using companion matrices

The computation of roots of scalar polynomials, that we term as the polynomial root finding prob-
lem, is one of the oldest mathematical problems [26, 129]. The solutions of quadratic equations
were known to the Arab scholars in the early Middle Ages. The cubic and quartic equations were
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solved in closed form in the mid-16th century thanks to the work of the Italian mathematicians S.
del Ferro, N. Tartaglia, G. Cardano, and L. Ferrari. However, in the early 19th century, N. H. Abel
showed that polynomials of degree five or more can not be solved with a formula involving sums,
differences, products, quotients, and radicals of the coefficients. Since then, many researchers have
concentrated on numerical iterative methods to solve polynomial equations.

Computing roots of polynomials has important applications in many areas. Low-degree poly-
nomial equations appear in physics, chemistry, engineering, business management and statistics
and they are solved using tools of linear algebra [129]. These tools are sufficiently effective in most
cases. Polynomial equations with large degree (typically 100 and sometimes of order of several
thousands) arise in computer algebra, computational algebraic geometry, control theory and signal
processing (see [114, 115, 116, 125, 129] and the bibliography therein), and, until recently, they
were a challenge for the available software. Another major application of the polynomial root-
finding problem may be found in the symbolic and numerical solution of systems of polynomial
equations. Different methods have been proposed that reduce the system of polynomial equations
to a single polynomial such that the solution of the former can be obtained from the roots of the
latter [139]. The polynomials obtained usually have large degrees and huge coefficients. Finally,
we refer the reader to the URL http://www.elsevier.com/locate/cam where more than 8000
references about the polynomial root-finding problem are cited.

Nowadays we are aware of many algorithms for computing roots of polynomials, together with
their numerical analysis and applications. These algorithms can be classified in two categories.
In the first category we have algorithms that are implemented using the standard machine float-
ing point arithmetic. Some of these algorithms are the Madsen–Reid [107], Jenkins–Traub [90],
Aberth-Ehrlich [1, 56], Durand-Kerner [96], Laguerre [142], QR-algorithm applied to companion
matrices, QZ-algorithm applied to companion pencils (we refer to [117, 118] for thorough surveys
on numerical methods for computing the roots of polynomials). In the second category we have
algorithms that work using different levels of working precision with an increasing number of bits.
In this second category we have the algorithm MPSolve [17, 18], which can compute roots of
polynomials with any number of digits of precision.

Among the algorithms that work with a fixed precision, the most widely used are the ones that
compute the roots of polynomials as the eigenvalues of companion matrices. The main advantages
of this approach are that these methods are easy to implement (given any algorithm to compute the
eigenvalues of a matrix), standard backward stable eigenvalue algorithms like the QR-algorithm
may be used to compute the eigenvalues of the companion matrix, known a priory backward
stability in the matrix sense, and guaranteed convergence in practice. As we commented, this
is the approach followed by the MATLAB command roots which uses the QR-algorithm on the
Frobenius companion matrix (1.2) to get its eigenvalues. Though this may not be the best way
to address the polynomial root-finding problem, from the point of view of efficiency and storage
(a polynomial has O(n) coefficients, while the complexity of the QR-algorithm is O(n2) storage
and O(n3) floating point operations, or flops [123]), it has been extensively used because of its
robustness and backward stability. Nonetheless, to overcome the mentioned drawbacks on the
efficiency (measured in number of operations) and storage, several fast variants of the QR method
have been proposed, which take advantage of the structure of the Frobenius companion matrix
(see, for instance, [9, 19, 20, 22, 34, 36, 69, 156]), or variants of the LR algorithm [172], but none
of them has been proved to be backward stable. In a different line of research, also variants of
C1, C2 have been proposed, devoted to improve the accuracy in the case of multiple roots, where
the standard companion matrix gives less accurate results than for simple roots (see [28, 127]).

Even though computing the roots of a polynomial and computing the eigenvalues of a companion
matrix are mathematically equivalent, these two problems present relevant differences from the
numerical point of view. In particular, those regarding conditioning and backward errors. The
difference in this setting relies on the fact that, due to perturbations, the companion matrix
may become a dense matrix, which has not the structure of a companion matrix any more. In
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other words, small perturbations of the companion matrix might not correspond to equally small
perturbations of the associated polynomial. In [53, 150] the numerical properties of the Frobenius
companion matrices (eigenvalue condition numbers and backward errors of computed roots of
polynomials using Frobenius companion matrices) were studied. In Section 1.2.1, we summarize
the work done in [53] where the backward errors of computed roots of polynomials using Frobenius
companion matrices are analyzed, and we emphasize the drawbacks, from the point of view of
backward errors, of using Frobenius companion matrices. Then, in Section 1.2.2 we summarize
the work carried out in [150] where the authors studied the eigenvalue condition numbers and
pseudospectra of Frobenius companion matrices, and we stress, from the point of view of condition
numbers and pseudospectra, the drawback of using Frobenius companion matrices. In Section
1.2.3 we explain the concept of balancing a matrix, and we summarize the results found in [53] and
[150] when the Frobenius companion matrices are balanced. Finally, in Section 1.2.4 we explain
the role that Fiedler companion matrices may play as a new tool for finding the roots of monic
polynomials.

1.2.1 Backward stability of polynomial root-finding using Frobenius com-

panion matrices

Suppose that the roots of a monic polynomial p(z) are computed as the eigenvalues of a companion
matrix A of p(z) using a backward stable eigenvalue algorithm like the QR-algorithm [10]. The
backward stability of the eigenvalue algorithm ensures that the whole set of computed eigenvalues
is the whole set of exact eigenvalues of a matrix A+ E, where E is a dense matrix such that

‖E‖ = O(u)‖A‖, (1.5)

for some matrix norm ‖ · ‖, and where u denotes the machine epsilon. However, this does not
guarantee that these (computed) eigenvalues are the roots of a nearby polynomial of p(z) or, in
other words, that the method is backward stable from the point of view of the polynomials. In order
for the method to be backward stable from the point of view of the polynomials, the computed
eigenvalues should be the exact roots of a polynomial p̃(z) = zn +

∑n−1
k=0 ãkz

k satisfying

‖p̃− p‖
‖p‖ = O(u), (1.6)

for some polynomial norm ‖ ·‖, if we are interested in normwise backward stability or the strongest
requirement,

max
k=0,1,...,n−1

|ãk − ak|
|ak| = O(u), (1.7)

if we are interested in coefficientwise backward stability. If (1.6) (resp. (1.7)) holds, the root-
finding method using the companion matrix A will be normwise (resp. coefficientwise) backward
stable.

To see if (1.6) or (1.7) hold, the key idea is that the computed roots are the exact eigenvalues
of a certain perturbation of A, say A + E. In other words, we have p(z) = det(zI − A) and
p̃(z) = det(zI − (A+E)), with E satisfying (1.5). Therefore, the difference between p(z) and p̃(z)
can be measured from the variation of the coefficients of the characteristic polynomial of A under
small perturbations of A. Hence, the kth coefficient of the characteristic polynomial of a matrix
X = (xij) ∈ C

n×n may be considered as a function of the entries of X , ak(X) : Cn2 → C, for
k = 0, 1, . . . , n− 1. Equivalently:

det(zI −X) = zn +

n−1∑
k=0

ak(X)zk.
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The function ak(X) is a multivariable polynomial function of the entries of the matrix X . There-
fore, the first order term in E of its Taylor polynomial centered at A is (see, for instance, [74, Th.
3.8] for functions of several complex variables)

ak(A+ E) = ak(A) +

n∑
i,j=1

∂ak(X)

∂xij

∣∣∣∣
X=A

Eij = ak(A) +∇ak(A) · vec(E), (1.8)

for k = 0, 1, . . . , n− 1, where, for a given m×n matrix B = (bij), vec(B) is the vectorization of B,
namely, the column vector

vec(B) := [b11, . . . , bm1, b12, . . . , bm2, . . . , b1n, . . . , bmn]
T (1.9)

(see [87, Def. 4.2.9], for instance), and

∇ak(A) =
[
∂ak(X)
∂x11

∣∣∣
X=A

· · · ∂ak(X)
∂xn1

∣∣∣
X=A

∂ak(X)
∂x12

∣∣∣
X=A

· · · ∂ak(X)
∂xn2

∣∣∣
X=A

· · · ∂ak(X)
∂x1n

∣∣∣
X=A

· · · ∂ak(X)
∂xnn

∣∣∣
X=A

]
.

(1.10)
Therefore, to first order in E, we have

|ak(A+ E)− ak(A)| = |∇ak(A) · vec (E)|.
Hence, the backward stability of the method of computing roots of polynomials using companion
matrices may be analyzed by studying the entries of the gradients ∇ak(A), for k = 0, 1, . . . , n− 1.

For a precedent on the perturbation analysis of the coefficients of the characteristic polynomial
of a matrix, we refer the reader to [89]. In that paper, several bounds are derived for the variation of
the characteristic polynomial of an arbitrary matrix A under perturbations, in terms of symmetric
functions of the singular values of A, but the bounds there are very pessimistic for general matrices.
Also, in the recent reference [100], the authors address this problem, namely, to know whether or
not solving the polynomial root-finding problem as an eigenvalue problem is backward stable from
the point of view of the polynomials, but they use a suitable companion matrix for the polynomial
expressed in barycentric form. In that reference the polynomials are not necessarily monic, but
the authors follow a similar approach to ours.

When A is one of the Frobenius companion matrices, the backward stability of the polynomial
root-finding method using companion matrices was studied in [53]. If we focus on the first Frobenius
companion matrix, in [53] it was shown that, if

p̃(z) = det(zI − C1 − E) = zn +

n−1∑
k=0

ãkz
k, (1.11)

where C1 is the first Frobenius companion matrix defined in (1.2), then, to first order in (the
entries of) E,

ãk − ak =
k∑

s=0

n−k−1∑
j=1

asEj−s+k+1,j −
n∑

s=k+1

n∑
j=n−k

asEj−s+k+1,j . (1.12)

If the eigenvalues of C1 are computed with a backward stable algorithm, it may be proved from
(1.12) that, to first order in E, the computed eigenvalues are the exact roots of a polynomial p̃(z)
as in (1.11) such that

‖p̃− p‖
‖p‖ = O(u)‖p‖, (1.13)

since E satisfies ‖E‖ = O(u)‖C1‖ = O(u)‖p‖. Note that (1.13) does not imply that computing
the roots of p(z) using C1 (or C2) is a backward stable method from the point of view of the
polynomials, since large values of ‖p‖ can give large backward errors.
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This penalty in the transition from matrix to polynomial backward error is an intrinsic matrix
perturbation phenomenon, independent of the algorithm, and it is determined by the particular
properties of the Frobenius companion matrix C1 and the magnitude of ‖E‖ in (1.11). In fact, one
may consider in (1.11) a more general matrix E such that

‖E‖ = α(p)O(u)‖C1‖ = α(p)O(u)‖p‖, (1.14)

with α(p) being some positive quantity depending of p(z). Matrices as in (1.14) are obtained as the
matrix backward errors of the fast variants of the QR-algorithm. For example, in the analysis of
the algorithm presented in [8] a matrix backward error ‖E‖ = O(u)‖C1‖2/min{1, |a0|} is obtained,
that is, for that algorithm we have that α(p) = ‖C1‖/min{1, |a0|}. Then, using (1.12) and (1.14),
we could replace (1.13) by

‖p̃− p‖
‖p‖ = α(p)O(u)‖p‖. (1.15)

Equations (1.13) and (1.15) show that, even using backward stable algorithms to compute
the eigenvalues of C1 (or C2), the approach of computing the roots of a polynomial p(z) as the
eigenvalues of its Frobenius companion matrix is not backward stable from the point of view of
the polynomials.

One possible way to circumvent large polynomial backward errors due to the occurrence of large
polynomial coefficients is to shift from companion matrices to companion pencils. A companion
pencil of a (non necessarily monic) polynomial p(z) =

∑n
k=0 akz

k is the set of matrices of the form
zA − B, with A,B ∈ Cn×n and z ∈ C, such that det(zA − B) = p(z). For example, the first
Frobenius companion pencil associated with the polynomial p(z) =

∑n
k=0 akz

k is

z

⎡⎢⎢⎢⎢⎢⎢⎢⎣

an 0 · · · · · · 0

0 1 0
...

... 0
. . .

. . .
...

...
. . .

. . . 0
0 · · · · · · 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
−

⎡⎢⎢⎢⎢⎢⎢⎣

−an−1 −an−2 · · · −a1 −a0
1 0 · · · 0 0

0 1
. . . 0 0

...
. . .

. . .
...

...
0 · · · 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎦ (1.16)

Then, to compute the roots of the polynomial p(z) one may use any backward stable algorithm,
like the QZ-algorithm, to solve the generalized eigenvalue problem det(zA−B) = 0. If one follows
this approach, the backward stability of the QZ-algorithm implies that the whole ensemble of
computed eigenvalues are the exact eigenvalues of the pencil z(A + E) − (B + F ), with ‖E‖ =
O(u)‖A‖ and ‖F‖ = O(u)‖B‖ (see [73]). Again, backward stability in the matrix sense does not
necessarily imply polynomial backward stability [101]. However, it is shown in [101, 160] that
polynomial backward stability can now be achieved by using the QZ-algorithm and the Frobenius
companion pencil (1.16), provided that the polynomial p(z) has been previously scaled so that all
coefficients have absolute value less than or equal to 1. For polynomials not necessarily monic,
this condition can be always achieved by dividing all coefficients of the original polynomial p(z) by
some sufficiently large number. This result is also in accordance with the recent results in [126],
where the authors study the polynomial backward stability of algorithms that compute the roots of
polynomials via the eigenvalues of comrade pencils, where a comrade matrix is the generalization
of a companion matrix when, instead of the monomial basis, a orthogonal polynomial basis is used
to represent the polynomial. However, this approach has an important drawback from the point
of view of storage and efficiency. The storage and number of floating point operations required by
the QZ-algorithm is two and three times, respectively, the storage and number of floating point
operations required by the QR-algorithm [73]. Nonetheless, to overcome the drawbacks on the
efficiency and storage a fast version of the QZ-algorithm has been presented in [25], although no
backward error analysis is provided.
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1.2.2 Eigenvalue condition numbers and pseudospectra of Frobenius

companion matrices

When computing an eigenvalue of a given matrix or a root of a given polynomial it is important
to be able to measure their sensitivity to uncertainty in the entries of the matrix or in the coeffi-
cients of the polynomial, respectively, since the maximum possible accuracy of the computation is
determined by this. Zeros of polynomials and eigenvalues of non normal matrices are well-known
examples of problems whose answers may be highly sensitive to perturbations. The sensitivity
of these two problems was made famous by Wilkinson in the early 1960s [132, 168, 169]. Both
problems are related since the zeros of a monic polynomial are equal to the eigenvalues of any
companion matrix of the polynomial.

Much has been done to derive ways to estimate the influence of perturbations on the roots of
polynomials and on the eigenvalues of matrices. One approach is to derive a condition number
to estimate the largest magnitude of the changes of the roots and eigenvalues which corresponds
to changes in the coefficients of the polynomial or in the entries of the matrix when the only
information on these changes is their size (norm or absolute value). The other approach is to
consider the perturbation as a continuity problem and to use the geometry of the complex plane,
that is, the use of the concepts of pseudospectrum of a matrix and pseudozero set of a polynomial.
Our interest in pseudospectra of matrices, pseudozero sets of polynomials, condition numbers
of roots of polynomials, and eigenvalue condition numbers comes from using them as tools for
comparing the sensitivity of the roots of a polynomial with the sensitivity of the eigenvalues of a
companion matrix of the polynomial.

In the following two sections we summarize the results obtained in [150] concerning pseudospec-
tra and eigenvalue condition numbers of Frobenius companion matrices. In order to better express
these results, we need to distinguish between norms on the vector space of polynomials of de-
gree less than or equal to n and norms on the vector space of coefficients of monic polynomials
(excluding the leading coefficient an = 1) of degree equal to n. In particular, for a polynomial
p(z) =

∑n
k=0 akz

k non necessarily monic, ‖p‖2 is the norm on the vector space of polynomials of
degree less than or equal to n defined as

‖p‖2 =
√√√√ n∑

k=0

|ak|2,

In addition, for a monic polynomial p(z) = zn +
∑n−1

k=0 akz
k, we define |||p|||2 as

|||p|||2 =

√√√√n−1∑
k=0

|ak|2.

Notice that |||p|||2 is not a norm on the vector space of polynomials of degree less than or equal
to n. Also notice that given two monic polynomials p(z) and q(z) of degree n, we have that
‖p− q‖2 = |||p− q|||2.

1.2.2.1 Eigenvalue condition numbers of Frobenius companion matrices and condi-

tion numbers of roots of monic polynomials

Suppose that the roots of a monic polynomial p(z) are computed as the eigenvalues of a companion
matrix A of p(z). Ideally, one would want the eigenvalues of A to be as well conditioned as the
roots of p(z). Recall that the condition number of a simple nonzero root λ of the monic polynomial
(1.1) is

κ(λ, p) := lim
ε→0

sup

{
|λ̃− λ|

ε|λ|
: λ̃ is a root of p̃(z) = z

n +

n−1∑
k=0

ãkz
k with |||p̃− p|||2 ≤ ε|||p|||2

}
. (1.17)
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Note that the condition number κ(λ, p) measures the relative sensitivity of the simple root λ with
respect to relative normwise perturbations of p(z). If one is interested in coefficientwise relative
perturbations, then is more convenient to use the following condition number:

cond(λ, p) := lim
ε→0

sup

⎧⎨⎩ |λ̃− λ|

ε|λ|
: λ̃ is a root of p̃(z) = z

n +

n−1∑
k=0

ãkz
k with

√√√√n−1∑
k=0

∣∣∣∣ ãk − ak

ak

∣∣∣∣2 ≤ ε

⎫⎬⎭ .

(1.18)

The condition number cond(λ, p) measures the relative sensitivity of the simple root λ with respect
to relative coefficientwise perturbations of p(z).

The condition numbers κ(λ, p) and cond(λ, p) in (1.17) and (1.18), respectively, can be com-
puted explicitly (see Section 8.1). With the notation

Λ(z) =
[
zn−1 · · · z 1

]T
and Λ̂(z) =

[
zn−1an−1 · · · za1 a0

]T
, (1.19)

we have

κ(λ, p) =
|||p|||2‖Λ(λ)‖2
|λ| · |p′(λ)| and cond(λ, p) =

‖Λ̂(λ)‖2
|λ| · |p′(λ)| . (1.20)

From (1.20) is easy to prove that cond(λ, p) ≤ κ(λ, p), and in some situation cond(λ, p) can be
much smaller that κ(λ, p).

The condition number of a simple nonzero eigenvalue λ of a matrix A ∈ Cn×n is

κ(λ,A) := lim
ε→0

sup

{
|λ̃− λ|
ε|λ| : λ̃ is an eigenvalue of A+ E with ‖E‖2 ≤ ε‖A‖2

}
. (1.21)

This condition number, which measures the relative sensitivity of the simple eigenvalue λ with
respect to relative normwise perturbations ofA, was introduced in [16] and it is a slight modification
of the Wilkinson condition number [169], which measures the absolute sensitivity of a simple
eigenvalue with respect to absolute normwise perturbations of the matrix.

The condition number κ(λ,A) can be computed explicitly (see [73])

κ(λ,A) =
‖x‖2‖y‖2
|yTx|

‖A‖2
|λ| ,

where x, y ∈ Cn are the right and left eigenvectors of A, respectively, associated with the simple
eigenvalue λ.

Remark 1.3. In this work, the right and left eigenvectors of a matrix A ∈ Cn×n associated
with the eigenvalue λ are two nonzero vectors x, y ∈ Cn, respectively, that satisfy Ax = λx and
yTA = λyT . The definition of left eigenvector looks nonstandard, since the usual definition of a
left eigenvector of a matrix A associated with the eigenvalue λ is a nonzero vector y ∈ C

n such
that y∗A = λy∗ but it will be more convenient in Chapter 8.

When the matrix A is one of the Frobenius companion matrices associated with a monic poly-
nomial p(z), the condition number κ(λ,Ci), for i = 1, 2, can be written in closed-form. With the
notation

Π(z) = [p0(z), p1(z), . . . , pn−1(z)]
T , (1.22)

where, for k = 0, 1, . . . , n− 1, pk(λ) is the degree k Horner shift of p(z) (see Definition 2.13), the
expression for the condition number κ(λ,Ci), for i = 1, 2, then reduces to the following formula
(see [150, Proposition 3.2])

κ(λ,Ci) =
‖Ci‖2
|λ|

‖Λ(λ)‖2‖Π(λ)‖2
|p′(λ)| , for i = 1, 2,
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where we have used that p′(λ) =
∑n−1

k=0 λ
kpk(λ).

If one wants to compute the roots of the polynomial p(z) via the eigenvalues of a companion
matrix A of the polynomial p(z), one would need the condition number of λ as an eigenvalue of A
and the condition number of λ as a root of p(z) to be of the same order of magnitude, that is,

κ(λ,A)

κ(λ, p)
= O(1), (1.23)

or the strongest condition,
κ(λ,A)

cond(λ, p)
= O(1), (1.24)

When A is one of the Frobenius companion matrices, the ratios (1.23) and (1.24) satisfy

κ(λ,Ci)

cond(λ, p)
≥ κ(λ,Ci)

κ(λ, p)
=
‖Ci‖2
|||p|||2

‖Π(λ)‖2, for i = 1, 2.

These ratios were studied in [150], and it was shown that when |||p|||2 � 1 they can be very large
and, so, in general, (1.23) and (1.24) do not hold. Therefore, although in principle one can find
the zeros of a polynomial via Frobenius companion matrices, it may not be a good idea to do so if
the polynomial has large coefficients.

1.2.2.2 Pseudozero sets of polynomials and pseudospectra of companion matrices

Pseudospectra is a tool that has become popular since the 1990s in the study of matrices and linear
operators. This concept extends the traditional notion of eigenvalues or spectra (for matrices or
linear operators, respectively) and is an established tool for gaining insight into the sensitivity
of the eigenvalues of a matrix to perturbations. Pseudospectra can reveal information about the
behavior of systems, both linear and nonlinear, including stability [78, 135, 136], and convergence
of matrix iterations, and their use is widespread with applications in areas such as fluid mechanics,
hydrodynamics stability and turbulence [134, 140, 152, 153], Markov chains [92], and control theory
[84, 85, 86]. For a survey on pseudospectra of square matrices we refer to Trefethen and Embree’s
book [155]. Also, the notion of pseudospectrum has been extended for matrix pencils [63, 137, 162]
and matrix polynomials [77, 148].

For ε > 0, the ε-pseudospectrum of a matrix A ∈ Cn×n, denoted by Λε(A), is the following set
in the complex plane (see [150]):

Λε(A) := {z ∈ C : z is an eigenvalue of A+ E for some E with ‖E‖2 ≤ ε‖A‖2}.
In words, the ε-pseudospectrum is the set of numbers that are eigenvalues of some perturbed matrix
A+ E with ‖E‖2 ≤ ε‖A‖2.

Pseudospectra of normal matrices are “uninteresting” sets since the ε-pseudospectrum of a
normal matrix is the union of open balls of radii ε centered at its eigenvalues [155, Theorem 2.2].
Pseudospectra becomes interesting for matrices that are far from being normal. We illustrate this
in Figure 1.2.1, where we plot the ε-pseudospectra of two 3×3 matrices, being the first one normal
and the second one nonnormal, for three different values of ε.

Remark 1.4. All the computations of pseudospectra are performed using MATLAB and the toolbox
EigTool. This toolbox is a free package for computing pseudospectra of dense and sparse matrices
[170].

Pseudospectra are nontrivial to compute. Algorithms for computing pseudospectra are based
on the following characterization of Λε(A) in terms of the resolvent (zI −A)−1 or in terms of the
minimum singular value of (zI −A) [155, Theorem 2.2]:

Λε(A) = {z ∈ C : ‖(zI −A)−1‖2 ≥ (ε‖A‖2)−1} = {z ∈ C : σmin(zI −A) ≤ ε‖A‖2}, (1.25)
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(a) normal (b) nonnormal

Figure 1.2.1: The geometry of pseudospectra: schematic view. In each plot the contours represent the boundary
of Λε(A) for three values of ε.

where by convention ‖(zI −A)−1‖2 takes the value ∞ in the spectrum of A (where the resolvent
is not definded), and where σmin(zI−A) denotes the minimum singular value of zI−A. In words,

the ε-pseudospectrum is the subset of the complex plane bounded by the (ε‖A‖2)−1
level curve of

the norm of the resolvent or the ε‖A‖2 level curve of the function σmin(zI −A).
Most algorithms for computing pseudospectra use (1.25) and fall into two broad classes: grid

algorithms [68, 98] and path-following algorithms [12, 13, 121]. Path-following algorithms consist
of finding a point on the boundary of the desired pseudospectrum and follow from it a curve in the
complex plane on which the minimum singular value of zI−A is constant. Grid algorithms compute
σmin(zI − A) via the SVD on a regular grid of points in the complex plane and, then, visualizes
the data, typically via a contour plot. The obvious grid algorithm is evaluate σmin(zI − A) on a
grid in the complex plane and then generate a contour plot from this data. The problem with this
algorithm is that computing the SVD of a n×n matrix on a m×m grid requires O(m2n3) floating
point operations which is highly expensive. Considerable progress has been made in making this
process as efficient as possible. These methods for speeding up the computations are based on
avoiding uninteresting regions of the complex plane [68], and in first reducing A to Hessenberg
or triangular form before computing the minimum singular value of zI − A and, then, applying
an iterative method to compute the minimum singular value such as the inverse iteration or the
inverse Lanczos iteration [103]. With these techniques the overall complexity can be reduced to
O(n3 + n2m2), an improvement that makes an enormous difference in practice. For a detailed
tutorial survey of computational techniques for computing pseudospectra see [154].

For polynomials, the concept equivalent to the ε−pseudospectrum of a matrix is the concept
of the ε−pseudozero set, introduced in [124]. For ε > 0, the ε−pseudozero set of the polynomial
(1.1), denoted by Zε(p), is the following set in the complex plane

Zε(p) =

{
z ∈ C : z is a root of p̃(z) = zn +

n−1∑
k=0

ãkz
k with |||p̃− p|||2 ≤ ε|||p|||2

}
.

If one is interested in coefficientwise relative perturbations, then it is more convenient to use as
the ε−pseudozero set the following set in the complex plane

Pseudoε(p) =

⎧⎨⎩z ∈ C : z is a root of p̃(z) = zn +

n−1∑
k=0

ãkz
k with

√√√√n−1∑
k=0

|ãk − ak|2 · |dk|2 ≤ ε

⎫⎬⎭ ,

(1.26)
where dk = 1/|ak| if ak 
= 0 or dk = 0 if ak = 0, for k = 0, 1, . . . , n− 1.
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The pseudozero sets Zε(p) and Pseudoε(p) can be characterized in terms of the level curves of
certain functions [150, Proposition 2.1]:

Zε(p) =

{
z ∈ C :

|p(z)|
|||p|||2‖Λ(z)‖2

≤ ε

}
and Pseudoε(p) =

{
z ∈ C :

|p(z)|
‖Λ̂(z)‖2

≤ ε

}
,

where Λ(z) and Λ̂(z) are defined in (1.19). This allows to determine Zε(p) and Pseudoε(p) numer-

ically using grid algorithms, since computing |p(z)|/|||p|||2‖Λ(z)‖2 and |p(z)|/‖Λ̂(z)‖2 on a m×m
grid requires just O(nm2) floating point operations. Also, these characterizations of pseudozero
sets may be used to prove that Pseudoε(p) ⊆ Zε(p).

Pseudozero sets of a polynomial can be used to visualize the sensitivity of its roots to pertur-
bations of its coefficients. As we already mentioned before, pseudospectra of Frobenius companion
matrices and pseudozero sets of monic polynomials were studied in [150]. The authors found that
the pseudozero sets of a monic polynomial p(z) and the pseudospectra of the associated Frobenius
companion matrices may be very different, showing that small perturbations of the companion
matrix might not correspond to equally small perturbation of the polynomial. We illustrate this
in Figure 1.2.2. For ε = 10−3.5, 10−3, 10−2.5, we plot in Figure 1.2.2-(a),-(b), and -(c), respectively,
Zε(p), Pseudoε(p), and the ε−pseudospectrum Λε(C2) of the second Frobenius companion matrix
of p(z), where p(z) is the monic polynomial whose roots are equal to 1,2,3,4,5. Notice that even
for a polynomial of moderate degree (n = 5) a big difference between Zε(p) and Pseudoε(p), and
Λε(C2) can be appreciated.

(a) Zε(p) (b) Pseudoε(p)

(c) Λε(C2)

Figure 1.2.2: For ε = 10−3.5, 10−3, 10−2.5, we plot Zε(p), Pseudoε(p), and Λε(C2), where p(z) is the monic
polynomial whose roots are equal to 1,2,3,4,5.
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1.2.3 Balancing Frobenius companion matrices

Numerical algorithms that compute the eigenvalues of a nonsymmetric matrix A are typically af-
fected by backward roundoff errors of size roughly O(u)‖A‖F [128], where u is the machine epsilon.
Balancing, an idea introduced in [130], is a standard technique for computing the eigenvalues of a
given matrix A, which leads, very often, to more accurate results, especially when the entries of
A have very different magnitudes (although there are situations where balancing has the opposite
effect [166]). Actually, balancing is implemented by default as an initial step in the MATLAB com-
mand eig for computing the eigenvalues of arbitrary matrices. Balancing consists of performing
a diagonal similarity DAD−1 (i.e., with D diagonal) in order to reduce the norm of A by equi-
librating as much as possible the ∞-norm of all rows and columns. In addition, very frequently
balancing reduces the eigenvalue condition numbers [73, §7.2.2]. Balancing is done with matrices
D whose entries are powers of two, so as not to introduce any roundoff errors.

In [53, 150], the authors studied the effect of balancing Frobenius companion matrices on
eigenvalue condition numbers, pseudospectra, and backward errors of computed roots of monic
polynomials via eigenvalues of Frobenius companion matrices. In this section we denote by C̃1 the
first Frobenius companion matrix C1 after being balanced.

In [150] the authors provided some numerical evidence to show that

κ(λ, C̃1)

cond(λ, p)
= O(1) (1.27)

usually holds, and to show that Pseudoε(p) and Λε(C̃1) usually are quite close to each other.
That is, relative normwise perturbations of the balanced Frobenius companion matrix tend to be
equivalent to relative coefficientwise perturbations of p(z). This is illustrated in Figure 1.2.3, where,

for the polynomial p(z) =
∏10

i=1(z− i) and for ε = 10−7, 10−6.5, and 10−6, we plot the ε-pseudozero
sets corresponding to coefficientwise perturbations of the polynomial p(z), and the ε-pseudospectra
of the balanced Frobenius companion matrix of that polynomial. This agreement of pseudozero

(a) Pseudoε(p) (b) Λε(C̃1)

Figure 1.2.3: For ε = 10−7, 10−6.5, 10−6, we plot Pseudoε(p) and Λε(C̃1), where p(z) is the monic polynomial

whose roots are equal to 1, 2, . . . , 10, and where C̃1 denotes the first Frobenius companion matrix of p(z) after being
balanced.

sets and pseudospectra suggests that it may be possible to compute roots of monic polynomials
stably via eigenvalues of balanced Frobenius companion matrices. Also, in [53] the authors provided
some numerical evidence of the fact that finding roots of polynomials using balanced Frobenius
companion matrices is a coefficientwise backward stable polynomial root-finding method, that is,
(1.7) usually holds.

These facts provide numerical evidence suggesting that in most cases the polynomial root-
finding problem and the balanced companion matrix eigenproblem are comparable in terms of
sensitivity to perturbations and backward stability. Therefore, in these cases, computing roots of
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a monic polynomial via eigenvalues of the associated Frobenius companion matrix is numerically
reliable, provided that the Frobenius matrix has been balanced. Hence, the command roots in
MATLAB is usually reliable in a practical sense, although with the drawback of the complexity
O(n3) flops and O(n2) storage.

We conclude this section with a comment about the stability of computing the roots of a monic
polynomial via the eigenvalues of its balanced Frobenius companion matrix. Despite the evidence
presented in [53] and [150], the studies carried out in this thesis show that the ratios in (1.6) and
in (1.27) may grow with ‖p‖ moderately, and, so, this approach is not always stable.

1.2.4 Polynomial root-finding using Fiedler companion matrices

As we have seen in Sections 1.2.1 and 1.2.2, the approach of computing the roots of a polynomial
p(z) via the eigenvalues of Frobenius companion matrices (1.2) is not stable when ‖p‖ � 1. Also,
despite the evidence presented in [53, 150], balancing the Frobenius companion matrices is not
always enough to guarantee backward stability in the sense (1.6) (see Chapter 9). Moreover, as we
have commented, the use of Frobenius companion matrices can be criticized from the point of view
of efficiency and storage. A polynomial has O(n) coefficients, while the complexity of the matrix
eigenvalue problem is O(n2) storage and O(n3) floating point operations, which is certainly too
much.

Fiedler companion matrices have expanded significantly the available set of companion matrices
beyond the Frobenius ones, and, so, these matrices provide a new tool that could be used instead of
the Frobenius companion matrices C1 and C2 for computing the roots of a polynomial p(z). For this
reason, the eigenvalue condition numbers of Fiedler companion matrices and the backward errors
of computed roots using Fiedler matrices are particularly relevant, and the considerations in the
previous paragraph give a strong motivation for studying them. In addition, Fiedler matrices like
the matrix (1.4) could be used to overcome the mentioned drawbacks on the efficiency and storage.
If a numerically reliable matrix eigenvalue algorithm that works on nonsymmetric pentadiagonal
matrices in O(n) storage and O(n2) flops could be found, then the Frobenius companion matrix
may be replaced by (1.4) in the polynomial root-finding method using companion matrices.

1.3 Condition numbers for inversion of Frobenius compan-

ion matrices

Frobenius companion matrices arise in control theory, particularly, in the study of time-invariant
linear systems. For simplicity, we consider here the single-input case:

dx(t)

dt
= Ax(t) + bu(t), x(0) = x0

u(t) = −fTx(t),

where A ∈ Cn×n, b, f ∈ Cn, u(t) ∈ C, and x(t) ∈ Cn. The vector f is called the feedback gain
vector, the equation

dx(t)

dt
= Ax(t) − bfTx(t), x(0) = x0,

is called the closed-loop system, and its solution is given by x(t) = e(A−bfT )tx0.
One of the most studied problems for such systems in the pole placement problem: Given a

set of n complex numbers {λ1, . . . , λn}, find a vector f ∈ Cn such that the set of eigenvalues of
A− bfT is equal to {λ1, . . . , λn}. It is well known [171] that a feedback gain vector f exists for all
sets {λ1, . . . , λn} if and only if (A, b) in controllable. We recall that the pair (A, b) is controllable
if the rank of the matrix [b, Ab,A2b, . . . , An−1b] is equal to n.
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The goal of the pole placement problem is that the implemented poles of the closed loop system
should be close to the desired ones. Explicit formulas for the solution of the pole placement problem
were introduced in [2, 27] and several numerical algorithms for computing the feedback gain vector
f have been developed [39, 122, 133, 163]. Also the perturbation theory of this problem has been
studied [120, 146], as well as the stability of the numerical algorithms [37, 38]. If the desired poles
of the exact closed loop system are very sensitive to perturbations the goal of the pole placement
problem cannot be guaranteed. The perturbation analysis made in [75] shows that there are three
ingredients controlling this sensitivity: the norm of the feedback vector f , the spectral condition
number of the closed loop matrix A−bfT , and the distance to uncontrollability. In [75], it is shown
that in general one cannot expect that the closed loop system has a spectrum close to the desired
one, if at least one of the three contributing ingredients is large.

Frobenius companion matrices (1.2) arise in control theory because any single-input controllable
system can be transformed into a companion form system and, also, because the structure of
companion systems greatly simplifies theoretical considerations such as the feedback analysis [95].
However, as n increases, Frobenius companion matrices are known to posses many properties that
are undesirable numerically. For instance, stable ones are nearly unstable, controllable ones are
nearly uncontrollable, and nonsingular ones are nearly singular, that is, they have large condition
numbers for inversion κ(Ci), for i = 1, 2, where

κ(Ci) = ‖Ci‖ · ‖C−1
i ‖, for i = 1, 2. (1.28)

These undesirable numerical properties can even arise in algorithms designed specifically for sys-
tems in companion forms [24, 131].

The properties mentioned in the paragraph above for the Frobenius companion matrices were
studied in detail in [95]. In particular, the authors studied the behavior of the spectral condition
number for inversion κ2(C1) = ‖C1‖2‖C−1

1 ‖2. This condition number is related to the relative
distance of C1 to singularity, and, also, it is useful in establishing bounds on the nearness to
instability of systems in companion forms. The analysis of κ2(C1) presented in [95] is based
on the following remarkable property of C1: it is possible to derive explicit expressions for its
singular values and at least n− 2 of the singular values of C1 are equal to 1 (see also [99, Section
10.4]). Hence, if C1 is the first Frobenius companion matrix of the monic polynomial (1.1) and if
σ1 ≥ σ2 ≥ · · · ≥ σn denote its singular values, then σ2 = σ3 = · · · = σn−1 = 1, and the largest and
the smallest singular values σ1 and σn are the roots of the following explicit expressions:

1 +
∑n−1

k=0 |ak|2 ±
√(

1 +
∑n−1

k=0 |ak|2
)2
− 4|a0|2

2
. (1.29)

From (1.29), it could be proved that (see [95])

κ2(C1) =
σ1

σn
=

1 +
∑n−1

k=0 |ak|2 +
√(

1 +
∑n−1

k=0 |ak|2
)2
− 4|a0|2

2|a0| , (1.30)

and, from (1.30), the following crude lower and upper bound on κ2(C1) can be established

1 +
∑n−1

k=0 |ak|2
2|a0| ≤ κ2(C1) ≤ 1 +

∑n−1
k=0 |ak|2
|a0| .

In plain words, these bounds show that κ2(C1) is large if and only if |a0| is small or |ai| is large
for some i = 0, 1, . . . , n − 1 (or both). This observation is the main reason behind the results
presented in [95]. These results establish than, when n is large, controllable canonical systems



16 CHAPTER 1. MOTIVATION, INTRODUCTION, AND SUMMARY OF MAIN RESULTS

generally have such bad numerical properties that they are essentially useless. Therefore, since
any Fiedler companion matrix may replace the Frobenius companion matrix C1 in the companion
form system, it is natural to investigate whether other Fiedler matrices are better conditioned than
the Frobenius companion matrices or not.

1.4 Bounds for roots of polynomials using Frobenius com-

panion matrices

Frobenius companion matrices have been used extensively for getting upper and lower bounds for
the roots of a monic polynomial p(z). To locate approximately the roots of p(z) just through simple
operations on its coefficients is a classical problem that has produced a considerable amount of
literature (see the comprehensive surveys [108, 141] and the references therein). Simple location
rules are used for theoretical purposes, as establishing sufficient conditions to guarantee that p(z)
is stable or that all its roots are inside the unit circle, and they are also used in iterative algorithms
for computing the roots of p(z) to find initial guesses of the roots for starting the iteration [17, 18].

Let us denote by λ any root of p(z). Our goal is to find nonnegative numbers L(p) and U(p)
depending on the coefficients of p(z), such that

L(p) ≤ |λ| ≤ U(p). (1.31)

Frobenius companion matrices have been widely used to obtain classic bounds of type (1.31) [87,
pp. 316–319], as well as other types of location results for roots of polynomials [119].

When a0 
= 0, i.e, when λ = 0 is not a root of p(z) in (1.1), the monic reversal polynomial of
p(z) [87, p. 318] plays an important role in getting bounds for the roots of p(z). It is defined as
follows:

p�(z) :=
zn

a0
p(z−1) = zn +

a1
a0

zn−1 +
a2
a0

zn−2 + · · ·+ an−1

a0
z +

1

a0
.

Observe that the roots of p�(z) are the reciprocals of the roots of p(z). Therefore, the eigenvalues
of the Frobenius companion forms of p�(z), i.e., C1(p

�) and C2(p
�) (in this section, we indicate

explicitly the dependence of C1 and C2 on a certain polynomial q(z) using the notation C1(q)
and C2(q)), are also the reciprocals of the roots of p(z). This can be combined with a well
known property of any family of submultiplicative matrix norms, i.e., a family of matrix norms ‖ ·‖
satisfying ‖AB‖ ≤ ‖A‖‖B‖ for all A ∈ Cm×n, B ∈ Cn×p [87, Chapter 5]. This property establishes
that if X ∈ Cn×n and μ is any eigenvalue of X , then |μ| ≤ ‖X‖ [87, p. 297] and it can be applied
to both Ci(p) and Ci(p

�), for i = 1, 2, to prove that(‖Ci(p
�)‖)−1 ≤ |λ| ≤ ‖Ci(p)‖, i = 1, 2, (1.32)

for any root λ of p(z), which allows us to get bounds of type (1.31). In practice, (1.32) is only
used with the 1-, 2-, ∞-, and Frobenius norms. For a matrix A = (aij) ∈ Cm×n, these norms are
defined as [79, p. 108]

‖A‖1 = max
1≤j≤n

m∑
i=1

|aij |, ‖A‖2 = σmax(A) , ‖A‖∞ = max
1≤i≤m

n∑
j=1

|aij |, ‖A‖F =

(
m∑
i=1

n∑
j=1

|aij |
2

)1/2

,

where σmax(A) denotes the largest singular value of A. Note that ‖A‖1 = ‖AT ‖∞, ‖A‖2 = ‖AT ‖2,
and ‖A‖F = ‖AT ‖F . In [87, pp. 316-318], the inequalities (1.32) are used with C2(p) and C2(p

�)
and the ∞-, 1-, 2-, and Frobenius norms to get the following classical bounds.

Theorem 1.5. Let p(z) = zn +
∑n−1

k=0 akz
k be a monic polynomial with complex coefficients and

λ be any root of p(z). Then |λ| satisfies the following inequalities.
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1. Cauchy’s lower and upper bounds (coming from C2 and ‖ · ‖∞):

|a0|
max{1, |a0|+ |a1|, |a0|+ |a2|, . . . , |a0|+ |an−1|} ≤ |λ| ≤ max{|a0|, 1 + |a1|, . . . , 1 + |an−1|} .

2. Montel’s lower and upper bounds (coming from C2 and ‖ · ‖1):
|a0|

max{|a0|, 1 + |a1|+ |a2|+ · · ·+ |an−1|} ≤ |λ| ≤ max{1, |a0|+ |a1|+ · · ·+ |an−1|} .

3. Carmichael-Mason’s lower and upper bounds (coming from C2 and ‖ · ‖2):
|a0|√

1 + |a0|2 + |a1|2 + · · ·+ |an−1|2
≤ |λ| ≤

√
1 + |a0|2 + |a1|2 + · · ·+ |an−1|2 .

4. Frobenius’ lower and upper bounds (coming from C2 and ‖ · ‖F ):

|a0|√
1 + (n− 1)|a0|2 + |a1|2 + · · ·+ |an−1|2

≤ |λ| ≤
√
(n− 1) + |a0|2 + · · ·+ |an−1|2.

Note that if C1(p) and C1(p
�) are used instead of C2(p) and C2(p

�), then the same bounds
are obtained, but Cauchy’s bounds are obtained for ‖ · ‖1 and Montel’s bounds for ‖ · ‖∞. It is
clear that Carmichael-Mason’s bounds are always sharper than Frobenius’ bounds, but which are
the sharpest among the other bounds depends on the particular polynomial that is considered.
However, Cauchy’s bounds are essentially the sharpest ones in Theorem 1.5. To be precise, if
UC(p), UM (p), and UCM (p) denote, respectively, the upper Cauchy’s, Montel’s, and Carmichael-
Mason’s bounds, then it is easy to prove that UC(p) ≤ 2UM(p) and UC(p) ≤

√
2UCM (p) for any

p(z). Moreover, if LC(p), LM (p), and LCM (p) denote, respectively, the lower Cauchy’s, Montel’s,
and Carmichael-Mason’s bounds, then LM (p) ≤ 2LC(p) and LCM (p) ≤ √2LC(p) for any p(z).

The bounds in Theorem 1.5 have an important drawback: the lower bounds are always smaller
than 1 and the upper bounds are always larger than 1. This is a consequence of the presence of
entries equal to 1 in the Frobenius companion matrix. For C1(p) and C2(p) an standard way to
overcome this drawback is to use diagonal similarities, which do not change neither the eigenvalues

nor the zero pattern, and to use (1.32). More precisely, let D and D̃ be nonsingular diagonal

matrices, then from (1.32) we get
(
‖D̃−1Ci(p

�)D̃‖
)−1

≤ |λ| ≤ ‖D−1Ci(p)D‖, for i = 1, 2. Given a

polynomial p(z), the selection of a proper D (and/or D̃) may improve drastically the bounds, but
a choice of D that is good for certain polynomials may be bad for others, so the choice of proper
diagonal similarities is not immediate. Some specific D’s have been used to get the well-know
Fujiwara’s bounds [65]

1

2max

{∣∣∣ a1

a0

∣∣∣ , ∣∣∣ a2

a0

∣∣∣1/2 , . . . , ∣∣∣an−1

a0

∣∣∣1/(n−1)

,

∣∣∣ 1
2a0

∣∣∣1/n} ≤ |λ| ≤ 2max

{
|an−1|, |an−2|

1/2
, . . . , |a1|

1/(n−1)
,

∣∣∣a0

2

∣∣∣1/n} ,

as well as Kojima’s bounds [97] (see also [87, p. 319])

1

2max
{∣∣∣a1

a0

∣∣∣ , ∣∣∣a2

a1

∣∣∣ , . . . , ∣∣∣ an−1

an−2

∣∣∣ , ∣∣∣ 1
2an−1

∣∣∣} ≤ |λ| ≤ 2max

{
|an−1|,

∣∣∣∣an−2

an−1

∣∣∣∣ , . . . , ∣∣∣∣a1

a2

∣∣∣∣ , ∣∣∣∣ a0

2a1

∣∣∣∣} .

Apart from their eigenvalues, all Fiedler matrices of p(z) share a key property with the first and
second Frobenius companion forms: they contain, in different positions, exactly the same nonzero
entries, i.e., n− 1 entries equal to 1, and n entries equal to −a0,−a1, . . . ,−an−1. Therefore, it is
natural to investigate if matrix norms of Fiedler companion matrices may be used to obtain new
and sharper lower and upper bounds on the roots of monic polynomials.
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1.5 Linearizations of matrix polynomials

Although matrix polynonials are not covered in this work, Fiedler matrices are becoming an inter-
esting tool in this field. An m× n matrix polynomial P (λ) is a polynomial in λ whose coefficients
are m× n matrices:

P (λ) =

k∑
i=0

Aiλ
i, A0, . . . , Ak ∈ C

m×n, Ak 
= 0,

where k is the degree of P (λ). Equivalently, a matrix polynomial is an m×n matrix whose entries
are polynomials in λ. It is said that P (λ) is regular if n = m and the determinant of P (λ) is not
identically zero, otherwise it is said that P (λ) is singular. Matrix polynomials appear in many
applications such as mechanics, control theory, computer-aided graphic design and differential
algebraic equations. Roughly speaking one can say that regular polynomials appear in mechanics
and graphic design [71, 109, 110, 149] and singular polynomials appear essentially in control theory
and differential algebraic equations [94, 157, 160].

From a numerical point of view, in the regular case, the main objectives are to compute the
eigenvalues and eigenvectors of P (λ) [71, 149], and in the singular case, also compute the minimal
indices and minimal bases [62, 94, 160]. The finite eigenvalues of a regular matrix polynomial
are the roots of the scalar polynomial detP (λ), and a vector v 
= 0 is an eigenvector of P (λ)
associated to the eigenvalue λ0 if it satisfies P (λ0)v = 0. The definition of eigenvalue in the
singular case is more intricate and requires to introduce the concept of normal rank of P (λ),
denoted by nrankP (λ):

nrankP (λ) := max
λ∈C

rankP (λ).

Then we say that λ0 is a finite eigenvalue of P (λ) if

rankP (λ0) < nrankP (λ).

We say that P (λ) has an eigenvalue at ∞ if the reverse polynomial

revP (λ) = λkP (1/λ) =

k∑
i=0

λiAk−i

has λ = 0 as an eigenvalue. Infinite eigenvalues play an important role in the dynamic behaviour
of linear systems that appear in control theory [94, 138]. The concept of eigenvector cannot be
extended to singular matrix polynomials. The corresponding concept for pencils is the one of
reducing subspace [158], whose extension to matrix polynomials is still an open question and is
beyond the scope of this work.

The standard way to numerically solve a polynomial eigenvalue problem for a regular matrix
polynomial P (λ) is to first linearize P (λ) into a matrix pencil L(λ) = λX+Y with X,Y ∈ Cnk×nk

[71], and then compute the eigenvalues and eigenvectors of L(λ) using well established algorithms
for the generalized eigenvalue problem, such as the QZ algorithm or some variants of the Arnoldi
method [10].

The precise definition of a linearization of a regular polynomial was introduced in [71]. However,
a linearization of P (λ) does not necessarily have the same elementary divisors at ∞ as P (λ). For
this reason it was introduced in [72] the concept of strong linearization.

Definition 1.6. A matrix pencil L(λ) = λX + Y with X,Y ∈ C
nk×nk is a linearization of an

n× n matrix polynomial P (λ) of degree k if there exist two unimodular 2 nk × nk matrices U(λ)

2A unimodular matrix V (λ) is a matrix polynomial such that detV (λ) is a nonzero constant.
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and V (λ) such that

U(λ)L(λ)V (λ) =

[
I(k−1)n 0

0 P (λ)

]
(1.33)

A linearization L(λ) of P (λ) is a strong linearization if revL(λ) is a linearization of revP (λ).

These definitions were introduced in [71, 72] only for regular polynomials, and they were ex-
tended in [44] to square singular matrix polynomials. The use of linearizations is justified by the
following two facts. First, all linearizations (resp. strong linearizations) of P (λ) have the same
finite (resp. finite and infinite) elementary divisor [66] as P (λ). As was mentioned above, since
the linearization procedure transforms a matrix polynomial into a matrix pencil, well-established
algorithms for the generalized eigenvalue problem may be used on linearizations both for regular
and singular polynomials [42, 43, 55, 73, 159, 160].

The classical approach is to use as linearizations the first and second Frobenius companion
forms [71]. These linearizations are, respectively, C1(λ) = λX1 +Y1 and C2(λ) = λX2+Y2, where
X1 = X2 = diag(Ak, In, . . . , In) and

Y1 =

⎡⎢⎢⎢⎣
Ak−1 Ak−2 · · · A0

−In 0 · · · 0
. . .

. . .
...

0 −In 0

⎤⎥⎥⎥⎦ , Y2 =

⎡⎢⎢⎢⎢⎣
Ak−1 −In 0

Ak−2 0
. . .

...
...

. . . −In
A0 0 · · · 0

⎤⎥⎥⎥⎥⎦
Notice that C1(λ) and C2(λ) are a natural generalization of the Frobenius companion matrices C1

and C2 in (1.2) for scalar polynomials, where the coefficients of the polynomial are now replaced
by the matrix coefficients of the matrix polynomial, and the entries identically equal to one are
replace by identity blocks.

Although the use of Frobenius companion forms is widely extended in the computation of eigen-
values and eigenvectors of matrix polynomials, this approach presents important disadvantages,
such as:

• The loss of the structure. That is, if the matrix polynomial P (λ) has some of the struc-
tures that arise usually in applications (for example, P (λ) is symmetric, skew-symmetric,
palindromic, anti-palindromic, even, odd, etc), Frobenius companion forms in general do
not share this structure. Therefore the rounding errors inherent to numerical computations
may destroy qualitative aspects of the spectrum. One of the best known examples of this
phenomenon arises in palindromic problems: a palindromic matrix polynomial has μ as an
eigenvalue if and only if 1/μ is also an eigenvalue, a property that may be completely lost
when applying the QZ algorithm to one of the Frobenius companion forms. In general, a
numerical method that ignores the structure of the matrix polynomial may produce results
which are meaningless in physical applications [149].

• Even in the case of matrix polynomials without any special structure, using the Frobenius
companion forms in the numerical calculation of the eigenvalues may produce errors, back-
ward and forward errors, much greater than desirable. An ideal algorithm must compute
for the matrix polynomial P (λ) the eigenvalues that are the exact eigenvalues of a nearby
polynomial:

P̃ (λ) =

k∑
i=0

Ãiλ
i, with ‖Ãi −Ai‖2 = O(u)‖Ai‖2, for i = 0, 1, . . . , k, (1.34)

where u denotes the machine epsilon (u ≈ 10−16 in double precision). These are the expected
errors according to the sensitivity of the data and any algorithm that does not satisfy (1.34) is
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not considered satisfactory. For example, the QZ algorithm applied directly on the companion
forms does not satisfy (1.34) [53, 101].

• If the degree of the polynomial is high, the Frobenius companion forms have a size much
greater than the original matrix polynomial, so the computational cost may increase notably.

These drawbacks have motivated in the last few years an intense activity on the development
of new classes of linearizations. There are three main sources of new linearizations of matrix
polynomials. A first class of linearizations was presented in [105] and further analyzed in [80, 81,
82, 106]. In particular, the conditioning of the eigenvalues of these linearizations and the backward
error of polynomial eigenproblems solved by linearizations belonging to this class were studied in
[80, 82], while in [81, 106] the construction of structure preserving linearizations is considered.

Other classes of linearizations were introduced and studied in [3, 4], motivated by the use
of non-monomial bases for the space of polynomials. Also, in [44] and later in [151] the vector
spaces of potential linearizations introduced in [105] are revisited and they are generalized to any
degree-graded polynomial bases.

Another source of linearizations of matrix polynomials was introduced in [5, 6]. The lineariza-
tions introduced in [5] received the name of Fiedler linearizations in [45] since they are a general-
ization of the Fiedler companion matrices for scalar polynomials introduced in [59]. In [5] it was
shown that these linearizations are strong linearizations in the case of a regular polynomial and in
[45] it was shown that the Fiedler pencils are still linearizations when the matrix polynomial is a
singular square matrix polynomial. In addition, it was shown in [45] that these linearizations can
be used to derive the complete eigenstructure of P (λ) including the minimal indices and minimal
bases in the case of P (λ) being singular. The authors showed explicitly how to recover the minimal
indices and bases of the matrix polynomial from those of the Fiedler pencils and how to recover the
eigenvectors of a regular polynomial from those of these linearizations without any computational
cost. The existence of simple recovery procedures for eigenvectors is relevant for deciding whether
or not a certain linearization is useful in applications.

The class of Fiedler linearizations does not contain pencils that are symmetric or palindromic
when P (λ) is symmetric or palindromic, respectively. To overcome this drawback, based on Fiedler
pencils, a wider class of linearizations was introduced in [5]. This class does contain linearizations
that preserve the symmetric structure [5] and the palindromic structure [46]. These linearizations
were named in [30] generalized Fiedler linearizations and recovery procedures for eigenvectors,
minimal indices and minimal bases for generalized Fiedler linearizations were also presented in
[30]. Also, linearizations in this class are strong linearizations for almost every matrix polynomial,
and the only matrix polynomials for which not all of these pencil are linearizations are the ones
with singular leading and/or zero degree coefficients. Another class of linearizations of matrix
polynomials based on Fiedler linearizations was introduced in [164]. In [29], these linearizations
were named Fiedler linearizations with repetition and recovery formulas for eigenvectors, minimal
indices and minimal bases were derived. Several structure preserving linearizations belonging to
this new class have been identified, in particular, in [31] linearizations that preserve the palindromic
structure are studied, and in [32, 33] linearizations that preserve the symmetric and alternating
structures are also studied.

All references on linearizations mentioned so far are restricted to square matrix polynomials. In
[47] Fiedler pencils were generalized to rectangular matrix polynomials and this is the first class of
new linearizations that has been generalized to rectangular matrix polynomials. In [47] it is proved
that Fiedler pencils of rectangular polynomials are always strong linearizations. Moreover, recovery
formulas for minimal bases and minimal indices are derived. These formulas are essentially the
same ones as for square matrix polynomials, though the techniques used to obtain these formulas
are much more involved.

To summarize, there is a recent intense activity towards the development of new classes of
linearizations of matrix polynomials. Among all the new families of linearizations that have been
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introduced recently, the families of Fiedler linearizations, generalized Fiedler linearizations, and
Fiedler linearizations with repetitions possess many algebraic properties that make them particu-
larly interesting and give a strong motivation for studying them:

(a) They are easily constructible from the coefficients of the matrix polynomial.

(b) Fiedler pencils are strong linearizations for every matrix polynomial, and most generalized
Fiedler linearizations and Fiedler linearizations with repetition are strong linearizations for
every matrix polynomial.

(c) Eigenvectors, minimal indices and minimal bases of the matrix polynomial are easily recov-
ered from those of any of these linearizations.

By contrast, property (b) is not true for the pencils introduced in [4, 105], which are not lineariza-
tions for certain regular and singular polynomials. In fact, for odd degree matrix polynomials, the
structure preserving generalized Fiedler pencils presented in [5, 46] for symmetric and palindromic
polynomials are always strong linearizations, which is again in contrast with the structured pencils
developed in [81, 105, 106] that are not linearizations for certain regular polynomials and, in fact,
are never linearizations for singular polynomials.

Finally, like in the polynomial-root finding problem using Frobenius companion matrices, the
computation of the eigenvalues of a matrix polynomial and the computation of the eigenvalues of
one of its linearizations are mathematically equivalent, but they may present different numerical
properties, in particular, those regarding conditioning and backward errors. The numerical prop-
erties of the linearizations in [105] are very well known [80, 82, 83], but the study of the numerical
properties of Fiedler linearizations for matrix polynomials has started very recently [52].

1.6 Organization of the dissertation

This dissertation is organized as follows.

In Chapter 2 we present the definition of Fiedler companion matrices following a different
notation to the one used in the original reference [59] in order to better express the results in
this work. We also present some basic definitions related with Fiedler matrices that will be used
throughout all this dissertation, and some special Fiedler matrices that enjoy several interesting
numerical advantages. Finally, we present an algorithm to construct Fiedler matrices, which is a
particular case of the algorithm presented in [47], and some basic properties of Fiedler matrices
that are immediate consequences of this algorithm. This algorithm will be key in several proofs of
the new results presented in this work. Except Proposition 2.20, the results presented in Chapter
2 are not original contributions of the author.

Chapters 3, 4, and 5 are devoted to the study of several algebraic and structural properties
of Fiedler matrices. All the results presented in those chapters are original contributions of the
author.

In Chapter 3 we study matrix norms of Fiedler matrices and their inverses. We obtain explicit
expressions for the 1-,∞- and Frobenius norms of any Fiedler matrix and its inverse. These norms
are obtained through the algorithm presented in Chapter 2 to construct Fiedler matrices, together
with a new algorithm presented in this chapter to construct inverses of Fiedler matrices. These
norms will be used in Chapter 6 to obtain new and, for a wide family of polynomials, sharper than
previous ones lower and upper bounds for the absolute value of the roots of a polynomial. The
results in this chapter have been published in [50].

The study of the spectral norm, or 2-norm, of Fiedler matrices and their inverses is postponed
to Chapter 4. The spectral norms of a matrix A and its inverse A−1 are, respectively, the largest
and the reciprocal of the smallest singular values of A. For this reason, Chapter 4 is devoted to
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the study of singular values of Fiedler matrices. More precisely, we determine how many of their
singular values are equal to 1 and, for those that are not, we show that they can be obtained from
the square roots of the eigenvalues of certain matrices that may have sizes much smaller than n×n
and that are easily constructible from the coefficients of p(z). This result is the main contribution
of this chapter. The are two key tools to prove this result. The first one is the concept of staircase
matrix, introduced in Section 4.1. Staircase matrices are matrices whose nonzero entries follow a
very special pattern. This concept, as far as we know, is new in the literature. The second tool is
the result stating that any Fiedler matrix can be expressed as a sum of a permutation matrix plus
a matrix whose rank varies from 1 to �(n+1)/2�. In addition, we show how to construct these two
summands via simple algorithms and how to determine the rank of the second summand based
on the properties of staircase matrices. In plain words, we show that any Fiedler matrix admit
expressions as “unitary plus low-rank matrices”. The results in this chapter have been published
in [49].

In Chapter 5 we present two expressions for the adjugate matrix of zI −Mσ, where Mσ is a
Fiedler matrix. These formulas are original contributions obtained by the author except in the case
when Mσ is one of the Frobenius companion matrices, which were previously obtained in [150].
These expressions for the adjugate matrix of zI−Mσ will be one of the key tools used in Chapters
8 and 9, where we study eigenvalue condition numbers and pseudospectra of Fiedler matrices, and
the backward errors of computed roots of monic polynomials using Fiedler matrices. The results
in this chapter have been published in [51].

Chapter 6 is devoted to the applications of Fiedler matrices in finding bounds for the roots of
monic polynomials. We investigate the lower and upper bounds for the absolute values of the roots
of monic polynomials that are obtained from the norms of Fiedler matrices presented in Chapter
3. We show that norms of Fiedler matrices produce many new bounds, but none of them improve
significantly the classical bounds obtained from the Frobenius companion matrices described in
Section 1.4. However, we prove that if the norms of the inverses of Fiedler matrices are used,
then another family of new bounds is obtained and some of the bounds in this family improve
significantly the bounds coming from the Frobenius companion matrices for certain polynomials.
We also present some theoretical results concerning the best bounds that may be obtained from
diagonal similarities of Fiedler matrices. The results of this chapter have been published in [50].

Chapters 7, 8, and 9 are devoted to the study of the numerical properties that are interesting
for applying Fiedler matrices in numerical computations (like numerical methods for computing
roots of polynomials):

(a) condition numbers for inversion,

(b) eigenvalue condition numbers and pseudospectra of Fiedler matrices, and

(c) backward errors of the computed roots of a polynomial using Fiedler companion matrices.

All the results presented in those chapters are original contributions by the author.
In Chapter 7 we investigate condition numbers for inversion of Fiedler matrices. More precisely,

we present explicit expressions for the condition numbers for inversion of all Fiedler matrices with
respect to the Frobenius norm. This allows us to get a very simple criterion for ordering all Fiedler
matrices according to increasing condition numbers and to provide lower and upper bounds on
the ratio of the condition numbers of any pair of Fiedler matrices. These results establish that
if |p(0)| ≤ 1, then the Frobenius companion matrices have the largest condition number among
all Fiedler matrices of p(z), and that if |p(0)| > 1, then the Frobenius companion matrices have
the smallest condition number. We also provide families of polynomials where the ratio of the
condition numbers of pairs of Fiedler matrices can be arbitrarily large and prove that this can only
happen when both Fiedler matrices are very ill-conditioned. The results in this chapter has been
published in [49].
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In Chapter 8 we investigate eigenvalue condition numbers and pseudospectra of Fiedler matrices
of a monic polynomial p(z). We present explicit expressions for the eigenvalue condition numbers
for any Fiedler matrix, and then we compare these condition numbers with the condition numbers
of the roots of the original polynomial. We show that if the maximum of the absolute values of the
coefficients of p(z) is much larger or much smaller than 1, then the eigenvalues of Fiedler matrices
may be potentially much more ill conditioned than the roots of p(z). By contrast, if the maximum
of the absolute values of the coefficients of p(z) is moderate and not close to zero, that is, it is of
order Θ(1), then the eigenvalues of Fiedler matrices and the roots of p(z) are guaranteed to have
similar condition numbers, and therefore, from the point of view of eigenvalue condition numbers,
in this case all Fiedler companion matrices are good tools for the purpose of computing roots of
monic polynomials. We then study the ratio between eigenvalue condition numbers of Frobenius
companion matrices and eigenvalue condition numbers of Fiedler matrices other than the Frobenius
ones. We show that if the absolute value of the coefficients of p(z) are moderate then this ratio is
also moderate and, therefore, from the point of view of condition numbers, in this situation any
Fiedler matrix can be used for solving the root-finding problem for p(z) with the same reliability
as Frobenius companion matrices. By contrast, this ratio may be potentially large or small for
polynomials with large coefficients. In this case, from the point of view of condition numbers, for
some polynomials with large coefficients some Fiedler matrices may be more convenient than the
Frobenius ones and, on the contrary, for some other polynomials with large coefficients, Frobenius
companion matrices may be more convenient than other Fiedler matrices. However, we show that,
from the point of view of condition numbers, Frobenius companion matrices are better suited
than the rest of Fiedler matrices in the problem of computing roots of monic polynomial only for
polynomials for which it is not recommended to compute their roots as eigenvalues of any Fiedler
matrices (including the Frobenius ones). Finally, we show that there are polynomials for which
one should avoid computing their roots as the eigenvalues of Frobenius companion matrices and
to use, instead, another Fiedler matrix. Although how to identify these polynomials and how to
know which Fiedler matrix one might use instead of the Frobenius ones are still an ongoing works.

