www.uc3mes

TESIS DOCTORAL

Study of Stochastic and Machine
Learning Techniques for
Anomaly-based Web Attack Detection

Autora:

Carmen Torrano Giménez

Director:

Dr. Gonzalo Alvarez Marafién

Tutor:

Dr. Javier Carboé Rubiera

ESCUELA POLITECNICA SUPERIOR - INGENIERIA INFORMATICA
INSTITUTO DE TECNOLOGIAS FiSICAS Y DE LA INFORMACION

Leganés, septiembre de 2015

Universidad

:) § Carlos 11l de Madrid C S l C

www.uc3m.es

TESIS DOCTORAL

Study of Stochastic and Machine Learning Techniques for
Anomaly-based Web Attack Detection

Autora: Carmen Torrano Giménez

Director: Dr. Gonzalo Alvarez Maraiién

Firma del Tribunal Calificador:

Firma

Presidente:

Vocal:

Secretario:

Calificacion:

Leganés, de de

Este trabajo ha sido realizado en el marco de las becas predoctorales
de la Junta de Amplicacién de Estudios (JAE) de la Agencia

Estatal Consejo Superior de Investigaciones Cientificas (CSIC).

A mis queridos padres y hermana

To my beloved parents and sister

“Es preciso entender la tesis como una
ocasion Unica para hacer algunos ejercicios

que nos serviran mientras vivamos.”
— Umberto Eco

“It is necessary to understand the PhD. thesis
as a unique occasion to do some exercises that

will be useful while we live.”
— Umberto Eco

Agradecimientos

Este periodo doctoral ha sido un camino de gran aprendizaje. Un camino con
sus picos, valles, aventuras, obstaculos... todos ellos merecen ser vividos. Y es
que una tesis no es s6lo un gran proyecto, sino una parte importante de nuestra
vida. En esta etapa he tenido el privilegio de compartir camino con grandes

personas, a las que me gustaria expresar todo mi agradecimiento.

Comenzaré por el director de esta tesis, Gonzalo. Gracias por haberme dado
la oportunidad de hacer este doctorado y por todo lo que he podido aprender
al tenerte como director. Javier, en su papel como tutor, ha sido un puente de
union excelente entre el CSIC y la universidad. Gracias por tu ayuda en las
las labores burocraticas y por haber sido un excelente anfitrion. También me
gustaria agradecer al programa JAE por la financiacién recibida para realizar

esta tesis doctoral.

Mis companeros del CSIC han tenido un papel fundamental para mi. No
puedo dejar de agradeceros por tantos momentos vividos y por haber crecido
juntos. Me siento afortunada de haber formado parte de un equipo que no sélo
destaca por su calidad profesional, sino por su calidad humana. Gracias a Luis,
cabeza del Instituto, por su ayuda y su gestiéon en el centro. A Nacho, por
arrancarnos siempre una carcajada. A Juanca, por su amabilidad y cuidado.
A Alfonso, por su autenticidad e interés. A Jesus, por tenerlo siempre todo a
punto y por su cordura. A David, por ilustrarnos con su vasto conocimiento y
las charlas de horas. A Arancha, por su eterna sonrisa. A Alejandro, companero
de batallas; eso une. A Mari Jose, por su companerismo y naturalidad. A
Veronica, por su amistad sin igual y por inspirarme cada dia. A Fausto, por
ensenarnos con su experiencia y sabiduria. A Amalia por su ayuda y dulzura.
A Amparo, por tener siempre palabras de aliento. A Mari Carmen, por su
interés y afecto. A Ignacio, por su experiencia y carino. A Jose, por mostrarnos
su lado més humano. A Oscar por la huella que deja su valia y por contar
siempre conmigo. A Alberto Carrasco, por los interesantes debates. A Alberto
Guerra, por ser un gran companero. Agradezco la espontaneidad de Natalia, la
alegria de Sara, la simpatia de Marta, la compafia de Ricardo, Noemi, Victor

Gayoso, Raul, Luis, Victor Fernandez, Gerardo, Jaime. Y también, a Agus,

maestro en lo laboral y en lo personal. Gracias por tu inestimable ayuda y por

tantas horas compartidas juntos.

Gracias a todo el resto de personal que de alguna manera ha colaborado en
que mi trabajo fuera posible: Mari Jose, Luci, Gema, Marisa y un largo etcétera.
Gracias también a los vigilantes por abrirme la puerta a horas intempestivas.
No puedo olvidarme de las personas de los otros departamentos que me han

ayudado a ponerle sal a la vida y a hacer mas calidos los pasillos.

El CSIC ha sido como un segundo hogar para mi, lleno de imborrables
recuerdos que me llevo en el corazoén. Y es que no solo he aprendido de ciencia

en los cafés, sino también de las relaciones humanas y sobre todo, de la vida.

También me gustaria agradecer a mis compaiieros de la universidad: José
Antonio, Raul, Juan por hacerme reir hasta que me doliera el estémago.
También a Paz, German, Tomés, Bea, Jorge Blasco, Jorge Munoz, Chema,
Jose Maria Sierra. Aprender a vuestro lado siempre es mas facil. Gracias a
Juan por haber aparecido en el momento preciso y por no escatimar en animos
ni ayuda. A Sergio y Agustin por haber sido unos excelentes compafieros de
trabajo, ademas de grandes personas. Agus, te llevo en el corazén. Gracias a
Hai, por haberme hecho sentir tan cémoda trabajando a su lado. Y a Slobodan

y Katrin por su colaboraracion desde la distancia.

Durante mi periodo doctoral he tenido la oportunidad de realizar varias
estancias en el extranjero, en las que he tenido el placer de trabajar y convivir
con gente maravillosa. En mi estancia en la Universidad de Nottingham tuve
el gusto de trabajar con Uwe Aickelin, Julie Greensmith, Jan, Gianni y Rafael

Lahoz, entre otros.

Gracias por cada minuto de mi aventura en la Universidad de Munich.
Involvidables momentos que comparti con Gehard, Lothard, Andreas, Dirk,
Pia, Ralph, Tobi, Ali, Marc Fouquet, Nils, Heiko, Holgar, Andreas Miiller,
Corinna, Carlas, Mayur, Vineeth. Gracias a Prof. Carle por acogerme siempre
tan bien y por su ayuda. Mis infinitas gracias a Marc (U), por lo especial de

haberte conocido.

En la visita a Eurecom tuve el placer de trabajar con personas de la altura
de Engin Kirda, Davide Balzarotti, Leila Bilge, Marco Balduzzi y Andrea Lanci.

Gracias por las horas compartidas y el enriquecimiento multicultural de Miriam,

xii

Sara, Lluis—"ciccio", Mateo, Tony. Extraordinaria experiencia a vuestro lado

alli donde el paisaje es inmejorable.

Me gustaria ademas recordar a mis hackers favoritos: Pablo, Red, Jhonattan,
Juanito, Juanan, Chema, Roméan, Alfonso, Dani, Raul y tantos otros, por
compartir sus conocimientos y acompafnarme a adentrarme en las profundidades

del mundo de la seguridad informatica.

También me gustaria dar las gracias a algunas personas que, fuera del
ambito laboral, tienen un papel fundamental en mi vida. Gracias a Paula
y Anaida por haber estado a mi lado desde hace tantos anos. A Emilio y a
Natalia por ensenarme tanto con su sabiduria y por estar cerca. A Miguel y Eva,
por ayudarme a entender mejor la vida. Gracias a Blanca, por su incansable
escucha. A Edu por su humanismo y a Iser por su capacidad de improvisacion.
Agradezco a Santi por su carifio y por ser un chico genial. Gracias a Alvaro
por su paciencia y apoyo, y por tanto compartido. A Adri, por ensenarme otra
vision del mundo y por los extraordinarios momentos vividos. Y a tantas otras

personas... Gracias a todos por formar parte de mi vida.

Y por supuesto, a mi familia, uno de los pilares bésicos de mi vida. Gracias
a mis padres, los mejores que podia tener, por todo lo que me dais y por vuestro
ejemplo. Gracias a mi madre, por su amor incondicional y por dar sin conocer
limite. Y a mi padre, por ilustrarme con su ejemplo y por su ayuda. Y qué
decir de mi hermana, a la que quiero con locura incluso desde antes de que
naciera. También al resto de mi familia por rebosar salero y sentido comun.

Gracias por apoyarme en todo momento, es un privilegio teneros cerca.

En definitiva, gracias a todos los que habéis colaborado, de una forma u
otra, en este proyecto. Porque en él, hay un pedacito de cada uno de vosotros.

Gracias por formar parte de él, y sobre todo, por formar parte de mi.

Con todo mi agradecimiento,

Carmen

xiil

Acknowledgements

This doctoral period has been a path of great learning for me. A path with
peaks, valleys, adventures, obstacles... that are all worth to be lived. Because a
Ph.D. thesis is not only a large project, but also an important part of our lives.
During this time I have had the privilege of sharing this path with extraordinary

people, to whom I would like to express all my gratitude.

I will start with my supervisor, Gonzalo. Thanks for giving me the
opportunity of doing this Ph.D. and for all I have learned from having you as
a supervisor. Javier, my tutor, has been an excellent bridge between CSIC
and University. I would also like to thank the JAE program for the funding
received to carry out this Ph.D. thesis.

My colleagues at CSIC have been very important for me. I would like to
express my gratitude for sharing so many wonderful moments. I feel lucky for
being part of a team that not only stands out for its professional quality, but
also for its human value. Thanks to Luis, head of the Institute, for his help and
management labour. To Nacho, for making us laugh so much. To Juanca, for
his kindness and care. To Alfonso, for his authenticity and attention. To Jesus,
for having everything ready and for his sanity. To David, for sharing with us
some of his huge knowledge and for our long conversations. To Arancha, for
her eternal smile. To Alejandro, battle-mate, that brought us close. To Mari
Jose, for being a great mate and being so natural. To Verénica, for her unique
friendship and for inspiring me every day. To Fausto, for teaching us with his
experience and wisdom. To Amalia, for her help and sweetness. To Amparo,
for always having words of encouragement. To Mari Carmen, for her interest
and affection. To Ignacio, for his experience and care. To Jose, for showing us
his most human side. To Oscar for his immense value and for counting on me.
To Alberto Carrasco for the interesting debates. To Alberto Guerra, for being
an excellent mate. I thank Natalia’s spontaneity, Sara’s happiness, Marta’s
friendliness, and the company of Ricardo, Noemi, Victor Gayoso, Rail, Luis,
Victor Fernandez, Gerardo, Jaime. Also to Agus, a teacher both in professional
and personal areas. Thank you for your inestimable help and for so many hours

shared together.

Thanks to the remaining staff members who somehow have collaborated
in making my work possible, like Mari Jose, Luci, Gema, Marisa and a long
etcetera. Thanks also to the guards for always opening the door. I cannot
forget people from other departments who helped me to make life nicer and

corridors warmer.

CSIC has been like a second home for me, full of unforgettable memories
that are within my heart. I have not only learned about science in coffee times,

but also about human relationships and mostly, about life.

I would also like to thank my university colleagues: José Antonio, Radl,
Juan for making me laugh until my stomach hurt. Also to Paz, German, Tomas,
Bea, Jorge Blasco, Jorge Munoz, Chema, Jose Maria Sierra. Learning with
you is easier. Thanks to Juan for appearing in the right moment and not
skimping on motivation or help. To Sergio and Agustin for being extraordinary
workmates, besides great people. Agus, you are in my heart. Thanks to Hai
for making me feel so comfortable working with him. And to Slobodan and

Katrin for their collaboration through distance.

During my doctoral period I have had the opportunity to do several research
stays abroad, where I had the pleasure of working and living with wonderful
people. In my stay in Nottingham I had the chance to work with Uwe Aickelin,

Julie Greensmith, Jan, Gianni and Rafael Lahoz, among others.

Thanks for every minute of my adventure in Technische Universitat Miinchen.
Unforgettable moments that I shared with Gehard, Lothard, Andreas, Dirk,
Pia, Ralph, Tobi, Ali, Marc Fouquet, Nils, Heiko, Holgar, Andreas Miiller,
Corinna, Carlas, Mayur, Vineeth. Thanks to Prof. Carle for hosting me always
so nicely and for his help. My infinite thanks to Marc (U), for the special fact
of getting to know you.

In my visit to Eurecom I was honored to work with awesome experts like
Engin Kirda, Davide Balzarotti, Leila Bilge, Marco Balduzzi and Andrea Lanci.
Thanks for the hours shared and the multicultural enrichment of Miriam, Sara,
Lluis—"ciccio", Mateo, Tony. It was an extraordinary experience with a superb

landscape.

I would also like to remember my favorite hackers: Pablo, Red, Jhonattan,

Juanito, Juanan, Chema, Roméan, Alfonso, Dani, Ratil and many more, for

xXvi

sharing their knowledge and for walking with me to the depths of the computer

security world.

I want to express my gratitude also to some people that, besides the
professional area, have an essential role in my life. Thanks to Paula and Anaida
for being with me since so many years ago. Thanks to Emilio and Natalia for
teaching me so much with their wisdom and for staying close to me. To Miguel
and Eva, for helping me understand life. Thanks to Blanca, for her constant
listening. To Edu for his humanity and to Iser for his improvisation ability.

I thank Santi for his care and for being a great boy. Thanks to Alvaro for his
patience and support, and for so much shared. To Adri, for showing me other
vision of the world and for the extraordinary moments shared. And to so many

others...Thanks to all of you for being part of my life.

And of course, to my family, one of the basic supports in my life. Thanks
to my parents, the best I could have, for all you give me and for your good
example. Thanks to my mother for her unconditional love and for giving
endlessly. Thanks to my father for being an example and for his help. And
what can I say about my sister, whom I have loved since even before she was
born. Also to the rest of my family, for their charm and common sense. Thanks

for always supporting me, it is a privilege to have you close.

In summary, thanks to all of you who have participated, in a way or another,
in this project. Because in it, there is a part of all of you. Thanks for being

part of it, and mainly, for being part of me.

With all my gratitude,

Carmen

Xvii

Abstract

Web applications are exposed to different threats and it is necessary to
protect them. Intrusion Detection Systems (IDSs) are a solution external to the
web application that do not require the modification of the application’s code
in order to protect it. These systems are located in the network, monitoring
events and searching for signs of anomalies or threats that can compromise the

security of the information systems.

IDSs have been applied to traffic analysis of different protocols, such as TCP,
FTP or HTTP. Web Application Firewalls (WAFs) are special cases of IDSs
that are specialized in analyzing HTTP traffic with the aim of safeguarding

web applications.

The increase in the amount of data traveling through the Internet and the
growing sophistication of the attacks, make necessary protection mechanisms
that are both effective and efficient.

This thesis proposes three anomaly-based WAFs with the characteristics of
being high-speed, reaching high detection results and having a simple design.
The anomaly-based approach defines the normal behavior of web application.
Actions that deviate from it are considered anomalous. The proposed WAFs
work at the application layer analyzing the payload of HT'TP requests. These
systems are designed with different detection algorithms in order to compare

their results and performance.

Two of the systems proposed are based on stochastic techniques: one of the

them is based on statistical techniques and the other one in Markov chains. The

XX Abstract

third WAF presented in this thesis is ML-based. Machine Learning (ML) deals
with constructing computer programs that automatically learn with experience
and can be very helpful in dealing with big amounts of data. Concretely,
this third WAF is based on decision trees given their proved effectiveness in
intrusion detection. In particular, four algorithms are employed: C4.5, CART,

Random Tree and Random Forest.

Typically, two phases are distinguished in IDSs: preprocessing and
processing. In the case of stochastic systems, preprocessing includes feature
extraction. The processing phase consists in training the system in order
to learn the normal behavior and later testing how well it classifies the
incoming requests as either normal or anomalous. The detection models of
the systems are implemented either with statistical techniques or with Markov

chains, depending on the system considered.

For the system based on decision trees, the preprocessing phase comprises
feature extraction as well as feature selection. These two phases are optimized.
On the one hand, new feature extraction methods are proposed. They combine
features extracted by means of expert knowledge and n-grams, and have the
capacity of improving the detection results of both techniques separately. For
feature selection, the Generic Feature Selection GeF'S measure has been used,
which has been proven to be very effective in reducing the number of redundant

and irrelevant features.

Additionally, for the three systems, a study for establishing the minimum
number of requests required to train them in order to achieve a certain detection
result has been performed. Reducing the number of training requests can greatly
help in the optimization of the resource consumption of WAFs as well as on

the data gathering process.

Besides designing and implementing the systems, evaluating them is an
essential step. For that purpose, a dataset is necessary. Unfortunately, finding
labeled and adequate datasets is not an easy task. In fact, the study of the
most popular datasets in the intrusion detection field reveals that most of
them do not satisfy the requirements for evaluating WAFs. In order to tackle
this situation, this thesis proposes the new CSIC' dataset, that satisfies the

necessary conditions to satisfactorily evaluate WAFs.

Abstract xxi

The proposed systems have been experimentally evaluated. For that, the
proposed CSIC dataset and the existing FCML/PKDD dataset have been
used. The three presented systems have been compared in terms of their
detection results, processing time and number of training requests used. For

this comparison, the CSIC' dataset has been used.

In summary, this thesis proposes three WAFs based on stochastic and ML
techniques. Additionally, the systems are compared, what allows to determine

which system is the most appropriate for each scenario.

Resumen

Las aplicaciones web estan expuestas a diferentes amenazas y es necesario
protegerlas. Los sistemas de deteccion de intrusiones (IDSs del inglés Intrusion
Detection Systems) son una solucién externa a la aplicacién web que no requiere
la modificacion del cédigo de la aplicacion para protegerla. Estos sistemas se
sitian en la red, monitorizando los eventos y buscando senales de anomalias o

amenazas que puedan comprometer la seguridad de los sistemas de informacion.

Los IDSs se han aplicado al andlisis de trafico de varios protocolos, tales
como TCP, FTP o HTTP. Los Cortafuegos de Aplicaciones Web (WAFs del
inglés Web Application Firewall) son un caso especial de los IDSs que estan
especializados en analizar trafico HI'TP con el objetivo de salvaguardar las

aplicaciones web.

El incremento en la cantidad de datos circulando por Internet y la creciente
sofisticacion de los ataques hace necesario contar con mecanismos de proteccién

que sean efectivos y eficientes.

Esta tesis propone tres WAFs basados en anomalias que tienen las
caracteristicas de ser de alta velocidad, alcanzar altos resultados de deteccién
y contar con un diseno sencillo. El enfoque basado en anomalias define el
comportamiento normal de la aplicaciéon, de modo que las acciones que se
desvian del mismo se consideran anémalas. Los WAFs diseniados trabajan en
la capa de aplicacion y analizan el contenido de las peticiones HT'TP. Estos
sistemas estan disenados con diferentes algoritmos de deteccion para comparar

sus resultados y rendimiento.

XX1V Resumen

Dos de los sistemas propuestos estan basados en técnicas estocasticas: una
de ellas esta basada en técnicas estadisticas y la otra en cadenas de Markov.
El tercer WAF presentado en esta tesis esta basado en aprendizaje automatico.
El aprendizaje automatico (ML del inglés Machine Learning) se ocupa de
como construir programas informéaticos que aprenden automaticamente con la
experiencia y puede ser muy util cuando se trabaja con grandes cantidades de
datos. En concreto, este tercer WAF esta basado en arboles de decisién, dada
su probada efectividad en la deteccién de intrusiones. En particular, se han

empleado cuatro algoritmos: C4.5, CART, Random Tree y Random Forest.

Tipicamente se distinguen dos fases en los IDSs: preprocesamiento y
procesamiento. En el caso de los sistemas estocasticos, en la fase de
preprocesamiento se realiza la extraccion de caracteristicas. El procesamiento
consiste en el entrenamiento del sistema para que aprenda el comportamiento
normal y méas tarde se comprueba cuan bien el sistema es capaz de clasificar
las peticiones entrantes como normales o anémalas. Los modelos de deteccion
de los sistemas estan implementados bien con técnicas estadisticas o bien con

cadenas de Markov, dependiendo del sistema considerado.

Para el sistema basado en arboles de decisiéon la fase de preprocesamiento
comprende tanto la extraccién de caracteristicas como la seleccion de
caracteristicas. Estas dos fases se han optimizado. Por un lado, se proponen
nuevos métodos de extraccién de caracteristicas. Estos combinan caracteristicas
extraidas por medio de conocimiento experto y n-gramas y tienen la capacidad
de mejorar los resultados de deteccion de ambas técnicas por separado. Para la
seleccién de caracteristicas, se ha utilizado la medida GeFS (del inglés Generic
Feature Selection), la cual ha probado ser muy efectiva en la reducciéon del

numero de caracteristicas redundantes e irrelevantes.

Ademas, para los tres sistemas, se ha realizado un estudio para establecer
el minimo niimero de peticiones necesarias para entrenarlos y obtener un cierto
resultado. Reducir el niimero de peticiones de entrenamiento puede ayudar en
gran medida a la optimizacion del consumo de recursos de los WAFs asi como

en el proceso de adquisicion de datos.

Ademés de disenar e implementar los sistemas, la tarea de evaluarlos
es esencial. Para este proposito es necesario un conjunto de datos.

Desafortunadamente, encontrar conjuntos de datos etiquetados y adecuados no

Resumen XXV

es una tarea facil. De hecho, el estudio de los conjuntos de datos mas utilizados
en el campo de la deteccion de intrusiones revela que la mayoria de ellos no
cumple los requisitos para evaluar WAFs. Para enfrentar esta situacion, esta
tesis presenta un nuevo conjunto de datos llamado CSIC, que satisface las

condiciones necesarias para evaluar WAFs satisfactoriamente.

Los sistemas propuestos se han evaluado experimentalmente. Para ello, se
ha utilizado el conjunto de datos propuesto (CSIC) y otro existente llamado
ECML/PKDD. Los tres sistemas presentados se han comparado con respecto a
sus resultados de detecciéon, tiempo de procesamiento y ntimero de peticiones

de entrenamiento utilizadas. Para esta comparacion se ha utilizado el conjunto

de datos CSIC.

En resumen, esta tesis propone tres WAFs basados en técnicas estocasticas
y de ML. Ademas, se han comparado estos sistemas entre si, lo que permite

determinar qué sistema es el mas adecuado para cada escenario.

Contents

1 Introduction

1.1
1.2
1.3
1.4
1.5

2.1

2.2

2.3

Backgroundo
Concepts about web security L.
Motivation Lo
Objectives

Structure of this thesis

Intrusion Detection: Concepts and Related Work

Initial concepts
2.1.1 Web applications
2.1.2 HTTP protocol
213 Webattacks oo
Intrusion detection systems
2.2.1 Intrusion detection system classification

2.2.1.1 Classification according to the response mode .

2.2.1.2 Classification according to the location

2.2.1.3 Classification according to the detection
methodology

2.2.2 Structure of intrusion detection systems
2.2.3 Web application firewalls
Preprocessingo

2.3.1 Feature extraction

11

13
14
14
14
16
18
19
20

XxXViil

Contents

23.1.1 N-grams.

2.3.2 Feature selection
2.3.2.1 Wrapper model

2.3.2.2 Filter model

2.4 Detection techniques
2.4.1 Stochastic techniques
2.4.1.1 Statistical-based techniques

24.1.2 Markov chains

2.4.2 Machine learningo

2.5 Importance of the number of training requests . . .

2.6 Conclusions

3 Data acquisition for web intrusion detection

3.1 Problems in data acquisition for intrusion detection

3.1.1 Requirements for adequate datasets
3.1.2 Evaluation of existing datasets
3.2 Solution: generating a new dataset
3.3 Characteristics of the CSIC dataset
3.4 Generation process
3.5 Applications of the CSIC dataset

3.6 Conclusions

4 Stochastic techniques for web intrusion detection

4.1 Introduction L.
4.2 Markov chains concepts
4.3 General architecture
4.4 Design

4.5 Detection models

....... 20

....... o1

....... 54

....... o6

....... 60

Contents xXxXix

4.5.2 Markovian detection models 70

4.6 Normal behavior description file 72
4.6.1 Particularities of the NBD file for the statistical system . 73
4.6.2 Particularities of the NBD file for the Markovian system 75

4.7 Detection process 76
4.7.1 Detection process in statistical models 79
4.7.2 Detection process in Markovian models 80

4.8 Experimental setupo 81
4.9 Evaluation measures 82
410 Results 84
4.11 Discussion 93
4.11.1 Discussion of statistical results 93
4.11.2 Discussion of Markovian results 95

4.12 Conclusions 96
5 Machine learning techniques for web intrusion detection 99
5.1 Introduction 100
5.2 General architecture oL 100
5.3 Designo 101
5.3.1 Feature extraction 103
5.3.2 Feature selection 105
5.3.3 Classification 108

5.4 Experimental setup 110
5.4.1 Datasetso 111
5.4.2 Preprocessing Settings 112
5.4.2.1 Expert knowledge 112

5.4.2.2 N-grams. 118

5.4.2.3 Combination, 122

5.4.2.4 Classification algorithms 128

XXX Contents
5.4.3 Settings for the study of the influence of training requests
in the detection results 129
55 Results. 130
5.5.1 Results of thesubsets. 130
5.5.1.1 Expert knowledge 130
5.5 1.2 N-grams. 132
5.5.1.3 Combination cases 134
5.5.2 Study of the influence of the training requests in the
detection results 138
5.6 Discussion 141
5.6.1 Comparison between basic cases 143
5.6.2 Combination alternatives vs. basic cases 144
5.6.3 Comparison between combination alternatives 149
5.6.4 Comparison between decision trees 150
5.6.5 Comparison between datasets 150
5.6.6 General comparison 151
5.6.7 Influence of the number of training requests 153
5.6.8 Comparison with stochastic systems. 157
5.6.8.1 Comparison of the characteristics of the systems 157
5.6.8.2 Comparison of the results 158
5.7 Conclusions 160
6 Conclusions, contributions and future work 163
6.1 Summary 163
6.2 Conclusions 165
6.3 Contributionso L 170
6.4 Future work 176

References 181

Contents xxxi

Glossary 221

Alphabetical index 225

List of figures

1.1

2.1
2.2
2.3

3.1

3.2

3.3

4.1
4.2
4.3
4.4
4.5
4.6

4.7

4.8
4.9

Number of Internet users in the world.

Example of an HT'TP request and its components.
Distribution of web attacks.

Criteria to classify IDSs. oL

Screenshot of the e-commerce application showing available

products.

Screenshot of the e-commerce application showing an example

of the shopping cart.

Aspect of the web application for the registration process.

Web Application Firewall Architecture.
Design structure of stochastic-based WAFs.
NBD file example for the statistical algorithm.
NBD file example for the Markov chain algorithm.
Detection process flow.

ROC curve of the statistical algorithm using as parameter the

number of training requests.

ROC curve of the Markovian algorithm using as parameter the

number of training requests.
ROC curve of the Markovian algorithm using parameter p. . . .

ROC curve of the Markovian algorithm using parameter e.

xxxiii

20

85

86
86
87

XXXIV List of figures
4.10 ROC curve of the Markovian algorithm using parameter 7. . . . 87
4.11 DR vs. number of training requests for the Markovian

algorithm, using parameter p. 88
4.12 FPR vs. number of training requests for the Markovian

algorithm, using parameter p. 88
4.13 DR vs. number of training requests for the Markovian

algorithm, using parametere. 89
4.14 FPR vs. number of training requests for the Markovian

algorithm, using parametere. 89
4.15 DR vs. number of training requests for the Markovian

algorithm, using parameter 7. 90
4.16 FPR vs. number of training requests for the Markovian

algorithm, using parameter 7. 90
4.17 Study of the influence of the number of requests on the detection

results of statistical algorithm. 91
4.18 Study of the influence of the number of requests on the detection

results of Markovian algorithm. 92
5.1 Design structure of ML-based WAF. 101
5.2 Structure of the three proposed combination alternatives. 104
5.3 Scheme for the selection of the appropriate instance of the GeFS

MEASUTE. .« « « o v v v e e e e e e e e e 108
5.4 Example of decision tree. 110
5.5 Examples of the expert knowledge data point distribution for the

ECML/PKDD dataset. 116
5.6 Examples of the expert knowledge data point distribution for the

CSIC dataset. 116
5.7 Number of features for the expert knowledge subset.

(a) For the ECML/PKDD dataset. (b) For the CSIC dataset. . 118
5.8 Examples of the n-gram data point distribution of the

ECML/PKDD dataset. 121

List of figures XXXV

2.9

5.10

5.11

5.12

5.13

0.14

0.15

5.16

5.17
5.18

5.19
5.20

5.21

5.22

0.23

Examples of the n-gram data point distribution of the CSIC'
dataset. 122

Number of features for the n-gram subset.

(a) For the ECML/PKDD dataset. (b) For the CSIC dataset. . 123

Examples of the combine-select data point distribution of the
ECML/PKDD dataset. 125

Examples of the combine-select data point distribution of the

CSIC dataset. 126

Number of features for the combine-select subset.

(a) For the ECML/PKDD dataset. (b) For the CSIC dataset. . 127

Number of features of the select-combine and
select-n-gram-combine subsets. (a) For the FCML/PKDD
dataset. (b) For the CSIC dataset. 127

Study of the influence of the number of requests on the detection
results of four decision trees. ECML/PKDD dataset. 140

Study of the influence of the number of requests on the detection
results of four decision trees. CSIC dataset. 140

DR and FPR for all the subsets of the FECML/PKDD dataset. . 152
Detail of DR and FPR for the subsets of the FCML/PKDD
dataset. 152
DR and FPR for all the subsets of the CSIC' dataset. 153
Detail of Fig. 5.19 regarding DR and FPR for the subsets for
the CSIC dataset., 153
Detail of Fig. 5.20 regarding DR and FPR for the subsets for
the CSIC dataset., 154
Study of the influence of the number of requests on the detection

results of the mean of four decision trees. ECML/PKDD dataset.155

Study of the influence of the number of requests on the detection

results of the mean of four decision trees. CSIC dataset. 156

List of tables

3.1

3.2

4.1
4.2
4.3

5.1

0.2

2.3

0.4
2.5

2.6

5.7

Analysis of existing datasets satisfying requirements for an

adequate dataset for evaluating WAFs. 53
Analysis of existing datasets and the CSIC dataset satisfying

requirements for an adequate dataset for evaluating WAFs. . . . 56
Contingency matrix for detection systems. 83

Detection results and processing time for the statistical algorithm. 92

Detection results and processing time for the Markov chains

algorithm. Lo 93

Names of 30 expert knowledge features that are considered
relevant for the detection of web attacks for the ECML/PKDD
dataset. 113

Names of 30 expert knowledge features that are considered
relevant for the detection of web attacks for the CSIC' dataset. . 115

96 characters appearing in the ECML/PKDD dataset at least

OICE. .« v v v v vt e e 119
114 characters appearing in the CSIC dataset at least once. . . 120
Description of the subsets corresponding to each combination
alternative for the ECML/PKDD dataset. 124
Description of the subsets corresponding to each combination
alternative for the CSIC dataset. 125
GeFS instance chosen for each subset of the ECML/PKDD and
CSIC datasets. 128

XXXViil

List of tables

5.8 Detection rate and false positive rate of four decision trees
performed on the ezpert knowledge subset of the ECML/PKDD

dataset.

5.9 Processing time and improvement for the expert knowledge subset
of the ECML/PKDD dataset.

5.10 Detection rate and false positive rate of four decision trees

performed on the expert knowledge subset of the CSIC dataset.

5.11 Processing time and improvement for the expert knowledge subset
of the CSIC dataset.,

5.12 Detection rate and false positive rate of four decision trees
performed on the n-gram subset of the FECML/PKDD dataset. .

5.13 Processing time and improvement for the n-gram subset of the
ECML/PKDD dataset.

5.14 Detection rate and false positive rate of four decision trees

performed on the n-gram subset of the CSIC dataset.

5.15 Processing time and improvement for the n-gram subset of the
CSIC dataset.

5.16 Detection rate and false positive rate of four decision trees
performed on the combine-select subset of the ECML/PKDD
dataset.

5.17 Processing time and improvement for the combine-select subset
of the ECML/PKDD dataset.

5.18 Detection rate and false positive rate of four decision trees

performed on the combine-select subset of the CSIC dataset. . .

5.19 Processing time and improvement for the combine-select subset
of the CSIC dataset.

5.20 Detection rate and false positive rate of four decision trees
performed on the select-combine subsets of the ECML/PKDD

dataset. L

5.21 Detection rate and false positive rate of four decision trees

performed on the select-combine subsets of the C'SIC dataset.

. 137

List of tables

XXXIX

0.22

5.23

5.24

5.25

5.26

5.27
2.28
5.29
5.30

5.31
2.32

5.33
5.34

2.35

2.36

5.37

2.38

Detection rate and false positive rate of four decision

trees performed on the select-n-gram-combine subsets of the

ECML/PKDD dataset.

Detection rate and false positive rate of four decision trees
performed on the select-n-gram-combine subsets of the CSIC
dataset.

Processing time for the three combination subsets of the
ECML/PKDD dataset.

Processing time for the three combination subsets of the CSIC
dataset. Lo

Detection results and processing time for the ECML/PKDD
dataset.

Detection results and processing time for the CSIC dataset.
Comparison between basic cases. ECML/PKDD dataset.
Comparison between basic cases. CSIC' dataset.

Comparison of combine-select with basic cases. ECML/PKDD
dataset.

Comparison of combine-select with basic cases. CSIC dataset.

Comparison of select-combine with basic cases. ECML/PKDD

dataset.
Comparison of select-combine with basic cases. CSIC dataset.

Comparison of select-n-gram-combine with basic cases.

ECML/PKDD dataset.

Comparison of select-n-gram-combine with basic cases. CSIC

dataset.o

Detection results, number of features and processing time for
the three combination alternatives. ECML/PKDD dataset. . . .

Detection results, number of features and processing time for

the three combination alternatives. CSIC dataset.

Number of training requests, processing time and results achieved
by each detection algorithm. CSIC dataset.

146

. 147

147

148

149

Chapter 1

Introduction

“Security, like correctness, is not an additional

feature."
— Andrew S. Tanenbaum

This chapter shows the importance of web applications nowadays
and points out the security risks that they are exposed to. Web
Application Firewalls (WAFs) are able to protect web applications
without the need of modifying their code. WAFs analyze web traffic
and look for anomalies that could threaten the web server. On the
one hand, modern WAFs deal with an increasing amount of data
and on the other hand, attacks are becoming more complex. This
leads to the necessity of both effective and efficient WAFs. This
thesis presents three anomaly-based WAFs that satisfy these two
conditions. The proposed systems apply stochastic and machine
learning algorithms, in particular statistical techniques, Markov
chains and decision trees. Additionally, adequate datasets are
essential for evaluating WAFs. However, existing datasets present
various disadvantages. In order to fill this gap, this thesis presents

a new dataset for adequately evaluating WAFs. In this chapter,

2 1. Introduction

the motivation, objectives and structure of this dissertation are

presented.

1.1 Background

The Internet has changed the way people interact with technology. It is
considered one of the inventions that has changed the world the most in the last
40 years [Burkeman, 2009], [Wharton, 2009]. Web technologies have modified
our daily life and transformed our customs in a large variety of sectors, such as

economy, education, telecommunications, entertainment, healthcare and so on.

During their evolution, web applications have increased in complexity.
Applications belonging to Web 1.0 were basically document repositories, where
pages were static and the user was limited to view their content [Stuttard and
Pinto, 2007]. The evolution to the next and current generation (2.0), introduced
interactive and collaborative web applications [Shelly and Frydenberg, 2011].
Examples of Web 2.0 applications are social networks, blogs, wikis and search
engines. Differently to first web applications, web servers of the second
generation usually connect to supporting back-end systems such as databases,
mainframes and financial or logistical systems [Stuttard and Pinto, 2007].
Evolution of web applications continues: researchers are currently working on
Web 3.0. This next generation is characterized by the semantic web. This
technology consists in making machines understand and interpret the content
and semantics of web applications [Rollett et al., 2007]. As can be seen, the
evolution of web applications make them grow in complexity, introducing new

functionalities and mixing a vast amount of technologies.

Web applications are an open window to the world that provides to millions
of users the access to huge amounts of information and services in a wide range

of different areas:

Economy. Web applications have changed the economy sector in different
aspects. For example, nowadays users can interact online with their
banks, performing actions such as checking the balance of their bank

accounts, making money transfers or contracting deposits.

1.1. Background 3

Another economy sector revolutionized by web applications is commerce.
On the one hand, thousands of online shopping applications have
been created regarding business to consumer. On the other hand,
many interesting web applications help companies in their commerce

transactions in the field of business to business.

Within organizations, web applications help in managing company
resources and give access to human resource services [Stuttard and Pinto,

2007]. Furthermore, they play a critical role in advertisement.

Education and Science. E-learning consists in leaning through internet.
This paradigm has transformed education and science. Nowadays many
web applications offer access to online courses. Furthermore, wikis have
changed the generation of contents, by allowing the participation of users
in their creation in a collaborative manner. Regarding science, specialized

websites and online journals offer scientific contents.

Entertainment. Web applications have helped in the evolution of the
entertainment field with the introduction of blogs, multimedia streaming
and news feeds. In the gaming world, distant users can play together
connected through the network. Additionally, the industry of porn moves
big amounts of traffic and money every day. It is estimated that the yearly
revenue of this business ranges between 1 and 97 billion USD [Wondracek
et al., 2010].

Communications. Videoconferences are an example of how web applications
have impacted communications. Other example is webmail, that brings
people into contact. It makes possible to handle emails in a remote
server as if the traditional mail clients were installed. Furthermore, social
interactions are conceived differently since social networks appeared.
These kind of webs are used in diverse environments, ranging from labor

to personal relationships.

Other areas. Web search engines are an example of other uses of web
applications. These engines are massively used nowadays to retrieve
online information. Other example are applications dedicated to file

downloading and sharing, that have impacted sectors such as cinema

4 1. Introduction

or music. The Internet of Things is the network of physical objects
embedded with hardware and software that provides connectivity with
the manufacturer, operator or other connected devices [Atzori et al.,
2010]. Web applications are widely used as configuration interfaces for

network-capable embedded devices [Bojinov et al., 2009].

According to the International Telecommunication Union (ITU) [ITU, 2015]
and Internet Live Stats [Real Time Statistics Project, 2014], the number of
Internet users constitutes more than 40% of the world population. Figure 1.1

shows the growth in the number of internet world users over the last years.

Internet Users in the World

3.000.000.000 B internet Users

2.250.000.000
1.500.000.000
750.000.000

0
1993 1995 1997 1999 2001 2003 2005 2007 2009 201 2013
1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014

Figure 1.1 — Number of Internet users in the world over the last years.
Internet Live Stats 2014.

This incessant growth in the number of internet users implies an increase
in the amount of data available in the Internet. The research fields big
data [Cardenas et al., 2013], [Camacho et al., 2014], [Curry et al., 2013]
and data science [Jifa and Lingling, 2014] study how to deal, analyze, store
and extract knowledge from the high amount of data transferred over the
Internet today. According to the Cloud Security Alliance [Céardenas et al.,
2013], human beings create 2.5 10'® bytes of data per day. Besides operating
with big volumes of data, web applications move large amounts of money every
day. Moreover, new computing and communication paradigms such as cloud
computing, wireless networks and smartphone platforms allow web applications

be accessed from many different places and devices.

1.1. Background D

These characteristics of web applications make them attractive targets for
attackers. The fact of having millions of users, being accessed from different
platforms, moving large amounts of money and handling private information
make them tempting for cybercriminals. Attacker’s motivations are classified
by Barber into curiosity, vandalism, hacktivism, industrial espionage, extortion

and fraud, information warfare and ethical hacking [Barber, 2001].

Web applications present vulnerabilities very often. As long as web
applications turn more complex and include diverse technologies, they become
more fragile [Stuttard and Pinto, 2007]. Moreover, the immature awareness
of developers about the importance of security might produce source code
with security vulnerabilities that can be exploited by an attacker. According
to a recent Symantec Report [Wood, 2014], the number of total breaches
experimented an increase of 62% from 2012 to 2013 and the number of new
vulnerabilities for web-based attacks increased by 28%. The number of web
attacks is increasingly growing. Furthermore, attacks are rapidly evolving
and their sophistication increasing. For example, botnets are recent threats
that aim to manage and control illegitimately a network of computers. They
differentiate from traditional malware in their capability to combine several ideas
implemented separately by traditional malware [Brezo et al., 2013]. Advanced
Persistent Threats (APTs) are a breed of threats that use multiple attack
techniques to avoid being detected and maintain the control over a target
system for long periods of time [Tankard, 2011]. They are complex attacks that
usually consist of several stages. APTs are performed by highly-skilled and
motivated attackers targeting sensitive information from specific organizations

that might even employ social engineering methods [Céardenas et al., 2013].

The consequences of web attacks can be drastic. They can imply huge losses
of money or reputation. Thus, it is necessary to saveguard web applications and
their users. To that aim, reliable and effective security protection mechanisms
are necessary. Furthermore, given the amount of data these systems have to
deal with, they should be efficient in the request processing and consume low

resources.

6 1. Introduction

1.2 Concepts about web security

Despite the effort on security awareness of several institutions such as
MITRE [MITRE, 2014a], SANS Institute [SANS Institute, 2015] or Open
Web Application Security Project (OWASP) [OWASP, 2013], web application
developers are not completely aware of web vulnerabilities, or they are not
implementing correctly the corresponding countermeasures [Scholte et al., 2011].
Given the increasing need of protecting web applications, the security research
community has developed several tools and techniques to improve the security

of web applications.

Some of these techniques try to guarantee a secure coding of web applications.
This is the case of static [Jovanovic et al., 2006], [Wassermann and Su, 2008]
and dynamic [Schwartz et al., 2010], [Newsome and Song, 2005], [Nguyen-Tuong
et al., 2005] code analysis. These solutions require a thorough examination
of the application source code, either with (dynamic) or without (static) the
compilation of the application. Considering that some web applications contain

thousands of lines, this can be a tedious task.

Additionally, other solutions have been developed, like Intrusion Detection
Systems (IDSs). These systems monitor the events of a computer or network
in order to detect malicious actions and behaviors that can compromise their
security. One of the advantages of IDSs is that they can safeguard web

applications without modifying the code even if it is wrongly programmed.

This technology has been extensively used for protecting computer systems.
They have been applied to analyze traffic corresponding to different network
protocols, such as File Transfer Protocol (FTP), Transmission Control Protocol
(TCP) or Hypertext Transfer Protocol (HTTP).

In these systems two stages are usually distinguished: preprocessing and
processing. Preprocessing includes those tasks carried out before the formal
processing of data, such as dataset creation, feature extraction and feature
selection [Kotsiantis et al., 2006]. Processing makes reference to the detection
itself.

Traditionally, IDSs have been classified as either signature detection systems

or anomaly detection systems [Garcia-Teodoro et al., 2009]. On the one hand,

1.3. Motivation 7

signature detection looks for signatures (patterns) of known attacks. For
that, it uses pattern matching techniques against a database with attack
signatures. This approach is unable to detect new attacks and databases must
be frequently updated. Additionally, signature matching usually requires a high
computational effort. This detection method is also called negative approach
since it defines what is not allowed. On the other hand, anomaly detection
overcomes these problems. However, it is prone to more false positives. It
looks for anomalous system activity by defining the normal behavior of the web
application. Then, actions deviating more than a threshold from the defined
normal behavior are tagged as intrusive. The base idea is “denying everything
unless explicitly allowed”. A disadvantage is that in complex environments,
obtaining an accurate and updated description of the normal behavior might
not be an easy task. Anomaly detection is also referred to as positive approach

since it defines the allowed application behavior.

Anomaly IDSs are usually trained first and tested later [Garcia-Teodoro
et al., 2009]. During the training the system learns several models that describe
the normal behavior of the web application. After the training phase, the
system is operative. During the test phase the system classifies incoming traffic.
Later, the performance of the system can be evaluated. It is done by contrasting
the classification information of the system, obtained in the test phase, with

the corresponding label in the traffic.

Web Application Firewalls (WAFs) are considered a particular case of IDSs.
They are specialized in working with web traffic. IDSs and WAFs are explained

in more detail in Chapter 2.

1.3 Motivation

The global motivation of this thesis is improving the security of web applications.
It means reducing the gap between attacks and defense. This would help millions
of people to enjoy a safe Internet experience. In order to do that, this thesis

basically focuses on five aspects:

o Designing several WAFs.

o Creating a new dataset for evaluating WAFs.

8 1. Introduction

e Analyzing how the number of training requests influences the detection

results.
o Searching for new feature extraction methods.

o Comparing different WAFs.

These aspects are further explained in the following sections.

The motivation of these five points is presented next:

» Regarding the design of WAFs, stochastic and Machine Learning (ML)
techniques are applied in order to improve both the effectiveness
and efficiency of this type of systems. Effectiveness measures how
well a system detects. Effective systems are those that detect attacks at
the same time that they do not raise false alarms. Whereas, efficiency
considers how to perform the detection in an optimal way. It considers
the amount of resources that the system needs to reach such detection
results. Additionally, it is desired that WAFs are designed following the

simplicity principle.

o Detection results of WAFs are directly influenced by the dataset selected.
Choosing an adequate dataset to evaluate these systems is critical.
However, acquiring labeled and quality datasets is an open problem in
web intrusion detection [Sommer and Paxson, 2010]. Many of the existing
datasets, such as LBNL, DARPA and UNB ISCX count with a number
of drawbacks. In some cases, these drawbacks can even turn the datasets
unusable. To be considered appropriate, a dataset should fulfill a number
of requirements, like containing both HTTP normal traffic and modern
attacks. Additionally, they should be labeled, publicly available and
not anonymized. Given the importance of adequately evaluating
IDSs and considering the drawbacks of most existing datasets, creating

adequate datasets for evaluating WAFs is a main motivation of this thesis.

o When evaluating IDSs, generally the whole dataset is used, regardless of
its number of requests. Besides affecting the training phase duration, the
number of training requests influences the detection results of the WAFs

(i.e., it determines the number of attacks detected and the number of

1.4. Objectives 9

false alarms). Studying the influence of the number of training requests
in the detection results can reveal useful information for reducing the
number of training requests needed to achieve certain results.
Although this is an important issue for the optimization of the WAF

resources, it has been scarcely studied.

o Features extracted from requests affect the detection results of WAFs.
Depending on how well these features can distinguish between normal
traffic and attacks, the detection results of the system vary. Thus,
studying feature extraction methods is relevant for optimizing WAFs.
The motivation in this point is to improve the results of current

extraction techniques, without using a big amount of features.

e For the comparison of different WAFs, a labeled and adequate
dataset is necessary. However, existing WAFs are frequently evaluated
independently, i.e., without the same conditions or the same data. This
impedes the comparison of different WAFs. Filling this gap is the

motivation of this thesis.

1.4 Objectives

The main goal of this thesis is optimizing the security capabilities of WAFs based
on stochastic and ML detection techniques, as well as creating an adequate

dataset that allows the evaluation and comparison of these systems.

Concretely, the objectives of this work are the following:

e Design and implement anomaly-based WAFs that use stochastic
and machine learning detection algorithms. The challenge is
that they work at high-speed, reach high detection results,

consume low resources and count with a simple design.

In particular, stochastic algorithms refer to statistical techniques and
Markov chains. Regarding ML, the algorithms applied are decision trees
(DT).

The systems should analyze HT'TP traffic and detect attacks that involve

a single request, being able to detect multiple types of web attacks.

10

1. Introduction

Regarding the detection results, the goal is that the systems achieve a
high detection rate (DR) while their false positive rate (FPR) is low.
Detection rate measures the number of attacks that are detected and

false positive rate measures false alarms.

The resource consumption, measured by the number of features, should

be low.

These objectives should be reached by using a simple design, that does
not increment the processing time of the system (time consumed to
process a single request). This simplicity criteria makes reference to
Ockham’s razor. This principle states that among competing hypotheses
that predict equally well, the one with the fewest assumptions should be
selected. Therefore, the simplest, the best (provided that it is equally

effective).

Study how the number of requests used in the training phase

influences the detection results of the system.

The objective is to study which is the minimum number of requests
necessary to train the system in order to achieve a certain detection result
of the system. Also to know if using higher number of training requests

implies obtaining better results.

Propose new feature extraction methods for machine learning
that improve the detection results of existing strategies and

consume low resources.

The resource consumption is measured in terms of the number of features

used.

Build an adequate dataset to train and test WAFs.

In order to be considered adequate and overcome the disadvantages of the
existing datasets, the objective is to build a labeled and public dataset.
Additionally, it should contain modern attacks and its requests should

not be anonymized.

Working with a common dataset allows researchers to compare their

systems. This aspect is related to the next objective.

1.5. Structure of this thesis 11

o« Compare the behavior of the proposed detection techniques
(statistical methods, Markov chains and decision trees) to
determine which of them is the most appropriate for a given

scenario.

For this aim, the same dataset is used to evaluate the different detection
techniques. Their behavior is compared in regard to their detection

results, processing time and number of training requests needed.

1.5 Structure of this thesis
The remaining of this dissertation is structured as follows:

e Intrusion Detection: Concepts and Related Work.

Chapter 2 firstly introduces concepts about intrusion detection and
explains different criteria used to classify IDSs. Next, it describes related
detection systems in the literature, including a review of different methods
used for the preprocessing phases of the IDSs (feature extraction and
feature selection) and for the processing step. This chapter also highlights

the importance of studying the number of training requests.

o Data Acquisition for Web Intrusion Detection.

Chapter 3 discusses problems on existing datasets for evaluating WAFs
and proposes a solution: creating the new CSIC dataset. Details about

its generation process and application are explained.

e Stochastic detection techniques for web intrusion detection.

Chapter 4 presents two WAFs based on stochastic detection
techniques. The chapter covers the theoretical design and the empirical
experimentation of these WAFs. One of the systems is based on statistical
techniques and the other one on Markov chains. Details about different
aspects related to the design of the systems are supplied, including how
the system acquires knowledge, which detection models are used and how
the detection process is designed. Later, the chapter covers aspects related

to the empirical stage. The experimental settings and the measures used

12

1. Introduction

to evaluate the systems are presented. At last, experimental results,
as well as a study about the influence of the training requests in the

detection results, are shown.

Machine learning techniques for web intrusion detection.

Chapter 5 presents a detection system within the machine learning
approach. The decision trees used in this work are explained and it
is argued why they are chosen. Several new feature extraction methods
are proposed. They combine both expert knowledge and n-grams and they
are able to improve the performance of these two approaches separately.
Furthermore, feature selection is applied in order to reduce the number of
irrelevant and redundant features. The Generic Feature Selection (GeFS)
measure chosen for feature selection is explained, as well as the criteria
used to select its instances. The setup and development of the experiments
are shown, as well as the results obtained. A detailed discussion of the
results is given. Moreover, a comparison of the stochastic and ML systems

is presented.

Conclusions, contributions and future work.

The conclusions extracted from the elaboration of this dissertation are
explained in Chapter 6. Additionally, the contributions are analyzed and
the resulting publications are summarized. Finally, future research lines

are presented.

Chapter 2

Intrusion Detection: Concepts
and Related Work

“What characterizes a science man is not
owning knowledge or irrefutable truth,
but the altruistic and incessant search

of the truth.”
— Karl Popper

This chapter introduces concepts related to intrusion detection.
Intrusion detection systems are in charge of monitoring the traffic
in order to detect malicious actions. Web application firewalls
are a particular case of IDSs that analyze HTTP traffic. The
different components of these systems are explained, as well as
diverse criteria used to classify them. Two phases are usually
distinguished in IDSs: preprocessing and processing. Preprocessing
comprises feature extraction and feature selection. This chapter
explains what these phases consist in and reviews related papers
in the literature. Regarding the processing step, existing IDSs and
WAFs that apply statistical techniques, Markov chains and decision
trees are analyzed. Additionally, the importance of studying the

14 2. Intrusion Detection: Concepts and Related Work

number of training requests is discussed. Finally, the conclusions
section shows some questions that are still open in the state of the

art and that find answer in the following chapters.

2.1 Initial concepts

In this section several concepts related to intrusion detection and web security

are introduced.

2.1.1 Web applications

A web application typically consists of a finite number of web pages. The
number of pages is usually small and most of them are dynamic. Dynamic
pages are those that retrieve their content from a database on demand [Grove,

2010].

Web applications can be considered a particular case of the client-server
architecture, where the application is hosted on a web server and a client
requests pages. The communication between both is done through the HTTP

protocol.

The structure of web applications is generally organized in three tiers:
presentation, application and storage [Grove, 2010]. The presentation tier is
responsible for the user interface, that usually consists of a web browser. The
second tier hosts the web server, which handles all application processes.
Typically, the web server is an engine using some dynamic web content
technology, such as ASP, ASP.NET, CGI, JSP/Java, PHP, Perl, Python,
Ruby on Rails or Struts2. The storage tier is in charge of handling data the

application requires or provides, generally represented by a database.

2.1.2 HTTP protocol

Hypertext Transfer Protocol is an application layer protocol for distributed,
collaborative, hypermedia information systems [Fielding et al., 1999]. The
protocol enables the communication between the client and the web server. It

governs the way documents are exchanged and establishes the format of the

2.1. Initial concepts 15

requests and responses. Although there are other drafts, the current stable
version of this protocol is HTTP/1.1, released in 1999. HTTP is a client-server
protocol. It works as follows: the client requests documents or services to the
server and this one sends back a response to the client. In this protocol, each
transaction is independent of the preceding and following ones. That is, it is a
stateless protocol. It means that it does not record information about user’s
sessions. The protocol offers additional methods to store this information, like
the usage of cookies. They are small pieces of data sent by a website that are

stored in a user’s web browser [Grove, 2010].

HTTP requests are composed of: HT'TP method, resource, version of the
HTTP protocol, headers and arguments. An example of an HTTP request and

its components is shown in Fig. 2.1.

METHOD RESOURCE VERSION

Py
[PoST] [htip/ocalhost:8080/tiendalpublico/anadir jsp | [HTTP/1 1]

User-Agent: Mozilla/5.0 (compatible; Konqueror/3.5; Linux)

Pragma: no-cache

Cache-contral: no-cache

Accept: text/plain;q=0.8,image/png,*/*;g=0.5
Accept-Encoding: x-gzip, x-deflate, gzip, deflate
Accept-Charset: utf-8, utf-8;q=0.5, ",q=0.5
Accept-Language: en HEADERS
Host: localhost:8080

Cookie: JSESSIONID=933185092E0B668B90676E0A2BO76TAF

Content-Type: application/x-www-form-urlencoded

Connection: close

o L2ngi])

NAME VALUE

id=3&nombre=Vino+Rioja& @ = @ &cantidad=55&B1=Anadir+al+carrito
NAME VALUE

N

ARGUMENTS

Figure 2.1 — Example of an HTTP request and its components.

