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Abstract

Segmentation is a tool presented for representation and approximation of data, according

to a set of appropriate models. These procedures have applications to many di�erent do-

mains, such as time series analysis, polygonal approximation, Air Tra�c Control,... Di�erent

heuristic and metaheuristic proposals have been introduced to deal with this issue. This the-

sis provides a novel multiobjective evolutionary method, analyzing the required general tools

for the application evolutionary algorithms to real problems and the speci�c modi�cations

required over the di�erent steps of general proposals to adapt them to the segmentation

domain.

An introduction to the domain is presented by means of the design of a speci�c heuristic

for segmentation of Air Tra�c Control (ATC) data. This domain has a series of character-

istics which make it di�cult to be faced with traditional techniques: noisy data and a large

number of measurements. The proposal works on two phases, using a pre-segmentation

which introduces available domain information and applying a standard technique over this

initial technique's results. Its results according to the presented domain, tested with a set of

eight di�erent representative trajectories, show competitive advantages compared to general

approaches, which oversegmentate noisy data and, in some cases, exhibit poor scalability.

This heuristic proposal shows the costly process of adapting available approaches and de-

signing speci�c ones, along with the multi-objective nature of the problem, which requires

the use of quality indicators for a proper comparison process.

Applying evolutionary algorithms to segmentation provides several advantages, highlight-

ing the fact that the problem dependance of heuristics make it costly to adapt these heuristics

to new domains, as introduced by the designed heuristic to ATC. However, the practical ap-

plication of these algorithms requires the study of a topic which has received little research

e�ort from the community: stopping criteria. An evolutionary approach should contain a

dynamic procedure which can determine when stagnation has taken place and stop the al-

gorithm accordingly (as opposed to a-priori cost budgets, either in function evaluations or

generations, which are usually applied for test datasets).

Stopping criteria have been faced for single and multi-objective cases in this thesis. Single-

objective stopping criteria have been approached proposing an active role of the stopping

criteria, actively increasing the diversity in the variable space while tracking the updates in

the �tness function. Thus, the algorithm reuses the information obtained for the stopping

decision and feeds it to a stopping prevention mechanism in order to prevent problematic

situations such as early convergence. The presented algorithm has been tested according to

a set of 27 di�erent functions, with di�erent characteristics regarding their dimensionality,

search space, local minima... The results show that the introduced mechanisms enhance

the robustness of the results, due to the improved exploration and the early convergence

prevention.

Multi-objective stopping criteria are faced with the use of progress indicators (comparison

measures of the quality of the evolution results at di�erent generations) and an associated

data gathering tool. The �nal proposal uses three di�erent progress indicators, (hypervolume,

epsilon and Mutual Dominance Rate) and considers them jointly according to a decision fusion
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architecture. The stagnation analysis is based on the least squares regression parameters of

the indicators values, including a normality analysis as well. The online nature of these

algorithms is highlighted, preventing the recomputation of the indicators values which were

present in other available alternatives, and also focusing on the simplicity of the �nal proposal,

in order to reduce the cost of introducing it into available algorithms. The proposal has

been tested with instances of the DTLZ algorithm family, obtaining satisfactory stops with a

standard set of con�guration values for the technique. However, there is a lack of quantitative

measures to determine the objective quality of a stop and to properly compare its value to

other alternatives.

The multi-objective nature of the segmentation problem is analyzed to propose a multi-

objective evolutionary algorithm (MOEA) to deal with it. This nature is analyzed according

to a selection of available approaches, highlighting the di�culties which had to be faced in

the parameter con�guration in order to guide the processes to the desired solution values.

A multi-objective a-posteriori approach such as the one presented allows the decision maker

to choose from the front of possible �nal solutions the one which suits him best, simplifying

this process. The presented approach chooses SPEA2 as its underlying MOEA, analyzing

di�erent representation and initialization proposals. The results have been validated against

a representative set of heuristic and metaheuristic techniques, using three widely extended

curves from the polygonal approximation domain (chromosome, leaf and semicircle), obtain-

ing statistically better results for almost all the di�erent test cases.

This initial MOEA approach had unresolved issues, such as the archiving technique com-

plexity order, and also lacked the proper speci�c design considerations to adapt it to the

application domain. These issues have been faced according to di�erent improvements. First

of all, an alternative representation is proposed, including partial �tness information and as-

sociated �tness-aware transformation operators (transformation operators which compute

children �tness values according to their changes and the parents partial values). A novel

archiving procedure is introduced according to the bi-objective nature of the domain, be-

ing one of them discrete. This leads to a relaxed Pareto dominance check, named epsilon

glitches.

Multi-objective local search versions of the traditional algorithms are proposed and tested

for the initialization of the algorithm, along with the stopping criterion proposal which has

also been adapted to the problem characteristics. The archive size in this case is big enough

to contain all the di�erent individuals in the optimal front, such that quality assessment is

simpli�ed and a simpler mechanism can be introduced to detect stagnation, according to the

improvements in each of the possible individuals.

The �nal evolutionary proposal is scalable, requires few con�guration parameters and

introduces an e�cient dynamic stopping criterion. Its results have been tested against the

original technique and the set of heuristic and metaheuristic techniques previously used,

including the three original curves and also more complex versions of them (obtained with

an introduced generation mechanism according to these original shapes). Even though the

stopping results are very satisfactory, the obtained results are slightly worse than the original

MOEA for the three simpler problem instances with the established con�guration parameters

(as was expected, due to the computational e�ort of the a-priori established number of

generations and population size, based on the analysis of the algorithm's results). However,

the comparison versus the alternative techniques stills shows the same statistically better

results, and its reduced computational cost allows its application to a wider set of problems.
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La segmentaci�on es una t�ecnica creada para la representaci�on y la aproximaci�on de conjun-

tos de datos a trav�es de un conjunto de modelos apropiados. Estos procedimientos tienen

aplicaciones para m�ultiples dominios distintos, como el an�alisis de series temporales, la aprox-

imaci�on poligonal o el Control de Tr�a�co A�ereo. Se han hecho m�ultiples propuestas tanto de

car�acter heur��stico como metaheur��stico para lidiar con este problema. Esta tesis proporciona

un nuevo m�etodo evolutivo multiobjetivo, analizando las herramientas generales necesarias

para la aplicaci�on de algoritmos evolutivos a problemas reales y las modi�caciones espec���cas

necesarias sobre los distintos pasos de las propuestas gen�ericas para adaptarlos al dominio

de la segmentaci�on.

Se presenta una introducci�on al dominio mediante el dise~no de una heur��stica espec���ca

para la segmentaci�on de datos procedentes del Control de Tr�a�co A�ereo (CTA). Este do-

minio tiene una serie de caracter��sticas que di�cultan la aplicaci�on de t�ecnicas tradicionales:

datos con ruido y un gran n�umero de muestras. La propuesta realizada funciona de acuerdo a

dos fases, utilizando una presegmentaci�on que introduce informaci�on del dominio disponible

para posteriormente aplicar una t�ecnica est�andar sobre los resultados de esta t�ecnica inicial.

Sus resultados para el dominio presentado, probado con un conjunto de ocho trayectorias

representativas distintas, presentan ventajas competitivas frente a los enfoques generales,

que sobresegmentan los datos con ruido y, en algunos casos, presentan una mala escalabili-

dad. Esta propuesta heur��stica muestra el costoso proceso que implica adaptar los enfoques

existentes o el dise~no de otros nuevos, junto a la naturaleza multiobjectivo del problema, que

precisa del uso de indicadores de calidad para realizar un proceso de comparaci�on apropiado.

La aplicaci�on de algoritmos evolutivos a la segmentaci�on tiene m�ultiples ventajas, desta-

cando el hecho de la dependencia existente entre las heur��sticas y el problema espec���co para

el que han sido dise~nadas, lo que hace que su adaptaci�on a nuevos dominios sea costosa,

como se ha introducido a trav�es de la propuesta heur��stica para CTA. A pesar de ello, la

aplicaci�on pr�actica de estos algoritmos requiere el estudio de una faceta que ha recibido poca

atenci�on por parte de la comunidad desde el punto de vista de la investigaci�on: los criterios de

parada. Un enfoque evolutivo deber��a tener una t�ecnica din�amica que pueda detectar cuando

se ha producido el estancamiento del proceso, y parar el algoritmo de acuerdo a ello (de

manera opuesta a los criterios a-priori que establecen un coste predeterminado, expresado

como n�umero de evaluaciones o de generaciones, y que son habitualmente aplicados para los

conjuntos de datos de prueba)

Los criterios de parada se han afrontado tanto desde el caso de un �unico objetivo como

desde el caso multiobjectivo en esta tesis. Los criterios de parada para un �unico objetivo

se han abordado proponiendo un rol activo para el criterio, aumentando la diversidad en el

espacio de variables de una manera activa, mientras se monitorizan los cambios en la funci�on

objetivo. De esta manera, el algoritmo reutiliza la informaci�on obtenida para la decisi�on de

parada y la inserta en un mecanismo de prevenci�on de la parada con la �nalidad de prevenir

situaciones problem�aticas como la convergencia temprana. El algoritmo presentado se ha

probado sobre un conjunto de 27 funciones distintas, con diferentes caracter��sticas respecto

a su dimensionalidad, espacio de b�usqueda, m��nimos locales... Los resultados muestran
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que los mecanismos introducidos mejoran la robustez de los resultados, haciendo uso de la

exploraci�on mejorada y la prevenci�on de la convergencia temprana.

Los criterios de parada multiobjetivo se han planteado con el uso de indicadores de

avance (medidas comparativas de la calidad de los resultados de la evoluci�on en diferentes

generaciones) y una herramienta de recolecci�on de datos asociada. La propuesta �nal utiliza

tres indicadores de avance distintos (hypervolumen, epsilon y ratio de dominancia mutua) y los

considera de una manera conjunta de acuerdo a una arquitectura de fusi�on de decisiones. El

an�alisis del estancamiento se basa en los par�ametros de una regresi�on de m��nimos cuadrados

sobre los valores de los indicadores, incluyendo as�� mismo un an�alisis de normalidad. Se

recalca la naturaleza online de estos algoritmos, evitando el rec�alculo de los valores de los

indicadores que estaba presente en otras alternativas disponibles, y tambi�en focaliz�andose

en la simplicidad de la propuesta �nal, de manera que se facilite el proceso de introducir

el criterio en los algoritmos existentes. La propuesta ha sido probada con instancias de la

familia de algoritmos DTLZ, obteniendo resultados de parada satisfactorios con un conjunto

de valores de con�guraci�on est�andar para la t�ecnica. Sin embargo, existe una falta de medidas

cuantitativas para determinar la calidad objetiva de una parada, as�� como para comparar de

manera apropiada su valor frente al de otras alternativas.

La naturaleza multiobjetivo del problema de segmentaci�on se ha analizado para proponer

un algoritmo evolutivo multiobjetivo (AEMO) para resolverlo. Esta naturaleza ha sido anal-

izada de acuerdo a una selecci�on de los enfoques disponibles, destacando las di�cultades que

se tienen que afrontar en la con�guraci�on de los par�ametros de cara a guiar el proceso hacia

los valores de soluci�on deseados. Un enfoque multiobjetivo a-posteriori como el que se ha

presentado permite al responsable elegir del frente de posibles soluciones �nales aquella que

encaja mejor, simpli�cando este proceso. El enfoque presentado ha elegido SPEA2 como

algoritmo de base, analizando diferentes propuestas de inicializaci�on y representaci�on. Los

resultados se han validado frente a un conjunto signi�cativo de t�ecnicas heur��sticas y meta-

heur��sticas, utilizando tres curvas ampliamente extendidas en el dominio de la segmentaci�on

poligonal (cromosoma, hoja y semic��rculo), obteniendo resultados estad��sticamente mejores

para la casi totatilidad de los casos de prueba.

Esta propuesta inicial de AEMO presentaba una serie de problemas sin resolver, como

el orden de complejidad de la t�ecnica de almacenaje, y adem�as carec��a de las considera-

ciones espec���cas de dise~no para su adaptaci�on al dominio de aplicaci�on. Estos problemas

se han afrontado de acuerdo a diferentes mejoras. Por un lado, se ha propuesto una rep-

resentaci�on alternativa, incluyendo informaci�on parcial de la funci�on objetivo y operadores

de transformaci�on informados (operadores de transformaci�on que calculan los valores de la

funci�on objetivo de los hijos de acuerdo a los cambios realizados y los valores parciales de

los padres). Una nueva t�ecnica de almacenaje se ha introducido de acuerdo a la naturaleza

biobjetivo del dominio, siendo uno de ellos adem�as discreto. Esta naturaleza ha llevado a la

aplicaci�on de una forma relajada de dominancia de Pareto, que hemos denominado pulsos

�epsilon.

Versiones multiobjetivo de los algoritmos tradicionales de b�usqueda local han sido prop-

uestas y probadas para la inicializaci�on del algoritmo, junto con la propuesta de criterio de

parada, que tambi�en ha sido adaptada a las caracter��sticas del problema. En este caso, el

tama~no del almac�en es su�cientemente grande como para almacenar todos los individuos del

frente �optimo, de manera que las t�ecnicas de an�alisis de calidad de los frentes se simpli�can, y

un mecanismo m�as sencillo puede ser introducido para detectar el estancamiento, de acuerdo
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a las mejoras en cada uno de los individuos posibles.

La propuesta evolutiva �nal es escalable, requiere pocos par�ametros de con�guraci�on e

introduce un criterio de parada din�amico y e�ciente. Sus resultados se han probado frente a la

t�ecnica original y el conjunto de t�ecnicas heur��sticas y metaheur��sticas previamente utilizadas,

incluyendo las tres curvas originales y versiones m�as complejas de las mismas (obtenidas con

un mecanismo de generaci�on incluido de acuerdo a estas tres formas originales). A pesar de

que los resultados de parada son muy satisfactorios, los resultados obtenidos son ligeramente

peores que el AEMO original para las tres instancias del problema m�as simples, utilizando

el conjunto de par�ametros de con�guraci�on establecidos (como cab��a esperar, dado el coste

computacional del n�umero de generaciones y tama~no de la poblaci�on establecidos a priori,

basados en el an�alisis de los resultados del algoritmo). En cualquier caso, la comparaci�on

frente a las t�ecnicas alternativas todav��a presenta los mismos resultados estad��sticamente

mejores, y las mejoras en el coste computacional permiten su aplicaci�on a un mayor conjunto

de problemas.
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1
Introduction

\
'Begin at the beginning', the King said, gravely, 'and go on till you come

to an end; then stop' "
Lewis Carroll, Alice in Wonderland, 1899

1.1 General introduction

Segmentation is a tool presented for representation and approximation of data, according to

a set of appropriate models. These models may vary among Fourier transforms, wavelets,

linear models or multi-model approaches, among others. The roots of this domain can be

traced back to the �fties, related to the studies on human processing and understanding of

visual information. This processing does not only reduce the required amount of data for

the representation of the information, but also makes possible the application of additional

algorithms related to the comparison and analysis of that information, such as feature ex-

traction, or provides valuable information in its processed information by itself. This kind of

information analysis plays a crucial role in the knowledge society. Segmentation processes

are applied to di�erent domains, such as Air Tra�c Control, time series analysis or polygonal

approximation

The original objective when facing a new problem is to obtain the optimal solution for

that problem (exact algorithms). Unfortunately, this cannot be performed for a high number

of di�erent problems, due to their inherent di�culty (in terms of computational complexity).

The next best alternative would be to provide a solution with a bounded distance to the

optimal one (approximation algorithms). Again, this may not be feasible for particularly

di�cult problems (which is a category many real problems tend to fall into). When none of

the two previous alternatives is feasible, the researcher / practitioner has to resort to best

e�ort algorithms, where a solution is obtained without proper information about its quality

(heuristic approaches).

Problems are classi�ed according to their di�culty (such as P and NP-hard problem

classi�cations) and the required time to solve them. NP-hard problems, for instance, require

exponential time to be solved by a deterministic algorithm (their proper de�nition will be

provided in section 2.2), and thus they usually require heuristic resolution methods. One of

the issues related to heuristic approaches is that their extreme problem-dependence, such that
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for every new faced problem, a new solution has to be built from scratch. This issue has been

faced with metaheuristics, which can be seen as general application guides or frameworks for

speci�c problem heuristics.

According to their objectives, metaheuristics have to deal with two di�erent processes:

the exploration of the search space and the exploitation of the information which has already

been acquired. Di�erent metaheuristic approaches have di�erent focuses on each of these

processes, and also di�erent combinations of them have been proposed to try to combine in

the best possible way these two requirements (such as memetic algorithms or hyperheuristics).

Evolutionary algorithms are population based metaheuristics, meaning that a whole pop-

ulation of individuals is evolved at every step, instead of a single solution. With some of the

Darwinism ideas at their core, evolutionary algorithms apply crossover and mutation opera-

tors over a population of solutions, preserving a certain number of them every generation,

until the established stopping criterion is met. Di�erent representations have been brought

into this schema with remarkable results, from the original strings of 0's and 1's which were

used for genetic algorithms up to the sparse trees used in genetic programming. Many real

life problems have been properly tackled with these approaches as well (taking advantage

of the ever growing computational power of computers and the use of parallel programming

techniques, which are inherent to population based metaheuristics).

Additional issues arise when the optimization problem requires not only one, but several

objectives in con
ict which have to be optimized jointly. Again, real life examples falling

into this category are easy to �nd, such as obtaining the maximum pro�t minimizing the in-

vestment for a given �nancial operation. This category of problems is called Multi-objective

problems (MOPs). Evolutionary algorithms have been studied and applied into this partic-

ular category of problems, being usually known as Multi-objective evolutionary algorithms

(MOEAs). As the number of objectives is increased (Multi-objective optimization is usually

focused on two objectives), the optimization process performed by the algorithms dealing

with them becomes known as Many-objective optimization (presenting speci�c issues and

approaches).

The design and validation of metaheuristics present, due to their stochastic nature, a

very particular issue: the quality assessment of newly devised approaches. This problem

reaches higher complexity levels for algorithms with more than a single �tness function

being optimized. Di�erent approaches have been presented, based on concepts such as the

statistical properties of the population (either in �tness space of the one presented by the

variables being codi�ed) or the so called quality indicators, which reduce the dimensionality

of multi-objective problems to ease the di�culty in the assessment function.

Research studies have faced many of the properties, characteristics and limitations of

evolutionary algorithms. However, the study of the convergence issue (particularly regarding

that �nal step of the required stopping criterion) has been usually neglected. The need for

well-established stopping criteria is crucial for the application of evolutionary algorithms to

real problems. This topic has been traditionally faced establishing an a-priori budget (either

in computation time, evaluations or evolution generations) or being directly supervised by

the decision maker (expert) in the problem.

Thus, stopping criteria are a required general application tool for evolutionary approaches

in order to apply them to real problems. Regarding these tools, the idea behind this work is

the close relationship which exists between quality assessment and stopping criteria. Quality

assessment was based on the comparison of a series of solutions from di�erent runs of a
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series of evolutionary algorithms, comparing the results (regardless of whether these results

are single solutions or sets of them including di�erent �tness functions values). A possible

stopping criteria approach would be to compare the evolution at di�erent steps (or step

by step at each generation) and determine whether the evolution has converged according

to that information. This would reapply the techniques designed for quality assessment,

modifying them accordingly to the requirements of their new application issue (basically

comparing di�erent populations from a single run of an evolutionary algorithm).

This approach arises several issues: the information required for this comparison, how this

information is gathered and the techniques required for its comparison, the di�erences in the

application in single and multi-objective optimization... This work will focus �rst on single-

objective stopping criteria, considered as a simpler problem, in order to face multi-objective

issues as the following step towards a general approach to the convergence issue. In fact,

the use of quality indicators reduces multi-objective problems to a single value in terms of

comparison, suggesting that the chosen approach could lead to a valid general thesis schema.

Returning to the application domain, many di�erent heuristic approaches have been

developed and presented for segmentation. As previously introduced, the main handicap

of heuristics are their problem dependence. This has led to the development of similar

techniques in the di�erent domains which segmentation is applied to. Also, the redesign

of heuristics for speci�c problem characteristics is costly and ine�cient. An initial heuristic

approach to the characteristics of the Air Tra�c Control domain will be introduced in order

to analyze this issue in depth, establish the required solution characteristics, and lead the

thesis development, guided by these characteristics. The �nal proposal of current work is to

develop a metaheuristic approach in order to cope with segmentation domain requirements

in a more appropriate way.

1.2 Objectives

To achieve the presented task, this work will be focused on the following individual objectives.

� Describe and analyze relevant state of the art for the thesis: metaheuristics, evolution-

ary computing and segmentation

� Analyze of multi-objective problems and their related procedures: approaches to deal

with several objective functions jointly, Pareto dominance, diversity management, qual-

ity assessment...

� Overview general stopping criteria present in the literature, both for multi and single

objective approaches.

� Present a speci�c heuristic approach for the segmentation domain based on Air Tra�c

Control data.

� Propose a single objective stopping criterion tool for evolutionary algorithms.

� Propose a multiobjective stopping criterion tool for evolutionary algorithms, including

the information source and the data gathering performed in order to determine the

stopping decision.
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� Propose a general metaheuristic approach based on evolutionary algorithms to segmen-

tation, along with the required tools for proper comparison to some of the available

heuristic approaches.

� Propose a �nal metaheuristic approach, modifying its di�erent operators in order to

adapt them to the application domain as required.

1.3 Document structure

Each of the remaining chapters of this work presents a short guidance into the general

objectives of the work, along with individual introductions, conclusions and future lines for

the topics dealt within each individual chapter. There are three exceptions to this structure:

chapter 2, fundamentals, which lacks an introductory section (being this role ful�lled by

current chapter), chapter A, the �nal appendix, which introduces a set of unconstrained single

objective optimization functions, being an extension to the proposal presented in chapter 4,

and thus providing no introduction or conclusion sections, and �nally chapter 7, which revisits

the general proposal of chapter 6, and, thus, has no individual introduction. The chapters

are arranged according to the following structure:

Chapter 2: Fundamentals This chapter will deal with the presentation of the most impor-

tant fundamentals for the thesis proposal. This presentation is focused on the main

topics required for the di�erent proposals: nature of the problems treated, evolution-

ary algorithms and their di�erent operators, multi-objective problems, stopping criteria

(both for single and multi-objective evolutionary algorithms), quality assessment and �-

nally the segmentation issue, covering the formalization and general design of available

techniques.

Chapter 3: An initial non-evolutionary approach to the application domain: HLRA

This chapter presents an initial approach to the segmentation issue using data coming

from the Air Tra�c Control domain. This approach will highlight the required complex

changes to adapt segmentation heuristics among di�erent domains, along with a special

focus on comparison issues. These issues lead to the use of quality indicators to

perform these comparisons, and provide the initial lead to the multi-objective nature

of segmentation processes.

Chapter 4 Single-objective stopping criteria for evolutionary algorithms This chapter

presents a stopping criterion proposal for single-objective optimization. This proposal

is based on two steps: the �rst approximation covers a series of modi�cations over

Evolutionary Strategies Learned with Automated Termination criterion (ESLAT) algo-

rithm, leading to the introduction of the Robust ESLAT algorithm (R-ESLAT). Special

attention will be paid to the incorporated stopping criterion and its modi�cations, ac-

cording to the approaches highlighted in the state of the art. After that, the stopping

criterion is proposed following an active approach, which means that the criterion modi-

�es the population characteristics to prevent early convergence, measuring, at the same

time, when this convergence has taken place.

Chapter 5: Multi-objective stopping criteria for evolutionary algorithms This chapter

presents two approaches to multi-objective stopping criteria based on the use of quality
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indicators. The �rst proposal introduces the use of a Kalman estimation based tech-

nique with a fusion architecture to handle multiple quality indicators jointly providing

enhanced robustness in the �nal criterion. The second alternative is focused on sim-

plicity and e�ciency, attempting to provide an easily implementable technique to be

introduced in available MOEAs. LSSC proposal is focused on least squares estimation

including two di�erent stopping tests, one regarding the statistical representativeness

of the linear estimation and a second one guided by a con�guration parameter deter-

mining the minimal improvement per generation before the algorithm is stopped.

Chapter 6: Multiobjective evolutionary polygonal approximation This chapter presents

an initial evolutionary proposal for the segmentation issue. The choice is presented

according to an analysis of available techniques, detailing their multi-objective handling

techniques according to the theoretical alternatives, and leading to an a-posteriori

MOEA proposal. This proposal includes the selection of the required representation,

underlying MOEA algorithm and the con�guration of several initialization alternatives,

focusing on the representativeness of diversity in the objective and variable spaces and

the possible use of local search techniques.

Chapter 7: An e�cient approach to multiobjetive evolutionary polygonal approximation

This chapter analyzes in depth each of the steps of the general MOEA introduced in

chapter 6, from the representation to the stopping criterion, and introduces the required

modi�cations to enhance their e�ciency for the application domain. This chapter also

highlights the di�culties of the application of general algorithms to problems with

speci�c characteristics, and how adapting them to these characteristics may improve

their performance.

Chapter 8: Conclusions and future lines . This chapter summarizes the results presented

according to the objectives set in current chapter. Along with these results, the opened

research paths for the studied topics will be presented, concluding this thesis.

Appendix: Single Optimization Function Set . Chapter 4 requires the use of a certain

function set in order to perform the required performance comparison between the

presented approach and a representative alternative from the state of the art. This

function set is overviewed within the chapter, but not completely described. This ap-

pendix will present this description, including dimensionality, search space, formulation

and bidimensional representation.

1.4 Visual overview

As presented, the di�erent chapters of this thesis will be focused on di�erent aspects related

to the objectives, even introducing their own focused states of the art and conclusions. In

order to enhance the readability of the document and facilitate the understanding of the

relationships between the di�erent sections of it, �gure 1.1 shows a visual overview of the

domain and the di�erent phases established to deal with the introduced issues detected.
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2
Fundamentals

\
'That's right', shouted Vroomfondel, 'we demand rigidly de�ned areas of

doubt and uncertainty!' "
Douglas Adams, The HitchHiker's Guide to the Galaxy, 1979

2.1 Optimization methods

In an ideal world, any problem would be solved obtaining its optimal solution, or at least, a

solution which has a known (or boundary restricted) distance to its optimal one (in order to

allow the researcher to measure its quality). Those algorithms are known, respectively, as

exact or approximation algorithms.

Among the most important exact algorithms are: brand and X family (branch and bound,

branch and cut and branch and price), constraint programming, dynamic programming and

A* search algorithms (the individual details for each of these techniques may be consulted

in (Russell et al., 1995). The general idea for exact methods is to cover the whole interest

zones of the search space, subdividing it into simpler problems.

Approximation algorithms, on the other hand, do not provide the optimal solution for a

given problem, but they guarantee a certain quality bound with respect to the global optimum

(and also within certain run time boundaries) (Hochba, 1997). Among them, �-approximation

algorithms may be highlighted (where an obtained solution x is not worse than � times the

optimal solution s) (Vazirani, 2001).

However, many important problems, due to their complexity, cannot be solved using

any of those solution approaches. Then, researchers may resort to heuristic approaches, in

order to simplify their problems and obtain solutions for them. These algorithms perform

a best e�ort approach, trying to obtain good solutions (where this quality may be di�cult

to measure, since its distance to the optimal one is unknown). Heuristic algorithms, along

with approximation ones, are known as approximate algorithms. This di�culty to measure

the quality of the obtained solutions, which is intrinsically linked with the use of approximate

methods, will be repeatedly highlighted through this work, due to the issues that this fact

introduces for some of the approaches presented in this work.

A colloquial de�nition of heuristic, which could be provided by many computer science

grade students, would de�ne a heuristic as a trick to reduce the complexity of a hard problem,
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being this easier problem the one which is solved, and using this solution in order to resolve

the original one. This de�nition is really close to the formal one, and is, at the same time,

probably more explicative. Heuristic comes from the Greek word heuriskein, which means

the art of discovering new strategies to solve problems.

Heuristics are very problem speci�c, with a resulting poor reusability. This leads to

the development of higher level heuristics, usually called metaheuristics (a term originally

introduced in (Glover, 1986)). The meta pre�x introduces the meaning of a higher level. In

practice, metaheuristics may be seen as templates where the problem speci�c heuristics may

be inserted (but the template itself can be reused and applied to a wide range of di�erent

problems).

This generalization process towards reusability can be found in the di�erent disciplines

of computer science. Due to its more concrete nature, it may be especially visible in the

evolution of the di�erent programming paradigms, where the change from procedural to

object oriented approaches was one of these attempts of generalization towards reusability

(a general overview over the di�erent paradigms and evolutions between them may be looked

up in (Van-Roy & Haridi, 2004)). But this e�ort is a continued one (where, for instance, C++

language templates (Stroustrup, 1997) or agent-oriented paradigms (Huntbach & Ringwood,

1999)are additional attempts to increase the abstraction level).

In a similar way, metaheuristics are not the highest abstraction level for optimization

problems. Considering metaheuristics as general frameworks for the application of partic-

ular heuristics, we might de�ne general frameworks for the application and combination

of metaheuristics themselves. First steps towards this directing were achieved by means

of memetic algorithms (Moscato, 2000) (which combined particular metaheuristics in a very

speci�c way), introducing hybrid metaheuristics. The de�nitive generalization step was taken

by hyperheuristics (Burke et al., 2003): general frameworks for the application of particular

metaheuristics capable of resolving general classes of problems. Figure 2.1 shows an overview

of the di�erent introduced optimization methods.

This work will be focused on evolutionary algorithms (B�ack, 1996), a particular instance

of metaheuristics, which we will describe in detail in section 2.4.

2.2 Problem complexity and categorization

In the literature it is usual to �nd statements like the following: metaheuristics are the

appropriate method to deal with hard problems. The de�nition of easy and hard problems

in this domain may be easily confused with their more usual meaning (which is fuzzy in its

nature) so we would like to �x those meanings and, at the same time, introduce the need

for the application of metaheuristics in a more concrete context.

A problem is easy (or tractable) if there exists a polynomial-time algorithm to solve it,

whereas a problem is hard (or intractable) if no such algorithm exists. Considering these

de�nitions, the introduced statement regarding the application of metaheuristics to hard

problems is self-evident: easy problems should be solved with their associated polynomial

time algorithm. It is also interesting to notice that the easy / hard attribute of a problem

does not depend intrinsically on the problem's characteristics (although it is be derived from

them), but on the solution found to deal with it.

The complexity theory deals with decision problems (yes or no answer), but is applicable

to any optimization problem, since any of them can always be reduced to a decision one.



2.2. Problem complexity and categorization 9

Figure 2.1: Hierarchical presentation of the di�erent optimization methods presented

Optimization 
mmethods

Exact methods
Approximate 
methods

Branch and X
Dynamic Constraint  *Branch and X

programmingprogramming
A

cut bound price Approximation 
algorithms

Heuristic algorithmscut bound price

Problem specificMetaheuristics

Hyperheuristics

Figure 2.2: Non-deterministic algorithm overview
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Easy problems are grouped into P class problems, where its worst complexity is bounded by

a polynomial function f (n), representing n the input size of the problem instance. Hard

problems are grouped into NP class, containing those problems which can be solved in

polynomial time by a non-deterministic algorithm. Its used primitives are the following:

� choice: proposes a solution

� check: veri�es (in polynomial time) a solution proposal ! leads to a success or fail

situation, according to the veri�cation result

The de�nition of a problem as NP-hard relies on two concepts: the polynomial reduction

and the NP-complete class. A given decision problem A is polynomially reduced to a decision

problem B if equation 2.1 is satis�ed:

8IA 2 A9pt IB ) successIA , successIB (2.1)
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Figure 2.3: Decision and general problems classi�cation overview

NP class

P class

NP‐
complete 
class

NP‐hard class

Decision problems General problems

where 9pt implies that the instance IB can be built in polynomial time with respect of the

instance IA.

A decision problem A 2 NP is NP-complete if all other problems of class NP are reduced

polynomially to the problem A. Finally, a problem C is NP-hard if its associated decision

problem is NP-complete. Figure 2.3 shows a simple overview over these classi�cations

There are many academic problem categories which are, inherently, NP-hard, such as

sequencing and scheduling, assignment and location, grouping and so on. Real life applica-

tions usually fall into this complexity class (only from the presented academic categories is

relatively easy to derive many instances of these applications), determining the importance

of these problems (and thus, of those techniques which are able to �nd solutions for them).

Finally, it is important to highlight that the objective of this section is not to focus

on the di�erent classi�cations, but present which kind of problems metaheuristics will deal

with and its importance for both academic and real life applications. Regarding this choice,

metaheuristics do not only deal with NP-hard problems necessarily, and NP-hard problems

do not have to be always approached with metaheuristics. P problems where the power

of the exponential function is high and the instance size is also high may require the use

of metaheuristics in order to be able to �nd a solution, while NP-hard problems with a low

instance size or particular structures may be resolved with exact or approximation algorithms.

2.3 Metaheuristics

Exact and approximation methods, as introduced in the previous sections, provide with the

tools to obtain exact or at least bounded solutions, but such solutions may be unfeasible

as the complexity of the problems increases (being particularly true for NP-hard problems).

On the other hand, the objective of metaheuristics is to provide satisfactory solutions in a

reasonable time.
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Figure 2.4: Exploration / exploitation schemes overview
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Figure 2.5: Metaheuristics overview regarding their diversi�cation / intensi�cation focus
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Any metaheuristic can be basically divided into two di�erent processes: the exploration

of the search space and the exploitation of the obtained solutions. These criteria are in

con
ict and require to be considered jointly. It is interesting to notice a similar de�nition

will be presented, in following sections, for Multi-Objective approaches, �rst regarding the

objective function in section 2.4.3 and afterwards as part of a deeper analysis of these

approaches in section 2.5.1. The general idea is to balance the search for better solutions in

previously found "good" zones (exploitation, also named intensi�cation) with the search over

previously unvisited zones (exploration, also named diversi�cation), in order to guarantee an

even exploration over the di�erent zones of the search space. Figure 2.4 shows an example

of these processes.

Di�erent techniques provide di�erent coverage rates of these processes. Figure 2.5

provides an overview over the coverage of these processes for di�erent metaheuristic classes.

The random search technique is a pure diversi�cation technique with no use of the quality

of previously found solutions. Moving towards exploitation schemes we may use population

based techniques, which evolve a whole population of solutions at every step. This approach

includes some exploitation due to the evolution introduced, but at the same time is still

focused on the diversi�cation over the search space. Single solution based approaches evolve

a single solution at every step. This allows them to intensify the search in the local regions

and makes them intensi�cation oriented approaches. Finally, the most basic approach to

local search is a pure intensi�cation technique where the current solution is replaced at every

step with a neighboring one which improves it.
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Figure 2.6: Evolutionary algorithms main phases
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Obviously, the previous classi�cation is a rather rough one. In (Talbi, 2009) the reader

may �nd an exhaustive overview of the di�erent techniques and the evolution which they

have gone through over the di�erent years. In this work, we will focus on population based

metaheuristics and what is usually called evolutionary computing (B�ack, 1996). It is also

interesting to consider that many of the concepts presented in this work can be adapted to

di�erent classes of metaheuristics.

2.4 Evolutionary computing

Population based metaheuristics are de�ned by the evolution of a whole population of solu-

tions at every step of the algorithm. Some of the techniques included under this metaheuris-

tics' paradigm are scatter search (Glover, 1977), swarm intelligence (Bonabeau et al., 1999)

or the one we will focus this work in: evolutionary computing (B�ack, 1996).

The core idea for any evolutionary computing algorithm is to evolve the maintained

population by means of crossover and mutation operators, selecting a certain number of

individuals from the resulting generation and keeping this process until a certain stopping

criterion is met. This process resembles the evolution theories of Darwinism (Darwin, 1859).

Figure 6 shows an overview of this process.

The crossover operator takes a number of parent solutions and provides a number of

o�spring (usually the number of parents and o�spring is the same) by recombining certain

sections of the parents into their o�spring. On the other hand, the mutation operator chooses

a single solution and changes a portion of it, providing an o�spring. Figure 2.7 shows very

simple examples of these processes.

The precursors of evolutionary computation in general are genetic algorithms, a term �rst
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Figure 2.7: Crossover and mutation operators examples
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introduced in (Holland, 1975), even though some similar ideas of crossover and mutation as

evolution operators were being developed in (Rechenberg & Eigen, 1973) and (Schwefel,

1977). In fact these ideas respectively lead to two of the di�erent approaches usually

included under evolutionary computation: genetic algorithms and evolution strategies. Along

with the two previous categories, two additional clearly di�ering approaches can be included:

evolutionary programming (Fogel, 1963) and genetic programming (Koza, 1992).

The main original di�erence between the di�erent approaches was the aim and the

solution representation, which lead to di�erent operators

� Genetic algorithms: Aimed at discrete optimization, they originally used bit string

as encoding for the solutions. The crossover operator is usually based on a number

of points chosen from the parents and the mutation one performs bit 
ipping with a

certain probability.

� Evolution strategies: Aimed at continuous optimization, they base their representa-

tion on real valued vectors. This di�ered representation lead to crossover operators

more scarcely used (being based on discrete approaches) and mutation operators based

on Gaussian perturbations of the original values. It is noticeable that evolution strate-

gies allow self-adaptation mechanisms, evolving not only the solution, but also their

guidance parameters (typically, their mutation rate).

� Evolutionary programming: Aimed at machine learning, their representation is based

on �nite-state machines. These techniques do not use crossover operators and focus

the evolution on the mutation operator, which, in a similar way to evolution strategies,

introduces Gaussian perturbations.

� Genetic programming: Aimed at machine learning as well, genetic programming uses

sparse trees as its representation form. The crossover operators exchange di�erent
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subtrees from the parent solutions, and mutation operators introduce random changes

in the subtrees.

It is important to highlight that the above comparison is not thorough (for example, the

selection mechanisms have not been included) and also that, through the years since their

proposal, these techniques have adapted their main attributes according to their uses, being

examples of these changes genetic algorithms with di�erent codi�cations to their original

bit string proposal (Dudek, 2006) or evolutionary programming schemes used for continuous

optimization (Yang et al., 2006).

According to the previous introduction, the main concepts related to evolutionary pro-

gramming are the following: representation, initialization, objective function, crossover op-

erators, mutation operators, selection approaches and stopping criteria. We will provide an

overview over each of these topics.

2.4.1 Representation

Through the previous sections of this work we have repeatedly used the term solution in

a general way, referring both to its encoding and the solution value itself. In evolutionary

computation these two meaning are named genotype (solution encoding) and phenotype

(solution value). Also, the whole codi�ed solution is frequently referred to as chromosome,

whereas each of its units is referred to as gene. The representation chosen has a huge impact

on the solution and the algorithm performance, since it usually a�ects and determines the

applied operators.

The most usual representation presents a one-to-one relationship between genotype and

phenotype values, but this is not necessarily so, since a single phenotype value may be

represented by several di�erent genotypes and vice-versa. However, these representations

usually impact the performance of the algorithm.

The main representations used by the di�erent approaches of evolutionary computations

have already been presented: bit strings for genetic algorithms, 
oat vectors for evolutionary

strategies, �nite-state machines for evolutionary programming and sparse trees for genetic

programming. It is also possible to use mixed representations, a requirement when dealing

with global optimizations problems where the variables may have discrete or continuous

values.

Most problems can be solved by means of di�erent representations. Thus, choosing the

right representation becomes a crucial issue in terms of performance. A very easy example

can be found with n queens problem (Letavec & Ruggiero, 2002). This problem, originally

stated by Carl Gauss around 1850, tries to determine how to place N queens in an NxN

chessboard. The representation issue faced here is how to codify this problem in the most

e�cient way.

An immediate codi�cation for the genotype would be to use a NxN matrix using 0's

for those positions which are empty and 1's for those where a queen is placed. Another

possibility is to use the fact that in every column (or row) there must be a queen, and

introduce this fact in a permutation codi�cation. Figure 2.8 shows an example of these two

di�erent representation approaches codifying the same phenotype.

The second representation provides a much more compact solution representation and,

at the same time, introduces some domain knowledge which allows the reduction of the

search space: there is one (and only one) queen in every row/column.
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Figure 2.8: Example of the n-queens alternative codi�cations
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2.4.2 Initialization

The initialization of the initial population may bias the whole process towards success or fail-

ure. The default initialization procedure is usually a random initialization, which, depending

on the representation used, is performed in di�erent ways. For the default bit string codi�ca-

tion of genetic algorithms, the process simply assigns a 0 or 1 value to every gene, whereas

for evolutionary strategies those values are assigned randomly according to the upper and

lower boundaries of the codi�ed variable. Another common situation is to have a certain

alphabet of possible values, according to which the variable (usually codi�ed as an integer)

is initialized. For this process, a random number is generated according to the alphabet

length. We would like to point out the term random initialization is a terminology abuse,

since pseudo-random number generators are used for this task.

The objective of random initialization (regardless of the used representation) is to max-

imize the initial coverage of the variable space, in order to prevent situations such as early

convergence due to local optima or obtaining only a partial inspection of the search space. In

the particular case of genetic algorithms, the random initialization is said to achieve the maxi-

mal bit-wise diversity. Even so, additional random initialization methods have been proposed,

trying to preserve that characteristic, such as (Kallel & Schoenauer, 1997).

The initialization topic has not received as much attention in evolutionary strategies,

disregarding its e�ect as a temporary one for the initial generations (Maaranen et al., 2007).

Even so, there have been a number of proposals regarding this topic, such as the quasi-random

population initialization presented in (Maaranen et al., 2004), which presented an improved

�nal solution quality, with a limited impact on the convergence speed. This approach's e�ect

was reduced for higher dimensionalities. A thorough comparison of di�erent initialization

methods with a focus on quasi-random initialization can be found in (Maaranen et al., 2007).

A di�erent alternative may be found in (Rahnamayan et al., 2007), based in the so called

opposition-based learning. This concept is related to the consideration of the estimate and

opposite estimate at the same time to produce a better approximation for the given candidate

solutions. Also, this method tries to overcome some of the di�culties found in quasi-random

initialization (namely the di�culty and computational cost of the required processing).

Nonrandom initializations are also possible. This fact was already used in (Grefenstette,

1987). The objective of these approaches is to obtain initial populations which satisfy

certain characteristics (usually regarding a good dispersion of their individuals). The main
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Figure 2.9: Example of possible n-queens objective functions
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drawback of nonrandom initializations is their usual high cost (since they have to search for

chromosomes which satisfy the imposed restrictions) or the requirement for expertise in the

user (in order to avoid that high cost search). These ideas have been implemented in a series

of works, such as (Schultz & Grefenstette, 1990).

Examples of di�erent approaches to non random initializations are the simple sequential

inhibition process (Diggle, 1983) or the division of the search space into di�erent sub-regions

where random initialization is applied independently (McKay et al., 1979). An initial selection

from a series of randomly generated individuals was presented by (Bramlette, 1991), and in

(Maresky et al., 1995) the relation between non random initialization and re-start strategies

is studied and exploited. Finally, an interesting iterative process was presented in (De Garis,

1990), where, according to a set of �tness functions, a population initialization is based on the

�nal population from a previous GA �nal population evoluted with a di�erent �tness function

from the set. This idea is remarkably similar to those presented by a� priori approaches for

multi-objective optimization, which will be covered in section 2.5.1. Also, these ideas were

applied to constrained optimization by (Schoenauer & Xanthakis, 1993).

2.4.3 Objective function

We may de�ne a single objective optimization problem with equation 2.2

f : �! < minx2<f (x) (2.2)

where f (x) is the objective function. Relating this objective function with the previously

introduced concepts, it measures the quality of the phenotype from the genotype value. The

de�nition of this objective function may be a direct reformulation of the problem which is

under consideration or a much harder task, in case the objective function has to provide

guidance to the solution in an indirect way.

If we go back to the n-queens example presented in the representation section, we might

try to de�ne a straightforward objective function which would output a 0 if the solution is

valid (the n queens are placed in their proper places) or 1 if there is some incompatibility

among them. On the other hand, we might propose a di�erent objective function counting

the number of incompatibilities (adding 1 for each incompatibility a queen has with any of

the remaining ones). Figure 2.9 shows these two di�erent approaches:

The �rst objective function obtains the same value for the two di�erent solutions, not

being able to provide the search algorithm with any information, while the second approach

is able to determine that the �rst solution is closer to the one the algorithm is looking for.

This example also introduced the concept of restrictions: additional conditions that a

certain solution must meet in order to be valid. This leads us to a more general de�nition of

equation 2.2, presented in equation 2.3
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f : �! < minx2<f (x) such that

{
gi(x) � 0 i = [1 ... n]

hj(x) = 0 j = [1 ...m]
(2.3)

The inclusion of restrictions also introduced additional di�culties regarding how to handle

them (Michalewicz, 1995), (Oliver, 2010). The �rst clear alternative is to penalize the

function value according to the violation performed (Homaifar et al., 1994). This alternative

can lead to the complete rejection of solutions containing any violation (usually named death

penalty (Schwefel, 1993)) or a numerical penalization in the value of the objective function

(Joines & Houck, 1994). Another alternative is the use of repairing algorithms (Belur, 1997),

(Coello, 2002), which either repair and overwrite the infeasible solution itself (the genotype

value is overwritten to a new one which produces a feasible solution, which receives the

name of Lamarckian approach) or only the �tness from the repaired solution overwrites the

�tness from the unfeasible one (Baldwinian approach). The obvious handicap of repairing

algorithms is that establishing them can be a problem of a similar di�culty to the general

one which is being solved by the evolutionary algorithm.

There is one more generalization to be performed over the equation stated in 2.3. Up to

this point, only one �tness function has been used, but, in general, problems may require the

optimization technique to optimize more than one of such functions (potentially in con
ict

among each other) jointly. Therefore, the general equation for a multi-objective optimization

problem (Coello & Lamont, 2004) can be de�ned with equation 2.4

fp : �! <, F (x) = (f1(x), ... , fk(x)) minx2<F (x)

such that

{
gi(x) � 0 i = [1 ... n]

hj(x) = 0 j = [1 ...m]

(2.4)

a clear and complete textual de�nition can be found in (Osyczka, 1985): a multiobjective

optimization problem can be de�ned as the problem of �nding "a vector of decision variables

which satis�es constraints and optimizes a vector function whose elements represent the

objective functions. These functions form a mathematical description of performance criteria

which are usually in con
ict with each other. Hence, the term "optimize" means �nding such

a solution which would give the values of all the objective functions acceptable to the decision

maker."

2.4.4 Crossover operators

Crossover or recombination operators are responsible of integrating the characteristics of two

(or, in general, n) parents into their o�spring. The main characteristics to consider regarding

crossover operators are their heritability, (since their o�spring inherit genetic material from

all the di�erent parents) which can be strong if identical parents always produce identical

o�spring, and the validity of the generated o�spring (which may not be assured if the

problem is constrained, leading to the possible constraint handling techniques discussed in

the objective function section of this work).

For linear representations (the ones presented traditionally in either genetic algorithms

or evolutionary strategies) not including permutations (representations where a vector of

size n includes n di�erent numbers, such as the n-queens problem) the traditional crossover
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Figure 2.10: n-point and uniform crossover operators example
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operators are n-point crossover and uniform crossover. n-point crossover chooses randomly

the position of n genes in the chromosome and then parents provide their genetic material

according to those positions. On the other hand, uniform crossover chooses, for each gene

position one of the parent solutions, which randomly provides its genetic material. Figure

2.10 provides an example over these crossovers

For real valued linear representations (evolutionary strategies) additional crossover oper-

ators are de�ned, trying not to inherit the concrete values from the parents, but numerical

values obtained from their combination, according to di�erent procedures. The main ap-

proaches to this task are mean-centric operators and parent-centric operators.

Mean centric operators compute the mean of two or, in general, n parents and obtain the

o�spring value according to di�erent procedures. Intermediate and geometrical crossovers

[Mickaleicz et al. 1996] combine the parents' values using either sums or multiplications of

their gene values. Unimodal normal distribution crossover (UNDX) (Ono et al., 2003) uses

the mean value from �� 1 parents and also a direction according to the directions of those

parents in order to generate the o�spring. Finally, Simplex crossover (SPX) (Tsutsui et al.,

1999) generates the o�spring around the mean in a delimited zone according to the parent

simplex.

Parent centric operators obtain o�spring closer to the given parents. The main ap-

proaches to these operators are simulated binary crossover (SBX) (Deb & Agrawal, 1995)

and parent-centric crossover (PCX) (Deb et al., 2002a). SBX performs a weighed sum of

the parents values according to a factor derived from an input variable � (where higher val-

ues imply the generation of o�spring nearer to their parents) and a proposed distribution

function. A random number is calculated and then the weighing factor is calculated so that

the area under the probability curve of the proposed distribution function is equal to the

value of that random number. PCX chooses a parent randomly, obtains its direction vector

and the �nal o�spring value is computed according to the value from the chosen parent, its

direction vector and the perpendicular distances to the line given by that direction vector of

the remaining �� 1 parents.

The techniques presented for linear representations would provide, applied to permutation

representations, unfeasible solutions. That involves the requirement for problems choosing

these representations of particular crossover operators. We will cover here three alternatives

to these operators: the order crossover (OX) (Davis, 1985), the partially mapped crossover

(PMX) (Goldberg & Lingle Jr, 1985) and the two-point crossover (Wiese & Glen, 2003).

The literature shows additional strategies (and even those presented can be performed in

di�erent ways) but we only want to give an illustrative set of the mechanisms introduced to

deal with permutation representation.

The order crossover (OX) chooses two random positions in the chromosomes, and �lls

the o�spring with the genes from the �rst parent at the same positions. Afterwards, the rest

of the gene positions are �lled with the elements of the second parent not already included
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Figure 2.11: Order crossover example
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Figure 2.12: Partially mapped crossover example
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Figure 2.13: Two-point crossover example
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starting from the second selected position. Figure 2.11 shows this process. The partially

mapped crossover (PMX) starts again with the selection of two random positions. The genes

from the �rst parent between those positions are copied into the o�spring, and a mapping

is obtained from the elements of the second parent between those positions and them. The

elements of the second parent not between the given positions are copied into the o�spring,

and the mapped elements are replaced with their respective ones. This process is explained

in �gure 2.12. Finally, two-point crossover selects two random positions, copies from the

�rst parent the elements outside those positions at their same positions and �lls the positions

between the two selected ones with the elements not already included of the second parent

(starting from its beginning gene). An example is shown in �gure 2.13.

Special crossover operators have been also designed for the genetic programming ap-

proach and its sparse tree representations (evolutionary programming does not use crossover

operators, only mutation ones). Since the application problems of this work will not be cen-

tered in this representation, we will not cover here these operators. However, for an overview

of them, the reader may consult (Spears & Anand, 1991).

2.4.5 Mutation operators

Mutation operators are unary operators which introduce small changes in selected individuals

from a given population (these operators are often applied after the crossover ones over

the resulting o�spring). The underlying idea is that a small change in the genotype should

also produce a small change in the phenotype (locality). The design of a mutation operator

must also consider the properties of ergodicity (every solution of the search space must be

reachable) and validity (the resulting solution after the operator application must be valid).
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The validity property can be an issue in constrained domains, and di�erent strategies may be

de�ned to deal with it, as shown in section 2.4.3.

mutation rate is the common parameter for the di�erent operators and representations,

being the probability of mutating a variable. Its values have been set according to di�erent

experimental results. In (B�ack, 1993, 1996; M�uhlenbein & Schlierkamp-Voosen, 1993) the

proposed value is 1=n, where n is the number of variables (genes) in the given solutions,

showing its good results for di�erent representative sets of problems. This mutation rate

implies that, in average, one gene is mutated each time that the mutation operator is

performed over a given individual.

This mutation rate is the basis for the application of mutation operators to binary,

discrete and permutation representations. In binary representations, every gene has only

two possible values, leading to a mutation which only changes the variable value to its

complementary value. However, it was very common to use binary representations to codify

real or integer values, linking the mutation operator to the codi�cation used (Chakraborty

& Janikow, 2003). This has led to the recommendation of real-valued vectors instead of

binary representations and their associated mutation operators (Michalewicz, 1996). Discrete

representations involve a change in the gene value with a di�erent one in the associated

alphabet (the distances between the di�erent alphabet members may be di�erent, leading to

the inclusion of a mutation step parameter which we will de�ne later in this section) and,

�nally, permutation representations apply mutation operator exchanging the position of two

di�erent gene values.

Mutation operators applied to real-valued representations introduce two new consider-

ations: the mutation step parameter and the static or dynamic nature over the parameter

values. The mutation step parameter represents the size of the introduced mutation, being

a hard value to set. In general, small values are considered to obtain good results in the long

run, while bigger values may produce, if successful, much quicker results. This has led to the

proposition of operators combining a biased use of these two approaches, producing smaller

steps with a greater probability (Muhlenbein, 1994). The de�nition of these mutation steps

can be performed by di�erent processes, most of which are based on the sum of a certain

value to the original one from the gene, being this value de�ned by processes such as random,

Gaussian or polynomial operators.