Regarding pseudospectra of Fiedler matrices, first, we show how to accurate estimate them
in a m ×m grid using only O(nm2) flops compared with the O(n3m2) flops needed in the SVD
method explained in Section 1.2.2.2. Then, we establish various mathematical relationships be-
tween the pseudozero sets of a monic polynomial p(z) and the pseudospectra of the associated
Fiedler matrices.

Finally, the effect of balancing Fiedler matrices is also investigated from the point of view
of eigenvalue condition numbers and pseudospectra. We present numerical evidence that shows
the following: if Fiedler matrices are balanced then the roots of p(z) and the eigenvalues of the
balanced Fiedler matrices are usually equally conditioned, and that pseudozero sets of p(z) and
pseudospectra of Fiedler matrices are usually quite close to each other. We want to emphasize
that the results in Chapter 8 have not been published yet and that we are preparing a paper that
we expect to submit soon.

In Chapter 9 we analyze the backward stability of polynomial root-finding algorithms via Fiedler
companion matrices. In other words, given a monic polynomial p(z), the question is to determine
whether the whole set of computed eigenvalues of a Fiedler companion matrix, computed with a
backward stable algorithm for the standard eigenvalue problem, is the set of roots of a nearby
polynomial or not. We show that, if the coefficients of p(z) are bounded in absolute value by a
moderate number, then algorithms for polynomial root-finding using Fiedler matrices are back-
ward stable from the polynomial point of view, and Fiedler matrices are as good as the Frobenius
companion matrices for the purpose of computing roots of monic polynomials. This would allow us
to use Fiedler companion matrices with favorable structures in the polynomial root-finding prob-
lem. However, when some of the coefficients of the polynomial is very large, companion Fiedler
matrices may produce larger backward errors than Frobenius companion matrices, although in
this case neither Frobenius nor Fiedler matrices lead to backward stable computations. To prove
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this we obtain explicit expressions for the change, to first order, of the characteristic polynomial
coefficients of Fielder matrices under small perturbations. Also, the effect of balancing Fiedler ma-
trices is studied. We present numerical evidence that shows that, if Fiedler matrices are balanced,
computing the roots of a monic polynomial via the eigenvalues of Fiedler matrices and a backward
stable eigensolver is usually a backward stable method from the point of view of polynomials. The
results in this chapter has been published in [51].



Chapter 2

Definition and basic properties of

Fiedler matrices

This chapter is devoted to the definition of Fiedler matrices, to establish their basic properties,
and introduce some definitions related with them. The properties of Fiedler matrices stated in
this chapter are not original contributions of the author, except Proposition 2.20. We also present
some particular Fiedler matrices that will appear throughout all this work.

2.1 Definition of Fiedler matrices

For a given monic polynomial p(z) = zn+
∑n−1

k=0 akz
k with ai ∈ C Fiedler matrices are constructed

in [59] as the product

Mi1Mi2 · · ·Min ,

where the matrices M0,M1, . . . ,Mn−1 are defined in (1.3), and (i1, i2, . . . , in) is any possible per-
mutation of the n-tuple (0, 1, . . . , n− 1). In order to better express certain key properties of this
permutation and the resulting Fiedler matrix, in [45] the authors index the product of the Mi

factors in a slightly different way, as it is described in the following definition.

Definition 2.1. Let p(z) = zn +
∑n−1

k=0 akz
k, with n ≥ 2, and let Mi, for i = 0, 1, . . . , n − 1, be

the matrices defined in (1.3). Given any bijection σ : {0, 1, . . . , n − 1} → {1, . . . , n}, the Fiedler
matrix of p(z) associated with σ is the n× n matrix

Mσ := Mσ−1(1) · · ·Mσ−1(n). (2.1)

Remark 2.2. Sometimes we will write the bijection σ using the array notation σ = (σ(0), σ(1),
. . . , σ(n− 1)).

We want to notice that σ(i) in (2.1) describes the position of the factor Mi in the product
Mσ−1(1) · · ·Mσ−1(n), i.e., σ(i) = j means that Mi is the jth factor in the product. We want to
note also that the building factors (1.3) of (2.1) depend on p(z) (to be precise, they depend on
its coefficients). However, in this case we skip this dependence for the sake of simplicity. Finally,
when necessarily, we will indicate explicitly the dependence of Mσ on a certain polynomial q(z)
using the notation: Mσ(q).

Example 2.3. Let p(z) = z5+
∑4

k=0 akz
k be a monic polynomial of degree 5. Then the following

25
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matrices are Fiedler matrices of p(z):

Mσ1
= M0M1M2M3M4 =

⎡⎢⎢⎢⎢⎣
−a4 1 0 0 0
−a3 0 1 0 0
−a2 0 0 1 0
−a1 0 0 0 1
−a0 0 0 0 0

⎤⎥⎥⎥⎥⎦ ,

Mσ2
= M4M2M0M1M3 =

⎡⎢⎢⎢⎢⎣
−a4 −a3 1 0 0
1 0 0 0 0
0 −a2 0 −a1 1
0 1 0 0 0
0 0 0 −a0 0

⎤⎥⎥⎥⎥⎦ and

Mσ3
= M2M1M0M3M4 =

⎡⎢⎢⎢⎢⎣
−a4 1 0 0 0
−a3 0 1 0 0
−a2 0 0 −a1 −a0
1 0 0 0 0
0 0 0 1 0

⎤⎥⎥⎥⎥⎦ .
Also, according to the notation explained in Remark 2.2, we have σ1 = (1, 2, 3, 4, 5), σ2 =
(3, 4, 2, 5, 1) and σ3 = (3, 2, 1, 4, 5).

The family of matrices {Mk}n−1
k=0 in (1.3) satisfies the following commutativity relations

MiMj = MjMi for |i− j| 
= 1, (2.2)

that can be easily checked. The relations (2.2) imply that some Fiedler matrices associated with
different bijections σ are equal. For example, for n = 3, the Fiedler matrices M0M2M1 and
M2M0M1 are equal. These relations suggest that the relative positions of the matrices Mi and
Mi+1 in the product Mσ are of fundamental interest in studying Fiedler matrices. This motivates
Definition 2.4, introduced in [45].

Definition 2.4. Let σ : {0, 1, . . . , n− 1} → {1, . . . , n} be a bijection.

(a) For i = 0, . . . , n− 2, we say that σ has a consecution at i if σ(i) < σ(i + 1) and that σ has
an inversion at i if σ(i) > σ(i + 1).

(b) The positional consecution-inversion sequence of σ, denoted by PCIS(σ), is the (n− 1)-tuple
(v0, v1, . . . , vn−2) such that vj = 1 if σ has a consecution at j and vj = 0 if σ has an inversion
at j.

(c) The consecution-inversion structure sequence of σ, denoted by CISS(σ), is the tuple (c0, i0, c1,
i1, . . . , c�, i�), where σ has c0 consecutive consecutions at 0, 1, . . . , c0 − 1; i0 consecutive in-
versions at c0, c0 + 1, . . . , c0 + i0 − 1 and so on, up to i� inversions at n− 1− i�, . . . , n− 2.

Remark 2.5. We will use the following simple observation on the concepts introduced in Definition
2.4 without explicitly referring to.

1. Part (a) is related to the matrix Mσ as follows: σ has a consecution at i if and only if Mi is
to the left of Mi+1 in the product defining the Fiedler matrix Mσ, while σ has an inversion
at i if and only if Mi is to the right of Mi+1 in Mσ.

2. Note that c0 and i� in CISS(σ) may be zero (in the first case, σ has an inversion at 0 and in
the second one it has a consecution at n− 2) but i0, c1, i1, . . . , i�−1, c� are all strictly positive.
These conditions uniquely determine CISS(σ) and, in particular, the parameter �.



2.1. DEFINITION OF FIEDLER MATRICES 27

The tuples PCIS(σ), and CISS(σ) are equivalent, i.e., if any of them is given then the other
one can be easily obtained. Also, the two tuples are uniquely determined by σ, but none of them
determine uniquely σ, in general.

Example 2.6. Consider the Fiedler matrix Mσ = M6M5M3M0M1M2M4M7M8 of the monic
degree-9 polynomial p(z) = z9 +

∑8
k=0 akz

k. Then, σ is a bijection such that PCIS(σ) =
(1, 1, 0, 1, 0, 0, 1, 1) and CISS(σ) = (2, 1, 1, 2, 2, 0).

Due to the commutativity relations (2.2), the only needed information to construct the Fiedler
matrix Mσ is the polynomial p(z) and PCIS(σ) or, equivalently, the polynomial p(z) and CISS(σ).
On the opposite way, given a polynomial p(z) one may think that if two Fiedler companion matrices
Mσ1

and Mσ2
of p(z) are equal then PCIS(σ1) = PCIS(σ2), but the fact that M0 = I when a0 = −1

complicates a result in this line.

Proposition 2.7. Let p(z) = zn +
∑n−1

k=0 akz
k be a monic polynomial with n ≥ 2, let σ1, σ2 :

{0, 1, . . . , n − 1} → {1, . . . , n} be two bijections, and let Mσ1
and Mσ2

be the Fiedler matrices of
p(z) associated with the bijections σ1 and σ2, respectively.

(a) Suppose a0 
= −1. Then, Mσ1
= Mσ2

if and only if PCIS(σ1) = PCIS(σ2).

(b) Suppose a0 = −1. Then, Mσ1
= Mσ2

if and only if the last n − 2 entries of PCIS(σ1) are
equal to the last n− 2 entries of PCIS(σ2).

For quick references we include here other basic definitions related with PCIS(σ) that we will
use in future chapters.

Definition 2.8. Let σ : {0, 1, . . . , n−1} → {1, . . . , n} be a bijection with PCIS(σ) = (v0, v1, . . . , vn−2)
and with CISS(σ) = (c0, i0, c1, i1, . . . , c�, i�), then:

(a) The number of initial consecutions or inversions of σ, denoted by tσ, is

tσ =

{
c0 if c0 
= 0,
i0 if c0 = 0.

(b) The reduced consecution-inversion structure sequence of σ, denoted by RCISS(σ), is the
sequence obtained from CISS(σ) after removing the zero entries.

(c) The extended positional consecution-inversion sequence of σ, denoted by EPCIS(σ), is the
n-tuple (v0, v1, . . . , vn−1), where vn−1 = vn−2.

(d) For 0 ≤ i ≤ j ≤ n− 2, we set

iσ(i : j) :=

j∑
k=i

(1 − vk) and cσ(i : j) :=

j∑
k=i

vk

for, respectively, the number of inversions and consecutions of σ from i to j. We also set
iσ(i : j) := 0 and cσ(i : j) := 0 for i > j.

Remark 2.9. The following simple observations on Definition 2.8 will be used.

1. The functions iσ(i : j) and cσ(i : j) satisfy the following identities:

iσ(i : j) + cσ(i : j) = j − i+ 1, for 0 ≤ i ≤ j ≤ n− 2, (2.3)

iσ(0 : i) + cσ(0 : j) ≤ n− 1, for 0 ≤ i, j ≤ n− 2. (2.4)



28 CHAPTER 2. DEFINITION AND BASIC PROPERTIES OF FIEDLER MATRICES

2. According to the comment 2 in Remark 2.5, RCISS(σ) = CISS(σ) if and only if c0 
= 0 and
i� 
= 0.

3. 1 ≤ tσ ≤ n− 1

Example 2.10. Consider the Fiedler matrix Mσ in Example 2.6. Then, σ is a bijection such that
tσ = 2, EPCIS(σ) = (1, 1, 0, 1, 0, 0, 1, 1, 1) and RCISS(σ) = (2, 1, 1, 2, 2).

In Chapter 6 we will use the concept of reversal bijection.

Definition 2.11. Given a bijection σ : {0, 1, . . . , n − 1} −→ {1, . . . , n}, the reversal bijection of
σ, denoted by rev(σ) : {0, 1, . . . , n − 1} → {1, . . . , n}, is defined by rev(σ)(i) = n + 1 − σ(i), for
0 ≤ i ≤ n− 1.

Since the matrix Mk, for k = 0, 1, . . . , n − 1, in (1.3) is a symmetric matrix, it follows that the
transpose of a Fiedler matrix is also a Fiedler matrix. The following result, whose easy proof is
omitted, relates the transpose of a Fiedler matrix Mσ with the reversal bijection of σ.

Theorem 2.12. Let p(z) = zn+
∑n−1

k=0 akz
k, with n ≥ 2, let σ : {0, 1, . . . , n−1} → {1, . . . , n} be a

bijection, let rev(σ) be the reversal bijection of σ, and let Mσ and Mrev(σ) be the Fiedler matrices
of p(z) associated with σ and rev(σ), respectively. Then,

MT
σ = Mrev(σ). (2.5)

We close this section with the following notions, not strictly related to Fiedler matrices, that
will be used along several chapters.

Definition 2.13. Let p(z) =
∑n

k=0 akz
k be a polynomial of degree n. For d = 0, 1, . . . , n, the

degree d Horner shift of p(z) is the polynomial pd(z) := anz
d + an−1z

d−1 + · · ·+ an−d+1z + an−d.

Notice that pn(z) = p(z) and that we do not assume that p(z) is monic. Also, the Horner shifts of
p(z) satisfy the following recurrence relation:{

p0(z) = an , and
pd(z) = zpd−1(z) + an−d , for d = 1, 2, . . . , n− 1.

(2.6)

Definition 2.14. Let p(z) = zn +
∑n−1

k=0 akz
k be a monic polynomial of degree n. If a0 
= 0, then

the monic reversal polynomial of p(z), denoted by p�(z), is defined as:

p�(z) :=
zn

a0
p(z−1) = zn +

a1
a0

zn−1 +
a2
a0

zn−2 + · · ·+ an−1

a0
z +

1

a0
,

and the reversal polynomial of p(z), denoted by prev(z), is defined as:

prev(z) = znp(z−1) = a0z
n + a1z

n−1 + a2z
n−2 + · · ·+ an−1z + 1.

Observe that the roots of p�(z) and prev(z) are the reciprocals of the roots of p(z).

Definition 2.15. Given a monic polynomial p(z) = zn +
∑n−1

k=0 akz
k, and a nonzero complex

number α, we define the monic scaled polynomial of p(z), denoted by pα(z), as

pα(z) =
1

αn
p(αz) = zn +

n−1∑
k=0

ak
αn−k

zk.

Note that the roots of p(z) may be recovered from the roots of pα(z), that is, if λ is a root of pα(z)
then αλ is a root of p(z).
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2.2 Relevant examples of Fiedler matrices

Given a monic polynomial p(z) as in (1.1), the set of Fiedler matrices of p(z) includes the first
and second Frobenius companion matrices of p(z). That is, C1 = Mn−1Mn−2 · · ·M1M0 and C2 =
M0M1 · · ·Mn−2Mn−1. The first Frobenius companion matrix C1 is a Fiedler matrix associated
with the bijection σ1 = (n, n−1, . . . , 2, 1). For this bijection we have that PCIS(σ1) = (0, 0, . . . , 0),
CISS(σ1) = (0, n − 1), RCISS(σ1) = (n − 1) and tσ1

= n − 1. The second Frobenius companion
matrix C2 is a Fiedler matrix associated with the bijection σ2 = (1, 2, . . . , n − 1, n). For this
bijection we have that PCIS(σ2) = (1, 1, . . . , 1), CISS(σ2) = (n − 1, 0), RCISS(σ2) = (n − 1) and
tσ2

= n− 1.

For any value of the degree of a monic polynomial, the set of Fiedler matrices also includes four
pentadiagonal matrices that have a much smaller bandwidth that the first and second Frobenius
companion matrices (if the degree n of the polynomial is high). These four pentadiagonal Fiedler
matrices are constructed as follows: let B = M1M3 · · · be the product of the odd Mi factors and
let C = M2M4 · · · be the product of the even Mi factors with the exception of M0. Then, is easy
to check that the product of M0, B and C in any order yields a pentadiagonal Fiedler matrix.
Since M0 and C commute we have only four different matrices, namely,

P1 := M0CB, P2 := CBM0, P3 := BM0C and P4 := M0BC. (2.7)

Using the commutativity relations in (2.2) and Theorem 2.12, is easy to check that PT
1 = P3 and

PT
2 = P4. If we consider a degree-6 monic polynomial p(z) = z6 +

∑5
k=0 akz

k, P1 and P2 are

P1 =

⎡⎢⎢⎢⎢⎢⎢⎣
−a5 1 0 0 0 0
−a4 0 −a3 1 0 0
1 0 0 0 0 0
0 0 −a2 0 −a1 1
0 0 1 0 0 0
0 0 0 0 −a0 0

⎤⎥⎥⎥⎥⎥⎥⎦ and P2 =

⎡⎢⎢⎢⎢⎢⎢⎣
−a5 1 0 0 0 0
−a4 0 −a3 1 0 0
1 0 0 0 0 0
0 0 −a2 0 −a1 −a0
0 0 1 0 0 0
0 0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

and if we consider a degree-7 monic polynomial p(z) = z7 +
∑6

k=0 akz
k, then P1 and P2 are

P1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−a6 −a5 1 0 0 0 0
1 0 0 0 0 0 0
0 −a4 0 −a3 1 0 0
0 1 0 0 0 0 0
0 0 0 −a2 0 −a1 1
0 0 0 1 0 0 0
0 0 0 0 0 −a0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
and P2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−a6 −a5 1 0 0 0 0
1 0 0 0 0 0 0
0 −a4 0 −a3 1 0 0
0 1 0 0 0 0 0
0 0 0 −a2 0 −a1 −a0

0 0 0 1 0 0 0
0 0 0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

In general, the matrix P1 in (2.7) is a Fiedler matrix associated with a bijection μ1 such that

PCIS(μ1) =

{
(1, 0, 1, 0, . . . , 1, 0) if n is odd,
(1, 0, 1, 0, . . . , 1, 0, 1) if n is even,

or equivalently,

CISS(μ1) =

{
(1, 1, . . . , 1, 1) ∈ R

n−1 if n is odd,
(1, 1, . . . , 1, 0) ∈ Rn if n is even,

Also, for this bijection we have that RCISS(μ1) = (1, 1, . . . , 1) ∈ R
n−1 and tμ1

= 1. The matrix
P2 in (2.7) is a Fiedler matrix is associated with a bijection μ2 such that

PCIS(μ2) =

{
(0, 0, 1, 0, . . . , 1, 0) if n is odd,
(0, 0, 1, 0, . . . , 1, 0, 1) if n is even,
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or equivalently,

CISS(μ2) =

{
(0, 2, 1, 1, . . . , 1, 1) ∈ Rn−1 if n is odd,
(0, 2, 1, 1, . . . , 1, 0) ∈ Rn if n is even,

Also, for this bijection μ2 we have that RCISS(μ2) = (2, 1, 1, . . . , 1) ∈ Rn−2 and tμ2
= 2.

Excluding the Frobenius companion matrices, the simplest Fiedler matrices are those corre-
sponding to bijections with just one inversion (resp., consecution) at 0, and consecutions (resp.,
inversions) elsewhere. These particular Fiedler matrices present several numerical advantages that
may be of interest in new enhancements of the current codes for the Polynomial Eigenvalue Problem
(like MATLAB’s polyeig). To be precise, one of these matrices is

F := M1M2 · · ·Mn−1M0 =

⎡⎢⎢⎢⎢⎢⎣
−an−1 1

...
. . .

−a2 1
−a1 −a0
1

⎤⎥⎥⎥⎥⎥⎦ . (2.8)

and the other one is FT . This Fiedler matrix will play a relevant role in future sections (specially
in Chapters 6 and 7). The matrix F is a Fiedler matrix associated with a bijection τ such that
PCIS(τ) = (0, 1, 1, . . . , 1), CISS(τ) = (0, 1, n− 2, 0), RCISS(τ) = (1, n− 2) and tτ = 1.

2.3 A multiplication free algorithm to construct Fiedler ma-

trices and its consequences

To construct a Fiedler matrix Mσ, the obvious way is to perform the multiplication of all the Mi

factors directly, but in [47, Algorithm 1], the authors give an algorithm which constructs Fiedler
matrices without performing any arithmetic operation. Algorithm 1 in [47] considers the general
case of Fiedler linearizations of matrix polynomials, not necessarily monic. In Theorem 2.16 we
recall this algorithm only for monic scalar polynomials. Here, and in the rest of this work, we use
MATLAB notation for submatrices, that is, A(i : j, :) indicates the submatrix of A consisting of
rows i through j and A(:, k : l) indicates the submatrix of A consisting of columns k through l.

Theorem 2.16. Let p(z) = zn +
∑n−1

k=0 akz
k with n ≥ 2, let σ : {0, 1, . . . , n − 1} → {1, . . . , n}

be a bijection, and let Mσ be the Fiedler matrix of p(z) associated with σ. Then Algorithm 1

constructs Mσ.

Algorithm 1. Given p(z) = zn+
∑n−1

k=0 akz
k and a bijection σ, the following algorithm

constructs Mσ.

if σ has a consecution at 0 then

W0 =

[−a1 1
−a0 0

]
else

W0 =

[−a1 −a0
1 0

]
endif
for i = 1 : n− 2

if σ has a consecution at i then

Wi =

[ −ai+1 1 0
Wi−1(:, 1) 0 Wi−1(:, 2 : i + 1)

]
else
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Wi =

⎡⎣−ai+1 Wi−1(1, :)
1 0
0 Wi−1(2 : i+ 1, :)

⎤⎦
endif

endfor
Mσ = Wn−2

Remark 2.17. Note that, for i = 1, 2, . . . , n−1, the matrix Wi in Algorithm 1 is a Fiedler matrix
of the polynomial zi+2 +

∑i+1
k=0 akz

k associated with a bijection ρ = (σ(0), σ(1), . . . , σ(i+ 1)).

The interest of this algorithm, apart from constructing Fiedler matrices without performing
any arithmetic operation, is that it allows us to prove easily some elementary properties of Fiedler
matrices. For instance, since Algorithm 1 performs n − 1 “if” decisions, there are at most 2n−1

different Fiedler matrices associated with any p(z) of degree n ≥ 2. In fact, with a little bit of
extra effort, the reader may prove, by induction on Wi, that if a0 
= −1, then all these 2n−1

Fiedler matrices are really different, i.e., different for any set of specific values of the coefficients
a0, a1, . . . , an−1. However, if a0 = −1, then Algorithm 1 produces the same W0 for σ having
either a consecution or an inversion at 0, and there are only 2n−2 different Fiedler matrices. We
summarize these results without proof in Corollary 2.18.

Corollary 2.18. Let p(z) = zn +
∑n−1

k=0 akz
k with n ≥ 2.

(a) If a0 
= −1, then there are 2n−1 different Fiedler matrices associated with p(z).

(b) If a0 = −1, then there are 2n−2 different Fiedler matrices associated with p(z).

For example, for n = 3, that is, for cubic polynomials, there are four Fiedler matrices, namely,⎡⎣−a2 −a1 −a0
1 0 0
0 1 0

⎤⎦ ,
⎡⎣−a2 1 0
−a1 0 1
−a0 0 0

⎤⎦ ,
⎡⎣−a2 −a1 1

1 0 0
0 −a0 0

⎤⎦ and

⎡⎣−a2 1 0
−a1 0 −a0
1 0 0

⎤⎦ .
From Algorithm 1, it is also very easy to prove Theorem 2.19 via an straightforward induction

on the matrices Wi. We omit the proof, since Theorem 2.19 is a particular case of the much more
general result [47, Theorem 3.10], which proves several structural properties of Fiedler linearizations
of rectangular matrix polynomials.

Theorem 2.19. Let p(z) = zn +
∑n−1

k=0 akz
k be a monic polynomial of degree n ≥ 2, let σ :

{0, 1, . . . , n − 1} → {1, . . . , n} be a bijection, and let Mσ be the Fiedler matrix of p(z) associated
with σ. Then:

(a) Mσ has n entries equal to −a0,−a1, . . . ,−an−1, with exactly one copy of each.

(b) Mσ has n− 1 entries equal to 1.

(c) The rest of the entries of Mσ are equal to 0.

(d) If an entry equal to 1 of those in part (b) is at position (i, j), then either the rest of the
entries in the ith row of Mσ are equal to 0 or the rest of the entries in the jth column of Mσ

are equal to 0.

(e) Mσ has either a row (if σ has a consecution at 0) or a column (if σ has an inversion at 0)
whose entries are −a0 together with n− 1 zeros.
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In particular, Theorem 2.19 establishes the fact that any Fiedler matrix has the same entries
as the first and second Frobenius companion forms, although placed on different positions.

Another important basic property of Fiedler matrices of a monic polynomial p(z) is that they
are irreducible matrices1, when p(0) 
= 0. We use in Proposition 2.20 the concept of directed graph
of a matrix as defined in [87, Definition 6.2.11].

Proposition 2.20. Let p(z) = zn +
∑n−1

k=0 akz
k be a monic polynomial of degree n, let σ :

{0, 1, . . . , n − 1} → {1, . . . , n} be a bijection, and let Mσ be the Fiedler matrix of p(z) associ-
ated with σ. Then,

(a) The directed graph of Mσ has a cycle that visits all nodes if and only if a0 
= 0.

(b) Mσ is an irreducible matrix if and only if a0 
= 0.

Proof. In the proof we will use Part (e) in Theorem 2.19. We will denote by Γ(A) the directed
graph of a matrix A.

Proof of part (a). If a0 = 0, then Mσ has either a row or a column with all its entries equal to
zero. In both cases the corresponding vertex cannot be visited by a cycle and, therefore, Γ(Mσ)
has not a cycle visiting all nodes.

If a0 
= 0, then we proceed by induction on the matrices Wi defined in Algorithm 1. The result
is obviously true for W0 since the entries W0(1, 2) and W0(2, 1) are both different from zero and,
so, Γ(W0) has a cycle visiting all nodes. Let us assume that the result is true for the (i+1)×(i+1)
matrix Wi−1. We need to distinguish two cases: σ has a consecution at i or σ has an inversion
at i. We only prove the result in the case when σ has a consecution at i, since the other one is
similar. The fact that Γ(Wi−1) has a cycle that visits all nodes is equivalent to the fact that there
exists a permutation (j2, j3, . . . , ji+1) of the indices (2, 3, . . . , i+ 1) such that

Wi−1(1, j2)Wi−1(j2, j3)Wi−1(j3, j4) · · · Wi−1(ji, ji+1)Wi−1(ji+1, 1) 
= 0. (2.9)

The expression of Wi in terms of Wi−1 given in Algorithm 1 allows us to write (2.9) in terms of
entries of Wi as follows

Wi(2, j2 + 1)Wi(j2 + 1, j3 + 1)Wi(j3 + 1, j4 + 1) · · · Wi(ji + 1, ji+1 + 1)Wi(ji+1 + 1, 1) 
= 0

and, since Wi(1, 2) = 1, we get

Wi(1, 2)Wi(2, j2+1)Wi(j2+1, j3+1)Wi(j3+1, j4+1) · · · Wi(ji+1, ji+1+1)Wi(ji+1 +1, 1) 
= 0,

which corresponds to a cycle that visits all nodes in Γ(Wi).

Proof of part (b). If a0 = 0, then Mσ has either a row or a column with all its entries equal to
zero. If Mσ has a zero row, then select a permutation matrix Π such that ΠTMσ(p)Π has the nth
row equal to zero and we see by definition that Mσ is reducible. If Mσ has a zero column, then
select a permutation matrix Π such that ΠTMσΠ has the nth column equal to zero and we see by
definition that Mσ is reducible.

If a0 
= 0, then, by part (a), Γ(Mσ) is strongly connected [87, Definition 6.2.13] and this
equivalent to the fact that Mσ is irreducible [87, Theorem 6.2.24].

1We recall that a matrix is irreducible when is not permutation-similar to a block upper triangular matrix.



Chapter 3

Inverses and norms of Fiedler

matrices

The goal of this chapter is to obtain explicit expressions for some relevant matrix norms of Fiedler
matrices and their inverses. We obtain these expressions in the case of the 1-, ∞- and Frobenius
norms in Theorem 3.9, Theorem 3.8 and Corollary 3.5, respectively. We leave the study of the
2-norm to Chapter 4, which is devoted to the study of the singular values of Fiedler matrices.
These explicit expressions of norms of Fiedler matrices, which are interesting by themselves, will
be used in Chapter 6 to obtain new lower and upper bounds for roots of monic polynomials, and
in Chapter 7 to study the condition numbers for inversion of Fiedler matrices.

3.1 The inverse of a Fiedler Matrix

For k = 1, . . . , n−1, the matricesMk defined in (1.3) are nonsingular for any value of the coefficients
ak, while the matrix M0 is nonsingular if and only if a0 
= 0. In this case, the inverses of these
matrices are

M−1
0 =

[
In−1 0
0 −1/a0

]
, M−1

k =

⎡⎢⎢⎣
In−k−1

0 1
1 ak

Ik−1

⎤⎥⎥⎦ , k = 1, 2, . . . , n− 1. (3.1)

For any bijection σ, the Fiedler matrix Mσ in (2.1) is nonsingular if and only if a0 
= 0, that is,
if λ = 0 is not a root of p(z), and (3.1) allows us to obtain the following factorized expression of
M−1

σ given by

M−1
σ = (Mσ−1(1) · · ·Mσ−1(n))

−1 = M−1
σ−1(n) . . .M

−1
σ−1(1) .

However, as we did in Algorithm 1 (Theorem 2.16) forMσ, it is possible to construct the inverse of
any Fiedler matrix using a similar algorithm, namely Algorithm 2 in Theorem 3.1. This algorithm
allows us to prove easily some key properties of M−1

σ in Theorem 3.2. Note that Algorithm 2 is
not operation free, although the only arithmetic operations involved are multiplications of certain
coefficients of p(z) by 1/a0 (see Theorem 3.2).

Theorem 3.1. Let p(z) = zn +
∑n−1

k=0 akz
k be a monic polynomial of degree n ≥ 2 and a0 
= 0, let

σ : {0, 1, . . . , n−1} → {1, . . . , n} be a bijection, and let Mσ be the Fiedler matrix of p(z) associated
with σ. Then Algorithm 2 constructs M−1

σ .

33
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Algorithm 2. Given p(z) = zn +
∑n−1

k=0 akz
k, with a0 
= 0, and a bijection σ, the

following algorithm constructs M−1
σ .

if σ has a consecution at 0 then

B0 =

[
0 −1/a0
1 −a1/a0

]
else

B0 =

[
0 1

−1/a0 −a1/a0

]
endif
for i = 1 : n− 2

if σ has a consecution at i then

Bi =

⎡⎣0 Bi−1(1, :)
1 ai+1Bi−1(1, :)
0 Bi−1(2 : i+ 1, :)

⎤⎦
else

Bi =

[
0 1 0

Bi−1(:, 1) ai+1Bi−1(:, 1) Bi−1(:, 2 : i+ 1)

]
endif

endfor
M−1

σ = Bn−2.

Proof. Let {W0,W1, . . . ,Wn−2} be the sequence of matrices constructed by Algorithm 1, in The-
orem 2.16, and {B0, B1, . . . , Bn−2} be the sequence of matrices constructed by Algorithm 2. The
proof consists of proving by induction that WiBi = Ii+2, i.e., that Bi = W−1

i , which implies the
theorem just by taking i = n− 2.

If σ has a consecution at 0, then a direct multiplication of 2× 2 matrices leads to W0B0 = I2.
The same happens if σ has an inversion at 0. Let us assume that Wi−1Bi−1 = Ii+1 for some
i− 1 ≥ 0 and let us prove WiBi = Ii+2. If σ has a consecution at i, then, from Algorithms 1 and
2, we get

WiBi =

[
1 −ai+1Bi−1(1, :) + ai+1Bi−1(1, :)
0 Wi−1(:, 1)Bi−1(1, :) +Wi−1(:, 2 : i+ 1)Bi−1(2 : i+ 1, :)

]
=

[
1 0
0 Wi−1Bi−1

]
=

=

[
1 0
0 Ii+1

]
.

If σ has an inversion at i, then the proof is similar and is omitted.

Algorithm 2 allows us to easily get information on the entries of M−1
σ in Theorem 3.2. The

quantity tσ, that is, the number of initial consecutions or inversions of a bijection σ (see Part (a)
in Definition 2.8), will play a key role.

Theorem 3.2. Let p(z) = zn +
∑n−1

k=0 akz
k with n ≥ 2 and a0 
= 0, let σ : {0, 1, . . . , n − 1} →

{1, . . . , n} be a bijection, let Mσ be the Fiedler matrix of p(z) associated with σ, and let tσ be the
number of initial consecutions or inversions of σ. Then:

(a) M−1
σ has tσ + 1 entries equal to − 1

a0
,−a1

a0
, . . . ,−atσ

a0
, with exactly one copy of each.

(b) M−1
σ has n− 1− tσ entries equal to atσ+1, atσ+2, . . . , an−1, with exactly one copy of each.

(c) M−1
σ has n− 1 entries equal to 1.

(d) The rest of the entries of M−1
σ are equal to 0.
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Proof. Recall that, according to Definition 2.8, tσ = c0 if c0 
= 0, and tσ = i0 if c0 = 0. The
case c0 = 0 follows from the case c0 
= 0 by applying the result to the Fiedler matrix MT

σ , which
corresponds to a bijection with i0 initial consecutions. Therefore, we prove only the result for
tσ = c0 
= 0. In this case, the bijection σ has consecutions at 0, 1, 2, . . . , c0 − 1 and an inversion at
c0. Therefore, a direct application of Algorithm 2 leads to

Bc0−1 =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 . . . 0 −1/a0

1 0
. . . 0 −ac0/a0

1
. . .

...
. . .

. . .
...

1 0 −a2/a0
1 −a1/a0

⎤⎥⎥⎥⎥⎥⎥⎦ , Bc0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0 0
0 0 0 . . . 0 −1/a0

1 ac0+1 0
. . . 0 −ac0/a0

0 0 1
. . .

...
...

...
. . .

. . .
...

...
... 1 0 −a2/a0

0 0 1 −a1/a0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.2)

Observe that the nonzero entries of Bc0 are: c0 + 1 entries equal to 1, − 1
a0
,−a1

a0
, . . . ,−ac0

a0
, and

ac0+1. In addition, both the first row and the first column of Bc0 satisfy that they have only one
nonzero entry and that this entry is equal to 1.

From Algorithm 2, one obtains by inspection the following property: if the first row and the
first column of Bi−1 satisfy that they have only one nonzero entry and that this entry is equal to
1, then (a) the nonzero entries of Bi are those of Bi−1 together with an additional 1 and ai+1,
and (b) the first row and the first column of Bi have also only one nonzero entry and this entry is
equal to 1.

This property and (3.2) imply that the nonzero entries ofM−1
σ = Bn−2 are those of Bc0 together

with n− 2− c0 entries equal to 1 and ac0+2, ac0+3, . . . , an−1. This completes the proof.

Next, we illustrate Theorem 3.2 with some examples of inverses of Fiedler matrices. In these
examples it may be seen the dependence on tσ of the nonzero entries of the inverse of a Fiedler
matrix.

Example 3.3. Let p(z) = z7 +
∑6

k=0 akz
k be a monic polynomial of degree 7, and let C2 and F

be the second Frobenius companion matrix of p(z) and the Fiedler matrix of p(z) defined in (2.8),
respectively. Then

C−1
2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 − 1
a0

1 0 0 0 0 0 −a6

a0

0 1 0 0 0 0 −a5

a0

0 0 1 0 0 0 −a4

a0

0 0 0 1 0 0 −a3

a0

0 0 0 0 1 0 −a2

a0

0 0 0 0 0 1 −a1

a0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and F−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 1
1 0 0 0 0 0 a6
0 1 0 0 0 0 a5
0 0 1 0 0 0 a4
0 0 0 1 0 0 a3
0 0 0 0 1 0 a2
0 0 0 0 0 − 1

a0
−a1

a0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Recall that C2 is a Fiedler matrixMσ associated with a bijection σ such that PCIS(σ) = (1, 1, 1, 1, 1,
1) and tσ = 6, and that F is a Fiedler matrix Mρ associated with a bijection ρ such that PCIS(ρ) =
(0, 1, 1, 1, 1, 1) and tρ = 1.

Example 3.4. Let p(z) = z7 +
∑6

k=0 akz
k be a monic polynomial of degree 7, and let P1 and P2
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be the Fiedler matrices of p(z) defined in (2.7). Then

P−1
1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0
0 0 0 1 0 0 0
1 a6 0 a5 0 0 0
0 0 0 0 0 1 0
0 0 1 a4 0 a3 0
0 0 0 0 0 0 − 1

a0

0 0 0 0 1 a2 −a1

a0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
and P−1

2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0
0 0 0 1 0 0 0
1 a6 0 a5 0 0 0
0 0 0 0 0 1 0
0 0 1 a4 0 a3 0
0 0 0 0 0 0 1
0 0 0 0 − 1

a0
−a2

a0
−a1

a0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Recall that P1 is a Fiedler matrixMσ associated with a bijection σ such that PCIS(σ) = (1, 0, 1, 0, 1, 0)
and tσ = 1, and that P2 is a Fiedler matrix Mρ associated with a bijection ρ such that PCIS(ρ) =
(0, 0, 1, 0, 1, 0) and tρ = 2.

3.2 Formulas for the∞−norm, 1−norm and Frobenius norm

of Fiedler matrices

Theorems 2.19 and 3.2 describe which are the non-identically zero entries of a Fiedler matrix
Mσ and its inverse M−1

σ . This information is enough for getting the Frobenius norms of Fiedler
matrices and their inverses.

Corollary 3.5. Let p(z) = zn +
∑n−1

k=0 akz
k be a monic polynomial of degree n ≥ 2 and a0 
= 0,

let σ : {0, 1, . . . , n− 1} → {1, . . . , n} be a bijection, let Mσ be the Fiedler matrix of p(z) associated
with σ, and let tσ be the number of initial consecutions or inversions of σ. Then:

‖Mσ‖2F = (n− 1) + |a0|2 + |a1|2 + · · ·+ |an−1|2, (3.3)

which is independent on σ and depends only on p(z), and

‖M−1
σ ‖2F = (n− 1) +

1 + |a1|2 + · · ·+ |atσ |2
|a0|2 + |atσ+1|2 + · · ·+ |an−1|2. (3.4)

In contrast with ‖Mσ‖F , the quantity ‖M−1
σ ‖F depends on σ, but only through the number of

its initial consecutions or inversions tσ. This implies that very different Fiedler matrices can have
inverses with the same Frobenius norm, see, for example, F−1 and P−1

1 in Examples 3.3 and 3.4.
Theorems 2.19 and 3.2 do not give information on the positions where the non-identically zero

entries of a Fiedler matrix and its inverse are placed in. In order to obtain expressions for ‖Mσ‖∞
and ‖M−1

σ ‖∞, we need to know how the non-identically zero entries of these two matrices are
distributed by rows. This is presented in Lemma 3.6 for Mσ and in Lemma 3.7 for M−1

σ . Once
these two lemmas are known, we get easily Theorem 3.8, where the formulas for ‖Mσ‖∞ and
‖M−1

σ ‖∞ are finally stated. As a corollary of Theorem 3.8 and Theorem 2.12 the formulas for
‖Mσ‖1 and ‖M−1

σ ‖1 are obtained and presented in Theorem 3.9.
The results in this section require the partial sums of the entries of CISS(σ), that were previ-

ously used in [45, p. 2193]. We recall now their definitions: let σ : {0, 1, . . . , n− 1} → {1, . . . , n}
be a bijection and let CISS(σ) = (c0, i0, c1, i1, . . . , c�, i�) be the consecution-inversion structure
sequence of σ introduced in Definition 2.4. Then

sk :=

k∑
j=0

(cj + ij), for k = 0, 1, . . . , �, s−1 := 0. (3.5)

Observe that s� = n− 1 is the total number of consecutions and inversions of σ, that if c0 = 0 then
s0 = i0, and that sk = sk−1 + ck + ik, for k = 0, 1, . . . , �.
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Lemma 3.6. Let p(z) = zn +
∑n−1

k=0 akz
k be a monic polynomial of degree n ≥ 2, let σ :

{0, 1, . . . , n−1} → {1, . . . , n} be a bijection, let CISS(σ) = (c0, i0, c1, i1, . . . , c�, i�) be the consecution-
inversion structure sequence of σ, and let {sk}�k=−1 be the partial sums of the entries of CISS(σ).
If Mσ is the Fiedler matrix of p(z) associated with σ, then the non-zero entries of Mσ are placed
as specified in the following statements.

(a) Each of the (n− 1) entries equal to 1 is in a different row of Mσ. The only row of Mσ which
does not contain an entry equal to 1 is

(i) the nth row, if c0 > 0;

(ii) the (n− i0)th row, if c0 = 0.

(b) The entries −a0,−a1, . . . ,−as0 of Mσ satisfy:

(i) If c0 > 0, then

• each of the entries −a0,−a1, . . . ,−ac0−1 is in a different row of Mσ, each of these
rows does not contain any other entry equal to −ai, for i = 0, 1, . . . , n− 1, and −a0
is in the nth row; and

• the entries −ac0,−ac0+1, . . . ,−ac0+i0 are all of them in the same row of Mσ and
this row does not contain any other entry equal to −ai, for i = 0, 1, . . . , n− 1.

(ii) If c0 = 0, then the entries −a0,−a1, . . . ,−ai0 are all of them in the (n − i0)th row of
Mσ and these are the only non-zero entries in this row.

(c) For each k = 1, . . . , �, the entries −ask−1+1,−ask−1+2, . . . ,−ask of Mσ satisfy:

• each of the entries −ask−1+1, . . . ,−ask−1+ck−1 is in a different row of Mσ and each of
these rows does not contain any other entry equal to −ai, for i = 0, 1, . . . , n− 1; and

• the entries −ask−1+ck
,−ask−1+ck+1, . . . ,−ask are all of them in the same row of Mσ

and this row does not contain any other entry equal to −ai, for i = 0, 1, . . . , n− 1.

Proof. The formal proof follows an inductive argument based on Algorithm 1 in Theorem 2.16.
We only sketch the main idea since the details to complete the proof are straightforward but
somewhat long. The result is obviously true for the matrix W0 appearing in Algorithm 1, or
in other words, is obviously true for polynomials of degree 2. Then the induction hypothesis is
that Lemma 3.6 holds for Wn−3, or in other words for polynomials of degree n− 1, and then the
way Algorithm 1 constructs Wn−2 = Mσ from Wn−2 is used to prove that the entries of Mσ

satisfy Lemma 3.6. For this purpose, four cases should be considered, depending on whether σ
has a consecution or an inversion at n− 3, and on whether σ has a consecution or an inversion at
n− 2.

Next, we determine in Lemma 3.7 the distribution by rows of the non-zero entries of M−1
σ .

Lemma 3.7. With the same notation and hypotheses that in Lemma 3.6, let us assume in addition
that a0 
= 0 and that tσ is the number of initial consecutions or inversions of σ. Then the non-zero
entries of M−1

σ are placed as specified in the following statements.

(a) Each of the (n − 1) entries equal to 1 is in a different row of M−1
σ . The only row of M−1

σ

which does not contain an entry equal to 1 is the (n− c0)th row.

(b) The entries − 1

a0
,−a1

a0
, . . . ,−atσ

a0
, atσ+1, atσ+2, . . . , as0 of M−1

σ satisfy1

1Observe that, if c0 = 0, then there are no entries atσ+1, atσ+2, . . . , as0 since s0 = i0 = tσ .



38 CHAPTER 3. INVERSES AND NORMS OF FIEDLER MATRICES

(i) If c0 > 0, then

• −1/a0 is the only non-zero entry in the (n− c0)th row of M−1
σ ;

• if, in addition, c0 > 1, then each of the entries −a1/a0, . . . ,−ac0−1/a0 is in a
different row of M−1

σ and each of these rows does not contain any other entry of
the set {−1/a0,−a1/a0, . . . ,−ac0/a0, ac0+1, . . . , an−1};

• the entries −ac0/a0, ac0+1, . . . , as0 are all of them in the same row of M−1
σ and this

row does not contain any other entry of the set
{−1/a0,−a1/a0, . . . ,−ac0/a0, ac0+1, . . . , an−1}.

(ii) If c0 = 0, then the entries −1/a0,−a1/a0, . . . ,−ai0/a0 are all of them in the nth row of
M−1

σ and these are the only non-zero entries in this row.

(c) For each k = 1, . . . , �, the entries ask−1+1, ask−1+2, . . . , ask of M−1
σ satisfy:

• each of the entries ask−1+1, . . . , ask−1+ck−1 is in a different row of M−1
σ and each of

these rows does not contain any other entry of the set
{−1/a0,−a1/a0, . . . ,−atσ/a0, atσ+1, . . . , an−1}; and

• the entries ask−1+ck
, ask−1+ck+1, . . . , ask are all of them in the same row of M−1

σ and
this row does not contain any other entry of the set
{−1/a0,−a1/a0, . . . ,−atσ/a0, atσ+1, . . . , an−1}.

Proof. The proof is similar to the one of Lemma 3.6 but using the matrices Bi appearing in
Algorithm 1 instead of the matrices Wi.

Lemmas 3.6 and 3.7 allow us to prove easily the main result in this section, that is, Theorem
3.8. The simple proof is omitted.

Theorem 3.8. Let p(z) = zn +
∑n−1

k=0 akz
k be a monic polynomial with degree n ≥ 2, let σ :

{0, 1, . . . , n−1} → {1, . . . , n} be a bijection, let CISS(σ) = (c0, i0, c1, i1, . . . , c�, i�) be the consecution-
inversion structure sequence of σ, let sk, for k = 0, 1, . . . , �, be the partial sums defined in (3.5),
and let Mσ be the Fiedler matrix of p(z) associated with σ. Let us define the quantities

γσ,0(p) =

{
max{1 + |a1|, . . . , 1 + |ac0−1|, 1 + |ac0 |+ |ac0+1|+ · · ·+ |as0 |}, if c0 > 0,
max{|a0|+ |a1|+ · · ·+ |as0 | , 1}, if c0 = 0,

if a0 
= 0, also the quantities

δσ(p) =

⎧⎨⎩ max
{
1 + |a1|

|a0|
, . . . , 1 +

|ac0−1|

|a0|
, 1 +

|ac0
|

|a0|
+ |ac0+1|+ · · ·+ |as0 |

}
, if c0 > 0,

max
{

1
|a0|

+ |a1|
|a0|

+ · · ·+ |as0
|

|a0|
, 1
}
, if c0 = 0,

and finally, for k = 1, . . . , �, the quantities

γσ,k(p) = max{1 + |ask−1+1|, . . . , 1 + |ask−1+ck−1|, 1 + |ask−1+ck
|+ · · ·+ |ask |},

where, if ck = 1, for some k = 0, 1, . . . , �, then the first ck − 1 terms within the maximums defining
γσ,k(p) or δσ(p) do not appear. Then

‖Mσ‖∞ = max{|a0|, γσ,0(p), γσ,1(p), . . . , γσ,�(p)}, (3.6)

and

‖M−1
σ ‖∞ = max

{
1

|a0| , δσ(p), γσ,1(p), . . . , γσ,�(p)
}
. (3.7)
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As an immediate consequence of Theorems 2.12 and 3.8 we get formulas for ‖Mσ‖1 and ‖M−1
σ ‖1.

Theorem 3.9. Let p(z) = zn +
∑n−1

k=0 akz
k be a monic polynomial with degree n ≥ 2, let σ :

{0, 1, . . . , n − 1} → {1, . . . , n} be a bijection, and let Mσ be the Fiedler matrix of p(z) associated
with σ. Then,

‖Mσ‖1 = ‖MT
σ ‖∞ = ‖Mrev(σ)‖∞,

and, if a0 
= 0,

‖M−1
σ ‖1 = ‖ (M−1

σ

)T ‖∞ = ‖M−1
rev(σ)‖∞,

where rev(σ) is the reversal bijection of σ.
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Chapter 4

Singular values of Fiedler matrices

We have mentioned in Section 1.3 that in [95] (see also [99]), the authors prove that the Frobenius
companion matrices associated with a monic polynomial p(z) as in (1.1) have n− 2 singular values
equal to 1 and that the largest and the smallest singular values are the square roots of (1.29). The
reason behind these properties is that C1 (and C2) can be written as a sum of a unitary matrix
plus a rank-one matrix as follows

C1 =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 1
1 0 · · · 0 0

0 1
. . . 0 0

...
. . .

. . .
...

...
0 · · · 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎢⎢⎣

−an−1 −an−2 · · · −a1 −a0 − 1
0 0 · · · 0 0

0 0
. . . 0 0

...
. . .

. . .
...

...
0 · · · 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ . (4.1)

This expression immediately allows us to prove that C1 has at least n − 2 singular values equal
to 1 and that the squares of the remaining two singular values can be obtained as the eigenvalues
of a simple 2× 2 matrix (we will present in Lemma 4.25 a general version of this result). In fact,
the unitary matrix in the sum (4.1) has an additional property: it is a permutation matrix, i.e., a
matrix obtained by permuting the rows (or columns) of the identity matrix.

Fiedler matrices different from the Frobenius companion matrices cannot be expressed as “uni-
tary plus rank-one matrices”, but we will see in Section 4.2 that every Fiedler matrix of p(z) can be
expressed as a sum of a permutation matrix plus a matrix whose rank varies from 1 to �(n+1)/2�.
In addition, we will show how to construct these two summands via simple algorithms and how
to determine the rank of the second summand. In plain words, this will imply that many Fiedler
matrices admit expressions as “unitary plus low-rank matrices” and so have a certain number of
singular values equal to 1. We illustrate in Example 4.1 these ideas.

Example 4.1. We consider monic polynomials with degree 8, i.e., p(z) = z8 +
∑7

k=0 akz
k.

1. We consider first the pentadiagonal Fiedler matrix P1 in (2.7). It can be written as

P1 =

⎡⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎢⎢⎣

−a7 0 0 0 0 0 0 0
−a6 0 −a5 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 −a4 0 −a3 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 −a2 0 −a1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 −a0 − 1 0

⎤⎥⎥⎥⎥⎥⎥⎦ . (4.2)

41
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The first summand is a permutation matrix and the second one has rank at most 4 =
�(n + 1)/2� (to see this, perform Gaussian elimination by rows). In fact, if ai 
= 0 for
i = 1, . . . , 7, then the rank is exactly 4.

2. The second example corresponds to a Fiedler matrix with CISS(σ) = (4, 3). It can be
expressed as

Mσ =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎢⎢⎣

−a7 −a6 −a5 −a4 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 −a3 0 0 0 0
0 0 0 −a2 0 0 0 0
0 0 0 −a1 0 0 0 0
0 0 0 −a0 − 1 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ . (4.3)

The first summand is again a permutation matrix and the second one has rank at most
2. In fact, if ai 
= 0 for i = 1, . . . , 7, then the rank is exactly 2. Algorithm 1 in Theo-
rem 2.16 allows the reader to easily check that these properties hold for Fiedler matrices of
polynomials with arbitrary degree n ≥ 2 associated with bijections that have all their con-
secutions in consecutive indices and all their inversions in consecutive indices, that is, those
with CISS(σ) = (c0, i0), c0 
= 0 and i0 
= 0, or those with CISS(σ) = (0, i0, c1, 0), i0 
= 0 and
c1 
= 0.

Observe that, if all zero rows and columns are removed in the second summands in (4.2) and
(4.3), then, in both cases, we get matrices whose nonzero entries follow a very special pattern:⎡⎢⎢⎢⎢⎣

−a7 0 0 0
−a6 −a5 0 0
0 −a4 −a3 0
0 0 −a2 −a1
0 0 0 −a0 − 1

⎤⎥⎥⎥⎥⎦ and

⎡⎢⎢⎢⎢⎣
−a7 −a6 −a5 −a4
0 0 0 −a3
0 0 0 −a2
0 0 0 −a1
0 0 0 −a0 − 1

⎤⎥⎥⎥⎥⎦ .
These matrices are particular cases of a family of matrices defined in Section 4.1 and named
staircase matrices. These matrices and the determination of their ranks will be the key point
in our analysis of the singular values of Fiedler matrices. The study of staircase matrices is the
subject of section 4.1.

Then, based on the study of staircase matrices, in Section 4.2 we study some properties of the
singular values of Fiedler matrices. More precisely, we determine how many of their singular values
are equal to one and, for those that are not, we show that they can be obtained from the square
roots of the eigenvalues of certain matrices that may have a size much smaller than n and that are
easily constructible from the coefficients of p(z).

4.1 Staircase matrices

Staircase matrices are matrices whose nonzero entries follow a very special pattern. We assume
throughout this section that these matrices have more than one row or more than one column to
avoid the trivial 1× 1 case that may complicate the definition.

Definition 4.2. Given a matrix A = (aij) ∈ Cm×p, we say that A is a staircase matrix if A
satisfies the following properties:

1. If ai,j1 
= 0 and ai,j2 
= 0, for some 1 ≤ i ≤ m and 1 ≤ j1 ≤ j2 ≤ p, then aij 
= 0 for all
j1 ≤ j ≤ j2.
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2. If ai1 = ai2 = · · · = ai,j−1 = 0 and aij 
= 0, for some 1 < i ≤ m, 1 ≤ j ≤ p, then ai−1,j 
= 0
and ai−1,j+1 = 0, whenever j + 1 ≤ p.

3. a11 
= 0 and amp 
= 0.

A matrix B = (bij) ∈ Cm×p is said to be a generalized staircase matrix if it is obtained from a
staircase matrix by turning some nonzero entries into zero entries.

The first condition in Definition 4.2 means that all nonzero entries in a given row of A are
placed in consecutive columns. The second condition means that the first nonzero entry in a given
row of A is placed in the same column as the last nonzero entry of the immediate upper row.

Example 4.3. The following matrices are staircase matrices:

A =

⎡⎢⎢⎢⎢⎢⎢⎣
× × ×

× ×
× × ×

×
×
× × ×

⎤⎥⎥⎥⎥⎥⎥⎦ and C =

⎡⎢⎢⎢⎢⎢⎢⎣
× × ×

× ×
× × ×

×
×
×

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where the symbol × denotes the nonzero entries (here and in all the examples of this section). A
generalized staircase matrix compatible with A is obtained by replacing some of the × entries of
A by 0. In plain words, one can say that generalized staircase matrices may have “holes” in the
steps.

Notice that, as a consequence of the second and third conditions in Definition 4.2, every row
and every column in a staircase matrix has at least one nonzero entry.

Definition 4.4. Let A ∈ Cm×p be a staircase matrix. We say that a nonzero entry aij is a corner
entry of A if one (or both) of the following conditions holds:

1. i = j = 1 or i = m and j = p.

2. aij is the first or the last nonzero entry in the ith row and there are more than one nonzero
entries in the ith row.

Example 4.5. Let A and C be the staircase matrices in Example 4.3. Then

A =

⎡⎢⎢⎢⎢⎢⎢⎣
⊗ × ⊗

⊗ ⊗
⊗ × ⊗

×
×
⊗ × ⊗

⎤⎥⎥⎥⎥⎥⎥⎦ and C =

⎡⎢⎢⎢⎢⎢⎢⎣
⊗ × ⊗

⊗ ⊗
⊗ × ⊗

×
×
⊗

⎤⎥⎥⎥⎥⎥⎥⎦ ,

and the entries with the symbols ⊗ are the corner entries.

Definition 4.6. Let A ∈ Cm×p be a staircase matrix. We define the ordered list of corner entries
of A as the ordered list (ai1,j1 , ai2,j2 , . . . , ait+1,jt+1

) of all corner entries of A, where the corner
entry air ,jr precedes the corner entry ais,js if ir < is or ir = is and jr < js.

Example 4.7. For the staircase matrices in Example 4.5, the ordered lists of corner entries of A
and C are, respectively, {a11, a13, a23, a24, a34, a36, a66, a68} and {c11, c13, c23, c24, c34, c36, c66}.

Notice that for two consecutive entries in the ordered list of corner entries of A, say aik,jk and
aik+1,jk+1

, we always have ik = ik+1 or jk = jk+1 (but not both). This motivates the following
definition.
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Definition 4.8. Let A ∈ Cm×p be a staircase matrix and (ai1,j1 , . . . , ait+1,jt+1
) be the ordered list

of corner entries of A. Then, for 1 ≤ k ≤ t, the kth flight of A is the set of entries

• aik,jk , aik,jk+1, . . . , aik,jk+1
if ik = ik+1, or

• aik,jk , aik+1,jk , . . . , aik+1,jk if jk = jk+1.

Notice that the number of flights of a staircase matrix A is equal to the number of corner entries
of A minus one. We are particularly interested in the lengths of the flights of A. This notion is
made precise in Definition 4.9.

Definition 4.9. Let A ∈ Cm×p be a staircase matrix and (ai1,j1 , . . . , ait+1,jt+1
) be the ordered list

of corner entries of A. The flight-length sequence of A is the sequence

F(A) := (f1, f2, . . . , ft),

where fk = max{ik+1 − ik, jk+1 − jk}, for k = 1, . . . , t.

We note that the kth term fk in the flight-length sequence of A is equal to the number of
entries in the kth flight of A minus one.

Definition 4.10. Let s = (s1, s2, . . . , st) be an ordered list of nonnegative integers. For each
j = 1, 2, . . . , t, we define the length of the string of ones at the jth position of s, denoted by lj, as

• a positive integer lj > 0, if the following three conditions are satisfied:

(i) sj = sj+1 = · · · = sj+lj−1 = 1,

(ii) sj−1 
= 1 or j = 1, and

(iii) sj+lj 
= 1 or j + lj − 1 = t.

• lj = 0, otherwise.

Let (l1, l2, . . . , lt) be the ordered list of the lengths of the strings of ones of s. Then, the list of positive
lengths of the strings of ones of s, denoted by L(s), is the ordered list obtained from (l1, l2, . . . , lt)
after removing all zero entries. If s is a list containing no ones, then we set L(s) := (0).

Example 4.11. For the list s = (2, 1, 1, 1, 3, 1, 1, 2), the list of the lengths of the strings of ones is
(0, 3, 0, 0, 0, 2, 0, 0), so we have L(s) = (3, 2).

Until now, we have not established any relationship between staircase matrices and Fiedler
matrices. However, both types of matrices are closely connected in a way that will be shown in
Section 4.2. In order to introduce this connection, we show in Theorem 4.12 that every staircase
matrix with n nonzero entries can be constructed from the consecutions and inversions of a bijection
σ : {0, 1, . . . , n − 1} → {1, . . . , n}. Moreover, we show that the reduced consecution-inversion
structure sequence of σ, RCISS(σ) (see part (b) in Definition 2.8), is the flight-length sequence of
the matrix in reversed order. The reader is invited to focus on the similarities between Algorithm

3 in Theorem 4.12 and Algorithm 1 in Theorem 2.16, which will be exploited in depth in Section
4.2. However, note that in Algorithm 3 we use the MATLAB notation V (:, j : end) to indicate
the submatrix of V consisting of columns j through the last column (a similar notation is used for
rows), because the sizes of the constructed matrices are not fixed. They depend on the number of
consecutions and inversions of σ. In addition, if expressions like V (:, 2 : 1) appear in Algorithm 3,
then they should be understood as empty matrices. We warn also the reader that in Algorithm 3

the staircase matrix is constructed starting from the lower-right entry, which may seem unnatural,
but it is convenient for establishing the connection with Fiedler matrices and Algorithm 1.
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Theorem 4.12. Let x0, x1, . . . , xn−1 be n ≥ 2 complex nonzero numbers, let σ : {0, 1, . . . , n−1} →
{1, . . . , n} be a bijection, and consider the following algorithm:

Algorithm 3. Given x0, x1, . . . , xn−1 nonzero numbers and a bijection σ, the following

algorithm constructs a matrix Ṽσ whose nonzero entries are precisely x0, x1, . . . , xn−1.

if σ has a consecution at 0 then

Ṽ0 =

[
x1

x0

]
else

Ṽ0 =
[
x1 x0

]
endif
for i = 1 : n− 2

if σ has a consecution at i then

Ṽi =

[
xi+1 0

Ṽi−1(:, 1) Ṽi−1(:, 2 : end)

]
else

Ṽi =

[
xi+1 Ṽi−1(1, :)

0 Ṽi−1(2 : end, :)

]
endif

endfor
Ṽσ = Ṽn−2.

Then the matrix Ṽσ is a staircase matrix. Moreover, if RCISS(σ) = (p1, p2, . . . , pt) is the reduced

consecution-inversion structure sequence of σ, then the flight-length sequence of Ṽσ is F(Ṽσ) =
(pt, pt−1, . . . , p2, p1).

Conversely, given a staircase matrix A with n nonzero entries and flight-length sequence F(A) =
(f1, f2, . . . , ft), there exists a bijection σ : {0, 1, . . . , n − 1} → {1, . . . , n} such that RCISS(σ) =

(ft, . . . , f2, f1) and A = Ṽσ, where Ṽσ is the output of Algorithm 3 with the inputs σ and the list
of the nonzero entries of A ordered from the lower-right to the upper-left entry1.

Proof. The proof is easy, so we only sketch the main points. In the proof we use a family of
bijections σi : {0, 1, . . . , i+1} → {1, . . . , i+2}, for i = 0, 1, . . . , n−2, such that σi has a consecution
(resp. inversion) at j, 0 ≤ j ≤ i, if and only if σ has a consecution (resp. inversion) at j. Observe

that Ṽi is constructed by applying Algorithm 3 to the numbers x0, x1, . . . , xi+1 and the bijection
σi. The bijection σn−2 may be taken to be equal to σ.

Let us prove first the properties of Ṽσ. It is obvious that Ṽ0 is a staircase matrix that
has F(Ṽ0) = (1), and that RCISS(σ0) = (1). Next, we proceed by induction. Assume that

Ṽi−1, for some i − 1 ≥ 0, is a staircase matrix that has F(Ṽi−1) = (p′s, ps−1, . . . , p2, p1), where

(p1, p2, . . . , ps−1, p
′
s) = RCISS(σi−1). Then the structure of Algorithm 3 makes obvious that Ṽi

is also a staircase matrix. Also if σ has two consecutions or two inversions at i − 1 and i, then
F(Ṽi) = (p′s + 1, ps−1, . . . , p2, p1) and also (p1, p2, . . . , ps−1, p

′
s + 1) = RCISS(σi). If σ has a con-

secution at i− 1 and an inversion at i, or viceversa, then F(Ṽi) = (1, p′s, ps−1, . . . , p2, p1) and also
(p1, p2, . . . , ps−1, p

′
s, 1) = RCISS(σi) (note that in this case p′s = ps). Therefore, the result is true

for Ṽi. The result in the statement follows by taking i = n− 2.
The “converse statement” is also immediate just by looking carefully at Algorithm 3 and the

reader is invited to complete the details. The only point to be remarked is that σ is not determined
only by RCISS(σ). It is needed to also know whether σ has a consecution or an inversion at 0.
Note that if the last flight of A, with length ft, is an horizontal flight, i.e., it corresponds to entries

1More precisely, this order corresponds to list all the flights of A from 1 to t, to remove repeated entries, and to
reverse the order of the obtained list.
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in the same row, then σ has inversions at 0, 1, . . . , ft − 1. On the contrary, if the last flight of A
is a vertical flight, i.e., it corresponds to entries in the same column, then σ has consecutions at
0, 1, . . . , ft − 1.

Given n ordered nonzero numbers x0, x1, . . . , xn−1, Theorem 4.12 establishes a correspondence
between bijections σ : {0, 1, . . . , n− 1} → {1, . . . , n} and staircase matrices A that have as nonzero
entries x0, x1, . . . , xn−1, with x0 being the lower-right entry and xn−1 being the upper-left. Tak-
ing into account the relationship between RCISS(σ) and F(A) in Theorem 4.12, Definition 4.13
introduces, from two different but equivalent perspectives, the list that will allow us to determine
the rank of a staircase matrix in Theorem 4.16.

