
UNIVERSIDAD CARLOS III DE MADRID

TESIS DOCTORAL

STRUCTURAL ISSUES AND ENERGY EFFICIENCY IN DATA CENTERS

Autor: Jordi Arjona Aroca
Director: Antonio Fernández Anta, IMDEA Networks Institute

DEPARTAMENTO DE INGENIERÍA TELEMÁTICA

Leganés (Madrid), 13 de Febrero de 2015

UNIVERSIDAD CARLOS III DE MADRID

PH.D THESIS

STRUCTURAL ISSUES AND ENERGY EFFICIENCY IN DATA CENTERS

Author: Jordi Arjona Aroca
Director: Antonio Fernández Anta, IMDEA Networks Institute

DEPARTMENT OF TELEMATIC ENGINEERING

Leganés (Madrid), February 13th, 2015

Structural issues and energy efficiency in data centers

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of

Philosophy

Prepared by

Jordi Arjona Aroca, Universidad Carlos III de Madrid

Under the advice of

Antonio Fernández Anta, IMDEA Networks Institute

Departamento de Ingenierı́a Telemática, Universidad Carlos III de Madrid

Date: February 13th, 2015

Contact: jorge.arjona@imdea.org

This work has been supported by IMDEA Networks Institute.

vi

TESIS DOCTORAL

STRUCTURAL ISSUES AND ENERGY EFFICIENCY IN DATA CENTERS

Autor: Jordi Arjona Aroca
Director: Antonio Fernández Anta, IMDEA Networks Institute

Firma del tribunal calificador:

Presidente:

Vocal:

Secretario:

Calificación:

Leganés, de de

Alea iacta est

JULIUS CAESAR,

before crossing the Rubicon

Acknowledgements

I had always thought that pursuing a Ph.D. was a matter of faith. Faith in yourself, in your

work and faith in your capabilities. Nothing further from reality. Pursuing a Ph.D. has a lot of

those things, but the most important thing is to have people behind you, people who support you

and who help you to keep pushing.

There is a lot of people without whom this thesis would have been simply impossible. I want

to start by thanking the IMDEA Networks Institute. To me it has been like an oasis in the desert,

the way of doing a Ph.D. in the way a Ph.D. is done abroad without leaving Spain. It seems to

me that doing it in any other place would have been definitely worse and much more difficult.

Of course, IMDEA Networks is not just an institution, it is also people, and not just workmates

but friends. These years would have not been the same without those soccer games, the spam,

the cakes in the kitchen or the multilingual happy birthdays. Thanks Juan Camilo (I know you

prefer just Camilo, but guess who is writing :)), great flatmate and better person; Ignacio and all

his loud voice cursing, Héctor feeding us with nuts; Elli and Evgenia (we love you a bit, only a

bit) and our fights for Antonio’s time; Christian, Angelos, Vincenzo, Arash and Allyson, Thomas,

Agustı́n, Luisfo, Philippe, Roderick, . . . I am sure I am forgetting someone, but you know you are

important to me. Regarding supervisors and other members of IMDEA, I cannot forget Vincenzo

Mancuso and all the times I have knocked on his door “d’ya have a sec??” even when he knew

it was not going to be a sec. Thanks also to Joel and José Félix for your patience when we were

just inventing how to do things. Thanks also to Joerg, Rade, Pierre, Brian, Flora. . . everyone.

I want to specially thank Lin Wang for being my bodyguard during my six months in Beijing,

he did not have to fight for me but he was always there. Moreover, he proved himself as a great

companion both at work and at leisure. Thanks Lin, you have a big share of merit in this thesis.

Although they will say they have not done anything I want to say in loud voice how proud

I am of my parents, Antonio and Mari Rosa, who always supported me and my sister, gave us

education, thanks to which I am writing these lines today, and backed and encourage us when we

had to go far from them or abroad, because they knew it was the best for us. Thanks Dad and

Mum. And also thanks to Silvia, my sister, because she has always been there, although I did not

visit her in Germany and she came to China and India.

Talking about faith again, I have to talk about my supervisor, auxiliar father, friend, . . . He

always had faith in me (or so he said :)). Thanks for pushing, for being a lighthouse in the dark.

xi

xii

I have already told you but I probably would have never chosen you if it had been my call when

I joined IMDEA. It proves how stupid I was and shows that I have learnt something, if I were to

choose now I would have absolutely no doubt. Thanks Antonio, for everything and for what it is

to come.

Finally, I want to say thanks to my best friend, my greatest support, my everything, my wife.

Thanks for your love and patience. For listening to me when talking about weird stuff. Thanks

for being brave and encourage me to do what was best for me independently on how hard it was

for you: going to Madrid to pursue my Ph.D., 9 months to the U.S., 6 months to China, 3 months

to India, Ireland now and who knows what else. It would not have been possible without you

supporting me. Thanks for completing me.

Abstract

With the rise of cloud computing, data centers have been called to play a main role in the

Internet scenario nowadays. Despite this relevance, they are probably far from their zenith yet due

to the ever increasing demand of contents to be stored in and distributed by the cloud, the need of

computing power or the larger and larger amounts of data being analyzed by top companies such

as Google, Microsoft or Amazon.

However, everything is not always a bed of roses. Having a data center entails two major

issues: they are terribly expensive to build, and they consume huge amounts of power being,

therefore, terribly expensive to maintain. For this reason, cutting down the cost of building and

increasing the energy efficiency (and hence reducing the carbon footprint) of data centers has

been one of the hottest research topics during the last years. In this thesis we propose different

techniques that can have an impact in both the building and the maintenance costs of data centers

of any size, from small scale to large flagship data centers.

The first part of the thesis is devoted to structural issues. We start by analyzing the bisection

(band)width of a topology, of product graphs in particular, a useful parameter to compare and

choose among different data center topologies. In that same part we describe the problem of

deploying the servers in a data center as a Multidimensional Arrangement Problem (MAP) and

propose a heuristic to reduce the deployment and wiring costs.

We target energy efficiency in data centers in the second part of the thesis. We first propose

a method to reduce the energy consumption in the data center network: rate adaptation. Rate

adaptation is based on the idea of energy proportionality and aims to consume power on network

devices proportionally to the load on their links. Our analysis proves that just using rate adaptation

we may achieve average energy savings in the order of a 30-40% and up to a 60% depending on

the network topology.

We continue by characterizing the power requirements of a data center server given that, in

order to properly increase the energy efficiency of a data center, we first need to understand how

energy is being consumed. We present an exhaustive empirical characterization of the power

requirements of multiple components of data center servers, namely, the CPU, the disks, and the

network card. To do so, we devise different experiments to stress these components, taking into

account the multiple available frequencies as well as the fact that we are working with multicore

servers. In these experiments, we measure their energy consumption and identify their optimal

xiii

xiv

operational points. Our study proves that the curve that defines the minimal power consumption

of the CPU, as a function of the load in Active Cycles Per Second (ACPS), is neither concave

nor purely convex. Moreover, it definitively has a superlinear dependence on the load. We also

validate the accuracy of the model derived from our characterization by running different Hadoop

applications in diverse scenarios obtaining an error below 4.1% on average.

The last topic we study is the Virtual Machine Assignment problem (VMA), i.e., optimiz-

ing how virtual machines (VMs) are assigned to physical machines (PMs) in data centers. Our

optimization target is to minimize the power consumed by all the PMs when considering that

power consumption depends superlinearly on the load. We study four different VMA problems,

depending on whether the number of PMs and their capacity are bounded or not. We study their

complexity and perform an offline and online analysis of these problems. The online analysis is

complemented with simulations that show that the online algorithms we propose consume sub-

stantially less power than other state of the art assignment algorithms.