A uniform random mutation operator obtains a value in a certain range, which is de�ned

by the user. A Gaussian mutation operator uses values generated by means of normal

distributions, N(0,�), to mutate the di�erent genes values. This is the most extended

approach in evolutionary strategies (and probably in evolutionary computing in general), and

the de�nition of the mutation step is performed in a direct way by means of the � parameter.

Finally, the polynomial mutation operator (Deb & Goyal, 1996) adds a certain value to the

original value according the polynomial distribution, which introduces a �m index.

One of the most interesting particular approaches of real-coded representations is the

possibility of evolving the mutation parameters along with the solutions. The �rst approaches

to this task were proposed early in the development of evolutionary strategies (Schwefel,

1981), and have been evolving ever since. The general idea behind this task is to obtain an

adaptation of the size of the mutation step and also of the direction of that mutation. This

has led to the development of techniques achieving the adaptation of n step sizes (Ostermeier

et al., 1994) or n step-sizes with one or n directions (Hansen et al., 1995).One of the most

successful recent approaches is the Covariance Matrix Adaptation Evolutionary Strategy
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(CMA-ES) (Hansen & Kern, 2004; Hansen & Ostermeier, 1996). This strategy adapts the

covariance matrix of the multivariate normal mutation distribution, introducing the leading

ideas of giving a higher priority to the most successful step-sizes and also memorizing the

time distribution path of the mean, in order to introduce additional control over the step-size.

2.4.6 Selection and replacement strategies

Selection and replacement strategies are closely linked (in fact, in �gure 2.6 we referred to

the replacement strategy as �nal selection) and rely on the concept of elitism (De Jong,

1975), even though in di�erent ways (at least according to their application). In general,

elitism implies preserving the advantages of the best individuals. These advantages, related

to selection strategies, are applied according to their reproduction chances, and, related to

replacement strategies, according to their survival chance.

Selection strategies, thus, must provide better chances of becoming parents to these

individuals with a better �tness value, but also giving a chance to those worse adapted

individuals which may still introduce valuable genetic material into the algorithm (B�ack et al.,

2000). This is linked with the idea of diversity preservation, and even more, with the initial

discussion presented in section 2.3 about the exploration /exploitation focus. In general,

selection strategies do not only determine which individuals are selected for mating, but may

also determine how many o�spring they will produce (the number of o�spring is also related

to the replacement strategy used).

The �tness assignment is the prior process to any selection strategy, and may be per-

formed in an absolute or relative way. Absolute assignment applies the �tness function value

directly to the individual, while relative (or rank-based) assignment (Whitley et al., 1989) de-

termines a sorting over the population assigning ranks to the di�erent individuals and applies

the selection techniques over these values. Rank-based methods perform a transformation

over the �tness value according to linear or non-linear functions (Pohlheim, 1995). They

introduce a parameter to control explicitly the selective pressure over the population, and

have been reported to be more robust the �tness proportional assignment (B�ack & Ho�meis-

ter, 1991). The most extended selection techniques (which are independent to the �tness

assignment technique) are roulette wheel selection, stochastic universal sampling (Baker,

1987) and tournament selection(Blickle & Thiele, 1995; Goldberg & Deb, 1991).

Roulette wheel selection is a stochastic selection algorithm based on the assignment of

a probability to each individual based on its �tness value, and projected in a contiguous

segment. Once that has been performed, a uniform random number in the [0, 1] range is

generated, and the appropriate individual, according to its value in the segment, is selected

(�gure 2.14). This process is repeated until the whole mating population has been selected.

One of the handicaps of this approach is the bias introduced by outstanding individuals, which

may lead to premature convergence of the algorithm.

Stochastic Universal Sampling tries to correct that introduced bias in the roulette wheel

selection mechanism. In order to do this, it introduces a series of equally spaced pointers,

with a distance between each pair of them of 1=n, where n is the number of individuals to be

selected. When the random number is generated, the �rst pointer is moved to that position,

and the remaining ones properly located according to their distance. Each of the pointers

selects an individual, so that with a single random number the whole mating population is

selected. This process is shown in �gure 2.15
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Figure 2.14: Roulette wheel selection example
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1 3 5 1 91 3 5

7 9 7
1

Tournament selection requires the choice of a tournament size k , determining how many

individuals will participate in each selection. To obtain each individual in the selected set,

k individuals are randomly chosen and the best one among them is selected for the mating

pool (�gure 2.16). This process is repeated until all the di�erent required individuals have

been selected.

Replacement strategies perform the required selection from the o�spring of the current

generation, i , to the initial population of the following generation, i + 1. Elitist replacement

strategies may be used, along with the di�erent selection techniques approached in this

section. However, elitism may lead to premature convergence situations, and thus, di�erent

replacement strategies have been proposed. The canonical genetic algorithms proposed

in (Holland, 1975) performed a generation replacement, where an o�spring containing a

number of individuals equal to the original population was produced and replaced the original
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one. However, this led to considerations in (De Jong, 1975) about the possibly wasted

good solutions and with this approach. This leads to strategies performing only a partial

replacement of the original population (what is usually called the generational gap), up to

incremental (or steady-state) replacement strategies, where only one chromosome is replaced

in each generation (Davis & Mitchell, 1991). The e�ect of replacement techniques in steady-

state approaches and its relation with the diversity maintenance is analyzed in (Lozano et al.,

2008).

Evolutionary strategies typically perform two approaches to the replacement issue

(Reeves, 2003). The �rst one, typically referred to as (�,�), implies the generation of �

o�spring, where � is greater than the number of parents, �. Thus, after the crossover and

mutation procedures have been applied, the � best individuals from the o�spring are selected

and turn into the starting population of the following generation. The second replacement

strategy, usually named (� + �), implies that both populations, parents and o�spring, are

merged, and, afterwards, the best � individuals are chosen from the overall population. This

second approach introduces, in general, a stronger elitism into the resulting algorithm.

2.4.7 Stopping criteria

To introduce the lack of attention dedicated to convergence and stopping criteria, in general,

we would like to cite the paragraph included in (Chipper�eld et al., 1994): "Because the GA

is a stochastic search method, it is di�cult to formally specify convergence criteria As

the �tness of a population may remain static for a number of generations before a superior

individual is found, the application of conventional termination criteria becomes problematic

A common practice is to terminate the GA after a pr-speci�ed number of generations and

then test the quality of the best members of the population against the problem de�nition

If no acceptable solutions are found, the GA may be restarted or a fresh search initiated"

Some of the most extended characteristics of stopping criteria are included in the previous

cite: di�culties in establishing stopping criteria, which leads to criteria which establish a-

priori boundaries (such as the number of generations or function evaluations) or dynamic ones

based on previous knowledge of the problem (which allows the determination of whether a

solution is acceptable or not). In (Talbi, 2009) these approaches are classi�ed as static (use

of a-priori boundaries) or dynamic (use of problem knowledge to determine in run-time when

the found solution is acceptable). It also points out to the use of population characteristics

to determine the stopping situation, particularly the population diversity, but without any

concrete technique or citation. In (Reeves, 2003) the same principles are explained, including

more detail about the possible approaches to diversity and stagnation concepts (which can

be applied to genotype, phenotype or �tness values). In (Coello, 2000) the most extended

stopping criterion was stated to be an a-priori chosen maximum generation, and brand new

algorithms, including state of the art developments in all their individual aspects, such Hype

(Bader & Zitzler, 2011) still maintain that default choice.

Practical approaches of these general development strategies can be found in works such

as (Zielinski et al., 2005). In this work, a classi�cation and division among stopping criteria is

established, particularly for di�erential evolution (DE) (Fleetwood, 1999) and Particle Swarm

Optimization (PSO) (Kennedy, 2006). The established classes are the following:

1. Reference criteria: These criteria require the a-priori knowledge of the optimum solu-

tion, and thus they may be inapplicable to new real problems. The algorithm is stopped
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after a certain percentage of the population has converged to the given optimum (Es-

pinoza et al., 2001).

2. Exhaustion-based criteria: The algorithm is stopped after a certain generation, number

of function evaluations or CPU time is reached.

3. Improvement-based criteria: The algorithm is stopped if only small (or none at all)

improvements are made over a certain time. These criteria can be based on several

measures: the improvement of the best objective function value (Van Den Bergh,

2006), the improvement of the average objective function value (Espinoza, 2003), no

acceptance or improvement in the neighborhood (these last criteria are less generaliz-

able to di�erent families of algorithms).

4. Movement-based criteria: The algorithm is stopped if the movements in the population

fall below a certain pre-established threshold. Again these movements may be measured

according to two di�erent perspectives: movements with respect to the average func-

tion value (or, in other terms, movements in the objective space) or movements with

respect to the positions (or, in other terms, movements in the parameter or variable

space).

5. Distribution-based criteria: The algorithm is stopped after a certain distance measure

falls below a certain threshold. The basis of these criteria is the idea that all individuals

tend to converge to the optimum, so their closeness indicates the termination of the

algorithm. These distance measures can be based on di�erent concepts: the distance of

every vector (individual) of the population to the best vector, the distance of a certain

percentage of the individuals in the population, standard deviation of the vectors in

the population (Zaharie & Petcu, 2005) or the distance between the best and worst

individual in the population (Babu & Angira, 2003).

6. Combined criteria: Di�erent function features may require di�erent stopping rules to

guarantee a satisfactory criterion. A most common combined criteria includes some

exhaustion-based criteria along with some of the other di�erent alternatives available,

to guarantee a certain a-priori computational threshold in case the complementary cri-

terion fails to be triggered. An example of these combined criteria is OCD (Trautmann

et al., 2009), which will be analyzed in detail in section 2.7.1.

2.5 Multi-Objective Evolutionary Algorithms

2.5.1 General concepts

The concept of multiobjective optimization was introduced in section 2.4.3. Basically, it is

an optimization problem, which, instead of a single function to be maximized or minimized,

requires a whole set of n functions to be optimized jointly (equation 2.4. Currently, the

most extended approach of evolutionary computation to multi-objective optimization (Coello

et al., 2007; Deb, 2001) relies on the Pareto Optimality Theory (Ehrgott, 2005), even

though di�erent approaches have been previously explored and exploited, such as aggregating

functions (Surry et al., 1995) or the inclusion of the decision maker's choices within the

evolutionary cycle (Fonseca et al., 1993).
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Pareto-centered approaches are based on the original ideas from the works of (Edgeworth,

1881) and (Pareto, 1896), relying on the Pareto optimality concept (de�nition 2.5.1).

De�nition 2.5.1 (Pareto Optimality): A solution ~x 2 
 with ~u = F (~x) =

(f1(~x), ... , fn(~x)) is said to be Pareto Optimal with respect to to 
 if and only if

there is no y 2 
 with ~v = F (~y) = (f1(~y), ... , fn(~y)) such that ~v dominates ~u

This de�nition relies on the Pareto dominance concept, presented in de�nition 2.5.2

De�nition 2.5.2 (Pareto Dominance): A vector ~u = (u1, ... , un) is said to dominate a

vector ~v = (v1, ... , vn) if and only if ~u is partially less than ~v This relation is expressed as

~v � ~u and de�ned in equation 2 5

~v � ~u $ 8i 2 f1, ... , ngui <= vi ^ 9i 2 f1, ... , ng : ui < vi (2.5)

De�nitions 2.5.1 and 2.5.2 allow the relationship between the Pareto optimality concept

with the genotype and phenotype concepts used in evolutionary computing (presented in

section 2.4.1), or Pareto Optimal Set (for the genotype representation) and Pareto Optimal

Front (for the phenotype's associated values)

De�nition 2.5.3 (Pareto Optimal Set): for a given Multi-Objective Problem with the asso-

ciated set objective functions F (X ) = (f1(x), ... , fn(x)) the Pareto Optimal Set, represented

as P�, is de�ned in equation 2 6

P� := f~x 2 
 j :9~y 2 
F (~y) � F (~x)g (2.6)

De�nition 2.5.4 (Pareto Optimal Front): for a given Multi-Objective Problem with the

associated set objective functions F (X ) = (f1(x), ... , fn(x)) and the correspondent Pareto

Optimal Set P�, the Pareto Optimal Front, represented as PF �, is de�ned in equation 2 7

PF � := f~u = F (~x) j ~x 2 P�g (2.7)

The Pareto Optimality can be weak or strict, according, respectively, to de�nitions 2.5.5

and 2.5.6

De�nition 2.5.5 (Weak Pareto Optimality): A point y 2 
 is a weakly Pareto Optimal if

there is no x 2 
 such that fi(x) < fi(y), for i 2 f1, ... , ng

De�nition 2.5.6 (Strict Pareto Optimality): A point y 2 
 is a weakly Pareto Optimal if

there is no x 2 
, x 6= y such that fi(x) � fi(y), for i 2 f1, ... , ng

In the context of a Multi-Objective Evolutionary Algorithm (MOEA) progress, additional

de�nitions are required, as presented in (Van Veldhuizen, 1999). These de�nitions include

the current Pareto set (formalized as Pcurrent(t) referred to a given generation t). Addi-

tional interesting de�nitions may be related to the maintenance of secondary populations (or

archives) which keep the known Pareto solutions (an important example regarding this ap-

proach is the SPEA2 algorithm (Zitzler et al., 2001)), de�ned as Pknown, or the true Pareto
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Figure 2.17: Ideal Pareto Front Example
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solution in the computational domain (usually a subset of P�), de�ned as Ptrue . Obviously,

according to the initial de�nitions, all these solution sets have their associated Pareto Fronts.

Presented< de�nitions dealt with the optimality concepts from a mathematical point of

view, not taking into account the acceptable compromise solutions concept and the decision

maker (DM) impact on the overall process (Fonseca & Fleming, 1997). To illustrate these

factors, �gure 2.17 shows an ideal Pareto Front behavior. The solutions presented in the

�gure are optimal according to de�nition 2.5.1, which means that improving one objective

function degrades the value of the other one. However, many of these solutions may not be

valid according to the decision maker's criteria. This leads to the fact that there are usually

many preferences not codi�ed, requiring, as the �nal solution obtained, to perform a sampling

of the �nal obtained Pareto Front. The evolutionary process ends with the de�nition of the

�nal set of solutions according to its Pareto Front values, ~u 2 PF �
known � PFknown. A real

example regarding the previous concepts is the two-bars symmetric plane truss (Rao, 1987).

The approach to �nding the solutions for a MOP can be based, basically, on three di�erent

approaches: optimizing the most important objective function, obtain an aggregated function

according to the importance of the di�erent objective functions or obtain the complete Pareto

Front by means of MOEAs. These approaches are the basis for the classi�cation of the

di�erent MOEA approaches, which includes the following classes:

� A priori techniques: These techniques require the DM, in general, to de�ne the

importance of the di�erent objective functions in the MOP. The MOP is, with the

use of these importance factors, reduced to a single objective optimization problem.

It is important to realize that the determination of these relative importance factors

(usually in the form of weighing values) can be a particularly hard issue to deal with,

and that the overall quality of the �nal obtained solution relies heavily on this decision.

Examples of this approach are lexicographic ordering (Fourman, 1985) and aggregating

functions, which can be linear (Surry et al., 1995) or non-linear (Horn et al., 1993)



2.5. Multi-Objective Evolutionary Algorithms 27

� Progressive techniques: These techniques require the direct interaction of the DM

during the EA search process, combining cycles of search and decision making. As

explained in (Coello et al., 2007), pp 70-71, there are surprisingly reduced number

of examples of these techniques examples available in the literature, probably due to

the additional time required by researchers and DMs. As shown in (Van Veldhuizen

& Lamont, 1998) many approaches are based on Fonseca's Multi-Objective Generic

Algorithm (MOGA) (Fonseca et al., 1993), such as (Sette et al., 1997).

� A posteriori techniques: A posteriori techniques seek for Ptrue and PFtrue (Horn,

1997), trying to perform a search as widespread as possible to generate the largest

possible number of elements from the Pareto Set. One of the advantages of this ap-

proach is that several DMs with di�erent criteria may choose di�erent solutions without

any additional search computation. The main techniques dealing with this approach

are independent sampling (Fourman, 1985), criterion selection (Scha�er, 1985), ag-

gregation selection (Ishibuchi & Murata, 1998) and Pareto sampling (Goldberg et al.,

1989)

2.5.2 Goals and design features

According to the presentation of the MOEA �eld in section 2.5.1, the four main goals of a

MOEA, as stated in (Coello et al., 2007), are the following:

� Preserve non-dominated points

� Guide the progress of PFknown towards PFtrue

� Maintain the diversity of the obtained solutions (at genotype level with Pknown and /

or phenotype level with PFknown)

� Provide the DM with a limited number of PFknown points

In fact, these four goals can be easily related to the concepts already introduced in

the general presentation of evolutionary computation. The �rst two ones deal directly with

the concept of elitism and how the algorithm evolves to the best solution (in this case

represented by PF �). The third one is the required diversity preservation (which in single

objective optimization was presented as the way to prevent early convergence and discussed

according to its relationship with elitism and selection mechanisms in section 2.4.6), while the

fourth is particular to the Multi-objective domain, since single-objective algorithms provide

a single solution as their output. This section will deal with the tools designed to achieve

these objectives.

Dominance Based Ranking

The dominance concept was presented in de�nition 2.5.2. An important quality of this

relationship is that it is not a partial order, but a strict partial order. This implies that, when

comparing two solutions ~a and ~b, one may dominate the other or they may be incompatible

(none of the two dominates the other). Figure 2.18 shows an example where the blue arrows

indicate dominance of one solution over the other and the red lines indicate incomparable

solutions.



28 2. Fundamentals

Figure 2.18: Dominance examples
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The selection or the Pareto optimal set requires the application of an ordering technique.

Several ranking methods have been proposed to deal with this task. These ranking methods

provide a rank to a solution according to its objective functions values, according to the

following procedures:

� Dominance rank: The rank value is assigned according to the number of individuals

which the analyzed solution is dominated by. A value of one is added to that number.

An example is shown in �gure 2.19, where the values with the same rank are presented

with the same color and grouped with a dotted line. A relevant algorithm which makes

use of it is the Niched Pareto Genetic Algorithm (NPGA) (Horn et al., 1994).

� Dominance count: The rank value is assigned according to the number of individuals

which the analyzed solution dominates. An example is shown in �gure 2.20, following

the same presentation criterion as dominance rank. A relevant algorithm which makes

use of it is the Non-dominated Sorting Genetic Algorithm (NSGA) (Srinivas & Deb,

1994).

� Dominance depth: The rank value is assigned according to non-dominated front in

which the solution is located. To calculate this value, the �rst front of non-dominated

solutions is found, assigned rank 1 and removed from the population, following this

procedure until all the solutions in the population have been ranked. An example is

shown in �gure 2.21, with the same presentation criterion as the previous ranking tech-

niques. A relevant algorithm which makes use of it is the Strength Pareto Evolutionary

Algorithm (SPEA) (Zitzler & Thiele, 1999).

Diversity Preservation

The objective of the dominance ranking techniques presented is to guide Pknown towards

Ptrue . The additional capital goal, obtaining a distribution over the Pareto front as uniform

as possible, is faced by diversity preservation techniques. The general idea of these techniques
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Figure 2.19: Dominance rank example

on
2

ve
Fu
nc
tio

O
bj
ec
tiv

Objective function 1

is to "push away", during the evolution of the population, solutions which are very close to

each other so that the �nal front obtained is as spread as possible. This can be performed

in di�erent ways:

� Weight Vector: This approach uses a vector set in the objective function space in

order to bias the search and move away solutions from their neighbors, using for this

objective the change in the values of a certain set of weights (Ulungu et al., 1999).

� Fitness sharing / niching: This approach is based in the de�nition of a neighborhood

(or niche, which provides the technique with its name) according to a �share value.

Di�erent topologies may be used, such as grids, and also di�erent density estimation

criteria, such as kernel (Fonseca et al., 1993), nearest neighbor (Deb et al., 2002b),

or histogram approaches (Corne et al., 2000).

� Crowding / clustering: This approach is based on an idea similar as the one used by

niching: the solutions are selected by means of a crowdedness metric applied to their

region. An example is the crowding distance introduced in NSGA-II (Deb et al., 2002b).

Since clustering techniques rely on this same idea of grouping solutions minimizing the

distance within a cluster and maximizing the distance to additional clusters, these

techniques can also be used as part of a diversity preservation scheme (Zitzler et al.,

2001)

� Restricted mating: This approach, once again, is based on the �tness sharing princi-

ples of measuring the density in a determined zone, but, instead of applying it to the

�nal selection procedure of the algorithm, the results are applied to the selection of the

mating parents. This way, the parameter �mate determines a minimum distance that

must separate two individuals in order to be able to mate them (Lu & Yen, 2003)
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Figure 2.20: Dominance count example
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2.6 MOEA Quality Assessment

At the beginning of section 2.1 the initial proposal of exact versus approximate (which include

evolutionary algorithms) methods was presented. Approximate methods do not provide with

the optimal solution, neither with a known boundary in the approximation of its value. This

leads to the need of determining which solution, among di�erent MOEA approaches, is better

for a given problem. The term better, in this case, concerns both the quality of the outcome

and the amount of resources required to obtain that output. Current section we will deal

with this quality issue.

Comparing the quality assessment issue of MOEA with their single-objective versions,

the di�cult of the Multi-objective approach is clear: a single objective solution quality can

be easily determined according to its objective function value, leading to the output of a

single solution by the algorithm. However a MOEA outputs a certain number of compromise

solutions among its di�erent objective functions, making the assessment of the quality of a

given Pareto front much harder. Relating this quality assessment to the goals presented in

section 2.5.2, it is possible to consider whether the closeness of the PFknown to the PFtrue is

more important or less, for example, than the spread of its solutions. An example regarding

this issue is presented in �gure 2.22.

2.6.1 Quality indicators

In order to formally deal with this comparison issue, it is necessary to de�ne the di�erent

levels of Pareto dominance (Zitzler et al., 2002) (presented in its general form in de�nition

2.5.2). De�nition 2.6.1 presents the dominance relationships between two di�erent solution

vectors, whereas de�nition 2.6.3 extends these concepts to dominance relationships between

approximation sets.
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Figure 2.21: Dominance depth example
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De�nition 2.6.1 (Dominance relations): Let Z be the n-dimensional objective space and

~z1 = (z11 , ... , z
1
n ),~z

2 = (z21 , ... , z
2
n ), the following dominance relations are de�ned on Z:

� ~z1 � ~z2(~z1 dominates ~z2) if ~z1 is not worse than ~z2 in any objective and is better in

at least one objective

� ~z1 �� ~z2(~z1 strictly dominates ~z2) if ~z1 is better than ~z2 in all objectives

� ~z1 � ~z2(~z1 weakly dominates ~z2) if ~z1 is not worse than ~z2 in any objective

� ~z1 �� ~z
2(~z1 epsilon dominates ~z2) if ~z1 is not worse than ~z2 by a factor of � in any

objective for a �xed � > 0

� ~z1 k ~z2(~z1 and ~z2 are incomparable to each other) if neither ~z1 weakly dominates ~z2

nor ~z2 weakly dominates ~z1

With the outcome of a MOEA we are expecting to obtain an approximation as similar as

possible (where this similarity concept will be deal with later in this work) to the Pareto set.

This requires the formal de�nition of the outcome of a MOEA in terms of Pareto dominance,

the approximation set (Hansen & Jaszkiewicz, 1998).

De�nition 2.6.2 (Approximation set): Let A � Z be a set of objective vectors A is called

and approximation set if any two members of A do not dominate each other: 8z1, z2 2 A :

z1 = z2 _ z1 k z2 The set of all approximation sets is de�ned as 


Once the approximation set has been properly de�ned, the dominance relations presented

in de�nition 2.6.1 can be extended to relations between di�erent approximation sets, pre-

sented in de�nition 2.6.3
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Figure 2.22: Comparison between di�erent Pareto Front approximations regarding their

quality
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De�nition 2.6.3 (Dominance relations applied to approximation sets): Let A1,A2 2 


be two approximation sets The dominance relation A1 � A2 (A1 dominates A2) if every

member of A2 is dominated by at least one member of A1 The remaining dominance

relations presented in de�nition 2 6 1 (��,�,��, k) can be extended in a similar way

The extension of dominance relations to approximation sets also allows the introduction

of a new relation: better, represented as A . B and presented in de�nition 2.6.4

De�nition 2.6.4 (Better than approximation sets relation): Given two approximation

sets, A,B 2 
, A.B (A is better than B) if A weakly dominates B and A and B are di�erent

approximation sets

The presented de�nitions are summarized in tables 2.1 and 2.2. In the de�nitions of the

relations a minimization of the objectives has been assumed (without loss of generality) and

the epsilon dominance de�nition is based on its multiplicative terms (for the additive terms

de�nition see (Zitzler et al., 2003), also covered as part of the proposal in section 5.2.1).
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Table 2.1: Dominance relations between objective vectors

Relation Representation De�nition

strictly dominates ~z1 �� ~z2 8i 2 f1, ... , ngz1i < z2i
dominates ~z1 � ~z2 8i 2 f1, ... , ngz1i � z2i ^ 9z1i : z1i < z2i

weakly dominates ~z1 � ~z2 8i 2 f1, ... , ngz1i � z2i
epsilon dominates ~z1 �� ~z

2 8i 2 f1, ... , ngz1i � � � z2i , � > 0

incomparable ~z1 k ~z2 ~z1 6� ~z2 ^ ~z2 6� ~z1

Table 2.2: Dominance relations between approximation sets

Relation Representation De�nition

strictly dominates A �� B 8z2 2 B9z1 2 A : z1 �� z2

dominates A � B 8z2 2 B9z1 2 A : z1 � z2

better A . B 8z2 2 B9z1 2 A : z1 � z2 ^ A 6= B

weakly dominates A � B 8z2 2 B9z1 2 A : z1 � z2

epsilon dominates A �� B 8z2 2 B9z1 2 A : z1 �� z
2

incomparable A k B A 6� B ^ B 6� A

The objective of quality measures is to compare the outcomes of multiobjective algorithms

in a quantitative manner. The simplest way to perform such a comparison would be according

to the previous dominance relations, in order to determine whether an outcome is better than

another given the analyzed relation. However, the �nal objective of quality measures is more

precise and complex, trying to answer how much better an algorithm is with respect to

another one and, in case none is better than the other, whether certain aspects can be

considered superior. In this context, the de�nition of quality indicator arises

De�nition 2.6.5 (Quality indicator): An m-ary quality indicator I is a function

I : 
m ! <, which assigns each vector (A1,A2, ... ,An) of m approximation sets a

real value I (A1,A2, ... ,An)

It must be noted that algorithm comparison, given their stochastic nature, implies several

runs and the proper statistical testing over those runs, in order to obtain statistically sig-

ni�cant results (Fonseca & Fleming, 1996; Grunert da Fonseca et al., 2001). Also, quality

indicators need interpretation in order to obtain conclusions from their results. To provide

this explanatory capability, we will introduce the comparison method de�nition.

De�nition 2.6.6 (Comparison method): Let A, B be two comparison sets,
~I = (I1, I2, ... , Ik) a combination of quality indicators and E : <kx<k ! false, true a

Boolean function which takes 2 real vectors of length k as arguments If all indicators in ~I

are unary, the comparison method C~I ,E de�ned by ~I and E is a boolean function of the form

C~I ,E (A,B) = E(~I (A),~I (B))

where ~I (A0) = (I1(A
0), I2(A

0), ... , Ik(A
0)) for A0 2 
 If ~I contains only binary indicators, he

comparison method C~I ,E is de�ned as
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C~I ,E (A,B) = E(~I (A,B),~I (B,A))

where ~I (A0,B 0) = (I1(A
0,B 0), I2(A

0,B 0), ... , Ik(A
0,B 0)) for A0,B 0 2 


When the concepts of comparison methods and dominance relations are linked, two

important de�nitions are required: compatibility and completeness.

De�nition 2.6.7 (Compatibility): Let ä be an arbitrary binary relation on approximation

sets The comparison method C~I ,E is denoted as ä-compatible if for any A,B 2 

C~I ,E (A,B) ) A ä B

or

C~I ,E (A,B) ) B ä A

De�nition 2.6.8 (Completeness): Let ä be an arbitrary binary relation on approximation

sets The comparison method C~I ,E is denoted as ä-complete if for any A,B 2 

A ä B ) C~I ,E (A,B)

or

B ä A ) C~I ,E (A,B)

Unary quality indicators, such as the hypervolume (Zitzler & Thiele, 1998), have been

commonly used in order to establish the quality of an algorithm's outcome. In (Zitzler

et al., 2003) the analysis of the performance of comparison methods based on unary quality

indicators is carried out. This analysis is motivated by the hypotheses of being able to

measure di�erent aspects of the quality of an approximation set by di�erent indicators in

order to �nally combine them to compare di�erent outcomes. This analysis brings the

following two theorems:

Theorem 2.6.1 Suppose an optimization problem with n >= 2 objectives where the ob-

jective space is Z = <n Then, there exists no comparison method C~I ,E based on a �nite

combination ~I of unary quality indicators that is ä-compatible and ä-complete at the same

time, i e,

C~I ,E (A,B), A ä B

for any approximation sets A,B 2 


Theorem 2.6.1 leads to the formulation of the required number of unary quality indicators

for a given number of objectives, presented in theorem 2.6.2

Theorem 2.6.2 Suppose an optimization problem with n >= 2 objectives where the objec-

tive space is Z = <n Let ~I = (I1, I2, ... , Ik) be a combination of k unary quality indicators

and E := (81 <= i <= k : Ii(f~z1g) >= Ii(~z
2) a Boolean function such that

C~I ,E (f~z1g, f~z2g), ~z1 � ~z2

for any pair of objective vectors ~z1,~z2 2 Z Then, the number of indicators is greater than

or equal to the number of objectives, i e , k >= n
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These theorems provide an insight into the fact that the dimensionality reduction per-

formed by unary quality indicators involves a loss of knowledge. This does not imply that

these indicators are useless (particularly for the assessment of incomparable sets) but hampers

their inferential power. These limitations do not exist, theoretically, for binary indicators. For

instance, the binary epsilon indicator can be used to obtain a ��-complete and compatible

comparison method, with the equation I�(A,B) < 1.

2.6.2 Attainment functions

Section 2.6.1 has presented quality assessment from the perspective of quality indicators

and comparison functions built upon them. This approach tries to deal with a reduction

of the non-dominated Pareto Fronts which form the solutions of MOEAs and reduce the

dimensionality to real values which are used for the statistical assessment based on the results

over multiple runs. Attainment functions do not perform such a reduction, and handle directly

the outcome of the algorithms. In (Grunert da Fonseca et al., 2001) the assessment of an

optimizer performance in considered in terms of:

� Time taken to produce a solution with a given level of quality (run time)

� Quality of the solutions produced within a given time

The emphasis of these two performance considerations is the fact that, for stochastic

optimizers (such as MOEAs) or deterministic optimizers under random conditions, both

terms are random. In (Hoos & Stutzle, 1998) an estimation and analysis of the run-time

distributions is proposed. In (Fonseca & Fleming, 1996) the study of the solution-quality

distribution is suggested. The outcome of multiobjective optimization run was considered to

be the set of non-dominated objective vectors evaluated during that run. Thus, in the single

objective case, every run provides a single objective value, leading to univariate distributions.

In the multiple objective case, every run provides either a single non-dominated vector per

run (leading to multivariate distributions) or the general case which requires set distributions.

Attainment functions are based on the following de�nitions:

De�nition 2.6.9 (Random non-dominated point set): A random point set

� = fX1, ... ,XM 2 <d : P(Xi <= Xj) = 0i 6= jg,

where both the number of elements M and the elements Xj themselves are random and

P(0 � M � inf) = 1, is called a random non-dominated set (RNP-set)

Random Pareto-set approximations produced by stochastic multiobjective optimizers on

d-objective problems are RNP-sets in <d .

De�nition 2.6.10 (Attained set): The random set

Y = fy 2 <d jX1 � y _ X2 � y _ ... _ XM � yg = fy 2 <d j�E yg

is the set of all goals y 2 <d attained by the RNP-set �
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It is key to state that the distributions of both random sets, � and Y , are equivalent,

meaning that a characterization of the distribution � automatically provides a characteriza-

tion of the distribution Y and vice versa.

De�nition 2.6.11 (Attainment indicator): Let If�g = If�g(z) denote the indicator function

Then, the random variable b�(z) = If�E zg is called the attainment indicator of � at goal

z 2 <d

Relating this indicator with the previously presented quality indicator de�nition (def.

2.6.5), as an in�nite-dimensional quality indicator, it can be to construct a comparison

method which is complete (def. 2.6.8) and compatible (def. 2.6.7) with respect to weak

dominance.

De�nition 2.6.12 (Attainment function): The function �� : <d 7! [0, 1] with

��(z) = P(b�(z) = 1)

is called the attainment function of �

In (Grunert da Fonseca et al., 2001) this attainment function was identi�ed as the �rst-

order measurement of the binary random �eld b�(z), z 2 <dg derived from Y . This concept

is related to random closed theory, particularly the so called hitting function or capacity

functional (Cressie, 1992; Goutsias, 1998). This tool o�ers a useful description of the

location of the distribution of Y (and, therefore, also of �). The empirical counterpart of

the attainment function ��(�) is de�ned as follows

De�nition 2.6.13 (Empirical attainment function): Let b1(z), ... , bn(z) be n realizations

of the attainment indicator b�(z), z 2 <d Then, the function de�ned as �n : <d 7! [0, 1]

with

�n(z) =
1

n
�

n∑
i=1

bi(z)

is called the empirical attainment function (EAF) of �

The realizations b1(z), ... , bn(z) correspond to the n runs of the optimizer under study.

While the theoretical attainment function is continuous, the EAF is a discontinuous function

which exhibits transitions not only at the data points but also at other points, the coordinates

of which are combinations of the coordinates of the data points (this is similar to multivariate

empirical distribution functions (Justel et al., 1997)).

Since the EAF serves as an estimator for the theoretical attainment function ��(z),

the performance of an optimizer on a given optimization problem can be assessed via EAF

estimates. It is remarkable that this assessment is performed in terms of location of the

corresponding RNP-set distribution. A suitable, Smirnov-like statistical testing procedure

based on two EAFs is applied in (Shaw et al., 1999). Rejecting the null hypotheses of

equal attainment functions in a statistically signi�cant way supports the conclusion that the

optimizers under study exhibit di�erent performance. However, If the null hypothesis cannot

be rejected, the optimizers may still exhibit di�erent performance, due to the statistical error

involved, and the fact that the RNP-set distribution of a stochastic multiobjective optimizer

is not completely characterized by the attainment function.
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The attainment function, given its �rst-order moment nature, describes the distribution

of the RNP-set � in terms of location, but fails to address the dependent structure within the

non-dominated elements of �. For that purpose measures of second-order moment type are

required. These measures allow the pairwise relationship between the elements of a random

Pareto-set approximation � to be studied.

De�nition 2.6.14 (Second-order attainment function): The function de�ned as

�
(2)
� (z1, z2) : <dx<d 7! [0, 1], with

�
(2)
� (z1, z2) = P(b�(z1) = 1 ^ b�(z2) = 1)

is called the second-order attainment function of �

The second-order attainment function is the second, non-centred, moment measure of

the binary random �eld fb�(z), z 2 Redg derived from the attained set Y (Grunert da

Fonseca et al., 2001). In random set theory terminology, the second-order attainment

function would be called the covariance of the attained set Y ((Stoyan et al., 1995)). It

expresses the probability of the same Pareto-set approximation � simultaneously attaining

two di�erent goals z1, z2 2 <d . The second-order attainment function is symmetric in its

arguments, including all the information of the (�rst-order) attainment function, as

�
(2)
� (z , z) = ��(z) for all z 2 <d

and

�
(2)
� (z1, z2) = �

(2)
� (z2, z1) = ��(z) for all z1 � z2 2 <2

The empirical counterpart of this second-order attainment function is de�ned as follows:

De�nition 2.6.15 (Second-order empirical attainment function): Let b1(z), ... , bn(z) be

n realizations of the attainment indicator b�(z), z 2 <d Then, the function �
(2)
n : <dx<d 7!

[0, 1] with

�
(2)
� (z1, z2) =

1

n
�

n∑
i=1

bi(z1) � bi(z2)

is called the second-order empirical attainment function of � (second-order EAF)

The second-order EAF is a discontinuous function with the values �
(2)
� (z1, z2) represent-

ing the portion of optimization runs (Pareto-set approximations) which attained goals z1 and

z2 simultaneously.

The optimizer's second-order behavior may be studied as well by the second, centered,

moment measure of the binary �eld fb�(z), z 2 <dg. This measure, according to random

set theory literature, is referred to as the covariance function (Stoyan et al., 1995), as is

de�ned as follows.

De�nition 2.6.16 (Covariance function): The function cov� : <dx<d 7! [�0.25, 0.25]
with

cov�(z1, z2) = �
(2)
� (z1, z2)� ��(z1) � ��(z2)

is called the covariance function of �



38 2. Fundamentals

Figure 2.23: EAF examples over two di�erent MOGA
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For each pair of goals (z1, z2) 2 <dx<d the value of the covariance function indicates the

direction and the strength of the relationship between the two attainment indicators b�(z1)

and b�(z2). A value of zero indicates no linear relationship between the elements, a positive

value indicates that the attainment of goal z1 tend to coincide with the attainment of goal

z2, while negative values indicate that the tendency to not attain both goals simultaneously.

The maximum value of cov�(z1, z2) equals 0.25, and is reached by the variance function

var�(z) = cov�(z , z)

at all z 2 <d where ��(z) = 0.5. An empirical counterpart of the covariance function is

de�ned as follows.

De�nition 2.6.17 (Empirical covariance function): The function covn : <dx<d 7!
[�0.25, 0.25] with

covn(z1, z2) = �
(2)
n (z1, z2)� �n(z1) � �n(z2)

is called the empirical covariance function of � (ECF)

The visualization of attainment functions (particularly second-order moments) requires

some workaround. In (Fonseca et al., 2005) this matter is presented, along with comparison

examples to re
ect the capabilities of �rst and second-order moments. One of the examples

included presents the comparison between two MOGAs, one without sharing or mating

restriction (MOGA-A) and one with sharing and mating restriction in the variable domain

(MOGA-B) (Fonseca & Fleming, 1995). Contours for EAF are drawn (from left to right) at

the ��, 0.25�, 0.5�, 0.75�, and (1� �)� levels, for arbitrarily small positive epsilon. Figure

2.23 (Fonseca et al., 2005) shows these results for the proposed example, where �gure 2.24a

represents the results for the MOGA-A and �gure 2.24b for MOGA-B

The visualization of second-order EAF is more di�cult than that of the �rst order EAF,

as it is de�ned in <2d . With two objectives, a useful workaround consists in �xing one

goal z� 2 <2 and depicting the contours of the marginal function �2
n(z

�, z) de�ned over

all z 2 <2, at given levels. Figure 2.24 (Fonseca et al., 2005) shows the contour of the

second-order EAF at levels �, 0.25 and 0.5. Figure 2.25a shows these three levels, due to
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Figure 2.24: Contour plot examples of marginal second-order EAF with two di�erent z�

goals
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Figure 2.25: Pairs (z1, z2) showing covariance values above or below a certain threshold
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the fact that �n(z
�) < 0.75 in this case, leading to �

(2)
n (z , z�)8z 2 <2. Figure 2.25b has a

further downwards goal z�, leading to the loss of another contour level.

Finally, the visualization of the empirical covariance function also requires a special tech-

nique. In �gure 2.25 (Fonseca et al., 2005) the pairs of goals which exhibit a covariance value

above or below a certain threshold are indicated in the objective space by a solid bracket be-

ginning at one goal and ending at the other, with the contours of the �rst-order EAF plotted

as a reference in the background. These �gures show objectives which are particularly likely

and unlikely to be attained simultaneously.

The experimental results for this example in (Fonseca et al., 2005) showed that, while

the EAFs of the two di�erent MOGAS did not show statistically signi�cant di�erences, the

results over their second order EAFs leaded to the rejection of the null hypotheses (equality)

at an 0.05 alpha level. This shows that the �rst-order EAF does not fully characterize

the outcome of the optimizers, such that, as pointed out previously, the lack of rejection
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of the null hypotheses (even with second-order moments) does not completely exclude the

possibility of di�erent performance between the two compared optimizers.

2.7 Approaches to stopping criteria in Multiobjective evolution-

ary algorithms

The mathematical background for convergence in MOEAs is still a work in progress in the

research community. Several works have dealt with the convergence of MOEAs to the true

Pareto front in a �nite number of function evaluations. (Rudolph & Agapie, 2000) and

(Rudolph, 2001) proved that such convergence could be achieved by MOEAs with positive

elitism and positive variation kernel. This results were extended to t ! inf by (Hanne, 1999;

Laumanns, 2003; Laumanns et al., 2002). Local optimality of solutions can be guaranteed

with the use of quadratic programming methods (Deb et al., 2007; Wanner et al., 2006),

which can establish a mathematical convergence criteria. However, the quality of the set of

solutions is not guaranteed.

The most recent approaches start with (Deb & Jain, 2002) and the proposal of running

performance metrics for convergence and diversity of solutions in the course of the optimiza-

tion run, which lead to the algorithm stop when convergence was observed. This proposal

was followed by (Roudenko & Schoenauer, 2004), where a survey of possible alternatives was

carried out, selecting a stagnation criteria based on the maximum crowding distance, thus

focusing on NSGA-II algorithm, which uses it as its selection criterion (Deb et al., 2002b).

2.7.1 Online Convergence Detection algorithm (OCD)

Online Convergence Detection algorithm (OCD) (Trautmann et al., 2009; Wagner et al.,

2009) establishes two di�erent stopping criteria based on values obtained from a set of

quality indicators. Both tests are applied to a given window. The �rst of these tests focuses

on the variance analysis, trying to determine whether this value is too small regarding the

generations in the window to continue the optimization. The second criterion analyzes the

trend in the values of the performance indicators, focusing on whether there is a signi�cant

improvement or not. OCD determines the stop of the optimizer if any of the two tests are

triggered in two consecutive generations, providing as its output the �nal generation and the

criterion which triggered the stop.

OCD requires a certain number of arguments to be established. The variance limit

VarLimit is the parameter which determines the desired approximation accuracy in single-

objective optimization. For a given window size of nPreGen generations, if the standard devi-

ation of the indicator values falls signi�cantly below
p
VarLimit, the criterion is triggered. In

(Wagner et al., 2009), a value for this parameter is empirically proposed:
p
VarLimit = 10�3.

An important feature of OCD is that the adaptation of this parameter is not required due to

di�erent expected ranges in the objective functions values, since and internal normalization

to the interval [1, 2]d is carried out. The statistical signi�cance level � for the di�erent statis-

tical tests is proposed to be set to 0.05 (as a standard value) or 0.01 (as a more conservative

value). The MaxGen parameter expresses the maximum value for runtime resources (which

might be set according to generations or function evaluations).

The number and types of desired performance indicators (PI) can be selected to evaluate

the solution quality regarding the requirements of the user. The quality indicators integrated
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in OCD are chosen according to (Knowles et al., 2005), which proposes the hypervolume

(Zitzler & Thiele, 1998), the additive � (Zitzler et al., 2003) and the R2 indicator (Hansen

& Jaszkiewicz, 1998). Additive � and R2 indicators require a reference test (since they are

binary quality indicators). This set is the output at the current generation, as is used as a

reference for all the previous nPreGen values. For the hypervolume indicator (a unary quality

indicator), the di�erence between the current generation and all the previous nPreGen values

is used.

The variance criterion performed by OCD checks whether the resulting nPreGen vectors

of n indicator values fall below the prede�ned VarLimit threshold. For that purpose, a �2 test

is used (Sheskin, 2000). The global signi�cance level � is adjusted due to the multiplicity of

the test problem using a Bonferoni correction (Dudoit & van der Laan, 2008). This implies

a �
n
for each PI variance test result.

The regression criterion uses a linear regression analysis without intercept and a respective

t� test on the estimated regression coe�cient �̂. This analysis requires a preprocessing step

where the values of PIj are standardized, which means that they are linearly transformed to

mean zero and standard deviation one, so the regression is performed on all indicators at

once.

Due to a termination in cases where the p value is higher than �, a more conservative

� leads to an earlier termination (as pointed out by intuition). Since there are several tests

performed with the same � value, it would be interesting to perform a combination and

analysis of the error which this � level implies. However, a combination of the � level in

both tests cannot be performed with respect to multiple test theory (Dudoit & van der Laan,

2008). Thus, it is important to notice that the objective is not to control the � error, but

instead to �nd reasonable critical values of the test statistics.

The description of the whole algorithm is presented in algorithm description 1, and the

statistical tests used in 2 (�2 test) and 3 (t � test).

2.7.2 MGBM stopping criterion

The MGBM criterion (Mart�� et al., 2007, 2009) uses Roudenko's work (Roudenko & Schoe-

nauer, 2004) as its base to establish a stopping criterion according to a self-de�ned improve-

ment indicator and the use of a Kalman �lter's (Welch & Bishop, 1995) output. The authors

establish the requirement of any stopping criteria to address two di�erent issues: �rst of all

the need for a measure of the improvement obtained by a given solution after an iteration of

the MOEA, and secondly a mechanism which may keep track of those measurements over

time in order to decide whether the execution of the MOEA should be stopped or not.

The argument behind the requirement for special performance indicators lies in the original

application of quality indicators to compare Pareto fronts to optimal solutions, in order to

determine the quality of an optimizer's outcome. They may be reformulated to compare

two solutions on di�erent generations of a given run of an optimizer (such as performed by

OCD (section 2.7.1), but that involves a high computational cost in the computation of the

indicator (since they were designed for o�ine processing). This leads to the creation of a

new indicator from scratch, inherently designed for the performance measurement purpose.

In MGBM, this responsibility lies in the Mutual Dominance Rate (MDR) indicator.

MDR is a metric based on set of non-dominated solutions of two consecutive generations,

P�
t and P

�
t�1. A help function is used in the formulation of the indicator, the function4(A,B)
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Algorithm 1 Algorithm for Online Convergence Detection

Require: VarLimit fmaximum variance limitg
nPreGen fnumber of preceding generations for comparisong
� fsigni�cance level of the testsg
MaxGen fmaximum number of generationsg
(PI1, ... ,PIn) fvector of performance indicators. Default: (HV , �,R2)g

Ensure: fMaxGen,Chi2,Regg fcriterion which terminates the MOEAg
Ensure: i fgeneration in which the criterion holdsg
i=0

repeat

i=i+1

Compute d objective Pareto front PFi of ith MOEA generation
~lb = min(~lb [ PFi)
~ub = max( ~ub [ PFi)

if i > nPreGen then

PF
0

i = 1 + (PFi � ~lb)=( ~ub � ~lb)

for all k 2 fi � nPreGen, ... , i � 1g do
PF

0

k = 1 + (PFk � ~lb)=( ~ub � ~lb

end for

for all j 2 f1, ... , ng do
PIj ,i = (PIj(PF

0

i�nPreGen,PF
0

i , 1, 2.1), ... , (PIj(PF
0

i�1,PF
0

i , 1, 2.1)))

fCompute PIj for PF 0

i�nPreGen, ... ,PF
0

i�1 usingg
fPF 0

i as reference set, 1 as ideal and 2.1 as nadir pointg
pChi2(j , i) = callChi2( ~PIj ,i ,VarLimit) fpvalue of the �2 testg

end for

pReg(i) = callReg( ~PI1,i , ... , ~PIn,i) fpvalue of the t-test on the generation'sg
fe�ect on the PIj ,ig

end if

until 8j 2 f1, ... , ng : (pChi2(j , 1) � �=n) ^ (pChi2(j , i � 1) � �=n)

_ (pReg(i) > �) ^ (pReg(i � 1) > �)

_ i = MaxGen

Terminate MOEA

return fMaxGen,Chi2,Regg, i

Algorithm 2 Chi2: One-sided �2 variance test for

H0 : var(PI) � VarLimit vs H1 var(PI) < VarLimit

Require: ~PI fvector of performance indicator valuesg
VarLimit fVariance limitg

Ensure: p fResultant p-value of the testg
N = length( ~PI � 1 fdetermine degrees of freedomg
Chi = [var( ~PI � N]=VarLimit fcomputes test statisticg
p = �2(Chi ,N) fLookup �2 distribution with N degrees of freedomg
return p
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Algorithm 3 Reg: Two-sided t � test on the signi�cance of the linear trend

H0 : � = 0 vs H1 : � 6= 0

Require: ~PIj , j = f1, ... , ng fvector of performance indicator valuesg
Ensure: p fResultant p-value of the testg
N = length(

⋃n
j=1

~PIj)� 1

for all j 2 f1, ... , n do
~PI

0

j = ( ~PIj �mean( ~PIj))=std( ~PIj fstandardiseg
end for
~Y := concatenate( ~PI

0

1, ... ,PI
0

n) frow vector of all ~PI
0

j g
~X := (1, ... , length( ~PI1), ... , 1, ... , length( ~PIn))

frow vector of generations corresponding to each ~PIjg
�̂ = (~X � ~XT )�1 � ~X � ~Y T flinear regression without interceptg
� = ~Y � ~X � �̂ fcompute residualsg
s2 = (� � �T )=N fmean squared error of regressiong
t = �̂√

s2(~X� ~XT )�1
fcompute test statisticg

p = 2 �min(tN(t), 1� tN(t))

flook up p value from t distribution with N degrees of freedomg
return p

that returns the set of elements of A that are dominated by at least one element of B. This

operator is formally presented in equation 2.8

C = 4(A,B), such that 8x 2 C , x 2 A,9y 2 B with y � x (2.8)

The MDR progress indicator Imdr (P
�
t ,P

�
t�1) 2 [�1, 1] contrasts how many non-

dominated individuals of iteration t dominate the non-dominated individuals of the previous

generation t � 1 and viceversa, and is represented in equation 2.9

Imdr (P
�
t ,P

�
t�1) =

j4(P�
t�1,P

�
t )j

jP�
t�1j

� j4(P�
t ,P

�
t�1)j

jP�
t j

(2.9)

where jAj is the number of elements in A.

The interpretation of the values of the MDR indicator is the following: Imdr = 1 indicates

that the population from iteration t is completely better than its precedent one, Imdr = 0

indicates that no progress has been performed in the generation, while Imdr = �1 indicates

the complete degradation in the solution quality of generation t.

The complexity of determining the non-dominated individuals at every iteration can be

computationally expensive. However, this is usually one of the steps in the running cycle of

most MOEAs, and thus can be embedded into them. Having this local Pareto-optimal fronts

P�
t and P�

t�1 the complexity order of Imdr is O(M � jP�
t j � jP�

t�1j).
The MGBM criterion bases its evidence gathering process on Kalman �lters (Welch &

Bishop, 1995). This implies the assumption that the noise present in the measured progress

indicator is uncorrelated between consecutive iterations. Furthermore, the estimated value

of the progress indicator (and its associated covariance, used internally by the �lter) follows

a Markov process (Bharucha-Reid, 1960), which implies that the outcome of each iteration

is only dependent on the previous one.
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The Kalman �lter assumes a dynamic model given by equation 2.10

xt = Axt�1 + But + wt (2.10)

where ut is an optional control input and the random variable wt N(0,Q) represents the

process noise. The measurement process is modeled by equation 2.11

zt = Hxt + vt (2.11)

where H relates the real state of the process xt to the measurement zt and vt N(0,R)

is the measurement noise.

Kalman �lter, therefore, provides the means to estimate the state of a dynamic system

from a series of incomplete and noisy measurements. Its state is represented by two variables:

x̂t which is the state estimate at time t, and Pt , which is the error covariance matrix (a

measure over the estimated accuracy of the current state estimate).

The Kalman �lter operates according to two di�erent phases: prediction and update.

Prediction phase makes an a priori estimation of the future estate according to current

information (state, covariance matrix and model). The computation of a priori variables can

be performed with equations 2.12, 2.13.

x̂�t = Ax̂�t�1 + But (2.12)

P�
t = AP�

t�1A
T +Q (2.13)

The Kalman �lter computes at every step the Kalman gain, K , value, which will be used

during the update phase to integrate the real measured values into the �lter state. This gain

can be calculated with equation 2.14

Kt =
P�
t H

T

HP�
t H

T + R
(2.14)

Once this Kalman gain has been obtained and the new measurement is received, its value

is injected into the �lter with equations 2.15, 2.16

x̂t = x�t + Kt(zt � Hx�t ) (2.15)

Pt = (I � KtH)P
�
t (2.16)

In MGBM criterion, this �lter is used according to its simplest possible model, which,

according to equation 2.12, established a constant movement without any control input

(A = 1 and B = 0). Also the prediction error in the dynamic model is disregarded (Q = 0

in equation 2.13 and also regarding the variable wt in the model equation (2.10). These

assumptions present a model according to equation 2.17, where the measurement model is

presented in equation 2.18.