Definition 4.13. (a) Let σ : {0, 1, . . . , n − 1} → {1, 2, . . . , n} with n ≥ 2 be a bijection and
let RCISS(σ) = (p1, p2, . . . , pt) be the reduced consecution-inversion structure sequence of σ.
Let s := (pt−1, . . . , p2). Then, the rank-determining list of σ, denoted by L(σ), is L(s), that
is, the list of positive lengths of the strings of ones of s introduced in Definition 4.10. If
RCISS(σ) has 1 or 2 entries, then s is empty and we set L(σ) := (0).

(b) Let A be a staircase matrix and let F(A) = (f1, f2, . . . , ft) be its flight-length sequence. Let
s := (f2, . . . , ft−1). Then, the rank-determining list of A, denoted by L(A), is L(s), that is,
the list of positive lengths of the strings of ones of s introduced in Definition 4.10. If F(A)
has 1 or 2 entries, then s is empty and we set L(A) := (0).

Observe that L(σ) has been defined without any reference to staircase matrices. It depends

only on the bijection σ. However, if Ṽσ is any staircase matrix constructed by Algorithm 3 for this
bijection, then L(σ) = L(Ṽσ), as a consequence of Theorem 4.12. Also, given any staircase matrix
A, Theorem 4.12 guarantees that there exists a bijection σ such that L(A) = L(σ). Therefore we
will use the notation L(σ) or L(A) depending on which is more convenient for the specific result
we are considering. We illustrate these concepts in Example 4.14.

Example 4.14. The staircase matrix A in Example 4.3 has F(A) = (2, 1, 1, 1, 2, 3, 2) as flight-
length sequence. Then A can be constructed by Algorithm 3 via a bijection σ : {0, 1, . . . , 12} →
{1, . . . , 13} with RCISS(σ) = (2, 3, 2, 1, 1, 1, 2). Note that the first two entries of CISS(σ) are c0 = 0
and i0 = 2, since the last flight of A corresponds to entries in the same row. Moreover, we have
L(A) = L(σ) = (3).

Theorem 4.16 is the key result of this section. It gives the simple formula (4.4) for the rank of any
staircase matrix in terms of its flight-length sequence. The formula (4.4) shows that to determine
the rank of a staircase matrix is not completely trivial. The idea of the proof is to perform Gaussian
Elimination by rows and columns starting from the upper-left corner. We illustrate this procedure
in a simple case in Example 4.15, and then we state Theorem 4.16.

Example 4.15. By Gaussian elimination, it is easy to determine the rank of any staircase matrix.
Consider the matrix A in Example 4.3. Using elementary row and column replacement operations
starting from the upper-left entry, we can transform the matrix A into

A =

⎡⎢⎢⎢⎢⎢⎢⎣
× × ×

× ×
× × ×

×
×
× × ×

⎤⎥⎥⎥⎥⎥⎥⎦ ∼
⎡⎢⎢⎢⎢⎢⎢⎣
× 0 0

× 0
× 0 0

×
0
0 × 0

⎤⎥⎥⎥⎥⎥⎥⎦ .

Hence rankA = 5. As can be seen in Theorem 4.16, the rank of a staircase matrix A can be
obtained from the number of flights of A and the sequence L(A). It is important to notice the role
played by those flights of length 1 different from the first and the last flights.
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In the rest of this chapter, given a real number x, we will use the standard notation �x� for the
smallest integer which is greater than or equal to x.

Theorem 4.16. Let A ∈ Cm×p be a staircase matrix, let F(A) = (f1, f2, . . . , ft) be the flight-
length sequence of A, and let L(A) = (l1, l2, . . . , lq) be the rank-determining list of A. Then the
rank of A is equal to

rankA = t−
q∑

j=1

⌈
lj
2

⌉
. (4.4)

Proof. The proof proceeds by induction on the number of flights t. For t = 1, the result is obviously
true because all staircase matrices with only one flight have rankA = 1 and L(A) = (0), so

t−
q∑

j=1

⌈
lj
2

⌉
= 1 = rankA.

By a similar argument the result is also true for t = 2, since in this case rankA = 2 and L(A) = (0).
Now, let us assume that the result is true for any staircase matrix with t − 1 ≥ 2 flights. Let A
and Â be staircase matrices with F(A) = (f1, f2, . . . , ft) and F(Â) = (f1, f2, . . . , ft−1) and such

that A is obtained from Â by adding one flight with length ft. Note that A and Â have different
sizes. We distinguish two cases.

Case 1: ft−1 
= 1. In fact, according to Definition 4.9 this means ft−1 > 1. In this case,

L(A) = L(Â) = (l1, l2, . . . , lq). The reason is that L(A) is determined by the strings of ones in

(f2, . . . , ft−1), while L(Â) is determined by the strings of ones in (f2, . . . , ft−2), and in both cases
the strings of ones are the same.

In addition, rankA = 1 + rank Â. To see this, assume without loss of generality that the last
flight of A has all its entries in the same row (otherwise we transpose the matrix, which preserves

the rank and the flight-length sequence). Therefore, A has more columns than Â and the same

number of rows, i.e., A ∈ Cm×p and Â ∈ Cm×� with � < p, and the last flight of Â has all its
entries in the same column. This and the fact ft−1 > 1 mean that the last two rows of A are

A(m− 1 : m, :) =

[
0 · · · 0 × 0 . . . 0
0 · · · 0 × × . . . ×

]
∼
[

0 · · · 0 × 0 . . . 0
0 · · · 0 0 × . . . ×

]
=A′(m− 1 : m, :),

(4.5)

where the symbol × denotes nonzero entries, the vertical line separates Â from those columns of A
that are not columns of Â, and we have performed an elementary row replacement operation to get
A′. Since A(1 : m−1, �+1 : p) = 0, (4.5) implies that rankA = rankA′ = 1+rank Â′ = 1+rank Â.

The above equalities L(A) = L(Â) and rankA = 1 + rank Â, and the induction hypothesis
imply

rankA = rank Â+ 1 = t− 1−
q∑

j=1

⌈
lj
2

⌉
+ 1 = t−

q∑
j=1

⌈
lj
2

⌉
,

which proves the result for A in Case 1.

Case 2: ft−1 = 1. In this case L(A) = (l1, l2, . . . , lq) with lq ≥ 1, and we need to distinguish
two subcases: lq even and lq odd.

Case 2.1: lq = 2k, with k > 0 an integer. In this case lq > 1 and L(Â) = (l1, l2, . . . , lq−1, lq−1).
Definition 4.13 and lq = 2k imply

ft−2k = ft−(2k−1) = · · · = ft−1 = 1, with t− 2k ≥ 2, and ft−2k−1 > 1 if t− 2k > 2. (4.6)
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Assume, as in Case 1, that the last flight of A has all its entries in the same row, which implies
that A ∈ Cm×p and Â ∈ Cm×� with � < p, and also that the last flight of Â has its two entries in
the same column. This and (4.6) imply that if t− 2k > 2

A(m− k − 1 : m, :) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 × 0 . . . 0
...

... × × ...
...

...
... × × ...

...
...

...
. . .

. . .
...

...
...

... × × 0 . . . 0
0 · · · 0 × × . . . ×

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4.7)

where the vertical line separates Â from those columns of A that are not columns of Â. If we
perform elementary row replacement operations in A(m−k− 1 : m, :) starting from the top we get

A(m− k − 1 : m, :) ∼

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 × 0 . . . 0
...

... 0 × ...
...

...
... 0 × ...

...
...

...
. . .

. . .
...

...
...

... 0 × 0 . . . 0
0 · · · 0 0 × . . . ×

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4.8)

which implies

rankA = 1 + rank Â. (4.9)

If t− 2k = 2, then A(m−k− 1 : m, :) is as in (4.7) but removing all the left-most columns of zeros.
So we also get (4.9).

The equalities L(Â) = (l1, l2, . . . , lq−1, lq − 1), (4.9), and the induction hypothesis imply

rankA = rank Â+ 1 = t− 1−
q−1∑
j=1

⌈
lj
2

⌉
−
⌈
2k − 1

2

⌉
+ 1 = t−

q−1∑
j=1

⌈
lj
2

⌉
−
⌈
2k

2

⌉
= t−

q∑
j=1

⌈
lj
2

⌉
,

which proves the result for A in Case 2.1.

Case 2.2: lq = 2k+1, with k ≥ 0 an integer. The proof is similar to the one of Case 2.1, so we
only emphasize the main differences and omit the details. To begin with, in this case

L(Â) =

{
(l1, l2, . . . , lq−1, lq − 1), if lq > 1,
(l1, l2, . . . , lq−1), if lq = 1.

,

and one has to distinguish the cases lq > 1 and lq = 1. In both of them, it is satisfied that

rankA = rank Â. (4.10)
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This follows because in this case the structure of A is

A(m− k − 2 : m, :) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

· · · · · · 0 0 . . . 0
· · · · · · × × 0 . . . 0

0 0 × × ...
...

...
... × × ...

...
...

...
. . .

. . .
...

...
...

... × × 0 . . . 0
0 · · · 0 × × . . . ×

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4.11)

and elementary column replacement operations starting from the left-most × entry shown in (4.11)
allows us to make zeros all the entries to the right of the vertical line.

The equalities L(Â) = (l1, l2, . . . , lq−1, lq − 1) (if lq > 1), (4.10), and the induction hypothesis
imply

rankA = rank Â = t− 1−
q−1∑
j=1

⌈
lj
2

⌉
−
⌈
2k

2

⌉
= t−

q−1∑
j=1

⌈
lj
2

⌉
− (k + 1) =

= t−
q−1∑
j=1

⌈
lj
2

⌉
−
⌈
2k + 1

2

⌉
= t−

q∑
j=1

⌈
lj
2

⌉
,

which proves the result for A in Case 2.2. Observe that the case lq = 1 follows by taking k = 0 in
the equation above.

Theorem 4.16 shows, in particular, that the rank of a staircase matrix is not an increasing
function of the number of flights, as it might be thought at a first glance, since intermediate flights
of length 1 also affects the rank. Example 4.17 illustrates this fact.

Example 4.17. Consider the following staircase matrices A and B

A =

⎡⎢⎢⎣
× × ×

×
×
×

⎤⎥⎥⎦ and B =

[× × ×
× × ×

]
.

A and B have both 6 nonzero entries, A has 2 flights, B has 3 flights, and rankA = rankB = 2.
Next consider the staircase matrices

C =

⎡⎢⎢⎢⎢⎣
×
× ×

× ×
×
× × ×

⎤⎥⎥⎥⎥⎦ and D =

⎡⎢⎢⎢⎢⎣
×
× × ×

×
× × ×

×

⎤⎥⎥⎥⎥⎦ .
C and D have both 9 nonzero entries, C has 6 flights, and D has 5 flights. In addition, rankC = 4
and rankD = 5, that is, the matrix with less flights have larger rank.

Next, we bound the rank of a generalized staircase matrix B. Since B is constructed by
turning some nonzero entries of a staircase matrix A into zero entries, it seems that rankB has to
be smaller than or equal to rankA. This is true, as we will see in Theorem 4.19, but a rigorous
proof of this fact requires some work, since for general matrices the operation of turning a nonzero
entry into zero may increase the rank. For instance, in MATLAB notation, rank [1, 1; 1, 1] = 1 and
rank [1, 0; 1, 1] = 2. The proof of Theorem 4.19 relies on Lemma 4.18.
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Lemma 4.18. If B ∈ Cm×p is a generalized staircase matrix, 1 ≤ i1 < i2 < · · · < id ≤ m, and
1 ≤ j1 < j2 < · · · < jd ≤ p, then

detB({i1, i2, . . . , id} , {j1, j2, . . . , jd}) = bi1,j1 bi2,j2 · · · bid,jd ,

where B({i1, i2, . . . , id} , {j1, j2, . . . , jd}) is the submatrix of B that lies in the rows indexed by
{i1, i2, . . . , id} and in the columns indexed by {j1, j2, . . . , jd}.
Proof. The proof is by induction on d. For d = 1 the result is trivial. Let us assume that the result
is true for d − 1 ≥ 1, and let us prove it for d. Consider that the matrix B is constructed from a
staircase matrix A such that (1) ai1,k 
= 0, if c1 ≤ k ≤ c′1, and (2) ai1,k = 0, if 1 ≤ k ≤ c1 − 1 or
c′1 + 1 ≤ k ≤ p. We split the proof in two cases.

Case 1: 1 ≤ j1 ≤ c′1 − 1. In this case the definition of generalized staircase matrix implies that
all entries in the column j1 of B below the row i1 are equal to zero. Then the Laplace expansion
of detB({i1, i2, . . . , id} , {j1, j2, . . . , jd}) along the first column gives

detB({i1, i2, . . . , id} , {j1, j2, . . . , jd}) = bi1,j1 detB({i2, . . . , id} , {j2, . . . , jd}) =
= bi1,j1 bi2,j2 · · · bid,jd ,

(4.12)

where the last equality follows from the induction hypothesis.
Case 2: c′1 ≤ j1 ≤ p. In this case the definition of generalized staircase matrix implies that

all entries in the row i1 of B to the right of the column j1 are equal to zero. Then the Laplace
expansion of detB({i1, i2, . . . , id} , {j1, j2, . . . , jd}) along the first row gives again (4.12).

Theorem 4.19. Let A ∈ Cm×p be a staircase matrix, let F(A) = (f1, f2, . . . , ft) be the flight-
length sequence of A, and let L(A) = (l1, l2, . . . , lq) be the rank-determining list of A. If B ∈ Cm×p

is any generalized staircase matrix that is obtained by turning some nonzero entries of A into zero
entries, then

rankB ≤ t−
q∑

j=1

⌈
lj
2

⌉
. (4.13)

Proof. Lemma 4.18 and the definition of generalized staircase matrix imply that if a minor of B
is nonzero, then the same minor of A is nonzero. So rankB ≤ rankA and the result follows from
Theorem 4.16.

Recall that we used Algorithm 3 in Theorem 4.12 to construct a staircase matrix Ṽσ via a
bijection σ. It is clear that if we allow zero numbers among the inputs x0, x1, . . . , xn−1, then
Algorithm 3 constructs a generalized staircase matrix coming from turning some nonzero entries
of Ṽσ into zero. In addition, according to Definition 4.13 and the discussion in the paragraph just
after it, L(σ) = L(Ṽσ). Therefore, Corollary 4.20 follows immediately from Theorem 4.19. Here
we associate to a bijection σ the magnitude rσ that will be often used in Section 4.2.

Corollary 4.20. Let x0, x1, . . . , xn−1 be n ≥ 2 complex numbers not necessarily different from
zero, and let σ : {0, 1, . . . , n − 1} → {1, . . . , n} be a bijection. Let L(σ) = (l1, l2, . . . , lq) be the

rank-determining list of σ introduced in Definition 4.13, and let Ṽσ be the matrix constructed by
Algorithm 3. Let t be the number of entries of RCISS(σ). Then

rank Ṽσ ≤ rσ , where rσ := t−
q∑

j=1

⌈
lj
2

⌉
. (4.14)

Moreover, if xk 
= 0 for all k = 0, 1, . . . , n− 1, then rank Ṽσ = rσ.
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4.1.1 Maximal rank of staircase matrices with a fixed number of nonzero

entries

Theorem 4.16 provides a formula for the rank of a staircase matrix A depending on the number
of flights and the rank-determining list of A. In this section, once the number of nonzero entries
if fixed, we consider the problem of identifying those staircase matrices that have maximal rank.
This problem is solved in Theorem 4.22. To get this result, we first prove Lemma 4.21, where
we give an upper bound for the rank depending only on the number of nonzero entries, and we
provide a necessary condition and a (different) sufficient condition for this bound to be attained.
For a given real number x we use the standard notation �x� to denote the largest integer which is
smaller than or equal to x.

Lemma 4.21. Let A be a staircase matrix with n ≥ 2 nonzero entries, and let F(A) = (f1, . . . , ft)
be the flight-length sequence of A. Then

(a) rankA ≤
⌊
n+ 1

2

⌋
.

(b) If fi = 1 for all i = 1, . . . , t, then rankA =

⌊
n+ 1

2

⌋
.

(c) If rankA =

⌊
n+ 1

2

⌋
, then fi ≤ 2 for all i = 1, . . . , t.

Proof. (a) Let dc(A) and dr(A) denote the number of columns and rows of A, respectively. Since
A is a staircase matrix, we have dc(A) + dr(A) = n + 1 (this follows easily from Algorithm 3).
Hence, the result follows from the inequalities rankA ≤ min{dc(A), dr(A)} ≤ n+1

2 .

(b) Following the notation of Theorem 4.16, for a staircase matrix A in the conditions of the
statement we have t = n− 1 and L(A) = (n− 3), so (4.4) gives rankA = n− 1− ⌈n−3

2

⌉
=
⌊
n+1
2

⌋
.

(c) We proceed by contradiction. Let 1 ≤ i0 ≤ t be such that fi0 ≥ 3. We will construct a

staircase matrix Â with exactly n nonzero entries and with rank Â = rankA + 1. Using (a) this

immediately implies that rankA <
⌊
n+1
2

⌋
, which contradicts the hypothesis. Let Â be a staircase

matrix such that

F(Â) = (f1, . . . , fi0−1, si0 , ui0 , vi0 , fi0+1, . . . , ft),

where ui0 = 1 and si0 , vi0 are positive integers such that si0 +ui0 + vi0 = fi0 , and Â is constructed

by creating 3 flights from the i0th flight of A. This matrix Â always exists, since fi0 ≥ 3. It is

obvious that Â has n nonzero entries. Now, let us prove that rank Â = rankA + 1. For this, we
assume without loss of generality that the i0th flight of A has all its entries in the same row, we use
Gaussian elimination by rows and columns starting from the (1, 1) entry on A and Â, and consider
the following two cases:

• If the first (leftmost) entry of the i0th flight of A (equivalently of Â) is a pivot, then the i0th,

the (i0 + 1)th, and the (i0 + 2)th flights of Â follow the pattern

× · · · × ×
× × · · · × ,

where × denote pivot entries. The remaining flights of Â have exactly the same structure

as the flights of A (all but the i0th one). As a consequence, Â has one more pivot than A.
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• If the first (leftmost) entry of the i0th flight of A is not a pivot, then the i0th, the (i0 +1)th,

and the (i0 + 2)th flights of Â follow the pattern

× × · · · ×
× × · · · × ,

if si0 ≥ 2, or

× ×
× × × · · · × ,

if si0 = 1. Again, the remaining flights of Â have the same structure as the ones of A (all

but the i0th one), so Â has one more pivot than A.

Part (b) of Lemma 4.21 provides a particular type of staircase matrices where the maximum
rank, given in part (a), is attained. This type corresponds to staircase matrices having only flights
of length 1. It is natural to ask whether or not there are other staircase matrices for which this
maximum rank is attained. The answer is given in Theorem 4.22, where we provide necessary and
sufficient conditions for a staircase matrix A to be of maximal rank, and we prove that this may
happen for matrices with flights of lengths larger than 1.

Theorem 4.22. Let A be a staircase matrix with n ≥ 2 nonzero entries. Let F(A) = (f1, . . . , ft)
be the flight-length sequence of A, and let L(A) = (l1, . . . , lq) be the rank-determining list of A. Let
α be the number of ones in {f1, ft}. Then rankA =

⌊
n+1
2

⌋
if and only if fi ≤ 2 for all i = 1, . . . , t

and one of the following sets of conditions hold:

(a) n is odd, α = 2, and li is even for all i = 1, . . . , q;

(b1) n is even, α = 1, and li is even for all i = 1, . . . , q; or

(b2) n is even, α = 2, and there is exactly one odd element among the elements of L(A).
Proof. We will assume from the beginning that fi ≤ 2 for all i as a consequence of Lemma 4.21-(c).
With this assumption, set n1 (resp. n2) for the number of flights of length 1 (resp. 2) of A. Then,
following the notation in the statement, we have

n1 =

q∑
i=1

li + α , t = n1 + n2 , and n = n1 + 2n2 + 1 .

Hence,

n = 2t−
(

q∑
i=1

li + α

)
+ 1. (4.15)

Now, we distinguish the cases n odd and n even.

(a) Let n be odd. Then rankA = �(n+ 1)/2� = (n+ 1)/2 if and only if

n+ 1

2
= t−

q∑
i=1

⌈
li
2

⌉
,

by Theorem 4.16. By (4.15), this is equivalent to

q∑
i=1

li
2
=

q∑
i=1

⌈
li
2

⌉
+ 1− α

2
. (4.16)
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If α = 0 or α = 1, then (4.16) is not possible, since

q∑
i=1

li
2
<

q∑
i=1

⌈
li
2

⌉
+

1

2
.

Then α = 2, and (4.16) holds if and only if li is even for all i = 1, . . . , q.

(b) Let n be even. Then rankA = �(n+ 1)/2� = n/2 if and only if

n

2
= t−

q∑
i=1

⌈
li
2

⌉
,

by Theorem 4.16. Using (4.15) again, this is equivalent to

q∑
i=1

li
2
=

q∑
i=1

⌈
li
2

⌉
+

1

2
− α

2
. (4.17)

Again, if α = 0, then (4.17) does not hold. If α = 1, then (4.17) holds if and only if li is even
for all i = 1, . . . , q. Finally, if α = 2, then (4.17) holds if and only if one, and exactly one,
among the numbers l1, . . . , lq is odd.

Example 4.23 illustrates with staircase matrices having some flights with lengths larger than 1
the three situations presented in Theorem 4.22, where the maximal rank is attained.

Example 4.23. (a) Let A be the following staircase matrix with 11 nonzero entries, which is
equivalent to B through elementary row and column replacement operations.

A =

⎡⎢⎢⎢⎢⎢⎢⎣
× ×

×
× × ×

×
× × ×

×

⎤⎥⎥⎥⎥⎥⎥⎦ ∼
⎡⎢⎢⎢⎢⎢⎢⎣
× 0

×
0 × 0

×
0 × 0

×

⎤⎥⎥⎥⎥⎥⎥⎦ = B.

The matrix A has rank A = 6 = (11 + 1)/2, F(A) = (1, 2, 2, 2, 2, 1), α = 2, and L(A) = (0),
so we are in case (a) of Theorem 4.22.

(b1) Now, let A be the following staircase matrix with 12 nonzero entries

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

× ×
×
× × ×

×
× × ×

×
×

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
∼

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

× 0
×
0 × 0

×
0 × 0

×
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= B.

Then rank (A) = 6 = 12/2 = �(12 + 1)/2�, F(A) = (1, 2, 2, 2, 2, 2), α = 1, and L(A) = (0),
so we are in case (b1) of Theorem 4.22.
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(b2) In the last example, the staircase matrix A has 8 nonzero entries.

A =

⎡⎢⎢⎣
×
× × ×

× × ×
×

⎤⎥⎥⎦ ∼
⎡⎢⎢⎣
×
0 × 0

× 0 0
×

⎤⎥⎥⎦ = B.

We have rank A = 4 = 8/2 = �(8 + 1)/2�, F(A) = (1, 2, 1, 2, 1), α = 2, and L(A) = (1), so
we are in case (b2) of Theorem 4.22.

Notice that if the staircase matrix A is of maximal rank equal to
⌊
n+1
2

⌋
, then α = 0 cannot

occur. The maximum rank
⌊
n+1
2

⌋
considered in Theorem 4.22 is related to Theorem 4.27 in next

section. We will explain there this relationship.

4.2 Singular values of Fiedler matrices

Our first result in this section is Theorem 4.24, which proves that any Fiedler matrix Mσ can be
written as Uσ + Vσ, where Uσ is a permutation matrix (and so unitary) and Vσ is a matrix such
that after removing all its zero rows and columns becomes a staircase matrix. This property will
allow us to bound the rank of Vσ via Corollary 4.20.

Theorem 4.24. Let p(z) = zn +
∑n−1

k=0 akz
k be a monic polynomial of degree n ≥ 2, let σ :

{0, 1, . . . , n− 1} → {1, . . . , n} be a bijection, and consider the following algorithm:

Algorithm 4. Given p(z) = zn+
∑n−1

k=0 akz
k and a bijection σ, the following algorithm

constructs a pair of n× n matrices Uσ and Vσ.

If σ has a consecution at 0 then

U0 =

[
0 1
1 0

]
; V0 =

[ −a1 0
−a0 − 1 0

]
else

U0 =

[
0 1
1 0

]
; V0 =

[−a1 −a0 − 1
0 0

]
endif
for i = 1 : n− 2

if σ has a consecution at i then

Ui =

[
0 1 0

Ui−1(:, 1) 0 Ui−1(:, 2 : i+ 1)

]
; Vi =

[ −ai+1 0 0
Vi−1(:, 1) 0 Vi−1(:, 2 : i+ 1)

]
else

Ui =

⎡⎣0 Ui−1(1, :)
1 0
0 Ui−1(2 : i+ 1, :)

⎤⎦ ; Vi =

⎡⎣−ai+1 Vi−1(1, :)
0 0
0 Vi−1(2 : i+ 1, :)

⎤⎦
endif

endfor
Uσ = Un−2

Vσ = Vn−2

Then the following statements hold.

(a) If Mσ is the Fiedler matrix of p(z) associated with σ, then,

Mσ = Uσ + Vσ . (4.18)

(b) Uσ is a permutation matrix and, therefore, it is a unitary matrix.
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(c) If all the zero rows and columns of Vσ are removed, then the resulting matrix is the gener-

alized staircase matrix Ṽσ constructed by Algorithm 3 for the inputs x0 = −a0 − 1, x1 =
−a1, . . . , xn−1 = −an−1 and σ.

(d) Let L(σ) = (l1, l2, . . . , lq) be the rank-determining list of σ introduced in Definition 4.13, and
let t be the number of entries of RCISS(σ). Then

rankVσ ≤ rσ ≤
⌊
n+ 1

2

⌋
, where rσ := t−

q∑
j=1

⌈
lj
2

⌉
. (4.19)

Moreover, if a0 + 1 
= 0 and ai 
= 0 for all i = 1, . . . , n− 1, then rankVσ = rσ.

Proof. Part (a). If we compare Algorithms 1 in Theorem 2.16 and 4, then we see that W0 =
U0 + V0. The proof is an induction on Wi, Ui, and Vi. Assume that Wi−1 = Ui−1 + Vi−1 for some
i−1 ≥ 0. Then the structures of Algorithms 1 and 4 make obvious that Wi = Ui+Vi. The result
follows by taking i = n− 2.

Part (b). Again the proof is by induction on Ui. By definition U0 is a 2×2 permutation matrix.
Assume that Ui−1 for some i− 1 ≥ 0 is a (i + 1)× (i+ 1) permutation matrix. Then, Algorithm
4 implies that Ui is a (i+ 2)× (i+2) permutation matrix. The result follows by taking i = n− 2.

Part (c). We perform an induction on the matrices Vi and Ṽi constructed by Algorithms 4

and 3, respectively. It is trivial to see that if we remove all zero rows and columns of V0, then we
obtain Ṽ0. Let us assume that the same is true for Vi−1 and Ṽi−1 for some i − 1 ≥ 0, and let us

prove the result for Vi and Ṽi. For this purpose note that the first row and the first column of all
matrices in the sequence {V0, V1, . . . , Vn−2} are not identically zero. Therefore, neither the first

row nor the first column of Vi−1 are removed to get Ṽi−1. With this property in mind, it is clear

from Algorithms 4 and 3 that if we remove all zero rows and columns of Vi, then we get Ṽi. The
result follows by taking i = n− 2.

Part (d). Since removing zero rows and columns does not change the rank, we get rankVσ =

rank Ṽσ, and the result is a direct consequence of Corollary 4.20 and Lemma 4.21.

Parts (a) and (d) of Theorem 4.24 imply, in particular, that any Fiedler matrix Mσ associated
with a bijection σ having a low number (compared to n) of entries in RCISS(σ) can be decomposed
as a sum of a unitary matrix Uσ plus a low-rank matrix Vσ. The relationship between the rank of
Vσ and the number of singular values of Mσ equal to 1 is established in Lemma 4.25, which is valid
for matrices much more general than Fiedler matrices. In addition, Lemma 4.25 will allow us to
reduce the computation of those singular values of Mσ that are not equal to 1, to the computation
of the eigenvalues of a matrix whose size may be much smaller than n.

Lemma 4.25. Let A = U + LR ∈ Cn×n, where U ∈ Cn×n is a unitary matrix, L ∈ Cn×r, and
R ∈ Cr×n. If 2r < n, then A has at least n − 2r singular values equal to 1, and the other 2r
singular values are the square roots of the eigenvalues of the matrix

H = I +

[
R

L∗U

] [
U∗L+R∗L∗L R∗

] ∈ C
2r×2r. (4.20)

Proof. The singular values of A = U + LR are the square roots of the eigenvalues of A∗A. In the
conditions of the statement,

A∗A = (U + LR)∗(U + LR) = U∗U +R∗L∗U + U∗LR+R∗L∗LR

= I +
[
U∗L+R∗L∗L R∗

] [ R
L∗U

]
=: I + L̃R̃,
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where L̃ ∈ Cn×2r and R̃ ∈ C2r×n. Therefore rank (L̃R̃) ≤ 2r. Now, recall that the eigenvalues

of R̃L̃ ∈ C2r×2r, together with an additional n− 2r eigenvalues equal to 0, are the eigenvalues of
L̃R̃ ∈ Cn×n [87, Theorem 1.3.20]. Hence, the eigenvalues of H = I + R̃L̃ ∈ C2r×2r together with

an additional n − 2r eigenvalues equal to 1 are the eigenvalues of A∗A = I + L̃R̃ ∈ Cn×n. These
are, precisely, the squares of the singular values of A.

The application of Lemma 4.25 to a Fiedler matrix Mσ requires to factorize the matrix Vσ in
(4.18) as Vσ = LσRσ, where Lσ ∈ Cn×rσ , Rσ ∈ Crσ×n, and rσ was defined in (4.19). This is
done in Lemma 4.26 via Algorithm 5. In this algorithm, submatrices like L(:, 2 : 1) or R(2 : 1, :)
indicate empty matrices.

Lemma 4.26. Let p(z) = zn +
∑n−1

k=0 akz
k be a monic polynomial of degree n ≥ 2, let σ :

{0, 1, . . . , n − 1} → {1, . . . , n} be a bijection, let Vσ be the matrix constructed by Algorithm 4,
and let rσ be the number defined in (4.19). Consider the following algorithm:

Algorithm 5. Given p(z) = zn+
∑n−1

k=0 akz
k and a bijection σ, the following algorithm

constructs a pair of matrices Lσ and Rσ.

if σ has a consecution at 0 then

L−1 =
[−a0 − 1

]
; R−1 =

[
1
]
; L0 =

[ −a1
−a0 − 1

]
; R0 =

[
1 0

]
else

L−1 =
[
1
]
; R−1 =

[−a0 − 1
]
; L0 =

[
1
0

]
; R0 =

[−a1 −a0 − 1
]

endif
for i = 1 : n− 2

if σ has an inversion at i− 1 and a consecution at i then

Li =

⎡⎢⎢⎣
−ai+1 0
−ai Li−2(1, :)
0 0
0 Li−2(2 : i, :)

⎤⎥⎥⎦; Ri =

[
1 0 0
0 0 Ri−2

]
elseif σ has a consecution at i− 1 and an inversion at i then

Li =

⎡⎣1 0
0 0
0 Li−2

⎤⎦; Ri =

[−ai+1 −ai 0 0
0 Ri−2(:, 1) 0 Ri−2(:, 2 : i)

]
elseif σ has consecutions at i − 1 and i then

Li =

[ −ai+1 0
Li−1(:, 1) Li−1(:, 2 : end)

]
; Ri =

[
Ri−1(:, 1) 0 Ri−1(:, 2 : i+ 1)

]
elseif σ has inversions at i− 1 and i then

Li =

⎡⎣ Li−1(1, :)
0

Li−1(2 : i+ 1, :)

⎤⎦; Ri =

[−ai+1 Ri−1(1, :)
0 Ri−1(2 : end, :)

]
endif

endfor
Lσ = Ln−2

Rσ = Rn−2

Then Vσ = LσRσ, with Lσ ∈ Cn×rσ and Rσ ∈ Crσ×n. In addition, if a0 +1 
= 0 and ai 
= 0 for all
i = 1, . . . , n− 1, then rankVσ = rankLσ = rankRσ = rσ.

Proof. We prove first Vσ = LσRσ. To this purpose, let {V0, V1, . . . , Vn−2} (recall Vn−2 = Vσ) be
the sequence of matrices constructed by Algorithm 4. In addition, we define V−1 := −a0− 1. We
will also consider the sequences {L−1, L0, L1, . . . , Ln−2} and {R−1, R0, R1, . . . , Rn−2} of matrices
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constructed by Algorithm 5. The proof consists of proving by induction that Vi = LiRi for
i = −1, 0, 1, . . . , n− 2 (so, the result follows by taking i = n− 2). It is obvious that V−1 = L−1R−1

and V0 = L0R0. With a little bit more of effort, it is also straightforward to show via a direct
computation that V1 = L1R1 holds. Let us assume that Vj = LjRj for all j = −1, 0, 1, . . . , i − 1,
with i−1 ≥ 1, and let us prove Vi = LiRi. In the first place, it follows immediately from Algorithm

5 and the induction hypothesis that the sizes of Li and Ri allow us to multiply them. Next, we
have two distinguish the four cases that appear in Algorithm 5:

(a) If σ has an inversion at i− 1 and a consecution at i, then Algorithm 5 implies that

LiRi =

⎡⎢⎢⎣
−ai+1 0
−ai Li−2(1, :)
0 0
0 Li−2(2 : i, :)

⎤⎥⎥⎦[1 0 0
0 0 Ri−2

]
=

⎡⎢⎢⎣
−ai+1 0 0
−ai 0 Li−2(1, :)Ri−2

0 0 0
0 0 Li−2(2 : i, :)Ri−2

⎤⎥⎥⎦ .
By the induction hypothesis Li−2Ri−2 = Vi−2, so

LiRi =

⎡⎢⎢⎣
−ai+1 0 0
−ai 0 Vi−2(1, :)
0 0 0
0 0 Vi−2(2 : i, :)

⎤⎥⎥⎦ . (4.21)

On the other hand, if σ has an inversion at i− 1 and a consecution at i, then Algorithm 4

implies

Vi−1 =

⎡⎣−ai Vi−2(1, :)
0 0
0 Vi−2(2 : i, :)

⎤⎦ and Vi =

⎡⎢⎢⎣
−ai+1 0 0
−ai 0 Vi−2(1, :)
0 0 0
0 0 Vi−2(2 : i, :)

⎤⎥⎥⎦ . (4.22)

Therefore, (4.21) and (4.22) imply that Vi = LiRi.

(b) If σ has a consecution at i − 1 and an inversion at i, then the proof is similar to the one of
Case (a) and is omitted.

(c) If σ has consecutions at i− 1 and i, then Algorithm 4 implies that

Vi =

[ −ai+1 0 0
Vi−1(:, 1) 0 Vi−1(:, 2 : i + 1)

]
. (4.23)

Before completing the proof, it is needed to prove the following auxiliary result: if σ has a
consecution at k, for some k = 0, 1, . . . , n− 2, then the matrix Rk constructed by Algorithm

5 satisfies Rk(1, :) =
[
1 0 · · · 0

]
. By definition, R0 = [1, 0], so the result is true

for k = 0. We follow by induction. Assume that Rk−1(1, :) =
[
1 0 · · · 0

]
if σ has

a consecution at k − 1 for some k − 1 ≥ 0, and let us prove the result for k. If σ has a
consecution at k, then we need to consider only two out of the four cases in Algorithm 5:
(1) σ has an inversion at k−1 and a consecution at k; and (2) σ has a consecution at k−1 and
a consecution at k. In Case (1), Rk(1, :) =

[
1 0 · · · 0

]
by construction. In Case (2),

Rk(1, :) =
[
Rk−1(1, 1) 0 Rk−1(1, 2 : k + 1)

]
and the result follows from the induction

assumption.

Next we continue with the proof. If σ has consecutions at i− 1 and i, then Algorithm 5 and
the auxiliary result imply that

LiRi =

[ −ai+1 0
Li−1(:, 1) Li−1(:, 2 : end)

] [
1 0 0

Ri−1(2 : end, 1) 0 Ri−1(2 : end, 2 : i+ 1)

]
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=

[ −ai+1 0 0
Li−1(:, 1) + Li−1(:, 2 : end)Ri−1(2 : end, 1) 0 Li−1(:, 2 : end)Ri−1(2 : end, 2 : i+ 1)

]
=

[ −ai+1 0 0
Vi−1(:, 1) 0 Vi−1(:, 2 : i+ 1)

]
, (4.24)

where the last equality follows from the induction hypothesis Li−1Ri−1 = Vi−1 and the
auxiliary result, which implies Ri−1(1, :) =

[
1 0 · · · 0

]
. Equations (4.23) and (4.24)

imply Vi = LiRi.

(d) If σ has inversions at i − 1 and i, then the proof is similar to the one of Case (c) and is
omitted. We only remark that in this case it is needed to prove the following auxiliary result:
if σ has an inversion at k, for some k = 0, 1, . . . , n − 2, then the matrix Lk constructed by

Algorithm 5 satisfies Lk(:, 1) =
[
1 0 · · · 0

]T
.

Next, we prove that if a0+1 
= 0 and ai 
= 0 for all i = 1, . . . , n−1, then Lσ ∈ Cn×rσ , Rσ ∈ Crσ×n,
and rankVσ = rankLσ = rankRσ = rσ. It is very easy to see by induction that if a0 + 1 
= 0 and
ai 
= 0 for all i = 1, . . . , n−1, then the structure of Algorithm 5 implies that, for i = 0, 1, . . . , n−2,
all matrices Li have full column rank and all matrices Ri have full row rank. In particular, Lσ =
Ln−2 ∈ Cn×r has full column rank and Rσ = Rn−2 ∈ Cr×n has full row rank. Since Vσ = LσRσ

and rankVσ = rσ by Theorem 4.24-(d), we get that r = rσ and rankLσ = rankRσ = rσ.

Finally, observe that the sizes of the matrices Lσ ∈ Cn×r and Rσ ∈ Cr×n depend only on σ
and n and not on the specific values of the coefficients a0, a1, . . . , an−1 of p(z). Therefore the sizes
of Lσ and Rσ are always Lσ ∈ Cn×rσ and Rσ ∈ Crσ×n.

Finally, as a direct corollary of Theorem 4.24, Lemma 4.25, and Lemma 4.26, we state Theorem
4.27, which is our concluding result on singular values of Fiedler matrices. For completeness, we
include again in the statement all notions involved.

Theorem 4.27. Let p(z) = zn +
∑n−1

k=0 akz
k be a monic polynomial of degree n ≥ 2, let σ :

{0, 1, . . . , n − 1} → {1, . . . , n} be a bijection, let Mσ be the Fiedler matrix of p(z) associated with
σ, let L(σ) = (l1, l2, . . . , lq) be the rank-determining list of σ introduced in Definition 4.13, and let
t be the number of entries of RCISS(σ). Let us define

rσ := t−
q∑

j=1

⌈
lj
2

⌉
,

which depends only on σ and not on p(z). If 2rσ < n, then the following statements hold.

(a) Mσ has at least n− 2rσ singular values equal to 1.

(b) The remaining 2rσ singular values of Mσ are the square roots of the eigenvalues of the
following 2rσ × 2rσ matrix

Hσ(p) = I +

[
Rσ

L∗
σUσ

] [
U∗
σLσ +R∗

σL
∗
σLσ R∗

σ

] ∈ C
2rσ×2rσ , (4.25)

where Uσ ∈ Cn×n is the permutation matrix constructed by Algorithm 4, and Lσ ∈ Cn×rσ

and Rσ ∈ Crσ×n are the matrices constructed by Algorithm 5.

Proof. We combine equation (4.18) with Vσ = LσRσ, from Lemma 4.26, to obtain Mσ = Uσ +
LσRσ. Then, apply Lemma 4.25 and get the result.
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Note that if the parameter t is small (t � n), then rσ is also small, since rσ ≤ t, which
implies that Mσ has many singular values equal to 1 and that the matrix Hσ(p) has a small size.
Unfortunately, the potential small size of Hσ(p) does not allow us to find explicit formulas for its
eigenvalues (as it is illustrated in Example 4.29). This is only possible for Frobenius companion
matrices because in this case Hσ(p) is 2 × 2. We use in Example 4.28 the approach of Theorem
4.27 to recover the formulas (1.29) of the singular values of Frobenius companion matrices.

From Theorem 4.24-(d), we have rσ ≤ �(n+ 1)/2�. In addition, observe that all Fiedler matrices
for which rσ < �(n+ 1)/2�, satisfy 2rσ < n and, so, have at least one singular value equal to 1.
For those Fiedler matrices with rσ = �(n+ 1)/2� Theorem 4.27 does not apply and they do not
have any guaranteed singular value equal to 1. These matrices are characterized as those such that
the staircase matrix Ṽσ in Theorem 4.24-(c) satisfies Theorem 4.22 (recall that L(σ) = L(Ṽσ) and

that the number of entries of RCISS(σ) and F(Ṽσ) are equal). In particular, Theorem 4.27 does
not apply to some (but not all) of the pentadiagonal Fiedler matrices introduced in (2.7). We will
illustrate this fact in Example 4.30.

Example 4.28. We apply here Theorem 4.27 to the first Frobenius companion matrix C1. From
Section 2.2, we know that C1 corresponds to a bijection μ1 with only inversions and with RCISS(μ1)
= (n − 1). Therefore, in this case, t = 1 and L(μ1) = (0), which implies rμ1

= 1 and that C1

has at least n − 2 singular values equal to 1. To determine the remaining 2 singular values,
we use Algorithm 4 to construct Uμ1

and Algorithm 5 to construct Lμ1
and Rμ1

and we get
that Uμ1

is the first summand in the right-hand side of (4.1), Lμ1
= [1, 0, . . . , 0]T ∈ Cn×1, and

Rμ1
= [−an−1,−an−2, . . . ,−a1,−a0 − 1] ∈ C1×n (of course, this can be also seen by simple

inspection of (4.1)). With these matrices, we easily obtain

Hμ1
(p) =

[|an−1|2 + · · ·+ |a1|2 + |a0|2 + a0 + 1 |an−1|2 + · · ·+ |a1|2 + |a0|2 + a0 + a0 + 1
−a0 −a0

]
.

It is immediate to show that the eigenvalues of this matrix are given by (1.29), whose square roots
are the 2 remaining singular values of C1.

Example 4.29. Here, we apply Theorem 4.27 to the Fiedler matrix that is the transpose of
the Fiedler matrix F in (2.8). This Fiedler matrix Mσ is associated with a bijection σ having
a consecution at 0 an inversions at 1, 2, . . . , n − 2. Explicitly, this matrix and its decomposition
(4.18) are

Mσ =

⎡⎢⎢⎢⎣
−an−1 . . . . . . −a1 1

1 0 0
. . .

...
...

1 0 0
−a0 0

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
0 · · · · · · 0 1
1 0

. . .
...

1
...

1 0

⎤⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎢⎣
−an−1 . . . −a1 0

...
...

...
...

...
...

−a0 − 1 0

⎤⎥⎥⎥⎥⎥⎦ . (4.26)

In this case CISS(σ) = (1, n − 2), RCISS(σ) = (1, n − 2), t = 2, and L(σ) = (0). Therefore,
rσ = 2 and Mσ has at least n−4 singular values equal to 1. To determine the remaining 4 singular
values, we use again Algorithms 4 and 5 to construct Uσ, Lσ, and Rσ. The matrix Uσ is the first
summand of the right-hand side of (4.26), which is the same matrix as in Example 4.28. For Lσ

and Uσ, we obtain

Lσ =

⎡⎢⎢⎢⎢⎢⎣
1 0
0 0
...

...
0 0
0 −a0 − 1

⎤⎥⎥⎥⎥⎥⎦ ∈ C
n×2 and Rσ =

[−an−1 −an−2 · · · −a2 −a1 0
0 0 · · · 0 1 0

]
∈ C

2×n .
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With these matrices, we obtain after some algebra

Hσ(p) =

⎡⎢⎢⎣
1 +
∑n−1

k=1 |ak|2 −a0a1(a0 + 1)
∑n−1

k=1 |ak|2 −a1
−a1 −a0 + |a0 + 1|2 −a1 1
1 0 1 0

a1(a0 + 1) −a0|a0 + 1|2 a1(a0 + 1) −a0

⎤⎥⎥⎦ .
The square roots of the eigenvalues of Hσ(p) are the 4 remaining singular values of Mσ. However,
it is not easy to obtain (if possible) explicit expressions for them, although we remark the fact that
we have reduced an n×n (with n arbitrary) singular value problem to a 4× 4 eigenvalue problem.

Example 4.30. Our last example illustrates that, except in one case, Theorem 4.27 does not apply
to the pentadiagonal Fiedler matrices in (2.7) and, so, these matrices do not have, in general, any
singular value equal to 1. Since P3 = PT

1 and P4 = PT
2 , we consider only P1 and P2.

From Section 2.2 we have that P1 is a Fiedler matrix associated with a bijection σ1 such that
RCISS(σ1) = (1, 1, . . . , 1) ∈ Rn−1. Therefore L(σ1) = (n− 3), which gives rσ1

= �(n+ 1)/2� both
if n is even or odd.

For P2 a surprise arises. Also, from Section 2.2, we have that P2 is a Fiedler matrix associated
with a bijection σ2 such that RCISS(σ2) = (2, 1, . . . , 1) ∈ R

n−2, which implies L(σ2) = (n − 4).
This implies rσ2

= �(n+ 1)/2� if n is even, but rσ2
= (n−1)/2 < �(n+ 1)/2� if n is odd. Therefore

if n is odd, the pentadiagonal matrices P2 and P4 have, in general, only one singular value equal
to 1.



Chapter 5

Adjugate matrix of zI −Mσ with

Mσ a Fiedler matrix

Given a Fiedler matrix Mσ of a monic polynomial p(z) as in (1.1), the goal of this chapter is to
get an explicit expression for the adjugate matrix of zI−Mσ, denoted by adj(zI−Mσ), where the
adjugate of a matrix A ∈ Cn×n is given in the following definition (See also, for example, [66, Ch.
IV §4]).

Definition 5.1. Let A ∈ Cn×n, let detAij denotes the determinant of the matrix formed by
deleting the ith row and jth column of A, and let B = (bij) ∈ C

n×n be the matrix of cofactors of
A, where the (i, j) cofactor of A is given by bij = (−1)i+j detAij , for i, j = 1, 2, . . . , n. Then, the
transpose of the cofactor matrix of A is called the adjugate of A and is denoted by adj(A).

Remark 5.2. Sometimes the adjugate of a matrix A is called the classical adjoint, or simply, the
adjoint of A. The adjoint of a matrix may also refer to its corresponding adjoint operator, which
is its conjugate transpose. For this reason we prefer to use the term adjugate.

The main result in this chapter is Theorem 5.3, where we give two different explicit expressions
for adj(zI −Mσ). This is a general theoretical result on Fiedler matrices that will be useful in
Chapters 8 and 9, where we study eigenvalue condition numbers and pseudospectra of Fiedler
matrices, and the backward errors of computed roots of monic polynomials using Fiedler matrices.
Notice that the matrix adj(zI −Mσ) is not a constant matrix, but a matrix polynomial in the
variable z. When needed, we use the notation Cn×m[z] for the set of matrix polynomial of size
n×m with complex coefficients.

An explicit expression for the adjugate in the case of the first and second Frobenius companion
matrices is already known (see [53, p. 768], [66, Ch. IV §4] or [150]). If {pk(z)}n−1

k=0 and {prevk (z)}n−1
k=0

denote the Horner shifts, introduced in Definition 2.13, of the polynomial p(z) and of the reversal
polynomial prev(z) of p(z) (see Definition 2.14), respectively, then

adj(zI − C2) =

⎡⎢⎢⎢⎣
p0(z)
p1(z)
...

pn−1(z)

⎤⎥⎥⎥⎦ [zn−1 · · · z 1
]− p(z)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1 0

z 1
. . .

... z
. . .

. . .
...

...
. . .

. . .
. . .

zn−2 zn−1 · · · z 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (5.1)
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or, after some algebraic manipulations,

adj(zI−C2) =
−1
z

⎡⎢⎢⎢⎣
prevn−1(z

−1)
...

prev1 (z−1)
prev0 (z−1)

⎤⎥⎥⎥⎦ [zn−1 · · · z 1
]
+p(z)

⎡⎢⎢⎢⎢⎢⎢⎣

z−1 z−2 · · · · · · z−n

z−1 z−2 · · · z−n+1

. . .
. . .

...
. . . z−2

z−1

⎤⎥⎥⎥⎥⎥⎥⎦ (5.2)

and adj(zI − C1) = (adj(zI − C2))
T
.

Equations (5.1) and (5.2) have a very particular structure: they are a sum of a rank-1 matrix
plus a matrix whose (i, j) entry is of the form p(z)pij(z), where pij(z) is a polynomial in z of degree
at most n − 2 in (5.1), and a polynomial in z−1 of degree at most n in (5.2). We will prove in
Theorem 5.3 that this structure is shared also by adj(zI −Mσ), for any Fiedler matrix Mσ. The
functions iσ and cσ, and the n-tuple EPCIS(σ) (see parts (c) and (d) in Definition 2.8) play an
important role in the expressions given in Theorem 5.3 for adj(zI −Mσ).

Theorem 5.3. Let p(z) = zn +
∑n−1

k=0 akz
k be a monic polynomial of degree n, let prev(z) be the

reversal polynomial of p(z), and let pd(z) and prevd (z), for d = 0, 1, . . . , n−1, be the degree d Horner
shifts of p(z) and prev(z), respectively. Let σ : {0, 1, . . . , n − 1} → {1, . . . , n} be a bijection with
EPCIS(σ) = (v0, v1, . . . , vn−1), and let Mσ be the Fiedler matrix of p(z) associated with σ. Let
xσ, yσ ∈ Cn be the vectors whose kth entry is

xσ(k) =

{
ziσ(0:n−k−1)pk−1(z) if vn−k = 1,
ziσ(0:n−k−1) if vn−k = 0,

and yσ(k) =

{
zcσ(0:n−k−1)pk−1(z) if vn−k = 0,
zcσ(0:n−k−1) if vn−k = 1,

for k = 1, 2, . . . , n, and let Aσ ∈ Cn×n be the matrix whose (i, j) entry is

Aσ(i, j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if vn−i = vn−j = 0 and i ≥ j,
ziσ(n−j+1:n−i−1) if vn−i = vn−j = 0 and i < j,

zcσ(n−i+1:n−j−1) if vn−i = vn−j = 1 and i > j,
0 if vn−i = vn−j = 1 and i ≤ j,
0 if vn−i = 0 and vn−j = 1,

zcσ(n−i+1:n−j−1)pj−1(z) if vn−i = 1, vn−j = 0 and i > j,
ziσ(n−j+1:n−i−1)pi−1(z) if vn−i = 1, vn−j = 0 and i < j,

for i, j = 1, 2, . . . , n. Also, let vσ, wσ ∈ Cn be the vectors whose kth entry is

vσ(k) =

{ −ziσ(0:n−k−1)−1prevn−k(z
−1) if vn−k = 1,

ziσ(0:n−k−1) if vn−k = 0,

and

wσ(k) =

{ −zcσ(0:n−k−1)−1prevn−k(z
−1) if vn−k = 0,

zcσ(0:n−k−1) if vn−k = 1,

for k = 1, 2, . . . , n, and let Bσ ∈ Cn×n be the matrix whose (i, j) entry is

Bσ(i, j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

zcσ(n−i:n−j−1)−(i−j+1) if vn−i = vn−j = 0 and i ≥ j,
0 if vn−i = vn−j = 0 and i < j,
0 if vn−i = vn−j = 1 and i > j,
ziσ(n−j:n−i−1)−(j−i+1) if vn−i = vn−j = 1 and i ≤ j,
0 if vn−i = 0 and vn−j = 1,

−zcσ(n−i+1:n−j−1)−(i−j+1)prevn−i(z
−1) if vn−i = 1, vn−j = 0 and i > j,

−ziσ(n−j+1:n−i−1)−(j−i+1)prevn−j(z
−1) if vn−i = 1, vn−j = 0 and i < j,
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for i, j = 1, 2, . . . , n. Then,

adj(zI −Mσ) = xσy
T
σ − p(z)Aσ (5.3)

= vσw
T
σ + p(z)Bσ. (5.4)

Note that the vectors xσ, yσ, vσ and wσ, and the matrices Aσ and Bσ depend on the variable
z, though we drop it for the ease of notation.

Before proving Theorem 5.3 we state and prove some technical lemmas.

Lemma 5.4. Let xσ, yσ and Aσ be the vectors and the matrix defined in Theorem 5.3, respectively.
Then, Aσ is the unique n× n matrix satisfying the following two properties:

(a) The entries of Aσ are polynomials in z, and

(b) all entries of xσy
T
σ − p(z)Aσ are polynomials of degree less than or equal to n− 1.

Proof. Throughout this proof we use the following notation:

qk(z) := −akzk − ak−1z
k−1 − · · · − a1z − a0 = zk+1pn−k−1(z)− p(z),

for k = 0, 1, . . . , n− 1. Note that qk(z) is a polynomial of degree k.
To prove part (a), it suffices to see that the exponents of the powers of z appearing in the entries

of Aσ are nonnegative. This is immediate by definition of iσ and cσ (see part (d) in Definition 2.8).
To prove part (b) we need to distinguish several cases.

(1) vn−i = vn−j = 0 and i ≥ j: The (i, j) entry of xσy
T
σ − p(z)Aσ is equal to

xσ(i)yσ(j)− p(z)Aσ(i, j) = ziσ(0:n−i−1)+cσ(0:n−j−1)pj−1(z)

which is a polynomial of degree less than or equal to n− 1, because, using (2.3),

iσ(0 : n− i− 1)+ cσ(0 : n− j− 1)+ j− 1 = iσ(0 : n− i− 1)− iσ(0 : n− j− 1)+n− 1 ≤ n− 1.

(2) vn−i = vn−j = 0 and i < j: Using (2.3), the (i, j) entry of xσy
T
σ − p(z)Aσ is equal to

xσ(i)yσ(j)− p(z)Aσ(i, j) = ziσ(0:n−i−1)+cσ(0:n−j−1)pj−1(z)− p(z)ziσ(n−j+1:n−i−1)

= ziσ(n−j+1:n−i−1)(zn−j+1pj−1(z)− p(z))

= ziσ(n−j+1:n−i−1)qn−j(z),

which is a polynomial of degree less than n− 1, because

iσ(n− j + 1 : n− i− 1) + n− j ≤ n− i− 1 < n− 1.

(3) vn−i = vn−j = 1 and i > j: Using (2.3), the (i, j) entry of xσy
T
σ − p(z)Aσ is equal to

xσ(i)yσ(j)− p(z)Aσ(i, j) = ziσ(0:n−i−1)+cσ(0:n−j−1)pi−1(z)− p(z)zcσ(n−i+1:n−j−1)

= zcσ(n−i+1:n−j−1)(zn−i+1pi−1(z)− p(z))

= zcσ(n−i+1:n−j−1)qn−i(z),

which is a polynomial of degree less than n− 1, because

cσ(n− i+ 1 : n− j − 1) + n− i ≤ n− j − 1 < n− 1.
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(4) vn−i = vn−j = 1 and i ≤ j: The (i, j) entry of xσy
T
σ − p(z)Aσ is equal to

xσ(i)yσ(j)− p(z)Aσ(i, j) = ziσ(0:n−i−1)+cσ(0:n−j−1)pi−1(z),

which is a polynomial of degree less than or equal to n− 1, because, using (2.3),

iσ(0 : n− i− 1)+ cσ(0 : n− j− 1)+ i− 1 = cσ(0 : n− j− 1)− cσ(0 : n− i− 1)+n− 1 ≤ n− 1.

(5) vn−i = 0 and vn−j = 1: The (i, j) entry of xσy
T
σ − p(z)Aσ is equal to

xσ(i)yσ(j)− p(z)Aσ(i, j) = ziσ(0:n−i−1)+cσ(0:n−j−1)

which is a polynomial of degree less than or equal to n− 1, by (2.4).

(6) vn−i = 1, vn−j = 0 and i > j: Using (2.3), the (i, j) entry of xσy
T
σ − p(z)Aσ is equal to

xσ(i)yσ(j)− p(z)Aσ(i, j) =ziσ(0:n−i−1)+cσ(0:n−j−1)pi−1(z)pj−1(z)−
p(z)zcσ(n−i+1:n−j−1)pj−1(z)

=zcσ(n−i+1:n−j−1)pj−1(z)(z
n−i+1pi−1(z)− p(z))

=zcσ(n−i+1:n−j−1)pj−1(z)qn−i(z),

which is a polynomial of degree less than n− 1, because

cσ(n− i+ 1 : n− j − 1) + j − 1 + n− i ≤ i− j − 1 + j − 1 + n− i = n− 2.

(7) vn−i = 1, vn−j = 0 and i < j: Using (2.3), the (i, j) entry of xσy
T
σ − p(z)Aσ is equal to

xσ(i)yσ(j)− p(z)Aσ(i, j) =ziσ(0:n−i−1)+cσ(0:n−j−1)pi−1(z)pj−1(z)−
p(z)ziσ(n−j+1:n−i−1)pi−1(z)

=ziσ(n−j+1:n−i−1)pi−1(z)(z
n−j+1pj−1(z)− p(z))

=ziσ(n−j+1:n−i−1)pi−1(z)qn−j(z),

which is a polynomial of degree less than n− 1, because

iσ(n− j + 1 : n− i− 1) + i− 1 + n− j ≤ j − i− 1 + i− 1 + n− j = n− 2.

Now, suppose that there is another matrix B, whose entries are polynomials in z, and such
that the entries of the matrix xσy

T
σ − p(z)B are polynomials in z of degree less than or equal to

n − 1. Let W1 = xσy
T
σ − p(z)Aσ and let W2 = xσy

T
σ − p(z)B, then, W1 −W2 = p(z)(B − Aσ) is

a matrix whose entries are polynomials of degree less than or equal to n− 1, but if Aσ 
= B, then
p(z)(B − Aσ) has, at least, one entry which is a polynomial of degree greater than or equal to n,
hence Aσ = B.

Lemma 5.5 is key to prove Theorem 5.3. It allows us to relate adj(zI −Mσ) with the adjugate
of an (n− 1)× (n− 1) matrix obtained by deflating zI −Mσ in a certain way. In the following, a
matrix polynomial P (z) ∈ Cn×n[z] is said to be unimodular if detP (z) is a nonzero constant. In
other words, P (z) has a polynomial inverse.

Lemma 5.5. Let p(z) = zn +
∑n−1

k=0 akz
k be a monic polynomial of degree n, let σ : {0, 1, . . . , n−

1} → {1, . . . , n} be a bijection with PCIS(σ) = (v0, v1, . . . , vn−2), let Mσ be the Fiedler matrix of
p(z) associated with σ, and define the unimodular matrix polynomials Q(z), R(z) ∈ Cn×n[z] as

Q(z) :=

⎡⎣ 1 0
z 1

In−2

⎤⎦ and R(z) :=

⎡⎣ 0 1
−1 p1(z)

In−2

⎤⎦ .
Then,
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(a) if σ has a consecution at n− 2,

Q(z)(zIn −Mσ)R(z) =

[
1

zIn−1 − M̃ρ

]
,

(b) if σ has an inversion at n− 2,

R(z)T (zIn −Mσ)Q(z)T =

[
1

zIn−1 − M̃ρ

]
,

where ρ : {0, 1, . . . , n−2} → {1, . . . , n−1} is a bijection such that PCIS(ρ) = (v0, v1, . . . , vn−3), and

M̃ρ = M̃ρ−1(1)M̃ρ−1(2) · · · M̃ρ−1(n−1), with

M̃k =

⎡⎢⎢⎣
In−k−2

−ak 1
1 0

Ik−1

⎤⎥⎥⎦ , for k = 1, 2, . . . , n− 3,

and

M̃0 =

[
In−2

−a0

]
, M̃n−2 =

⎡⎣−p2(z) + z 1
1 0

In−3

⎤⎦ .
Proof. We prove part (a) because part (b) is similar. So, let us assume that σ has a consecution
at n− 2. Then, using the commutativity relations (2.2), the factors of Mσ can be rearranged until
Mn−1 is adjacent on the right to Mn−2, that is, Mσ = XMn−2Mn−1Y , where X,Y are products
of Mi matrices, with i < n − 2. Now, since Q(z) and R(z) commute with Mi, for i < n − 2, we
have

Q(z)(zIn −Mσ)R(z) = zQ(z)R(z)−XQ(z)Mn−2Mn−1R(z)Y

=

⎡⎢⎢⎣
0 z 0
−z z2 + zp1(z) 0
0 0 z

zIn−3

⎤⎥⎥⎦−X

⎡⎢⎢⎣
−1 z 0
−z z2 − an−2 1
0 1 0

In−3

⎤⎥⎥⎦Y

=

⎡⎢⎢⎣
0 z 0
−z z2 0
0 0 z

zIn−3

⎤⎥⎥⎦−X

⎛⎜⎜⎝
⎡⎢⎢⎣
−1 z 0
−z z2 − z 0
0 0 0

0n−3

⎤⎥⎥⎦+

⎡⎢⎢⎣
0 0 0
0 −p2(z) + z 1
0 1 0

In−3

⎤⎥⎥⎦
⎞⎟⎟⎠Y

=

⎡⎢⎢⎣
1

z
z

zIn−3

⎤⎥⎥⎦−X

⎡⎢⎢⎣
0 0 0
0 −p2(z) + z 1
0 1 0

In−3

⎤⎥⎥⎦ Y
=

[
1

zIn−1

]
−
[

0

M̃ρ−1(1)M̃ρ−1(2) · · · M̃ρ−1(n−1)

]
=

[
1

zIn−1 − M̃ρ

]
,

where we have used that p2(z) = zp1(z)+an−2 and the fact that multiplying any matrix of the form
diag(A, 0n−2), with A ∈ C2×2, by Mk, for k = 0, 1, . . . , n−3, keeps that matrix unchanged. Finally,

notice that the relative positions of the matrices M̃0, M̃1, . . . , M̃n−2 in M̃ρ are the same as the
relative positions of the matrices M0,M1, . . . ,Mn−2 in Mσ, therefore PCIS(ρ) = (v0, v1, . . . , vn−3).
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Remark 5.6. Some important observations about the matrix M̃ρ in Lemma 5.5 are in order:

(a) The matrix M̃i, for i = 0, . . . , n − 3 is obtained from Mi by removing the first row and the
first column.

(b) The matrix M̃ρ can be seen formally as a Fiedler matrix of the polynomial r(z) := zn−1 +∑n−2
k=0 bkz

k, where bn−2 = p2(z) − z and bk = ak, for k = 0, 1, . . . , n − 3. Notice that
r(z) = p(z) for all z ∈ C. We also want to emphasize that the formal (n− 2)th coefficient of
r(z) is not an scalar, but a polynomial in z.

(c) The Horner shifts of r(z) satisfy: r0(z) = p0(z) = 1 and rk(z) = pk+1(z) for k = 1, 2, . . . , n−2.
Now, armed with Lemmas 5.4 and 5.5 we are in the position to prove Theorem 5.3.

Proof. (of Theorem 5.3) The proof proceeds by induction in n. For n = 2 there are only
two Fiedler matrices, namely the first and second Frobenius companion matrices. For these two
matrices we have

adj(zI − C2) = adj

([
a1 + z −1
a0 z

])
=

[
z 1
−a0 a1 + z

]
=

[
1

p1(z)

] [
z 1

]− p(z)

[
0 0
1 0

]
and

adj(zI − C1) = adj

([
a1 + z a0
−1 z

])
=

[
z −a0
1 a1 + z

]
=

[
z
1

] [
1 p1(z)

]− p(z)

[
0 1
0 0

]
,

which are the matrices in the statement of Theorem 5.3 with PCIS(σ) = (1) and PCIS(σ) = (0),
respectively. Assume that the result is true for Fiedler matrices of size (n− 1)× (n− 1). To prove
it for size n × n, we have to distinguish two cases, namely, whether σ has a consecution or an
inversion at n− 2. Suppose that σ has a consecution at n− 2 (the proof when σ has an inversion
at n− 2 is similar and we omit it). Then, by Lemma 5.5, we have that

zIn −Mσ = Q(z)−1

[
1

zIn−1 − M̃ρ

]
R(z)−1,

therefore

adj(zIn −Mσ) = adj
(
R(z)−1

)
adj

([
1

zIn−1 − M̃ρ

])
adj
(
Q(z)−1

)
=

= R(z)

[
p(z)

adj(zIn−1 − M̃ρ)

]
Q(z),

where we have used the identities adj(AB) = adj(B)adj(A), detR(z) = detQ(z) = 1, and

det(zIn−1 − M̃ρ) = p(z). By the induction hypothesis

adj(zIn −Mσ) = R(z)

[
p(z)

xρy
T
ρ − p(z)Aρ

]
Q(z) =

= R(z)

[
0
xρ

] [
0 yTρ

]
Q(z)− p(z)R(z)

[ −1
Aρ

]
Q(z).