Table of Contents

Acknowledgements xi

Abstract xiii

Table of Contents xv

List of Tables xvii

List of Figures xix

I Background 1

1 Introduction 3
1.1 Structural Issues . 6

1.2 Understanding and Reducing Energy Consumption in Data Centers 7

1.2.1 Rate Adaptation for Future Data Centers 7

1.2.2 How Servers Use Power . 8

1.2.3 Speed Scaling Based Techniques . 9

1.2.4 Virtualization Based Techniques . 10

1.3 Overview and Summary of Contributions . 11

1.4 Roadmap . 14

2 Related Work 17
2.1 Bisection Width and Bisection Bandwidth of Product Networks 17

2.1.1 Background . 17

2.1.2 Related Work . 18

2.2 A Simulated Annealing Approach to the Multidimensional Arrangement Problem 19

2.2.1 Background . 19

2.2.2 Related Work . 20

2.3 Rate Adaptation and Green Data Center Networking 21

2.3.1 Background . 21

xv

xvi TABLE OF CONTENTS

2.3.2 Related Work . 23

2.4 Characterizing the Energy Consumption of Data Center Servers 24

2.4.1 Background . 24

2.4.2 Related Work . 25

2.5 Power Aware Assignment of Virtual Machines to Physical Machines 27

2.5.1 Background . 27

2.5.2 Related Work . 29

II Structural Issues 33

3 Bisection Width and Bisection Bandwidth of Product Networks 35
3.1 Overview . 35

3.2 Definitions . 36

3.2.1 Graphs and Bisections . 36

3.2.2 Factor and Product Graphs . 37

3.2.3 Boundaries and Partitions . 38

3.3 Bounds on the BW of Product Graphs . 39

3.3.1 Lower Bound . 39

3.3.2 Upper Bound . 41

3.4 BW of Products of CBTs and Paths . 42

3.4.1 Factor and Product Graphs . 42

3.4.2 Congestion and Central Cut of Paths and CBTs 43

3.4.3 Bounds on the BW of Products of CBTs and Paths 44

3.5 Products of Rings and Extended Trees . 45

3.5.1 Factor and Product Graphs . 45

3.5.2 Congestion and Central Cut of Rings and XTs 46

3.5.3 Bounds on the BW of Products of XTs and Rings 48

3.6 BCube . 48

3.6.1 Factor and Product Graphs . 49

3.6.2 Congestion and Central Cut of BCube 50

3.6.3 Bounds on the BBW of BCube . 51

3.7 Conclusions . 53

4 Reducing Wiring in Data Centers. A Simulated Annealing Approach 55
4.1 Overview . 55

4.2 The Algorithm JAM . 56

4.2.1 Notation . 56

4.2.2 Overview of JAM . 57

4.2.3 Elements of JAM . 58

TABLE OF CONTENTS xvii

4.3 Evaluation of JAM . 62

4.3.1 Numerical Results . 67

4.4 Conclusions . 67

III Understanding and Reducing Energy Consumption in Data Centers 69

5 Incorporating Rate Adaptation to Green Networking 71
5.1 Overview . 71

5.2 Problem Description . 72

5.2.1 Basic Assumptions . 72

5.2.2 Modeling . 72

5.3 Approximation . 74

5.3.1 Relaxations . 74

5.3.2 Roundings . 76

5.4 Evaluation . 77

5.4.1 Experimental Settings . 77

5.4.2 Interpolation Error . 79

5.4.3 Approximation Ratio . 80

5.4.4 Potential Energy Savings . 80

5.4.5 Delay Stretch . 81

5.5 Conclusions . 83

6 Analysis of the Energy Consumption of Data Center Servers 85
6.1 Overview . 85

6.2 Methodology . 87

6.2.1 Collecting System Data and Fixing Frequency Parameters 87

6.2.2 CPU . 88

6.2.3 Disks . 89

6.2.4 Network . 89

6.3 Measurements . 90

6.3.1 Devices and Setup . 90

6.3.2 Baseline and CPU . 91

6.3.3 Disks . 97

6.3.4 Network . 98

6.4 Estimating Energy Consumption . 100

6.4.1 Energy Estimation Hypothesis . 103

6.4.2 Applications and Scenarios for Validation 105

6.4.3 Experiments and Observed Results . 106

6.5 Discussion . 113

xviii TABLE OF CONTENTS

6.6 Conclusions . 114

7 Efficient Assignment of Virtual Machines to Physical Machines 115
7.1 Overview . 115

7.2 Preliminaries . 116

7.3 Offline Analysis . 119

7.3.1 NP-hardness . 119

7.3.2 The (·,m)-VMA and (·, ·)-VMA Problems Have PTAS 120

7.3.3 Bounds on the Approximability of the (C, ·)-VMA Problem 121

7.4 Online Analysis . 125

7.4.1 Lower Bounds . 125

7.4.2 Upper Bounds . 130

7.5 Experimental Evaluation . 139

7.5.1 Experimental Setup . 139

7.5.2 Experimental Results for (·,m)-VMA 141

7.5.3 Experimental Results for (C,m)-VMA 147

7.6 Discussion . 157

7.7 Conclusions . 158

8 Conclusions 159
8.1 Future Work and Open Problems . 161

References 176

List of Tables

1.1 Classification of Data Center types according to their size. 6

1.2 Relation between frequency and voltage for different processors 10

2.1 Effective theoretical data rate of InfiniBand . 23

3.1 Bisection bandwidth of different product networks 36

3.2 Basic notation in Chapter 3. 39

3.3 Gap between bounds (results in Gbps) . 53

4.1 Results for the minLA benchmark instances with 1 & 3 dimensions 63

4.2 Results for the minLA benchmark instances with 2 dimensions 64

4.3 Results for the QAPlib benchmark instances with 1 & 3 dimensions 65

4.4 Results for the QAPlib benchmark instances with 2 dimensions 66

4.5 Parameters used depending on the number of edges of the graph 67

5.1 Main parameters for the three topologies . 78

6.1 Characteristics of the servers under study . 90

6.2 Error measured in the different cases of the Connected Server scenario. 108

7.1 Summary of bounds on the approximation/competitive ratio ρ. All lower bounds

are existential. The number of PMs in an optimal (C, ·)-VMA solution is denoted

as m∗. The number of PMs in an optimal Bin Packing solution is denoted as m.

The load that minimizes the ratio power consumption against load is denoted as

x∗. The subset of VMs with load smaller than x∗ is denoted as Ds. 117

7.2 Summary of bounds on the approximation/competitive ratio ρ for α = 3, b = 2,

and C = 2 on the left and C = 1 on the right.. All lower bounds are existential.

The number of PMs in an optimal (C, ·)-VMA solution is denoted as m∗. The

number of PMs in an optimal Bin Packing solution is denoted asm. The load that

minimizes the ratio power consumption against load is denoted as x∗. The subset

of VMs with load smaller than x∗ is denoted as Ds. 118

7.3 Simulation parameters for a set of machines for the (·,m)-VMA case. 142

xix

xx LIST OF TABLES

7.4 Simulation parameters for a set of machines with b and C similar to Erdos. . . . 150

7.5 Simulation parameters for a set of machines with b and C similar to Nemesis. . 150

7.6 Simulation parameters for a set of machines with b and C similar to Euler. . . . 150

List of Figures

1.1 Worldwide use phase electricity consumption of data centers from 2005 to 2012

and the total worldwide electricity use from 2008 to 2012. Data center consum-

ption is shown as the aggregation of its main consumers, servers, storage, com-

munication and infrastructure. 4

1.2 Evolution of the breakdown of a data center energy consumption and a hardware

system between 2007-2013. 5

3.1 Paths and possible cuts. 44

3.2 The 7-vertex complete binary tree and the 7-vertex clique, with their possible cuts. 44

3.3 Rings and possible cuts. 47

3.4 Central cut on a extended complete binary tree. 47

3.5 Proposed models for a 5-node switched star, SS 5, their congestion and central cut. 50

3.6 Cartesian product of two SSA5 networks. 51

4.1 Flow diagram of JAM. 57

4.2 Example of a possible evolution for the multidimensional McAllister allocation

heuristic in 2 dimensions. The allocated nodes are represented in blue, the nodes

belonging to the front in yellow. 59

4.3 Example of JAM neighboring function in 2 dimensions. 61

5.1 The synthetic power function f(·) and the convex alternative g(·) obtained by the

proposed interpolation. 78

5.2 Simulation results for testing (a) the interpolation error and (b) the approximation

ratio of the proposed algorithm based on two topologies: 4-ary and 20-ary FatTree. 79

5.3 Simulation results for testing the energy saving efficiency using synthetic network

conditions based on three different topologies: FatTree, BCube and DCell. 81

5.4 Simulation results for testing the energy saving efficiency using real network

traces based on three different topologies: FatTree, BCube and DCell. 82

5.5 The average number of hops for routing each demand under (a) the synthetic

traffic, (b) the real network traces. 82

xxi

xxii LIST OF FIGURES

6.1 Power consumption of 3 servers (Survivor, Nemesis, and Erdos) for base-

line and CPU characterization experiments. 93

6.2 CPU performance bounds of Nemesis. 94

6.3 CPU performance bounds of Survivor. 95

6.4 CPU performance bounds of Erdos. 96

6.5 Instantaneous power consumption for reading/writing operations. Results are pre-

sented for every frequency and for 4 different block sizes for each one of our servers. 99