16 2. Intrusion Detection: Concepts and Related Work

2.1.3 Web attacks

According to OWASP, attacks are techniques that attackers use to exploit
vulnerabilities in applications [OWASP, 2013]. They pursue malicious intentions,
such as getting illegal access, manipulating or disabling systems. In its
report from 2009, the SANS Institute estimated that attacks against web
applications constitute more than 60% of the total attack attempts observed on
the Internet [Higgins, 2009]. Moreover, recent studies reveal that the number

of web attacks is increasingly growing [Wood, 2014].

There are multiple types of web attacks, such as Structured Query Language
(SQL) injection, content spoofing, cross-site scripting (XSS), buffer overflow,
cross-site request forgery, denial of service, Operating System (OS) commanding,

path traversal or Lightweight Directory Access Protocol (LDAP) injection.

Web attacks can imply drastic consequences, such as gaining access to
databases with sensible user data, modification of web pages, non-availability
of service, execution of the attacker’s code, privilege escalation or access to

unauthorized files.

One of the common causes of attacks is a poor validation of the user-supplied
input. Such is the case of the well known SQL injection and XSS attacks. These
attacks are two of the most frequent web attacks [Acunetix, 2014]. According
to the Web Hacking Incident Database [Barnett et al., 2013], in 2011 SQL
injection constituted 18.87% of attacks and XSS 12.58%. Acunetix [Acunetix,
2014] claims that the distribution of web attacks is the one represented in
Fig. 2.2. Other attacks, like HTTP Parameter Pollution (HPP) [Carettoni
and di Paola, 2009] have not received so much attention so far. Nevertheless,
this attack constitutes a real threat for web applications, as is shown in
our work [Balduzzi et al., 2011]. It presents the first automated tool for
the discovery of HPP vulnerabilities. Our prototype PAPAS (PArameter
Pollution Analysis System) was applied to more than 5000 popular websites.
The experimental results show that about 30% of the analyzed websites
contain vulnerable parameters and that 46.8% of the discovered vulnerabilities
(i.e., 14% of the total websites) can be exploited via HPP attacks.

Web attacks can be classified as either static or dynamic [Alvarez and

Petrovié¢, 2003a], [Alvarez and Petrovi¢, 2003b].

2.1. Initial concepts 17

Credential /Session Prediction, 2.9%
Brute Force, 4.03% - _—~—Misconfiguration, 2.26%
\ - ___——Stolen Credentials, 2.26%

— ~Process Automation, 2.1%
— ——Known Vulnerability, 2.1%
. Cross Site Request Forgery (CSRF), 1.77%
L Content Spoofing, 1.61%
L —Administration Error, 1.45%
= Abuse of Functionality, 1.45%
.~ 05 Commanding, 1.29%

. DNS Hijacking, 1.29%
..~ Banking Trojan, 1.29%
% = Redirection, 1.13%

““Insufficient Authentication, 1.13%

Unintentional Information Disclosure, 4.35% -

Predictable Resource Location, 4.35% -,

Denial of Service, 8.06%

Cross Site Scripting (XS5), 12.58% ~

"~ Unknown, 18.87%

SOL Injection, 18.87% -

Figure 2.2 — Distribution of web attacks, according to Acunetix, 2014.

Static web attacks look for security vulnerabilities in a web application
platform: web server, application server, database server, firewall, operating
system and third-party components (such as cryptographic modules or payment
gateways). These security threats comprise well-known vulnerabilities and
erroneous configurations. A common characteristic of all these vulnerabilities
is that they request pages, file extensions, or elements that do not form part
of the web application as intended for the end user. Differently, dynamic web
attacks only request legal pages of the application but they harm the expected
parameters. Manipulation of input arguments can lead to different attacks
of variable impact, such as errors in the application that disclose information
about the platform, XSS attacks that steal information about other users or

command execution by means of buffer overflows.

Several efforts have been made in creating a more detailed classification of
web attacks. These efforts come, on the one hand, from organizations and on
the other hand, from the scientific community. Some of the classifications from
organizations are OWASP Top 10 [OWASP, 2013], Web Application Security
Consortium (WASC) Threat Classification [WASC, 2010], Common Weakness
Enumeration [MITRE, 2014b] and Common Attack Pattern Enumeration and
Classification [MITRE, 2012]. Examples of scientific research are [Alvarez and
Petrovi¢, 2003a], [Lai et al., 2008], [Seo et al., 2004]. Although work is being

18 2. Intrusion Detection: Concepts and Related Work

done into this direction, there is not a clear consensus about a taxonomy for

web attacks.

Web attacks can be performed by different actors, that can be divided into
two types:

e Outsiders. They are external attackers, who do not belong to the

organization.

o Insiders. They are inside the organization, therefore they can have easier
access to certain systems. Ben Salem et al. distinguish between two
types of insiders: traitors and masquerades [Salem et al., 2008]. These
authors define a traitor as “a legitimate user within an organization
who has been granted access to systems and information resources, but
whose actions are counter to policy, and whose goal is to negatively
affect confidentially, integrity, or availability of some information asset.”
Masqueraders are attackers who succeed in stealing a legitimate user’s

identity and impersonate another user for malicious purposes.

A zero-day attack is a computer attack exploiting a vulnerability that has
not been disclosed publicly [Bilge and Dumitras, 2012]. It is difficult to defend
against zero-day attacks because of their nature: as long as the vulnerability
is not known, the affected software cannot be patched and signature-based
defense products cannot detect the attack. Unpatched vulnerabilities can be
very dangerous if exploited by attackers. It is estimated that the market value
of a new vulnerability ranges between $5000 - $250 000 [Bilge and Dumitras,
2012].

Acquiring a deep knowledge and understanding of web attacks is critical

for developing adequate strategies and systems that protect against them.

2.2 Intrusion detection systems

The diversity of threats and the vulnerabilities of web applications make evident
the necessity of protecting them. Web Application Security Statistics reported
in 2008 an amount of 97554 detected vulnerabilities of different risk levels in

their study of 12186 analyzed sites [WASC, 2008]. About 49% of the analyzed

2.2. Intrusion detection systems 19

web applications contained vulnerabilities of high risk level (urgent and critical).
In order to fulfill this need of protection, a range of solutions have been adopted.
Some of these methods are focused on secure code development. This is the
case of static and dynamic analysis techniques. The analysis of the code might
not be an easy task when it is complex or it contains thousands of lines. Other
solutions are external to the web application and do not require the modification
of the application’s code in order to protect it. As mentioned, this is the case
of IDSs, that protect an application independently of whether it is correctly

programmed or not.

In their guide to intrusion detection and prevention systems [Scarfone and
Mell, 2007], the National Institute of Standards and Technology (NIST) defines
intrusion detection as “the process of monitoring the events occurring in a
computer system or network and analyzing them for signs of possible incidents,
which are violations or imminent threats of violation of computer security
policies, acceptable use policies, or standard security practices”. Although
many incidents are malicious in nature, many others are not, like user mistakes
while typing. Therefore distinguishing benign from anomalous actions is the
challenge of intrusion detection. In the same guide the problem of intrusion
prevention is described as “the process of performing intrusion detection and
attempting to stop detected possible incidents”. NIST defines an IDS as

“software that automates the intrusion detection process”.

Solving the intrusion detection and prevention problem has some difficulties
associated. Sommer and Paxson argue why anomaly intrusion detection is
more difficult to solve than other problems in computer science. Some of the
reasons the authors give are the high cost of errors and the variability in the
input data [Sommer and Paxson, 2010]. In this thesis, various techniques for

detecting intrusions will be presented.

2.2.1 Intrusion detection system classification

IDSs can be classified attending to different criteria, like the response mode,
the location and the detection methodologies. These classification criteria can

be seen in Fig. 2.3. In the following, they are further explained.

20 2. Intrusion Detection: Concepts and Related Work

- IDS
Response mode 1
IPS
DS) HIDS
o Location)
claSS{tlcgtlon NIDS
criteria .
Signature
Detection methodology (<
4 Anomaly

.

Figure 2.3 — Criteria to classify IDSs.

2.2.1.1 Classification according to the response mode

Depending on the action carried out by the detection system when an anomaly

is detected, different types of systems can be distinguished:

o Intrusion Detection System: When an alert is detected, IDSs raise

an alarm to acknowledge the event. They work in a passive mode.

o Intrusion Prevention System (IPS): They are active. NIST defines
them as “software that has all the capabilities of an IDS and can also
attempt to stop possible incidents” [Scarfone and Mell, 2007]. Hence,
besides raising an alarm, they can block the anomaly or perform actions
to neutralize the attack, in order to protect the server from being
reached by malicious activity. An example of IPS in the literature is
Masibty [Criscione and Zanero, 2009]. It detects XSS and SQL injection
attacks. Another example is TokDoc [Krueger et al., 2010], that replaces

the detected malicious content by near normal values.

There are systems that offer the possibility to work on both modes, letting

the Information Technology (IT) professional configure the mode to be used.

2.2. Intrusion detection systems 21

2.2.1.2 Classification according to the location

Regarding the location of the system (or the source of the audit data), two

categories of systems can be differentiated:

« Host-based systems (HIDSs) monitor the characteristics of a single
host and the events occurring within it looking for suspicious activity.
They can monitor different aspects, such as system logs, running processes,
application activity, file access and modification, and configuration
changes on the system or applications [Scarfone and Mell, 2007]. The
analysis of system calls is usually performed for detection in such systems.
This is the case of the seminal paper [Forrest et al., 1996]. Other examples
are given in [Naiman, 2004] and [Lanzi et al., 2010].

« Network-based systems (NIDSs) monitor network traffic for particular
network segments or devices in order to identify suspicious activity. They
are most commonly deployed at a boundary between networks, such as in
proximity to border firewalls or routers, Virtual Private Network (VPN)
servers or remote access servers [Scarfone and Mell, 2007]. Examples of
these systems can be found in [Kruegel et al., 2005b] and [Ariu et al.,
2011].

When protecting an information system, usually a mixture of both NIDSs
and HIDSs is necessary for a complete protection. Since HIDSs protect a
specific host, they are commonly deployed on critical hosts, such as publicly

accessible servers or servers containing sensitive information.

2.2.1.3 Classification according to the detection methodology

Several methodologies have been used to detect incidents. They are divided
into three groups: signature-based, anomaly-based and hybrid. Although these

concepts were introduced in Sec. 1.2, here they are described in more detail.

o Signature-based detection. It is also called misuse detection or
negative approach. This approach looks for signatures (patterns) of

known threats, that aim to exploit weaknesses in system and application

22

2. Intrusion Detection: Concepts and Related Work

software. It uses pattern matching techniques against a database of
attack signatures. It is useful to detect already known attacks or their
slight variations. However signature-based detection is not able to defend
against new attacks, threats disguised by the use of evasion techniques or
malicious variants of known threats that defeat the pattern recognition
engine. Considering that new attacks appear constantly, this is not
a desirable situation. The report by the European Union Agency for
Network and Information Security (ENISA) claims that the volume of
web-based attacks per day increased by 93% from 2009 to 2010, with 40
million attacks a day recorded in September 2010 [Ryck et al., 2011].

Additionally, attack pattern matching systems require large signature
databases to be constantly updated. Moreover, the comparison of
incoming traffic against every signature in the database requires a high

computational effort and increases the time necessary to process requests.

Snort is a well-known signature-based IDS [Roesch, 1999]. It is free
and open source, and it can act either as an IDS or an IPS. There is a
big number of available signatures for Snort, described in a particular
language that allows inspecting packets at different levels. The Malware
Information Sharing Platform [MISP, 2015] is a software that helps to

generate IDS rules.

Bro [Paxson, 2015] is another known open source IDS. It parses network
traffic to extract its application level semantics. The network activity is
compared with attack patterns or unusual activities. A specialized policy

language is used to tailor its operation [Varadarajan, 2012].

In the academic field efforts have also been done in the direction of
signature-based IDSs. For example, Anitha and Vaidehi used signatures
for detecting application layer attacks. The signatures are formulated
using regular expressions or finite state automata [Anitha and Vaidehi,
2006]. To deal with the constantly increasing number of rules that has to
be compared to input event streams, the authors proposed a semantic
classification tree that restructures the signature rules in order to reduce
the redundant checks. Goyal et al. applied a genetic algorithm that
uses a set of classification rules generated from a predefined intrusion

behavior [Goyal and Aggarwal, 2012]. A genetic algorithm is a search

2.2. Intrusion detection systems 23

heuristic that mimics the process of natural selection [Mitchell, 1998].
Meng et al. proposed hash-based contextual signatures in order to
reduce the processing burden of signature matching and filter non-critical
alarms [Meng and Kwok, 2014].

« Anomaly-based detection. This approach is also known as positive
approach. Anomaly-based detection looks for behavior or use of computer
resources deviating from “normal” or “common” behavior. The underlying
principle of this approach is that attack behavior differs enough from
normal user behavior to be detected by cataloging and identifying the
differences involved. These systems have profiles that represent the normal
behavior of applications, users, network connections, hosts and so on.
Anomaly-based systems permit discerning normal traffic from suspicious
activity without signature matching. The main idea of this approach
is “denying everything unless explicitly allowed”. The difficulty of such
systems is obtaining an up-to-date, precise and feasible picture of the
normal behavior. It is specially hard to draw when working in complex
environments. In order to perform an accurate detection, it is important
that the profiles do not include any malicious activity. Otherwise that

activity would not be flagged as malicious in the detection phase.

The major advantage of this method is its effectiveness in detecting
previously unknown threats and their variations. As negative aspects,
these systems are prone to more false positives and their profiles
might need updating when the applications, users or network change.
Additionally, determining why a particular alert was generated and

validating that it is not a false positive might be a difficult task.

Anomaly-based systems usually comprise a training phase where the
normal behavior is learnt, and a test phase where the knowledge acquired

is used to tag the requests.

A known anomaly system was presented by Kruegel et al. in 2005.
It uses a number of models that capture the normal behavior of web
traffic [Kruegel et al., 2005b]. Other examples of anomaly-based systems
are explained in [El-Alfy and Al-Obeidat, 2014] and [Lin et al., 2012].

24 2. Intrusion Detection: Concepts and Related Work

e Hybrid systems. They combine the two approaches mentioned before.
The paper by Tombini et al. studies different possibilities of combining
anomaly and misuse detection. The authors conclude that depending
on the input dataset and on the designer objective, each combination
presents certain advantages [Tombini et al., 2004]. After measuring some
characteristics on web servers the authors propose an architecture where
an anomaly detector acts in first place and it feeds a misuse detector with

potentially intrusive events.

Depren et al. proposed an IDS architecture utilizing both anomaly
and misuse detection approaches. This hybrid architecture consists
of an anomaly detection module, a misuse detection module and a
decision support system combining the results of these two detection
modules [Depren et al., 2005].

Bringas et al. presented ESIDE-Depian [Bringas et al., 2008]. As
misuse detection module the system uses Snort and as anomaly detection

component, a Bayesian network algorithm is applied.

The paper by Sandip et al. also presents a hybrid IPS [Sandip et al., 2012].
The signature module employs conditional random fields to detect known
intrusions in real time. Conditional random fields are a framework for
building probabilistic models to segment and label sequence data [Lafferty
et al., 2001]. The anomaly detection module uses the outlier detection

provided by the conditional random field to detect unknown intrusions.

The advantage of hybrid systems is that they can detect more attacks
than signature-based or anomaly-based systems individually, while raising
less false positives. However they require more time and resources to

process the requests.

2.2.2 Structure of intrusion detection systems

According to the Common Intrusion Detection Framework
(CIDF) [Schnackenberg and Tung, 1999], IDSs are composed by four
components: event generators, event analyzers, response units and event

databases [Porras et al., 1999]. They are explained next:

2.2. Intrusion detection systems 25

o Event generators obtain events from a computational environment and
turn the occurrences of the environment into objects with a format that
can be used by the subsequent component of the system. For example,

the decoding process would be included in this phase.

« Event analyzers take the objects from the previous component
and analyze them. Here two subcomponents can be distinguished:
preprocessor and detection engine. The first one performs all actions
before the classification of the incoming requests, such as parsing the
requests, feature extraction and feature selection. The detection engine
analyzes the requests searching for intrusions. These two stages will be

further analyzed later in this chapter.
« Event databases store events for later retrieval.

e Response units consume objects to carry out some kind of action. The
action depends on the type of system. IDSs raise an alarm when intrusions
are found, while IPSs block the requests to avoid them reaching the target

Server.

2.2.3 Web application firewalls

IDSs are general systems that can analyze traffic corresponding to different
protocols, such as HT'TP, FTP, TCP, etc. Each of these protocols has different
characteristics. When analyzing HTTP traffic, conventional firewalls operating
at network and transport layers are not enough to protect against web-specific
attacks. To be effective, systems analyzing traffic at the application layer are

necessary.

Web application firewalls are particular IDSs specialized on analyzing HT'TP

traffic in order to detect web attacks.

According to WASC, a WAF is “an intermediary device, sitting between
a web client and a web server, analyzing Open System Interconnection (OSI)
Layer-7 messages for violations in the programmed security policy. A web
application firewall is used as a security device protecting the web server from
attack” [WASC, 2004]. Furthermore, WASC states that “WAFs solutions are

capable of preventing attacks that network firewalls and intrusion detection

26 2. Intrusion Detection: Concepts and Related Work

systems cannot, and they do not require modification of the application source

code” [WASC, 2006].
It is important that WAFs are designed to be both effective and efficient.

Being effective means detecting attacks while not raising false alarms. Besides
detecting correctly, being efficient implies low computational complexity and
resource consumption. This is the reason why efficiency is critical in WAFs

operating in real-time environments or in scenarios with resource constraints.

2.3 Preprocessing

Data preprocessing is extensively recognized as an important stage in
anomaly detection [Davis and Clark, 2011]. Preprocessing comprises all
tasks carried out before the formal processing of data, like dataset creation,
data cleaning, normalization, transformation, feature extraction and feature
selection [Kotsiantis et al., 2006]. From them, this thesis focuses on dataset
creation, feature extraction and feature selection. Dataset creation is covered
in Chapter 3 while feature extraction and feature selection are explained in

this section as well as in Sec. 5.3.1 and Sec. 5.3.2.

Preprocessing requires a high amount of effort in terms of both resources
and time, then it is important to pay attention to this previous step. According
to Kurgan and Musilek, it is usually assumed that about half of the effort
required for a project is spent on data preparation [Kurgan and Musilek, 2006].
The preprocessing step does not only affect the efficiency of the data storage

but also the performance of the detection system [Davis and Clark, 2011].

Many intrusion detection systems are designed by applying feature
extraction, feature selection and a classification algorithm. These two

preprocessing steps are explained next.

2.3.1 Feature extraction

Feature extraction consists in determining representative features from the
original data. Its aim is to obtain the appropriate features that represent
regularities of the original dataset. This phase is crucial for the success of the

classification algorithms [Lim et al., 2007].

2.3. Preprocessing 27

Features can be either extracted by looking at patterns in the data, or by
looking at the relationships between patterns. For the last option, data mining
methods, such as association rule learning and frequent episode for sequence
analysis, are used for feature extraction [Davis and Clark, 2011]. Association
rule learning is a method for discovering relations between variables in large
databases [Piatetsky-Shapiro, 1991]. An association rule is an expression
X = Y, where X and Y are sets of items. This expression means that
transactions of a database that contains X, tend to contain Y [Agrawal and
Srikant, 1994]. An episode is a collection of events describing actions of users or
systems that occur relatively close to each other in a given partial order. The
technique consists in discovering frequently occurring episodes in a sequence
in order to produce rules for describing or predicting the behavior of the

sequence [Mannila et al., 1997].

Feature extraction can be done either manually, automatically or combining
both of them:

o Many professionals rely on their expert knowledge to define a set
of features that can distinguish between normal traffic and attacks.
This approach often leads to high and reliable attack detection rates.
However, it is a manual process and not quickly adaptive to changing
network environments. It has been applied in intrusion detection in works
like [Kruegel et al., 2005b], [Sriraghavan, 2008] or [Criscione and Zanero,
2009].

e« Automatic methods overcome the drawback of being manual.
Nevertheless frequently their results are less precise than those obtained
by means of expert knowledge methods. One of the methods generally
used in intrusion detection for feature extraction are n-grams. They are

explained in Sec. 2.3.1.1.

e A third alternative is combining the two previously mentioned
methods. However, this option has not been much explored in intrusion
detection. One of the few papers found about that is [Rieck, 2009]. In
this work Rieck extracted both manual and automatic features. However,
the experiments were performed for every isolated group of features and

their results did not consider the combination of features from different

28 2. Intrusion Detection: Concepts and Related Work

nature [Rieck, 2009]. Kloft et al. proposed a feature selection method.
They made experiments with a uniform mixture of n-grams and expert
knowledge features [Kloft et al., 2008].

2.3.1.1 N-grams

Models based on n-grams originate from the field of information retrieval and
natural language processing. They are “language-independent” models that
consist in fixed length overlapping symbol segments [Kowalski, 2010]. N-grams
are not a classification technique themselves. They are usually applied for
feature extraction or they are used in combination with other techniques for
the classification phase. One of the advantages of this model is that it does not
need domain knowledge, thus it is easy to automate. In the case of intrusion
detection, if a payload is considered a string, then a n-gram is a substring of
n characters. Let S be a space of all possible n-grams (n > 1). When working
with byte sequences, S has the size of 25" (considering 8-bits representation for
each character): S = {n-grams;|i = 1...2%"}. According to that, the number

of 1-grams is 256, and this amount grows exponentially when n increases.

N-grams have been largely applied in intrusion detection, ranging from
HIDSs to NIDSs, and from 1-grams to higher order n-grams. Generally, the
method to extract features from n-grams is counting the number of appearances
of each n-gram in a string. In the case of web traffic, the string is the HTTP
request. In the following, a review of the literature in the application of n-grams

to intrusion detection is presented.

Regarding HIDSs, Forrest et. al applied n-grams to system calls [Forrest
et al., 1996]. This work is based on Artificial Immune Systems (AISs).
AISs are algorithms and systems that use the human immune system as
inspiration [Greensmith et al., 2010]. Several concepts from the immune field
have been extracted and applied to solve real world science and engineering
problems. Forrest et al. defined the sense of self and non-self for privileged
Unix processes. In this context, self refers to normal processes and non-self
to attacks. The concept of self was defined by using normal patterns of short
sequences of system calls. In order to detect the non-self data on system call, a

set of detectors were produced.

2.3. Preprocessing 29

AccessMiner [Lanzi et al., 2010], presented in 2010, was designed for malware
protection. Instead of building models on individual applications, it defines
the normal behavior as sequences of system calls of a broad set of benign
applications. To define the normal behavior, n-grams were applied to model

short sequences of system calls.

PHAD (Packet Header Anomaly Detector) detects attacks using anomaly
models based on n-gram statistics [Mahoney and Chan, 2001].

In relation to 1-grams, Wang et al. presented in 2004 their famous
payload-based anomaly detector PAYL [Wang and Stolfo, 2004]. This system
models payloads by using their byte value distribution. Following the anomaly
approach, a model of the statistical distribution of 1-grams in normal requests
is stored. When incoming requests are received for detection, their 1-gram
distribution is analyzed. Each n-gram not present in the normal model
increments the anomaly score of the packet. If the final anomaly score exceeds

a predefined threshold, then the packet is tagged as anomalous.

The anomaly detector Anagram [Wang et al., 2006] increases the security
of PAYL by modeling a mixture of high-order n-grams (n > 1). This mixture
is designed to detect anomalous and suspicious network packet payloads. The
system uses Bloom filters. They are essentially bit arrays of m bits, where any
individual bit 7 is set if the hash of an input value, mod m, is i. Anagram uses
a Bloom filter to store n-grams of normal packets and another one for known
attacks. In the test phase, the n-grams of the test packet are compared to both
normal and attack filters. Payloads that contain too many n-grams not present
in the normal Bloom filter, or present in the attack Bloom filter, are classified

as anomalous.

Higher order m-grams have been also employed by Bolzoni and Etalle,
who applied n-grams of different length for the algorithms used by their
anomaly-based NIDS [Bolzoni et al., 2009].

Variations of n-gram extraction have also been applied. Rieck and Laskov
introduced the concept of variable length n-grams (words). They presented a
detection system based on language models [Rieck and Laskov, 2007], [Rieck
and Laskov, 2006]. Their method proceeds by extracting language features, such
as n-grams and words from connection payloads, before applying unsupervised

anomaly detection. In order to differentiate between attacks and normal data,

30 2. Intrusion Detection: Concepts and Related Work

their proposal computes similarity measures between language models. These

measures can be used to generate attack signatures.

Another variation was presented by Perdisci et al. Their technique, called
2v-gram, consists of measuring features by using a sliding window. In 2v-gram,
this window has the peculiarity of covering two bytes which are v positions
apart from each other in the payload. Their system McPAD is designed to
mainly detect shell-code attacks in various forms [Perdisci et al., 2009]. It also
acts successfully with advanced polymorphic blending attacks. Nevertheless, it
does not perform well when the attacker tries to spread the attack over several

attack packets.

Since this dissertation is focused on detecting attacks over the HTTP
protocol, special emphasis is done in the review of systems specialized in

detecting intrusions over web traffic.

N-grams on web traffic. Regarding the particular case of web traffic, there

is a variety of works applying n-grams to the inspection of the payloads.

Naiman analyzes statistically contiguous sequences of n system calls. These
system calls proceed from processes generated by an HTTP daemon [Naiman,
2004]. The motivation is that occurrences of enough new n-grams in some
localized time frame constitute evidence of innovative behavior, which is

considered anomalous.

TokDoc is a prototype of a reverse proxy. Its particularity is that besides
acting as an IDS, it can work as an IPS, healing the malicious requests [Krueger

et al., 2010]. It has several detectors, being one of them based on 2-grams.

A variant of n-grams was employed in Spectrogram [Song et al., 2009].
Spectrogram is a machine learning based statistical anomaly detection sensor. It
defends against web-layer code-injection attacks, such as Hypertext Preprocessor
(PHP) file inclusion, SQL-injection, XSS and memory-layer exploits. It has
an inference model that tracks the n-gram level transitions within a string.
The gram size is an adjustable parameter of the system. Denoting x; as the
i" character within a string, the likelihood of a n-gram is calculated as the

likelihood of x,,, that is conditioned by the n — 1 preceding characters. This

2.3. Preprocessing 31

strategy takes advantage of the overlapping nature of n-grams within an input
string.

Some systems also employ a sliding window of width n instead of using
n-grams. For instance, this is the case of HMMPayl [Ariu et al., 2011], that
extracts features by using sliding windows over the sequence of bytes that
represent the payloads. Their system later analyzes the features extracted by
applying Hidden Markov Models. Markov chains are explained in Sec. 2.4.1.2
and Sec. 4.2.

2.3.2 Feature selection

A feature selection method finds the minimum set of features that maximizes
the performance of a classification algorithm. This methodology follows the
principle of parsimony (or Ockham’s razor). This principle advocates for using
models and procedures that contain all that is necessary for modeling but
nothing more [Hawkins, 2004]. By reducing the number of features without
negatively affecting the detection results, feature selection increases the available

processing time and reduces the required system resources.

Feature selection is specially helpful when the number of features is high.
This is the case of n-grams, where the number of possible n-grams increases
exponentially with the value of n. This increase usually leads to the so called
curse of dimensionality and to the computational complexity problem. The
curse of dimensionality was coined by Bellman in 1961 to refer the fact that
many algorithms that can cope with low dimensions, do not work well on high
dimensionality. In machine learning, generalization can become exponentially
harder as the dimensionality grows [Domingos, 2012]. Dimensionality is
measured by the number of features. It should be considered that when
the number of dimensions is elevated, generally more traffic is required for the

training step.

Feature selection counts with a number of benefits [Nguyen, 2012}, such as:

o General data reduction: limiting storage requirements.

o Performance improvement: increasing the algorithm speed.

32 2. Intrusion Detection: Concepts and Related Work

o Data understanding: gaining knowledge about the process that generated
the data.

Feature selection has been applied to intrusion detection. Li et al.
experimentally tested that their system achieves better detection results and
lower computational costs when feature selection is applied than when it is

not [Li et al., 2009].

In machine learning, feature selection methods are typically classified into
three categories: wrapper, filter and embedded models [Guyon et al., 2006], [Liu
and Motoda, 2007]. They differ in the way they interact with the classifier.

o The wrapper approach aims to improve the results of the specific
classifiers they work with. This approach employs the performance of
learning algorithms to assess the quality of the features and select them
accordingly. Using the learning algorithm implies a high consumption of
time and computational resources. Examples of the wrapper approach

are given in Sec. 2.3.2.1.

o The filter model directly considers statistical characteristics of a dataset
without involving learning algorithms. Due to its computational efficiency,
the filter method is used to select features from high-dimensional datasets.
This is generally the case of datasets used in intrusion detection. A major
challenge in the IDS feature selection process is to choose appropriate
measures that can precisely determine the relevance and the relation
between features of a given dataset. The relevance and the relation
of features are usually characterized in terms of correlation or mutual

information. Systems applying this approach are shown in Sec. 2.3.2.2.

o The embedded model of feature selection does not separate learning
from feature selection. The embedded model integrates the selection of
features in the model building [Nguyen, 2012]. An example of such model
is the decision tree induction algorithm, which selects a feature for each
intermediate node (those that are not leafs). No further section is shown

for this type of systems.

2.3. Preprocessing 33

2.3.2.1 Wrapper model

Within the wrapper approach, a big variety of algorithms has been applied in
the intrusion detection context. Some of them are reviewed next. One of the
examples was presented by Kloft et al., who generalized the vanilla Support
Vector Data Description (SVDD) algorithm [Kloft et al., 2008]. SVDD obtains
a spherically shaped boundary around a dataset that can be used to detect
outliers [Tax and Duin, 2004].

Other examples, like [Sivatha Sindhu et al., 2012] and [Tsang et al., 2007],

use genetic algorithms.

Li et al. used a modified random mutation hill climbing (RMHC) algorithm
as search strategy to specify a candidate subset for evaluation. Hill climbing is
a family of optimization techniques of local search. It is an iterative algorithm
that reaches the best solution by replacing an element by another one in case the
last one is nearer to the top of the hill. The process continues until no further
improvements can be found [Simon, 2013]. Random mutation hill climbing
selects randomly the next element to be examined. Li et al. also employed a
modified linear Support Vector Machines (SVM) iterative procedure as wrapper
approach to obtain the optimum feature subset [Li et al., 2009]. SVM are
supervised learning models that aim to separate categories in a high dimensional
feature space, by learning hyperplanes separated as much as possible. These
models make possible to predict the category of a point based on where the

representation of the point is located in the space.

Other authors used SVM together with Simulated Annealing (SA) to select
features [Lin et al., 2012]. SA is a generic probabilistic metaheuristic to
find an approximation to the global optimum of a given function in a large
search space. In order to obtain a more extensive search, the algorithm slowly
decreases the probability of accepting worse solutions as it explores the solution

space [Van Laarhoven and Aarts, 1987].

De La Hoz et al proposed a multi-objective approach, using
the Non-dominated Sorting Genetic Algorithm II (NSGA-II) for feature
selection [De la Hoz et al., 2014]. NSGA is a genetic-based algorithm for
multi-objective optimization. NSGA- Il was created to improve NSGA. In

multi-objective optimization, trade-offs need to be taken between two or more

34 2. Intrusion Detection: Concepts and Related Work

conflicting objectives in order to reach optimal solutions. In this type of
problems, there is not a single solution that simultaneously optimizes all
objectives, but a number of optimal solutions, that are called Pareto optimals.
Pareto optimals are those solutions where none of the objective functions
can be improved without degrading some of the other objectives [Deb et al.,
2002]. The two objectives considered by De La Hoz et al. were maximizing
the classifier performance and minimizing the number of features. Afterward,
this technique was applied over a Growing Hierarchical Self-Organizing Map
(GHSOM) classifier. The Self-Organizing Map (SOM, also called Kohonen-Map)
is a type of Artificial Neural Network (ANN) that performs unsupervised
learning. The model consists of a number of neural processing units with
a weight vector. SOMs differentiate from other ANNs because they use a
neighborhood function to preserve the topological properties of the input
space. GHSOMSs overcome some disadvantages of SOMs, such as its static
architecture and lack of representation of hierarchical relation. The GHSOM
is a hierarchical structure of several layers, whose number of units, maps and
layers are determined during the unsupervised learning process [Yang et al.,
2010].

2.3.2.2 Filter model

Several works that apply the filter method can be found in literature. This
section reviews some of them. Amiri et al. applied two algorithms for feature

selection: linear correlation coefficient and mutual information [Amiri et al.,
2011].

Correlation and mutual information are frequently used in feature selection.
Examples of algorithms that use such criteria are the known Correlation Feature
Selection (CFS) and the Minimal Redundancy Maximal Relevance (mRMR)
measures. These measures are explained in Sec. 5.3.2. In their work, Nguyen et
al. fused and generalized these measures in the so called GeF'S measure [Nguyen
et al., 2010b]. In [Nguyen et al., 2010c], the authors compared GeFS with
other known algorithms, like SVM-wrapper, Markov-blanket and Classification
& Regression Tree (CART). This is the measure chosen for feature selection in
this thesis.

2.4. Detection techniques 35

Principal Component Analysis (PCA) is a popular method used for
dimensionality reduction. According to [Abdi and Williams, 2010], it is a
multivariate technique that analyzes a data table where observations are
described by several inter-correlated quantitative dependent variables. The
goal of PCA is to extract the important information from the data table, to
represent it as a set of new orthogonal variables called principal components,
and to display patterns of similarity of the observations and variables as points
in maps. This technique is frequently used to preprocess data and reduce the
dimensionality of a space, what helps to perform detection more efficiently.
Examples of its application in intrusion detection are [Wang et al., 2004, [Wang
and Battiti, 2006], [Bouzida et al., 2004], [Shyu et al., 2003], [Bouzida et al.,
2004], [Fonseca et al., 2008], [Jamdagni et al., 2013], [Zargar and Baghaie, 2012]
and [Zhang and White, 2007]. Most of these works have been experimentally
evaluated using the KDD 99 dataset [University of California, 1999]. This
dataset is a collection of simulated raw TCP dump data. The training dataset,
collected during seven weeks, consists of 494021 records. The test dataset
covers two weeks of traffic. In each connection there are 41 attributes describing
different features of the connection and a label assigned to each either as an

attack type or as normal [Olusola et al., 2010].

2.4 Detection techniques

According to the classification of IDSs presented above in regard to their location
and detection method, this thesis is focused on NIDSs and anomaly-based

systems respectively.

Within the anomaly detection field, diverse types of algorithms have been
used to perform intrusion detection. Although there are different proposals
for classifying algorithms, a commonly accepted one is the classification used

in [Garcia-Teodoro et al., 2009]. It consists of three main categories:

« Knowledge-based techniques. They try to capture the behavior from
the available system data [Debar et al., 1999]. These techniques rely
on highly qualified expert knowledge, that might be insufficient in cases

such as polimorphic or zero-day attacks. Polymorphic attacks are able

36 2. Intrusion Detection: Concepts and Related Work

to change its appearance with every instance, making its detection more
difficult [Fogla et al., 2006].

e Stochastic-based methods. They observe the activity of the network
and generate stochastic profiles to represent its behavior. As new events
are processed, the system profiles are updated. Typically, the current
profile is compared to the learned models. In case that current activity
differs more than a threshold from the stored one, it is flagged as

anomalous [Garcia-Teodoro et al., 2009].

e Machine learning is concerned with how to construct computer
programs that automatically learn with experience. This automation
capability is very useful in the cyberspace, where big amounts of data
need to be handled.

Machine learning systems are based on the establishment of an explicit
or implicit model that allows to categorize the analyzed patterns [Tsai
et al., 2009].

This work is focused on the last two categories of techniques. Their
advantage is that they do not need so much expert knowledge. Additionally,
the applicability of machine learning and stochastic techniques coincides in
many cases [Garcia-Teodoro et al.; 2009], what makes feasible to apply both of

them in similar environments.

Next, the most important systems using stochastic techniques and machine
learning are revised.
2.4.1 Stochastic techniques

Within stochastic techniques, statistical methods and Markov chains are the
most widely used in intrusion detection. Next, a review of IDSs using these

techniques is presented.

2.4.1.1 Statistical-based techniques

Statistical methods define models that are usually represented by thresholds,

probabilities and basic statistical operators. Like stochastic models, statistical

2.4. Detection techniques 37

systems compare the incoming traffic to the learned models. In case the traffic

is different enough to the learned models, the behavior is labeled as abnormal.

Regarding IDSs, several statistical-based systems have been designed. The
first systems were univariate, such as Haystack [Smaha, 1988], Intrusion
Detection Expert System(IDES) [Denning and Neumann, 1985], [Lunt et al.,
1992] and its later version Next-Generation Intrusion Detection Expert System
(NIDES) [Anderson et al., 1994], [Anderson et al., 1995]. Later, Ye et al.
proposed a system based on a multi-variate statistical technique that considers
the correlations between two or more metrics [Ye et al., 2002]. Mahoney
and Chan also presented various systems that apply learning techniques in
order to detect anomalies in the network traffic: Packet Header Anomaly
Detector [Mahoney and Chan, 2001], LEarning Rules for Anomaly Detection
(LERAD) [Mahoney and Chan, 2002a] and Application Layer Anomaly Detector
(ALAD) [Mahoney and Chan, 2002b]. These systems use time-based models

where the probability of an event depends on the time since it occurred last.

Statistical techniques on web traffic. Since this thesis focuses on web
traffic, statistical-based systems specialized in detecting intrusions over web

traffic are analyzed in this section.

In anomaly-based systems, a typical approach is combining multiple anomaly
detectors, that employ different techniques, to describe the normal behavior
of a target web application. Those activities differing from those models are
tagged as anomalous. The system proposed in [Kruegel et al., 2005b] follows
this approach. This system inspects log files to analyze individual Uniform
Resource Identifiers (URIs) and parameters of GET requests whose return
code is between 200 and 300. It means they are successful requests. The
authors use a set of models for detecting malicious activity: attribute length,
attribute character distribution, structure of the parameters (regularity of
the non-printable characters), detection of anomalous values for an attribute
(different values for a fixed-value attribute), attribute presence or absence,
attribute order, access frequency, inter-request time delay, and invocation order
of the server-side programs. Note that these models are obtained by means of
expert knowledge. In their system, the task of a model is to assign a probability

value either to the whole query or to one of the query’s attributes. It is possible

38 2. Intrusion Detection: Concepts and Related Work

to associate several models to an attribute or to the whole query. Each model
contributes to the calculation of the anomaly score, that is calculated as a
weighted sum of the probability values returned by the models associated to
the attribute or query. Note that in this approach, every model associated
to the attribute or query needs to be processed for the calculation of the
anomaly score. A query is reported as anomalous if any of the attribute or
query anomaly scores is above the corresponding detection threshold. The
assumption behind this scheme is that those feature values with a sufficiently
low probability indicate a potential attack. A model can operate either in
training or test mode. In the training mode, the system creates profiles for
the normal values and establishes thresholds as the maximum anomaly score
plus an adjustable percentage. In the test mode, anomaly scores are calculated
and anomalous queries are reported. Their system is experimentally evaluated
making use of traffic from universities in California and Vienna, and from
a Google server. This approach was later generalized in [Robertson et al.,
2006], where a technique to automatically translate suspicious web requests

into anomaly signatures is presented.

A paper following the same scheme as Kruegel’s work is [Sriraghavan
and Lucchese, 2008]. It also monitors successful GET requests that contain
parameters. The system automatically creates parameter profiles that are
built using a multi-model approach. The following models are employed:
unknown program identification, unknown parameter identification, attribute
length, attribute character distribution and implementation of 6-bin character
distribution algorithm. About the last model, the authors prove that 3-bin
is more efficient than 6-bin. 3-bin distinguishes between letters, digits and
non-alphanumeric characters. While 6-bin considers the relative frequency
of 256 ASCII characters. Following the anomaly approach, these models
have a learning phase and a detection one. For the experiments, this system
uses attack-free traffic from the DARPA 99 dataset and attacks from the
ECML/PKDD dataset. Similarly to the system proposed in this thesis,
automatic learning ensures that the system can be used with different types of

web application environments, without the need of manual configuration.

Masibty [Criscione and Zanero, 2009] can act as an attack detector or a

blocker. It uses the concept of entry point (EP) to deal with complex web

2.4. Detection techniques 39

applications. An EP is basically an augmented URI that is further specialized
depending on parameters, session context and other influences. Masibty is
specialized on the detection of SQL injection and XSS attacks. Its architecture
presents different modules for anomaly detection. For example, for detecting
SQL injection attacks it contains engines regarding the order, presence, numbers,
token, distribution and length of the request parameters. Similarly to papers
presented before, this system combines the results from all anomaly engines in
order to calculate a single anomaly score for the whole request. For testing,
the authors use their own dataset. In the experiments, some attacks are

incorporated into the training dataset.

2.4.1.2 Markov chains

Markov chains are mathematical systems that undergo transitions from one
state to another, between a finite or countable number of possible states. They
are random processes usually characterized as memoryless: the next state
depends only on the current state and not on the sequence of events that
precedes it [Freedman, 1971].

During the training phase, the probabilities associated to the transitions are
estimated to capture the normal behavior of the target system. The detection
of anomalies is then carried out by comparing the anomaly score obtained for
the observed sequences with a fixed threshold [Garcia-Teodoro et al., 2009].

Markov chains have been used in intrusion detection. They have been
applied in the context of host protection by authors such as Ye et al., that
presented an anomaly detection technique based on Markov chains to study
system calls of Solaris systems [Ye et al., 2004]. The paper by Bakhoum applies

Markov chains in the context of network intrusion detection [Bakhoum, 2011a].

A variant of Markov chains are Hidden Markov Models (HMM). They are
Markov processes with unobserved (hidden) states. In contrast to Markov
models, in a HMM the state is not directly visible. In Markov chains the state
is directly visible to the observer and therefore the state transition probabilities
are the only parameters. The output of a HMM, that is dependent on the state,

is visible. Each state has a probability distribution over the possible output

40 2. Intrusion Detection: Concepts and Related Work

tokens. Therefore, the sequence of tokens generated by a HMM gives some

information about the sequence of states [Elliott et al., 1995].

HMDMs have been also applied to both host and network environments for
improving their security. In order to represent normal behavior and recognize
intrusions in system call datasets, Warrender et al. used a HMM with fully
connected states (i.e., transitions are allowed from any state to any other
state) [Warrender et al., 1999]. Yeung et al. employed HMMs, besides other
techniques, in an anomaly system that models program profiles based on Unix
system calls and user profiles based on Unix shell commands [Yeung and Ding,
2003]. Arnes et al. applied HMMs for a risk assessment tool integrated with
an IDS [Arnes et al., 2006].

Markov chains on web traffic. In the particular case of systems inspecting

web traffic, Markovian techniques have been extensively applied.

Estévez-Tapiador et al. presented an anomaly WAF that uses Markov chains
to model HTTP traffic [Estévez-Tapiador et al., 2004]. Two variants of the
system were proposed. The first one is an extension of the payload histograms,
using an alphabet corresponding to ASCII code. For every character in a normal
request, it calculates the probability that it is in the first position within the
payload and the probability that it is followed by any other character. If the
probability of a incoming request exceeds a given threshold, it is deemed as
anomalous. The second variant incorporates protocol-dependent information.
The idea behind it is that the probability of occurrence of certain strings within
each section of the payload is not uniform throughout the request. In this
approach the HT'TP payloads are segmented into blocks of characters according
to protocol delimiters. These blocks are stored in a dictionary, that is filled
in the training phase by splitting normal requests. In the test phase, the
dictionary is used for evaluating the normality of the incoming requests. For
the experiments, a modification of the popular DARPA 99 dataset is employed,
taking normal traffic from the cited dataset and manually generating web

attacks.

As mentioned, Spectrogram is focused on detecting local and remote file
inclusion, XSS and SQLi attacks [Song et al., 2009]. It learns to recognize

legitime content and structure of the web-layer script arguments. The rest of

2.4. Detection techniques 41

the HTTP request is not analyzed. It uses a configurable number of Markov
chains to obtain a final likelihood score of the request being normal. Each
Markov chain is in charge of calculating the likelihood of each character and
then recovering the geometric mean of individual likelihoods. Differently to
other works, that consider that the probability of a character depends only
on the preceding character, Spectrogram considers that the probability of a
character depends on the n — 1 preceding characters. For the experiments the

authors used their own dataset.

As mentioned, besides detecting anomalies in web traffic, TokDoc puts
remedy to the detected attacks [Krueger et al., 2010]. It is done by locating
and substituting anomalous values by others that are closer to them and, at
the same time, are normal. In this way, it avoids malicious requests reaching
a protected web server. Within the detectors used, one of them is based on
Markov chains. For the construction of Markov chains, the authors consider
256 ASCII characters in the analysis of the arguments. For the experiments,

their own created datasets were used.

HMDMs have also been applied to web attack detection. One of them is
HMM-Web, by Corona et al. It shows that HMMSs are effective in detecting a
wide range of either known or unknown attacks against web applications [Corona
et al., 2009]. For the analysis of the requests two groups of characters are
considered: alphanumeric and non-alphanumeric. Similarly to Spectrogram,
HMM-Web uses an ensemble of HMMs to increase the performance, concretely
it uses an ensemble per attribute and another one for the sequence of attributes.
Then, it uses a maximum rule to select the model in the ensemble that best

describes the analyzed sequence.

In [Hosseinkhani et al., 2011], an extension of HMM-Web is presented. It
deploys a second dimension in order to improve the detection of input validation
attacks in web applications. That is, the approach proposes a training phase
with two dimensions: in the first one, the IDS learns normal values of the web
application attributes. In the second one, the sequence of normal probabilities of
these attributes is modeled. Both the training and detection phases use HMMs.
After employing a group of HMM, the maximum probability rule is used to
select the model in the ensemble that best describes the analyzed input value.
For the experiments, a mixture of the DARPA 99 and the ECML/PKDD

42 2. Intrusion Detection: Concepts and Related Work

datasets is used. A drawback of this system is that the second dimension

introduces a delay in the detection process.

HMMPayl puts emphasis on reducing the false positive rate and for that, it
exploits the power of HMM in modeling sequences of data [Ariu et al., 2011].
An ensemble of HMMs is used in parallel, being each HMM initialized with
different random values. Then, a selector is used for choosing the best classifier
selection strategy. Instead of analyzing the whole payload, they choose which
sequences of the payload are used to classify it. Experiments are carried out

using both public and private datasets.

2.4.2 Machine learning

Machine learning (ML) is a subfield of Artificial Intelligence that can help in
the automation of processes. In 1959, Arthur Samuel defined it as a “field
of study that gives computers the ability to learn without being explicitly
programmed” [Samuel, 1959].

ML has been extensively applied in intrusion detection [Tsai et al., 2009].
Detection systems based on ML allow to quickly detect attacks while demanding
much less manual work. Because of this reason, the approach is becoming
increasingly important for computer security, especially when considering the

huge amount of network data that IDSs need to analyze [Nguyen, 2012].

ML comprises a big range of algorithms that have been traditionally classified
into two different approaches: supervised and unsupervised learning. In
supervised learning algorithms the labels of the training dataset are available for
the learning process. Examples of supervised learning algorithms are decision
trees and support vector machines. Unsupervised learning algorithms, such as
the K-means clustering, can still learn the normal and abnormal behavior of
the dataset without their labels.

Several works have been presented in intrusion detection that apply ML

algorithms. Some of them are:

» Bayesian networks [Kruegel et al., 2003], [Ihler et al., 2006], [Barbara
et al., 2001], [Valdes and Skinner, 2000].

2.4. Detection techniques 43

o Artificial Neural Networks (ANN) and Self-Organizing Maps
(SOM) [Ramadas et al., 2003], [Xydas et al., 2008], [Ramos and
Abraham, 2005], [Khalkhali, 2011], [Yang et al., 2010], [Bolzoni et al.,
2006], [Depren et al., 2005], [Corchado and Herrero, 2011], [Ibrahim,
2010].

« Genetic Algorithms [Li, 2004], [Pillai et al., 2004], [Saniee Abadeh et al.,
2007], [Abadeh et al., 2011].

o Clustering and K-nearest Neighbors [Zanero and Savaresi, 2004], [Zanero,
2006], [Hautaméki et al., 2004], [Sequeira and Zaki, 2002], [Liao and
Vemuri, 2002], [Breunig et al., 2000], [Di Crescenzo et al., 2005], [Das
et al., 2009], [Corona and Giacinto, 2010], [Dessiatnikoff et al., 2011], [Li
et al., 2008], [Kirchner, 2010], [Davanzo et al., 2011].

o Decision Trees [Pfahringer, 2000], [Balon-Perin, 2012], [Depren et al.,
2005], [Sangkatsanee et al., 2011a], [Sivatha Sindhu et al., 2012], [Rao
et al., 2011], [Lin et al., 2012], [Garcia et al., 2006], [Muniyandi et al.,
2012].

« Support Vector Machines [Sung and Mukkamala, 2003], [Bolzoni et al.,
2009], [Shrivastava and Jain, 2011], [Diissel et al., 2008].

Within the algorithms cited above, decision trees have been chosen in this
dissertation to distinguish between normal and anomalous traffic. This family
of algorithms is one of the most popular [Wu et al., 2007] and experimentally

successful of the machine learning algorithms.

According to SAS company, “decision trees are tools for multiple variable
analysis and can support in decisions using a tree-like graph” [De Ville, 2006].
They are widely used for classification and they can predict the output of new
or unseen observations. One of their advantages is that human-understandable

rules can be directly derived from them.

For the construction of the tree, the object of analysis is reflected in the
root. The branches of the tree are built by considering the relationship between
the object of analysis and one or more fields that serve as input fields to create

the branches. The leaf nodes represent classification categories.

44 2. Intrusion Detection: Concepts and Related Work

A proof of the successful application of decision trees in intrusion detection
is the work by Pfahringer. He won the famous DARPA intrusion detection
contest [Lippmann et al., 2000a] with an algorithm based on decision trees. The
author constructed an ensemble of ten decision trees run fifty times [Pfahringer,
2000]. The ensemble is constructed by applying bagging and boosting, besides
minimizing the error cost of predicting specific classes. According to Quinlan,
“bagging and boosting form a set of classifiers that are combined by voting;
bagging by generating replicated bootstrap samples of the data, and boosting
by adjusting the weights of training instances” [Quinlan, 1996].

Depren applied a J.48 decision tree to classify various types of attack in the
misuse module of a hybrid IDS [Depren et al., 2005], performing experiments
on the KDD 99 dataset.

Later, Sangkatsanee et. al studied the performance of several supervised
machine learning techniques on intrusion detection [Sangkatsanee et al., 2011a].
These authors used decision trees, a rule-based learning algorithm, two neural
networks and two Bayesian algorithms. From the various techniques mentioned,
the experimental results showed that decision trees can outperform all other
techniques. Then, the authors propose a detection engine of real-time IDSs

based on decision trees.

Balon-Perin applied several machine learning algorithms, being one of them
an ensemble of decision trees [Balon-Perin, 2012]. Each ensemble was specialized
on the detection of one class of attack. Additionally, bagging techniques were

used to increase the accuracy of IDSs.

Decision trees have also been used in conjunction with other techniques.
An example is the work from Rao et al. [Rao et al., 2011], where decision trees
are used together with clustering. Then, it mixes supervised and unsupervised
learning. Concretely, the authors use K-means clustering and a ID3 decision
tree to classify anomalous and normal activities in a computer network. In this
system, the decision tree algorithm is used to refine the decision boundaries by

learning the subgroups within the clusters created by the K-means algorithm.

Muniyandi et al. followed the same idea of the last mentioned paper, but
using the C4.5 decision tree instead of the ID3 [Muniyandi et al., 2012].

2.5. Importance of the number of training requests 45

The approach by Sivatha Sindhu et al. mixed neural networks and decision
trees [Sivatha Sindhu et al., 2012]. The system was experimentally evaluated
with a family of six decision tree classifiers, namely decision stump, C4.5, naive

Bayes’ tree, random forest, random tree and representative tree model.

Lin et al. apply decision trees and simulated annealing. These techniques
are used to obtain decision rules for new attacks and to improve the accuracy
of classification [Lin et al., 2012].

Decision trees on web traffic. As can be seen, decision trees have been
extensively applied for detecting intrusions in network traffic. They have proven
to be very effective in this field, even outperforming other techniques. However,

they have been scarcely applied to the particular case of web traffic.

One of the few works found about it is [Garcia et al., 2006]. This paper
applies an ID3 decision tree to distinguish a number of web attacks, including
some of their variants. in particular, the system is able to detect the following
attacks: SQL injection, XSS, code injection and directory traversal. The

authors use their own-built dataset for the experimentation stage.

An advantage of using decision trees is that their rules are easy to read,

thus, the root of an attack can be easily understood.

2.5 Importance of the number of training requests

The training phase is critical in intrusion detection systems. Depending on how
the training is performed, the system will be able to perform detection with
more or less precision. The shorter the training phase is, the least computational
time and resources are necessary. However, if the system is not trained with
enough requests, it will not be effective against attacks. Not having sufficient
data to completely determine a correct classifier or having a too big dataset
might lead to certain machine learning algorithms to overfitting. Overfitting
produces a classifier not grounded in reality that is only modeling random
peculiarities in the data [Domingos, 2012], [Hawkins, 2004]. Therefore, it is
important to study how many requests should be chosen to train the system so
that the performance results are maximized and, at the same time, the resource

and time consumption are minimized. This critical issue has not received much

46 2. Intrusion Detection: Concepts and Related Work

attention in intrusion detection. Except for [Bolzoni and Etalle, 2008], that
presents experiments with variations on the number of requests, usually the
whole dataset is used by default to carry out the experiments in intrusion
detection. Considering that statistical techniques require a certain number
of requests in order to obtain meaningful results, this study turns specially

interesting in this area.

The idea behind the adequate number of training requests is satisfying the
principle of parsimony: including the necessary training requests, but no more.

This criteria also leads to a better detection.