Note that in the induction step we may see M̃ρ as a Fiedler matrix associated with r(z) = zn−1 +∑n−2
k=0 bkz

k, with bi, for i = 0, . . . , n− 2, as in Remark 5.6, part (b). To finish the proof it suffices
to prove the following three identities:

(i) xσ = R(z)

[
0
xρ

]
, (ii) yσ = QT (z)

[
0
yρ

]
, and (iii) Aσ = R(z)

[ −1
Aρ

]
Q(z).
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(i) From the expressions of PCIS(σ) and PCIS(ρ) we have iρ(0 : k − 1) = iσ(0 : k − 1), for k =

1, 2, . . . , n−2. Also we have that the Horner shifts of M̃ρ are p0(z), p2(z), . . . , pn−1(z) (see part
(c) in Remark 5.6). These observations imply that xρ(k) = xσ(k + 1), for k = 2, 3, . . . , n− 1
(note that, for the permutation ρ, n must be replaced by n− 1 in the expressions for xρ and
yρ). Therefore

R(z)

[
0
xρ

]
=

⎡⎣ 0 1
−1 p1(z)

In−2

⎤⎦⎡⎣ 0
ziρ(0:n−3)

xρ(2 : n− 1)

⎤⎦ =

⎡⎣ ziρ(0:n−3)

ziρ(0:n−3)p1(z)
xρ(2 : n− 1)

⎤⎦ =

⎡⎣ziσ(0:n−2)p0(z)
ziσ(0:n−3)p1(z)

xσ(3 : n)

⎤⎦ = xσ,

where we have used, since vn−2 = 1, that iσ(0 : n− 3) = iσ(0 : n− 2) and p0(z) = 1.

(ii) From the expressions of PCIS(σ) and PCIS(ρ) we have cρ(0 : k − 1) = cσ(0 : k − 1), for

k = 1, 2, . . . , n − 2. We also have that the Horner shifts of M̃ρ are p0(z), p2(z), . . . , pn−1(z)
(see part (c) in Remark 5.6). These observations imply that yρ(k) = yσ(k + 1), for k =
2, 3, . . . , n− 1. Therefore

Q(z)yρ =

⎡⎣1 z
0 1

In−2

⎤⎦⎡⎣ 0

zcρ(0:n−3)

yρ(2 : n− 1)

⎤⎦ =

⎡⎣ zcρ(0:n−3)+1

zcρ(0:n−3)

yρ(2 : n− 1)

⎤⎦ =

⎡⎣zcσ(0:n−2)

zcσ(0:n−3)

yσ(3 : n)

⎤⎦ = yσ,

where we have used, since vn−2 = 1, that cσ(0 : n− 2) = cσ(0 : n− 3) + 1.

(iii) We prove this using Lemma 5.4. From (i) and (ii) we know that

adj(zI −Mσ) = xσy
T
σ − p(z)R(z)

[ −1
Aρ(z)

]
Q(z).

But the entries of R(z)diag(−1, Aρ(z))Q(z) are polynomials in z and, moreover, the entries
of adj(zI −Mσ) are polynomials of degree less than or equal to n − 1. Therefore, by the
uniqueness proved in Lemma 5.4, we get:

R(z)

[ −1
Aρ(z)

]
Q(z) = Aσ.

To prove (5.4) we only need to check that the (i, j) entry of the matrix xσy
T
σ − p(z)Aσ is equal

to the (i, j) entry of the matrix vσw
T
σ + p(z)Bσ. Throughout the rest of the proof we use the

following relations between the Horner shifts of p(z) and prev(z), and the polynomials {qk(z)}n−1
k=0 ,

defined in the proof of Lemma 5.4,

pk(z) = z−n+k(p(z) + qn−k−1(z)) and z−kqk(z) = −prevk (z−1) for k = 0, 1, . . . , n− 1.

We have to distinguish the same cases as in the proof of Lemma 5.4.

(1) vn−i = vn−j = 0 and i ≥ j: The (i, j) entry of xσy
T
σ − p(z)Aσ is

xσ(i)yσ(j)− p(z)Aσ(i, j) =ziσ(0:n−i−1)+cσ(0:n−j−1)pj−1(z)

=ziσ(0:n−i−1)+cσ(0:n−j−1)−n+j−1(p(z) + qn−j(z))

=ziσ(0:n−i−1)
(
−prevn−j(z

−1)zcσ(0:n−j−1)−1
)
+

p(z)zcσ(n−i:n−j−1)−(i−j+1),

which is equal to vσ(i)wσ(j) + p(z)Bσ(i, j).
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(2) vn−i = vn−j = 0 and i < j: The (i, j) entry of xσy
T
σ − p(z)Aσ is

xσ(i)yσ(j)− p(z)Aσ(i, j) =ziσ(0:n−i−1)+cσ(0:n−j−1)pj−1(z)− p(z)ziσ(n−j+1:n−i−1)

=ziσ(n−j+1:n−i−1)qn−j(z)

=ziσ(0:n−i−1)+cσ(0:n−j−1)−n+j−1qn−j(z)

=ziσ(0:n−i−1)
(
−zcσ(0:n−j−1)−1prevn−j(z

−1)
)
,

which is equal to vσ(i)wσ(j) + p(z)Bσ(i, j)

(3) vn−i = vn−j = 1 and i > j: The (i, j) entry of xσy
T
σ − p(z)Aσ is

xσ(i)yσ(j)− p(z)Aσ(i, j) =ziσ(0:n−i−1)+cσ(0:n−j−1)pi−1(z)− p(z)zcσ(n−i+1:n−j−1)

=zcσ(n−i+1:n−j−1)qn−i(z)

=ziσ(0:n−i−1)+cσ(0:n−j−1)−n+i−1qn−i(z)

=
(
−ziσ(0:n−i−1)−1prevn−i(z

−1)
)
zcσ(0:n−j−1),

which is equal to vσ(i)wσ(j) + p(z)Bσ(i, j).

(4) vn−i = vn−j = 1 and i ≤ j: The (i, j) entry of xσy
T
σ − p(z)Aσ is

xσ(i)yσ(j)− p(z)Aσ(i, j) =ziσ(0:n−i−1)+cσ(0:n−j−1)pi−1(z)

=ziσ(0:n−i−1)+cσ(0:n−j−1)−n+i−1(p(z) + qn−i(z))

=
(
−ziσ(0:n−i−1)−1prevn−i(z

−1)
)
zcσ(0:n−j−1)+

p(z)ziσ(n−j:n−i−1)−(j−i+1),

which is equal to vσ(i)wσ(j) + p(z)Bσ(i, j).

(5) vn−i = 0 and vn−j = 1: The (i, j) entry of xσy
T
σ − p(z)Aσ is

xσ(i)yσ(j)− p(z)Aσ(i, j) = ziσ(0:n−i−1)zcσ(0:n−j−1),

which is equal to vσ(i)wσ(j) + p(z)Bσ(i, j).

(6) vn−i = 1, vn−j = 0 and i > j: The (i, j) entry of xσy
T
σ − p(z)Aσ is

xσ(i)yσ(j)− p(z)Aσ(i, j) =ziσ(0:n−i−1)+cσ(0:n−j−1)pi−1(z)pj−1(z)−
p(z)zcσ(n−i+1:n−j−1)pj−1(z)

=zcσ(n−i+1:n−j−1)pj−1(z)qn−i(z)

=zcσ(n−i+1:n−j−1)−n+j−1(p(z) + qn−j(z))qn−i(z)

=
(
−ziσ(0:n−i−1)−1prevn−i(z

−1)
)(
−zcσ(0:n−j−1)−1prevn−j(z

−1)
)
+

p(z)
(
−zcσ(n−i+1:n−j−1)−(i−j+1)prevn−i(z

−1)
)
,

which is equal to vσ(i)wσ(j) + p(z)Bσ(i, j).

(7) vn−i = 1, vn−j = 0 and i < j: The (i, j) entry of xσy
T
σ − p(z)Aσ is

xσ(i)yσ(j)− p(z)Aσ(i, j) =ziσ(0:n−i−1)+cσ(0:n−j−1)pi−1(z)pj−1(z)−
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p(z)ziσ(n−j+1:n−i−1)pi−1(z)

=ziσ(n−j+1:n−i−1)pi−1(z)qn−j(z)

=ziσ(n−j+1:n−i−1)−n+i−1(p(z) + qn−i(z))qn−j(z)

=
(
−ziσ(0:n−i−1)−1prevn−i(z

−1)
)(
−zcσ(0:n−j−1)−1prevn−j(z

−1)
)
+

p(z)
(
−ziσ(n−j+1:n−i−1)−(j−i+1)prevn−j(z

−1)
)
,

which is equal to vσ(i)wσ(j) + p(z)Bσ(i, j).

We illustrate Theorem 5.3 with some 4× 4 examples.

Example 5.7. Let p(z) = z4 +
∑3

k=0 akz
3 be a monic polynomial of degree 4, and let {pk(z)}3k=0

and {prevk (z)}3k=0 be the Horner shifts of p(z) and prev(z), respectively. First, we apply Theorem
5.3 to the second Frobenius companion matrix C2. From Section 2.2 we know that C2 is a Fiedler
matrix associated with a bijection σ1 such that EPCIS(σ1) = (1, 1, 1, 1). Then,

adj(zI −C2) =

⎡⎢⎢⎣
p0(z)
p1(z)
p2(z)
p3(z)

⎤⎥⎥⎦ [z3 z2 z 1
]
− p(z)

⎡⎢⎢⎣
0 0 0 0
1 0 0 0
z 1 0 0
z2 z 1 0

⎤⎥⎥⎦

=

⎡⎢⎢⎣
−z−1prev3 (z−1)
−z−1prev2 (z−1)
−z−1prev1 (z−1)
−z−1prev0 (z−1)

⎤⎥⎥⎦ [z3 z2 z 1
]
+ p(z)

⎡⎢⎢⎣
z−1 z−2 z−3 z−4

0 z−1 z−2 z−3

0 0 z−1 z−2

0 0 0 z−1

⎤⎥⎥⎦ .

Second, we apply Theorem 5.3 to the pentadiagonal Fiedler matrix P1 in (2.7). From Section 2.2 we
know that P1 is a Fiedler matrix associated with a bijection σ2 such that EPCIS(σ2) = (1, 0, 1, 1).
Then,

adj(zI −Mσ) =

⎡⎢⎢⎣
zp0(z)
zp1(z)

1
p3(z)

⎤⎥⎥⎦ [z2 z zp2(z) 1
]
− p(z)

⎡⎢⎢⎣
0 0 p0(z) 0
1 0 p1(z) 0
0 0 0 0
z 1 p2(z) 0

⎤⎥⎥⎦

=

⎡⎢⎢⎣
−prev3 (z−1)
−prev2 (z−1)

1
−z−1prev0 (z−1)

⎤⎥⎥⎦ [z2 z −prev1 (z−1) 1
]
− p(z)

⎡⎢⎢⎣
z−1 z−2 −z−3prev1 (z−1) z−3

0 z−1 −z−2prev1 (z−1) z−2

0 0 z−1 0
0 0 −z−2prev0 (z−1) z−1

⎤⎥⎥⎦ .

Finally, we apply Theorem 5.3 to the Fiedler matrix F in (2.8). From Section 2.2 we know that
F is a Fiedler matrix associated with a bijection σ3 such that EPCIS(σ3) = (0, 1, 1, 1). Then,

adj(zI − F ) =

⎡⎢⎢⎣
zp0(z)
zp1(z)
zp2(z)

1

⎤⎥⎥⎦ [z2 z 1 p3
]
− p(z)

⎡⎢⎢⎣
0 0 0 p0
1 0 0 p1
z 1 0 p2
0 0 0 0

⎤⎥⎥⎦

=

⎡⎢⎢⎣
−prev3 (z−1)
−prev2 (z−1)
−prev1 (z−1)

1

⎤⎥⎥⎦ [z2 z 1 −z−1prev0 (z−1)
]
+ p(z)

⎡⎢⎢⎣
z−1 z−2 z−3 −z−4prev0 (z−1)
0 z−1 z−2 −z−3prev0 (z−1)
0 0 z−1 −z−2prev0 (z−1)
0 0 0 −z−1prev0 (z−1)

⎤⎥⎥⎦ .

We finish this chapter with Lemmas 5.8 and 5.9 about the matrices Aσ and Bσ, and the vectors
xσ and yσ, that will be used in Chapter 8.
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Lemma 5.8. Let p(z) = zn +
∑n−1

k=0 akz
k be a monic polynomial of degree n, let σ : {0, 1, . . . , n−

1} → {1, . . . , n} be a bijection, and let Aσ, Bσ be the matrices defined in Theorem 5.3. Then, the
matrices Aσ, Bσ satisfy:

(a) The entries of the matrix Aσ are polynomials in z.

(b) The entries of the matrix Bσ are polynomials in z−1.

Proof. Part (a) is proved in Lemma 5.4. To prove part (b), it suffices to see that the exponents of
the powers of z appearing in the entries of Bσ are negative. This is immediate by definition of iσ
and cσ, which satisfy that iσ(i, j) ≤ j − i− 1 and cσ(i : j) ≤ j − i− 1.

Lemma 5.9. Let p(z) = zn +
∑n−1

k=0 akz
k be a monic polynomial of degree n, let σ : {0, 1, . . . , n−

1} → {1, . . . , n} be a bijection, and let xσ and yσ be the vectors in Theorem 5.3. Then, the vectors
xσ and yσ have one entry identically equal to one.

Proof. To prove the result we distinguish two cases: when Mσ = C1, C2 and when Mσ 
= C1, C2.
The Frobenius companion matrices C1 and C2 are Fiedler matrices associated with bijections σ1 and
σ2, respectively, such that EPCIS(σ1) = (0, 0, . . . , 0) ∈ Rn and EPCIS(σ2) = (1, 1, . . . , 1) ∈ Rn (see

Section 2.2). Therefore, xσ1
= yσ2

=
[
zn−1 · · · z 1

]T
and yσ1

= xσ2
=[

p0(z) p1(z) · · · pn−1(z)
]T

. The result follows by inspection of the entries of these two vectors
(notice that p0(z) = 1).

If Mσ 
= C1, C2, suppose that v0 = 1, that is, σ has a consecution at 0 (the case v0 = 0 is similar
so will be omitted), and let t ∈ {1, 2, . . . , n−3} be such that vt+1 = 0 and vj = 1 for any j ≤ t (note
that a number t satisfying those conditions always exists when Mσ 
= C1, C2). Then, from the
expression of the kth entry of xσ and yσ given in Theorem 5.3, we get xσ(n− t− 1) = ziσ(0:t) = 1
and yσ(n) = zcσ(0:−1) = 1.



Chapter 6

New bounds for roots of

polynomials based on Fiedler

companion matrices

Given a monic polynomial p(z) as in (1.1), and λ a root of p(z), we are interested in getting new
upper and lower bounds on |λ|. The goal of this chapter is to study if matrix norms of Fiedler
companion matrices may be used to obtain new and sharper lower and upper bounds on |λ|. The
development of such bounds requires first to know simple expressions for some relevant matrix
norms of Fiedler matrices, a subject that has been studied at depth in Chapter 3. With these
expressions at hand, we show in Theorem 6.1 that norms of Fiedler matrices produce many new
bounds, but we also show in Theorem 6.2 that none of them improve significatively the classical
bounds obtained from the Frobenius companion matrices, that is, the bounds in Theorem 1.5.
However, to improve the results of Theorems 6.1 and 6.2, and following a different approach, we
prove in Theorem 6.3 that if the norms of the inverses of Fiedler matrices are used, then another
family of new bounds on |λ| is obtained and we show in Theorem 6.6 that some of the bounds in
this family improve significatively the bounds coming from the Frobenius companion matrices for
certain classes of polynomials.

In this chapter, we indicate explicitly the dependence of a Fiedler matrix Mσ on a certain
polynomial q(z) by using the notation Mσ(q).

6.1 Lower and upper bounds from norms of Fiedler matrices

Since any Fiedler matrix Mσ(p) of p(z) has the roots of p(z) as eigenvalues, the same argument
that we used to get (1.32) from the Frobenius companion matrices C1(p) and C2(p) allows us to
prove (‖Mσ(p

�)‖)−1 ≤ |λ| ≤ ‖Mσ(p)‖ , (6.1)

for any root λ of p(z), for any Fiedler matrix of p(z), and for any submultiplicative matrix norm,
and where p�(z) is the monic reversal polynomial of p(z) (see Definition 2.14). As a consequence,
it is natural to try to use (6.1) combined with the 1-, 2-, ∞-, and Frobenius norms for obtaining
new simple lower and upper bounds on the absolute values of the roots of p(z). Since there exist
2n−1− 2 Fiedler matrices that are different from the Frobenius companion matrices (see Corollary
2.18), this strategy may expand considerably, with respect Theorem 1.5, the arena in which to look
for good bounds of type (1.31). But note that, in order to apply (6.1), we need to know which
are the expressions for the 1-, 2-, ∞-, and Frobenius norms of Fiedler matrices. The Frobenius
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norms of all Fiedler matrices associated with p(z) are equal (see Corollary 3.5), since all of Fiedler
matrices have the same nonzero entries, and therefore no new bounds can be obtained from ‖ · ‖F .
In addition, we have seen in Chapter 4 that, except in the case of Frobenius companion matrices,
simple expressions for the 2-norm of Fiedler matrices are not available, and it seems very difficult
to get them. So, in this context, we only investigate which bounds can be derived using the
expressions for the ∞- and the 1- norms of any Fiedler matrix obtained in Chapter 3.

As a direct consequence of (6.1) and the expression for the ∞-norm of a Fiedler matrix in
Theorem 3.8, we obtain in Theorem 6.1 the first family of new lower and upper bounds for the
absolute values of the roots of monic polynomials presented in this chapter. We use the expression
“family of lower/upper bounds” because for each different CISS(σ) we obtain a different couple of
lower/upper bounds.

Theorem 6.1. Let p(z) = zn +
∑n−1

k=0 akz
k be a monic polynomial of degree n ≥ 2, let p�(z) be

the monic reversal polynomial of p(z), and let σ : {0, 1, . . . , n− 1} → {1, . . . , n} be a bijection. If
λ is a root of p(z), then(

max

{
1

|a0| , γσ,0(p
�), γσ,1(p

�), . . . , γσ,�(p
�)

})−1

≤ |λ| ≤ max{|a0|, γσ,0(p), γσ,1(p), . . . , γσ,�(p)} ,
(6.2)

where the quantities γσ,k(p) and γσ,k(p
�), for k = 0, 1, 2, . . . , �, are those defined in Theorem 3.8

for p(z) and p�(z), respectively.

Observe that in the statement of Theorem 6.1 we have not imposed a0 
= 0, which, strictly
speaking, is necessary for obtaining the lower bound in (6.2). However, if a0 = 0, then the lower
bound can be taken to be zero and this is consistent with the fact that p(z) has at least one root
equal to zero.

Theorem 6.2 is the main result in this section. It proves that the bounds coming from applying

(6.2) to all Fiedler matrices (i.e., from
(‖Mσ(p

�)‖∞
)−1 ≤ |λ| ≤ ‖Mσ(p)‖∞) never improve Cauchy’s

lower (i.e.,
(‖C2(p

�)‖∞
)−1

) and Cauchy’s upper (i.e., ‖C2(p)‖∞) bounds by a factor larger than 2.
In this sense, the classical Cauchy’s bounds in Theorem 1.5 are optimal, up to a factor 2, among
those obtained from (6.2) and, in fact, we will see that they are strictly optimal for a large subclass
of Fiedler matrices.

Theorem 6.2. Let p(z) = zn+
∑n−1

k=0 akz
k be a monic polynomial of degree n ≥ 2 with a0 
= 0, let

p�(z) be the monic reversal polynomial of p(z), let σ : {0, 1, . . . , n− 1} → {1, . . . , n} be a bijection,
and let CISS(σ) = (c0, i0, c1, i1, . . . , c�, i�) be the consecution-inversion structure sequence of σ. Let
C2(p) be the second Frobenius companion matrix of p(z) and let Mσ(p) be the Fiedler matrix of
p(z) associated with σ. Then the following statements hold.

(a) If c0 > 0, then ‖C2(p)‖∞ ≤ ‖Mσ(p)‖∞.
(This means that Cauchy’s upper bound is the sharpest upper bound among those in (6.2)
when c0 > 0.)

(b) If c0 = 0, then ‖C2(p)‖∞ − 1 ≤ ‖Mσ(p)‖∞.
(This means that Cauchy’s upper bound is essentially the sharpest upper bound among those
in (6.2) when ‖C2(p)‖∞ is large.)

(c) If c0 = 0, then ‖C2(p)‖∞/2 ≤ ‖Mσ(p)‖∞.
(This means that none of the upper bounds in (6.2) improves Cauchy’s upper bound by a
factor larger than two.)

(d) If c0 > 0, then
(‖Mσ(p

�)‖∞
)−1 ≤ (‖C2(p

�)‖∞
)−1

.
(This means that Cauchy’s lower bound is the sharpest lower bound among those in (6.2)
when c0 > 0.)
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(e) If c0 = 0, then
(‖Mσ(p

�)‖∞
)−1 ≤ (‖C2(p

�)‖∞ − 1
)−1

.
(This means that Cauchy’s lower bound is essentially the sharpest lower bound among those
in (6.2) when ‖C2(p

�)‖∞ is large.)

(f) If c0 = 0, then
(‖Mσ(p

�)‖∞
)−1 ≤ 2

(‖C2(p
�)‖∞

)−1
.

(This means that none of the lower bounds in (6.2) improves Cauchy’s lower bound by a
factor larger than two.)

Proof. In this proof we use the notation introduced in Theorems 3.8 and 6.1. Parts (a), (b), and
(c) are consequences of the following three inequalities:

if c0 > 0, then γσ,0(p) ≥ max{1 + |a1|, 1 + |a2|, . . . , 1 + |as0 |}; (6.3)

if c0 = 0, then 1 + γσ,0(p) ≥ max{1 + |a1|, 1 + |a2|, . . . , 1 + |as0 |}; (6.4)

and, for k = 1, 2, . . . , �,

γσ,k(p) ≥ max{1 + |ask−1+1|, . . . , 1 + |ask |}. (6.5)

Proof of Part (a). From (3.6), (6.3), and (6.5), we get that if c0 > 0, then

‖Mσ(p)‖∞ = max{|a0|, γσ,0(p), . . . , γσ,�(p)} ≥ max{|a0|, 1 + |a1|, . . . , 1 + |an−1|} = ‖C2(p)‖∞ .

Proof of Part (b). From (3.6), (6.4), and (6.5), we get that if c0 = 0, then

1 + ‖Mσ(p)‖∞ = max{1 + |a0|, 1 + γσ,0(p), . . . , 1 + γσ,�(p)}
≥ max{|a0|, 1 + γσ,0(p), γσ,1(p), . . . , γσ,�(p)}
≥ max{|a0|, 1 + |a1|, . . . , 1 + |an−1|} = ‖C2(p)‖∞.

Proof of Part (c). From (3.6), we have that 1 ≤ ‖Mσ(p)‖∞. Therefore, from (b), ‖C2(p)‖∞ ≤
‖Mσ(p)‖∞ + 1 ≤ 2 ‖Mσ(p)‖∞, which is part (c).

Proofs of Parts (d), (e), and (f). Parts (a), (b), and (c) have been proved for any monic polynomial
p(z). Therefore, they can be applied to p�(z) for proving parts (d), (e), and (f).

Observe that there exist polynomials for which the inequalities in parts (b), (c), (e), and (f)
of Theorem 6.2 become as close as equalities as desired. Note also that even in the case c0 = 0,
it is possible to find sufficient conditions on the coefficients of p(z) that guarantee ‖C2(p)‖∞ ≤
‖Mσ(p)‖∞ for wide classes of polynomials and for all Fiedler matrices, and also to find sufficient

conditions that guarantee
(‖Mσ(p

�)‖∞
)−1 ≤ (‖C2(p

�)‖∞
)−1

for wide classes of polynomials. We
do not pursue this goal here since the inequalities proved in parts (b), (c), (e), and (f) show very
clearly that Cauchy’s bounds are essentially always the sharpest ones in the family (6.2).

6.2 Lower and upper bounds from norms of inverses of Fiedler

matrices

To improve the results in Section 6.1, we follow another strategy based on the fact that for any
invertible matrix X , the eigenvalues of X−1 are the reciprocals of the eigenvalues of X . So, if
a0 
= 0, the eigenvalues of Mσ(p

�)−1 are the roots of p(z), the eigenvalues of Mσ(p)
−1 are the

reciprocals of the roots of p(z), and(‖Mσ(p)
−1‖)−1 ≤ |λ| ≤ ‖Mσ(p

�)−1‖, (6.6)
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for any root λ of p(z), for any Fiedler matrix of p(z), and for any submultiplicative matrix norm.
The practical use of (6.6) requires to know ‖Mσ(p)

−1‖ and ‖Mσ(p
�)−1‖ for the 1-, 2-, ∞-, and

Frobenius norms. Note that for the Frobenius companion matrices Ci(p), i = 1, 2, (6.6) is exactly
the same as (1.32) for the 1-, 2-, ∞-, and Frobenius norms, since it is easy to see1 that ‖Ci(p

�)‖ =
‖Ci(p)

−1‖ and ‖Ci(p)‖ = ‖Ci(p
�)−1‖, and new bounds are not obtained. However, we will prove

that the use of other Fiedler matrices in (6.6) gives new bounds for the roots of polynomials and,
more important, that some of these bounds are much sharper than Cauchy’s lower/upper bounds
in certain cases.

As a direct consequence of (6.6) and the expression in Theorem 3.8 for the ∞-norm of the
inverse of a Fiedler matrix we obtain in Theorem 6.3 the second family of new lower and upper
bounds for the absolute values of the roots of monic polynomials presented in this chapter. The
key difference between Theorem 6.3 and Theorem 6.1 is that some of the bounds presented in
Theorem 6.3 improve significantly the classical Cauchy’s bounds for wide classes of polynomials.
To prove this fact is one of the main goals in this section.

Theorem 6.3. Let p(z) = zn +
∑n−1

k=0 akz
k be a monic polynomial of degree n ≥ 2 and a0 
= 0,

let p�(z) be the monic reversal polynomial of p(z), and let σ : {0, 1, . . . , n − 1} → {1, . . . , n} be a
bijection. If λ is a root of p(z), then(

max

{
1

|a0| , δσ(p), γσ,1(p), . . . , γσ,�(p)
})−1

≤ |λ| ≤ max{|a0|, δσ(p�), γσ,1(p�), . . . , γσ,�(p�)},
(6.7)

where the quantities δσ(p), γσ,k(p), for k = 1, 2, . . . , �, and δσ(p
�), γσ,k(p

�), for k = 1, 2, . . . , �, are
those defined in Theorem 3.8 for p(z) and p�(z), respectively.

For making comparisons, a key property that the reader should bear in mind is that Cauchy’s
and Montel’s lower and upper bounds in Theorem 1.5 are included among the bounds in (6.7) for
appropriate choices of σ. This is a consequence of the more general result presented in Theorem
6.4.

Theorem 6.4. Let p(z) = zn +
∑n−1

k=0 akz
k be a monic polynomial of degree n ≥ 2 and a0 
= 0,

and let p�(z) be the monic reversal polynomial of p(z). Let C1(p) and C2(p) be the first and second
Frobenius companion matrices of p(z). Then

C1(p)
−1 = RC1(p

�)R, and C2(p)
−1 = RC2(p

�)R, (6.8)

where R is the reverse identity matrix, i.e.,

R =

⎡⎢⎣ 1

. .
.

1

⎤⎥⎦ ∈ R
n×n.

As a consequence,

(a) ‖Ci(p)
−1‖s = ‖Ci(p

�)‖s, for i = 1, 2 and s = 1, 2,∞, F ,

(b) ‖Ci(p
�)−1‖s = ‖Ci(p)‖s, for i = 1, 2 and s = 1, 2,∞, F .

Proof. The equalities in (6.8) follow from direct matrix multiplication, from the fact that the
inverses of C1(p) and C2(p) are given by

C1(p)
−1 =

⎡⎢⎢⎢⎣
0 1
...

. . .

0 1
−1/a0 −an−1/a0 · · · −a1/a0

⎤⎥⎥⎥⎦ and C2(p)
−1 =

⎡⎢⎢⎢⎣
0 . . . 0 −1/a0
1 −an−1/a0

. . .
...

1 −a1/a0

⎤⎥⎥⎥⎦ ,
1These equalities are proved in Theorem 6.4.
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and from the expressions of the coefficients of p�(z). Then, part (a) follows from (6.8) and the fact
that 1-, 2-, ∞-, and Frobenius-norms are invariant under multiplication by the matrix R. Finally,
part (b) follows from applying part (a) to p� and the fact that (p�)� = p.

Recall that Cauchy’s and Montel’s upper bounds are ‖C2(p)‖∞ and ‖C1(p)‖∞, respectively. So
part (b) of Theorem 6.4 allows us to express Cauchy’s upper bound as ‖C2(p

�)−1‖∞ = ‖C2(p)‖∞
and Montel’s upper bound as ‖C1(p

�)−1‖∞ = ‖C1(p)‖∞. Since the upper bound in (6.7) is
‖Mσ(p

�)−1‖∞, we see that Cauchy’s and Montel’s upper bounds are included among the up-
per bounds in (6.7). Analogously, part (a) of Theorem 6.4 allows us to see that Cauchy’s lower

bound is
(‖C2(p)

−1‖∞
)−1

=
(‖C2(p

�)‖∞
)−1

, and that Montel’s lower bound is
(‖C1(p)

−1‖∞
)−1

=(‖C1(p
�)‖∞

)−1
. Since the lower bound in (6.7) is

(‖Mσ(p)
−1‖∞

)−1
, we see that Cauchy’s and

Montel’s lower bounds are two of the lower bounds in (6.7).

The Fiedler matrix F (p) defined in (2.8) will play a relevant role in determining which are the
sharpest bounds among those in (6.7). Recall that the matrix F (p) is associated with any bijection
τ such that CISS(τ) = (0, 1, n− 2, 0) and the explicit expressions of F (p) and F (p)−1 are

F (p) =

⎡⎢⎢⎢⎢⎢⎣
−an−1 1

...
. . .

−a2 1
−a1 −a0
1 0

⎤⎥⎥⎥⎥⎥⎦ and F (p)−1 =

⎡⎢⎢⎢⎢⎢⎣
0 1
1 an−1

. . .
...

1 a2
−1/a0 −a1/a0

⎤⎥⎥⎥⎥⎥⎦ .
(6.9)

The bounds (6.7) for F (p) are summarized in Theorem 6.5 for future reference. These bounds
are one of the most important contributions in this chapter, since as it is explained in Theorems
6.7 and 6.9, they improve significantly Cauchy’s upper and lower bounds for certain polynomials.
Theorem 6.5 follows immediately from (6.6), the expression of F (p)−1 in (6.9), and the expression
for F (p�)−1 that is obtained from applying the second expression in (6.9) to p�(z).

Theorem 6.5. Let p(z) = zn +
∑n−1

k=0 akz
k be a monic polynomial with n ≥ 2 and a0 
= 0, let

p�(z) be the monic reversal polynomial of p(z), and let F (p) be the Fiedler matrix in (6.9). Then

(a)
(‖F (p)−1‖∞

)−1
= min

{
|a0|

1+|a1|
, 1
1+|a2|

, . . . , 1
1+|an−1|

}
;

(b) ‖F (p�)−1‖∞ = max
{
1 + |a1|

|a0|
, 1 + |a2|

|a0|
, . . . , 1 + |an−2|

|a0|
, |a0|+ |an−1|

}
; and,

(c)
(‖F (p)−1‖∞

)−1 ≤ |λ| ≤ ‖F (p�)−1‖∞, that is,

min

{
|a0|

1 + |a1|
,

1

1 + |a2|
, . . . ,

1

1 + |an−1|

}
≤ |λ| ≤ max

{
1 +

|a1|

|a0|
, 1 +

|a2|

|a0|
, . . . , 1 +

|an−2|

|a0|
, |a0|+ |an−1|

}
.

(6.10)

Theorem 6.6 is the first important result on comparison of bounds in this section. It proves
that either Cauchy’s lower/upper bounds or the lower/upper bounds in part (c) of Theorem 6.5 are
essentially the sharpest bounds among those coming from applying (6.7) to all Fiedler matrices.
The absolute value of the zero degree coefficient of p(z) is the key to distinguish whether Cauchy’s
bounds or the ones in Theorem 6.5 are the sharpest. In contrast, |a0| did not play any role in
Theorem 6.2.

Theorem 6.6. Let p(z) = zn+
∑n−1

k=0 akz
k be a monic polynomial of degree n ≥ 2 with a0 
= 0, let

p�(z) be the monic reversal polynomial of p(z), let σ : {0, 1, . . . , n− 1} → {1, . . . , n} be a bijection,
and let CISS(σ) = (c0, i0, c1, i1, . . . , c�, i�) be the consecution-inversion structure sequence of σ. Let
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C2(p) be the second Frobenius companion matrix of p(z), let F (p) be the Fiedler matrix of p(z) in
(6.9), and let Mσ(p) be the Fiedler matrix of p(z) associated with σ. Then the following statements
hold.

(a) If |a0| ≥ 1 and c0 = 0, then ‖F (p�)−1‖∞ ≤ ‖Mσ(p
�)−1‖∞.

(This means that F (p) gives the sharpest upper bound among the upper bounds in (6.7) when
|a0| ≥ 1 and c0 = 0.)

(b) If |a0| ≥ 1 and c0 > 0, then ‖F (p�)−1‖∞/2 ≤ ‖Mσ(p
�)−1‖∞.

(This means that, when |a0| ≥ 1 and c0 > 0, none of the upper bounds in (6.7) improves the
upper bound given by F (p) by a factor larger than two.)

(c) If |a0| < 1 and c0 > 0, then ‖C2(p
�)−1‖∞ ≤ ‖Mσ(p

�)−1‖∞.
(This means that Cauchy’s upper bound is the sharpest upper bound among those in (6.7)
when |a0| < 1 and c0 > 0.)

(d) If |a0| < 1 and c0 = 0, then ‖C2(p
�)−1‖∞ − 1 ≤ ‖Mσ(p

�)−1‖∞.
(This means that Cauchy’s upper bound is essentially the sharpest upper bound among those
in (6.7) when |a0| < 1, c0 = 0, and ‖C2(p

�)−1‖∞ is large.)

(e) If |a0| < 1 and c0 = 0, then ‖C2(p
�)−1‖∞/2 ≤ ‖Mσ(p

�)−1‖∞.
(This means that, when |a0| < 1 and c0 = 0, none of the upper bounds in (6.7) improves
Cauchy’s upper bound by a factor larger than two.)

(f) If |a0| ≤ 1 and c0 = 0, then
(‖Mσ(p)

−1‖∞
)−1 ≤ (‖F (p)−1‖∞

)−1
.

(This means that F (p) gives the sharpest lower bound among the lower bounds in (6.7) when
|a0| ≤ 1 and c0 = 0.)

(g) If |a0| ≤ 1 and c0 > 0, then
(‖Mσ(p)

−1‖∞
)−1 ≤ 2

(‖F (p)−1‖∞
)−1

.
(This means that, when |a0| ≤ 1 and c0 > 0, none of the lower bounds in (6.7) improves the
lower bound given by F (p) by a factor larger than two.)

(h) If |a0| > 1 and c0 > 0, then
(‖Mσ(p)

−1‖∞
)−1 ≤ (‖C2(p)

−1‖∞
)−1

.
(This means that Cauchy’s lower bound is the sharpest lower bound among those in (6.7)
when |a0| > 1 and c0 > 0.)

(i) If |a0| > 1 and c0 = 0, then
(‖Mσ(p)

−1‖∞
)−1 ≤ (‖C2(p)

−1‖∞ − 1
)−1

.
(This means that Cauchy’s lower bound is essentially the sharpest lower bound among those
in (6.7) when |a0| > 1, c0 = 0, and ‖C2(p)

−1‖∞ is large.)

(j) If |a0| > 1 and c0 = 0, then
(‖Mσ(p)

−1‖∞
)−1 ≤ 2

(‖C2(p)
−1‖∞

)−1
.

(This means that, when |a0| > 1 and c0 = 0, none of the lower bounds in (6.7) improves
Cauchy’s lower bound by a factor larger than two.)

Proof. The expression for the monic reversal polynomial of p(z) in Definition 2.14 implies that,
p(0), i.e., the zero-degree coefficient of p(z), satisfies |p(0)| = |a0| ≥ 1 (resp., |p(0)| = |a0| < 1)
if and only if |p�(0)| = 1/|a0| ≤ 1 (resp., |p�(0)| = 1/|a0| > 1). From this, we see: that part (f)
applied to p�(z) implies part (a); that part (g) applied to p�(z) implies part (b); that part (h)
applied to p�(z) implies part (c); that part (i) applied to p�(z) implies part (d); and that part (j)
applied to p�(z) implies part (e). Therefore we only need to prove parts (f), (g), (h), (i), and (j).
We will use the notation in Theorem 3.8 throughout the proof.

Proof of part (f). If |a0| ≤ 1 and c0 = 0, then

max

{
1

|a0| , δσ(p)
}

= δσ(p) ≥ max

{
1

|a0| +
|a1|
|a0| , 1 + |a2|, . . . , 1 + |as0 |

}
.
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This inequality, together with (6.5), (3.7), and (6.9) imply ‖Mσ(p)
−1‖∞ ≥ ‖F (p)−1‖∞.

Proof of Part (g). If |a0| ≤ 1 and c0 > 0, then

max

{
1

|a0| , δσ(p)
}

= max

{
1

|a0| , 1 +
|a1|
|a0| , . . . , 1 +

|ac0−1|
|a0| , 1 +

|ac0 |
|a0| + |ac0+1|+ · · ·+ |as0 |

}
≥ max

{
1

|a0| , 1 +
|a1|
|a0| , 1 + |a2|, . . . , 1 + |as0 |

}
≥ 1

2
max

{
1

|a0| +
|a1|
|a0| , 1 + |a2|, . . . , 1 + |as0 |

}
,

where in the first inequality we have used that |a0| ≤ 1. In addition, from (6.5), for k = 1, 2, . . . , �,

γσ,k(p) ≥ max
{
1 + |ask−1+1|, . . . , 1 + |ask |

} ≥ 1

2
max

{
1 + |ask−1+1|, . . . , 1 + |ask |

}
.

Combining these results with (3.7) and (6.9), we get ‖Mσ(p)
−1‖∞ ≥ 1

2‖F (p)−1‖∞.

Proof of Part (h). If |a0| > 1 and c0 > 0, then

max

{
1

|a0| , δσ(p)
}

= max

{
1

|a0| , 1 +
|a1|
|a0| , . . . , 1 +

|ac0−1|
|a0| , 1 +

|ac0 |
|a0| + |ac0+1|+ · · ·+ |as0 |

}
≥ max

{
1

|a0| , 1 +
|a1|
|a0| , 1 +

|a2|
|a0| , . . . , 1 +

|as0 |
|a0|
}
.

In addition, from (6.5), for k = 1, 2, . . . , �,

γσ,k(p) ≥ max
{
1 + |ask−1+1|, . . . , 1 + |ask |

} ≥ max

{
1 +

|ask−1+1|
|a0| , . . . , 1 +

|ask |
|a0|
}
.

Combining these results with (3.7) and the expression for C2(p)
−1, given in Theorem 6.4, we get

‖Mσ(p)
−1‖∞ ≥ ‖C2(p)

−1‖∞.

Proof of Part (i). If |a0| > 1 and c0 = 0, then

max

{
1

|a0| , δσ(p)
}
≥ 1

|a0| +
|a1|
|a0| + · · ·+

|as0 |
|a0| =

(
1

|a0| +
|a1|
|a0| + · · ·+

|as0 |
|a0| + 1

)
− 1

≥ max

{
1

|a0| , 1 +
|a1|
|a0| , 1 +

|a2|
|a0| , . . . , 1 +

|as0 |
|a0|
}
− 1 ,

and, for k = 1, 2, . . . , �,

γσ,k(p) ≥ max

{
1 +

|ask−1+1|
|a0| , . . . , 1 +

|ask |
|a0|
}
≥ max

{
1 +

|ask−1+1|
|a0| , . . . , 1 +

|ask |
|a0|
}
− 1.

Combining these results with (3.7) and the expression for C2(p)
−1, given in Theorem 6.4, we get

‖Mσ(p)
−1‖∞ ≥ ‖C2(p)

−1‖∞ − 1.

Proof of Part (j). From Part (i) and the fact that 1 ≤ ‖Mσ(p)
−1‖∞, it follows that ‖C2(p)

−1‖∞ ≤
‖Mσ(p)

−1‖∞ + 1 ≤ 2 ‖Mσ(p)
−1‖∞.

Although parts (a) and (b) of Theorem 6.6 tell us that ‖F (p�)−1‖∞ is essentially the sharpest
upper bound among those in (6.7) when |a0| ≥ 1, they do not establish whether or not ‖F (p�)−1‖∞
improves significantly Cauchy’s upper bound. Theorem 6.7 shows that it is possible to construct
polynomials for which ‖F (p�)−1‖∞ can be extremely smaller than Cauchy’s upper bound.
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Theorem 6.7. Let p(z) = zn +
∑n−1

k=0 akz
k be a monic polynomial of degree n ≥ 2 and a0 
= 0,

let p�(z) be the monic reversal polynomial of p(z), let UC(p) be the Cauchy’s upper bound for p(z),
and let F (p�) be the Fiedler companion matrix of p�(z) defined in (6.9). If the coefficients of p(z)
satisfy

max{|a1|, . . . , |an−2|} ≥ |a0|(|a0|+ |an−1| − 1) and |a0| > 1, (6.11)

then
UC(p)

‖F (p�)−1‖∞ ≥ |a0|
2

.

Proof. If the inequality (6.11) is satisfied, then

‖F (p�)−1‖∞ = max

{
1 +

|a1|
|a0| , . . . , 1 +

|an−2|
|a0| , |a0|+ |an−1|

}
= 1 +

1

|a0| max{|a1|, . . . , |an−2|}

and UC(p) = max{1 + |a1|, . . . , 1 + |an−1|} ≥ 1 + max{|a1|, . . . , |an−2|}. Therefore,
UC(p)

‖F (p�)−1‖∞ ≥ 1 + max{|a1|, . . . , |an−2|}
1 + 1

|a0|
max{|a1|, . . . , |an−2|}

≥ |a0|
2

,

where the last inequality is a particular case of the more general inequality (1+a)/(1+a/b) ≥ b/2,
which is valid for any positive numbers a > 0 and b > 0 such that 1 + a/2 ≥ b/2. Observe that
(6.11) guarantees that these conditions are satisfied with a = max{|a1|, . . . , |an−2|} and b = |a0|
(it may help to distinguish the cases |a0| > 2 and 2 ≥ |a0| > 1).

Theorem 6.7 states that if (6.11) is satisfied and |a0| is very large, then Cauchy’s upper bound
for the absolute values of the roots of a monic polynomial is much larger than the upper bound
‖F (p�)−1‖∞. Notice that, however, in order for (6.11) to hold when |a0| is large, there must be
another coefficient of p(z) whose absolute value is at least of order |a0|2. This is the case of the
following example that illustrates Theorem 6.7.

Example 6.8. Consider the monic polynomial p(z) = z3 + z2 + 102mz + 10m, for some integer
m > 0. For this polynomial we have the following upper bounds

|λ| ≤ ‖F (p�)−1‖∞ = 1 + 10m ≈ 10m,

|λ| ≤ UC(p) = 1 + 102m ≈ 102m, (Cauchy),

|λ| ≤
√
2 + 102m + 104m ≈ 102m, (Carmichael −Mason),

and max{|λ| : λ is a root of p(z)} ≈ 10m. We display also Carmichael-Mason’s upper bound just
for completeness, since according to the discussion just after Theorem 1.5, Carmichael-Mason’s
upper bound cannot improve Cauchy’s upper bound by a factor larger than

√
2. We observe

that the bound ‖F (p�)−1‖∞ is essentially optimal, while Cauchy’s and Carmichael-Mason’s upper
bounds are extremely larger than |λ| if m is large.

Although parts (f) and (g) of Theorem 6.6 tell us that
(‖F (p)−1‖∞

)−1
is essentially the sharpest

lower bound among those in (6.7) when |a0| ≤ 1, they do not establish whether or not this bound
improves significantly Cauchy’s lower bound. Theorem 6.9 shows that it is possible to construct

polynomials for which
(‖F (p)−1‖∞

)−1
can be extremely larger than Cauchy’s lower bound.

Theorem 6.9. Let p(z) = zn +
∑n−1

k=0 akz
k be a monic polynomial of degree n ≥ 2 and a0 
= 0,

let LC(p) be Cauchy’s lower bound for p(z), and let F (p) be the Fiedler matrix defined in (6.9). If
the coefficients of p(z) satisfy

max{|a2|, . . . , |an−1|} ≥ 1 + |a1|
|a0| , and |a0| ≤ 1, (6.12)
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then (‖F (p)−1‖∞
)−1

LC(p)
≥ 1

2|a0| . (6.13)

Proof. Conditions (6.12) and expression (6.9) imply

‖F (p)−1‖∞ = max

{
1 + |a1|
|a0| , 1 + |a2|, . . . , 1 + |an−1|

}
= 1 +max{|a2|, . . . , |an−1|},

and max{|a2|, . . . , |an−1|} ≥ 1. Also, we have that

LC(p)
−1 = max

{
1

|a0| , 1 +
|a1|
|a0| , . . . , 1 +

|an−1|
|a0|

}
≥ 1 +

max{|a2|, . . . , |an−1|}
|a0| .

Then
LC(p)

−1

‖F (p)−1‖∞ ≥ 1 + max{|a2|, . . . , |an−1|}/|a0|
1 + max{|a2|, . . . , |an−1|} ≥ 1

2|a0| .

The last inequality is a particular case of the general inequality (1 + a/b) /(1 + a) ≥ 1/(2b), which
is valid for any numbers such that b > 0 and a ≥ 1.

Theorem 6.9 states that if (6.12) is satisfied and |a0| is very small, then Cauchy’s lower bound
for the absolute values of the roots of a monic polynomial is much smaller than the lower bound(‖F (p)−1‖∞

)−1
. Note that in order for (6.12) to hold when |a0| is small, at least one of the

coefficients a2, . . . , an−1 must have a large absolute value. This is the case in Example 6.10, which
illustrates Theorem 6.9.

Example 6.10. Consider the monic polynomial p(z) = z3+2 ·10mz2+z+10−m, with m a positive
integer. For this polynomial we have the following lower bounds

|λ| ≥ (‖F (p)−1‖∞
)−1

=
1

1 + 2 · 10m ≈ 0.5 · 10−m,

|λ| ≥ LC(p) =
1

1 + 2 · 102m ≈ 0.5 · 10−2m, (Cauchy),

|λ| ≥ 10−m

√
2 + 10−2m + 4 · 102m ≈ 0.5 · 10−2m, (Carmichael−Mason),

and min{|λ| : λ is a root of p(z)} ≈ 0.7 · 10−m. As in Example 6.8, Carmichael-Mason’s bound is
displayed for completeness, since according to the discussion right after Theorem 1.5, Carmichael-
Mason’s lower bound cannot improve Cauchy’s lower bound by a factor larger than

√
2. We observe

that the bound
(‖F (p)−1‖∞

)−1
is almost optimal, while Cauchy’s and Carmichael-Mason’s bounds

are extremely smaller than |λ| if m is large.

6.3 Bounds from Frobenius norms of inverses of Fiedler ma-

trices

As we commented in the Section 6.1, the use of (6.1) with the Frobenius norm makes no sense
since all Fiedler matrices of a given monic polynomial have the same Frobenius norm (3.3) and,
therefore, we obtain exactly the same bounds as in part 4 of Theorem 1.5 in all cases. However,
the use of (6.6) with the Frobenius norm may produce new bounds, since the inverses of all
Fiedler matrices of a given monic polynomial do not have always the same Frobenius norm. In
fact, given p(z), ‖Mσ(p)

−1‖F depends only on tσ, i.e., on the number of initial consecutions or



80 CHAPTER 6. NEW BOUNDS FOR ROOTS OF POLYNOMIALS

inversions of σ (see Corollary 3.5). In this context, the purpose of this section is to study the

bounds
(‖Mσ(p)

−1‖F
)−1 ≤ |λ| ≤ ‖Mσ(p

�)−1‖F for the absolute values of the roots λ of a monic
polynomial p(z) and to compare them with Cauchy’s lower/upper bounds and with the bounds in
Theorem 6.5-(c). The main conclusion is that, although the new bounds coming from the Frobenius
norm may be sharper in certain situations, the improvements are never significative.

Theorem 6.11 is a direct consequence of (3.4) and (6.6).

Theorem 6.11. Let p(z) = zn +
∑n−1

k=0 akz
k be a monic polynomial of degree n ≥ 2 and a0 
= 0,

let σ : {0, 1, . . . , n− 1} → {1, . . . , n} be a bijection, and let tσ be the number of initial consecutions

or inversions of σ. If λ is a root of p(z), then
(‖Mσ(p)

−1‖F
)−1 ≤ |λ| ≤ ‖Mσ(p

�)−1‖F , that is,
1√

(n− 1) +
1+|a1|2+···+|atσ |2

|a0|2
+ |atσ+1|2 + · · ·+ |an−1|2

≤ |λ| and (6.14)

|λ| ≤
√
(n− 1) + |a0|2 + |an−1|2 + |an−2|2 + · · ·+ |an−tσ |2 +

|an−tσ−1|2 + · · ·+ |a1|2
|a0|2 . (6.15)

Given p(z), the bounds (6.14) and (6.15) depend only on tσ. On the other hand, the second
companion form C2(p) is a Fiedler matrix that corresponds to the maximum value of tσ, i.e.,
tσ = n− 1, while the matrix F (p) in (6.9) corresponds to the minimum value tσ = 1. This allows
us to prove Theorem 6.12 directly from (6.14)-(6.15). The reader should recall that the lower and

upper bounds of part 4 in Theorem 1.5 are, respectively,
(‖C2(p

�)‖F
)−1

and ‖C2(p)‖F , which are

equal, respectively, to
(‖C2(p)

−1‖F
)−1

and ‖C2(p
�)−1‖F , by Theorem 6.4.

Theorem 6.12. Let p(z) = zn +
∑n−1

k=0 akz
k be a monic polynomial of degree n ≥ 2 with a0 
= 0,

let p�(z) be the monic reversal polynomial of p(z), and let σ : {0, 1, . . . , n − 1} → {1, . . . , n} be a
bijection. Let C2(p) be the second Frobenius companion form of p(z), let F (p) be the Fiedler matrix
defined in (6.9), and let Mσ(p) be the Fiedler matrix of p(z) associated with σ. Then the following
statements hold.

(a) If |a0| ≥ 1, then ‖F (p�)−1‖F ≤ ‖Mσ(p
�)−1‖F .

(This means that F (p) gives the sharpest upper bound among the upper bounds in (6.15) when
|a0| ≥ 1.)

(b) If |a0| < 1, then ‖C2(p
�)−1‖F ≤ ‖Mσ(p

�)−1‖F .
(This means that the upper bound in part 4 of Theorem 1.5 is the sharpest upper bound among
the upper bounds in (6.15) when |a0| < 1.)

(c) If |a0| ≤ 1, then
(‖Mσ(p)

−1‖F
)−1 ≤ (‖F (p)−1‖F

)−1
.

(This means that F (p) gives the sharpest lower bound among the lower bounds in (6.14) when
|a0| ≤ 1.)

(d) If |a0| > 1, then
(‖Mσ(p)

−1‖F
)−1 ≤ (‖C2(p)

−1‖F
)−1

.
(This means that the lower bound in part 4 of Theorem 1.5 is the sharpest lower bound among
the lower bounds in (6.14) when |a0| > 1.)

Part (b) in Theorem 6.12 shows us that when |a0| < 1, the upper bounds in (6.15) are of no
interest, since all of them are larger than the upper bound in part 4 of Theorem 1.5, which is larger
than Carmichael-Mason upper bound, which in turn is larger than Cauchy’s upper bound divided
by
√
2. Analogously, part (d) in Theorem 6.12 shows us that when |a0| > 1, the lower bounds in

(6.14) are of no interest, since all of them are smaller than the lower bound in part 4 of Theorem
1.5.
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However, parts (a) and (c) of Theorem 6.12 suggest that the upper bound ‖F (p�)−1‖F and/or

the lower bound
(‖F (p)−1‖F

)−1
might improve in certain situations previously known upper/lower

bounds for the absolute values of the roots of monic polynomials. In fact, this is true, but Theorem
6.13 shows that these improvements are never larger than a factor

√
2, that is, the improvements

are never really significative. This is shown by comparing these bounds with those established in
Theorem 6.5.

Theorem 6.13. Let p(z) = zn +
∑n−1

k=0 akz
k be a monic polynomial of degree n ≥ 2 and a0 
= 0

and let F (p) be the Fiedler matrix of p(z) defined in (6.9). Then

(a)
1√
2
‖F (p�)−1‖∞ ≤ ‖F (p�)−1‖F ,

(b)
1√
2

(‖F (p)−1‖F
)−1 ≤ (‖F (p)−1‖∞

)−1
.

Proof. Part (a) follows from applying part (b) to p�(z). Therefore we only prove part (b). We
have that

‖F−1(p)‖F
‖F−1(p)‖∞ =

√
(n− 1) + 1

|a0|2
+ |a1|2

|a0|2
+ |a2|2 + · · ·+ |an−1|2

max
{

1
|a0|

+ |a1|
|a0|

, 1 + |a2|, 1 + |a3|, . . . , 1 + |an−1|
} .

Next, use

1

|a0| +
|a1|
|a0| ≤

√
2

√(
1

|a0|
)2

+

( |a1|
|a0|
)2

and 1 + |ai| ≤
√
2
√
1 + |ai|2, i = 2, . . . , n− 1,

and the result follows immediately.

6.4 Optimal bounds based on norms of diagonal similarities

The bounds in Theorem 1.5 and the ones that can be obtained from Fiedler matrices and their
inverses with the 1-, ∞-, and Frobenius norms (see, for instance, (6.10)) have an important
drawback: the lower bounds are always smaller than 1 and the upper bounds are always larger
than 1. This is a consequence of the presence of entries equal to 1 in any Fiedler matrix and
its inverse. For C1(p) and C2(p) an standard way to overcome this drawback is to use diago-
nal similarities, which do not change neither the eigenvalues nor the zero pattern, and to use
(1.32). More precisely, let D and D̃ be nonsingular diagonal matrices, then from (1.32) we get(
‖D̃−1Ci(p

�)D̃‖
)−1

≤ |λ| ≤ ‖D−1Ci(p)D‖, for i = 1, 2. Given a polynomial p(z), the selection

of a proper D (and/or D̃) may improve drastically the bounds, but a choice of D that is good
for certain polynomials may be bad for others, so the choice of proper diagonal similarities is not
immediate. Some specific D’s have been used to get the well-know Fujiwara’s [65] and Kojima’s
bounds [97] (see also [87, p. 319]). The use of diagonal similarities is also possible with Fiedler
matrices, both combined with (6.1) and (6.6), and it is possible to obtain explicit expressions of
the norms of the matrices involved in these bounds for the 1-,∞-, and Frobenius norms. However,
how to select proper diagonal matrices that improve the known bounds for wide classes of poly-
nomials is not clear. This problem requires further and extensive investigation and in this work
we limit ourselves to give some theoretical results on the optimal bounds that can be obtained
with this approach. In this context, it should be noted that the Fiedler matrix F (p) is a very
particular diagonal similarity of C2(p) if a0 
= 0 (both matrices are also similar if a0 = 0, but then
the similarity is not diagonal). In fact, F (p) is the only Fiedler matrix of p(z) that is diagonally
similar to C2(p), because other Fiedler matrices have a different zero pattern.
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All upper bounds presented in this chapter for the absolute values of the roots λ of p(z), and
the majority of the bounds existing in the literature, are functions only of the absolute values
of the coefficients of p(z). A well-known bound of this type is the unique positive real root of

u(z) = zn −∑n−1
k=0 |ak|zk, which will be denoted by R(p). The first proof that |λ| ≤ R(p) is

attributed to Cauchy [35]. This classical result is also proved in [165] as a corollary of Pellet’s
theorem and a recent proof can be found in [76, p.14]. Note that the fact that u(z) has a unique
positive real root, whenever ai 
= 0 for at least one i ∈ {0, 1, . . . , n− 1}, follows from Descartes’s
rule of signs. Among all bounds on |λ| that depend only on |ai|, for i = 0, 1, . . . , n−1, the sharpest
one is precisely R(p). This was stated in [165] and it is proved in Theorem 6.14 for completeness.

Theorem 6.14. [165, p.61] Let p(z) = zn +
∑n−1

k=0 akz
k be a monic polynomial with ai 
= 0

for at least one i ∈ {0, 1, . . . , n − 1}, and let R(p) be the unique positive real root of u(z) =

zn −∑n−1
k=0 |ak|zk. If B(p) is an upper bound on the absolute values of the roots of p(z) that is a

function only of |a0|, |a1|, . . . , |an−1|, then R(p) ≤ B(p).

Proof. Since B(p) depends only on |ai|, for i = 0, 1, . . . , n − 1, we have that B(p) = B(u) and,
since R(p) is a root of u(z) and is positive, we have that R(p) ≤ B(u) = B(p).

The optimality of R(p) makes it very interesting for the theoretical purpose of testing the
quality of other upper bounds for |λ| that depend only on the absolute values of the coefficients of
the polynomial. However, R(p) has a limited practical interest since its computation requires to
compute the root of a polynomial2. In the context of this section, the optimal bound R(p) is used
in Theorem 6.16, which establishes that for all Fiedler companion matrices of p(z) the optimal
upper bound that can be obtained by using the ∞-norm and diagonal similarities is, in all cases,
precisely R(p). However, this result is again mainly of theoretical interest, since there is not an
easy way of choosing the optimal diagonal similarity.

The proof of Theorem 6.16 requires to use one lemma and Proposition 2.20. Lemma 6.15 merges
Theorem 1, Corollary 1, and Corollary 2 in [145]. The concepts mentioned in the statement of
Lemma 6.15 are contained in [87]. Also, note that all the inequalities containing vectors should be
understood componentwise.

Lemma 6.15. Let A = (aij) ∈ Cn×n and let ρ(|A|) be the spectral radius of |A| = (|aij |). Then:

(a)
inf

D diagonal
‖D−1AD‖∞ = ρ(|A|).

(b) There exists a vector x = (xi) > 0 such that |A|x − ρ(|A|)x ≤ 0 if and only if

min
D diagonal

‖D−1AD‖∞ = ρ(|A|).

In this case, the minimum is attained at D′ = diag(x) := diag(x1, . . . , xn).

(c) If A is irreducible, then (b) holds and the minimum is attained in the right positive eigenvector
x of |A| corresponding to ρ(|A|), i.e., in the right Perron vector of |A|.

Recall that Proposition 2.20 states that a Fiedler matrix Mσ(p) is an irreducible matrix if and
only if p(0) 
= 0. Now, we are in the position of proving the main result of this section.

Theorem 6.16. Let p(z) = zn +
∑n−1

k=0 akz
k be a monic polynomial with with ai 
= 0 for at

least one i ∈ {0, 1, . . . , n − 1}, let σ : {0, 1, . . . , n − 1} → {1, . . . , n} be a bijection, let Mσ(p)
be the Fiedler matrix of p(z) associated with σ, and let R(p) be the unique positive real root of

u(z) = zn −∑n−1
k=0 |ak|zk. Then

2Although this root is a very special one, and fast methods for computing it can be easily devised.
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(a) R(p) is the spectral radius of |Mσ(p)|.
(b) We have

inf
D diagonal

‖D−1Mσ(p)D‖∞ = R(p).

(c) Moreover, if a0 
= 0 and if we denote by xσ(p) ∈ Rn the right Perron vector of |Mσ(p)|, then

min
D diagonal

‖D−1Mσ(p)D‖∞ = R(p), (6.16)

and the minimum is attained at D′ = diag(xσ(p)).

Proof. By Theorem 2.19, we have that u(z) = zn−∑n−1
k=0 |ak|zk is the characteristic polynomial of

the nonnegative matrix |Mσ(p)| = Mσ(u). The discussion at the beginning of this section implies
that R(p) ≥ |ν| for any other root ν of u(z), i.e., for any eigenvalue of Mσ(u). This proves part
(a). Part (b) follows from Lemma 6.15-(a). Finally, part (c) follows from Lemma 6.15-(c) and
Proposition 2.20.

Theorem 6.16-(b) does not guarantee that the infimum is attained and does not explain how to
find an optimal diagonal similarity if a0 = 0. However, in the case of the first Frobenius companion
matrix C1(p) this problem can be easily fixed. This is shown in Proposition 6.17.

Proposition 6.17. Let p(z) = zn+
∑n−1

k=0 akz
k be a monic polynomial with ai 
= 0 for at least one

i ∈ {0, 1, . . . , n− 1}, let C1(p) be the first Frobenius companion matrix of p(z), and let R(p) be the
unique positive root of u(z) = zn −∑ |ak|zk. If D = diag(R(p)n−1, . . . , R(p), 1), then

‖D−1C1(p)D‖∞ = R(p).

Proof. If xT =
[
R(p)n−1 · · · R(p) 1

]
, then it may be checked that |C1(p)|x = R(p)x. Since

x > 0, Theorem 6.16-(a) and Lemma 6.15-(b) imply the result.

It is natural to conjecture that a result similar to Proposition 6.17 also holds for any Fiedler

matrix just by replacing
[
R(p)n−1 · · · R(p) 1

]T
by the corresponding right Perron vector.

However, Example 6.18 shows that this is not true, since the right Perron vectors of the entrywise
absolute values of Fiedler matrices different that the first Frobenius companion matrices may have
zero entries when a0 = 0 and, so, we cannot apply Lemma 6.15-(b) based on the Perron vectors.

Example 6.18. Consider the four Fiedler matrices associated with a polynomial p(z) = z3+a2z+
a1z + a0 with ai 
= 0 for at least one i ∈ {0, 1, 2}, that is,

Mσ1
(p) =

⎡⎣−a2 −a1 −a0
1 0 0
0 1 0

⎤⎦ , Mσ2
(p) =

⎡⎣−a2 1 0
−a1 0 1
−a0 0 0

⎤⎦ ,
Mσ3

(p) =

⎡⎣−a2 −a1 1
1 0 0
0 −a0 0

⎤⎦ , and Mσ4
(p) =

⎡⎣−a2 1 0
−a1 0 −a0
1 0 0

⎤⎦ ,
and let R(p) be the unique positive root of u(z) = z3−|a2|z2−|a1|z−|a0|. It may be checked that
the eigenvectors of |Mσ1

(p)|, |Mσ2
(p)|, |Mσ3

(p)|, |Mσ4
(p)| associated with R(p) are, respectively,

xσ1
(p) =

⎡⎣R(p)2

R(p)
1

⎤⎦ , xσ2
(p) =

⎡⎣ 1
R(p)− |a2|

R(p)2 − |a2|R(p)− |a1|

⎤⎦ ,
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xσ3
(p) =

⎡⎣ R(p)
1

R(p)2 − |a2|R(p)− |a1|

⎤⎦ and xσ4
(p) =

⎡⎣ R(p)
R(p)2 − |a2|R(p)

1

⎤⎦ ,
which have nonnegative entries as a consequence of u(R(p)) = 0. If we denote by D1, D2, D3, D4

the diagonal matrices diag(xσ1
), diag(xσ2

), diag(xσ3
), diag(xσ4

) respectively, then D1 is the only
one that is nonsingular for any values of a2, a1, and a0. For example, consider the monic polynomial
of degree 3 with a0 = a1 = 0 and a2 
= 0. Then

xσ1
(p) =

⎡⎣|a2|2|a2|
1

⎤⎦ , xσ2
(p) =

⎡⎣10
0

⎤⎦ , xσ3
(p) =

⎡⎣|a2|1
0

⎤⎦ and xσ4
(p) =

⎡⎣|a2|0
1

⎤⎦ .
Explicit formulas for the eigenvectors of Fiedler matrices are available in the literature (see [45]

or Theorem 8.2 for a new way to obtain them), and this allows us to add further conditions on
the coefficients of the polynomial under which Proposition 6.17 can be extended to other Fiedler
matrices when a0 = 0. Since the general case is messy, we limit ourselves in Proposition 6.19 to
the Fiedler matrix F (p) in (6.9) that has played a very relevant role in this chapter.