6.6 Disk reading and writing efficiencies for Erdos (red dotted lines) and Nemesis

(blue solid lines). 100

6.7 Network efficiencies for Survivor under different frequencies and 64-B and

1470-B packets. 101

6.8 Network efficiencies for Nemesis under different frequencies and 64-B and

1470-B packets. 102

6.9 Network efficiencies for Erdos under different frequencies and 64-B and 1470-B

packets. 103

6.10 Power utilization with network activity for Erdos, Nemesis and Survivor

(64-B experiments were run with a transmission rate R = 150 Mbps, while R =

400 Mbps for the experiments with 1470-B packets). 104

6.11 Energy consumption of Nemesis in the Isolated Server scenario. 108

6.12 Energy consumption of Nemesis running PageRank in the Connected Server

scenario, with either small or big packets. 109

6.13 Energy consumption of Nemesis running WordCount in the Connected Server

scenario, with either small or big packets. 110

6.14 Distribution of the sizes of the packets exchanged between Nemesis and

Survivor for both PageRank and WordCount in the Cloud scenario. 111

6.15 Energy consumption of Nemesis and Survivor in the Cloud scenario. 112

7.1 VM load distributions used in the evaluations. 141

7.2 (·,m)-VMA: Comparing the power consumed by VMA1 and VMA2 with the

lower bound LBVMA for x∗ = {30, 300} GCPS, α = {1.5, 2.5} and λ =

{10, 100} GCPS for Trace A (Synthetic traces). 143

7.3 (·,m)-VMA: Comparing the power consumed by VMA1 and VMA2 with the

lower bound LBVMA for x∗ = {30, 300} GCPS, α = {1.5, 2.5} and λ =

{10, 100} GCPS for Trace B (Google traces). 144

7.4 (·,m)-VMA: Comparing the power consumed by the different assignment algo-

rithms for x∗ = 30 GCPS, α = 2 and λ = {10, 30, 100} GCPS for Trace A

(Synthetic traces). 145

LIST OF FIGURES xxiii

7.5 (·,m)-VMA: Comparing the power consumed by the different assignment algo-

rithms for x∗ = 30 GCPS, α = 2 and λ = {10, 30, 100} GCPS for Trace B

(Google traces). 146

7.6 (·,m)-VMA: Comparing the power consumed by the different assignment al-

gorithms for λ = 30 GCPS, α = 2 and increasing values of x∗ for Trace A

(Synthetic traces). 148

7.7 (·,m)-VMA: Comparing the power consumed by the different assignment algo-

rithms for λ = 30 GCPS, α = 2 and increasing values of x∗ for Trace B (Google

traces). 149

7.8 (C,m)-VMA: Comparing the power consumed by VMA1 and VMA2 with the

lower bound LBVMA for x∗ = {0.65, 0.9} ·C, C = 153.6 GCPS, α = {1.5, 2.5}
for Trace A (synthetic traces). 151

7.9 (C,m)-VMA: Comparing the power consumed by VMA1 and VMA2 with the

lower bound LBVMA for x∗ = {0.65, 0.9} ·C, C = 153.6 GCPS, α = {1.5, 2.5}
for Trace B (Google traces). 152

7.10 (C,m)-VMA: Comparing the power consumed by the different assignment al-

gorithms for C = 11.2 GCPS, α = 2 and different values of x∗ for Trace A

(Synthetic traces). 153

7.11 (C,m)-VMA: Comparing the power consumed by the different assignment algo-

rithms for C = 11.2 GCPS, α = 2 and different values of x∗ for Trace B (Google

traces). 154

7.12 (C,m)-VMA: Comparing the power consumed by the different assignment al-

gorithms fixing for C = 41.6 GCPS, α = 2 and 2 different values of x∗ while

varying b for Trace A (Synthetic traces). 155

7.13 (C,m)-VMA: Comparing the power consumed by the different assignment al-

gorithms for C = 41.6 GCPS, α = 2 and 2 different values of x∗ for Trace B

(Google traces). 156

Part I

Background

1

Chapter 1

Introduction

Internet has revolutionized our world. In 15 years it has passed from being hardly found in

any home to be hardly not found in any pocket. We have become Internet-addicts and got used to

continuously check our emails, videos, photos,. . . Through Google, Facebook, Twitter, we learn

about what is happening with our friends or in any remote corner of the world, we are able to

contrast news, we have access to any kind of information we are curious about. At the same time,

Internet has also overturned the business world, simplifying and reducing the costs of sharing

information in and between companies, and allowing any company, no matter how small it is, to

have customers all over the world.

This has become real thanks to new concepts like the Internet of things, social networks,

or cloud computing. However, at the end of the day, what Internet has done is putting huge

amounts of data available to everyone. One of the keys of this availability of data has been the

proliferation of data centers. Although some data centers are not necessarily large, like the ones

usually deployed at many universities, companies or government institutions, large companies

such as Google, Facebook, Amazon or Microsoft, among others, are building large scale data

centers all over the world.

A large scale data center can be defined, in a nutshell, as an integrated facility housing a

large amount of high end servers, up to the order of tens of thousands, interconnected by a dense

network, hosting petabytes of data and consuming up to various tens of mega Watts. According

to Belady [31], the building costs of a data center is between $8M-$30M/MW, being the average

around $20M/MW, depending on the kind of facility. These numbers lead to costs of $100−150M

for small/mid size facilities, while huge data centers, like Facebook’s or Google’s, can be in the

order of $600M.

However, although building a data center is expensive, they can be even more expensive to

maintain. As we noted above, their average power consumption can be around 20MW per year,

which unveils a second problem, their energy consumption. In a recent study, Van Heddeghem et

al. [86] estimate that, between 2005 and 2012, worldwide aggregated data center energy consum-

ption increased almost a 50%, reaching 270TWh from the previous 200TWh. This is roughly a

3

4 Introduction

Figure 1.1: Worldwide use phase electricity consumption of data centers from 2005 to 2012 and
the total worldwide electricity use from 2008 to 2012. Data center consumption is shown as the
aggregation of its main consumers, servers, storage, communication and infrastructure.

1.5% of the total worldwide electricity consumption, and with a compound annual growth rate of

a 4.4%.

Therefore, it is easy to see why greening data centers has emerged as one of the main targets

of the research community during the last years. Greening data centers has, in fact, a two-fold

objective, reducing operation costs, i.e., saving money; and improving data center sustainability,

i.e., reducing the amount of energy consumption attributed to data centers. In the same way,

efficiency of several data center components, for instance cooling systems, may lead to a reduction

on the building costs.

Data center research has become a broad field of research. Even when we restrain ourselves to

reducing building cost or increasing energy efficiency, the complexity and variety of subsystems

that can be found in a data center result in a huge amount of particular problems. Even if we

restrain ourselves to two topics like optimizing the structural costs and increasing the energy

efficiency of the different data center subsystems, the body of related work is overwhelming. In

fact, if we look at some data provided by Barroso et al. [27, 28] we can see how the research

in the field has contributed to change the energy consumption breakdown of data centers. In

Figure 1.2 we can find the energy consumption breakdowns of a legacy data center with a PUE1

value of around 2.0 in 2009 and 2013, in subfigures 1.2(a) and 1.2(b) respectively. Similarly, in

subfigures 1.2(c) and 1.2(d), we can also see the evolution on the distribution of peak power usage

1PUE responds to Power Usage Efficiency and it is one of the most commons and broadly accepted efficiency
metrics. It measures the amount of cooling power needed versus the amount of electricity to run the IT infrastructure.
An ideal ratio is 1.0.

5

23%

30%
12%

33%

2%
UPS/PDU

IT Equipment

CRAC

Chiller

Ancillary

(a) Typical distribution of energy usage in a conventional

datacenter with a PUE of 2.0 - 2009

10%

50%12%

25%

3%
UPS/PDU

IT Equipment

CRAC

Chiller

Ancillary

(b) Typical distribution of energy usage in a conventional

datacenter with a PUE of 2.0 - 2013

33%

30%

10%

5%

22%
CPUs

DRAM

HDD

Networking

Other

(c) Approximate distribution of peak power usage in a

hardware subsystem in a Google’s data center in 2007.

42%

12%

14%

5%

4%

8%

15%

CPUs

DRAM

HDD

Networking

Misc.

Power Overhead

Cooling Overhead

(d) Approximate distribution of peak power usage in a

hardware subsystem in a Google’s data center in 2012.

Figure 1.2: Evolution of the breakdown of a data center energy consumption and a hardware

system between 2007-2013.

in a hardware subsystem in a Google’s data center between 2007 and 2012. This evolution is the

result of intense research in multiple fields concerning each one of the pieces of hardware, usage

policies or interaction between them.

However, although this evolution on the power requirements can be extended to many data

centers, as for instance the (each time more) energy proportional servers, they can not be applied

to all of them. One of the variables that conditions the application of these latest techniques is,

for instance, the size of the data center. Big companies proudly exhibit the very low PUEs of

their flagship data centers, like Facebook’s PrineVille and Luleå, with 1.06− 1.08 and 1.07 PUE,

or Google’s Hamina, with 1.14 PUE. However, the resources which can be devoted to the design

and construction of these data centers are not the same devoted to smaller ones or by smaller

companies. Similarly, these low PUEs are usually achieved because of some particular aspects of

the location of the data center, like the use of Finland’s gulf water in Hamina. According to the

Uptime Institute [148], the average PUE is around 1.8 − 1.89, which gives a better idea of how

much energy efficiency can still be improved.

6 Introduction

Table 1.1: Classification of Data Center types according to their size.

Server
Closet

Server Room Localized
Data Center

Mid-Tier
Data Center

Enterprise Class
Data Center

Size [sq ft] < 200 < 500 < 1.000 < 5.000 > 5.000
Servers (2005) 1.657.947 1.942.214 1.674.648 1.511.999 3.074.424
Estimated Energy consumption 11% 24% 21% 19% 24%
Servers (est. 2009) 2.135.538 3.057.834 2.107.592 1.869.595 3.604.678

Moreover, although a bit outdated, Bayley et al. [22], in 2007, presented a study quantify-

ing the amount of servers in different facilities according to their size. Some of the results of

that study are presented in Table 1.1, showing the different categories, the estimated number of

servers per category in 2005 as well as the distribution of energy consumption among them, and

a prediction of the evolution of these numbers for 2009. These numbers show how most of the

energy consumed is not necessarily in large enterprise data centers, but in smaller environments in

which, in most cases, the PUE does not match the ones achieved by Facebook’s or Google’s flag-

ship data centers. Nevertheless, it is important to remark that industry has become aware of this

problem and more and more solutions are being provided each day to companies that only need

small sized data centers, like Modular or Containerized Data Centers [9, 160] or integrated box

solutions like IBM’s Integrated Server Room [91]. In addition to this, Containerized Data Centers

could even help to reduce the building costs of large data centers avoiding over built capacity and

helping with over time scalability [152].