Studying the influence of the number of training requests on the performance
of the system would allow to 1) determine how many training requests should
be gathered in the data acquisition process to achieve certain results on the
detection system and, 2) to estimate the time and resources necessary for the

training phase (also for retraining in case it is necessary).

2.6 Conclusions

After analyzing the mentioned papers in the literature, a group of conclusions

and open questions can be drawn:

e Regarding feature extraction, n-grams is a commonly used strategy
to build features in intrusion detection. However, the combination of

manually and automatically extracted features has been scarcely explored
in the field.

o Feature selection improves both the performance and computational cost
of intrusion detection systems. The GeFS measure for feature selection
has been successfully applied to network traffic. However its performance

on web traffic is an open question.

o Generally, statistical-based learning systems need to evaluate all detection
models in order to establish the anomaly score of the request, that is, to
decide about its normality /abnormality. Algorithms reducing resource

and time consumption are necessary.

2.6. Conclusions 47

o Markov chains are effective in distinguishing attacks and normal traffic.

Thus, they can be successfully applied to intrusion detection.

e Machine learning has been extensively used in intrusion detection.
Decision trees have been proven to be effective in intrusion detection.
Although these precedents make them promising to be applied in other

scenarios, they have not been much used in web traffic analysis.

o Little attention has been paid to the study of how the number of requests
used in the training phase affects the performance of the system. The
knowledge acquired with such study allows to know, for example, the
amount of requests necessary to achieve a certain detection result. Getting
this type of information is useful in the data acquisition process, as well
as in the estimation of time and resources necessary for training and

retraining the systems.

The remaining of this thesis gives answers to these open questions.

Chapter 3

Data acquisition for web

intrusion detection

“Scientia potentia est. - Information is power.”

— Francis Bacon

Adequate datasets are of vital importance for training and testing
WAFs. This chapter studies the characteristics that a dataset should
present to be considered appropriate for this purpose. Unfortunately,
finding datasets that meet these characteristics is not an easy task.
The study of the most used datasets in intrusion detection reveals
that most of them present a number of drawbacks to be applied to
the evaluation of WAFs. In order to solve this situation, this thesis
provides a new dataset called CSIC that satisfies the conditions
established for the proper evaluation of WAFs. The dataset is being
used by the scientific community. The characteristics of the dataset,
as well as the process followed to create it are explained in this
chapter. Additionally, the current applications of the dataset in the

scientific community are presented. Lastly, conclusions are shown.

50 3. Data acquisition for web intrusion detection

3.1 Problems in data acquisition for intrusion detection

Counting with appropriate datasets to train and test WAFs is critical. The
quality of these datasets directly influences the evaluation of these systems.
However, in the web intrusion detection community there is a scarcity of
standard and common datasets to evaluate these systems. In relation to this
issue, several authors claimed that “the most significant challenge that an
evaluation faces is the lack of appropriate public datasets for assessing anomaly
detection systems” [Sommer and Paxson, 2010], [Tavallace et al., 2010]. Due
to this scarcity, many researchers opted to create their own datasets, many
of which are of private use. The problem of this situation is that it hinders
the comparison between different systems. Furthermore, many of the existing
datasets present a series of disadvantages that difficult their use in web detection
systems. This makes noticeable that the necessity of counting with labeled
and adequate datasets to train, test and compare WAFs is not covered in web

intrusion detection. Fulfilling this gap is the motivation of this chapter.

3.1.1 Requirements for adequate datasets

In order to adequately configure and evaluate web intrusion detection systems

it is necessary that the dataset used satisfies a series of requirements:
o [t is convenient that it is publicly accessible. This allows other researchers

use it and compare their systems.

o It should contain HTTP traffic, since this is the type of traffic WAFs

analyze.

o The dataset needs to be labeled. Otherwise, it is not possible to evaluate

the performance of WAFs.

o It should contain at least two classes: normal and attack. Anomalies

could also be included. Anomalous traffic is further explained in Sec. 3.4.

o The dataset should contain a variety of modern attacks and their

variations. According to Symantec, web attacks have evolved significantly

3.1. Problems in data acquisition for intrusion detection 51

in the last years [Wood, 2014]. Including modern attacks allows to check

if the system is able to detect current web attacks.

« Additionally, it is desirable that the traffic contains realistic values and it

is not anonymized, with the purpose of not losing realism.

3.1.2 Evaluation of existing datasets

Unfortunately, difficulties associated to obtaining adequate datasets to evaluate
WAFs are manifold. As mentioned before, there is a scarcity of labeled and
appropriate datasets to evaluate web intrusion detection systems. Furthermore,
many existing datasets face a number of troubles. Several existing datasets
have been analyzed to check whether they satisfy the conditions presented in
the previous section for considering a dataset as adequate. In regard to that, a

number of problems have been found:

« Dataset not labeled. A common problem is that requests do not have
a label indicating the class they belong to. The dataset is simply captured
traffic. However, this is not enough for evaluating WAFs. Labels are

necessary to measure how well the system is able to classify the instances.

e Many datasets do not contain HTTP traffic. For example, the
LBNL dataset contains network traffic. This dataset contains traces with
full header network information, but without payload [LBNL and ICSI,
2005]. The payload contains the information belonging to the application

layer.

e Many datasets are not publicly available or they might be
difficult to obtain. When the datasets are private, they are not usable
by the scientific community. This does not make possible the comparison
of systems between each other. In some cases, the reason for the obscurity

is the privacy of data, what impedes sharing the traffic.

In other cases, the datasets are partially available, i.e., they are only
accessible for selected researchers. This is the case of the UNB ISCX
intrusion detection evaluation dataset [Shiravi et al., 2012]. It is based

on the concept of profiles, which contain an abstract representation of

92

3. Data acquisition for web intrusion detection

events and behaviors seen on the network. There are two types of profiles:
the first one describes an attack scenario and the second one extracts
mathematical distributions or behaviors of applications, protocols or low
level network entities. Agents are used to generate HT'TP traffic, among
other protocols, from the profiles created. This dataset is only available
for selected researchers and it is necessary to apply for it. The dataset
takes several weeks to be obtained and in our case, it has not been possible

to get access to it yet.

The ECML/PKDD dataset, that was generated for the European
Conference on Machine Learning and Principles/ Practice of Knowledge
Discovery in Databases (ECML/PKDD) Challenge in 2007, is also
partially available [Raissi et al., 2007]. In this case, it has been possible to
obtain it. This dataset is labeled and contains exclusively HTTP traffic.

The dataset is not updated. Since new web attacks are constantly
appearing, it is important that the dataset is up to date. It implies
containing modern attacks in order to adequately test the effectiveness of

WAFs in contemporary environments.

The DARPA dataset [Lippmann et al., 2000a], [Lippmann et al., 2000b]
was presented in 1998 and 1999 by MIT. It contains network traffic,
including HTTP traffic. This dataset is one of the most used ones for
evaluating intrusion detection systems. However, the DA RPA dataset has
been criticized by the intrusion detection system community [McHugh,
2000], [Brown et al., 2009]. One of the reasons is that it is out of
date and it does not include many of the modern attacks, making it
not adequate for evaluating current WAFs. In fact, some researchers
([Estévez-Tapiador et al., 2004], [Hosseinkhani et al., 2011]) have used
this dataset in conjunction with others, or with their own created attacks,

to overcome this disadvantage.

Traffic is anonymized. Privacy concerns are frequently a cause
for anonymizing data. The preprocessing process that implies the
anonymization of the dataset can lead to the loss of realism and can
also negatively affect the quality of detection results. The previously
mentioned ECML/PKDD dataset is an example of anonymized traffic.

3.1. Problems in data acquisition for intrusion detection 53

Except for the attack part, all parts of its requests are anonymized.
Hence, there are not two requests addressing to the same web application.
This characteristic makes it unusable for a number of systems, for

example [Hosseinkhani et al., 2011].

This problem also affects to the LBNL dataset. The traffic of this
dataset has been anonymized to remove information that could identify

an individual (Internet Protocol) IP.

e Not balanced amount of normal traffic and attacks. This problem
is notable, for instance, in traffic gathered at warfare competitions. An
example are datasets created in DEFCON Capture the Flag (CTF) [The
Shmoo Group, 2011]. Since it was generated during the competition,
this traffic mainly consists of intrusive traffic [Kruegel et al., 2005a].
In scenarios different from adversarial environments, this characteristic
might make traffic unrealistic, since the proportion of attacks might result
disproportionate in relation to the amount of normal traffic. In relation
to this topic, and trying to overcome some of the current inconvenients,
Sangaster et al. studied how to generate useful datasets by collecting

traffic from warfare competitions [Sangster et al., 2009].

The cited problems have been obtained from the analysis of the datasets
most used in intrusion detection. Table 3.1 shows, for each of the analyzed
datasets, whether they satisfy or not the conditions shown in Sec. 3.1.1 for
being considered an adequate dataset. The table shows that none of them
satisfies all requirements.

Table 3.1 — Analysis of existing datasets satisfying requirements for an
adequate dataset for evaluating WAFs.

Dataset Public HTTP Labeled Two Modern Non
access traffic classes attacks anonymized
UNB ISC X v v v v v
ECML/PKDD X v v v v X
LBNL v X v v X X
DEFCON v v v X v v
DARPA 98/99 v v v v X v
Captured traffic v v X X v v

54 3. Data acquisition for web intrusion detection

3.2 Solution: generating a new dataset

Given the problems associated to the existing datasets, a new dataset was

created in this dissertation to overcome the exposed drawbacks.

For the generation of the new dataset, three alternatives for obtaining web

traffic were studied:

o Publishing a testbed web application on the Internet.
« Surfing the testbed web application in a controlled environment.

o Generating traffic artificially.

Next, these possibilities are analyzed in more detail:

o Publishing the application on the Internet allows to obtain realistic
and reliable traffic. In this case, normal traffic is gathered but,
unfortunately, attacks are also collected, since in the Internet there

are hackers and malicious programs that try to hack web applications.

The drawback of this alternative is that collected traffic is not labeled,
unless it is done under controlled conditions (this is the next option).
As mentioned, merely collecting web traffic is not enough for adequate
datasets. It needs to be labeled. Manually labeling the huge amount of
data necessary to evaluate a WAF is not a feasible option. In fact, it
would be like manually solving the intrusion detection problem. For this

reason, this alternative was discarded.

o Another possibility is surfing the application in a controlled
environment. In this alternative, users have the role of either normal
user or attacker. The differentiation of roles makes possible to label the
requests of the dataset. The class label is in correspondence to the role
of the user generating the request. This alternative offers more control of
the traffic targeting the application and, then, of the content and realism
of the dataset. The drawback of this option is that, as thousands of
requests are needed, collecting users to generate the traffic might not be

easy or cheap.

3.3. Characteristics of the CSIC dataset %)

o Artificially generating traffic. A main advantage of this option is
that it ensures the traffic to be correctly labeled. Although the traffic
is not real, it allows to create the dataset exactly as desired. This gives
flexibility to decide what type of traffic (normal or attack) will be included
in the dataset, as well as which types of attacks. Because of the mentioned
reasons and, given the drawbacks of the previous alternatives, this option

was considered the most suitable one for our purposes.

This option was successfully applied to create the CSIC' dataset. The
characteristics and the generation process of this dataset are explained in the

next sections.

3.3 Characteristics of the CSIC dataset

The CSIC dataset was created in our department in 2010. As contribution of
this work, it was designed with the aim to overcome the described drawbacks of
existing datasets. A public dataset, usable by the whole scientific community,

allows the comparison of different detection systems.

In total, the CSIC dataset contains 36 000 normal requests and more than
25000 anomalous requests. The requests are labeled either as normal or
anomalous. Regarding the generation of attacks, both static and dynamic
attacks were generated, including modern web attacks such as SQL injection,
buffer overflow, information gathering, CRLF injection, cross-site scripting,

server side include and parameter tampering.

Table 3.2 shows that the CSIC dataset satisfies all requirements defined
for adequately evaluating WAFs. This table includes the CSIC dataset in
the previously presented Table 3.1 in order to compare this dataset with the
previously analyzed ones. The table shows that the CSIC dataset is the only

one that satisfies the desired requirements.

The CSIC dataset is publicly available at http://www.isi.csic.es/dataset.
There, three files can be found: one file for training and two files for testing.
The training file contains 20 MB of only normal traffic. Regarding the testing
datasets, one of them contains 20 MB of normal traffic and the other one
15.7 MB of anomalous data.

56 3. Data acquisition for web intrusion detection

Table 3.2 — Analysis of existing datasets and the CSIC dataset satisfying
requirements for an adequate dataset for evaluating WAFs.

Dataset Public HTTP Labeled Two Modern Not
access traffic classes attacks anonymized
UNB ISC X v v v v v
ECML/PKDD X v v v v X
LBNL v X v v X X
DEFCON v v v X v v
DARPA 98/99 v v v v X v
Captured traffic v v X X v v
CSIC v v v v v v

3.4 Generation process

Since in the generation process of the dataset it was necessary to generate
attacks, targeting web applications published in the Internet was not a feasible
option. Hence, an ad hoc environment was built for our purposes. A web
application was specially created for this goal. Also, a web server and a WAF to
protect it were deployed in a virtualized environment. Virtualized environments
have several advantages, such as resource saving, data privacy preservation,
security and flexibility [Sahoo et al., 2010], [Li et al., 2015]. The WAFs presented

in this thesis are explained in Chapters 4 and 5.

Although the target web application was not published in the Internet, it
has the same structure and functionalities as real applications, in order to make
it the most realistic possible. It consists of an e-commerce web application,

developed with JSP and running under Apache Tomcat.

For the generation of the dataset, it was considered that targeting a single
web application would be enough for our purposes. The designed application is
composed of several web pages that allow users to do actions such as buying
items with a shopping cart or registering by providing their personal data.
Figures 3.1, 3.2 and 3.3 show screenshots of different pages belonging to the
web application. In particular, Fig. 3.1 presents a list of products that can
be bought in the e-commerce application, called “Nuestra Tierra”. Figure 3.2

shows the shopping cart when a client bough some products. And Fig. 3.3

3.4. Generation process 57

Nuestra Tierra

Inicie | Productes | Carrito | Miembros

Productos de Nuestra Tierra

Seleccion de los mejores productos de todos los rincones de tierras espafiolas.
Descripeion Precio (EUR)
amon (berico El'mejor jamdn pata negra, de cerdos alimentados con bellota EUR 100.00

<00 Queso curado y conservado en aceite, de la mejor leche de oveja de La Mancha EUR 39.00
Tinto Gran Reserva, con siete afios en hodega y dos en barrica de roble EUR 85,00

® 2005 Gonzalo Alvarez Marafion. Todos los derechos reservados

Figure 3.1 — Screenshot of the e-commerce application showing available
products.

Nuestra Tiermra

Inicio | Productes | Carrite | Miembros

Carrito de la compra en Instisec

Cantidad|Precio unitariolPrecio tolal

io
Queso Manchego 1 39 39
Total........ EUR 39.00

Vaciar carrito Pasar por caja

® 2005 Gonzalo Alvarez Maration, Todos los derechos reservados

Figure 3.2 — Screenshot of the e-commerce application showing an
example of the shopping cart when some products are bought.

contains the registration page, where users introduce their personal data in the
fields.

As usually happens with modern web applications, some pages of the
e-commerce application admit arguments. Examples of parameters of this
website are: a product name that a user wants to buy, the amount of it, a

user’s address in the registration process or his/her telephone number.

The generation of the traffic is made with the help of dictionaries.
Dictionaries are data files that contain real data that can be used to fulfill the
values of the website arguments. For example, in the case of our web shopping,
dictionaries contain values corresponding to product names, user names, user

addresses, telephone numbers, etc. This data is used to fill in the values of

58 3. Data acquisition for web intrusion detection

Nuestra Tierra

rrrrrrr

Edicion de datos personales

P Fotos Modifique los datos que hayan cambiado desde que se registro y pulse el boton Confirmar.

P Propiedaides Login: [pable
P salir Password: Fh-l-
Nombre: [Pable

Apelhdes: W

Correo electranico: m

DNI: [24p955 66V

Direccion: [Pases del Prado, 4

Cludad: [Madrid

Provincia: | Madrid |
Codigo postal: [28004

Numero de tarjeta de credito: [8079870708654564

Confirmar

® 2005 Gonzalo Alvarez Marafion. Todos los derechos reservados.

Figure 3.3 — Aspect of the web application for the registration process.

the arguments in the traffic generation process. In particular, there are two
dictionaries per argument in the web application: one with normal values, and
another one with anomalous values. All data collected for dictionaries was
extracted from real databases, with the aim of making the collected data as

much realistic as possible.

Once the dictionaries are built, the generation of both normal and anomalous
traffic can take place. In order to do that, all publicly available pages of the
web application are visited (similarly to what a spider would do). In case the
visited web page has arguments or cookies, their values are filled out with data
taken from the dictionaries (normal or anomalous, depending on the type of

traffic to be generated). The data values are chosen randomly.

Contrarily to some papers in the literature, like [Kruegel et al., 2005b], that
use background traffic as normal traffic, the generation process of this dataset
allows to make sure that normal traffic does not contain any attack. This is
important for the training of anomaly-based WAFs, since if attacks are learned

in this approach, they might not be detected.
The dataset contains individual HTTP requests. One of the advantages

of the dataset is that it is not necessary to take care of packet fragmentation,

what facilitates its use. Additionally, the generation process of the dataset does

3.5. Applications of the CSIC dataset 59

not need to deal with logs. This is beneficial since it can be a tedious task.
In fact, some tools, such as Logstash, were born to help with the problems

associated to handling logs.

In addition to attacks, the CSIC dataset contains anomalous traffic. Both
categories are labeled as anomalous. Anomalous traffic makes reference to
requests that are not normal but do not have attack intention. For example, a
telephone number that contains letters. These requests could be generated, for
instance, as consequence of user typographic errors. Anomalies could be used
twofold: 1) when they are used in the training phase, they simulate noise in
the traffic. Then it is possible to test the system under those circumstances.
2) When anomalies are included in the test stage, they allow to exhaustively
test anomaly-based systems, checking how well they reject everything that is

different from the established normal behavior.

Note that the dataset is designed to satisfy the requirements mentioned
in Sec. 3.1.1 for adequately evaluate WAFs. Since it is publicly available, it
is usable by researchers to evaluate and compare their systems. The dataset
is labeled and it contains normal and anomalous HTTP traffic, including a
variety of modern web attacks. It addresses a realistic web application and the
values of the arguments are taken from real databases. Additionally, the traffic

is not anonymized.

This dataset is used to experimentally train and test the different WAFs

proposed next in this thesis.

3.5 Applications of the CSIC dataset

As mentioned, the motivation of making the C'SIC dataset public is that the
scientific community can use it. And indeed, the dataset is being used by other

researchers.

Kozik et al. used the CSIC dataset to evaluate the behavior of their
security algorithms. These algorithms are designed to detect injection attacks,
in particular, SQLi and XSS [Kozik et al., 2014a], [Kozik et al., 2014b].

We have certainty that researchers at Alzahra University (Iran) of are also

using the dataset for anomaly detection on web server logs. They are even

60 3. Data acquisition for web intrusion detection

doing research on what features extract from it, besides the ones presented in
Sec. 4.5 and Sec. 5.4.2 of this dissertation.

Furthermore, a version of this dataset in comma-separated values (CSV)
format has been done by Scully at Aberystwyth University [Scully, 2015]. This
format facilitates the use of the dataset with tools such as Weka [Hall et al.,

2009], that provides a wide range of machine learning algorithms.

3.6 Conclusions
The main conclusions of this chapter are the following:

« Obtaining public labeled and suitable datasets for training and testing
WAFs is not an easy task.

e Most of the existing datasets present drawbacks that render them

inappropriate for evaluating WAFs.

e The proposed CSIC dataset satisfies the requirements desired for
adequately evaluating WAFs. Among other characteristics, it is public,
labeled, and its data is not anonymized, what makes it ideal for this
purpose. The creation of the dataset helps to solve an important problem
that was opened in the field: the scarce of labeled and adequate datasets
to evaluate WAFs. Furthermore, it makes possible to compare different

web detection systems.

o The CSIC dataset is currently being used by the scientific community.

Chapter 4

Stochastic techniques for web

intrusion detection

“Mathematics is the alphabet in which God has

written the universe."
— Galileo Galilei

This chapter presents two WAFs based on stochastic techniques. To
perform detection, one of the WAFSs applies statistical algorithms
and the other one Markov chains. An explanation about the main
concepts of Markov chains is included in this chapter. Additionally,
the general architecture of the systems, as well as their design, are
presented. The design of the systems comprises two phases. First,
the preprocessing step takes place, where features are extracted.
The processing phase consists of both training the system and
later testing it. The detection algorithms make use of two models.
One of them makes reference to the length of certain elements of
the HTTP request and, the other one, to properties about their
characters. These models, together with other information, are
stored in the Normal Behavior Description (NBD) file during the

training phase. The structure of this file is described. During

62 4. Stochastic techniques for web intrusion detection

the detection process, the information stored in the NBD file is
retrieved to decide about the normality /abnormality of the incoming
requests. The systems are experimentally evaluated using the CSIC
dataset. After establishing the experimental setup, the results of the
experiments are shown and discussed. A study about the influence
of the number of training requests is also included in this chapter.

Finally, the conclusions drawn are presented.

4.1 Introduction

Stochastic techniques have been extensively used in intrusion detection. Several
references about it can be found in Sec. 2.4.1. In this chapter, two WAFs
based on stochastic techniques are proposed. The systems operate at the
application layer and follow an anomaly-based approach. The objective is
constructing systems that reach high-speed and high detection, while keeping
a simple design. One of the proposed systems applies statistical techniques
for detection, and the other one Markov chains. These techniques are chosen
because they are the stochastic algorithms most widely used in intrusion
detection. Both proposed systems share a common structure, given that both
are based on stochastic techniques. However, each of them presents a different

implementation, according to the particularities of the algorithm used.

4.2 Markov chains concepts

In order to better understand the implementation of the Markovian system
presented in this chapter, the main concepts of this technique are explained in

this section.

A Markov chain is defined by a set of N states I' = {S1, S, ..., Sy} and,
by the pair of probability matrices, IT and A [Feller, 1968|, [Ramana, 2007].
The matrices express the temporal evolution of the system from a statistical
point of view. Concretely, IT = 7;,Vi € [1, N], is a vector that indicates the
probability of the i-th state being the first element of the temporal sequence of

observations:

T = P(ql = S’L)a

4.3. General architecture 63

where ¢, represents the current state of the model at time ¢ and S; the elements of
the temporal sequence of observations. This vector has the following constraints:
N

m > 0,Vi e [1,N]: Z?Ti = 1.

=1

Matrix A, A = a;;,Vi,j € [1, N], represents the transition probabilities
between states. Given that the system is in a state ¢ at some time ¢, the
matrix gives the probability of reaching the state j at time ¢ + 1. The matrix

of transition probabilities can be estimated as follows:

P(g: = SiNq1 = S;)

aij = P(gi+1 = Sjlas = Si) = Plg = S,)

Matrix A has the following two constraints:

Q5 207VZ7J S [17N] : Zaij = 17VZ S [17N]
J

The probability Pj(t) of state 7 at time t is given recursively by

N
.P](l) = Tj, Pj(t) = Z Pl-(t_l)aij,t > 1.
i=1

Markov models have two stages: the first one is learning, where I', IT and
A are learned. The second stage is evaluation. During this stage it is checked
whether an observed sequence is recognized by the learned Markov chain. The
details about how they are implemented are explained in next sections of this

chapter.

Next, the general architecture of both stochastic systems is explained.

4.3 General architecture

The systems presented analyze HT'TP traffic in order to protect a target web
application. They act as reverse proxies. A reverse proxy is a type of proxy
server that directs client requests to the appropriate back-end server. The
architecture of the designed WAFs is shown in Fig. 4.1. The objective of a WAF

64 4. Stochastic techniques for web intrusion detection

is to accurately distinguish whether the received requests are suspicious or not.
For that, it receives as input a collection of HT'TP requests r{,79,...,r,. This
input comes from a client that targets the protected web server. After processing
an input request, the system outputs a single bit a; for the corresponding ;.
This output indicates whether the request has been classified as normal or
anomalous. The proposed WAFs are programmed in Java. The communications
between the client and the WAF, and between the WAF and the server, are
implemented via sockets. The systems can be located between the client and
the server, or they could be included as a module of the web server to be

protected.

Client WAF Server

HTTP Regq. ~— HTTP Reg. —
,--"'--*

HTTP Resp,

Figure 4.1 — Web Application Firewall Architecture.

Detection takes place at the application layer. Analyzing the payload of the
requests, and not only the headers of the TCP packet, makes possible to be
more efficient and detect more types of web attacks. According to WASC, the
analysis developed at the application layer is capable of detecting web attacks
that cannot be detected when working on lower OSI layers [WASC, 2006].

The proposed WAFs can act online or offline. Online systems are those
connected to the network, handling traffic on demand. Contrarily, offline
systems are disconnected from the network, typically analyzing requests from

a dataset.

The incoming requests are processed individually. This means that
those requests analyzed previously do not influence the decision about the
classification of the present request. Thus, these WAFs are focused on detecting
attacks that involve a single request. Some systems in the state of the art are
specialized on detecting a specific type of attack, like [Valeur et al., 2005] in
detecting SQL attacks or [Kirda et al., 2009] and [Wurzinger et al., 2009] in
detecting XSS. In contrast to this type of systems, the WAFs presented in this

4.4. Design 65

work are designed to detect multiple types of web attacks, such as SQLi, XSS,

buffer overflow, server side include or parameter tampering, among others.

Additionally, the whole HTTP request is analyzed. This characteristic
is different from other works, that analyze only some parts of the request,
like [Kruegel and Vigna, 2003] and [Song et al., 2009]. This decision was taken
based on the fact that attacks can be included in any part of the request.
For instance, XSS attacks could be embedded into the User-Agent header, or
cookies could be used as part of web attacks (cookie hijacking) [Riley et al.,
2010]. Then, in order to detect these attacks, the whole request needs to be

analyzed.

4.4 Design

The proposed systems follow an anomaly-based approach. In this approach
the normal behavior of the web application is characterized and those requests
that deviate more than a threshold from the specified behavior are deemed as

anomalous. This approach was further explained in Sec. 2.2.1.3.

The proposed systems are designed following two stages: preprocessing and
processing. These stages are explained next. This design is shared by both

systems since they apply stochastic algorithms.

o Preprocessing. When an individual request is received, it is firstly
decoded. Then, feature extraction takes place: those features
considered relevant for detecting attacks are extracted from the request. It
is done by means of expert knowledge about web attacks. For extracting
features, the request is parsed into its components: HTTP method,
resource, version of the HTTP protocol, headers and arguments. The
resource is composed of directories and a file. In this thesis, arguments
include both arguments of POST requests and parameters in the query of
GET requests. Headers and arguments are further split into their name
and value. Figure 2.1 on Sec. 2.1.2 shows an example of an HT'TP request

and its components.

With the aim of detecting both static and dynamic attacks, the following

features are extracted from the different request components:

66

4. Stochastic techniques for web intrusion detection

— Method name.
— Path and name of the resource targeted.

— For each header: header name and stochastic models of the header

value.

— For each argument: argument name and stochastic models of the

argument value.

Argument and header values are considered more critical from the web
security perspective since attacks are more frequently embedded in these
components. Thus, stochastic models are applied to capture the properties
of these components. The models are implemented differently depending
on the algorithm used, statistical or Markovian. Detection models are

explained in Sec. 4.5.

The features extracted are stored in the Normal Behavior Description file.

Details of this file are given in Sec. 4.6.
The proposed approach is applied at token level [Krueger et al., 2010].

Features are extracted from each component individually, not from the
whole request. This is useful due that each component might have a
different nature. Furthermore, each argument or header might have
different properties. For example, the character distribution of a zip code
is different from the one of a user’s name argument. According to Kruegel
et al., “systems that focus on web-based attacks show that by taking
advantage of the specificity of a particular application domain is possible
to achieve better detection results” [Kruegel et al., 2005b]. Since it gives
more precision than if the features were extracted for the whole request
or for a group of components, it is the option chosen to design WAFs in
this thesis.

Processing. The processing stage of a request is different depending on
the phase of the system: training or test. During the training phase,
the features extracted are used to learn the normal behavior of the web
application. It implies filling the NBD file and training the corresponding

detection models.

In the test phase, incoming traffic is classified. In order to do that, it is

checked whether the features of the incoming request match the normal

4.5. Detection models 67

behavior stored in the NBD file. If any feature does not match the normal
behavior, the whole request is deemed as anomalous. Otherwise, it is

classified as normal.

After the test phase, the request is encoded and sent to the web server.
It is important to clarify that the action performed in this step depends
on whether the system acts as an IDS or IPS. The presented systems can
work on both modes. In the IDS mode, these systems send all requests
to the server and raise an alarm when the request has been classified as
anomalous. In the IPS mode, the systems only forward normal requests.

That is, anomalous ones are blocked.

An scheme of the presented design can be seen in Fig. 4.2.

Preprocessing ‘{ Feature extraction

Training phase — T

Processing

Test phase

Figure 4.2 — Design structure of stochastic-based WAFs.

Next, detection models are presented.

4.5 Detection models

Detection models are applied to characterize the behavior of argument and
header values. Recall that models are applied to every argument or header
present in the request and that the models are applied individually to each of

them, what gives more precision in the detection.

These detection models are based on normality intervals that define a range
within the argument or header values are considered normal. Values falling
outside the intervals are considered anomalous. The limits of the intervals are

learned during the training phase. If only normal traffic is used during the

68 4. Stochastic techniques for web intrusion detection

training phase, the limits of the intervals establish thresholds between what is

considered normal or anomalous.

Both stochastic systems use two detection models. One of the models
analyzes the length of the argument/header value and the other, calculates
stochastic properties of its characters. The detection models are implemented
differently depending on the algorithm used. Next, details about statistical

and Markovian detection models are given.

4.5.1 Statistical detection models

As mentioned, the statistical approach uses two detection models: 1) length
and, 2) character distribution of the argument/header values. These models

are explained next.

e Length model. Length is a useful criterion to detect attacks due to the
fact that, on the one hand, values of normal requests do not usually contain
many bytes and, on the other hand, many web attacks use a considerable
large amount of input characters (such as code injection, XSS and buffer
overflow). This model captures the length of the argument /header value.
The limits of the interval are established as the minimum and the
maximum length of the argument/header values seen in the training.
In previous experiments, we set these limits to different values, as it will

be explained later.

o Character distribution model. Several intervals are defined for
this model. By using our expert knowledge about web attacks, we
observed that not all characters have the same importance in web
attacks. Special characters are particularly relevant for the detection
of numerous web attacks. Furthermore, Sriraghavan and Lucchese
proved that considering letters, digits and non-alphanumeric characters
is more efficient than considering the relative frequency of the 256 ASCII
characters [Sriraghavan and Lucchese, 2008]. Therefore, instead of
considering the 256 ASCII characters individually, the statistical WAF

models the characters of the argument/header values into three groups:

4.5. Detection models 69

— Letters.
— Digits.

— Non-alphanumeric characters.

Besides the improvement in the detection, an advantage of considering
these three groups is that it accelerates the training and checking processes
of the models.

Percentages of the character distribution, according to these three groups,

were used as features to build the model. It is composed of three intervals:

— Percentage of letters.
— Percentage of digits.

— Percentage of non-alphanumeric characters included in a set
of non-alphanumeric characters allowed for the corresponding
argument /header. This set is formed during the training of the
system. That is, non-alphanumeric characters corresponding to the

argument /header value are included into the set.

Similarly to the length model, the limits of the intervals are fixed
with the minimum and maximum percentages found on the training
argument /header values. Next, an example of how the lower limit of
the letter interval is calculated. At the beginning its value is set to
the percentage of letters corresponding to the first header/argument
analyzed. If the percentage of the following values analyzed is lower than
the established limit, the limit of the interval is replaced by the new

percentage.

As mentioned, different limits of the intervals were considered in a previous
version of the model. In that case, instead of the minimum and the maximum
values, the mean (u) and the standard deviation (o) were used to calculate
the limits. The width of the interval was regulated by a sensibility parameter
s €[0.2,4]:

w—o-s,pu+o-sl.

From the experiments, it was observed that if the sensibility parameter

was not high enough, some normal values fell outside the interval in the test

70 4. Stochastic techniques for web intrusion detection

phase. Particularly, it happened in those cases that were not close enough to
the mean. Since the criteria of establishing the limits of the interval with the
minimum and maximum values makes the system more efficient, this option

was preferred.

It is remarkable that the approach proposed has less models than most
of the existing statistical WAFs. For example, Kruegel et al. uses eight
detection models [Kruegel et al., 2005b]. Sriraghavan and Lucchese use five
models [Sriraghavan and Lucchese, 2008]. And the paper from Criscione and
Zanero employs six models for detecting SQL attacks [Criscione and Zanero,
2009]. Provided that it does not harm the detection, using a low amount
of simple models allows to save time and resources, at the same time that

simplifies the design of the system.

4.5.2 Markovian detection models

The system based on Markov chains also uses two detection models for the
characterization of the application normal behavior: the first model considers
the length of the argument/header value and the second its structure. Note
that structure is different from character distribution. The structure does not
only consider the percentage of each type of character, but also the order of

the characters. It captures which character is followed by another one.

o Length model. This model uses the length of an argument or header

value in order to detect anomalies.

Similarly to the statistical case, this model is based on intervals that
define the range of normality for the argument/header values. However, it
also presents some differences. One difference is that the Markovian model
makes the assumption that the length of normal argument/header values
follows a Gaussian distribution. This distribution is used to calculate the
thresholds of the length interval:

— Instead of considering the minimum length of the training values
as in the statistical case, the Markovian model sets the lower limit

of the interval to zero. It was done since from the security point of

4.5. Detection models 71

view, it is not necessary to restrict the lower limit. That is, a string

is not dangerous because the fact of being short.

— The upper limit is established as follows: given a probability, the
corresponding percentile of the Gaussian distribution is taken. For
example, if the probability is fixed to 0.9, the upper limit is the

value below which 90% of the observations fall.

For a normal distribution, the percentile is calculated with this
equation:

percentile = [+ Zscore * O,

where p is the mean, o the standard deviation and 2., also known
as standard score [Bluman, 2007]), is a measure to know how far
a data point is above or below the population mean, expressed in

standard deviations.

Then, the limits of the length interval are set as follows:

[0, percentile].

The probability p associated to the calculation of the corresponding
percentile is a parameter of the model. Its values can be configured
by the IT operator to test the behavior of the system under those

conditions (see Sec. 4.9).

e Structure model. Markov chains are ideal for modeling the structure
of tokens, since they can capture the order in which characters are
distributed. Recall that Markov chains are defined by I', IT and A. These

concepts were explained in Sec. 4.2.

The knowledge about the different states reached by the system, I, is
obtained though the observation of the system outcomes © = O;, that are
considered as possible states of the system. In our Markovian system, the
states correspond to the different types of characters: [(letter), d (digit)
and non-alphanumeric characters (such as *,(,),-,’, etc). Note that again,
the characters are grouped, what makes possible to reduce the number of

states of the Markov model. However, in this case each non-alphanumeric

72 4. Stochastic techniques for web intrusion detection

character constitutes an state itself. Contrarily to the statistical model,

there is not a generic state that covers all non-alphanumeric characters.

The probability of matrix A and vector II are estimated during the training
phase. The idea is that this model captures the normal distribution of the
characters forming the argument/header values. Each argument and each
header has its own Markov chain, what allows to capture the particular
structure of the corresponding values. During the test phase, it is checked
whether a given sequence of observations is recognized by the previously

estimated model or not.

For the learning phase, the simplest generalization of the Markov model
was considered. In it, every observed state depends on the previous
one, and only on the previous one. Then, the matrix of probabilities of

transitions can be estimated by:

- Pl = 0; N g1 = Oy)
Y P(g = 0;) .

The two probabilistic terms in the previous expression can be calculated
by counting occurrences of the states in the observed values. Similarly,
IT can be estimated by counting the occurrences of states in the first
character of the observed training values. For example, in the case of an
argument with value "Markov", the only state is [. The state [of vector
IT takes value 1, corresponding to "M". The transition from state [to [in

matrix A takes value 5.

All stochastic models are stored in the NBD file, that is explained next.

4.6 Normal behavior description file

The normal behavior learnt about the web application under study is stored in
a normal behavior description (NBD) file. It is implemented as an XML file.

XML files have the advantages of being universal and easily readable.

The structure of the NBD file is related to the components of HT'TP requests.
It has the following nodes:

¢ Methods. This node includes a whitelist of the allowed HTTP methods.

4.6. Normal behavior description file 73

e Headers. It contains a list of the admitted HTTP headers and a
characterization of their values. Header values are described in a rule
node that contains the two detection models explained in Sec. 4.5. The

models are implemented differently depending on the system.

e Directories. This node has a tree-like hierarchy, in close correspondence

to the web application’s directory structure:

— Directories of resources belonging to the web application are
represented by their name in a directory node, allowing to nest

directories. There is a node for each subdirectory in the resource.

— The web page of the resources (file) is characterized by its name in

a file node, placed within the corresponding directory node.

o Arguments. Each argument of the web page is defined by its name and
value in an argument node, holding from the corresponding file node. The
values of the arguments are characterized by the statistical or Markovian
models, depending on the system. The structure of the NBD file for these

models is explained below.

4.6.1 Particularities of the NBD file for the statistical

system

In this section the particularities of the structure of the NBD file corresponding
to the statistical detection models are explained. Statistical models are present
in the NBD file for each argument, and each header, in order to characterize
the statistical properties of their values. The intervals corresponding to the
statistical length and character distribution models are represented within the
stats node of the NBD file. The stats node corresponding to the length model

contains these elements:

o minLength.

» maxLength.

The stats node corresponding to the character distribution model contains

the following elements:

74 4. Stochastic techniques for web intrusion detection

o minLetter.
o maxLetter.
o minDigit.
o maxDigit.
e minSpecial.
» maxSpecial.

e special.

All elements starting with min represent the lower limit of the corresponding
interval. They are calculated as the minimum value seen in the training
argument /header values. For that, the length of the first element is established
as the minimum at the beginning. Then, if during the training phase the feature
of the incoming value is lower than the current limit in the NBD file, the lower
limit is updated. Analogously, elements starting with maz elements refer to
the upper limit. It is calculated similarly but with the maximum value. The
element called special represents the set of non-alphanumeric characters allowed
for the corresponding argument /header value. Recall that the statistical values
are extracted for each argument/header independently, since their values could

have totally different properties.
Figure 4.3 shows an example of the structure of the NBD file configured for

the target e-commerce web application presented in Sec. 3.4. In the example,
the file “add.jsp” in the “public” directory represents a page in charge of adding
a new product to the shopping cart. This page has two arguments: the name
of the product that the customer wishes to buy and the amount of items
selected. As an example, argument “amount” is shown. The allowed values of
this argument have a maximum length of 3, then its maximum value is 999.
These values are fully formed by digits, i.e., no letters or special characters are

permitted for this argument.

4.6. Normal behavior description file 75

<configuration>
<methods>
<method>GET</method>
<method>POST</method>
</methods>
<headers>
<rule name="Accept-Charset">
<stats minLength="5" maxLength="20"
minletter="4" maxLetter="90"
minDigit="2" maxDigit="60"
minSpecial="2" maxSpecial="25"
special="-"/>
</rule>
</headers>
<directories>
<directory name="shop">
<file name="index.jsp"/>
<directory name="public">
<file name="add.jsp">
<argument name="amount">
<stats minLength="1" maxLength="3"
minLetter="0" maxLetter="0O"
minDigit="100" maxDigit="100"
minSpecial="0" maxSpecial="0"
special=""/>
</argument>

Figure 4.3 — NBD file example for the statistical algorithm.

4.6.2 Particularities of the NBD file for the Markovian

system

In this section, the structure of the NBD file related to Markovian models
is presented. The length model is represented by the length node in the file.
This node is defined by the lower and upper limits of the length interval. The
Markov model node contains information about the structure of the values
represented by a Markov chain. This node describes the states I', vector 11,
and matrix A of the Markovian model. This model is updated dynamically as
long as the training requests are received. Note that only the states found in

the training values will be captured by the model. For example, a zip code will

76 4. Stochastic techniques for web intrusion detection

only have the state d. In this case, states [and non-alphanumeric characters
are not needed to define the allowed values of this argument. This implies that
the dimension of matrix A is not fixed. It is minimized as much as possible for
each token. This fact helps to reduce the memory consumption to store the
model and the time needed to check if a string matches it.

Y

Figure 4.4 shows an example of the NBD file configured for “Nuestra Tierra’
web application. The example is presented for the same web page “add.jsp”.
Regarding the length model, the lower limit is fixed to zero. The upper limit
is calculated as the percentile of the Gaussian distribution. The “amount”
parameter contains only digits. As there is only one state, vector II and matrix
A have only one element (100% of the characters are digits). In the case
of the “product name” argument, the possible states are: letter and space
(non-alphanumeric character). Then, the dimension of II is 1x2 and A is 2x2.
As vector I reflects, the name of a product can only start with a letter. Matrix
A contains the following knowledge: in 90% of the cases the character following
a letter is another letter, and in 10% of the cases it is a space. After a space

always a letter is following.

4.7 Detection process

Detection process takes place during the test phase. In this step the system
is already trained and it is ready for operation. The goal of this phase is to

correctly classify the incoming requests as normal or anomalous.

An schema of the detection process is depicted in Fig. 4.5. It consists of a
succession of steps that are in charge of testing whether the request satisfies
the normal behavior learned or not. To do that, the first step is extracting
features from the incoming request. Then, the detection process takes place. In
it, it is successively checked whether different components of the request match
their corresponding section in the NBD file. This file has been previously filled

with those values considered normal for the target web application.

4.7. Detection process 7

<configuration>
<methods>
<method>GET</method>
<method>P0OST</method>
</methods>
<headers>
<rule name="Accept-Language">
<length lowerLimit="0" upperLimit="2"/>
<markovModel A="1.0" Pi="1.0" states="1"/>
</rule>
</headers>

<directories>
<directory name="shop">
<file name="index.jsp"/>
<directory name="public">
<file name="add.jsp">
<argument name="amount">
<length lowerLimit="0" upperLimit="2.29"/>
<markovModel A="1.0" Pi="1.0" states="4"/>
</argument>
<argument name="productName">
<length lowerLimit="0" upperLimit="14.56"/>
<markovModel A="0.9 0.1 1.0 0.0" Pi="1.0 0.0" states="1, space"/>
</argument>

</file>
</directory>
</directory>
</directories>

Figure 4.4 — NBD file example for the Markov chain algorithm.

The detection process is composed of the following steps:

1. The process starts checking the HT'TP method. It is done by checking
whether the method belongs to the whitelist contained in the NBD file or
not. In case the method is not present, the whole request is rejected and

the detection process ends. Otherwise the detection process continues.

4. Stochastic techniques for web intrusion detection

Request

incorrect
e

Method check

correct
v

correct [
v

Normal
Behaviour (-F--- >
Description

incorrect

incorrect

I
1
[
[
1
: ('Of'f'(?(,'fl
[
:
1

Arguments
check

=

mrrecﬁ-
L

Forward request Reject request

Figure 4.5 — Detection process flow.

2. Headers are checked. For each header, the process is the following:

(a) Firstly, it is checked whether the header name appears in the NBD
file.

(b) If so, its value is checked. To consider a header as valid, its value
should match both detection models. It is done differently depending
on the system (statistical or Markovian). The detection process of

these models is later explained in this section.

3. Regarding resources, it is checked if both the path (directories) and the
file accessed are in correspondence with the tree structure of the NBD

nodes.

4. If there is any argument, each of them is checked in a way similar to

headers’ checking:

4.7. Detection process 79

(a) Firstly, it is checked whether the argument is allowed for the targeted
resource or not. To be allowed, the argument name should be

included in the list of arguments of the corresponding resource.

(b) If so, the value of the argument is tested. The argument should satisfy
both detection models. Checking these models is done following the
same process carried out with headers. It is later explained in this

section.

Since there is no previous information about which header or argument
could be more prone to be an attack, they are checked in the same order as
they appear in the request. As can be observed, only when it is confirmed that
every part of the request is normal, the request is tagged as normal. As soon
as any part of the request does not match the normal criteria established, the
whole request is classified as anomalous. It is remarkable that this process has
a design where not all modules need to be evaluated. Some of them can be
skipped under certain circumstances. In particular, these circumstances happen
when any part of the request does not pass any of the defense lines. In that
case, the request is directly rejected. This fact makes possible to accelerate the
decision process. Even more, it is new in comparison to most statistical-based
works in the literature, like [Kruegel et al., 2005b], [Cheng, 2009], [Sriraghavan
and Lucchese, 2008], [Criscione and Zanero, 2009]. These works usually need
to evaluate every model before deciding about the normality /abnormality of

the request.

Since this process checks different parts of the request, it allows the detection

of both static and dynamic attacks.

4.7.1 Detection process in statistical models

The process to check whether a specific argument /header value of the incoming

request satisfies the statistical models follows this structure:

o First, the length model is checked. To satisfy this model, the length of the
argument /header value to be tested should fall inside the corresponding

length interval in the NBD file. Since this interval specifies the limits

80 4. Stochastic techniques for web intrusion detection

of normal values, they are classified as normal. Otherwise, they are

considered anomalous.

e Second, the character distribution model is analyzed. To be considered
normal, the value to be checked should be included inside the three
intervals defined in the NBD file, that correspond to the letter, digit
and non-alphanumeric character distribution. Additionally, its special
characters should be contained in the corresponding special set. If any of
the thresholds are bypassed (i.e., the values fall outside the intervals) or
the value contains non-allowed special characters, the request is labeled

as anomalous.

4.7.2 Detection process in Markovian models

The process to check whether the Markovian model is satisfied is the following:

o First, the length model is evaluated by checking if the length of the
incoming argument/header value is inside the corresponding interval of

allowed lengths.

e Second, to evaluate whether a given observed value is recognized by the

previously estimated Markov chain, the following approach is adopted:

Given a Markov chain A\ = (', A, II) and a sequence of observed symbols
O = 01,0, ...,0r, the sequence is recognized by the Markov chain if the
probability of the sequence being generated by the Markov chain (P[O])])
exceeds an established threshold. Recall that the state corresponding to

the characters is checked, not the character itself.

Based on [Estévez-Tapiador et al., 2004], the representation on a
logarithmic scale of the Maximum A-posteriori Probability (MAP) is used
to evaluate if the observed sequence has been generated by the Markov

chain:
-1

LogM AP(O,\) = log(mo,) + Y _ log(ao,o,,,)- (4.1)

t=1
Since it is logarithmic, in this measure no probability can be zero. A

usual technique to avoid zero values is performing a previous smoothing

4.8. Experimental setup 81

of the Markov chain. A simple way of smoothing the model is setting

those probabilities lower than a given threshold, to a fixed value called e.

As long as the observations fit the model, the “LogMAP” function (4.1)
does not have abrupt changes of slope. However, if there is any unexpected
symbol, there will be an abrupt change of slope. Detecting these changes
would mean detecting anomalies. To detect them, an approximation of
the derivative of the “LogMAP” function can be used:

D (t) = |LogM AP(t) — &/ S LogMAP(t—1), (42)

i=1
where W is the window size, that can take values W =1,2,3,.... The
last term in (4.2) is the mean of the last W outputs. This equation
supplies an output for each symbol analyzed in the sequence. When the
output exceeds a fixed threshold 7, the sequence of observed symbols
is classified as anomalous. e and 7 are configurable parameters of the

model.

4.8 Experimental setup

In this section the setup carried out for the experimental stage is explained.

Given that the CSIC dataset satisfies the requirements established in
Sec. 3.1.1 to be considered appropriate for evaluating WAFs, it is used to

conduct the experiments to evaluate the proposed systems.

Recall that the training dataset contains only normal traffic. Since the
algorithms are anomaly-based, the models learn correctly the normal behavior
of the web application when they are trained with only normal traffic. Although
a certain amount of noise would be tolerable for the stochastic algorithms, in
anomaly-based systems, attacks included in the training dataset could result
undetected in the test phase. This is why they were not included in the training

dataset for these experiments.

The systems perform a two-class detection: the requests are classified as

either normal or abnormal.

82 4. Stochastic techniques for web intrusion detection

With the aim of studying how the variation of the number of training
requests influences the detection results of the system, a number of experiments
are run. Let the number of experiments be M = 15. These experiments are
performed with an increasing number of training requests. The number of
requests used in each experiment is tr; = 2 —1,Vi € [1, M]. That is, the

number of training requests ranges from 1 to 32 767.

The number of possible combinations to choose tr; normal requests among
the total number of normal requests in the CSIC dataset (36 000) is very high.
Since trying all possibilities is infeasible, a few of them (H) have been randomly
chosen. In particular, H = 10. There are different options for choosing requests,
like stratified, quota or random [Ellison et al., 2009]. Within them, the random
method has been selected due that there is no previous information about
how the system is going to be attacked. More about experiments is argued in
Sec. 4.10.

The procedure for each experiment is the following: the system is trained
with ¢r; requests randomly chosen. Then the system is tested with a fixed
subset of testing requests, that contains te normal requests and te anomalous
requests, with te = 1000.

After the test phase the performance of the detection algorithm is evaluated,

as it is explained next.

4.9 Evaluation measures

Evaluating IDSs is a hard task. Sommer and Paxson even state that “evaluation
turns out to be more difficult than building the detector itself” [Sommer and
Paxson, 2010]. They point out the difficulty in finding the right data to test
the systems and complications in interpreting the results as the main obstacles

for evaluating IDSs. Difficulties in gathering data were addressed in Sec. 3.1.

Despite these difficulties, several measures can be used to evaluate IDSs
performance. Before introducing these measures, a few concepts are introduced
first.

Table 4.1 shows the contingency matrix of a detection system. If a real

attack is detected, the system obtains a True Positive (TP). Otherwise it is a

4.9. Evaluation measures 83

Table 4.1 — Contingency matrix for detection systems.

Detection classification
Negative Positive
Real label | Negative TN FP
Positive FN TP

False Negative (FN). If a normal event is signaled as normal by the detector,
it is a True Negative (TN). It is a False Positive (FP) if it is classified as an
attack.

For evaluating IDSs, detection rate and false positive rate are measures
generally used in the field. Detection rate (also known as recall) measures the

number of alarms that are indeed attacks. It is calculated as follows:

TP

DR=—"__.
= Tp N

The false positive rate indicates the number of alarms that are not really

attacks, i.e., false alarms:

FP

FPR= ——.
h FP+TN

DR y FPR take values between 0 and 100 and are expressed as a percentage.

The objective of IDSs is maximizing the detection rate while minimizing
the false positive rate. As can be seen, these objectives are antagonistic, then,
they are not easy to optimize simultaneously. The challenge of IDSs is to reach
a tradeoff between DR and FPR.

DR and FPR are usually plotted in Receiver Operating Characteristic
(ROC) curves [Provost et al., 1998]. According to Bradley, a ROC curve
provides a way to visually represent the trade-off between false positive and
detection rates by varying a parameter [Bradley, 1997]. Since plotting DR
vs. FPR represents one point in the graph when all parameters are fixed, the
variation of the parameter is used to draw the whole curve. For example, it is

common to use the detection threshold as a parameter of the ROC curve.

In our case, the parameter chosen for the graph is the number of requests

used in the training phase. This parameter is used for both the statistical and

84 4. Stochastic techniques for web intrusion detection

Markovian algorithms. As mentioned, the value of the parameter is increased
exponentially. Experiments are performed as follows. For every number of
requests used for the training (¢r;), the system is tested subsequently. This
allows to observe the influence of the parameter on the detection results. This

process is repeated H times.

In the case of Markov chains, additionally, the parameters of the Markov
chain are used in the ROC curve to test their behavior when they take different

values:

o Parameter p corresponds to the probability used to calculate the percentile
of the length model. This model was explained in Sec. 4.5. The values
tested for p are p = 0.9, p = 0.95 and p = 0.99.

o The parameter € is used to smooth the Markov model. As it was mentioned
in Sec. 4.7, it is assigned to values in the transition probabilities whose
values in the trained model are 0 or lower than a threshold. When ¢ takes
low values, the system is more sensible to deviations with respect to the
normal behavior. Following the study of Estevez-Tapiador et al. about
the values of this parameter, the values tested are: e = 10715, e = 10710,
e = 107% and € = 10™* [Estévez-Tapiador et al., 2004].

o Parameter 7 is the threshold used to decide whether a token value is
normal or anomalous. If the parameter takes low values, the detection is
more prone to false positives. On the contrary, if it is very high, it is not
possible to detect attacks with a low level of abnormality. Then, different
values have been tried to conclude which one leads to better detection
results: 7 = 30, 40, 50, 60, 70, 80, 90, 100, 200, 300.

4.10 Results

This section presents the detection results obtained in the experimental stage
by both systems. Results are presented according to the different evaluation

measures previously shown.

As mentioned in the previous sections, given a number of training requests,

the experiments are performed H times. This reduces the possible effect of

4.10. Results 85

1,0

0.8 -

1,00

06 F I -
0,99 1

DR

04 F 0,98 &

0,97
oo 03

02k ~

0,0 1 1 1 |
0,0 0,2 0.4 0,6 0,8 1,0

FPR

Figure 4.6 — ROC curve of the statistical algorithm. The parameter
used is the number of training requests.

randomness and shows better the actual behavior of the WAFs. The results of

the system are expressed as the mean and standard deviation of the H trials.

The results of the statistical-based system are shown in Fig. 4.6. It plots
the ROC curve (DR vs. FPR) of the algorithm. The parameter chosen is the
number of requests used in the training phase. A zoom of the upper left corner

is shown for more clarity.

The results obtained for Markov chains can be seen in Fig. 4.7. Additionally,
for Markov chains, a study of the behavior of the systems for various values of
the parameters has been done. Figure 4.8 shows the ROC curve corresponding
to different values of the parameter p, Fig. 4.9 for parameter ¢ and Fig. 4.10
for parameter 7. These results are discussed in Sec. 4.11. Moreover, the values
of the parameters have been studied according to the incremental number of
requests used to train the system. Figure 4.11 and Fig. 4.12 show the DR
and FPR corresponding to parameter p. Figure. 4.13 and Fig. 4.14 present
results for parameter e. And Fig. 4.15 and Fig. 4.16 for parameter 7. These
figures show a small figure inside with a zoom of the graph to facilitate the

visualization of the results.