Proposition 6.19. Let p(z) = zn +
∑n−1

k=0 akz
k be a monic polynomial with a0 = 0 and a1 
= 0,

let F (p) be the Fiedler matrix of p(z) defined in (6.9), and let R(p) be the unique positive root of

u(z) = zn −∑n−1
k=0 |ak|zk. If D = diag(R(p), R(p)u1(R(p)), . . . , R(p)un−2(R(p)), 1), then

‖D−1F (p)D‖∞ = R(p),

where, for k = 1, 2, . . . , n− 2, uk(z) is the degree-k Horner shift of u(z) (see Definition 2.6).

Proof. For brevity, we denoteR = R(p) in the proof. Let x :=
[
R Ru1(R) · · · Run−2(R) 1

]T
.

Then, it is easy to check that |F (p)|x = Rx, i.e., x is the Perron right vector of |F (p)|. Next, we
prove that x > 0. To this purpose, observe that the Horner shifts satisfy uk(z) = zuk−1(z)−|an−k|,
for k = 1, 2, . . . , n, and that un(z) = u(z). Since R > 0 is a root of u(z), the equation
u(z) = zun−1(z) − |a0|, together with a0 = 0, imply un−1(R) = 0. Also, since a1 
= 0, we
have 0 = un−1(R) = Run−2(R) − |a1| which implies un−2(R) = |a1|/R > 0. With this, the recur-
rence relation Ruk−1(R) = uk(R)+ |an−k| implies uj(R) > 0, for j = n−3, n−4, . . . , 1. Therefore,
the Perron vector x is a positive vector and Theorem 6.16-(a) and Lemma 6.15-(b) imply the
result.

One point that should be remarked on Theorem 6.16-(c) is related to the fact mentioned above
that, for a given eigenvalue of any Fiedler matrix, there exists a formula for the corresponding
eigenvector (see [45] or Theorem 8.2). This formula depends, of course, on the eigenvalue and also
on the Horner shifts of the polynomial, and is particularly simple in the cases of the Frobenius
companion matrices. A potential use of these formulas is to obtain “approximately optimal”
diagonal matrices to be used in ‖D−1Mσ(p)D‖∞. The idea would be to obtain first an upper
bound on the absolute values of the roots of a polynomial by some of the approaches explained in
this manuscript, to introduce this bound in the formula for the eigenvector of the corresponding
Fiedler matrix Mσ(u) for getting a vector y, and to take D = diag(y). This process can be iterated.
This and other approaches for getting good bounds via diagonal similarities will be investigated in
the near future.

Another interesting point to be commented is that a similar approach to the one explained in
this section is possible for the inverses of Fiedler matrices. We do not present here all the details, but
just the main ideas. Note that by Theorem 3.2, we have |Mσ(p)

−1| = Mσ(l)
−1, where l(z) = zn +∑n−1

k=1 |ak|zk−|a0|, and, moreover, l(z) has a unique positive real root [165], that we denote by r(p).
In addition, a nonsingular matrix is irreducible if and only if its inverse is irreducible. Therefore,



6.4. OPTIMAL BOUNDS BASED ON NORMS OF DIAGONAL SIMILARITIES 85

r(p)−1 is the Perron eigenvalue of |Mσ(p)
−1| and minD diag ‖D−1Mσ(p)

−1D‖∞ = r(p)−1. Finally,
note that the developments in this section, and the corresponding ones for inverses of Fiedler
matrices, can be applied to the Fiedler matrices of p�(z) and their inverses and, therefore, the
diagonal similarities of all lower and upper bounds in (6.1) and (6.6) for the 1-norm are covered.
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Chapter 7

Condition numbers for inversion of

Fiedler matrices

As we said in Section 1.3, Frobenius companion matrices possess several properties that are un-
desirable numerically, and some of these properties are a consequence of having large condition
number for inversion. For this reason we investigate in this chapter the condition numbers for in-
version of Fiedler matrices, with the purpose of comparing them and to provide a simple criterion
that allows us to determine in advance which Fiedler matrices have the smallest condition number.

The first point to be remarked is that there are no explicit expressions for the singular values
of other Fiedler matrices than the Frobenius companion matrices (see Chapter 4), which prevents
the use of the spectral norm in our developments. We have used instead the Frobenius norm
which satisfies κ2(A) ≤ κF (A) ≤

√
nκ2(A) and n ≤ κF (A), in contrast with 1 ≤ κ2(A). These

inequalities point out that studying ratios of condition numbers using the 2-norm or the Frobenius
norm is essentially equivalent from a practical point of view.

7.1 Condition numbers for inversion of Fiedler matrices

We start by presenting in Theorem 7.1 an explicit expression for the condition number of any Fiedler
matrix in the Frobenius norm, as an immediate consequence of Corollary 3.5. This expression will
allow us to easily establish several relevant properties of these condition numbers. The quantity
tσ, that is, the number of initial consecutions or inversions of σ (see Part (a) in Definition 2.8) will
play an important role in this chapter.

Theorem 7.1. Let p(z) = zn +
∑n−1

k=0 akz
k be a monic polynomial of degree n ≥ 2 with a0 
= 0,

let σ : {0, 1, . . . , n− 1} → {1, . . . , n} be a bijection, let Mσ be the Fiedler matrix of p(z) associated
with σ, and let tσ be the number of initial consecutions or inversions of σ. Define

N(p)2 := (n− 1) + |a0|2 + |a1|2 + · · ·+ |an−1|2.

Then,

κ2
F (Mσ) = N(p)2

(
(n− 1) +

1 + |a1|2 + · · ·+ |atσ |2
|a0|2 + |atσ+1|2 + · · ·+ |an−1|2

)
. (7.1)

Corollary 7.2 gives crude lower and upper bounds on κF (Mσ) that are independent on σ
and show that, for any σ, κF (Mσ) is large if and only if |a0| is small or |ai| is large for some
i = 0, 1, . . . , n− 1 (or both).

87
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Corollary 7.2. Let p(z) = zn+
∑n−1

k=0 akz
k be a monic polynomial of degree n ≥ 2 with a0 
= 0, let

σ : {0, 1, . . . , n−1} → {1, . . . , n} be a bijection, and let Mσ be the Fiedler matrix of p(z) associated
with σ.

(a) If |a0| ≤ 1, then√
(n− 1) + |a1|2 + · · ·+ |an−1|2

|a0| ≤ κF (Mσ) ≤ n+ |a1|2 + · · ·+ |an−1|2
|a0| .

(b) If |a0| > 1, then√
(n− 1) + |a0|2 + |a1|2 + · · ·+ |an−1|2 ≤ κF (Mσ) ≤ (n− 1) + |a0|2 + |a1|2 + · · ·+ |an−1|2 .

The proof of Corollary 7.2 is omitted since it follows trivially from Theorem 7.1. We would
like to remark that it is natural that κF (Mσ) is large if |a0| is small, because Mσ is singular when
a0 = 0. However, it might not be so clear why κF (Mσ) is large, i.e., Mσ is close in relative distance
to a singular matrix, if |ai| is large for some i = 0, 1, . . . , n − 1. The reason relies on Theorem
2.19-(d), because if some |ai| � 1, then a tiny relative normwise perturbation can turn one of
the entries equal to 1 in Mσ into 0 and can make the matrix singular. This property shows that
“representing” a polynomial p(z) via a Fiedler companion matrix is not convenient if some |ai| � 1
because the “structural” entries equal to one are fragile under non-structured tiny perturbations.

Another direct consequence of Theorem 7.1 is Corollary 7.3, which gives a necessary and suf-
ficient condition for two Fiedler matrices to have the same condition numbers for any monic
polynomial p(z).

Corollary 7.3. Let Pn = {zn +
∑n−1

k=0 akz
k : a0 
= 0} be the set of monic polynomials of degree

n ≥ 2 without roots equal to 0. Let σ1, σ2 : {0, 1, . . . , n − 1} → {1, . . . , n} be two bijections and
let tσ1

and tσ2
be, respectively, the numbers of initial consecutions or inversions of σ1 and σ2. Let

Mσ1
(p) and Mσ2

(p) be, respectively, the Fiedler matrices of p ∈ Pn associated with σ1 and σ2.
Then, tσ1

= tσ2
if and only if κF (Mσ1

(p)) = κF (Mσ2
(p)) for all p ∈ Pn.

Proof. It is obvious that tσ1
= tσ2

implies κF (Mσ1
(p)) = κF (Mσ2

(p)) for all p ∈ Pn by (7.1).
To prove the converse, assume that κF (Mσ1

(p)) = κF (Mσ2
(p)) for all p ∈ Pn and proceed by

contradiction, i.e., assume tσ1

= tσ2

. More precisely assume without loss of generality that tσ1
<

tσ2
. Take p(z) such that a0 = 2, atσ2

= 1, and ai = 0 for i 
= 0, tσ2
. Then κF (Mσ1

(p)) =
κF (Mσ2

(p)) and (7.1) imply 1/4 + 1 = (1 + 1)/4, which is a contradiction.

Example 7.4. In this example all considered Fiedler matrices correspond to the same polynomial
p(z). The condition numbers in Frobenius norm of the Frobenius companion matrices C1 and C2

are equal. This is obvious because C2 = CT
1 . It is however somewhat surprising that the condition

numbers of the two pentadiagonal Fiedler matrices P1 and P2 introduced in (2.7) are, in general,
different. This follows from Corollary 7.3 and the fact tσ1

= 1 for P1 and tσ2
= 2 for P2 (see

Section 2.2). In fact, we will see in Theorem 7.10 that these condition numbers can be arbitrarily
different for properly chosen polynomials.

7.2 Ordering Fiedler matrices according to condition num-

bers in the Frobenius norm

Given a monic polynomial p(z) = zn +
∑n−1

k=0 akz
k of degree n ≥ 2 with a0 
= 0, and a number t

such that 1 ≤ t ≤ n− 1, Corollary 7.3 establishes that all Fiedler matrices of p(z) in the set

St(p) := {Mσ(p) : tσ = t}
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have the same condition number κF (Mσ(p)). In the generic case a0 
= −1 (recall Corollary 2.18)
the cardinality of St(p) is given by

|St(p)| =
{

2n−1−t, if t < n− 1,
2, if t = n− 1.

(7.2)

This can be seen as follows. If tσ = n − 1, then σ has n − 1 consecutions and no inversions, or
vice versa. This corresponds to the two classical Frobenius companion matrices. If tσ = t < n− 1,
then σ has consecutions at 0, 1, . . . , t − 1 and an inversion at t, or vice versa. For each of these
two cases, we can select freely the consecutions/inversions at t+ 1, . . . , n− 2. This can be done in
2n−2−t different ways, that according to Algorithm 1 in Theorem 2.16 give each of them a different
Fiedler matrix. The value of t in St(p) and expression (7.1) allow us to order all Fiedler matrices of
p(z) by increasing/decreasing condition numbers in Corollary 7.5. Observe that there are only three
possible different orders of this type, since the order via increasing/decreasing condition numbers is
the same for all polynomials with |p(0)| < 1, it is also the same for all polynomials with |p(0)| > 1,
and also the same for all polynomials with |p(0)| = 1.

Corollary 7.5. Let p(z) = zn +
∑n−1

k=0 akz
k be a monic polynomial of degree n ≥ 2 with a0 
= 0,

and let t be a number such that 1 ≤ t ≤ n− 1. Let St(p) = {Mσ(p) : tσ = t} be the set of Fiedler
matrices of p(z) associated with bijections σ whose number of initial consecutions or inversions is
equal to t. Define

κ(t) := κF (Mσ(p)), for Mσ(p) ∈ St(p), (7.3)

which does not depend on the specific bijection σ as long as tσ = t. Then the following results hold.

(a) If |a0| < 1, then κ(1) ≤ κ(2) ≤ · · · ≤ κ(n− 1).

(b) If |a0| = 1, then κ(1) = κ(2) = · · · = κ(n− 1).

(c) If |a0| > 1, then κ(1) ≥ κ(2) ≥ · · · ≥ κ(n− 1).

Proof. The result follows from (7.1), since this expression makes obvious that if |a0| < 1, then
κF (Mσ(p)) increases as the number tσ of coefficients |ai|2 divided by |a0|2 increases. The other
cases are proved in a similar way.

Remark 7.6. From Corollary 7.5 we see that if |a0| < 1, then the two Frobenius companion
matrices have the largest condition number among all Fiedler matrices of p(z), since the set
Sn−1(p) = {Mσ(p) : tσ = n − 1} contains only the two Frobenius companion matrices. On
the contrary, the Fiedler matrices in S1(p) = {Mσ(p) : tσ = 1} have the smallest condition num-
ber among all Fiedler matrices of p(z) if |a0| < 1. If n is large, then there are many Fiedler
matrices with smallest condition number, since according to (7.2), S1(p) has 2n−2 elements. In
particular, S1(p) contains the pentadiagonal Fiedler matrices P1 and P3 = PT

1 , in (2.7), but not
the pentadiagonal matrices P2 and P4 = PT

2 , also in (2.7), which have a larger condition number
if |a0| < 1.

If |a0| > 1, then similar remarks hold but with reverse order for the magnitudes of the condition
numbers. In this case, the Frobenius companion matrices have the smallest condition number
among all Fiedler matrices of p(z).

The clear and simple ordering of Fiedler matrices according to condition numbers in the Frobe-
nius norm presented in Corollary 7.5 does not hold for condition numbers in other matrix norms
often used in the literature as, for instance, the ‖ · ‖1, ‖ · ‖2, and ‖ · ‖∞ [87]. This is one of the
reasons why we have chosen to use the Frobenius norm in this work. Of course, the equivalence
of all these norms via constants smaller than or equal to n implies that the order in Corollary 7.5
between κ(t) and κ(t + 1) can be broken in other norms only if κ(t) and κ(t + 1) are not very
different. We illustrate these points in Example 7.7, which also shows that an ordering based on
the number of initial consecutions or inversions of σ is not possible for these other norms.
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Example 7.7. In Figure 7.2.1 we consider the polynomials p1(z) = z5+0.01z4+0.01z3+0.01z2+
0.01z + 0.01 and p2(z) = z5 + 10z4 + z3 + z2 + 10z + 0.01, both of degree 5. We have constructed
with MATLAB the eight Fiedler matrices for each of these polynomials associated with bijections
having an inversion at 0. The matrices associated with bijections having a consecution at 0 are the
transposes of the previous ones and have not been considered for simplicity. Each of these Fiedler
matrices has been labeled with an index from 1 to 8, according to the following table.

index CISS(σ) tσ index CISS(σ) tσ
1 (0, 4) 4 5 (0, 1, 1, 2) 1
2 (0, 3, 1, 0) 3 6 (0, 1, 1, 1, 1, 0) 1
3 (0, 2, 1, 1) 2 7 (0, 1, 2, 1) 1
4 (0, 2, 2, 0) 2 8 (0, 1, 3, 0) 1

These indices are represented in the horizontal axes of the plots in Figure 7.2.1. For these 8 Fiedler
matrices of each polynomial p1(z) and p2(z), we have computed their condition numbers in the
2-norm (that is, the ratio between the largest and smallest singular values) and we have ordered
the matrices by decreasing magnitudes of these condition numbers, i.e., the matrix with the largest
condition number is in the first position. The positions of the Fiedler matrices with respect this
ordering are represented in the vertical axes of the plots in Figure 7.2.1 by using the symbol “•”.
In addition, the positions of the same Fiedler matrices with respect the ordering corresponding to
decreasing Frobenius condition numbers are represented in the vertical axes by using the symbol
“+”. We observe that the ordering with respect the 2-norm condition number differs completely
from p1(z) to p2(z), and in both cases is very different from the one corresponding to Frobenius
condition numbers. Other interesting point to be remarked is that, both for p1(z) and p2(z), the
condition numbers in the 2-norm of the eight considered Fiedler matrices are all different to each
other, and so the same value of tσ does not imply the same condition number in the 2-norm, by
contrast with the behaviour in the Frobenius norm. This is not seen in Figure 7.2.1, but it may
be easily checked by the reader with MATLAB. Finally, we mention that the condition numbers
in the Frobenius norm for the Fiedler matrices of p1(z) range from 200.063 to 200.093, while the
ones corresponding to p2(z) range from 1.443 · 104 to 2.045 · 104.

In Figure 7.2.2, we repeat the same experiment for the 1-norm instead of the 2-norm and for
the polynomials p3(z) = z5 + 10z4 + 100z3 + 10z2 + 100z + 0.01 and p4(z) = z5 + 100z4 + 10z3 +
100z2 + 10z + 0.01. The results obtained are similar to those in the 2-norm. In this case, the
condition numbers in the Frobenius norm for the Fiedler matrices of p3(z) range from 1.421 · 106
to 2.020 · 106, while the corresponding to p4(z) range from 2.020 · 106 to 0.144 · 106.

We do not show experiments in the∞-norm, because the∞-norm condition number of a matrix
is the 1-norm condition number of its transpose, and the transpose of any Fiedler matrix is another
Fiedler matrix with the same number of initial consecutions or inversions.

7.3 The ratio of the condition numbers of two Fiedler ma-

trices

The important fact in applications is not whether one matrix is better conditioned than another.
The really important fact is to know whether the condition number of one matrix is much smaller
than the condition number of another or not. Therefore, we study in this section the ratio between
the condition numbers in the Frobenius norm of any pair of Fiedler matrices of a fixed polynomial
p(z) that have different numbers of initial consecutions or inversions.

Lemma 7.8 states a simple technical result that will be used in the rest of this section.



7.3. THE RATIO OF THE CONDITION NUMBERS OF TWO FIEDLER MATRICES 91

(a) p1(z) = z5 + 0.01z4 + 0.01z3 + 0.01z2 + 0.01z + 0.01 (b) p2(z) = z5 + 10z4 + z3 + z2 + 10z + 0.01

Figure 7.2.1: Ordering Fiedler matrices of a fixed polynomial according to decreasing condition numbers in the
2-norm (•) and in the Frobenius norm (+).

Lemma 7.8. Let p(z) = zn +
∑n−1

k=0 akz
k be a monic polynomial of degree n ≥ 2 with a0 
= 0, let

σ, μ : {0, 1, . . . , n − 1} → {1, . . . , n} be two bijections, let Mσ and Mμ be the Fiedler matrices of
p(z) associated with σ and μ, and let tσ and tμ be the numbers of initial consecutions or inversions
of σ and μ. Assume that tσ < tμ and define

gσ,μ := (n− 1) +
1 + |a1|2 + · · ·+ |atσ |2

|a0|2 + |atμ+1|2 + · · ·+ |an−1|2, (7.4)

where if tμ = n− 1, then |atμ+1|2 + · · ·+ |an−1|2 is not present. Then

(
κF (Mμ)

κF (Mσ)

)2

=

gσ,μ +
|atσ+1|2 + · · ·+ |atμ |2

|a0|2
gσ,μ + |atσ+1|2 + · · ·+ |atμ |2

and (
κF (Mσ)

κF (Mμ)

)2

=
gσ,μ + |atσ+1|2 + · · ·+ |atμ |2

gσ,μ +
|atσ+1|2 + · · ·+ |atμ |2

|a0|2
.

Proof. The result is another corollary of (7.1). Simply note that

κ2
F (Mμ) = N(p)2

(
gσ,μ +

|atσ+1|2 + · · ·+ |atμ |2
|a0|2

)
and κ2

F (Mσ) = N(p)2
(
gσ,μ + |atσ+1|2 + · · ·+ |atμ |2

)
.

The ratios between condition numbers in Lemma 7.8 are functions of the coefficients of the
polynomial p(z) defined through somewhat involved formulas. Theorem 7.9 provides simple upper
bounds for these ratios, which show that distinct Fiedler matrices of the same polynomial p(z)
may have very different condition numbers only if some of the coefficients a2, a3, . . . , an−1 of the
polynomial is very large, and a0 is very small or very large.
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(a) p3(z) = z5 + 10z4 + 100z3 + 10z2 + 100z + 0.01 (b) p4(z) = z5 + 100z4 + 10z3 + 100z2 + 10z + 0.01

Figure 7.2.2: Ordering Fiedler matrices of a fixed polynomial according to decreasing condition numbers in the
1-norm (•) and in the Frobenius norm (+).

Theorem 7.9. Let p(z) = zn +
∑n−1

k=0 akz
k be a monic polynomial of degree n ≥ 2 with a0 
= 0,

let σ, μ : {0, 1, . . . , n− 1} → {1, . . . , n} be two bijections, let Mσ and Mμ be the Fiedler matrices of
p(z) associated with σ and μ, and let tσ and tμ be the numbers of initial consecutions or inversions
of σ and μ. Assume that tσ < tμ and define

Sσ,μ :=

tμ∑
i=tσ+1

|ai|2 and A = max
2≤i≤n−1

|ai|. (7.5)

Then, the following statements hold.

(a) If |a0| < 1, then

1 ≤ κF (Mμ)

κF (Mσ)
≤ min

{√
1 + Sσ,μ ,

1

|a0|
}
≤ min

{√
1 + (n− 2)A2 ,

1

|a0|
}

. (7.6)

(b) If |a0| > 1, then

1 ≤ κF (Mσ)

κF (Mμ)
≤ min

{√
1 +

Sσ,μ

n− 1
, |a0|

}
≤ min

{√
1 +

n− 2

n− 1
A2 , |a0|

}
. (7.7)

Observe that the rightmost upper bounds in parts (a) and (b) are both independent of σ and μ.

Proof. Part (a). From Corollary 7.5 and Lemma 7.8, we have

1 ≤
(
κF (Mμ)

κF (Mσ)

)2

≤
gσ,μ +

|atσ+1|2 + · · ·+ |atμ |2
|a0|2

gσ,μ
= 1 +

|atσ+1|2 + · · ·+ |atμ |2
gσ,μ |a0|2

≤ 1 + |atσ+1|2 + · · ·+ |atμ |2 = 1 + Sσ,μ ,

where in the last inequality we have used that 1 < gσ,μ |a0|2. To get the rightmost bound in Part
(a), recall that 1 ≤ tσ , tμ ≤ (n− 1). So Sσ,μ ≤ (n− 2)A2. Next, we bound the ratio of condition
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numbers by 1/|a0|. To this purpose define y := Sσ,μ/gσ,μ ≥ 0 and α := 1/|a0|2 > 1. Therefore
Lemma 7.8 implies (

κF (Mμ)

κF (Mσ)

)2

=
1 + α y

1 + y
. (7.8)

Observe that the function g(y) = (1 + α y)/(1 + y) satisfies: (i) g(0) = 1; (ii) limy→∞ g(y) = α;
and (iii) g′(y) = (α − 1)/(1 + y)2 > 0. Therefore, 1 ≤ g(y) < α, if y ≥ 0, and (7.8) implies that
κF (Mμ)/κF (Mσ) < 1/|a0|.

Part (b). From Corollary 7.5 and Lemma 7.8, we have

1 ≤
(
κF (Mσ)

κF (Mμ)

)2

≤ gσ,μ + |atσ+1|2 + · · ·+ |atμ |2
gσ,μ

= 1 +
|atσ+1|2 + · · ·+ |atμ |2

gσ,μ
≤ 1 +

Sσ,μ

n− 1
,

where in the last inequality we have used that n − 1 < gσ,μ. To get the rightmost bound in Part
(b), we use again that Sσ,μ ≤ (n − 2)A2. Next, we bound the ratio of condition numbers by |a0|.
To this purpose define y := Sσ,μ/gσ,μ ≥ 0 and α := 1/|a0|2 < 1. Therefore Lemma 7.8 implies(

κF (Mσ)

κF (Mμ)

)2

=
1 + y

1 + α y
. (7.9)

Observe that the function h(y) = (1 + y)/(1 + α y) satisfies: (i) h(0) = 1; (ii) limy→∞ h(y) = 1/α;
and (iii) h′(y) = (1−α)/(1+αy)2 > 0. Therefore, 1 ≤ h(y) < 1/α, if y ≥ 0, and (7.9) implies that
κF (Mσ)/κF (Mμ) < |a0|.

It is obvious that there exist polynomials p(z) for which the upper bound min
{√

1 + Sσ,μ , 1/|a0|
}

in (7.6) (resp. min
{√

1 + Sσ,μ/(n− 1) , |a0|
}
in (7.7)) can be as large as desired, but this does not

mean necessarily that the ratio κF (Mμ)/κF (Mσ) (resp. κF (Mσ)/κF (Mμ)) for these polynomials

is large. In fact, note that min
{√

1 + Sσ,μ , 1/|a0|
}
(resp. min

{√
1 + Sσ,μ/(n− 1) , |a0|

}
) does

not depend of the coefficients of the polynomial that define the magnitude gσ,μ in (7.4), with the
exception of a0. Therefore, according to Lemma 7.8, the upper bounds in (7.6) or (7.7) cannot
determine the actual values of the ratios κF (Mμ)/κF (Mσ) or κF (Mσ)/κF (Mμ). Theorem 7.10
shows that if we fix a priori an arbitrary value of the upper bound in (7.6) or in (7.7), then there
exist polynomials for which this upper bound is almost attained and another polynomials for which
the ratios of the condition numbers of Fiedler matrices are arbitrarily close to 1. Note that, in
particular, Theorem 7.10 shows that there are polynomials for which the ratios of the Frobenius
condition numbers of two distinct Fiedler matrices can be arbitrarily large or arbitrarily small.

Theorem 7.10. Let σ, μ : {0, 1, . . . , n− 1} → {1, . . . , n} be two bijections and let tσ and tμ be the
numbers of initial consecutions or inversions of σ and μ. Assume that tσ < tμ. For any monic

polynomial p(z) = zn+
∑n−1

k=0 akz
k of degree n ≥ 2, let gσ,μ(p) be the expression in (7.4), let Sσ,μ(p)

be the first expression in (7.5), and let Mσ(p) and Mμ(p) be the Fiedler matrices of p(z) associated
with σ and μ. Let b > 1 be a given real number and define the sets of polynomials

Lb :=

{
p(z) = zn +

n−1∑
k=0

akz
k : min

{√
1 + Sσ,μ(p) ,

1

|a0|
}

= b, 0 
= |a0| < 1

}
,

Mb :=

{
p(z) = zn +

n−1∑
k=0

akz
k : min

{√
1 +

Sσ,μ(p)

n− 1
, |a0|

}
= b, 1 < |a0|

}
.

Then the following statements hold.
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(a) For all ε > 0, there exists p(z) ∈ Lb such that

1 ≤
(
κF (Mμ(p))

κF (Mσ(p))

)2

≤ 1 + ε.

In particular, this happens for any p(z) ∈ Lb whose coefficient a1 satisfies Sσ,μ(p)/ε ≤ |a1|2.
(b) For all ε > 0, there exists p(z) ∈ Lb such that

b
2

1 + ε
≤
(
κF (Mμ(p))

κF (Mσ(p))

)2

≤ b
2.

In particular, this happens for any p(z) ∈ Lb such that Sσ,μ(p) satisfies
max{1/|a0|2, gσ,μ(p)/ε} ≤ Sσ,μ(p). Note that in this case 1/|a0| = b.

(c) For all ε > 0, there exists p(z) ∈Mb such that

1 ≤
(
κF (Mσ(p))

κF (Mμ(p))

)2

≤ 1 + ε.

In particular, this happens for any p(z) ∈Mb whose coefficient a1 satisfies
(|a0|2 Sσ,μ(p)/ε) ≤ |a1|2.

(d) For all ε > 0, there exists p(z) ∈Mb such that

b
2

1 + ε
≤
(
κF (Mσ(p))

κF (Mμ(p))

)2

≤ b
2.

In particular, this happens for any p(z) ∈ Mb such that |a0| = b and Sσ,μ(p) satisfies
(|a0|2 gσ,μ(p)/ε) ≤ Sσ,μ(p).

Proof. Part (a). Let p(z) ∈ Lb be such that its coefficient a1 satisfies Sσ,μ(p)/ε ≤ |a1|2. In the
following developments all magnitudes refer to p(z), but the dependence on p(z) is dropped for
simplicity. From Corollary 7.5 and Lemma 7.8, we get

1 ≤
(
κF (Mμ)

κF (Mσ)

)2

=

1 +
Sσ,μ

gσ,μ |a0|2

1 +
Sσ,μ
gσ,μ

≤ 1 +
Sσ,μ

gσ,μ |a0|2
≤ 1 +

Sσ,μ

|a1|2
≤ 1 + ε .

Part (b). Let p(z) ∈ Lb be such that Sσ,μ(p) satisfies max{1/|a0|2, gσ,μ(p)/ε} ≤ Sσ,μ(p). In the
following developments all magnitudes refer to p(z), but the dependence on p(z) is dropped for
simplicity. From Lemma 7.8 and Theorem 7.9, we get

b
2 ≥
(
κF (Mμ)

κF (Mσ)

)2

=

1+
Sσ,μ

gσ,μ |a0|2

1 +
Sσ,μ
gσ,μ

≥
Sσ,μ

gσ,μ |a0|2

1 +
Sσ,μ
gσ,μ

≥
Sσ,μ

gσ,μ |a0|2

ε
Sσ,μ
gσ,μ +

Sσ,μ
gσ,μ

=

1
|a0|2
1 + ε

=
b
2

1 + ε
.

Part (c). Let p(z) ∈Mb be such that its coefficient a1 satisfies (|a0|2 Sσ,μ(p)/ε) ≤ |a1|2. In the
following developments all magnitudes refer to p(z), but the dependence on p(z) is dropped for
simplicity. From Corollary 7.5 and Lemma 7.8, we get

1 ≤
(
κF (Mσ)

κF (Mμ)

)2

=
1 +

Sσ,μ
gσ,μ

1 +
Sσ,μ

gσ,μ |a0|2
≤ 1 +

Sσ,μ

gσ,μ
≤ 1 +

Sσ,μ

|a1|2
|a0|2

≤ 1 + ε .
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Part (d). Let p(z) ∈Mb be such that |a0| = b and Sσ,μ(p) satisfies (|a0|2 gσ,μ(p)/ε) ≤ Sσ,μ(p).
In the following developments all magnitudes refer to p(z), but the dependence on p(z) is dropped
for simplicity. From Lemma 7.8 and Theorem 7.9, we get

b
2 ≥
(
κF (Mσ)

κF (Mμ)

)2

=
1 +

Sσ,μ
gσ,μ

1 +
Sσ,μ

gσ,μ |a0|2
≥

Sσ,μ
gσ,μ

ε
Sσ,μ

gσ,μ |a0|2 +
Sσ,μ

gσ,μ |a0|2
=
|a0|2
1 + ε

=
b
2

1 + ε
.

Remark 7.11. We have shown in Theorem 7.10 how to easily construct families of polynomials
where the upper bounds in Theorem 7.9 for the ratios of condition numbers of different Fiedler
matrices of the same polynomial are essentially attained, and other families where they are far
from being attained. The reader should keep in mind that there are other families of polynomials
satisfying the same properties.

Corollary 7.5 and Theorem 7.10 suggest that for polynomials with |p(0)| < 1 one should avoid
the use of the classical Frobenius companion matrices and to use, instead, Fiedler matrices with a
number of initial consecutions or inversions equal to one, as for instance P1 in (2.7) or F in (2.8).
This would lead to use matrices with the smallest possible condition number that, in addition,
for certain polynomials may be arbitrarily smaller than the condition numbers of other Fiedler
matrices. For polynomials with |p(0)| > 1 the situation is the opposite, and Frobenius companion
matrices are the best choice from the point of view of condition numbers for inversion. However,
Theorem 7.12 tells us that, given a monic polynomial p(z), if there are two distinct Fiedler matrices
with very different condition numbers, then both matrices are very ill-conditioned. Therefore,
different Fiedler matrices may have very different condition numbers but only in cases where these
matrices are nearly singular. The reciprocal is not true, because there may be two different Fiedler
matrices nearly singular but having exactly the same condition number, as it is shown in Corollaries
7.2 and 7.5-(b).

Theorem 7.12. Let p(z) = zn +
∑n−1

k=0 akz
k be a monic polynomial of degree n ≥ 2 with a0 
= 0,

let σ, μ : {0, 1, . . . , n− 1} → {1, . . . , n} be two bijections, let Mσ and Mμ be the Fiedler matrices of
p(z) associated with σ and μ, and let tσ and tμ be the numbers of initial consecutions or inversions
of σ and μ. Assume that tσ < tμ. Then the following results hold.

(a) If |a0| < 1, then

1 ≤
(
κF (Mμ)

κF (Mσ)

)2

≤ κF (Mσ) ≤ κF (Mμ) .

(b) If |a0| > 1, then

1 ≤ κF (Mσ)

κF (Mμ)
≤ κF (Mμ) ≤ κF (Mσ) .

Proof. Part (a). From Theorem 7.10 and with the notation used there, we get

1 ≤
(
κF (Mμ)

κF (Mσ)

)2

=
κF (Mμ)

κF (Mσ)

κF (Mμ)

κF (Mσ)
≤ √1 + Sσ,μ

1

|a0| ≤ ‖Mσ‖F ‖M−1
σ ‖F ,

where the last inequality follows from Corollary 3.5.
Part (b). From Theorem 7.10 and with the notation used there, we get

1 ≤ κF (Mσ)

κF (Mμ)
≤ |a0| ≤ ‖Mσ‖F ‖M−1

σ ‖F ,

where the last inequality follows again from Corollary 3.5.
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Remark 7.13. The difference between the statements of parts (a) and (b) in Theorem 7.12 is
striking, but the next example shows that (κF (Mσ)/κF (Mμ))

2 cannot be used in part (b). Consider
the monic polynomial

p(z) = 104 + 2 z + 2 z2 + 2 · 105 z3 + 2 · 105 z4 + 2 z5 + 2 z6 + 3 z7 + z8

and the bijections σ and μ with consecution-inversion structure sequences CISS(σ) = (2, 1, 1, 2, 1, 0)
and CISS(μ) = (4, 2, 1, 0). In this case, κF (Mμ) = 8.124 · 106, κF (Mσ) = 8.005 · 1010, and
(κF (Mσ)/κF (Mμ))

2 = 9.709 · 107. However, we see in this example that (κF (Mσ)/κF (Mμ)) <<
κF (Mμ). We have observed the same behavior in all the examples that we have tested with large
values of κF (Mσ)/κF (Mμ). Therefore, we think that the result in part (b) of Theorem 7.12 can
be considerably improved.



Chapter 8

Pseudospectra and eigenvalue

condition numbers of Fiedler

matrices

In the numerical solution of a given problem, the forward error of a computed quantity (approxi-
mate solution) is the difference (in relative or absolute terms) between this quantity an the exact
solution of the problem. To measure the accuracy of the numerical method one needs to get sharp
bounds for the forward error. A basic inequality that relates the forward error with the condition
number and the backward error is [79, p. 97]:

forward error � condition number × backward error.

Then, in order to bound the forward error of the polynomial root finding problem solved as an
eigenvalue problem we need to compare both the conditioning and the backward error of both
problems. The analysis of the backward error of the polynomial root finding problem solved as an
eigenvalue problem is carried out in Chapter 9.

In this chapter, we compare the condition number of a given root of a monic polynomial p(z)
with the condition number of this root as an eigenvalue of any Fiedler matrix, and the pseudozero
sets of p(z) with the pseudospectra of the associated Fiedler matrices (recall from Section 1.2.2.2
that pseudozero sets and pseudospectra are tools that give insight into the sensitivity of the roots
of polynomials and the eigenvalues of matrices, respectively, to perturbations). In particular, in
Section 8.1 we present expressions for the condition numbers of the roots of p(z). In Section 8.2 we
give explicit formulas for the right and left eigenvectors of Fiedler matrices since they will be needed
to compute the eigenvalue condition numbers, and, then, in Section 8.3 we present expressions for
the eigenvalue condition numbers of Fiedler matrices associated with p(z). In Section 8.4 we
compare the eigenvalue condition numbers of Fiedler matrices with the condition numbers of the
roots of p(z), and, also, we compare the eigenvalue condition numbers of the Frobenius companion
matrices with the eigenvalue condition numbers of Fiedler matrices other than Frobenius ones.
Section 8.5 is devoted to the study of pseudospectra of Fiedler matrices, and to compare them
with the pseusozero sets of p(z). Finally, in Section 8.6 we present numerical experiments to
illustrate our theoretical results, and to study the effect of balancing Fiedler matrices from the
point of view of eigenvalue condition numbers and pseudospectra.

As in Section 1.2.2, in order to better express our results, we need to distinguish between norms
on the vector space of polynomials of degree less than or equal to n and norms on the vector space
of coefficients of monic polynomials (excluding the leading coefficient an = 1) of degree equal to
n. In particular, for a polynomial p(z) =

∑n
k=0 akz

k non necessarily monic, ‖p‖2 is the norm on

97
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the vector space of polynomials of degree less than or equal to n defined as

‖p‖2 =
√√√√ n∑

k=0

|ak|2.

In addition, for a monic polynomial p(z) = zn +
∑n−1

k=0 akz
k, we define |||p|||2 as

|||p|||2 =

√√√√n−1∑
k=0

|ak|2.

Notice that |||p|||2 is not a norm on the vector space of polynomials of degree less than or equal to n.
Also notice that, since we deal in this chapter with monic polynomials, we always have ‖p‖2 ≥ 1.

8.1 Condition numbers of roots of monic polynomials

Recall from Section 1.2.2.1 that the condition number κ(λ, p) and the coefficientwise condition
number cond(λ, p) of a nonzero simple root λ of a monic polynomial p(z) are, respectively,

κ(λ, p) := lim
ε→0

sup

{
|λ̃− λ|

ε|λ|
: λ̃ is a root of p̃(z) = z

n +

n−1∑
k=0

ãkz
k with |||p̃− p|||2 ≤ ε|||p|||2

}
, (8.1)

and

cond(λ, p) := lim
ε→0

sup

⎧⎨⎩ |λ̃− λ|

ε|λ|
: λ̃ is a root of p̃(z) = z

n +
n−1∑
k=0

ãkz
k with

√√√√n−1∑
k=0

∣∣∣∣ ãk − ak

ak

∣∣∣∣2 ≤ ε

⎫⎬⎭ . (8.2)

In Theorem 8.1 we derive computable formulas for the condition numbers κ(λ, p) and cond(λ, p).

Theorem 8.1. Let p(z) = zn +
∑n−1

k=0 akz
k be a monic polynomial of degree n, let λ be a simple

nonzero root of p(z), let Λ(z) and Λ̂(z) be the vectors

Λ(z) =
[
zn−1 · · · z 1

]T
and Λ̂(z) =

[
zn−1an−1 · · · za1 a0

]T
, (8.3)

and let κ(λ, p) and cond(λ, p) be the condition numbers defined in (8.1) and (8.2), respectively.
Then,

κ(λ, p) =
|||p|||2‖Λ(λ)‖2
|λ| · |p′(λ)| and cond(λ, p) =

‖Λ̂(λ)‖2
|λ| · |p′(λ)| . (8.4)

Proof. We only prove that κ(λ, p) = |||p|||2‖Λ(λ)‖2/(|λ| · |p′(λ)|), since a proof for cond(λ, p) =

‖Λ̂(λ)‖2/(|λ| · |p′(λ)|) can be obtained from the following proof with some minor modifications.
We first show that |||p|||2‖Λ(λ)‖2/(|λ| · |p′(λ)|) is an upper bound for κ(λ, p). For this, consider

a polynomial p̃(z) such that |||p̃− p|||2 ≤ ε|||p|||2, and write

0 = p(λ) = p(λ)− p(λ̃) + p(λ̃)− p̃(λ̃) + p̃(λ̃)

= p(λ)− p(λ̃) + p(λ̃)− p̃(λ̃)

= (λ− λ̃)p′(λ) + p(λ)− p̃(λ) + (λ̃− λ)(p′(λ)− p̃′(λ)) +O(|λ − λ̃|2),

where we have used that λ̃ is a root of p̃(z). Then, since p′(λ) 
= 0,

|λ− λ̃|
ε|λ| =

|p(λ)− p̃(λ) + (λ̃− λ)(p′(λ)− p̃′(λ)) +O(|λ − λ̃|2)|
ε|λ| · |p′(λ)|
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≤ |p(λ)− p̃(λ)|
ε|λ| · |p′(λ)| +

|λ̃− λ| · |p′(λ)− p̃′(λ)|
ε|λ| · |p′(λ)| +

O(|λ − λ̃|2)
ε|λ| · |p′(λ)|

≤ |||p̃− p|||2‖Λ(λ)‖2
ε|λ| · |p′(λ)| +

(n− 1)|λ− λ̃| · |||p̃− p|||2‖Λ(λ)‖2
ε|λ| · |p′(λ)| +

O(|λ − λ̃|2)
ε|λ| · |p′(λ)|

≤ |||p|||2‖Λ(λ)‖2
|λ| · |p′(λ)| +O(|λ− λ̃|) −−−→

ε−→0

|||p|||2‖Λ(λ)‖2
|λ| · |p′(λ)| ,

where we have used that |p(λ) − p̃(λ)| ≤ ∑n−1
k=0 |ak − ãk| · |λk| ≤ |||p− p̃|||2‖Λ(λ)‖2 (by Cauchy-

Schwarz inequality), and that |||p′ − p̃′||| ≤ (n− 1)|||p− p̃|||.
Now, we prove that the supremum is attained at |||p|||2‖Λ(λ)‖2/(|λ| · |p′(λ)|), that is, given ε

small enough, there are p̃(z) and λ̃ satisfying:

(i) p̃(λ̃) = 0, (ii) |||p̃− p|||2 ≤ ε|||p|||2, and (iii)
|λ− λ̃|
ε|λ| −−−→

ε−→0

|||p|||2‖Λ(λ)‖2
|λ| · |p′(λ)| .

For this, set

r(z) :=
n−1∑
k=0

|λ|ke−ikθzk, with θ := arg(λ),

which is a polynomial of degree n− 1. Note that

(a) r(λ) = |r(λ)| = ‖Λ(λ)‖22, and
(b) ‖r‖2 = ‖Λ(λ)‖2.

Now, let λ̃ ∈ C such that

|p(λ̃)|
|r(λ̃)|

= ε
|||p|||2
‖Λ(λ)‖2 ,

for a given ε small enough. This λ̃ always exists, since |p(z)| is arbitrarily small around the root
λ. Then, set

p̃(z) = p(z)− p(λ̃)

r(λ̃)
r(z),

which is a monic polynomial of degree n. These λ̃ and p̃(z) satisfy conditions (i)–(iii):

(i) It is clear by definition of p̃(z).

(ii) From p̃(z)− p(z) = −(p(λ̃)/r(λ̃))r(z), we get

‖p̃− p‖2 = |||p̃− p|||2 =
|p(λ̃)|
|r(λ̃)|

‖r‖2 = ε
|||p|||2
‖Λ(λ)‖2 ‖r‖2 = ε|||p|||2,

where in the last equality we have used the property (b) of r(z).

(iii) As we have seen in the first part of the proof, since λ̃ is a root of p̃(z) and λ is a root of p(z),
we have

|λ− λ̃|
ε|λ| =

p̃(λ)− p(λ)

ε|λ| · |p′(λ)| +O(ε) =
(|p(λ̃)|/|r(λ̃)|) · |r(λ)|

ε|λ| · |p′(λ)| +O(ε)

=
(ε|||p|||2/‖Λ(λ)‖2)‖Λ(λ)‖22

ε|λ| · |p′(λ)| +O(ε) =
|||p|||2‖Λ(λ)‖2
|λ| · |p′(λ)| +O(ε)
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−−−→
ε−→0

|||p|||2‖Λ(λ)‖2
|λ| · |p′(λ)| ,

where in the third equality we have used the property (a) of r(z).

8.2 Explicit formulas for the eigenvectors of Fiedler matri-

ces

In Theorem 8.2, we present explicit expressions, in terms of λ and the coefficients of p(z), of the
right and left eigenvectors of any Fiedler matrix associated with an eigenvalue λ (see Remark
1.3 for our convention about eigenvectors). These expressions are already known (see [45], for
example), although we present here a new proof that employs the expressions for adj(zI −Mσ) in
Chapter 5. Theorem 8.2 relates the right and left eigenvectors of Mσ associated with an eigenvalue
λ with the vectors xσ , yσ, vσ and wσ defined in Theorem 5.3. For convenience, in Theorem 8.2 we
write explicitly the dependence on z of the vectors xσ, yσ, vσ and wσ as xσ(z), yσ(z), vσ(z) and
wσ(z). Note that, since any Fiedler matrix Mσ is a non-derogatory matrix 1, the right and left
eigenvectors of Mσ associated with an eigenvalue λ are, up to a multiplicative factor, unique.

Theorem 8.2. Let p(z) = zn +
∑n−1

k=0 akz
k be a monic polynomial of degree n ≥ 2, let σ :

{0, 1, . . . , n− 1} → {1, . . . , n} be a bijection, and let xσ(z), yσ(z), vσ(z) and wσ(z) be the vectors
defined in Theorem 5.3. If λ is a root of p(z), then

rσ := xσ(λ) and lσ := yσ(λ),

are the right and left eigenvectors of Mσ, respectively, associated with λ. Moreover, if λ is nonzero,
then rσ = vσ(λ) and lσ = wσ(λ).

Proof. From adj(zI−Mσ)(zI−Mσ) = (zI−Mσ)adj(zI−Mσ) = p(z)I (see [66, Ch. 4, §4]), it follows
that any nonzero row of adj(λI−Mσ) is the transpose of a left eigenvector ofMσ associated with the
eigenvalue λ, and any nonzero column of adj(λI−Mσ) is a right eigenvector of Mσ associated with
the eigenvalue λ. Then, using p(λ) = 0 and (5.3), we get that adj(λI −Mσ) = xσ(λ)y

T
σ (λ) = rσl

T
σ .

Finally, from Lemma 5.9 we know that both rσ = xσ(λ) and lσ = yσ(λ) have an entry identically
equal to one, and, therefore, the matrix adj(λI −Mσ) has a nonzero column equal to rσ and a
nonzero row equal to lTσ .

The fact that rσ and lσ are equal to vσ(λ) and wσ(λ), respectively, when λ 
= 0, follows from the
expressions for the entries of the vectors xσ(z), yσ(z), vσ(z), and wσ(z) in Theorem 5.3 together
with the following relation between the Horner shifts of p(z) and the Horner shifts of the reversal
polynomial prev(z) of p(z):

pk−1(λ) = −λ−1prevn−k(λ
−1),

for k = 1, 2, . . . , n, which may be easily checked.

Theorem 8.2, together with the expressions for xσ(z), yσ(z), vσ(z) and wσ(z) in Theorem 5.3,
allows us to easily get explicit expressions for the right and left eigenvectors of any Fiedler matrix
of p(z) associated with an eigenvalue λ. These expressions depend on the eigenvalue λ and the
Horner shifts of p(z) evaluated at λ. To illustrate Theorem 8.2 we provide the following examples.

1The first and second Frobenius companion matrices, C1 and C2, of a monic polynomial p(z) are non-derogatory
matrices [87], that is, the geometric multiplicity of each eigenvalue is equal to one. Since Fiedler matrices of p(z)
are similar to each other, and since the geometric multiplicities of eigenvalues do not change under similarity, all
Fiedler matrices are non-derogatory matrices.
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Example 8.3. Let p(z) = zn +
∑n−1

k=0 akz
k be a monic polynomial of degree n ≥ 2, let C1 and C2

be the first and second Frobenius companion matrices of p(z), respectively, and let λ be a root of
p(z). Recall from Section 2.2 that C1 is a Fiedler matrix Mσ1

associated with any bijection σ1 such
that PCIS(σ1) = (0, 0, . . . , 0) and that C2 is a Fiedler matrix Mσ2

associated with any bijection
σ2 such that PCIS(σ2) = (1, 1, . . . , 1). Then, from Theorem 8.2 we get the following expressions
for the right and left eigenvectors of C1 and C2 associated with λ:

rσ1
= lσ2

=
[
λn−1 · · · λ 1

]T
and lσ1

= rσ2
=
[
p0(λ) p1(λ) · · · pn−1(λ)

]T
.

Remark 8.4. Note that the right and left eigenvectors of C1 (resp. the left and right eigenvectors
of C2) associated with an eigenvalue λ are equal to the vectors Λ(z) and Π(z), in (8.3) and (1.22),
evaluated at z = λ.

Example 8.5. Let p(z) = zn +
∑n−1

k=0 akz
k be a monic polynomial of degree n > 2, let F be the

Fiedler matrix of p(z) in (2.8), and let λ be a root of p(z). Recall from Section 2.2 that F is a
Fiedler matrix Mσ associated with any bijection σ such that PCIS(σ) = (0, 1, . . . , 1). Then, from
Theorem 8.2 we get the following expressions for the right and left eigenvectors of F associated
with λ:

rσ =
[
λp0(λ) λp1(λ) · · · λpn−2(λ) 1

]T
and lσ =

[
λn−2 · · · λ 1 pn−1(λ)

]T
.

Example 8.6. Let p(z) = zn +
∑n−1

k=0 akz
k be a monic polynomial of degree n > 2, let P1 be

the Fiedler matrix of p(z) in (2.7), and let λ be a root of p(z). Recall from Section 2.2 that P1

is a Fiedler matrix Mσ associated with any bijection σ such that PCIS(σ) = (1, 0, 1, 0, 1, 0, . . .),
then, from Theorem 8.2 we get the following expressions for the right and left eigenvectors of P1

associated with λ:

rσ =
[
λ

n−2

2 p0(λ) λ
n−2

2 p1(λ) λ
n−4

2 λ
n−4

2 p3(λ) · · · 1 pn−1(λ)
]T

and

lσ =
[
λ

n
2 λ

n−2

2 λ
n−2

2 p2(λ) · · · λ λpn−2(λ) 1
]T

,

if n is even, and

rσ =
[
λ

n−1

2 λ
n−3

2 λ
n−3

2 p2(λ) λ
n−5

2 λ
n−5

2 p4(λ) · · · 1 pn−1(λ)
]T

and

lσ =
[
λ

n−1

2 λ
n−1

2 p1(λ) λ
n−3

2 , λ
n−3

2 p3(λ) · · · λ λpn−2(λ) 1
]T

,

if n is odd.

8.3 Eigenvalue condition numbers of Fiedler matrices

Given a matrix A ∈ Cn×n and a simple nonzero eigenvalue λ of A, recall that the condition number
of λ defined in (1.21) is equal to

κ(λ,A) =
‖x‖2‖y‖2
|yTx|

‖A‖2
|λ| , (8.5)

where x, y ∈ C
n are the right and left eigenvectors of A, respectively, associated with λ.

As a direct consequence of (8.5) and Theorem 8.2, we get for any Fiedler matrix Mσ an explicit
formula for the condition number κ(λ,Mσ).
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Corollary 8.7. Let p(z) = zn +
∑n−1

k=0 akz
k be a monic polynomial of degree n ≥ 2, let σ :

{0, 1, . . . , n − 1} → {1, . . . , n} be a bijection, and let Mσ be the Fiedler companion matrix of p(z)
associated to the bijection σ. If λ is a simple nonzero eigenvalue of Mσ, then

κ(λ,Mσ) =
‖rσ‖2 ‖lσ‖2
|p′(λ)|

‖Mσ‖2
|λ| , (8.6)

where the vectors rσ, lσ ∈ Cn are defined in Theorem 8.2.

Proof. From (8.5) and Theorem 8.2 we get

κ(λ,Mσ) =
‖rσ‖2 ‖lσ‖2
|lTσ rσ|

‖Mσ‖2
|λ| .

So, we just need to check that rTσ lσ = p′(λ). Indeed, from Theorem 8.2 we get

lTσ rσ =

n∑
k=1

lσ(k)rσ(k) =

n∑
k=1

λiσ(0:n−k−1)+cσ(0:n−k−1)pk−1(λ)

=
n∑

k=1

λn−kpk−1(λ) =
n∑

k=1

kakλ
k = p′(λ),

where an = 1, and where we have used that iσ(0 : n− k − 1) + cσ(0 : n− k − 1) = n− k.

Remark 8.8. Recall from Chapter 4 that the 2-norm ‖Mσ‖2 is not known except for the case
Mσ = C1, C2. Nevertheless, in Chapter 3 we have explicit expressions for the 1-,∞- and Frobenius
norms of any Fiedler matrix Mσ, and, since the 2-norm is equivalent to any of those norms, there
exist constants cn and c̃n (that only depend on n) such that cn‖Mσ‖F ≤ ‖Mσ‖2 ≤ ĉn‖Mσ‖F [87,
p. 314].

As a particular case of Corollary 8.7, if C denotes the first or the second Frobenius companion
matrix of the polynomial (1.1), we recover the expression for κ(λ,C) given in [150]:

κ(λ,C) =
‖C‖2
|λ|

‖Λ(λ)‖2‖Π(λ)‖2
|p′(λ)| , (8.7)

where the vectors Λ(z) and Π(z) are defined in (8.3) and (1.22), respectively.

8.4 Comparing condition numbers

Ideally, given a monic polynomial p(z), for solving the root-finding problem for p(z) by using a
backward stable eigenvalue algorithm on a Fiedler companion matrix of p(z), one would like the
eigenvalues of the Fiedler matrix to be as well conditioned as the roots of the original polyno-
mial. Since forward errors of computed eigenvalues are bounded by the backward errors times the
eigenvalue condition numbers, and since Fiedler matrices have a norm equal (up to dimensional
constants) to the norm of the polynomial, this would imply that the roots of p(z) are computed
with the forward errors expected from the sensitivity of the original data, i.e., from p(z). In other
words, one would like

κ(λ,Mσ)

κ(λ, p)
= O(1),

where, from (8.6) and (8.4), this ratio is equal to

κ(λ,Mσ)

κ(λ, p)
=
‖Mσ‖2
|||p|||2

‖rσ‖2‖lσ‖2
‖Λ(λ)‖2 , (8.8)
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where rσ, lσ are the right and left eigenvectors ofMσ associated with the eigenvalue λ (see Theorem
8.2). In particular, if C denotes the first or the second Frobenius companion matrix of p(z),

κ(λ,C)

κ(λ, p)
=
‖C‖2
|||p|||2

‖Π(λ)‖2, (8.9)

where the vector Π(z) is defined in (1.22).
The ratio of condition numbers (8.8) is a complicated function of λ and the coefficients of the

polynomial p(z). Theorem 8.13 provides simple upper and lower bounds for this ratio in terms of
the absolute value of the coefficients of p(z). To prove that the bounds in Theorem 8.13 hold we
need Lemmas 8.9 and 8.10. Lemma 8.9 gives a simple upper bound for the absolute value of any
Horner shift of a monic polynomial p(z) evaluated at a root of p(z).

Lemma 8.9. Let p(z) = zn +
∑n−1

k=0 akz
k be a monic polynomial of degree n, let λ ∈ C be a root

of p(z), and let {pk(z)}n−1
k=0 be the Horner shifts of p(z). Then,

|pk(λ)| ≤
√
n‖p‖2,

for k = 0, 1, . . . , n− 1.

Proof. First, suppose that |λ| ≤ 1. Then, from |pk(λ)| = |λk+an−1λ
k−1+ · · ·+an−k+1λ+an−k| ≤

1 + |an−1| + · · · + |a0| ≤
√
n‖p‖2, we get the result. Second, suppose that |λ| ≥ 1. Recall

that the Horner shifts of p(z) satisfy pk(z) = λpk−1(z) + an−k, for k = 1, 2, . . . , n − 1, where
p0(λ) = 1. Since p(λ) = λpn−1(λ) + a0 = 0, we have that pn−1(λ) = −a0/λ. With the previous
equation, the recurrence relation pk−1(λ) = pk(λ)/λ− an−k/λ, for k = 1, 2, . . . , n− 1, implies that
pk(λ) = −a0/λn−k − a1/λ

n−k−1 − · · · − an−k−1/λ. Then, from |pk(λ)| = |a0/λn−k + a1/λ
n−k−1 +

· · ·+ an−k−1/λ| ≤ 1 + |an−1|+ · · ·+ |a0| ≤
√
n‖p‖2, we get the result.

Lemma 8.10 shows that Fiedler matrices associated with a polynomial p(z) have a norm equal,
up to dimensional constants, to the norm of the polynomial p(z), and it also gives lower and
upper bounds for the ratios ‖C‖2/|||p|||2 and ‖Mσ‖2/|||p|||2 in terms of the coefficients of the monic
polynomial p(z).

Lemma 8.10. Let p(z) = zn +
∑n−1

k=0 akz
k be a monic polynomial of degree n > 2, let C be the

first or the second Frobenius companion matrix of p(z), let Mσ be a Fiedler matrix of p(z) other
than the Frobenius ones, and let ρ(p) be defined as

ρ(p) :=

√
1 +

1

max0≤k≤n−1 |ak|2 . (8.10)

Then,

1√
2
≤ ‖C‖2
|||p|||2

≤ ρ(p),
1√
n
≤ ‖Mσ‖2
|||p|||2

≤ √nρ(p),
1√
2
≤ ‖C‖2
‖p‖2 ≤ 1, and

1√
n
≤ ‖Mσ‖2

‖p‖2 ≤ √n.

Proof. The lower and upper bounds for ‖C‖2/|||p|||2 and ‖C‖2/‖p‖2 are immediate consequences
of the formula for ‖C‖2 in (1.29). Also, using that, for any matrix A ∈ Cn×n, ‖A‖F ≥ ‖A‖2 ≥
n−1/2‖A‖F [87, pp. 314], the lower and upper bounds for ‖Mσ‖2/|||p|||2 and ‖Mσ‖2/‖p‖2 follows
from the formula for ‖Mσ‖F in (3.3).

Remark 8.11. Notice that to bound ‖Mσ‖2/|||p|||2 and ‖Mσ‖2/‖p‖2 we have used the Frobenius
norm ‖Mσ‖F instead of ‖Mσ‖2 because explicit expressions for the 2-norm of Fiedler matrices are
not known when Mσ 
= C1, C2 (see Chapter 4).
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Remark 8.12. Notice that ρ(p) in (8.10) is always equal or greater than one, and that there are
polynomials for which ρ(p), and therefore the upper bounds for ‖C‖2/|||p|||2 and ‖Mσ‖2/|||p|||2 in
Lemma 8.10, may be as large as desired.

Theorem 8.13. Let p(z) = zn +
∑n−1

k=0 akz
k be a monic polynomial of degree n ≥ 2, let σ :

{0, 1, . . . , n − 1} → {1, . . . , n} be a bijection, and let Mσ be the Fiedler matrix of p(z) associated
with σ. If λ is a simple nonzero root of p(z), then

1√
2
≤ κ(λ,Mσ)

κ(λ, p)
≤ nρ(p)‖p‖2 (8.11)

if Mσ = C1, C2, and
1

n
≤ κ(λ,Mσ)

κ(λ, p)
≤ n5/2ρ(p)‖p‖22 (8.12)

if Mσ 
= C1, C2, where ρ(p) is defined in (8.10).

Proof. We prove first (8.11), that is, we have to bound (8.9). Since κ(λ,C1) = κ(λ,C2) we will
focus only on C1. From Example 8.3 and Lemma 8.9, we have that the modulus of all the entries of
lσ = Π(λ) are bounded by

√
n‖p‖2, and, therefore, ‖lσ‖2 = ‖Π(λ)‖2 ≤ n‖p‖2. With the previous

inequality, the upper bound in (8.11) follows from Lemma 8.10. Finally, the lower bound in (8.11)
follows from Lemma 8.10 and from ‖Π(λ)‖2 ≥ 1, since p0(λ) = 1.

Next, we prove (8.12), that is, we have to bound (8.8) when Mσ 
= C1, C2. From Lemma 8.10
we have that ‖Mσ‖2/|||p|||2 ≤

√
nρ(p). So, to prove that the upper bound in (8.12) holds, we need

to show that ‖rσ‖2‖lσ‖2/‖Λ(λ)‖2 ≤ n2‖p‖22. In order to do this, we have to distinguish two cases:
|λ| ≤ 1 and |λ| > 1.

When |λ| ≤ 1, from Theorems 5.3 and 8.2 it follows that, for k = 1, 2, . . . , n, the modulus of
the kth entry of rσ and of lσ is bounded by max{1, |pk−1(λ)|}, so, using Lemma 8.9 we get that
the modulus of these entries are bounded by

√
n‖p‖2, and, therefore, ‖rσ‖2‖lσ‖2 ≤ n2‖p‖22. With

the previous inequality and using that ‖Λ(λ)‖2 ≥ 1, the result follows.
When |λ| > 1, using ‖Λ(λ)‖2 ≥ |λn−1| and n− 1 = iσ(0 : n− 2) + cσ(0 : n− 2), we get

‖rσ‖2‖lσ‖2
‖Λ(λ)‖2 ≤ ‖rσ‖2‖lσ‖2

|λn−1| =
‖rσ‖2

|λiσ(0:n−2)|
‖lσ‖2

|λcσ(0:n−2)| .

So, we need to bound the modulus of the entries of rσ/λ
iσ(0:n−2) and lσ/λ

cσ(0:n−2). Since |λ| ≥ 1,
and, for k = 1, 2, . . . , n, iσ(0 : n − 2) ≥ iσ(0 : n − k − 1) and cσ(0 : n − 2) ≥ cσ(0 : n − k − 1),
from Theorems 5.3 and 8.2 it follows that the modulus of the kth entry of rσ/λ

iσ(0:n−2) and of
lσ/λ

cσ(0:n−2) is bounded by max{1, |pk−1(λ)|}, so, using Lemma 8.9 we get that the modulus of
these entries are bounded by

√
n‖p‖2, and, therefore, ‖rσ‖2‖lσ‖2/‖Λ(λ)‖2 ≤ n2‖p‖22. With the

last inequality, the result follows.
Finally, we prove that the lower bound in (8.12) holds. From Lemma 8.10, we have that

‖Mσ‖2/|||p|||2 ≥ 1/
√
n, so, we only need to show that ‖rσ‖2‖lσ‖2/‖Λ(λ)‖2 ≥ 1/

√
n. In order to

prove the previous inequality, first, notice that ‖rσ‖2‖lσ‖ ≥ max{1, |rσ(1)lσ(1)|} = max{1, |λ|n−1},
where we have used that the vectors rσ and lσ have, at least, an entry equal to 1 (see Lemma 5.9),

and that rσ(1)lσ(1) = λn−1 (see Theorems 5.3 and 8.2). Also notice that ‖Λ(λ)‖2 =
√∑n−1

i=0 |λ|2i ≤√
nmax{1, |λ|n−1}. Then, from the two previous observation, it follows that ‖rσ‖2‖lσ‖2/‖Λ(λ)‖2 ≥

1/
√
n.

Remark 8.14. Probably, if explicit expressions for the 2-norm of Fiedler matrices other than the
Frobenius ones were available, upper and lower bounds sharper than the ones in (8.12) could be
found. Although, in Example 8.15, we will show that the presence of ‖p‖22 is necessary in the upper
bound in (8.12) .
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The presence of ‖p‖2 and ρ(p) in the upper bounds in (8.11) and (8.12) shows that these bounds
are large if and only if max{|an−1|, . . . , |a1|, |a0|} is either large or close to zero. Therefore, from
Theorem 8.13, we get the following conclusions:

(C1) When max{|an−1|, . . . , |a1|, |a0|} is moderate and not close to zero, that is, of order Θ(1),
then the eigenvalues of Fiedler matrices are as well conditioned as the roots of the monic
polynomial p(z). In this case, from the point of view of condition numbers, any Fiedler
matrix can be used for solving the root-finding problem for p(z).

(C2) When max{|an−1|, . . . , |a1|, |a0|} is large or close to zero, the eigenvalues of any Fiedler com-
panion matrix may be potentially more ill conditioned than the roots of the monic polynomial
p(z).