Î�t = Î�t�1 (2.17)

zt = Imdr (P
�
t ,P

�
t�1) (2.18)
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Extending these simpli�cations to the remaining equations, the error covariance also

remains constant (equation 2.19), the Kalman gain can be computed with equation 2.20

and �nally the a posteriori estimate can be obtained with equation 2.21

P�
t = Pt�1 (2.19)

Kt =
P�
t

P�
t + R

(2.20)

Ît = Î�t + Kt(zt � Î�t ) (2.21)

The idea of the criterion, following these equations, is to stop the MOEA once no further

progress is being detected (̂It = 0). The constant R provides a mean to control the inertial

response of the �lter, providing a faster or slower reaction to changes. Di�erent con�guration

values are suggested for this parameter, determining an empirically obtained value of 0.1.

2.8 Time series segmentation and polygonal approximation

Time series domain involves a set of di�erent concepts and procedures to understand its

importance and the available techniques. The objectives of this introductory section are to

present those concepts in a simple way, leading the reader to easily understand the growing

importance of time series, the di�erent representation issues and how they have been faced

by the available approaches, introduce the air tra�c control domain in the context of time

series, and �nally outline the main aspects of the technique developed in this work.

Time series are sequences of data vectors, containing each of these vectors a timestamp

as one of its values. Typical examples can be found in genetic research(Yeang & Jaakkola,

2005), �nancial(Taylor, 2008), medicine(Cli�ord et al., 2006) manufacturing(Ge & Smyth,

2001) or tourism(Yu & Schwartz, 2006) applications. Several processes can be de�ned

regarding time series, such as their analysis (in order to extract di�erent meaningful char-

acteristics or patterns from them, which can be used by additional processes) or forecasting

(the development of models in order to predict future values).

The importance of time series has grown exponentially in recent years, due to the explo-

sion in the application of collection and storage technologies, generating huge amounts of

data to be processed. In the �nancial domain, a clear example is the tracking of stock prices,

being constantly updated in di�erent markets all over the world(Gionis & Mannila, 2005).

The processing of these massive amounts of data requires an approximate representation of

the information that can be more e�ciently and e�ectively handled (as the analysis of every

time point is usually not necessary nor practical, and can even be una�ordable). Time series

segmentation is a tool presented in order to resolve this issue, by means of reducing the data

dimension with appropriate models for representation and approximation.

To achieve that dimensionality reduction, segmentation processes may use di�er-

ent high level representations, such as Fourier Transforms(Brockwell & Davis, 2009),

Wavelets(Percival & Walden, 2006), Symbolic Mappings(Balzanella et al., 2010) or the

approach, recently explored by the data mining community(Gionis & Mannila, 2005; Keogh

et al., 2003; Liu et al., 2008), which will be covered in this paper: Piecewise Linear

Representation (PLR, also named Piecewise Linear Approximation, PLA). We have centered
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the scope of our proposal in this representation due to its wide application to di�erent

domains. This representation can be treated both as a �nal result itself and / or as the

basis for di�erent additional processes, such as fast similarity search(Keogh et al., 2001).

The extended use of this particular technique may be caused by its simplicity and ease of

use: PLR segmentation is based on the approximation of a Time Series T with length n by

means of a set of K segments (where K << n), approximating each of these segments by

a linear model.

A segmentation technique, in general, is responsible of the division of a time series into

a certain number of segments (ideally, as few as possible) and the approximation of the data

in each segment by a certain simple function. This introduces several interesting issues, such

as the measurement of the quality of a certain segmentation result and the consideration of

the implied cost to obtain that quality (remembering that the purpose of the whole schema

is to perform a dimensionality reduction over the original data). Di�erent classi�cations can

be performed over segmentation techniques along with the high level representation used,

being a capital one, regarding their applicability to di�erent processes, their online or o�ine

nature. O�ine segmentation algorithms may use the whole data from the time series to

obtain their segment approximation(Keogh et al., 2003), whereas online algorithms perform

their segmentation based only on the available data of an incomplete data series(Liu et al.,

2008). This nature usually has an impact on the complexity and accuracy of the resulting

algorithm (o�ine algorithms bene�t from their complete knowledge of the time series to

obtain a more accurate segmentation, while their computational complexity is more impacted

by the size of the considered time series).

Regardless of the concrete technique applied (or according to it, considering that this

fact may determine the concrete approximation used), representation of the available infor-

mation is the key to obtain e�ective and e�cient segmentation results(Zhu et al., 2010).

Time series may be a�ected by a series of factors, such as large quantity of measurements

and the presence of severe noise in them which may prevent those achievements. Thus,

dealing with those handicaps is an extremely important issue for segmentation processes.

These factors are especially relevant in time series exhibiting sensor data or video tracking

information(Machos et al., 2004).

2.8.1 Formalization

The objective of a segmentation process is to divide a data sequence into a series of segments

and approximate these segments with a simple function. In the case of study in this work,

PLR, those segments are approximated with piecewise linear models.

The segmentation process can be seen as a search over the time series measurements

trying to obtain the structure of segments that minimize (or maximize) a certain quality func-

tion. Considering each measurement represented as ~xk for a time series T , the segmentation

process is formalized in (2.22)

T = f~xkg,S(T ) = fBmg,Bm = ~xj , j 2 [kmin, ... , kmax ]!

! min
fquality (fBmg)max

(2.22)

being S(T ) the result of segmentation according to the criteria in the given function

fquality , which is minimized or maximized according to the given requirements. The best
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possible solution for this process could be obtained by considering every possible segment

obtained from the di�erent ~xk measurements of the time series and deciding the output value

according to the summation of the function error values for those segments. Equivalently,

this can be seen as a search over the di�erent possible measurements which divide the

trajectory into di�erent segments. Unfortunately, these search processes are computationally

una�ordable, leading to di�erent segmentation techniques which apply di�erent heuristics.

The traditional criteria to determine the quality of a segmentation process(Keogh et al.,

2003; Liu et al., 2008) are the following:

1. Minimizing the overall representation error (total error)

2. Minimizing the number of segments such that the representation error is less than a

certain value (max segment error)

3. Minimizing the number of segments so that the total representation error does not

exceed total error

where total error and max segment error are user de�ned parameters for the algorithm.

2.8.2 Time series segmentation algorithms overview

Time series domain has proposed di�erent algorithms according to di�erent heuristics to solve

the segmentation issue. The three main approaches are based on sling windows for online

approaches, constructive approaches based on the iterative join of di�erent segments to

provide the �nal segmentation output and, �nally, destructive approaches based on the split

of an initial segment (representing the whole data series) to meet some quality thresholds.

Sliding window(Appel & Brandt, 1983) is an online algorithm based on building growing

windows from the beginning of the time series until a certain user boundary is exceeded by the

result of an error function, leading to the creation of a new segment at that measurement and

the restart of the process. Several improvements have been performed over this basic version,

such as the Incremental Sliding Window(Liu et al., 2008), or the di�erent complementary

approaches(Vullings et al., 1997). It is also important to notice that the sliding window

algorithm is reported to give pathological results under certain circumstances(Agrawal et al.,

1993).

Top Down algorithm(Keogh et al., 2003) is an o�ine process based on �nding the best

splitting point (understanding by this that measurement which divides the trajectory into the

two segments with the lowest added errors) recursively, until all the resulting segments have

an error value bellow a user de�ned boundary. The Top Down algorithm is applied in a wide

variety of domains and �elds, being also known by di�erent names(Douglas & Peucker, 1973;

Duda & Hart, 1973). As in the case of the sliding window, there are numerous improvements

to the basic top down algorithm. Alternative approaches(Park et al., 1999) perform di�erent

initializations based on valleys and peaks

Bottom up algorithm(Keogh et al., 2003) is an o�ine process complementary to Top

Down, where the time series is initially divided into every possible segment (composed of two

measurements) and �nds the best possible segment fusion afterwards (understanding by this

the fusion which obtains the segment with the lowest error) until any possible fusion obtains

a segment having an error above a user de�ned boundary. The bottom up algorithm, as well,

has spread to di�erent �elds and research areas using di�erent names, such as the computer

graphics domain and decimation methods(Heckbert & Garland, 1997).
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2.8.3 Polygonal approximation algorithms overview

Polygonal approximation techniques for segmentation are a particular case of time series

segmentation where the data analyzed is a closed curve and the timestamp is simply a

relative ordering among the points. These data streams can be formalized according to

equation 2.23, which de�nes the components of a given curve, where xi and yi are the plane

coordinates of the point and i is the point's number.

t = f~pig, ~pi = (xi , yi , i), i = 1, ... , n (2.23)

From the de�nition of the input data included in equation 2.23, the de�nition of a

segmentation process may be formalized with equation 2.24, where each Bm is one of the

resultant segments, composed of a set of ~pi points. Dominant points are those at the

extremes of each of these segments, kmin and kmax , which delimit them.

S(t) = fBmg,Bm = f~pig, i = kmin, ... , kmax m 2 [1, ... , n � 1] (2.24)

Approximation algorithms can be divided into sequential, split and merge and heuristic

search approaches. Sequential approaches are constructive methods based on a given local

search over the current data, trying to obtain, at each step, a new segment division (where

the length of these segments is sequentially increased) which satis�es a certain criterion.

Examples of the used criteria may be �nding the longest possible segments (Sklansky &

Gonzalez, 1980) or a combination of �nding the longest possible segments with the minimum

possible error (Ray & Ray, 1992). Split and merge approaches perform an initial segmentation

over the given time series and afterwards start an iterative process to merge the initial

segments until a certain criterion is met. According to their de�nition, these approaches

have to deal with two di�erent issues: the initial segmentation procedure and the merging

criterion. An example of these techniques is (Ramer, 1972), which performs an initial

boundary segmentation, followed by a sequence of steps where the segment is split at the

point with the furthest distance from the corresponding segment unless the approximation

error is lower or equal than an speci�ed error tolerance.

Heuristic search approaches are based on the development of heuristic methods in order

to avoid the exhaustive search of the optimal dominant points for the given curve (which is a

process with an exponential complexity). Di�erent techniques may be used for this purpose,

such as dynamic programming (Dunham, 1986; Sato, 1992) or several metaheuristics, among

them solutions based on genetic algorithms (Goldberg et al., 1989; Pal et al., 1998; Tsai,

2006; Yin, 1999, 1998), which will be highlighted in this work due to their relationship with

the proposed solution. The idea proposed by these works is to codify the time series as a

chromosome with n genes, corresponding each of these genes to one of the points in the

original data. If the gene value is a "1", it is considered a dominant point, and the algorithm

tries to �nd the ideal codi�cation of the chromosome according to a �tness function which

evaluates the quality of the given codi�ed segmentation in the chromosome.

To provide an insight into the importance of dominant points for these approaches, we

will describe two speci�c polygonal approximation approaches: Teh and Chin algorithm (Teh

& Chin, 2002) and Marji and Siy algorithm (Marji & Siy, 2003).

Teh and Chin algorithm (Teh & Chin, 2002) is based on the concept of the region of

support (Langridge, 1972): this concept states that each boundary point of a closed curve
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must have its own view of the curve, being dominant points those which have a meaningful

view of the curve which blocks the view of other non-dominant points.

In (Teh & Chin, 2002) the proposal is based on the di�culty of determining the curvature

of a digital curve. The functions to determine discrete curvature are named measures of

signi�cance (Rosenberg, 1972). Three di�erent measures of signi�cance are used: the k

cosine measure, the k curvature measure and the 1 curvature measure. The algorithm starts

with the calculation of the region of support for a given point pi . This calculation is performed

determining the length of the chord joining the points pi�k and pi+k (lik , shown in equation

2.25) and the perpendicular distance of the points contained in the chord to their respective

ones in the original data, dik . This process is continued until the value of the length of the

chord stops growing or until the mean distance starts growing (represented in equation 2.26).

lik = jpi�kpi+k j (2.25)

{
dik
lik
� di ,k+1

li ,k+1
, if dik > 0

dik
lik
� di ,k+1

li ,k+1
, if dik < 0

(2.26)

The second step of the algorithm calculates the three measures of signi�cance. Finally,

according to the previous data, dominant points are calculated suppressing non-maximal

points from the previous sets. This is performed following an iterative process which sequen-

tially �lters the points according to their measure of signi�cance value. This process changes

depending on the concrete measure used.

Marji and Siy algorithm (Marji & Siy, 2003) relies on the concept of support arms. This

implies that the region of support is not used to calculate a signi�cance measure of the

boundary points, but instead compute the strength of the end points of their calculated

regions of support, both in clockwise and counterclockwise directions. This strength is

determined by the frequency of their choice.

To determine both support arms, the function shown in equation 2.27 is maximized,

where Ljk is the length of the segment joining points pj and pk and Ejk is the sum of the

squared perpendicular distances of the points contained between pj and pk to that segment.

This is performed increasing iteratively the length of the region until that increase makes the

function obtain a lower value. When that happens, the previous end point is considered the

support point. Variable k has an initial value of j + 2 or j � 2, depending on which support

arm is being calculated.

F = Ljk � Ejk (2.27)

The algorithm proceeds calculating the support arms of all points, and determining their

classi�cation as dominant depending on the classi�cation of the points surrounding them,

their distance to the segment delimited by the dominant points immediate to their left and

right and the possible overlapping of regions of support.

2.9 Conclusions and analysis

This fundamentals chapter has proposed the required framework for the thesis proposal,

according to the following principles: overview of problem classi�cation and applicability of
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metaheuristic approaches, description and de�nition of these approaches, according to their

two complementary functions (diversi�cation and intensi�cation), presentation of evolution-

ary approaches, according to their main characteristics, with a special focus on stopping

criteria and multi-objective approaches, being �nally followed with a more in depth analysis

of quality assessment and several available multi-objective stooping criteria approaches. Also,

a coverage of the application domain has been included, introducing the segmentation issue

with a special focus on the approach followed, Piecewise Linear Representation.

The analysis of metaheuristic applicability shows that there is not an immediate appli-

cation relationship between tractability of a problem and the requirement for metaheuristic

approaches to solve it (as covered in section 2.2). This resembles the automatic assignation

usually made of NP-hard problems to metaheuristic approaches and P problems to exact

algorithms. Also, a factor which must be taken into account for the application to real

problems is the design cost of a particularized exact algorithm to solve a particular tractable

problem, comparing it with the representation and objective function design (sections 2.4.1

and 2.4.3) which are required for the application of a general purpose metaheuristic such as

evolutionary algorithms.

This supposed ease of application usually assigned to evolutionary approaches (where,

ideally, the only domain information required is introduced in the representation and �tness

assignation steps) must also be reviewed with care. This application guideline poses every of

the steps covered in �gure 2.6 as a black box, where independent improvements and research

can be performed , with a strict relationship to the representation used, as seen in section

2.4. On the one hand, this approach has allowed the independent focus on each of these

processes and the independent improvement over each of them (particularly noticeable in the

transformation operators, mutation and crossover, as covered, respectively, in sections 2.4.4

and 2.4.5). Also, it simpli�es the application of these algorithms for practitioners, being

closely related to their current extended use.

On the other hand, however, this independent overview of the di�erent steps of evolu-

tionary algorithms (and metaheuristics in general, as introduced in section 2.3) introduces

a series of handicaps. The introduction of domain knowledge at di�erent additional steps

during the algorithm development has been proved to be bene�cial (particularly for initial-

ization procedures, as analyzed in section 2.4.2). Also, the inclusion of an external decision

maker may prove bene�cial, integrating cycles of automatic optimization and decision making

(as seen in the progressive techniques overviewed in section 2.5.1). Finally, there may be

uncovered interactions between di�erent choices for these di�erent black boxes, which may

require a detailed analysis. This is the case, for instance, of population diversity and stopping

criteria (shown in the classi�cation of approaches in section 2.4.7).

Stopping criteria have been one of those steps receiving the least amount of research

interest, being a topic related mostly to practical applications. In most approaches (partic-

ularly visible when quality comparisons are involved), this has been resolved based on static

exhaustion budgets (set according to the di�culty of the particular problem or test set). Ac-

cording to this criterion, the comparison was based on the quality of the obtained solutions.

In many real application cases (where the cost of the �tness function computation clearly

determines the complexity of the algorithm) the decision maker or algorithm designer usually

assumes the role of this stopping criterion (since there is no a-priori budget to be ful�lled).

The stopping criteria step is closely related to quality assessment (covered in section

2.6). which has continuously been the objective of a great amount of interest and research,
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since it is a crucial step for the performance measurement of new approaches and alternatives

(being this performance usually measured omparatively according to previously available ap-

proaches). This relationship is clearly visible in the newly developed approaches to stopping

criteria in multi-objective optimization (covered in section 2.7). The study of quality assess-

ment technique reveals that attainment functions (section 2.6.2) are yet to �nd applicability

to stopping criteria approaches, generally based on quality indicators (section 2.6.1), probably

due to their more extended application for quality measurement (usually based on statisti-

cal testing over hypervolume indicator values) and the inherent complexity of the technique

(even though some of the di�culties related to its application to a set of di�erent executions

would disappear in its application as part of a stopping criterion).

Covering the speci�c stopping criteria approaches overview in this state of the art, OCD

2.7.1 displays a robust approach to stopping criteria based on previous studies regarding

the applicability of di�erent quality indicators and techniques to quality assessment. Several

issues, may be mentioned, however: the establishment of the di�erent con�guration and

design parameters are not strictly related to the evolutionary theory, but rather to statistical

considerations, making them hard to comprehend and modify for the standard researcher.

Also, as pointed out in the algorithm description, this robustness comes at a certain price.

First of all, due to the di�erent tests performed, no possible analysis of the error intro-

duced in the � parameter can be performed. Typical values are suggested for this parameter,

based on empirical results to �nd reasonable critical values for the test statistics. This ap-

proach to the � parameter, even though it obtains remarkable results, somehow contrasts

with the robustness and highly theoretical support for the formulation of the di�erent steps of

the algorithm. The e�ect of the resources window must also be taken into account. Another

important handicap inherited from this robustness based approach (according to the quality

assessment analysis followed) is the computational cost: for every new algorithm generation,

a complete re-normalization of the di�erent Pareto fronts stored must be performed, the in-

dicators recomputed with respect to the new last front and the criterion tests reapplied. This

considerations may be particularly important for some of the indicator presenting a higher

computational cost, such as hypervolume.

MGBM stopping criterion 2.7.2 follows the complementary path to OCD: to avoid compu-

tationally expensive stopping criterion calculation, it presents a brand new progress indicator

to cope with the comparison of the di�erent Pareto fronts, and guides the assessment ac-

cording to this indicator. The mutual dominance indicator (MDR) resembles the archiving

procedure introduced in SPEA2, basically considering, as it name points out, the mutual

dominance between the elements of the two considered Pareto fronts. Also, according to

this performance based approach, guidelines to the introduction of this indicator as part of

the traditional evolutionary cycle are provided. The arising question here is whether this in-

dicator provides enough information to guide the stopping assessment properly or not. Also,

even though it is proposed as a binary indicator following the quality assessment guidelines

available, its properties, particularly regarding compatibility and completeness (de�nitions

2.6.7 and 2.6.8).

Covering the information processing performed, a remarkable choice is the suppression of

one of the noise sources (Kalman �ltering provides one for the underlying considered model

and one for the measuring process). While this choice is justi�ed in the algorithm detailed

analysis, this introduces the consideration of whether a di�erent model should not be chosen

for this task (which did not include the suppressed noise source), or even a di�erent processing
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schema introduced. Once again the input parameters may not be easily understandable for

a researcher focused on evolutionary computation, which may not be familiar with linear

estimation techniques, being also faced with the presentation of suggested values according

to empirical results.

Regarding the available segmentation techniques, one of the arising di�culties are the

di�erent domains which they are applied to, which has led to di�erent research lines which

in some cases have led to similar algorithms. An analysis over these di�erent domains also

highlights the cost of dealing with speci�c domain issues, which imply a high degree of devel-

opment for the di�erent heuristics developed. Also, as noted in section 2.8, a segmentation

is a dimensionality reduction, and the results of that reduction are traditionally measured in

terms of its quality, disregarding the cost of that reduction. A possible explanation for this

fact is that the presented heuristic approaches lack a proper direct control mechanism over

that cost.



3
An initial non-evolutionary approach

to the application domain: HLRA

\
He found insanity no excuse, however, for irrational behavior Some men

were blind, others had poor tempers Still others heard voices It was all

the same, in the end A man was de�ned not by his 
aws, but by how he

overcame them "
Brandon Sanderson, Mistborn:The Well of Ascension, 2007

This chapter will present the Air Tra�c Control domain as an application domain of Piece

Linear Representation and segmentation techniques. This domain presents some very inter-

esting properties which increase the di�culties of traditional heuristic techniques applied in

segmentation approaches. Even though the solution currently presented is not evolutionary

based, some of the applied techniques are closely related. The problem's nature is analyzed

according to some of the representation theory introduced in sections 2.4.3 (formalization of

�tness functions) and 2.5.1 (multi-objective evolutionary approaches), leading to its formal-

ization as a multiobjective problem. The solution comparison resorts to quality indicators,

which were covered in section 2.6.1, and the performance assessment of the introduced

technique, in general, relies in quality assessment developments for evolutionary algorithms

(section 2.6). Also, this development opens future lines regarding evolutionary solutions for

a further application of the multiobjective nature highlighted in this chapter, which are one

of the focuses of this thesis, and will be developed in chapters 6 and 7. The main reference

works for this chapter are (Guerrero et al., 2011, 2010; Guerrero & Garc��a, 2009)

3.1 Introduction

Time series segmentation, along with some of its most representative approaches, has been

covered in section 2.8. A paradigmatic time series domain is Air Tra�c Control (ATC),

which analyzes the data coming from sensors measuring the position of aircraft, which is

recorded for o�ine validation, resulting in time series usually named opportunity tra�c. This

opportunity tra�c information is the only available experimental data in this domain.

In this section, ATC will be used as a source for opportunity tra�c time series in order

to perform PLR segmentation over them. The particular importance of these time series



54 3. An initial non-evolutionary approach to the application domain: HLRA

is related to the domain activities: ATC is a critical area related with safety, requiring

strict validation in real conditions (Garcia et al., 2009), being this one of the previously

mentioned domains where the amount of data has gone under an exponential growth (in

this case due to the increase in the number of passengers and 
ights). This has led to the

need of automation processes in order to help the work of human operators (Baud et al.,

2009). These automation procedures can be basically divided into two di�erent processes:

the required online tracking of the aircraft (along with the decisions required according to

this information) and the o�ine validation of sensor data processors. The evaluation task is

usually separated into two sub-processes, segmentation (Guerrero & Garc��a, 2008; Guerrero

et al., 2010b), showing a slightly di�erent meaning to the one previously introduced, as it only

covers the division of the time series into a series of segments, and reconstruction (Garcia

et al., 2009), which covers the approximation of the segments which the trajectory was

divided into. Arti�cial intelligence techniques have been applied for di�erent purposes, such as

establishing a formalization of the domain theory and its associated validation process (West

& McCluskey, 2001). Considering it from the segmentation point of view, opportunity tra�c

provides very interesting time series due to the di�culties which segmentation processes have

to face in them. These di�culties, along with the characteristics of data measurements,

may include reformulations of the quality functions used to measure the accuracy of a

segmentation result (due to the high noise in the measurement values and the knowledge of

the motion models which the aircraft may perform).

This chapter reviews the performance of traditional segmentation techniques and pro-

poses a new approach for these particularly di�cult domains to deal with for PLR segmenta-

tion: noisy domains with a large number of measurements. The technique presented is built

according to established segmentation design characteristics, also discussing the treatment

which these design characteristics have received in the available algorithms. The presented

approach will lead to the introduction of the Hybrid Local Residue Analysis (HLRA) segmen-

tation technique, particularizing its results for the ATC domain. The introduction of quality

measures is also required in order to cope with the noisy data and the multiobjective nature

of the problem solutions, which, along with the proper statistical testing, will be used to test

the relevance of the obtained results over a dataset containing opportunity tra�c trajectories

from the ATC domain.

3.2 Segmentation issues in the ATC domain

The traditional PLR segmentation techniques exhibit a series of problems and issues in

domains with high noise and very long series. These domains are particularly interesting

when there is available information about the introduced noise (or accurate estimations of its

value), being a clear example of this fact the measurements obtained by sensor devices (having

an individual model for their measuring errors), which have in the ATC domain one of its

most representative examples. Typical sensor devices are radar (Skolnik, 2008), GPS (Farrell

& Barth, 1999), or inertial (Groves, 2008). This data is often processed by intermediate

data fusion architectures (Liggins et al., 2008) (these architectures will be brie
y covered,

according to their possible application to multiobjective evolutionary algorithms stopping

criteria, in section 5.2.3). Thus, the introduction to these domains will be performed by the

description of the particular ATC domain, in order to be able to build the argumentation

leading to the proposed technique.
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The basic data in the ATC domain are the trajectories recorded from 
ying commercial

aircraft, containing sensor plots with the following components: stereographic projections of

their x and y components (which are a representation in a common reference frame of the

di�erent radar measurements), covariance matrix (representation of the noise introduced

by the positioning system: radar, GPS, multilateration, etc) and detection time. This

domain also allows us to exploit some related knowledge due to the fact, as has already

been pointed out in references such as (Garcia et al., 2009) that the movement models

(MM's) of commercial 
ights have a certain uniformity in their values (meaning that they

tend to follow certain MM's smoothly, without abrupt changes in the position values). This

prevents the application of approaches to detect abrupt changes, such as the one exposed in

(Zhu et al., 2010), based on the identi�cation of those changes (named feature points).

In this domain, the models followed by an aircraft can be usually simpli�ed into three

di�erent possibilities achieving remarkable results (Garcia et al., 2009): uniform, turn and

acceleration MM's (which might be reduced even to only two, considering that a turn is only

a transversal acceleration MM). An important consideration is the length of the maneuvers

when we compare them to the uniform segments of the trajectory. If we consider that in a

whole time series q measurements were recorded while the aircraft was performing some kind

of maneuver and p measurements were recorded while the aircraft was performing a uniform

MM, for the vast majority of trajectories, p >>> q. These trajectories are performed

in airways areas, the most common situation in the available airspace. When the plane

approaches a terminal in the surroundings of airports, it gets into terminal maneuvering

areas (TMA), where this rule does not apply. To illustrate these di�erences we have included

into the considered dataset racetracks examples, the trajectories performed by aircraft during

the landing procedures, which we will analyze later.

Therefore, the right identi�cation of the uniform segments becomes the key factor in this

domain (which involves the di�culty of being able to di�erentiate the e�ects of the noise

from those due to the start or end of a maneuver). An e�ective PLR segmentation technique

should be able to adequately identify those long uniform segments accurately. There is very

valuable information which algorithms must seek to introduce. This information includes

noise and maneuvers data. The noise introduced in the time series' values is caused, as

explained, by di�erent measuring devices, usually external, such as radars (Skolnik, 2008) or

automatic dependent surveillance (ADS) systems based on GPS (Williams, 2009). Usually

the segmenting algorithm is provided this information by a covariance matrix under Gaussian

assumptions, not requiring it to know or apply special noise considerations depending on the

measuring device. The additional important source of information involves the minimum and

maximum length of the maneuvers the aircraft may take (which is specially delimited when

handling commercial air tra�c). This data can provide us with con�guration parameters for

our algorithms, in order to adjust them to the kind of tra�c they will be dealing with.

According to the analysis presented in this section, PLR segmentation techniques will

have to deal in the ATC domain time series with three di�culties: the noise introduced by

the measurement device, the large number of measurements which compose each trajectory

performed by an aircraft and the proper segmentation of the long uniform segments which

these aircraft exhibit.
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3.3 Time series segmentation techniques

The objective of a segmentation process is to divide a data sequence into a series of segments

and approximate these segments with a simple function. In the case of study in this work,

PLR, those segments are approximated with piecewise linear models.

The segmentation process can be seen as a search over the time series measurements

trying to obtain the structure of segments that minimize (or maximize) a certain quality func-

tion. Considering each measurement represented as ~xk for a time series T , the segmentation

process is formalized in equation (3.1)

T = f~xkg,S(T ) = fBmg,Bm = ~xj , j 2 [kmin, ... , kmax ]!

! min
fquality (fBmg)max

(3.1)

where S(T ) is the result of segmentation according to the criteria in the given function

fquality , which is minimized or maximized according to the given requirements, and Bm is

a concrete segment from the solution (which covers the points between kmin and kmax
boundaries). The best possible solution for this process could be obtained by considering

every possible segment obtained from the di�erent ~xk measurements of the time series and

deciding the output value according to the summation of the function error values for those

segments. Equivalently, this can be seen as a search over the di�erent possible measurements

which divide the trajectory into di�erent segments. Unfortunately, these search processes

are computationally una�ordable, leading to di�erent segmentation techniques which apply

di�erent heuristics.

The traditional criteria to determine the quality of a segmentation process (Keogh et al.,

2003; Liu et al., 2008) are the following:

1. Minimizing the overall representation error (total error)

2. Minimizing the number of segments such that the representation error is less than a

certain value (max segment error)

3. Minimizing the number of segments so that the total representation error does not

exceed total error

where total error and max segment error are user de�ned parameters for the algorithm.

The previous criteria highlight the fact that, instead of a single quality function, these

processes usually have to minimize (or maximize) a set of di�erent error functions jointly

(typically an error function measuring the distance to the original time series, for example

an Euclidean distance, and a di�erent one measuring the cost of that error, for example the

number of segments used for the segmentation), changing this approach into a multiobjective

optimization problem (MOOP) (Ehrgott, 2005), formally represented by equation (3.2).

Additionally, sets of restrictions over the quality functions may be set.

T = f~xkg,S(T ) = fBmg,Bm = ~xj , j 2 [kmin, ... , kmax ]!

! min ffq1(fBmg), ... , fq1(fBmg)gmax

(3.2)
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Following the formalization in equation (3.2), we may introduce the three quality criteria

presented for the PLR problem obtaining equation (3.3).

Bm =~xj , j 2 [kmin, ... , kmax ],m 2 [1, ... , segnum]! minfd(S(T )),T )

, segnumg such that

{
d(S(T ),T ) � total error

8m, d(fap(Bm),Bm) � max segment error

(3.3)

where d(P,Q) is a distance error function between series P and Q, fap(B) is the approx-

imation function result over series B (in PLR the resulting line which approximates the data

in series B), and segnum is the number of segments obtained by the applied segmentation

algorithm.

Comparing the three di�erent formalizations for the segmentation process presented fol-

lowing the theory in section 2.4.3 (objective function de�nition for evolutionary algorithms),

the evolution is stated from a single objective, unconstrained optimization function (initially

presented in its general form in equation 2.2 and particularized for current domain in equa-

tion 3.1) to a multi-objective formulation introducing the di�erent criteria stated (presented

in equation 2.4, along with a set of general constrains, and the current domain adaptation

without such constrains in equation 3.2), �nally leading to the multiobjective constrained op-

timization formulation (where constrained optimization was presented in its single-objective

version in equation 2.3, in its multiobjective version in equation 2.4 and particularized for the

segmentation issue in equation 3.3).

The reader may notice that minimizing the number of segments seems to be a key factor

in the quality of the segmentation process (as it appears in two out of the three criteria). Even

so, most capital references on this topic, such as (Keogh et al., 2003), even though they state

the three previous criteria, base their quality comparisons on only one factor: total error .

Only recently the number of segments is beginning to be compared as a performance metric

over the quality of a segmentation process, in references such as (Liu et al., 2008).

The lack of attention to a performance metric which is, at the same time, stated to be a

very important one, can be explained by looking at the design of traditional algorithms (which

will be covered in the next subsections) and the absence in them of mechanisms to actually

control that the number of segments is kept to an allowable minimum. Their approach is

based on equation (3.1), using a leading quality function based only on the approach error

compared to the original time series. The segmentation approach proposed in this chapter

will take into account that value not only as a quality comparison value, but also as a design

consideration. This is especially important for noisy domains, since considering only the

representation error leads to oversegmentation in the trajectories, due to the algorithm's

excessive focus on the position changes caused by the noise.

An obvious determinant factor not yet commented is the computational complexity of

the segmentation process. In general, segmentation processes are required to have low

computational complexity (or at least a scalable one), either in online (due to the real-time

requirements) or o�ine (due to the huge amounts of data required) processing.

Along with the di�erentiation between online and o�ine algorithms, the linear segmen-

tation process can be divided, as well, into two di�erent approaches: linear interpolation and

linear regression. The former uses the equation of a straight line given two points which

belong to it (using the initial and end points of the segments) to obtain the approximation

segment. This produces a segmentation of the time series with continuous piecewise lines.
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On the other hand, linear regression, as its own name indicates, uses a regression line to

approximate all the points belonging to the segment with a criterion of minimum residual

error, producing a set of disjointed lines. The overall error obtained by a linear regression is

always less than or equal to the one obtained with a linear approximation, which, along with

the low computational complexity it involves, are some of the reasons for its usual choice

(Keogh et al., 2003; Liu et al., 2008). There are additional di�culties faced by linear inter-

polation approaches in noisy domains, due to their high sensitiveness to the position of the

initial and �nal measurements of the segment, which can rede�ne the interpolated segment

completely. According to this analysis, we will introduce linear regression into the applied

techniques presented in this chapter. Linear approximation, on the other hand, is required

for polygonal approximation, so it will be the technique used in chapters 6 and 7.

A �nal decision regarding a general segmentation algorithm is whether the �nal seg-

ments will be continuous (meaning that the end measurement of segment i is the beginning

measurement of segment i + 1) or discontinuous (each measurement belongs only to one

segment). Some algorithms are more sensitive to this choice than others, being bottom up

approaches the most a�ected by it (since a discontinuous approach introduces limitations in

the possible sizes of the output segments). The algorithms presented in this chapter will use

a continuous approach, in order to prevent possible limitations introduced by discontinuous

segments.

An overview of the three traditional time series segmentation techniques which will be

used in current chapter has been presented in section 2.8.2. Their implementation will

be based in the pseudocodes provided in (Keogh et al., 2003). Relating the algorithm

descriptions to current domain characteristics, particularly the noisy data, it becomes specially

relevant the fact that sliding window (Appel & Brandt, 1983) is considered to obtain a best

relative performance on noisy data (Keogh et al., 2003) and that alternative implementations

of the Top Down algorithm, such as (Park et al., 1999) initializations based on valleys and

peaks, are on the other hand, reported to perform poorly on noisy datasets.

3.4 The Hybrid Local Residue Analysis technique

In the presentation of segmentation techniques (section 3.3), the multiobjective nature of

segmentation algorithms and the importance of the number of segments was introduced

(equations 3.2 and 3.3). Even so, these techniques do not provide any explicit mechanism

to deal with this performance metric, which explains the lack of coverage this parameter has

in most of the available literature. This fact, which is important in any general domain, is

even more so in the ATC domain. The reason for this importance is that, as was explained

in section 3.2 of this chapter, typical ATC time series consist of very long uniform segments

causing that, if our segmentation technique outputs a large number of segments, it probably

means that we are oversegmenting, using that information to cover the position changes

introduced by the noise in the measurements (which, in terms of storage, is a waste of

capacity, and di�culties the processing of the output for a di�erent range of processes, such

as reconstruction (Garcia et al., 2009)).

This introduces a di�erent quality factor to the presented domain: there is a requirement

not only for a number of segments as low as possible, but also for the concentration of those

segments on the maneuver sections of the analyzed time series. Generally, multi-objective

formulations contrast some performance measure (in this case, the representation quality in
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terms of an error value) versus some cost measure (in this case, the number of segments).

The capital di�erence in current proposal is the fact that the comparison of performance

versus cost measures is not su�cient to assess the result of the algorithm, since the noise

may lead to misleading results, and thus there is requirement for a more complete analysis of

the cost's investment. These considerations will be taken into account for the performance

comparison introduced in section 3.6.1.

The general idea of the proposed approach, the Hybrid Local Residue Analysis (HLRA)

technique, is to analyze each measurement of the trajectory according to a surrounding

window and assign a classi�cation value to it (local classi�cation according to a residue

value). This classi�cation determines if the measurement is considered to belong to a

uniform MM or non-uniform MM. Adjacent measurements sharing the same classi�cation

are considered to belong to the same segment. Once the whole time series has been

classi�ed following this approach, those segments which were classi�ed as belonging to a non-

uniform MM are segmentated according to the bottom up algorithm (hybrid segmentation

schema). The segmentation positions obtained this way are relative to the beginning of

the non-uniform segments, which require to be corrected to their respective positions in the

complete time series in order to be added to the �nal solution. Figures 3.1 and 3.2 present

an overview of the two phases of this process, while �gure 3.3 shows an example over a

turn trajectory. This example shows that the �rst phase of the algorithm, by the use of

the local classi�cation information, is able to accurately segmentate the time series data

where the aircraft was performing a uniform MM, while those sections where a non-uniform

MM was being performed are handled afterwards and segmentated by the general bottom-up

algorithm.

O�ine processing allows the use of information both from past and future values of the

time series. Introducing this fact into a local representation, the information will be restricted

to a certain local segment around the measurement which is to be classi�ed. These intervals

are centered on that measurement, but the boundaries for them can be expressed either in

number of measurements (equation 3.4) or timestamp values (equation 3.5).

S i
j = f~x ikg, k 2 [j � p, j + p], p 2 [j � 1,N � j ] (3.4)

S i
j = f~x ikg, t ik 2 [t ij �m, t ij +m],m 2 [t ij � t i1, t

i
N � t ij ] (3.5)

where S i
j is a given segment from the trajectory centered on measurement j , N is

the number of measurements contained in the time series, p is the sample window size

and determines the possible boundaries for a given segment according to its number of

measurements (from measurement 1 to measurement N) and m is the time window size,

which determines those same possible boundaries according to their timestamp. Once the

required window around current measurement has been properly chosen, a function is applied

to that segment in order to obtain its classi�cation. This general classi�cation function F (~x ij )

, using measurement boundaries, is represented in (3.6)

F (~x ij ) = F (~x ij jT i)! F (~x ij jS i
j ) = Fp(~x

i
j�p, ... ,~x

i
j , ... ,~x

i
j+p) (3.6)

From this formulation of the problem we can already see some of the choices available:

how to choose the segments (according to equations (3.4) or (3.5)), which classi�cation

function to apply in eq. (3.6) and how to perform the �nal segment synthesis. An example
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Figure 3.1: Hybrid Local Residue Analysis �rst phase overview

of the segmentation issue according to the local classi�cation formulation is presented in

�gure 3.4.

The segment boundaries are de�ned by the domain knowledge. As exposed in the

domain section, this knowledge is usually in the form of average duration (in time) of typical

maneuvers, so the algorithm will resort to equation (3.5), setting a value for m adjusted

to the half time duration of the longest possible maneuver. Once the analysis window has

been �xed, the classi�cation function will be based on a Best Linear Unbiased Estimator

(BLUE) (Henderson, 1975) residue value (domain transformation), in order to introduce

noise information in the uniform segment detection, and an automatic threshold choosing

technique to determine the �nal classi�cation over that value.

3.4.1 Introducing noise information: the BLUE residue

The �rst phase of our algorithm covers the process where we must synthesize an attribute

from our input data to represent each of the trajectory's measurements in a transformed

domain and choose the appropriate thresholds in that domain to e�ectively di�erentiate

those which belong to our model from those which do not do so.

The transformation function decision is crucial. A BLUE residue value will be used, where
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Figure 3.2: Hybrid Local Residue Analysis second phase overview

we will be able to introduce the noise information by means of a covariance matrix Rk . The

assumed linear model is presented in equation (3.7)

~xm(k) =

[
xm(k)

ym(k)

]
=

[
1 tk 0 0

0 0 1 tk

]
x0
vx0
y0
vy0

+

[
nx(k)

ny (k)

]
= H(tk)~� + ~n(k) (3.7)

The �rst component H(tk)~� represents the ideal estimated parameters for a uniform

segment (initial position and velocity). The best estimator of these parameters with minimum

squared weighted residual is introduced in eq. (3.8). The noise information is introduced

in (3.8) in the form of its covariance matrix, Rk . Then, with estimator ~� the interpolated

positions for the x and y components of the points can be calculated with eq. (3.9). Finally,

with the previous values, the normalized BLUE residue can be obtained with eq. (3.10).

〈
~�
〉
=


hx0i
hvx0i
hy0i
hvy0i

 = (
∑
k

H(tk)
TR�1

k H(tk))
�1
∑
k

H(tk)
TR�1

k ~xm(k) (3.8)
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Figure 3.3: Example of the HLRA's results over a sample turn trajectory

xint(k) = hx0i+ hvx0i k yint(k) = hy0i+ hvu0i k (3.9)

res =
1

kmax � kmin + 1

kmax∑
k=kmin

(
x(k)� xint(k) y(k)� yint(k)

)
R�1
k

(
x(k)� xint(k)

y(k)� yint(k)

) (3.10)

where x(k), y(k) are the sensor measurements values, Rk is the covariance matrix

(associated to the sensor) and xint(k), yint(k) are interpolated values using equation (3.9).

The threshold choosing technique is closely related to the domain transformation, involv-

ing how we determine if a measurement belongs to the model or not. The choice for this

parameter will be detailed in the next section.

3.4.2 Threshold choosing technique

The threshold choice involves determining the boundary above which transformed measure-

ments will be considered as unknown. Figure 3.5 shows an example of a possible choice over

the presented transformed domain.

According to previous considerations, the objective is to classify the measurements be-

longing to a uniform MM correctly, with a special attention regarding the limits where the

aircraft's MM changes to a di�erent one. Graphically over �gure 3.5, that implies getting the

straight line as low as possible, leaving only the central section over it (where the maneuver

takes place, making its residue value high enough to get over our threshold).

The presented residue value in eq. (3.10) follows a Chi-squared probability distribution

function (pdf) normalized by its degrees of freedom, n. n is given by twice the number of

2D measurements contained in the interval minus the dimension of P (P=4 in our uniform

segments, as we are imposing four linear restrictions). For a valid segment residual, res
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Figure 3.4: Local approach segmentation overview

behaves with distribution 1
kmax�kmin+1�

2
2(kmax�kmin+1)�P , which has the mean and variance

detailed in eq. (3.11).

� = 2� P

kmax � kmin + 1
�2 =

4

kmax � kmin + 1
� 2P

(kmax � kmin + 1)2
(3.11)

The residue distribution allows us to establish our criterion based on the percentage of

measurements belonging to uniform MM. We may use the Tchebyche�'s inequality (Meyer,

1970) to determine a threshold which should leave the 90% of the measurements belonging

to our linear model above it, with �+3� value. Using the values from eq. (3.11), eq. (3.12)

presents the obtained threshold value.

thres = 2� 4

N
+ 3

√
4

N
� 8

N2
(3.12)

This threshold depends on the resolution of the segment, which also in
uences the residue

value in (3.10). It is interesting to notice that the highest threshold value is reached with the

lowest resolution. This is a logical result, since to be able to keep our percentage of uniform

measurements correctly classi�ed (usually called True Positives Rate or TPR), which has been

�xed with the inequality at 90%, with short segments, we need to have a high threshold, in

order to counteract the noise e�ects (while longer segments are more resistant to that noise

and thus the threshold value may be lower).

It is necessary to determine how precisely the chosen �2 distribution represents the nor-

malized BLUE residue in non-uniform trajectories with estimated covariance matrix. The

following �gures we compare the results obtained using equation (3.12) with the optimal

result of the threshold choice (dotted lines), manually chosen to obtain the highest possible

TPR while False Positives Rate (FPR, measurements not belonging to the uniform model
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Figure 3.5: Threshold choosing example

misclassi�ed) remains in a zero value. Figure 3.6 shows the used trajectories for this compar-

ison, whereas �gure 3.7 shows the actual comparison for the proposed trajectories between

the optimal TPR and the one obtained with eq. (3.12) for increasing threshold values.

In the two trajectories in �gure 3.7 we may appreciate two distortion e�ects introduced

by the presented approximation. The turn trajectory shows an underestimation of the TPR

value due to the inexactitude in the covariance matrix Rk . This inexactitude assumes a higher

noise than the one which is present in the trajectory, and thus will require the choice of a

higher threshold than necessary in order to obtain the desired TPR margin.

In the racetrack trajectory we perceive the same underestimation at the lower values of the

threshold, but then the approximation result crosses the optimal results and reaches a value

over it. This is caused by the second distortion e�ect, the maneuver's edge measurements.

The measurements close to a maneuver beginning or end tend to have a higher residue value

than the theoretical one for a uniform trajectory (due to their proximity to the non-uniform

segments), making us increase the threshold value to classify them correctly (which causes

the optimal result to show a lower TPR in the �gure).

These two e�ects show that we may need a heuristic tuning in our �2 distribution in order

to adapt it to these distortion e�ects. For our PLR approach, it is enough to higher the

threshold value to �+5�, knowing that we may misclassify some non-uniform measurements

close to the points where the MM changes (considering that this does not have an important

penalization impact).
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Figure 3.6: Considered trajectories for the threshold choice e�ects analysis

3.4.3 Algorithm de�nition

After the coverage of the theoretical considerations behind the segmentation technique pro-

posal have been covered, the pseudocode for it will be speci�ed in current section. The

functions required for this pseudocode are programmed with the proposed equations in sec-

tions 3.4.1 and 3.4.2. Algorithm 4 presents the �rst phase of our technique.

The second phase of the algorithm applies the bottom-up technique (which is introduced

in section 2.8.2 and will be more deeply analyzed in section 7.3, where a multiobjective

version of the algorithm will be presented) and corrects the segmenting points obtained to

their positions in the original trajectory, providing the �nal output of the algorithm as a series

of segmenting points.

3.5 Computational complexity analysis

The complete complexity analysis for the three di�erent traditional techniques can be found

in (Keogh et al., 2003). The results presented are the following:

� Sliding-Window = O(Ln)

� Top-Down = O(n2K)

� Bottom-Up = O(Ln)

where n is the number of measurements in the time series, K is the number of segments

and L is the mean length of the obtained segments. It is important to notice that, for each

complexity order, there is at least one parameter not known a-priori, (either K or L) which

makes this complexity orders harder to be accurately established.



66 3. An initial non-evolutionary approach to the application domain: HLRA

Algorithm 4 Hybrid Local Residue Analysis Algorithm, �rst phase

Input: time sequence (a1, ... , ak), time length window

Output: uniform segments (s1, ... , sk), non uniform segments (sn1, ... , snm)

classi�cations = uniform segments = non uniform segments = empty set

initial point = 1

current point = 1

sequence length = length (time sequence)

while current point <= sequence length do

current segment = obtain segment (time sequence, current point, time length window)

current length = length(current segment)

current threshold = obtain threshold (current length)

current residue = obtain residue(current segment)

if current residue > current threshold then

add(classi�cations, non uniform class)

else

add(classi�cations, uniform class)

end if

if current point > 1 && (classi�cations (current point) != classi�cations (cur-

rent point-1) jj current point == sequence length) then

if current point == sequence length then

if classi�cations(current point) == uniform class then

add (uniform segments, current point)

else

add (non uniform segments, current point)

end if

else

if classi�cations(current point) == uniform class then

add (non uniform segments, current point)

else

add (uniform segments, current point)

end if

initial point = current point-1

end if

end if

current point++

end while
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Figure 3.7: �2 approximation comparison.

3.5.1 Hybrid Local Residue Analysis Algorithm

The proposed algorithm involves two di�erent phases, each of them based on di�erent

approaches. We will present them separately in order to obtain the complexity order. There

are, as well, two di�erent main steps involved in the �rst phase of the algorithm:

� Threshold value: for a �xed window size, this parameter can be computed only once,

with a constant order complexity. If the window is not �xed (or established with time

boundaries, which result in windows with di�erent sizes at every measurement) this

involves computing the threshold n times, where n is the number of measurements,

thus adding an O(n) term.

� Residue value obtaining: The residue has to be calculated, with a certain window size,

at every value of the time series. Calculating each residue involves a cost of O(wl),

where wl represents the window length involved, and applied to each value of the time

series, involves a cost of O(wln).

The second phase shows the computational complexity of the bottom up algorithm, which

is, as presented in the previous section, O(Pq2), applied t times, where t is the number of

non-uniform segments in the trajectory, P is the mean length of the sub-segments in those

segments and q their number of measurements, giving us a complexity order for this second

phase of O(tPq2).

The �nal complexity order of the trajectory is, adding the terms from the previous

two phases, O(wln)+O(tPq2). Considering that P is a small value (as the secondary

segmentation is applied to non-uniform sections of the time series, which cannot be well

approximated by long uniform segments), q <<< n and t <<< wl (with the possible

exception of extremely long time series, where the value of n compensates for the possible

increase in the value of t), we can determine that the dominating order term is O(wln) ,

being this the complexity of our proposed approach.
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Compared to the presented complexities of the traditional techniques, the proposed

solution shows the advantage of having parameters that can be either �xed by the user or

accurately approximated, opposed to some of the terms presented by traditional techniques

not known a priori, such as the mean length of the �nal segments or the number of these

segments.

3.6 Experiments

3.6.1 Quality measurements and algorithm con�guration

In previous sections of this work (particularly during the analysis of segmentation techniques

and its formalization in section 3.3) the importance of the number of segments has been

repeatedly stated, along with the absence of its value which is usually found in available

references. But, for current domain application, there are additional considerations which

must be included in the quality indicators to perform an accurate comparison.

Evidently, as was introduced, the objective of any segmentation process is, usually, reduc-

ing the amount of information while keeping a record as similar as possible, compared to the

original data (even though additional processes with di�erent objectives can be performed

over the transformed data). This means that, in a noisy domain such as the one presented,

we would like to reduce the e�ect of the noise as much as possible (whenever it can be dif-

ferenced from the actual data of our aircraft). Considering the MM's presented, if we divide

uniform segments into several di�erent sub-segments, that division is performed due to the

noise position changes, and thus, we are including additional segments which are a waste

of data (along with the additional problems for any processing which might be performed

afterwards).

That fact can lead to misleading values in the total error metric, which contains the

deviation of the regression line with respect to the noisy samples. Oversegmentation would

reduce the residual, with an evident e�ect of over-�tting to the noise contained in the series.

Figure 3.8 presents an example of a uniform time series to which Gaussian noise has been

added, with � = 0,�2 = 1 along with its ideal segmentation (based on the original time

series previous to the noise addition) and a segmentation result based on interpolation using

segments a �xed length of three measurements.

The ideal segmentation in �gure 3.8 identi�es correctly the time series as a single seg-

ment, presenting a total error value of 14.91, while the interpolation segmentation, which

oversegmentates the trajectory into di�erent segments, presents a total error value of 10.69.

This simple example shows that the quality of a segmentation on noisy time series should not

be measured by means of a total error metric (at least over uniform segments). According

to this, we will introduce two di�erent metrics, one related to the segmentation quality over

non-uniform segments and a di�erent one for those who were performing a uniform MM in

the original trajectory.

For non-uniform segments, we will include the total non uniform error , which is the

total error metric but only applied to those measurements where the aircraft was performing

a non-uniform MM (lacking a better quality metric for those non-uniform segments). This

metric assesses the behavior of segmentation algorithm under a situation in which the series

should be divided to avoid the deviation produced by a linear model in situations in which it

is not applicable.
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Figure 3.8: Two example segmentations for a completely uniform noisy time series.

On the other hand, for the quality assessment of uniform segments, we will introduce the

Uniform Segmentation Ratio (USR), which, dividing the ideal number of uniform segments

(those performed by the aircraft) by the number of segments obtained by the technique,

tries to measure the level of over-segmentation obtained during uniform MMs. This quality

metric is de�ned in (3.13).

USR =
number of original uniform segments

resultant segments during uniform MMs
(3.13)

The ideal value for this indicator is 1. Lower values indicate oversegmentation on those

uniform MM's, while a higher value is only possible if segments exhibiting a non-uniform MM

are approximated in a single segment, with a severe increase in the approximation error. The

segments taken into account to be computed in the previous ratio are those which have

any measurement recorded while the aircraft was performing a uniform MM. It is interesting

to realize the complementary nature of the two previous �gures of merit. An algorithm

prone to oversegmentation will have a very low uniform segmentation ratio and, conversely,

an algorithm prone to keep long segments through the whole series will tend to obtain an

unfeasible error value during maneuver sections of the time series.

The �nal value included for this comparison is the running time of the technique. Obvi-

ously, the actual value of this metric depends on di�erent factors, such as the programming

language chosen, and cannot be interpreted as an absolute value, but it can be used as

a comparative value between di�erent techniques or di�erent con�gurations over the same

technique.

Four di�erent quality metrics will be used to measure the performance of a given algo-

rithm: total non uniform error (accuracy in the representation of those segments which lack

a uniform model), number of segments (overall cost of the segmentation results), USR (ac-
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curacy during uniform segments), and running time (computational cost of the segmentation

results, an indicator of the feasibility of the application to long time series).

There are con�guration issues to be faced which will involve the quality of the results.