A discussion of these results is given in the next section.

86 4. Stochastic techniques for web intrusion detection

0,97
o0 03

02§ H

0,0 1 1 1 |
0,0 0,2 0.4 06 08 1.0

FPR

Figure 4.7 — ROC curve of the Markovian algorithm. The parameter
used is the number of training requests.

| —m—p=0.99
0.2 090 05| —®— p=0.951
, FPR —A— p:Og |
——p=08 |

0,0 1 | | |
0,0 0,2 0.4 0,6 0.8 1,0

FPR

Figure 4.8 — ROC curve of the Markovian algorithm. The parameter
used is p.

4.10. Results

|
0.0 0s | —4a—g=10 ‘
J

02F 09 -8 ||
FPR
-4
—x—g=10
0,0 1 1 | 1
0,0 0,2 04 06 0,8 1,0
FPR

Figure 4.9 — ROC curve of the Markovian algorithm. The parameter
used is e.

—0— =300
#— =200 |
— | =—1=100
——1=90
—Oo—1=80 | S
=70
—x— =60
02} o9 s W
00 FPR 05 | —@—1=40
—a—1=30
0'0 1 1 1 1
0,0 0,2 04 0.6 0.8 1,0

FPR

Figure 4.10 — ROC curve of the Markovian algorithm. The parameter
used is 7.

4. Stochastic techniques for web intrusion detection

1,0 —pg=—= = =
—u— p=0.99

08l 10 —eo— p=0.95| |
—4—p=0.9
— p:O_B

06 =

| B
04 F .
02+ 09 i i L i -
1 10 100 1000 10000 100000
Number of training requests
0,0 1 I 1 1
1 10 100 1000 10000 100000

Number of training requests

Figure 4.11 — DR according to the increase of the number of training
requests for the Markovian algorithm. The parameter used is p.

1.0 T T
08 |- a
06 3
a L3 \—o—-.—-.
(T \.
04 F - - S R
10 100 1000 10000 100000
hNumber of training requests
02 N
A
\h.:}-._—-‘-‘h“_‘_'_‘__‘
]
e g % —p—o—
00 : i, -

1 10 100 1000 10000 100000
Number of training requests

Figure 4.12 — FPR according to the increase of the number of training
requests for the Markovian algorithm. The parameter used is p.

4.10. Results

-15
08 |- —m—g=10 -
-10
—e—e=10
-8
—a— g=10
06 - NE
—x—g=10
x
=]
04 F .
0,2 | 0,9 i L L L -
1 10 100 1000 10000 100000
Mumber of training requests
0,0 1 I 1 1
1 10 100 1000 10000 100000

Number of training requests

Figure 4.13 — DR according to the increase of the number of training
requests for the Markovian algorithm. The parameter used is e.

-

A= —a—y |

L n "
10 100 1000 10000 100000
MNumber of training requests

0.0 1 | —= s —
1 10 100 1000 10000 100000
Number of training requests

Figure 4.14 — FPR according to the increase of the number of training
requests for the Markovian algorithm. The parameter used is e.

90

4. Stochastic techniques for web intrusion detection

0,6

DR

04

02

0,0

Figure 4.15 — DR according to the increase of the number of training

Number of training requests

L |[—o— =300 N e - -
—&— =200 \;\.-q_c___ =
=100 & A
| |—=—=90 ey - |
—0—1=80 =SS
=70
—*—1=60 0.9 : : i L
[~ | —A— =50 g 10 100 1000 10000 100000 |
—— =40 Mumber of training requests
—8—1=30
i 1 I 1
10 100 1000 10000 100000

requests for the Markovian algorithm. The parameter used is 7.

0,6

FP

04 -

02

0,0

Figure 4.16 — FPR according to the increase of the number of training

Number of training requests

e —
0.2
&
| —C—1=300]" -
v —1=200
- — =100
——1=90
—O—1=80 0.0, 10 00 1000 o000 100000 |
T=70 Number of training requests
<= 1=60
| [—&=— =30 3
—0— 1=4(
10 100 1000 10000 100000

requests for the Markovian algorithm. The parameter used is 7.

4.10. Results 91

The influence of the number of training requests in the results can be better
appreciated in the following figures and tables. Figure 4.17 presents the results
for statistical techniques. It reflects the influence of the training requests on
the detection results (DR and FPR). Training requests are represented in a
logarithmic scale. These results are detailed in Table 4.2 that shows, for each
iteration, the corresponding number of training requests, as well as the mean

(o) and standard deviation (u) of the DR, FPR and processing time.

1.0 : S e e

—
08 | .\.\' : | 5
—m— False Positive Rate
| - -» - Detection Rate _
06 \ 1

os | 5, 4
| \ |

L
—
B

Rate
|

0.0 1 I | | L -
1 10 100 1000 10000 100000

Number of training requests

Figure 4.17 — Study of the influence of the number of requests on the
detection results of statistical algorithm. DR and FPR are plotted vs.
the number of training requests.

Regarding Markov chains, Fig. 4.18 shows the influence of the number
of training requests in the results of the algorithm. The detection results
presented above, as well as the processing time of the Markovian algorithm are
summarized in Table 4.3. This table shows the mean and standard deviation

of DR, FPR and processing time for each tr;.

92 4. Stochastic techniques for web intrusion detection

Table 4.2 — Detection results and processing time for the statistical

algorithm.
Iteration Num. Training | DR (%) FPR (%) | Processing Time
Requests (ms/request)
,u o W o W o
1 1 100 0 96.7 1.68 | 1751 2.81
2 3 100 0 951 2.34 | 393.66 2.54
3 7 100 0 [90.0 2.27 | 179.95 2.39
4 15 100 0 81.6 3.41 | 86.17 2.34
5) 31 100 0 | 674 4.01 | 438 1.87
6 63 100 0 |46.4 4.32] 19.58 1.62
7 127 100 0 31.6 3.57 | 11.2 1.53
8 255 999 0.05|16.5 1.60 | 5.19 1.27
9 511 99.8 0.05 | 11.0 1.69 | 2.77 1.05
10 1023 99.8 0.05| 82 0.7 | 1.79 1.01
11 2047 99.6 0.14 | 5.7 0.83 1.1 0.88
12 4095 995 0.14 | 3.6 045 | 0.85 0.80
13 8191 99.4 0 1.5 0.12 | 0.68 0.61
14 16 383 99.4 0 0.9 0.05] 0.63 0.34
15 32767 99.3 0.05| 04 0.08 | 0.59 0.29

1.0 T -8 8-0-9- 98 8- 9

08 | 1 ! -1
—m— False Positive Rate |
Detection Rate |

02} \]

\

—
—a—

Rate
| §

0.0 L L B—S—p—n |
1 10 100 1000 10000 100000

Number of training requests

Figure 4.18 — Study of the influence of the number of requests on the
detection results of Markovian algorithm. DR and FPR, are plotted vs.
the number of training requests.

4.11. Discussion 93

Table 4.3 — Detection results and processing time for the Markov chains

algorithm.
Iteration Num. Training | DR (%) FPR (%) | Processing Time
Requests (ms/request)
,u o W o W o
1 1 100 0 97.2 0.70 | 2519 2.70
2 3 99.9 0.05 | 956 1.51 493 2.35
3 7 100 0 90.0 1.18 | 202.81 1.89
4 15 99.7 0.12 | 80.2 3.03 | 186.22 1.66
5) 31 99.8 0.19 | 69.1 3.17 | 50.83 1.58
6 63 99.4 0.20 | 456 1.96 | 37.69 1.29
7 127 99.3 0.09 | 23.6 2.96 | 20.01 0.52
8 255 99 029] 13.1 0.88 | 17.53 0.95
9 511 98.5 0.14 | 5.7 097 | 13.78 0.88
10 1023 984 0.05| 3.8 0.59 | 43.45 0.69
11 2047 98.2 0.08 | 29 0.34 | 10.32 0.45
12 4095 98.1 0.05 | 2.0 0.22] 10.16 0.29
13 8191 98.1 0.05| 1.7 037] 9.93 0.07
14 16 383 98.1 0 1.1 0 8.87 0.07
15 32767 98.1 0 1.0 0.05 7.9 0.09

4.11 Discussion

Next, the results presented previously for the statistical and Markovian systems

are analyzed.

4.11.1 Discussion of statistical results

Table 4.2 reveals that when the statistical WAF is trained with 16 383 requests,
it is able to achieve a mean DR of 99.4% while the mean FPR is 0.9%.
Results of Table 4.2 are represented graphically in Fig. 4.6. The corresponding
standard deviations are 0% and 0.05% respectively. A property of the Gaussian
distribution is that 95.4% of the values are 20 away from the mean value.
Assuming a Gaussian distribution in the example before, it means that for
95.4% of the values, the DR remains 99.4%, and FPR ranges from 0.8% to 1%.
Analyzing the three columns corresponding to ¢ in the table, it can be seen

that for FPR and time, the standard deviation decreases as long as the system

94 4. Stochastic techniques for web intrusion detection

is trained with a higher number of requests. In the case of the DR, o takes

values near zero.

Considering that the standard deviation takes values near zero, especially
when the system is trained with a higher number of requests, we did not continue
performing more experiments. We considered that taking H possibilities was
representative enough. These results presented correspond to the mean of the
H =10 runs. It is expected that the standard deviation would be even smaller
when a higher number of experiments is performed. Since o takes small values,
when DR and FPR results are given in this document without specifying o,

they refer to the mean value.

The mean processing time corresponding to the example above is
0.63 ms/request. All processing time measurements have been obtained with

an Intel core i7 CPU at 2.40 GHz and 8GB RAM, SO Windows 8, 64 bits.

A possibility to obtain even lower processing time values would be to study
the viability of parallelization in some parts of the process. Potential points to
introduce parallelization in the design of the presented WAFs are the different
steps of the detection process presented in Sec. 4.7 or the checking of the
different headers/arguments. Some works also have been done in the direction
of running Markov chains in parallel [Gopal and Casella, 2011], [Angelino, 2014].

However, a thorough study of this issue falls outside the scope of this thesis.

Representing the results graphically, the ROC curve of Fig. 4.17 shows
that when a low amount of training requests is used, the algorithm rejects
most requests. That is, DR is very high but false positive rate is also very
high. As long as the system is trained with more requests, the trend of the FP
is to decrease progressively. Three stages can be observed in the graph. At
the beginning (from 1 to 255 training requests), the reduction of the FPR is
very sharp. When the system starts being trained with more requests (until
8191 training requests), FPR decreases more slowly. In the last stage, when
the system is trained with higher amounts of requests, the fall is very soft.
Meanwhile, DR keeps almost invariable. DR has the highest value possible
(100%) at the beginning and, later, it is very lightly reduced. These results
reflect that when the algorithm does not have enough information, it cannot

detect correctly. When more information is provided, the system can detect

4.11. Discussion 95

intrusions while raising scarce false alarms, until a point where the addition of

more requests is not really providing new knowledge to the algorithm.

In comparison with other papers in the literature, the presented systems
use a low amount of requests. For example, TokDoc [Krueger et al., 2010]
uses a third of the requests of the FIRSTO0S dataset for the training phase,
that is, 484 040 requests. It was also trained with a third part of the BLOG09
dataset, i.e., 393 980 requests. Our statistical algorithm is able to reach a mean
DR of 99.4% and a mean FPR of 0.9%, while only using 16 383 requests. The

advantages of needing a low number of requests were explained in Sec. 2.5.

All types of attacks included in the CSIC dataset have been successfully
detected by the statistical algorithm.

4.11.2 Discussion of Markovian results

Table 4.3 shows that with 32 767 training requests the Markovian system reaches
a mean of 98.1% DR and 1% FPR. The associated o are 0% and 0.05%. These
results can be seen graphically represented in Fig. 4.7. In Table 4.3 it can be
observed that o decreases when the system is trained with more requests and
it takes values near zero. The mean processing time associated to these results

is 7.9 ms/request.

Regarding the study of Markov chain parameters, Fig. 4.8 shows that the
optimal value for parameter p is p = 0.99. The best value is chosen as the
one that achieves the best balance between a high DR and a low FPR. Study
of parameter p reveals that when its value is 0.8, the system cannot classify
correctly. When p = 0.8, DR and FPR are both 1, regardless the number of
requests used to train the system. This means that all requests analyzed by the
system are tagged as attacks. Therefore, in the case of our Markovian system,
this value is not meaningful to distinguish between normal and anomalous

requests. Hence, this parameter value should not be used.

The study of parameter € in Fig. 4.9 shows that the best results are achieved
when € = 1071, In the case of 7, the best value is 7 = 50. The influence
of this parameter can be seen in Fig. 4.10. Similarly to what happened with
parameter p, when 7 = 30 the systems cannot distinguish between normal and

abnormal values, then, this value should be discarded.

96 4. Stochastic techniques for web intrusion detection

Analyzing results in Fig. 4.18, it can be seen that, similarly to the statistical
system, the results pass through three different stages in the study of the
influence of training requests. Firstly, the DR and FPR are both high when
the algorithm is fed with few requests. As long as more requests are used in
the training, the trend of the algorithm is to achieve better results, until the

algorithm does not improve anymore, even when more traces are provided.

This behavior of the system is also reflected in the study of parameters. It
is shown in Fig. 4.11 and Fig. 4.12 for parameter p, Fig. 4.13 and Fig. 4.14
for parameter ¢ and Fig. 4.15 and Fig. 4.16 for parameter 7. These figures
show DR and FPR respectively, for different values of the parameters when
the number of training requests increases. Again, the results of the Markovian
algorithm improve when the number of training requests increases, until a point

where results hardly increase.

Optimal values for parameters, p = 0.99, € = 107*° and 7 = 50, were used
for the results shown in Table 4.3.

4.12 Conclusions
The main conclusions drawn from this chapter are:

o The proposed statistical and Markov chains algorithms are able to
correctly distinguish attacks from normal traffic. The whole request
is analyzed for intrusion detection, what allows detecting attacks in any

part of an HT'TP request.

o The presented algorithms achieve high detection rates. Statistical
techniques reach a mean DR of 99.4% and a mean FPR of 0.9%, with
0% and 0.05% values for the standard deviation respectively. Markov
chains achieve 98.1% DR and 1% FPR in average, with the same standard
deviation values than in the previous case. Additionally, the algorithms
are able to detect zero-day attacks. Moreover, all types of attacks in the
CSIC dataset are detected.

o The algorithms proposed are high-speed. Using 16 383 training requests

the statistical techniques reach a mean processing time of 0.63 ms/request,

4.12. Conclusions 97

with 0.34 standard deviation. This technique can even reach up to 0.59
ms/request when trained with 32767 requests. In the case of Markov
chains, the processing time for 32 767 training requests is 7.9 ms/request,

with a standard deviation of 0.09 ms/request.

e The algorithms are designed following the simplicity principle, while
not negatively affecting the detection results. Only two simple models,
applied to argument /header values, are used for detection. The rest of
the detection is done by means of whitelists. Besides than effective, the
detection process is designed to be efficient. It means that for each request
only the necessary components are evaluated. When any of the normality
conditions is not satisfied, the process does not need to continue any

longer.

o The study regarding the influence of the number of training requests
reveals that it is possible to achieve a mean FPR of 1% with a reduced
number of requests in comparison to the amounts that have been typically
used in intrusion detection so far. The experiments show that the
statistical technique presented uses 16 383 requests to achieve a mean
FPR of 0.9% and Markov chains use 32767 to achieve a mean FPR of
1%.

This study also confirms the expected trend in the behavior of the
algorithms: they detect correctly only when enough training requests are
received. However, after some point, increasing the number of requests

does not incorporate new knowledge to the learned behavior.

e The CSIC dataset can be successfully used to evaluate stochastic-based
WAFs. The fact of testing different systems with the same dataset allows

their comparison.

Chapter 5

Machine learning techniques for

web intrusion detection

“Intelligence is the ability to adapt to change."
— Stephen Hawking

This chapter proposes a WAF based on machine leaning techniques.
In particular, it is based on decision trees. After analyzing the
general architecture of the WAF | its design is presented. For this
system, the preprocessing phase comprises feature extraction and
feature selection. New feature extraction methods are proposed.
For feature selection, the GeFS measure is used. Processing
corresponds to the classification process, that is performed with the
help of decision trees. The system is evaluated using two datasets:
our CSIC dataset and the publicly available ECML/PKDD one.
After fixing the experimental settings, the results obtained from
the experiments are presented. Experiments show that the new
combination methods improve the results of both expert knowledge
and n-grams separately. Additionally, a study of the influence of

the number of training requests is given. Results are analyzed from

100 5. Machine learning techniques for web intrusion detection

different points of view. A comparison of stochastic and ML systems

is also included. Finally, the conclusions drawn are presented.

5.1 Introduction

The automation capabilities of machine learning have been applied to many
computer areas, among them, to intrusion detection. Some examples of
IDSs based on ML are presented in [Chen et al., 2005], [Mulay et al., 2010]
and [Sangkatsanee et al., 2011b]. The previous chapter proposed WAFs that
apply stochastic techniques for performing detection. This chapter also presents
a WAF, but in this case, the system uses ML techniques. Like in stochastic
systems, the ML-based WAF follows the anomaly approach. The objective
is again designing high-speed and high detection systems that have a simple
design. The design of the system includes a preprocessing and a processing
stage. In the preprocessing stage, feature extraction and feature selection are
applied. In particular, new feature extraction methods are proposed in this
chapter. These methods combine expert knowledge and n-grams, and they
prove to be more effective than these two techniques separately. Within the
variety of ML algorithms, decision trees are chosen for the classification stage
due to their successful application in intrusion detection. Four different decision
tree algorithms are applied, namely C4.5, CART, Random Tree and Random
Forest. Further details of the system and the experiments carried out are

explained in this chapter.

5.2 General architecture

The architecture of the ML system has many similarities with the stochastic
systems presented in the previous chapter. The system works at the application
layer analyzing the whole payload of HT'TP requests. After analyzing the
incoming requests, the system outputs its classification decision about the
normality or abnormality of the request. The system detects a variety of web

attacks that involve a single request.

The ML-based WAF analyzes the payloads at both token and request levels.

It makes the approach more complete from a security point of view, since more

5.3. Design 101

attacks can be detected. Including the request level is useful in cases where
all tokens satisfy the detection requirements but the whole request does not.
For example, when the length of all tokens are within the length limits but the
whole request is not. It does not mean that the analysis at token level is not
necessary. As it was argued before, it allows to detect many web attacks that

otherwise would go undetected.

5.3 Design

The design of the system counts with two stages: preprocessing and processing.

An scheme of this design is shown in Fig. 5.1.

Feature extraction

Preprocessing |1

Feature selection

Training phase

Processing <

Test phase

|

Figure 5.1 — Design structure of ML-based WAF.

e Preprocessing. This stage consists of feature extraction and
feature selection. Notions of these two processes can be found in
Sec. 2.3. Regarding feature extraction, in intrusion detection it is usually
done by applying either manual or automatic techniques. This thesis
proposes new feature extraction methods for ML by combining both
techniques. The previously proposed stochastic systems use expert
knowledge to extract features. Differently, the ML system combines expert
knowledge features with n-gram ones. The objective is that the proposed
methods improve the detection results of the separate techniques at the
same time that they consume low resources. These feature extraction

methods proposed are explained in Sec. 5.3.1.

102

5. Machine learning techniques for web intrusion detection

In order to guarantee that this combination consumes low-resources,
feature selection is applied to reduce the number of irrelevant and
redundant features. From the feature extraction categories presented
in Sec. 2.3.1, the filter model was chosen, given that it requires less
computational resources. In particular, the GeFS measure for intrusion
detection is applied. This measure has been successfully tested with
network traffic before [Nguyen et al., 2010b], [Nguyen et al., 2011].
However, it has not been applied to web traffic so far. In this dissertation
its behavior in HTTP traffic is studied. Details about this measure are

given in Sec. 5.3.2.

Processing. This step comprises the classification phase. ML include
a set of algorithms, such as Bayesian networks, artificial neural networks,
genetic algorithms, support vector machines or decision trees. From these
algorithms, decision trees have been widely and successfully applied to
intrusion detection. For this reason, they are chosen for the classification
process of the ML system. This election is based on the fact that
this family of algorithms is one of the most popular machine learning
algorithms [Wu et al., 2007]. Additionally, decision trees have been proven
to obtain experimentally successful results in intrusion detection. In fact,
the winner of the famous DARPA intrusion detection contest [Lippmann
et al., 2000a] was an algorithm based on decision trees [Pfahringer, 2000].
This characteristics make them promising to be applied to web attack
detection. Decision trees have been rarely employed to classify web
traffic. One of the goals of this thesis is studying their performance in

the classification of this type of traffic.

According to No-Free-Lunch Theorem, there are no universal classifiers
for every kind of data [Wolpert, 1996], [Wolpert, 2001]. Since there is no
standard classification algorithm for WAFs, four decision tree algorithms
have been applied: C4.5, Classification And Regression Tree, Random
Tree and Random Forest. They have a training and a test phase. These

algorithms are further explained in Sec. 5.3.3.

5.3. Design 103

5.3.1 Feature extraction

This thesis proposes new methods for feature extraction. These methods
combine expert knowledge and n-gram features. A description of n-grams can

be found in Sec. 2.3.1.1. Three combined extraction methods are proposed:

o« Combine-select. This alternative firstly mixes all features extracted
by expert knowledge and n-grams. As the number of n-grams often
leads to dimensionality problems, afterwards, feature selection is applied
in order to reduce the number of features. In the seldom cases where
the combination of automatic and manual features was applied in the
literature (see Sec. 2.3.1), this alternative was used. More alternatives

are presented next.

o Select-combine. This alternative mixes expert knowledge features
that have been previously selected. Differently to the previous option,
feature selection is performed firstly and, the resulting features, are mixed

subsequently.

o Select-n-gram-combine. This alternative follows the idea of
select-combine, however, it only takes the selected values of n-grams.
Expert knowledge features are not selected because they come from
knowledge of web attacks experts. Therefore, the subset derived from this
alternative is composed, on the one hand, by expert knowledge features

and, on the other hand, by the selected features from n-grams.

An scheme of these three alternatives can be seen in Fig. 5.2. Each of the
alternatives generates different subsets of features, receiving the same name
than the corresponding alternative. That is, the corresponding subsets are
called combine-select, select-combine and select-n-gram-combine. These subsets
are called “combination cases”. In contrast, expert knowledge and n-gram

subsets are referred to as “basic cases”.

104 5. Machine learning techniques for web intrusion detection

' N
’ Expert Feature Selected features
! Knowledge Selection i;i?w'?;gg:
L I r,
ateot el |
, N |
|
5 | Feature Selected features
N-grams | Selection from N-grams
\ J ' |
' |
I |
l |
S p—— | ===
| |
Feature I l
B Selection : :
| |
i | |
| |
\ 4 Y Vv \ 4
Combine- Select- Select-
select -gram- combine [
combine

Figure 5.2 — Structure of the three proposed combination alternatives.

5.3. Design 105

5.3.2 Feature selection

The GeFS measure, proposed by Nguyen et al., is used in this thesis for feature
selection. The main concepts of the GeF'S measure are explained next. For
further details see [Nguyen et al., 2010b].

The feature selection problem can be defined as finding
r=(x1,...,2,) € {0,1}" that maximizes the function GeF'S(x):
ap+ > Ai(x)z;

maxXgze{o,1}» GQFS(I’) = bo + Zn—l B(]I)I’ (51)

where binary values of the variable z; indicate the appearance (x; = 1) or the
absence (z; = 0) of the feature f;; ag, by are constants; A;(x), B;(x) are linear

functions of variables x4, ..., z, and n is number of features.

There are several feature selection measures that can be represented by
this form, such as the Correlation Feature Selection and Minimal Redundancy

Maximal Relevance measures.

Correlation Feature Selection measure: The Correlation Feature
Selection measure evaluates subsets of features on the basis of the following
hypothesis: “Good feature subsets contain features highly correlated with the

classification, yet uncorrelated to each other” [Hall, 1999].

Considering the merit of a feature subset S with k features as

kTef
VE+k(k—)75

Merits, =

the CFS criterion tries to maximize the merit of the subset of features:

maxg, { Lop T Tefy £ T Tehy } ; (5.2)
VE+20r s + o4 o+ rpg)

Tes represents the average value of all feature-classification correlations and 77

is the average value of all feature-feature correlations.

By using binary values of the variable z; to indicate the appearance (z; = 1)

or the absence (x; = 0) of the feature f; in the globally optimal feature set, the

106 5. Machine learning techniques for web intrusion detection

expression (5.2) can be rewritten as an optimization problem:

(i aiws)? } '

?:1 Z; + Zz#] Qbijl'ifljj

maXgze{o,1}» {

Minimal Redundancy Maximal Relevance measure: This method
considers relevant features and redundant features simultaneously. For the
given feature set S and the class ¢, D(S, ¢) represents the relevance of S for
the class ¢ and R(S) the redundancy of all features in set S. Then the mRMR

measure is defined as

maxg {D(S,c) — R(S)} . (5.3)
Relevance is defined as
D(S,¢) =19 fzz;s[fise)
and redundancy
R(S) = |51|2 Z I(f5; 1),
fi,fi€8

where I(f,, fp) is the mutual information function, with f, and f, being features

or the class label.

In the mRMR criterion, the binary values of the variable x; are used in
order to indicate the appearance (x; = 1) or the absence (x; = 0) of the feature
fi in the globally optimal feature set. The mutual information values I(f;;c),
I(f;; f;) are denoted by constants ¢;, a;j, respectively. Suppose that there are

n full-set features, then, the problem (5.3) can be described as an optimization

mMaXge{0,1} Y Gt 2= G Tl
x€{0,1}n — .
i1 T (307 :)?

problem:

To solve the feature selection problem 5.1, it is transformed into a mixed
0-1 linear programming problem, which is later solved by using the branch and

bound algorithm.

Next, the search strategy for obtaining relevant features and the criterion

to choose the appropriate instance of the GeF'S measure are detailed:

5.3. Design 107

o Step 1: Analyze the statistical properties of the given dataset in order to
choose the appropriate instance (CFS or mRMR) of the GeFS measure.
The criterion to choose the appropriate instance in each case is the
following: the C'F'S measure is chosen if the dataset has many features
that are linearly correlated to the class label and to each other. Otherwise,

the mRMR measure is selected.

In the case of web traffic, the methodology applied to implement this
step is twofold:

1. First, the corresponding subset of features is visualized in the
two-dimensional space to get a plot matrix. In the matrix, each
element represents the distribution of data points depending on,
either the values of a feature and the class label, or the values of

two features.

2. With the aim of verifying the observations from the graphics, the
next step is to calculate correlation coefficients between features.
For that, the commonly used Pearson’s correlation coefficient [Lutu,
2010] is used. These coefficients take values between -1 and 1.
According to Cohen’s criteria for interpreting correlations, values
lower than 0.1 have no practical significance [Lutu, 2010]. Then,
it is considered that there are linear correlations between features
when at least half of the coefficients are greater than 0.1 [Nguyen,
2012].

This methodology can be seen graphically in Fig. 5.3.

o Step 2: According to the choice from Step I, construct the optimization
problem in 5.1 for the CFS or mRMR measures. In this step, expert
knowledge can be used by assigning the value 1 to the variable if the

feature is relevant and the value 0 otherwise.

e Step 3: Transform the optimization problem of the GeFS measure to a
mixed 0-1 linear programming (MO1LP) problem, which is to be solved
by means of a branch and bound algorithm. A non-zero integer value of
x; from the optimal solution = indicates the relevance of the feature f;

regarding the GeFS measure.

108 5. Machine learning techniques for web intrusion detection

These steps are to be followed for every subset in which feature selection is

applied.

INPUT: Subset (expert
knowledge. n-gram. ete.)

U

‘ 2D REPRESENTATION ’

U

CORRELATION COEFFICIENTS
CALCULATION

U

OUTPUT: Selection of the
GeFS instance (CFS or mRMR)

Figure 5.3 — Scheme for the selection of the appropriate instance of the
GeFS measure.

5.3.3 Classification

The intrusion detection problem has been frequently formulated as a pattern
recognition task [Nguyen, 2012]. Thus, it can be seen as a classification problem,

where the requests should be classified as normal or anomalous.

Decision tree algorithms are predictive models that can be used as classifiers.
They are very useful when massive volume of data need to be analyzed. In this
work, the classification algorithms are in charge of deciding whether to label
the incoming request as normal or anomalous. An advantage of decision trees
is that they construct human-understandable classification rules, which could
be later included in a signature-based detection system. In relation to that,
papers like [Robertson et al., 2006] and [Bolzoni and Etalle, 2008] studied how

to derive rules from an anomaly detection system.

As mentioned, four decision trees have been applied as classification
algorithms in the ML system. Following, a brief explanation of each algorithm
is presented. Further details about the algorithms can be found in [Duda et al.,

2001] and [Wu et al., 2007].

5.3. Design 109

e C4.5 was introduced by Ross Quinlan. It is an algorithm used to
generate decision trees that are built from a set of training data using the
concept of information entropy [Quinlan, 1993]. At each node of the tree,
C4.5 chooses the attribute that most effectively splits its samples into
differentiated classes. For that, the criterion is to choose the attribute
that gives the highest normalized information gain. Then the C4.5
algorithm recurs on the smaller sublists. The initial tree is pruned to

avoid overfitting. Overfitting was explained in Sec. 2.5.

o CART stands for Classification And Regression Tree. It was popularized
by Breiman et al. It is a recursive partitioning method that builds trees
for predicting continuous dependent variables (regression) and categorical
predictor variables (classification) [Breiman et al., 1984]. CART is a
non-parametric algorithm. It generates a binary decision tree that is
constructed by splitting the node that best differentiates the target
variable into two child nodes repeatedly. It starts with the root node,
that contains the whole learning sample. Important aspects of CART are
deciding when the tree is complete and assigning a class to each terminal

node.

« Random trees include the idea of selecting features randomly. This
idea was introduced independently by Ho [Ho, 1995], [Ho, 1998] and Amit
and Geman [Amit and Geman, 1997]. The implementation used in this
thesis constructs a tree that considers K randomly chosen attributes
at each node. It does not perform pruning to reduce the size of the
decision tree. According to Olaru and Wehenkel, the goal of pruning
“is to provide a good compromise between a model’s simplicity and its
predictive accuracy, by removing irrelevant parts of the model” [Olaru

and Wehenkel, 2003].

« Random forest is an ensemble classifier that consists of many decision
trees. Its output class is the mode of the class’ output by individual
trees. The algorithm for inducing a random forest was developed by
Breiman [Breiman, 2001], Cutler and Stevens [Cutler and Stevens, 2006].

Figure 5.4 shows an example of a decision tree extracted from the Weka
software [Hall et al., 2009]. It is built by the C4.5 algorithm over the

110 5. Machine learning techniques for web intrusion detection

select-n-gram-combine subset of the ECML/PKDD dataset when it is trained
with 255 requests. The values in the leafs represent the class: normal is
represented as 0 and abnormal as 1. The number in brackets mean the number
of instances that fall into that category. The tree can be interpreted as follows:
if the incoming payload contains < 1 character '(’ (attribute x85), then the
request is classified as normal. Otherwise, if it has none or one character ’)’
(attribute x83), then the request is also considered normal. If this is not the case,
it is analyzed if attribute x29 is lower or equal to 7. Attribute x29 represents
the number of keywords in the path. In that case, the request is classified as
anomalous. Otherwise, the length of the header "User-Agent" (attribute x13) is
checked to label the request. This label is anomalous if x13 < 66 and normal

otherwise. As can be seen, it is easy to derive rules from a decision tree.

f!
a2, e
£¢:1 =1
o) K}
d’f{:? =7
a0, ®
fﬁzEE bEEw-,__q_
160 wao)

Figure 5.4 — Example of decision tree built with the C4.5 algoritm.

5.4 Experimental setup

This section explains the experimental setup of the experiments performed with
the ML-based WAF. First, the datasets used are explained. Then, settings
regarding the preprocessing stage are presented. At last, settings for the study

of the influence of the training requests in the detection results are given.

5.4. Experimental setup 111

5.4.1 Datasets

In this chapter, two datasets are used to experimentally evaluate the detection
algorithms: our CSIC dataset and the ECML/PKDD dataset.

The CSIC dataset was presented in Chapter 3. It was employed in the
previous chapter for evaluating stochastic algorithms. The advantage of using
this dataset for stochastic and ML algorithms is that it makes possible the

comparison of both techniques.

Additionally, the publicly available FCML/PKDD dataset is used. This
dataset was generated for the ECML/PKDD 2007 Discovery Challenge [Raissi
et al., 2007]. It is composed of 50000 samples, including 20% of attacks.
The dataset is divided into the training and the test sets. The training set
is employed for the experiments. Requests are labeled with specifications of
normal traffic or the following attack classes: cross-site scripting, SQL injection,
LDAP injection, XPATH Injection, path traversal, command execution and
server-side include (SSI) attacks. Although the requests of this dataset are
anonymized, we consider interesting to evaluate the system using a public

dataset.

This dataset could not be used with stochastic systems due to the
characteristics of these systems and the anonymity of the dataset. The fact
that the ECML/PKDD dataset is anonymized implies that there are not two
requests addressing the same web application. This makes the dataset unusable
for the stochastic algorithms designed in this thesis given that they use the
string corresponding to the resource as part of the detection process. The
XML file generated would be huge and there would be no repeated resources,
what does not make sense from the statistical point of view, since statistical

algorithms need a number of requests in order to obtain meaningful results.

In the case of ML, the system extracts features from the resources, that is,
they use properties of the resources, like their length, instead of the string of
the resource name itself. These characteristics make the ECML/PKDD dataset
applicable in the ML case.

112 5. Machine learning techniques for web intrusion detection

5.4.2 Preprocessing Settings

In this section, the settings for the experiments regarding the preprocessing

stage are presented.

The design mentioned in Sec. 5.3 is applied to all subsets of features: expert
knowledge, n-gram, combine-select, select-combine and select-n-gram-combine.
This section explains, for each subset, the settings related to feature extraction
and feature selection. Regarding the first step, it is explained how each technique
extracts features. For feature selection, the adequate instance of the GeFS
measure is chosen for each subset, following the criterion that was given in
Sec. 5.3.2. Additionally, it is shown how the opposite choice of the GeFS

measure would negatively affect the results.

5.4.2.1 Expert knowledge

Next, feature extraction and feature selection settings for the expert knowledge

subset are presented.

Feature extraction. By means of our expert knowledge and taking as
inspiration [Rieck, 2009], various features that are considered relevant for
web attack detection have been extracted. These 30 features are shown in
Table 5.1.

As can be seen in the table, some of the features refer to the length of different
parts of the request, since length is an important aspect to be considered in the
detection of attacks such as buffer-overflow or XSS. Other group of features
makes reference to the appearance of certain types of characters. In particular,
to the number of appearances of letters, digits and non-alphanumeric characters
in the path and argument values. Note that, differently to the stochastic case,
the appearance of these characters is not analyzed in headers. The importance
of distinguishing between these groups of characters was explained in Sec. 4.5.
Going deeper into this idea, expert feature extraction in ML distinguishes two
categories of non-alphanumeric characters, depending on whether they have a

special meaning in certain programming languages or not.

5.4. Experimental setup 113

Table 5.1 — Names of 30 expert knowledge features that are considered
relevant for the detection of web attacks for the ECML/PKDD dataset.

Feature Name Symbol
Length of the request o
Length of the path

Length of the arguments O %
Length of the header “Accept” T

Length of the header
Length of the header
Length of the header
Length of the header
Length of the header
Length of the header
Length of the Host

Length of the header
Length of the header

“Accept-Encoding”
“Accept-Charset”
“Accept-Language”
“Cookie”
“Content-Length”
“Content-Type”

“Referer”
“User-Agent”

Method identifier

Number of arguments

Number of letters in the arguments

Number of digits in the arguments

Number of 'special’ char in the arguments e ¢ x
Number of other char in the arguments e %
Number of letters in the path

Number of digits in the path

Number of ’special’ char in the path

Number of other char in path

Number of cookies

Minimum byte value in the request o
Maximum byte value in the request

Number of distinct bytes T *
Entropy o
Number of keywords in the path *

Number of keywords in the arguments

The symbol e refers to features selected by the CFS for the expert knowledge subset,
¢ to features selected by the mRMR for the expert knowledge subset, T to the
characters selected by CFS for the combine-select subset and x to the characters
selected by mRMR for the combine-select subset. (For the complete set of features
selected for the combine-select alternative, see also Table 5.3).

114

5. Machine learning techniques for web intrusion detection

Therefore, four kind of characters are considered for machine learning:

Letters.
Digits.

Non-alphanumeric characters that have a special meaning in a set of
programming languages, SQL and Javascript in our case. This type of

characters are referred in Table 5.1 and Table 5.2 as ’special’ chars.

Other characters, i.e., non-alphanumeric characters that are not included

in the third category.

Another feature is built by studying the entropy [Shannon, 2001] of bytes

composing requests. Following the idea of Rieck, other group of features is

built by counting the appearances of certain keywords in different parts of the

request. These keywords have been previously included in a list that contains

terms with special meaning in certain programming languages that are often

used in injection attacks, like SQL and Javascript.

Feature selection. According to the methodology to choose the appropriate

instance of the GeFS measure exposed in Sec. 5.3.2, the next steps are followed:

o Firstly, features are visualized in the two-dimensional space. The resulting

graph represents the distribution of data points. All combinations have
been exhaustively studied, that is, feature vs. feature and class vs. feature,
for each feature and each class. As example, a few of these plots are
shown in Fig. 5.5. It shows the data point distribution of the expert
knowledge subset of the ECML/PKDD dataset. In the first example (a),
feature “length of the arguments” is plotted vs. feature “length of the
path”. Differently, in the second example (b), the “number of letters in
the arguments” is plotted vs. the “length of the path”. Both normal and
anomalous requests are used in the representation. These figures show
that there is a non-linear relationship between the features extracted by

means of expert knowledge.

5.4. Experimental setup 115

Table 5.2 — Names of 30 expert knowledge features that are considered
relevant for the detection of web attacks for the CSIC dataset.

Feature Name Symbol
Length of the request + o
Length of the path + 6
Length of the arguments + 6
Length of the header “Accept” N
Length of the header “Accept-Encoding” N
Length of the header “Accept-Charset” N
Length of the header “Accept-Language” N
Length of the header “Cookie” N
Length of the header “Content-Length” N
Length of the header “Content-Type”

Length of the Host N
Length of the header “Referer” N
Length of the header “User-Agent” N

Method identifier
Number of arguments +

Number of letters in the arguments + 6
Number of digits in the arguments + 06
Number of ’special’ char in the arguments + N ©
Number of other char in the arguments

Number of letters in the path + 6
Number of digits in the path +nN
Number of ’special’ char in the path +
Number of other char in path N
Number of cookies N
Minimum byte value in the request A
Maximum byte value in the request

Number of distinct bytes ©
Entropy =N
Number of keywords in the path S

Number of keywords in the arguments

The symbol + refers to features selected by the CFS for the expert knowledge subset,
N to features selected by the mRMR for the ezpert knowledge subset, /A to the
characters selected by CFS for the combine-select subset and © to the characters
selected by mRMR for the combine-select subset. (For the complete set of features
selected for the combine-select alternative, see also Table 5.4)

116 5. Machine learning techniques for web intrusion detection
Examples for the CSIC dataset are shown in Fig. 5.6. They show feature
“length of header ‘Accept-Encoding’ ” vs. “length of the request” and
feature “length of the arguments” vs. “length of the path” In this case,
there are linear relationships between the features.

A00 - n

e & % 0y Yo + Anomalous g) . . . ® * Anomalous

3504 sy, 4 S e s, 4 Normal E i . 4 Normal
2 .ty S a 260 < -t .
& &
g 250 _h y g 4
2 3 £
o 2004 . E
f 150+ i E ; g
o g 2
f.-; 100 "W * "cz

z

Length of header "Accept-Encoding™

0

100 150 2 250 ¢ 100
Length of the path Length of the path

(a) (b)

Figure 5.5 — Examples of the expert knowledge data point distribution
for the ECML/PKDD dataset. (a) Feature “Length of the arguments”
vs. feature “Length of the path”. (b) Feature “Number of letters in the
arguments” vs. feature “Length of the path”.

€
AL

[
(%]
L

w
[x]
L

s
'

w
[=]

550
= Anomalous e = Anomalous
4 Normal i &« Normal
450 i
33 400
]
£ 350 i,
5 .
2 300
L]
2 250
5
b
o 200 -
&
B 150+ 1
7] L
= 100 4
-
" |
T T T T T T o L T T
500 600 700 800 800 1000 20 40 60 80 100
Length of the request Length of the path

(a) (b)

Figure 5.6 — Examples of the expert knowledge data point distribution
for the CSIC dataset. (a) Feature “Length of header ‘Accept-Encoding’ ”
vs. feature “Length of the request”. (b) Feature “Length of the arguments”
vs. feature “Length of the path”.

In order to verify the observations from the graphics, the correlation

coefficients between the features have been calculated. For the

5.4. Experimental setup 117

ECML/PKDD dataset, more than 83% of the correlation coefficients
are lower than 0.09. According to the criterion established in step 1
of Sec. 5.3.2, that considers that there are linear correlations between
features when at least half of the coefficients are greater than 0.1, it
can be stated that in this case, non-linear relationships are the most
representative. Recall that the criterion explained in Sec. 5.3.2 establishes
that the CFS measure is chosen if the dataset has many features that
are linearly correlated to each other and mRMR, otherwise. Therefore,

in this case the mRMR measure is chosen.

In the case of the CSIC dataset, more than 63% of the correlation
coefficients are greater than 0.1, hence, the instance of the GeF'S measure
chosen is CFS.

Once the instances are selected, they are applied for selecting features.
Figure 5.7 (a) represents, for the FECML/PKDD dataset, the number of features
of the full subset (subset with all features, i.e., before feature selection) and the
number of features after applying the CFS and mRMR instances. As can be
seen, the number of features is reduced by 93% with CFS and 80% with mRMR.
Although the selected instance for the ECML/PKDD dataset (mRMR) is not
the one that reduces the most the number of features, this measure is more
appropriate than CFS when detection results are also considered. It will be
further explained in Sec. 5.5. The information about which particular features
are selected by each measure can be found in Table 5.1. In the table, symbols e

and ¢ are used to represent the selection of each instance of the GeFS measure.

The number of features before and after feature selection for the case of the
CSIC dataset is shown in Fig. 5.7 (b). The selected instance (CFS) reduces
63.3% of the features, while mRMR does it by 53.3%. In Table 5.2, symbols +
and N are used to indicate which particular features are selected by the GeFS

instances.

Note that in both Table 5.1 and Table 5.2, many features have several
symbols next to them, which means that they have been selected by different
feature selection instances and in diverse subsets. This indicates that they are

important features for detecting attacks in the studied datasets.

118 5. Machine learning techniques for web intrusion detection

35 35

e
o
!

Number of fe_atures
\
& §
o

Numbera:of fegature;

14

11
104 E 0
5+ 5

Z 2
o [LIRARRRRAnnn o
Full CFS mRMR Full CFS mRMR
(a) (b)

Figure 5.7 — Number of features for the expert knowledge subset.
(a) For the ECML/PKDD dataset. (b) For the CSIC dataset.

5.4.2.2 N-grams

The settings regarding feature extraction and feature selection for n-grams are

explained next.

Feature extraction. For extracting features with n-grams in the ML system,
n-grams are set to n = 1. This value has been chosen since n = 1 is the simplest
case. It should be considered that in web traffic there are no long strings since
they are limited by the request length. In those cases, small values for n are
usually chosen. Although it could be expected that the results would improve
as n increases, there are papers in the literature using n-grams in HT'TP
traffic which show that it is not necessarily the case, like [Song et al., 2009]
and [Perdisci et al., 2009]. Furthermore, cases with n > 1 require high cost in
time and computational complexity, what is not appropriate for algorithms
operating in real environment or scenarios with resource constraints. Therefore

cases with n > 1 have not been considered in this thesis.

Following the formula given in Sec. 2.3.1.1 for calculating the number of
n-grams, S = {n-grams;|i = 1...2%"} the number of all possible 1-grams is
256. Recall that the ML-based system analyzes the whole request. When
analyzing the requests of the studied datasets, it was revealed that not all
1-grams were present. The result obtained was that only 96 features (37.5% of
256) appear at least once in the ECML/PKDD dataset and 114 (44.5%) in the

5.4. Experimental setup 119

case of the CSIC dataset. The features corresponding to the FCML/PKDD
dataset are listed in Table 5.3 and those corresponding to the CSIC' dataset in
Table 5.4.

Table 5.3 — 96 characters appearing in the ECML/PKDD dataset at
least once.

Character Symbol Character Symbol Character Symbol Character Symbol

k *) g LF RS
a * 3 = ;

o : o ! * I

9 0 D h

Z X $ b Q

W f H E

R 4 Y .

7 , 6 q

p e r L

i b & m

@ C Space xS s *
2 Z A u

¢ F v 1

y LF ? 1

M j 8 n

d - . t T P

* K / G

v U w T

S o N J

+ ° B ’ °]

O X % °) oe
| * (0 \ ® x -

< ° > [° | °
4 { : ot}

Symbol e refers to the 15 characters selected by the CFS measure for n-grams, ¢ to
the 5 characters selected by the mRMR measure for n-grams, { to the characters
selected by CFS for the combine-select alternative and x to the characters selected by
mRMR for the combine-select alternative. For the complete set of features selected
for the combine-select alternative see also Table 5.1.

With the assumption that normal traffic payloads are different from attack
ones, the automatic method for extracting features from the requests is the
following: given an HTTP request req, a feature vector of req is constructed
as Tyeq = (T1,Xa, ..., xy), where z; is the number of appearances of n-gram; in

req and A the number of 1-grams appearing at least once in the corresponding

120 5. Machine learning techniques for web intrusion detection

dataset. The vector constructed for every request represents the number of
appearances of the corresponding n-gram in the HTTP request. In our case,

1-grams correspond to individual characters.

Table 5.4 — 114 characters appearing in the CSIC dataset at least once.

Character Symbol Character Symbol Character Symbol Character Symbol

k J 5 g

a N 3 © = N ; + 0O
: O I + 9

0 D h Z

X + + [B

f H E 4 +
. 7 , 6

q N P S e r

) L +nN i S) b

m C Space s

2 A u c

F 1 LF 1

M j 8 n N
d ne - +Nne ¢ ne P S/
* K / + G

U (T S

o N R & +
n ? A A% y

w 6 v Q@

a Q % + ~

G é a X

W A { #

< + > ’ + o

a ! ! a

i u 0 7

o © A E

i N 0 &

i i | + Y

$ U A

Symbol + refers to features selected by the CFS measure for the n-grams, N to
features selected by the mRMR for n-grams, A to the characters selected by CFS
for the combine-select subset and © to the characters selected by mRMR for the
combine-select subset. For the complete set of features selected for the combine-select
alternative see also Table 5.2.

5.4. Experimental setup 121

Feature selection. The scheme cited in Sec. 5.3.2 has been applied for

feature selection:

o Examples of the visualization of n-gram features in the two-dimensional
space are shown in Fig. 5.8 for the FCML/PKDD dataset. Figure 5.9
shows examples for the CSIC dataset. As can be observed, there are

linear relations between the n-gram features of both datasets.

1.1 10 =

A |+ Anomalous
1.0 - — - "
094 - g | 4 Normal |
= Anomalous 8 8- e T —
1 4 Normal £
074 2
- o
] . -
2 o5 a B '
m o
- 054 % L ————1:11%
1 e
g 0.4 8 4 - — i
3 pal &
o = A b .
0.2 5
04 b _g, 24 . - -
Du - A A E .
1 z
01 e 0 : . . .
] 0 20 an 40 50 60 70 80 20 100 o 20 40 B0 B0 100
Number of appearances of character "a" Number of appearances of character "a"

(a) (b)

Figure 5.8 — Examples of the n-gram data point distribution of the
ECML/PKDD dataset. (a) Feature “Class label” vs. feature “Number

of appearances of character ‘a’ ”. (b) Feature “Number of appearances

of character ‘>’ 7 vs. feature “Number of appearances of character ‘a

)

e The study of the correlation coefficients reveals the following: more
than 52% of the correlation coefficients are greater than 0.1 for the
ECML/PKDD dataset. According to the criterion explained before, it
means that there are linear relationships, and then, the selected measure
for the n-gram subset is CFS. For the CSIC dataset, 57% of the coefficients
are higher than 0.1, hence, CF'S is selected. This confirms the observations

from the graphs.

Figure 5.10 (a) shows the number of features for the full-set of the
ECML/PKDD dataset and the number of features after feature selection.
It can be seen that CFS reduces 84% (from 96 to 15) of the irrelevant or
redundant features for detecting web attacks, while mRMR reduces 95%
of them.

122

5. Machine learning techniques for web intrusion detection

w
=]

o

Number of appearances of character "5"

a

@

r
o
1

ra
o
1

=]
L

w
1

« Anomalous . * Anomalous
4« Normal 4 Normal

@
1
>

L T T T Y A
FEREEEEEEEREERREOE 40

(222 222 22 2 2 2 2 2 4 B

Number of appearnaces of character "0"

-
L d
.
-
- .
- - - R e
- ~
- -
- - -
a - |l bbb AL
- L
- .
- - B
-
.
e
T T T o T T T
2 4 8 8 10 0 20 40 60 B0
Number of appearances of character "k™ Number of appearances of character "a”
(a) (b)

Figure 5.9 — Examples of the n-gram data point distribution of the
CSIC dataset. (a) Feature “Number of appearances of character ‘5" 7 vs.
feature “Number of appearances of character ‘k’ ”. (b) Feature “Number
of appearances of character ‘O’ 7 vs. feature “Number of appearances of
character ‘a’ ”.

In the case of the CSIC dataset, the reduction is represented in
Fig. 5.10 (b), where the mRMR instance reduces the number of features
almost by 93%, while CFS does it by 89.5%.

The specific features selected by each GeF'S instance can be observed
in Table 5.3 for the FCML/PKDD dataset (represented with symbols e
and ¢), and in Table 5.4 for the CSIC dataset (symbolized by + and N).
It is remarkable that, indeed, some of the 1-grams selected are critical
for the detection of web attacks. For instance the quotation mark (7)
is included in many SQL injection attacks, characters ‘<’ and ‘>’ are
typically appearing in scripts such as the ones used in XSS attacks, and

‘%’ has a special meaning in SQL or shell script.

5.4.2.3 Combination

Next, settings for the combination cases are shown.

Feature extraction. After selecting the appropriate feature selection

instance for the expert knowledge and n-gram subsets of features, the exact

number of features of the three combination subsets can be specified:

5.4. Experimental setup 123

Number of features

re
=

100+

60~

40 -

> ' 120 114
. ﬁ 100 -
3
3"
S w
3
E a0+
15 2
_ 5 204 12 a
‘l o N ———s
Full CFsS mRMR Full CFS mRMR

(a) (b)

Figure 5.10 — Number of features for the n-gram subset.
(a) For the ECML/PKDD dataset. (b) For the CSIC dataset.

Combine-select. In the case of the ECML/PKDD dataset, the resulting
subset of the combine-select alternative is composed of 126 features
in total, corresponding to the combination of 30 features from expert
knowledge and 96 features from n-grams. For the CSIC dataset, the
subset is composed of 30 features from expert knowledge and 114 features
from n-grams, resulting in a total of 144 features. The process of feature

selection applied to these subsets is later explained in this section.

Select-combine. Recall that this alternative applies first feature selection
and then combines the features. There are four options for generating
the subsets of features, corresponding to the two instances of the GeFS
measure (CFS and mRMR) for selecting features from expert knowledge
and n-grams. The reasonable subset to be constructed is the one composed
of the features selected by the appropriate instances of the GeF'S measure.
Then, for the ECML/PKDD dataset the subset is the one constituted by
15 n-gram features (selected by CFS) plus 6 expert knowledge features
(selected by mRMR). For the CSIC dataset, it is formed by 11 expert
knowledge features (selected by CFS) and 12 n-gram features (selected by
CFS). These subsets are called mRMR+CFS and CFS+CFS due to the
selected instances respectively. Additionally, another subset with features
selected by the non-chosen GeFS instance is also shown in the Results
section (Sec. 5.5), with the purpose to see how the opposite choice of

feature selection methods would negatively affect the detection. Therefore,

124 5. Machine learning techniques for web intrusion detection

the new subset mRMR+mRMR is added to the previous subsets. This
subset is composed of 11 features (6 4 5) in the case of the ECML/PKDD
dataset and 22 (14 + 8) in the case of the CSIC one. Since the features
that compose these two subsets are already selected, it is not necessary

to apply feature selection again.

o Select-n-gram-combine. As only n-grams are selected with this alternative,
there are two possible subsets to be considered, corresponding to the
two GeFS instances possible for the expert knowledge subset. These
two subsets are called expert+CFS and expert+mRMR. In this case,
since both datasets use the CFS instance for n-grams, the subset chosen
for the experiments is expert+CFS. The results are also shown for the

expert+mRMR subset.

As a summary, Table 5.5 shows the structure of the subsets corresponding
to each combination alternative for the ECML/PKDD dataset. An equivalent
table is shown in Table 5.6 for the C'SIC' dataset. The number of features of
the combine-select subset corresponds to the full subset, that is, before feature
selection. Next section explains the subset after feature selection.

Table 5.5 — Description of the subsets corresponding to each combination
alternative for the ECML/PKDD dataset.

Alternative Subset Name Expert Knowledge N-gram Total Number

Features Features of Features
Combine-select Combine-select 30 96 126
Select-combine mRMR+CFS 6 (mRMR) 15 (CFS) 21
mRMR+mRMR 6 (mRMR) 5 (mRMR) 11
Select-n-gram-combine Ezpert+CFS 30 15 (CFS) 45
Ezpert+mRMR 30 5 (mRMR) 35

Feature selection. In the case of the combination subsets, feature selection
is applied after feature extraction only in the case of the combine-select subset.
The statistical properties of the select-combine and select-n-gram-combine
subsets are not necessary to be studied given that the features in these subsets

have been already selected in the basic cases.

Since the combine-select subset contains a higher amount of features and

they have manual and automatic nature, it is specially useful to apply feature

5.4. Experimental setup 125

Table 5.6 — Description of the subsets corresponding to each combination
alternative for the CSIC dataset.