It is evident that there exist polynomials for which the upper bounds in (8.11) and (8.12) can
be as large as desired, but this does not necessarily mean that the ratio (8.8) is large for these
polynomials. Nevertheless, Example 8.15 shows that there exist polynomials for which a large
upper bound in (8.11) or in (8.12) implies that the ratio (8.8) is also large.

Example 8.15. Let A ≥ 2, and consider the monic polynomial p(z) = zn + (A − 1)zn−1 − A. It
may be checked that λ = 1 is a root of p(z), and that the Horner shifts of p(z), evaluated at z = 1,
satisfy p0(1) = 1, and, for k = 1, 2, . . . , n− 1, pk(1) = A. Now, given a Fiedler matrix Mσ of p(z),
we are going to prove that, for λ = 1, the ratio between (8.8) and the upper bounds in Theorem
8.13 is larger than a quantity that depends only on n.

First, suppose that Mσ = C1, C2. From (8.9) and Lemma 8.10 we get

κ(1,Mσ)

κ(1, p)
=
‖Mσ‖2
|||p|||2

‖ [1 A A · · · A
]T ‖2 ≥√n− 1

2
A.

Also, the upper bound in (8.11) is equal to n(1+ 1/A2)1/2‖ [1 A− 1 0 · · · 0 −A]T ‖2 wich

is less than or equal to
√
6nA. From this, we get that the ratio between (8.9) and the upper bound

in (8.11) is larger than or equal to (n − 1)1/2/(2
√
3n). So, taking A and n large enough, we have

a polynomial p(z) for which a large upper bound in (8.11) implies that the ratio (8.9) is large.
Second, suppose that Mσ 
= C1, C2. Observe that, since Mσ is not one of the Frobenius

companion matrices, if PCIS(σ) = (v0, v1, . . . , vn−2), then there exist i, j ∈ {2, 3, . . . , n} such that
vn−i 
= vn−j . Suppose that vn−i = 1 and vn−j = 0 (when vn−i = 0 and vn−j = 1 the argument is
similar, so we omit it). If vn−i = 1 and vn−j = 0, and if rσ and lσ are the right and left eigenvectors
of Mσ associated with λ = 1, respectively, then Theorem 8.2 implies ‖rσ‖2‖lσ‖2 ≥ |rσ(i)| · |lσ(j)| =
|pi−1(1)| · |pj−1(1)| = A2, and, therefore,

κ(1,Mσ)

κ(1, p)
=
‖Mσ‖2
|||p|||2

‖rσ‖2‖lσ‖2
‖Λ(1)‖2 ≥ A2

n
,

where we have used Lemma 8.10 and ‖Λ(1)‖2 = n1/2. Also, the upper bound in (8.12) is equal

to n5/2(1 + 1/A2)1/2‖ [1 A− 1 0 · · · 0 −A]T ‖22 which is less than or equal to 3
√
2n5/2A2.

From this, we get that the ratio between (8.8) and the upper bound in (8.12) is larger than or equal
to 1/(3

√
2n7/2). So, again, taking A and n large enough, we have a polynomial p(z) for which a

large upper bound in (8.12) implies that the ratio (8.8) is large.

Notice that the upper bound in (8.12) is larger than the upper bound in (8.11). This suggests
that the eigenvalues of Fiedler companion matrices other than the Frobenius ones may be poten-
tially more ill conditioned than the eigenvalues of the Frobenius companion matrices. Since in the
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polynomial root-finding problem using Fiedler companion matrices is important to know whether
or not the eigenvalue condition numbers of Fiedler companion matrices other than the Frobenius
ones are much larger (or smaller) that the eigenvalue condition numbers of Frobenius companion
matrices, it is of fundamental importance to study the ratio

κ(λ,Mσ)

κ(λ,C)
=
‖Mσ‖2
‖C‖2

‖rσ‖2‖lσ‖2
‖Λ(λ)‖2‖Π(λ)‖2 , (8.13)

where C = C1, C2 and Mσ 
= C1, C2, that we obtain from (8.6) and (8.7). In Theorem 8.17 we
give upper bounds of (8.13) in terms of the norm of the vector Π(λ), and, also, in terms of the
absolute values of the coefficients of p(z). Lemma 8.16 will be useful in establishing these bounds.

Lemma 8.16. Let p(z) = zn+
∑n−1

k=0 akz
k be a monic polynomial of degree n ≥ 2, let C be the first

or the second Frobenius companion matrix, let σ : {0, 1, . . . , n− 1} → {1, . . . , n} be a bijection, and
let Mσ be the Fiedler matrix of p(z) associated with σ. Then, n−1/2‖Mσ‖2 ≤ ‖C‖2 ≤ n1/2‖Mσ‖2.
Proof. The result follows from n−1/2‖A‖F ≤ ‖A‖2 ≤ ‖A‖F , for any matrix A ∈ Cn×n, [87, pp.
314] and ‖Mσ‖F = ‖C‖F (see Corollary 3.5).

Theorem 8.17. Let p(z) = zn +
∑n−1

k=0 akz
k be a monic polynomial of degree n > 2, let C denote

the first or the second Frobenius companion matrix of p(z), let σ : {0, 1, . . . , n − 1} → {1, . . . , n}
be a bijection such that PCIS(σ) 
= (0, . . . , 0), (1, . . . , 1), and let Mσ be the Fiedler matrix of p(z)
associated with σ. If λ is a simple nonzero root of p(z), then,

1 ≤ κ(λ,Mσ)

κ(λ,C)
≤ n3/2‖Π(λ)‖2 ≤ n5/2‖p‖2, (8.14)

if κ(λ,Mσ) ≥ κ(λ,C), and

1 ≤ κ(λ,C)

κ(λ,Mσ)
≤ n‖Π(λ)‖2 ≤ n2‖p‖2, (8.15)

if κ(λ,C) ≥ κ(λ,Mσ), where Π(λ) is the vector defined in (1.22).

Proof. First, we prove (8.14). From (8.13) and Lemma 8.16, we get

1 ≤ κ(λ,Mσ)

κ(λ,C)
≤ n1/2 ‖rσ‖2‖lσ‖2

‖Λ(λ)‖2‖Π(λ)‖2 ,

Therefore, to get the first inequality in (8.14) we need to check that ‖rσ‖2‖lσ‖2/(‖Λ(λ)‖2‖Π(λ)‖2) ≤
n‖Π(λ)‖2 holds. In order to do this we distinguish two cases: |λ| ≤ 1 and |λ| > 1.

If |λ| ≤ 1, using ‖Λ(λ)‖2 ≥ 1, we get

κ(λ,Mσ)

κ(λ,C)
≤ n1/2 ‖rσ‖2‖lσ‖2

‖Π(λ)‖2 .

So, we need to bound the norm of the vectors rσ/‖Π(λ)‖2 and lσ. For k = 1, 2, . . . , n, Theorem
8.2 implies

|rσ(k)|
‖Π(λ)‖2 =

|λiσ(0:n−k−1)pk−1(λ)|
‖Π(λ)‖2 ≤ |pk−1(λ)|

‖Π(λ)‖2 ≤ 1,

if vn−k = 1, or

|rσ(k)|
‖Π(λ)‖2 =

|λiσ(0:n−k−1)|
‖Π(λ)‖2 ≤ 1

‖Π(λ)‖2 ≤ 1,



8.4. COMPARING CONDITION NUMBERS 107

if vn−k = 0, and
|lσ(k)| = |λcσ(0:n−k−1)pk−1(λ)| ≤ |pk−1(λ)| ≤ ‖Π(λ)‖2,

if vn−k = 0, or
|lσ(k)| = |λcσ(0:n−k−1)| ≤ 1 ≤ ‖Π(λ)‖2,

if vn−k = 1, where we have used that ‖Π(λ)‖2 ≥ |pk−1(λ)|, for k = 1, 2, . . . , n, (in particular,
for k = 1, we have that ‖Π(λ)‖2 ≥ 1, since p0(λ) = 1). From the previous bounds, we get
‖rσ‖2/‖Π(λ)‖2 ≤ n1/2 and ‖lσ‖2 ≤ n1/2‖Π(λ)‖2, and from this, the first bound in (8.14) follows.
The rightmost bound in (8.14) follows from Lemma 8.9.

If |λ| > 1, then

κ(λ,Mσ)

κ(λ,C)
≤ n1/2 ‖rσ‖2‖lσ‖2

|λn−1|‖Π(λ)‖2 ≤ n1/2 ‖rσ‖2
‖Π(λ)‖2|λiσ(0:n−2)|

‖lσ‖2
|λcσ(0:n−2)| ,

where we have used Lemma 8.16 together with the fact that ‖Λ(λ)‖2 ≥ |λn−1|, and also that n−1 =
iσ(0 : n− 2)+ cσ(0 : n− 2). So, we need to bound the norm of the vectors rσ/(‖Π(λ)‖2|λiσ(0:n−2)|)
and lσ/|λcσ(0:n−2)|. For k = 1, 2, . . . , n, Theorem 8.2 implies

|rσ(k)|
‖Π(λ)‖2|λiσ(0:n−2)| =

|λiσ(0:n−k−1)pk−1(λ)|
‖Π(λ)‖2|λiσ(0:n−2)| ≤

|pk−1(λ)|
‖Π(λ)‖2 ≤ 1,

if vn−k = 1, or
|rσ(k)|

‖Π(λ)‖2|λiσ(0:n−2)| =
|λiσ(0:n−k−1)|

‖Π(λ)‖2|λiσ(0:n−2)| ≤
1

‖Π(λ)‖2 ≤ 1,

if vn−k = 0, and

|lσ(k)|
|λcσ(0:n−2)| =

|λcσ(0:n−k−1)pk−1(λ)|
|λcσ(0:n−2)| ≤ |pk−1(λ)| ≤ ‖Π(λ)‖2

if vn−k = 0, or
|lσ(k)|

|λcσ(0:n−2)| =
|λcσ(0:n−k−1)|
|λcσ(0:n−2)| ≤ 1 ≤ ‖Π(λ)‖2,

if vn−k = 1, where we have used ‖Π(λ)‖2 ≥ |pk−1(λ)|, and iσ(0 : n − 2) ≥ iσ(0 : n − k − 1)
and cσ(0 : n − 2) ≥ cσ(0 : n − k − 1), for k = 1, 2, . . . , n. From the previous bounds, we have
‖rσ‖2/(‖Π(λ)‖2|λiσ(0:n−2)|) ≤ n1/2 and ‖lσ‖2/|λcσ(0:n−2)| ≤ n1/2‖Π(λ)‖2, and from this, the first
bound in (8.14) follows. The rightmost bound follows from Lemma 8.9.

Next, we prove (8.15). From (8.13) and Lemma 8.16, we get

κ(λ,C)

κ(λ,Mσ)
=
‖C‖2
‖Mσ‖2

‖Λ(λ)‖2‖Π(λ)‖2
‖rσ‖2‖lσ‖2 ≤ n1/2 ‖Λ(λ)‖2‖Π(λ)‖2

‖rσ‖2‖lσ‖2
Therefore, to get the first inequality in (8.15) we need to check that ‖Λ(λ)‖2‖Π(λ)‖2/(‖rσ‖2‖lσ‖2) ≤
n1/2‖Π(λ)‖2 holds. In order to do this, again, we distinguish the cases: |λ| ≤ 1 and |λ| > 1.

If |λ| ≤ 1 then, using ‖rσ‖2, ‖lσ‖2 ≥ 1 (see Lemma 5.9), and ‖Λ(λ)‖2 ≤ n1/2 when |λ| ≤ 1, we
get

κ(λ,C)

κ(λ,Mσ)
≤ n‖Π(λ)‖2.

If |λ| > 1, then, using ‖rσ‖2‖lσ‖2 ≥ |rσ(1)lσ(1)| = |λn−1|, and ‖Λ(λ)‖/|λn−1| ≤ n1/2 when
|λ| ≥ 1, we get

κ(λ,C)

κ(λ,Mσ)
≤ n1/2 ‖Λ(λ)‖2

|λn−1| ‖Π(λ)‖2 ≤ n‖Π(λ)‖2,

The rightmost bound in (8.15) follows from Lemma 8.9.
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The presence of ‖p‖2 in the rightmost upper bounds in (8.14) and (8.15) shows that these
bounds are large if and only if max{|an−1|, . . . , |a1|, |a0|} is large. Therefore, from Theorem 8.17
we get the following conclusions:

(C3) From the point of view of condition numbers, when max{|an−1|, . . . , |a1|, |a0|} is moderate,
that is, O(1), any Fiedler matrix can be used for solving the root-finding problem for p(z)
with the same reliability as Frobenius companion matrices.

(C4) The ratio κ(λ,Mσ)/κ(λ,C) may be potentially large (or small) for polynomials with large
coefficients. In this case, for some polynomials there can be other Fiedler matrices than
the Frobenius ones which are more convenient from the point of view of conditioning, and
viceversa.

It is evident that there exist polynomials for which the rightmost upper bounds in (8.14) and
(8.15) can be as large as desired, but this does not imply necessarily that the ratio of eigenvalue
condition numbers is also large for these polynomials. In Example 8.18, given any Fiedler matrix
Mσ 
= C1, C2, we show that there exist polynomials such that a large upper bound in Theorem
8.17 implies a large ratio between the eigenvalue condition numbers of Mσ and C1 or C2. In
fact, we show that for these polynomials, up to a constant that depends only on the size of the
problem, the rightmost bounds in Theorem 8.17 correctly predict the ratio κ(λ,Mσ)/κ(λ,C) or
κ(λ,C)/κ(λ,Mσ).

Example 8.18. We first focus on the rightmost bound in (8.14). Given A > 2, consider the monic
polynomial p(z) = zn+(A−1)zn−1−A. Recall from Example 8.15 that λ = 1 is a root of p(z), and
that the Horner shifts of p(z), evaluated at z = 1, satisfy p0(1) = 1, and, for k = 1, 2, . . . , n − 1,
pk(1) = A. If C denotes one of the Frobenius companion matrices of p(z) and Mσ denotes a
Fiedler matrix of p(z) other than the Frobenius ones, we are going to show that the ratio between
κ(1,Mσ)/κ(1, C) and the rightmost bound in (8.14) are both larger than a quantity that depends
only on n.

First, we need to bound κ(1,Mσ)/κ(1, C). This may be done using the following inequalities.
From Lemma 8.16 we get ‖Mσ‖2/‖C‖2 ≥ n−1/2, also, from Example 8.15, recall that if rσ and lσ
are the right and left eigenvectors ofMσ, respectively, associated with λ = 1, then ‖rσ‖2‖lσ‖2 ≥ A2,

and, finally, ‖Λ(1)‖2‖Π(1)‖2 = n1/2‖ [1 A · · · A
]T ‖2 ≤ nA. From these three inequalities we

get
κ(1,Mσ)

κ(1, C)
=
‖Mσ‖2
‖C‖2

‖rσ‖2‖lσ‖2
‖Λ(1)‖2‖Π(1)‖2 ≥ n−3/2A.

Also, the rightmost bound in (8.14) is equal to n5/2‖ [1 A− 1 0 · · · 0 −A]T ‖2, which is

larger than or equal to n5/2A and smaller than or equal to
√
3n5/2A. So, the ratio between

κ(1,Mσ)/κ(1, C) and the rightmost bound in (8.14) is larger than n−4/
√
3. Therefore, taking A

and n large enough, for the polynomial p(z) a large rightmost bound in (8.14) implies that the
ratio κ(1,Mσ)/κ(1, C) is also large.

Next, we focus on the rightmost bound in (8.15). Given a bijection σ : {0, 1, . . . , n − 1} →
{1, . . . , n} with PCIS(σ) = (v0, v1, . . . , vn−2) 
= (0, . . . , 0), (1, . . . , 1}, then, it may be checked that
there are i, j ∈ {2, 3, . . . , n} with i > j such that vn−i = 1 and vn−j = 0 or vn−i = 0 and vn−j = 1.
Suppose that vn−i = 1 and vn−j = 0 (if vn−i = 0 and vn−j = 1 the argument is completely
similar, so we omit it). Let A > 1 and ε < 1 such that εA < 1, and consider the monic polynomial
q(z) = zn + (A − ε)zn−1 − εAzn−2 if j = 2, or q(z) = zn − εzn−1 + Azn−j+1 − εAzn−j if j > 2.
It may be easily checked that λ = ε is a root of q(z) and that the Horner shifts of q(z) satisfy
q0(ε) = 1, qj−1(ε) = A, and qk−1(ε) = 0 when k 
= j.
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Now, let C denote the first or the second Frobenius companion matrix of q(z), and let Mσ be
the Fiedler matrix of q(z) associated with the bijection σ. If rσ and lσ denote the right and left
eigenvector of Mσ, respectively, associated with λ = ε, from the values of the Horner shifts of q(z)
in ε, Theorem 8.2, and εA < 1 it can be proved that ‖rσ‖2‖lσ‖2 ≤ n. Hence

κ(ε, C)

κ(ε,Mσ)
=
‖C‖2
‖Mσ‖2

‖Λ(ε)‖2‖Π(ε)‖2
‖rσ‖2‖lσ‖2 ≥ A

n3/2
.

Also the rightmost upper bound in (8.15) is less than or equal to 2n2A. So, the ratio between
κ(ε, C)/κ(ε,Mσ) and the rightmost bound in (8.15) is larger than n−7/2/2. Therefore, taking A
large enough and ε small enough, for the polynomial q(z) a large rightmost bound in (8.15) implies
a large ratio κ(ε, C)/κ(ε,Mσ).

Theorem 8.17 and Example 8.18 suggest that for some polynomials one should avoid using a
Fiedler matrix Mσ other than the Frobenius ones, and to use, instead, the Frobenius companion
matrices. However, Theorem 8.19 shows that this could only happen for a polynomial p(z) whose
roots are very ill-conditioned either as eigenvalues of the Frobenius companion matrices or as
eigenvalues of the Fiedler matrix Mσ compared to the conditioning of the roots of p(z). In other
words:

κ(λ,Mσ)� κ(λ,C) −→ κ(λ,Mσ)� κ(λ, p) and κ(λ,C)� κ(λ, p).

By contrast, if the roots of a polynomial p(z) are much more ill-conditioned as eigenvalues of one
of the Frobenius companion matrices than they are as eigenvalues of another Fiedler matrix Mσ,
then, Theorem 8.19 implies that the roots of p(z) are very ill-conditioned as eigenvalues of the
Frobenius matrices compared to their conditioning as a roots of p(z). In other words:

κ(λ,C)� κ(λ,Mσ) −→ κ(λ,C)� κ(λ, p).

But κ(λ,C)� κ(λ,Mσ) does not imply that the roots of p(z) are ill-conditioned as eigenvalues of
Mσ compared with their conditioning as roots of p(z).

Theorem 8.19. Let p(z) = zn +
∑n−1

k=0 akz
k be a monic polynomial, let C denote the first or the

second Frobenius companion matrix of p(z), let σ : {0, 1, . . . , n − 1} → {1, . . . , n} be a bijection
such that PCIS(σ) 
= (0, . . . , 0), (1, . . . , 1), and let Mσ be the Fiedler matrix of p(z) associated with
σ. If λ is a simple nonzero root of p(z), then the following results hold.

(a) If κ(λ,Mσ) ≥ κ(λ,C), then

κ(λ,Mσ)

κ(λ, p)
≥ 1√

2

κ(λ,Mσ)

κ(λ,C)
and

κ(λ,C)

κ(λ, p)
≥ 1

n3/2
√
2

κ(λ,Mσ)

κ(λ,C)
. (8.16)

(b) If κ(λ,C) ≥ κ(λ,Mσ), then
κ(λ,C)

κ(λ, p)
≥ 1

n
√
2

κ(λ,C)

κ(λ,Mσ)
. (8.17)

Proof. First, we prove part (a). From Lemma 8.10 and using ‖Π(λ)‖2 ≥ 1, we have

κ(λ,Mσ)

κ(λ,C)
=
‖Mσ‖2
‖C‖2

‖rσ‖2‖lσ‖2
‖Λ(λ)‖2‖Π(λ)‖2 ≤

‖Mσ‖2
‖C‖2

‖rσ‖2‖lσ‖2
‖Λ(λ)‖2

=
‖Mσ‖2
|λ|

‖rσ‖2‖lσ‖2
|p′(λ)|

|λ|
|||p|||2

|p′(λ)|
‖Λ(λ)‖2

|||p|||2
‖C‖2 ≤

√
2
κ(λ,Mσ)

κ(λ, p)
.
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Also, from Lemma 8.10 and using the upper bound in (8.14), we have

κ(λ,Mσ)

κ(λ,C)
≤ n3/2‖Π(λ)‖2 = n3/2 ‖C‖2

|λ|
‖Π(λ)‖2‖Λ(λ)‖2

|p′(λ)|
|λ|
|||p|||2

|p′(λ)|
‖Λ(λ)‖2

|||p|||2
‖C‖2 ≤ n3/2

√
2
κ(λ,C)

κ(λ, p)
.

Next, we prove part (b). From Lemma 8.10 and using the upper bound in (8.15), we have

κ(λ,C)

κ(λ,Mσ)
≤ n‖Π(λ)‖2 = n

‖C‖2
|λ|

‖Π(λ)‖2‖Λ(λ)‖2
|p′(λ)|

|λ|
|||p|||2

|p′(λ)|
‖Λ(λ)‖2

|||p|||2
‖C‖2 ≤ n

√
2
κ(λ,C)

κ(λ, p)
.

From Theorem 8.19 together with Theorem 8.17 we get the following conclusions:

(C5) From the point of view of condition numbers, there are polynomials for which Frobenius
companion matrices may be better suited than the rest of Fiedler matrices in the problem of
computing their roots, but only in situations where it is not recommended to compute them
neither as eigenvalues of the Frobenius companion matrices or as eigenvalues of any other
Fiedler matrix.

(C6) From the point of view of condition numbers, there may be polynomials for which one should
avoid computing their roots as the eigenvalues of Frobenius companion matrices and to use,
instead, another Fiedler matrix. Although Theorem 8.19 does not show how to identify these
polynomials and how to know in advance which Fiedler matrix might be used.

The difference between the statements of parts (a) and (b) in Theorem 8.19 is striking, but the
next example shows that if the ratio κ(λ,C)/κ(λ,Mσ) is large then the ratio κ(λ,Mσ)/κ(λ, p) is
not necessarily large.

Example 8.20. Consider the following polynomial of degree 3: p(z) = z3 − z2(ε + 1/ε) + z,
with ε � 1, whose roots are ε, ε−1, 0. Let C denotes the first or the second Frobenius companion
matrix of p(z), and let Mσ be the Fiedler matrix of p(z) associated with a bijection σ such that
PCIS(σ) = (0, 1). It may be easily checked that

κ(ε, C)

κ(ε,Mσ)
=
‖C‖2
‖Mσ‖2

‖ [ε2 ε 1
]T ‖2‖ [1 −ε−1 0

]T ‖2
‖ [ε 1 0

]T ‖2‖ [ε −1 1
]T ‖2 ≥ 1

3ε
,

and
κ(ε,Mσ)

κ(ε, p)
=
‖Mσ‖2
|||p|||2

‖ [ε 1 0
]T ‖2‖ [ε −1 1

]T ‖2
‖ [ε2 ε 1

]T ‖2 ≤ 3,

where to get the first inequality we have used Lemma 8.16, and to get the last inequality we have
used that ‖Mσ‖2/|||p|||2 ≤ ‖Mσ‖F/|||p|||2 ≤

√
3. So, taking ε small enough, κ(λ,C)/κ(λ,Mσ) may

be as large as desired, but κ(λ,Mσ)/κ(λ, p) is bounded by a constant that is independent of ε.

8.5 Pseudospectra of Fiedler matrices

In this section we establish several mathematical relationships between the pseudozero sets of
a monic polynomial p(z) and the pseudospectra of the associated Fiedler matrices, and we also
show how to estimate accurately pseudospectra of Fiedler matrices in a fast way. These results
are generalizations of the results in [150], valid only for the Frobenius companion matrices, to all
Fiedler matrices.
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Given the monic polynomial p(z) (1.1) and a Fiedler companion matrix Mσ of p(z), recall from
Section 1.2.2.2 that the ε-pseudozero set of p(z), denoted by Zε(p), is the set

Zε(p) =

{
z ∈ C : z is a root of p̃(z) = zn +

n−1∑
k=0

ãkz
k with |||p̃− p|||2 ≤ ε|||p|||2

}
,

The pseudozero set Zε(p) can be characterized in terms of the level curves of a certain function
[150, Proposition 2.1]:

Zε(p) =

{
z ∈ C : ψ(z) =

|p(z)|
|||p|||2‖Λ(z)‖2

≤ ε

}
, (8.18)

where the vector Λ(z) is defined in (8.3). This characterization of Zε(p) allows to determine it
numerically.

Also recall, from Section 1.2.2.2, that the ε-pseudospectrum of Mσ, denoted by Λε(Mσ), is the
set

Λε(Mσ) := {z ∈ C : z is an eigenvalue of Mσ + E for some E with ‖E‖2 ≤ ε‖Mσ‖2}.

The pseudospectrum set Λε(Mσ) can be characterized in terms of the level curves of the norm of
the resolvent [155, Theorem 2.2]:

Λε(Mσ) =
{
z : ‖(zI −Mσ)

−1‖2 ≥ (ε‖Mσ‖2)−1
}
, (8.19)

where by convention ‖(zI −Mσ)
−1‖2 takes the value ∞ in the spectrum of Mσ. Since the 2-norm

of the resolvent matrix (zI−Mσ)
−1 is needed to compute Λε(Mσ), we begin presenting in Theorem

8.21 an explicit expression of (zI −Mσ)
−1 for any Fiedler matrix.

Theorem 8.21. Let p(z) = zn +
∑n−1

k=0 akz
k be a monic polynomial of degree n ≥ 2, let σ :

{0, 1, . . . , n− 1} → {1, . . . , n} be a bijection, let Mσ be the Fiedler matrix of p(z) associated with
the bijection σ, and let z ∈ C be a complex number that is not a root of p(z). Then,

(zI −Mσ)
−1 =

1

p(z)
xσy

T
σ −Aσ =

1

p(z)
vσw

T
σ +Bσ, (8.20)

where xσ, yσ, vσ, wσ ∈ Cn and Aσ, Bσ ∈ Cn×n are defined in Theorem 5.3.

Proof. Using that, for any non singular matrix A ∈ Cn×n, A−1 = adj(A)/det(A) and that det(zI−
Mσ) = p(z), Equation (8.20) is an immediate consequence of Theorem 5.3.

8.5.1 Fast computation of pseudospectra of Fiedler matrices

Since ‖(zI−Mσ)
−1‖2 is equal to the inverse of the minimum singular value of zI−Mσ, one obvious

way to determine Λε(Mσ) numerically is to compute the minimum singular value of zI −Mσ, via
the SVD, on a grid in the complex plane and, then, generate a contour plot from this data. The
problem with this algorithm is that computing the whole SVD of a n× n matrix on a m×m grid
requires O(m2n3) floating point operations, which is highly expensive. As it was commented in
Section 1.2.2.2, different techniques have been introduced to make the computation of the norm of
the resolvent matrix as efficient as possible. With these techniques the overall complexity can be
reduced to O(n3 + n2m2). Nevertheless, we will show that Λε(Mσ) can be accurately estimated
on a m × m grid in only O(nm2) flops. This result relies on Theorem 8.22, which shows that
the ε-pseudospectrum of a Fiedler matrix is the region bounded by the ε-level curve of a certain
function (denoted by φσ(z)), that is easy and fast to compute, defined over the complex plane
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when ε is sufficiently small. This result was proved in [150, Proposition 6.2] only when Mσ is one
of the Frobenius companion matrices and it is extended here to any Fiedler matrix via the result
in Theorem 8.21. We want to emphasize that Theorem 8.21 relies on Theorem 5.3. Hence, though
the proof of Theorem 8.22 we provide here is rather short, it is based on strong technical results
on Fiedler matrices.

Theorem 8.22. Let p(z) = zn +
∑n−1

k=0 akz
k be a monic polynomial of degree n ≥ 2, let σ :

{0, 1, . . . , n − 1} → {1, . . . , n} be a bijection, let Mσ be the Fiedler companion matrix of p(z)
associated with σ, and let xσ, yσ, vσ and wσ be the vectors defined in Theorem 5.3. Then,

‖(zI −Mσ)
−1‖2

φσ(z)
= 1 +O

(
1

φσ(z)

)
as φσ(z) −→∞, (8.21)

where

φσ(z) =

{ ‖xσ‖2‖yσ‖2/|p(z)| if |z| ≤ 1, and
‖vσ‖2‖wσ‖2/|p(z)| if |z| > 1.

(8.22)

Proof. From Theorem 8.21, we get

‖(zI −Mσ)
−1‖2 =

∥∥∥∥xσy
T
σ

p(z)
−Aσ

∥∥∥∥
2

=

∥∥∥∥vσwσ

p(z)
+Bσ

∥∥∥∥
2

. (8.23)

Recall from Lemma 5.8, that the entries of Aσ and Bσ are polynomials in z and z−1, respectively.
Therefore, there exist finite constants 0 ≤ m1,m2 <∞, such that

‖Aσ‖2 ≤ m1 if |z| ≤ 1 and ‖Bσ‖2 ≤ m2 if |z| ≥ 1. (8.24)

Finally, to prove the result, we have to distinguish two cases: when |z| ≤ 1 and when |z| > 1.

(a) If |z| ≤ 1, from (8.24) we get∣∣∣∣‖(zI −Mσ)
−1‖2 − ‖xσ‖2‖yσ‖2

|p(z)|
∣∣∣∣ ≤ ‖Aσ‖2 ≤ m1.

(b) If |z| > 1, from (8.24) we get∣∣∣∣‖(zI −Mσ)
−1‖2 − ‖vσ‖2‖wσ‖2

|p(z)|

∣∣∣∣ ≤ ‖Bσ‖2 ≤ m2.

Therefore, ∣∣∣∣‖(zI −Mσ)
−1‖2

φσ(z)
− 1

∣∣∣∣ ≤ max{m1,m2}
φσ(z)

,

which implies (8.21).

Remark 8.23. Recall from Theorems 8.2 and 5.3 that the entries of the vectors xσ, yσ, vσ, and
wσ are either powers of z, or powers of z times a horner shift of p(z) or prev(z). This observation,
together with the recurrence relation (2.6) to compute the Horner shifts of a polynomial and with
the Horner’s rule for evaluating polynomials, implies that φ(z)σ can by computed in O(n) flops.

Notice that in the neighborhood of a root of p(z) we have φσ(z)� 1. In this case, Theorem 8.22
shows that φσ(z) provides an accurate estimate of ‖(zI −Mσ)

−1‖2. Therefore, in the limit ε→ 0,
the pseudospectrum Λε(Mσ) agrees with the region bounded by the (ε‖Mσ‖2)−1−level curve of
φσ(z). This result has practical applications since pseudospectra, as we said in Section 1.2.2.2 and
in the paragraph before Theorem 8.22, are expensive to compute. As it is stated in Remark 8.23,
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only O(n) flops are needed to calculate φσ(z), as compared with O(n3) flops needed to calculate
‖(zI −Mσ)

−1‖2 by the SVD. Therefore, the function φσ(p) can be evaluated on a m×m grid in
only O(nm2) flops.

We illustrate how the ε-pseudospectrum of a Fiedler matrix is accurately estimated by the
(ε‖Mσ‖2)−1−level curve of the function φσ(z) with three examples. In Figure 8.5.1, we plot, for
ε = 10−2.5, 10−3, 10−3.5, in (a) the ε−pseudospectra and in (b) the (ε‖Mσ‖2)−1−level curves of the
function φσ(z) of the Fiedler matrix Mσ = C2 of the Bernoulli polynomial of degree 10: z10−5z9+
(15/2)z8−7z6+5z4− (3/2)z2+5/66. In Figure 8.5.2, we plot, for ε = 10−1.25, 10−1, 10−0.75, in (a)
the ε−pseudospectra and in (b) the (ε‖Mσ‖2)−1−level curves of the function φσ(z), for the Fiedler
matrix Mσ = P1 defined in (2.7) of the polynomial z10 + z9 + · · ·+ z+1. In Figure 8.5.3, we plot,
for ε = 10−16, 10−15, 10−14, in (a) the ε−pseudospectra and in (b) the (ε‖Mσ‖2)−1−level curves of
the function φσ(z), for the Fiedler matrix Mσ = F defined in (2.8) of the monic polynomial with
zeros in 1, 2, . . . , 10.

(a) (b)

Figure 8.5.1: For the second Frobenius companion matrix Mσ = C2 of the Bernoulli polynomial of degree 10:
z10−5z9+(15/2)z8−7z6+5z4−(3/2)z2+5/66, and for ε = 10−3.5, 10−3, 10−2.5, we plot in (a) the ε−pseudospectra
of C2 and in (b) the ε− level curves of the function φσ(z) defined in (8.22), in green, magenta and brown, respectively.

(a) (b)

Figure 8.5.2: For the pentadiagonal Fiedler matrix Mσ = P1 defined in (2.7) of the monic polynomial z10 + z9 +
· · · + z + 1, and for ε = 10−1.25, 10−1, 10−0.75, we plot in (a) the ε−pseudospectra of P1 and in (b) the ε− level
curves of the function φσ(z) defined in (8.22), in green, magenta and brown, respectively.

Notice that Figures 8.5.1-(a) and 8.5.1-(b), and 8.5.3-(a) and 8.5.3-(b) are almost indistin-
guishable. But also notice that, by contrast with Figures 8.5.1 and 8.5.3, there are some relevant
differences between Figures 8.5.2-(a) and 8.5.2-(b). The main reason for these differences is that
we are computing pseudospectra close to the region |z| = 1 where the 2-norm of the matrices Aσ

and Bσ in Theorem 8.21 might not be negligible and, therefore, ‖(zI −Mσ)
−1‖2 ≈ φσ(z) might

not hold.
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(a) (b)

Figure 8.5.3: For the Fiedler matrix Mσ = F defined in (2.8) of the monic polynomial with zeros in 1, 2, . . . , 10,
and for ε = 10−16, 10−15, 10−14, we plot in (a) the ε−pseudospectra of F and in (b) the ε− level curves of the
function φσ(z) defined in (8.22), in green, magenta and brown, respectively.

8.5.2 Asymptotic relations between pseudozero sets and pseudospectra

of Fiedler matrices

Theorem 8.22 is also the key tool to prove the main results in this section, that is, Corollaries 8.24
and 8.25. These two corollaries give several asymptotic relations between the ε-pseudozero set of a
monic polynomial p(z) and the pseudospectrum of the Fiedler matrices of p(z) in a neighborhood
of a simple nonzero root λ of p(z).

Corollary 8.24. Let p(z) = zn +
∑n−1

k=0 akz
k be a monic polynomial of degree n ≥ 2, let σ :

{0, 1, . . . , n − 1} → {1, . . . , n} be a bijection, and let Mσ be the Fiedler companion matrix of p(z)
associated with σ. If λ is a simple nonzero root of p(z), then

lim
z→λ

‖(zI −Mσ)
−1‖2‖Mσ‖2

1/ψ(z)
=

κ(λ,Mσ)

κ(λ, p)
,

where ψ(z) = |p(z)|/(‖Λ(z)‖2|||p|||2) is the function in (8.18), and where Λ(z) is defined in (8.3).

Proof. From Theorem 8.2 together with (8.6) and (8.22), we have

lim
z→λ

‖Mσ‖2
|z|

|p(z)|φσ(z)

|p′(z)| = κ(λ,Mσ). (8.25)

Therefore,

‖(zI −Mσ)
−1‖2‖Mσ‖2

1/ψ(z)
=
‖(zI −Mσ)

−1‖2
φσ(z)

|p′(z)| · |z|
‖Λ(z)‖2|||p|||2

|p(z)|φσ(z)‖Mσ‖2
|z| · |p′(z)|

−−−−→
z−→λ

κ(λ,Mσ)

κ(λ, p)
,

where we have used (8.4), (8.25), and Theorem 8.22.

In words, Corollary 8.24 says that, if Mσ is a Fiedler matrix of p(z), then, in the limit ε → 0,
the components of Λε(Mσ) and Zε′(p) containing λ, where ε′ = εκ(λ,Mσ)/κ(λ, p), agree with each
other (see (8.18) and (8.19)).

Corollary 8.24 together with Theorem 8.13 suggests that the ε-pseudospectrum of a Fiedler
matrix of a monic polynomial p(z) may be potentially much larger than the ε-pseudozero set of
that polynomial when the maximum of the absolute values of the coefficients of p(z) is large or
close to zero. Nevertheless, Corollary 8.24 reveals that when max{|an−1|, . . . , |a1|, |a0|} is moderate
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and not close to zero, that is, it is of order Θ(1), the pseudozero sets of a monic polynomial and
the pseudospectra of the associated Fiedler matrices will be quite close to each other for the same
values of ε.

Corollary 8.25. Let p(z) = zn +
∑n−1

k=0 akz
k be a monic polynomial of degree n ≥ 2, let σ1, σ2 :

{0, 1, . . . , n − 1} → {1, . . . , n} be two bijections, and let Mσ1
and Mσ2

be the Fiedler companion
matrices of p(z) associated with σ1 and σ2, respectively. Then, if λ is a nonzero simple root of
p(z),

lim
z→λ

‖(zI −Mσ1
)−1‖2‖Mσ1

‖2
‖(zI −Mσ2

)−1‖2‖Mσ2
‖2 =

κ(λ,Mσ1
)

κ(λ,Mσ2
)
. (8.26)

Proof. From (8.25), with σ = σ1, σ2, and Theorem 8.22, we have

‖(zI −Mσ1
)−1‖2‖Mσ1

‖2
‖(zI −Mσ2

)−1‖2‖Mσ2
‖2 =

φσ2
(z)‖(zI −Mσ1

)−1‖2
φσ1

(z)‖(zI −Mσ2
)−1‖2

φσ1
(z)|p(z)|
|p′(z)|

‖Mσ1
‖2

|z|
|p′(z)|

φσ2
(z)|p(z)|

|z|
‖Mσ2

‖2
−−−−→
z−→λ

κ(λ,Mσ1
)

κ(λ,Mσ2
)
.

In words, Corollary 8.25 says that, if Mσ1
and Mσ2

are two different Fiedler matrices of p(z),
then, in the limit ε→ 0, the components of Λε(Mσ1

) and Λε′(Mσ2
), where ε′ = εκ(λ,Mσ1

)/κ(λ,Mσ2
),

containing λ agree with each other.
Corollary 8.25 together with Theorem 8.17 suggest that the ε-pseudospectrum of a Fiedler

matrix Mσ 
= C1, C2 may be potentially much larger (or much smaller) than the ε-pseudospectrum
of the Frobenius companion matrices for polynomials that have large coefficients, since, in this case,
the ratios κ(λ,Mσ)/κ(λ,C) and κ(λ,C)/κ(λ,Mσ) can be large (with C = C1, C2). Nevertheless,
Corollary 8.25 reveals a sufficient condition for the pseudospectra of Fiedler matrices other than
the Frobenius ones and the pseudospectra of the Frobenius companion matrices to be quite close
to each other for the same values of ε. This condition is max{|an−1|, . . . , |a1|, |a0|} = O(1).

8.6 Numerical experiments

In this section we provide numerical experiments that support our theoretical results. In partic-
ular, our goals are: (i) to show whether or not the bounds in Theorem 8.13 correctly predict the
dependence on the coefficients of p(z) of the largest ratios κ(λ,Mσ)/κ(λ, p) that may be obtained;
(ii) to show whether or not the bounds in Theorem 8.17 correctly predict the dependence on the co-
efficients of p(z) of the largest and smallest ratios κ(λ,Mσ)/κ(λ,C) that may be obtained, where
C denotes one of the Frobenius companion matrices; (iii) to study the ratios κ(λ,Mσ)/κ(λ, p),
κ(λ,Mσ)/cond(λ, p) and κ(λ,Mσ)/κ(λ,C) when the coefficients of p(z) are bounded in absolute
value by a moderate constant; and (iv) to investigate, from the point of view of condition num-
bers and pseudospectra, the effect of balancing Fiedler matrices. The reason to include the ratio
κ(λ,Mσ)/cond(λ, p) in the numerical experiments, although it is not studied in the previous sec-
tions, is that in [150] numerical experiments to study κ(λ,C)/cond(λ, p) are provided, and, so, we
extend that study to all Fiedler matrices.

Given a monic polynomial p(z) of degree n, the second Frobenius companion matrix C2 of p(z),
and a Fiedler matrix Mσ other than the Frobenius ones associated with p(z), we are interested in
the following quantities:

• maxλ κ(λ,C2)/κ(λ, p) and maxλ κ(λ,Mσ)/κ(λ, p),

• maxλ κ(λ,C2)/cond(λ, p) and maxλ κ(λ,Mσ)/cond(λ, p),
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• maxλ κ(λ,Mσ)/κ(λ,C2), and

• minλ κ(λ,Mσ)/κ(λ,C2),

where λ runs over all the nonzero simple roots of p(z), and where the ratios of condition numbers
κ(λ,Mσ)/κ(λ, p), κ(λ,C2)/κ(λ, p) and κ(λ,Mσ)/κ(λ,C2) are, respectively, the ratios in (8.8), (8.9)
and (8.13), and where the ratio κ(λ,Mσ)/cond(λ, p) is obtained from (8.4) and (8.6).

In the numerical experiments, we consider monic polynomials of degree 10 and the following
Fiedler companion matrices associated with degree-10 polynomials:

(a) the second Frobenius companion matrix C2 = Mσ1
with PCIS(σ1) = (1, 1, 1, 1, 1, 1, 1, 1, 1),

(b) the pentadiagonal Fiedler matrix P1 = Mσ2
with PCIS(σ2) = (1, 0, 1, 0, 1, 0, 1, 0, 1),

(c) the Fiedler matrix F = Mσ3
with PCIS(σ3) = (0, 1, 1, 1, 1, 1, 1, 1, 1), and

(d) the Fiedler matrix Mσ4
with PCIS(σ4) = (0, 0, 1, 1, 1, 0, 1, 0, 0).

Recall that the matrices Mσ2
and Mσ3

are the Fiedler matrices considered in (2.7) and (2.8),
respectively.

Given a monic polynomial p(z) of degree 10, a Fiedler matrix Mσ associated with p(z), and the
second Frobenius companion matrixC2, to compute the ratios κ(λ,Mσ)/κ(λ, p), κ(λ,Mσ)/cond(λ, p)
and κ(λ,Mσ)/κ(λ,C2) we proceed as follows. First, we compute the roots of p(z) as the eigenvalues
of the second Frobenius companion matrix C2 with 64 digital digits of accuracy in MATLAB using
the function vpa (variable precision arithmetic) followed by the command eig. Then, we compute
κ(λ,Mσ)/κ(λ, p) and κ(λ,Mσ)/κ(λ,C2) using (8.8)-(8.9) and (8.13), respectively, and we compute
the ratio κ(λ,Mσ)/cond(λ, p) using (8.4) and (8.6).

8.6.1 Numerical experiments that show the dependence of κ(λ,Mσ)/κ(λ, p)
and κ(λ,Mσ)/κ(λ, C) on the coefficients of p(z)

In this subsection, we perform numerical experiments to determine whether or not the ratio of
condition numbers κ(λ,Mσ)/κ(λ, p) and κ(λ,Mσ)/κ(λ,C) behave like Theorems 8.13 and 8.17
predict. In particular, we provide two sets of numerical experiments to study the dependence
of κ(λ,Mσ)/κ(λ, p) on ‖p‖2 and on the function ρ(p) (defined in (8.10)), and a set of numerical
experiments to study the dependence of κ(λ,Mσ)/κ(λ,C) on ‖p‖2.

In the first set of numerical experiments we study the dependence of the ratio κ(λ,Mσ)/κ(λ, p)
on ‖p‖2. For this purpose, we consider a random sample of two hundred degree-10 monic polyno-

mials p(z) = z10+
∑9

i=0 aiz
i with coefficients of the form ai = ci×10ei, for i = 0, 1, . . . , 9, where ci

and ei are drawn from the uniform distributions on the intervals [−1, 1] and [0, 5], respectively. All
the generated polynomials satisfy max{|a0|, |a1|, . . . , |a9|} ≥ 1, and, so, the function ρ(p) satisfies
ρ(p) ≤ √2 for these polynomials. Then, Theorem 8.13 predicts that

1√
2
≤ κ(λ,Mσ)

κ(λ, p)
≤ 10

√
2‖p‖2 (8.27)

if Mσ = C1, C2, and
1

10
≤ κ(λ,Mσ)

κ(λ, p)
≤ 100

√
20‖p‖22 (8.28)

if Mσ 
= C1, C2.
In Figures 8.6.1-(a), 8.6.1-(b), 8.6.1-(c), and 8.6.1-(d) we plot for each of the 200 random

polynomials the quantity maxλ κ(λ,Mσi
)/κ(λ, p), where λ runs over all nonzero simple roots of

p(z), for i = 1, 2, 3, 4, against the norm ‖p‖2. As may be seen in those figures, the largest ratios
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‖p‖2

maxλ
κ(λ,Mσ1

)

κ(λ,p)

‖p‖2

(a) Mσ1

‖p‖2

maxλ
κ(λ,Mσ2

)

κ(λ,p)

‖p‖22
‖p‖2

(b) Mσ2

‖p‖2

maxλ
κ(λ,Mσ3

)

κ(λ,p)

‖p‖22
‖p‖2

(c) Mσ3

‖p‖2

maxλ
κ(λ,Mσ4

)

κ(λ,p)

‖p‖22
‖p‖2

(d) Mσ4

Figure 8.6.1: Maximum ratio κ(λ,Mσi
)/κ(λ, p), for i = 1, 2, 3, 4, for each of the 200 random degree-10 monic

polynomials with coefficients of the form ai = ci × 10ei , for i = 0, 1, . . . , 9, where ci and ei are drawn, respectively,
from the uniform distributions on the intervals [−1, 1] and [0, 5].

obtained in these numerical experiments are bounded by a function that grows like ‖p‖2 in Figure
8.6.1-(a), and like ‖p‖22 in Figures 8.6.1-(b), 8.6.1-(c), and 8.6.1-(d). These results are consistent
with the bounds in (8.27) and (8.28).

In the second set of numerical experiments we study the dependence of the ratio κ(λ,Mσ)/κ(λ, p)
on the function ρ(p). For this purpose, we consider a random sample of two hundred degree-10
monic polynomials with coefficients close to zero. To generate those polynomials we proceed as fol-
lows. For k = 1, 2, . . . , 10, we generate twenty degree-10 monic polynomials p(z) = z10+

∑9
i=0 aiz

i

with coefficients of the form ai = ci × 10ei , for i = 0, 1, . . . , 9, where ci and ei are drawn from
the uniform distribution on the intervals [−1, 1] and [−k/2,−k/2 + 0.5], respectively. All the
generated polynomials satisfy max{|a0|, |a1|, . . . , |a9|} ≤ 1, and, therefore, the their norms satisfy
‖p‖2 ≤

√
10. Then, Theorem 8.13 predicts that

1√
2
≤ κ(λ,Mσ)

κ(λ, p)
≤ 103/2ρ(p), (8.29)

if Mσ = C1, C2, and
1

10
≤ κ(λ,Mσ)

κ(λ, p)
≤ 107/2ρ(p), (8.30)

if Mσ 
= C1, C2.
In Figures 8.6.2-(a), 8.6.2-(b), 8.6.2-(c), and 8.6.2-(d) we plot for each of the 200 random

polynomials the quantity maxλ κ(λ,Mσi
)/κ(λ, p), where λ runs over all nonzero simple roots of

p(z), for i = 1, 2, 3, 4, against the function ρ(p). As may be seen in those figures, the ratios
obtained in these numerical experiments grow like the function ρ(p). These results are consistent
with the bounds in (8.29) and (8.30). Also notice that the four plots in Figure 8.6.2 are almost
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indistinguishable. This result is in accordance with Theorem 8.17, who predicts, from the point of
view of conditioning, that for polynomials with moderate coefficients all Fiedler matrices behave
like the Frobenius ones.

ρ(p)

maxλ
κ(λ,Mσ1

)

κ(λ,p)

ρ(p)

(a) Mσ1

ρ(p)

maxλ
κ(λ,Mσ2

)

κ(λ,p)

ρ(p)

(b) Mσ2

ρ(p)

maxλ
κ(λ,Mσ3

)

κ(λ,p)

ρ(p)

(c) Mσ3

ρ(p)

maxλ
κ(λ,Mσ4

)

κ(λ,p)

ρ(p)

(d) Mσ4

Figure 8.6.2: Maximum ratio κ(λ,Mσi
)/κ(λ, p), for i = 1, 2, 3, 4, for each of the 20 random degree-10 monic

polynomials of each of the 10 samples of random polynomials with coefficients of the form ai = ci × 10ei , for
i = 0, 1, . . . , 9, where ci and ei are drawn, respectively, from the uniform distributions on the intervals [−1, 1] and
[−k/2,−k/2 + 0.5], for k = 1, 2, . . . , 10.

In the third set of numerical experiments we study the dependence of the ratio κ(λ,Mσ)/κ(λ,C2)
on ‖p‖2. For this purpose, we consider again a random sample of two hundred degree-10 monic

polynomials p(z) = z10 +
∑9

i=0 aiz
i with coefficients of the form ai = ci × 10ei , for i = 0, 1, . . . , 9,

where ci and ei are drawn from the uniform distributions on the intervals [−1, 1] and [0, 5].
In Figures 8.6.3-(a), 8.6.3-(b), and 8.6.3-(c) we plot for each of the 200 random polynomials the

quantities maxλ κ(λ,Mσi
)/κ(λ,C2) and minλ κ(λ,Mσi

)/κ(λ,C2), where λ runs over all nonzero
simple roots of p(z), for i = 2, 3, 4, against the norm ‖p‖2. As may be seen in those figures, the
largest ratios obtained in these numerical experiments are upper bounded by a function that grows
like ‖p‖2, and the smallest ratios are lower bounded by a function that decreases like ‖p‖−1

2 . These
results are consistent with the bounds in Theorem 8.17.

8.6.2 Numerical experiments with polynomials of moderate coefficients

In this subsection we study the ratios κ(λ,Mσ)/κ(λ, p), κ(λ,Mσ)/cond(λ, p) and κ(λ,Mσ)/κ(λ,C2)

when the coefficients of p(z) = zn +
∑n−1

k=0 akz
k are bounded in absolute value by a moderate

number. In particular, we provide numerical evidence to show that: (i) the three ratios are
moderate when all the coefficients or p(z) are moderate and not close to zero; (ii) the ratios
κ(λ,Mσ)/κ(λ, p) and κ(λ,Mσ)/κ(λ,C2) are moderate when max{|a0|, |a1|, . . . , |an−1|} is moderate
and not close to zero, but, in this situation, κ(λ,Mσ)/cond(λ, p) may be large, and (iii) the ratio
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‖p‖2

maxλ
κ(λ,Mσ2

)

κ(λ,C2)

minλ
κ(λ,Mσ2

)

κ(λ,C2)

‖p‖2
‖p‖−1

2

(a) Mσ2

‖p‖2

maxλ
κ(λ,Mσ3

)

κ(λ,C2)

minλ
κ(λ,Mσ3

)

κ(λ,C2)

‖p‖2
‖p‖−1

2

(b) Mσ3

‖p‖2

maxλ
κ(λ,Mσ4

)

κ(λ,C2)

minλ
κ(λ,Mσ4

)

κ(λ,C2)

‖p‖2
‖p‖−1

2

(c) Mσ4

Figure 8.6.3: Maximum and minimum ratio κ(λ,Mσi
)/κ(λ, C2), in blue and purple, respectively, for i = 1, 2, 3, 4,

for each of the 200 random degree-10 monic polynomials with coefficients of the form ai = ci×10ei , for i = 0, 1, . . . , 9,
where ci and ei are drawn, respectively, from the uniform distributions on the intervals [−1, 1] and [0, 5].

κ(λ,Mσ)/κ(λ,C2) is moderate when max{|a0|, |a1|, . . . , |an−1|} is moderate, but, in this situation,
the ratios κ(λ,Mσ)/κ(λ, p) and κ(λ,Mσ)/cond(λ, p) may be large.

In the first set of numerical experiments, we consider a random sample of 1000 degree-10 polyno-
mials with coefficients drawn from the uniform distribution on the interval [−10, 10], so that all the
coefficients of every polynomial in the sample are moderate and not close to zero. In Table 8.6.1, we
give the mean and the maximum of the decimal logarithms (Log-Mean and Log-Maximum, respec-
tively) of maxλ κ(λ,Mσ)/κ(λ, p), maxλ κ(λ,Mσ)/cond(λ, p) and maxλ κ(λ,Mσ)/κ(λ,C2), where λ
runs over all nonzero simple roots of p(z), obtained for the Fiedler matrices Mσ1

,Mσ2
,Mσ3

,Mσ4
.

As may be seen from the data in Table 8.6.1, the ratios κ(λ,Mσ)/κ(λ, p), κ(λ,Mσ)/cond(λ, p)
and κ(λ,Mσ)/κ(λ,C2), obtained for the polynomials in the first sample, are moderate, although, as
may be seen from the data in Log-Maximummaxλ κ(λ,Mσ)/cond(λ, p), the ratio κ(λ,Mσ)/cond(λ, p)
tends to be O(103).

In the second set of numerical experiments, we consider a random sample of 1000 degree-10
polynomials with coefficients drawn from the uniform distribution on the interval [−10, 10], but
we set a0 = 10−10, so that all polynomials in this sample satisfy that max{|a0|, |a1|, . . . , |a9|} is
moderate and not close to zero. The reason for setting a0 = 10−10 is to show that, in this situation,
κ(λ,Mσ)/κ(λ, p) is moderate but κ(λ,Mσ)/cond(λ, p) may be large. In Table 8.6.2, we give the
mean and the maximum of the decimal logarithms (Log-Mean and Log-Maximum, respectively) of
maxλ κ(λ,Mσ)/κ(λ, p), maxλ κ(λ,Mσ)/cond(λ, p) and maxλ κ(λ,Mσ)/κ(λ,C2), where λ runs over
all nonzero simple roots of p(z), obtained for the Fiedler matrices Mσ1

,Mσ2
,Mσ3

,Mσ4
.

As may be seen from the data in Table 8.6.2, the ratios κ(λ,Mσ)/κ(λ, p) and κ(λ,Mσ)/κ(λ,C2),
obtained for the polynomials in the second sample, are moderate, but, as may be seen from the
data in Log-Mean maxλ κ(λ,Mσ)/cond(λ, p), the ratios κ(λ,Mσ)/cond(λ, p) are large.



120 CHAPTER 8. PSEUDOSPECTRA AND EIGENVALUE CONDITION NUMBERS

Mσ1
Mσ2

Mσ3
Mσ4

Log-Mean maxλ κ(λ,Mσ)/κ(λ, p) 1.5 2.0 1.9 2.1

Log-Maximum maxλ κ(λ,Mσ)/κ(λ, p) 1.8 2.6 2.4 2.6

Log-Mean maxλ κ(λ,Mσ)/cond(λ, p) 2.1 2.6 2.5 2.6

Log-Maximum maxλ κ(λ,Mσ)/cond(λ, p) 4.1 3.1 3.0 3.2

Log-Mean maxλ κ(λ,Mσ)/κ(λ,C2) 0.0 0.5 0.4 0.6

Log-Maximum maxλ κ(λ,Mσ)/κ(λ,C2) 0.0 0.8 0.8 0.8

Table 8.6.1: Mean and the maximum of the decimal logarithms (Log-Mean and Log-Maximum, respectively)
of maxλ κ(λ,Mσ)/κ(λ, p), maxλ κ(λ,Mσ)/cond(λ, p) and maxλ κ(λ,Mσ)/κ(λ, C2), where λ runs over all nonzero
simple roots of p(z), obtained for 1000 random degree-20 polynomials, with coefficients drawn from the uniform
distribution on the interval [−10, 10].

Mσ1
Mσ2

Mσ3
Mσ4

Log-Mean maxλ κ(λ,Mσ)/κ(λ, p) 1.5 1.9 1.4 1.9

Log-Maximum maxλ κ(λ,Mσ)/κ(λ, p) 1.7 2.4 1.7 2.4

Log-Mean maxλ κ(λ,Mσ)/cond(λ, p) 12.3 11.6 11.7 11.8

Log-Maximum maxλ κ(λ,Mσ)/cond(λ, p) 12.6 12.0 12.2 12.2

Log-Mean maxλ κ(λ,Mσ)/κ(λ,C2) 0.0 0.5 0.0 0.5

Log-Maximum maxλ κ(λ,Mσ)/κ(λ,C2) 0.0 0.7 0.0 0.8

Table 8.6.2: Mean and maximum of the decimal logarithms (Log-Mean and Log-Maximum, respectively) of
maxλ κ(λ,Mσ)/κ(λ, p), maxλ κ(λ,Mσ)/cond(λ, p) and maxλ κ(λ,Mσ)/κ(λ, C2), where λ runs over all nonzero sim-
ple roots of p(z), obtained for 1000 random degree-10 polynomials, with coefficients drawn from the uniform distri-
bution on the interval [−10, 10] and setting a0 = 10−10.

In the third set of numerical experiments, we consider a random sample of 1000 degree-10
polynomials with coefficients of the form ai = c · 10e where c and e are drawn from the uniform
distributions on the intervals [−1, 1] and [−10,−8], respectively, so that all polynomials in this
sample satisfy that max{|a0|, |a1|, . . . , |a9|} is moderate but close to zero. The reason for this
choice of random polynomials is to show that max{|a0|, |a1|, . . . , |a9|} = O(1) is not enough to
guarantee that κ(λ,Mσ)/κ(λ, p) and κ(λ,Mσ)/cond(λ, p) are moderate. In Table 8.6.3, we give the
mean and the maximum of the decimal logarithms (Log-Mean and Log-Maximum, respectively) of
maxλ κ(λ,Mσ)/κ(λ, p), maxλ κ(λ,Mσ)/cond(λ, p) and maxλ κ(λ,Mσ)/κ(λ,C2), where λ runs over
all nonzero simple roots of p(z), obtained for the Fiedler matrices Mσ1

,Mσ2
,Mσ3

,Mσ4
.

As may be seen in Table 8.6.3, the ratio κ(λ,Mσ)/κ(λ,C2), obtained for the polynomials in the
third sample of random polynomials, are moderate, but, as may be seen from the data in Log-Mean
maxλ κ(λ,Mσ)/cond(λ, p) and Log-Mean maxλ κ(λ,Mσ)/κ(λ, p), the ratios κ(λ,Mσ)/κ(λ, p) and
κ(λ,Mσ)/cond(λ, p) are large.

8.6.3 Numerical experiments balancing Fiedler matrices

Given a polynomial p(z) and an associated Fiedler companion matrix Mσ, it would be desirable
to find a similarity transformation that makes the eigenvalue problem no worse conditioned that
the polynomial root-finding problem. If D is a nonsingular diagonal matrix, then the condition
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Mσ1
Mσ2

Mσ3
Mσ4

Log-Mean maxλ κ(λ,Mσ)/κ(λ, p) 8.3 8.3 8.3 8.3

Log-Maximum maxλ κ(λ,Mσ)/κ(λ, p) 9.2 9.2 9.2 9.2

Log-Mean maxλ κ(λ,Mσ)/cond(λ, p) 9.4 9.4 9.4 9.4

Log-Maximum maxλ κ(λ,Mσ)/cond(λ, p) 12.9 12.9 12.9 12.9

Log-Mean maxλ κ(λ,Mσ)/κ(λ,C2) 0.0 0.0 0.0 0.0

Log-Maximum maxλ κ(λ,Mσ)/κ(λ,C2) 0.0 0.0 0.0 0.0

Table 8.6.3: Mean and maximum of the decimal logarithms (Log-Mean and Log-Maximum, respectively) of
maxλ κ(λ,Mσ)/κ(λ, p), maxλ κ(λ,Mσ)/cond(λ, p) and maxλ κ(λ,Mσ)/κ(λ, C2), where λ runs over all nonzero sim-
ple roots of p(z), obtained for 1000 random degree-10 polynomials, with coefficients of the form ai = c · 10e where
c and e are drawn from the uniform distributions on the intervals [−1, 1] and [−10,−8], respectively.

number κ(λ,DMσD
−1) of a nonzero simple eigenvalue λ of Mσ is given by

κ(λ,DMσD
−1) =

‖DMσD
−1‖2

|λ|
‖Drσ‖2‖D−1lσ‖2

|p′(λ)| , (8.31)

where the vectors rσ and lσ are defined in Theorem 8.2. In this subsection we perform numerical
experiments to study, from the point of view of condition numbers and pseudospectra, the effect
of balancing Fiedler matrices (see Section 1.2.3).

In the first set of numerical experiments, we consider a random sample of 1000 degree-10
monic polynomials p(z) as in (1.1) with coefficients of the form ak = b1 × 10e1 + ib2 × 10e2 ,
where, for i = 1, 2, bi and ei are drawn from the uniform distributions on the intervals [−1, 1] and
[−10, 10], respectively. Our goal is to study the ratios κ(λ,Mσ)/κ(λ, p), κ(λ,Mσ)/cond(λ, p) and
κ(λ,Mσ)/κ(λ,C2) when the Fiedler matrices are not or are balanced. To compute the diagonal
matrix D that balance a Fiedler matrix Mσ we use the command balance in MATLAB.

In Table 8.6.4, we give the mean and the maximum of the decimal logarithms (Log-Mean and
Log-Maximum, respectively) of maxλ κ(λ,Mσ)/κ(λ,C2), and the mean and the minimum of the
decimal logarithms (Log-Mean and Log-Minimum, respectively) of minλ κ(λ,Mσ)/κ(λ,C2), where
λ runs over all nonzero simple roots of p(z), for the Fiedler matrices Mσ = Mσ2

,Mσ3
,Mσ4

, with
and without balancing them.

Several observations may be drawn from the data in Tables 8.6.4-(a) and 8.6.4-(b). First note,
from the data in Table 8.6.4-(a), that if the Fiedler matrices are not balanced, the ratio κ(λ,Mσ)/
κ(λ,C2) may be large or small, as it is predicted in Theorem 8.17. Also note that the largest and
smallest of these ratios are consistent with the bounds in (8.14) and (8.15). Second, note, from
the data in Table 8.6.4-(b), that the process of balancing the Fiedler matrices makes the ratio
κ(λ,Mσ)/κ(λ,C2) moderate, so that, from the point of view of conditioning, balanced Fiedler
Matrices can be used with the same reliability as balanced Frobenius companion matrices even
with polynomials with large norms.

In Table 8.6.5, we give the mean and the maximum of the decimal logarithms (Log-Mean
and Log-Maximum, respectively) of maxλ κ(λ,Mσ)/κ(λ, p) and maxλ κ(λ,Mσ)/cond(λ, p), where
λ runs over all nonzero simple roots of p(z), for the Fiedler matrices Mσ1

,Mσ2
,Mσ3

,Mσ4
, with

and without balancing them.
Again, several conclusions may be drawn from the data in Tables 8.6.5-(a) and 8.6.5-(b). First

note, from the point of view of conditioning, that if the Fiedler matrices are not balanced, the ratios
κ(λ,Mσ)/κ(λ, p) and κ(λ,Mσ)/cond(λ, p) may be large, as it is predicted in Theorem 8.13. Note
also that the largest of these ratios is consistent with the upper bound in (8.11) for the Frobenius
companion matrix, and with the upper bound in (8.12) for Fiedler matrices other than the Frobe-
nius ones. Second, note, comparing the data in Table 8.6.5-(a) with the data in Table 8.6.5-(b),
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(a) The Fiedler matrices are not balanced.

Mσ2
Mσ3

Mσ4

Log-Mean maxλ κ(λ,Mσ)/κ(λ,C2) 6.3 3.7 6.1

Log-Maximum maxλ κ(λ,Mσ)/κ(λ,C2) 9.4 9.4 9.4

Log-Mean minλ κ(λ,Mσ)/κ(λ,C2) -4.8 -2.7 -5.4

Log-Minimum minλ κ(λ,Mσ)/κ(λ,C2) -9.5 -8.4 -9.3

(b) The Fiedler matrices are balanced.