During the presentation of the traditional techniques, the only shared con�guration value was

max segment error (sliding window cannot provide a total error boundary due to its online

nature), so we will choose the value for this parameter for the three techniques. An approach

could be to determine di�erent values for the di�erent trajectories, in order to optimize the

performance of the algorithms in each particular case. This might be achieved by means

of the domain knowledge, for simulated trajectories, of the typical durations of maneuvers

performed by aircrafts following di�erent trajectories.

Such an approach would require for each trajectory and algorithm with its own con�g-

uration values, meaning that they would be inapplicable to real trajectories after this initial

de�nition phase (where we would have no a-priori knowledge). This instance based con�g-

uration issue is similar to those faced on the stopping criteria presented in chapters 4 and

5, which had to overcome the traditional criterion of stopping according to a measure of

proximity to an a-priori known optimal solution (usually named reference or global criteria).

To prevent this, a single max segment error value will be determined to be applied to any

trajectory or algorithm, in order to test their performance as a whole.

Once that decision has been taken, the choice of that threshold is not trivial either.

We have di�erent techniques, di�erent trajectories and, most importantly, di�erent metrics

which have to be optimized jointly. There is also an additional consideration. Choosing a

�xed max segment error tends to set a threshold on the maximum length of the obtained

segments (considering that every measurement of the time series carries an error due to the

noise presence), leading the algorithm to obtain shorter segments. To prevent this behavior,

we will use the max mean segment error value instead. The idea for this parameter is to

allow segments to be as long as possible, by setting a threshold over the mean value of the

di�erent errors of the measurements belonging to a segment, eliminating the implicit length

boundary whichmax segment error exhibits. According to this, the three traditional segmen-

tation techniques will be provided with only one parameter, the max mean segment error ,

and di�erent values will be tested regarding this parameter, in order to compare their appli-

cability.

For the proposed technique, the time length of the window (according to equation 3.5)

has to be set. As introduced in the domain presentation (section 3.2), this value is chosen

based on the non-uniform MM characteristics. The value chosen for the data set proposed

is 60 seconds. The bottom-up technique also requires a max mean segment error value

which, in this case, it is set to 300 meters.

Finally, statistical tests are required to determine the quality of the di�erent compared

techniques. This introduces the di�culty of quantitatively determining the quality of di�erent

multi-objective solutions and their comparison for quality assessment purposes (Zitzler et al.,

2008). Basically, this issue can be approached by the use of a quality indicator, which can

reduce the di�erent objectives to a single value and performing a statistical test to determine

whether the di�erent result sets can be considered to belong to the same distribution. As seen

in section 2.6, this is not the only way to perform such a comparison (for instance, attainment

functions and their related tests were covered in section 2.6.2), but quality indicators is the

most extended among them.

Quality indicators were designed for the comparison of di�erent Pareto Fronts, but
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current domain only requires one solution for each trajectory in the data set, which simpli�es

the di�culties of the comparison. Their related theory has been covered in section 2.6.1,

and speci�c instances of them will be presented in sections 5.2.1 (hypervolume) and 5.2.1

(epsilon indicator, both in multiplicative and additive terms). Also, we will use three objective

functions (USR, number of segments and total non uniform error quality measurements).

Considering these simpli�cations we will stick to a unary hypervolume quality indicator (Zitzler

& Thiele, 1998) for the individual estimation of the quality of the obtained solutions (for a

more thorough analysis of this indicator, along with its binary formulation, the reader may

see section 5.2.1. The general formulation of this indicator is included in equation 3.14.

Ih(A) = volume

 ⋃
8z2A;8y2N

hypercube(a, n)

 (3.14)

This estimator requires the choice of a nadir point, which is the worst possible solution

for the problem. The choice of these points is itself an issue (Ehrgott & Tenfelde-Podehl,

2003). The total non uniform error value of our chosen nadir points will be a theoretical

maximum error obtained by joining the �rst and last points of the current time series with a

segment and calculating the error of the di�erent points in the time series as the distance to

that segment. The highest number of segments considered will be the number of points in

the time series minus one (representing the worst oversegmentation situation possible, where

a segment joins every pair of adjacent points).

The USR value for the nadir points is a little harder to obtain since we may degrade its

value oversegmenting segments with uniform MM or introducing into them segments with a

non-uniform MM. Considering only the oversegmentation, the nadir point value for its USR

component would be zero, but there is not such a boundary for the possible values of this

indicator considering the possible errors in the segmentation of non-uniform MMs. In the

results for the dataset presented (tables 3.1-3.3) the worst possible result obtained regarding

this error source is 2, so these values will be converted to the [0, 1] interval considering a

worst value of 2.01 (Eq. 3.15). This means that a USR value of 2 is treated in a similar way

in the results as an oversegmentation value of 0.01, and the nadir point value for USR is 0.

In order to normalize the hypervolume values, the total non uniform error and number of

segments values for the di�erent techniques will be normalize according to the worst possible

results presented, so that the nadir point values for both of them will be 1 (Eq. 3.16).

normalized USR =

{
USR if USR � 1

2.01� USR if USR > 1
(3.15)

nadir point !


USR = 0

t n u e = 1

number of segments = 1

(3.16)

Considering the normalized values presented, the hypervolume indicator (which, in this

case, is a three dimensional volume) can be calculated with equation (3.17). Over the

hypervolume values for the dataset, the Wilcoxon test (Hollander & Wolfe, 1999) test will

be applied to determine their statistical signi�cance.
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hypervolume =(t n u enadir � norm. t n u e) � (norm. USR � USRnadir )

� (n o snadir � norm. n o s)
(3.17)

3.6.2 Data set de�nition

The data set used is based on eight trajectories covering the di�erent MM described in the

segmentation issues section. The complete dataset used is shown in �gure 3.9.

These simulations cover the casuistry of the domain, with the speci�ed characteris-

tics presented, and allow us to determine the validity of the di�erent included techniques.

For the computation of the proposed ratio, completely uniform trajectories (trajectories 3

and 4) show a di�culty, as all their measurements belong to a uniform MM, so that the

total non uniform error value, regardless of the segmentation performed, will always be 0.

3.6.3 Traditional techniques results

Tables 3.1 and 3.2 show the results of the presented classical segmentation techniques

(introduced in section 2.8.2) applied to the proposed data set. The tray column shows the

trajectory number (according to �gure 3.9), m.m.e.s stands for max mean segment error .

There are some interesting observations to be made regarding the results exposed in

tables 3.1 and 3.2. First of all, the e�ect of the max mean segment error is opposite in the

two introduced quality indicators: choosing higher values allows the technique to improve the

segmentation results in the uniform segments (re
ected in the USR values) but introduces

poorer results in the segmentation of non uniform segments. This introduces irresolvable

con�guration issues, due to the lack of mechanisms in these techniques to di�erentiate

uniform and non uniform segments.

Regarding the previous con�guration issue, it is also noticeable that these algorithms

are not able to correctly segmentate the uniform trajectories (trajectories 3 and 4) with

any of the tested max mean segment error values. The highest value for this parameter,

800, lead to a segmentation of completely uniform trajectories into two segments (probably

an acceptable result) but made the techniques obtain very inaccurate results in accelerated

trajectories (7 and 8), obtaining only one �nal segment in them.

O�ine algorithms, reported to be the most accurate ones due to their global knowledge

of the time series, reach inadmissible running time levels in some trajectories when faced with

values which a�ect greatly their complexity. The Top Down algorithm has di�culties dealing

with low max mean segment error values (trajectories 4 and 6 with MMSE=200), while the

bottom up technique increases its running time noticeably in the presence of a large number

of measurements (trajectories 4, 6, 7 or 8).

These high running times may make them inapplicable to long real trajectories. Also,

there are additional issues related to the extremely high recursion level that the Top Down

algorithm has to reach in order to perform its segmentation in trajectories with a high number

of measurements, which may lead to the algorithm malfunction. These issues may require

the development of alternative, non-recursive implementations (if possible) to guarantee the

feasible application of this algorithm.
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Figure 3.9: ATC trajectory dataset used for evaluation purposes
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3.6.4 Hybrid Local Residue Analysis Segmentation results

Table 3.3 presents the results obtained by the proposed algorithm. The main handicaps

which were detected in the results presentation of traditional techniques have been properly

corrected: those trajectories which were originally completely uniform are now correctly

segmentated into a single segment (trajectories 3 and 4, where traditional techniques showed

a minimum number of 2 segments), accelerated trajectories are detected to include non-

uniform segments and segmentated accordingly (where certain con�gurations of the bottom-

up and sliding window algorithms obtained a USR value of 2, bypassing the accelerated

MM) and the running time remains at an allowable maximum value (18.57 seconds, while

the bottom-up algorithm showed a maximum value of 286.33 seconds and the top-down

approach a maximum value of 162.41). It is also noticeable that the trade-o� among the

di�erent values of the metrics (even though its con�guration parameters are �xed, while

traditional techniques have been tested with a di�erent set of values for their con�guration)

is consistently better than the one present in traditional techniques.

3.6.5 Results comparison

Even though the individual analysis of the results has already been presented in sections 3.6.3

and 3.6.4, along with other associated tables 3.1-3.3, it is necessary to compare some of the

quality indicators results for the di�erent techniques graphically, in order to complete this

results presentation section. The objective of this approach is to present a general analysis

of the performance achieved by the di�erent techniques to support the choice made for

the most promising alternative, followed by the complete comparison versus our presented

technique in order to validate its results.

This graphical overview will present �rstly the comparison of the di�erent techniques

for a concrete trajectory (one of the racetracks, trajectory 2). In �gures 3.10 and 3.11

it can be observed that the proposed technique achieves much better results according to

the quality metrics, especially regarding (as was commented after the presentation of the

results tables) the trade-o� in their di�erent values. To obtain a better result in terms of

total non uniform error or uniform segmentation ratio traditional techniques must degrade

the value of the complementary evaluated metric, obtaining unfeasible solutions. Using

intermediate con�gurations (parameter MMSE set to 500), the proposed technique obtains

better solutions for the two metrics, also obtaining a smaller number of segments as its

output. Among the traditional techniques, bottom up segmentation seems to achieve the

best results, so we will choose it with a MMSE value of 500 as the most promising technique.

Once the most promising traditional technique has been chosen, the next comparison step

is the presentation of the results for the whole set of trajectories comparing the bottom-up

technique with the indicated con�guration with HLRA's results. These comparisons are

shown in �gures 3.12 and 3.13. The results seem to be conclusive: in all the di�erent

trajectories presented, the proposed technique achieves better results that the bottom up

algorithm, being specially remarkable in some cases, such as the uniform trajectories (HLRA-

T3, HLRA-T4, where the degree of oversegmentation with bottom up technique is very

high, while HLRA detects correctly a single segment) or the turn ones (where the bottom

up technique presents extreme values in either the number of segments, HLRA-T5, or the

total non uniform error value, HLRA-T6). It is also interesting to highlight that the results

of the proposed technique are satisfactory for all the di�erent trajectories, being suitable for
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Table 3.2: Top down segmentation technique results for di�erent max mean segment error

values

Tray m.m.s.e.
Top Down

n.u.error n. segm USR Run. time

1 200 57788 94 0.12 0.90

1 500 94136 38 0.29 0.77

1 800 151262 15 0.71 0.63

2 200 65193 199 0.04 3.23

2 500 112310 116 0.07 2.86

2 800 160489 43 0.18 2.58

3 200 0 223 0.00 4.97

3 500 0 2 0.50 0.19

3 800 0 2 0.50 0.19

4 200 0 786 0.00 59.08

4 500 0 5 0.20 2.60

4 800 0 2 0.50 0.65

5 200 9419 87 0.02 1.09

5 500 9419 87 0.02 1.09

5 800 26722 78 0.03 1.07

6 200 27816 769 0.00 162.41

6 500 209334 4 1.00 1.83

6 800 209334 4 1.00 1.83

7 200 29359 294 0.01 20.13

7 500 33504 2 1.00 0.71

7 800 33504 2 1.00 0.71

8 200 39467 2 1.00 0.46

8 500 39467 2 1.00 0.46

8 800 39467 2 1.00 0.46

Table 3.3: HLRA segmentation technique results for the complete dataset.

Tray
HLRA algorithm

n.u.error n.segm U.S.R. Run. time

1 58979 47 0.29 2.20

2 70874 51 0,45 2,27

3 0 1 1,00 1,34

4 0 1 1,00 8,32

5 23471 8 0,67 0,18

6 52488 23 0,25 18,57

7 32282 7 1,00 10,24

8 36748 5 1,00 7,69
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Figure 3.10: uniform segmentation ratio and total non uniform error values comparison in

trajectory 2

any of them.

Finally, the statistical signi�cance of the results must be proved. To do so, as explained

in section 3.6.1, we will calculate the hypervolume indicator values for the results over the

di�erent trajectories in the data set for the already chosen most promising technique and

HLRA, in order to apply the Wilcoxon test to state whether the result improvements of

HLRA are signi�cant or not. The results of the normalized values for the chosen quality

measurements, along with their associated hypervolumes are presented in tables 3.4 and 3.5.

Running the Wilcoxon test over the hypervolume values in tables 3.4 and 3.5, the p-value

obtained is 0.0368. This means that with the usual 5% signi�cance level, the null hypothesis

that both datasets came from the same distribution can be rejected. In fact, the signi�cance

level can be lowered down to a 4% value and still reject the null hypothesis. This result

implies that the improvements are statistically signi�cant.

3.7 Conclusions

This chapter has introduced the di�culties faced by time series segmentation algorithms on

domains with long time series exhibiting noisy measurements. Noise degrades the segmenta-

tion performance over uniform sections of the time series (which should be packed into a single

segment), while the large number of measurements prevents the application of techniques

based on global approaches (due to the running time or the recursion level required). These

di�culties are faced with the proposed Hybrid Local Residue Analysis technique, based on

two phases: the �rst one di�erentiates uniform and non-uniform segments in the trajectory,

while the second one segmentates the identi�ed non-uniform segments one by one. Noise
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Table 3.4: Normalized quality measures and associated hypervolume values for bottom up

technique with mmse=500

Trajectory Bottom Up mmse=500

id max error max segm norm t n u e norm n o s norm USR Hypervolume

1 9,05E+11 651 1,22E-07 0,036866359 0,625 0,601958452

2 1,77E+13 665 5,30E-09 0,085714286 0,131579 0,120300799

3 3,27E+10 851 0 0,002350176 0,5 0,498824912

4 6,38E+09 2056 0 0,017509728 0,0277778 0,027291418

5 6,17E+12 252 1,43E-09 0,436507937 0,0192308 0,010836403

6 1,15E+14 2747 1,58E-09 0,001820167 1 0,998179831

7 3,26E+08 2178 1,03E-04 0,000459137 0,01 0,009994382

8 3,49E+08 1650 1,13E-04 0,000606061 0,01 0,009992808

Table 3.5: Normalized quality measures and associated hypervolume values for HLRA tech-

nique

Trajectory HLRA

id max error max segm norm t n u e norm n o s norm USR Hypervolume

1 9,05E+11 651 6,52E-08 0,072196621 0,294118 0,272883657

2 1,77E+13 665 4,01E-09 0,076691729 0,454545 0,419685156

3 3,27E+10 851 0 0,001175088 1 0,998824912

4 6,38E+09 2056 0 0,000486381 1 0,999513619

5 6,17E+12 252 3,80E-09 0,031746032 0,666667 0,645502966

6 1,15E+14 2747 4,55E-10 0,00837277 0,25 0,247906807

7 3,26E+08 2178 9,90E-05 0,003213958 1 0,996687373

8 3,49E+08 1650 1,05E-04 0,003030303 1 0,996864615
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Figure 3.11: number of segments and total non uniform error values comparison in trajec-

tory 2

information is introduced in the initial separation into uniform and non-uniform segments,

and the individual approach to each non-uniform segment separately allows the techniques

to deal with time series which were not approachable without this pre-segmentation (due to

the huge decrease in the number of measurements in each of those individual non-uniform

segments).

The problem formulation has resorted to a multi-objective, constrained approach, requir-

ing as well a modi�cation of traditional error indicators, performed in order to deal with the

noise in pure traditional techniques (basically establishing a threshold over the max error in

mean over the window, instead of absolute values), and performance metrics are introduced

in order to measure the quality of the di�erent compared techniques. These performance

metrics have to determine not only the compromise present between cost and performance

metrics, but also the use where the measured cost is spent (whether the segments are being

used to cover only the noise perturbations or in sections of the time series where really a

higher number of segments is required).

The results obtained with the Air Tra�c Control domain dataset show that the HLRA

technique can take advantage of the noise information in order to perform the initial division

accurately and afterwards apply bottom up segmentation to obtain a �ne segmentation over

the non-uniform sections, providing considerably better results that traditional techniques for

the di�erent quality indicators presented.

Along with the quantitative objectives of the work, represented by the segmentation

results already commented, this chapter the application of arti�cial intelligence tools to

improve the heuristic guided pattern recognition issue which is at the core of segmentation

problems, along with the use of quality metrics obtained from the multi-objective evolutionary
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Figure 3.12: uniform segmentation ratio and total non uniform error values comparison for

the bottom-up technique with MMSE=500 and the proposed technique applied to the whole

data-set

algorithms domain to determine statistical signi�cance of the results (a matter thoroughly

analyzed in section 3.6.1). Also, the results obtained may be used as a data source to improve

the performance of reconstruction approaches in the air tra�c control domain, and, at the

same time, noise handling techniques are introduced to the general PLR segmentation issue.

Concerning the overall objectives of this thesis, this chapter has established the di�culties

faced by speci�c heuristic methods applied to a segmentation domain and the e�ort required

to propose novel heuristics according to these domains. Also, it provides a key insight into

the process itself, which can be used for instance, at the de�nition of initialization methods

for the evolutionary proposal (which will be introduced in section 6.4.2). Finally, the required

multi-objective quality indicators point to the multi-objective nature of the segmentation

problem.
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4
Single-objective stopping criteria for

evolutionary algorithms

\
Because that was then and this is now Because the past is gone , even

though it de�nes the present "
Stephen King, Doctor Sleep, 2013

This chapter studies single-objective stopping criteria, detailing the di�erent tools and

approaches required for this issue, with a special focus on diversity management and the

pasive or active role of the criterion. More speci�cally, the chapter will be based on the mod-

i�cation of a memetic algorithm: ESLAT, Evolutionary Strategies Learned with Automated

Termination Criterion (Hedar & Fukushima, 2006) to increase its robustness and improve the

presented stopping criterion to implement the R-ESLAT algorithm (section 4.2) and �nally a

novel stopping criterion for single objective evolutionary strategies will be presented (section

4.3). This criterion will attempt to control the stagnation situation at the same time that

it measures it, attempting to prevent early convergence through the population's diversity

control. The main references for this chapter are (Guerrero et al., 2014a, 2011b, 2012c).

4.1 Introduction

Evolutionary algorithms, as covered in chapter 2, are probably one of the most versatile and

used tools in arti�cial intelligence to deal with optimization problems, as shown in recent

compilations of applications (such as (A�enzeller & Winkler, 2009)) and the exponential

growth of their application to di�erent practical domains, ranging from bankruptcy prediction

modeling (Shin & Lee, 2002) to general classi�er systems learning (Lanzi, 2009). The

increase in the computational resources of computers and the increasing number of parallel

implementations (Cantu-Paz, 2000) have lead this growth, making them more appealing for

practitioners focused on solving particular problems, rather than theoretical research of the

algorithms themselves. There are, however, a number of issues which are still a drawback

for these applications.

Local optima constitute a drawback for evolutionary algorithms, since they do not provide

(as most metaheuristics (Talbi, 2009)) a measurement of the proximity of the solutions found

to global optima, providing a best-e�ort approach. Early convergence arises as a concern
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regarding this topic, being closely related to the diversity preservation in the populations as

the evolution process advances. Many approaches have been proposed to deal with this issue,

from the restriction of certain operator applications (such as the incest prevention proposed

in (Eshelman & Scha�er, 1991)) or multi-objective approaches (Coello et al., 2007) where

the diversity of the population is treated as an additional objective function (To�olo & Benini,

2003).

Any optimization algorithm has to deal with two complementary processes: exploration

and exploitation. Evolutionary algorithms (and, in general, population based approaches)

are considered to provide good results for the exploration component of the optimization

process, whereas their results in exploitation are not so consolidated. This topic was covered

in section 2.3, where the capabilities of the di�erent families of metaheuristics were detailed.

Particularly, �gure 2.5 shows a graphical overview of the di�erent strengths of these di�er-

ent metaheuristic families regarding exploration and exploitation, named diversi�cation and

intensi�cation respectively.

Local search techniques (Hoos & St�utzle, 2005) have complementary characteristics to

EAs, excelling in the exploitation process but obtaining, in general, a poorer performance

regarding their exploration capabilities. Memetic algorithms (Krasnogor & Smith, 2005),

combine these two processes under a general cultural evolution framework. The combination

of the two sets of techniques theoretically allows them to apply the exploitation capabilities

of local search techniques to a better coverage of the search space.

General stopping criteria are also a concern for practitioners using evolutionary techniques.

A general stopping process has to handle information provided by the previously stated

processes, and determine whether the evolutionary optimization process will likely obtain

better solutions according to them or not. In fact, this concern is shared by many iterative

processes (Arioli et al., 1992), but the stochastic nature of evolutionary computation makes

it probably more important and, at the same time, harder to solve. An overview of this

topic, along with a classi�cation of di�erent approaches, has been presented in section 2.4.7.

Traditional approaches to this issue set an a-priory budget of a�ordable computational cost

(which may be expressed in terms of generations, function evaluations or even time) and

stop the process once the budget has been ful�lled (what was de�ned in the presented

classi�cation as static, exhaustion based criteria). However, establishing this budget can

be a di�cult process for real problems. This concern is shared by single and multiobjective

evolutionary algorithms. Some available approaches related to this multi-objective approach

to stopping criteria were covered in section 2.7, and will be analyzed in chapter 5.

These previous concepts will be combined for the initial proposal of this chapter, the

Robust Evolutionary Strategy Learned with Automatic Termination Criteria (R-ESLAT), a

memetic algorithm with self-stopping capabilities, which performs a control over the popu-

lation diversity and search space exploration. The proposal is based on the original ESLAT

algorithm (Hedar & Fukushima, 2006), which introduced an evolutionary strategy along with

local search procedures based on Matlab's fminunc function implementation and the simplex

Nelder-Mead optimization method (Nelder & Mead, 1965) according to the modi�cations

proposed in (Kelley, 2000). Additionally, it introduced the concepts of the gene matrix, which

was used as a measure for exploration measurement and diversity control, as well as a mu-

tation operator named mutagenesis which modi�ed some of the values in the chromosome

to cover speci�c zones of the search space. However, this technique did not specify some

of the techniques required for its application, exhibited some di�culties (such as solutions
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outside the search space) and its stopping criterion was focused only on the coverage of the

search space.

The purpose of the R-ESLAT technique proposal included in this chapter is to analyze

original the ESLAT algorithm, specifying and modifying the algorithm according to the

exploration and exploitation capabilities required in order to improve its robustness and results

quality, and �nally compare the obtained results to one of the most extended and successfully

applied evolutionary strategies: Covariance Matrix Adaptation (CMAES) (Hansen et al.,

2003).

This initial proposal sets the basis for the �nal stopping criterion approach. The stopping

criterion is extracted from R-ESLAT, and its passive role modi�ed to an active one, in order

to provide a diversity enhancer technique based on the mutagenesis mutation operator. This

technique is based on stopping prevention concepts, and the required analysis of the stopping

criterion associated to the presented approach. The presented technique will be inserted in a

canonical evolutionary strategy, comparing the results of this strategy with and without the

introduced artifact, in order to test the performance of the technique.

4.2 A robust memetic algorithm with self stopping capabilities:

R-ESLAT

4.2.1 The original ESLAT algorithm

The ESLAT algorithm was originally proposed as a memetic algorithm that could overcome

the slow convergence towards the minimum which canonical evolutionary strategies exhibit,

controlling the achieved coverage of the search space and introducing a self-stopping criterion.

The two introduced control artifacts for this purposes where the gene matrix (GM) and the

mutagenesis operator.

Gene matrix and mutagenesis

The gene matrix is responsible of tracking the exploration process and keeping the diversity

in the population. It is composed of n by m elements, where n is the number of genes

in the chromosome and m is the number of sub-ranges in which the search space of that

chromosome is divided. This matrix is initialized with zeros, and those zeros are updated

to ones as elements with genes covering the di�erent sub-ranges are found in the di�erent

populations as the evolution progresses. Figure 4.1 shows an example of a GM with two

variables.

The GM is used, therefore, as a measurement of the depth in the exploration process.

In order to use it to keep the diversity in the population as well, the mutagenesis operator

is introduced. At the end of every generation, the mutagenesis operator chooses the Nw

worst individuals which have survived to the next generation and changes the values of one

of their genes in order to cover new zones of the search space (according to the information

in the gene matrix). Speci�cally, for each of the Nw worst individuals in the population, one

of the sub-ranges containing a zero value in the GM is selected randomly, and the value in

the correspondent gene of the individual is updated according to a random value within the

sub-rage boundaries. Afterwards, the zero in the GM is updated to a one and the process
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x2
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1  1  0  1
1  0  1  1

x1

Figure 4.1: Gene Matrix example

continues until the rest of the Nw individuals have been modi�ed or the GM is completely

�lled with ones. Figure 4.2 presents an example of this process.

The originally proposed termination criterion was based on the gene matrix values. Once

all the sub-ranges of the variables in the search space had been covered (the gene matrix was

completely �lled with 1's) the algorithm continued for a certain number of generations (the

dimensionality of the problem, n), in order to allow the evolutionary process to exploit the

information from the last covered values, and afterwards it stopped. The heuristic to stop

after a number of generations equal to the dimensionality of the problem obtained accurate

results in a wide range of functions but proved not to be robust enough. An example can

be seen using one of the test functions originally included in the algorithm's test-set: the

�rst Schwefel function (eq. 4.1) in the search space of [-10, 10] using a dimensionality of 30

variables. Figure 4.3 shows a successful stopping situation for the function, while �gure 4.4

shows an unsuccessful stop for the same function with the same algorithm con�guration.

f (x) =

n∑
i=1

jxi j+
n∏
i=1

jxi j (4.1)

The termination criterion used is based only on the coverage of the variable space, using

a simple heuristic to measure the e�ect on the objective function's space (the triggering of

the stop after a number of generations equal to the problem dimensionality). The idea behind

this criterion may be considered under the principles of distribution based stopping criteria

(introduced in section 2.4.7). These criteria consider that, since all the di�erent individuals

in the population tend to converge to the optimum, distance measures regarding this fact

may be used to determine whether the algorithm should be stopped (for instance measuring

the standard deviation of the vectors in the population (Zaharie & Petcu, 2005)). ESLAT's

stopping criterion uses this idea to build a stopping prevention mechanism, which attempts

to prevent the situations which would trigger these criteria in the objective space. However,

as �gure 4.4 shows, this mechanism is not functional enough to properly detect stopping

situations.
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Figure 4.2: Mutagenesis operator example

Transformation operators and selection strategy

The recombination operator chosen for the technique is discrete, a � � point crossover op-

erator The value of � is chosen as the minimum between the dimensionality of the problem

and 5, and it must be noted that only one child is produced in each recombination, according

to the random partition points. This recombination operator is focused to exploration proce-

dures, since exploitation will be mainly covered by the local search methods. By exchanging

the di�erent variable values of the parents (rather than arithmetically combining them) the

algorithm seeks to cover more sub-ranges of the gene matrix.

The mutation operator is the standard for ES, evolving the mutation step (�) along

with the individuals, and choosing the following values for � = 1=
√
2
p
n and � 0 = 1=2

p
n.

The mutation step has also a minimum and maximum boundary, with values �min = 1e�4

and �max = 0.5 � d where d is the length of the search space. Seven mutated individuals

are obtained for each individual to whom the mutation procedure is applied. In the main

loop of the evolutionary technique, for each individual in the population, according to a

recombination probability (�r ), the recombination or mutation procedure is applied (with a
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Figure 4.3: Schwefel function sucessful stop

noticeable impact in the number of o�spring, since one produces one child and the other

seven mutated children). The selection used is also standard: (�=� + �) selection. For

more details on this standard operators, the reader may refer to sections 2.4.4 (crossover

operators), 2.4.5 (mutation operators) and 2.4.6 (selection strategies).

Initialization procedure

The initialization process uses the scatter search diversi�cation generation method (Laguna

& Marti, 2003) to generate the initial population. This initialization divides each variable

search space into four sub-ranges of equal size. Afterwards, the individuals of the initial

population are created iteratively, choosing the variable sub-ranges with a probability inversely

proportional to the number of solutions previously generated in that interval. Once all the

sub-ranges for the di�erent variables have been chosen, random values within the sub-ranges

boundaries are chosen. It is interesting to highlight the similarities between this initialization

method and the exploratory purpose of the GM and the mutagenesis operator focusing the

initial population to cover a high number of sub-ranges in the GM and, therefore, speedup

the evolutionary process.

The initialization section included in the state of the art chapter (section 2.4.2) also

included some similar approaches, particularly that presented in (McKay et al., 1979), where

the search space was divided into di�erent sub-ranges and independent random initialization

performed in each of them.
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Figure 4.4: Schwefel function unsucessful stop

Intensi�cation procedure

Finally, the so called intensi�cation procedure is based on the application of two di�erent

derivative free local search techniques: the fminunc optimization procedure in Matlab and

Kelley's improvement over the Nelder-Mead algorithm (Kelley, 2000). These techniques are

applied as a step into the generational loop and also as a last step of the technique, once the

algorithm reaches its stopping generation. Each of these techniques is applied 5n generations,

applying �rst the Nelder-Mead algorithm and the fminunc functions afterwards over its result.

In the generational loop, this intensi�cation is applied at most to two di�erent individuals:

the best child and the most promising child. The best child is the child who will update

the current best individual in the following generation. The most promising child is the child

with the greatest di�erence in �tness function value with his parent (either by mutation or

recombination procedures). Figure 4.5 shows an overview of the di�erent algorithm steps.

4.2.2 Introducing the R-ESLAT algorithm

R-ESLAT technique tries to deal with the analyzed drawbacks of the ESLAT algorithm.

The �rst of these drawbacks is the lack of control over the search space (even some of

the �nal solutions were found outside of it). An additional important feature is that the

termination criterion focus on the exploration procedure, even though it does take into

account exploitation in the form of the n generations which the evolutionary process continues

before it is stopped, once the GM is full. Unfortunately, as shown in �gure 4.4 and also in
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Figure 4.5: ESLAT algorithm overview

some �gures in the original paper of the technique, this approach is not robust enough in

many situations.

Another di�culty was the incomplete de�nition of the required con�guration parameter

values for the intensi�cation process, which have a high impact in the quality of the obtained

solution, since the exploitation process of the memetic algorithm relies on it. The objective

of R-ESLAT is to completely de�ne the previous processes, improve the overall robustness of

the termination criterion and introduce the proper techniques to handle the boundaries of the

search spaces. Regardless of its issues, the results of the original ESLAT technique already

provided good quality results in comparison with CMAES in a certain number of functions

(especially those with low dimensionality).

Search space control

The boundaries of the search space may be trespassed at two di�erent steps of the algorithm:

mutation and intensi�cation processes. Two di�erent approaches have been set for each of

these processes: a repairing process is applied after the application of the mutation operator.

If any of the mutated individuals have a variable value outside the search space, the mutation
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results are rescaled considering the search space boundaries. This repairing procedure tries to

disrupt the mutation procedure distribution as little as possible, while controlling the search

space boundaries. On the intensi�cation process, however, several boundary constrains may

be unful�lled at the same time, and the procedure to reach those values is not so clearly

speci�ed. For those reasons, a death-penalty approach is taken, leaving the intensi�ed

individual of the population in its original state. The joint application of these two processes

guarantees that all the solutions will be contained within the problem variable boundaries.

Intensi�cation process

The two local search algorithms proposed for ESLAT require di�erent con�guration parame-

ters (and procedures to be set). The fminunc function of Matlab1 provides default parameter

values which may not be the most appropriate for the algorithm purpose. First of all, the

concrete applied algorithm is de�ned by those parameters. Assuming the default algorithm

choice parameters, the algorithm applied is the Broyden-Fletcher-Goldfarb-Shanno Quasi-

Newton method (BFGS) with a cubic line search procedure (Broyden, 1970; Fletcher, 1970;

Goldfarb, 1970; Shanno, 1970). The algorithm requires certain tolerances to be set, both

for the function and the variable values. Their default values are 1e�6, which are too high

for the algorithm used. They have been reset to 1e�30. If the dimensionality of the problem

was higher (the highest dimensionality included in the dataset is 30) the technique should be

changed to the interior-re
ective Newton method, involving the use of the preconditioned

conjugate gradients method at each iteration (Coleman & Li, 1996). This technique would

require a user-de�ned Hessian for the objective function as well.

The Nelder-Mead algorithm used in this chapter's proposal is based on Kelley's imple-

mentation included in (Kelley, 1999). An important feature of this technique is that, for a

problem with n variables, it requires n+1 starting points to be applied. The ESLAT algo-

rithm only de�ned one of such points (the best or most promising child) but did not include

which technique should be used to choose the remaining n individuals. In fact, the choice of

those individuals may lead to the exactly same populations for both intensi�cations, implying

a waste of function evaluations. R-ESLAT chooses this population according to the �rst n

individuals obtained in the children pool (which will be the children of the �ttest individuals

from the population) always excluding the element which is included in the complementary

Nelder-Mead population (which means that, for the best child Nelder-Mead intensi�cation

initial set of individuals, the most promising child will never be included, and vice versa).

The original best child concept included only the best individual in the children pool when

that children had a better �tness value than the previous best individual in the population.

This meant that children with a good �tness value (but not good enough to become the new

best individual in the population) who were exploring new regions of the search space did not

get the chance to improve by means of the intensi�cation process, and could disappear from

the population, causing the algorithm to miss the chance to �nd a better minimum in that

region. To prevent this behavior, the best children concept in R-ESLAT has been modi�ed,

and now it includes the child with the best �tness, regardless of whether it improves the

previous best �tness in the population or not.

1Included in Matlab's optimization toolbox http //www mathworks com/products/optimization/
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Figure 4.6: ESLAT algorithm stopping criterion example

Termination criterion

Finally, the termination criterion has to be modi�ed in order to include exploitation considera-

tions. The original termination criterion already included a certain generational window which

established a number of generations before the �nal stopping took place. That generational

window period was launched after the exploration had �nished (the GM was full), and its

purpose was to allow the exploitation process to use the information gathered in order to get

the best possible �nal solution. To increase the stopping criterion robustness, we will analyze

the value of the �tness function according to that window, and allow the continuation of

the evolutionary process if the �tness function has improved its value in that given window.

For every following generation, the generational window is moved one generation further,

and the �tness values reanalyzed, until the �tness value remains constant in all the di�erent

generations contained in a certain generational window. Figure 4.6 shows an example of the

improved termination criterion over the Schewefel function presented in eq. 4.1.

The improved stopping criterion is able to let the evolutionary process run until the

exploitation process stagnates (unlike the original one, which stopped to algorithm while clear

improvements over the �tness function were being made). Another important characteristic

of this termination process is the size of the introduced generational window. In the ESLAT

algorithm, that window is set to the dimensionality of the problem, n. However, in problems

with low dimensionality, that size may be insu�cient to gather enough information for an

accurate stopping decision. An example can be seen in Beale's function, presented in equation

4.2.
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Figure 4.7: R-ESLAT generational window size comparison
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3
2 )

2
(4.2)

Beale's function has a dimensionality of two, providing a very small generational window,

which may lead to inaccurate stopping situations, as shown in �gure 4.7. To improve

the response of the stopping criterion, the generational window value in R-ESLAT is set

to max(30, n) providing a fair amount of �tness evolution information for any problem,

regardless of its dimensionality value. In �gure 4.7 the e�ect of this increased generational

window is shown, ending with a �tness value improved by almost several magnitude orders

than the one obtained with the original generational window.

4.2.3 Experimental results

Through the previous sections, di�erent parameters regarding ESLAT and R-ESLAT have

been proposed and discussed, and will be used for the results presentation in this section.

Table 4.1 shows an overview of them, where n is the problem dimensionality and d is the

search space length. The obtained results with the proposed algorithm are compared to

CMAES (Hansen et al., 2003), according to its Matlab implementation, version 3.54. The

main parameters to be set in CMAES are the search space boundaries (set according to the

concrete problem characteristics), the initial individual (chosen as a random value between

the given boundaries) and the initial mutation step, set, according to the technique's author

suggestions, as one third of the problem search space.
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Table 4.1: R-ESLAT parameter values overview

Param. Description Value

� Population size 15

� Mutated children per individual 7

� Mated parents min(n, 5)

�r Recombination probability 0.5

�0 Initial mutation step parameter 3

�min Min. mutation step parameter 1e�4

�max Max. mutation step parameter 0.5d

m Sub-ranges in Gene Matrix 30

Nw Worst ind. for mutagenesis 10

Ftol Func. tolerance (intensi�cation) 1e30

Vartol Var. tolerance (intensi�cation) 1e30

genwin Generational window size max(30, n)

The test-set used for the comparison contains 27 di�erent functions with a wide set

of di�erent characteristics, regarding separability, dimensionality, search space, presence of

local minima, etc. Table 4.2 details the functions used, along with their search space and the

known minimum used. Chapter A includes the complete formulation of these functions, along

with dimensionality, search space and their bidimensional representation, as an appendix to

this chapter and particularly its experimental results.

The results over the dataset are presented in tables 4.3 (R-ESLAT), 4.4 (CMAES) and

4.5 (statistical signi�cance). The �tness function presented is always the di�erence between

the function value and the known global minimum. Thirty di�erent independent executions

were run for each problem. To determine the statistical signi�cance of the results, the

Wilcoxon test (Corder & Foreman, 2009) has been used. Table 6.1 shows that in 20 out

of the 27 optimization functions in the dataset, the R-ESLAT algorithm has achieved better

results than CMAES, in three cases the achieved di�erences were not statistically signi�cant

and in four cases CMAES obtained better results than R-ESLAT.

One interesting feature to compare is the di�erence in the standard deviation values. In

CMAES the standard deviation is relatively high when compared to the mean value, meaning

that the results of the technique can be very di�erent to each other when run a single time.

This feature is present even in some of those cases when the statistical test did not �nd

enough signi�cance in the results di�erence. Figure 4.8 shows an example of this behavior on

Branin's function (f5). In that �gure, it is shown that in 6 out of the 30 independent runs,

CMAES provides signi�cantly worse results that R-ESLAT, being similar in the remaining

ones.

Throughout this work, the two di�erent procedures involved in an optimization process

(exploration and exploitation) have been highlighted and analyzed independently regarding

the treatment which they receive in the R-ESLAT algorithm. In the results presentation

in tables 4.3-4.4, the performance of the exploration process can be seen particularly in

functions 3, 10 and 26, where R-ESLAT technique is able to �nd the global minimum in

the 30 di�erent runs (while CMAES cannot reach those global minima in any of the three

di�erent test functions).



4.2. A robust memetic algorithm with self stopping capabilities: R-ESLAT 95

Table 4.2: Test-set functions overview

id Name n min. bound. max. bound.

f1 Ackley 30 -15 30

f2 Beale 2 -4,5 4,5

f3 Bohachecsky 2 -100 100

f4 Booth 2 -10 10

f5 Branin 2 -5 15

f6 Colville 4 -10 10

f7 Dixon-Price 30 -10 10

f8 Easom 2 -100 100

f9 Goldstein-Price 2 -2 2

f10 Griewank 30 -600 600

f11 Hartmann 6 0 1

f12 Hump 2 -5 5

f13 Levy 30 -10 10

f14 Matyas 2 -10 10

f15 Michalewicz 10 0 pi

f16 Perm 30 -30 30

f17 Powell 28 -4 5

f18 Power Sum 4 0 4

f19 Rastrigin 30 -5,12 5,12

f20 Rosenbrock 30 -5 10

f21 Schwefel 30 -500 500

f22 Shekel 4 0 10

f23 Shubert 2 -10 10

f24 Sphere 30 -5,12 5,12

f25 Sum Squares 30 -10 10

f26 Trid 10 -100 100

f27 Zakharov 30 -5 10
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Table 4.3: R-ESLAT results

id
Fitness F. evals

Mean Std Mean Std

f1 4,44E-15 4,01E-30 2,88E+05 1,05E+04

f2 7,36E-15 9,78E-15 1,29E+04 4,79E+03

f3 0,00E+00 0,00E+00 8,31E+03 9,91E+01

f4 2,89E-16 4,27E-16 9,64E+03 2,21E+03

f5 3,58E-07 8,95E-16 8,47E+03 1,89E+03

f6 8,85E-14 1,16E-13 3,75E+04 4,26E+04

f7 6,67E-01 8,40E-16 2,52E+05 2,76E+04

f8 4,00E-01 4,98E-01 7,87E+03 3,96E+03

f9 6,81E-16 6,97E-16 1,02E+04 2,37E+03

f10 0,00E+00 0,00E+00 3,01E+05 7,84E+03

f11 1,99E-06 1,39E-15 2,22E+04 3,79E+03

f12 4,65E-08 1,54E-16 8,68E+03 1,97E+03

f13 4,83E-20 2,64E-19 2,01E+05 1,67E+04

f14 3,85E-21 7,96E-21 9,83E+03 2,48E+03

f15 8,41E-02 7,67E-02 7,23E+04 1,26E+04

f16 8,62E+81 8,84E+81 1,76E+05 1,79E+05

f17 2,37E-12 1,97E-12 4,47E+05 1,07E+05

f18 1,13E-06 3,75E-06 2,93E+04 1,01E+04

f19 3,65E+00 3,02E+00 1,77E+05 5,08E+04

f20 3,98E-11 1,73E-11 4,81E+05 4,42E+05

f21 5,48E+02 1,82E+02 1,70E+05 2,08E+04

f22 5,92E-16 1,26E-15 2,06E+04 4,20E+03

f23 5,08E-12 1,51E-11 1,13E+04 2,98E+03

f24 5,22E-23 4,75E-23 1,42E+05 1,20E+04

f25 1,10E-20 2,17E-20 2,65E+05 2,40E+04

f26 0,00E+00 0,00E+00 4,97E+04 4,97E+03

f27 1,20E-14 9,27E-15 6,23E+05 7,09E+05
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Table 4.4: CMAES results

id
Fitness F. evals

Mean Std Mean Std

f1 8,34E+00 4,07E+00 7,40E+03 1,12E+03

f2 5,08E-02 1,93E-01 6,16E+02 9,41E+01

f3 6,08E-02 1,58E-01 6,59E+02 4,09E+01

f4 6,75E-16 2,14E-15 5,71E+02 4,41E+01

f5 4,62E-01 9,39E-01 6,11E+02 5,30E+01

f6 4,43E-16 5,43E-16 2,32E+03 7,18E+02

f7 6,67E-01 1,20E-15 1,07E+04 1,09E+03

f8 1,00E+00 0,00E+00 8,20E+00 1,10E+00

f9 8,10E+00 2,47E+01 7,44E+02 4,90E+02

f10 1,80E-03 5,59E-03 9,43E+03 2,10E+02

f11 3,97E-02 5,72E-02 1,79E+03 2,58E+02

f12 4,65E-08 3,67E-16 5,64E+02 3,81E+01

f13 7,86E-01 1,12E+00 8,29E+03 5,72E+02

f14 1,53E-16 3,50E-16 5,23E+02 2,84E+01

f15 2,27E+00 7,35E-01 5,82E+03 2,88E+03

f16 1,50E+85 6,86E+85 2,28E+05 1,46E+05

f17 1,05E-11 1,18E-11 4,40E+04 3,01E+03

f18 8,72E-12 1,07E-11 1,88E+04 5,89E+03

f19 6,54E+01 2,16E+01 1,31E+04 4,25E+03

f20 5,32E-01 1,38E+00 4,91E+04 2,46E+03

f21 5,34E+03 5,79E+02 2,71E+04 2,50E+03

f22 5,11E+00 3,75E+00 1,42E+03 4,45E+02

f23 5,57E+01 7,51E+01 1,05E+03 1,96E+02

f24 1,17E-15 4,46E-16 6,74E+03 1,53E+02

f25 2,03E-15 9,09E-16 9,12E+03 2,53E+02

f26 6,06E-14 2,31E-13 3,33E+03 1,96E+02

f27 3,80E-15 1,75E-15 1,75E+04 3,59E+02
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Table 4.5: Wilcoxon test results

id p-value Signi�cantly best technique

f1 1,21178E-12 R-ESLAT

f2 3,82972E-05 R-ESLAT

f3 0,002785834 R-ESLAT

f4 0,043583548 R-ESLAT

f5 0,722098485 -

f6 8,10136E-10 CMAES

f7 8,64808E-05 R-ESLAT

f8 8,4555E-07 R-ESLAT

f9 1,47443E-07 R-ESLAT

f10 1,19996E-12 R-ESLAT

f11 0,142835794 -

f12 0,282958147 -

f13 2,97474E-11 R-ESLAT

f14 3,01986E-11 R-ESLAT

f15 3,00287E-11 R-ESLAT

f16 1,06657E-07 R-ESLAT

f17 0,002052334 R-ESLAT

f18 3,01986E-11 CMAES

f19 2,89542E-11 R-ESLAT

f20 1,10393E-06 R-ESLAT

f21 2,9991E-11 R-ESLAT

f22 1,22758E-10 R-ESLAT

f23 0,639982441 -

f24 3,01986E-11 R-ESLAT

f25 3,01986E-11 R-ESLAT

f26 0,160741998 -

f27 1,99628E-05 CMAES
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Figure 4.8: R-ESLAT and CMAES results comparison over the 30 independent runs per-

formed on the Branin's function test problem

The exploration process can be hard to evaluate independently. For this purpose, Easom

function may be the most appropriate function in the dataset due to its particular topology

(which provides almost no information which can be exploited for most of its search space).

Its formulation is presented in eq. 4.3, and its representation in �gure 4.9.

f8(x) = � cos(x1) cos(x2)e
�(x1��)

2�(x2��)
2

(4.3)

The results of the two compared techniques are presented in �gure 4.10. As shown in

it, R-ESLAT is able to �nd the minimum (or at least its location zone, if not the global

minimum) in 18 out of the 30 runs, while CMAES is not able to do so in any of the 30 runs.

This shows the capacities of the exploration process in R-ESLAT. It can be highlighted from

the results in table 4.4, function f8, that the stopping criterion of CMAES, lacking guidance

information, is triggered after a very small number of function evaluations.

Obviously, the cost of the results for the presented algorithm is shown in the number

of function evaluations performed, several orders over CMAES (caused by the application

of local search techniques requiring a high number of function evaluations in R-ESLAT and

the derandomized search performed by CMAES which allows the technique to perform a low

number of function evaluations).
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Figure 4.9: Easom function

4.3 Mutagenesis as a diversity enhancer and preserver in evolu-

tionary strategies

Section 4.2.2 has presented the R-ESLAT technique, which introduced a modi�ed stopping

criterion based on the mutagenesis operator. The results presented have showed that the

stopping criterion is e�ective as part of the integrated memetic approach, based on an en-

hanced exploitation procedure. The objective of this section is to extract this procedure from

the memetic schema, remark its diversity e�ect as an early stopping prevention mechanism,

performing the required changes, and establish its isolated e�ect comparing the technique

versus a canonical evolutionary strategy.

4.3.1 Mutagenesis as an independent transformation operator

Mutagenesis and the gene matrix artifact have been detailed, according to their use in R-

ESLAT, in section 4.2.1. As seen in �gure 4.1, the gene matrix basically covers which

sub-ranges have been covered for each of the variables, and mutagenesis (�gure 4.2) forces

changes for speci�c gene values to sub-ranges not previously covered.

The initial proposal was based on a gene matrix with a �xed size, which is iteratively

�lled with 1's, until this matrix is completely �lled with 1's, which triggers the secondary

stopping approach, based on the value of the best individual in the di�erent populations.

This approach has a series of issues: establishing the a-priori size of the gene matrix and the

lack of diversity enhancement during the �nal phase of the evolutionary process (once the

secondary stopping criterion has been triggered). This process is summarized in �gure 4.11

The novel gene matrix proposal is focused on diversity enhancement, rather than its
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Figure 4.10: R-ESLAT and CMAES results comparison over the 30 independent runs per-

formed on the Easom's function test problem

application as a termination criterion (which is still performed). To do so, an initial number

of subranges is set a-priori. Once the gene matrix is �lled with ones at a certain generation,

it is restarted, reinitializing it with zeros and updating it with the individuals in the population

which caused this reinitialization. Every time the gene matrix is reinitialized, its number of

contained subranges is doubled. This mechanism achieves a constant diversity enhancement

and also a more thorough coverage of the search space as the algorithm progresses, depending

on the dimensionality of the problem faced.

The mutagenesis procedure has also been reviewed. As previously explained, it originally

introduced a certain number of modi�cations on the worst individuals of the population,

changing concrete values from the chromosome to unexplored subranges of the chosen gene.

This behavior may not introduce enough diversity in a population heavily dominated by the

best individual, so an additional probability is added to the algorithm con�guration: prm,

random mutagenesis probability. According to this probability, mutagenesis may generate a

random individual covering the chosen subrange instead of modifying just one gene from one

of the worst individuals in the population.

Additional controls have also been added to mutagenesis. If an individual has covered

a new subrange in current generation, it is never changed any further by the mutagenesis

procedure, regardless of its rank. This allows the new information introduced during the

evolutionary cycle to survive at least one generation, in order to give the new individual

the chance to procreate and mutate before any directed change is applied to it. This also

implies a change in the mutagenesis con�guration. Instead of Nw changed individuals, the

user con�gures a more versatile Nc parameter, establishing the number of new subranges
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Figure 4.11: R-ESLAT stopping management overview

covered each generation. If the evolutionary cycle covers the required number of changes,

no mutagenesis is applied. In other case, the worst individuals (as many as required in order

to cope with the desired Nc changes) are picked to go through the mutagenesis procedure.

Figure 4.12 includes the 
ow diagram describing the presented mutagenesis procedure,

along with the growing gene matrix management for the stopping and diversity enhancement

procedure

Finally, the stopping criterion used in R-ESLAT implied that the best �tness was repeated

over a certain window of generations. This exact repetition may be too strict for a stopping

criterion, since very small changes in �tness values (which might even be a�ected by the

representation precision) would lead to a continuation in the evolutionary algorithm once

the search process had stagnated regarding all practical purposes. For these reasons this

exact comparison was changed to the comparison quotient presented in equation 4.4, which

provides a more 
exible mechanism to control the relevance of the changes.

previousbest � currentbest
previousbest

� Improvementfactor (4.4)

The proposed algorithm is based on the following principles: a stopping prevention mech-

anism based on the exploration enhancement provided by a gene matrix which adapts its size

according to the search deph, a mutagenesis operator which is applied only as a complement

to the search when required (according to the number of subranges covered by the transfor-

mation operators on each generation) and allows its introduced information to remain in the

evolutionary cycle at least for a generation and, �nally, a stopping criterion which is based

on the tracking and stagnation detection of the best individual �tness value, considering the

exploration enhancements introduced by the previous approaches.
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Figure 4.12: Diversity enhancement procedure overview

4.3.2 Experimental validation

The same set of 27 single optimization functions used for the validation of R-ESLAT is used,

in this case, for the validation of the presented technique versus a canonical evolutionary

strategy. The overview of the dataset is included in table 4.2, while appendix A includes a

thorough description.

Several parameters (according to their description included in the previous section) have

to be established for the proposed technique, which are presented in table 4.6. As included

in that table, four di�erent population sizes are used to cover the comparison of the two

di�erent techniques. The complete results for the di�erent population sizes are presented in

tables 4.8-4.11. A comparative presentation of those results is presented in table 4.3.2 and

�gure 4.13. Following (Garc��a et al., 2009), the individual comparison for the di�erent test

functions is performed according to parametric and non-parametric tests. The normality test

used is the Shapiro-Wilk test, the parametric test is Student's t-test and the non-parametric

test is Wilcoxon signed-rank test. The statistical best results are provided according to the

t-test if the data follows a normal distribution and according to the non-parametric test

otherwise. Fifty iterations have been run in order to establish the statistical signi�cance of

the results.

To test the �nal performance comparison, a Wilcoxon rank-sum test is carried out over

the mean results for the twenty-seven functions and the four considered population sizes.

The p-value obtained is 0.0275, which implies that with a signi�cance level as low as 3%

(lower than the usual 5% considered for these tests) the proposed gene matrix diversity

enhancer allows evolution strategies to perform better.

Analyzing the individual results, the e�ectiveness of the diversity enhancement is, in

general, more representative at lower population sizes (where the risk of falling into local
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Table 4.6: Experimental con�guration

Parameter Description Value

� Population size 5, 10, 15, 30

initsr Initial subranges 10

minsr Minimum subranges covered per generation �/5

prm random mutagenesis probability 0.5

If Improvement factor 1E-05

Table 4.7: Results comparison for the di�erent considered population sizes

Population size Statistical Best Statistical Worst Best

5 7 3 19

10 7 8 14

15 10 6 15

30 3 10 13

optima is higher and the exploration capabilities are reduced) but, at the same time, since

the number of required changes per generation are con�gured as a certain percentage of

the population, the use of the gene matrix is more accused on higher population sizes. The

balance between these two factors determines the e�ectiveness of the mutagenesis changes.