This thesis is divided in two parts, apart from the Background itself, one for each of the main

topics that comprehend the different problems we addressed, these parts are Structural Issues and

Understanding and Reducing Energy Consumption in Data Centers. This study intends to help to

a better understanding of how energy is consumed in data centers as well as providing solutions

which can be applied to data centers in any size range, from server closets to large enterprise data

centers. We know provide some insights about what will be covered in these parts.

1.1 Structural Issues

One structural problem of data centers is the need of hosting more and more servers. Some

traditional interconnection networks, such as meshes, toruses or grids were not an option given

their poor scalability. More structured topologies, like trees or tree-like topologies also showed

drawbacks that made difficult to scale them up. For instance, the number of ports per switch

required by tree topologies was continuously increasing and so their price. At the same time,

given its low bisection bandwidth, the upper tiers were easily congested even when the traffic at

lower layers was rather low. Proposing new and better topologies capable to solve these problems

became necessary.

One solution was building new topologies with smaller and cheaper switches in a larger quan-

tity [10]. Fat-tree and fat-tree-based topologies were a step forward as they allow the use of these

switches, reducing substantially the deployment costs of the network, as well as having larger bi-

1.2 Understanding and Reducing Energy Consumption in Data Centers 7

section bandwidth. The benefits of using fat-trees led to multiple proposals like VL2 [78] or [131].

However, fat-trees also have some limitations when scaling up, and might end up depending

also on large switches. For these reasons, new topology proposals tried to overcome fat-tree

by presenting several improvements over it. Two of the most sound proposals were Dcell [80]

and BCube [79]. These topologies were able to provide a larger number of redundant paths,

reducing the congestion in the network, and better fault tolerance with similar price and energy

consumption.

This first stage of studies about data center topologies had several benefits. First, and most

obvious, meant an improvement over the existing topologies, allowing better scalability at sim-

ilar or lower price, more resilient and less congested networks, helping to gather a broad set of

parameters and metrics to compare the goodness of the different topologies. . . Also, it indirectly

paved the way for a second wave of works which tackled the problem of energy consumption in

data centers, taking advantage of the flexibility and goodnesses of these works.

We will deal with two problems in the context of structural issues. The first one is related

to the set of parameters used to compare different network topologies. Two of these parameters,

bisection width and bisection bandwidth, are broadly used to measure reliability and bandwidth

of networks. We study these parameters for topologies which are, or can be, obtained from as

product networks from smaller factor graphs. The second one is related to how the topologies

are to be deployed in data centers. All the topologies that we have mentioned in this section

share being more complex than most of traditional topologies. With our work we intend reducing

the total wiring to be deployed to interconnect the different devices in a data center as well as

reducing the average lengths of wires, what leads to less power leakages due to the inherent wire

resistance as well as reducing latency.

1.2 Understanding and Reducing Energy Consumption in Data
Centers

As we have already mentioned, improving the energy efficiency of data centers has become

an issue of capital importance both for economic and of environmental reasons. Due to this

importance, the amount of techniques that have been proposed to help in this area is so huge that

it is impossible to present them in just one document. Hence, we now only introduce some of the

techniques which are relevant for this thesis.

1.2.1 Rate Adaptation for Future Data Centers

We have talked about a first stage of studies about data center topologies in Section 1.1 and

how they paved the way for a second wave of topological studies. Elastic tree [87] and PCube [89]

are two examples of works which, based on some of the aforementioned topologies, namely fat-

tree and BCube, present solutions to reduce the energy consumption of data centers networks. In

8 Introduction

particular, they propose controllers that can dynamically adjust the network structure depending

on the amount of traffic. The result is a network were the number of available paths and active

links and switches depends directly on the present load. These network controllers claim to be

capable to save up to a 50% of the network energy costs of the networks they are based in.

Approaches like Elastic Tree and PCube rely in power-down strategies, i.e., switching off

routing (switching) devices that are not needed if the traffic routing is optimized and the number

of active paths in the network is adapted to the current load. One different and alternative approach

is based on rate adaptation.

Rate adaptation was proposed by Nordman and Christensen [133] in 2005. Rate adaptation

aims to achieve energy proportionality in the network by adapting the transmission rate of the

network devices to the load present in their links. By doing this, the power consumption in the

devices should be proportionally reduced and, hence, large energy savings could be achieved

when the load in the links is low. Data center networks are known to have a very low average

load, being quite low at least 60% of the time and experiencing traffic bursts during less that a

5%. Therefore, the savings in data center networks could be considerable.

However, although this technique has been widely studied, only in the very last years we have

started to see devices that provide these capacities, such as InfiniBand [4] or the Cray Yarc [145]

switch, which were some of the first switches to allow multiple speeds on their links and hence to

start adapting their consumption to the associated link load. Nevertheless, there are still several

limitations and problems that are expected to be solved by future devices.

One of the problems that we will discuss in this thesis is how, with the right network devices,

rate adaption could be introduced in networking and in data centers, reducing the energy costs of

data center networks.

1.2.2 How Servers Use Power

Servers are like puzzles where each one of its pieces has its own share of power consumption.

At the same time, the global power consumption of a each one of these pieces is not constant, it

depends on the stress we introduce in each one of them. Depending on the amount of accesses we

do to disk, to memory, on the amount of data we send to or receive from the network and on the

amount of processing we do or the heat we generate, the power required by Hard Drives, Memory,

Network, CPU or cooling units will vary. There are also more components, as we saw in Figure

1.2, but those are usually assumed to be the major contributors to the power consumption of data

center servers.

However, servers are not power proportional [26], i.e., the total power consumed is not pro-

portional to the amount of load being processed, and usually, the main contributor to power con-

sumption is the fact of having the machine switched on. In the recent past, the amount of power

consumed by an idle machine compared to the power consumed when it worked at full speed

could easily add up to a 70% of its total power consumption. If we focus in the last 7 years, we

can consult the available public data from the SPEC power benchmark web [56]. Comparing re-

1.2 Understanding and Reducing Energy Consumption in Data Centers 9

sults from the last quarter of 2007 against the last available ones (second quarter of 2014), we can

see a reduction on the power consumption of servers when idle compared to its peak consumption

from barely a 60% in most servers to roughly a 20− 25% of power consumption.

If we consider only the active range, i.e., the power variation between the idle state and the

peak consumption, it has been traditionally assumed that most of the power is consumed by

the CPU. Similarly to what happens with servers, processors do not consume power linearly,

in proportion to the load. Although processor power consumption has usually been modeled

in a linear fashion, everything changed with the arrival of multicore processors able to work at

multiple frequencies. Multicore processors introduced multiple changes. First, cpus in the same

processor are able to share on-chip and on-die resources, increasing,hence, the synergies and

reducing power requirements [30]. Also, there are new parameters to be considered as variable

voltages and frequencies that determine CPU speed and, therefore, power requirements. Due to

this new complexity, being able to understand how servers consume power has become a must if

we want to devise any technique or strategy that intends to reduce power or energy consumption.

In this thesis, we will present an empirical study were some of these aspects were analyzed

and we were able to shed some light about the behavior of multicore and multifrequency machines

based on real data. This knowledge can be applied in multiple techniques devoted to reduce the

aggregated power and energy consumption of data centers. Not understanding the effect that

placing a task in a server is going to have on its power consumption will result in non-optimal,

in the best case, or in completely non-efficient, in the worst case, implementations of techniques

such as speed scaling policies or virtualization strategies. We will now discuss about the latter two

practices, speed scaling and virtualization, which are well known examples of techniques used to

reduce the aggregated power and energy consumption in data centers.

1.2.3 Speed Scaling Based Techniques

Speed scaling is based on the ability of a processor to change its operating voltage and speed

(frequency), and hence the speed and power consumption of the server. It is important to note that

the values of voltage and frequency are not independent from one another. There is an intimate

relation between them as, usually, the voltage conditions the range of available frequencies. In

Table 1.2 we can find the different combinations of frequencies and voltages available for different

processors.

One well known and extended implementation of speed scaling is Dynamic Voltage and Fre-

quency Scaling (DVFS) which can be usually be found in the ample majority of servers which can

be found nowadays in the market. DVFS can be configured with different governors or operating

policies which will condition the way frequency adapts to the load in the system.

However, it is important to note that we can not just reduce the frequency as much as we want

as it will affect the performance of the tasks being run in the machine. For this reason, usually,

commercial implementations of DVFS have conservative policies whose main target is reduce

operating frequency, and hence the consumption, of the machine when idle.