Mσ2
Mσ3

Mσ4

Log-Mean maxλ κ(λ,Mσ)/κ(λ,C2) 0.1 0.1 0.1

Log-Maximum maxλ κ(λ,Mσ)/κ(λ,C2) 0.9 1.2 1.3

Log-Mean minλ κ(λ,Mσ)/κ(λ,C2) -0.7 -0.1 -0.6

Log-Minimum minλ κ(λ,Mσ)/κ(λ,C2) -2.6 -0.9 -2.3

Table 8.6.4: Mean and maximum of the decimal logarithms (Log-Mean and Log-Maximum, respectively) of
maxλ κ(λ,Mσ)/κ(λ, C2), and mean and minimum of the decimal logarithms (Log-Mean and Log-Minimum, respec-
tively) of minλ κ(λ,Mσ)/κ(λ, C2), where λ runs over all nonzero simple roots of p(z), obtained for a sample of 1000
random degree-10 monic polynomials, with coefficients of the form b1 × 10e1 + ib2 × 10e2 , where, for i = 1, 2, bi
and ei are drawn from the uniform distributions on the intervals [−1, 1] and [−10, 10], respectively, for the Fiedler
matrices Mσ = Mσ2

,Mσ3
,Mσ4

, without balancing and with balancing.

that the process of balancing Fiedler matrices may reduce considerably the ratios κ(λ,Mσ)/κ(λ, p)
and κ(λ,Mσ)/cond(λ, p). In particular, from the data in Log-Mean maxλ κ(λ,Mσ)/κ(λ, p) in
Table 8.6.5-(b), we can see that, usually, balancing makes the ratio κ(λ,Mσ)/κ(λ, p) moderate,
although, from the data in Log-Maximum maxλ κ(λ,Mσ)/κ(λ, p) in Table 8.6.5-(b), we can see
that balancing is not always enough to guarantee a moderate ratio κ(λ,Mσ)/κ(λ, p). Finally, from
the data in Log-Mean maxλ κ(λ,Mσ)/cond(λ, p) and Log-Maximum maxλ κ(λ,Mσ)/cond(λ, p) in
Table 8.6.5-(b), we see that balancing in most cases is not enough to guarantee that the ratio
κ(λ,Mσ)/cond(λ, p) is moderate.

8.6.4 Numerical experiments to study pseudospectra of Fiedler matrices

In this section we perform some numerical experiments to illustrate the theoretical results in
Section 8.5 concerning pseudospectra of Fiedler matrices, and to study the effect of balancing
Fiedler matrices from the point of view of pseudospectra.

In the first numerical experiment, we illustrate Corollary 8.24, that is, in a neighborhood of a
nonzero simple root λ of a monic polynomial p(z), the pseudospectrum Λε′(Mσ) and the pseudozero
set Zε(p) containing λ, where ε′ = εκ(λ, p)/κ(λ,Mσ), agree with each other.

In Figure 8.6.4 we plot, for ε = 10−10.75, 10−10.5, 10−10.25, the ε-pseudozero sets Zε(p), and, for

i = 1, 2, 3, the εi-pseudospectra Λ(Mσi
), where p(z) is the monic polynomial p(z) =

∏10
j=1(z −

j), and, for i = 1, 2, 3, εi = εκ(4, p)/κ(4,Mσi
). The ratios κ(4,Mσ1

)/κ(4, p) = 3.97 · 106,
κ(4,Mσ2

)/κ(4, p) = 1.18 · 109 and κ(4,Mσ3
)/κ(4, p) = 5.13 · 107are computed using (8.8) and

(8.9) in MATLAB. As can be seen in those figures, the pseudozero sets and the pseduospectra of
the three Fiedler matrices are almost identical.

In the second numerical experiment, we present a graphical comparison between the pseudozero
sets of a monic polynomial p(z) with a large norm ‖p‖2, and the pseudospectra of the Fiedler
matricesMσ1

,Mσ2
,Mσ3

associated with p(z), to show that when ‖p‖2 is large there may be relevant
differences between pseudozero sets and pseudospectra of Fiedler matrices.

In Figures 8.6.5-(a), 8.6.5-(b), 8.6.5-(c), and 8.6.5-(d) we plot, for ε = 10−11, 10−12, 10−13, the



8.6. NUMERICAL EXPERIMENTS 123

(a) The Fiedler matrices are not balanced.

Mσ1
Mσ2

Mσ3
Mσ4

Log-Mean maxλ κ(λ,Mσ)/κ(λ, p) 8.6 14.6 11.8 14.4

Log-Maximum maxλ κ(λ,Mσ)/κ(λ, p) 10.4 19.4 19.4 19.3

Log-Mean maxλ κ(λ,Mσ)/cond(λ, p) 15.2 17.2 17.1 17.4

Log-Maximum maxλ κ(λ,Mσ)/cond(λ, p) 28.6 27.9 27.9 28.5

(b) The Fiedler matrices are balanced.

Mσ1
Mσ2

Mσ3
Mσ4

Log-Mean maxλ κ(λ,Mσ)/κ(λ, p) 2.7 2.4 2.8 2.5

Log-Maximum maxλ κ(λ,Mσ)/κ(λ, p) 7.9 7.5 8.2 7.7

Log-Mean maxλ κ(λ,Mσ)/cond(λ, p) 7.4 6.9 7.5 7.0

Log-Maximum maxλ κ(λ,Mσ)/cond(λ, p) 21.5 21.6 21.5 21.6

Table 8.6.5: Mean and maximum of the decimal logarithms (Log-Mean and Log-Maximum, respectively) of
maxλ κ(λ,Mσ)/κ(λ, p) and maxλ κ(λ,Mσ)/cond(λ, p), where λ runs over all nonzero simple roots of p(z), obtained
for a sample of 1000 random degree-10 monic polynomials, with coefficients of the form b1×10e1 +ib2×10e2 , where,
for i = 1, 2, bi and ei are drawn from the uniform distributions on the intervals [−1, 1] and [−10, 10], respectively,
for the Fiedler matrices Mσ = Mσ2

,Mσ3
,Mσ4

, without balancing and with balancing.

ε-pseudozero sets Zε(p) of the monic polynomial p(z) =
∏10

j=1(z − j), and the ε-pseudospectra
Λε(Mσ1

),Λε(Mσ2
),Λε(Mσ3

) of the Fiedler matrices Mσ1
,Mσ2

,Mσ3
associated with p(z). As may

be seen in those figures, the pseudozero sets and the pseudospectra of the Fiedler matrices are
very different. Notice also that there are relevant differences between the pseudospectra Λε(Mσ1

),
Λε(Mσ2

) and Λε(Mσ3
), although, for a fixed ε, the three pseudospectra have, approximately, the

same size.
In the final set of numerical experiments, as in [53] and [150], we explore the following degree-20

monic polynomials:

(p1) the Wilkinson polynomial: p(z) =
∏20

k=1(z − k),

(p2) the monic polynomial with zeros: −2,−1.8,−1.6, . . . , 1.6, 1.8,
(p3) p(z) = (20!)

∑20
k=0 z

k/k!,

(p4) the Bernoulli polynomial of degree 20:

p(z) =z20 − 10z19 +
95

3
z18 − 323

2
z16 +

6460

7
z14 − 4199z12 +

41990

3
z10 − 223193

7
z8 + 45220z6

− 68723

2
z4 +

219335

21
z2 − 174611

330
,

(p5) p(z) =
∑20

k=0 z
k,

(p6) the monic polynomial with zeros 2−10, 2−9, . . . , 28, 29,

(p7) the Chebyshev polynomial of degree 20,

(p8) the monic polynomial with zeros equally spaced on a sine curve, that is,

p(z) =
9∏

k=−10

(
z − 2π

19
(k + 0.5)− i · sin 2π

19
(k + 0.5)

)
.
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(a) p(z) (b) Mσ1

(c) Mσ2
(d) Mσ3

Figure 8.6.4: For p(z) =
∏10

j=1(z − j) and for ε = 10−10.75, 10−10.5, 10−10.25 we plot, in green, magenta and

brown, respectively, the ε-pseudozero set Zε(p) and, for i = 1, 2, 3, the εi-pseudospectra Λ(Mσi
), where εi =

εκ(4, p)/κ(4,Mσi
), Mσ1

= C2 is the second Frobenius companion matrix, Mσ2
= P1 is the Fiedler matrix defined

in (2.7), and Mσ3
= F is the Fiedler matrix defined in (2.8).

As in [53], we first compute the coefficients exactly or with high precision using Mathematica. We
then read these coefficients into MATLAB and take the rounded coefficients stored in MATLAB
as our official test cases. Also, we consider again the Fiedler matrices Mσ1

= C2 and Mσ2
= P2,

defined in (2.7), but, this time, associated with degree-20 polynomials.
For each of the eight polynomials p1–p8 we present in Figures 8.6.6–8.6.13 a graphical compar-

ison between the pseudozero sets Zε(p), the coefficientwise pseudozero sets Pseudoε(p) (see (1.26))

and the pseudospectra Λε(M̃σi
), for i = 1, 2, where M̃σi

denotes the Fiedler matrix Mσi
after being

balanced. The goal of these comparisons is to show that, for some polynomials, balancing tends
to achieve a reasonably close agreement between the coefficientwise pseudozero set Pseudoε(p) and
the pseudospectra of balanced Fiedler matrices, at least compared with the size of the pseudozero
set Zε(p). These figures also show, as can be seen by comparing Figures 8.6.6-(a)–8.6.13-(a) with
Figures 8.6.6-(b)–8.6.13-(b), that pseudospectra of balanced Fiedler matrices other than the Frobe-
nius ones may be larger that the pseudospectra of balanced Frobenius companion matrices, for the
same values of ε. In other words, eigenvalues of balanced Fiedler matrices other than the Frobenius
ones may be more sensitive to finite perturbations than eigenvalues of balanced Frobenius matrices.
This result is in contrast with the numerical experiments in Section 8.6.3, which show that, under
infinitesimal perturbations, the sensitivity of the eigenvalues of a balanced Fiedler matrix and the
sensitivity of the eigenvalues of a balanced Frobenius matrix are approximately the same.
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(a) p(z) (b) Mσ1

(c) Mσ2
(d) Mσ3

Figure 8.6.5: For p(z) =
∏10

j=1(z − j) and for ε = 10−11, 10−12, 10−13 we plot, in green, magenta and brown,

respectively, the ε-pseudozero set Zε(p) and, for i = 1, 2, 3, the ε-pseudospectra Λ(Mσi
).

(a) Λε(M̃σ1
) (b) Λε(M̃σ2

)

(c) Zε(p1) (d) Pseudoε(p1)

Figure 8.6.6: For ε = 10−14, 10−13, 10−12, we plot Zε(p1), Pseudoε(p1), Λε(M̃σ1
) and Λε(M̃σ2

), in green, magenta

and brown, respectively, where M̃σ1
and M̃σ2

denote the balanced Fiedler matrices coming from Mσ1
and Mσ2

,
respectively, of the polynomial p1.
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(a) Λε(M̃σ1
) (b) Λε(M̃σ2

)

(c) Zε(p2) (d) Pseudoε(p2)

Figure 8.6.7: For ε = 10−3, 10−2.5, 10−2, we plot Zε(p2), Pseudoε(p2), Λε(M̃σ1
) and Λε(M̃σ2

), in green, magenta

and brown, respectively, where M̃σ1
and M̃σ2

denote the balanced Fiedler matrices coming from Mσ1
and Mσ2

,
respectively, of the polynomial p2.

(a) Λε(M̃σ1
) (b) Λε(M̃σ2

)

(c) Zε(p3) (d) Pseudoε(p3)

Figure 8.6.8: For ε = 10−5, 10−4, 10−3, we plot Zε(p3), Pseudoε(p3), Λε(M̃σ1
) and Λε(M̃σ2

), in green, magenta

and brown, respectively, where M̃σ1
and M̃σ2

denote the balanced Fiedler matrices coming from Mσ1
and Mσ2

,
respectively, of the polynomial p3.



8.6. NUMERICAL EXPERIMENTS 127

(a) Λε(M̃σ1
) (b) Λε(M̃σ2

)

(c) Zε(p4) (d) Pseudoε(p4)

Figure 8.6.9: For ε = 10−4, 10−3, 10−2, we plot Zε(p4), Pseudoε(p4), Λε(M̃σ1
) and Λε(M̃σ2

), in green, magenta

and brown, respectively, where M̃σ1
and M̃σ2

denote the balanced Fiedler matrices coming from Mσ1
and Mσ2

,
respectively, of the polynomial p4.

(a) Λε(M̃σ1
) (b) Λε(M̃σ2

)

(c) Zε(p5) (d) Pseudoε(p5)

Figure 8.6.10: For ε = 10−1.2, 10−1, 10−0.8, we plot Zε(p5), Pseudoε(p5), Λε(M̃σ1
) and Λε(M̃σ2

),in green,

magenta and brown, respectively, where M̃σ1
and M̃σ2

denote the balanced Fiedler matrices coming from Mσ1
and

Mσ2
, respectively, of the polynomial p5.
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(a) Λε(M̃σ1
) (b) Λε(M̃σ2

)

(c) Zε(p6) (d) Pseudoε(p6)

Figure 8.6.11: For ε = 10−2.5, 10−2, 10−1.5, we plot Zε(p6), Pseudoε(p6), Λε(M̃σ1
) and Λε(M̃σ2

), in green,

magenta and brown, respectively, where M̃σ1
and M̃σ2

denote the balanced Fiedler matrices coming from Mσ1
and

Mσ2
, respectively, of the polynomial p6.

(a) Λε(M̃σ1
) (b) Λε(M̃σ2

)

(c) Zε(p7) (d) Pseudoε(p7)

Figure 8.6.12: For ε = 10−4, 10−3, 10−2, we plot Zε(p7), Pseudoε(p7), Λε(M̃σ1
) and Λε(M̃σ2

), in green, magenta

and brown, respectively, where M̃σ1
and M̃σ2

denote the balanced Fiedler matrices coming from Mσ1
and Mσ2

,
respectively, of the polynomial p7.
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(a) Λε(M̃σ1
) (b) Λε(M̃σ2

)

(c) Zε(p8) (d) Pseudoε(p8)

Figure 8.6.13: For ε = 10−3, 10−2, 10−1, we plot Zε(p8), Pseudoε(p8), Λε(M̃σ1
) and Λε(M̃σ2

), in green, magenta

and brown, respectively, where M̃σ1
and M̃σ2

denote the balanced Fiedler matrices coming from Mσ1
and Mσ2

,
respectively, of the polynomial p8.
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Chapter 9

Backward stability of polynomial

root-finding from Fiedler matrices

In this chapter, we investigate the backward error of the computed roots of a monic polynomial
p(z) when they are computed as the eigenvalues of a Fiedler matrix Mσ using a backward stable
eigenvalue algorithm. The definition of the normwise backward error of the whole ensemble of
computed roots, λ̃1, . . . , λ̃n, of p(z) via a certain algorithm is

η(λ̃1, . . . , λ̃n) :=
‖p̃− p‖
‖p‖ ,

for some polynomial norm, and where p̃(z) =
∏n

i=1(z−λ̃i). Note that this notion of backward error
coincides with the relative distance between the original polynomial p(z) and the monic polynomial

p̃(z) whose roots are λ̃1, . . . , λ̃n.
We also study whether or not computing the roots of p(z) using a Fiedler matrix of p(z) and a

backward stable eigenvalue algorithm is backward stable from the point of view of the polynomials,
that is, whether or not

η(λ̃1, . . . , λ̃n) = O(u)

holds, where u is the machine epsilon. This work is motivated by [53, 101, 102, 160], which address
related issues for the Frobenius companion matrices associated with scalar and matrix polynomials.

Throughout this chapter, if A ∈ Cn×n is a matrix, then ‖A‖∞ denotes the usual matrix ∞-

norm (see [79, p. 108]). In particular, for a column vector v =
[
v1 · · · vn

]T ∈ Cn×1, we

have ‖v‖∞ = max{|v1|, . . . , |vn|}, and for a row vector v =
[
u1 · · · un

] ∈ C1×n, we have
‖u‖∞ = |u1| + · · · + |un|. Similarly, for a polynomial p(z) =

∑n
k=0 akz

k (not necessarily monic),
‖p‖∞ is the norm on the vector space of scalar polynomials of degree less than or equal to n defined
as

‖p‖∞ := max{|an|, |an−1|, . . . , |a1|, |a0|}.
Notice that, since we deal in this dissertation with chapter polynomials, an = 1 and we always
have ‖p‖∞ ≥ 1.

9.1 Backward error of the computed roots using Fiedler ma-

trices

Given a monic polynomial p(z), if λ̃1, . . . , λ̃n are the computed roots of p(z) using a Fiedler matrix
and a backward stable eigenvalue algorithm, the goal of this section is to bound the normwise

131
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backward error

η∞(λ̃1, . . . , λ̃n) :=
‖p̃− p‖∞
‖p‖∞ ,

where p̃(z) =
∏n

i=1(z − λ̃i). Following the discussion in Section 1.2.1, we have that the computed

roots λ̃1, . . . , λ̃n are the exact eigenvalues of a certain perturbation of Mσ, say Mσ + E, with E
satisfying

‖E‖∞ = O(u)‖Mσ‖∞,

and where u is the machine epsilon. In other words, we have p(z) = det(zI −Mσ) and p̃(z) =
det(zI−Mσ−E). Hence, the difference between p(z) and p̃(z) can be measured from the variation
of the coefficients of the characteristic polynomial of Mσ under a small perturbation of Mσ.

Thus, if we consider the kth coefficient of the characteristic polynomial of a matrix X = (xij) ∈
C

n×n as a function of the entries of X , that is, ak(X) : Cn2 → C, for k = 0, 1, . . . , n− 1, then, to
first order in E, we have (see (1.8))

|ak(Mσ + E)− ak(Mσ)| = |∇ak(Mσ) · vec (E)|, for k = 0, 1, . . . , n− 1, (9.1)

where vec(E) is the column vector which vetorizes E (see (1.9)) and, for k = 0, 1, . . . , n − 1,
∇ak(Mσ) is the gradient of the kth coefficient of the characteristic polynomial of a matrix evaluated
at Mσ (see (1.10)).

The following well-know result (known as Jacobi’s formula, see [15]) provides us a description
of the gradient of the determinant.

Lemma 9.1. Let A ∈ Cn×n and consider a small perturbation A+E of A, with E ∈ Cn×n. Then,
the function

det : Cn×n −→ C

X �−→ det(X),

is analytic in a neighborhood of A, and

det(A+ E) = det(A) + tr(adj(A)E) +O(‖E‖2),

where ‖ · ‖ is any norm in C
n×n, adj(A) denotes the adjugate matrix of A (see Definition 5.1), and

tr(B) denotes the trace of B.

As an immediate consequence of Lemma 9.1, applied to p(z) = det(zI−A), we get Proposition
9.2, which gives a description of the gradient of the coefficients of the characteristic polynomial of
any matrix A and, as a consequence, an expression for the variation of the characteristic polynomial
under small perturbations, up to first order. Observe that Lemma 9.1 and Proposition 9.2 are valid
for general matrices A and not only for Mσ.

Proposition 9.2. Let A ∈ Cn×n and z ∈ C. Let us write the adjugate matrix of zI −A as

adj(zI −A) =

n−1∑
k=0

zkPk+1, (9.2)

with Pk+1 ∈ Cn×n, for k = 0, 1, . . . , n − 1. Let ak(X) : Cn2 → C be the kth coefficient of the
characteristic polynomial of a matrix X = (xij) ∈ Cn×n, and let ∇ak(A) be the gradient of the
function ak(X) evaluated at A. Then, for k = 0, 1, . . . , n− 1,

∇ak(A) = −
[
vec (PT

k+1)
]T

.
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As a consequence, if A+ E is a small perturbation of A, with E ∈ Cn×n, then

det(zI − (A+ E)) − det(zI −A) =−
n−1∑
k=0

zk
[
vec(PT

k+1)
]T · vec(E) +O(‖E‖2)

=−
n−1∑
k=0

zk tr(Pk+1E) +O(‖E‖2),

where ‖ · ‖ is any norm in C
n×n.

Proof. From Lemma 9.1 and (9.2), we have

det(zI − (A+ E)) = det(zI −A)− tr(adj(zI −A)E) +O(‖E‖2)
= det(zI −A)−∑n−1

k=0 z
ktr(Pk+1E) +O(‖E‖2)

= det(zI −A)−∑n−1
k=0 z

k
[
vec(PT

k+1)
]T · vec(E) +O(‖E‖2),

and the expression for ∇ak(A) follows immediately from this. Note that in the last identity we
have used that tr(AB) = vec(AT )T · vec(B).

Proposition 9.2 tells us that the variation of the characteristic polynomial of A ∈ Cn×n is
controlled, to first order, by the trace of adj(zI − A). This adjugate matrix is an n × n matrix
whose entries are polynomials of degree at most n − 1 or, equivalently, a matrix polynomial of
size n× n with degree at most n− 1 (actually, its degree is exactly n− 1, because of the identity:
(zI−A) ·adj(zI−A) = det(zI−A)In). Using the explicit expression for the entries of adj(zI−A),
for A being an arbitrary Fiedler matrix Mσ, obtained in Chapter 5, we get one of the main
contribution of this chapter, this is, Theorem 9.3.

Theorem 9.3 shows how the coefficients of the characteristic polynomial of any Fiedler com-
panion matrix Mσ change when we perturb Mσ with a dense matrix E. More precisely, we give,
to first order in E, the coefficients of the characteristic polynomial of Mσ +E. Here, the functions
iσ(i : j) and cσ(i : j), and the n−tuple EPCIS(σ) (see parts (c) and (d) in Definition 2.8) play an
important role.

Theorem 9.3. Let p(z) = zn+
∑n−1

k=0 akz
k be a monic polynomial of degree n, let σ : {0, 1, . . . , n−

1} → {1, . . . , n} be a bijection with EPCIS(σ) = (v0, v1, . . . , vn−1), let Mσ be the Fiedler companion
matrix of p(z) associated with σ, and let E ∈ C

n×n be an arbitrary matrix. If the characteristic

polynomial of Mσ + E is denoted by p̃(z) = zn +
∑n−1

k=0 ãkz
k, then, to first order in E,

ãk − ak = −
n∑

i,j=1

p
(σ,k)
ij (a0, a1, . . . , an−1)Eij , k = 0, 1, . . . , n− 1, (9.3)

where, for i, j = 1, 2, . . . , n, the function p
(σ,k)
ij (a0, a1, . . . , an−1) is a multivariable polynomial in

the coefficients of p(z). More precisely, p
(σ,k)
ij (a0, a1, . . . , an−1) is equal to:

(a) if vn−i = vn−j = 0 :

• ak+iσ(n−j:n−i) ,

if j ≥ i and n− k − i+ 1 ≤ iσ(n− j : n− i) ≤ n− k;

• −ak+1−iσ(n−i:n−j−1) ,

if j < i and k + 1 + i− n ≤ iσ(n− i : n− j − 1) ≤ k + 1;

• 0 , otherwise;
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(b) if vn−i = vn−j = 1 :

• ak+cσ(n−i:n−j) ,

if j ≤ i and n− k − j + 1 ≤ cσ(n− i : n− j) ≤ n− k;

• −ak+1−cσ(n−j:n−i−1) ,

if j > i and k + 1 + j − n ≤ cσ(n− j : n− i− 1) ≤ k + 1;

• 0 , otherwise;

(c) if vn−i = 1 and vn−j = 0 :

• 1 , if iσ(0 : n− j − 1) + cσ(0 : n− i− 1) = k ,

• 0 , otherwise;

(d) if vn−i = 0 and vn−j = 1 :

•
l=min{k+1−cσ(n−j:n−i−1),i−1}∑

l=max{0,k+1+j−cσ(n−j:n−i−1)−n}

−(an+1−i+l ak+1−cσ(n−j:n−i−1)−l) ,

if j > i and k + 2 + j − i− n ≤ cσ(n− j : n− i− 1) ≤ k + 1;

•
l=min{k+1−iσ(n−i:n−j−1),j−1}∑

l=max{0,k+1+i−iσ(n−i:n−j−1)−n}

−(an+1−j+l ak+1−iσ(n−i:n−j−1)−l) ,

if j < i and k + 2 + i− j − n ≤ iσ(n− i : n− j − 1) ≤ k + 1;

• 0 , otherwise;

where we set an := 1.

Proof. From Proposition 9.2, the coefficients of the characteristic polynomial of Mσ +E satisfy, to
first order in E,

ãk − ak = −
n∑

i,j=1

Pk+1(j, i)Eij ,

where Pk+1(j, i) is the (j, i) entry of Pk+1 which, according to (9.2) is the kth matrix coefficient

of the matrix polynomial adj(zI −Mσ). Therefore p
(σ,k)
ij (a0, a1, . . . , an−1) is the kth coefficient of

the (j, i) entry of adj(zI−Mσ). From Theorem 5.3 and the proof of Lemma 5.4, we know that the
(j, i) entry of adj(zI −Mσ), in each of the cases considered in the statement, is:

(a) ziσ(0:n−j−1)+cσ(0:n−i−1)pi−1(z), if j ≥ i, or ziσ(n−i+1:n−j−1)qn−i(z), if j < i (see (1) and (2),
respectively, in the proof of Lemma 5.4);

(b) ziσ(0:n−j−1)+cσ(0:n−i−1)pj−1(z), if j ≤ i, or zcσ(n−j+1:n−i−1)qn−j(z), if j > i (see (3) and (4)
in the proof of Lemma 5.4);

(c) ziσ(0:n−j−1)+cσ(0:n−i−1) (see (5) in the proof of Lemma 5.4);

(d) zcσ(n−j+1:n−i−1)pi−1(z)qn−j(z), if j > i, or ziσ(n−i+1:n−j−1)pj−1(z)qn−i(z), if j < i (see (6)
and (7) in the proof of Lemma 5.4).

Now, it is just a straightforward computation to check that the formulas given in the statement
coincide with the kth coefficient of the previous polynomials.
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Remark 9.4. According to the notation in (9.1), we have

∇ak(Mσ) = −
[
p
(σ,k)
11 . . . p

(σ,k)
n1 p

(σ,k)
12 . . . p

(σ,k)
n2 . . . p

(σ,k)
1n . . . p(σ,k)nn

]
,

where we have dropped the dependence of a0, . . . , an−1 for brevity.

Remark 9.5. For k = n − 1, and σ an arbitrary bijection, a direct verification in Theorem 9.3
gives

p
(σ,n−1)
ij (a0, . . . , an−1) =

{
1 if i = j
0 otherwise

.

Then, for any Fiedler matrix Mσ, it follows from (9.3) that

an−1(Mσ + E)− an−1(Mσ) = −
n∑

i=1

Eii.

But, since the (n− 1)th coefficient of the characteristic polynomial of A is equal to −tr(A), this is
a restatement of the well-know identity:

tr(Mσ + E) = tr(Mσ) + tr(E).

We want to emphasize that p
(σ,k)
ij (a0, a1, . . . , an−1) are always linear or quadratic polynomials

in the coefficients a0, . . . , an−1. They depend, at a first stage, on whether the bijection σ has a

consecution or an inversion at n− i and n− j. In particular, p
(σ,k)
ij (a0, a1, . . . , an−1) can only be

quadratic when there is a consecution at n− j and an inversion at n− i. This implies the following
corollary.

Corollary 9.6. Let Mσ be C1 or C2 in the statement of Theorem 9.3, then p
(σ,k)
ij (a0, a1, . . . , an−1)

in (9.3) is a polynomial of degree at most 1 in a0, . . . , an−1, for all k = 0, 1, . . . , n − 1, and all
1 ≤ i, j ≤ n. For the remaining Fiedler matrices Mσ, there is always some k and some i, j such

that p
(σ,k)
ij (a0, a1, . . . , an−1) is a quadratic polynomial in a0, a1, . . . , an−1.

Proof. Let us first recall that the bijection associated with C1 is σ1 = (σ1(0), σ1(1), . . . , σ1(n−1)) =
(n, n − 1, . . . , 1), whereas the bijection associated with C2 is σ2 = (σ2(0), σ2(1), . . . , σ2(n − 1)) =
(1, 2, . . . , n) (see Section 2.2). Hence, σ1 has no consecutions, whereas σ2 has no inversions.

Then, it remains to show that, if σ : {0, 1, . . . , n − 1} → {1, . . . , n} is a bijection having
a consecution at n − j and an inversion at n − i, for some 2 ≤ i, j ≤ n, then there is some

0 ≤ k ≤ n − 1 such that p
(σ,k)
ij (a0, a1, . . . , an−1) has degree 2. Note, first, that it must be i 
= j.

Without loss of generality, let us assume that j > i. The proof for the case j < i is analogous.

We need to prove that, in the sum defining p
(σ,k)
ij (a0, a1, . . . , an−1) in the first bullet of case (d) in

Theorem 9.3 there is at least one monomial aras such that 0 ≤ r, s ≤ n − 1. More precisely, we
need to prove:

(i) There is some 0 ≤ k ≤ n− 1 such that k + 2+ j − i− n ≤ cσ(n− j : n− i− 1) ≤ k + 1.

(ii) There is some l, with max{0, k+1+ j− cσ(n− j : n− i− 1)−n} ≤ l ≤ min{k+1− cσ(n− j :
n−i−1), i−1}, such that 0 ≤ n+1−i+l ≤ n−1 and 0 ≤ k+1−cσ(n−j : n−i−1)−l ≤ n−1.

For this, it suffices to take k = cσ(n− j : n− i− 1)− 1 = cσ(n− j + 1 : n− i− 1) and l = 0. Note
that (ii) is fulfilled for these values of k and l, because i ≥ 2.

The expressions given in Theorem 9.3 for the variation of the coefficients of the characteristic
polynomial of Mσ are involved in general (that is, for arbitrary Fiedler matrices). We will show
them explicitly in Section 9.1.2 for some Fiedler matrices, including the Frobenius companion
matrices.

The following result describes some properties of the polynomials p
(σ,k)
ij (a0, . . . , an−1) that will

be used later.
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Lemma 9.7. Let p
(σ,k)
ij (a0, a1, . . . , an−1) be the polynomial defined in (9.3). Then:

(a) For k = 0, 1, . . . , n− 1,

p
(σ,k)
ii (a0, a1, . . . , an−1) =

{
ak+1 if i ≥ n− k ,
0 if i < n− k ,

with an = 1.

(b) If σ has a consecution at n−2, then p
(σ,0)
12 (a0, a1, . . . , an−1) = −a0, and if σ has an inversion

at n− 2, then p
(σ,0)
21 (a0, a1, . . . , an−1) = −a0.

Proof. From Theorem 9.3 we have p
(σ,k)
ii (a0, a1, . . . , an−1) = ak+1, if n− 1 ≥ k ≥ n− i (namely, if

i ≥ n− k), and p
(σ,k)
ii (a0, a1, . . . , an−1) = 0 otherwise. This proves part (a).

For part (b), if σ has a consecution at n − 2, then following the notation of Theorem 9.3,
we have vn−2 = vn−1 = 1, and cσ(n − 2 : n − 2) = 1, so part (b) of Theorem 9.3 gives

p
(σ,0)
12 (a0, a1, . . . , an−1) = −a0. Similarly, if σ has an inversion at n− 2, then vn−2 = vn−1 = 0, and

part (a) of Theorem 9.3 gives p
(σ,0)
21 (a0, a1, . . . , an−1) = −a0.

To identify those indices k for which ∇ak(Mσ) contains quadratic terms in a0, . . . , an−1 may be
interesting in practice. Notice that the presence of such quadratic terms implies that the sensitivity
of the coefficient ak(Mσ) to perturbations ofMσ is quadratic in a0, . . . , an−1, instead of linear. This
implies in turn that, for large values of a0, . . . , an−1, we can expect much larger changes after small
perturbations in these coefficients than in the ones where ∇ak(Mσ) contains only linear terms. We
have seen in Corollary 9.6 that, for all Fiedler matrices but the Frobenius ones, there is always
at least one k such that ∇ak(Mσ) contains quadratic terms. Moreover, the proof of Corollary 9.6
tells us that if i, j are such that σ has a consecution at n− j and an inversion at n− i, and j > i
(respectively, j < i), then for k = cσ(n− j + 1 : n− i− 1) (resp., k = iσ(n− i+ 1 : n− j − 1)) the
gradient ∇ak(Mσ) contains quadratic terms. In particular, Lemma 9.8 states that, for all Fiedler
matrices but the Frobenius ones, ∇a0(Mσ) contains always quadratic polynomials in a0, . . . , an−1

Lemma 9.8. Let p
(σ,k)
ij (a0, a1, . . . , an−1) be the polynomial defined in (9.3), and let t ∈ {0, 1, . . . ,

n− 3}.
(a) If PCIS(σ) = (v0, v1, . . . , vt = 1, vt+1 = 0, vt+2 = 0, . . . , vn−2 = 0) then

p
(σ,0)
2,n−t(a0, a1, . . . , an−1) = −an−1a0.

(b) If PCIS(σ) = (v0, v1, . . . , vt = 0, vt+1 = 1, vt+2 = 1, . . . , vn−2 = 1) then

p
(σ,0)
n−t,2(a0, a1, . . . , an−1) = −an−1a0.

Proof. We prove only part (a) because part (b) is similar. Since n− t > 2 and k − cσ(n− j + 1 :
n− i− 1) = −cσ(t+ 1 : n− 3) = 0, from part (d) of Theorem 9.3,we have

p
(σ,0)
2,n−t(a0, a1, . . . , an−1) =

l=min{0,1}∑
l=max{0,−cσ(t+1:n−3)−t}

−an−1+l ak−cσ(t+1:n−3)−l = −an−1a0.

The main result, from the practical point of view, in this section is a direct consequence of
Theorem 9.3.
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Corollary 9.9. Let p(z) = zn+
∑n−1

k=0 akz
k be a monic polynomial, and Mσ be a Fiedler companion

matrix of p(z). Assume that the roots of p(z) are computed as the eigenvalues of Mσ with a backward
stable algorithm, i.e., an algorithm that computes the exact eigenvalues of some matrix Mσ + E,
with ‖E‖∞ = O(u)‖Mσ‖∞. Then the computed roots are the exact roots of a polynomial p̃(z) such
that:

(a) If Mσ = C1, C2,
‖p̃− p‖∞
‖p‖∞ = O(u)‖p‖∞, (9.4)

(b) if Mσ 
= C1, C2,
‖p̃− p‖∞
‖p‖∞ = O(u)‖p‖2∞, (9.5)

where u is the machine precision. In other words, the backward error of the computed roots
λ̃1, . . . , λ̃n is

η∞(λ̃1, . . . , λ̃n) =

{
O(u)‖p‖∞, if Mσ = C1, C2,
O(u)‖p‖2∞, if Mσ 
= C1, C2.

Proof. If the eigenvalues of Mσ are computed with a backward stable algorithm, the computed
eigenvalues are the exact eigenvalues of a matrix Mσ + E, for some matrix E ∈ Cn×n such that
‖E‖∞ = O(u)‖Mσ‖∞. Thus, the computed eigenvalues are the exact roots of the polynomial

p̃(z) = zn +
∑n−1

k=0 ãkz
k = det(zI −Mσ − E). From Theorem 9.3, to first order in E,

|ãk − ak| =
∣∣∣∣∣∣

n∑
i,j=1

p
(σ,k)
ij (a0, a1, . . . , an−1)Eij

∣∣∣∣∣∣ ≤
n∑

i,j=1

∣∣∣p(σ,k)ij (a0, a1, . . . , an−1)
∣∣∣ · |Eij |

≤
(

max
1≤i,j≤n

|Eij |
)
·
⎛⎝ n∑

i,j=1

|p(σ,k)ij (a0, a1, . . . , an−1)|
⎞⎠ .

Notice, also from Theorem 9.3, that the absolute value of every polynomial p
(σ,k)
ij (a0, a1, . . . , an−1)

is bounded by n‖p‖2∞ and that, by Corollary 9.6, the square in the norm of p is necessary in
all Fiedler matrices except the Frobenius companion matrices, where it can be replaced by 1.
Therefore,

max
k=0,1,...,n−1

|ãk − ak| = ‖p̃− p‖∞ = O(u)‖Mσ‖∞‖p‖2∞ = O(u)‖p‖3∞,

where we have used that maxi,j=1,2,...,n |Eij | = O(u)‖Mσ‖∞ and ‖Mσ‖∞ = O(1)‖p‖∞ (see [50,
Th. 3.3]).

Remark 9.10. Note that Corollary 9.9 implies that computing the roots of p(z) using any of the
Fiedler matrices of p(z) is not backward stable if ‖p‖∞ is large. For the Frobenius companion
matrices, Corollary 9.9 recovers (1.13).

As a consequence of (9.4) and (9.5) we get the following conclusions:

(C1) From the point of view of the normwise backward errors in the (monic) polynomial p(z), any
Fiedler matrix can be used for solving the root-finding problem with the same reliability as
Frobenius companion matrices when ‖p‖∞ = O(1). In this case, the root-finding problem
solved by applying a backward stable eigenvalue algorithm on any Fiedler companion matrix
is a backward stable method from the polynomial point of view.
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(C2) However, when ‖p‖∞ is large none of the Fiedler matrices leads to a backward stable algo-
rithm for the root-finding problem and, moreover, any Fiedler matrix other than Frobenius
companion matrices may produce much larger backward errors than the ones produced when
using Frobenius matrices.

Note, in particular, that since ‖p‖∞ ≥ 1, no Fiedler matrix can improve the behavior of the bounds
of Frobenius matrices in the root-finding problem from the point of view of backward errors.

It is worth to remark that if the matrix E in the statement of Corollary 9.9 satisfies ‖E‖∞ =
c(p)O(u)‖Mσ‖∞, with c(p) being some positive quantity depending on p(z) then, with the appro-
priate changes in the proof of Corollary 9.9, we could replace (9.4) and (9.5) by, respectively:

‖p̃− p‖∞
‖p‖∞ = c(p)O(u)‖p‖∞ and

‖p̃− p‖∞
‖p‖∞ = c(p)O(u)‖p‖2∞.

Hence, even for eigensolvers whose backward stability can not be guaranteed (like the fast QR-like
algorithms mentioned in the Introduction for the Frobenius companion matrix or those that can be
applied to other Fiedler matrices) our developments allow us to provide backward error estimates
for the polynomial root-finding problem using Fiedler companion matrices.

9.1.1 Recursive formula for the derivatives of the characteristic polyno-

mial

In Chapter 5 we have given an explicit formula for the entries of adj(zI −Mσ), with Mσ being
an arbitrary Fiedler matrix. The aim of this subsection is to provide, in Proposition 9.11, a
recursive formula for the coefficients of adj(zI − A) when viewed as a matrix polynomial in z,
where A ∈ C

n×n is an arbitrary matrix. This is an interesting theoretical result that gives an
alternative description of the coefficients of adj(zI − A) and, as a consequence of Lemma 9.1, of
the gradient of the characteristic polynomial of A. But it may also have a practical interest, as it
provides a recursive way to construct these coefficients.

Proposition 9.11. [66, Ch. 4, §4] Let A ∈ Cn×n, and let p(z) = zn +
∑n−1

k=0 akz
k be the char-

acteristic polynomial of A. Let the matrices A1, A2, . . . , An ∈ Cn×n be defined by the following
recurrence relation {

An = I , and
Ak = A ·Ak+1 + akI, for k = n− 1, n− 2, . . . , 1.

(9.6)

Then,

adj(zI −A) =

n−1∑
k=0

zkAk+1.

We note that, as a consequence of the recursive relations of the Horner shifts (2.6), the matrices
Ak are the Horner shifts of p(z) = det(zI −A) evaluated at A. More precisely:

Ak = pn−k(A) = An−k + an−1A
n−k−1 + · · ·+ ak+1A+ akI .

With this in mind, Proposition 9.2 gives the following expression for the gradient of the kth
coefficient of the characteristic polynomial of A:

∇ak(A) = −
[
vec(pn−k−1(A

T ))
]T

, for k = 0, 1, . . . , n− 1. (9.7)

Proposition 9.11 has been used in [53] to get an explicit formula for the derivatives of the
coefficients of det(zI − C), with C being a Frobenius companion matrix. For this, the authors
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take advantage of the explicit expression of the matrices Ak defined in (9.6) with A = C, which
are very simple in this case (see [53, p. 768]). However, for A being an arbitrary Fiedler matrix,
the matrices Ak become much more involved, and it is not easy to get an explicit expression of
these matrices just by using (9.6). For this reason, we have obtained the expression of the entries
of adj(zI − A) by other means. However, Proposition 9.11 gives us an alternative way to get
adj(zI −A) using the Horner shifts of A.

We want to emphasize that, as a consequence of the previous remarks, the polynomial p
(σ,k)
ij (a0,

a1, . . . , an−1) in Theorem 9.3 corresponds to the (j, i) entry of the matrix pn−k−1(Mσ). In the fol-
lowing section, we display these matrices for some particular relevant cases, including the Frobenius
companion matrices. It is also interesting to note that Corollary 9.6 implies that the first and sec-
ond Frobenius companion matrices are the only Fiedler matrices Mσ for which all Horner shifts
pk(Mσ) have entries which are linear multivariable polynomials in the coefficients of p(z). For
all other Fiedler matrices Mσ, there is at least one k such that pk(Mσ) contains some quadratic
entries.

9.1.2 Some particular cases

We obtain in this section the explicit expression (9.3) for particular Fiedler matrices that are,
or may be, of interest in practice. We start with the classical Frobenius companion matrices in
Theorem 9.12, where we get analogous formulas to the ones obtained in [53] for the Frobenius
companion matrix considered in that paper.

Theorem 9.12. Let p(z) = zn+
∑n−1

k=0 akz
k be a monic polynomial of degree n, let C = C1 or C2 be

the first or second Frobenius companion matrix of p(z), and let E ∈ Cn×n. If p̃(z) = zn+
∑n−1

k=0 ãkz
k

is the characteristic polynomial of C + E. Then, to first order in E, for k = 0, 1, . . . , n− 1:

(i) If C = C1:

ãk − ak =
k∑

s=0

n−k−1∑
j=1

asEj−s+k+1,j −
n∑

s=k+1

n∑
j=n−k

asEj−s+k+1,j . (9.8)

(ii) If C = C2:

ãk − ak =

k∑
s=0

n−k−1∑
i=1

asEi,i−s+k+1 −
n∑

s=k+1

n∑
i=n−k

asEi,i−s+k+1. (9.9)

Proof. For claim (i), we recall that, if σ is the bijection associated with C1, then PCIS(σ) =
(0, . . . , 0). For this bijection, iσ(n− j : n− i) = j − i + 1 holds for i ≤ j. Then, applying part (a)
in Theorem 9.3, we get

ãk − ak =
∑
j<i

k+1+i−n≤i−j≤k+1

aj−i+1+kEij −
∑
j≥i

n−k−i+1≤j−i+1≤n−k

aj−i+1+kEij .

With the change of variables s = j − i+ 1 + k the claim is proved.
For claim (ii), we recall that the bijection σ associated with C2 satisfies PCIS(σ) = (1, . . . , 1).

For this bijection, cσ(n− i : n− j) = i − j + 1, when j ≤ i. Then, applying part (b) in Theorem
9.3, we get

ãk − ak =
∑
j>i

k+1+j−n≤j−i≤k+1

ai−j+1+kEij −
∑
j≤i

n−k−j+1≤i−j+1≤n−k

ai−j+1+kEij .

Again, we use the change of variables s = i− j + 1 + k to get the result .
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According to (9.7), the matrix pn−k−1(A
T ) encodes the information about ∇ak(A). In the case

of Frobenius companion matrices, these Horner shifts can be computed without too much effort,
since they are equal to:

pn−k−1(C
T
1 ) = pn−k−1(C2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 . . . 0 1 0
−ak an−1 1
...

. . .
... an−1

. . .

−a1 . . . −ak ak+1

...
. . . 1

−a0 . . .
... ak+1

. . . an−1

. . . −a1 . . .
...

0 −a0 0 ak+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (9.10)

for k = 0, 1, . . . , n − 1, where the first block-column contains n − k − 1 columns, and the second
block-column contains k+1 columns. The reader may check that, indeed, the (i, j) entry of (9.10)
is the coefficient of Eij in (9.8). The same happens with the transpose of (9.10) and formula (9.9).

Excluding the Frobenius companion matrices, the simplest Fiedler matrices are F (defined in
(2.8)), and FT , with just one inversion (resp., consecution) at 0, and consecutions (resp., inversions)
elsewhere.

Theorem 9.13. Let p(z) = zn +
∑n−1

k=0 akz
k be a monic polynomial of degree n, let F = Mσ

be the Fiedler companion matrix of p(z) with PCIS(σ) = (0, 1, 1, , . . . , 1) and let E ∈ Cn×n. If

p̃(z) = zn +
∑n−1

k=0 ãkz
k is the characteristic polynomial of F + E, then, to first order in E,

ãk − ak =
n−1∑

j=k+1

a0an+k+1−jEnj +
k∑

s=0

n−k−2∑
i=1

asEi,i+k+1−s +
k∑

s=1

asEn−k−1,n−s − En−k−1,n

−

n∑
s=k+1

n−1∑
i=n−k

asEi,i+k+1−s − En−k−1,n − ak+1Enn.

(9.11)

Proof. To compute the polynomials p
(σ,k)
ij (a0, a1, . . . , an−1) in (9.3), according to Theorem 9.3, we

distinguish the following cases:

(a) If j = n and i = 1, 2, . . . , n − 1, we have vn−j = 0 and vn−i = 1 and iσ(0 : n − j − 1) +

cσ(0 : n − i − 1) = n − i − 1. Therefore, p
(σ,k)
in (a0, a1, . . . , an−1) = 1 if i = n − k − 1 and

p
(σ,k)
ij (a0, a1, . . . , an−1) = 0 otherwise.

(b) If j = n and i = n, we have vn−j = vn−i = 0 and iσ(n − j : n − i − 1) = 0. Therefore,

p
(σ,k)
nn (a0, a1, . . . , an−1) = ak+1 if n− 1 ≥ k ≥ 0 and p

(σ,k)
nn (a0, a1, . . . , an−1) = 0 otherwise.

(c) If j = 1, 2, . . . , n−1 and i = n, we have vn−j = 1 and vn−i = 0 and iσ(n−i+1 : n−j−1) = 0.

Therefore, p
(σ,k)
nj (a0, a1, . . . , an−1) = −an+k−j+1a0 if j ≥ k+1 and p

(σ,k)
nj (a0, a1, . . . , an−1) = 0

if j < k + 1.

(d) If i, j = 1, 2, . . . , n − 1 and j ≤ i, we have vn−i = vn−j = 1 and cσ(n − i : n − j) =

i− j + 1. Therefore, p
(σ,k)
ij (a0, a1, . . . , an−1) = ak+1+i−j if n− k − j + 1 ≤ i− j + 1 ≤ n− k

and p
(σ,k)
ij (a0, a1, . . . , an−1) = 0 otherwise. With the change of variable s = k + 1 + i − j

we get p
(σ,k)
i,i+k+1−s(a0, a1, . . . , an−1) = as if k + 1 ≤ s ≤ n and n − k ≤ i ≤ n − 1, and

p
(σ,k)
i,i+k+1−s(a0, a1, . . . , an−1) = 0 otherwise.
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(e) If i, j = 1, 2, . . . , n − 1 and j > i, we have vn−i = vn−j = 1 and cσ(n − j : n − i − 1) =

j − i. Therefore, p
(σ,k)
ij (a0, a1, . . . , an−1) = ak+1+i−j if k + 1 + j − n ≤ j − i ≤ k + 1

and p
(σ,k)
ij (a0, a1, . . . , an−1) = 0 otherwise. With the change of variable s = k + 1 + i −

j we get p
(σ,k)
i,i+k+1−s(a0, a1, . . . , an−1) = as if 0 ≤ s ≤ k and 1 ≤ i ≤ n − k − 1, and

p
(σ,k)
i,i+k+1−s(a0, a1, . . . , an−1) = 0 otherwise.

Theorem 9.13 illustrates how a single change in the PCIS of the Frobenius companion matrix,
i.e., just to change the position of the factor M0 in the product defining C1 and C2, implies the
appearance of quadratic terms in the formula for the gradient of the coefficients of the characteristic
polynomial (see the first summand in the right-hand-side of (9.11)). As before, this can also be
seen by explicitly displaying the Horner shifts evaluated at F :

pn−k−1(F ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0

−ak an−1
. . .

...
...

. . .
...

. . . 1 0
−a1 −ak ak+2 an−1 −a0
−a0 . . .

... −ak ak+1
. . .

... −a0an−1

. . . −a1
...

. . . ak+2

...
−a0 −a1 ak+1 −a0ak+2

1 ak+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

for k = 0, 1, . . . , n− 3,

p1(F ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
−an−2 1
−an−3 an−1 1

... an−1
. . .

...
. . . 1

−a1 an−1 −a0
1 0 an−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, and p0(F ) = I.

The number of columns in the first block-column of pn−k−1(F ) above is n−k− 1, and the number
of columns in the second block column is k + 1. The reader may check that the (i, j) entry of
pn−k−1(F )T is the coefficient of Eij in (9.11).

Our last example is the case of the pentadiagonal Fiedler matrix P1 in (2.7). Formulas here,
as can be seen in Theorem 9.14, become much more involved.

Theorem 9.14. Let p(z) = zn +
∑n−1

k=0 akz
k be a monic polynomial of degree n, let P1 = Mσ

be the Fiedler companion matrix of p(z) with PCIS(σ) = (1, 0, 1, 0, . . .) and let E ∈ C
n×n. If

p̃(z) = zn +
∑n−1

k=0 ãkz
k is the characteristic polynomial of P1 + E, then, to first order in E,

ãk − ak = −

n∑
s=k+1

⎛⎜⎝ n/2∑
r=�n+s

2
�−k

asE2(k+r−s)+1,2r−1 +

n/2∑
r=�n+s

2
�−k

asE2r,2(k+r−s+1)

⎞⎟⎠
+

k∑
s=0

⎛⎝�n+s
2

�−k−1∑
r=1

asE2(k+r−s)+1,2r−1 +

�n+s
2

�−k−1∑
r=1

asE2r,2(k+r−s+1)

⎞⎠− min{n
2
,n−k−1}∑

s=max{1, n
2
−k}

E2s,2(n−k−s)−1
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+

k∑
s=max{0,2k−n+2}

⎛⎝s−k+n
2∑

r=1

min{s,2r−2}∑
m=max{0,2k+2r−s−n}

an−2r+2+mas−mE2r−1,2(k−s+r)

+

s−k+n
2
−1∑

r=1

min{s,2r−1}∑
m=max{0,2k+2r−s−n+1}

an−2r+1+mas−mE2(k+r−s)+1,2r

⎞⎠
if n is an even number, or

ãk − ak = −

n∑
s=k+1

⎛⎜⎝
n+1

2∑
r=�n+s

2
�−k

asE2r−1,2(k−s+r)+1 +

n−1

2∑
r=�n+s

2
�−k

asE2(k−s+r+1),2r

⎞⎟⎠
+

k∑
s=0

⎛⎝�n+s
2

�−k−1∑
r=1

asE2r−1,2(k−s+r)+1 +

�n+s
2

�−k−1∑
r=1

asE2(k−s+r+1),2r

⎞⎠− min{n+1

2
,n−k−1}∑

s=max{1,n+1

2
−k}

E2s−1,2(n−k−s)

+

k∑
s=max{0,2k−n+2}

s−k+n−1

2∑
r=1

⎛⎝ min{s,2r−1}∑
m=max{0,2k−n−s+2r+1}

an−2r+1+mas−mE2r,2(k−s+r)+1

+

min{s,2r−2}∑
m=max{0,2k−n−s+2r}

an−2r+2+mas−mE2(k−s+r),2r−1

⎞⎠
if n is an odd number.

Proof. We give a sketch of the proof when the degree of p(z) is even, since the odd degree case is

similar. To compute the polynomials p
(σ,k)
ij (a0, a1, . . . , an−1) in (9.3) we have to distinguish several

cases.

(a) If i and j are odd numbers, then we get

p
(σ,k)
ij (a0, a1, . . . , an−1) =

⎧⎪⎨⎪⎩
ak+1+ j−i

2

, if j ≥ i and n− i+j
2 ≤ k ≤ n− 1− j−i

2 ,

−ak+1+ j−i
2

, if j < i and i−j
2 − 1 ≤ k ≤ n− 1− i+j

2 ,

0, otherwise.

(b) If i and j are even numbers, then we get

p
(σ,k)
ij (a0, a1, . . . , an−1) =

⎧⎪⎨⎪⎩
ak+1+ i−j

2

, if j ≤ i and n− i+j
2 ≤ k ≤ n− 1− i−j

2 ,

−ak+1+ i−j
2

, if j > i and j−i
2 − 1 ≤ k ≤ n− 1− i+j

2 and

0, otherwise.

(c) If i is an odd number and j is an even number, then we get

p
(σ,k)
ij (a0, a1, . . . , an−1) =

{
1, if k = n− i+j+1

2 ,
0, otherwise.

(d) If i is an even number and j is an odd number, then we get

p
(σ,k)
ij (a0, a1, . . . , an−1)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
min{k− j−i−1

2
,i−1}∑

m=max{0,k− j−i−1

2
−n+j}

an−i+1+mak− j−i−1

2
−m, if j > i and j−i−1

2 ≤ k ≤ n− j−i+3
2 ,

−
min{k− i−j−1

2
,j−1}∑

m=max{0,k− i−j−1

2
−n+i}

an−j+1+mak− i−j−1

2
−m, if j < i and i−j−1

2 ≤ k ≤ n− i−j+3
2 ,

0, otherwise.
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The result follows from these formulas for p
(σ,k)
ij (a0, a1, . . . , an−1), together with some algebraic

manipulations and appropriate changes of variables.

For the pentadiagonal Fiedler matrix P1, the matrices pn−k−1(P1), for k = 0, 1, . . . , n − 1, do
not have a simple structure. For illustrative purposes, we include here a 6 × 6 example. Let P1

be the pentadiagonal Fiedler matrix, in (2.7), of the polynomial p(z) = z6 +
∑5

k=0 akz
5 . Then, it

can be seen that

p0(P1) =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ , p1(P1) =

⎡⎢⎢⎢⎢⎢⎢⎣
0 1 0 0 0 0
−a4 a5 −a3 1 0 0
1 0 a5 0 0 0
0 0 −a2 a5 −a1 1
0 0 1 0 a5 0
0 0 0 0 −a0 a5

⎤⎥⎥⎥⎥⎥⎥⎦ ,

p2(P1) =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 −a3 1 0 0
−a3 0 −a2 − a3a5 a5 −a1 1
0 1 a4 0 0 0
−a2 0 −a1 − a2a5 a4 −a0 − a1a5 a5
1 0 a5 0 a4 0
0 0 −a0 0 −a0a5 a4

⎤⎥⎥⎥⎥⎥⎥⎦ ,

p3(P1) =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 −a2 0 −a1 1
−a2 0 −a1 − a2a5 0 −a0 − a1a5 a5
0 0 0 1 0 0
−a1 −a2 −a0 − a1a5 − a2a4 a3 −a0a5 − a1a4 a4
0 1 a4 0 a3 0
−a0 0 −a0a5 0 −a0a4 a3

⎤⎥⎥⎥⎥⎥⎥⎦ ,

p4(P1) =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 −a1 0 −a0 0
−a1 0 −a0 − a1a5 0 −a0a5 0
0 0 0 0 −a1 1
−a0 −a1 −a0a5 − a1a4 0 −a0a4 − a1a3 a3
0 0 0 1 a2 0
0 −a0 −a0a4 0 −a0a3 a2

⎤⎥⎥⎥⎥⎥⎥⎦ ,

p5(P1) =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 −a0 0 0 0
−a0 0 −a0a5 0 0 0
0 0 0 0 −a0 0
0 −a0 −a0a4 0 −a0a3 0
0 0 0 0 0 1
0 0 0 −a0 −a0a2 a1

⎤⎥⎥⎥⎥⎥⎥⎦ .

Unlike the previous cases C1, C2 and F , there does not seem to be a simple pattern for pn−k−1(P1)
for arbitrary n.

9.1.3 Balancing and backward error

Balancing first computes in exact arithmetic a matrix DMσD
−1, where D is diagonal, which has

the same characteristic polynomial as Mσ (see Section 1.2.3). Then a backward stable algorithm is
applied to compute the eigenvalues ofDMσD

−1, so that we get the exact eigenvalues ofDMσD
−1+

Ẽ, with

‖Ẽ‖ = O(u)‖DMσD
−1‖, (9.12)
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for some matrix norm ‖ · ‖. Now, we can get a formula like (9.3) for the change of the coefficients
of the characteristic polynomial of DMσD

−1 using the identity:

det(zI −DMσD
−1 − Ẽ) = det(zI −Mσ −D−1ẼD),

and applying Theorem 9.3 with the perturbation D−1ẼD instead of E. In particular, following
the arguments in the proof of Corollary 9.9, we get

|ãk − ak| ≤ n2 max
1≤i,j≤n

(∣∣∣∣p(σ,k)ij (a0, a1, . . . , an−1)
dj
di

∣∣∣∣) · max
1≤i,j≤n

|Ẽij | ,

with Ẽ as in (9.12). In this way, we get a formula which provides an “a posteriori” (that is, once the
diagonal parameters di are known) measure for the backward error of the polynomial root-finding
problem using balanced Fiedler matrices.

Though the numerical experiments carried out in Section 9.4 indicate that balancing usually
produces smaller backward errors, we will see in Proposition 9.20 that, for any degree, there are
infinitely many polynomials for which the condition numbers of all coefficients of the characteristic
polynomial of any matrix DMσD

−1 are large. This shows that, though in practice balancing
Fiedler matrices may be a good strategy for the root-finding problem, there are polynomials with
arbitrary degree, for which the strategy does not lead to small backward errors.

9.2 Conditioning of the characteristic polynomial

The developments carried out in Section 9.1 are closely related to the conditioning of the char-
acteristic polynomial of the matrix Mσ. The condition number of the characteristic polynomial
provides a measure of its sensitivity to perturbations of the matrix. As we have seen, this is in
turn related with the gradient of the coefficients of the characteristic polynomial. In this section,
we introduce the condition number (absolute and relative) for the coefficients of the characteristic
polynomial, and we relate it with (the norm of) its gradient. In this way, we will see that, from
the polynomial point of view, the backward stability of the polynomial root-finding problem via
eigenvalue methods is determined by the conditioning of the characteristic polynomial.

For a given matrix A ∈ Cn×n, let us first assume that the entries of the matrix E in (1.8) satisfy
|Eij | ≤ ε‖vec(A)‖∞. Then, using Holder’s inequality |uT v| ≤ ‖uT‖∞‖v‖∞ (with ‖ [ u1 . . . un

] ‖∞
= |u1|+ · · ·+ |un|)1, from (1.8) we get, up to first order, the following inequalities:

|ak(A+ E)− ak(A)| = |∇ak(A) · vec(E)| ≤ ‖∇ak(A)‖∞‖vec(E)‖∞
≤ ε‖∇ak(A)‖∞‖vec(A)‖∞ .

(9.13)

It is straightforward to show that there exists a particular matrix E with ‖vec(E)‖∞ = ε‖vec(A)‖∞
such that |∇ak(A) · vec(E)| = ‖∇ak(A)‖∞‖vec(E)‖∞. For this matrix the bound in (9.13) is
attained to first order in ε. With this in mind, Proposition 9.15 immediately follows.

Proposition 9.15. Let A ∈ Cn×n and ak(X) : Cn2 → C be the kth coefficient of the characteristic
polynomial of X ∈ Cn×n, considered as a function of X. We define the condition numbers κ(ak, A)
and κrel(ak, A) as

κ(ak, A) := lim
ε→0

sup

{ |ak(A+ E)− ak(A)|
ε

: ‖vec(E)‖∞ ≤ ε‖vec(A)‖∞
}

(9.14)

1Note that, according to the definition of ‖ · ‖∞ for m × n matrices, see [79, p. 108], the expressions for ‖u‖∞
and ‖uT ‖∞, i.e., for column and row vectors, are different.
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and

κrel(ak, A) := lim
ε→0

sup

{ |ak(A+ E)− ak(A)|
ε|ak(A)| : ‖vec(E)‖∞ ≤ ε‖vec(A)‖∞

}
. (9.15)

Then

κ(ak, A) = ‖∇ak(A)‖∞‖vec(A)‖∞ and κrel(ak, A) =
‖∇ak(A)‖∞‖vec(A)‖∞

|ak(A)| .

The definition of condition number introduced in (9.14) and (9.15) may look non-standard,
because of the inclusion of vectorizations. However, the presence of vec(E) is motivated by (9.1).
We have included also vec(A) in the definition to make it more natural. Moreover, due to the
identity

‖vec(Mσ)‖∞ = ‖p‖∞, (9.16)

valid for any Fiedler matrix Mσ, this choice will allow us to get a simpler formula for κ(ak,Mσ)
(see (9.18) below).

Now, Proposition 9.15, together with (9.7), give us the following formulas for κ(ak, A) and
κrel(ak, A).

Corollary 9.16. Let A ∈ Cn×n and let κ(ak, A) and κrel(ak, A) be the condition numbers defined
in (9.14) and (9.15), respectively. Then, for k = 0, 1, . . . , n− 1,

κ(ak, A) = ‖vec(pn−k−1(A))‖1‖vec(A)‖∞ and κrel(ak, A) =
‖vec(pn−k−1(A))‖1‖vec(A)‖∞

|ak(A)|
, (9.17)

where pn−k−1(z) is the degree n− k − 1 Horner shift of the polynomial p(z) := det(zI −A).

Note that, according to (9.17), the relative and absolute condition numbers depend on the
norms of A and the degree n− k − 1 Horner shift evaluated at A of the characteristic polynomial
of A. This Horner shift depends in turn on the coefficients ak+1, . . . , an−1 of the characteristic
polynomial evaluated at A, namely: pn−k−1(A) = An−k−1 + an−1(A)A

n−k−2 + · · ·+ ak+1(A)I.
In particular, when A = Mσ is a Fiedler matrix of a polynomial p(z) as in (1.1), formula (9.17)

together with Theorem 9.3 and (9.16), give

κ(ak,Mσ) = ‖p‖∞
n∑

i,j=1

|p(σ,k)ij (a0, a1, . . . , an−1)|, (9.18)

where p
(σ,k)
ij (a0, a1, . . . , an−1) are given in Theorem 9.3, and they are polynomials of degree at most

2 in the coefficients of p, namely a0, . . . , an−1.
By considering the maximum condition numbers of all coefficients of the characteristic polyno-

mial we arrive to the following notion.

Definition 9.17. Let A ∈ Cn×n and set p(z) = det(zI − A). Let κ(ak, A) and κrel(ak, A) be the
condition numbers defined in (9.14) and (9.15), respectively. We define the condition number and
the relative condition number of the characteristic polynomial of A with respect to perturbations of
A as

κ(p,A) = max
k=0,1,...,n−1

κ(ak, A) and κrel(p,A) = max
k=0,1,...,n−1

κrel(ak, A). (9.19)

The following result provides bounds for the absolute and relative condition numbers of the
characteristic polynomial when A is a Fiedler matrix.

Proposition 9.18. Let p(z) = zn +
∑n−1

k=0 akz
k be a monic polynomial of degree n, let σ :

{0, 1, . . . , n − 1} → {1, . . . , n} be a bijection, let Mσ be a Fiedler companion matrix of p(z) as-
sociated with σ, and let κ(p,Mσ) and κrel(p,Mσ) be as in (9.19). Then,

‖p‖2∞ ≤ κ(p,Mσ) ≤ n
3‖p‖3∞ and

‖p‖2∞
max{|a0|, |a1|, . . . , |an−1|}

≤ κrel(p,Mσ) ≤
n3‖p‖3∞

min{|a0|, |a1|, . . . , |an−1|}
.
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Moreover, if C = C1, C2 denotes both the first and second Frobenius companion matrices, then

‖p‖2∞ ≤ κ(p, C) ≤ n
3‖p‖2∞ and

‖p‖2∞
max{|a0|, |a1|, . . . , |an−1|}

≤ κrel(p,C) ≤
n3‖p‖2∞

min{|a0|, |a1|, . . . , |an−1|}
.

Proof. The bound κ(ak,Mσ) ≤ n3‖p‖3∞ follows immediately from (9.18) and the bound

|p(σ,k)ij (a0, a1, . . . , an−1)| ≤ n‖p‖2∞ (see Corollary 9.6), valid for all i, j = 1, . . . , n.
From (9.18) and Lemma 9.7, it follows that κ(ak,Mσ) ≥ (k+1)|ak+1|·‖p‖∞, for k = 0, 1, . . . , n−

1, and κ(a0,Mσ) ≥ |a0| · ‖p‖∞. Therefore

κ(p,Mσ) = max
k=0,1,...,n−1

κ(ak,Mσ) ≥ ‖p‖2∞.