This is re
ected in the variable number of signi�cant best and worst results obtained for the

di�erent population sizes.

Finally, regarding the individual analysis of the results for the di�erent test functions, it

must be noted that the non-parametric tests do not seem to be able to properly measure

some behavior di�erences (due to their zero median null hypotheses). This can be seen,

for instance, in table 4.8, function f14, where, even though the mean value obtained by the

evolution strategy using mutagenesis is several orders of magnitude better, the Wilcoxon test

does not determine it to be the best. It must be noted, though, that Wilcoxon test assumes

zero skewness, even tough its is generally applied in the literature, and thus in this chapter,

without the proper cheks for this fact (which tends not to be true in evolutionary algorithm

results, due to the e�ect of local optima) . This points to the requirement of mean based

statistical tests not requiring normality distribution over their measures to perform quality

comparisons between algorithms.

A closer inspection is required for the detailed incomparable example. This is provided in

�gures 4.14 and 4.15. In �gure 4.14, the outlier provided by the canonical approach makes

it hard to assess the performance of the algorithms. Figure 4.15 provides the same results

removing the outlier. As can be seen, the technique using the gene matrix is much more

robust to early stagnation of the algorithm, although the computational e�ort spent in the

exploration process hampers its exploitation capabilities, making it reach higher �nal �tness

values. This highlights the tradeo� established by the proposed technique: more robust

results in terms of success rate which may require a higher number of function evaluations

to reach their best �nal result.
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4.4 Conclusions

The Evolutionary Strategy Learned with Automated Termination Criteria (ESLAT) tech-

nique introduced some interesting tools to control the population diversity (gene matrix and

mutagenesis operator) and establish, according to it, a stopping criterion. However, several

implementation handicaps were pointed out and remained unsolved: control over the search

domain, local search techniques con�guration, robustness in the stopping criterion, etc.

Robust ESLAT (R-ESLAT) faces these issues, providing an analysis of the exploration and

exploitation processes carried out by the technique, along with concrete measures involving

each of them. This measures can be grouped in three main fronts: search space control,

technique con�guration (particularly for the intensi�cation processes) and robustness in the

stopping criterion included. Search space control has been performed with both repairing and

death penalty approaches. Intensi�cation processes have been revised setting appropriate

con�guration values for the local search techniques, along with complementary required

techniques.

Finally, an exploitation analysis (by means of the best individual's �tness value) has been

included in the stopping criterion. This stopping criterion now combines a stopping preven-

tion mechanism (by the diversity introduction guided by the gene matrix and mutagenesis

procedures) with the combined stopping detection (both in objective and variable spaces),

providing a much more robust assessment of stopping situations. The presented algorithm

produces results which are statistically better than CMAES in terms of �nal quality in 20 out

of the 27 functions in the used dataset, showing more consistency in the results through the

di�erent executions, and also overcoming the di�culties of the original ESLAT algorithm.

These results showed promising capabilities, but were intrinsically included as part of the

memetic algorithm cycle. The developed mutagenesis based stopping criterion isolates these

gene matrix and mutagenesis artifacts and focuses on their diversity enhancement, rede�ning

the processes in order to maximize these characteristics, and tests the results comparing them

to the performance of canonical evolution strategies. This implies that the passive role of a

stopping criterion is change to a more active stopping prevention and detection, according

to measures both in the variable and the objective spaces.

The obtained results show that the exploration improvements lead the algorithm to

an overall better performance, with a di�erent impact regarding the population size and

the percentage of the population which goes through mutagenesis processing. For a set

of twenty-seven unconstrained optimization functions, the algorithm is statistically better

considering four di�erent population sizes and �fty iterations, providing a fair statistical

signi�cance. The testing process also highlights the requirement for mean centered statistical

tests, since non-parametric alternatives may not be able to measure performance di�erences

under certain speci�c circumstances due to their median analysis.

The resultant performance provides higher exploration capabilities and resistance to the

e�ect of local optima. This computational cost is substracted from the exploitation pro-

cesses, which makes the algorithm obtain worse �nal results than canonical techniques when

their optimization is successful. This creates results which, for some problems, as already

commented, are statistically not comparable.

As established in the thesis objectives, this chapter has presented a novel proposal for a

single objective stopping criterion. This criterion measures stagnation in both variable and

objective space before it is triggered, and actively manipulates the population diversity in the
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variable space to prevent early convergence issues.



5
Multi-objective stopping criteria for

evolutionary algorithms

\
Delirium was once Delight And although that was long ago now, even

today her eyes are badly matched; one eye is a vivid emerald green, spat-

tered with silver 
ecks that move; her other eye is vein blue Who knows

what Delirium sees, through her mismatched eyes? "
Neil Gaiman, Sandman-Season of Mists, 1992

This chapter presents a proposal to approach the stopping criteria for multi-objective

evolutionary algorithms. The core idea of this chapter is to use quality indicators from quality

assessment literature (Zitzler et al., 2003) to measure the progress of the algorithm across

di�erent generations and determine, according to them, determine when the algorithm must

be stopped. The �rst proposal, presented in section 5.2, will include a Kalman estimation

technique to handle the linearity of the indicator values and analyze the inclusion of possible

fusion architectures in order to manage several indicators jointly and add robustness to the

�nal stopping criterion. The second proposal, presented in section 5.3, introduces the Least

Squares Stopping Criterion, LSSC, which is focused, according to previous results, on a

simpli�ed approach for the linear estimation using least squares and attempting to provide

an iteratively computed criterion which can be implemented as a single formula, in order to

enhance its simplicity and enhance its inclusion in available algorithms. The main reference

texts for this chapter are (Guerrero et al., 2009a, 2010c).

5.1 Introduction

Most soft computing methods (both heuristic and non-heuristic) share the need for a stopping

criterion in their design. This need is usually met applying criteria based on the number of

generations, which involve a waste of computational resources (as they go on being applied

after a point where iterations get no improvement over the current solution). According

to the classi�cations presented in section 2.4.7, these approaches are static, exhaustion-

based criteria. Even though the waste of resources is, evidently, never a desirable attribute,

it becomes especially important in real systems where the running time becomes a critical
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parameter. This fact has prevented the application of some of those algorithms to real

problems, due to the time needs required.

Multi-objective optimization problems (MOOP's) (Ehrgott, 2005) are optimization prob-

lems where a group of functions, usually in con
ict, has to be optimized jointly. They were

presented and properly formulated in section 2.4.3, as a generalization over the single ob-

jective optimization goal of evolutionary algorithms. The solution to this problem is a set,

known as Pareto Optimal Front (de�nition 2.5.4 and equation 2.7), which contains one or

more feasible solutions corresponding to the extreme values (either maximum or minimum,

depending on each particular case) of the functions. As previously discussed, these de�nitions

rely on the concept of Pareto dominance (de�nition 2.5.2) and Pareto optimality (de�nition

2.5.1).

Multi-objective evolutionary algorithms (MOEA's) (Coello et al., 2007) have proved to be

a particularly useful tool to deal with MOOPs (covered in section 2.5). In this particular �eld,

the need for a stopping criterion, even though it is sometimes left aside as a secondary matter,

is highlighted in surveys as a topic which needs to get attention and research in this area

(Coello, 2000), being a recent research focus (Wagner et al., 2009). The traditional solution

to this problem was the establishment of an a priori number of maximum generations for the

algorithm (Coello, 2000), which, at least, managed to set a boundary for the algorithm's

running time. This need for a stopping criterion has already been stated and approached in

general for EAs (Hernandez et al., 2005; Safe et al., 2004). Chapter 4.3 has already dealt

with this topic, presenting a novel stopping criterion for the single objective case.

Being the most commonly applied criterion, in any of the problems exposed, to stop the

running algorithm after it reaches a number of iterations (usually measured in generations)

it is remarkable that this stopping criterion can only be applied to very concrete and simple

MOOP's, becoming unfeasible in more complex problems. Setting that a-priori value can

be a particularly di�cult task to be performed accurately, since this issue is a MOOP itself,

where the objectives are to maximize the quality of the optimal Pareto front (OPF) approx-

imation while minimizing the number of generations, or, in general, the number of function

evaluations. This fact can be somehow avoided in some studies considering that the number

of required iterations is rather established for well-known problem suites, such as DTLZ (Deb

et al., 2002c) or WFG (Huband et al., 2005).

We may use a local or a global approach to �nd a stopping criterion for our EA. A local

criterion (or iteration-wise) only has access to the current iteration's data, measuring the

distance from this value to the prede�ned optimum, and stopping after this distance gets

lower than a certain threshold. This method requires us to know the optimal solution before

applying the algorithm, so it may be only used for validation purposes. Global criteria, on the

other hand, keep track of the advances obtained by the algorithm over several iterations, in

order to take the decision of whether to stop or not. The distance measure de�nition is still

needed in these criteria, but not the knowledge of the optimal solution.

The stopping criterion of a MOEA is typically invoked at the end of an iteration of the

algorithm, deciding whether to continue with the next generation or not. There are four

situations where this stop should take place: the solution is already satisfactory, a better

solution is unlikely to be produced, the method is unable to converge to a solution or,

�nally, the amount of computation is already su�cient. The �rst situation is covered by

local approaches. The second and third situations are covered by global approaches, by the

comparison of consecutive iterations. The fourth situation is covered by stopping criteria
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Figure 5.1: Ideal distance evolution from a MOEA solution to the Optimal Pareto Front

triggered after a certain prede�ned number of generations.

There are examples of these criteria applied to speci�c algorithms, such as NSGA-II (Deb

et al., 2002b), where a stopping criterion was proposed based on some algorithm internal

measures, such as the crowding distance, (Roudenko & Schoenauer, 2004).An important

related concept is the ideal stopping generation. Stopping generation criterion is a MOOP

itself, where the stopping of the evolutionary process should be triggered as soon as possible

(once this process is not improving its solution), being this solution, at the same time, as

close to the optimal Pareto front as possible. We can understand our concept of ideal

stopping generation with Figure 5.1 is introduced to ease the de�nition of this ideal stopping

generation.

In �gure 5.1 we may see that the progress made towards the solution ahead of generation

�fty is very small, so that would be our ideal stopping generation. The balance between the

quality of the solution of a MOEA and the number of the generations it has been running

for can be found, as has been exposed, with the use of global stopping criteria, but there

are, as in any MOOP, some decisions which the user must take in order to determine which

solution he wants to use (stating it simply, which grade of progress towards the solution

per generation is worth to keep the algorithm running). It must be noted, as well, that

the traditional approach is not always better, in terms of solution quality, as additional

generations may degrade factors such as the population diversity by means of genetic drift

(Rudolph et al., 2007). This implies that, by choosing the right stopping generation, the

user is not only saving computational resources, but may be also preserving the quality of

the obtained solution.

Figure 5.2 shows three possible stopping generations for an ideal evolution results. There

is no clear choice regarding the best stopping generation in Figure 1. In a general case (the

one which the default con�guration of a stopping criterion should be trying to achieve) the
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Figure 5.2: Di�erent possible stopping generations for a given indicator evolution
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optimal stopping generation would be number two, but there may be additional considera-

tions. If the running time of each individual generation is very high, the user might try to

stop the algorithm following stopping generation number one (after which, even if there is

some improvement in the solution quality, it is very low), whereas, on the other hand, if

extreme accuracy in the solution is the key factor in the algorithm, the user might prefer

stopping generation three. This shows that stopping criteria must be able to adapt to the

user's needs.

The required distance functions are an issue themselves. In section 2.6 the techniques

required for quality assessment of the performance of di�erent MOEAs were introduced, along

with the requirements of quality indicators and the criticism over some of the most extended

ones (particularly unary quality indicators). Three di�erent quality indicators will be presented

and used in this chapter: hypervolume indicator (Zitzler & Thiele, 1998), epsilon indicator

(Zitzler et al., 2003) and mutual domination rate indicator (MDR) (Mart�� et al., 2007). A

capital di�erence among these three alternatives is that MDR was especially designed as a

convergence indicator (part of the MGBM stopping criterion introduced in section 2.7.2),

while the other alternatives have been adapted from an initial quality assessment purpose.

Accumulating evidence by means of linear estimation from quality indicators is exposed

in (Mart�� et al., 2007, 2009), but without the proper study of the limitations imposed by the

chosen �ltering. Two di�erent alternatives will be presented to cope with this process, a novel

use of Kalman �ltering and an approach based on least squares regression. Finally, the idea

of using the proposed stopping criterion as a part of a data fusion architecture is presented,

using the previous indicator's data as the input data for the established stopping criterion. A

data fusion architecture aims to combine data from multiple sources to determine the state

of a system (Groves, 2008). This architecture will take the evidence accumulator role. In this

chapter we will propose a Kalman estimation based stopping criterion, from several progress

indicators, and introduce of fusion architectures to consider the indicators' data jointly.
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5.2 Linear estimation based stopping criteria for MOEAs ap-

proach

5.2.1 Progress Indicators

As presented in the introductory section of this chapter, three quality indicators will be used

for the data gathering of the proposed stopping criteria: hypervolume (Zitzler & Thiele,

1998), epsilon (Zitzler et al., 2003) and MDR (Mart�� et al., 2007) indicators. The nomen-

clature progress indicator refers to the use of the indicator, and the way it is calculated, in

this case to measure the convergence of the given multi-objective algorithm, instead of the

traditional quality assessment presented in section 2.6. Even though this fact will be thor-

oughly discussed in the following sections, this implies that the binary quality indicators will

measure the progress obtained between two di�erent instants of the evolutionary cycle (two

di�erent generations). This must be taken into account to perform the proper modi�cation

over hypervolume and epsilon indicators to suit this goal, while MDR was inherently designed

to cover this approach.

Measuring the quality of solutions

Since our progress indicators are going to be derived from quality ones, it is therefore

important to realize what these indicators measure and how they do it. It is a complex

and crucial matter to be able to determine how good is a solution space in relationship to the

optimal one, involving problems such as dimensionality reduction, which may lead to invalid

conclusions (Zitzler et al., 2002). However there are some community accepted indicators

(Zitzler et al., 2003), which can be grouped in three categories: distance from the Pareto

front solution's elements to the closest from the optimal one (to measure how close our

solution is to the optima), distance from every element of the optimal Pareto front to the

closest element of the actual solution (to determine how well our solution covers the optimal

one) and �nally the distribution of the actual solution and its associated Pareto front (to

gauge how well spread are the elements of these sets). Binary indicators (Zitzler et al., 2003)

are especially indicated for our purpose, since they compare two di�erent sets of solutions.

Hypervolume indicator

The hypervolume indicator Ih(A) (Zitzler et al., 2007) computes the volume of the region

H, delimited by a given set of points A, and a set of reference or nadir points N. Equation

5.1 presents the unary version of the indicator (Zitzler & Thiele, 1998), while equation 5.2

presents the binary version (Zitzler & K�unzli, 2004).

Ih(A) = volume

 ⋃
8z2A;8y2N

hypercube(a, n)

 (5.1)

IHD(A,B) =

{
IH(B)� IH(A) if 8x2 2 B9x1 2 A : x1 � x2

IH(A+ B)� IH(A) in any other case
(5.2)

It must be noted that not only are there di�erent approaches for the hypervolume indica-

tor (probably the most extended quality indicator) in terms of the number of sets of solutions
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used, but also regarding the way the computation is performed. The implementations are

generally based on the hypervolume by slicing objectives approach (Knowles, 2002; While

et al., 2006). This indicator has gone under an incremented use by the development of indi-

cator based algorithms IBEAs (Zitzler & K�unzli, 2004), which include indicators computation

as part of the evolutionary cycle. The di�culties with this approach are particularly evident

in algorithms dealing with many-objectives, such as HypE (Bader & Zitzler, 2011), due to

the exponential worst-case runtime complexity of the indicator in the number of objectives,

more speci�cally O(Nn�1), where N is the number of solutions considered (Knowles, 2002).

Nadir points are the worst elements of our solution's Pareto front, which means the

points which dominate no other. The computation of these nadir points determines the

accuracy of the indicator. Having N, the computation of this indicator is also a non-trivial,

computationally intense problem (Ehrgott & Tenfelde-Podehl, 2003).

Epsilon indicator

The epsilon indicators (Zitzler et al., 2003) are a set of performance indicators which, relying

on the dominance concept, measure how close our actual Pareto front is to the global

optimal one. They introduced the epsilon dominance concept (presented in section 2.6.1,

covered along with the most important remaining dominance relations in de�nition 2.6.1 and

compared in tables 2.1 and 2.2).

Suppose without loss of generality a minimization problem with n positive objectives, i.e.

Z � R+n

. An objective vector ~z1 = (z11 , z
1
2 , ... , x

1
n ) is said to �-dominate another objective

vector ~z2 = (z21 , z
2
2 , ... , z

2
n ) 2 Z , written as z1 �� z

2 if, and only if

81 � i � n : z1i � � � z2i (5.3)

for a given � > 0. The binary epsilon indicator I� is therefore de�ned as

I�(A,B) =
inf

� 2 Rf8~z
2 2 B9z1 2 A : z1 �� z

2g (5.4)

Similarly, an additive epsilon indicator can be de�ned: z1 �� z
2 if, and only if

81 � i � n : z1i � �+ z2i (5.5)

for a given � > 0. The binary additive epsilon indicator I�+ is therefore de�ned as

I�+(A,B) =
inf

� 2 Rf8~z
2 2 B9z1 2 A : z1 ��+ z2g (5.6)

Mutual Dominance Rate Indicator

The two previous indicators, as has been previously pointed out, were formulated as quality

indicators and have to be reformulated to address the convergence issue. The main handicap

of such an approach is the fact that for o�ine quality assessment the computational e�-

ciency is, in general, not a key parameter (the computational complexity of the hypervolume

indicator has just been related in its section to the issues appearing in many-objectives opti-

mization), and thus their application as an step of every generational cycle of an evolutionary

algorithm may seriously harm the overall performance.
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The MDR indicator (Mart�� et al., 2007) is a specially created indicator to deal with this

computational cost weakness. To simplify the indicator de�nition, a function 4(A,B) that

returns the set of elements of A that are dominated by at least one element in B, as shown

in equation 5.7.

C = 4(A,B) such that 8x 2 C , x 2 A and 9y 2 B with y < x (5.7)

Using the function de�ned in equation 5.7, the MDR indicator, Imdr (t) 2 [�1, 1] contrasts
how many non-dominated individuals of iteration t dominate the non-dominated individuals

of iteration t-1 and viceversa, using equation 5.8

Imdr (P
�
t ,P

�
t�1) =

k 4 (P�[t � 1],P�[t])k
kP�[t � 1]k � 4(P�[t],P�[t � 1]k

kP�[t]k (5.8)

If Imdr = 1, it means that the population of iteration t is completely better than the

precedent one. If its value is 0, it implies that there has not been any substantial progress. If

Imdr = �1, it indicates the worst possible case, where the iteration t does not improve any

of its predecessor's solutions. The formulation of the MDR indicator was presented along

with a stopping criteria named MGBM (Mart�� et al., 2009), which was discussed in section

2.7.2. This implies that even in its formulation, it is presented to compare two di�erent

Pareto fronts of the same evolutionary algorithm, instead of two di�erent sets of solutions

to be compared.

We may introduce the same formulation to the hypervolume and epsilon indicators pre-

viously presented, in order to use them as progress indicators, instead of tools for quality

assessment. From equation 5.2 we obtain the following binary hypervolume indicator for

progress assessment.

IHD(PF
�[t � 1],PF �[t]) =

{
IH(PF

�[t])� IH(PF
�[t � 1]) if 8x2 2 B9x1 2 A : x1 � x2

IH(PF
�[t � 1] + PF �[t])� IH(PF

�[t]) in any other case

(5.9)

Both formulations of the epsilon indicator, multiplicative (equation 5.4) and additive

(equation 5.6), can also be reformulated to meet the requirements of a progress indicator,

with equations 5.10 and 5.11 respectively.

I�(PF
�[t � 1],PF �[t]) =

inf

� 2 Rf8~z
2 2 PF �[t]9z1 2 PF �[t � 1] : z1 �� z

2g (5.10)

I�+(PF
�[t � 1],PF �[t]) =

inf

� 2 Rf8~z
2 2 PF �[t]9z1 2 PF �[t � 1] : z1 ��+ z2g (5.11)

5.2.2 Kalman Linear Estimation

The Kalman �lter was originally presented in (Kalman et al., 1960) as a recursive solution

to the discrete data �ltering problem, being ever since a subject of extensive research and

application, particularly in the area of autonomous or assisted navigation. The Kalman �lter
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assumes a dynamic linear model and measurement process, both with added white Gaussian

noise, given by the following equations.

X [k ] = A[k � 1]X [k � 1] + w [k � 1] (5.12)

Z [k ] = H[k ]X [k ] + v [k ] (5.13)

For equations 5.12 and 5.13 w [k ] s N(0,Q) and v [k ] s N(0,R)

The �lter works along with an estimated error covariance matrix, given by equation 5.14

PK [k ] = A[k � 1] � PK [k � 1] � A[k � 1]t +Q[k � 1] (5.14)

The relationship between the used indicators and the models represented by a Kalman

�lter is not immediate. Current proposal will use a model tracking our indicator's value and

its �rst derivative in the state vector (being our only measure the indicator value). The

following values for the �lter parameters are delimited by this choice

X [k ] =

[
x [k ]

x [k ]

]
Z [k ] =

[
z [k ]

]
H[k ] =

[
1

0

]
(5.15)

The w [k ] noise factor (along with its covariance matrix Q) represents the uncertainty in

our model, which allows us to adapt to dynamically changing linear models. The v [k ] noise

factor (along with its covariance matrix R) represents the noise in our measuring process. In

the current proposal, where the R matrix only has one element, it represents the variance in

our measures.

Q =

[
�2x �2xx
�2xx �2x

]
R =

[
�2Z
]

(5.16)

Relating these values to the stopping situations presented in section 5.2.1, we can easily

associate the state vector with the situations where a stop is required due to the unlikeness

of getting a better solution or converging to one.

It is important to realize the strong suppositions that are taken by the use of a Kalman

�lter with the indicated model. It assumes a linear model with Gaussian noise with a

constant variance (just by using a Kalman �lter) and constant velocity in the change rate

of the indicator (due to our chosen model). These preliminary conditions are not satis�ed

(especially during the transient evolution of the indicators), but we will use them anyway as

an approximation to our problem, given that the transient phase of the evolution is not of

interest to the stopping criterion.

It is important that, even though we do not know the model for the transient state (and

it does not follow our Kalman �lter suppositions) we do know that it will start to follow an

almost uniform model at the end of the transient state, which is precisely when we want to

trigger our stopping criterion. The commented e�ect can be appreciated in �gure 5.3.

We have already shown the PK matrix as an estimation of the �ltered error (both for the

state vector position and the velocity). The �rst statistical stopping criterion would determine

when the generations have stopped advancing towards the desired solution as a function of

current indicator derivative and the estimated error for that derivative. Unfortunately, due to

the approximation limitations, we have a very pessimistic error prediction, implying that we
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Figure 5.3: Filtered indicator example

cannot use a strictly statistical criterion to determine our stopping generation (the estimated

error is greater than the measure).

Another possibility is to determine the stopping generation by tracking the residue value,

being that residue the di�erence between our predicted point and the real one (in this case,

the output of the Kalman �lter versus the measured indicator). This residue is shown in

equation 5.17

Res[k ] = jx̂ [k jk � 1]� z [k ]j (5.17)

This residue study, applied to the aircraft position tracking with a Best Linear Unbiased

Estimator (BLUE) (Henderson, 1975), was successfully applied in chapter 3 to the segmen-

tation of data coming from the ATC domain. The problem that arises for current application

is that, during the update phase of the Kalman �lter, we adapt our prediction to the mea-

sured value, according to the value of R, so the lower the R value is, the smaller the residue

will be. This fact is shown in �gure 5.4

This means that, by tuning R and Q matrices, we would be able (as we already know

the optimal Pareto front for our domain and therefore the optimal stopping generation) to

trigger our stopping criterion at optimal generation for each of our problems individually, but

these results would not be applicable to di�erent ones, as we would be basing ourselves on

local criteria, which have been covered on previous sections.

We have stated the approximations made to be able to apply Kalman �ltering to the

included indicators (which follow a non-linear model). It is especially important the di�erence

between the transient state, where the model does not follow the real evolution of the

indicator, from the �nal steady state (at the beginning of which we would like to stop),

where this model's conditions are met. If we choose a high value of R matrix (meaning that

we do not trust much our measures value) and a low value of Q matrix (meaning that we do
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Figure 5.4: Filtered indicator residues comparison

trust our model) we would get a �lter adapting itself awfully to the �rst transient state, but

whose results during out �nal stopping phase should become much better. We may present

this as the di�erence between our �lter's prediction phase and the �lter's update phase. The

lower this value gets, the more accurate the �ltering becomes, thus the more the prediction is

adapting itself to the measures and �nally the closer the MOEA is to its stopping generation.

Figure 5.5 shows the evolution of these update phase corrections for Q=0.01 and R=10. We

have stated the approximations made to be able to apply Kalman �ltering to the included

indicators (which follow a non-linear model). It is especially important the di�erence between

the transient state, where the model does not follow the real evolution of the indicator, from

the �nal steady state (at the beginning of which we would like to stop), where this model's

conditions are met. If we choose a high value of R matrix (meaning that we do not trust

much our measures value) and a low value of Q matrix (meaning that we do trust our model)

we would get a �lter adapting itself awfully to the �rst transient state, but whose results

during out �nal stopping phase should become much better. We may present this as the

di�erence between our �lter's prediction phase and the �lter's update phase. The lower this

value gets, the more accurate the �ltering becomes, thus the more the prediction is adapting

itself to the measures and �nally the closer the MOEA is to its stopping generation. Figure

5.5 shows the evolution of these update phase corrections for Q=0.01 and R=10.

We have as designers two degrees of freedom: one related to the threshold below which

we would consider we have reached our stopping generation, and another one related to

how many measures we will require to get consecutively with values below the threshold

to actually make the MOEA stop. The �rst parameter should be indicator dependent but

problem independent, and, along with the second one, is a compromise between the cost of

additional iterations and the cost of stopping before we reach the optimal generation. The

number of measures also adds robustness to our criterion, since, as we can see in the �gures

included in the experimental section (�gures 5.14-5.18), we may have measures during the
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Figure 5.5: epsilon indicator update phase corrections with Q=0.01 and R=10

transient indicator state that fall below our threshold value. These measures can be used as

well to try to escape from local minimal solutions, and give the MOEA the chance to keep

looking for a better solution.

The determination of these parameters may be seen as parameter optimization problem

itself, since we have to choose the best �lter parameters to allow the stopping criterion to get

a distribution of the update corrections where we can choose an appropriate threshold and

number of measures. Figures 5.6 and 5.7 show comparative values to remark the importance

of these parameters.

In �gures 5.6 and 5.7, it can be seen that the value for the threshold depends heavily on

the �lter parameters used. The corrections made during the update phase depend directly

on the value of the R matrix (the more we trust our measures, the more we will correct our

prediction), but there is not such a clear dependency between the �lter parameters, along with

the chosen threshold value, with our accuracy determining our stopping generation. In the

table beneath we show comparative results for the presented �lter parameters. These results

come from a DTLZ3 problem (Deb et al., 2002c) using the NSGA-II algorithm (Deb et al.,

2002b) (both, problem and algorithm, will be among the dataset used for the experimental

validation presented in section 5.2.4).

5.2.3 Indicators combination

Even though the analysis of this comparison is beyond the scope of this chapter, di�erent

indicators perform better or worse according to the problem and the algorithm used to solve

it. By using one of those indicators alone our stopping criterion would inherit its performance

characteristics, which is a situation we would like to avoid if possible. In current proposal,

the objective is to combine our di�erent indicators to get a global parameter to determine

whether to stop or not. This is performed by data fusion architectures (Groves, 2008).
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Figure 5.6: Update phase corrections comparison

There are di�erent alternatives for this fusion, such as a least squares or centralized ones.

Data fusion architectures were originally proposed in the context of multisensor information

(Liggins et al., 2008), such as combining data from GNSS (global navigation satellite systems,

such as GPS) and INS (inertial navigation systems) (Farrell & Barth, 1999).

Least squares data fusion architecture

Least-squares integration is the simplest way of combining information from di�erent naviga-

tion systems (for current proposal, from di�erent quality indicators). Each system, working

as a black box for the integration architecture (meaning that it provides no information about

how error varies with time and receives no feedback), gives a position or velocity and position

solution (x̂i) and an associated error covariance matrix, Pii . These are combined with a

snapshot or single point fusing algorithm (Hegarty, 2006). Figure 5.8 shows an example of

this architecture.

The equations for this fusion architecture are quite simpler than those required by al-

ternative ones. Each navigation sensor solution uses di�erent information to obtain its

navigation solution (the errors of the di�erent navigation solutions will be uncorrelated),

Pij = 0 for i 6= j . With this simpli�cation we may obtain the �nal state vector and its

associated covariance matrix with equations 5.18 and 5.19

x̂f = P�

m∑
i=1

P�1
ii x̂i (5.18)

P� =

(
m∑
i=1

P�1
ii

)�1

(5.19)
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Figure 5.7: Filtered indicator value comparison

Working with black-box navigation systems creates a need (to be able to optimally com-

bine the di�erent navigation solutions) for very accurate error covariance information. Ne-

glecting the o�-diagonal elements of P causes the accuracy to be overestimated in one

direction and underestimated in another. Using the o�-diagonal elements also allows incom-

plete navigation solutions to be fused. To do so, the navigation systems must output the

information matrix, P�1, instead of the error covariance matrix, as an incomplete navigation

solution has in�nite uncertainty in one or two directions.

The main advantages of this integration technique are simplicity and low processor load.

Also, the fact that all the navigation systems remain independent of each other facilitates

integrity monitoring, allowing measurement consistency checks to be used (Brown, 1996).

Considering the di�erent quality indicators available in the literature and their di�erent mea-

suring of fronts quality, this consistency checks could be applied in current domain to test

whether an individual indicator is failing in its assessment.

Least-squares integration architecture, however, also shows strong limitations. It is not

suited for integration of inertial navigation (generally of capital importance to get an accurate

short-term integrated navigation solution) or dead-reckoning systems, as it o�ers no means

to calibrate the position drift. In general, for its application to stopping criterion techniques,

this should not be a capital handicap, since there is no integrated quality indicator, and

thus no drift involved in any of them. Instead of doing this calibration, as these navigation

systems' output position drifts, it is weighed out of the integrated navigation position. This

fusion architecture also o�ers no means of combining navigation data with di�erent times

of validity, so is unsuited to fast-moving vehicles. Again, for stopping criteria considerations,

every progress indicator is measured at the same time (a discrete value represented by the

evolutionary generation being measured).
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Table 5.1: Stopping generation comparison with di�erent parameter values

Q R Threshold Measures Stopping generation

0.01 10 0.01 5 101

1 10 0.03 5 104

10 10 0.045 5 106

0.01 1 0.02 5 101

1 1 0.04 5 106

10 1 0.06 5 106

0.01 0.01 0.04 5 106

1 0.01 0.06 5 107

10 0.01 0.07 5 106

Total estate centralized data fusion architecture

In a centralized integration architecture, sensor measurements (instead of complete naviga-

tion solutions) are generally input to the integration Kalman �lter. Radio navigation systems

provide ranging measurements, enabling a navigation system to contribute to the integrated

navigation solution when there are insu�cient signals to form its own solution. When the

navigation processor does not incorporate any smoothing or estimation algorithm, either the

processor or the sensor measurements are acceptable (such is the case of INS, DR or feature

matching systems). For current proposal, the raw quality indicator measurements would be

the input to the integration Kalman �lter. Figure 5.9 shows the overview for this total-state

data fusion architecture.

The total-state �lter is suited to integrating positioning systems only, whereas an error-

state �lter is suitable where INS or DR is used. Progress indicators may be considered as

positioning systems, so these systems can be considered to be part of a stopping criterion.

In a centralized integration architecture, the systematic errors and noise sources of all of the

navigation sensors are modeled in the same Kalman �lter. This ensures that all error correla-

tions are accounted for, all measurements optimally weighed and the maximum information

is used to calibrate each error. Furthermore, we have already pointed out the fact that using

cascaded Kalman �lters introduced time correlated errors, and thus, using only one Kalman

�lter for the integration of all the sensor measures (and by that way not introducing the

time-correlated errors) we can use higher gains in the �lter before we have a stability risk.

According to the previous facts, the centralized integration architecture provides the

optimal navigation solution in terms of accuracy and robustness. The main di�culty for this

process is having the necessary information to model all sensors correctly (which requires a

very careful design). In the case of progress indicators this process is particularly di�cult,

since there are no clear correlations formally established among them to properly model the

required covariance matrices.

Decision fusion architecture proposal

Several issues arise with the application of the architectures presented in section 5.2.3. First

of all, least squares integration architectures uses the covariance matrix PK values as part of

its integrated solution procedure, but in section 5.2.2 it has been explained that in our case
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Figure 5.8: Least squares data fusion architecture
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these values are higher that their actual value, so alternative architectures which did not rely

on such a value so heavily would be preferable.

The case of a total-state integration architecture is slightly more complicated. The basis

for the application of the data fusion architecture is the underlying correlation which exists

within our indicators (as both of them measure our advance towards the solution), even

though we do not know what the exact relation among them is. The application of this

fusion architecture would consider the three indicators as measures of a new variable called,

for instance, virtual progress indicator, that would use the information of the three indicators

together. This process requires a careful con�guration of the �lter matrices and previous

data transformations, such as a normalization (the di�erent indicators do not share the same

range, so if this pre-normalization is not performed, the changes due to the generations

advance towards the optimal Pareto front are masked in those range di�erences), and the

con�guration of the covariance matrices according, among other factors, to the relationships

among the di�erent indicators. These studies are currently outside of the scope of this

chapter.

Assuming a balance between the cost of stopping too early and that of extending our

number generations after our optimal stopping one, we will adopt a simple fusion algorithm,

which consists on stopping when at least two out of our three stopping algorithms have met

their stopping criterion (a simple decision fusion architecture). Keeping this decision fusion

architecture, we might choose not to stop until all the indicators have decided so (if the cost

of stopping before the optimal stopping generation is greater than that of getting unneeded

generations) or as soon as one of them triggers its stopping criterion (if we want to stop as

soon as we have a solution available). This decision may seriously a�ect the robustness of

our criterion. For our experimental section we will use a decision fusion based on a voting

system (when two have reached their stopping generation, the evolutionary process will be
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Figure 5.9: Total-estate centralized data fusion architecture
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stopped).This process is shown in �gure 5.10.

5.2.4 Experimental validation

Through the previous sections of this chapter, �gures detailing indicators' evolutions and the

di�erent parameters needed for the proposed stopping criterion have been shown. These

results were obtained using and NSGA-II EA along with a DTLZ3 problem. Experimental

validation has been based on two di�erent phases: experiments regarding the empirical choice

for the di�erent parameters and the test of these parameters with di�erent test cases. This

�nal validation has been performed in two di�erent phases itself: �rst of all validation with

di�erent executions of the same problem and algorithm used to determine the parameters

values (section 5.2.4) and �nally the test of these of these parameters to a set of di�erent

problems and algorithms (section 5.2.4).

Our chosen algorithm set will include: NSGA-II (Deb et al., 2002b), SPEA2 (Zitzler

et al., 2001) and PESA(Corne et al., 2000) (the selection of these algorithms is based on

their importance to the community and the di�erences among them). On the problem set

we will include DTLZ3, DTLZ6 and DTLZ7 (Deb et al., 2002c), trying to obtain results

with a scaling di�culty level to determine how well our stopping criterion adapts to these

changes. The details of the con�guration of these algorithms and problems can be found in

(Mart�� et al., 2009).
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Figure 5.10: Decision fusion architecture proposal
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Table 5.2: Experiment parameters to determine the experimental threshold values

Indicator Q R Threshold Measures Stopping generation

Hyperv. 1 0.01 0.1 5 93

Epsilon 1 0.01 0.02 5 101

MDR 1 0.01 0.003 5 98

Con�guration of the stopping criterion proposal

In the section 5.2.2 the dependency existent within the �lter parameters and the chosen

threshold value has been presented and explained. Particularly, table 5.1 shows the com-

parison of how di�erent combinations of the matrices values and the threshold may provide

similar results. We proposed values Q=0.01 and R=1 for the �lter matrices, being these the

base values determining our choice for the threshold. This threshold is indicator dependent

as well. Figures 5.11-5.13 show sample evolutions and proposed thresholds corresponding to

each of our three indicators for the NSGA-II DTLZ3 problem, to visually justify the choice

of the presented experimental thresholds.

Table 5.2 presents the chosen experimental con�guration along with the mean stopping

generation obtained for the di�erent indicators. A considered matter in this experimental

con�guration was the similarity between the stopping results of the di�erent indicators, in

order to improve the overall robustness of the stopping criterion.

The validation of the results is a matter which must be considered carefully. If we were

measuring the success or failure of the MOEA's, we would compute several executions over

each problem and algorithm and get the mean distance to the optimal Pareto front. Instead,

we want to measure only the success or failure of the proposed stopping criterion. This

means that we will have to compare our stopping generation to the evolution of the distance

to the Optimal Pareto front, and not just its value at the stopping generation. This distance

to the optimal Pareto front has been measured with a hypervolume indicator in its original

formulation (as a quality of solution indicator). Figure 5.14 presents, for the problem where
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Figure 5.11: Hypervolume indicator sample evolution along with proposed threshold

Table 5.3: Stopping generation results for DTLZ3, NSGAII

Indicator
Test number / Stopping generation

1 2 3 4 5

Hypervolume 93 108 106 106 107

Epsilon 101 89 91 63 82

MDR 98 101 83 70 95

they were chosen (with the proposed thresholds presented in table 5.2), the distance to the

optimal Pareto front and the chosen stopping generations.

The characteristics proposed in the introductory section of this chapter seem to be met

by the results of the stopping behavior presented in �gure 5.14.

Validation with di�erent executions

Once we have con�gured our criterion correctly for one test case, the results obtained for

the NSGA-II DTLZ3 problem with di�erent initial conditions will be presented, to test the

applicability of the established thresholds to the same problem they were chosen for, but with

di�erent initial conditions (and, thus, di�erent evolutions). Figures 5.15 and 5.16 present

some of the graphical results for these di�erent evolutions. Also, table 5.3 details the results

for �ve di�erent executions.

Table 5.3 shows that the �rst execution of the test corresponds to the results presented

for the threshold parameter choice (presented in table 5.2). A thorough analysis of the

results would require exposing the evolution of the distance towards the optimal Pareto front

for each of the shown test cases. Again, there is a lack of knowledge over the optimal
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Figure 5.12: Epsilon indicator sample evolution along with proposed threshold

stopping generation, dismissing such an analysis. Figures 5.15 and 5.16 present the results

corresponding to the second and third executions of the presented problem, in order to

provide a graphical validation test over the proposed stopping criterion, performing an expert

validation in the absence of proper statistical testing theory to be applied.

It is important to remember that, even though the distance evolutions to the optimal

front may look similar for di�erent executions, the shown data are an estimation of that

distance (in our case using the hypervolume indicator) and we are also using an estimation

(in fact, three di�erent estimations, each corresponding to one of our progress indicators)

to determine when are reaching the steady �nal section of that distance evolution, and thus

the algorithm should be stopped.

Similar �gures of the distance evolution to the optimal Pareto front may have di�erent

progress indicator's �gure, and thus trigger our stopping criterion at di�erent generations.

This reassures the importance of using some data fusion architecture over our individual

indicators, to be able to get results less problem and execution dependent. In any case, the

stopping generations obtained are very close to the expected optimal stopping generation,

allowing an overall satisfactory consideration over the obtained results and the presented

criterion execution independent.

Analysis with di�erent test functions and MOEA's

In this section the test cases will be extended to the di�erent problems and algorithms sets

previously de�ned, using the same parameters for the �lter and thresholds already presented,

in order to test its performance in di�erent environments. Table 5.4 shows the results for the

chosen set of algorithms and problems. Also, �gures 5.17 and 5.18 present sample evolutions

for the alternative problems (DTLZ6 and DTLZ7) and algorithms (SPEA2 and PESA) not
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Figure 5.13: MDR indicator sample evolution along with proposed threshold

covered in previous �gures.

Table 5.4 shows the results for only one execution of the stopping criterion with the

algorithms and problems indicated. A wide range of experiments was performed, but it was

considered best to include only a single execution instead of the mean stopping iteration,

as they were independent, for comparative purposes among the di�erent alternatives. The

chosen executions are relevant in terms of showing the e�ects that could be appreciated

in the whole experiment set. The di�erent performance over the di�erent algorithms can

be caused by the inexactitude in choosing the R and Q parameter values (as previously

explained, this is a MOP itself). Also di�erent situations arise and the di�erent progress

indicators do not share the same sensibility characteristics to be able to detect the proper

stopping generation.

As presented in �gure 5.10, Kalman �ltering is applied to obtain the individual stopping

generation for each of the indicators, and the �nal stopping generation of our algorithm is

reached when two of those indicators have reached theirs (a simple decision fusion architec-

ture). This architecture also resembles the least squares data fusion architecture presented

in section 5.2.3, but instead of whole navigation solutions, the output of the isolated sensor

processors is the decision of whether the algorithm should be stopped.

The proposal of this experiments is not to compare the individual performance of the

indicators, but rather to test the validity of the proposed stopping criterion. The validation

di�culties already exposed for previous cases arise. Figures 5.14-5.18 attempt to achieve

a graphic summary of the results. One important aspect not included in this comparison is

the running computational time needed for each of the generations, as it is increased by the

processing of each of the individual indicators (some of them, as the hypervolume, with a

high computational cost). This chapter has been focused on the �nal stopping iteration and

its accuracy.
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Figure 5.14: Stopping generation comparison for DTLZ3, NSGA-II, �rst execution

Figure 5.15: Stopping generation comparison for DTLZ3, NSGA-II, second execution
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Figure 5.16: Stopping generation comparison for DTLZ3, NSGA-II, third execution

Table 5.4: Test results for the proposed problem and algorithm sets

Algorithm /Problem
Indicator / Stopping generation

Stopping criterion generation
Hypervolume Epsilon MDR

NSGA-II / DTLZ3 93 101 98 98

SPEA2 / DTLZ3 84 82 63 82

PESA / DTLZ3 104 99 88 99

NSGA-II / DTLZ6 110 85 95 95

SPEA2 / DTLZ6 98 80 80 80

PESA / DTLZ6 105 98 95 98

NSGA-II / DTLZ7 168 137 171 168

SPEA2 / DTLZ7 154 142 147 147

PESA / DTLZ7 206 177 115 177
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Figure 5.17: Stopping generation comparison for DTLZ6, PESA

Figure 5.18: Stopping generation comparison for DTLZ7, SPEA2
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5.3 Focusing on simplicity and e�ciency: the LSSC Criterion

Section 5.2 has introduced a stopping criterion based on linear estimation of several quality

indicators, according to a Kalman �lter, which are taken into a decision fusion system to

determine whether the evolutionary algorithm must be stopped. The experimental validation

in 5.2.4 have shown interesting results, regarding the applicability of the di�erent quality

indicators used and the overall criterion. Also, a fact has been pointed out: there is a lack of

optimal pre-establish stopping generation (or number of function evaluations) to measure the

quality of a stopping criterion. In any case, results showed that, based on a pre-con�gured

desired stopping threshold, the algorithm could be con�gured for a speci�c problem instance

and algorithm and those con�guration parameters remained robust for di�erent algorthms

and problems.

The objective of this section is to provide a stopping criterion which simpli�es the con-

�guration using a more restricted linear estimation while, at the same time, focuses on the

e�ciency of the proposal. This proposal will basically eliminate the model and measuring

noise con�gurations, proposing an analysis of a speci�c window of the values of the quality

indicators previously introduced. Even though it will not be detailed again, the fusion archi-

tecture proposal of section 5.2.3 could be reapplied, since LSSC will propose and alternative

method only for the individual indicator's stopping criterion.

5.3.1 Global stopping criteria

As seen in the domain techniques analysis in section 2.7 and also in the proposed technique in

section 5.2, the most common approach for stopping criteria in multi-objective evolutionary

algorithms is to identify when the evolution of the indicator becomes linear, where the

tendency of that evolution (or, in other words, the amount of improvement over the solution

per generation) falls below a certain threshold (or is considered irrelevant). This threshold is

used as an application of the stopping scenarios presented, and the linear check determines

the validity of the obtained tendency.

Obviously, the complete evolution of the indicator never follows that criterion (if it

did, we would never reach an acceptable solution) so the name global criteria may be a

misleading one, due to the fact that the algorithm will only be looking at a local portion

of the indicator evolution each generation (or considering it as Markov process, such as in

Kalman approaches). This analysis window usually covers the value of the indicator for a

certain amount of previous generations (which may change its value dynamically). Figure

5.19 shows this process.

In the example in Figure 5.19, the evolution of the indicator is clearly non-uniform in the

considered window, and thus the criterion would probably determine that the MOEA must

continue running. That idea can also lead us to some considerations about the window size

these algorithms must have in order to prevent inaccurate stops. An example of such an

stopping situation is provided in �gure 5.20.

The example in Figure 5.20 considers a window of the same size as Figure 5.19 (40

generations). With this size, regardless of the concrete technique applied, probably any

generation from 65 to 75 would be considered to stop, even though, seeing the whole indicator

evolution, we may notice that there are improvement chances after that stagnation of the

indicator value. A bigger window size (depending on the technique applied, probably for 55 or
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Figure 5.19: Example of local information analysis performed as part of a global stopping

criterion
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more generations) would have been able to determine that the indicator, even though it had

become very stable, was improving again. This situation shows that, if the problem is known

or suspected to have local optima or di�erent situations (such as neutral drift scenarios)

where the indicator may reach a stagnation situation, the considered window size must be

considerably larger, in order to be able to determine correctly if the improvement over the

indicator value has stopped permanently.

General stopping situations for evolutionary algorithms were covered in section 2.4.7.

Speci�cally for the multi-objective case, these situations have been reviewed in (Mart�� et al.,

2009), according to the following criteria

1. The amount of computation is su�cient.

2. A solution obtained so far is satisfactory.

3. The solution is not satisfactory, but a better one is unlikely to be produced.

4. The method is not able to converge to a solution.

5. Additional computation will provide little or no improvements in the current solution.

The �rst situation was the one covered by traditional approaches, where the amount

of computation was measured in number of generations (exhaustion-based criteria). There

have been modi�cations based on the number of function evaluations and the introduction

of modeling methods, as an approach to more complete convergence criteria, but they still

needed a number of �xed function evaluations, which could be high (30000-500000) when

the key parameter was the quality in the approximation (Deb et al., 2003) or low (130-250),

in the case of model-assisted approaches (Knowles, 2006). One of the handicaps of this
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Figure 5.20: Example of unsuccessful stopping analysis at local minima
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approach is that it may be dependent on several di�erent parameters, such as the population

size, the selection technique, the complexity of the �tness functions, etc.

The second situation is the one approached by quality indicators, which requires, as was

pointed out in the introduction, to know the OPF a priori (in order to be applied auto-

matically) or a decision maker which can estimate the quality of a given solution (reference

criteria). The automatic application of this criterion involves the knowledge of the solution

prior to the application of the algorithm, making it inapplicable to resolve new problems for

which the OPF is not known (relegating this criterion to validation and comparison issues

rather than using it as a general tool). On the other hand, a decision maker usually also

requires a good knowledge over the expected solution in order to test the validity of a given

Pareto front.

The di�erences between the following three situations are very subtle. The third situation

presents a scenario where the solution value has converged but is not satisfactory, in the

fourth one the solution is no able to converge, while the �fth implies that the evolution in

the improvement over di�erent solutions at di�erent generations has become not signi�cant

for the algorithm. Quality indicators are required in order to automatically determine if the

solution is unsatisfactory, but at the same time, some analysis of the progress towards the

solution is required to determine if a better one is likely to be obtained or not.

With these requirements, knowing the optimal Pareto Front would be required as well,

but looking at the �fth situation, the reader may consider whether it is needed to know

if the current solution is satisfactory or not if no further improvement can be gained by

the application of the algorithm. This point of view allows us to summarize the three �nal

scenarios into obtaining the best solution possible without considerations about its quality, at

least as part of the stopping criteria (considering the focus of quality indicators, these three

cases could be considered as distribution and movement based stopping situations). However,

third and fourth situations introduce novel considerations, since the fact of unsuccessful �nal

solutions is more linked to multi-objective optimization, particularly to those cases which
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deal with many objectives. The MGBM criterion (section 2.7.2 is particularly focused on the

detection of these stopping situations.

An interesting parameter for general convergence criteria is the analysis of the compu-

tational complexity added by the stopping criterion used. The complexity of the indicators

used is usually high enough to clearly exceed (and thus eliminate in the typical complexity

order analysis) the one added by the stopping criterion. This is especially true when dealing

with quality indicators such as hypervolume. Also, the complexity of the overall evolutionary

algorithm is usually dominated by the cost of the function evaluations, which has lead to the

use of indicator based evolutionary algorithms (such as IBEA (Zitzler & K�unzli, 2004)).

5.3.2 Data gathering and processing: the least squares stopping criterion

The objective of the Least Squares Stopping Criterion (LSSC) proposed in this section is to

introduce a stopping criterion which can be easily implemented in any programming language

(to facilitate the task of incorporating it to any MOEA) and easily con�gured by parameters

related to MOEA's research (instead of those related to the particular techniques applied by

the criterion).

The underlying idea is to determine when our progress indicator has reached a stagnation

situation. To achieve this, we will base our criterion on two di�erent considerations: the

adjustment to a uniform model (by means of a least squares approximation, which gives its

name to our criterion) and the value of the slope of that uniform model (as a measure of

the progress between two di�erent generations).

Simple Least Squares (Meyer, 1970) is a basic linear regression method which approxi-

mates a variable according to the model presented in equation 5.20.

y = a + bx (5.20)

It introduces some key assumptions, among which some of the most important are zero

mean error and constant variance in the indicator value. These assumptions, which make

this approach inapplicable to some real problems, �t our stopping needs (these are the

circumstances under which we would like our algorithm to stop). It is also noticeable,

compared to the Kalman approach presented in section 5.2, that there is no underlying

considerations for the errors introduced either by the linear model or the measuring process.

Representing y the indicator value and x the generation number, a and b can be calculated

with the following matrix-based formula presented in equation 5.21[
b

a

]
=

[∑
x2i

∑
xi∑

xi wl

]�1

�
[∑

xi � yi∑
yi

]
(5.21)

where wl is the length of the chosen window. Once we have determined the values of

the parameters for our linear regression, we need to de�ne the normalized residue value,

presented in equation 5.22.

res =

∑
i(yi � (a + bxi))

2

wl

� �2

wl

(5.22)

As shown in equation 5.22, the obtained residue follows a chi-square distribution which

has wl � n degrees of freedom, where n = 2 in our case (as we are imposing two linear
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restrictions, a and b parameters). This distribution has known mean and variance, presented

normalized in equations 5.23 and 5.24.

� = 1� 2

wl

(5.23)

�2 =
2

wl

� 4

w2
l

(5.24)

With the values in equations 5.23 and 5.24, we may use Tchebyche�'s inequality (Meyer,

1970) to determine a threshold to leave a certain percentage of the residues coming from

a uniform distribution bellow its value. The probabilistic relationship of this percentage and

the mean and variance of the distribution are presented in equation 5.25

Pr(jX � �j � k�) � 1

k2
(5.25)

For the k parameter, the classically used value of three has been chosen. This will leave

roughly the 90% of the measures belonging to a uniform distribution bellow the computed

threshold. This threshold can be obtained adding three times the standard deviation to the

mean value, which is presented in equation 5.26

thres = �+ 3� = 1� 2

wl

+ 3 �
√

2

wl

� 4

w2
l

(5.26)

When the value of the residue shown in equation 5.22 falls below the threshold exposed in

equation 5.26 we can consider that the evolution of the indicator has started to be uniform.

This is a needed restriction to stop the algorithm's evolution, but may not be su�cient. An

example of a stopping situation based only on this residue's value is shown in �gures 5.21

and 5.22.

The complimentary restriction is the slope value, which will allow us to stop our evolution

not only when it has become uniform, but also when the amount of that evolution per

generation has become insu�cient. Thus, the complete stopping criterion is de�ned with

equation 5.27.∑
i(yi � (a + bxi))

2

wl

< 1� 2

wl

+ 3 �
√

2

wl

� 4

w2
l

^b < minprog (5.27)

where a and b are computed with equation 5.21.