10 Introduction

Table 1.2: Relation between frequency and voltage for different processors

Processors
AMD Opteron 6276 Intel Xeon W3530 Intel Xeon E5606

Voltages Frequencies Voltages Frequencies Voltages Frequencies

0.9375V
to

1.3125V

1.4 GHz,
1.6 GHz,
1.8 GHz,
2.1 GHz,
2.3 GHz,
2.3 GHz

0.750V
to

1.350V

1.596 GHz,
1.729 GHz,
1.862 GHz,
1.995 GHz,
2.128 GHz,
2.261 GHz,
2.394 GHz,
2.527 GHz,
2.666 GHz,
2.793 GHz,
2.794 GHz

0.800V
to

1.375V

1.2 GHz,
1.333 GHz,
1.467 GHz,
1.6 GHz,
1.733 GHz,
1.867 GHz,
2 GHz,

2.133 GHz

Most of the research in this field is devoted to find efficient policies which allow to reduce

power consumption or energy consumption. It is important to remark the difference between both

targets, let us give an easy example. Assume that we have a task that needs a time T to complete.

If we reduce the operating frequency of the system, and hence the power consumption is reduced

from C to C ′, it might happen that the task being run in our machine now needs a time T ′ to be

run. If the total energy consumed T · C is larger than T ′ · C ′ we will have reduced the power

consumption during a period of time, but spent more energy. This is neither good nor bad, both

policies have their applications in different scenarios. However, we must remember that it is not

trivial to optimize the power required and it is needed to carefully design the policies to be used.

1.2.4 Virtualization Based Techniques

We have already mentioned two important aspects of modern servers: that, with almost no

exception, they are multicore and multifrequency servers, and that we pay a high cost in terms of

power, just for having them idle, (i.e., powered on but not doing any task). However, think now,

just for a second, that, years ago, running multiple tasks in a machine was through multithreading,

i.e., running them in parallel with no isolation. When a task required some isolation, for security

or other reasons, it had to be run alone in a server, what implies that the server resources not be-

ing used by that task were wasted. Keep in mind also that, in old servers the percentage of power

used just for having them powered on was larger than nowadays. Additionally, there were some

problematic situations with multithreading, as the existence of resource-greedy users or tasks. In

order to tackle this situation we use Virtualization. Although virtualization was originally de-

veloped in the 1960s by IBM, it was forgotten and then recovered again in the 1990s. We can

define virtualization as “a technology that combines or divides computing resources to present

one or many operating environments using methodologies like hardware and software partition-

1.3 Overview and Summary of Contributions 11

ing or aggregation, partial or complete machine simulation, emulation, time-sharing, and many

others” [51]. We call each one of these operating environments a Virtual Machine (VM). Hence,

instead of running tasks in a per server basis or use multithreading sharing the resources pool,

virtualization allows us to run tasks in a per VM basis, therefore running multiple tasks (with

limited resources) independently in the same server.

Nevertheless, virtualization only opened the door for future improvements in how to reduce

the power consumption of data centers from a server perspective. Two of these consequences

were consolidation and virtual machine allocation techniques.

Consolidation is probably the most straightforward consequence of virtualization. Since we

gained the ability of putting multiple virtual machines in one server it is logic trying to maximize

the efficiency of servers. Consolidation aims to either maximize the aggregated number of tasks

being run keeping a constant number of active servers, or minimize the number of servers needed

to run a set of tasks. In both cases, the contribution of virtualization to increase the productivity

and the energy efficiency of data centers is clear.

Similarly, and intimately related with consolidation, we have virtual machine allocation tech-

niques. Given that the assignment of virtual machines to servers is an NP-hard problem (it can

be easily reduced to problems such as bin packing or 3-partition for instance, as we will see in

Chapter 7), multiple heuristics and algorithms have been devised to tackle the online version of

the problem. Algorithms like First Fit, Packing, Most (Least) Loaded First . . . try to obtain the

best assignment of tasks to servers according to a certain magnitude, like cost, energy consum-

ption. . . although in general try to minimize the number of active servers.

However, most of these algorithms are based on linear models for the power consumption

of cores. Based on the insights we got with the characterization of a data center server we will

study the effect of assuming a non-linear power consumption model for data centers servers.

Based on this model, we will perform a competitive analysis of different VM to physical machine

power aware assignment strategies under different hypothesis, like the capacity or the number of

available physical machines. We will propose our own strategies and compare their power and

energy consumption with the ones of some of the aforementioned algorithms (first fit, packing. . .).

1.3 Overview and Summary of Contributions

In the previous section we have enumerated several problems and challenges related to data

centers. However, although each one of them are broad research topics, they are only a small

subset of the challenging problems that are to be solved in such an ecosystem. We know present

the problems in which we worked and the contributions we made for each one of them.

Starting with data center topologies, we found that one of the most important parameters

used to characterize and compare these newly proposed topologies was the bisection width and,

intimately related to it, the bisection bandwidth. This relevance comes from the fact that bisection

(band)width bounds the speed at which information can be moved from one side of a network to

12 Introduction

another. Similarly, we found that many topologies, old and new, could be seen as a product graph,

i.e., as the result of combining smaller graphs with the Cartesian product operation. Inspired by

the need of a solution for the bisection width of the multidimensional tori, which was posed by

Leighton [105, Problem 1.281] and had remained as an open problem for more than 20 years,

we devised a technique to lower and upper bound the bisection width of product graphs. This

technique can be successfully applied to many classical interconnection networks obtained by

the application of the Cartesian product of graphs to obtain an exact result for their bisection

width and bisection bandwidth. Using this technique we obtained an exact result for both the

bisection width and bandwidth of the multidimensional tori, products of extended complete binary

trees [65] and rings, and products of mesh connected trees (a.k.a. products of complete binary

trees), and paths. Moreover, we show that our technique can also be applied to newly devised and

more complex topologies, such as BCube, for which we obtain bounded results for its bisection

width and bisection bandwidth.

The second problem we tackled is related to the increasing complexity of most of the lately

proposed data center topologies. This is partially due to the need of placing more and more

nodes, partially because of the implementation of properties that improve different aspects of the

network. Obviously, these networks need to be deployed and this deployment is not trivial. A

suboptimal deployment leads to an excess in the associated costs and a worse performance. This

excess in the costs is represented, for instance, by deploying extra wiring. Having extra wiring

results in more costs in buying the wires, more consumption due to the losses associated to the

extra length of the wires, augmented latency (this aspect might seem irrelevant, but there are

environments where nanoseconds matter, like in high frequency trading [36, 52]), or simply by

having a more complex wiring scheme which is more costly to maintain. Given that a data center

network is basically a graph which consists of servers and interconnection devices, and that the set

of racks in a data center can be seen as a 3-dimensional array, the problem of allocating the servers

of a data center into its racks can be seen as an instance of the Multidimensional Arrangement

Problem (MAP) [85], which is NP-hard. To solve this problem, we have devised JAM, a Tabu-

based two-stage simulated annealing algorithm for the MAP. This algorithm is able to match or

approximate most of the best and optimal solutions from a set of 81 benchmark instances taken

from the minimum Linear Arrangement (minLA) and Quadratic Assignment Problem (QAP)

literature. Adapting these instances from their original configuration to 1, 2 or 3 dimensions,

we have also broadened the available instances for minLA and QAP, as well as created a set of

benchmark instances in multiple dimensions for MAP.

Switching to the field of energy consumption in data center networks, we also studied how

to reduce the energy consumed by interconnection devices. We present a solution based on rate

adaptation for data center networks (although nowadays hardware is still limiting the potential

gains that could be achieved by implementing rate adaptation). Assuming that the latter was

feasible and that we have switches that have a set of possible rates at which they can operate, we

show that savings of up to a 40% can be achieved by simply moderating the rates of switches.

1.3 Overview and Summary of Contributions 13

Moreover, these savings can be increased by combining our technique with power-down policies,

i.e, reducing the number of active network devices if possible.

Our next contribution is related to how energy is spent in physical machines. As we mentioned

in Subsection 1.2.3, in order to device wise consolidation algorithms or speed scaling policies for

our systems, the first step is to properly understand how power is consumed in our physical ma-

chines. With the irruption of multicore servers we find a certain inconsistency in the literature as

it is usual to find works that assume linear models of consumption for servers, while some others

assume models different from linear (such as superlinear models). To shed some light in this

problem, we performed an empirical study with 3 different servers of different architectures (Intel

Xeon and AMD Opteron). Our first contribution was showing that the metric used to express

load matters, and, hence, using relative magnitudes, like load percentage, might lead to deceiving

results. We introduced the Active Cycles Per Second (ACPS) metric, which is an absolute magni-

tude, related to the frequency of operation, and that denotes the amount of computer cycles used

to process load by a server per second. Our study analyzed the contribution to the total power con-

sumption of three different components of data center servers, namely, CPU, disks, and network,

and their dependencies in certain parameters, like the frequency. The most important contribution

of this work is showing that the curve that defines the minimal CPU power as a function of the

load is neither linear nor purely convex as has been previously assumed. Similarly, we also study

the effects of the operating frequency and other parameters in the power consumption of disks

and network. We validate our model by means of computing the PageRank metric of a graph and

a WordCount application in a Hadoop platform, first without network activity, next with bulky

network activity, and finally with a two-server cluster. We find that the energy can be estimated

with an error that is below 4.1% on average and never worse than a 10%.