. Subset Name Expert Knowledge N-gram Total Number
Alternative
Features Features of Features
Combine-select Combine-select 30 114 144
Select-combine CFS+CFS 11 (CFS) 12 (CFS) 23
mRMR+mRMR 14 (mRMR) 8 (mRMR) 22
Select-n-aram-combine Ezpert+CFS 30 12 (CFS) 42
g Ezxpert+mRMR 30 8 (mRMR) 38

selection in this case, in order to reduce the number of redundant and irrelevant

features. The instance of the GeF'S measure is selected as follows:

o Two examples of the data point distribution of the combine-select subset
for the ECML/PKDD dataset are represented in Fig. 5.11. They show that
there are not linear relationships between features. The examples for the

CSIC dataset, represented in Fig. 5.12, also show no linear relationships.

300 :
Anomalous |

4 Normal

Number of digits in the path

10

Length of the header "Accept-Language™

20 a0 &0
Length of the header "Accept-Charset” Length of the header "Accept-Charset”

(a) (b)

Figure 5.11 — Examples of the combine-select data point distribution
of the ECML/PKDD dataset. (a) Feature “Number of digits in the
path” vs. feature “Length of the header ‘Accept-Charset’ ”. (b) Feature
“Length of the header ‘Accept-Language”’ vs. feature “Length of the
header ‘Accept-Charset’ ”.

o The analysis of the correlation coefficients corresponding to the
combine-select subset confirms the observations of the graphs. For the
ECML/PKDD dataset, more than 76% of the coefficients are lower than

0.09, what means that there are non-linear relations between the features

126

5. Machine learning techniques for web intrusion detection

120

=
o

n 2
£ t10 S04 c Anomalous
E 00 E 4 Normal
a 7) —_—
2 50 4
L] % P ——— : 0 . L)
@ g * Anomalous £ ®)
£ | 2 ok L
= 704 | & Normal = se
— 1 e L
T 6 £
2 =
2 504 K
[] e L
2 2 .
g 3 .
% o 104 . *
e
B 2
o E
@
=3
g = .
3 T T 0 T T T T T T T
z 100 1200 1300 0 20 40 60 B0 100 120 140 160 180 200 220 240

Length of the request Number of letters in the arguments

(a) (b)

Figure 5.12 — Examples of the combine-select data point distribution of
the CSIC dataset. (a) Feature “Number of special char in the arguments”
vs. feature “Length of the request ”. (b) Feature “Number of special char
in the arguments”’ vs. feature “Number of letters in the arguments”) of

the CSIC dataset.

of this subset. Therefore, the mRMR measure is the convenient one for
this case. In the case of the CSIC dataset, 66% of the coefficients are

lower than 0.09, then the mRMR measure is also chosen in this case.

After selecting the corresponding instance of the GeFS measure, it is applied
for selecting features in the combine-select subset. For the ECML/PKDD
dataset, Fig. 5.13 (a) shows the number of features of the full subset and for
the subsets after feature selection. Although the instance selected in this case
is mRMR, both instances are shown for comparison. The reduction in the
number of features for the combine-select subset rises up to 91.27% for the
mRMR instance and to 96.83% for CFS.

The corresponding graph for the CSIC dataset is represented in Fig. 5.13 (b).
The reduction is 97.92% for CFS and 88.2% for mRMR. mRMR is the selected
instance. Although it is not the instance that reduces the most the number of

features, it can lead to better detection results, as will be seen in Sec. 5.5.

The features selected from the combine-select subset of the ECML/PKDD
dataset are represented in Table 5.1 and Table 5.3. Symbol § is used for CFS
and x for mRMR. For the CSIC dataset, symbols A and & are used in Table 5.2
and Table 5.4 to represent the selected features. Note that, for both datasets,

5.4. Experimental setup 127

126 144

Number of features
2 q
Number of features

204 1 20 17

= 3

e IEARRRRRERARANANAI

Ful CFS mRMR Ful CFS mRMR
(a) (b)

Figure 5.13 — Number of features for the combine-select subset.
(a) For the ECML/PKDD dataset. (b) For the CSIC dataset.

many features selected by the CFS and mRMR measures are the same in the
case of expert knowledge, n-grams as well as in the select-combine case, what

indicates that these features are significant for the detection of web attacks.

The number of features of the select-combine and select-n-gram-combine
subsets of the ECML/PKDD and CSIC datasets can be seen in Fig. 5.14 (a)
and (b) respectively.

454 45:
40+ 404
w wn]
- 354
g * g
% 30 g 304
& o & 5 23
N l.o- 4
E 204 b 204
(]
£ £ 3
§ e g 10
5—1 54
& m;}:ﬁ:: g CFS+CF3S
Select-combine Select-n-gram-combine Select-combine Select-n-gram-combine
(a) | (b)
Figure 5.14 — Number of features of the select-combine and

select-n-gram-combine subsets. (a) For the ECML/PKDD dataset.
(b) For the CSIC dataset.

128 5. Machine learning techniques for web intrusion detection

In summary, Table 5.7 shows the GeFS instances chosen for every subset
of the ECML/PKDD and CSIC datasets. As can be seen, the appropriate
instances of the GeFS measure are the same chosen for both datasets in all

cases, except for the expert knowledge subset.

Table 5.7 — GeFS instance chosen for each subset of the ECML/PKDD
and CSIC datasets.

Subset GeFS instance
ECML/PKDD CSIC
Ezpert Knowledge mRMR CFS
n-gram CFS CFS
Combine-select mRMR mRMR
Select-combine Nothing Nothing
Select-n-gram-combine Nothing Nothing

5.4.2.4 Classification algorithms

As mentioned, the experiments are carried out with the four decision trees: C4.5,
CART, Random Tree and Random Forest. These algorithms are described
in Sec. 5.3.3. These algorithms receive as input the subsets of features. In
particular, they are applied to analyze all subsets of features (expert knowledge,
n-gram, combine-select, select-combine and select-n-gram-combine), both before

and after feature selection.

Decision trees have two stages: training and test. In the training phase,
normal and anomalous requests feed the algorithm to obtain a model that
classifies the traffic. In the test phase the knowledge previously learned is
used to check how well the algorithm detects, i.e, if the requests are correctly

classified as normal or anomalous.

The implementation of decision trees used are those provided by the Weka
software (University of Waikato, Hamilton, New Zealand) [Hall et al., 2009].
Cross validation is a validation technique for assessing how the results of the
algorithm will generalize to another data set. In N-fold cross validation, the
dataset is divided into N equally sized subsets. It is run N times. In each of
them, one of the subsets is used for testing and the remaining N — 1 are used

for training the algorithm. The results are averaged and standard deviation

5.4. Experimental setup 129

is calculated [Kubat, 2015]. The use of cross validation allows to obtain more
reliable results. In our case, experiments are conducted with 10-fold cross
validation. According to Kohavi, 10-fold stratified cross validation is an optimal
method for real world datasets [Kohavi, 1995]. The remaining setting values

used are those set by default in the Weka software.

5.4.3 Settings for the study of the influence of training

requests in the detection results

As mentioned, decision trees have a training and a test phase. For this kind of
algorithms, both normal and anomalous requests are used to train the system.
In this way, the algorithm can learn how to classify the instances (two-class
detection: normal and anomalous). Both types of traffic are also used in the

test period.

In order to study how the number of training requests influences the
performance of the system, once all the previous subsets of features are evaluated,
the one that reaches the best results is chosen for the study of how the number

of requests influences the algorithm’s detection results.

For that, a number of M = 15 experiments is run, with an increasing number
of requests per experiment. Like in the stochastic case, the number of training
requests used in each experiment is given by the formula tr; = 2° — 1,Vi € [1, M].
In each experiment, the system is firstly trained with ¢r; requests randomly
chosen, and then, it is tested with a fixed subset of requests. This fixed subset
is composed of te normal request plus te anomalous requests, with te = 1000.
The M experiments are run H = 10 times. Each time, different possibilities for
choosing tr; requests are analyzed. Running the experiments multiple times
helps to truly reflect the behavior of the WAF, independently of which training
requests are chosen. Randomness has been picked for request sampling since it
is not possible to know in advance which type of attack the system is going to

receive. The next section shows the results obtained from the experiments.

130 5. Machine learning techniques for web intrusion detection

5.5 Results

This section shows, on the one hand, the results of the different subsets, in
order to determine the effectiveness of the combined methods proposed. On
the other hand, the results of the study about the influence of the number of

training requests in the detection capacity of the WAF are presented.

5.5.1 Results of the subsets

With the purpose of validating whether the proposed combined feature
extraction methods are more effective than individual techniques, the results
corresponding to the two basic cases are shown first, and then, those
corresponding to the three combination alternatives. Detection results are
presented in terms of DR and FPR. Additionally, the number of features used
by each technique and its processing time are also included. The number of
features used gives a measure of the resource consumption. The achieved results

are measured by means of detection rate and false positive rate.

5.5.1.1 Expert knowledge

Regarding expert knowledge, Table 5.8 shows the detection results of the four
classification algorithms for the ECML/PKDD dataset. The rows show the
results for the different decision trees used and, finally, the average value. The
column full-set shows the results before feature selection and the CFS and
mRMR columns correspond to the results after feature selection. In the table,
the selected GeFS instance is highlighted with bold letters (mRMR in the case
of expert knowledge).

When considering also the number of features, shown in Fig. 5.7 (a), it is
noticeable that the GeF'S measure greatly reduces the number of features, while
it keeps almost the same detection results. Although CFS reduces the number
of features (from 30 to 2) more than mRMR (from 30 to 6), its detection results
are worse, with lower DR (89.1% vs. 91.22%) and higher FPR (23.18% vs.
15.3%). This fact shows that the method used to choose the proper instance of
the GeF'S leads to select the instance that reaches better results, although it

might not be the one that selects a lower amount of features. Note that the

5.5. Results 131

Table 5.8 — Detection rate and false positive rate of four decision trees
performed on the expert knowledge subset of the ECML/PKDD dataset.

Classifiers Detection Rate (%) False Positive Rate (%)
Fullset CFS mRMR | Full-set CFS mRMR

C4.5 95.42 89.07 92.30 7.8 23.2 15.1

CART 95.51 89.12 92.23 7.9 23.1 14.7

Random Tree 92.43 9.11 88.81 10.6 23.2 16.3
Random Forest 95.80 89.10 91.53 8.1 23.2 15.1
Average 94.79 89.10 91.22 8.6 23.18 15.3

Bold letters are used to highlight the selected subset, corresponding to the chosen
GeFS instance.

goal of reducing the number of features and improving the detection results are
contradictory, therefore, a tradeoff should be made. Feature selection attempts
to reduce the number of features without negatively affecting the detection

results.

This reduction in the number of features also implies a decrease in the
processing time measurements of the system. Table 5.9 shows the processing
time values associated to the results presented in Table 5.8. The third column
shows the difference in ms/request between the first and second column,
that is, before and after feature selection. The fourth column represents
the improvement percentage that this difference represents. Note that the
average improvement is calculated as the percentage that the average difference
represents, not as the average of the four values in the improvement column.
The average difference is calculated as the difference between the average
values of the first and second columns. It can be seen that feature selection
signifies an average reduction of 67.33% in the processing time (from 1.01
ms/request to 0.33 ms/request). All processing time measurements have been
obtained with an Intel core i7 CPU at 2.40 GHz and 8GB RAM, SO Windows 8,
64 bits. Processing times should be taken as approximate values, as other
factors could have interfered in the measurements, such as other tasks running

in the operating system or memory availability.

Results for expert knowledge over the C'SIC dataset are shown in Table 5.10.
As opposed to the ECML/PKDD dataset, the instance chosen for the CSIC
dataset is CFS, which is highlighted in bold type. In this case, Fig. 5.7 (b)

132 5. Machine learning techniques for web intrusion detection

Table 5.9 — Processing time and improvement for the expert knowledge

subset of the ECML/PKDD dataset.

Classifiers Processing Time (ms/req.) Improvement
Full-set mRMR ‘ Difference Improvement(%)
C4.5 2.12 0.24 1.88 88.68
CART 0.64 0.13 0.51 79.69
Random Tree 0.22 0.12 0.10 45.45
Random Forest 1.07 0.84 0.23 21.50
Average 1.01 0.33 0.68 67.33

shows that CFS is the instance that reduces the most the number of features
(it uses 11 features) and also the instance that gets better results (93.55%
detection rate vs. 75.5% for mRMR).

Table 5.10 — Detection rate and false positive rate of four decision trees
performed on the expert knowledge subset of the CSIC dataset.

Classifiers Detection Rate (%) False Positive Rate (%)
Full-set CFS mRMR ‘ Full-set CFS mRMR
C4.5 94.98 94.07 79.8 5.3 6.8 25.7
CART 94.31 93.72 79.86 7.0 6.8 25.3
Random Tree 92.76 92.71 T71.36 7.7 7.8 30.6
Random Forest 93.93 93.69 71.70 6.0 7.2 30.5
Average 93.99 93.55 75.5 6.5 7.15 28.02

As Table 5.11 shows, in this case the average improvement in the processing

time is 43.18%.

5.5.1.2 N-grams

Table 5.12 summarizes the performance of the four decision trees over the
n-gram subset of the FECML/PKDD dataset. The results confirm that the
selection of the GeFS instance leads to better results. In this case it is CFS,
that is highlighted in bold letters in the table. It can be observed that when

the instance is chosen differently to the linear correlation criterion explained

in Sec. 5.3.2, the results are negatively affected. This shows the importance

5.5. Results 133

Table 5.11 — Processing time and improvement for the expert knowledge
subset of the CSIC dataset.

Classifiers Processing Time (ms/req.) Improvement
Full-set CFS ‘ Difference Improvement(%)
C4.5 1.22 0.42 0.80 65.57
CART 0.52 0.25 0.27 51.92
Random Tree 0.16 0.13 0.03 18.75
Random Forest 1.61 1.21 0.40 24.84
Average 0.88 0.50 0.38 43.18

of the proper selection of the GeFS instance. Considering the number of
features in Fig. 5.10 (a), as well as the detection results in Table 5.12, it can be
observed that besides reducing the number of features from 96 to 15, the CFS
measure is even able to improve the detection results (from 92.99% to 93.47%).
Furthermore, the GeF'S measure is able to reduce the resource consumption.
This can be appreciated in Table 5.13, that shows an average improvement of

90.82% in the processing time after applying feature selection.

Table 5.12 — Detection rate and false positive rate of four decision trees
performed on the n-gram subset of the ECML/PKDD dataset.

Classifiers Detection Rate (%) False Positive Rate (%)
Fullset CFS mRMR | Full-set CFS mRMR

C4.5 94.12 94.12 89.95 9.2 10.4 18.7

CART 94.92 94.16 90.03 8.7 10.2 18.3

Random Tree 88.55 91.90 88.73 15.7 11.9 22.0
Random Forest 94.41 93.70 R9.12 11.0 10.7 20.7
Average 92.99 93.47 89.45 11.15 10.8 19.9

For the CSIC dataset, the instance of the GeF'S measure chosen is also
CFS. Considering the number of features in Fig. 5.10 (b) and the results in
Table 5.14, it can be seen that, in this case, the feature selection measure
is able to reduce the number of features by 84%, at the expense of reducing
the detection rate by 2.16% (from 84.59% to 82.43%). Table 5.15 shows that
the processing time improvement for the n-gram subset of the CSIC dataset

ascends to 85.48% in average.

134 5. Machine learning techniques for web intrusion detection

Table 5.13 — Processing time and improvement for the n-gram subset
of the ECML/PKDD dataset.

Classifiers Processing Time (ms/req.) Improvement
Full-set CFS ‘ Difference Improvement(%)
C4.5 9.0 1.05 7.95 88.33
CART 8.73 0.38 8.35 95.65
Random Tree 0.36 0.25 0.11 30.56
Random Forest 2.39 0.21 2.18 91.21
Average 5.12 0.47 4.65 90.82

Table 5.14 — Detection rate and false positive rate of four decision trees
performed on the n-gram subset of the CSIC dataset.

Classifiers Detection Rate (%) False Positive Rate (%)
Fullset CFS mRMR | Full-set CFS mRMR

C4.5 84.61 82.45 76.77 16.8 244 25.6

CART 85.74 82.54 77.63 17.2 23.9 26.0

Random Tree 81.93 82.34 78.39 19.3 23.7 25.5
Random Forest 86.09 82.39 78.61 17.1 23.4 25.1
Average 84.59 82.43 T77.85 17.6 23.85 25.55

5.5.1.3 Combination cases

In this section, the results corresponding to the three combination alternatives

are shown.

o Combine-select. The results of this subset for the ECML/PKDD dataset
are shown in Table 5.16. As expected, it is confirmed that the GeFS
instance chosen (mRMR) gets the best results. It reduces the number
of features from 126 to 11, as can be seen in Fig. 5.13 (a), while the
detection results vary from 96.13% to 91.38%, as Table 5.16 shows. This
GeFS instance gets an average improvement of the processing time of

40%, as can be seen in Table 5.17.

Like for the ECML/PKDD dataset, the appropriate GeFS instance for
the CSIC dataset is mRMR. The detection results obtained before and

after applying this instance are shown in Table 5.18. The number of

5.5. Results 135

Table 5.15 — Processing time and improvement for the n-gram subset
of the CSIC dataset.

Classifiers Processing Time (ms/req.) Improvement
Full-set CFS ‘ Difference Improvement(%)
C4.5 9.26 0.60 8.66 93.52
CART 4.80 0.24 4.56 95
Random Tree 0.29 0.15 0.14 48.28
Random Forest 2.72 1.5 1.22 44.85
Average 4.27 0.62 3.65 85.48

Table 5.16 — Detection rate and false positive rate of four decision trees
performed on the combine-select subset of the ECML/PKDD dataset.

Classifiers Detection Rate (%) False Positive Rate (%)
Fullset CFS mRMR | Fullset CFS mRMR

C4.5 97.34 76.06 92.42 4.0 46.4 14.2

CART 97.41 76.10 92.52 4.2 46.2 14.3

Random Tree 92.78 72.52 88.18 10.0 48.9 15.9
Random Forest 96.98 72.32 92.41 5.6 47.3 14.5
Average 96.13 74.25 91.38 5.95 47.2 14.72

features can be seen in Fig. 5.13 (b). In this case, besides reducing the
number of features from 144 to 17, the feature selection algorithm is also
able to increase the detection rate, from 92.69% to 93.61%. Therefore,
in comparison with the full set of features, it improves the resource
consumption and the detection results at the same time. This fact shows
that a lower number of features does not necessary mean to obtain worse
results. Regarding the processing time, Table 5.19 shows that the mRMR
measure is able to reduce it by 28.28%.

o Select-combine. In relation to this alternative, the results of the subsets
mRMR+CFS and mRMR+mRMR corresponding to the ECML/PKDD
dataset are shown in Table 5.20. Recall that the mRMR~+CFS subset
(highlighted with bold letters in the table) is created with the features
selected by the appropriate instances of the GeFS measure. The
mRMR+mRMR subset is created for the sake of comparison, choosing

136 5. Machine learning techniques for web intrusion detection
Table 5.17 — Processing time and improvement for the combine-select
subset of the ECML/PKDD dataset.

Classifiers Processing Time (ms/req.) Improvement
Full-set mRMR ‘ Difference Improvement(%)
C4.5 0.87 0.60 0.27 31.03
CART 0.62 0.22 0.40 64.52
Random Tree 0.16 0.10 0.06 37.5
Random Forest 1.56 0.99 0.57 36.54
Average 0.80 0.48 0.32 40
Table 5.18 — Detection rate and false positive rate of four decision trees
performed on the combine-select subset of the CSIC dataset.
Classifiers Detection Rate (%) False Positive Rate (%)
Fullset CFS mRMR | Full-set CFS mRMR
C4.5 95.06 63.73 93.89 5.3 39.1 6.5
CART 94.20 63.74 94.05 6.6 39.2 6.4

Random Tree 88.62 63.75 92.61 12.1 39.3 7.9
Random Forest 92.87 63.75 93.89 8.7 39.3 7.1

Average 92.69 63.74 93.61 8.18 39.23 6.98

Table 5.19 — Processing time and improvement for the combine-select
subset of the CSIC dataset.

Classifiers Processing Time (ms/req.) Improvement
Full-set mRMR ‘ Difference Improvement(%)
C4.5 1.62 0.70 0.92 56.79
CART 0.57 0.37 0.20 35.09
Random Tree 0.16 0.11 0.05 31.25
Random Forest 1.60 1.07 0.53 33.13
Average 0.99 0.71 0.28 28.28

purposely the opposite GeF'S instance to see how this fact influences the
results. In fact, as expected, the results reflect that the mRMR+CFS
subset gets a detection rate of 96.88% while the mRMR~+mRMR subset

achieves 93.71%. These subsets contain 21 and 11 features respectively.

5.5. Results 137

Table 5.20 — Detection rate and false positive rate of four decision trees
performed on the select-combine subsets of the ECML/PKDD dataset.

Classifiers Detection Rate (%) False Positive Rate (%)

mRMR+CFS mRMR+mRMR | mRMR+CFS mRMR+mRMR

C4.5 97.09 94.52 4.8 10.2
CART 96.94 94.55 4.9 10.1
Random Tree 95.81 91.45 5.8 11.6
Random Forest 97.56 94.34 4.4 10.3
Average 96.88 93.71 | 4.98 10.55

In the case of the CSIC dataset, as the instances of the GeFS
measure chosen are different, the subsets created are CEFS+CFS and
mRMR+mRMR. The first subset has 23 features and the second one,
created for comparison, contains 22. As can be seen in Table 5.21,
the CFS+CFS subset gets a DR of 94.07%, while mRMR+mRMR gets
82.74%, due to the selection of the opposite GeFS instance.

Table 5.21 — Detection rate and false positive rate of four decision trees
performed on the select-combine subsets of the CSIC dataset.

Classifiers Detection Rate (%) False Positive Rate (%)
CFS+CFS mRMR+mRMR | CFS+CFS mRMR+mRMR
C4.5 94.5 84.40 6.0 20.4
CART 94.25 84.55 6.3 20.1
Random Tree 93.23 80.43 7.2 20.8
Random Forest 94.29 81.57 6.7 20.3
Average 94.07 82.74 | 6.55 20.4

Select-n-gram-combine. The results for this alternative are shown in
Table 5.22 for the ECML/PKDD dataset and, in Table 5.23, for the CSIC

dataset.

In both cases the subsets created are called expert+CFS and
expert+mRMR. Again, the performance of the last subset is shown for
comparison. In the case of the ECML/PKDD dataset, the subsets
have 45 and 35 features respectively, achieving 97.18% and 96.35%
detection rates. In relation to processing time, as in the case of the

select-combine alternative the features are already selected, it is not

138 5. Machine learning techniques for web intrusion detection

Table 5.22 — Detection rate and false positive rate of four decision trees
performed on the select-n-gram-combine subsets of the ECML/PKDD

dataset.
Classifiers Detection Rate (%) False Positive Rate (%)
Ezpert+CFS Ezpert+mRMR ‘ Ezxpert+CFS Ezxpert+mRMR
C4.5 97.63 96.69 3.8 5.3
CART 97.58 96.82 4.0 5.0
Random Tree 95.69 94.74 5.9 7.4
Random Forest 97.84 97.16 3.8 4.8
Average 97.18 96.35 ‘ 4.38 5.63

Table 5.23 — Detection rate and false positive rate of four decision trees
performed on the select-n-gram-combine subsets of the CSIC dataset.

Classifiers Detection Rate (%) False Positive Rate (%)
Expert+CFS FExpert+mRMR ‘ Ezxpert+CFS FExpert+mRMR
C4.5 95.25 94.36 5.1 5.9
CART 94.78 94.26 5.6 6.0
Random Tree 93.12 92.45 7.4 8.0
Random Forest 94.47 93.91 6.6 7.1
Average 94.41 93.75 | 6.18 6.75

possible to calculate the percentage of improvement before and after
feature selection. Table 5.24 is presented to show the processing times
of the four decision trees for the three combination alternatives for the
ECML/PKDD dataset.

Results for the CSIC' dataset show the same trend, obtaining better
detection results for the expert+CFS subset (94.41% vs. 93.75%). The

processing time corresponding to the three combination alternatives for
the CSIC dataset are shown in Table 5.25.

5.5.2 Study of the influence of the training requests in

the detection results

In this section, the influence of the number of training requests over the
detection results of the system is analyzed. According to the results presented

in the previous section, the select-n-gram-combine subset is the one that reaches

5.5. Results 139

Table 5.24 — Processing time for the three combination subsets of the
ECML/PKDD dataset.

Classifiers Processing Time (ms/req.)

Combine-select Select-combine Select-n-gram-combine

C4.5 0.60 1.58 3.73
CART 0.22 0.67 1.84
Random Tree 0.10 0.15 0.30
Random Forest 0.99 1.34 2.82
Average 0.48 0.94 2.17

Table 5.25 — Processing time for the three combination subsets of the
CSIC dataset.

Classifiers Processing Time (ms/req.)

Combine-select Select-combine Select-n-gram-combine

C4.5 0.70 1.33 2.63
CART 0.37 0.41 0.84
Random Tree 0.16 0.18 0.24
Random Forest 1.60 0.19 2.24
Average 0.71 0.53 1.49

the highest detection rate. Therefore, this is the subset chosen for studying the

variability of the results depending on the number of training requests.

The results of the experiments are given by calculating the mean and the
standard deviation of the H runs for every decision tree. The mean DR results
for each particular decision tree can be seen in Fig. 5.15, that represents the
influence of the number of training requests on the DR for the ECML/PKDD

dataset.

Similarly, Fig. 5.16 represents the mean DR in relation to the different
number of training requests. It corresponds to the classification of the CSIC

dataset performed by the four decision trees.

Additionally, for each run, the mean of the results produced by the four
applied decision trees are calculated. The results of the system for the
ECML/PKDD dataset are shown in Table 5.26. For each iteration, it contains

the number of training requests, and the mean (u) and standard deviation (o)

140 5. Machine learning techniques for web intrusion detection

1-0 T T i
08 |
A
*éé
016 [~ */‘/ -
()

04 | =
—aA— (C4.5

ha —&— CART

' —e— Random Tree
—*— Random Forest

0‘0 1 1 1 1 1

1 10 100 1000 10000

Number of training requests

Figure 5.15 — Study of the influence of the number of requests on the
detection results of four decision trees. ECML/PKDD dataset. The
detection rate is plotted vs. the number of training requests.

1,0 T T T

08 |

06 /* ‘7[=

=)

04 H
—A— (C4.5
—e— CART

02} —e— Random Tree | -
—*«— Random Forest

0‘0 1 1 1 1 1

1 10 100 1000 10000
Number of training requests

Figure 5.16 — Study of the influence of the number of requests on the
detection results of four decision trees. CSIC dataset. The detection
rate is plotted vs. the number of training requests.

5.6. Discussion 141

of the DR, FPR and processing time. The equivalent results for the CSIC

dataset are presented in Table 5.27.

Although other tables have been shown previously in relation to processing
times, we decided to take as reference those contained in Table 5.26 and
Table 5.27, since those values are obtained considering H runs and are calculated

for different amounts of training requests.

Table 5.26 — Detection results and processing time for the ECML/PKDD

dataset.
Iteration Num. Training | DR (%) FPR (%) | Processing Time
Requests (ms/request)
i o i o W o
1 1 50.0 0 50.0 0 1000 0
2 3 53.0 232|470 233 | 333.3 0.16
3 7 7.8 3.45 | 42.3 3.14 | 1428 0.12
4 15 63.9 2.51 | 36.2 2.50 | 66.6 0
) 31 66.7 2.67 | 33.4 228 | 32.2 0
6 63 70.0 2.80 | 30.0 2.60 | 15.9 0.35
7 127 74.0 2.60 | 26.0 252 | 7.9 0.12
8 255 76.0 2.80 | 24.0 285 | 3.9 0
9 511 79.8 3.02 | 20.2 2.72 1.9 0
10 1023 83.6 2.88 | 164 256 | 1.0 0
11 2047 86.2 2.76 | 13.8 2.26 | 0.5 0.24
12 4095 91.7 1.10| 86 1.01 0.2 0.35
13 8191 94.4 091 | 5.6 0.91 0.2 0.24
14 16 383 97.8 0.28 | 22 027 | 0.5 0.30
15 32767 97.7 0 2.3 0 1.0 0.50

These results are discussed in the next section.

5.6 Discussion

This section discusses several aspects about the results previously presented:
first, basic cases are compared to each other. Then, results of basic cases are
compared with those of combination alternatives, to check if the proposed
combinations outperform the basic cases separately. A comparison of the three
alternatives is also shown, to conclude which of them is the most appropriate in

a given scenario. Additionally, decision trees are analyzed and a comparison of

142 5. Machine learning techniques for web intrusion detection

Table 5.27 — Detection results and processing time for the CSIC dataset.

Iteration Num. Training | DR (%) FPR (%) | Processing Time
Requests (ms/request)
w0 | p o | p
1 1 50.0 0 |50.0 O 1000 0
2 3 52.9 2.57 | 47.1 2.57 | 333.3 0
3 7 06.2 2.33 | 43.8 2.93 | 142.8 0
4 15 61.2 3.04 | 388 2.54 | 66.6 0
) 31 63.5 251 | 36.7 286 | 32.2 0
6 63 66.1 294 | 340 253 | 159 0
7 127 723 288|277 187 | 7.9 0
8 255 77.8 252|223 153 3.9 0
9 511 80.3 2.68 | 19.8 1.67 | 1.9 0
10 1023 82.7 256 | 17.3 1.75 1.0 0.14
11 2047 88.1 1.29 | 12.0 183 | 0.5 0.35
12 4095 88.7 0.74 | 11.3 044 | 0.3 0.35
13 8191 90.8 0.56 | 9.2 035 0.3 0.35
14 16 383 91.7 037 | 84 026 | 04 0.35
15 32767 95.1 022] 49 0.13]| 0.7 0.14

both datasets is given. Furthermore, in this section, the results of the stochastic
systems presented in the previous chapter and the results of the ML system

are compared.

In this discussion, the number of features, processing time and detection
performance are considered a criteria for evaluating the results achieved by
each alternative. The mean values of DR, FPR and processing time are used
for comparisons, that is, standard deviation is not considered. For simplicity,
in some comparisons only the detection rate values are cited, but, in general,

the same comments also apply to the false positive rate.

The results for both the ECML/PKDD and CSIC datasets are included
in order to obtain a more solid comparison, i.e., to avoid that conclusions are
biased by the dataset used.

5.6. Discussion 143

5.6.1 Comparison between basic cases

In this section, the results obtained with expert knowledge are compared to
those obtained with n-grams. Results are compared in terms of detection

results, number of features and processing time.

Table 5.28 presents the results corresponding to the subsets of the
ECML/PKDD dataset, both before feature selection (full subset) and after
(CFS or mRMR as corresponds). The selected instance of the GeFS measure
is highlighted in bold letters. The table shows that before feature selection,
expert knowledge reaches a higher detection rate and uses a lower number of
features than n-grams. Then, expert knowledge is clearly more reliable than

n-grams before feature selection.

Table 5.28 — Comparison between basic cases. ECML/PKDD dataset.

Subset/ Expert Knowledge N-gram
Alternatives

DR (%) NF P.Time | DR (%) NF P. Time

Full subset 94.79 30 1.01 92.99 96 5.12
CFS 89.10 2 0.15 93.47 15 0.47
mRMR 91.22 6 0.33 89.45 5 0.33

DR stands for detection rate, NF for number of features and P. Time for processing
time. Processing time is measured in ms/request. The selected instance of the GeF'S
measure is highlighted in bold letters.

The results after feature selection are compared according to the selected
instance in each case, i.e., mRMR for expert knowledge and CFS for n-grams.
Regarding the detection rate, n-grams get better results than expert knowledge
(91.22% vs. 93.47%). Additionally, n-grams use a higher number of features.
When the number of features is higher the processing time increases as well.
In this case, it is not clear which feature extraction method is better. Thus it
depends on which criterion is the most important for the given scenario, either

increasing detection results or reducing the resource consumption.

The results for the CSIC dataset are analyzed in Table 5.29. In this case,
it is clear that expert knowledge is better than n-grams, given that before and

after feature selection expert knowledge reaches higher detection rates with a

144 5. Machine learning techniques for web intrusion detection

lower number of features. Additionally, the processing time is lower. Given the
results, it can be said that, in general, expert knowledge is able to distinguish

better between attacks and normal traffic than n-grams.

Table 5.29 — Comparison between basic cases. CSIC dataset.

Subset/ Expert Knowledge N-gram
Alternatives

DR (%) NF P.Time | DR (%) NF P.Time

Full subset 93.99 30 0.88 89.59 114 4.27
CFS 93.55 11 0.50 82.43 12 0.62
mRMR 75.50 14 0.97 77.85 8 0.56

5.6.2 Combination alternatives vs. basic cases

In this section, every combination alternative is compared to both basic cases.

o Combine-select. Table 5.30 presents the results for the combine-select
subset for the ECML/PKDD dataset. Results for the basic cases are also

shown in order to facilitate the comparison.

Table 5.30 — Comparison of combine-select with basic cases.
ECML/PKDD dataset.

Subset/ Expert Knowledge N-gram Combine-select
Alternatives

DR (%) NF P.Time | DR (%) NF P.Time | DR (%) NF P. Time

Full subset 94.79 30 1.01 92.99 96 5.12 96.13 126 0.80
CFS 89.10 2 0.15 93.47 15 0.47 74.25 4 0.30
mRMR 91.22 6 0.33 89.45 5 0.33 91.38 11 0.48

Before feature selection, combine-select achieves better results than both
basic cases (96.13% vs. 94.79% and 92.99%) by using a higher number
of features (126 features vs. 30 and 96). After feature selection, it
gets better results than expert knowledge (91.38% vs. 91.22%), but not
than n-grams (91.38% vs. 93.47%). Note that the results are compared

according to the selected instance of the GeFS measure for each case.

5.6. Discussion 145

The combination uses more features than expert knowledge (11 vs. 6)
and it requires more processing time, while it uses less features than
n-grams (11 vs. 15) and spends almost the same processing time than
n-grams. The results show that the trend is: the higher the number of
features, the better the detection results. This is not necessarily obvious
given that, if the features added are highly correlated to the existing
ones, they might not provide new information and their results might
not improve. This fact indicates that the methods proposed in this thesis
extract features that are quite independent from each other and they
provide useful information to distinguish normal requests from attacks.
In general, the higher the number of requests, the higher the processing

time, although not always there is a linear relation between them.

In the case of the CSIC dataset, Table 5.31 shows that in this case the
combination does not improve the results of both basic subsets before
feature selection (92.69% vs. 93.99% and 84.59%), but it does after
applying GeFS (93.61% vs. 93.55% and 82.43%). For the full subset, the
combination significantly improves the performance of n-grams by using
more features. The number of features after feature selection is 17 for the
combination vs. 11 for expert knowledge and 12 for n-grams. Although
the combination uses more features, its processing time is lower than in

the case of n-grams.

Table 5.31 — Comparison of combine-select with basic cases. CSIC
dataset.

Subset/ Expert Knowledge N-gram Combine-select
Alternatives

DR (%) NF P.Time | DR (%) NF P.Time | DR (%) NF P. Time

Full subset 93.99 30 0.88 84.59 114 4.27 92.69 144 0.99

CFS

93.55 11 0.50 82.43 12 0.62 63.74 3 0.16

mRMR 75.50 14 0.97 77.85 8 0.56 93.61 17 0.56

Select-combine. The results corresponding to the ECML/PKDD dataset
for the two subsets of this alternative are summarized in Table 5.32. Note
that in this alternative the full subset (before selection) is not presented,
since select-combine includes feature selection. Because of that, it is not

compared with basic cases before selecting features.

146 5. Machine learning techniques for web intrusion detection
Table 5.32 — Comparison of select-combine with basic cases.
ECML/PKDD dataset.

Subset/ Expert Knowledge N-gram Select-combine
Alternatives

DR (%) NF P.Time | DR (%) NF P.Time | DR (%) NF P. Time
CFS 89.10 2 0.15 93.47 15 0.47 - - -
mRMR 91.22 6 0.33 89.45 5 0.33 - - -
mRMR+CFS - - - - - - 96.88 21 0.94
mRMR+mRMR - - - - - - 93.71 11 0.55

The results of the selected mRMR+CFS subset notably improve the rates
of the two basic cases separately (96.88% vs. 91.22% and 93.47%), while
using more features (21 in contrast to 6 and 15). The processing time
is higher than the times of basic cases. Besides the number of features,
in feature selection, the detection results achieved is also an important
factor to be considered. In our case, it can be seen that the criterion
employed to choose the GeF'S instance leads to select the one that reaches
higher results, although it neither guarantees the minimum number of
features in all cases nor the minimum processing time. However, in the
ECML/PKDD dataset it is noticeable that even the subset with the
non-selected instance (mRMR+mRMR) improves the detection of both
basic cases, and not necessarily using a higher number of features. This
reinforces the idea that creating a combined subset conducts to achieving
better detection results. For the mRMR+mRMR subset, the processing
time is lower than for the mRMR~+CFS subset, although it is higher than

for both basic cases.

The results for the CSIC dataset are presented in Table 5.33, together
with the basic cases to make easier the analysis of the results. In this case,
the selected subset (called CFS+CFS) achieves better detection results
than both basic cases (94.07% vs. 93.55% and 82.43%). The number of
features is also higher (23 vs. 11 and 12), while the processing time is

lower (0.53 vs. 0.88 and 0.62).

In conclusion, this combination is able to improve the detection results of
the basic cases individually, at the expense of employing a higher number
of features. Anyway, in intrusion detection, using 21 and 23 features, as

in our case, is not considered a high number of features and it is quickly

5.6. Discussion 147

Table 5.33 — Comparison of select-combine with basic cases. CSIC

dataset.
Subset/ Expert Knowledge N-gram Select-combine
Alternatives
DR (%) NF P.Time | DR (%) NF P.Time | DR (%) NF P. Time

CFS 93.55 11 0.88 82.43 12 0.62 - - -
mRMR 75.50 14 0.97 77.85 8 0.56 - - -
CFS+CFS - - - - - - 94.07 23 0.53
mRMR+mRMR - - - - - - 82.74 22 1.06

processable by most detection systems. Although the number of features
is higher, in this case the processing time of the combination outperforms

both basic cases.

o Select-n-gram-combine. To facilitate the discussion, a summary for the
results of this alternative for the ECML/PKDD dataset is presented in
Table 5.34.

Table 5.34 — Comparison of select-n-gram-combine with basic cases.
ECML/PKDD dataset.

Subset/ Expert Knowledge N-gram Select-n-gram-combine
Alternatives

DR (%) NF P.Time |DR (%) NF P.Time |DR (%) NF P. Time

CFS 89.10 2 0.15 93.47 15 0.47 - - -
mRMR 91.22 6 0.33 89.45 5 0.33 - - -
Ezpert+CFS - - - - - - 97.18 45 2.17
FEzxpert+mRMR - - - - - - 96.35 35 14

The selected subset of this combination alternative (ezpert+CFS)
improves the results of both basic cases separately (97.18% vs. 91.22%
and 93.47%) by using a higher number of features (45 vs. 6 and 15). In
this case, the increment in the number of features is translated into a
rise in the processing time. The expert+mRMR subset, although not
being optimal in feature selection, improves the detection of basic cases
with a higher number of features. This fact shows that the combination
can improve the detection results, and that the criterion used for the
GeF'S measure leads to the selection of the instance that reaches higher

detection results.

148 5. Machine learning techniques for web intrusion detection

Regarding the CSIC dataset, its results can be studied by looking at
Table 5.35. In this case, the behavior is the same than in the previous
dataset: the combination improves the detection results of the two basic
cases individually, by selecting a higher number of features and increasing

the processing time.

Table 5.35 — Comparison of select-n-gram-combine with basic cases.
CSIC dataset.

Subset/ Expert Knowledge N-gram Select-n-gram-combine
Alternatives

DR (%) NF P.Time |DR (%) NF P.Time |DR (%) NF P. Time

CFS 93.55 11 0.50 82.43 12 0.62 - - -
mRMR 75.50 14 0.97 77.85 8 0.56 - - -
Ezxpert+CFEFS - - - - - - 94.41 42 1.49
Ezpert+mRMR - - - - - - 93.75 38 1.25

In summary, except in the combine-select case of the ECML/PKDD dataset,
the combination alternatives reach higher results than basic cases separately.
In all analyzed cases, the detection results are better when the number of
features is higher. And when this happens, generally, the processing time is
also higher. However, it was shown that this implication is not necessarily true
in all cases and that their correlation is not necessarily linear. The subset with
lower processing time is expert knowledge. As the conclusions drawn above
hold true for both CSIC and ECML/PKDD datasets, they lead to think that
this behavior is independent of the dataset used. The improvement of detection
results is usually not in line to reducing the number of features, i.e., the more
one objective is fulfilled, the lest fulfilled is the other one. Because of that, the
best solution depends on the scenario to be protected and on which factors
are more critical for it. When the detection results are important, then the
combination alternatives are recommended. In environments with restricted
resources, combination alternatives that do not increase the processing time
could be used, that is, combine-select or select-combine might be potentially
employed. Another alternative for restricted resource scenarios is applying
basic cases, that could result more appropriate due to their reduced usage of

features.

5.6. Discussion 149

5.6.3 Comparison between combination alternatives

In this subsection, the combination alternatives are compared to each other. The
results for the ECML/PKDD dataset of the three alternatives are summarized
in Table 5.36 for facilitating the comparison. Recall that in the case of
combine-select alternative, results before and after feature selection have
been calculated. However, for the select-combine and select-n-gram-combine
alternatives, results can only be obtained including feature selection. In
order to properly compare these three alternatives, the results shown for

the combine-select alternative are exclusively calculated after feature selection.

Table 5.36 — Detection results, number of features and processing time
for the three combination alternatives. ECML/PKDD dataset.

Subset DR (%) NF (%) P. Time (ms/req.)
Combine-select 91.38 11 0.48
Select-combine 96.88 21 0.94
Select-n-gram-combine ~ 97.18 45 2.17

Table 5.36 shows that the best detection results are reached by the
select-n-gram-combine alternative. However, it is also the alternative using a
higher number of features and requiring a higher processing time. Again, the
trend is that the detection results are better as long as the number of features
increases. This is not necessarily obvious as it depends on the information
provided by each feature. The processing time rises as long as the number of

features does.

For the CSIC dataset, the summary can be found in Table 5.37. The
behavior regarding the detection results and number of features is the same as
for the ECML/PKDD dataset: the best detection for the select-n-gram-combine
alternative, that uses more features. However, the processing time does not
necessarily increase as long as the number of features grows, which has positive

implications for the performance of the system.

150 5. Machine learning techniques for web intrusion detection

Table 5.37 — Detection results, number of features and processing time
for the three combination alternatives. CSIC dataset.

Subset DR (%) NF (%) P. Time (ms/req.)
Combine-select 93.61 17 0.71
Select-combine 94.07 23 0.53
Select-n-gram-combine 94.41 42 1.49

5.6.4 Comparison between decision trees

In this section, the results of the different classifiers applied to solve the current

intrusion detection problem, over the particular studied datasets, are analyzed.

From the results in Sec. 5.5, it seems that, in general, the C4.5, CART and
Random Forest obtain similar results, while the performance of Random Tree

is slightly lower.

If the analysis is performed per dataset, the trend is that for ECML/PKDD,
Random Forest and CART reach slightly better results, while for the CSIC
dataset, CART and C4.5 are faintly more effective.

Regarding the analysis of processing time, in general Random Tree is the
most efficient one (it reaches the lowest processing time), while Random Forest
and C4.5 require more milliseconds for processing each request. This conclusions

are aligned with the nature of each algorithm.

In average, there are no big differences between the classifiers. This tends
to satisfy the No-Free-Lunch Theorem, that states that there are no a priori
distinctions between learning algorithms [Wolpert, 1996] and that “any two
optimization algorithms are equivalent when their performance is averaged

across all possible problems” [Wolpert and Macready, 2005].

5.6.5 Comparison between datasets

In this section, results of both datasets are compared. Regarding expert
knowledge, features have different relationships among them: for the CSIC
dataset they are linear, while for the ECML/PKDD dataset they are not linear.

5.6. Discussion 151

Differently, in the n-gram subset, both datasets have linear relationships.
In this case the detection results for the CSIC dataset are not as high as those
for the ECML/PKDD dataset.

About the combinations, the detection results for the FCML/PKDD are
slightly higher than for the CSIC dataset. It could be said then that the CSIC
dataset is more challenging for the detection algorithms than ECML/PKDD.

Anyway, both datasets follow a similar trend.

For both basic cases and combine-select, the processing times of the
ECML/PKDD dataset are lightly lower than those corresponding to CSIC. For

select-combine and select-n-gram-combine the situation is the opposite.

5.6.6 General comparison

In this section, several graphs are shown as a summary for facilitating the
comparison of the different subsets in terms of the detection results and the
number of features. Figure 5.17 represents the DR and FPR of all the subsets
for the ECML/PKDD dataset. In the figure, the size of the circles is used to
represent the number of features, being the coordinates of the alternative the
point in the center of the circles. The best solution would be the one closer to
the (0,1) point with the minimum circle size, that is, better detection results
and lower number of features. Figure 5.18 shows in detail the left-upper area

of Fig. 5.17, in order to facilitate the observation of the results.

As can be seen in Fig. 5.17 and Fig. 5.18, the best results are reached by
the three combination alternatives, that are closer to the (0,1) point and some

of them do not use a high number of features.

The summary for the CSIC' dataset is represented in Fig. 5.19. Figure 5.20
and Fig. 5.21 show the previous figure in more detail for better appreciation
(the last figure augments the dotted squared area in Fig. 5.20). These graphs
show that the best solutions are again the combinations, and some expert

knowledge options.

152 5. Machine learning techniques for web intrusion detection
100 -W
0] T O
80—_
]
§ 60-
& 50
3 -
<7 © N-gram
304 © Combine-select
»] © Select-n-gram-combine
|l + Select-combine
10 Expert Knowledge
0 \ T Y T y T X T
0 20 40 60 80 100

False Positive Rate

Figure 5.17 — DR and FPR for all the subsets of the ECML/PKDD

dataset. The size of the symbols represents the number of features.

@ ___-5-N-C,Expert+CFS
N\ S-N-C,Expert+mRMR
~ '\ Expert,Full
9 - ' __N-gram,CFS
- N-gram,Full
|
> \
® 90 / C-SFull ' - Expert, MRMR
5 | SCmRMR+CFS C-SmRMR \
3 S-C, mRMR+mRMR N-gram,mRMR]|
% Expen.éFS
85
80 ¥ T T T T T
0 5 10 15 20 25

False Positive Rate

Figure 5.18 — Detail of DR and FPR for the subsets of the ECML/PKDD
dataset. C-S stands for combine-select, S-C for select-combine and S-N-C
for select-n-gram-combine.

5.6. Discussion 153

100
90- o

B0 A

Accuracy

%1 @ N-gram

0] © Combine-select

o Select-n-gram-combine|
Select-combine
Expert Knowledge

: 0 I 2]0 I 4ID ; EIG . 80 I 100

False Positive Rate

Figure 5.19 — DR and FPR for all the subsets of the CSIC' dataset.
The size of the symbols represents the number of features.

105
4
100
95 -
90
R+mRMR
585 .
o -—N-gram,CFS
3 80
8 | -—N-gram,mRMR
<L 75
N-gram,Full T
704 Expert, nRMR
65 |
| C-S,CFS—=
60 ' T ’ T ' = I T T\ LS| !
0 5 10 15 20 25 30 35 40

False Positive Rate

Figure 5.20 — Detail of Fig. 5.19 regarding DR and FPR for the
subsets for the CSIC dataset. C-S stands for combine-select, S-C for
select-combine and S-N-C for select-n-gram-combine.

5.6.7 Influence of the number of training requests

Table 5.26 reveals that for the ECML/PKDD dataset, the average of the four
decision trees can obtain a mean DR of 97.8% and a mean FPR of 2.2%, by

154 5. Machine learning techniques for web intrusion detection

100

> S-C,CFS+CFS
§95- J S—hll—C.ExpemmRMR
= O o/
T i
: P, AR
(1 "
S-N-C,Expert+CFS | T
Expert,Full Expert,CFS
C-S,mRMR
0 : . : : . . .
55 8.0 6.5 7.0 75

False Positive Rate

Figure 5.21 — Detail of Fig. 5.20 regarding DR and FPR for the
subsets for the CSIC dataset. C-S stands for combine-select, S-C for
select-combine and S-N-C for select-n-gram-combine.

using 16 383 training requests. The standard deviation of DR is 0.28% and that
of FPR is 0.27%. Regarding processing time, the mean value is 0.5 ms/request
with o = 0.30%.

The table shows that the general trend followed by the results when
the number of training requests increments is the following: DR augments
progressively while FPR decreases. For both measures, o fluctuates until 511
requests, where it decreases until it reaches the 0 value. The processing time

keeps falling until 8191 requests, where it starts growing again.

This trend can be also seen graphically in Fig. 5.22 for the ECML/PKDD
dataset. It shows the mean DR and FPR (regarding the H runs) for the mean

of the four employed decision trees.

Several runs are carried out to guarantee that the behavior of the system
is captured. Observing the figure it can be seen how, at the beginning, the
algorithms do not have enough knowledge and then, both mean DR and FPR
are near 50%. This means that half of the attacks are detected and half of
the alarms are false alarms. This behavior is similar to a random classification
system with the same probability of classifying requests into each class (normal

or anomalous). As long as the system is trained with more requests DR

5.6. Discussion 155

1.0 T T T T 3
08 | : -
06 F 2 . 1
& = —m— False Positive Rate
;:cﬁ e - - Detection Rate
04 \'\. i
H.""\.\.
\I
0,2 ™ B
v ~
-H.\.
S
| |
0.0 I I 1 Su—a—=
1 10 100 1000 10000 100000

Number of training requests

Figure 5.22 — Study of the influence of the number of requests on
the detection results of the mean of four decision trees. ECML/PKDD
dataset.

progressively increases while FPR does the opposite, achieving results more

aligned to our objective.

For the CSIC dataset, Table 5.27 shows that mean results rise up to
95.1% DR (with ¢ = 0.22%) and 4.9% FPR (¢ = 0.13%) when training
the system with 32767 requests. In this case, the mean processing time is
0.7 ms/request and the standard deviation is 0.14%.

The influence of the increase in the number of training requests in the results
of the WAF is summarized next: the mean DR gradually rises, in contrast to
the mean FPR, that decreases progressively. This is represented graphically
in Fig. 5.23. Analyzing the deviation of these measures in Table 5.27, it can
be seen that it fluctuates until it stabilizes and takes a decreasing trend. The
required processing time is more and more reduced until 8191 requests, where
it starts growing. The standard deviation for the processing time keeps 0 until

511 requests.

Since in both datasets o takes small values, when this document talks about

the results, it refers to the mean value. At this point it should be mentioned

156 5. Machine learning techniques for web intrusion detection

1'0 T T T T =

08 | o 4

06 | 4
& ' —m— False Positive Rate
w .;\""x - Detection Rate
“ 04 o %,

1 ""‘-—.M.\.

02 | \'H -

Iﬁ.____..\.
i—n
0.0 1 1 1 I
1 10 100 1000 10000 100000

Number of training requests

Figure 5.23 — Study of the influence of the number of requests on the
detection results of the mean of four decision trees. CSIC' dataset.

that the fact that the mean FPR is higher than 0.01 (threshold frequently
used in the IDS field) is not a problem when it is considered that, nowadays,
the output of current IDSs is processed by Security Information and Event

Management (SIEM) systems, that correlate data and discard false positives.

The results shown correspond to H = 10 runs. Given the results obtained
for the mean and standard deviation, it was considered that performing H runs
was representative enough for our purposes. It is expected that the standard

deviation would be smaller when more experiments are conducted.

The processing times in these tables are taken as reference since they are
obtained out of H runs and they are calculated for the different values of
training requests.

Note that Fig. 5.15 and Fig. 5.16 previously presented, that show the results
for each of the decision trees individually, present a similar behavior to Fig. 5.22
and Fig. 5.23 respectively, that show the results of the four decision trees in

average.

5.6. Discussion 157

5.6.8 Comparison with stochastic systems

The aim of this section is comparing the detection algorithms presented in
this chapter and in Chapter 4, that is, comparing the behavior of statistical

techniques, Markov chains and decision trees.

In order to compare different systems, a common dataset is needed. Since
the experiments of all the studied systems are conducted using the CSIC

dataset, the comparison is possible.

The systems are compared in regard to the following criteria: detection
results, processing time and number of training requests needed. It should be
considered that the implementations of the systems have some differences that
could affect the results. Furthermore, the selection of the training requests is a
random process, therefore, it could also influence the results and comparisons.
It is important to mention that comparisons and conclusions are circumscribed
to the CSIC dataset. Conclusions might be different when a different dataset

is analyzed.

5.6.8.1 Comparison of the characteristics of the systems

This section shows a comparison between some characteristics of the systems

that might influence their results:

« Feature extraction for both stochastic systems is done manually (expert
knowledge). However, in the ML system feature extraction methods that

combine both manual and automatic techniques are proposed.

o Given the characteristics of each algorithm, stochastic systems are
trained with only normal traffic and decision trees with both normal
and anomalous traffic. This fact is reflected in Fig. 4.17 and Fig. 5.23. As
a consequence, stochastic systems deny everything when they are trained
with few requests, i.e., DR is high but FPR too. This behavior reflects
the “denying everything unless explicitly allowed” approach of the system.
Differently, decision trees are trained with both normal and anomalous
requests. Then, when decision trees are trained with few requests, the

system behaves almost randomly. In other words, DR and FPR are 50%.

158

5. Machine learning techniques for web intrusion detection

In the stochastic approach the features are constructed at the token
level. However, the machine learning system works at both the token and

request levels.

Stochastic systems distinguish three types of characters: letters, digits
and non-alphanumeric characters. Decision trees distinguish whether the
non-alphanumeric characters have a meaning in certain programming
languages or not. Moreover, the character distribution of headers is

considered in stochastic systems but not in the ML one.

In the case of the statistical algorithms, the length limits are determined
by the minimum and the maximum values seen in the training data.
However, in the Markov chains the lower limit is set to 0 and the upper

limit is the parameter of the WAF for the Gaussian distribution.

The ML system applies feature selection. However, it was not considered
necessary to apply it in stochastic systems because the number of extracted

features is low.