Finally, from

κ(ak,Mσ)

max{|a0|, |a1|, . . . , |an−1|} ≤
κ(ak,Mσ)

|ak| ≤ κ(ak,Mσ)

min{|a0|, |a1|, . . . , |an−1|}

we get the bounds for κrel(p,Mσ) in the statement.
For the Frobenius companion matrices, we just note that as a consequence of Corollary 9.6, we

have |p(σ,k)ij (a0, a1, . . . , an−1)| ≤ n‖p‖∞, where σ is the permutation corresponding to either the
first or the second Frobenius companion matrix.

Remark 9.19. The factor n3 appearing in all upper bounds in Proposition 9.18 usually overesti-
mate the condition numbers. It is due to an n2 factor coming from the maximum possible number

of nonzero polynomials p
(σ,k)
ij (a0, a1, . . . , an−1) in the sum of the right-hand side in (9.18). This

number is usually much less than n2. For instance, it is equal to (k + 1)(2n− 2k − 1) for the first
and second Frobenius companion matrices, as can be seen from (9.10). It is also (k+1)(2n−2k−1)
for the coefficients ak with k = 2, . . . , n − 1, equal to 3n− 4 for a1 and equal to n for a0, for the
Fiedler matrix F in Theorem 9.13, as can be seen by looking at the matrices pn−k−1(F ) in Section
9.1.2.

9.2.1 Balancing and condition number

Though similar matrices have the same characteristic polynomial, the sensitivity of its coefficients
may be quite different. In other words, the condition numbers κ(ak, A) and κrel(ak, A) defined in
(9.14) and (9.15) are not invariant under diagonal similarity. Since q(SAS−1) = Sq(A)S−1, for
any polynomial q(z) and any invertible matrix S, formula (9.17) gives

κ(ak, SAS
−1) = ‖vec(Spn−k−1(A)S

−1)‖1‖vec(SAS−1)‖∞ (9.20)

and

κrel(ak, SAS
−1) =

‖vec(Spn−k−1(A)S
−1)‖1‖vec(SAS−1)‖∞

|ak(A)| .

The norms of the vectors in the right hand side of the previous expression can be quite different
for different matrices S. The optimal balancing for a given A (or, equivalently, a given polynomial
p(z) = det(zI − A)) from the point of view of the sensitivity of the characteristic polynomial (or,
equivalently, from the point of view of backward errors of the root-finding problem via eigenvalue
methods) would be given by some nonsingular diagonal matrix D such that κrel(p,DAD−1) is
minimal among all nonsingular diagonal matrices D (see [130] for the eigenvalue problem). In the
particular case of Fiedler matrices, the following result provides a lower bound for this minimal
conditioning.
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Proposition 9.20. Let p(z) = zn +
∑n−1

k=0 akz
k be a monic polynomial of degree n, let σ :

{0, 1, . . . , n− 1} → {1, . . . , n} be a bijection, let Mσ be the Fiedler matrix of p(z) associated with
σ and let D ∈ Cn×n be a diagonal and nonsingular matrix. Then, for k = 0, 1, . . . , n− 1,

κ(ak, DMσD
−1) ≥ (k + 1)|an−1||ak+1| and κrel(ak, DMσD

−1) ≥ (k + 1)|an−1||ak+1|
|ak| ,

where we set an = 1.

Proof. We prove the result for κ(ak, DMσD
−1), since the bound for the relative condition number

can be obtained just dividing by |ak|. The result is a consequence of the fact that diagonal similarity
does not change the diagonal entries of a matrix. From (9.20),

κ(ak, DMσD
−1) ≥‖diag(Dpn−k−1(Mσ)D

−1)‖1 · ‖diag(DMσD
−1)‖∞

=‖diag(pn−k−1(Mσ))‖1 · ‖diag(Mσ)‖∞ .

Now we prove that diag(Mσ) = (−an−1, 0, . . . , 0) and diag(pn−k−1(Mσ)) = (0, . . . , 0, ak+1, . . . , ak+1),
where the coefficient ak+1 appears (k + 1) times.

For the diagonal of Mσ the proof proceeds by induction in n. The case n = 2 is immediate,

since the only possible Mσ are
[
−a1

1
−a0

0

]
and

[
−a1

−a0

1
0

]
. We assume that the identity is true for

Fiedler matrices associated with polynomials of degree n− 1. For degree n, we have to distinguish
two cases.

(a) If σ has a consecution at n − 2 then, using MATLAB notation for columns and rows, Mσ

may be written as,

Mσ =

[−an−1 1 0
W (:, 1) 0 W (:, 2 : n− 1)

]
,

where W ∈ C(n−1)×(n−1) is a Fiedler companion matrix of the polynomial zn−1+
∑n−2

k=0 akz
k

(see Theorem 2.16). Therefore, diag(Mσ) = (−an−1, 0,W (2, 2),W (3, 3), . . . ,W (n − 1, n −
1)) = (−an−1, 0, . . . , 0), by induction.

(b) If σ has an inversion at n− 2 then Mσ may be written as

Mσ =

⎡⎣−an−1 W (1, :)
1 0
0 W (2 : n− 1, :)

⎤⎦ ,
where W ∈ C(n−1)×(n−1) is a Fiedler companion matrix of the polynomial zn−1+

∑n−2
k=0 akz

k

(see Theorem 2.16). Therefore, diag(Mσ) = (−an−1, 0,W (2, 2),W (3, 3), . . . ,W (n − 1, n −
1)) = (−an−1, 0, . . . , 0), by induction.

From Lemma 9.7 and equation (9.7), the (i, i) entry of pn−k−1(Mσ) is equal to p
(σ,k)
ii (a0, a1, . . . ,

an−1) = ak+1, if n− 1 ≥ k ≥ n− i (that is, i ≥ n− k), and p
(σ,k)
ii (a0, a1, . . . , an−1) = 0, otherwise.

This concludes the proof.

Note that there exist polynomials p(z) for which the lower bounds in Proposition 9.20 can
be as large as desired. In particular, Proposition 9.20 shows that, for large values of |an−1|, the
condition number of any coefficient of the characteristic polynomial of any Fiedler matrix will be
large, regardless of the diagonal matrix D.
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9.3 Backward stability in the case ‖p‖∞ ≤ 1

Corollary 9.9 indicates that computing the roots of scalar polynomials as the eigenvalues of an
arbitrary Fiedler matrix is not backward stable from the polynomial point of view if ‖p‖∞ is
large, even if we compute the eigenvalues using a backward stable algorithm. This is revealed by
the presence of the factor ‖p‖∞ in (9.4) and ‖p‖2∞ in (9.5). However, when ‖p‖∞ is moderate,
(9.5) guarantees backward stability. This fact is in accordance with results in [160, p. 576],
where the authors prove that solving matrix Polynomial Eigenvalue Problems by applying the QZ
algorithm to the Frobenius companion pencil is backward stable, provided that the original matrix
polynomial has been previously scaled so that all coefficients have norm less than or equal to 1. For
scalar polynomials (not necessarily monic), this condition can be always achieved by dividing all
coefficients of the original polynomial p(z) by some sufficiently large number. However, if we want
to restrict ourselves to the set of monic polynomials to use the QR algorithm, this is not a valid
strategy any more, since we could get a non-monic polynomial after dividing the coefficients of
p(z) (monic). In order to keep the polynomial p(z) as in (1.1) within the set of monic polynomials,
we can consider another kind of scaling as, for instance:

p̂(z) := αnp(z/α) = zn +
n−1∑
k=0

akα
n−kzk.

Now, α can be chosen so that |akαn−k| ≤ 1, for all k = 0, 1, . . . , n− 1. Note that the roots of p(z)
can be easily recovered from those of p̂(z) just dividing by α. Once all coefficients of p̂(z) have
absolute value less than or equal to 1, we can apply the QR algorithm to any Fiedler companion
matrix of p̂(z) to get its roots, and then recover the roots of p(z). However, this does not guarantee
that the method is backward stable. It is not difficult to find examples of quadratic polynomials
p(z) such that there is a polynomial q̂(z) with ‖p̂− q̂‖ = O(u)‖p̂‖, but ‖p− q‖/‖p‖ is O(1), with
q(z) = (1/α2)q̂(αz).

We want to emphasize that we are not considering in this chapter the backward errors of single
roots of p, but the backward error of the set of all roots of p. Backward errors of single roots has
been considered in [147] for the more general case of matrix Polynomial Eigenvalue Problems. In

particular, the backward error of a single computed root λ̃ considered in [147] is:

η(λ̃) = min
{
ε : (p+Δp)(λ̃) = 0, |Δai| ≤ ε|ai|, i = 0, 1, . . . , n

}
,

where p(z) =
∑n

k=0 akz
k, and Δp(z) =

∑n
k=0(Δak)z

k are not necessarily monic. It is shown in
[147, Theorem 7] that, for quadratic matrix polynomials all whose coefficients have 2-norm equal
to 1, computing the eigenvalues of its companion pencil (defined in [147, p. 347]) with a backward
stable eigenvalue algorithm gives, from the polynomial point of view, a coefficientwise backward
stable method for the Quadratic Eigenvalue Problem. Though, as we have mentioned above, we are
considering different notions of backward error, this fact seems to be in accordance with Corollary
9.9 when ‖p‖∞ = 1 and with the discussion right below.

We also emphasize that the backward stability of polynomial root-finding when ‖p‖∞ = 1
does not guarantee small relative backward errors in each coefficient. In other words, we can not
guarantee that

max
k=0,1,...,n−1

|ãk − ak|
|ak| = O(u) (9.21)

even in the case ‖p‖∞ = 1. In Section 9.4 we show some numerical experiments where ‖p‖∞ = 1
and (9.21) does not hold. However, when |ak| is moderate, for all k = 0, 1, . . . , n− 1, and not too
close to zero (loosely speaking, of order Θ(1)), then (9.4)–(9.5) imply that (9.21) holds, also in
accordance with [147].
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9.4 Numerical experiments

In this section we provide numerical experiments that support our theoretical results. In particular,
our goals are: (i) to show whether or not the bounds in (9.4)–(9.5) correctly predict the dependence
on the norm of p(z) of the largest backward error that may be obtained if the roots of p(z) are
computed as the eigenvalues of a Fielder matrix with a backward stable eigenvalue algorithm; (ii)
to show that if the roots of a polynomial p(z), with moderate coefficients, are computed as the
eigenvalues of a Fiedler matrix, then this process is normwise backward stable, regardless of the
Fiedler matrix that is used, which implies that, in this situation, any Fiedler matrix can be used
for the root-finding problem with the same reliability as the Frobenius companion matrices; (iii)
to investigate, from the point of view of backward errors, the effect of balancing Fiedler matrices;
and (iv) following [53], to show that Theorem 9.3 may be used to predict the backward error when
the roots of a monic polynomial are computed as the eigenvalues of a Fiedler matrix. Along this
section we denote by u = 2−52 the machine epsilon in IEEE double precision arithmetic.

Given a monic polynomial p(z) of degree n, we denote by {λ̃1, λ̃2, . . . , λ̃n} the roots of p(z)
computed as eigenvalues of a Fiedler matrix Mσ using a backward stable eigenvalue algorithm.
In our case, the eigenvalue algorithm will be the QR eigenvalue algorithm as implemented in the
command eig of MATLAB. If we denote by p̃(z) the monic polynomial of degree n whose roots

are {λ̃1, λ̃2, . . . , λ̃n}, namely, p̃(z) =
∏n

k=1(z − λ̃k) = zn +
∑n−1

k=0 ãkz
k, then we are interested in

the following quantities:

• the normwise backward error (NBE): ‖p̃− p‖∞/‖p‖∞, and

• the coefficientwise backward error (CBE): maxk=0,1,...,n−1 (|ãk − ak|/|ak|).
In the numerical experiments, we consider monic polynomials of degree 20 and the following

Fiedler companion matrices associated with degree-20 polynomials:

(a) the second Frobenius companion matrix C2 = Mσ1
with PCIS(σ1) = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1),

(b) the pentadiagonal Fiedler matrix P1 = Mσ2
with PCIS(σ2) = (1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,

1, 0, 1, 0, 1),

(c) the Fiedler matrix F = Mσ3
with PCIS(σ3) = (0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1),

and

(d) the Fiedler matrix Mσ4
with PCIS(σ4) = (1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1).

Recall that the matrices Mσ2
and Mσ3

are the Fiedler matrices considered in (2.7) and (2.8),
respectively.

Given a monic polynomial p(z) of degree 20 and a Fiedler matrix Mσ associated with p(z),
to compute the polynomial p̃(z) we proceed as follows. First, we compute the eigenvalues of
Mσ using the function eig in MATLAB (with and/or without balancing, see comments below);

then, if {λ̃1, λ̃2, . . . , λ̃20} denote the computed eigenvalues, we compute the polynomial p̃(z) =∏20
k=1(z− λ̃k) = z20+

∑19
k=0 ãkz

k using the function vpa (variable precision arithmetic) followed by

the command poly on a diagonal matrix whose diagonal entries are {λ̃1, λ̃2, . . . , λ̃20}, in MATLAB
with 32 decimal digits of accuracy.

9.4.1 Numerical experiments that show the dependence of the normwise

backward error with ‖p‖∞
In this subsection, we perform numerical experiments to determine whether or not the largest
normwise backward errors that may be obtained if the roots of monic polynomials are computed
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as the eigenvalues of a Fiedler matrix Mσ with the command eig, behave like ‖p̃− p‖∞/‖p‖∞ =
O(u)‖p‖2∞, when Mσ is a Fiedler matrix other than the Frobenius ones, or like ‖p̃− p‖∞/‖p‖∞ =
O(u)‖p‖∞, whenMσ is one of the Frobenius companion matrices, as it is predicted by Corollary 9.9.
We perform numerical experiments with and without balancing the Fiedler matrices. Our results
show that if we do not balance the Fiedler matrices the bound in Corollary 9.9, although in a lot
of cases is very pessimistic, predicts well the dependence with ‖p‖∞ of the largest backward errors.
If the Fiedler matrices are balanced, our results show that there is still a dependence with ‖p‖∞ of
the largest normwise backward errors, and that this dependence is similar for all Fiedler matrices.
Also we show that the backward errors that are usually obtained when the Fiedler matrices are
balanced are almost independent of the norm of the polynomials, and that polynomial root-finding
algorithms using balanced Fiedler matrices are usually normwise backward stable.

In order to see the dependence of the backward error with ‖p‖∞ we proceed as follows. For
each k = 0, 1, . . . , 10 we generate 500 random degree-20 polynomials with coefficients of the form
a · 10c, where a is drawn from the uniform distribution on the interval [−1, 1] and c is drawn from
the uniform distribution on the interval [−k, k], also we set a0 = 10k. The reasons to set a0 = 10k

is to fix the infinity norm of the 500 random polynomials to be 10k. For each of these 11 samples
of 500 random polynomials, we compute the normwise backward errors, as it is explained at the
beginning of Section 9.4, when their roots are computed as the eigenvalues of the four Fiedler
matrices Mσ1

,Mσ2
,Mσ3

,Mσ4
, with and without balancing them.

In Figures 9.4.1-(a), 9.4.1-(b), 9.4.1-(c), and 9.4.1-(d) we plot the decimal logarithms of the
maximum and the minimum normwise backward errors obtained for each of the 11 samples of 500
random polynomials against the logarithms of the norm of the polynomials, when their roots are
computed as the eigenvalues of Mσ1

,Mσ2
,Mσ3

,Mσ4
, respectively, without balancing them. We

also plot a linear fitting for the logarithms of the maximum normwise backward errors in order to
get the dependence with ‖p‖∞.
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Figure 9.4.1: Decimal logarithms of the maximum and minimum normwise backward errors obtained for each of
the 11 samples of 500 random degree-20 polynomials, for k = 0, 1, . . . , 10, with a fixed infinite norm equal to 10k and
with coefficients of the form a · 10c, where a is drawn from the uniform distribution on [−1, 1] and c is drawn from
the uniform distribution on [−k, k], and where we set a0 = 10k , when their roots are computed as the eigenvalues
of the Fiedler matrices Mσ1

,Mσ2
,Mσ3

,Mσ4
, without balancing them.
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As may be seen in Figures 9.4.1-(a), 9.4.1-(b), 9.4.1-(c), and 9.4.1-(d), there is a dependence
with ‖p‖∞ of the largest normwise backward errors of the form ‖p‖α∞. From the linear fittings we
obtain α = 0.85 for Mσ1

= C2, α = 1.9 for Mσ2
= P1, α = 1.7 for Mσ3

= F , and α = 1.8 for
Mσ4

. This is consistent with the bound in Corollary 9.9, which predicts α = 1 for the Frobenius
companion matrices C1 and C2, and α = 2 for Fiedler matrices other than the Frobenius ones.
Also note that in Figures 9.4.1-(a),9.4.1-(b),9.4.1-(c) and 9.4.1-(d) it may be seen that the bound
in Corollary 9.9 is in some cases very pessimistic, since there are polynomials for which we get
small normwise backward errors, regardless of their norms.

Next, we investigate the effect of balancing the Fiedler matrices in the backward errors. In
Figures 9.4.2-(a), 9.4.2-(b), 9.4.2-(c), and 9.4.2-(d), we plot the decimal logarithms of the maximum
and the minimum normwise backward errors obtained for each of the 11 samples of 500 random
polynomials against the logarithms of the norm of the polynomials, when their roots are computed
as the eigenvalues of Mσ1

,Mσ2
,Mσ3

,Mσ4
, respectively, but in this case the Fiedler matrices are

balanced before we compute their eigenvalues. As in the previous experiment, we plot a linear
fitting for the logarithms of the maximum normwise backward errors in order to get the dependence
with ‖p‖∞. We also plot the ninth decile of the normwise backward error for each of the 11 samples.
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Figure 9.4.2: Decimal logarithms of the maximum and minimum normwise backward errors obtained for the 11
samples of 500 random degree-20 polynomials with, for k = 0, 1, . . . , 10, a fixed infinite norm equal to 10k and with
coefficients of the form a · 10c, where a is drawn from the uniform distribution on [−1, 1] and c is drawn from the
uniform distribution on [−k, k], and where we set a0 = 10k , when their roots are computed as the eigenvalues of
the Fiedler matrices Mσ1

,Mσ2
,Mσ3

,Mσ4
, balancing them before computing their eigenvalues.

As may be seen in Figures 9.4.2-(a), 9.4.2-(b), 9.4.2-(c), and 9.4.2-(d), there is a dependence of
the largest backward errors with the norm of the polynomials of the form ‖p‖α∞, but this dependence
is more or less similar for all four Fiedler matrices. In particular, from the linear fittings, we get
α = 0.59 for Mσ1

= C2, α = 0.71 for Mσ2
= P1, α = 0.67 for Mσ3

= F , and α = 0.71 for Mσ4
. Also

notice that 90% of the backward errors obtained when the roots of the polynomials are computed
as the roots of Mσ1

,Mσ2
,Mσ3

,Mσ4
are excellent, since they are more or less between 10−12 and

10−16, even for polynomials with norms as large as 1010.
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9.4.2 Numerical experiments with polynomials of moderate coefficients

In this subsection we show that, from the point of view of backward errors, when the coefficients of
p(z) are bounded in absolute value by a moderate number, any Fiedler matrix may be used for the
root-finding problem with the same reliability as the Frobenius companion matrices. In particular,
we provide numerical evidence that supports what we claim in Section 9.3, namely, that computing
the roots of a monic polynomial p(z) as in (1.1), with |ai| moderate, for i = 0, 1, . . . , n− 1, as the
eigenvalues of a Fiedler matrix using a backward stable eigenvalue algorithm is normwise backward
stable, regardless of the Fiedler matrix that is used. In addition, we show that to have |ai|moderate,
for i = 0, 1, . . . , n − 1, it is not enough to guarantee coefficientwise backward stability. Finally,
we provide numerical evidence that supports the last sentence in Section 9.3, namely, that (9.21)
holds when |ai| = Θ(1), for i = 0, 1, . . . , n− 1, regardless of the Fiedler matrix that is used.

In the first set of numerical experiments, we consider a random sample of 1000 degree-20 po-
lynomials with coefficients drawn from the uniform distribution on the interval [−100, 100], but
we set a19 = 10−10. The reason for setting a19 = 10−10 is to show that we may have a small
normwise backward error but, at the same time, we may have a big coefficientwise backward
error. In Table 9.4.1, we give the mean, the maximum and the minimum of the decimal loga-
rithms of the normwise and coefficientwise backward errors (Log-Mean NBE, Log-Maximum NBE,
Log-Minimum NBE, Log-Mean CBE, Log-Maximum CBE and Log-Minimum CBE, respectively)
obtained when the roots of the polynomials are computed as the eigenvalues of the Fiedler matrices
Mσ1

,Mσ2
,Mσ3

,Mσ4
, without balancing them.

Mσ1
Mσ2

Mσ3
Mσ4

Log-Mean NBE -13.6 -12.6 -13.6 -12.5

Log-Maximum NBE -12.9 -11.7 -12.1 -11.6

Log-Minimum NBE -14.5 -13.4 -14.3 -13.4

Log-Mean CBE -3.5 -3.8 -3.6 -3.8

Log-Maximum CBE -2.7 -2.9 -2.7 -2.9

Log-Minimum CBE -6.7 -6.9 -7.1 -6.3

Table 9.4.1: Mean, maximum and minimum of the decimal logarithms of the normwise (NBE) and coefficientwise
(CBE) backward errors obtained for 1000 random degree-20 polynomials, with coefficients drawn from the uniform
distribution on [−100, 100] and setting a19 = 10−10, when their roots are computed as the eigenvalues of the Fiedler
matrices Mσ1

,Mσ2
,Mσ3

,Mσ4
, without balancing them.

As may be seen in Table 9.4.1, the normwise backward errors obtained when the roots of
the polynomials are computed as the eigenvalues of Mσ1

,Mσ2
,Mσ3

,Mσ4
are excellent for all four

Fiedler matrices. But also note that this is not true for the coefficientwise backward errors. These
results are consistent with the claims in Section 9.3.

Next, we consider a random sample of 1000 degree-20 polynomials with coefficients of the form
10c1 where c1 is drawn from the uniform distribution on the interval [−2, 2]. In Table 9.4.2 we
give the mean, the maximum and the minimum of the decimal logarithms of the normwise and
coefficientwise backward errors (Log-Mean NBE, Log-Maximum NBE, Log-Minimum NBE, Log-
Mean CBE, Log-Maximum CBE and Log-Minimum CBE, respectively) obtained when the roots
of the polynomials are computed as the eigenvalues of the Fiedler matrices Mσ1

,Mσ2
,Mσ3

,Mσ4
,

without balancing them.

As may be seen in Table 9.4.2, the normwise backward errors obtained when the roots of the
polynomials are computed as the eigenvalues of Mσ1

,Mσ2
,Mσ3

,Mσ4
are excellent, as in Table

9.4.1. The coefficientwise backward errors are not so small as the normwise ones, but they are still
excellent since we are dealing with polynomials whose coefficients may have absolute values that
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Mσ1
Mσ2

Mσ3
Mσ4

Log-Mean NBE -14.1 -13.2 -14.1 -13.3

Log-Maximum NBE -13.4 -11.8 -12.5 -11.7

Log-Minimum NBE -14.7 -14.5 -14.8 -14.8

Log-Mean CBE -11.0 -10.2 -11.0 -10.2

Log-Maximum CBE -10.0 -8.3 -9.1 -8.4

Log-Minimum CBE -12.4 -12.2 -12.6 -12.7

Table 9.4.2: Mean, maximum and minimum of the decimal logarithms of the normwise (NBE) and coefficientwise
(CBE) backward errors obtained for 1000 random degree-20 polynomials, with coefficients of the form 10c1 , where
c1 is drawn from the uniform distribution on [−2, 2], when their roots are computed as the eigenvalues of the Fiedler
matrices Mσ1

,Mσ2
,Mσ3

,Mσ4
, without balancing them.

differ in four orders of magnitude.

9.4.3 Numerical experiments balancing Fiedler matrices

In this subsection we perform numerical experiments to study, from the point of view of backward
errors, the effect of balancing Fiedler matrices. We show that, when a Fiedler matrixMσ is balanced
before computing its eigenvalues, the backward error obtained if we compute the roots of p(z) as
the eigenvalues of Mσ may be much smaller than the backward error that is obtained when Mσ is
not balanced, regardless of the Fiedler matrix that is used. We show also that balancing a Fiedler
matrix is usually enough to guarantee that the process of computing the roots of a polynomial as
the eigenvalues of a Fiedler matrix is normwise backward stable, even if the polynomial has large
coefficients. Finally, we investigate the effect of the size of the coefficient an−1, since Proposition
9.20 suggests that it plays a key role in getting or not backward stability after balancing Fiedler
matrices. To be precise, Proposition 9.20 shows that, for large values of |an−1|, the condition
number of any coefficient of the characteristic polynomial of any Fiedler matrix will be large,
regardless of the balancing. This leads us to expect large backward errors when |an−1| is large.

We consider a random sample of 1000 degree-20 polynomials with coefficients of the form

a1 · 10c1 + i a2 · 10c2, (9.22)

where i denotes the imaginary unit, and a1, a2 are drawn from the uniform distribution on the
interval [−1, 1] and c1 and c2 are drawn from the uniform distribution on the interval [−10, 10].
These polynomials, considered in [150], allow us to measure the normwise backward errors with
varying orders of magnitude in the coefficients of p(z). We also consider a second sample of 1000
degree-20 polynomials with coefficients of the form (9.22), but we fix a19 = 1. The reason for
considering this second sample is to study the effect of balancing Fiedler matrices when |an−1| is
moderate.

For the first sample of random polynomials, in Tables 9.4.3-(a) and 9.4.3-(b) we give the mean,
the maximum and the minimum of the decimal logarithms of the normwise backward errors (Log-
Mean NBE, Log-Maximum NBE, Log-Minimum NBE, respectively) obtained when the roots of the
polynomials are computed as the eigenvalues of Mσ1

,Mσ2
,Mσ3

,Mσ4
, when these Fiedler matrices

are not or are balanced, respectively.
Several observations may be drawn from the data in Tables 9.4.3-(a) and 9.4.3-(b). First

note, from the data in Log-Maximum NBE in Table 9.4.3-(a), that if the Fiedler matrices are not
balanced, the backward errors obtained may be very large. Note also that the largest of these
backward errors is consistent with (9.4) for the Frobenius companion matrices, and with (9.5) for
Fiedler matrices other than the Frobenius ones. Second, note that the process of balancing the
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(a) The Fiedler matrices are not balanced.

Mσ1
Mσ2

Mσ3
Mσ4

Log-Mean NBE -10.5 -2.4 -9.9 -3.0

Log-Maximum NBE -5.8 3.2 0.1 3.5

Log-Minimum NBE -14.7 -8.9 -14.7 -10.0

(b) The Fiedler matrices are balanced.

Mσ1
Mσ2

Mσ3
Mσ4

Log-Mean NBE -13.1 -13.1 -13.1 -12.9

Log-Maximum NBE -8.1 -7.5 -8.0 -7.8

Log-Minimum NBE -14.7 -14.9 -15.1 -14.8

Table 9.4.3: Mean, maximum, and minimum of the decimal logarithms of the normwise backward errors obtained
for a sample of 1000 random degree-20 polynomials, with coefficients of the form (9.22), when their roots are
computed as the eigenvalues of the Fiedler matrices Mσ1

,Mσ2
,Mσ3

,Mσ4
, without balancing and with balancing.

Fiedler matrices makes that the backward errors obtained after balancing may be much smaller
than the backward errors obtained when the Fiedler matrices are not balanced (this is especially
evident for Mσ2

and Mσ3
). Finally, note, from the data in Log-Maximum NBE in Table 9.4.3-

(b), that there are polynomials for which balancing the Fiedler matrices does not guarantee that
the process of computing their roots as the eigenvalues of Fiedler matrices is normwise backward
stable.

In Tables 9.4.4-(a) and 9.4.4-(b) we display the mean, the maximum and the minimum of the
decimal logarithms of the normwise backward errors (Log-Mean NBE, Log-Maximum NBE, Log-
Minimum NBE, respectively) that are obtained when the roots of the polynomials of the second
sample are computed as the eigenvalues of the four Fiedler matrices Mσ1

,Mσ2
,Mσ3

,Mσ4
, when

the Fiedler matrices are not or are balanced, respectively. Recall that for this sample of degree-20
random polynomials we set a19 = 1.

(a) The Fiedler matrices are not balanced.

Mσ1
Mσ2

Mσ3
Mσ4

Log-Mean NBE -6.9 -3.2 -6.9 -3.4

Log-Maximum NBE -5.6 3.0 -3.4 3.0

Log-Minimum NBE -9.8 -10.6 -9.9 -11.1

(b) The Fiedler matrices are balanced.

Mσ1
Mσ2

Mσ3
Mσ4

Log-Mean NBE -13.9 -13.9 -13.9 -13.7

Log-Maximum NBE -11.6 -11.1 -11.6 -10.4

Log-Minimum NBE -15.1 -14.8 -15.0 -15.0

Table 9.4.4: Mean, maximum, and minimum of the decimal logarithms of the normwise backward errors obtained
when the roots of the polynomials of the second sample of random polynomials (i.e., coefficients from (9.22) and
a19 = 1) are computed as the eigenvalues of the four Fiedler matrices Mσ1

,Mσ2
,Mσ3

,Mσ4
, without balancing and

with balancing.

As in the first sample of random polynomials, we may see in Tables 9.4.4-(a) and 9.4.4-(b) that
the backward errors obtained when the Fiedler matrices are not balanced may be very large. Also,
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we may see that the backward errors may be much smaller when the Fiedler matrices are balanced.
Finally note that for this second sample the largest backward errors obtained when the Fiedler
matrices are balanced are smaller than the largest ones obtained for the first sample.

9.4.4 Using Theorem 9.3 to predict the coefficientwise backward error

In this subsection we show that Theorem 9.3 can be used to predict the coefficientwise backward
error, without computing explicitly the polynomial p̃(z) (something that may not be possible for
high degree polynomials, since using vpa makes this process very slow), and that this backward
error is usually small for all Fiedler matrices if the process of balancing is used. Of course, the
normwise backward error can be also predicted from Theorem 9.3, but we omit it for brevity. As
in Section 8.6.3, we explore the following degree-20 monic polynomials:

(p1) the Wilkinson polynomial: p(z) =
∏20

k=1(z − k),

(p2) the monic polynomial with zeros: −2,−1.8,−1.6, . . . , 1.6, 1.8,
(p3) p(z) = (20!)

∑20
k=0 z

k/k!,

(p4) the Bernoulli polynomial of degree 20,

(p5) p(z) =
∑20

k=0 z
k,

(p6) the monic polynomial with zeros 2−10, 2−9, . . . , 28, 29,

(p7) the Chebyshev polynomial of degree 20,

(p8) the monic polynomial with zeros equally spaced on a sine curve, that is,

p(z) =

9∏
k=−10

(
z − 2π

19
(k + 0.5)− i · sin 2π

19
(k + 0.5)

)
.

Also, we consider again the four Fiedler companion matrices associated with degree-20 polynomials
introduced at the beginning of Section 9.4, namely Mσ1

,Mσ2
,Mσ3

,Mσ4
.

We repeat the numerical experiments performed in [53]. Our results show that Theorem 9.3
always predicts a small componentwise backward error, regardless of the Fiedler matrix that is used,
and that this predicted backward error is usually pessimistic by at most one, two or three orders of
magnitude, except for the polynomial p6, where the predicted backward error is pessimistic by 6
orders of magnitude. Note that in this case the ratio (|a19| · |a1|) /|a0| is of order 219, so Proposition
9.20 ensures that the condition number for the coefficient a0 is large. However, the perturbations
in the numerical experiments does not seem to affect this coefficient in such a severe way.

In order to use Theorem 9.3 to predict the coefficientwise backward error, we need to model
the backward error introduced by the algorithm for computing the eigenvalues of a Fiedler matrix.
Since standard eigenvalue algorithms first balance the matrix, if we set Bσ := DMσD

−1, where D
is the diagonal matrix that balances Mσ, then a backward stable eigenvalue algorithm applied to a
Fiedler matrix Mσ computes the exact eigenvalues of the matrix Bσ + Ẽ, with ‖Ẽ‖ = O(u)‖Bσ‖.
Due to these considerations, we model the backward error introduced by a backward stable eigen-
value algorithm applied to Mσ by means of an error matrix Ẽ = (Ẽij), with

Ẽij = 2−52 · ‖Bσ‖2 · εij for i, j = 1, 2, . . . , 20, (9.23)

where εij is drawn from the uniform distribution on the interval [−1, 1]. If we denote by {λ̃1, λ̃2,

. . . , λ̃n} the eigenvalues of Bσ+Ẽ then, since a similarity transformation does not change the char-
acteristic polynomial of a matrix, these eigenvalues are the roots of the characteristic polynomial
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of D−1(Bσ + Ẽ)D = Mσ + E, where E = D−1ẼD, that is, they are the roots of the polynomial

det(zI −Mσ − E) = p̃(z) = zn +
∑n−1

k=0 ãnz
k. Then, we can use Theorem 9.3 to compute the

coefficients of p̃(z), up to first order in E, and use maxak 	=0 |ãk − ak|/|ak| as a prediction of the
coefficientwise backward error. Finally we can compare this predicted backward error with the
observed one, computed as explained at the beginning of Section 9.4.

In Table 9.4.5, we display the decimal logarithms of the predicted and the observed coefficient-
wise backward error (Log Predicted CBE and Log Observed CBE, respectively), when the roots of
the polynomials p1-p8 are computed as the eigenvalues of the Fiedler matricesMσ1

,Mσ2
,Mσ3

,Mσ4
.

(a) Mσ1

p1 p2 p3 p4 p5 p6 p7 p8

Log Predicted CBE -12.0 -10.4 -13.4 -13.3 -13.7 -8.8 -12.3 -13.6

Log Observed CBE -13.9 -13.5 -14.2 -13.8 -13.9 -13.8 -14.7 -14.6

(b) Mσ2

p1 p2 p3 p4 p5 p6 p7 p8

Log Predicted CBE -12.3 -12.1 -10.3 -13.3 -13.4 -9.3 -13.2 -13.3

Log Observed CBE -13.8 -14.0 -12.0 -13.8 -13.6 -14.1 -13.7 -13.9

(c) Mσ3

p1 p2 p3 p4 p5 p6 p7 p8

Log Predicted CBE -12.1 -12.9 -13.5 -13.0 -13.7 -8.8 -12.3 -13.5

Log Observed CBE -14.0 -13.8 -13.7 -14.1 -13.9 -13.8 -14.7 -14.3

(d) Mσ4

p1 p2 p3 p4 p5 p6 p7 p8

Log Predicted CBE -12.3 -12.8 -12.8 -13.5 -13.3 -9.6 -13.9 -13.7

Log Observed CBE -14.0 -14.2 -13.4 -14.1 -13.9 -14.0 -15.1 -14.1

Table 9.4.5: Decimal logarithms of the predicted and observed coefficientwise backward error for the Fiedler
matrices Mσ1

,Mσ2
,Mσ3

,Mσ4
of the eight polynomials p1-p8.

As may be seen in Table 9.4.5, the coefficientwise backward errors are well predicted by Theorem
9.3, with the exception of the polynomial p6. In [53] it was also observed that the coefficientwise
backward error for p6, when the Frobenius companion matrix is used to compute its roots, was
far more favorable than the predicted one. For this polynomial and for the four Fiedler matri-
ces Mσ1

,Mσ2
,Mσ3

,Mσ4
, the coefficientwise backward error comes from |ã0 − a0|/|a0|. The most

important conclusion to be extracted from Table 9.4.5 for our purposes is that the four Fiedler
matrices Mσ1

,Mσ2
,Mσ3

, and Mσ4
behave equally well from the point of view of backward errors

in polynomials p1− p8.

9.5 The Sylvester space of a Fiedler matrix

The study of the geometry of matrix spaces sheds light on the explanation of numerical processes
involving matrices or matrix pencils. In particular, the theory of orbits has been used in the
analysis of errors of the algorithms for computing eigenvalues and canonical forms (see [7], [54, 55]
and [53]). In this section, and inspired by the motivating paper [53], we analyze from a geometrical
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point of view the polynomial root-finding problem solved as an eigenvalue problem with Fiedler
companion matrices. Our main result is Theorem 9.24, where we prove that the space of Sylvester
matrices associated with a given Fiedler matrix Mσ is transversal to the similarity orbit of Mσ.
This result extends the corresponding one for Frobenius companion matrices [53, Prop. 2.1].

Let p(z) be a monic polynomial as in (1.1) and let Mσ be a Fiedler matrix of p(z). Let us
consider the Euclidean matrix space Cn×n with the usual Frobenius inner product

(A,B) = tr(AB∗),

where M∗ denotes the conjugate transpose of M ∈ Cn×n. In this space, the set of matrices similar
to a given matrix A ∈ C

n×n is a differentiable manifold in C
n×n. This manifold is the orbit of A

under the action of similarity:

O(A) := {SAS−1 : det(S) 
= 0}.

We will refer to the elements of a manifold as points, even though all manifolds considered in this
section are manifolds whose points are matrices.

It is known that the tangent space of O(A) at A is the set

TAO(A) := {AX −XA for some X ∈ C
n×n}.

The normal space of O(A) at A, denoted by NAO(A), is the set of matrices orthogonal to any
matrix in TAO(A):

NAO(A) := {Y ∈ C
n×n such that (Y, V ) = 0, for all V ∈ TAO(A)},

and the centralizer of A is the set of matrices commuting with A:

C(A) := {X ∈ C
n×n such that AX −XA = 0}

The following facts are already known:

(a) C(A∗) = NAO(A) (see [7, Lemma, p. 34]).

(b) If A is a non-derogatory matrix, then:

(b1) C(A) = {q(A) : q is a polynomial} (see [87, Th. 3.2.4.2]).

(b2) dimC(A) = n (see [7, Corollary, p. 35]).

(c) Mσ is a non-derogatory matrix, for all σ.

For claim (c), just recall that Mσ is similar to C1, and that C1 is non-derogatory (see [87, p. 147]).
As a consequence of claims (a)–(c) above, we have that dimNMσ

O(Mσ) = n, for all σ, so there
is a basis of NMσ

O(Mσ) consisting of n matrices which are polynomials in M∗
σ . In Proposition

9.21, we state that.

Proposition 9.21. Let p(z) = zn +
∑n−1

k=0 akz
k be a monic polynomial, σ : {0, 1, . . . , n − 1} →

{1, . . . , n} be a bijection, Mσ be the Fiedler matrix of p(z) associated with the bijection σ, and let
pd(z) be the dth Horner shift of p(z), for d = 0, 1, . . . , n− 1. Set p0(Mσ) = In and

pn−k(Mσ) = Mn−k
σ + an−1M

n−k−1
σ + · · ·+ ak+1Mσ + akI, for k = 1, . . . , n− 1.

Then {pk(Mσ)
∗}n−1

k=0 is a basis for NMσ
O(Mσ).
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Note that the set {pk(Mσ)
∗}n−1

k=0 is linearly independent because, since Mσ is non-derogatory,
its minimal polynomial coincides with its characteristic polynomial. Any n linearly independent
polynomials in M∗

σ would serve as a basis for NMσ
O(Mσ), but in Section 9.1.1 we have seen that

the matrices pk(Mσ) play an important role in determining how the coefficients of the characteristic
polynomial of Mσ change when the matrix is perturbed (see (9.7)).

First order perturbations of the coefficients of p(z), with p(z) = det(zI−C1), have been studied
in [53]. To do so, the authors decompose the perturbation matrix E as

E = Etan + Esyl, (9.24)

where Etan belongs to the tangent space to O(C1) at C1 and Esyl is of the form

Esyl =

⎡⎢⎢⎢⎣
E11 . . . E1n

0 . . . 0
...

. . .
...

0 . . . 0

⎤⎥⎥⎥⎦ .
The matrix Esyl belongs to the tangent space (at any point) to the Sylvester space of C1. We recall
that the (affine) Sylvester space of C1 is the set of all matrices of the form⎡⎢⎢⎢⎣

E11 E12 . . . E1n

1 0 . . . 0
. . .

. . .
...

1 0

⎤⎥⎥⎥⎦ ,
that is, the set of “all first Frobenius companion matrices”2. It may be proved that, to first order
in E, the matrix Etan does not affect the coefficients of p(z). Below, we prove an equivalent result
for any Fiedler matrix Mσ. For this, we first define the Sylvester space of any Fiedler matrix,
which is a natural generalization of the Sylvester space of C1.

Definition 9.22. (Sylvester space of a Fiedler matrix) Let σ : {0, 1, . . . , n− 1} → {1, . . . , n} be a
bijection. Then, the (affine) Sylvester space associated with the bijection σ, denoted by Syl(σ), is
the set of Fiedler matrices associated with σ, that is,

Syl(σ) :=

{
Mσ(p) : p(z) = zn +

n−1∑
k=0

ckz
k, ck ∈ C

}
,

where Mσ(p) is the matrix in (2.1).

For example, the Sylvester space associated with the bijection σ, such that PCIS(σ) = (1, 1, 1, 0, 0, 0),
is the set of matrices of the form ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

c6 c5 c4 c3 1 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 c2 0 1 0
0 0 0 c1 0 0 1
0 0 0 c0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

2We note that the companion matrix considered in [53] is not exactly C1, but the companion matrix obtained
from C1 after performing a symmetry through the main anti-diagonal, and accordingly with the Sylvester space.
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where ck ∈ C, for k = 0, 1, . . . , 6, may take any value. The tangent space of Syl(σ) at a given
point, denoted by TSyl(σ), is the set of matrices that we get if we remove the entries identically
equal to 1 in the matrix above. In other words, the underlying vector space to the affine space.
For example, for the previous bijection σ, the tangent space of Syl(σ) is the set of matrices of the
form ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

c6 c5 c4 c3 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 c2 0 0 0
0 0 0 c1 0 0 0
0 0 0 c0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where ck ∈ C, for k = 0, 1, . . . , 6, may take any value. Observe that the tangent space of Syl(σ)
in any matrix M ∈ Syl(σ) is independent of M . This is the reason why we just write TSyl(σ)
without specifying the base point.

In order to extend the transversality identity (9.24) to the Sylvester space of any Fiedler matrix,
we first need the following result, which is in turn an extension of [53, Eq. (5), p. 768].

Lemma 9.23. Let Esyl be a matrix in TSyl(σ) with nonzero entries equal to Esyl
0 , Esyl

1 , . . . , Esyl
n−1,

where the entry Esyl
k , for k = 0, 1, . . . , n−1, is in the same position as the coefficient −ak in Mσ(p)

with p(z) = zn +
∑n−1

k=0 akz
k. Then, for k = 0, 1, . . . , n− 1,

tr(Esyl pn−k−1(Mσ)) = −Esyl
k . (9.25)

Proof. Let p̃(z) = zn +
∑n−1

k=0 ãkz
k be the characteristic polynomial of Mσ + Esyl. We know, by

Propositions 9.2 and 9.11, that ãk = ak − tr(Esyl pn−k−1(Mσ)) + O(‖Esyl‖2). But Mσ + Esyl is a

Fiedler matrix of the polynomial zn+
∑n−1

k=0 (ak +Esyl
k )zk, therefore we have ãk = ak +Esyl

k . From
these two formulas we get

tr(Esyl pn−k−1(Mσ)) +O(‖Esyl‖2) = −Esyl
k .

Since this last equation is true regardless of the value of Esyl
0 , Esyl

1 , . . . , Esyl
n−1, (9.25) follows.

Theorem 9.24. Let p(z) = zn +
∑n−1

k=0 akz
k be a monic polynomial, σ : {0, 1, . . . , n − 1} →

{1, . . . , n} be a bijection, and let Mσ be the Fiedler matrix of p(z) associated to the bijection σ.
Then Syl(σ) is transversal to O(Mσ) at Mσ, i.e., every matrix E ∈ Cn×n can be expressed as

E = Etan + Esyl, (9.26)

where Esyl ∈ TSyl(σ) and Etan ∈ TMσ
O(Mσ). Moreover, the decomposition in (9.26) is unique,

that is, TSyl(σ) ∩ TMσ
O(Mσ) = {0}.

Proof. Let Esyl be a matrix in TSyl(σ) with nonzero entries Esyl
k := −tr(E pn−k−1(Mσ)), for

k = 0, 1, . . . , n − 1, where the entry Esyl
k is in the same position as −ak in Mσ. We may write

the matrix E as Esyl + Etan, where Etan = E − Esyl. We have to check that Etan ∈ TMσ
O(Mσ).

Indeed, using Lemma 9.23,

tr(E pn−k−1(Mσ)) = tr(Esyl pn−k−1(Mσ)) + tr(Etan pn−k−1(Mσ))

= tr(E pn−k−1(Mσ)) + tr(Etan pn−k−1(Mσ)).

From this, we deduce that tr(Etan pn−k−1(Mσ)) = 0, for k = 0, 1, 2, . . . , n− 1. But, from Proposi-
tion 9.21, we have that {pk(Mσ)

∗}n−1
k=0 is a basis for NMσ

O(Mσ), therefore E
tan ∈ TMσ

O(Mσ).
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Theorem 9.24, together with (9.25) show us that the component Etan of the perturbation
matrix E does not contribute to the first order term of ak(Mσ +E), so that only the “transversal
complement” Esyl contributes to first order. In other words:

ak(Mσ + E) = ak − tr(pn−k−1(Mσ)E)) +O(‖E‖2) = ak − tr(pn−k−1(Mσ)E
syl) +O(‖E‖2)

= ak(Mσ + Esyl) +O(‖E‖2).

Also, from the considerations above, if Esyl
k denotes, as in Lemma 9.23, the entry of Esyl which is

located in the same position as the coefficient −ak in Mσ, then we have, up to first order in E,

Esyl
k = ak(Mσ + E)− ak = −

n∑
i,j=1

p
(σ,k)
ij (a0, a1, . . . , an−1)Eij , (9.27)

as in (9.3), with p
(σ,k)
ij (a0, a1, . . . , an−1) given by Theorem 9.3. Recall that the remaining entries

of Esyl are zero. Hence, from (9.26) and (9.27) we may get explicit expressions for the entries of
Etan = E − Esyl in terms of the entries of E and the coefficients a0, a1, . . . , an−1.

We want to emphasize that in the approach followed by [53], the fact that Esyl is transversal
to the tangent space of O(C1) at C1 is key to get the first order expression for ak(C1 + E). More
precisely: using this transversality (namely, equation (9.26) with Esyl being the Sylvester space

for C1), together with the identity tr(pn−k(C1)E
tan) = 0, and the explicit expression −Esyl

k−1 =
tr(pn−k(C1)E), both them valid for k = 1, . . . , n, they get an explicit expression for tr(pn−k(C1)E),
which is the first order term of ak−1(C1+E). This can be done because the matrices pn−k(C1), for
k = 1, . . . , n, have a simple structure that allows to compute tr(pn−k(C1)E

syl) easily and explicitly,
for all k = 1, . . . , n. Unfortunately, for arbitrary Fiedler matrices, to get explicit expressions of
tr(pn−k(Mσ)E) by hand is quite involved. Hence, we have obtained the first-order term of ak(Mσ+
E) directly from adj(zI −Mσ). This approach is completely independent of the transversality of
Esyl and the tangent space, though, as we have seen in Theorem 9.24, this fact is still true for
arbitrary Fiedler matrices.



Chapter 10

Conclusions, publications, and

open problems

In this chapter we summarize the main original contributions of this dissertation, we discuss some
related work, and list the papers published or submitted containing most of the results presented
in this thesis. In addition, we propose a set of related open problems for future research.

10.1 Conclusions and original contributions

Chapter 3: We have shown how to construct the inverses of Fiedler companion matrices and
we have studied some of their properties. We have also obtained explicit expressions of the
norms of Fiedler matrices and their inverses in the case of the 1-, ∞-, and Frobenius matrix
norms.

Chapter 4: We have performed a study of singular values of Fiedler companion matrices of a
monic polynomial p(z). We have seen that the singular values of Frobenius companion matri-
ces have very simple properties that are not shared by any other Fiedler matrix. Nonetheless,
the singular values of Fiedler matrices still retain some interesting properties that we have
carefully studied, that is, we have determined how many singular values of a Fiedler matrix
are equal to one, and, for those that are not, we have showed that they can be obtained from
the square roots of the eigenvalues of certain matrices that have a size much smaller than
the degree of p(z) and that are easily constructible from the coefficients of p(z). This study
is based on the developments that we have presented on a new class of matrices termed as
“staircase matrices”, which have a very special zero pattern.

Chapter 5: We have obtained two different explicit expressions for the adjugate matrix of
zI −Mσ, where Mσ is a Fiedler companion matrix. These expressions have been later used
in Chapters 8 and 9.

Chapter 6: Explicit expressions and a complete analysis of the bounds on the absolute values
of the roots of a monic scalar polynomial that are obtained by using the 1-,∞-, and Frobenius
norms of Fiedler companion matrices and their inverses have been presented in this chapter.
Particular attention has been paid to determine which are the sharpest bounds among those
coming from Fiedler matrices and their inverses, and we have found that in many interesting
situations the bounds coming from the inverse of the Fiedler matrix F defined in (2.8):

min

{
|a0|

1 + |a1|
,

1

1 + |a2|
, . . . ,

1

1 + |an−1|

}
≤ |λ| ≤ max

{
1 +

|a1|

|a0|
, 1 +

|a2|

|a0|
, . . . , 1 +

|an−2|

|a0|
, |a0|+ |an−1|

}
,

161
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where λ is a root of p(z) = zn +
∑n−1

k=0 akz
k, are the sharpest ones and that they improve

significatively, for certain polynomials, the classical bounds obtained from the Frobenius
companion matrices.

Chapter 7: We have performed a very detailed study of the condition numbers for inversion
of Fiedler companion matrices of monic polynomials p(z) in the Frobenius norm. This study
is based on the new properties for the inverses of Fiedler companion matrices obtained in
Chapter 3. We have established that, from the point of view of condition numbers for inver-
sion, the classical Frobenius companion matrices should not be used if |p(0)| < 1, since they
have the largest condition number among all the Fiedler matrices of p(z) and one should use,
instead, any Fiedler matrix having a number of initial consecutions or inversions equal to 1.
On the contrary, if |p(0)| > 1, then the Frobenius companion matrices are the ones to be used,
since they have the smallest condition number among all the Fiedler matrices of p(z). In the
border case |p(0)| = 1 all Fiedler matrices of p(z) have the same condition number. However
we have also established that, given a monic polynomial p(z), if there are two distinct Fiedler
matrices with very different condition numbers, then both matrices are very ill-conditioned.
Therefore, different Fiedler matrices may have very different condition numbers but only in
cases where these matrices are nearly singular. Loosely speaking, this means that there is no
any polynomial p(z) for which one Fiedler matrix has a small condition number while others
have very large condition numbers.

Chapter 8: We have carried out a detailed study of the eigenvalue condition numbers of
Fiedler companion matrices of a monic polynomial p(z). Ideally, in the polynomial root-
finding problem using Fiedler companion matrices, one would like the eigenvalues of the
Fiedler matrix to be as well conditioned as the roots of the original polynomial:

κ(λ,Mσ)

κ(λ, p)
= Θ(1),

where κ(λ,Mσ) and κ(λ, p) denote, respectively, the condition number of λ as an eigenvalue
of Mσ and the condition number of λ as a root of p(z). However, we have seen that

1√
2
≤ κ(λ,Mσ)

κ(λ, p)
≤ nρ(p)‖p‖2

if Mσ = C1, C2, and
1

n
≤ κ(λ,Mσ)

κ(λ, p)
≤ n5/2ρ(p)‖p‖22,

if Mσ 
= C1, C2, where

‖p‖2 =
√√√√1 +

n−1∑
k=0

|ak|2 and ρ(p) =

√
1 +

1

max0≤k≤n−1 |ak|2 .

These bounds have led us to conclude that, from the point of view of eigenvalue condition
numbers, any Fiedler matrix can be used for solving the root-finding problem for p(z) when
the absolute value of the coefficients of p(z) are moderate and not close to zero. On the
contrary, when max{|a0|, |a1|, . . . , |an−1|} is large or close to zero, the eigenvalues of any
Fiedler companion matrix may be potentially more ill conditioned than the roots of p(z).

We have also studied the ratio between the eigenvalue condition numbers of Fiedler matrices
other that the Frobenius ones and the eigenvalue condition number of Frobenius companion
matrices, that is, the ratio κ(λ,Mσ)/κ(λ,C), where C denotes the first or the second Frobenius
companion matrices. We have proved that

(n2‖p‖2)−1 ≤ κ(λ,Mσ)

κ(λ,C)
≤ n5/2‖p‖2,



10.1. CONCLUSIONS AND ORIGINAL CONTRIBUTIONS 163

which allows us to conclude that, from the point of view of eigenvalue condition numbers,
when max{|a0|, |a1|, . . . , |an−1|} is moderate, any Fiedler matrix can be used for solving the
root-finding problem for p(z) with the same reliability as Frobenius companion matrices.
On the other hand, when max{|a0|, |a1|, . . . , |an−1|} is large, we have shown that the ratio
κ(λ,Mσ)/κ(λ,C) may be arbitrarily large or arbitrarily small. In addition to this, we have
shown that if this ratio is very large, then λ is very ill conditioned as an eigenvalue of Mσ

and as an eigenvalue of the Frobenius companion matrices compared to κ(λ, p). On the
other hand, we have also shown that the opposite is not true. There exist polynomials
for which the ratio κ(λ,Mσ)/κ(λ,C) is arbitrarily small, but this only implies that λ is
very ill-conditioned as an eigenvalue of the Frobenius companion matrices compared with
κ(λ, p). From the point of view of eigenvalue condition numbers, this allows to conclude that
there are polynomials for which one should avoid computing their roots as the eigenvalues of
Frobenius companion matrices and to use, instead, another Fiedler matrix. Although how to
identify these polynomials and how to know which Fiedler matrix one might use instead of
the Frobenius ones is an interesting open problem in this area.

Regarding pseudospectra of Fiedler matrices, we have shown how to estimate accurately
them in a m×m grid using only O(nm2) flops compare with the O(n3 + n2m2) flops needed
for general matrices (see Section 1.2.2.2). Then, we have established various mathematical
relationships between the pseudozero sets of a monic polynomial p(z) and the pseudospectra
of the associated Fiedler matrices which have led us to reach the same conclusions that we
have stated in the two previous paragraphs.

Finally, we have also studied numerically the effect of balancing Fiedler companion matrices
on the eigenvalue condition numbers and pseudospectra. We have provided numerical exper-
iments that show that the eigenvalues of Fiedler matrices that have been previously balanced
and the root of monic polynomials are essentially equally conditioned, generically.

Chapter 9: We have analyzed the backward stability of the polynomial root-finding problem
when considered as a standard eigenvalue problem by means of Fiedler companion matrices.
For this purpose, we have described the first-order change of the characteristic polynomial
of any Fiedler matrix under small perturbations of the matrix. This description has led us
to conclude that polynomial root-finding algorithms based on backward stable eigenvalue
algorithms using Fiedler companion matrices, are backward stable from the point of view of
the polynomials only if ‖p‖∞ is moderate. More precisely, given a monic polynomial p(z),
if p̃(z) denotes the monic polynomial whose roots are the computed eigenvalues of a Fiedler
companion matrix of p(z), obtained with a backward stable eigenvalue algorithm, then it is
not possible to guarantee, in general, that

‖p̃− p‖∞
‖p‖∞ = O(u),

where u is the machine epsilon of the computer. Namely, the computed roots of p(z) are not
necessarily the roots of a nearby polynomial. We have seen, however, that

‖p̃− p‖∞
‖p‖∞ = O(u)‖p‖2∞,

for any Fiedler companion matrix other than the first and second Frobenius companion ma-
trices, and that

‖p̃− p‖∞
‖p‖∞ = O(u)‖p‖∞,

for the first and second Frobenius companion matrices (which are particular cases of Fiedler
matrices). These bounds allow us to conclude that, from the point of view of the backward
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errors, any Fiedler matrix can be used for solving the root-finding problem with the same
reliability as Frobenius companion matrices when the absolute value of the coefficients of p(z)
are moderate. In this case, as we said, the root-finding problem solved by applying a backward
stable eigenvalue algorithm on any Fiedler companion matrix is a backward stable method.
On the other hand, when p(z) has large coefficients any Fiedler matrix other than Frobenius
companion matrices may produce much larger backward errors than the ones produced when
using Frobenius matrices, but, in this situation, none of the Fiedler matrices (including the
Frobenius ones) leads to a backward stable algorithm for the rootfinding problem. Extensive
numerical experiments have been included to confirm these theoretical results.

We have also studied the effect of balancing Fiedler companion matrices on the backward
errors of the root-finding problem for p(z) using a balanced Fiedler matrixMσ. The numerical
experiments that we have carried out in Chapter 9 indicate that balancing very often improves
the backward errors for general polynomials. In fact, balancing Fiedler matrices is usually
enough to guarantee that the process of computing the roots of a polynomial as the eigenvalues
of a Fiedler matrix is backward stable in the polynomial sense, even if the polynomial has
large coefficients. However, we have also proved that there are infinitely many polynomials
for which balancing the Fiedler companion matrices does not guarantee backward stability
for the root-finding polynomial problem.

In summary, we have seen that Fiedler companion matrices present a very rich structure and
very interesting algebraic and numerical properties. Most of these properties are similar to those
of the Frobenius companion matrices. However, we have also shown that there are relevant differ-
ences between some properties of Frobenius companion matrices and those of the rest of Fiedler
companion matrices (in particular, properties regarding norms of their inverses, condition numbers
for inversion, eigenvalue condition numbers, and backward errors), although we have seen that to
study these properties of Fiedler companion matrices is much more complicated than to study
them in the case of the Frobenius companion matrices. In addition, the results in Chapter 7, 8
and 9 allow us to conclude that any Fiedler companion matrix can be used in numerical appli-
cations with the same reliability as Frobenius companion matrices in the same situations where
Frobenius companion matrices can be used in a reliable way. Therefore, in those cases, one can
take advantage of the particular structure of some Fiedler matrices to make their use more efficient
than the use of classical Frobenius companion matrices. For instance, one could take advantage
of the pentadiagonal structure of the Fiedler matrices in (2.7) to devise structured versions of the
LR algorithm to get its eigenvalues in O(n2) flops.

10.2 Publications

The original results contained in this dissertation have been published in several international
research Journals, all of them indexed in the Journal Citation Reports of ISI Web of Knowledge.

The results in Chapters 3, 4 and 7 are contained in:

F. De Terán, F. M. Dopico, and J. Pérez. Condition numbers for inversion of Fiedler companion
matrices. Linear Algebra and its Applications, 439, pp. 944–981, 2013.

The results in Chapters 3 and 6 are contained in:

F. De Terán, F. M. Dopico, and J. Pérez. New bounds for roots of polynomials based on
Fiedler companion matrices. Linear Algebra and its Applications, 451, pp. 197–230, 2014.
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The results in Chapters 5 and 9 are contained in:

F. De Terán, F. M. Dopico, and J. Pérez. Backward stability of polynomial root-finding using
Fiedler companion matrices. Accepted in IMA Journal of Numerical Analysis.

The results in Chapter 8 will be submitted to publication shortly.

10.3 Open problems

Finally, we discuss some related work as well as we propose a set of open problems for future
research related to the problems solved in this dissertation.

P1. Singular values of Fiedler companion matrices: At present, there are no explicit
expressions for the singular values of those Fiedler matrices that are different from the Frobenius
ones. We have determined how many of their singular values are exactly equal to one and, for those
that are not, we have showed that they can be obtained from the square roots of the eigenvalues
of certain matrices that have a size much smaller than n, although it is not known how to get the
explicit expressions of the singular values from those small matrices. These expressions could be
used to perform a study of the condition number for inversion of Fiedler matrices similar to the
one presented in this dissertation but using the spectral norm instead of the Frobenius norm. More
important, they could be used also to get new and maybe tighter upper and lower bounds for the
absolute values of the roots of monic polynomials. Therefore, to get explicit expressions for these
singular values or at least good simple approximations for them is an interesting open problem in
this area.

P2. New bounds for roots of scalar polynomials and new bounds for eigenvalues of

matrix polynomials: The work presented in Chapter 6 is just a first step in the use of Fiedler
matrices for bounding roots of polynomials. Next steps will include:

(a) the generalization of the results presented in Chapter 6 from scalar to matrix polynomials,
since Fiedler companion matrices have been extended, and thoroughly studied, to the context
of matrix polynomials [5, 45, 47];

(b) the investigation of concrete diagonal scalings of Fiedler matrices and/or their inverses that
can produce sharper bounds for some classes of scalar polynomials; and

(c) the use of Fiedler matrices for getting other types of inclusion regions for the roots of scalar
polynomials, as it was done in [119] for the classical Frobenius companion matrices.

P3. Backward stability for the root-finding problem of non-monic polynomials using

Fiedler companion pencils One way to circumvent the inaccuracies due to the occurrence
of large polynomial coefficients is to shift from companion matrices to companion pencils where
normalization can be applied (see [93]). Though exactly the same techniques used in [93] for
the Frobenius companion pencils can not be directly applied to other Fiedler companion pencils,
some further analysis in this direction is still to be done, and will be the subject of future work.
A possible approach may be to use similar techniques to the ones in [160], where the authors
prove that solving a matrix polynomial eigenvalue problem by applying the QZ algorithm to the
Frobenius companion pencil is backward stable from the point of view of the polynomials, provided
that the original matrix polynomial has been previously scaled so that all coefficients have norm
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less than or equal to 1, since these techniques has been used in [126] to prove the backward stability
of algorithms that compute the roots of polynomials via the eigenvalues of comrade pencils.

P4. Backward error of polynomial eigenproblems solved by Fiedler companion pencils:

Backward errors of single roots has been considered in [147] for the more general case of matrix
Polynomial Eigenvalue Problems. In particular, the backward error of a single computed eigenvalue
λ̃ of a matrix polynomial P (λ) considered in [147] is:

η(λ̃) = min
{
ε : (P +ΔP )(λ̃) = 0, ‖ΔAi‖2 ≤ ε‖Ai‖2, i = 0, 1, . . . , n

}
,

where P (λ) =
∑n

k=0 Akλ
k, and ΔP (λ) =

∑n
k=0(ΔAk)λ

k are not necessarily monic. It is shown
in [82] that, for matrix polynomials all whose coefficients have 2-norm not far from 1, computing
the eigenvalues of its Frobenius companion pencil with a backward stable eigenvalue algorithm
gives a coefficientwise backward stable method for the Polynomial Eigenvalue Problem, that is,
each computed eigenvalue is the exact eigenvalue of a nearby matrix polynomial, but this matrix
polynomial need not necessarily to be the same for each eigenvalue. The problem of proving that
solving matrix Polynomial Eigenvalue Problems by applying a backward stable eigenvalue algo-
rithm to the Frobenius companion pencil is backward stable in the sense that the whole ensemble
of computed eigenvalues is the whole ensemble of exact eigenvalues of a nearby matrix polynomial,
was solved in [160]. In that paper, the authors prove that if the norms of the matrix coefficients are
bounded by one, then the whole ensemble of computed eigenvalues is the whole ensemble of exact
eigenvalues of a nearby matrix polynomial in the normwise sense ‖ΔAi‖2 ≤ u‖[A0, A1, . . . , An]‖,
but not nearby in a coefficientwise sense ‖ΔAi‖≤u‖Ai‖2, where u is the unit roundoff. This prob-
lem is still open when Fiedler companion pencils other than the Frobenius ones are used instead
of the Frobenius companion pencils, and will be the subject of future work.

P5. Backward error of polynomial eigenproblems solved by generalized Fiedler pencils

and Fiedler pencils with repetitions: As we commented in Section 1.5, finding linearizations
that retain whatever structures that a matrix polynomial P (λ) might possess has motivated in
the last few years an intense activity on the development of new classes of linearizations. Based
on Fiedler pencils, two classes of linearizations that contain structure preserving linearizations
has been introduced: generalized Fiedler pencils [5, 6, 30], and Fiedler pencils with repetitions
[29, 31, 32, 33, 164]. To extend the backward error analysis to polynomial eigenproblems solved by
generalized Fiedler pencils and Fiedler pencils with repetition will be the subject of future work.
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