One of the conclusions of the previous work is that there exists an optimal point of operation

distinct from the 100%. This means, in simple words, that running a server at full load and full

speed, is not always optimal. This also contradicts some statements that have been traditionally

assumed to be true regarding how much load has to be processed by a server.

Based on the latter study and the conclusions which can be extracted from it, a question that

immediately follows is how to assign virtual machines to physical machines in a power efficient

way. Our last contribution consists of an analytical study of what we call the Virtual Machine

Assignment (VMA) problem. We study this problem from different points of view, imposing, or

not, restrictions on the number of physical machines or on their CPU capacity. Namely, we study

4 models, (·, ·)-VMA (no restrictions in CPU capacity or number of servers), (C, ·)-VMA (CPU

capacity is finite, number of servers is infinite), (·,m)-VMA (CPU capacity is finite, number of

servers is bounded) , and (C,m)-VMA (both CPU capacity and number of servers are finite).

We show that the decision version of the (C,m)-VMA problem is strongly NP-complete. We

show as well that the (C, ·)-VMA, (·,m)-VMA and (·, ·)-VMA problems are strongly NP-hard.

Hence, there is no FPTAS for these optimization problems. We also show the existence of a

PTAS that solves the (·, ·)-VMA and (·,m)-VMA offline problems. On the other hand, we prove

14 Introduction

lower bounds on the approximation ratio of the (C, ·)-VMA and (C,m)-VMA problems. With

respect to the online version of these problems, we prove upper and lower bounds on the compet-

itive ratio of the (·, ·)-VMA, (C, ·)-VMA, (·,m)-VMA, and (C,m)-VMA problems. Finally, we

compare our algorithm to a modified version to other real approaches and show its advantages by

simulation.

1.4 Roadmap

The rest of the thesis is structured as follows. We start with a Background part, including

this Introduction Chapter and Chapter 2, which presents an overview of the state of the art for

each one of the problems we have mentioned. The rest of the document in divided into two parts,

Part II, Structural Issues, and Part III, Understanding and Reducing Energy Consumption in Data

Centers. Part II starts with Chapter 3, a study about how to compute the bisection (band)width

of different product networks. Also in this part, we find Chapter 4, which presents the design

and application of a simulated annealing heuristic to reduce costs in data centers. Already in Part

III, we will start, in Chapter 5, by studying how to reduce energy consumption in data center

networks by implementing rate adaptation. Afterwards, we will be presenting a characterization

of how energy is consumed in a physical machine by 3 of its main components, namely, CPU,

disk and network. We will conclude Part III with an analytic study about how virtual machines

should be assigned to physical machines in order to reduce the energy consumption in data centers

and propose different algorithms tackling this problem. Finally, Chapter 8 concludes this thesis

with a summary of our main results, a discussion on the implications of these results and future

research directions.

This thesis covers contributions from the following literature:

• Jordi Arjona Aroca and Antonio Fernández Anta. “Bisection (Band)Width of Prod-

uct Networks with Application to Data Centers”. IEEE Transactions on Parallel and Dis-

tributed Systems in vol. 25, issue 3, March 2014.

• Jordi Arjona Aroca, Antonio Fernández Anta. “JAM, A Tabu-based Two-Stage

Simulated Annealing for the Multidimensional Arrangement Problem”. Hybrid Meta-

heuristics 2014, 155-168.

• Lin Wang, Fa Zhang, Chenying Hou, Jordi Arjona Aroca, Zhiyong Liu. “Incorpo-

rating Rate Adaptation into Green Networking for Future Data Centers”. 2013 IEEE 12th

International Symposium on Network Computing and Applications, NCA’13, Cambridge,

MA, USA, August 22-24, 2013. IEEE 2013.

• Jordi Arjona Aroca, Angelos Chatzipapas, Antonio Fernández Anta and Vincenzo

Mancuso. “A Measurement-based Analysis of the Energy Consumption of Data Center

1.4 Roadmap 15

Servers”. International Conference on Future Energy Systems (ACM e-Energy) 2014, 63-

74. June 2014.

• Jordi Arjona Aroca, Antonio Fernández Anta, Miguel A. Mosteiro and Christopher

Thraves. “Power-efficient Assignment of Virtual Machines to Physical Machines”. Work-

shop on Adaptive Resource Management and Scheduling on Cloud Computing (ARMS-

CC).

Additionally to the above, the following papers with related content have been published

during the development of this thesis:

• Jordi Arjona Aroca, Antonio Fernández Anta, Miguel A. Mosteiro and Christopher

Thraves. “Power-efficient Assignment of Virtual Machines to Physical Machines”. Ac-

cepted for Publication in Future Generation Computer Systems Journal (FGCS), Special

issue on “Advanced Topics in Resource Management for Ubiquitous Cloud Computing: an

Adaptive Approach”.

• Lin Wang, Fa Zhang, Jordi Arjona Aroca, Athanasios V. Vasilakos, Kai Zheng,

Chenying Hou, Dan Li, Zhiyong Liu. “GreenDCN: a General Framework for Achieving

Network Energy Efficiency in Data Centers”. IEEE Journal on Selected Areas in Commu-

nications in vol. 32, no. 1, January 2014.

• Jordi Arjona Aroca, Antonio Fernández Anta, Miguel A. Mosteiro and Christopher

Thraves. “Power-efficient Assignment of Virtual Machines to Physical Machines”. XXI

Jornadas de Concurrencia y Sistemas Distribuidos (JCSD 2013), 19-21 June 2013, San

SebastiÃ¡n, Spain.

• Jordi Arjona Aroca and Antonio Fernández Anta. “Bisection (Band)Width of Prod-

uct Networks with Application to Data Centers”. 9th Annual Conference on Theory and

Applications of Models of Computation, TAMC 2012, May 16-21, 2012, Beijing, China.

• Jordi Arjona Aroca and Antonio Fernández Anta. “Bisection Width of Multidimen-

sional Product Graphs”. Young Researchers Forum (YRF 2011), in conjunction with the

36th International Symposium on Mathematical Foundations of Computer Science (MFCS

2011), 22 -26 August 2011, Warsaw, Poland.

Chapter 2

Related Work

2.1 Bisection Width and Bisection Bandwidth of Product Networks

2.1.1 Background

The bisection width and the bisection bandwidth of interconnection networks have always

been two important parameters of a network. The first one reflects the smallest number of links

which have to be removed to split the network into two equal parts, while the second one bounds

the amount of data that can be moved between these parts. In general, both values are derivable

one from the other, which is the reason why most previous work has been devoted to only one of

then (in particular, the bisection width).

The bisection width has been a typical goodness parameter to evaluate and compare inter-

connection networks for parallel architectures [57, 61, 105]. This interest has been transferred

to the Network-On-Chip topologies, as the natural successors of the parallel architectures of the

90’s [97, 118, 144, 172]. The bisection (band)width is also nowadays being used as a reference

parameter on the analysis of the topologies that are being deployed in data centers. The bisec-

tion bandwidth can be used to compare the potential throughput between any two halves of the

network in different topologies. Similarly, the bisection width also gives some insights on their

fault tolerance, showing the maximum number of critical link errors a network can suffer before

being split into two halves. This can be seen in recent papers which propose new topologies,

like BCube [79] or DCell [80]. The bisection (band)width is one of the parameters used to com-

pare these new topologies with classical topologies, like grids, tori, and hypercubes, or with other

datacenter topologies, like trees and fat trees.

Finding the exact value of the bisection width is hard in general. Computing it has proven to

be challenging even for very simple families of graphs. For instance, the problem of finding the

exact bisection width of the multidimensional torus was posed by Leighton [105, Problem 1.281]

and has remained open for 20 years. One general family of interconnection networks, of which

the torus is a subfamily, is the family of product networks. The topology of these networks is ob-

tained by combining factor graphs with the Cartesian product operator. This technique allows to

17

18 Related Work

build large networks from the smaller factor networks. Many popular interconnection networks

are instances of product networks, like the grid and the hypercube. This, however, is not only

a characteristic of classical interconnection networks. Some of the recently proposed data cen-

ter topologies also share the property of being constructed by combining basic instances, as the

already mentioned Bcube [79] and Dcell [80] or HCN and BCN [81].

Summarizing, in the context of data centers, studying the bisection width and bandwidth of

product networks will help us to compare some of the most relevant drawbacks and goodnesses

of newly proposed and old topologies, such as their reliability or bandwidth.

2.1.2 Related Work

To our knowledge, Youssef [169,170] was among the first to explore the properties of product

networks as a family. He presented the idea of working with product networks as a divide-and-

conquer problem, obtaining important properties of a product network in terms of the properties

of its factor graphs.

The bisection width of arrays and tori was explored by Dally [58] and Leighton [105] in the

early 90s, presenting exact results for these networks when the number of nodes per dimension

was even. The case when there are odd number of nodes per dimension was left open. Rolim et

al. [141] gave the exact values for the bisection width of 2 and 3-dimensional grids and tori, but

left open the question for higher number of dimensions.