The process to choose theminprog value is rather simple: the researcher chooses a number

of examples, determines which would be the ideal stopping generation for them and tunes

the value of the minprog parameter to guide the stopping criterion to stop at the chosen

generation. This parameter value can then be applied to new problems and/or algorithms

without requiring any modi�cation in it (as it will be shown in the experimental section), with

a similar behavior to the parameters from the Kalman approach presented in section 5.2.

For the given example in �gures 5.21 and 5.22, which shows hypervolume indicator applied

over a NSGA-II MOEA to the DTLZ3 problem, we have chosen an absolute value for the

minprog parameter of 0.002 (in fact this will be the used value for the parameter in the

experimental section whenever we are using the hypervolume indicator, regardless of the
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Figure 5.21: Overview of a stopping criterion instance based only on residue's value
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problem or the algorithm). Figures 5.23 and 5.24 show the behavior of the stopping criterion,

as presented in equation 5.27, over the same example.

The chosen value for the slope is fairly conservative (in fact, more than the con�guration

values presented for the Kalman approach in section 5.2.4), trying to stop only when future

improvements would be marginal ones. Some users may prefer higher values, sacri�cing

small indicator improvements in favor of faster results. The dependency with the window

size parameter, in absence of problematic local situations such as the ones presented in the

global stopping criteria section, is not strong, only increasing, according to its value, the �nal

stopping generation once the evolution of the indicator's value starts to satisfy the criterion

conditions.

It is important to remember that this stopping criterion is not necessarily applied on

its own for a given algorithm: very usually, along with it, the user will add a di�erent one

regarding the maximum computation allowable for the algorithm (either in time, number

of generations or number of function evaluations), constituting a combined criterion, as

introduced in section 2.4.7. Also, LSSC is a substitute only for the linear estimation of

the Kalman approach previously presented, which implies that the voting fusion architecture

introduced in section 5.2.3 can be used along with it.

5.3.3 Complexity analysis

LSSC uses a window-based procedure to gather the quality indicators values, similarly to the

OCD algorithm (presented in section 2.7.1). However, the way in which this data is collected

di�ers in the way in which the binary quality indicators are applied, heavily impacting the

computational complexity. Figure 5.25 shows the application used by OCD to recompute its

indicators' values every time a new generation is generated (and, thus, a new Pareto front

is formed).
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Figure 5.22: Overview of residue value analysis during an example evolution instance
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As seen in �gure 5.25, every time a new generation is processed in order to test the

stopping criterion, a whole recomputing of the quality indicators takes place, comparing each

of the previous generations fronts to the one newly introduced in the window. Even for the

unary hypervolume indicator used, this recomputation takes place, since a new normalization

is introduced at each step. This increases the computational cost of the algorithm, and also

makes it linearly dependent with the window size.

LSSC, however, computes its binary quality indicators between consecutive generations,

requiring only one additional set of indicators every time a new generation is produced. This

process is shown in �gure 5.26.

The fact that the window size, wl does not a�ect the computational complexity of the

algorithm may allow higher values of this parameter to be used in the con�guration, in order

to prevent possible situations such as the one shown in �gure 5.20. Apart from the data

gathering process itself, it is interesting to analyze the complexity of the processing of this

data. At every generation (excluding the �rst wl � 1, which form the �rst generational

window) the algorithm has to obtain the following values: the linear regression parameters

(a and b), the threshold value (thres) and the residue value (res). It is useful to invert the

order in which the conditions are checked in equation 5.24, in order to obtain the res value

only if necessary. For a �xed window size, the threshold value only has to be computed once,

applying the same value for all the comparisons. Using standard libraries, both the regression

parameters and the residue value can be obtained in O(wl), being this the complexity order

of the criterion.

In equation 5.21 we intentionally presented the required formula for the calculation of

the two required linear regression parameters, due to the fact that, being composed of

di�erent summations which only di�er in one term for consecutive generations, once the initial

parameters have been calculated, the rest can be obtained with a constant order complexity.

Equation 5.28 shows this iterative computation of the least squares approximation parameters
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Figure 5.23: Overview of the proposed stopping criterion
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This does not change the worst case complexity order of the stopping criterion (the res

value still has to be calculated in O(wl)) but, by checking the minprog condition �rst, it allows

the criterion to run in O(1) most generations, without requiring a complex implementation,

and becomes specially interesting and advisable when the progress indicator is also required

by the selection criterion (and thus integrated in the MOEA's usual cycle) or computationally

inexpensive to calculate (such as MDR).

5.3.4 Experimental validation

The dataset con�guration is going to be the same presented in section 5.2.4: three di�erent

algorithms (NSGAII, SPEA2 and PESA) and three di�erent problems (DTLZ3, DTLZ6 and

DTLZ7). For the optimum con�guration of the stopping generation factors such as the

cost of running additional generations or the required accuracy in the �nal solution may

be considered, but only the progress indicator used is required to be analyzed in order to

determine the right slope value. Results regarding the three di�erent presented progress

indicators will be shown in this section, so three di�erent slope values need to be con�gured.

The chosen values are 0.002 (hypervolume) 0.0004 (epsilon) and 0.00002 (MDR).
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Figure 5.24: Overview of the slope value analysis applying the full stopping criterion
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These values have been chosen according to the process explained in the method's

presentation section. Intuitively, these values can be related to the di�erent ranges which

the indicator exhibit. The window size will be constant regardless of the indicator used, and

�xed at 30 generations (this value is the minimal number of measures to assume normality

in the distribution). To determine the quality of the stopping generation obtained, we will

compute the hypervolume di�erence compared to an a priori �xed generation (which will be

chosen based on the problem's di�culty, according to the values suggested in the datasets

or algorithms reference papers).

Each experiment has been run thirty times. We provide the statistical values of mean,

standard deviation, minimum and maximum obtained (both for the stopping generation and

the hypervolume di�erence with the a priori stopping generation), to verify the criterion

performance. Tables 5.5-5.7 show these results. Also, �gures 5.27-5.29 show the results

of the stopping generation obtained for the di�erent algorithms and problems. Finally, the

comparison of the obtained stopping generation compared to the binary hypervolume value

of the stopping generation versus the �nal generation considered is presented in �gures 5.30-

5.32.

The chosen values for the slopes were quite conservative, in order to obtain very accurate

results. This can be observed in that the maximum hypervolume di�erence in mean value is

0.14, whereas in maximum value is 0.331 (both obtained for the hardest problem, DTLZ7).

Even so, we have managed to obtain a stopping generation whose value is about 2/3 of

its respective a priori one, with signi�cantly similar performance results over the di�erent

indicators.



5.3. Focusing on simplicity and e�ciency: the LSSC Criterion 145

Table 5.5: Stopping criterion results for the DTLZ3 problem

Alg Ind
Stopping generation Hypervolume di�erence

Mean Min Max Std D A priori Mean Min Max Std D

NSGAII eps 204,733 193 215 5,9186 300 0,027 0,011 0,057 0,012

NSGAII hyp 196 184 207 5 79536 300 0 04 0 016 0 073 0 015

NSGAII MDR 219 233 202 233 7 93371 300 0 015 0 004 0 038 0 008

PESA eps 203 733 188 213 6 10219 300 0 049 0 016 0 108 0 021

PESA hyp 210 533 194 223 7 394 300 0 046 0 015 0 096 0 02

PESA MDR 200 367 185 212 6 58359 300 0 055 0 027 0 11 0 022

SPEA2 eps 178 267 165 188 4 63073 300 0 024 0 007 0 056 0 013

SPEA2 hyp 174 033 166 182 4 27892 300 0 032 0 015 0 059 0 012

SPEA2 MDR 174 567 167 184 3 92765 300 0 027 0 011 0 06 0 014

Table 5.6: Stopping criterion results for the DTLZ6 problem

Alg Ind
Stopping generation Hypervolume di�erence

Mean Min Max Std D A priori Mean Min Max Std D

NSGAII eps 208 233 192 220 6 1346 300 0 026 0 01 0 054 0 012

NSGAII hyp 199 567 183 211 6 22389 300 0 045 0 017 0 081 0 015

NSGAII MDR 225 033 205 239 9 7432 300 0 017 0 004 0 048 0 011

PESA eps 207 333 194 222 6 61937 300 0 053 0 02 0 101 0 023

PESA hyp 213 467 203 231 5 74596 300 0 044 0 018 0 087 0 017

PESA MDR 205 633 198 215 4 25468 300 0 057 0 024 0 094 0 02

SPEA2 eps 183 767 176 193 4 11627 300 0 02 0 006 0 044 0 009

SPEA2 hyp 179 367 174 186 3 36804 300 0 032 0 014 0 053 0 009

SPEA2 MDR 177 1 166 185 4 24548 300 0 03 0 014 0 049 0 01

Table 5.7: Stopping criterion results for the DTLZ7 problem

Alg Ind
Stopping generation Hypervolume di�erence

Mean Min Max Std D A priori Mean Min Max Std D

NSGAII eps 302 733 279 322 12 4123 425 0 094 0 033 0 181 0 041

NSGAII hyp 296 8 263 316 11 583 425 0 113 0 049 0 215 0 041

NSGAII MDR 332 233 300 368 16 3532 425 0 047 0 004 0 109 0 027

PESA eps 301 067 264 322 12 956 425 0 14 0 052 0 331 0 065

PESA hyp 313 867 288 337 12 125 425 0 134 0 073 0 244 0 039

PESA MDR 310 433 276 335 12 7135 425 0 113 0 045 0 257 0 051

SPEA2 eps 262 6 243 275 8 47145 425 0 082 0 039 0 153 0 034

SPEA2 hyp 265 567 245 294 10 8522 425 0 093 0 025 0 17 0 035

SPEA2 MDR 268 5 246 279 8 88916 425 0 069 0 03 0 107 0 023
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Figure 5.25: Quality indicator values gathering in the OCD algorithm for every generational

window
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5.4 Conclusions

The intention of this chapter was to accomplish the proposal of a stopping criterion us-

ing several indicators available in the community with an estimation theory based schema,

allowing the accumulation of evidence from these indicators until a certain pre-established

threshold is trespassed and the stopping criterion triggered. Two di�erent proposals have

been presented regarding the individual processing of indicators data, one based on Kalman

�ltering and the other based on a simpler least squares approximation.

Kalman �ltering proposal has introduced an alternative to an existing approach in the

literature which had simpli�ed the �ltering process, and also highlighted the issues related

to the model and measuring processes noise. Instead of tracking the �ltered output, the

approach is based on the tracking of the �lter corrections, trying to determine the linearity

of the result according to the model used. Along with these �ltering estimation, several

data fusion architectures (extracted form sensor fusion approaches) have been reviewed to

cope with the stopping problem in MOEA's and the input data from the chosen indicators.

Issues regarding the lack of proper formalization and theory regarding the di�erent quality

indicators has been remarked, leading to a simple data fusion (decision fusion), which was

carried through the experiment phase, showing in spite of its simplicity the power of these

architectures to help us avoid problematic concrete situations for individual indicators.

Experimental results show that a concrete stopping criterion con�guration, once estab-

lished, can be ported to di�erent problems and algorithms. On the other hand, one of the

main di�culties regarding the introduction of a MOEA stopping criterion is presented: the

lack of an optimal stopping generation (even for pre-established algorithms and/or prob-

lems). This makes it extremely di�cult to analyze the quality of a set of results regarding its

stopping generation, or the comparison between di�erent algorithms for such an issue, since

additional generations, for almost every practical application case, involve an increase (even

if small) in the solution quality (in the absence of genetic drift). The results presentation was

focused, according to this di�culty, in the robustness of the proposed approach, the results
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Figure 5.26: Quality indicator values gathering in the LSSC algorithm for every generational

window
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Figure 5.27: Stopping generation results for DTLZ3 problem
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regarding the voting system, and a graphical visualization of the results to compare them to

the objectives proposed, which were satisfactory.

LSSC, Least Squares Stopping Criterion, the �nal proposal of this chapter, has its basis

on the previous results obtained with the Kalman approach along with some observations

gathered from the literature regarding stopping criteria. The main consideration was the

lack of an established stopping criterion for MOEAs, opposed to the single objective case

(where a simple tracking of the best individual is a commonly applied approach and usually

included in the associated frameworks). The two main reasons for this fact were considered:

complexity of available approaches (which imply complex �ltering systems or heavy statistical

testing) and the lack of statistically sound comparison approaches to determine the quality

of the di�erent approaches. In order to face these issues, LSSC attempts to provide an easily

con�gurable and implementable criterion, being at the same time robust and e�cient.

LSSC is an alternative to the estimation performed by the Kalman �lter approach previ-

ously presented (and can be used along with the proposed voting fusion system). It establishes
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Figure 5.28: Stopping generation results for DTLZ6 problem
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Figure 5.29: Stopping generation results for DTLZ7 problem
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its stopping decision upon two di�erent facts: the normality of the results analyzing binary

quality indicators between consecutive generations and the slope of the resultant least squares

approximation. The stopping decision can be computed using a simple logical equation, based

on two parameters: the number of generations analyzed and a threshold which depends on

the concrete quality indicator used. The value for the number of analyzed values is �xed on

30, and the threshold can be controlled by the researcher in order to suit its quality needs.

Even so, threshold values are proposed for each of the three quality indicators used. These

suggested con�guration values can be used to provide a black-box stopping criterion.

Also, the presented data gathering only requires one update over the quality indicators

values, being this update that of applying the binary indicator from the previous generation

Pareto front to the one newly included into the generational window. To contribute to

the computational e�ciency, an iterative computation of the least squares approximation

parameters has been presented, allowing the stopping criterion to run in a constant complexity

order for most generations (those that do not meet the maximal slope condition).

Experimental results for LSSC, while still su�ering from the lack of a known optimal
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Figure 5.30: Stopping generation vs hypervolume for DTLZ3 problem
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Figure 5.31: Stopping generation vs hypervolume for DTLZ6 problem
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stopping generation, have been focused on the comparisons between the stopping generation

and some pre-established future stopping generation in terms of hypervolume, to assess the

quality of the stop, as an alternative to the more robustness oriented data presentation of

the Kalman con�guration, which also relied on graphical validation. These results show the

robustness of the con�guration parameters through di�erent algorithms and test problems,

similar to the obtained with the more complex Kalman approach.

Following the thesis objectives, this chapter has analyzed the di�culties of stopping

criteria for multi-objective evolutionary algorithms, as opposed to chapter 4, where the single-

objective case we faced. The proposed criterion is based on the values of progress indicators

(binary indicators which measure the improvements between two di�erent generations) and

a least squares regression to detect the stagnation situation, providing a simple and e�ective

solution which can be easily integrated as a black box into any available algorithm.
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Figure 5.32: Stopping generation vs hypervolume for DTLZ7 problem
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6
Multiobjective evolutionary polygonal

approximation

\
There exists a world In terms of probability this borders on the impossible

It would have been far more likely if, by chance, there was nothing at all

Then, at least, no one would have began asking why there was nothing "
Jostein Gaarder, Maya, 1999

This chapter presents and formalizes an explicit multi-objective evolutionary approach for

the segmentation issue according to Piecewise Linear Representation, which consists in the

approximation of a given digital curve by a set of linear models minimizing the representation

error and the number of such models required. Available techniques are focused on the min-

imization of the quality of the obtained approximation, being the cost of that approximation

considered, in general, only for certain comparison purposes. The multi-objective nature of

the problem is reviewed (it was initially considered in chapter 3, where it was required to

include quality indicators as the comparison method for the �nal results) and its treatment

in available works analyzed, presenting an a-posteriori approach based on an evolutionary

algorithm. Three representative curves are included in the data set, comparing the proposed

technique to nine di�erent techniques. The main references for this chapter are (Guerrero

et al., 2012, 2010a, 2012b).

6.1 Introduction

Digital curves domain, leaded by the importance of human processing and understanding

of visual information, established its roots with the psychological studies performed in the

middle �fties (Attneave, 1954). One of the main keys to the study of this domain is the

representation performed over the original data. The goal of this representation is to cover

the main characteristics of a given shape with the least amount of data. This dimensionality

reduction performs several objectives. On the one hand, it reduces the storage capacity

required for the obtained time series, and, on the other hand, it has an immense impact

on the e�ciency of the subsequently applied methods, such as feature extraction (M�orchen,

2003).
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Segmentation processes may resort to di�erent representations, being Piecewise Linear

Representation (PLR, also named Piecewise Linear Approximation, PLA, or polygonal ap-

proximation) among the most extended options. This scope has been deeply analyzed and

used according to a data mining perspective (Gionis & Mannila, 2005; Keogh et al., 2003; Liu

et al., 2008) and also as a digitization method (Marji & Siy, 2003; Sarfraz, 2008). Several

works have detailed the characteristics of PLR segmentation which have led to its extensive

use: simplicity, locality, generality, compactness and ease of us e (Keogh et al., 2003; Sarfraz,

2008). PLR segmentation is based on the approximation of a curve (or, more generally, a

certain time series) T with length n by means of a set of K segments (where K << n),

approximating each of these segments by a linear model. It can be also described as the

process of searching the dominant points of a given curve, being these points the edges of

the segments in the previous de�nition.

Polygonal approximation techniques are o�ine segmentation processes (since they require

the whole curve they will be applied to) which can be divided into three di�erent categories:

sequential approaches, split and merge approaches and heuristic search approaches. Sequen-

tial and split and merge approaches have a strong dependency on the initial steps of their

algorithms (either in the form of the starting point for the scanning or the initial segmenta-

tion performed). The outcome of these methods is extremely sensible to their segmentation

criterion parameters (such as error tolerance), values which may not be easy to determine.

On the other hand, heuristic based approaches are computationally expensive, being not

guaranteed to be optimal.

Most of the di�erent presented techniques share the lack of a direct mechanism to

control the number of segments obtained (and through it, the compression performed over

the original data), even though indirect mechanisms may exist (e.g., error tolerance indirectly

controls segment length, which along with the number of elements in the original data

determines the number of segments in the �nal representation). Other alternatives, such as

evolutionary approaches, allow the choice of the number of segments but lose the control

over the approximation error. Comparisons between di�erent algorithms, especially in the

data mining domain (Keogh et al., 2003) are usually performed according to the error value

obtained by the representation, not considering the cost of that error. Some techniques do

take into account the number of segments of the obtained representation (such as in (Ray &

Ray, 1992), where each cycle tries to obtain the longest possible segments with the lowest

possible error value) but, since those objectives are in con
ict, it is performed by what, in the

multi-objective community, is usually referred to as a-priori techniques: in order to deal with

di�erent objectives in con
ict jointly, a decision maker (DM) determines the importance of

each of the objectives and, according to that importance, their joint value is calculated and

used by underlying algorithms(Coello et al., 2007).

The previous argumentation introduces segmentation as a multi-objective optimization

problem (MOOP, (Coello & Lamont, 2004)): segmenting a digital curve implies optimizing

a set of objective functions in con
ict (the considered error of the segmentation and the

compression required in order to obtain that error) obtaining values for them which are

acceptable to the decision maker (Osyczka, 1985). This de�nition leads to the question

of who should play the decision maker role in a segmentation algorithm. Most presented

approaches assign this role to the algorithm designer.

Consider the two di�erent segmentations presented in �gure 6.1. Both segmentations

show di�erent values for their objective functions, namely the error function and the number
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Figure 6.1: Alternative segmentations for a simple circle shape

of segments. The suitability of the representation depends on its particular application. Some

may require a certain maximum error value, while others, due to their costly processing,

may require a number of segments as low as possible. The range of possible processes is

huge, from fast similarity search (Keogh et al., 2001) or data mining approaches (Keogh

& Pazzani, 1998) up to optical character recognition applications (Pavlidis & Ali, 2007)

or applications to the ATC domain as shown in chapter 3. Also, each of these processes

may require di�erent priorities for the di�erent objective functions, and these requirements

may change over time (e.g, di�erent classi�cations may be preferred according to di�erent

available computer resources). This argumentation leads to the assignment of the decision

maker role to the �nal user of the algorithm, considering as well that this DM may have

changing preferences at di�erent instants of time.

Available algorithms generally assume the algorithm designer to be also the DM, per-

forming an a-priori dealing of the objectives in con
ict, usually by means of an aggregating

function (Surry et al., 1995). This implies that the algorithm designer establishes the im-

portance of the di�erent objectives and then codi�es it into the algorithm running cycle. In

other cases, the control over the secondary objective function may be implicit: as explained

before, algorithms with a certain error tolerance as one of their input parameters may vary

the compression value accordingly to that parameter value. This would imply that, for a sce-

nario where the requirements of the decision maker (the �nal user) may change over time,

the original data would have to be stored and the algorithm rerun with di�erent parameters

in order to deal with those di�erent requirements. It is important to highlight that the choice

of those parameters in order to meet certain requirements (especially regarding the implicit

objective function values) can get to be very di�cult to be performed accurately.

Multi-objective evolutionary algorithms (MOEAs) are evolutionary algorithms (EAs) fo-

cused on a set of di�erent objective functions which have to be optimized jointly. The
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objective of these algorithms is to �nd the optimal Pareto front (the set of solutions where

improving an objective function value cannot be performed without degrading the value of a

di�erent one, (Ehrgott, 2005)). Evolutionary algorithms are a useful technique to deal with

multi-objective problems, since they simultaneously deal with a set of possible solutions (the

population) which allow them to �nd several members from the Pareto front in a single run

(Coello & Lamont, 2004), instead of performing a series of separate runs, as had to be done

with traditional mathematical techniques (Miettinen, 1999). They also have the interesting

property of being less susceptible to the shape or continuity of that Pareto front (being able

to deal with discontinuous and concave Pareto fronts).

The objective of this chapter is to propose a multi-objective solution based on genetic

algorithms for the PLR segmentation problem to cope with the previous requirements: al-

lowing the �nal user to decide from the best array of best found solutions considering the

di�erent objectives jointly (which will constitute the Pareto Front of the problem). The

proposed approach eliminates the di�cult a-priori parameter choices in order to satisfy the

user restrictions (the solution choice is performed a-posteriori, from the obtained array of

solutions) and allows the algorithm to be run a single time (since the whole Pareto front is

obtained with a single run and di�erent solutions may be chosen at di�erent times from that

Pareto front in order to satisfy di�erent requirements).

The main contributions of this chapter are both theoretical and practical in their nature.

First of all, the proposal and formalization of the segmentation issue as a multi-objective

problem, along with the analysis of techniques available in the polygonal approximation

literature regarding this multi-objective perspective and how it has been dealt with. This

discussion includes the relevance of the decision maker role and who has been attributed this

role in available approaches. This analysis leads to the proposal of an a-posteriori resolution

method based on a standard MOEA , along with the required representation and operators

(particularly focused on a speci�c initialization process regarding the nature of the objective

functions). Finally, the proposed implementation is tested with its results comparison against

a set of nine techniques from the polygonal approximation domain with a dataset of three

standard curves, according to a single objective (quality of the individual elements of the

obtained Pareto fronts compared to other techniques results) and multi-objective (measured

by quality indicators) perspectives, highlighting the statistical signi�cance of the obtained

results.

6.2 Overview of segmentation techniques

One of the di�culties of detailing with the state of the art for the segmentation domain are

the di�erent naming conventions which similar algorithms receive in the di�erent domains

where they are applied (Keogh et al., 2003). A clear example of these di�erent naming

conventions may the Ramer algorithm (Ramer, 1972). That name is used in the image

processing �eld, while in cartography is known as the Douglas Peucker algorithm (Douglas &

Peucker, 1973), or the Iterative End-Point Fits algorithm, usually referred to in the machine

learning community (Duda & Hart, 1973). Another commonly used name for this approach

is the Top-Down algorithm (Keogh et al., 2003).

The objective of this section is to provide an insight into some di�erent alternatives

available in the segmentation domain to lead to the novel multi-objective metaheuristic

proposal. This description of di�erent algorithms will be used as the basis for the proposal
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of the multi-objective technique presented in this work, and at the same there provide

a considerable understanding of the approaches which have been taken to deal with the

segmentation issue. For formalization purposes, we will start de�ning the components of the

given time series with equation 6.1, where xi and yi are the plane coordinates of the point

and ti is the timestamp of the point's reception. If we are dealing with a closed curve without

an explicit timestamp, that equation can be adapted following equation 6.2.

t = f~pig, ~pi = (xi , yi , ti), i = 1, ... , n (6.1)

t = f~pig, ~pi = (xi , yi , i), i = 1, ... , n (6.2)

A general overview over segmentation techniques has been initially presented in section

2.8, including those usually applied o time series (section 2.8.2) and digitalization (section

2.8.3). This section is focused on digitalization techniques, covering them in a more complete

way, such that speci�c analysis such as their handling of the multi-objective problem nature

can be performed.

6.2.1 Teh and Chin algorithm

Teh and Chin algorithm (Teh & Chin, 2002) is based on the concept of the region of support

(Langridge, 1972): this concept states that each boundary point of a closed curve must have

its own view of the curve, being dominant points those which have a meaningful view of the

curve which blocks the view of other non-dominant points.

In (Teh & Chin, 2002) the proposal is based on the di�culty of determining the curvature

for a digital curve, which, in the real Euclidean plane, can be easily de�ned with equation

6.3. The functions to determine discrete curvature are named measures of signi�cance

(Rosenberg, 1972). Three di�erent measures of signi�cance are used: the k cosine measure,

the k curvature measure and the 1 curvature measure. The k cosine measure was introduced

in (Rosenfeld & Johnston, 1973) and is shown in equation 6.4. The k curvature measure

was introduced in (Groen & Verbeek, 1978) and is shown in equation 6.5. Finally, the 1

curvature measure is derived from the previous measure (where k = 1), and is shown in

equation 6.6.

d2y
dx2

[1 + (dy
dx
)2]3=2

(6.3)

cosik =
~aik � ~bik
j ~aik jj ~bik j

(6.4)

CURik =
1

k

�1∑
j=�k

fi�j �
1

k

k�1∑
j=0

fi�j (6.5)

CURi1 = fi+1 � fi (6.6)

The algorithm starts with the calculation of the region of support for a given point pi .

This calculation is performed determining the length of the chord joining the points pi�k and

pi+k (lik , shown in equation 6.7) and the perpendicular distance of the points contained in
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the chord to their respective ones in the original data, dik . This process is continued until

the value of the length of the chord stops growing or until the mean distance starts growing

(represented in equation 6.8).

lik = jpi�kpi+k j (6.7){
dik
lik
� di ,k+1

li ,k+1
, if dik > 0

dik
lik
� di ,k+1

li ,k+1
, if dik < 0

(6.8)

The second step of the algorithm calculated the three measures of signi�cance repre-

sented in equations 6.4-6.6. Finally, according to the previous data, dominant points are

calculated suppressing non-maximal points from the previous sets. This is performed with

di�erent procedures applied sequentially. The �rst one, suppresses the points, which, follow-

ing the chosen S(pi) measure of signi�cance, follow the condition in equation 6.9.

jS(pi)j � jS(pj)j8j such that ji � j j � ki
2

(6.9)

The second suppressing procedure eliminates those points with a value of zero in the 1

curvature measure. The third one analyzes adjacent surviving points, eliminating those with

the lowest measure of signi�cance. The process ends if the measure of signi�cance is either

the k cosine measure or the k curvature measure, being those points which have survived

the previous �ltering processes declared dominant.

However, if the chosen measure was the 1 curvature one, there is an additional �nal step

which analyzes the groups of adjacent points which have survived the previous procedures. If

a group has more than two points, the points at its edges are considered dominant points. If a

group only has two points, the one with the highest measure value (or with the largest region

of support, in case the both points have the same measure value) is considered dominant.

6.2.2 Marji and Siy algorithm

Marji and Siy algorithm (Marji & Siy, 2003) relies on the concept of support arms. This

means that they do not use the region of support to calculate a signi�cance measure of

the boundary points, but instead compute the strength of the end points of their calculated

regions of support, both in clockwise and counterclockwise directions. This strength is

determined by the frequency of their choice. The idea is supported on an ideal corner shape,

such as the one shown in �gure 6.2, where the corner point would be chosen as an endpoint

for all the di�erent points in the shape, and thus, chosen as the dominant point.

To determine both support arms, the function shown in equation 6.10 is maximized,

where Ljk is the length of the segment joining points pj and pk and Ejk is the sum of the

squared perpendicular distances of the points contained between pj and pk to that segment.

This is performed increasing iteratively the length of the region until that increase makes the

function obtain a lower value. When that happens, the previous end point is considered the

support point. k variable has an initial value of j + 2 or j � 2, depending on which support

arm is being calculated.

F = Ljk � Ejk (6.10)

Based on the previous concepts, the algorithm follows the following steps:
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Figure 6.2: Ideal corner shape

1. All points are marked as non-dominant and uncovered

2. All points are analyzed to determine their support arms. If the considered node lies

in an uncovered territory (adjacent points are uncovered) it is set as dominant, and

the points in its regions of support are marked as covered. If it lies in a covered area,

the perpendicular distance to the segment joining its closest dominant points both in

clockwise and counterclockwise directions is calculated, being marked as dominant and

covering its support regions if that distance exceeds 0.95

3. If a support end point is contained in the current region of support, the strongest points

in the overlap segment are marked as candidate points. At the end of the iteration,

candidate points are marked as dominant if their distance to the segment joining their

closest dominant point in clockwise and counterclockwise directions exceeds 0.95.

4. If the point next to the support end point is also marked, if they have the same strength

both are marked as dominant. In any other case, the strongest one is the only one

masked as dominant.

6.2.3 Genetic approach based algorithms

Genetic algorithms have been used to deal with the polygonal approximation issue in a variety

of ways (Goldberg et al., 1989; Pal et al., 1998; Tsai, 2006; Yin, 1999, 1998). These

di�erent approaches share many characteristics, such as the codi�cation used, while they

di�er in speci�c choices, such as the crossover or mutation operators used. We will focus in

this section in the Yin algorithm (Yin, 1999, 1998) and the speed-up modi�cation introduced

by (Tsai, 2006) to provide the required overview of the topic.
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In Yin algorithm, from the formulation of the problem presented in equations 6.1 and 6.2,

the codi�cation proposed is a string of 1's and 0's as presented in equation 6.11, where ai = 1

implies that ai is a dominant point. The required �tness function of the genetic algorithm

is expressed in equation 6.12, where R is a constant and E(�) is the approximation error

between the segmentation result and the original data. Two di�erent approximation error

functions are proposed in the paper, the maximum error (E1, equation 6.13) and the integral

square error (E2(�), equation 6.14). In both cases, ei(�) is the distance between pi and the

nearest line segment.

� = a1, a2, ... , an (6.11)

f (�) = R � E(�) (6.12)

E1(�) = max
1�i�n

ei(�) (6.13)

E2(�) =

n∑
i=1

[ei(�)]
2 (6.14)

In the algorithm the R value is adapted in order to prevent an outstanding individual to

take a signi�cant proportion of the following generation. To do so, they adopt the selectivity

concept presented in (Singh et al., 1997): selectivity is the ratio of the maximally and

minimally �t solutions in the population. Being Emax and Emin the maximal and minimal

approximation errors for the individuals in the current population, the R value is calculated

according to equation 6.15

R =
Emax � Emin
selectivity � 1

+ Emax (6.15)

The cross-over operator used is based on previous application speci�c approaches (Gen &

Cheng, 1997; Pal et al., 1998), being speci�cally designed for their algorithm. The proposed

operator forces the o�spring to have the same number of dominant points as their parents,

performed by swapping (0,1) pairs with (1,0) pairs appearing in the same position in the

considered parents. The crossover probability, following (Loncaric & Dhawan, 1995), is a

variable value adapted according to the generation value (based on the principle that the

diversity of the population usually decreases with the increase of the generation number). It

is calculated according to equation 6.16.

Pc = max(

√
gennum
genmax

, 0.5) (6.16)

The mutation operator performs a cyclic shift, in order to allow the number of dominant

points to remain unchanged. This mutation operator is described in equation 6.17. The

mutation probability is adaptative as well, following the same principles which led to the

adaptative crossover probability (in order to increase the search space as the diversity is

reduced with the increase in the generation number value). It is calculated according to

equation 6.18.

ai modulo n = ai�1 (6.17)
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PM = 0.3 � gennum
genmax

(6.18)

The algorithm uses an elitist strategy (Goldberg et al., 1989), where the �ttest string

in each generation is always taken to the following one. The rest of the genetic algorithm

parameters are a population size of 100 and a number of generations of 100.

(Tsai, 2006) proposes several modi�cations over Yin algorithm, mainly to increase the

speed required to obtain the solution. An additional table is added to the genetic algorithm,

determining the probability of point pi to be a break point regarding the current population.

This probability is based on the k-cosine measure of signi�cance (equation 6.4). The proposed

probability function is shown in equation 6.19, where Z is the population size.

PB(i) =

∑Z
j=1 cosikj + 1

2Z
(6.19)

The algorithm uses the same operators presented in Yin algorithm, but adds a divide-and-

conquer technique based on the break point detection. Once a point has been determined to

be a break point, the GA divides the chromosome in two parts according to the break point

position and continues to be executed over both parts separately. The �nal solution is built

upon the partial solutions of the di�erent GAs built in this manner. Even though no result

table is provided in the work, the graphical comparison included shows that similar results

can be obtained with this technique in a smaller number of generations. The con�guration

parameters used are also di�erent (a fact which does a�ect the number of generations

required, even though no discussion was included in the work), setting the initial values of

the population size to 60, the crossover probability to 0.6 and the mutation probability to

0.3.

It is remarkable that both algorithms require an input parameter: the number of segments

in the solution. This �xed number of segments is the factor which creates the need for

operators which do not alter the number of dominant points in the parents (if we are dealing

with the crossover operator) or in the original individual (in the case of the mutation operator).

Also, no way to guide the user in this choice is provided, being this a parameter which

may be di�cult to choose if the user does not have a-priori knowledge about the di�erent

qualities which di�erent number of segments may provide over the curve approximation.

This introduces the need to run the algorithms multiple times in order to determine which

of those outputs meets the requirements of the solution. This need is shown in Yin's

result presentation, where di�erent results are provided regarding di�erent possible number

of segments con�guration.

6.3 Multi-objetive approach to segmentation processes

The traditional criteria used in the data mining community to determine the quality of a

segmentation process (Keogh et al., 2003; Liu et al., 2008), are the following:

1. Minimizing the overall representation error (total error)

2. Minimizing the number of segments such that the representation error is less than a

certain value (max segment error)
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3. Minimizing the number of segments so that the total representation error does not

exceed total error

These criteria highlight the importance of the number of segments, but the comparisons

performed, for instance, in the one of the source works for those criteria, (Keogh et al.,

2003), are based only on the quality of the segmentation obtained, neglecting the cost of

that quality. From the de�nition of the input data included in equations 6.1 and 6.2, we may

formalize the de�nition of a segmentation process with equation 6.20, where each Bm would

be the set of resultant segment, delimited by the dominant points at their extremes, kmin
and kmax , and the number of those segments must be lower than n, the number of points in

the original data.

S(t) = fBmg,Bm = f~pig, i = kmin, ... , kmax m 2 [1, ... , n � 1] (6.20)

Considering the previously stated criteria, we need to perform that segmentation accord-

ing to a set of di�erent objective functions which have to be minimized jointly, and which are

in con
ict. That problem matches perfectly the de�nition for a multi-objective optimization

problem. The textual de�nition for these problems by (Osyczka, 1985) states that a "multi-

objective optimization problem can be de�ned as the problem of �nding a vector of decision

variables which satis�es constraints and optimizes a vector function whose elements represent

the objective functions These functions form a mathematical description of performance

criteria which are usually in con
ict with each other Hence, the term optimize means �nding

such a solution which would give the values of all the objective functions acceptable to the

decision maker". As seen in section 2.4.1, it may be formalized following equation 6.21.

fp : �! <, F (x) = (f1(x), ... , fk(x)) minx2<F (x)

such that

{
gi(x) � 0 i = [1 ... n]

hj(x) = 0 j = [1 ...m]

(6.21)

Combining the segmentation problem formulation with the general multi-objective prob-

lem formulation according to the previous criteria, we obtain equation 6.22, which is the

general formulation for the problem. In equation 3.3 E(S(t), t), is the approximation error

between the output segments of the process and the original data and E(S(Bm),Bm) is the

approximation error between the segment created by the dominant points of segment Bm

(the edges of the segment) and the original points contained in Bm.

Bm =~xj , j 2 [kmin, ... , kmax ],m 2 [1, ... , p], p < n ! minfE(S(t), t), pg

such that

{
E(S(t), t) � total error

8m,E(S(Bm),Bm) � max segment error

(6.22)

Once the problem has been formalized (this formalization had been initially required in

chapter 3, to de�ne the proper quality metrics), it is interesting to analyze the ways in

which this multiobjective formulation has been tackled in the available algorithms. There

are, basically, three di�erent ways to deal with a multi-objective problem, (Coello et al.,

2007). The de�nitions in the reference are restricted to multi-objective problems solved by

means of evolutionary algorithms, but most of the de�nitions can be generalized to di�erent

approaches:
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� A-priori techniques: These techniques require the DM, in general, to de�ne the impor-

tance of the di�erent objective functions in the MOP. The MOP is, with the use of

these importance factors, reduced to a single objective optimization problem.

� Progressive techniques: These techniques require the direct interaction of the DM

during the search process, combining cycles of search and decision making.

� A-posteriori techniques: A-posteriori techniques seek for Ptrue and PFtrue (Horn, 1997),

trying to perform a search as widespread as possible to generate as many elements as

possible from the Pareto Set.

Ptrue is the Pareto Optimal Set and PFtrue is the Pareto Optimal Front. The Pareto

Optimal Set is the set of solutions where, changing their values, cannot improve one of the

objective functions without degrading the value of another objective function. The Pareto

Optimal Front is the set of objective function values associated to the Optimal Pareto Set.

Their formal de�nition may be looked up in section 2.5.1. Applied to the segmentation

issue, the Pareto Optimal Set would be the set of di�erent segmentation solutions (each of

them with a di�erent number of dominant points) where changing the number of dominant

points in any of those solutions would result in a solution with a worse approximation error

than one of the solutions already included in the Pareto Set. This means that the output

for a segmentation process seeking that Pareto Optimal Set would be the best possible

segmentation solutions with di�erent compression levels (being a compression level the rate

between the original points in the curve and the dominant points in that particular element

of the Pareto Set).

The di�erent techniques presented in section 6.2 deal with the problem according to a-

priori techniques. This means that they turn, with di�erent mechanisms, the multi-objective

problem into a single objective problem, and optimize that single objective problem with their

particular techniques. Di�erent a-priori techniques include lexicographic ordering (Fourman,

1985), aggregation functions (Surry et al., 1995) or converting objective functions to input

parameters. Lexicographic ordering imposes an order among the di�erent objective func-

tions, and the best �tted individual is obtained according to the most important objective

function, using the others as secondary �tness values to solve tie situations. Aggregation

functions build a single �tness value combining the di�erent objective function values. Finally,

converting an objecting function into an input parameter focuses the search of the algorithm

into a single element of the Pareto Set, leaving the DM with the responsibility of determining

the rest of the characteristics of that element.

Teh and Chin algorithm (section 6.2.1) uses both aggregation functions and lexicographic

ordering techniques. Aggregation functions are used at di�erent steps: computing the region

of support, it continues to grow while the mean distance value does not increase. That mean

distance value (equation 6.8) is an aggregation function, using the length of the segments and

the approximation error. Also, the suppression condition in equation 6.9, uses a combination

of di�erent objective functions (the measure of signi�cance and the length of the region of

support) for its decision. Finally, the suppression process performed as a �nal step when the

1 curvature measure of signi�cance was chosen, uses lexicographic ordering to determine

which is the dominant point in surviving groups with only two points, using the measure of

signi�cance as the priority objective function and the size of the region of support as the

secondary objective function.
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Marji and Siy algorithm (section 6.2.2) uses aggregation functions both explicitly and

implicitly. The function to determine the length of a supporting arm (equation 6.10) is an

aggregation function using again the length of the support arm and the approximation error as

the combined objective functions. Also, the process to determine whether a candidate point

must be considered a dominant point or not, chooses a non-explicit aggregation function,

since choosing it as a dominant point would reduce the length of the segments on the output,

and that choice is taken according to a threshold over the approximation error.

The presented evolutionary techniques (section 6.2.3) deal with the multi-objective na-

ture of the problem converting the number of segments objective function into an input

parameter determined by the user. This choice can be analyzed from two opposite points

of view: if the user knows which is the compression level he requires for his application, this

allows the calculation of the best solution focused only on that compression ratio. This idea

can be implemented to perform automated batch processing of data sets according to the

multiplication of the compression ratio by the number of measures in the time series. How-

ever, the results obtained for the error may not be feasible for the application of the results,

leading to the need of individual choices for the number of segments in each input time

series, and requiring the constant feedback from the DM during the whole process. The use

of constrains in the evolutionary approaches might be a solution to deal with this issue, but

the choice of those constrains would be individual for each input. In (Yin, 1999, 1998) these

di�culties are met providing di�erent solutions for di�erent number of segments parame-

ter values. Each of these solutions runs the evolutionary algorithm from an initial random

population.

This requirement for di�erent possible solutions is not only met in evolutionary techniques.

Traditionally, Pareto fronts were built by mathematical techniques for multi-objective opti-

mization arti�cially by performing several runs with di�erent parameters(Miettinen, 1999).

In non-evolutionary techniques for segmentation purposes, input parameters are commonly

based on the approximation error rather than the number of segments, being also a repre-

sentative amount of non-parametric techniques (which obviously can never produce a Pareto

front, since they can only provide a single solution for each problem instance). In para-

metric techniques, in order to build a complete Pareto front, the user must determine the

approximation errors to obtain the required number of segments in the approximations. The

choice of these values may be an optimization issue itself, and clearly problem dependent.

This implies that, in the cases where such a solution is possible (parametric techniques) it

is di�cult and computationally costly to obtain a Pareto front for a segmentation problem

with the available approaches.

6.4 Multi-objective evolutionary algorithm for segmentation pro-

cesses

A-priori techniques have a series of di�culties in their treatment of MOOPs: di�culties

regarding continuity and shape, the need to be run several times to obtain several individuals

from the Pareto front... In the segmentation domain, the di�culties regarding the con�g-

uration of the techniques to obtain the di�erent elements of that Pareto front must also

be taken into account (the choice of the input parameters values in order to obtain certain

values in the objective functions is clearly not trivial, such as determining a certain maximum
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Figure 6.3: Genotype to phenotype mapping

error in the approximation segments in order to obtain a segmentation solution with a certain

number of dominant points).

The purpose of this work is to deal with the segmentation issue with the use of a a-

posteriori technique, according to the formulation presented in equation 6.22.

6.4.1 Representation

The �rst issue regarding representation of the problem is the choice of the related structure.

In traditional approaches, such as the one covered in section 6.2.3, the representation was

based on the detection of dominant points, codifying each problem instance as a string of

0's and 1's, representing each gene a point in the problem instance and whether this was

a dominant point or not. Figure 6.3 shows the relationship between the genotype and its

represented phenotype.

An alternative possible representation can be based on integer values, representing each

of these integer values the position of the point in the input problem instance. This rep-

resentation could be based on a �xed or variable size chromosome. The chosen alternative

could be a �xed size chromosome where this size was equal to the input problem instance

size (such as in the previous approach), such that dominant point might be repeated in that

structure. Figure 6.4 shows an example of this approach.

This representation attempts to provide a representation anchor to the importance of cer-

tain key dominant points, which are present in almost all the di�erent possible segmentations,

regardless of the number of dominant points used (this can be seen in �gures 6.11-6.13).
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Figure 6.4: Integer representation genotype

By storing several copies of those important dominant points in a chromosome, they would

become more resilient to the changes introduced by transformation operators. Also, it intro-

duces a series of handicaps: �rst of all, the chromosome has to be ordered in order to provide

e�cient transformation operators, and reordering has to be applied after the application of

any transformation operator, a�ecting the performance of the algorithm. An even more im-

portant handicap is related to the fact that the search space is much more extensive than the

one obtained using a binary representation. Also, there is no direct genotype to phenotype

relationship, since now several di�erent genotypes can represent the same phenotype. This

fact may make the search slower and a�ect the e�ciency of transformation operators.

Early experiments were conducted regarding the representation choice, where the binary

codi�cation seemed to be more promising, mainly due to its reduced search space. Results for

the integer representation were tested versus some of the traditional techniques presented in

section 3.3, focusing on the one reported to be more accurate, the bottom-up algorithm. The

results, regarding the obtained Pareto fronts for two of the �gures in the dataset presented

in section 3.6.2, are presented in �gures 6.5 and 6.6.

The presented formulation introduces some restrictions which may help to reduce the

search space, but the choice of those boundaries may be problem dependent and also (ac-

cording to previous argumentations), not trivial to establish. Thus, the segmentation issue

will be faced as a multi-objective problem without restrictions, obtaining as many elements as

possible from the Pareto Set and Pareto Front and letting the DM choose from those �nal

solutions. An important consideration is that this choice is made from �nal solutions with all

their characteristics, rather than a priori con�guration values which may lead to unfeasible

results in other components of the solution vector, allowing the DM to make simple choices

(and also to vary them according to di�erent needs for di�erent processes, as was discussed

in the introduction section).

6.4.2 Initialization

Convergence speed is a constant issue in evolutionary computation, and it has been ap-

proached with modi�cations in the di�erent involved processes: crossover, mutation, se-

lection, etc. Initialization procedures have received a reduced amount of interest from the

research community, generally assuming that the overall impact over the performance of the

algorithm is lower. Many genetic algorithms use a default bitstring uniform initialization pro-
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Figure 6.5: Integer representation results for turn problem instance

Figure 6.6: Integer representation results for racetrack problem instance
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cedure, assigning values of 0 or 1 to every bit for each individual in the population, obtaining

a uniform population regarding the binary space, which also exhibits the maximal bit-wise

diversity (Kallel & Schoenauer, 1997). However, early research showed that this may not be

the optimal initialization procedure for speci�c domains, such as inverse problems in Struc-

tural Mechanics (Schoenauer, 1996), where the solutions were known to contain far more

0's than 1's.

General approaches have to provide a trade-o� between the improved initial population

obtained and the cost of the process. Such a discussion is carried out in (Rahnamayan et al.,

2007), where opposition-based and quasi-random (Maaranen et al., 2004) initialization meth-

ods are compared, highlighting the computational issues and dimensionality e�ectiveness. In

(Ramsey & Grefenstette, 1993) the reuse of previous solutions in terms of population initial-

ization is considered for the application of evolutionary algorithms to dynamic environments,

but the established principles can be used for static environments where an approximation to

the solution is known (or can be calculated, as in the local search based method compared

in this work). Finally, domain speci�c approaches introduce characteristics from the faced

problem in order to include a seeding in the initial population which can improve the overall

results. In (Burke et al., 1998) such an approach is studied for the timetabling problem,

where heuristic individuals go through some randomization process in order to generate the

initial population, presenting a discussion of the diversity e�ect of such a process over the

�nal outcome of the algorithm.

Three di�erent initialization procedures will be compared for the presented problem:

default (bitstring uniform), uniform (in terms of Pareto front) and local search. Default

initialization assigns a 50% chance of becoming a dominant point to each point in the original

data. According to that probability, this method generates an initial population which, in the

number of segments objective function, is centered around 1/2 of the number of original

elements in the data. Being this objective also closely related to the representation error,

this generates a poor diversity on the number of segments (or, similarly, the number dominant

points), which also implies a poor diversity on the covered range of approximation errors.

Even though default initialization produces the maximal bit-wise diversity, a poor one is

obtained in the resultant Pareto front. Since multiobjective optimization seeks the Optimal

Pareto Set in the variable space and its associated Optimal Pareto Front in the objective

space (the set of solutions where one solution objective function value cannot be improved

unless another objection function value is degraded (Coello et al., 2007)), this may not

be the optimal strategy. Uniform initialization tries to ensure the diversity of the front

obtained. To achieve this task, each individual is generated according to a number of random

dominant points, which are then included into the chromosome at random gene positions.

This generates a population which is spread along the dominant points objective, obtaining

as well a good diversity over the representation error objective function. Related to the

initialization approaches presented at the beginning of this section, this approach is general

(in terms of exploiting the Pareto front diversity in the initial population) but uses a domain

speci�c procedure to produce the front with a very low computational cost.

Local search initialization is a heuristic seeding approach using bottom-up segmentation

(Keogh et al., 2003) to introduce good individuals into the initial population, a technique

which is claimed to obtain comparatively better results than other o�ine alternatives. This

algorithm creates the �nest possible approximation of the time series, dividing it into n-1

(where n is the number of points in the time series) segments of length value 2. Afterwards,
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Figure 6.7: Initial Pareto front comparison for the three presented methods (leaf curve)

the cost of merging each pair of adjacent segments is calculated and, if the merge with

the lowest cost has an error bellow the user de�ned value, the segments are merged. The

process continues until no pair of adjacent segments can be merged with an acceptable error

value. It is important to notice that in every step of the algorithm the costs of the adjacent

segments to the merged one in the previous step must be updated.

One of the di�culties arising in the application of these single objective procedures is

that, in order to obtain a certain number of di�erent individuals to be introduced into the

initial population, there is a lack of direct control over the objective functions values. This

may require several executions to obtain a single individual which can be introduced into the

population, thus increasing the overall computational cost. On the other hand, unlike other

presented alternatives in the literature (Burke et al., 1998) di�erent individuals are obtained

with the di�erent con�guration parameters directly from the heuristic technique, eliminating

the requirement for additional randomization processes.

Figure 6.7 presents the non-dominated solutions obtained in an initial population of 100

individuals generated with the default method and the proposed approach based on the

diversity in the objective space, along with a Pareto front composed from ten solutions

obtained with di�erent runs of the detailed single-objective algorithm. As expected, the

range in the objective functions covered by the default initialization is very limited compared

to the one which focuses on objective function diversity. The number of non-dominated

individuals generated is clearly inferior to those in the uniform approach as well, obtaining
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Figure 6.8: Initialization processes comparison

an initial population which, even though it is composed of the same number of individuals,

provides the algorithm with less valuable information (Pareto front individuals). Local search

initialization provides individuals which are clearly superior to the ones randomly initialized

(by either of the alternative procedures), but their range is limited compared to the ones

performed by uniform initialization.

6.4.3 Underlying MOEA algorithm: SPEA2

The focus of this chapter is not to proof the bene�ts of a particular technique (even though

one has been chosen for the results presentation and comparison), but rather of the whole ap-

proach itself. To do so, we will choose a very extended MOEA: Strength Pareto Evolutionary

Algorithm 2 (SPEA-2) (Zitzler et al., 2001), according to its implementation in the JMetal

integrated development environment (IDE) (Durillo & Nebro, 2011). The choice of this

algorithm has been made according to its extended implementations in di�erent languages

and IDE's which can ease the comparison with the results presented for di�erent authors,

along with its wide usage in research works. Also, it was chosen over alternative algorithms

which share similar wide usage characteristics (such as NSGA-II, (Deb et al., 2002a)) due to

its use of an archive to preserve the best solutions among di�erent generations, which suits

the requirements of segmentation algorithms.
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The main characteristic of the Strength Pareto Evolutionary (SPEA) algorithms is the

concept of strength, which de�nes their name. These algorithms de�ne an external archive,

where non-dominated solutions are saved (called external nondominated set). This archive is

updated with nondominated individuals after each generation is processed, and the strength

value of each of these individuals is computed. The computation of this value was originally

proportional to the number of solutions which a certain individual dominates (in the original

SPEA algorithm) but in SPEA2 it was changed to a value which depends on both, the

number of individuals which a certain individuals dominates and the number of individuals

which dominate it.

The environmental selection determines how this archive is updated. Originally, a clus-

tering technique was used, but this process tended to lose boundary solutions when the size

of the archive was too small for the required number of nondominated solutions. An en-

hanced truncation technique is present in SPEA2, which invokes an iterative process that

eliminates at each stage the individual with the minimum distance to another individual (in

case of ties, the distance to the second closest individual is considered and so on) until the

number of nondominated individuals in the archive �t its maximum size. This process allows

the algorithm to retain the boundary solutions through its di�erent generations. The size

of the archive in the SPEA2 algorithm remains constant, implying that if the number of

nondominated solutions at a certain generation is less than the archive size, this archive is

�lled up to its size with dominated solutions.

The computational complexity of the algorithm is dominated by the environmental selec-

tion procedure, with a worst case complexity for the truncation operator of O(M3), where

M is the population size plus the archive size. On average, that complexity is reduced to

O(M2logM), which is also the complexity presented by the �tness assignment process. In the

application case presented in this work, the established con�guration parameters, which will

be detailed afterwards, guarantee that the truncation operator will not be required, setting

the overall algorithm complexity to this reduced form. The pseudo-algorithm of SPEA2 can

be de�ned as follows:

1. Initialization: Generate initial population P0 and create the initial empty archive P0

2. Fitness assignment: Calculate �tness values for individuals in Pt and Pt

3. Environmental selection: Update Pt+1 according to the explained procedure

4. Termination: Check stopping criteria. If it is met, output nondominated individuals in

Pt+1, otherwise continue.