5.6.8.2 Comparison of the results

In this subsection, the proposed detection systems are compared according

to several criteria: detection results, number of needed training requests

and processing time. For the comparison, the mean values are used and

standard deviation values have been omitted. Recall that small differences

in the results should not be considered very decisive, due to the previously

mentioned differences in the design of the systems and the influence of random

aspects of the systems, that may affect their results. Moreover, the fact that

training requests are chosen randomly also has an influence.

o Detection results. The detection results of the three systems are

presented in Table 5.38, in the ‘DR’ and ‘FPR’ columns. Recall that
comparisons are performed using the CSIC dataset. When comparing
the results, it can be observed that, for the number of training requests
used, stochastic algorithms perform better than decision trees (higher
DR and lower FPR). However, between statistical techniques and Markov

chains the difference is not much.

5.6. Discussion 159

Table 5.38 — Number of training requests, processing time and results
achieved by each detection algorithm. DR: Detection Rate, FPR: False
Positive Rate, NTrR: Number of Training Requests, NTR: Number of
Test Requests, PT: Processing Time (ms/request), MPT: Minimum
Processing Time (ms/request). CSIC dataset.

Technique DR(%) FPR(%) NTrR NTR PT MPT
Statistical 99.4 0.9 16383 2000 0.63 0.59
Markov chain 98.1 1.0 32767 2000 79 7.9
Decision Trees 95.1 4.9 32767 2000 0.7 0.3

e Number of training requests. Table 5.38 reflects that statistical
techniques use half of the requests required by Markov chains in order
to get almost the same detection results. Whereas decision trees are
trained with the same number of training requests than Markov chains

and detection results are a bit lower.

Therefore, statistical techniques are those that require the lowest number
of training request to achieve 0.9% FPR. Markov chains and decision
trees are less recommendable in environments where obtaining traffic is

difficult or where the amount of traffic is limited.

As mentioned, in all cases, the systems are tested with 1000 normal plus

1000 abnormal requests.

o Processing Time. Since the processing time of the system makes
reference to the milliseconds consumed to process a single request, the
lower the processing time, the more efficient the system is. Processing
time is shown in Table 5.38 in two columns. On the one hand, column
‘PT’ shows the processing time corresponding to the number of requests
used to train the system, that is represented in the ‘N'TrR’ column. On
the other hand, column ‘MPT’ refers to the minimum processing time

that the algorithm reached, regardless of the number of training requests.

Results reveal that the slowest algorithm is the one that uses Markov
chains. Column ‘MPT’ shows that decision trees can reach the fastest
processing time, hence, they are recommended when the processing time

of the system is an important factor in the detection system.

160 5. Machine learning techniques for web intrusion detection

In summary, it can be stated that stochastic systems reach the best detection
results and decision trees achieve the best processing time. The most adequate
technique for each target scenario depends on which of the previous aspects

has a higher importance in each particular case.

5.7 Conclusions
The conclusions drawn in this chapter are summarized next:

e Decision trees can be successfully applied to the classification of web
traffic. They are effective in the classification of this type of traffic besides
in network traffic. Four decision trees have been used for the experiments:
C4.5, CART, Random Tree and Random Forest.

e The decision trees employed for detection reach high detection results.
For the ECML/PKDD dataset, the average results of the four decision
trees reach 97.8% DR and 2.2% FPR. These results correspond to the
mean of the results for 16 383 training requests and for the H = 10 runs
of the experiments using the select-n-gram-combine subset. For the CSIC
dataset, the results are 95.1% DR and 4.9% FPR in average for the same
subset with 32767 training requests and H = 10. In the experiments,
decision trees are able to detect the different attacks included in both the
CSIC and ECML/PKDD datasets, even zero-day attacks.

o The algorithms are high-speed. For the ECML/PKDD dataset, when
decision trees are trained with 16 383 requests, the processing time is
0.5 ms/request, with 0.3% standard deviation. However, the algorithms
can process requests up to 0.2 ms/request and 0.24% standard deviation,
when trained with 8191 requests. In the case of the CSIC dataset,
the processing time is 0.7 ms/request for 32 767 training requests, with
0.14% standard deviation. The algorithms can reach higher speeds when
trained with 4095 and 8191 requests. In those cases the processing time is
0.3 ms/request, with 0.35% standard deviation.

o The GeFS measure successfully selects features in web traffic (in addition

to network traffic). This measure reduces the number of irrelevant and

5.7. Conclusions 161

redundant features and decreases the processing time. Besides that, it
is able to improve the detection results in two cases: firstly, in the case
of combine-select subset of the CSIC dataset, where the reduction was
88.2% (from 144 to 17 features) and the DR improvement of 0.92% (from
92.69% to 93.61%). Secondly, in the case of n-grams of the ECML/PKDD
dataset, that reaches an improvement of 0.48% in DR (from 92.99% to
93.47%) with a reduction of 84.38% in the number of features (from 96
to 15).

o New feature extraction methods are proposed. They combine expert
knowledge and n-gram features. Concretely, three combination

alternatives are proposed:

— Combine-select. The first alternative mixes all the features extracted
by n-grams and expert knowledge and applies feature selection

afterwards.

— Select-combine. In contrast, this alternative mixes the features

already selected from expert knowledge and n-grams.

— Select-n-gram-combine. This alternative is a variation of the second
one. It combines expert knowledge features (not selected) with the

selected ones from n-grams.

The resource consumption of the proposed extraction methods is reduced
by the application of feature selection. However, for both datasets,
the three combination alternatives improve the detection results of the

methods individually, satisfying the proposed objectives.

Regarding the number of features, the combination alternatives use a
higher number of features than individual techniques. In general, when
the number of features grows higher, the processing time also does.
However, it is not always the case (like for example, with the case of
the select-combine alternative for the CSIC dataset). From the three
combination alternatives, the select-n-gram-combine is the one that uses
more features (45 features for the ECML/PKDD dataset and 42 for
the CSIC dataset) and also the one that reaches the highest results.

Combine-select is the option that uses the lowest number of features (11

162

5. Machine learning techniques for web intrusion detection

for ECML/PKDD and 17 for the CSIC dataset) and the one that achieves
lower mean detection results (91.38% and 93.61% for the ECML/PKDD
and CSIC datasets respectively).

In general, in intrusion detection, the number of features used in this
thesis is considered low and, considering the capacity of modern systems,
it is acceptable. However, in scenarios with high resource limitations,
alternatives using a lower number of features (for example combine-select)
could result more suitable. These conclusions apply to both datasets
studied in this thesis.

The study of how the number of training requests influences the
performance of the system reveals a funnel-shape trend of the system
(the higher the number of training requests, the best detection results).
For the ECML/PKDD dataset, 16 383 requests are enough to achieve a
mean FPR of 2.2%. For the CSIC dataset 32767 requests are used to
achieve a mean FPR of 4.9%.

The comparison of statistical techniques, Markov chains and decision
trees concludes that stochastic systems reach the best detection results
and decision trees can potentially achieve the best processing time. The
statistical system is the one that needs the least training request for

reaching those results.

Chapter 6

Conclusions, contributions and

future work

“Tell me and I forget, teach me and I may

remember, involve me and I learn."

— Benjamin Franklin

This chapter firstly shows a brief summary of the present thesis.
Then, the conclusions extracted from the research are described.
The contributions of the thesis, as well as the publications derived,

are shown. Finally, future research lines are drawn.

6.1 Summary

Web applications take more and more part in our daily lives. They are
becoming increasingly popular and complex in all sorts of environments, ranging
from e-commerce applications to banking. This fact makes web applications
very attractive for attackers, who intend to exploit web vulnerabilities. Web
applications are threatened, therefore, it is necessary to protect them. In order

to detect web-specific attacks, detection mechanisms need to be placed at the

164 6. Conclusions, contributions and future work

application layer. This is the objective of WAFs: analyzing HTTP traffic with
the aim of detecting web intrusions. These systems are a particular case of IDSs,
with the particularity of being specialized on the analysis of web traffic. One
of the benefits of IDSs and WAFs is that they protect a target web application

without the necessity of modifying its source code.

The main objective of this thesis is developing intrusion detection systems
that are able to accurately detect web attacks with a low resource consumption,
high speed and a simple design. In order to achieve this goal, various techniques
have been used for detection: stochastic-based techniques and machine learning.
The proposed systems follow an anomaly-based approach. Regarding stochastic
techniques, two methods have been applied: statistical-based algorithms and
Markov chains. Regarding machine learning, four decision trees have been used
to detect web attacks, namely C4.5, CART, Random Tree and Random Forest.

Additional aspects of the web attack detection have been addressed in
this thesis. On the one hand, it studies the influence that the number of
requests used in the training phase produces over the detection capacity of the
system. On the other hand, it carries out a study about which features are
more efficient and effective for web intrusion detection. For that purpose, firstly,
three feature extraction methods have been studied: expert knowledge, n-grams
and a combination of the two previous options. They have been analyzed in
order to determine which one leads to the best detection results and the lowest
resource consumption. Secondly, the extracted features have been selected by

means of the GeFS measure.

The proposed detection systems have been experimentally tested. For that,
HTTP traffic is needed. Counting with appropriate datasets for training and
testing detection methods is critical. However, in the web intrusion detection
field, gathering labeled and proper traffic faces several difficulties. The main
problem identified is the scarcity of labeled HTTP datasets [Sommer and
Paxson, 2010], [Tavallaee et al., 2010]. In this thesis, the FCML/PKDD
dataset, generated for the ECML/PKDD Discovery Challenge, has been used.
However, the disadvantage of this dataset is that most parts of the requests
are anonymized, which complicates the thorough evaluation of the detection
algorithm’s performance. Therefore, a common and public dataset would

be necessary to adequately evaluate the systems. It would also allow the

6.2. Conclusions 165

comparison of different schemes and techniques. This has been the motivation
for generating the CSIC dataset. It is a new and publicly available HTTP
dataset that is being used by the web intrusion detection community to evaluate
their detection systems. It consists of labeled normal and anomalous requests,

including multiple modern attacks. Furthermore, it is not anonymized.

After this summary, the conclusions obtained during the development of

this work are given.

6.2 Conclusions
The most relevant conclusions derived from this thesis are:

» Stochastic and machine learning algorithms can be successfully

used in anomaly-based web attack detection.

They are able to distinguish between normal and anomalous traffic with
low time and resource consumption. Both approaches have been able to

detect zero-day attacks.

o The goal of building high-detection WAFs has been achieved.

Results show that the best detection results are reached by the statistical

system.

The performance of the systems is measured as the mean of the detection
rate and the false positive rate. The values obtained from the experiments

are the following:

— In relation to the statistical based system, it is able to reach a

detection rate of 99.4% and a false positive rate of 0.9%.

— The Markovian system achieves a detection rate of 98.1% and 1%
false positive rate. These results have been reached with the following
parameter values for the Markov chain: 7 = 50, ¢ = 107*® and
p = 0.99.

— Regarding ML techniques, the results have been calculated as the
average of the detection rate of four decision trees (C4.5, CART,

Random Tree and Random Forest). Results have been shown for

166

6. Conclusions, contributions and future work

two datasets: in the case of the CSIC dataset the detection rate
rises up to 95.1% when the false positive rate is 4.9%. For the
ECML/PKDD dataset, the DR reaches 97.8% with 2.2% FPR. Note
that FPRs higher than 0.01 are not problematic, given that STEM
systems analyze the output of IDSs and correlate data, being able

to reduce the amount of false positives.

e The influence of the number of training requests on the

detection results has been studied.

For that, M = 15 experiments that use an increasing number of training
requests, from 1 to 32767 have been performed. They have been run

H = 10 times, choosing different samples of training requests.

Contrarily to what would be expected, the behavior of the systems is not
always linear, consequently, using more training requests does not always

imply better results.

Experiments have revealed the following:

— In the case of the statistical WAF, when using 16 383 requests to
train the system, a false positive rate of 0.9% is reached. When the
training is done with higher amounts of requests, it is possible to
progressively reduce the false positive rate, until reaching a FPR of
0.4%. The detection rate remains almost invariable: from 99.4% to
99.3%. This is achieved with 32767 training requests.

— In the case of Markov chains, 32 767 requests are necessary to obtain
1% FPR. It is noticeable that when 8191 requests are employed, the
FPR is already 1.7%.

— In relation to ML, the experiments show that with 32767 requests
from the CSIC dataset, the system reaches a FPR of 4.9%. The rate
decreases to 2.2% in the case of the ECML/PKDD dataset when
16 383 requests are employed.

In summary, the statistical method and the ML system (in the case of
the ECML/PKDD dataset) are the ones that need the lowest number

of requests for training the system (16 383), while not decrementing its

6.2. Conclusions 167

detection capacity. Markov chains and the ML system for the CSIC

dataset use a double amount of requests.

e The goal of building high-speed detection systems has been

achieved.

The experiments reveal the following processing time, depending on the

detection technique used:

— The statistical algorithm is able to process requests up to a rate of

0.59 ms/request (i.e., processing a single request takes 0.00059 s).
— The processing time is 7.9 ms/request for Markov chains.

— In the case of ML, a mean of the processing time of the four
decision trees is taken. The experiments show that ML can reach
a processing time of 0.3 ms/request for the CSIC dataset. In the
case of the FCML/PKDD dataset, the processing time decreases to
0.2 ms/request. Note that as the mean of the algorithms is taken,
using a specific algorithm results could even improve. In particular,
Random Tree is the fastest decision tree (it can be 7 times faster
than C4.5).

All processing time measurements have been obtained with an Intel core
i7 CPU at 2.40 GHz and 8GB RAM, SO Windows 8, 64 bits.

In conclusion, from the detection techniques studied, ML algorithms are
those that get the minimum processing time. Thus, from the experiments
it has been concluded that even in the case where ML requires a higher

number of training requests, it is faster.

o The proposed feature extraction methods, that combine expert
knowledge and n-grams, have improved the detection results of

both techniques separately.

Furthermore, feature selection has been applied to reduce irrelevant and
redundant features. Using a low number of features results in low resource

consumption.

Comparing the results of the three combination alternatives proposed,

namely combine-select, select-combine and select-n-gram-combine, it can

168

6. Conclusions, contributions and future work

be concluded that the first one is the option that reduces the most
the number of features, but it also gets the lowest results. Contrarily,
select-n-gram-combine reaches the best detection results but it needs
the highest number of features. Select-combine is an intermediate case

between the other two alternatives.

In general, a lower number of features implies lower processing times.
However, it was shown that in some cases, like for the select-combine
subset of the CSIC dataset, the combination was even able to reduce the

processing time.

The systems consume low resources. Experiments have shown
that not only for network traffic, but also for web traffic, the
GeFS measure is able to reduce the number of redundant and

irrelevant features, while keeping the detection results.

The resource consumption is measured according to the number of features.
Besides reducing the number of features, GeFS can even make the results

improve, like in the case of n-grams and combine-select.

The experiments have been carried out using two datasets (CSIC and
ECML/PKDD) for expert knowledge, n-grams and the three combination
alternatives. Expert knowledge and n-grams are called basic cases and the
rest, combination ones. The study about the type of relationship between
features has revealed that in most of the cases there are linear relationships
between the features, considering basic cases and combination. When
there are linear relations, the CFS has been used for reducing the number
of features. The experiments show that, in most of the cases, for the
two datasets studied, there are more linear relations between the features

than non-linear ones.

A new publicly available and labeled dataset, the CSIC dataset,

has been created.

The dataset contains exclusively HTTP traffic, and its requests are
labeled as normal or anomalous. The fact that the dataset is labeled
makes possible to evaluate the detection abilities of the web detection
system. Specifically, the dataset contains around 36 000 normal requests

and 25000 anomalous ones. Furthermore, the CSIC dataset includes

6.2. Conclusions 169

modern web attacks such as SQL injection, buffer overflow, XSS, server
side include and so on, satisfying the necessity of evaluating the behavior
of the systems towards modern attacks. Considering the quick speed
of the evolution of web attacks nowadays, it is very important that the
protection mechanisms are ready to respond adequately to those threats.
Other advantage of the dataset is that it includes realistic values and

that it is not anonymized.

This dataset is more challenging than the ECML/PKDD dataset for the

evaluation of decision tree algorithms.

Given that the dataset is publicly available, it provides a common
framework to the scientific community for evaluating WAFs, facilitating
the comparison of different web intrusion systems. In fact, the dataset is
currently being used by the scientific community to evaluate their web
attack detection systems [Kozik et al., 2014a], [Kozik et al., 2014b]. Even,
versions with other formats of the dataset have been created by other

researchers [Scully, 2015].

In summary, it can be seen that the objectives established in Sec. 1.4

have been satisfied.

« The behavior of the proposed detection techniques (statistical
methods, Markov chains and decision trees) has been compared
using the CSIC dataset to study which of them is the most

recommendable in each scenario.

This study reveals that, depending on the scenario and on the pursued
goal, the recommendable system should be chosen as follows: when the
goal is to achieve high detection results, then the statistical-based system
is the most appropriate one. This is also the most suitable option when
a low amount of requests is available. However, if the primordial interest

is a low processing time of the system, then decision trees are optimal.

170 6. Conclusions, contributions and future work

6.3 Contributions
In this section, the main contributions of this thesis are presented:

1. Two new high-speed, high-detection, low resource consumption
and simple designed stochastic-based anomaly web application

firewalls have been developed.

One of the systems applies statistical techniques for the detection and

the other is based on Markov chains.

Several relevant aspects of the algorithms to be highlighted are:

o In general, the statistical-based anomaly WAFs in the literature make
use of several models to decide about the normality /abnormality
of the requests, like [Kruegel et al., 2005b], [Criscione and Zanero,
2009]. These models range from low to high complexity. In order to
calculate the total anomaly rate of a request, these systems need to
evaluate every model. Contrarily, the systems proposed in this thesis
are designed to consider each model as autonomous. That is, the
models contribute to the final decision but each one also has decision
autonomy, not being merely another part of the general abnormality
decision. This implies that, in some cases, the approach proposed
does not need to evaluate all models before making a decision about
the abnormality of the request. This happens when a model decides
that the request is not normal. In that case, it is not necessary to
continue with the detection process. As soon as the request does
not satisfy any of the model requirements for normality, the request
is tagged as anomalous. The request is only marked as normal when
it satisfies the requirements of all models. This design makes the
algorithm simpler, faster and low resource consumer than when the

whole detection process needs to be completed in all cases.

» Regarding the number of models, the proposed stochastic approach
makes use of two simple models, while the detection performance
of the system is not deflated. Therefore, this approach reduces the

complexity of web anomaly detection systems, showing that few and

6.3. Contributions 171

simple models can be effective for detecting web attacks without a
negative impact in the detection results. Additionally, it reduces

time, resource consumption and processing time.

o While most of the systems analyze some parts of the request, these
WAFs analyze the whole request, including headers. This makes
possible to detect attacks embedded in any part of the request.

« Additionally, the stochastic approach has been applied at the
argument level, that is, the system learns the structure of a particular
argument. This allows to model the argument more precisely than
considering a bigger portion of the request, making the detection

more accurate.

» Instead of associating the states of the Markov chains to the 256
ASCII characters, as it is usually done in intrusion detection, in this
dissertation the characters have been grouped as letters, digits or
non-alphanumeric characters. Sriraghavan and Lucchese proved that
such grouping of characters does not reduce the performance in the
detection of web attacks [Sriraghavan and Lucchese, 2008] and, at
the same time, it makes possible to reduce the number of the states
in the Markov chain. The smaller the size of Markov matrices is, the
lower the time and resource consumption is. The processing time

reached by the Markovian system is 7.9 ms/request.

o These systems have been evaluated by using the public and labelled
CSIC dataset.

o These characteristics make the systems high-speed, high-detection,
low resource consumer and simple, satisfying the objectives of this

thesis.

2. Successful application of C4.5, CART, Random Tree and
Random Forest decision trees to web intrusion detection for
the first time.

Decision trees have been proven to be very effective in solving the general
intrusion detection problem, however, they have been hardly used in the

web attack field. Although the ID3 decision tree has been previously

172

6. Conclusions, contributions and future work

applied to web traffic, as far as we know, it is the first time that C4.5,
CART, Random Tree, Random Forest are applied to this type of traffic.

The study about the behavior of these decision trees over HT'TP traffic
reveals that they can be successfully used to solve the web attack detection

problem.

Study of how the number of requests used in the training phase

influences the detection accuracy of the system.

Several experiments have been carried out by incrementally increasing
the number of training requests, in order to study how their variation
affects the detection results of the stochastic and ML detection systems.
Additionally, this study allows to establish how many requests are
necessary to achieve a particularly desired result concerning the detection
capability of the system. These aspects have been scarcely studied in
the intrusion detection state of the art. The experiments show that the
number of training requests to be used depends on the algorithm analyzed.
The research developed reveals that for statistical techniques it is not
necessary to employ the whole training dataset to train the system. In
fact, for the CSIC dataset, with approximately a quarter (16 383) of the
requests that compose the dataset, a false positive rate of 1% is reached.
This number of requests also reaches the lowest FPR for the ML system
when the FCML/PKDD dataset is used. The need of a low number
of training requests, without negatively affecting the detection results,
enjoys several advantages: on the one hand, the traffic is easier to gather;
on the other hand, the training phase is shorter. The second point is also

important in case the system needs periodical retraining.

. Proposal of new methods for combining manual and automatic

features for machine learning that achieve better detection
results than both techniques separately and consume low

resources.

The proposed methods mix expert knowledge (manual extraction)
and n-grams (automatic extraction). In the few cases where such a
combination is applied in the literature, it is done by first combining

the features and selecting them afterwards. Within the combined

6.3. Contributions 173

feature extraction methods, as a novelty, this thesis proposes different
alternatives to implement the combination. Besides the combination
method previously mentioned, other new methods have been introduced:
one of them consists in selecting the features of the manual and
automatic approaches and, later, combining them. The other proposal is
similar to the previously mentioned one, but it only takes the selected
values of n-grams. The combination alternatives improve the detection
results of the manual or automatic techniques separately. Additionally,
feature selection has been applied to reduce the number of features and,
consequently, to decrease the resource consumption. In some cases, the

combination methods have been even able to reduce the processing time.

5. Successful application of the GeFS measure to web traffic for
the first time.

Although this feature selection measure has been successfully tested for
network traffic [Nguyen et al., 2010b], [Nguyen et al., 2010a], it has not
been applied before to HT'TP traffic. The experiments conducted obtain
evidence of its successful capability of selecting features that allow to

distinguish between web attacks and normal traffic.

6. Comparison of the statistical, Markovian and decision tree

algorithms in the detection of web attacks.

These three detection techniques have been compared using the same
reference dataset (CSIC), what allows to make comparisons between the
algorithms and extract conclusions about their performance. Different
properties, such as detection results, processing time and number of
needed training requests have been compared, making possible to conclude

which algorithm is the most appropriate for a given scenario.

7. Generation of the CSIC dataset: a new public and labeled
dataset that provides a common framework to evaluate and

compare WAFs.

In order to avoid the problems of some other existing datasets, the CSIC
dataset provides public-access and labeled HT'TP traffic that contains

modern attacks and that is not anonymized. The dataset is currently

174 6. Conclusions, contributions and future work

being used by the IDS community for the evaluation of their web attack
detection systems. Even other formats of the dataset have been created

by the scientific community in order to enlarge its possibilities of use.
A number of papers has been published as a result of this research:

1. C. Torrano-Gimenez, A. Perez-Villegas, G. Alvarez. An
anomaly-based web application firewall. In Conference on
Security and Cryptography (SECRYPT 2009), pages 23-38, 20009.
http://jigpal. oxfordjournals.org/content /21 /4 /560.abstract (last accessed
August 2015).

2. C. Torrano-Gimenez, A. Perez-Villegas, G. Alvarez. A
self-learning anomaly-based web application firewall. Advances
in Intelligent and Soft Computing, 63: 85-92, 2009.
http://link.springer.com/chapter/10.1007%2F978-3-642-04091-7 11
(last accessed August 2015).

3. C. Torrano-Gimenez, A. Perez-Villegas, G. Alvarez. An anomaly-based
approach for intrusion detection in web traffic. Journal of
Information Assurance and Security, 5(4): 446-454, 2010.
http://digital. csic.es/bitstream/10261/40544/1/ARTICULOS315428
%5B1%5D.pdf (last accessed August 2015).

4. A. Perez-Villegas, C. Torrano-Gimenez, G. Alvarez. Applying Markov
chains to web intrusion detection. In Reunion Espanola sobre Criptologia
y Sequridad de la Informacion (RECSI 2010), pages 361-366, 2010.

5. H. T. Nguyen, C. Torrano-Gimenez, G. Alvarez, S. Petrovic, K.
Franke. Application of the generic feature selection measure in
detection of web attacks. In International Workshop in Computational
Intelligence in Security for Information Systems (CISIS 11), pages 25-32,
2011. hitp://www.researchgate.net/profile/Hai_Nguyenl4/publication/
221271490 Application_of the Generic_Feature Selection Measure
_in__Detection__of Web__Attacks/links/09¢e41512b868(12954000000.pdf
(last accessed August 2015).

6.3. Contributions 175

6. C. Torrano-Gimenez, H. T. Nguyen, G. Alvarez, S. Petrovic,
K. Franke. Applying feature selection to payload-based web
application firewalls. In International Workshop on Security
and Communication Networks (IWSCN 11), pages 75-81, 2011.
http:/ /ieeexplore.ieee.org/xpl/article Details.jsp farnumber=6827720 (last
accessed August 2015).

7. C. Torrano-Gimenez, H. T. Nguyen, G. Alvarez, and K. Franke.
Combining expert knowledge with automatic feature extraction for
reliable web attack detection. Security and Communication Networks,
2012. http://onlinelibrary.wiley.com/doi/10.1002/sec.603/abstract (last
accessed August 2015).

8. H. T. Nguyen, C. Torrano-Gimenez, G. Alvarez, K. Franke, S. Petrovic.
Enhancing the effectiveness of web application firewalls by generic
feature selection. Logic Journal of the IGPL, 21(4): 560-570, 2013.
http://jigpal. oxfordjournals.org/content/21/4,/560.abstract (last accessed
August 2015).

This thesis has also been presented in the Security Conference RootedCon
2015 [Rooted, 2015]. C. Torrano-Gimenez. Doing research about web application
firewalls. RootedCon 2015. http://es.slideshare.net/ctorranog.

Additional publications related to web security have been done during

the thesis period:

1. C. Torrano-Gimenez, A. Perez-Villegas, G. Alvarez. WASAT-
a new authorization security analysis tool. In Web
Application Security conference (IBWAS09), pages 39-49, 2009.
http://elibrary.palcomtech.ac.id /wp-content /uploads/Web- Application-
Security. pdf#page=>50 (last accessed August 2015).

2. M. Balduzzi, C. Torrano-Gimenez, D. Balzarotti, FE. Kirda.
Automated discovery of parameter pollution vulnerabilities in
web applications. In Network and Distributed System Security
Symposium ~ (NDSS), 2011. BEST PAPER AWARD.
http://www.iseclab.org/people/embyte /papers /hpp.pdf (last accessed
August 2015).

176

6. Conclusions, contributions and future work

3. C. Torrano-Gimenez, A. Perez-Villegas, G. Alvarez. TORPEDA:

Un conjunto de datos ampliable para la evaluacion de cortafuegos
de aplicaciones web. In Reunion FEspanola sobre Criptologia 1y
Seguridad de la Informacion (RECSI 2012), pages 77-82, 2012.
http://recsi2012.mondragon.edu/es/programa/recsi2012__submission

__73.pdf (last accessed August 2015).

. S. Pastrana, C. Torrano-Gimenez, H. T. Nguyen, A. Orfila.

Anomalous web payload detection: Evaluating the resilience of
1-gram based classifiers. In Proceedings of the 8" Conference
on Intelligent Distributed Computing (IDC), pages 195-201, 2014.
http:/ /www.seg.inf.ucdm.es/papers/2014IDC.pdf (last accessed August
2015).

Various research stays abroad have been completed during the thesis

period:

1. University of Nottingham (U.K.), from June to August 2008. The stay,

hosted by Dr. Uwe Aickelin, was dedicated to the application of an

immune-inpired algorithm to web attack detection.

. Technique University of Munich (Germany), from May to July 2009.

With the guidance of Dr. Gerhard Miinz, the study of the application of
statistic techniques and information theory to the detection of automated

web attacks was carried out.

. Research Center Eurecom (Sophia Antipolis, France), that is part of

the International Secure Systems Lab (ISECLAB), from March to May
2010. In collaboration with Dr. Engin Kirda, a tool that discovers HT'TP
parameter pollution vulnerabilities (PAPAS) was developed.

6.4 Future work

Different detection systems against web attacks have been presented in this

work. The contributions derived from this research still leave place for extended

work and related open research lines. In the following, the possible future work

is presented:

6.4. Future work 177

« Statistical characterization of other parts of the request. The
stochastic detection systems proposed have been designed such that not
all parts of the systems are ready to dynamically adjust to the addition
of new web pages. Then, when new pages are included to the protected
web application, the system needs to be retrained in order to update the
normal behavior to the new definition of the application. To overcome this
drawback, the idea is to change the ongoing definition of the resources
in the XML file. Instead of using the current static definition of the
resources, writing exactly in the NBD file the string corresponding to the
resource name, the proposal is to statistically characterize the name of
the resources. This is what is done with the values of the arguments. It
allows to capture the structure of the resources in a more general way,
what facilitates their matching when they experiment dynamic changes.

The same idea can be applied to names of arguments and headers.

o Feature extraction with high order n-grams. For the experiments
performed, monograms have been used. Although in Sec. 5.4.2.2 it
was explained why this decision was made, it would be interesting to
investigate how the selection of higher order n-grams (n > 1) affects the

detection results of the systems.

o Considering the presence of noise in the training data. The
presented stochastic systems have been trained with only normal traffic
(without noise in data). However, only normal traffic might be difficult
to obtain, therefore in some works, like [Criscione and Zanero, 2009]
and [Corona et al., 2009], their authors have tested how resistent the
systems are to certain amount of noise in the training traffic (usually
around 1%).

In case of noise, the proposed stochastic systems would register
illegal characters in the NBD file. Since argument/header values are
characterized by statistical intervals or Markov chains, a certain amount of
noise in the training traffic could be tolerated. However, as the remaining
part of the NBD file includes strings literally, attacks containing illegal
strings would not be detected. In order to avoid that, we are already
working in the development of a kind of filtering process, which is based on

the assumption that noise within traffic is less frequent than normal traffic.

178

6. Conclusions, contributions and future work

The proposed process should be applied to different items: methods,
header name, directories, files and argument names. The idea of the filter
method is deleting from the NBD file those elements that are considered
noise in the traffic. This provokes that noise in certain parts of the
requests is not learned and therefore, it does not affect the detection
results. A study of how much noise the algorithms can tolerate will be

further investigated as future work.

Detecting multi-request web attacks. The systems presented have
been designed to detect attacks that involve a single request. An extension
of the systems would require detecting web attacks that involve several
requests, such as fuzzing or password cracking. In the detection of these
attacks, it is probable that independently analyzing the requests does not
give an indication of attack. Nevertheless, analyzing the requests as a
group, the attack is revealed. This idea can also be extended to detect
APTs, that operate in low-and-slow mode. Besides how to defend against
these attacks, this research topic also involves obtaining traffic to test
how well the detection algorithms are able to distinguish this kind of

attacks from normal traffic.

Sampling training requests. The contribution on the influence of
training requests in the detection results opens interesting research lines
related to the optimization of the training phase of detection systems.
The shorter the training phase, the better, as less computational time and
resources are necessary. However if the system is not trained with enough
requests, it will not be effective in the detection. Thus, the proposal for
future work is optimizing the training period, by minimizing the training
requests while the system obtains enough information for an effective
detection. In order to do that, the requests that supply more information
to the system should be selected. Although this topic has been studied
in regard to network traffic ([Androulidakis and Papavassiliou, 2008],
[Androulidakis et al., 2009],[Bakhoum, 2011b], [Bartos and Rehak, 2012]),

it has not received much attention in relation to web traffic yet.

Studying the requests that optimize the training process is also highly
related to adequate ways of creating datasets, which is a key issue in

evaluating IDSs.

6.4. Future work 179

o Adaptive systems. As mentioned, the systems presented have been
designed so that when the protected web application suffers changes, the
algorithms need to be retrained. Furthermore, the environment or the
traffic might also change. In that case, the current solution would also
require retraining. To overcome this drawback, adaptive IDSs readjust
automatically to these changes. For that, the idea is that instead of
stopping learning immediately after the training phase, the algorithms
continue acquiring knowledge during the operation of the system. That

is, the system learns from the incorrectly classified instances.

This approach copes with several problems related to IDSs: it reduces
high false positives rates, avoids retraining and the systems adapt to

changing environments. It is an interesting future research line.

o Application to other contexts. The algorithms presented can be
applied to detect anomalies in other types of traffic, like FTP or Domain
Name System (DNS). They can also be applied to detect different kinds
of threats, such as APT, insiders or information leakage. In order to do

that, the systems should be fed with the appropriate traffic.

References

[Abadeh et al., 2011] Abadeh, M. S., Mohamadi, H., and Habibi, J.
(2011). Design and analysis of genetic fuzzy systems for
intrusion detection in computer networks. Fapert Systems with
Applications, 38(6):7067-7075. http://www.sciencedirect.com/
science/article/pii/S0957417410013692 (last accessed August
2015). 2.4.2

[Abdi and Williams, 2010] Abdi, H. and Williams, L. J. (2010). Principal
component analysis. Wiley Interdisciplinary Reviews: Computational
Statistics, 2(4):433-459. http://wwwpub.utdallas.edu/~herve/abdi-
wireCS-PCA2010-inpress.pdf (last accessed August 2015). 2.3.2.2

[Acunetix, 2014] Acunetix (2014). Cross-Site Scripting (XSS) Attack.
https://www.acunetix.com/websitesecurity/cross-site-

scripting/ (last accessed August 2015). 2.1.3

[Agrawal and Srikant, 1994] Agrawal, R. and Srikant, R. (1994). Fast
algorithms for mining association rules in large databases. In
Proceedings of the 20" International Conference on Very Large Data
Bases, VLDB ’94, pages 487-499, San Francisco, CA, USA. Morgan
Kaufmann Publishers Inc. http://dl.acm.org/citation.cfm?id=
645920.672836 (last accessed August 2015). 2.3.1

[Alvarez and Petrovi¢, 2003a] Alvarez, G. and Petrovié¢, S. (2003). A new
taxonomy of web attacks suitable for efficient encoding. Computers €
Security, 22(5):435-449. http://www.sciencedirect.com/science/
article/pii/S0167404803005121 (last accessed August 2015). 2.1.3

181

http://www.sciencedirect.com/science/article/pii/S0957417410013692
http://www.sciencedirect.com/science/article/pii/S0957417410013692
http://wwwpub.utdallas.edu/~herve/abdi-wireCS-PCA2010-inpress.pdf
http://wwwpub.utdallas.edu/~herve/abdi-wireCS-PCA2010-inpress.pdf
https://www.acunetix.com/websitesecurity/cross-site-scripting/
https://www.acunetix.com/websitesecurity/cross-site-scripting/
http://dl.acm.org/citation.cfm?id=645920.672836
http://dl.acm.org/citation.cfm?id=645920.672836
http://www.sciencedirect.com/science/article/pii/S0167404803005121
http://www.sciencedirect.com/science/article/pii/S0167404803005121

182 References

[Alvarez and Petrovi¢, 2003b] Alvarez, G. and Petrovi¢, S. (2003). A taxonomy
of web attacks. In Proceedings of ICWE, pages 295-298. http://dx.doi.
org/10.1007/3-540-45068-8_56 (last accessed August 2015). 2.1.3

[Amiri et al., 2011] Amiri, F., Yousefi, M. M. R., Lucas, C., Shakery, A,
and Yazdani, N. (2011). Mutual information-based feature selection
for intrusion detection systems. Journal of Network and Computer
Applications, 34(4):1184-1199. http://dx.doi.org/10.1016/j.jnca.
2011.01.002 (last accessed August 2015). 2.3.2.2

[Amit and Geman, 1997] Amit, Y. and Geman, D. (1997). Shape quantization
and recognition with randomized trees. Neural Computation,
9(7):1545-1588. http://www.cse.buffalo.edu/~jcorso/t/555pdf/
1997 _AmitGemanNCb.pdf (last accessed August 2015). 5.3.3

[Anderson et al., 1994] Anderson, D., Frivold, T., Tamaru, A., and Valdes, A.
(1994). Next generation intrusion detection expert system (NIDES),
software users manual. http://www.csl.sri.com/papers/7sri/7sri.
pdf (last accessed August 2015). 2.4.1.1

[Anderson et al., 1995] Anderson, D., Lunt, T. F., Javitz, H., Tamaru, A.,
and Valdes, A. (1995). Detecting unusual program behavior using the
statistical components of NIDES. http://csl.sri.com/papers/5sri/
5sri.pdf (last accessed August 2015). 2.4.1.1

[Androulidakis et al., 2009] Androulidakis, G., Chatzigiannakis, V., and
Papavassiliou, S. (2009). Network anomaly detection and classification
via opportunistic sampling. IEEFE Network, Special issue title on recent

developments in network intrusion detection, 23(1):6-12. 6.4

[Androulidakis and Papavassiliou, 2008] Androulidakis, G. and Papavassiliou,
S. (2008). Improving network anomaly detection via selective flow-based
sampling. Communications, IET, 2(3):399-409. 6.4

[Angelino, 2014] Angelino, E. L. (2014). Accelerating Markov chain Monte
Carlo via parallel predictive prefetching. PhD thesis, The School of
Engineering and Applied Sciences, Harvard University. 4.11.1

http://dx.doi.org/10.1007/3-540-45068-8_56
http://dx.doi.org/10.1007/3-540-45068-8_56
http://dx.doi.org/10.1016/j.jnca.2011.01.002
http://dx.doi.org/10.1016/j.jnca.2011.01.002
http://www.cse.buffalo.edu/~jcorso/t/555pdf/1997_AmitGemanNCb.pdf
http://www.cse.buffalo.edu/~jcorso/t/555pdf/1997_AmitGemanNCb.pdf
http://www.csl.sri.com/papers/7sri/7sri.pdf
http://www.csl.sri.com/papers/7sri/7sri.pdf
http://csl.sri.com/papers/5sri/5sri.pdf
http://csl.sri.com/papers/5sri/5sri.pdf

References 183

[Anitha and Vaidehi, 2006] Anitha, A. and Vaidehi, V. (2006). Context based
application level intrusion detection system. In Proceedings of the
International conference on Networking and Services, ICNS 06, page 16,
Washington, DC, USA. http://ieeexplore.ieee.org/xpl/freeabs_
all. jsp?arnumber=1690488&abstractAccess=no&userType=inst
(last accessed August 2015). 2.2.1.3

[Ariu et al., 2011] Ariu, D., Tronci, R., and Giacinto, G. (2011). HMMPayl:
An intrusion detection system based on Hidden Markov Models.
Computers € Security, 30(4):221-241. http://pralab.diee.unica.
it/sites/default/files/Ariu_COSE2011.pdf (last accessed August
2015). 2.2.1.2,2.3.1.1, 2.4.1.2

[Arnes et al., 2006] Arnes, A., Valeur, F., Vigna, G., and Kemmerer, R. A.
(2006). Using Hidden Markov Models to evaluate the risks of
intrusions. In Proceedings of the 9" international conference on
Recent Advances in Intrusion Detection, RAID’06, pages 145-164,
Berlin, Heidelberg. http://cs.ucsb.edu/~vigna/publications/

2006_arnes_valeur_vigna_ kemmerer_ RAID.pdf (last accessed August
2015). 2.4.1.2

[Atzori et al., 2010] Atzori, L., lera, A., and Morabito, G. (2010). The internet
of things: A survey. Computer Networks, 54(15):2787 — 2805. 1.1

[Bakhoum, 2011a] Bakhoum, E. (2011). Intrusion detection model based on
selective packet sampling. FURASIP Journal on Information Security,
2011:1-12. http://jis.eurasipjournals.com/content/pdf/1687-
417X-2011-2.pdf (last accessed August 2015). 2.4.1.2

[Bakhoum, 2011b] Bakhoum, E. G. (2011). Intrusion detection model based
on selective packet sampling. FEURASIP J. Information Security,
2011:1-12. http://jis.eurasipjournals.com/content/pdf/1687-
417X-2011-2.pdf (last accessed August 2015). 6.4

[Balduzzi et al., 2011] Balduzzi, M., Torrano Gimenez, C., Balzarotti, D.,
and Kirda, E. (2011). Automated discovery of parameter pollution
vulnerabilities in web appplications. In Proceedings of Network and
Distributed System Security Symposium (NDSS), San Diego, California,

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1690488&abstractAccess=no&userType=inst
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1690488&abstractAccess=no&userType=inst
http://pralab.diee.unica.it/sites/default/files/Ariu_COSE2011.pdf
http://pralab.diee.unica.it/sites/default/files/Ariu_COSE2011.pdf
http://cs.ucsb.edu/~vigna/publications/2006_arnes_valeur_vigna_kemmerer_RAID.pdf
http://cs.ucsb.edu/~vigna/publications/2006_arnes_valeur_vigna_kemmerer_RAID.pdf
http://jis.eurasipjournals.com/content/pdf/1687-417X-2011-2.pdf
http://jis.eurasipjournals.com/content/pdf/1687-417X-2011-2.pdf
http://jis.eurasipjournals.com/content/pdf/1687-417X-2011-2.pdf
http://jis.eurasipjournals.com/content/pdf/1687-417X-2011-2.pdf

184 References

USA. http://www.isoc.org/isoc/conferences/ndss/11/pdf/6_1.
pdf (last accessed August 2015). 2.1.3

[Balon-Perin, 2012] Balon-Perin, A. (2012). Ensemble-based methods for
intrusion detection. Master’s thesis, Department of Computer and
Information Science. Norwegian University of Science and Technology
(NTNU), Trondheim (Norway). http://code.ulb.ac.be/dbfiles/
Bal2012mastersthesis.pdf (last accessed August 2015). 2.4.2

[Barbara et al., 2001] Barbara, D., Wu, N., and Jajodia, S. (2001). Detecting
novel network intrusions using Bayes estimators. In Proceedings of SIAM
Internatinal Conference on Data Mining. http://citeseerx.ist.psu.
edu/viewdoc/download?doi=10.1.1.126.3388&rep=repl&type=pdf
(last accessed August 2015). 2.4.2

[Barber, 2001] Barber, R. (2001). Hackers profiled— who are they and
what are their motivations? Computer Fraud & Security,
2001(2):14-17. http://www.sciencedirect.com/science/article/
pii/S1361372301020176 (last accessed August 2015). 1.1

[Barnett et al., 2013] Barnett, R. C., Coleman, J., Shezaf, O., Grossman,
J.,, and Auger, R. (2013). Web hacking incident database.
http://projects.webappsec.org/w/page/13246995/Web-Hacking-
Incident-Database (last accessed August 2015). 2.1.3

[Bartos and Rehak, 2012] Bartos, K. and Rehak, M. (2012). Towards efficient
flow sampling technique for anomaly detection. In Traffic Monitoring
and Analysis, volume 7189 of Lecture Notes in Computer Science, pages
93-106. http://pam2012.ftw.at/TMA/papers/TMA2012paperl6.pdf
(last accessed August 2015). 6.4

[Bilge and Dumitras, 2012] Bilge, L. and Dumitras, T. (2012). Before we
knew it: an empirical study of zero-day attacks in the real world.
In Proceedings of the 2012 ACM Conference on Computer and
Communications Security, CCS12, pages 833-844, New York, NY,
USA. http://users.ece.cmu.edu/~tdumitra/public_documents/
bilgel2 zero_day.pdf (last accessed August 2015). 2.1.3

http://www.isoc.org/isoc/conferences/ndss/11/pdf/6_1.pdf
http://www.isoc.org/isoc/conferences/ndss/11/pdf/6_1.pdf
http://code.ulb.ac.be/dbfiles/Bal2012mastersthesis.pdf
http://code.ulb.ac.be/dbfiles/Bal2012mastersthesis.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.126.3388&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.126.3388&rep=rep1&type=pdf
http://www.sciencedirect.com/science/article/pii/S1361372301020176
http://www.sciencedirect.com/science/article/pii/S1361372301020176
http://projects.webappsec.org/w/page/13246995/Web-Hacking-Incident-Database
http://projects.webappsec.org/w/page/13246995/Web-Hacking-Incident-Database
http://pam2012.ftw.at/TMA/papers/TMA2012paper16.pdf
http://users.ece.cmu.edu/~tdumitra/public_documents/bilge12_zero_day.pdf
http://users.ece.cmu.edu/~tdumitra/public_documents/bilge12_zero_day.pdf

References 185

[Bluman, 2007] Bluman, A. G. (2007). Elementary Statistics: A Step by Step
Approach. Mc Graw Hill. 4.5.2

[Bojinov et al., 2009] Bojinov, H., Bursztein, E., Lovett, E., and
Boneh, D. (2009). Embedded management interfaces: emerging
massive insecurity. In Proceedings of Black Hat USA.
http://cdn.ly.tl/talks/embedded-management-interfaces-

emerging-massive-insecurity-paper.pdf (last accessed August
2015). 1.1

[Bolzoni and Etalle, 2008] Bolzoni, D. and Etalle, S. (2008). Boosting web
intrusion detection systems by inferring positive signatures. In
Proceedings of the OTM 2008 Confederated International Conferences,
CooplS, DOA, GADA, IS, and ODBASE 2008. Part II On the
Move to Meaningful Internet Systems, OTM ’08, pages 938-955,
Berlin, Heidelberg. http://doc.utwente.nl/64826/1/bolzoni _
etalle_sphinx.pdf (last accessed August 2015). 2.5, 5.3.3

[Bolzoni et al., 2006] Bolzoni, D., Etalle, S., and Hartel, P. (2006). POSEIDON:
a 2-tier anomaly-based network intrusion detection system. In
Proceedings of the 4" IEEE International Workshop on Information
Assurance, IWIA, pages 144-156. http://arxiv.org/pdf/cs/0511043
(last accessed August 2015). 2.4.2

[Bolzoni et al., 2009] Bolzoni, D., Etalle, S., and Hartel, P. H. (2009). Panacea:
Automating attack classification for anomaly-based network intrusion
detection systems. In Proceedings of the 12" International Symposium
on Recent Advances in Intrusion Detection, RAID ’09, pages 1-20,
Berlin, Heidelberg. http://doc.utwente.nl/65446/1/bh09.pdf (last
accessed August 2015). 2.3.1.1, 2.4.2

[Bouzida et al., 2004] Bouzida, Y., Cuppens, F., Cuppens-Boulahia, N., and
Gombault, S. (2004). Efficient intrusion detection using principal
component analysis. In Proceedings of the troisieme Conférence sur la
Sécurité et Architectures Réseaur (SAR), La Londe, France. http:
//yacine.bouzida.free.fr//Articles/2004SAR.pdf (last accessed
August 2015). 2.3.2.2

http://cdn.ly.tl/talks/embedded-management-interfaces-emerging-massive-insecurity-paper.pdf
http://cdn.ly.tl/talks/embedded-management-interfaces-emerging-massive-insecurity-paper.pdf
http://doc.utwente.nl/64826/1/bolzoni_etalle_sphinx.pdf
http://doc.utwente.nl/64826/1/bolzoni_etalle_sphinx.pdf
http://arxiv.org/pdf/cs/0511043
http://doc.utwente.nl/65446/1/bh09.pdf
http://yacine.bouzida.free.fr//Articles/2004SAR.pdf
http://yacine.bouzida.free.fr//Articles/2004SAR.pdf

186 References

[Bradley, 1997] Bradley, A. P. (1997). The use of the area under the ROC curve
in the evaluation of machine learning algorithms. Pattern Recognition,
30(7):1145-1159. http://lamda.nju.edu.cn/yuy/dm07/auc.pdf (last
accessed August 2015). 4.9

[Breiman, 2001] Breiman, L. (2001). Random forests. Machine
Learning, 45(1):5-32. https://www.stat.berkeley.edu/~breiman/
randomforest2001.pdf (last accessed August 2015). 5.3.3

[Breiman et al., 1984] Breiman, L., Friedman, J. H., Olshen, R. A., and Stone,
C. J. (1984). Classification and Regression Trees. Wadsworth. 5.3.3

[Breunig et al., 2000] Breunig, M. M., Kriegel, H.-P., Ng, R. T., and Sander,
J. (2000). LOF: identifying density-based local outliers. In Proceedings
of the 2000 ACM SIGMOD International Conference on Management
of Data, SIGMOD’00, pages 93-104, New York, NY, USA. http://
www.dbs.ifi.1lmu.de/Publikationen/Papers/LOF.pdf (last accessed
August 2015). 2.4.2

[Brezo et al., 2013] Brezo, F., de la Puerta, J. G., Ugarte-Pedrero, X., Santos,
L., Bringas, P. G., and Barroso, D. (2013). A supervised classiffication
approach for detecting packets originated in a HT'TP-based botnet. CLEI
Electronic Journal, 16(3). http://www.clei.org/cleiej/papers/
v16i3p2.pdf (last accessed August 2015). 1.1

[Bringas et al., 2008] Bringas, P. G., Penya, Y. K., Paraboschi, S., and
Salvaneschi, P. (2008). Bayesian-networks-based misuse and anomaly
prevention system. In Proceedings of the Tenth International
Conference on Enterprise Information Systems, pages 12-16. http:
//paginaspersonales.deusto.es/ypenya/publi/penya_ ICEIS08_
Bayesian-networks-basedmisuseandanomalypreventionsystem.
pdf (last accessed August 2015). 2.2.1.3

[Brown et al., 2009] Brown, C., Cowperthwaite, A., Hijazi, A., and Somayaji,
A. (2009). Analysis of the 1999 DARPA/Lincoln Laboratory
IDS Evaluation Data with NetADHICT. In Proceedings of
IEEE International Conference on Computational Intelligence for

Security and Defense Applications, pages 6773, Piscataway, NY,

http://lamda.nju.edu.cn/yuy/dm07/auc.pdf
https://www.stat.berkeley.edu/~breiman/randomforest2001.pdf
https://www.stat.berkeley.edu/~breiman/randomforest2001.pdf
http://www.dbs.ifi.lmu.de/Publikationen/Papers/LOF.pdf
http://www.dbs.ifi.lmu.de/Publikationen/Papers/LOF.pdf
http://www.clei.org/cleiej/papers/v16i3p2.pdf
http://www.clei.org/cleiej/papers/v16i3p2.pdf
http://paginaspersonales.deusto.es/ypenya/publi/penya_ICEIS08_Bayesian-networks-based misuse and anomaly prevention system.pdf
http://paginaspersonales.deusto.es/ypenya/publi/penya_ICEIS08_Bayesian-networks-based misuse and anomaly prevention system.pdf
http://paginaspersonales.deusto.es/ypenya/publi/penya_ICEIS08_Bayesian-networks-based misuse and anomaly prevention system.pdf
http://paginaspersonales.deusto.es/ypenya/publi/penya_ICEIS08_Bayesian-networks-based misuse and anomaly prevention system.pdf

References 187

USA. https://www.ccsl.carleton.ca/~carson/papers/cisda09-
netadhict.pdf (last accessed August 2015). 3.1.2

[Burkeman, 2009] Burkeman, O. (2009). Forty years of the internet: how
the world changed for ever. The Guardian. http://www.theguardian.
com/technology/2009/0ct/23/internet-40-history-arpanet (last
accessed August 2015). 1.1

[Camacho et al., 2014] Camacho, J., Macia-Fernandez, G., Diaz-Verdejo, J.,
and Garcia-Teodoro, P. (2014). Tackling the big data 4 vs for anomaly
detection. In Computer Communications Workshops (INFOCOM
WKSHPS), 2014 IEEE Conference on, pages 500-505. 1.1

[Cardenas et al., 2013] Céardenas, A. A., Manadhata, P. K., and
Rajan, S. (2013). Big data analytics for security intelligence.
Technical report, Cloud Security Alliance. https://downloads.
cloudsecurityalliance.org/initiatives/bdwg/Big_Data_

Analytics_for_Security_Intelligence.pdf (last accessed August
2015). 1.1

[Carettoni and di Paola, 2009] Carettoni, L. and di Paola, S. (2009).
HTTP parameter pollution. In Proceedings of OWASP AppSec
Europe 2009. http://www.owasp.org/images/b/ba/AppsecEU09_
CarettoniDiPaola_v0.8.pdf (last accessed August 2015). 2.1.3

[Chen et al., 2005] Chen, W.-H., Hsu, S.-H., and Shen, H.-P. (2005).
Application of SVM and ANN for intrusion detection. Computers
& Operations Research, 32:2617-2634. http://ece.ut.ac.ir/DBRG/
seminars/AdvancedDB/2006/Moshtaghi/Resources/Applicationy,
200£%20SVM},20and’%20ANN%20for%20intrusion)20detection. pdf
(last accessed August 2015). 5.1

[Cheng, 2009] Cheng, S.-Y. (2009). A design and implementation of hybrid
web application IDS built with Snort and anomaly detection. Master’s
thesis, Institute of Computer and Communication Engineering, National
Cheng Kung University, Taiwan (R.O.C.). 4.7

https://www.ccsl.carleton.ca/~carson/papers/cisda09-netadhict.pdf
https://www.ccsl.carleton.ca/~carson/papers/cisda09-netadhict.pdf
http://www.theguardian.com/technology/2009/oct/23/internet-40-history-arpanet
http://www.theguardian.com/technology/2009/oct/23/internet-40-history-arpanet
https://downloads.cloudsecurityalliance.org/initiatives/bdwg/Big_Data_Analytics_for_Security_Intelligence.pdf
https://downloads.cloudsecurityalliance.org/initiatives/bdwg/Big_Data_Analytics_for_Security_Intelligence.pdf
https://downloads.cloudsecurityalliance.org/initiatives/bdwg/Big_Data_Analytics_for_Security_Intelligence.pdf
http://www.owasp.org/images/b/ba/AppsecEU09_CarettoniDiPaola_v0.8.pdf
http://www.owasp.org/images/b/ba/AppsecEU09_CarettoniDiPaola_v0.8.pdf
http://ece.ut.ac.ir/DBRG/seminars/AdvancedDB/2006/Moshtaghi/Resources/Application%20of%20SVM%20and%20ANN%20for%20intrusion%20detection.pdf
http://ece.ut.ac.ir/DBRG/seminars/AdvancedDB/2006/Moshtaghi/Resources/Application%20of%20SVM%20and%20ANN%20for%20intrusion%20detection.pdf
http://ece.ut.ac.ir/DBRG/seminars/AdvancedDB/2006/Moshtaghi/Resources/Application%20of%20SVM%20and%20ANN%20for%20intrusion%20detection.pdf

188 References

[Corchado and Herrero, 2011] Corchado, E. and Herrero, A. (2011).
Neural visualization of network traffic data for intrusion
detection. Applied Soft Computing, 11(2):2042-2056. http:
//gicap.ubu.es/publications/2011/PDF/2011_c01_Neural _
Visualization_of Network Traffic_Data.pdf (last accessed
August 2015). 2.4.2

[Corona et al., 2009] Corona, I., Ariu, D., and Giacinto, G. (2009).
HMM-Web: A Framework for the Detection of Attacks Against
Web Applications. In Proceedings of the 2009 IEEE International
Conference on Communications, ICC’09, pages 747-752, Piscataway,
NJ, USA. http://pralab.diee.unica.it/sites/default/files/
Corona_ICC2009.pdf (last accessed August 2015). 2.4.1.2, 6.4

[Corona and Giacinto, 2010] Corona, I. and Giacinto, G. (2010). Detection of
server-side web attacks. In Proceedings of WAPA, volume 11 of JMLR
Proceedings, pages 160-166. http://jmlr.org/proceedings/papers/
v11l/coronalOa/coronalOa.pdf (last accessed August 2015). 2.4.2

[Criscione and Zanero, 2009] Criscione, C. and Zanero, S. (2009).
Masibty: An anomaly based intrusion prevention system
for web applications. In Proceedings of Black Hat-FEurope.
http://www.blackhat.com/presentations/bh-europe-09/Zanero_
Criscione/BlackHat-Europe-2009-Zanero-Criscione-Masibty-
Web-App-Firewall-wp.pdf (last accessed August 2015). 2.2.1.1, 2.3.1,
24.1.1,45.1,4.7, 1,64

[Curry et al., 2013] Curry, S., Kirda, E., Schwartz, E., Stewart, W. H., and
Yoran, A. (2013). Big data fuels intelligence-driven security. Technical
report, RSA, EMC?. http://www.emc.com/collateral/industry-
overview/big-data-fuels-intelligence-driven-security-
io.pdf (last accessed August 2015). 1.1

[Cutler and Stevens, 2006] Cutler, A. and Stevens, J. R. (2006). [23]
random forests for microarrays. In DNA Microarrays, Part B:

Databases and Statistics, volume 411 of Methods in Enzymology,

http://gicap.ubu.es/publications/2011/PDF/2011_c01_Neural_Visualization_of_Network_Traffic_Data.pdf
http://gicap.ubu.es/publications/2011/PDF/2011_c01_Neural_Visualization_of_Network_Traffic_Data.pdf
http://gicap.ubu.es/publications/2011/PDF/2011_c01_Neural_Visualization_of_Network_Traffic_Data.pdf
http://pralab.diee.unica.it/sites/default/files/Corona_ICC2009.pdf
http://pralab.diee.unica.it/sites/default/files/Corona_ICC2009.pdf
http://jmlr.org/proceedings/papers/v11/corona10a/corona10a.pdf
http://jmlr.org/proceedings/papers/v11/corona10a/corona10a.pdf
http://www.blackhat.com/presentations/bh-europe-09/Zanero_Criscione/BlackHat-Europe-2009-Zanero-Criscione-Masibty-Web-App-Firewall-wp.pdf
http://www.blackhat.com/presentations/bh-europe-09/Zanero_Criscione/BlackHat-Europe-2009-Zanero-Criscione-Masibty-Web-App-Firewall-wp.pdf
http://www.blackhat.com/presentations/bh-europe-09/Zanero_Criscione/BlackHat-Europe-2009-Zanero-Criscione-Masibty-Web-App-Firewall-wp.pdf
http://www.emc.com/collateral/industry-overview/big-data-fuels-intelligence-driven-security-io.pdf
http://www.emc.com/collateral/industry-overview/big-data-fuels-intelligence-driven-security-io.pdf
http://www.emc.com/collateral/industry-overview/big-data-fuels-intelligence-driven-security-io.pdf

References 189

pages 422-432. http://www.sciencedirect.com/science/article/
pii/S007668790611023X (last accessed August 2015). 5.3.3

[Das et al., 2009] Das, D., Sharma, U., and Bhattacharyya, D. K. (2009). A web
intrusion detection mechanism based on feature based data clustering.