For the special case in which all the factors are isomorphic, Efe and Fernández [64] provided

a lower bound on the bisection width of a product graph as a function of a new parameter of a

factor network they defined, the maximal congestion. Nakano [127] presented the exact value of

the bisection width for the Cartesian product of isomorphic paths and cliques (i.e., square grids

and Hamming graphs). If the factor graphs have k nodes, he proved that the d-dimensional square

grid has bisection width kd−1 when k is even, and (kd−1)
(k−1) when k is odd. Similarly, the square

Hamming graph has bisection width kd+1 when k is even, and (k + 1) (kd−1)
4 when k is odd.

The exact bisection width of the d-dimensional square grid was found independently by Efe and

Feng [63].

For Chapter 3, the work of Azizoglu and Egecioglu is very relevant. In [19] and [21] they

studied the relationship between the isoperimetric number and the bisection width of different

product networks. In the former paper, they find the exact value of the bisection width of the

cylinders (products of paths and rings) with even number of nodes in its largest dimension. In the

latter reference they found the exact bisection width of the d-dimensional grid A(d)
k1,k2,...,kd

, with

ki nodes along dimension i, and where k1 ≥ k2 ≥ . . . ≥ kd. The value of this bisection width

is BW (A
(d)
k1,k2,...,kd

) =
∑α

i=1Ci, where α is the smallest index for which ki is even (α = d if no

index is even), and Ci =
∏d
j=i+1 kj .

2.2 A Simulated Annealing Approach to the Multidimensional Arrangement Problem 19

2.2 A Simulated Annealing Approach to the Multidimensional Ar-
rangement Problem

2.2.1 Background

Assignment and arrangement problems have been extensively studied for decades. The most

classical and wellknown application of these problems is the assignment of n facilities to m lo-

cations in order to minimize or maximize a certain magnitude, such as cost, flow, etc. In this

section, we introduce one of these arrangement problems, the Multidimensional Arrangement

Problem (MAP), which was firstly studied by Hansen [85]. MAP covers a great number of appli-

cations, such as graph drawing or job scheduling (in 1 dimension), the backboard wiring problem

or the arrangement of electronic components in printed circuits (in 2 dimensions), and placing

servers in the racks of a data center (in 3 dimensions).

MAP can be defined as follows. Given a graph G = (V,E), a host D-dimensional array

H(V ′, E′) such that |V ′| ≥ |V |, we can define the Multidimensional Arrangement Problem
as the embedding of G into H , i.e., a mapping of the edges of G to paths in H , such that the

aggregated length of the paths inH is minimized. As we will usually work with weighted graphs,

the goal of MAP is minimizing the weighted sum of the path lengths. Formally, the cost of an

embedding ϕ : V → V ′ is defined as

C(ϕ) =
∑

(u,v)∈E

wuv · dist (ϕ(u), ϕ(v)) , (2.1)

where wuv is the weight of edge (u, v) and dist (ϕ(u), ϕ(v)) is the Manhattan distance (the path

length) between the images of u and v in the host graph H .

The particular case of D = 1 is a well known problem, called the minimum linear arrange-
ment (minLA). In this problem, the objective is to embed a graph onto a one dimensional array.

As minLA is known to be NP-complete and MAP has minLA as a special case, it can be con-

cluded that MAP is NP-hard.

On the other side, we have Simulated annealing (SA), a local search based metaheuristic,

introduced by Kirkpatrick et al. [99] in 1983. It was inspired in the metallurgical process of

annealing, and used to solve combinatorial optimization problems. An SA algorithm is usually

described by the following elements: initial solution, neighborhood function, cooling rate, num-

ber of iterations per temperature, and stop criteria or final temperature. In a nutshell, SA applied

to MAP starts from an initial solution ϕ0; and then, in each iteration, a candidate neighboring

solution ϕl is chosen, based on a cost-based neighborhood function. Once ϕl is chosen it is com-

pared against the current solution (ϕ∗) and, depending on whether δ = C(ϕl) − C(ϕ∗) is larger

than 0 or not, ϕl is accepted as the new current solution ϕ∗ or tested with an acceptance function.

This function depends on the current temperature and is based on the Metropolis criterion [115],

that will finally accept ϕl as the new ϕ∗ or refuse it. If a new solution is chosen and it is better

20 Related Work

than the best-so-far solution ϕbest, it becomes the new ϕbest. After running a given number of

iterations the system’s temperature is cooled down. This process follows until a total number of

iterations is run or a termination criteria is met.

Observe that the acceptance function allows the heuristic to admit solutions which are worse

than the previous ones. This is generally known as climbing up and helps to avoid that heuristics

are trapped in a local optimum. Although the mechanics of SA are not complicated, choosing the

cooling rate, stop criteria, and neighborhood function is not trivial.

2.2.2 Related Work

The Quadratic Assignment Problem, which is a more general problem than MAP, is an NP-

hard problem [143] which has been creating interest during more than 50 years [100]. The QAP

objective function can be mathematically formulated as follows

n∑
i=1

n∑
j=1

fij · dist(π(i)π(j)) +
∑
i,π(i)

b(i, π(i)),

where fij is the flow between facilities i and j, π(·) is the location at which a facility has been

assigned, dist(x, y) denotes the distance between two locations x and y, and b(i, x) is the initial

allocation cost of facility i to location x. Many well-known problems, like the traveling salesman

problem (TSP), minLA, and MAP, are special cases of QAP.

Some exact algorithms have been developed to solve the QAP problem. However, they are

only capable to solve small instances due to the enormous computation capacity required. The

largest instances solved optimally surpassed just recently the 100 locations frontier [70], but most

of the latest works still work with instances of 30-40 locations [70] [134]. These algorithms

typically use branch and bound, branch and cut, or dynamic programming.

Approximate methods have also been developed to tackle the QAP problem. We classify

them in heuristics and metaheuristics. Starting with heuristics, most of the ones that have been

developed can be grouped in constructive, enumeration, and improvement methods. We can find

some examples of heuristics applied to the QAP problem in [72, 117, 132].

Despite of the richness in heuristics, metaheuristics have been attracting most of the atten-

tion lately. Most of the metaheuristics applied to the QAP problem can be included in one of

the following families: genetic algorithms (GA) [60, 120], simulated annealing (SA) [42, 167],

ant colony optimization (ACO) [149], tabu search (TS) [95,121,122, 150], breakout local search

(BLS) [34], greedy randomized adaptive search procedures (GRASP) [107], variable neighbor-

hood search (VNS) [171], or hybrid combinations of them [71, 151]. Given that QAP is more

general than MAP, it is possible to adapt many of these techniques to obtain solutions also for

MAP.

Simulated annealing was one of the first techniques applied to the QAP problem (c.f., Burkard

et al. [42], Wilhelm et al. [167]). We now describe some of the main characteristics of some of

2.3 Rate Adaptation and Green Data Center Networking 21

the latest works using SA, alone or combined with other techniques. We start with the work of

Wang [161], who proposed in 2007 a tabu-based simulated annealing algorithm. In that work,

a pure SA algorithm was compared to a tabu-search SA, trying different tabu list sizes and also

trying different guided restart and reannealing strategies, enhancing the ability to escape from

local optima. In 2012, Wang [162] presented a new work based also on simulated annealing,

but trying different guided restart strategies. In both works a local-search-based neighborhood

function was used jointly with a geometrical cooling rate schedule (like Kirkpatrick et al. [99]),

reheating the algorithm when a restart takes place. In 2012, Jingwei et al. [98] presented a new

hybrid algorithm combining ant colonies and simulating annealing. Here, simulated annealing

was used to select the best ants in each iteration, while the cooling schedule was also geometrical.

In 2003, Misevičius [119] presented a very detailed work comparing multiple previously proposed

cooling schedules. With this, he proposed an SA heuristic using a normal-local-search-based

neighborhood function, an inhomogeneus annealing cooling schedule without equilibrium tests,

like the one proposed by Connolly et al. in [55], and modified reannealing so the cooling schedule

oscillates depending on the behavior of the annealing. This heuristic was completed by a post

optimization stage based on Taillard’s robust tabu search. This heuristic was even able to improve

one of the QAPLIB [41] instances.

Finally, Tello et al. [139], in 2008, presented a 2-stage simulated annealing algorithm for the

minLA problem. This work was able to improve multiple results from the typical set of minLA

benchmarks compiled by Petit [137]. Its main contribution is to design a 2-stage SA algorithm,

where the first stage obtains an initial approximation through a frontal increase minimization al-

gorithm, and the second stage is devoted to improve this initial solution. They consider a modified

median-based neighborhood function in which the typical 2-exchange strategy is conditioned by

the nodes connected to a candidate-to-be-moved node. They also consider different ways of es-

tablishing the initial temperature, based on [154], and a different cooling schedule [7]. We will

detail these aspects when describing our algorithm in Chapter 4, as we adopted and adapted some

of their ideas for our MAP heuristic.

2.3 Rate Adaptation and Green Data Center Networking

2.3.1 Background

As we showed in Figure 1.2 in Chapter 1, the contribution of IT equipment to the total power

requirements of data centers has increased during the last years. Although most of this power is

consumed by servers, another relevant contributor to these expenses is the network equipment.