5. Mating selection: Binary tournament selection with replacement on Pt+1 to �ll the

mating pool.

6. Variation: Apply recombination and mutation operators to the mating pool and set

Pt+1 to the resulting population. Go to step 2.

The use of the multi-objective approach has been presented from the perspective of the

problem formulation and also as a mechanism to prevent some of the di�culties found in

available methods in the literature. Once an evolutionary algorithm has been chosen for this

task, we may also determine whether the MOEA approach is suitable to handle this issue. The

key to this approach is the fact that the di�erent solutions of the Pareto Front can share
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valuable information among them. This can be seen in �gures 6.11-6.13, where di�erent

approximations with a di�erent number of dominant points share similar positions of their

key dominant points, and increasing their number leads to a more re�ned approximation

of the zones with more abrupt changes. This implies that the use of the MOEA for this

purpose also balances the high computational cost of using an evolutionary algorithm with

the advantage of obtaining the whole set of solutions of the Pareto Front at a speed much

faster than the time required to obtain them individually.

6.4.4 Technique con�guration

The con�guration required for the chosen technique implies the mutation and crossover

probabilities, population size and number of generations (the rest of the parameters are

chosen according to their standard values: 1-point crossover, bit-
ip mutation and binary

tournament selection). The �rst two probabilities have been chosen according to standard

values (0.9 for the crossover probability and 1=chromosome length for the mutation one).

Population size and number of generations did not have a clear choice, so a set of experiments

was run with population sizes ranging from 100 to 500 and generation values ranging from 100

to 2000 in order to determine their values. In order to establish whether there were signi�cant

improvements between the di�erent con�gurations, a Wilcoxon test (Corder & Foreman,

2009) was used over the hypervolume result (Zitzler et al., 2003) of the obtained Pareto

Fronts, with 30 runs for each con�guration over the three curves in the used dataset. In table

6.1 the results for this comparison over the chromosome curve are shown, where 0 means that

there is no statistical signi�cance at 1% level, 1 means that there is statistical signi�cance

and "-" that the comparison is not applicable or already covered. The con�guration values for

each con�guration number with a population size of 100 are shown in table 6.2. Con�guration

numbers 7-12 share the same growing generation values with population size 200, and

con�guration numbers 13-18 with population size 500.

Last column of table 6.1 shows that there is no statistical signi�cance in the di�erence of

the presented results between the runs with population size 500 and 1000/2000 generations

(doubling the computational e�orts does not provide additional improvements over the quality

obtained). If similar tests are run over the other two �gures in the dataset, that increase over

the run generations value does provide improvements over the results, so, in order to set the

same con�guration parameters for the three curves in the dataset, we will use a population

size of 500 and generation number of 2000.

The summary of the proposal is presented in table 6.3.

6.5 Experimental results

The dataset used will be based on the three most extended curves for polygonal approximation

testing, usually named chromosome (�gure 6.11), leaf (�gure 6.12) and semicircle (�gure

6.13). We will compare the results obtained with a set of nine representative techniques, some

of which have been detailed in previous sections: (Marji & Siy, 2003), (Teh & Chin, 2002),

(Sarfraz et al., 2004), (Cronin, 1999), (Ansari & Huang, 1991), (Ray & Ray, 1992), (Sarkar,

1993), (Wu, 2003) and �nally a special comparison with the evolutionary technique by (Yin,

1999). Before this comparison is performed, we will compare the di�erent initialization

techniques presented in section 6.4.2, choose one among them, and, setting this initialization
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Table 6.1: Wilcoxon test results for di�erent MOEA con�gurations applied to the Chromo-

some curve

Conf. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 - 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1

2 - - 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1

3 - - - 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1

4 - - - - 0 1 1 0 0 1 1 1 0 1 1 1 1 1

5 - - - - - 0 1 1 0 0 0 1 0 0 1 1 1 1

6 - - - - - - 1 1 1 0 0 1 1 0 0 0 1 1

7 - - - - - - - 1 1 1 1 1 1 1 1 1 1 1

8 - - - - - - - - 0 1 1 1 0 1 1 1 1 1

9 - - - - - - - - - 0 1 1 0 0 1 1 1 1

10 - - - - - - - - - - 0 1 0 0 1 1 1 1

11 - - - - - - - - - - - 1 1 0 0 1 1 1

12 - - - - - - - - - - - - 1 1 0 0 0 1

13 - - - - - - - - - - - - - 0 1 1 1 1

14 - - - - - - - - - - - - - - 1 1 1 1

15 - - - - - - - - - - - - - - - 0 1 1

16 - - - - - - - - - - - - - - - - 0 1

17 - - - - - - - - - - - - - - - - - 0

18 - - - - - - - - - - - - - - - - - -

Table 6.2: MOEA con�gurations detail for population size 100

Con�g. number 1 2 3 4 5 6

Population Size 100 100 100 100 100 100

Generations 100 300 500 700 1000 2000

Table 6.3: Multi-objective segmentation algorithm summary

Parameter Description

MOEA algorithm SPEA2

Representation Binary vector (0= nondominant, 1=dominant)

Objective Functions 2, dominant points and Integral Squared Error

Initialization process Problem speci�c

Crossover operator 1-point crossover

Mutation operator bit-
ip mutation

Crossover probability 0.9

Mutation probability 1/n

Population size 500

Generation number 2000

Archive size n � 1
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Table 6.4: Initial populations comparison
Chromosome curve

Default L S Uniform Unif +l s Def +l s

Mean Std Mean Mean Std Mean Std Mean Std

4 47E-01 4 39E-02 8 59E-01 9 54E-01 7 52E-03 9 60E-01 6 82E-03 8 59E-01 9 94E-07

Leaf curve

1 66E-01 3 22E-02 7 45E-01 9 62E-01 1 99E-02 9 63E-01 1 99E-02 7 45E-01 3 39E-16

Semicircle curve

2 80E-01 5 21E-02 8 08E-01 9 50E-01 2 42E-02 9 51E-01 2 42E-02 8 08E-01 4 52E-16

procedure for the �nal algorithm con�guration, perform the comparison with the chosen

techniques from the domain.

6.5.1 Initialization results

Along with the performance of the presented initialization methods, current experimental

validation will try to determine whether the inclusion of local search individuals in the popu-

lation generated by either of the alternative methods improves its results. For the validation

of the performance of the di�erent initialization methods, 30 runs of every con�guration

have been performed, the unary hypervolume (Zitzler et al., 2003) of the resultant Pareto

Front calculated for each of the alternatives (both for the initial and �nal populations), and

the di�erence between the di�erent pairings calculated. Afterwards, a t-test is carried out

to determine the statistical signi�cance of the obtained results. The reference front used

for the hypervolume computation is obtained with a uniform initialization procedure and a

population size of 1000 individuals left to run for 2000 generations, such as established in

section 6.4.4.

The representation of the initial population Pareto fronts for the three curves in the

dataset are presented in �gures 6.7 (leaf), 6.9 (chromosome) and 6.10 (semicircle). Graphi-

cally these �gures show several interesting facts regarding the proposed initialization: assum-

ing that the heuristic seeding provided by the local search technique provides good solutions

in terms of objective functions values and diversity, the comparison with the default process

shows that bitstring uniform populations may provide good (�gure 6.9) or very bad solutions

(�gure 6.7), being this quality problem dependent (determined by whether the solutions

around 50% dominnant points are meaningful or not for the �nal Pareto front), disencourag-

ing the use of this technique for an unknown problem instance. On the other hand, the initial

populations provided by the uniform method exhibit for all the di�erent dataset instances

Pareto fronts with a very good diversity over the two objectives, being thus applicable to

new unknown instances with a certain guarantee over the quality of the initial population's

Pareto front.

The hypervolume results obtained for the three di�erent curves are presented in tables 6.4

and 6.5, while the statistical signi�cance results over those values are presented in table 6.6.

The initial populations comparison does not provide a standard deviation value for the local

search initialization, since each of the runs starts with the exact same initial population.

In �nal populations, no results for local search are provided, since, as will be detailed,

the populations obtained by local search dominate those created by a default initialization

process, providing the same �nal results (disregarding the stochastic nature of evolutionary

approaches) in local search and local search plus default initialization con�gurations (being
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Table 6.5: Final populations comparison

Chromosome curve

Default Uniform Unif +l s Def +l s

Mean Std Mean Std Mean Std Mean Std

9 41E-01 2 97E-02 9 67E-01 1 07E-04 9 66E-01 4 70E-03 9 67E-01 1 07E-04

Leaf curve

7 77E-01 4 76E-02 9 79E-01 3 55E-03 9 76E-01 1 20E-02 9 77E-01 7 58E-03

Semicircle curve

8 46E-01 4 06E-02 9 75E-01 5 27E-03 9 76E-01 3 08E-03 9 77E-01 3 39E-04

Table 6.6: Statistical signi�cance test

Curve Def/l.s. Def./Unif. Unif./l.s. Unif./Unif. + l.s. Def./Def. + l.s.

Chromosome No Yes Yes No No

Leaf Yes Yes Yes No Yes

Semicircle Yes Yes Yes No Yes

these results included under this last heading).

The test results presented in table 6.6 are obtained from the �nal populations, since all

the di�erences in the initial ones were statistically signi�cant. The results show that uniform

initialization yields better performance of the algorithm compared to any of the remaining

alternatives, and also that the addition of local search individuals to its initial population

does not improve its results (in the �nal outcome of the algorithm). However, local search

use does improve (for the two harder problem instances, lead and semicircle) the default

initialization performance.

The initial populations provided by the di�erent runs of a default initialization procedure

become, in general, fully dominated by the individuals introduced by the local search (results

in table 6.4 for local search and local search plus default individuals are the same). The

impact of the local search procedures is related to the quality of its results compared to

the optimal Pareto front and the cost of their computation. As presented in table 6.6, the

heuristic seeding does improve the results of the bitstring random initialization process (in

two of the three curves in the dataset), but also requires a computational cost to obtain

those individuals. As previously explained, obtaining n individuals for this initial population by

means of the local search procedure may require more than n executions of this algorithm,

and this cost may be even higher if certain diversity is required in those heuristic individuals.

Uniform initialization provides a higher range of objective function values to its individuals

(which are graphically represented by the initial and �nal "tails" of the Pareto front), which

provides additional non-dominated individuals to the algorithm and allowing it to obtain better

�nal solutions, as seen in table 6.6. This shows the importance of the diversity in terms of

objective space, which cannot be obtained with the default bitstring random initialization.

Even though there is no general technique to be able to obtain this diversity in the objective

space for a general problem, the presented technique allows to do so in the segmentation

domain with a very low computational cost (similar to that of the default initialization process)
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Figure 6.9: Initial Pareto front comparison for the chromosome curve

being clearly superior to the considered alternatives. Therefore, for the remaining comparison

experiments, the uniform initialization will be the procedure used.

6.5.2 General comparison results

The dataset, along with some segmentation results from the obtained Pareto Fronts, is

presented in �gures 6.11-6.13. Figure 6.11 introduces the chromosome curve, which has

60 boundary points, along with �ve results from the Pareto Set obtained by the technique.

Figure 6.12 shows the same results for the leaf curve (with 120 boundary points), and �gure

6.13 for the semicircle one (with 102 boundary points). The numerical description of these

�gures, according to their freeman chain code (Freeman, 1961), is presented in table 6.7.

Table 6.8 presents the concrete results for the Pareto fronts obtained with the presented

con�guration of the technique for the three curves of the dataset, showing the number of

dominant points in the element and the integral squared error of that element. There are

several interesting facts in those results: �rst of all, the technique is able to �nd the number

of segments which produces a lossless approximation over the di�erent curves. Secondly, the

leaf curve Pareto front approximation results have no value for 55 dominant points, while it

reaches its lossless approximation with 56 dominant points. This does not mean that the

algorithm was not able to �nd a solution with 55 d.p., but rather that the solution found
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Figure 6.10: Initial Pareto front comparison for the semicircle curve

did not improve those found with a lower number of them, and according to that (it is a

dominated solution according to Pareto dominance) it was removed from the Pareto front.

Mean and standard values corresponding to 30 di�erent executions are provided for all the

di�erent elements in the dataset.

Table 6.9 presents the results of the �rst eight techniques to be compared. These

technique results are either non-parametric or the included results are those presented in

their reference works according to their default con�guration. This means that each of these

techniques provides only a single solution for each problem in the dataset. Table 6.10 presents

the statistical comparison of these techniques with the MOEA technique used. To perform

this comparison, the solution with the appropriate number of dominant points (the same

as the single solution provided by the compared technique) is extracted from the resultant

Pareto front in the 30 independent executions performed, and a Student's t-test with 5%

con�dence level is performed over the di�erence of those values, determining whether the

di�erence is statistically signi�cant or not. If the di�erence is statistically signi�cant, the

best technique is indicated, including the '-' symbol in any other case.

The comparison of the results for the introduced technique and the ones contained in table

6.9 is presented in �gures 6.14-6.16. Each of these �gures presents the graphical comparison

on a di�erent curve from the dataset. The cross marker indicates the mean result from the
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Table 6.7: Freeman chain code representation of the �gures in the dataset

Chromosome

00665 65560 01010 76555 45555 55555 43112 12233 45432 01101 11112 11212

Leaf

66656 65500 01005 66565 50011 06656 56555 55666 76666 66666 42222 22222

22322 44343 33333 23070 00033 23230 70000 33232 22677 72221 27666 11111

Semicircle

00007 00777 77766 76666 66665 76766 56454 43436 66656 55454 44434 33232

22254 54434 23221 21322 22222 21221 11111 0010000
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Figure 6.11: Chromosome curve
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Figure 6.12: Leaf curve
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Table 6.8: Pareto Front dominant points / integral squared error results for the dataset

Dom points
Chromosome Semicircle Leaf

Mean Std Mean Std Mean Std

1 7037 33 1329 14 88648 00 0 00 56705 63 10709 98

2 502 67 94 94 11200 00 0 00 3682 00 695 42

3 343 57 64 89 2436 10 38 57 437 78 82 68

4 133 13 25 14 1093 39 19 67 342 40 64 73

5 96 75 18 56 559 70 30 86 288 78 55 04

6 25 18 4 76 142 49 1 43 217 89 41 57

7 18 84 3 56 116 43 1 31 183 14 34 71

8 12 99 2 45 91 05 1 34 154 78 29 69

9 11 68 2 21 74 07 2 29 134 69 25 54

10 7 80 1 47 60 51 1 64 107 29 20 32

11 6 83 1 29 39 76 3 90 89 89 17 11

12 5 62 1 06 30 71 2 33 63 60 12 79

13 4 65 0 88 23 58 1 48 47 76 9 33

14 4 03 0 76 17 90 0 79 42 45 8 06

15 3 67 0 69 14 60 0 57 31 26 6 14

16 3 34 0 63 13 54 0 11 26 10 4 99

17 3 03 0 57 12 30 0 22 21 17 4 05

18 2 74 0 52 11 23 0 06 16 14 3 07

19 2 47 0 47 10 10 0 10 14 64 2 77

20 2 28 0 43 9 06 0 07 13 05 2 47

21 2 08 0 40 8 10 0 07 11 59 2 20

22 1 89 0 36 7 19 0 09 10 35 1 96

23 1 70 0 32 6 34 0 15 9 19 1 74

24 1 50 0 29 5 57 0 22 8 39 1 59

25 1 31 0 25 4 97 0 26 7 75 1 47

26 1 13 0 22 4 51 0 15 7 13 1 35

27 1 00 0 19 4 15 0 11 6 51 1 23

28 0 88 0 17 3 80 0 11 6 00 1 13

29 0 77 0 15 3 45 0 11 5 54 1 05

30 0 65 0 12 3 10 0 11 5 08 0 96

31 0 54 0 10 2 75 0 11 4 69 0 89

32 0 46 0 09 2 51 0 09 4 33 0 82

33 0 34 0 06 2 32 0 08 3 98 0 75

34 0 30 0 06 2 15 0 08 3 63 0 69

35 0 15 0 03 1 98 0 07 3 37 0 64

36 0 15 0 03 1 79 0 08 3 13 0 59

37 0 00 0 00 1 63 0 07 2 87 0 54

38 1 47 0 06 2 63 0 50

39 1 28 0 08 2 37 0 45

40 1 17 0 03 2 14 0 41

41 1 08 0 00 1 95 0 37

42 0 93 0 02 1 75 0 33

43 0 86 0 00 1 56 0 30

44 0 77 0 00 1 38 0 26

45 0 62 0 00 1 21 0 23

46 0 62 0 00 1 05 0 20

47 0 46 0 00 0 90 0 17

48 0 46 0 00 0 77 0 15

49 0 31 0 00 0 67 0 13

50 0 31 0 00 0 53 0 10

51 0 15 0 00 0 44 0 08

52 0 15 0 00 0 30 0 06

53 0 00 0 00 0 28 0 05

54 0 15 0 03

55 - -

56 0 00 0 00
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Figure 6.14: Chromosome results comparison

MOEA technique, crossed by a vertical line delimiting the standard deviation boundaries,

whereas the solid dot is the result from the concrete technique which it is compared to.

The chosen element from the obtained Pareto Front is the one with the same number of

dominant points as the solution produced by the concrete technique it is compared to (in a

procedure similar to the one followed for the statistical comparison).

The statistical comparison shown in table 6.10 determines that the MOEA technique is

signi�cantly better than the other alternatives in 21 out of 24 test cases, being signi�cantly

worse only in one case (Cronin's result for the semicircle curve). Also, the di�erences between

its results and the alternatives are very signi�cant, which can be observed in the di�erent

graphical comparisons presented in the �gures and the low p-values contained in the tables.

The dataset is rather scarce, but without standard implementations of the techniques or a

framework to properly test them with novel data, the comparison has resorted to the results

in their reference papers, which only included these �gures. The good performance results of

the evolutionary technique against a set of techniques specialized for this particular domain

are, in any case, remarkable.

The evolutionary technique presented in (Yin, 1999) did not provide results for the leaf

curve, so the comparisons will be focused on the remaining two �gures of the dataset. Also,

as explained in section 6.2.3, several solutions with di�erent numbers of dominant points

(building arti�cially a set of solutions similar to a Pareto Front) are presented for each of

the curves in its dataset. Tables 6.11 and 6.12 present these results for the chromosome
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Figure 6.15: Leaf results comparison

Table 6.9: Comparable techniques results for the dataset

Technique
Chromosome Semicircle Leaf

Dom. Points ISE Dom. Points ISE Dom. Points ISE

SAMAPA 12 5.82 19 12.90 21 13.60

Ansari and Huang 16 20.30 28 17.80 30 25.60

Teh and Chin 15 7.20 22 20.60 29 14.96

Cronin 17 3.18 30 2.91 28 7.30

Marji and Siy 11 9.96 18 24.20 21 14.10

Ray and Ray 18 5.57 29 11.80 32 14.70

Sarkar 19 3.86 19 17.40 23 13.10

Wu 17 5.01 27 9.01 23 20.34
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Figure 6.16: Semicircle results comparison

Table 6.10: Statistical result comparison

Technique
Chromosome Semicircle Leaf

p-value stat. best p-value stat. best p-value stat. best

SAMAPA 3.21E-01 - 1.67E-43 MOEA 2.52E-05 MOEA

Ansari and Huang 3.15E-43 MOEA 4.55E-63 MOEA 2.27E-40 MOEA

Teh and Chin 1.80E-22 MOEA 3.68E-64 MOEA 1.57E-29 MOEA

Cronin 1.54E-01 - 2.09E-10 Cronin 7.23E-07 MOEA

Marji and Siy 6.93E-14 MOEA 3.43E-70 MOEA 8.06E-07 MOEA

Ray and Ray 2.47E-23 MOEA 2.20E-56 MOEA 8.18E-34 MOEA

Sarkar 4.36E-16 MOEA 1.47E-55 MOEA 4.75E-13 MOEA

Wu 6.62E-18 MOEA 1.67E-49 MOEA 2.54E-25 MOEA
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Table 6.11: Yin's results and statistical comparison for the Chromosome curve

Dom. Points ISE p-value stat. best

8 17.41 8.67E-11 MOEA

9 13.82 1.02E-05 MOEA

12 7.99 6.06E-13 MOEA

14 5.47 2.82E-11 MOEA

15 5.22 6.00E-13 MOEA

17 4.58 4.17E-15 MOEA

18 4.17 2.93E-15 MOEA

Table 6.12: Yin's results and statistical comparison for the Semicircle curve

Dom. Points ISE p-value stat. best

10 52.95 2.73E-21 Yin

12 42.85 8.77E-23 MOEA

14 29.93 4.42E-36 MOEA

17 17.41 3.80E-41 MOEA

18 14.80 6.21E-54 MOEA

19 14.94 2.19E-50 MOEA

22 12.91 1.99E-53 MOEA

27 7.04 5.70E-43 MOEA

30 6.61 1.17E-45 MOEA

and semicircle curves respectively. In those tables, an statistical signi�cance test is also

presented, treating each of the solutions provided by Yin's algorithm individually and with

the same parameters used for the comparison with the previous techniques.

Additionally, a statistical comparison from a multi-objective perspective has been carried

out. This has been performed with the extraction of the Pareto fronts contained in Yin's

solutions (removing one dominated solution) and the computation of the hypervolume values

from those fronts. These hypervolume computations required the choice of the corresponding

nadir points (the worst possible solution points). These points have been adapted to the

portion of the Pareto front covered by the solutions. For the chromosome curve, their values

are 19 dominant points with 19.15 ISE and for the semicircle curve 31 dominant points with

66 ISE. To obtain these values, 1 was added to the maximum value of dominant points in the

fronts, and an additional 10% to the maximum ISE value. To obtain the hypervolume values

from the MOEA solutions, one individual is extracted for each one provided by the arti�cial

Yin Pareto front it is being compared to, building a distinct Pareto front for each execution.

Finally, a t-test is run over the hypervolume results to test their statistical signi�cance. It

must be noted that the di�erent MOEA runs provided solutions for dominant point values

not contained in Yin's solutions, which were not included to make the comparison fairer.

The comparison to Yin's results is shown in �gures 6.17 and 6.18. These �gures present

the whole section of our Pareto Front according to the highest and lowest number of dominant

points presented in Yin's results. This section of the Pareto Front contains more points than

the ones included for the statistical multi-objective comparison, according to the procedure
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Table 6.13: Muli-objective hypervolume comparison from the reduced Pareto front and Yin's

algorithm

Curve MOEA mean MOEA std Yin p-value stat. best

Chromosome 0.3690 0.0397 0.3055 1.19E-09 MOEA

Semicircle 0.5089 0.0036 0.4573 3.23E-35 MOEA
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Figure 6.17: Yin's chromosome results comparison

previously explained, where only those points with a number of dominant points contained

in non dominated Yin's solutions were included. According to that comparison, the points

included in the quality indicators for those Pareto Fronts have been highlighted with a circle

marker. The individual comparison to Yin's results shows signi�cantly better results for the

MOEA technique in 15 out of 16 cases. This statistical di�erence is corroborated with the

hypervolume results, where the MOEA technique is signi�cantly better in both curves.

The overall results show that the MOEA solution to the segmentation is issue is extremely

competitive with the available works in the literature in terms of quality of the obtained

solutions in the Pareto Front.

6.6 Conclusions

This work has been focused on the segmentation issue by means of Piecewise Linear Repre-

sentation, which is present in the polygonal approximation domain, highlighting its unresolved

issues. One of those issues is the multi-objective nature of segmentation processes, where
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Figure 6.18: Yin's semicircle results comparison

several objective functions have to be optimized jointly. This fact has not received the proper

attention in terms of algorithm development (only for certain comparison purposes). Even so,

any technique available has to deal with this multi-objective nature of the problem, even if this

nature is not explicitly declared. Four representative algorithms have been detailed, covering

their implicit treatment of that multi-objective nature, based on a-priori approaches. This

discussion has lead to the explicit formulation of segmentation as a proper multi-objective

problem and its resolution by means of an a-posteriori approach using a multi-objective evo-

lutionary algorithm. For the results presentation, the chosen algorithm is SPEA2, along with

default transformation operator values. The segmentation domain characteristics, along with

the representation used, allow the introduction of a specialized initialization operator which,

in order to improve the algorithm performance, obtains an initial population with a better

coverage of the search space. The population size and number of generation values are cho-

sen according to Wilcoxon test results over a set of possible con�gurations with increasing

values.

The �nal objective of the multi-objective evolutionary approach is obtaining the whole

Pareto front of possible segmentation results for a given problem. Parametric techniques

can obtain arti�cial Pareto fronts with several di�erent runs con�gured with di�erent input

parameters, being each of these solutions independent. This is computationally ine�cient

and can lead to additional optimization problems (such as the determination of the proper

error approximation value in order to obtain a certain number of segments in the solution).

These problems are inherently solved with the use of the MOEA approach presented in this

work. Also, the di�erent solutions in the Pareto front of a segmentation problem share

valuable information in the form of dominant point position, leading to faster and better
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solutions when compared to obtaining individual elements from that Pareto front.

The results obtained in the Pareto front with the chosen technique in the polygonal ap-

proximation dataset used are extremely competitive with the available works in the literature,

having obtained statistically signi�cant improvements in 36 out of the 40 individual results,

and also in the two curves compared under a multi-objective perspective by means of the

hypervolume quality indicator, showing that treating the multi-objective nature of the prob-

lem explicitly allows the algorithm to obtain better solutions. It is important to highlight

that this technique is able to cope with the requirements presented, allowing the �nal user

to regain its role as the decision maker of the problem and to change which solutions �t its

requirements at di�erent moments (provided by obtaining the whole Pareto Front in a single

execution).

The proposal, even though it has been able to prove the advantages of the multi-objective

evolutionary approach, does not completely ful�ll the thesis requirements. The stopping

criterion has been established a-posteriori, according to the quality results of the obtained

solutions, which have lead to the con�guration parameters. These con�guration parameters,

according to this setting procedure, are speci�c to the problem instances faced (or di�erent

ones of similar di�culty), but have not been tested for additional problem instances. Even

among the tested dataset, the number of generations (lacking a dynamic stopping criterion,

such as the ones presented in chapters 4 and 5) is not the optimal one for all the problem

instances (there were no di�erences in the �nal hypervolume results for the easiest curve,

the chromosome, between 1000 and 2000 generations). Thus, there are required additional

considerations and adaptations to be performed over this general MOEA approach, which

will be faced in chapter 7.
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7
An e�cient approach to multiobjetive

evolutionary polygonal approximation

\
Well, Diotallevi and I are planning a reform in higher education A School

of Comparative Irrelevance, where useless or impossible courses are given

The school's aim is to turn out scholars capable of endlessly increasing the

number of unnecessary subjects "
Umberto Eco, Foucault's Pendulum, 1988

This chapter will deal with the design features of applying a multiobjective evolutionary

approach to the polygonal approximation domain. While chapter 6 presented the underlying

basis for the technique and tested its capabilities versus a signi�cant set of available tech-

niques from the domain, the computational complexity was not dealt with. This chapter will

face this issue from a number of di�erent points of view: from the initialization process to

the application of the designed stopping criterion, dealing with the complexity of the �tness

function and the required modi�cations performed to the transformation operators in order

to simplify this complexity. The main reference works for this chapter are (Guerrero et al.,

2014b, 2012a, 2013a,b)

7.1 Local �tness computation and �tness-aware transformation

operators

As introduced in chapter 6, two di�erent problems can be presented regarding polygonal

approximation: Min � # and Min � �, which di�er in the objective of the segmentation

process: minimizing the number of segments in order to obtain a representation error lower

than a certain threshold or, on the other hand, minimizing the representation error for a given

number of segments. Evolutionary approaches to this domain have been focused on solving

the Min �# problem, which forces the use of speci�c transformation operators (crossover

and mutation) in order to not modify the number of dominant points in a given solution.

For a given curve to be segmented, its codi�cation � is a string of 00s and 10s, determining

whether each of the points is considered dominant. The �tness presented was- based on two

di�erent representation errors widely extended and used by di�erent techniques, E1(�) and
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E2(�) (usually referred to as maximum error and integral square error, respectively). These

errors are represented in equations 7.1 and 7.2

maxError = maxni=1ei (7.1)

ISE =

n∑
i=1

ei (7.2)

Genetic algorithms (as seen in section 2.4) are based on a series of basic steps performed

every generation over a certain population of individuals. An initial population is generated

and the evolutionary cycle starts with the application of a series of operators: selection of

individuals who will receive the application of transformation operators, application of these

operators (usually crossover and mutation), �tness update of the newly generated individuals

and �nally the selection of next generation's population, being this procedure followed until

a certain stopping criterion is triggered. Under this general approach, domain knowledge

was introduced in the �tness computation steps and the remaining actions could be faced as

exchangeable black boxes, allowing independent research in each of these boxes.

However, the importance of introducing speci�c domain information at di�erent steps

has to be considered for practical application of evolutionary algorithms. In fact, for current

domain, section 6.4.2 already tried to introduce some domain information in order to provide

more e�cient initializations based on speci�c heuristic local search procedures, even if these

procedures did not lead to improved results in the �nal front solutions.

The motivation for this section is to understand the e�ect of transformation operators

over the produced o�spring, relating their �tness computation to that of their parents. A

simple example regarding this relationship is shown in �gure 7.1. This �gure shows the e�ect

of a mutation which actually changes the value of a single point from the curve and the local

e�ect which it produces over the �tness computation. Both genotype and phenotype have

been included to clarify the followed representation. As shown in the example, the mutation

(which creates a new dominant point) does only imply the new calculation of two segments.

The remaining parameters and segment errors remain unchanged from the previous chromo-

some. However the �tness computation would recalculate all the segmentation parameters

and individual errors in order to calculate the representation error, since the genotype has no

information regarding the partial �tness computations of the original parent.

Since the �tness is based on the aggregate value (summation) of the errors of the

di�erent individual segments, storing that information would allow the introduction of �tness-

aware operators able to recalculate only the minimum amount of required information. This

approach implies the storage of the errors for the individual segments, in order to perform

only partial �tness computations. The chromosome for each solution instance will thus have

an additional array of 
oating point values storing the approximation error value of the given

segment (if the point is dominant) or zero (in any other case). Following this representation,

the mutation procedure presented in �gure 7.1 produces only local changes, as shown in the

genotypes represented in �gure 7.2.

This partial �tness storage on the chromosome will introduce a �tness function which

would simply have to sum the di�erent values in the complementary chromosome structure in

order to obtain the �nal �tness value. Since the changes produced by the transformation op-

erators are local, the whole �tness value can be recomputed locally (and not only the values in
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Figure 7.1: Representation of the local changes produced by a mutation operator

0 1 0 1 1 0 0 0 1 1 0 1 0 
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Recomputed values 

Mutation operation 

Figure 7.2: Partial �tness values recomputation derived from the local changes introduced

by a mutation operator
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Determine split point 

Calculate partial 
summations to split 

point sum1 sum2 

Calculate last dominant 
points up to split point 

dom1 ,dom2 

Copy chromosome 
information to children1 , 
children2 up to split point 

Calculate first dominant 
points from split point 

dom’1 ,dom’2 

Copy chromosome 
information to children2, 
children1 from split point 

f(children1) = f(parent2)-sum2+ sum1 
– parent2[comp](dom’2)+error(dom1, 

dom’2) 

f(children2) = f(parent1)-sum1+ sum2 – 
parent1[comp](dom’1)+error(dom2, 

dom’1) 

Output resultant children 

Figure 7.3: Pseudoalgorithm for the 1-point crossover �tness-aware operator

the complementary chromosome structure). Transformation operators which perform partial

�tness recomputations to calculate the objective values are de�ned as �tness-aware opera-

tors. Following the operator choices presented in chapter 6 (the summary of the proposal

was presented in table 6.3) �gures 7.3 and 7.4 show 1-point crossover and bit
ip mutation

for the proposed representation. In these operator �gures, the straightforward computation

of the number of dominant points has not been included to improve the readability.

These �tness-aware operators also apply a recomputation of the whole �tness value,

which is stored in the chromosome. This is performed in order to further simplify the �tness

computation process, bearing in mind that the length of the problems can be quite large

(such as those presented in (Kolesnikov, 2012)), and even the sum of the partial �tnesses

can take a sizable amount of time. This �tness value can be computed more e�ciently at the

application time of the transformation operators, since they can handle valuable information

regarding the parents partial �tness values which become unavailable once the transformation

operations have ended. Figures 7.5 and 7.6 show an example of how these �tness values are

calculated.

Pro�ling the resultant algorithm, the mutation procedure started to take up a much

higher percentage computational cost than crossover, particularly when applied to problem

instances with a large number of data. This computational cost was increased due to the

required pseudorandom number generation for each gene position in order to determine

whether it needed to be mutated or not.

The proposed alternative mutation procedure is based on two steps: the �rst time the

mutation procedure is used, a set of random numbers equal to twice the chromosome size



7.1. Local �tness computation and �tness-aware transformation operators 191

parent(i)==1 
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Figure 7.4: Pseudoalgorithm for the mutation �tness-aware operator
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0 1 0 1 1 0 0 

0 5.9 0 2.3 0 0 0 

1 0 0 1 0 1 

3 0 0 3.7 0 1.2 

recomputed 
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Fitness: 17.7  

Fitness: 17.3 

17.7 +9.4 -7.8 -5 +3 

Figure 7.5: Child individual �tness computation by crossover �tness-aware operator
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Fitness: 16.6 
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Fitness: 16 

16.6 -6.6 +1.5 +4.5=16 

Figure 7.6: Child individual �tness computation by mutation �tness-aware operator

is calculated and stored. Then, every time the mutation procedure is used, a single random

number is calculated to determine the starting position over the pre-calculated vector, and the

pseudorandom values required are sequentially obtained from the required positions starting

at that random value. A study regarding the in
uence of random number generators in

evolutionary algorithms may be found in (C�ardenas-Montes et al., 2012).

For a problem such as the leaf curve (with 120 points) and the parameters set in the

proposed con�guration shown in table 6.3, with 500 individuals, 2000 generations and 1/n

mutation probability, the original value of psedorandom 
oating point number of values to

be generated was, roughly, 12 � 107. With the proposed approach, this number is reduced

to 240 pseudorandom 
oating points (the initial values of twice the chromosome length)

plus 106 pseudorandom integer values to determine the initial value each time the mutation

operator is run (which implies a di�erence of two orders of magnitude).

7.2 An alternative archiving technique

7.2.1 Overview over archiving techniques

In (Laumanns et al., 2002), Laumanns et al proved that many MOEAs based on standard

Pareto-based selection schemes could su�er deterioration, not guaranteeing convergence.

Deterioration occurred when elements of a solution set at a given time were dominated by a

solution set which the algorithm maintained some time before. Based on these observations,

they presented new archiving strategies based on the �-dominance concept, attempting to

provide both convergence and good distribution properties.

However, in (Knowles & Corne, 2003), some of the issues with this approach were
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highlighted, mainly the choice of the � initial parameter. This parameter could be chosen by

either a preset value or by an adaptative procedure. In the former case, the number of points

in the archive is bounded by a function of the (possibly unknown) objective space ranges. In

the latter case, � may become arbitrarily large, providing a poor �nal archived set compared

to the sequence of points presented to the archiving algorithm.

SPEA algorithm family, both SPEA (Zitzler & Thiele, 1999) and SPEA2 (Zitzler et al.,

2001), rely on the concept of strength for their archiving strategy: originally proportional

to the number of solutions which an individual dominated (in the SPEA algorithm), it was

improved in the SPEA2 algorithm by also including the number of solutions which dominate

it. This led to the environmental selection update mechanism for the archive (an analysis of

the algorithm was covered in section 6.4.3).

The original archive update mechanism was based on a clustering technique. This mech-

anism tended to lose boundary solutions when the archive size was too small for the required

number of non-dominated solutions. The truncation technique presented in SPEA2 is an

iterative process which eliminates at each stage the individual with the minimum distance

to another individual (considering the following distances to the second, third... closest in-

dividuals in case of ties). This process continues until the maximum number of individuals

according to the archive size have been introduced.

The archive size in SPEA2 is �xed. If the number of non-dominated individuals is not

su�cient to �ll it, dominated ones are inserted. Also, the environmental selection mechanism

dominates the complexity of the whole algorithm, with a worst case complexity of O(M3),

where M is the population size plus the archive size. On average, that complexity is reduced

to O(M2logM).

7.2.2 An alternative archiving procedure

Section 7.1 has faced the complexity of the �tness function for the algorithm, also pro�ling

and dealing with issues related to the �tness-aware operators introduced. The overall com-

putational cost distribution is heavily altered by these changes. If we compare the cost of

the archiving technique vs the whole remaining operations for every evolutionary cycle, the

result is presented in �gure 7.7.

These results have been obtained using the JMetal (Durillo & Nebro, 2011) environment

with the general con�guration established in table 6.3 using the enhanced �tness computa-

tion and �tness aware operators described in section 7.1. As �gure 7.7 clearly shows, the

archiving procedure is not only dominating the algorithm running time, but also the enhanced

�tness computation (archiving implies more the 99% of the whole running time, including

�tness computation). This huge e�ort to guarantee a well distributed Pareto front seems

unacceptable. Therefore, an alternative archiving procedure needs to be introduced.

The polygonal approximation process has a set of very speci�c characteristics, mainly its

bi-objective nature with a very high degree of con
ict between them and the fact that one

of these objectives is discrete. Figure 7.8 shows the result of an initialization process prior

to the application of Pareto dominance selection to highlight these characteristics.

Some of the issues related to the costly archiving results exhibited by SPEA2 in this

problem, as shown in �gure 7.7 are related to the multi-objective proposal: the algorithm

must be able to store, ideally, one individual per each compression level. This implies that the

archive size can get to be really large (and the computational complexity of the environmental
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Figure 7.7: Computational cost distribution between archiving technique and the remaining

procedures of an evolutionary cycle
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Figure 7.8: Initialization example showing dominated and non-dominated individuals
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Figure 7.9: � glitches over the population initialization

selection depends heavily on that archive size value). On the other hand, this provides a

boundary for this size (a value which can get to be di�cult to establish a-priori).

The concept of � � dominance was introduced in de�nition 2.6.1 along with its use in

the epsilon indicator (described in section 5.2.1). The idea presented in (Laumanns et al.,

2002) was, according to � � dominance, to draw �-boxes such that at most one element

is contained in each box. From the characteristics of the problem presented, the idea for

the alternative archiving presented is to use a technique similar to these �-boxes, considering

a box for each of the possible individuals according to the number of segments objective.

Figure 7.9 represents these boxes over the results in �gure 7.8.

As shown in �gure 7.9, these boxes are in�nitely thin in one objective (the discrete

objective representing the number of segments, where they only cover one value) and in�nitely

long in the other (the objective representing the representation error). These particular

instances of �-boxes are similar to the glitches from signal processing theory, and so they

have been named according to this resemblance. Pareto-dominance is only checked within

the �-glitch which an individual belongs to, not among di�erent glitches. This implies that

the complexity of this process is now constant, and the complexity of the whole archiving

mechanism is reduced to O(n), where n is the population size. Figure 7.10 shows the result

of the �-glitches archiving procedure over the population presented in �gure 7.8.

It must be noted that one of the issues related to the environmental selection process was

the fact that its complexity order included the archive size, This issue has been overcome, a

specially important achievement for this problem, since the required number of individuals in

the archive can be very large for some problem instances, as has been repeatedly noted.

The traditional evolutionary cycle where one full generation is produced at each step is

no longer required, since every individual is compared to the correspondent one in its glitch

already stored in the archive. With this approach, the evolutionary cycle implies parent
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Figure 7.10: Result of the � glitches archiving technique over the population initialization

selection, children obtaining through the transformation operators and the invocation of the

archiving procedure individually.

Even though implementation issues are not the focus of this work, the appropriate man-

agement of the data structure for the archive is important for the computational cost reduc-

tion. Since the archive size is �xed (with an exception detailed in the following paragraph), a

�xed size, constant time access data structure is suggested (such as a traditional array). For

the initialization of this array, we suggest the generation of an initial random individual for one

of the archive boundaries (either of them) and the application of directed mutations to obtain

an individual for each of the �-glitches. These directed mutations (and, thus, the archive

initialization process) imply a very low computational cost using the �tness computations

detailed in section 7.1.

One �nal improvement is introduced in the archiving procedure. For the MOEA proposal

to polygonal segmentation, the initial archive size, as explained in chapter 6 is set to the

number of points in the curve. However, very commonly through the evolutionary process,

new individuals with a perfect segmentation (zero error) are found, requiring a lower number

of segments than that initial boundary. This e�ect can be seen in the results presented in

table 6.8. The initial archive size for the leaf curve was 120, but an individual with only 56

dominant points can achieve a perfect segmentation.

With the default SPEA2 archiving mechanism, this increased archive size adds complexity

to the algorithm, due to the relationship between the archive size and the procedure com-

putational cost, but handling non-dominant individuals is included as part of the archiving

technique. With the explained archiving mechanism, these dominance relationships are not

taken into account, since it covers Pareto dominance between two individuals which belong
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to two di�erent �-glitches. Therefore, computational cost would be wasted in search zones

of no interest (those which have a higher number of dominant points than the one already

obtained which yields zero segmentation error). To cover this special case, when a new

individual is added to the archive with zero representation error, the archive size is reduced

to its number of segments.

A �nal overview of the detailed archiving process can be detailed in the following steps:

� Initialize archive with size n and �ll with individuals obtained with applied directed

mutations from an individual with either, the highest or the lowest possible number of

segments, obtaining one individual for each possible number of segments

� While stopping criterion is not met

{ Select parents

{ Apply transformation operators to parents

{ For each children produced

� Compare to archive individual with the same number of segments, and update

as required

� If the updated individual has zero representation error, update archive size as

required (if the number of segments of the individual is smaller than archive

size)

� Output archive results

7.3 Initialization revisited: multiobjective local search tech-

niques

Initialization techniques for the faced domain were presented in section 6.4.2. Several tech-

niques were analyzed, from the default genetic initialization up to the application of speci�c

heuristic local search techniques. Among the issues of this last choice were the di�culty to

obtain well distributed Pareto fronts from the error input parameters, the requirement for

independent runs and the computational cost, which led to disappointing results (as shown

in section 6.5.1).

This section will present alternative, parameter-free versions of two heuristic local search

techniques previously introduced, according to their traditional, single objective versions:

Top-Down and Bottom-up algorithms. These techniques were originally introduced in section

2.8.2, have been used through chapter 3, and considered as local search techniques in section

6.4.2. A short introduction will be provided for each of the two algorithms, along with a data


ow diagram in order to provide the required context for their multi-objective versions.

Top Down algorithm (Ramer, 1972) is an o�ine process based on �nding the best splitting

point (understanding by this that measurement which divides the trajectory into the two

segments with the lowest added errors) recursively, until all the resulting segments have an

error value bellow a user de�ned boundary. The Top Down algorithm is applied in a wide

variety of domains and �elds, being also known by di�erent names(Duda & Hart, 1973).

Figure 7.11 shows this process.
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Figure 7.11: Top-Down traditional implementation

The multi-objective version of the Top Down algorithm suppresses the two issues available

in the traditional implementation: the recursive calls (which may prevent the application of

the algorithm to �gures with a large number of points) and the user con�guration (which

introduces the issues previously described in the obtaining of a whole Pareto front). At each

step, the best splitting point is located (the one which provides the smallest representation

error), a new individual is generated adding that new dominant point and the costs of the

possible segments are updated (implying the recomputation of the costs of the segments

from the dominant point immediately to the left of the new splitting point and those from

the splitting point to the dominant one immediately to its right).

Each step of this iterative process can be seen as a guided mutation, and, thus, the

considerations introduced in section 7.1 can be applied, regarding the update of partial �tness

values in the chromosome and the computation of the new �tness.

According to the explained procedure, no recursive calls are included, and each split point

choice has a global view of the representation error (as opposed to the partial one avail-

able in the traditional implementation). Figure 7.12 represents the multi-objective version

implementation of this algorithm.

Bottom up algorithm(Keogh et al., 2003) is an o�ine process complementary to Top

Down, where the time series is initially divided into every possible segment (composed of two

measurements) and �nds the best possible segment fusion afterwards (understanding by this

the fusion which obtains the segment with the lowest error) until any possible fusion obtains

a segment having an error above a user de�ned boundary. The bottom up algorithm, as well,

has spread to di�erent �elds and research areas using di�erent names, such as the computer

graphics domain and decimation methods(Heckbert & Garland, 1997). Figure 7.13 shows

this process.
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Figure 7.12: Proposed top-down multiobjective implementation
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Figure 7.13: Bottom-up traditional implementation
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Figure 7.14: Proposed Bottom-up multiobjective implementation

The multi-objective version of bottom-up algorithm removes the user-de�ned boundaries

for the algorithm termination, being this ending triggered once no further merging can be

performed. Figure 7.14 presents the multi-objective version. It must be noted that each

update here triggers only one segment update, while every new splitting point in the top down

algorithm triggered the recomputation of all the possible new splitting points for the two new

segments created in the representation. Once again, the e�cient �tness computation from

section 7.1 can be applied to reduce the computational cost.

An additional advantage presented by these multiobjective local search approaches is

related to the archiving analysis introduced in section 7.2. The presented archiving technique

reduces its archive size once a zero error individual has been found with a given set of

dominant points lower that the number of points of the problem. The multiobjective bottom-

up technique starts, precisely, looking for zero error individuals (by merging the whole curve

at the points of the least error increase) and may provide a reduced archive size to the

algorithm and thus focus the search.

7.4 Stopping criterion

Chapter 5 presented a general stopping criterion for MOEAs, based on the principles of

quality assessment presented in section 2.6. The di�culty regarding quality assessment

in multi-objective problems was, as analyzed, that several measures have to be considered

jointly: closeness to the True Pareto Front, spread of the front,... This is what lead to the

proposal of progress indicators (quality indicators modi�ed to measure the improvements per

generation) in section 5.2.1 and, �nally, along with a stagnation detection procedure based

on the analysis of the gathered data, propose the LSSC stopping criterion (section 5.3).

Application to polygonal approximation, as presented in chapter 6, has an important

di�erence to the general case: the maximum number of individuals in the True Pareto Front
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Table 7.1: E�cient Multi-objective evolutionary segmentation algorithm summary

Parameter Description

MOEA algorithm Own

Representation Binary vector + additional �tness information

Objective Functions 2, dominant points and Integral Squared Error

Initialization process Uniform with local search boundaries

Crossover operator 1-point crossover �tness-aware

Mutation operator bit-
ip mutation �tness-aware

Crossover probability 0.9

Mutation probability 1/n

Population size - (not applicable to algorithm)

Generation number - (stopping criterion)

Archive size - (established after initialization)

Archive procedure Epsilon glitches

Stop. crit. window size 30

can be calculated before the application of the algorithm, and the archive size (and thus,

the obtained fronts from it) has been con�gured accordingly. The implications of these

characteristics greatly simplify the quality assessment problem, which is now reduced to a

closeness comparison.

This simpli�cation can be translated to a relevant progress indicator, which simply mea-

sures the improvements at the di�erent possible individuals of the front between di�erent

generations, providing a simple boolean indicator value (the front has improved at least one of

its individuals or not) rather than a quantitative numeric value. The data gathering process,

according to this new boolean assessment value, is also simpli�ed: this boolean assessment

values are stored in a certain window of values, and the processing is limited to determining

whether there have been any improvements over any of the considered generations.

This approach is similar to the one presented in section 7.2 as an alternative archiving

technique. In fact, the implementation of this stopping criterion can be introduced into the

archiving procedure introducing a simple operation: during the archiving procedure, if any

individual is modi�ed, that generation's boolean assessment value is marked as true. This

can be performed in such a simple way since the archive using this technique is itself the

population we need to test the stopping criterion.

There are several advantages to this procedure: the parameters are reduced (only the

window size is still required), there is no need for the computation of quality indicators and

the computation of the new assessment indicator can be performed at a very low cost (using

the previous SPEA2 approach) or with no cost (if the alternative archiving is used).

7.5 Final proposal summary

The �nal proposed algorithm has the con�guration presented in table 7.1
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Chromosome10 dataset figure

Figure 7.15: Example of ten chromosome curves linked together by the designed replicating

mechanism to provide problem instances with increasing di�culty

7.6 Experimental results

7.6.1 Dataset used

This experimental section has to deal with di�erent issues, since several proposals have been

presented to deal with the existing issues in the approach presented in chapter 6. Since the

�nal objective is to obtain results of similar quality to the ones presented in table 6.8 at a

lower computational cost, this quality comparison must be run on the same dataset (which

is composed of the three curves presented in �gures 6.11-6.13.

However, to test the improvements provided by some the introduced techniques, this

chosen dataset may not provide enough complexity (in terms of number of points in its

�gures). There are other alternatives in the literature which are used by di�erent authors

along with their presented techniques, but there is not (to the best of our knowledge) a

dataset or curve generator which provide problem instances of increasing complexity (where

that complexity can be controlled by the researcher). To solve this issue a very simple

replicating mechanism has been introduced in the following results.

The created replicating mechanism takes three parameters: the desired curve, the number

of total copies and the number of copies per row. Aferwards it generates a matrix of linked

copies of the curve, where as many copies per row as indicated are included, and provides

a �nal closed curve. Figure 7.15 shows an example of ten copies of the chromosome, with

�ve copies per row.
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7.6.2 Fitness-aware operators experimental results

The improvements presented in sections 7.2 and 7.3 are based or caused by the initial

introduction of �tness-aware operators into the presented algorithm. Thus, these results

will be the �rst ones examined, in order to provide a solid basis for the following experiments.

In section 7.1, two di�erent and complimentary considerations were presented, and they

are re
ected into current experimental results. The �rst alternative is based on two �tness-

aware operators which, according to an alternative chromosome representation including

partial �tness information, are able to perform only partial �tness updates along with the

proper transformation operators. The second alternative adds to the �tness-aware operators

the modi�cation of the Pseudorandom number generator of the mutation operator, in order

to reduce its computational cost.

Two di�erent comparison procedures will be carried out: the �rst process will compare

the running time of the di�erent alternatives, while the second will compare the quality

of the �nal results obtained. The objective of this comparative procedure is to determine

the improvement obtained (in terms of computational cost) with the presented alternatives

and provide assessment over whether this improvement implies degradation over the quality

of the results obtained. Fitness-aware operators (used in both alternatives) only imply a

change in the �tness computation, but not its result, such that no quality comparison is

required. However, changing the pseudorandom number generator procedure (used in the

second alternative) does provide di�erent �nal results (due to the stochastic nature of genetic

algorithms), so a statistical comparison process will be carried out over the quality of the

results.

The running time comparison will be based on 50000 individuals (equally divided into

di�erent runs with crossover probabilities 0.1, 0.3, 0.5, 0.7 and 0.9, each with 10000 indi-

viduals) for each of the considered test problems, the application of crossover and mutation

operators, and, �nally, the recalculation of the �tness value, measuring the complete running

time. Two di�erent segment approximation techniques will be used, the linear approximation

of the dominant points, and a more complex one based on the least squares approximation

of all the points in the segment (which was the approach used in chapter 3). This last

least squares approximation is not the one followed by polygonal approximation techniques,

but provides and in-depth overview of the behavior of the presented technique as the �tness

function becomes harder to be computed.

It must be highlighted again that this running time comparison does not perform the

whole evolutionary cycle, focused only on the transformation operators and their associated

�tness updates. For the quality comparison results, thirty runs of the algorithm as presented

in table 6.3 will be run, introducing the presented transformation operators, and the results

will be compared according to the proper statistical testing.

Comparisons ver di�erent evolutionary approaches to a problem are usually measured

in terms of function evaluations. In this case such a comparison cannot be performed,

since the proposed approaches use no explicit function evaluation (or, at least, this function

evaluation is not comparable to the original one), since �tness-aware operators recompute

the new �tness values as an integral part of their procedure. For this reason, the results are

compared according to their running time.

Five di�erent con�gurations have been used as well: traditional �gure, 10 copies of the

traditional �gure in 2 columns, 50 copies in 10 columns, 100 copies in 10 columns and �nally

500 copies in 50 columns (the procedure to obtain these curves has been explained in section
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Table 7.2: Fraction of the original running time achieved by the proposed techniques for the

chromosome curve problem instances

Con�guration
Problem instance size

Original 10 50 100 500

Fitness-aware Linear 0.86 0.74 0.74 0.73 0.75

Fitness-aware Least Squares 0.80 0.66 0.66 0.65 0.67

Reduced Mutation Linear 0.61 0.48 0.47 0.46 0.46

Reduced Mutation Least Squares 0.51 0.40 0.44 0.43 0.41

Table 7.3: Fraction of the original running time achieved by the proposed techniques for the

semicircle curve problem instances

Con�guration
Problem instance size

Original 10 50 100 500

Fitness-aware Linear 0.74 0.73 0.74 0.70 0.72

Fitness-aware Least Squares 0.72 0.65 0.62 0.65 0.66

Reduced Mutation Linear 0.48 0.47 0.47 0.45 0.45

Reduced Mutation Least Squares 0.44 0.42 0.38 0.43 0.39

7.6.1).