In Proceedings of IEEFE International Advance Computing Conference
(IACC 2009), Patiala, India. 2.4.2

[Davanzo et al., 2011] Davanzo, G., Medvet, E., and Bartoli, A. (2011).
Anomaly detection techniques for a web defacement monitoring service.
Ezxpert Systems with Applications, 38(10):12521-12530. http://dx.doi.
org/10.1016/j.eswa.2011.04.038 (last accessed August 2015). 2.4.2

[Davis and Clark, 2011] Davis, J. J. and Clark, A. J. (2011). Data
preprocessing for anomaly based network intrusion detection: A review.
Computers & Security, 30(6-7):353-375. http://dx.doi.org/10.1016/
j.cose.2011.05.008 (last accessed August 2015). 2.3, 2.3.1

[De Ville, 2006] De Ville, B. (2006). Decision Trees —What Are They?. Chapter
1 of Decision Trees for Business Intelligence and Data Mining: Using SAS
Enterprise Miner. SAS Institute Inc., Cary, NC, USA. http://support.

sas.com/publishing/pubcat/chaps/57587.pdf (last accessed August
2015). 2.4.2

[Deb et al., 2002] Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T.
(2002). A fast and elitist multiobjective genetic algorithm: NSGA-II.
Transactions on Evolutionary Computation, 6(2):182-197. http://dx.
doi.org/10.1109/4235.996017 (last accessed August 2015). 2.3.2.1

[Debar et al., 1999] Debar, H., Dacier, M., and Wespi, A. (1999).
Towards a taxonomy of intrusion-detection systems. Computer
Networks, 31(8):805-822. http://galaxy.cs.lamar.edu/~bsun/
seminar/example_papers/IDS_taxonomy.pdf (last accessed August
2015). 2.4

[Denning and Neumann, 1985] Denning, D. and Neumann, P. (1985).
Requirements and model for IDES. A real-time intrusion detection

system. Technical report, Computer Science Laboratory, SRI

http://www.sciencedirect.com/science/article/pii/S007668790611023X
http://www.sciencedirect.com/science/article/pii/S007668790611023X
http://dx.doi.org/10.1016/j.eswa.2011.04.038
http://dx.doi.org/10.1016/j.eswa.2011.04.038
http://dx.doi.org/10.1016/j.cose.2011.05.008
http://dx.doi.org/10.1016/j.cose.2011.05.008
http://support.sas.com/publishing/pubcat/chaps/57587.pdf
http://support.sas.com/publishing/pubcat/chaps/57587.pdf
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1109/4235.996017
http://galaxy.cs.lamar.edu/~bsun/seminar/example_papers/IDS_taxonomy.pdf
http://galaxy.cs.lamar.edu/~bsun/seminar/example_papers/IDS_taxonomy.pdf

190 References

International, Menlo Park, CA. http://faculty.nps.edu/dedennin/
publications/IDESReportSRI1985.pdf (last accessed August 2015).
2.4.1.1

[Depren et al., 2005] Depren, O., Topallar, M., Anarim, E., and Ciliz,
M. K. (2005). An intelligent intrusion detection system (IDS)
for anomaly and misuse detection in computer networks. Fxpert
Systems with Applications, 29(4):713-722. http://www.sciencedirect.
com/science/article/pii/S0957417405000989 (last accessed August
2015). 2.2.1.3,2.4.2

[Dessiatnikoff et al., 2011] Dessiatnikoff, A., Akrout, R., Alata, E., Kaaniche,
M., and Nicomette, V. (2011). A clustering approach for web
vulnerabilities detection. In Proceedings of the 17" IEEE Pacific Rim
International Symposium on Dependable Computing (PRDC), pages
194-203. http://hal.inria.fr/docs/00/75/52/12/PDF/prdc2011.
pdf (last accessed August 2015). 2.4.2

[Di Crescenzo et al., 2005] Di Crescenzo, G., Ghosh, A., and Talpade, R.
(2005). Towards a theory of intrusion detection. In Proceedings of the 10"
FEuropean conference on Research in Computer Security, ESORICS’05,
pages 267-286, Berlin, Heidelberg. http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.113.8499&rep=repl&type=pdf (last
accessed August 2015). 2.4.2

[Domingos, 2012] Domingos, P. (2012). A few useful things to know about
machine learning. Communications of the ACM, 55(10):78-87. http://
doi.acm.org/10.1145/2347736.2347755 (last accessed August 2015).
2.3.2, 2.5

[Duda et al., 2001] Duda, R. O., Hart, P. E., and Stork, D. G. (2001). Pattern
Classification. Wiley, New York, 2" edition. 5.3.3

[Diissel et al., 2008] Diissel, Patrick and Gehl, Christian and Laskov, Pavel
and Rieck, Konrad (2008). Incorporation of application layer protocol
syntax into anomaly detection. In Proceedings of ICISS, volume 5352 of
Lecture Notes in Computer Science, pages 188-202.

http://faculty.nps.edu/dedennin/publications/IDESReportSRI1985.pdf
http://faculty.nps.edu/dedennin/publications/IDESReportSRI1985.pdf
http://www.sciencedirect.com/science/article/pii/S0957417405000989
http://www.sciencedirect.com/science/article/pii/S0957417405000989
http://hal.inria.fr/docs/00/75/52/12/PDF/prdc2011.pdf
http://hal.inria.fr/docs/00/75/52/12/PDF/prdc2011.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.113.8499&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.113.8499&rep=rep1&type=pdf
http://doi.acm.org/10.1145/2347736.2347755
http://doi.acm.org/10.1145/2347736.2347755

References 191

http://www-rsec.cs.uni-tuebingen.de/laskov/papers/
iciss2008.pdf (last accessed August 2015). 2.4.2

[Ebeling and Nicolis, 1992] Ebeling, W. and Nicolis, G. (1992). Word
frequency and entropy of symbolic sequences: a dynamical perspective.
Chaos, Solitons € Fractals, 2(6):635-650. http://www.sciencedirect.
com/science/article/pii/096007799290058U (last accessed August
2015).

[El-Alfy and Al-Obeidat, 2014] El-Alfy, E.-S. M. and Al-Obeidat, F. N. (2014).
A multicriterion fuzzy classification method with greedy attribute
selection for anomaly-based intrusion detection. Procedia Computer
Science, 34(0):55-62. http://www.readcube.com/articles/10.1016/
j.procs.2014.07.037 (last accessed August 2015). 2.2.1.3

[Elliott et al., 1995] Elliott, R. J., Aggoun, L., and Moore, J. B. (1995). Hidden
Markov Models. Estimation and control. Springer. 2.4.1.2

[Ellison et al., 2009] Ellison, S. L. R., Barwick, V. J., and Farrant, T. J. D.
(2009). Practical Statistics for the Analytical Scientist. The Royal Society
of Chemistry. 4.8

[Estévez-Tapiador et al., 2004] Estévez-Tapiador, J. M., Garcia-Teodoro, P.,
and Diaz-Verdejo, J. E. (2004). Measuring normality in HTTP
traffic for anomaly-based intrusion detection. Computer Networks,
45(2):175-193. http://www.seg.inf.uc3m.es/papers/2004comnet.
pdf (last accessed August 2015). 2.4.1.2, 3.1.2, 4.7.2, 4.9

[Feller, 1968] Feller, W. (1968). An Introduction to Probability Theory and Its
Applications, volume 1. Wiley. 4.2

[Fielding et al., 1999] Fielding, R. T., Gettys, J., Mogul, J. C., Nielsen, H. F.,
Masinter, L., Leach, P. J., and Berners-Lee, T. (1999). Hypertext
transfer protocol — HTTP/1.1. RFC2616. https://www.ietf.org/
rfc/rfc2616.txt (last accessed August 2015). 2.1.2

http://www-rsec.cs.uni-tuebingen.de/laskov/papers/iciss2008.pdf
http://www-rsec.cs.uni-tuebingen.de/laskov/papers/iciss2008.pdf
http://www.sciencedirect.com/science/article/pii/096007799290058U
http://www.sciencedirect.com/science/article/pii/096007799290058U
http://www.readcube.com/articles/10.1016/j.procs.2014.07.037
http://www.readcube.com/articles/10.1016/j.procs.2014.07.037
http://www.seg.inf.uc3m.es/papers/2004comnet.pdf
http://www.seg.inf.uc3m.es/papers/2004comnet.pdf
https://www.ietf.org/rfc/rfc2616.txt
https://www.ietf.org/rfc/rfc2616.txt

192 References

[Fogla et al., 2006] Fogla, P., Sharif, M., Perdisci, R., Kolesnikov, O., and
Lee, W. (2006). Polymorphic blending attacks. In Proceedings of
the 15" Conference on USENIX Security Symposium - Volume 15,
USENIX-SS’06, Berkeley, CA, USA. USENIX Association. http://dl.
acm.org/citation.cfm?id=1267336.1267353 (last accessed August
2015). 2.4

[Fonseca et al., 2008] Fonseca, I. L., Pérez, F. M., Ferndndez, R. L., Gimeno,
F. J. M., and Martinez-Abarca, J. A. G. (2008). Método para la
deteccion de intrusos mediante redes neuronales basado en la reduccion
de caracteristicas. In Proceedings of Desarrollo de grandes aplicaciones
de red: 'V Jornadas, JDARE 2008. http://rua.ua.es/dspace/
bitstream/10045/15687/1/JDARE-08-H.pdf (last accessed August
2015). 2.3.2.2

[Forrest et al., 1996] Forrest, S., Hofmeyr, S. A., Somayaji, A., and Longstaff,
T. A. (1996). A sense of self for Unix processes. In Proceedings of
the 1996 IEEE Symposium on Security and Privacy, SP '96, pages
120-128, Washington, DC, USA. http://www.cs.unm.edu/~forrest/

publications/ieee-sp-96-unix.pdf (last accessed August 2015).
2.2.1.2,2.3.1.1

[Freedman, 1971] Freedman, D. (1971). Markov Chains. Holden-Day. 2.4.1.2

[Garcia et al., 2006] Garcia, V. H., Monroy, R., and Quintana, M.
(2006). Web attack detection using IDS3. In Debenham,
J., editor, Professional Practice in Artificial Intelligence, volume
218 of IFIP International Federation for Information Processing,
pages 323-332. http://pitagoras.usach.cl/~gfelipe/wcc/papers/
Symposium/Article_34-Garcia.pdf (last accessed August 2015). 2.4.2,
2.4.2

[Garcia-Teodoro et al., 2009] Garcia-Teodoro, P., Diaz-Verdejo,],
Macié-Ferndndez, G., and Vazquez, E. (2009). Anomaly-based
network intrusion detection: Techniques, systems and challenges.
Computers € Security, 28:18-28.

http://dl.acm.org/citation.cfm?id=1267336.1267353
http://dl.acm.org/citation.cfm?id=1267336.1267353
http://rua.ua.es/dspace/bitstream/10045/15687/1/JDARE-08-H.pdf
http://rua.ua.es/dspace/bitstream/10045/15687/1/JDARE-08-H.pdf
http://www.cs.unm.edu/~forrest/publications/ieee-sp-96-unix.pdf
http://www.cs.unm.edu/~forrest/publications/ieee-sp-96-unix.pdf
http://pitagoras.usach.cl/~gfelipe/wcc/papers/Symposium/Article_34-Garcia.pdf
http://pitagoras.usach.cl/~gfelipe/wcc/papers/Symposium/Article_34-Garcia.pdf

References 193

http://web.info.uvt.ro/~dzaharie/cne2013/proiecte/

aplicatii/intrusion_detection_systems/IDS_general.pdf (last
accessed August 2015). 1.2, 2.4, 2.4.1.2

[Gopal and Casella, 2011] Gopal, V. and Casella, G. (2011). Running
regenerative Markov chains in parallel. http://www.stat.ufl.edu/

archived/casella/Papers/Gopal-Casella.pdf (last accessed August
2015). 4.11.1

[Goyal and Aggarwal, 2012] Goyal, M. K. and Aggarwal, A. (2012).
Composing signatures for misuse intrusion detection system using
genetic algorithm in an offline environment. In Proceedings of
ACITY (1), volume 176 of Advances in Intelligent Systems and
Computing, pages 151-157. http://www.bibsonomy.org/bibtex/
24c7e655£213e994767508fa3e80c6f0a/dblp (last accessed August
2015). 2.2.1.3

[Greensmith et al., 2010] Greensmith, J., Whitbrook, A., and Aickelin, U.
(2010). Artificial immune systems. In Handbook of Metaheuristics,
pages 421-448. Springer. 2.3.1.1

[Grove, 2010] Grove, R. F. (2010). Web Based Application Development. Jones
and Bartlett Publishers. 2.1.1, 2.1.2

[Guyon et al., 2006] Guyon, I., Gunn, S., Nikravesh, M., and Zadeh, L. A.
(2006). Feature Extraction: Foundations and Applications (Studies
in Fuzziness and Soft Computing). Springer-Verlag New York, Inc.,
Secaucus, NJ, USA. 2.3.2

[Hall et al., 2009] Hall, M., Frank, E., Holmes, G., Pfahringer, B.,
Reutemann, P., and Witten, 1. H. (2009). The WEKA data
mining software: an update. SIGKDD FEzplorations Newsletter,
11(1):10-18. http://www.cms.waikato.ac.nz/~ml/publications/
2009/weka_update.pdf (last accessed August 2015). 3.5, 5.3.3, 5.4.2.4

http://web.info.uvt.ro/~dzaharie/cne2013/proiecte/aplicatii/intrusion_detection_systems/IDS_general.pdf
http://web.info.uvt.ro/~dzaharie/cne2013/proiecte/aplicatii/intrusion_detection_systems/IDS_general.pdf
http://www.stat.ufl.edu/archived/casella/Papers/Gopal-Casella.pdf
http://www.stat.ufl.edu/archived/casella/Papers/Gopal-Casella.pdf
http://www.bibsonomy.org/bibtex/24c7e655f213e994767508fa3e80c6f0a/dblp
http://www.bibsonomy.org/bibtex/24c7e655f213e994767508fa3e80c6f0a/dblp
http://www.cms.waikato.ac.nz/~ml/publications/2009/weka_update.pdf
http://www.cms.waikato.ac.nz/~ml/publications/2009/weka_update.pdf

194 References

[Hall, 1999] Hall, M. A. (1999). Correlation-based Feature Subset Selection
for Machine Learning. PhD thesis, Department of Computer Science,
University of Waikato, Hamilton, New Zealand. http://www.cs.
waikato.ac.nz/~mhall/thesis.pdf (last accessed August 2015). 5.3.2

[Hautaméki et al., 2004] Hautaméki, V., Karkkéinen, 1., and Franti, P. (2004).
Outlier detection using k-nearest neighbour graph. In Proceedings of
17" International Conference on the Pattern Recognition ICPR’04,
volume 3, pages 430-433. ftp://ftp.cs.joensuu.fi/pub/franti/
papers/Hautamaki/P2.pdf (last accessed August 2015). 2.4.2

[Hawkins, 2004] Hawkins, D. (2004). The problem of overfitting.
Journal of Chemical Information and Computer Sciences, 44:1-12.
http://www.cse.hcmut.edu.vn/~chauvtn/data_mining/Reading/
Chapter4-Classification/2004TheProblemofOverfitting.pdf
(last accessed August 2015). 2.3.2, 2.5

[Higgins, 2009] Higgins, K. J. (2009). SANS Report: 60 percent of all
attacks hit web applications, most in the U.S. Dark Reading. http:
//www.darkreading.com/risk/sans-report-60--of-all-attacks-
hit-web-applications-most-in-the-us/d/d-id/11319377 (last
accessed August 2015). 2.1.3

[Ho, 1995] Ho, T. K. (1995). Random decision forests. In Proceedings of I[CDAR,
pages 278-282. ftp://cm.bell-labs.com/who/tkh/papers/odt.pdf
(last accessed August 2015). 5.3.3

[Ho, 1998] Ho, T. K. (1998). The random subspace method for constructing
decision forests. IEEFE Transactions on Pattern Analysis and Machine
Intelligence, 20(8):832-844. http://dx.doi.org/10.1109/34.709601
(last accessed August 2015). 5.3.3

[Hosseinkhani et al., 2011] Hosseinkhani, M., Tarameshloo, E., and
Sadeghiyan, B. (2011). A two dimensional approach for detecting input
validation attacks based on HMM. In Proceedings of International
Conference on Database and Data Mining (ICDDM 2011). http:
//ceit.aut.ac.ir/~87131084/abst/2DimensionalWEBIDS.pdf (last
accessed August 2015). 2.4.1.2, 3.1.2

http://www.cs.waikato.ac.nz/~mhall/thesis.pdf
http://www.cs.waikato.ac.nz/~mhall/thesis.pdf
ftp://ftp.cs.joensuu.fi/pub/franti/papers/Hautamaki/P2.pdf
ftp://ftp.cs.joensuu.fi/pub/franti/papers/Hautamaki/P2.pdf
http://www.cse.hcmut.edu.vn/~chauvtn/data_mining/Reading/Chapter 4 - Classification/2004 The Problem of Overfitting.pdf
http://www.cse.hcmut.edu.vn/~chauvtn/data_mining/Reading/Chapter 4 - Classification/2004 The Problem of Overfitting.pdf
http://www.darkreading.com/risk/sans-report-60--of-all-attacks-hit-web-applications-most-in-the-us/d/d-id/1131937?
http://www.darkreading.com/risk/sans-report-60--of-all-attacks-hit-web-applications-most-in-the-us/d/d-id/1131937?
http://www.darkreading.com/risk/sans-report-60--of-all-attacks-hit-web-applications-most-in-the-us/d/d-id/1131937?
ftp://cm.bell-labs.com/who/tkh/papers/odt.pdf
http://dx.doi.org/10.1109/34.709601
http://ceit.aut.ac.ir/~87131084/abst/2 Dimensional WEBIDS.pdf
http://ceit.aut.ac.ir/~87131084/abst/2 Dimensional WEBIDS.pdf

References 195

[Ibrahim, 2010] Ibrahim, L. M. (2010). Anomaly network intrusion
detection system based on distributed time-delay neural network
(DTDNN). Journal of Engineering Science and Technology, 5:457-471.
http://jestec.taylors.edu.my/Vol5Issue4December10/Vol 5 4_
457 _471 L.M.Ibrahim.pdf (last accessed August 2015). 2.4.2

[Thler et al., 2006] Thler, A., Hutchins, J., and Smyth, P. (2006). Adaptive
event detection with time-varying Poisson processes. In Proceedings of
the 12" ACM SIGKDD international conference on Knowledge discovery
and data mining, KDD ’06, pages 207-216, New York, NY, USA. http:
//www.datalab.uci.edu/papers/event_detection_kdd06.pdf (last
accessed August 2015). 2.4.2

[ITU, 2015] ICT Data and Statistics Division, ITU (2015). ICT facts
& figures. the world in 2015. Technical report, International
Telecommunication Union (ITU). http://www.itu.int/en/ITU-D/
Statistics/Documents/facts/ICTFactsFigures2015.pdf. 1.1

[Jamdagni et al., 2013] Jamdagni, A., Tan, Z., He, X., Nanda, P,
and Liu, R. P. (2013). RePIDS: A multi tier Real-time
Payload-based Intrusion Detection System. Computer Networks,
57(3):811-824. http://www.sciencedirect.com/science/article/
pii/S1389128612003544 (last accessed August 2015). 2.3.2.2

[Jifa and Lingling, 2014] Jifa, G. and Lingling, Z. (2014). Data, dikw, big data
and data science. Procedia Computer Science, 31(0):814 — 821. 2

International Conference on Information Technology and Quantitative
Management, {ITQM} 2014. 1.1

[Jovanovic et al., 2006] Jovanovic, N., Kruegel, C., and Kirda, E. (2006). Pixy:
A static analysis tool for detecting web application vulnerabilities
(short paper). In Proceedings of the 2006 IEEE Symposium on
Security and Privacy, SP 06, pages 258263, Washington, DC,
USA. http://infsec.uni-trier.de/download/teachingSS2009/IT-
Sicherheit-II/literatur/pixy.pdf (last accessed August 2015). 1.2

http://jestec.taylors.edu.my/Vol 5 Issue 4 December 10/Vol_5_4_457_471_L. M. Ibrahim.pdf
http://jestec.taylors.edu.my/Vol 5 Issue 4 December 10/Vol_5_4_457_471_L. M. Ibrahim.pdf
http://www.datalab.uci.edu/papers/event_detection_kdd06.pdf
http://www.datalab.uci.edu/papers/event_detection_kdd06.pdf
http://www.itu.int/en/ITU-D/Statistics/Documents/facts/ICTFactsFigures2015.pdf
http://www.itu.int/en/ITU-D/Statistics/Documents/facts/ICTFactsFigures2015.pdf
http://www.sciencedirect.com/science/article/pii/S1389128612003544
http://www.sciencedirect.com/science/article/pii/S1389128612003544
http://infsec.uni-trier.de/download/teachingSS2009/IT-Sicherheit-II/literatur/pixy.pdf
http://infsec.uni-trier.de/download/teachingSS2009/IT-Sicherheit-II/literatur/pixy.pdf

196 References

[Khalkhali, 2011} Khalkhali, I. (2011). Web Anomaly Host-based IDS with
Enhanced Custom Log file: A Machine Learning Approach. Master’s
thesis, Sharif University of Technology, Kish Island (Iran). 2.4.2

[Kirchner, 2010] Kirchner, M. (2010). A framework for detecting anomalies
in HTTP traffic using instance-based learning and K-nearest neighbor
classification. In Proceedings of the 2" International Workshop on
Security and Communication Networks (IWSCN), pages 1-8. 2.4.2

[Kirda et al., 2009] Kirda, E., Jovanovic, N., Kruegel, C., and Vigna, G.
(2009). Client-side cross-site scripting protection. Computers € Security,
28(7):592-604. https://www.cs.ucsb.edu/~chris/research/doc/
compsec09_noxes.pdf (last accessed August 2015). 4.3

[Kloft et al., 2008] Kloft, M., Brefeld, U., Diiessel, P., Gehl, C., and
Laskov, P. (2008). Automatic feature selection for anomaly
detection. In Proceedings of the 158 ACM workshop on Workshop
on AlSec, AlSec ’'08, pages 71-76, New York, NY, USA.
https://www.kma.informatik.tu-darmstadt.de/fileadmin/user_
upload/Group_KMA/kma_publications/aisec19-kloft.pdf (last
accessed August 2015). 2.3.1, 2.3.2.1

[Kohavi, 1995 Kohavi, R. (1995). A study of cross-validation and bootstrap
for accuracy estimation and model selection. In Proceedings of
IJCAI, pages 1137-1145. http://www.cs.iastate.edu/~jtian/
cs573/Papers/Kohavi-IJCAI-95.pdf (last accessed August 2015).
5.4.2.4

[Kotsiantis et al., 2006] Kotsiantis, S., Kanellopoulos, D., and Pintelas, P.
(2006). Data preprocessing for supervised learning. International Journal
of Computer Science, 1(2):111-117. http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.132.5127&rep=repl&type=pdf (last
accessed August 2015). 1.2; 2.3

[Kowalski, 2010] Kowalski, G. (2010). Information Retrieval Architecture and
Algorithms. Springer. 2.3.1.1

https://www.cs.ucsb.edu/~chris/research/doc/compsec09_noxes.pdf
https://www.cs.ucsb.edu/~chris/research/doc/compsec09_noxes.pdf
https://www.kma.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_KMA/kma_publications/aisec19-kloft.pdf
https://www.kma.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_KMA/kma_publications/aisec19-kloft.pdf
http://www.cs.iastate.edu/~jtian/cs573/Papers/Kohavi-IJCAI-95.pdf
http://www.cs.iastate.edu/~jtian/cs573/Papers/Kohavi-IJCAI-95.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.132.5127&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.132.5127&rep=rep1&type=pdf

References 197

[Kozik et al., 2014a] Kozik, R., Choras, M., Renk, R., and Hotubowicz, W.
(2014). Modelling http requests with regular expressions for detection
of cyber attacks targeted at web applications. In International
Joint Conference SOCO’14-CISIS’14-ICEUTE’14, volume 299 of
Advances in Intelligent Systems and Computing, pages 527-535. Springer
International Publishing. http://dx.doi.org/10.1007/978-3-319-
07995-0_52 (last accessed August 2015). 3.5, 6.2

[Kozik et al., 2014b] Kozik, R., Choras, M., Renk, R., and Holubowicz,
W. (2014). A proposal of algorithm for web applications cyber
attack detection. In Computer Information Systems and Industrial
Management, volume 8838 of Lecture Notes in Computer Science, pages
680-687. Springer Berlin Heidelberg. http://dx.doi.org/10.1007/
978-3-662-45237-0_61 (last accessed August 2015). 3.5, 6.2

[Kruegel et al., 2003] Kruegel, C., Mutz, D., Robertson, W., and Valeur,
F. (2003). Bayesian event classification for intrusion detection.
In Proceedings of the 19" Annual Computer Security Applications
Conference., pages 14-23. https://www.cs.ucsb.edu/~chris/
research/doc/2003_07.pdf (last accessed August 2015). 2.4.2

[Kruegel et al., 2005a] Kruegel, C., Valeur, F., and Vigna, G. (2005). Intrusion
Detection and Correlation: Challenges and Solutions (Advances in

Information Security). Springer. 3.1.2

[Kruegel and Vigna, 2003] Kruegel, C. and Vigna, G. (2003). Anomaly
detection of web-based attacks. In Proceedings of the 10" ACM
conference on Computer and communications security, CCS 03, pages
251-261, New York, NY, USA. http://www.cs.ucsb.edu/~vigna/

publications/2003_kruegel vigna_ccs03.pdf (last accessed August
2015). 4.3

[Kruegel et al., 2005b] Kruegel, C., Vigna, G., and Robertson, W. (2005). A
multi-model approach to the detection of web-based attacks. Computer
Networks, 48(5):717-738.

http://dx.doi.org/10.1007/978-3-319-07995-0_52
http://dx.doi.org/10.1007/978-3-319-07995-0_52
http://dx.doi.org/10.1007/978-3-662-45237-0_61
http://dx.doi.org/10.1007/978-3-662-45237-0_61
https://www.cs.ucsb.edu/~chris/research/doc/2003_07.pdf
https://www.cs.ucsb.edu/~chris/research/doc/2003_07.pdf
http://www.cs.ucsb.edu/~vigna/publications/2003_kruegel_vigna_ccs03.pdf
http://www.cs.ucsb.edu/~vigna/publications/2003_kruegel_vigna_ccs03.pdf

198 References

http://packetstorm.foofus.com/papers/IDS/nids/A-Multi-
model-Approach-to-the-Detection-of-Web-based-Attacks.pdf
(last accessed August 2015). 2.2.1.2, 2.2.1.3, 2.3.1, 2.4.1.1, 3.4, 4.4, 4.5.1,
4.7, 1

[Krueger et al., 2010] Krueger, T., Gehl, C., Rieck, K., and Laskov, P. (2010).
TokDoc: a self-healing web application firewall. In Proceedings of
SAC, pages 1846-1853. http://user.informatik.uni-goettingen.
de/~krieck/docs/2010b-sac.pdf (last accessed August 2015). 2.2.1.1,
2.3.1.1,2.4.1.2, 4.4, 4.11.1

[Kubat, 2015] Kubat, M. (2015). An Introduction to Machine Learning.
Springer. http://dx.doi.org/10.1007/978-3-319-20010-1. 5.4.2.4

[Kurgan and Musilek, 2006] Kurgan, L. A. and Musilek, P. (2006). A survey
of knowledge discovery and data mining process models. The Knowledge
Engineering Review, 21(1):1-24. http://biomine.ece.ualberta.ca/
papers/KER-KDDM2006 . pdf (last accessed August 2015). 2.3

[De la Hoz et al., 2014] De la Hoz, E. D., de la Hoz, E., Ortiz, A,
Ortega, J., and Martinez-Alvarez, A. (2014). Feature selection by
multi-objective optimisation: Application to network anomaly detection
by hierarchical self-organising maps. Knowledge-Based Systems, T1(1):
322-338. http://www.sciencedirect.com/science/article/pii/
S0950705114002950 (last accessed August 2015). 2.3.2.1

[Lafferty et al., 2001] Lafferty, J. D., McCallum, A., and Pereira, F. C. N.
(2001). Conditional random fields: Probabilistic models for segmenting
and labeling sequence data. In Proceedings of the Fighteenth
International Conference on Machine Learning, ICML 01, pages
282-289, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.
http://dl.acm.org/citation.cfm?id=645530.655813 (last accessed
August 2015). 2.2.1.3

[Lai et al., 2008] Lai, J.-Y., Wu, J.-S., Chen, S.-J., Wu, C.-H., and Yang,
C.-H. (2008). Designing a taxonomy of web attacks. In Proceedings
of the 2008 International Conference on Convergence and Hybrid
Information Technology, ICHIT ’08, pages 278-282, Washington,

http://packetstorm.foofus.com/papers/IDS/nids/A-Multi-model-Approach-to-the-Detection-of-Web-based-Attacks.pdf
http://packetstorm.foofus.com/papers/IDS/nids/A-Multi-model-Approach-to-the-Detection-of-Web-based-Attacks.pdf
http://user.informatik.uni-goettingen.de/~krieck/docs/2010b-sac.pdf
http://user.informatik.uni-goettingen.de/~krieck/docs/2010b-sac.pdf
http://dx.doi.org/10.1007/978-3-319-20010-1
http://biomine.ece.ualberta.ca/papers/KER-KDDM2006.pdf
http://biomine.ece.ualberta.ca/papers/KER-KDDM2006.pdf
http://www.sciencedirect.com/science/article/pii/S0950705114002950
http://www.sciencedirect.com/science/article/pii/S0950705114002950
http://dl.acm.org/citation.cfm?id=645530.655813

References 199

DC, USA. http://crypto.nknu.edu.tw/psnl/publications/
2008ICHIT_taxonomy.pdf (last accessed August 2015). 2.1.3

[Lanzi et al., 2010] Lanzi, A., Balzarotti, D., Kruegel, C., Christodorescu, M.,
and Kirda, E. (2010). AccessMiner: Using system-centric models for
malware protection. In Proceedings of ACM Conference on Computer
and Communications Security, pages 399-412. http://seclab.nu/

static/publications/ccs2010malware.pdf (last accessed August
2015). 2.2.1.2, 2.3.1.1

[LBNL and ICSI, 2005] Lawrence Berkeley National Laboratory and ICSI
(2005). LBNL/ICSI Enterprise Tracing Project. http://www.icir.
org/enterprise-tracing/ (last accessed August 2015). 3.1.2

[Li et al., 2015] Li, S.-H., Yen, D. C., Chen, S.-C., Chen, P. S., Lu, W.-H.,
and Cho, C.-C. (2015). Effects of virtualization on information security.
Computer Standards & Interfaces, (0). 3.4

[Li, 2004] Li, W. (2004). Using genetic algorithm for network intrusion
detection. In Proceedings of the United States Department of Energy
Cyber Security Group 2004 Training Conference, pages 24-27. http://
bit.csc.lsu.edu/~jianhua/krish-1.pdf (last accessed August 2015).
2.4.2

[Li et al., 2008] Li, Y., Guo, L., Tian, Z.-H., and Lu, T.-B. (2008). A lightweight
web server anomaly detection method based on transductive scheme
and genetic algorithms. Computer Communications, 31(17):4018-4025.
http://dx.doi.org/10.1016/j.comcom.2008.08.009 (last accessed
August 2015). 2.4.2

[Li et al., 2009] Li, Y., Wang, J.-L., Tian, Z., Lu, T., and Young,
C. (2009). Building lightweight intrusion detection system using
wrapper-based feature selection mechanisms. Computers € Security,
28(6):466-475. http://dx.doi.org/10.1016/j.cose.2009.01.001
(last accessed August 2015). 2.3.2, 2.3.2.1

http://crypto.nknu.edu.tw/psnl/publications/2008ICHIT_taxonomy.pdf
http://crypto.nknu.edu.tw/psnl/publications/2008ICHIT_taxonomy.pdf
http://seclab.nu/static/publications/ccs2010malware.pdf
http://seclab.nu/static/publications/ccs2010malware.pdf
http://www.icir.org/enterprise-tracing/
http://www.icir.org/enterprise-tracing/
http://bit.csc.lsu.edu/~jianhua/krish-1.pdf
http://bit.csc.lsu.edu/~jianhua/krish-1.pdf
http://dx.doi.org/10.1016/j.comcom.2008.08.009
http://dx.doi.org/10.1016/j.cose.2009.01.001

200 References

[Liao and Vemuri, 2002| Liao, Y. and Vemuri, V. (2002). Use of K-nearest
neighbor classifier for intrusion detection. Computers & Security,
21(5):439-448. http://www.sciencedirect.com/science/article/
pii/S016740480200514X (last accessed August 2015). 2.4.2

[Lim et al., 2007] Lim, S. H., Wang, L.-L., and DelJong, G. (2007).
Explanation-based feature construction. In Proceedings of the Twentieth
International Joint Conference on Artificial Intelligence (IJCAI),
pages 931-936. http://ijcai.org/papers07/Papers/IJCAIO7-150.
pdf (last accessed August 2015). 2.3.1

[Lin et al., 2012] Lin, S.-W., Ying, K.-C., Lee, C.-Y., and Lee, Z.-J. (2012). An
intelligent algorithm with feature selection and decision rules applied to
anomaly intrusion detection. Applied Soft Computing, 12(10):3285-3290.
https://www.researchgate.net/profile/Kuo-Ching Ying/
publication/257635569 An_intelligent algorithm with_
feature_selection_and decision_rules_applied_to_anomaly_
intrusion_detection/links/0deec53c86e863a06900000070origin=
publication_list&ev=pub_srch_pub_xdl (last accessed August
2015). 2.2.1.3, 2.3.2.1, 2.4.2

[Lippmann et al., 2000a] Lippmann, R., Fried, D., Graf, I., Haines, J., Kendall,
K., McClung, D., Weber, D., Webster, S., Wyschogrod, D., Cunningham,
R., and Zissman, M. (2000). Evaluating intrusion detection systems: the
1998 DARPA off-line intrusion detection evaluation. In Proceedings of the
DARPA Information Survivability Conference and FExposition, DISCEX
00, volume 2, pages 12-26. http://www.1ll.mit.edu/ideval/files/
Evaluating IDs_DARPA_1998.pdf (last accessed August 2015). 2.4.2
3.1.2,5.3

[Lippmann et al., 2000b] Lippmann, R., Haines, J. W., Fried, D. J., Korba, J.,
and Das, K. (2000). The 1999 DARPA off-line intrusion detection
evaluation. Computer Networks, 34(4):579-595. http://www.1l.
mit.edu/ideval/files/1999Eval-ComputerNetworks2000.pdf (last
accessed August 2015). 3.1.2

http://www.sciencedirect.com/science/article/pii/S016740480200514X
http://www.sciencedirect.com/science/article/pii/S016740480200514X
http://ijcai.org/papers07/Papers/IJCAI07-150.pdf
http://ijcai.org/papers07/Papers/IJCAI07-150.pdf
https://www.researchgate.net/profile/Kuo-Ching_Ying/publication/257635569_An_intelligent_algorithm_with_feature_selection_and_decision_rules_applied_to_anomaly_intrusion_detection/links/0deec53c86e863a069000000?origin=publication_list&ev=pub_srch_pub_xdl
https://www.researchgate.net/profile/Kuo-Ching_Ying/publication/257635569_An_intelligent_algorithm_with_feature_selection_and_decision_rules_applied_to_anomaly_intrusion_detection/links/0deec53c86e863a069000000?origin=publication_list&ev=pub_srch_pub_xdl
https://www.researchgate.net/profile/Kuo-Ching_Ying/publication/257635569_An_intelligent_algorithm_with_feature_selection_and_decision_rules_applied_to_anomaly_intrusion_detection/links/0deec53c86e863a069000000?origin=publication_list&ev=pub_srch_pub_xdl
https://www.researchgate.net/profile/Kuo-Ching_Ying/publication/257635569_An_intelligent_algorithm_with_feature_selection_and_decision_rules_applied_to_anomaly_intrusion_detection/links/0deec53c86e863a069000000?origin=publication_list&ev=pub_srch_pub_xdl
https://www.researchgate.net/profile/Kuo-Ching_Ying/publication/257635569_An_intelligent_algorithm_with_feature_selection_and_decision_rules_applied_to_anomaly_intrusion_detection/links/0deec53c86e863a069000000?origin=publication_list&ev=pub_srch_pub_xdl
http://www.ll.mit.edu/ideval/files/Evaluating_IDs_DARPA_1998.pdf
http://www.ll.mit.edu/ideval/files/Evaluating_IDs_DARPA_1998.pdf
http://www.ll.mit.edu/ideval/files/1999Eval-ComputerNetworks2000.pdf
http://www.ll.mit.edu/ideval/files/1999Eval-ComputerNetworks2000.pdf

References 201

[Liu and Motoda, 2007] Liu, H. and Motoda, H. (2007). Computational
Methods of Feature Selection (Chapman € Hall/Crc Data Mining and
Knowledge Discovery Series). Chapman & Hall/CRC. 2.3.2

[Lunt et al., 1992] Lunt, T., Tamaru, A., Gilham, F., Jagannathm, R., Jalali,
C., and P.G. Neumann, H.S. Javitz, A. V. T. G. (1992). A real-time
intrusion detection expert system (IDES). Technical report, Computer
Science Laboratory, SRI International,, Menlo Park, CA, USA. http://
www.csl.sri.com/papers/9sri/9sri.pdf (last accessed August 2015).
2.4.1.1

[Lutu, 2010] Lutu, P. E. N. (2010). Dataset selection for aggregate model
implementation in predictive data mining. PhD thesis, University
of Pretoria. http://cirg.cs.up.ac.za/thesis/PENLutu.pdf (last
accessed August 2015). 2

[Mahoney and Chan, 2001] Mahoney, M. V. and Chan, P. K. (2001). PHAD:
Packet Header Anomaly Detection for Identifying Hostile Network
Traffic. Technical Report CS-2001-4 2004, Florida Institute of
Technology. https://msdn.cs.fit.edu/media/TechnicalReports/
cs-2001-04.pdf (last accessed August 2015). 2.3.1.1, 2.4.1.1

[Mahoney and Chan, 2002a] Mahoney, M. V. and Chan, P. K. (2002). Learning
models of network traffic for detecting novel attacks. Technical Report
(CS-2002-08, Florida Institute of Technology. https://www.cs.fit.
edu/media/TechnicalReports/cs-2002-08.pdf (last accessed August
2015). 2.4.1.1

[Mahoney and Chan, 2002b] Mahoney, M. V. and Chan, P. K. (2002). Learning
nonstationary models of normal network traffic for detecting novel
attacks. In Proceedings of the Fighth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’02, pages
376-385, New York, NY, USA. http://wwuw.ideal.ece.utexas.edu/
courses/ee379k/papers/mahoney02novelattacks.pdf (last accessed
August 2015). 2.4.1.1

http://www.csl.sri.com/papers/9sri/9sri.pdf
http://www.csl.sri.com/papers/9sri/9sri.pdf
http://cirg.cs.up.ac.za/thesis/PENLutu.pdf
https://msdn.cs.fit.edu/media/TechnicalReports/cs-2001-04.pdf
https://msdn.cs.fit.edu/media/TechnicalReports/cs-2001-04.pdf
https://www.cs.fit.edu/media/TechnicalReports/cs-2002-08.pdf
https://www.cs.fit.edu/media/TechnicalReports/cs-2002-08.pdf
http://www.ideal.ece.utexas.edu/courses/ee379k/papers/mahoney02novelattacks.pdf
http://www.ideal.ece.utexas.edu/courses/ee379k/papers/mahoney02novelattacks.pdf

202 References

[Mannila et al., 1997] Mannila, H., Toivonen, H., and Inkeri Verkamo, A.
(1997). Discovery of frequent episodes in event sequences. Data
Min. Knowl. Discov., 1(3):259-289. http://dx.doi.org/10.1023/A:
1009748302351 (last accessed August 2015). 2.3.1

[McHugh, 2000] McHugh, J. (2000). Testing intrusion detection systems:
a critique of the 1998 and 1999 DARPA intrusion detection system
evaluations as performed by lincoln laboratory. ACM Transactions
on Information and System Security, 3(4):262-294. https://www.cs.
nmt . edu/~infosec/CritiqueonTestingIDS.pdf (last accessed August
2015). 3.1.2

[Meng and Kwok, 2014] Meng, Y. and Kwok, L.-F. (2014). Adaptive
non-critical alarm reduction using hash-based contextual signatures in
intrusion detection. Computer Communications, 38(0):50-59. https:
//www.researchgate.net/profile/Weizhi_Meng/publication/
260250039_Adaptive_Non-Critical_ Alarm Reduction_Using Hash-
based_Contextual Signatures_in_Intrusion_Detection/links/
0c960535a806c5039e00000070origin=publication_list&ev=pub_
srch_pub_xdl (last accessed August 2015). 2.2.1.3

[MISP, 2015] MISP (2015). Malware information sharing platform. http:
//www.misp-project.org/ (last accessed August 2015). 2.2.1.3

[Mitchell, 1998] Mitchell, M. (1998). An Introduction to Genetic Algorithms.
MIT Press, Cambridge, MA, USA. 2.2.1.3

[MITRE, 2012] MITRE (2012). Common attack pattern enumeration and

classification. http://capec.mitre.org/ (last accessed August 2015).
2.1.3

[MITRE, 2014a] MITRE (2014). Common vulnerabilities and exposures (CVE).
https://cve.mitre.org/ (last accessed August 2015). 1.2

[MITRE, 2014b] MITRE (2014). Common Weakness Enumeration, version
2.8. http://cwe.mitre.org/data/published/cwe_v2.8.pdf (last
accessed August 2015). 2.1.3

http://dx.doi.org/10.1023/A:1009748302351
http://dx.doi.org/10.1023/A:1009748302351
https://www.cs.nmt.edu/~infosec/Critique on Testing IDS.pdf
https://www.cs.nmt.edu/~infosec/Critique on Testing IDS.pdf
https://www.researchgate.net/profile/Weizhi_Meng/publication/260250039_Adaptive_Non-Critical_Alarm_Reduction_Using_Hash-based_Contextual_Signatures_in_Intrusion_Detection/links/0c960535a806c5039e000000?origin=publication_list&ev=pub_srch_pub_xdl
https://www.researchgate.net/profile/Weizhi_Meng/publication/260250039_Adaptive_Non-Critical_Alarm_Reduction_Using_Hash-based_Contextual_Signatures_in_Intrusion_Detection/links/0c960535a806c5039e000000?origin=publication_list&ev=pub_srch_pub_xdl
https://www.researchgate.net/profile/Weizhi_Meng/publication/260250039_Adaptive_Non-Critical_Alarm_Reduction_Using_Hash-based_Contextual_Signatures_in_Intrusion_Detection/links/0c960535a806c5039e000000?origin=publication_list&ev=pub_srch_pub_xdl
https://www.researchgate.net/profile/Weizhi_Meng/publication/260250039_Adaptive_Non-Critical_Alarm_Reduction_Using_Hash-based_Contextual_Signatures_in_Intrusion_Detection/links/0c960535a806c5039e000000?origin=publication_list&ev=pub_srch_pub_xdl
https://www.researchgate.net/profile/Weizhi_Meng/publication/260250039_Adaptive_Non-Critical_Alarm_Reduction_Using_Hash-based_Contextual_Signatures_in_Intrusion_Detection/links/0c960535a806c5039e000000?origin=publication_list&ev=pub_srch_pub_xdl
https://www.researchgate.net/profile/Weizhi_Meng/publication/260250039_Adaptive_Non-Critical_Alarm_Reduction_Using_Hash-based_Contextual_Signatures_in_Intrusion_Detection/links/0c960535a806c5039e000000?origin=publication_list&ev=pub_srch_pub_xdl
http://www.misp-project.org/
http://www.misp-project.org/
http://capec.mitre.org/
https://cve.mitre.org/
http://cwe.mitre.org/data/published/cwe_v2.8.pdf

References 203

[Mulay et al., 2010] Mulay, S. A., Devale, P., and Garje, G. (2010).
Intrusion detection system using support vector machine and decision
tree. International Journal of Computer Applications, 3(3):40-43.
http://www.ijcaonline.org/volume3/number3/pxc387993.pdf
(last accessed August 2015). 5.1

[Muniyandi et al., 2012] Muniyandi, A. P., Rajeswari, R., and Rajaram,
R. (2012). Network anomaly detection by cascading K-means
clustering and C4.5 decision tree algorithm. Procedia FEngineering,
30(0):174-182. http://www.sciencedirect.com/science/article/
pii/S1877705812008594 (last accessed August 2015). 2.4.2

[Naiman, 2004] Naiman, D. Q. (2004). Statistical anomaly detection via
HTTPD data analysis. Computational Statistics € Data Analysis,
45(1):51-67. http://www.sciencedirect.com/science/article/
pii/S0167947303001154 (last accessed August 2015). 2.2.1.2, 2.3.1.1

[Newsome and Song, 2005] Newsome, J. and Song, D. (2005). Dynamic taint
analysis for automatic detection, analysis, and signature generation
of exploits on commodity software. In Proceedings of NDSS05. http:
//valgrind.org/docs/newsome2005.pdf (last accessed August 2015).
1.2

[Nguyen, 2012] Nguyen, H. T. (2012). Reliable Machine Learning Algorithms
for Intrusion Detection Systems. PhD thesis, Faculty of Computer
Science and Media Technology Gjgvik University College. http://hdl.
handle.net/11250/144371 (last accessed August 2015). 2.3.2, 2.4.2, 2,
5.3.3

[Nguyen et al., 2010a] Nguyen, H. T., Franke, K., and Petrovié¢, S. (2010).
Improving effectiveness of intrusion detection by correlation
feature selection. In Proceedings of the International Conference
on Availability, Reliability and Security (ARES), pages 17-24.
http://ieeexplore.ieee.org/xpl/freeabs_all. jsp?arnumber=

5438117&abstractAccess=no&userType=inst (last accessed August
2015). 5

http://www.ijcaonline.org/volume3/number3/pxc387993.pdf
http://www.sciencedirect.com/science/article/pii/S1877705812008594
http://www.sciencedirect.com/science/article/pii/S1877705812008594
http://www.sciencedirect.com/science/article/pii/S0167947303001154
http://www.sciencedirect.com/science/article/pii/S0167947303001154
http://valgrind.org/docs/newsome2005.pdf
http://valgrind.org/docs/newsome2005.pdf
http://hdl.handle.net/11250/144371
http://hdl.handle.net/11250/144371
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5438117&abstractAccess=no&userType=inst
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5438117&abstractAccess=no&userType=inst

204 References

[Nguyen et al., 2010b] Nguyen, H. T., Franke, K., and Petrovi¢, S. (2010).
Towards a generic feature-selection measure for intrusion detection.
In Proceedings of the 20" International Conference on Pattern
Recognition, ICPR’10, pages 1529-1532, Washington, DC, USA.
http://ieeexplore.ieee.org/xpl/freeabs_all. jsp?arnumber=

5597038%abstractAccess=no&userType=inst (last accessed August
2015). 2.3.2.2, 5.3, 5.3.2, 5

[Nguyen et al., 2011] Nguyen, H. T., Franke, K

(2011). Improving effectiveness of intrusion detection by

., and Petrovi¢, S.

correlation feature selection. International Journal of Mobile
Computing and Multimedia Communications, 3(1):21-34. http:
//www.researchgate.net/publication/220265542_Improving
Effectiveness_of_ Intrusion Detection_by_Correlation_
Feature_Selection/file/79e415065422243f45.pdf (last accessed
August 2015). 5.3

[Nguyen et al., 2010c] Nguyen, H. T., Petrovi¢, S., and Franke, K. (2010).
A comparison of feature-selection methods for intrusion detection.
In Computer Network Security, volume 6258 of Lecture Notes in
Computer Science, pages 242-255. Springer Berlin Heidelberg. http:
//profs.info.uaic.ro/~alaiba/pub/fluxuri-2014/Cercetarel,
202014 /Computer’%20Network’%20Security.pdf#page=253 (last
accessed August 2015). 2.3.2.2

[Nguyen-Tuong et al., 2005] Nguyen-Tuong, A., Guarnieri, S., Greene, D.,
Shirley, J., and Evans, D. (2005). Automatically hardening
web applications using precise tainting. In Proceedings of the
20" IFIP International Information Security Conference, pages
372-382. http://dependability.cs.virginia.edu/publications/
2005/sec2005.pdf (last accessed August 2015). 1.2

[Olaru and Wehenkel, 2003] Olaru, C. and Wehenkel, L. (2003). A complete
fuzzy decision tree technique. Fuzzy sets and systems, 138(2):221-254.
5.3.3

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5597038&abstractAccess=no&userType=inst
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5597038&abstractAccess=no&userType=inst
http://www.researchgate.net/publication/220265542_Improving_Effectiveness_of_Intrusion_Detection_by_Correlation_Feature_Selection/file/79e415065422243f45.pdf
http://www.researchgate.net/publication/220265542_Improving_Effectiveness_of_Intrusion_Detection_by_Correlation_Feature_Selection/file/79e415065422243f45.pdf
http://www.researchgate.net/publication/220265542_Improving_Effectiveness_of_Intrusion_Detection_by_Correlation_Feature_Selection/file/79e415065422243f45.pdf
http://www.researchgate.net/publication/220265542_Improving_Effectiveness_of_Intrusion_Detection_by_Correlation_Feature_Selection/file/79e415065422243f45.pdf
http://profs.info.uaic.ro/~alaiba/pub/fluxuri-2014/Cercetare%202014/Computer%20Network%20Security.pdf#page=253
http://profs.info.uaic.ro/~alaiba/pub/fluxuri-2014/Cercetare%202014/Computer%20Network%20Security.pdf#page=253
http://profs.info.uaic.ro/~alaiba/pub/fluxuri-2014/Cercetare%202014/Computer%20Network%20Security.pdf#page=253
http://dependability.cs.virginia.edu/publications/2005/sec2005.pdf
http://dependability.cs.virginia.edu/publications/2005/sec2005.pdf