Tables 7.2-7.4 represent the fraction of the original approach's time taken by each of the

con�gurations introduced, being presented as a graphical comparison in �gure 7.16

Running time results show that the approach based only on �tness-aware operators

requires around 70% of the original computational cost, while the reduced PseudoRandom

generation mutation lowers this value down to a 40% of the original time.

Quality comparison tests over the hypervolume indicator values of the �nal Pareto fronts

obtained a p-value for the used normality test of 6E-16, implying that the analyzed data

did not follow a normal distribution. Thus, the Wilcoxon test was applied over the results,

obtaining a p-value of 0.54841, determining that the data cannot be considered to come

from distributions with a di�erent median. This proves that the introduced pseudorandom

number generation system does not hamper the �nal quality of the results, while providing

additional saves in the computational cost of the algorithm (as seen in tables 7.2-7.4).

Table 7.4: Fraction of the original running time achieved by the proposed techniques for the

leaf curve problem instances

Con�guration
Problem instance size

Original 10 50 100 500

Fitness-aware Linear 0.80 0.72 0.69 0.77 0.82

Fitness-aware Least Squares 0.75 0.67 0.70 0.71 0.83

Reduced Mutation Linear 0.44 0.46 0.48 0.48 0.53

Reduced Mutation Least Squares 0.41 0.39 0.39 0.40 0.46
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Figure 7.17: Computational cost distribution between archiving technique and the remaining

procedures of an evolutionary cycle after the introduction of the designed archiving procedure

7.6.3 Alternative archiving procedure

The �rst relevant comparison, according to the motivations presented in section 7.2.2, is

the computational time which is now used by the archiving procedure. The original results

for the SPEA2 technique have been presented in �gure 7.7. The results with the presented

technique are shown in �gure 7.17. These results are general for all the di�erent �gures in

the dataset. As this �gure shows, the percentages have been swapped, spending now more

than 99% percent of the available computational time in the evolutionary search instead of

the archiving technique, and thus providing a much better focus for the computational cost.

If the population size is too large or the number of generations too the e�ect of the saved

computational cost may not be clearly measurable, since the stagnation will have occurred

before the actual stop of the algorithm. Thus, population size and number of generations

have been reduced from the values presented in table 6.3. The chosen population size

used is 200, and the algorithm is left to run for 200 generations. The running time used

for each of this independent executions is measured, and afterwards thirty di�erent runs of

the proposed technique are performed, each of them according to an individual previously

measured running time as its stopping criterion. The hypervolume indicator values are built

afterwards according to these results and the statistical signi�cance of the di�erences are

tested according to Wilcoxon statistical testing (none of the results were normally distributed)

with a 95% con�dence interval. The results of these procedures are shown in table 7.5. Figure

7.18 summarizes these results.

The results for the three initial �gures do not show statistically signi�cant di�erences

between the two techniques, while the results for the three harder ones are clearly dominated

by the epsilon-glitches based technique. The explanation for this fact is clear: when the

�nal solution can be easily reached, the improved distribution of the solutions provided by

the environmental selection technique allows SPEA2 to obtain solutions of similar quality,

even though the computational e�ort spent in the proper search process is smaller (as seen

in the comparison of Figures 7.7 and 7.17). As the problem instances become harder and
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Table 7.5: Final Pareto front hypervolume comparisons introducing the novel archiving

technique

Curve
Epsilon Hyp. results SPEA2 Hyp. results

Best
Mean Std Mean Std

chrom 0.99000 0.00006 0.99001 0.00005 -

leaf 0.99533 0.00001 0.99532 0.00001 -

semi 0.99409 0.00008 0.99412 0.00003 -

chrom10 0.99924 0.00002 0.99858 0.00093 eps.

leaf10 0.99961 0.00001 0.99812 0.00139 eps.

semi10 0.99944 0.00002 0.99814 0.00175 eps.

0,9890

0,9910

0,9930
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Figure 7.18: Final Pareto Front hypervolume results comparison applying the presented

archiving technique
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Figure 7.19: Chromosome initialization comparison

the extent of search required to reach a reasonable Pareto front grows, the focus on the

search process of the epsilon-glitches technique pays o� for the poorer solution distribution,

providing it with substantial better results in terms of �nal hypervolume.

7.6.4 Multiobjective local search initialization

It is interesting to notice, as explained in section 7.3, the complementary nature of the two

multi-objective techniques presented, since one applies its heuristic with a value of 1 dominant

point and applies successive splitting over the �gure (Top-Down) and the other begins with a

solution with all of its points considered dominant and applies successive merging (Bottom-

up). Since the solutions tend to degrade with the successive application of the heuristic,

each of them will be more successful at their initial individuals.

Three di�erent comparisons of the two multi-objective local search techniques and the

original uniform approach for the three di�erent curves in the dataset are presented in �gures

7.19-7.21. The only individuals included are those non-dominated (the Pareto fronts for the

three techniques). Regarding the previously stated complementary nature of the local search

processes, it can be clearly observed in these �gures.

The results for the four techniques, including their mean and median values for the

hypervolume of the obtained Pareto fronts are included in tables 7.6 (initial front values)

and 7.7(�nal front values). Also, a best technique column has been added. This value is

calculated according to a Wilcoxon test with a 95% con�dence performed over 30 di�erent

executions, since the values do not follow a normal distribution (according to a Shapiro-Wilk

test). If one technique is superior to the remaining ones, its name is included, otherwise the

'-' value is included.
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Figure 7.20: Leaf initialization comparison
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Figure 7.21: Semicircle initialization comparison
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Table 7.6: Initial populations comparison

Figure
Bottom-up Top-down Local search Uniform

Best
Mean Median Mean Median Mean Median Mean Median

Chrom 0 98647 0 98647 0 98646 0 98646 0 98651 0 98651 0 98436 0 98427 L S

Leaf 0 99355 0 99355 0 99322 0 99322 0 99365 0 99365 0 99271 0 99281 L S

Semi 0 99157 0 99157 0 99183 0 99183 0 99218 0 99218 0 99101 0 99111 L S

Table 7.7: Final populations comparison

Figure
Bottom-up Top-down Local search Uniform

Best
Mean Median Mean Median Mean Median Mean Median

Chrom 0 98665 0 98664 0 98667 0 98671 0 98665 0 98667 0 98671 0 98672 Unif

Leaf 0 99376 0 99376 0 99374 0 99376 0 99376 0 99376 0 99377 0 99378 -

Semi 0 99206 0 99219 0 99213 0 99217 0 99219 0 99219 0 99213 0 99217 L S

Regarding the initial populations, the local search techniques are able to �nd the individual

with zero error with a much lower number of segments that the uniform approach. This is

especially important since �nding solutions with a higher number of segments does not provide

information to the �nal solution, and can be considered a waste of computational cost. Also,

this information could be used to manage the size of the archive, allowing a reduction of the

computational cost. The representation errors for the individuals for the di�erent number of

segments are also clearly better that those obtained by the uniform initialization, which is

re
ected in the results in table 7.6.

In the analysis of the �nal populations results, di�erent cases appear. For easy problems,

such as chromosome, the uniform initialization provides better �nal results, while as the

problem di�culty is increased, the statistical di�erence �rst disappears in leaf curve and �nally

the local search initialization provides better results in the hardest problem, the semicircle.

The analysis of these results can be obtained from the previous remark on initial popu-

lations: the repeated application of a heuristic approach provides an ever growing error (as

seen in the comparisons of the the local search approaches in �gures 7.19-7.21). Translated

to the evolutionary approach, the local search initialization introduces a certain bias to the

search performed by the evolutionary algorithm, according to its underlying heuristic. Even

though the initial results are clearly improved, the �nal ones are too guided by this heuristic,

and thus, they fall into local minima solutions. To highlight this analysis and provide a further

understanding to the presented techniques, �gures 7.22-7.24 provide a comparison of the

evolution of the hypervolume value through the di�erent generations of the algorithm.

The presented results seem to point to a combination of both techniques to provide

initial populations that, while bene�ting from the enhanced initial populations of local search

techniques, are not hampered by the heuristic focus. Also, an initial run of constructive

techniques such as bottom-up can be used for the con�guration of some algorithm parameters

like archive size, an application which can be e�ciently combined with the archiving procedure

from section 7.2.
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Figure 7.22: Hypervolume evolution comparison
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Figure 7.23: Leaf evolution comparison
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Figure 7.24: Semicircle evolution comparison

Table 7.8: Stopping generation comparison

Curve
Stopping generation

Mean Median Std

Chromosome 144.1 133 40.66

Leaf 383.3 359 104.3

Semicircle 291.87 271.5 86.29

7.6.5 Stopping criterion

The results for the three di�erent curves in the dataset, as presented in �gures 7.19-7.21

have been used to test the e�ciency of the stopping criterion. The only parameter required

for the stopping criterion, as previously explained, is the window size, which, according to

section 5.3, has been set to 30 generations. The results regarding the stopping generation

are presented in table 7.8, while the �nal hypervolume results are presented in table 7.9.

Figures 7.25-7.27 show examples of stopping generations for the three curves in the dataset.

The results of the stopping generations are consequent with the problem di�culty, and

the hypervolume comparison shows that this reduction in the number of generations does

imply a lower �nal hypervolume value (as suggested by the a-posteriori con�guration which

had been carried out in chapter 5, which lead to the choice of 2000 generations parameter).

A stopping criterion is a trade o� between computational cost and solution quality,

and also a requirement for problem instances where the complexity or the approximate



7.6. Experimental results 213

Table 7.9: Final hypervolume values comparison

Curve
Default Stop crit Di�erence

Mean Median Mean Median Mean Median

Chromosome 0 9867657 0 9867616 0 9867222 0 9867248 4 35187E-05 3 67643E-05

Leaf 0 9938007 0 9938015 0 9937925 0 9937926 8 2155E-06 7 36015E-06

Semicircle 0 9922071 0 9922077 0 9921943 0 9921953 1 27653E-05 1 20117E-05
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Figure 7.25: Stopping criterion application example to the Chromosome curve
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Figure 7.26: Stopping criterion application example to the Leaf curve
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Figure 7.27: Stopping criterion application example to the Semicircle curve

computational cost is unknown a-priori. Even though for simple problem instances choosing

a high �xed computational budget may yield better results, such an approach is inapplicable

for real problem instances.

7.6.6 Final proposal results

The con�guration for the �nal proposal, according to the presented results, was detailed in

table 7.1. The di�erent improvements detailed through current chapter have been introduced

into this �nal proposal, even if some only in a partial approach, such as multiobjective local

search initialization, used to provide the boundaries to the uniform initialization procedures,

which provides a richer diversity, as analyzed in section 7.6.4. The results for each of the

individuals in the three main �gures in the dataset are presented in table 7.10. A detail of

this comparison is presented in �gure 7.28.

The comparison to the traditional techniques, even though the algorithm performs worse

than SPEA2 version with �xed number of generations (as presented in table 7.10), produce

exactly the same results of terms of statistical best technique as the ones presented in section

6.5.2, particularly in tables 6.10-6.13.

The measured speedup versus the original proposal varies among the di�erent problem

instances, since complexity of the archiving procedure of SPEA2 depends on the population

and archive size, which is set by the problem, and also the problem characteristics a�ect the

stopping criterion. For the leaf curve, the speedup obtained is around 38, for the chromosome

curve, the speedup is around 68, and for the semicircle, 55. This speedup gains relevance as

the problem complexity grows. For the leaf10 curve, the running time of the original algorithm

on the test computer is around 29 hours, without any real parallelization possibilities, since

the archiving must be centralized. The speedup measured in this case, forcing the proposal to

run for the same 2000 generations, is around 653. These results are represented gra`hically
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Table 7.10: Pareto Front dominant points / integral squared error results for the dataset

Dom points
Chromosome Semicircle Leaf

Mean Std Mean Std Mean Std

1 7280 0 88648 0 58661 0

2 520 0 11589 33 735 71 3830 78 49 27

3 382 07 16 32 2880 27 423 09 518 34 52 33

4 156 22 22 77 1183 73 93 45 410 49 40 96

5 106 84 7 62 593 75 47 329 02 20 7

6 31 31 11 97 158 66 17 05 260 47 26 35

7 21 49 6 36 127 11 26 209 72 17 68

8 14 57 3 13 99 55 8 42 178 5 14 41

9 12 72 1 8 81 15 7 67 154 41 12 71

10 8 8 1 75 65 32 3 51 123 68 12 68

11 7 59 1 19 49 78 7 62 104 05 9 25

12 6 19 0 74 37 63 5 54 78 31 13 01

13 5 19 0 66 27 66 3 86 60 72 11 04

14 4 53 0 56 21 16 2 93 49 76 6 97

15 3 99 0 42 16 76 2 01 39 82 5 76

16 3 62 0 33 14 47 1 17 31 19 4 42

17 3 28 0 3 12 94 0 56 25 85 4 07

18 2 96 0 2 11 87 0 45 20 72 3 91

19 2 67 0 18 10 61 0 42 17 7 3 06

20 2 44 0 14 9 59 0 28 15 52 2 49

21 2 24 0 13 8 61 0 34 13 49 1 78

22 2 02 0 1 7 6 0 39 11 89 1 67

23 1 82 0 1 6 7 0 39 10 66 1 6

24 1 62 0 09 5 96 0 41 9 69 1 37

25 1 42 0 09 5 37 0 41 8 81 1 11

26 1 23 0 08 4 84 0 33 8 07 0 96

27 1 08 0 06 4 46 0 29 7 35 0 84

28 0 96 0 05 4 09 0 27 6 72 0 73

29 0 82 0 03 3 73 0 27 6 16 0 65

30 0 72 0 04 3 38 0 26 5 64 0 57

31 0 59 0 03 3 04 0 26 5 16 0 49

32 0 5 0 03 2 73 0 23 4 74 0 42

33 0 37 0 02 2 51 0 19 4 33 0 35

34 0 31 0 01 2 33 0 16 3 96 0 3

35 0 17 0 02 2 15 0 15 3 65 0 23

36 0 15 0 1 98 0 14 3 38 0 19

37 0 0 1 79 0 14 3 11 0 17

38 1 63 0 14 2 85 0 16

39 1 45 0 13 2 6 0 16

40 1 28 0 13 2 36 0 15

41 1 14 0 11 2 15 0 14

42 1 01 0 1 1 95 0 14

43 0 88 0 06 1 75 0 13

44 0 8 0 05 1 56 0 13

45 0 65 0 06 1 39 0 12

46 0 62 0 02 1 21 0 11

47 0 47 0 02 1 04 0 1

48 0 46 0 0 89 0 09

49 0 31 0 0 74 0 07

50 0 31 0 0 6 0 07

51 0 15 0 0 49 0 04

52 0 15 0 0 35 0 04

53 0 0 0 3 0 02

54 0 16 0 01

55 0 15 0

56 0 0



216 7. An e�cient approach to multiobjetive evolutionary polygonal approximation

5 10 15 20 25
0

500

1000

1500

2000

2500

Front comparison detail − Semicircle

Dominant points

R
ep

re
se

nt
at

io
n 

er
ro

rr

 

 

Original
Efficient

Figure 7.28: Detail comparison of the results between the original and the e�cient MOEA

approaches for the Semicircle curve

in �gure 7.29

While SPEA2 proposal clearly lacked parallelization possibilities (99% of the time was

spent in the archiving procedure, as shown in �gure 7.7), the introduction of the Epsilon

glitches archiving procedure introduces clear parallelization opportunities, since the archiving

procedure can be easily synchronized at certain intervals at a low computational cost, thus

allowing for an even better speedup for hard problem instances.

7.7 Conclusions

This chapter has dealt with one of the general objectives which had been established from

the thesis title: how to adapt a general multiobjective evolutionary approach to a practical

problem. Chapter 6 introduced the MOEA approach and tested its validity versus a series of

heuristic and metaheuristic alternatives, according to a general algorithm and its associated

operators. The proposal through that chapter was how to establish a metaheuristic which

did not have such a high problem dependence as the heuristics reviewed (or even the one

designed in chapter 3). This chapter takes the complemetary approach: analyze the di�erent

steps of the evolutionary cycle and adapt them as required to the problem domain.

Di�erent proposals have been presented and tested individually to provide the �nal evolu-

tionary procedure: representation and �tness-aware operators according to it, an alternative

archiving procedure, the introduction of multiobjective local search operators and their use

for initialization of the population and, �nally, the introduction of a stopping criterion. Also,

a new mechanism to generate arbitrarily harder problem instances according to the three
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Figure 7.29: Speedup comparison between original and e�cient MOEA approaches

basic curves has been developed.

The new chromosome representation presented introduces into it a codi�cation of partial

�tness information. This representation allows the formulation of �tness-aware crossover and

mutation operators which perform partial �tness updates according to the codi�ed �tness

information already in the chromosome. Two di�erent alternatives are presented according to

these operators, one of them keeping the original formulation of the operators and completing

it with the partial �tness updates and an additional one with a modi�ed Pseudorandom

number generator which enhances the computational time of the mutation operator. These

alternatives are tested according to a proposed di�culty scaling procedure, based on the

creation of new closed curves based on the repetition of a given shape. The results show

that the proposed improvements over the traditional evolutionary approach manage to reduce

the computational time down to around a 40% of the original time without any statistically

signi�cant degradation in the quality of the obtained solutions.

Traditionally, the most expensive process in an evolutionary algorithm (mainly for single

objective approaches) was the �tness computation. After the introduction of the enhanced

representation and �tness-aware operators, the overall cost distribution was analyzed, high-

lighting that the archiving was taking almost the whole time of every evolutionary cycle, a

fact derived from the complexity order of the environmental selection used by the procedure.

A new archiving process, established according to the bi-objective nature of the problem,

being one of these objectives discrete, has been presented. This process only checks domi-

nance within the discrete objective value. The cost distribution after this archiving technique

is introduced shows that the computational e�ort of the algorithm becomes focused on

the general evolutionary processes, and it also introduces parallelization opportunities to the

resultant algorithm, making it applicable to a wider range of harder problem instances.

Depending on the problem di�culty and the archive and population sizes, this archiving

technique may lead to worse results. For the original curves, with 200 individuals and 200

generations, both techniques yield similar results. If those values are increased to the ones
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presented in chapter 6, 500 individuals and 2000 generations, the SPEA2 technique does

provide better results. The proposed archiving obtains better results with any of the two

con�gurations when harder problem instances are faced.

Local search initialization had been reviewed and discarded in sections 6.4.2 and 6.5.1.

The local search procedure analyzed was single-objective, which made the obtaining of speci�c

individuals of the Pareto front hard and computationally costly. Multiobjective versions of

two representative constructive and destructive local search techniques, namely Bottom-up

and Top-down, have been modi�ed to provide a multi-objective approach with the required

characteristics presented. These techniques are embedded as the initialization procedure

attempting to bene�t from the fast heuristic approach and the thorough metaheuristic search.

The obtained results show that the multi-objective techniques are successful in providing

statistically better initial populations, however, the �nal results may be too focused on the

heuristic used in these techniques (the provided fronts have a poorer diversity), which makes

the evolutionary search less e�ective, making the results fall into local minima and providing

worse �nal hypervolume values. These techniques have been introduced in the �nal proposal

as a con�guration technique for the archive size (reducing it to the lowest number of dominant

points required by a zero error solution), however they cannot be discarded as a complete

initialization procedure for real case scenarios.

The stopping criterion has been reviewed as well to be applied to the domain. The archive

size is con�gured such that it can contain the whole True Pareto Front, according to the

problem speci�cations. This characteristic simpli�es the quality measures (only closeness

has to be considered) and, thus, a simpler progress indicator can be proposed and applied

to the stopping criterion. A boolean progress indicator has been introduced, determining

whether any compression level has been improved during the analyzed generation, and the

evolutionary process is stopped after a certain window of generations without any progress

in any of the individuals. This progress indicator can also be introduced seamlessly into the

novel archiving procedure.

The overall integration of these features into a MOEA proposal has obtained an algorithm

which is still able to obtain better statistical results than the set of heuristic alternatives,

also managing to scale well with the problem di�culty (which was an issue with the original

proposal). The speedup measured for hard problem instances, such as the leaf10 curve, is

around 653 times, highlighting the improved applicability of the technique.
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Conclusions and future lines

\
When you �nd your path, you must not be afraid You need to have

su�cient courage to make mistakes Disappointment, defeat, and despair

are the tools God uses to show us the way [ ] Nothing in the world is

ever completely wrong Even a stopped clock is right twice a day "
Paulo Coelho, Brida, 1990

In the introductory chapter of this work a series of objectives were set and have been

covered accordingly. This chapter will provide the assessment over the completion of those

objectives, along with the new opened research lines derived from this thesis.

8.1 Conclusions

The application domain has been introduced by means of a practical application to a segmen-

tation problem using data from the Air Tra�c Control Domain. This domain exhibits speci�c

characteristics which traditional techniques have di�culties dealing with: presence of noise,

long uniform segments, several known movement models, introduction of speci�c domain

based knowledge... A hybrid technique has been developed to deal with these issues. The

designed technique works following two phases: the �rst phase identi�es uniform sections

over the original data, performing a pre-segmentation of these zones and providing isolated

sections of the data to the second technique. The model used in this �rst phase includes

the speci�ed domain knowledge: noise regarding measuring devices, motion information and

provides non-uniform sections to the second technique. The second technique is a bottom-up

algorithm obtained from the segmentation literature, where the guiding heuristic has been

modi�ed to cope with the noisy data.

This initial development presents several keys for the development of the remaining re-

search focuses of the thesis. First of all, it is costly to adapt available techniques to di�erent

domains, even though the core knowledge required is similar for the di�erent segmentation

problem instances. This points to a metaheuristic approach which could reuse the enhance-

ments performed to a wider set of problems in a simpler way, specially bearing in mind the

very di�erent applications which these algorithms may have. Con�guring a single objective

optimization technique for segmentation optimization such as the one presented always has

to deal with two di�erent objectives: the cost of the technique and the quality of the results.



220 8. Conclusions and future lines

These initially suggests a multi-objective technique, particularly since quality measurements

may also include di�erent objective functions. Actually, for the required quality comparisons

of the proposal, quality indicators extracted from multi-objective evolutionary algorithms

literature were used (speci�cally, the hypervolume indicator).

Stopping criteria in evolutionary algorithms have su�ered a certain lack of attention from

the research community. There are many di�erent reasons which have been analyzed: well-

known datasets, budget focused research, stochastic nature of the algorithms, di�culties in

convergence analysis... While whole algorithm proposals usually include speci�c choices for

their di�erent operators, such as selection, crossover, mutation or archiving, the stopping

criteria is usually left out of them. This is a serious issue for the development of practical

applications which have to deal with real problems with unknown complexity or required

budget.

This handicap for the practical application of evolutionary algorithms has been covered

both for the single-objective and multi-objective cases. Analyzing single-objective stopping

criteria, this thesis's proposal started from an initial memetic algorithm including tracking of

the search space. This algorithm lead to dynamic stopping criteria which presented a new

approach: proposing stopping criteria which have an active role in the evolutionary cycle

(preventing related problematic situations such as early convergence). The key to this active

role is the presented diversity management.

The early results from the initial memetic algorithm lead to the extraction of its embedded

artifacts to propose an independent stopping criterion which tracked both the variable and

the objective space. The core of this proposal is based on two di�erent artifacts: the gene

matrix tracks the coverage of the search space by creating a matrix containing the di�erent

variables and the di�erent subranges of their search space. Whenever an individual reached a

certain subrange this change was updated in the matrix. This matrix has dynamically growing

properties, such that a more thorough coverage of the search space is performed as required

by the concrete problem instance. The gene matrix could be used to perform a passive

stopping criteria, requiring a certain coverage before the algorithm is stopped.

The active artifact of the proposal is the mutagenesis operator. Mutagenesis is a guided

mutation which modi�es a certain gene value to cover a subrange which still has not been

marked in the gene matrix. It is applied to the worst individuals in the population after

selection has been performed, in order to lessen exploitation capabilities as little as possible.

This mutation takes the active role of the stopping criteria: the loss of diversity is probably

the most invoked reason for early convergence in evolutionary algorithm and, thus, instead of

measuring this characteristic to stop the algorithm, the proposal is to enhance it to prevent

the requirement to stop the algorithm. Since diversity is being actively modi�ed, the stopping

criterion still needs a characteristic according to which the stopping criterion can be triggered.

The stopping criterion is triggered according to a window of the best individual's function

value, using a comparison based on a certain degree of improvement. The criterion was

tested along with a canonical evolution strategy over a set of 27 optimization functions with

di�erent characteristics. The results show that the stopping proposal is capable of enhancing

the exploratory capabilities of the algorithm, represented under two di�erent typical results:

if the exploratory capabilities of the underlying algorithm are not �t for the requirements

of the problem (forced under low population sizes), the results are clearly improved. In a

general application case, the results exhibited with the use of mutagenesis imply more robust

stopping results, where the �nal results are considered satisfactory, e�ectively escaping those
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local optima. The typical results under these circumstances are a lower average �nal function

value with a higher median value. These results are caused by the additional cost which is

spent in the mutagenesis procedure and the additional required function evaluations, which

provide a slightly worse �nal results if the canonical technique is able, by its own exploratory

capabilities, to reach a solution without falling into early convergence. Finally, if there is a

clear path to the minimal solution, meaning that exploitation capabilities are the core of the

evolutionary process, mutagenesis obtains worse results than its canonical alternative, since

its exploration enhancements are not required for the given problem.

Facing single objective optimization provides with several interesting conclusions: the

di�erent tests required for the di�erent statistical situations, the possible active role of the

stopping process or the importance of diversity. For comparison purposes, if the results are

not considered normal, literature typically uses a non-parametric test, such as Wilcoxon (not

including the required skewness validation). However, for real validation of the results, other

factors must be considered, such as the success of the algorithm in reaching �nal solutions

or the mean value of the obtained results (since non-parametric tests are based on median).

This makes these comparison processes harder than simple statistical comparisons to cover

a complete view over the algorithm performance.

Multi-objective stopping criteria have been based on quality assessment developments,

mainly the dimensionality reduction performed by quality indicators to a single value of the

comparison of two Pareto fronts followed by the required processing. The proposal for this

research line has been based on robustness, online nature of the procedures and simplicity.

Initially, since di�erent quality indicators are known to provide di�erent characteristics re-

garding closeness to the real Pareto front and spread in the solution to their dimensionality

reduction, a Kalman based fusion architecture was studied. The idea of this proposal is

reusing traditional measures for quality assessment between di�erent sets of Pareto fronts

provided by di�erent alternative algorithms and adapting them to an online comparison of

di�erent fronts obtained at consecutive generations of the running algorithm.

The issues regarding this proposal arise mainly from the lack of error information back-

ground regarding quality indicators and their e�ect. There are theoretical works regarding

their applicability considering compatibility and completeness (which point to binary quality

indicators as the only ones which can be used to really assess a comparison between di�erent

alternatives) but there is no quantitative error information regarding the di�erent alterna-

tives proposed (even though the complexity of the di�erent indicators usually hints at their

precision measuring these factors). For the linear estimation proposed, this creates the need

to empirically determine the di�erent error sources values (which are constant) and makes

the use of traditional fusion architectures inapplicable, since further estimation of these error

sources would only bias the �nal algorithm's results. A voting architecture has been used

instead, where analysis of the di�erent quality indicators is performed individually and each

of them provide an assessment of the stopping generation, and according to these individ-

ual results, the �nal stopping decision is taken. The implemented procedure triggers the

stopping generation when two out of the three quality indicators used have decided that the

algorithm should be stopped. This mechanism, in spite of its simplicity, allows to enhance

the robustness of the overall stopping criterion.

On the other hand, managing the two di�erent errors, measurement (coming form the

quality indicator use) and estimation process, allows the researchers to e�ectively control the

point where additional improvements are considered unnecessary, bearing their computational
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cost. This provides an additional degree of freedom for the con�guration of the technique,

which is not based on the point where no further statistically signi�cant improvements are

being obtained, but rather as a balance between quality and computational cost (a decision

which is one of the foundations of stopping criteria). It is important to highlight that, once

empirically determined, the values of these parameters have been tested over a set of di�erent

algorithms and test problems without further modifying their values, implying that there are

problem and algorithm independent.

One of the main di�culties related to this testing is the lack of a best number of

generations or function evaluations to compare the results to. Even though genetic drift

is possible, it doesn't usually happen, and, thus, additional generations tend to provide

slight improvements, such that stopping results always tend to be non-dominated (further

computations cost implies better, or at least not worse, results).

The proposal for a multi-objective stopping criterion is based on the analysis of the issues

detected during the Kalman voting architecture research and implementation: lack of proper

error information which forces the empirical determination of constant values, complexity of

available techniques which prevent their general application and other minor considerations.

One of the clear objectives was to present a proposal which could be easy to con�gure and

implement, in order to allow its application to di�erent algorithms as a black box providing

the required stopping criterion. This was also linked to the di�erent errors which were

present in the previous Kalman model about which no theoretical information could be found

when applied to quality indicators. The result of both issues was to present a simple linear

estimation based on least squares, which did not require any noise information.

The objective of the linear estimation is to determine when stagnation of the tracked

quality indicator has occurred. To determine so, the normalized residue of the estimation

is calculated (a similar residue had been used as part of the initial heuristic approach to

segmentation in chapter 3). The residue follows a �2 distribution, which could be used to

establish the appropriate thresholds to determine when the algorithm should be stopped.

Following the implementation requirements to enhance its application, an additional approx-

imation is performed, following the known mean and variance of the distribution and using

Tchebyche�'s inequality.

The result is a simple formula which does not require any statistical library and which

introduces two requirements for the stopping triggering: a certain meaningfulness in the data

and a certain value of improvement per generation. The data meaningfulness is required

such that the linear representation has statistical representativeness, and is represented by

threshold computed using the previously explained approximation of the �2 distribution of the

residue. Once that has been stated, the user introduces a minimum amount of improvement

in the quality indicator per generation, which is measured by the slope of the estimation.

E�ciency of the stopping criterion and its online behavior are the key considerations to

the presented design, and have been considered at di�erent steps. First of all, available

approaches considered an analysis window which implied the recomputation of the di�erent

quality indicators in the window at every generation. This can be considered a semi-o�ine

behavior (in fact, as covered in the fundamentals section, similar approaches have been taken

in the segmentation domain to adapt o�ine algorithms to online data gathering and output

requirements). The proposed approach considers, for every new generation, the computation

of new quality indicator values only between the last and the previous generations (the binary

quality indicators between these two Pareto fronts). After that, a window including the
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previously computed values is considered, but does no require any additional calculations,

enhancing the overall complexity of the criterion, particularly when it includes costly indicators

such as hypervolume.

According to the iterative computation of the indicator values, also iterative computations

of the di�erent estimation parameters are proposed, providing an estimation which can be

computed with a constant order complexity. This provides an e�cient stopping criterion

with a completely online behavior. The validation of the proposed technique has to face

the same di�culty previously explained: the lack of proper quality measurements of a given

stopping generation. A certain number of a-priori established generations are proposed for

each problem (based on available values in the literature on this topic) and the Pareto fronts

are calculated at the given stopping generation and the �nal one. After that, we provide

information of the quality indicators between the preciously stated �nal Pareto fronts and the

ones obtained with the stopping criterion, including stopping generation and hypervolume

statistical values. These values again are not statistically meaningful due to the arbitrary

�nal generations used, but provide insightful views over the applicability and robustness of

the technique.

Least Squares Stopping Criterion (LSSC), the proposal described, shows that it provides

robust results across the di�erent algorithms and problems, and provides the researcher with

an easily con�gurable set of parameters (all of which have suggested values). It is also easy

to implement and does not require any additional libraries as some of the available techniques,

highlighting its e�ciency and online behavior, which cope with the presented objectives.

Finally, the evolutionary implementation for the segmentation domain is faced. This

implementation includes most of the knowledge acquired in the development of the previ-

ously explained techniques, ranging from the di�erent representations of the information in

evolutionary computation to the requirements of dynamic stopping criteria, including other

factors such as the importance of diversity. Initially, the multi-objective nature of the prob-

lem was studied. To do so, a thorough coverage of selected techniques from the domain

is presented. These techniques are single-objective (heuristic and metaheuristic), and this

analysis covers how they have coped with the underlying multi-objective nature of segmen-

tation processes relating them to theoretical approximations. The conclusion is that they

all require this multi-objective handling by di�erent means (parametric, di�erent orderings,

aggregated functions...), leading to the a-posteriori proposal of a MOEA presented.

Once the MOEA approach has been selected, representation is considered. The key con-

cept in a segmentation process is dominant points, the points in the original data which are

the extremes of the �nal segments. The idea of a multi-objective approach is that, as shown

in the presented analysis, the position of key dominant points is not heavily altered at di�er-

ent compression levels (the di�erent individuals of the Pareto front) and so they can share

valuable information during the evolutionary process. Two possible representations are con-

sidered: a genetic algorithm stating with a 1 or a 0 whether the point is considered dominant

or not or an evolutionary algorithm which includes only the numbering of dominant points

(and these number would be repeated). This last approach enhances the preservation of

those key dominant points previously commented, but increases the size of the search space.

The genetic approach elitism was considered su�cient for the preservation of the important

dominant points, particularly since the multi-objective proposal spreads them through the

Pareto front, and was chosen for this task.

The chosen algorithm was SPEA2, due to its archive technique and extensive use in
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the research community. It is interesting to consider that the �nal objective of the MOEA

in a segmentation problem is to obtain one individual for each possible compression level,

establishing the value of the archive size according to the problem instance size. Finally,

initialization issues are faced. Traditional initialization procedures look for diversity in the

variable space. An alternative initialization is included based on a memetic approach using

two complimentary local search procedures: bottom-up and top-down. This initialization

has to deal with the single-objective nature of the presented techniques, such that di�erent

individuals of the Pareto front have to be obtained using di�erent runs with di�erent con�g-

urations of the algorithm, and obtaining well spread Pareto fronts of initialization individuals

can be di�cult.

One additional initialization procedure is considered based on the problem's characteris-

tics. Diversity in the objective space is generally considered an important feature of MOEAs,

such that an initialization looking for this characteristic is proposed, named uniform initial-

ization. This underlying idea is that the two considered objectives of the problem, number

of dominant points and representation error, are heavily in con
ict, such that providing a

good spread in one of them is bound to provide a good spread in the other (and, thus, in the

generated Pareto front). A random number of dominant points is generated for each individ-

ual in the Pareto front, and, afterwards, these dominant points are randomly placed in the

original data. The result of this technique are Pareto fronts that have a much better diversity

in objective space than any of the other two alternatives, without requiring representative

additional computational costs to the variable space diversity proposal.

The validation is performed over a set of three traditional �gures from the polygonal

approximation domain, in order to be able to compare the obtained results versus a complete

set of alternatives. Eight speci�c heuristic approaches are included, and also a single-objective

evolutionary approach. The comparisons are based on the appropriate statistical testing

performed over thirty runs of the proposed MOEA, comparing the obtained solution with the

same degree of compression to its heuristic alternative. In the evolutionary approach case,

several runs provided several individuals, such that individual comparisons and whole Pareto

fronts were compared. Initially, the initialization alternatives are compared among each other.

Uniform initialization yields better �nal results at a lower cost than the local search based

approach, leading to its choice as the initialization technique for the �nal algorithm results.

The achieved results have a growing number of generations for the three problem in-

stances, where the quality of the obtained results is compared among the di�erent results,

until for one the �gures, the increase in the number of generations provides no further sta-

tistically signi�cant improvements. The same con�guration is applied to the three �gures.

Comparing the results to their heuristic alternatives, the achieved results were signi�cantly

better in 21 out of 24 cases, being worse only in one case. The comparison with the evo-

lutionary alternative was signi�cantly better in 15 out of 16 cases, and worse in 1. Also,

comparing the obtained Pareto fronts (restricting the number of individuals obtained in the

MOEA approach, to obtain unbiased results) shown statistically better results in terms of

hypervolume value towards the proposed approach.

The general MOEA approach to segmentation took bene�t from its multi-objective

nature, but there were still opened questions. The algorithm con�guration had been extracted

from a-posteriori results, which were valuable for the comparison versus alternative techniques

but didn't provide with clear values for new problems. The complexity of the environmental

selection in the archiving technique was also an issue, since it hampered the scalability of the
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technique. Finally, it hadn't included an stopping criterion.

The �nal proposal considers each of the evolutionary individual steps and adapts them

to the segmentation domain. The chromosome adds additional information to allow partial

recomputations of the �tness values, performed by �tness-aware operators, which calculate

children �tness values according to their parents ones and the changes performed. A novel

archiving procedure is also introduced, to cope with the excessive complexity of the environ-

mental selection performed in SPEA2. This archiving procedure uses the bi-objective nature

of the problem, with one of them discrete, to provide a relaxed version of the dominance

concept. This novel archiving technique provides a scalable procedure which also allows

parallelization opportunities.

Local search techniques are also reviewed presenting multi-objective versions of their basic

proposals, using the modi�ed chromosome representation introduced. These versions can

e�ectively obtain Pareto fronts of solutions to be included as initialization processes. Even

though these initial fronts are better (in terms of quality assessment) than the ones obtained

with the uniform technique, these improvements are not re
ected in the �nal hypervolume

results. This seems to be caused by the biased search which the local search techniques

produce, which leads to faster good results but hamper the exploration capabilities of the

algorithm. For this reason they have not been included in the �nal algorithm proposal,

even though they cannot be discarded, and their use is recommended in order to obtain a

satisfactory solution faster. In any case, they are extremely useful to con�gure the archive

size, since they �nd zero error individuals with a lower value than the problem instance

dimensionality, if they exist, and thus allow a better search focus.

Finally, the stopping criteria designed have also been adapted to the segmentation domain,

introducing similar considerations to the archiving technique. Since the archive is capable of

holding the entire Pareto front, the comparisons for the stopping criterion are simpli�ed. A

boolean progress indicator has been designed which simply determines whether there has been

any progress at any compression level during the analyzed generation (in fact, in the proposed

algorithm, there are not generations properly speaking, but rather boundaries for the number

of transformation operations before the progress is checked). If there has been no progress

at any compression level for a certain window of generations, the algorithm is stopped.

This technique shows satisfactory stopping generations and only needs one con�guration

parameter: the window size. Also, the used progress indicator can be computed seamlessly

as part of the archiving procedure

This �nal proposal integrates the knowledge acquired through the di�erent previous

chapters, if not the devised procedures themselves. It is scalable, provides a solution for each

compression level, has an integrated stopping criterion which can be easily con�gured and

is competitive with the single objective approaches available in the literature. It also allows

the DM to consider which segmentation solution suits him better once the solutions have

been computed, instead of trying to con�gure the technique a-priori to guide the technique

solution to the one presumably desired, simplifying the con�guration process.

8.2 Future lines

Three main topics with strong relationships among them have been covered in this the-

sis: single-objective stopping criteria, multi-objective stopping criteria and multi-objective

evolutionary approaches to the segmentation issue. The core proposal for single-objective
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optimization has been the reconsideration of the passive stopping criterion role, changing

it towards an active one based on diversity. Future lines can be based on the di�erent di-

versity measures available on the literature, studying their behavior under di�erent guided

mutation operators in order to avoid early convergence. Possible alternatives to be studied

are the correlations between di�erent guided mutation operators (such as including an ex-

ploration enhancement over an exploitation guided algorithm like CMA-ES), diversity guided

alternatives providing self-stopping capabilities or multi-objective approaches were di�erent

measures of diversity could be considered as an objective and let the algorithm guide the evo-

lution accordingly. The measurement of diversity itself is an open issue, heavily impacting any

future algorithm trying to modify its value. From the available results, the operator proposed

is useful at certain problem con�gurations and di�erent moments during the evolutionary

approach, leading to a possible dynamic self-con�guration of the algorithm, where run-time

measures of performance could lead to the application of the guided mutation towards a

more focused exploration or exploitation behavior.

According to the established statistical comparison procedures, which rely on non-

parametric statistical testing when the distributions are not considered normal (something

which happens frequently in evolutionary results) it would be interesting to consider additional

or alternative approaches. For instance, at the cost of additional exploration computational

cost, a technique may exhibit results where no early convergence has been detected in an

algorithm (obtaining a 100% success rate). Compared to di�erent alternatives more focused

on exploitation where those early convergence cases happen to a certain extent, these tech-

niques tend to exhibit a higher median value with a lower mean value on the �nal function

results. If non-parametric tests are run without considering the skewness of the results, sta-

tistically better results will favor the second technique, providing an incomplete assessment

for the algorithm choice.

In multi-objective stopping criteria, the main focus covered in the literature is based

on the comparison of numeric values coming the dimensionality reduction performed by

quality indicators. However, proposals based on whole Pareto front analysis remain to be

proposed, following the quality assessment proposals available in the literature. The main

pitfall to be covered in this case is the lack of a proper comparison process, since no optimal

stopping generation can be stated, leading to ad-hoc comparison methods which di�cult the

introduction of these techniques in algorithm proposals. Combining stopping criteria into the

evolutionary cycle of indicator based approaches, which leads to the reuse of the results from

the indicators used by the underlying algorithm, would provide criteria with an insigni�cant

computational cost impact, requiring a joint choice of guiding indicators which could be used

by both the algorithm and the embedded stopping criterion. Another issue to be faced is the

proposal of iterative normalization procedures which can be integrated into online stopping

criteria such as the proposal included in this work, unlike the window based approaches where

the re-normalization implies the recomputation of quality indicators in the whole window of

Pareto fronts.

The establishment of sound and robust stopping criterion opens a new dimension to

quality comparison, since traditional approaches were based on a certain prede�ned compu-

tation budget. Instead of comparing only the quality of the �nal obtained Pareto fronts,

quality comparison must be faced as a multi-objective problem, regarding the quality of the

obtained results and the cost of these results. This approach to quality assessment would

provide a less biased result towards more complex algorithms, which actually incur in a higher



8.2. Future lines 227

computational cost without any impact in their quality comparisons.

The proposal presented for the segmentation issue has proved to be competitive in terms

of quality of the �nal results. The initially considered memetic approach was discarded at the

initialization step, but could be reintegrated as part of the mutation, since representative im-

provements in one individual are propagated to the whole Pareto front. Di�erent MOEAs can

also be considered as the basic algorithm, comparing their di�erent performances. The uni-

form initialization proposed could be extended to di�erent algorithms, handling the additional

computational costs implied with the �nal bene�ts in the resultant Pareto fronts, considering

the application of general local search techniques for this process. Since the metaheuristic

proposal has one of its foundations in the adaptation to di�erent domains, such adaptations

should be researched, considering noisy domains, possible online applications, multiple model

segmentation or the inclusion of domain based restrictions.

Considering the modi�cations performed over the general MOEA for the �nal proposal,

di�erent future lines are opened regarding the di�erent improvements introduced. The pre-

sented alternative representation opens the study of the applicability of proposed partial

�tness codi�cation and �tness aware operators to a wider set of problems and domains. The

alternative archiving technique can be combined at certain steps with full Pareto-dominance

approaches, or other mixed approaches where more than one individual can be introduced

for each compression level, in order to increase the diversity. Regarding initialization and the

use of local search approaches, future lines should research the avoidance of the diversity

loss introduced by them (probably combined with an enhanced archiving). Also, the pre-

sented multi-objective local search algorithms allow the introduction of new hyperheuristic

or memetic approaches combining them and evolutionary algorithms.
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A
Appendix: Single Optimization

Function Set

\
The most merciful thing in the world, I think, is the inability of the human

mind to correlate all its contents We live on a placid island of ignorance

in the midst of black seas of in�nity, and it was not meant that we should

voyage far The sciences, each straining in its own direction, have hith-

erto harmed us little; but some day the piecing together of dissociated

knowledge will open up such terrifying vistas of reality, and of our frightful

position therein, that we shall either go mad from the revelation or 
ee

from the deadly light into the peace and safety of a new dark age "
Howard Phillips Lovecraft, The Call of Cthulhu, 1926

In chapter 4 an approach to single objective stopping criterion was presented, along

with its inclusion into a memetic algorithm, whose performance was compared with CMAES

algorithm (section 4.2.3). To perform this comparison, a set of twenty-seven functions was

chosen according to their set of characteristics. This set was overviewed in table 4.2. This

chapter presents the complete description of this set.

A.1 Function set complete description

This additional section includes the formulation, dimensionality, search space and bidimen-

sional representation of all the di�erent functions included in this chapter's results dataset.

1. Ackley function. Figure A.1

dimensionality: n (30)

Search space: �32 � xi � 32

f1(x) = 20 + e � 20e
� 1

5

√
1

n

∑n
i=1 x

2
i � e

1

n

∑n
i=1 cos(2�xi ) (A.1)

2. Beale function. Figure A.2

dimensionality: 2
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Search space: �4.5 � xi � 4.5

f2(x) = (1.5 + x1 + x1x2)
2 + (2.25� x1 + x1x

2
2 )

2 + (2.625� x1 + x1x
3
2 )

2 (A.2)

3. Bohachevsky function. Figure A.3

dimensionality: 2

Search space: �100 � xi � 100

f3(x) = x21 + 2x22 � 0.3 cos(3�x1)� 0.4 cos(4�x2) + 0.7 (A.3)

4. Booth function. Figure A.4

dimensionality: 2

Search space: �10 � xi � 10

f4(x) = (x1 + 2x2 � 7)2 + (2x1 + x2 � 5)2 (A.4)

5. Branin function. Figure A.5

dimensionality: 2

Search space: �5 � x1 � 10, 0 � x2 � 15

f5(x) = (x2 � 5

4�2
x21 +

5

�
x1 � 6)2 + 10(1� 1

8�
cos(x1) + 10 (A.5)

6. Colville function. Figure A.6

dimensionality: 4

Search space: �10 � xi � 10

f6(x) =100(x
2
1 � x2)

2 + (x1 � 1)2 + (x3 � 1)2 + 90(x23 � x4)
2

+ 10.1
(
(x2 � 1)2 + (x4 � 1)2

)
+ 19.8(x1 � 1)(x3 � 1)

(A.6)

7. Dixon and Price function. Figure A.7

dimensionality: n (30)

Search space: �10 � xi � 10

f7(x) = (x1 � 1)2 +

n∑
i=2

i(2x2i � xi�1)
2 (A.7)

8. Easom function. Figure A.8

dimensionality: 2

Search space: �100 � xi � 100

f8(x) = � cos(x1) cos(x2)e
�(x1��)

2�(x2��)
2

(A.8)
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9. Goldstein and Price function. Figure A.9

dimensionality: 2

Search space: �2 � xi � 2

f9(x) =
(
1 + (x1 + x2 + 1)2(19� 14x1 + 13x21 � 14x2 + 6x1x2 + 3x22 )

) �(
30 + (2x1 � 3x2)

2(18� 32x1 � 12x21 � 48x2 � 36x1x2 + 27x22 )
) (A.9)

10. Griewank function. Figure A.10

dimensionality: n (30)

Search space: �600 � xi � 600

f10(x) =

n∑
i=1

x2i
4000

�
n∏
i=1

cos

(
xip
i

)
+ 1 (A.10)

11. Hartmann function. Figure A.11

dimensionality: 6

Search space: �600 � xi � 600

f11(x) = �
4∑

i=1

�ie
∑

6

j=1 Bij (xj�Qij )
2

� =


1

1.2

3

3.2

 B =


10 3 17 3.05 1.7 8

0.05 10 17 0.1 8 14

3 3.5 1.7 10 17 8

17 8 0.05 10 0.1 14



Q = 10�4


1312 1696 5569 124 8283 5886

2329 4135 8307 3736 1004 9991

2348 1451 3522 2883 3047 6650

4047 8828 8732 5743 1091 381



(A.11)

12. Hump function. Figure A.12

dimensionality: 2

Search space: �5 � xi � 5

f12(x) = 4x21 � 2.1x41 +
1

3
x61 + x1x2 � 4x22 + 4x42 (A.12)

13. Levy function. Figure A.13

dimensionality: n (30)

Search space: �10 � xi � 10

f13(x) = sin2(�y1) +

n∑
i=1

�1(yi � 1)2
(
1 + 10 sin2(�yi + 1)

)
+

+ (yn � 1)2
(
1 + 10 sin2(2�yn)

)
yi = 1 +

xi � 1

4

(A.13)
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14. Matyas function. Figure A.14

dimensionality: 2

Search space: �10 � xi � 10

f14(x) = 0.26(x20 + x21 )� 0.48x0x1 (A.14)

15. Michalewics function. Figure A.15

dimensionality: 10

Search space: 0 � xi � �

f15(x) = �
n∑
i=1

sin(xi)

(
sin

(
ix2i
�

))2m

m = 10 (A.15)

16. Perm function. Figure A.16

dimensionality: n (30)

Search space: �n � xi � n

f16(x) =

n∑
k=1

(
n∑
i=1

(i + �)
(
(xi)

k � (i)�k
))2

� = 0.5 (A.16)

17. Powell function. Figure A.17

dimensionality: 28

Search space: �4 � xi � 5

f17(x) =

n=4∑
i=1

(x4j�4 + 10x4j�3)
2 + 5(x4j�2�x4j�1)

2 + (x4j�3 � 2x4j�2)
4+

+ 10(x4j�4 � x4j�1)
4

(A.17)

18. Power-sum function. Figure A.18

dimensionality: n (30)

Search space: 0 � xi � n

f18(x) =

n∑
k=1

((
n∑
i=1

xki

)
� bk

)2

(A.18)

19. Rastrigin function. Figure A.19

dimensionality: n (30)

Search space: �5.12 � xi � 5.12

f19(x) = 10n +

n∑
i=1

(
x2i � 10 cos(2�xi)

)
(A.19)
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20. Rosenbrock function. Figure A.20

dimensionality: n (30)

Search space: �5 � xi � 10

f20(x) =

n�1∑
i=1

(
100(xi � x2i�1)

2 + (1� xi�1)
2
)

(A.20)

21. Schwefel function. Figure A.21

dimensionality: n (30)

Search space: �500 � xi � 500

f21(x) = 418.9829n �
n∑
i=1

(xi sin (
p
xi)) (A.21)

22. Shekel function. Figure A.22

dimensionality: 4

Search space: 0 � xi � 10

f22(x) =�
m∑
j=1

(
4∑

i=1

(
xi � Cij

)2
+ �j

)�1

m = 10

� =
1

10

[
1 2 2 4 4 6 3 7 5 5

]
C =


4.0 1.0 8.0 6.0 3.0 2.0 5.0 8.0 6.0 7.0

4.0 1.0 8.0 6.0 7.0 9.0 5.0 1.0 2.0 3.6

4.0 1.0 8.0 6.0 3.0 2.0 3.0 8.0 6.0 7.0

4.0 1.0 8.0 6.0 7.0 9.0 3.0 1.0 2.0 3.6


(A.22)

23. Shubert function. Figure A.23

dimensionality: 2

Search space: �10 � xi � 10

f23(x) =

(
5∑

i=1

i cos ((i + 1)x1 + i)

)(
5∑

i=1

i cos ((i + 1)x2 + i)

)
(A.23)

24. Sphere function. Figure A.24

dimensionality: n (30)

Search space: �5.12 � xi � 5.12

f24(x) =

n∑
i=1

x2i (A.24)
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Figure A.1: Ackley function

25. Sum Squares function. Figure A.25

dimensionality: n (30)

Search space: �10 � xi � 10

f25(x) =

n∑
i=1

ix2i (A.25)

26. Trid function. Figure A.26

dimensionality: 10

Search space: �n2 � xi � n2

f26(x) =

n∑
i=1

(xi � 1)2 �
n∑
i=2

xixi�1 (A.26)

27. Zakharov function. Figure A.27

dimensionality: n (30)

Search space: �5 � xi � 10

f27(x) =

n∑
i=1

x2i +

(
n∑
i=1

0.5ixi

)2

+

(
n∑
i=1

0.5ixi

)4

(A.27)
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Figure A.2: Beale function

Figure A.3: Bohachevsky function
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Figure A.4: Booth function

Figure A.5: Branin function
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Figure A.6: Colville function

Figure A.7: Dixon and Price function
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Figure A.8: Easom function

Figure A.9: Goldstein and Price function
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Figure A.10: Griewank function

Figure A.11: Hartmann function
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Figure A.12: Hump function

Figure A.13: Levy function
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Figure A.14: Matyas function

Figure A.15: Michalewics function
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Figure A.16: Perm function

Figure A.17: Powell function
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Figure A.18: Power Sum function

Figure A.19: Rastrigin function
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Figure A.20: Rosenbrock function

Figure A.21: Schwefel function
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Figure A.22: Shekel function

Figure A.23: Shubert function
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Figure A.24: Sphere function

Figure A.25: Sum Squares function
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Figure A.26: Trid function

Figure A.27: Zakharov function
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