References 205

[Olusola et al., 2010] Olusola, A. A., Oladele, A. S., and Abosede, D. O. (2010).
Analysis of KDD’99 intrusion detection dataset for selection of relevance
features. In World Congress on Engineering and Computer Science, Int.
Assoc. Engn, pages 162-168. 2.3.2.2

[OWASP, 2013] OWASP (2013). Top 10. Technical report. https://
www.owasp.org/index.php/Category:0OWASP_Top_Ten_Project (last
accessed August 2015). 1.2, 2.1.3, 2.1.3

[Paxson, 2015] Paxson, V. (2015). The Bro network security monitor. https:
//www.bro.org/ (last accessed August 2015). 2.2.1.3

[Perdisci et al., 2009] Perdisci, R., Ariu, D., Fogla, P., Giacinto, G.,
and Lee, W. (2009). McPAD: A multiple classifier system for
accurate payload-based anomaly detection. Computer Networks,
53(6):864-881. https://pralab.diee.unica.it/sites/default/
files/Perdisci_COMNET2009.pdf (last accessed August 2015). 2.3.1.1,
5.4.2.2

[Pfahringer, 2000] Pfahringer, B. (2000). Winning the KDD99 classification
cup: Bagged boosting. SIGKDD Exploration Newsletter, 1(2):65-66.
ftp://ftp.cse.buffalo.edu/users/azhang/disc/disc01/cd1/
out/websites\/kdd_explorations_full/pfahringer.ps (last
accessed August 2015). 2.4.2, 5.3

[Piatetsky-Shapiro, 1991] Piatetsky-Shapiro, G. (1991). Discovery, analysis,
and presentation of strong rules. In Knowledge Discovery in Databases.
AAAT/MIT Press, Cambridge, MA. 2.3.1

[Pillai et al., 2004] Pillai, M. M., Eloff, J. H. P., and Venter, H. S. (2004). An
approach to implement a network intrusion detection system using
genetic algorithms. In Proceedings of the 2004 Annual Research
Conference of the South African Institute of Computer Scientists and
Information Technologists on IT Research in Developing Countries,
SAICSIT’04, pages 221-228, Republic of South Africa. http://dl.acm.
org/citation.cfm?id=1035053.1035080 (last accessed August 2015).
2.4.2

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.bro.org/
https://www.bro.org/
https://pralab.diee.unica.it/sites/default/files/Perdisci_COMNET2009.pdf
https://pralab.diee.unica.it/sites/default/files/Perdisci_COMNET2009.pdf
ftp://ftp.cse.buffalo.edu/users/azhang/disc/disc01/cd1/out/websites\ /kdd_explorations_full/pfahringer.ps
ftp://ftp.cse.buffalo.edu/users/azhang/disc/disc01/cd1/out/websites\ /kdd_explorations_full/pfahringer.ps
http://dl.acm.org/citation.cfm?id=1035053.1035080
http://dl.acm.org/citation.cfm?id=1035053.1035080

206 References

[Porras et al., 1999] Porras, P., Schnackenberg, D., Staniford-Chen, S.,
Davis, Stillman, M., and Wu, F. (1999). The common intrusion
detection framework architecture. http://gost.isi.edu/cidf/
drafts/architecture.txt (last accessed August 2015). 2.2.2

[Provost et al., 1998] Provost, F., Fawcett, T., and Kohavi, R. (1998).
The case against accuracy estimation for comparing induction
algorithms. In Kaufmann, M., editor, Proceedings of the
International Conference on Machine Learning, San Mateo, CA,
USA. http://eecs.wsu.edu/~holder/courses/cse6363/spr04/
pubs/Provost98.pdf (last accessed August 2015). 4.9

[Quinlan, 1993] Quinlan, J. R. (1993). C4.5: Programs for Machine Learning,
15t ed. Morgan Kaufmann. 5.3.3

[Quinlan, 1996] Quinlan, J. R. (1996). Bagging, boosting, and C4.5. In
AAAI/IAAL Vol. 1, pages 725-730. 2.4.2

[Raissi et al., 2007] Raissi, C., Brissaud, J., Dray, G., Poncelet, P., Roche,
M., and Teisseire, M. (2007). Web analyzing traffic challenge:
Description and results. In Proceedings of the Discovery Challenge
ECML/PKDD’2007, pages 47-52. http://www.lirmm.fr/~poncelet/
publications/papers/awt_raissi.pdf (last accessed August 2015).
3.1.2, 5.4.1

[Ramadas et al., 2003] Ramadas, M., Ostermann, S., and Tjaden, B.
(2003). Detecting anomalous network traffic with self-organizing
maps. In Recent Advances in Intrusion Detection, volume 2820
of Lecture Notes in Computer Science, pages 36-54. Springer
Berlin Heidelberg. https://etd.ohiolink.edu/!etd.send _file?
accession=ohioul049472005&disposition=inline (last accessed
August 2015). 2.4.2

[Ramana, 2007] Ramana, B. V. (2007). Higher Engineering Mathematics.
McGraw-Hill. 4.2

http://gost.isi.edu/cidf/drafts/architecture.txt
http://gost.isi.edu/cidf/drafts/architecture.txt
http://eecs.wsu.edu/~holder/courses/cse6363/spr04/pubs/Provost98.pdf
http://eecs.wsu.edu/~holder/courses/cse6363/spr04/pubs/Provost98.pdf
http://www.lirmm.fr/~poncelet/publications/papers/awt_raissi.pdf
http://www.lirmm.fr/~poncelet/publications/papers/awt_raissi.pdf
https://etd.ohiolink.edu/!etd.send_file?accession=ohiou1049472005&disposition=inline
https://etd.ohiolink.edu/!etd.send_file?accession=ohiou1049472005&disposition=inline

References 207

[Ramos and Abraham, 2005] Ramos, V. and Abraham, A. (2005). ANTIDS:
Self organized ant-based clustering model for intrusion detection
system. In Proceedings of the 4" IEEE International Workshop on Soft
Computing as Transdisciplinary Science and Technology, pages 977-986.
http://arxiv.org/ftp/cs/papers/0412/0412068.pdf (last accessed
August 2015). 2.4.2

[Rao et al., 2011] Rao, K. H., Srinivas, G., Damodhar, A., and Krishna,
M. V. (2011). Implementation of anomaly detection technique using
machine learning algorithms. International Journal of Computer Science
and Telecommunications, 2:25-31. http://www.ijcst.org/Volume2/
Issue3/p5_2_3.pdf (last accessed August 2015). 2.4.2

[Real Time Statistics Project, 2014] Real Time Statistics Project (2014).
Internet live stats. http://www.internetlivestats.com/ (last
accessed August 2015). 1.1

[Rieck, 2009] Rieck, K. (2009). Machine Learning for Application-Layer
Intrusion Detection. PhD thesis, IV Faculty, Technical University, Berlin
(Germany). http://user.informatik.uni-goettingen.de/~krieck/
docs/2009-diss.pdf (last accessed August 2015). 2.3.1, 5.4.2.1

[Rieck and Laskov, 2006] Rieck, K. and Laskov, P. (2006). Detecting
unknown network attacks using language models. In Proceedings
of the Third International Conference on Detection of Intrusions
and Malware & Vulnerability Assessment, DIMVA’06, pages 74-90,
Berlin, Heidelberg. http://www-rsec.cs.uni-tuebingen.de/laskov/
papers/dimva2006.pdf (last accessed August 2015). 2.3.1.1

[Rieck and Laskov, 2007] Rieck, K. and Laskov, P. (2007). Language models
for detection of unknown attacks in network traffic. Journal in
Computer Virology, 2(4):243-256. http://eprints.pascal-network.
org/archive/00002788/01/jicv06.pdf (last accessed August 2015).
2.3.1.1

[Riley et al., 2010] Riley, R. D., Ali, N. M., Al-Senaidi, K. S., and Al-Kuwari,
A. L. (2010). Empowering users against sidejacking attacks. In
Proceedings of SIGCOMM, pages 435-436.

http://arxiv.org/ftp/cs/papers/0412/0412068.pdf
http://www.ijcst.org/Volume2/Issue3/p5_2_3.pdf
http://www.ijcst.org/Volume2/Issue3/p5_2_3.pdf
http://www.internetlivestats.com/
http://user.informatik.uni-goettingen.de/~krieck/docs/2009-diss.pdf
http://user.informatik.uni-goettingen.de/~krieck/docs/2009-diss.pdf
http://www-rsec.cs.uni-tuebingen.de/laskov/papers/dimva2006.pdf
http://www-rsec.cs.uni-tuebingen.de/laskov/papers/dimva2006.pdf
http://eprints.pascal-network.org/archive/00002788/01/jicv06.pdf
http://eprints.pascal-network.org/archive/00002788/01/jicv06.pdf

208 References

http://conferences.sigcomm.org/sigcomm/2010/papers/
sigcomm/p435.pdf (last accessed August 2015). 4.3

[Robertson et al., 2006] Robertson, W. K., Vigna, G., Krigel, C., and
Kemmerer, R. A. (2006). Using generalization and characterization
techniques in the anomaly-based detection of web attacks. In
Proceedings of NDSS. http://iseclab.org/papers/webfuzzing.pdf
(last accessed August 2015). 2.4.1.1, 5.3.3

[Roesch, 1999] Roesch, M. (1999). Snort - lightweight intrusion detection
for networks. In Proceedings of the 13" USENIX Conference on
System Administration, LISA ’99, pages 229-238, Berkeley, CA, USA.
http://static.usenix.org/publications/library/proceedings/

1isa99/full_papers/roesch/roesch.pdf (last accessed August
2015). 2.2.1.3

[Rollett et al., 2007] Rollett, H., Lux, M., Strohmaier, M., Dosinger, G., and
Tochtermann, K. (2007). The Web 2.0 way of learning with technologies.
International Journal of Learning Technology, 3(1):87-107. http://www.
markusstrohmaier.info/documents/2007_JoLT_Learning.pdf (last
accessed August 2015). 1.1

[Rooted, 2015] Rooted (2015). Rootedcon. http://www.rootedcon.com (last
accessed August 2015). 6.3

[Ryck et al., 2011] Ryck, P. D., Desmet, L., Philippaerts, P., and Piessens, F.
(2011). A security analysis of next generation web standards. Technical
report, The European Network and Information Security Agency
(ENISA). https://lirias.kuleuven.be/bitstream/123456789/
317385/1/NG_Web_Security.pdf (last accessed August 2015). 2.2.1.3

[Sahoo et al., 2010] Sahoo, J., Mohapatra, S., and Lath, R. (2010).
Virtualization: A survey on concepts, taxonomy and associated security
issues. In Computer and Network Technology (ICCNT), 2010 Second
International Conference on, pages 222-226. 3.4

http://conferences.sigcomm.org/sigcomm/2010/papers/sigcomm/p435.pdf
http://conferences.sigcomm.org/sigcomm/2010/papers/sigcomm/p435.pdf
http://iseclab.org/papers/webfuzzing.pdf
http://static.usenix.org/publications/library/proceedings/lisa99/full_papers/roesch/roesch.pdf
http://static.usenix.org/publications/library/proceedings/lisa99/full_papers/roesch/roesch.pdf
http://www.markusstrohmaier.info/documents/2007_JoLT_Learning.pdf
http://www.markusstrohmaier.info/documents/2007_JoLT_Learning.pdf
http://www.rootedcon.com
https://lirias.kuleuven.be/bitstream/123456789/317385/1/NG_Web_Security.pdf
https://lirias.kuleuven.be/bitstream/123456789/317385/1/NG_Web_Security.pdf

References 209

[Salem et al., 2008] Salem, M. B., Hershkop, S., and Stolfo, S. J. (2008). A
survey of insider attack detection research. Technical report, Columbia
University, New York, NY (USA). http://www.dtic.mil/dtic/tr/
fulltext/u2/a519455.pdf (last accessed August 2015). 2.1.3

[Samuel, 1959] Samuel, A. L. (1959). Some studies in machine learning
using the game of checkers. IBM Journal of Research and
Development, 3(3):210-229. http://researcher.watson.ibm.com/
researcher/files/us-beygel/samuel-checkers.pdf (last accessed
August 2015). 2.4.2

[Sandip et al., 2012] Sandip, A. S., Ajit, A. M., and Bapusaheb, J. D. (2012).
An improved approach for signature and anomaly based intrusion
detection and prevention. In Proceedings on International Conference
in Computational Intelligence (IJCA). http://www.docin.com/p-
463259849 .html (last accessed August 2015). 2.2.1.3

[Sangkatsanee et al., 2011a] Sangkatsanee, P., Wattanapongsakorn, N., and
Charnsripinyo, C. (2011). Practical real-time intrusion detection
using machine learning approaches. Computer Communications,
34(18):2227-2235. http://dx.doi.org/10.1016/j.comcom.2011.07.
001 (last accessed August 2015). 2.4.2

[Sangkatsanee et al., 2011b] Sangkatsanee, P., Wattanapongsakorn, N., and
Charnsripinyo, C. (2011). Practical real-time intrusion detection
using machine learning approaches. Computer Communications,
34(18):2227-2235. http://dx.doi.org/10.1016/j.comcom.2011.07.
001 (last accessed August 2015). 5.1

[Sangster et al., 2009] Sangster, B., O’Connor, T. J., Cook, T., Fanelli, R.,
Dean, E., Adams, W. J., Morrell, C., and Conti, G. (2009). Toward
instrumenting network warfare competitions to generate labeled datasets.
In Proceedings of the 2" Conference on Cyber Security Experimentation
and Test, CSET’09, pages 9-9. http://dl.acm.org/citation.cfm?
1d=1855481.1855490 (last accessed August 2015). 3.1.2

http://www.dtic.mil/dtic/tr/fulltext/u2/a519455.pdf
http://www.dtic.mil/dtic/tr/fulltext/u2/a519455.pdf
http://researcher.watson.ibm.com/researcher/files/us-beygel/samuel-checkers.pdf
http://researcher.watson.ibm.com/researcher/files/us-beygel/samuel-checkers.pdf
http://www.docin.com/p-463259849.html
http://www.docin.com/p-463259849.html
http://dx.doi.org/10.1016/j.comcom.2011.07.001
http://dx.doi.org/10.1016/j.comcom.2011.07.001
http://dx.doi.org/10.1016/j.comcom.2011.07.001
http://dx.doi.org/10.1016/j.comcom.2011.07.001
http://dl.acm.org/citation.cfm?id=1855481.1855490
http://dl.acm.org/citation.cfm?id=1855481.1855490

210 References

[Saniee Abadeh et al., 2007] Saniee Abadeh, M., Habibi, J., Barzegar, Z.,
and Sergi, M. (2007). A parallel genetic local search algorithm for
intrusion detection in computer networks. Engineering Applications of
Artificial Intelligence, 20(8):1058-1069. http://dx.doi.org/10.1016/
j.engappai.2007.02.007 (last accessed August 2015). 2.4.2

[SANS Institute, 2015] SANS Institute. Critical security controls. http://www.
sans.org/critical-security-controls (last accessed August 2015).
1.2

[Scarfone and Mell, 2007] Scarfone, K. and Mell, P. (2007). Guide to
intrusion detection and prevention systems. Technical Report SP
800-94, NIST. http://csrc.nist.gov/publications/nistpubs/800-
94/8P800-94.pdf (last accessed August 2015). 2.2, 2.2.1.1, 2.2.1.2

[Schnackenberg and Tung, 1999] Schnackenberg, D. and Tung, B. (1999). The
common intrusion detection framework. http://gost.isi.edu/cidf
(last accessed August 2015). 2.2.2

[Scholte et al., 2011] Scholte, T., Balzarotti, D., and Kirda, E. (2011). Quo
vadis? A study of the evolution of input validation vulnerabilities
in web applications. In Proceedings of Financial Cryptography, pages
284-298. http://iseclab.org/papers/vuln_fcds.pdf (last accessed
August 2015). 1.2

[Schwartz et al., 2010] Schwartz, E. J., Avgerinos, T., and Brumley, D. (2010).
All you ever wanted to know about dynamic taint analysis and
forward symbolic execution (but might have been afraid to ask).
In Proceedings of the IEEE Symposium on Security and Privacy,
pages 317-331, Oakland, CA (USA). http://users.ece.cmu.edu/
~ejschwar/papers/oakland10.pdf (last accessed August 2015). 1.2

[Scully, 2015] Scully, Peter M. D. (2015). CSIC 2010 HTTP dataset in CSV
format (for weka analysis). Intelligent Robotics Research Group, Dept.
of Computer Science Aberystwyth University, Ceredigion, Wales. http:
//users.aber.ac.uk/pds7/csic_dataset/csic2010http.html (last
accessed August 2015). 3.5, 6.2

http://dx.doi.org/10.1016/j.engappai.2007.02.007
http://dx.doi.org/10.1016/j.engappai.2007.02.007
http://www.sans.org/critical-security-controls
http://www.sans.org/critical-security-controls
http://csrc.nist.gov/publications/nistpubs/800-94/SP800-94.pdf
http://csrc.nist.gov/publications/nistpubs/800-94/SP800-94.pdf
http://gost.isi.edu/cidf
http://iseclab.org/papers/vuln_fcds.pdf
http://users.ece.cmu.edu/~ejschwar/papers/oakland10.pdf
http://users.ece.cmu.edu/~ejschwar/papers/oakland10.pdf
http://users.aber.ac.uk/pds7/csic_dataset/csic2010http.html
http://users.aber.ac.uk/pds7/csic_dataset/csic2010http.html

References 211

[Seo et al., 2004] Seo, J., Kim, H.-S., Cho, S., and Cha, S. (2004). Web server
attack categorization based on root causes and their locations. In
Proceedings of the International Conference on Information Technology:
Coding and Computing (ITCC’04), ITCC "04, pages 90-96, Washington,
DC, USA. http://priyono.lecture.ub.ac.id/files/2015/03/Web-
Server-Attack-Categorization-based-on-Root-Causes—-and-
Their-Locations.pdf (last accessed August 2015). 2.1.3

[Sequeira and Zaki, 2002] Sequeira, K. and Zaki, M. (2002). ADMIT:
anomaly-based data mining for intrusions. In Proceedings of the 8" ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’02, pages 386-395, New York, NY, USA. http://www.cs.
rpi.edu/~zaki/PaperDir/SIGKDDO2-admit .pdf (last accessed August
2015). 2.4.2

[Shannon, 2001] Shannon, C. E. (2001). A mathematical theory of
communication. SIGMOBILE Mobile Computing and Communications
Review, 5(1):3-55. http://doi.acm.org/10.1145/584091.584093
(last accessed August 2015). 5.4.2.1

[Shelly and Frydenberg, 2011] Shelly, G. B. and Frydenberg, M. (2011). Web
2.0: Concepts and Applications. Course Technology. Cengage Learning.
1.1

[Shiravi et al., 2012] Shiravi, A., Shiravi, H., Tavallaee, M., and Ghorbani,
A. A. (2012). Towards developing a systematic approach to generate
benchmark datasets for intrusion detection. Computers € Security,
31(3):357-374. http://www.sciencedirect.com/science/article/
pii/S0167404811001672 (last accessed August 2015). 3.1.2

[Shrivastava and Jain, 2011] Shrivastava, S. K. and Jain, P. (2011). Effective
anomaly based intrusion detection using rough set theory and
support vector machine. International Journal of Computer
Applications, 18(3):35—41. http://www.ijcaonline.org/volumel8/
number3/pxc3872906.pdf (last accessed August 2015). 2.4.2

http://priyono.lecture.ub.ac.id/files/2015/03/Web-Server-Attack-Categorization-based-on-Root-Causes-and-Their-Locations.pdf
http://priyono.lecture.ub.ac.id/files/2015/03/Web-Server-Attack-Categorization-based-on-Root-Causes-and-Their-Locations.pdf
http://priyono.lecture.ub.ac.id/files/2015/03/Web-Server-Attack-Categorization-based-on-Root-Causes-and-Their-Locations.pdf
http://www.cs.rpi.edu/~zaki/PaperDir/SIGKDD02-admit.pdf
http://www.cs.rpi.edu/~zaki/PaperDir/SIGKDD02-admit.pdf
http://doi.acm.org/10.1145/584091.584093
http://www.sciencedirect.com/science/article/pii/S0167404811001672
http://www.sciencedirect.com/science/article/pii/S0167404811001672
http://www.ijcaonline.org/volume18/number3/pxc3872906.pdf
http://www.ijcaonline.org/volume18/number3/pxc3872906.pdf

212 References

[Shyu et al., 2003] Shyu, M.-1., Chen, S.-c., Sarinnapakorn, K., and Chang, L.
(2003). A novel anomaly detection scheme based on principal component
classifier. In Proceedings of the IEEE Foundations and New Directions of
Data Mining Workshop, in conjunction with the 3" IEEE International
Conference on Data Mining (ICDM’03), pages 172-179. http://www.
dtic.mil/dtic/tr/fulltext/u2/a465712.pdf (last accessed August
2015). 2.3.2.2

[Simon, 2013] Simon, D. (2013). Evolutionary Optimization Algorithms. John
Wiley & Sons. 2.3.2.1

[Sivatha Sindhu et al., 2012] Sivatha Sindhu, S. S., Geetha, S., and Kannan,
A. (2012). Decision tree based light weight intrusion detection
using a wrapper approach. Expert Systems with Applications,
39(1):129-141. http://dx.doi.org/10.1016/j.eswa.2011.06.013
(last accessed August 2015). 2.3.2.1, 2.4.2

[Smaha, 1988] Smaha, S. (1988). Haystack: An intrusion detection
system. In Proceedings of the 4 Aerospace Computer Security
Applications Conference, pages 37-44. http://homeostasis.scs.
carleton.ca/~soma/id-2007w/readings/smaha-haystack.pdf (last
accessed August 2015). 2.4.1.1

[Sommer and Paxson, 2010] Sommer, R. and Paxson, V. (2010). Outside the
closed world: On using machine learning for network intrusion detection.
In Proceedings of the 2010 IEEE Symposium on Security and Privacy,
SP 10, pages 305-316, Washington, DC, USA. http://dx.doi.org/
10.1109/8P.2010.25 (last accessed August 2015). 1.3, 2.2, 3.1, 4.9, 6.1

[Song et al., 2009] Song, Y., Keromytis, A. D., and Stolfo, S. J.
(2009). Spectrogram: A mixture-of-Markov-chains model
for anomaly detection in web traffic. In Proceedings of
Network and Distributed System Security Symposium (NDSS).
http://academiccommons.columbia.edu/download/fedora_
content/download/ac:145295/CONTENT/ndss_09_07.pdf (last
accessed August 2015). 2.3.1.1, 2.4.1.2, 4.3, 5.4.2.2

http://www.dtic.mil/dtic/tr/fulltext/u2/a465712.pdf
http://www.dtic.mil/dtic/tr/fulltext/u2/a465712.pdf
http://dx.doi.org/10.1016/j.eswa.2011.06.013
http://homeostasis.scs.carleton.ca/~soma/id-2007w/readings/smaha-haystack.pdf
http://homeostasis.scs.carleton.ca/~soma/id-2007w/readings/smaha-haystack.pdf
http://dx.doi.org/10.1109/SP.2010.25
http://dx.doi.org/10.1109/SP.2010.25
http://academiccommons.columbia.edu/download/fedora_content/download/ac:145295/CONTENT/ndss_09_07.pdf
http://academiccommons.columbia.edu/download/fedora_content/download/ac:145295/CONTENT/ndss_09_07.pdf

References 213

[Sriraghavan and Lucchese, 2008] Sriraghavan, R. and Lucchese, L. (2008).
Data processing and anomaly detection in web-based applications.
In Proceedings of IEEE Workshop on Machine Learning for Signal
Processing (MLSP), pages 187-192. 2.4.1.1, 4.5.1, 4.7, 1

[Sriraghavan, 2008] Sriraghavan, R. G. (2008). Data processing and
anomaly detection in web-based applications. Master’s thesis, Oregon
State University (USA). http://ir.library.oregonstate.edu/
xmlui/bitstream/handle/1957/8176/GaarudapuramSriraghavan _

Rajagopal_Masters_Thesis.pdf?sequence=1 (last accessed August
2015). 2.3.1

[Stuttard and Pinto, 2007] Stuttard, D. and Pinto, M. (2007). The Web
Application Hacker’s Handbook: Discovering and Ezxploiting Security
Flaws. Wiley Publishing, Inc., Indianapolis (USA). 1.1, 1.1

[Sung and Mukkamala, 2003] Sung, A. H. and Mukkamala, S. (2003).
[dentifying important features for intrusion detection using support
vector machines and neural networks. In Proceedings of the 2003
Symposium on Applications and the Internet, SAINT ’03, pages
209-216, Washington, DC, USA. http://dl.acm.org/citation.cfm?
1d=827273.829224 (last accessed August 2015). 2.4.2

[Tankard, 2011] Tankard, C. (2011). Advanced Persistent threats and how to
monitor and deter them. Network Security, 2011(8):16-19. http://
dx.doi.org/10.1016/s1353-4858(11)70086-1 (last accessed August
2015). 1.1

[Tavallaee et al., 2010] Tavallace, M., Stakhanova, N., and Ghorbani, A. A.
(2010). Toward credible evaluation of anomaly-based intrusion-detection
methods. IEEE Transactions on Systems, Man, and Cybernetics, Part
C: Applications and Reviews, 40(5):516-524. http://www.cs.unb.ca/
~natalia/SMC.pdf (last accessed August 2015). 3.1, 6.1

[Tax and Duin, 2004] Tax, D. and Duin, R. (2004). Support vector data
description. Machine Learning, 54(1):45-66. http://dx.doi.org/
10.1023/B:MACH.0000008084.60811.49 (last accessed August 2015).
2.3.2.1

http://ir.library.oregonstate.edu/xmlui/bitstream/handle/1957/8176/GaarudapuramSriraghavan_Rajagopal_Masters_Thesis.pdf?sequence=1
http://ir.library.oregonstate.edu/xmlui/bitstream/handle/1957/8176/GaarudapuramSriraghavan_Rajagopal_Masters_Thesis.pdf?sequence=1
http://ir.library.oregonstate.edu/xmlui/bitstream/handle/1957/8176/GaarudapuramSriraghavan_Rajagopal_Masters_Thesis.pdf?sequence=1
http://dl.acm.org/citation.cfm?id=827273.829224
http://dl.acm.org/citation.cfm?id=827273.829224
http://dx.doi.org/10.1016/s1353-4858(11)70086-1
http://dx.doi.org/10.1016/s1353-4858(11)70086-1
http://www.cs.unb.ca/~natalia/SMC.pdf
http://www.cs.unb.ca/~natalia/SMC.pdf
http://dx.doi.org/10.1023/B:MACH.0000008084.60811.49
http://dx.doi.org/10.1023/B:MACH.0000008084.60811.49

214 References

[The Shmoo Group, 2011] The Shmoo Group (2011). Defcon. http://cctf.
shmoo . com (last accessed August 2015). 3.1.2

[Tombini et al., 2004] Tombini, E., Debar, H., Me, L., and Ducasse, M. (2004).
A serial combination of anomaly and misuse idses applied to HTTP
traffic. In Proceedings of the 20" Annual Computer Security Applications
Conference, ACSAC 04, pages 428-437, Washington, DC, USA. https:
//acsac.org/2004/papers/60.pdf (last accessed August 2015). 2.2.1.3

[Tsai et al., 2009] Tsai, C.-F., Hsu, Y.-F., Lin, C.-Y., and Lin, W.-Y. (2009).
Intrusion detection by machine learning: A review. Fxpert Systems
with Applications, 36(10):11994-12000. http://www.sciencedirect.
com/science/article/pii/S0957417409004801 (last accessed August
2015). 2.4, 2.4.2

[Tsang et al., 2007] Tsang, C.-H., Kwong, S., and Wang, H. (2007).
Genetic-fuzzy rule mining approach and evaluation of feature selection
techniques for anomaly intrusion detection. Pattern Recognition,
40(9):2373-2391. http://www.tongji.edu.cn/~hanliwang/papers/
J10_PR_2007.pdf (last accessed August 2015). 2.3.2.1

[University of California, 1999] Irvine, University of California. (1999). KDD
cup 1999 data. http://kdd.ics.uci.edu/databases/kddcup99/
kddcup99.html (last accessed August 2015). 2.3.2.2

[Valdes and Skinner, 2000] Valdes, A. and Skinner, K. (2000). Adaptive,
model-based monitoring for cyber attack detection. In Recent Advances
in Intrusion Detection, volume 1907 of Lecture Notes in Computer
Science, pages 80-93. Springer Berlin Heidelberg. http://www.sdl.
sri.com/papers/adaptbn/adaptbn.pdf (last accessed August 2015).
2.4.2

[Valeur et al., 2005] Valeur, F., Mutz, D., and Vigna, G. (2005). A
Learning-based Approach to the Detection of SQL Attacks. In
Proceedings of the Second International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment, DIMVA’05,
pages 123-140, Berlin, Heidelberg.

http://cctf.shmoo.com
http://cctf.shmoo.com
https://acsac.org/2004/papers/60.pdf
https://acsac.org/2004/papers/60.pdf
http://www.sciencedirect.com/science/article/pii/S0957417409004801
http://www.sciencedirect.com/science/article/pii/S0957417409004801
http://www.tongji.edu.cn/~hanliwang/papers/J10_PR_2007.pdf
http://www.tongji.edu.cn/~hanliwang/papers/J10_PR_2007.pdf
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://www.sdl.sri.com/papers/adaptbn/adaptbn.pdf
http://www.sdl.sri.com/papers/adaptbn/adaptbn.pdf

References 215

http://www.cs.ucsb.edu/~vigna/publications/2005_valeur _
mutz_vigna dimva05.pdf (last accessed August 2015). 4.3

[Van Laarhoven and Aarts, 1987] Van Laarhoven, P. and Aarts, E. (1987).
Simulated Annealing: Theory and Applications. Springer Science &
Business Media. 2.3.2.1

[Varadarajan, 2012] Varadarajan, G. K. (2012). Web application attack
analysis using Bro IDS. Technical report, SANS Institute. InfoSec
Reading Room. http://www.sans.org/reading-room/whitepapers/
detection/web-application-attack-analysis-bro-ids-34042
(last accessed August 2015). 2.2.1.3

[Wang et al., 2006] Wang, K., Parekh, J. J., and Stolfo, S. J. (2006).
Anagram: A Content Anomaly Detector Resistant to Mimicry
Attack. In Proceedings of the 9" international conference on Recent
Advances in Intrusion Detection, RAID’06, pages 226-248, Berlin,
Heidelberg. http://academiccommons.columbia.edu/download/
fedora_content/download/ac:110542/CONTENT/cucs-020-06.pdf
(last accessed August 2015). 2.3.1.1

[Wang and Stolfo, 2004] Wang, K. and Stolfo, S. J. (2004). Anomalous
payload-based network intrusion detection. In Proceedings of
RAIDOJ. http://www.covert.io/research-papers/security/PAYL-
AnomalousPayload-basedNetworkIntrusionDetection.pdf (last
accessed August 2015). 2.3.1.1

[Wang and Battiti, 2006] Wang, W. and Battiti, R. (2006). Identifying
intrusions in computer networks with principal component analysis.
In Proceedings of the First International Conference on Awailability,
Reliability and Security, International Conference on Availability,
Reliability and Security (ARES’06), pages 270-279, Washington, DC,
USA. http://rtm.science.unitn.it/~battiti/archive/ares2006.
pdf (last accessed August 2015). 2.3.2.2

http://www.cs.ucsb.edu/~vigna/publications/2005_valeur_mutz_vigna_dimva05.pdf
http://www.cs.ucsb.edu/~vigna/publications/2005_valeur_mutz_vigna_dimva05.pdf
http://www.sans.org/reading-room/whitepapers/detection/web-application-attack-analysis-bro-ids-34042
http://www.sans.org/reading-room/whitepapers/detection/web-application-attack-analysis-bro-ids-34042
http://academiccommons.columbia.edu/download/fedora_content/download/ac:110542/CONTENT/cucs-020-06.pdf
http://academiccommons.columbia.edu/download/fedora_content/download/ac:110542/CONTENT/cucs-020-06.pdf
http://www.covert.io/research-papers/security/PAYL - Anomalous Payload-based Network Intrusion Detection.pdf
http://www.covert.io/research-papers/security/PAYL - Anomalous Payload-based Network Intrusion Detection.pdf
http://rtm.science.unitn.it/~battiti/archive/ares2006.pdf
http://rtm.science.unitn.it/~battiti/archive/ares2006.pdf

216 References

[Wang et al., 2004] Wang, W., Guan, X., and Zhang, X. (2004). A novel
intrusion detection method based on principle component analysis
in computer security. In Advances in Neural Networks - ISNN
2004, volume 3174 of Lecture Notes in Computer Science, pages
657-662. http://1link.springer.com/chapter/10.1007/978-3-540-
28648-6_105 (last accessed August 2015). 2.3.2.2

[Warrender et al., 1999] Warrender, C., Forrest, S., and Pearlmutter, B.
(1999). Detecting Intrusions Using System Calls: Alternative Data
Models. In Proceedings of the 1999 IEEE Symposium on Security
and Privacy, 1999., pages 133-145. http://wenke.gtisc.gatech.edu/
ids-readings/system_call_models.pdf (last accessed August 2015).
2.4.1.2

[WASC, 2004] WASC (2004). Web Security Glossary. Technical report,
Web Application Security Consortium. http://www.webappsec.org/
projects/glossary/vl/wasc_glossary_02262004.pdf (last accessed
August 2015). 2.2.3

[WASC, 2006] WASC (2006). Web Application Firewall Evaluation
Criteria. Technical Report Version 1.0, Web Application Security
Consortium. https://files.pbworks.com/download/2jyXbiH7Lf/

webappsec/13247061/wasc-wafec-v1.0.pdf (last accessed August
2015). 2.2.3, 4.3

[WASC, 2008] WASC (2008). Web application security statistics. http:
//projects.webappsec.org/f/WASS-S3-2008.pdf (last accessed Oct.
2014). 2.2

[WASC, 2010] Web Application Security Consortium (2010). Threat
Classification v2.0. Technical report. http://projects.webappsec.
org/w/page/13246978/ThreatClassification (last accessed August
2015). 2.1.3

[Wassermann and Su, 2008] Wassermann, G. and Su, Z. (2008). Static
detection of cross-site scripting vulnerabilities. In Proceedings of

International Conference on Software Engineering (ICSE), pages

http://link.springer.com/chapter/10.1007/978-3-540-28648-6_105
http://link.springer.com/chapter/10.1007/978-3-540-28648-6_105
http://wenke.gtisc.gatech.edu/ids-readings/system_call_models.pdf
http://wenke.gtisc.gatech.edu/ids-readings/system_call_models.pdf
http://www.webappsec.org/projects/glossary/v1/wasc_glossary_02262004.pdf
http://www.webappsec.org/projects/glossary/v1/wasc_glossary_02262004.pdf
https://files.pbworks.com/download/2jyXbiH7Lf/webappsec/13247061/wasc-wafec-v1.0.pdf
https://files.pbworks.com/download/2jyXbiH7Lf/webappsec/13247061/wasc-wafec-v1.0.pdf
http://projects.webappsec.org/f/WASS-SS-2008.pdf
http://projects.webappsec.org/f/WASS-SS-2008.pdf
http://projects.webappsec.org/w/page/13246978/Threat Classification
http://projects.webappsec.org/w/page/13246978/Threat Classification

References 217

171-180. http://rosaec.snu.ac.kr/meet/file/20090204paperd.
pdf (last accessed August 2015). 1.2

[Wharton, 2009] Wharton, U. o. P. (2009). A world transformed: What are
the top 30 innovations of the last 30 years?
http://knowledge.wharton.upenn.edu/article/a-world-
transformed-what-are-the-top-30-innovations-of-the-last-
30-years/ (last accessed August 2015). 1.1

[Wolpert and Macready, 2005] Wolpert and Macready (2005). Coevolutionary
Free Lunches. [EEE Transactions on Fvolutionary Computation,
9(6):721-735. http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.100.2425&rep=repl&type=pdf (last accessed August
2015). 5.6.4

[Wolpert, 1996] Wolpert, D. H. (1996). The lack of a priori distinctions between
learning algorithms. Neural Computation, 8(7):1341-1390. https:
//www.researchgate.net/profile/David_Wolpert/publication/
2755783 _The Lack of A Priori Distinctions_Between_

Learning Algorithms/links/54242c¢890cf238c6eabe973c?origin=

publication_list&ev=pub_srch_pub_xdl (last accessed August
2015). 5.3, 5.6.4

[Wolpert, 2001] Wolpert, D. H. (2001). The supervised learning no-free-lunch
theorems. In Proceedings of 6 Online World Conference on Soft
Computing in Industrial Applications, pages 25—42. http://www.no-
free-lunch.org/WolpOla.pdf (last accessed August 2015). 5.3

[Wondracek et al., 2010] Wondracek, G., Holz, T., Platzer, C., Kirda, E.,
and Kruegel, C. (2010). Is the internet for porn? an insight
into the online adult industry. In Proceedings of Workshop on the
Economics of Information Security (WFEIS). http://iseclab.org/
papers/weis2010.pdf. 1.1

[Wood, 2014] Wood, P. (2014). 2014 internet security threat report. Technical
Report 19, Symantec Corporation.

http://rosaec.snu.ac.kr/meet/file/20090204paperd.pdf
http://rosaec.snu.ac.kr/meet/file/20090204paperd.pdf
http://knowledge.wharton.upenn.edu/article/a-world-transformed-what-are-the-top-30-innovations-of-the-last-30-years/
http://knowledge.wharton.upenn.edu/article/a-world-transformed-what-are-the-top-30-innovations-of-the-last-30-years/
http://knowledge.wharton.upenn.edu/article/a-world-transformed-what-are-the-top-30-innovations-of-the-last-30-years/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.100.2425&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.100.2425&rep=rep1&type=pdf
https://www.researchgate.net/profile/David_Wolpert/publication/2755783_The_Lack_of_A_Priori_Distinctions_Between_Learning_Algorithms/links/54242c890cf238c6ea6e973c?origin=publication_list&ev=pub_srch_pub_xdl
https://www.researchgate.net/profile/David_Wolpert/publication/2755783_The_Lack_of_A_Priori_Distinctions_Between_Learning_Algorithms/links/54242c890cf238c6ea6e973c?origin=publication_list&ev=pub_srch_pub_xdl
https://www.researchgate.net/profile/David_Wolpert/publication/2755783_The_Lack_of_A_Priori_Distinctions_Between_Learning_Algorithms/links/54242c890cf238c6ea6e973c?origin=publication_list&ev=pub_srch_pub_xdl
https://www.researchgate.net/profile/David_Wolpert/publication/2755783_The_Lack_of_A_Priori_Distinctions_Between_Learning_Algorithms/links/54242c890cf238c6ea6e973c?origin=publication_list&ev=pub_srch_pub_xdl
https://www.researchgate.net/profile/David_Wolpert/publication/2755783_The_Lack_of_A_Priori_Distinctions_Between_Learning_Algorithms/links/54242c890cf238c6ea6e973c?origin=publication_list&ev=pub_srch_pub_xdl
http://www.no-free-lunch.org/Wolp01a.pdf
http://www.no-free-lunch.org/Wolp01a.pdf
http://iseclab.org/papers/weis2010.pdf
http://iseclab.org/papers/weis2010.pdf

218 References

http://www.symantec.com/content/en/us/enterprise/other _
resources/b-istr_main report v19_21291018.en-us.pdf (last
accessed August 2015). 1.1, 2.1.3, 3.1.1

[Wu et al., 2007] Wu, X., Kumar, V., Ross Quinlan, J., Ghosh, J., Yang, Q.,
Motoda, H., McLachlan, G. J., Ng, A., Liu, B., Yu, P. S., Zhou, Z.-H.,
Steinbach, M., Hand, D. J., and Steinberg, D. (2007). Top 10 algorithms
in data mining. Knowledge and Information Systems, 14(1):1-37.
http://www.cs.umd.edu/~samir/498/10Algorithms-08.pdf (last
accessed August 2015). 2.4.2, 5.3, 5.3.3

[Wurzinger et al., 2009] Wurzinger, P., Platzer, C., Ludl, C., Kirda, E., and
Kruegel, C. (2009). Swap: Mitigating xss attacks using a reverse proxy.
In Proceedings of the 2009 ICSE Workshop on Software Engineering for
Secure Systems, IWSESS’09, pages 33-39, Washington, DC, USA. http:
//www.iseclab.org/papers/swap.pdf (last accessed August 2015). 4.3

[Xydas et al., 2008] Xydas, 1., Miaoulis, G., Bonnefoi, P.-F., Plemenos, D., and
Ghazanfarpour, D. (2008). Using an evolutionary neural network for web
intrusion detection. In Proceedings of the 26" TASTED International
Conference on Artificial Intelligence and Applications, AIA "08, pages
258-265, Anaheim, CA, USA. http://users.teiath.gr/yxydas/
Paper3_xydas.pdf (last accessed August 2015). 2.4.2

[Yang et al., 2010] Yang, Y., Jiang, D., and Xia, M. (2010). Using improved
GHSOM for intrusion detection. Journal of Information Assurance
and Security (JIAS), 5(3):232-239. http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.182.6219&rep=repl&type=pdf (last
accessed August 2015). 2.3.2.1, 2.4.2

[Ye et al., 2002] Ye, N., Emran, S. M., Chen, Q., and Vilbert, S. (2002).
Multivariate statistical analysis of audit trails for host-based intrusion
detection. IEEE Transactions on Computers, 51(7):810-820. http:
//dl.acm.org/citation.cfm?id=627211 (last accessed August 2015).
2.4.1.1

http://www.symantec.com/content/en/us/enterprise/other_resources/b-istr_main_report_v19_21291018.en-us.pdf
http://www.symantec.com/content/en/us/enterprise/other_resources/b-istr_main_report_v19_21291018.en-us.pdf
http://www.cs.umd.edu/~samir/498/10Algorithms-08.pdf
http://www.iseclab.org/papers/swap.pdf
http://www.iseclab.org/papers/swap.pdf
http://users.teiath.gr/yxydas/Paper3_xydas.pdf
http://users.teiath.gr/yxydas/Paper3_xydas.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.182.6219&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.182.6219&rep=rep1&type=pdf
http://dl.acm.org/citation.cfm?id=627211
http://dl.acm.org/citation.cfm?id=627211

References 219

[Ye et al., 2004] Ye, N., Zhang, Y., and Borror, C. M. (2004).
Robustness of the Markov-chain model for cyber-attack
detection. IEEE Transactions on Reliability, 53(1):116-123.
http://ieeexplore.ieee.org/xpl/freeabs_all. jsp?arnumber=

1282169&abstractAccess=no&userType=inst (last accessed August
2015). 2.4.1.2

[Yeung and Ding, 2003] Yeung, D.-Y. and Ding, Y. (2003). Host-based
intrusion detection using dynamic and static behavioral models. Pattern
Recognition, 36(1):229-243. http://repository.ust.hk/dspace/
bitstream/1783.1/2495/1/yeung.pr2003.pdf (last accessed August
2015). 2.4.1.2

[Zanero, 2006] Zanero, S. (2006). Unsupervised Learning Algorithms for
Intrusion Detection. PhD thesis, Dipartimento di Elettronica e
Informazione. Politecnico di Milano (Italy). http://home.dei.polimi.

it/zanero/papers/tesi_zanero_online.pdf (last accessed August
2015). 2.4.2

[Zanero and Savaresi, 2004] Zanero, S. and Savaresi, S. M. (2004).
Unsupervised learning techniques for an intrusion detection
system. In Proceedings of the 2004 ACM symposium on Applied
computing, SAC ’'04, pages 412-419, New York, NY, USA.
http://home.dei.polimi.it/zanero/papers/IDS-SAC.pdf (last
accessed August 2015). 2.4.2

[Zargar and Baghaie, 2012] Zargar, G. R. and Baghaie, T. (2012).
Category-Based Intrusion Detection Using PCA. Journal of
Information Security, 3(4):259-271. http://www.scirp.org/journal/
PaperDownload.aspx?D0I=10.4236/jis.2012.34033 (last accessed
August 2015). 2.3.2.2

[Zhang and White, 2007] Zhang, L. and White, G. B. (2007). Anomaly
detection for application level network attacks using payload keywords.
In Proceedings of the IEEE Symposium on Computational Intelligence in
Security and Defense Applications CISDA 2007, pages 178-185. 2.3.2.2

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1282169&abstractAccess=no&userType=inst
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1282169&abstractAccess=no&userType=inst
http://repository.ust.hk/dspace/bitstream/1783.1/2495/1/yeung.pr2003.pdf
http://repository.ust.hk/dspace/bitstream/1783.1/2495/1/yeung.pr2003.pdf
http://home.dei.polimi.it/zanero/papers/tesi_zanero_online.pdf
http://home.dei.polimi.it/zanero/papers/tesi_zanero_online.pdf
http://home.dei.polimi.it/zanero/papers/IDS-SAC.pdf
http://www.scirp.org/journal/PaperDownload.aspx?DOI=10.4236/jis.2012.34033
http://www.scirp.org/journal/PaperDownload.aspx?DOI=10.4236/jis.2012.34033

Glossary

Term

AIS
ALAD
ANN
APT
CART
CIDF
CFS
CR
CSIC
CSv
CTF
DNS
DR
DT
ECML/PKDD

ENISA
EP
GeFS
GHSOM
FN

FP
FPR
FTP
HIDS
HMM
HPP
HTTP
IDES

Meaning

Artificial Immune System

Application Layer Anomaly Detector

Artificial Neural Network

Advanced Persistent Threat

Classification And Regression Tree

Common Intrusion Detection Framework
Correlation Feature Selection

Carriage Return

Consejo Superior de Investigaciones Cientificas
Comma-Separated Values

Capture The Flag

Domain Name System

Detection Rate

Decision Tree

European Conference on Machine Learning and Principles/
Practice of Knowledge Discovery in Databases
European Union Agency for Network and Information Security
Entry Point

Generic Feature Selection

Growing Hierarchical Self-Organising Map
False Negative

False Positive

False Positive Rate

File Transfer Protocol

Host-based Intrusion Detection System
Hidden Markov Model

HTTP Parameter Pollution

Hypertext Transfer Protocol

Intrusion Detection Expert System

221

222

Glossary

Term

IDS

1P

IPS

IT

ITU
LERAD
LDAP
LF
MAP
ML
mRMR
MPT
NBD
NIDES
NIDS
NIST
NSGA
NTR
NTrR
0S

OSI
OWASP
PAPAS
PCA
PHAD
PHP
PT
RIPPER
RMHC
ROC
SA
SIEM
SOM
SQL
SSI
SVDD
SVM
TCP
TN

TP

Meaning

Intrusion Detection System

Internet Protocol

Intrusion Prevention System

Information Technology

International Telecommunication Union
LEarning Rules for Anomaly Detection
Lightweight Directory Access Protocol
Line Feed

Maximum A-posteriori Probability
Machine Learning

Minimal Redundancy Maximal Relevance
Minimum Processing Time

Normal Behavior Description
Next-Generation Intrusion Detection Expert System
Network Intrusion Detection Systems
National Institute of Standards and Technology
Non-dominated Sorting Genetic Algorithm
Number of Test Requests

Number of Training Requests

Operating System

Open System Interconnection

Open Web Application Security Project
PArameter Pollution Analysis System
Principal Component Analysis

Packet Header Anomaly Detector
Hypertext Preprocessor

Processing Time

Repeated Incremental Pruning to Produce Error Reduction

Random Mutation Hill Climbing
Receiver Operating Characteristic
Simulated Annealing

Security Information and Event Management
Self-Organizing Maps

Structured Query Language
Server-Side Include

Support Vector Data Description
Support Vector Machine
Transmission Control Protocol
True Negative

True Positive

223

Term

URI
VPN
WAF
WASC
XSS

Meaning

Uniform Resource Identifier

Virtual Private Network

Web Application Firewall

Web Application Security Consortium

Cross-site Scripting

Alphabetical

Actors
Insider, 18
Outsider, 18

Application layer, 164

APT, 5

Attack detection systems
Anomaly-based, 6, 37, 65, 165
Knowledge-based, 35
Signature-based, 18

Behavior
Anomalous, 37
Normal, 37, 59

Big data, 4

Bloom filters, 29

Botnets, 5

CAPEC, 17
Cloud computing, 4
Combined methods, 27, 122, 172
Combine-select, 103, 124, 134, 136,
144, 149, 161, 167
Select-n-gram-combine, 103, 124,
137, 138, 147, 149, 161, 167
Select-combine, 103, 124, 137, 145,
149, 161, 167
Combined subsets
CFS+CFS subset, 123, 137
Expert+CFS subset, 124
Expert+mRMR subset, 124

index

mRMRA4CFS subset, 123
mRMR+mRMR subset, 124, 137
Common

Intrusion Detection

Framework, 24
CWE, 17

DARPA contest, 44
Data preprocessing, 26
Feature extraction, 26
Feature selection, 26
Data science, 4
Dataset, 7-10, 50
CSIC, 11, 55, 62, 96, 99, 111,
115, 117, 121, 128, 131, 134,
141, 143, 149, 151, 165-169,
171-173
DARPA, 38, 52
DEFCON, 53
ECML/PKDD, 38, 52, 99, 111,
114, 121, 128, 134, 145, 149,
154, 164, 166168, 172
KDD 99, 44
LBNL, 53
UNB ISCX, 51

Decision trees, 9, 47, 99, 108, 128, 134

C4.5, 44, 45, 100, 109, 150, 164,
172
CART, 109, 150, 164, 172

Decision stump, 45

225

226 Alphabetical index

ID3, 44, 171 CFS instance, 105, 117, 119, 121,
J.48, 44 126, 130, 134
Naive Bayes, 45 mRMR instance, 106
Random forest, 45, 109, 150, 164, mRMR measure, 34
172 PCA, 35
Random tree, 45, 109, 150, 164, RMHC algorithm, 33
172 Simulated annealing, 33
Detection algorithms SVDD algorithm, 33
Machine Learning, 9 SVM, 33
Stochastic, 9 Wrapper model, 32, 33
Detection rate, 10, 85, 93, 130, 139,
HPP, 16
154, 165, 166
L. , HTTP traffic, 25, 50, 63, 164, 168, 172,
Dictionaries, 57 173

Dynamic code analysis, 6, 19

ID 19, 20, 25, 156, 164, 166
Effectiveness, 8 Ss, 6, 19, 20, 25, 156,)

Efficiency, 8 ALAD, 37
Expert knowledge, 143 Anagram, 29
Bro, 22
False positive rate, 10, 85, 93, 130, 154, HIDSs, 21, 28
165, 166 IDES, 37
Feature extraction, 8, 11, 12, 26, 103, LERAD, 37
167, 172 McPAD, 30
Automatic methods, 27 NIDES, 37
Expert knowledge, 12, 27, 103, 112, NIDSs, 21, 35
172 PAYL, 29
Manual methods, 27 PHAD, 29, 37

N-grams, 12, 27-30, 46, 103, 172 IDSs classification
Feature selection, 11, 12, 31, 105, 167 Anomaly-based, 23, 164

CFS measure, 34, 168 Hybrid systems, 24

Embedded model, 32 Signature-based, 6, 21

Filter model, 32 IDSs components

GeFS measure, 34, 46, 105-107, Event analyzers, 25
112, 117, 126, 128, 130, 143, Event databases, 25
144, 168, 173 Event generators, 25

Response units, 25

Alphabetical index

227

Internet, 2
IPSs, 20
Masibty, 20, 38

Learning algorithms
Supervised, 42
Unsupervised, 42

Machine learning, 8, 9, 12, 36, 42, 102,
158, 164, 167
Artificial neural networks, 43, 102
Bayesian networks, 24, 42
Clustering and K-nearest
neighbors, 43
Decision trees, 11, 43, 102, 164, 165
Genetic algorithms, 43, 102
K-means clustering, 44
Self-organizing maps, 43
Support vector machines, 43, 102
Malware, 5
Markov chains, 61, 158, 159
MISP, 22

MITRE, 6

N-grams, 118, 143
NBD file, 62, 72, 73

Ockham’s razor, 10, 31
OWASP, 6, 16, 17

PAPAS, 16
Preprocessing, 6, 101
Processing, 6, 102
Classification phase, 102, 108
Protocol
FTP, 6
HTTP, 6, 9, 14, 30

TCP, 6

Redundant features, 167
Requests, 10
Anomalous, 55, 108, 129, 168
Anonymized, 111
HTTP, 15, 58, 96, 100
Normal, 55, 108, 129, 159, 168
Training, 8, 45, 129, 138, 154, 159,
172
Resource consumption, 10, 26, 164, 173
ROC curve, 84, 85

Security vulnerabilities, 5, 17
Semantic web, 2
SIEM systems, 156, 166
Smartphone platforms, 4
Snort, 22
Social networks, 2, 3
Static code analysis, 6, 19
Stochastic algorithms, 9, 62, 72, 100,
111, 164
Hidden Markov Models, 31, 39
Markov chains, 9, 11, 36, 39, 47,
62, 63, 70, 71, 75, 77, 80, 84,
85, 91, 94-96, 164, 170
Statistical techniques, 9, 11, 36, 37,
46, 62, 68, 96, 164, 167, 170

Test, 7
Training, 7

Virtualization, 56

WAFs, 7,9, 25, 50, 64, 164, 169, 170
HMMPayl, 42
Spectrogram, 30

228 Alphabetical index

TokDoc, 20

WASC, 17

Web applications, 2, 4-7, 14, 163
Vulnerabilities, 163

Web attack classification
Dynamic, 17
Static, 17

Web attacks, 9, 16, 18, 51, 163
Buffer overflow, 16, 55, 169
Command Execution, 111
CRLF injection, 55
Information gathering, 55
LDAP injection, 111
OS commanding, 16
Parameter tampering, 55
Path traversal, 16, 111
Server side include, 55, 169
SQL injection, 16, 20, 39, 55, 111,

169

SSI, 111
XPATH injection, 111
XSS, 16, 20, 39, 55, 111, 169
Zero-day, 18, 96, 165

Web traffic, 30, 37
Anomalous, 58, 59, 165
Anonymized, 52
Background, 58
Intrusive, 53
Non-anonymized, 59
Normal, 58, 165

Webmail, 3

Weka software, 128

Wireless networks, 4