Moreover, given the improvements in the proportionality of servers, the power consumed by

networks is becoming more relevant and should not be ignored. Otherwise, the power consumed

by networks will become a first order operating expenditure in future data centers. Just as an

illustrative example of the magnitudes we are referring to, it has been reported in [6] that the total

power consumed by network elements in data centers in 2006 in the U.S. was about 3 billion kWh

22 Related Work

and it is still increasing rapidly. Therefore, making the network energy proportional can provide

considerable energy savings and tremendous economic benefit.

Traditional data center networks are mostly structured as a 2N tree topology [2]. In a 2N

tree, the effective bisection bandwidth can be easily cut down by a small number of failures.

Alternatives such as FatTree [10,131], VL2 [78], BCube [79] and DCell [80] provide much richer

connectivity and can handle failures more gracefully. However, the static provisioning irrespective

to real workloads forces most of the designs into a dilemma: high connectivity comes with high

power consumption, as currently used network elements are unlikely energy proportional. It has

been verified in [114] that 60% of the time, the average traffic stays quite small, and the portion

of time in which traffic peaks is less than 5%. As a result, the power consumption of the network

should be proportional to the workload to achieve energy conservation.

The topic of greening the data center network has been widely explored. Most of the work

can be categorized into two groups in general. The most straightforward way is designing

energy-efficient topologies which can provide similar connectivity while using less network de-

vices [8, 90]. However, the potential of this approach is limited since we have to guarantee suf-

ficient bandwidth for traffic bursts. Another option consists in reducing the amount of active

devices in current networks. This is generally accomplished by consolidating traffic flows and

turning off unnecessary devices (e.g. [87, 111, 146, 165]). The key observation behind this line

is the connectivity redundancy and the traffic load variation in current data center networks. Ho-

wever, when we switch off devices, the network topology will be changed. Since this topology

transformation cannot be completed in a short time, the network may suffer from oscillation.

Consequently, maintaining the quality of service in the network will become tricky.

We propose to incorporate rate adaptation into data center networks to achieve energy con-

servation. To the best of our knowledge, this approach has not been deeply explored before. Rate

adaptation was proposed by Nordman and Christensen [133] and has been widely studied. The

main idea of rate adaptation is to approach energy proportionality by varying the link rate adap-

tively to meet its carried load. Since being proposed, rate adaptation starts to be supported by

some production devices, such as InfiniBand [4]. As shown in Table 2.1, an InfiniBand link is a

serial link with single or multiple lanes, each of which can operate at one of five data rates. With

a lower data rate, the power consumption is accordingly smaller. Also the ADSL2+ standard [77]

and the Cray YARC [145] switch allow links to be configured to specific speeds. Although there

are still some limitations in applying rate adaptation directly, we believe that future network de-

vices will provide a wide set of operating rates in order to keep up with the green computing

trend. In this sense, this work also reveals the potential of saving energy by using rate adaptation

in future data center networks.

We also emphasize the opinion that a good energy saving solution comprises not only single-

device energy proportionality, but also network-wide optimization. The basic idea is to globally

optimize the scheduling and routing of flows and dynamically adjust the rates of network devices

according to the loads. Based on rate adaptation, we aim at exploring efficient routing algo-

2.3 Rate Adaptation and Green Data Center Networking 23

Table 2.1: Effective theoretical data rate of InfiniBand

Rate SDR DDR QDR FDR EDR
1X 2Gbit/s 4Gbit/s 8Gbit/s 13.64Gbit/s 25Gbit/s
4X 8Gbit/s 16Gbit/s 32Gbit/s 54.4Gbit/s 100Gbit/s
12X 24Gbit/s 48Gbit/s 96Gbit/s 163.64Gbit/s 300Gbit/s

rithms for improving the energy efficiency in data center networks. Specifically, in Chapter 5, we

model this rate-adaptive energy-efficient routing problem and provide a constant approximation

algorithm to solve it. This is the most significant difference compared with the most relevant

work [157] which provides an energy-efficient traffic engineering solution for general networks

by utilizing rate adaptation heuristically.

2.3.2 Related Work

We can, basically, group the related work around two main topics, green networks and energy-

efficient data center networks.

Significant amount of work has been done on energy-efficient and green networking. Gupta

et al. [83] proposed the idea of reducing the overall energy for Internet, and then studied an

energy saving problem for LAN (Local Area Network) [84], suggesting to utilize the multiple

speed states of Ethernet interfaces. ALR (Adaptive Link Rate) was proposed by Nordman and

Christensen [133] for achieving energy proportionality on Ethernet network links. Combining

sleeping and rate adaptation, Nedevschi et al. [129] studied how to reduce the network energy

consumption during network idle or low-load period. In order to achieve network-global energy

efficiency in Internet, Andrews et al. [13] then devised an effective approximation algorithm for

a centralized network-wide routing model, assuming speed scaling capabilities for all network

elements. They also studied a similar problem by powering down network devices [16]. In a

subsequent work, Andrews et al. [15] studied a flow scheduling problem for saving energy in an

adversary network environment, while maintaining the stability in the meantime. Cianfrani et

al. [53] proposed energy-aware OSPF routing solutions by integrating the energy-saving strategy

into IP routing protocols. To achieve scalability, Vasic et al. [157] come up with a heuristic

energy-aware traffic engineering solution where multiple operational rates of network devices are

exploited. Later, they proposed REsPoNse [156], where energy-critical paths are used to handle

the optimality-scalability trade-off in the pursuit of power conservation in networks.

On the other hand, prior work on energy-efficient data center networks can be classified into

two categories. The first one tries to find some optimization methods for the currently used net-

work topologies. One representative work in this category is the ElasticTree by Heller et al. in

2010 [87]. In this work, a network-wide power manager is proposed to dynamically adjust the

set of active network devices to follow changing traffic in data centers. Shang et al. [146] consid-

ered routing with as few network devices as possible. They modeled this energy-aware routing

problem and then gave heuristics to solve it. Mahadevan et al. [111] discussed how to reduce the

24 Related Work

network operational power in large scale systems and data center networks. Recently Wang et

al. [165] proposed CARPO, a correlation-aware power optimization algorithm that considers the

correlations between different flows.

The second category tries to design better network topologies to reduce the power cost of the

whole network. Abts et al. [8] proposed a new kind topology called flatted butterfly which can

reduce the number of switches, bringing a big amount of energy savings, while guaranteeing a

similar connectivity. They also discussed how to provide dynamic link rates to meet the real link

loads. Huang et al. [90] provided another kind of server-centric network topology which can vary

bandwidth availability based on traffic demands.

Differing from others, we will consider a new rate-adaptive energy-saving model in data cen-

ter networks. With the underlying trend of rate adaptive network devices in mind, we discuss in

Chapter 5 how to provide green networking for future data centers.

2.4 Characterizing the Energy Consumption of Data Center Servers

2.4.1 Background

While in Section 2.3.2 we referred to the relevance of network elements regarding energy

consumption in data centers, we now concentrate our attention on the characterization of data

center servers and the energy they consume.

Indeed, although many energy saving techniques have been proposed during the recent years,

such as virtualization plus consolidation or scheduling optimization [102, 126], in order to obtain

full benefit of them it is crucial to have a good characterization of the servers in the data center,

as a function of the utilization of the server’s components. That is, it is necessary to know and

understand the energy and power consumption of servers and how this changes under the differ-

ent configurations. There is a large body of literature on characterizing servers’ energy and power

consumption. However, the existing literature does not jointly consider phenomena like the irrup-

tion of multicore servers and dynamic voltage and frequency scaling (DVFS) [166], which are key

to achieve scalability and flexibility in the architecture of a server. With these new parameters,

more variables come into play in a server configuration. Learning how to deal with these new

parameters and how they interact with other variables is important since this may lead to larger

savings.

It has been traditionally considered that the CPU is responsible for most of the power being

consumed in a server, as we saw in Figure 1.2, and that this power increases linearly with the load.

As we could see in that same figure, the power consumed by the CPU is significant, but the power

incurred by other elements of the server, like disks and NICs (Network Interface Cards) is not

negligible, and have to be taken into account. Moreover, we believe that the assumption that CPU

power consumption depends linearly from the load in a server may be too simplistic, especially

when the server has multiple cores and may operate at multiple frequencies. In fact, even the

way load is expressed has to be carefully defined (e.g., it cannot be defined as a proportion of

2.4 Characterizing the Energy Consumption of Data Center Servers 25

the maximal computational capacity of the CPU, since this value changes with the operational

frequency). Therefore, more complex/complete models for the power consumed by a server are

necessary. In order to be consistent, these models have to be based on empirical values. However,

we found that there is a lack of empirical work studying servers energy behavior.

The study we present in Chapter 6 tries to partially fill this void by proposing a measurement-

based characterization of the energy consumption of a server components with DVFS and multiple

cores.

2.4.2 Related Work

There is a large body of work in the field of modeling server energy consumption and its

components, both theoretically and empirically. The consumption of servers has been assumed

as linear, e.g., by Wang et al. [164], Mishra et al. [124] or Beloglazov et al. [33], who assumed

models in which energy consumption mainly depends linearly on CPU utilization. Based on the

models, they proposed bin-packing-like algorithms to reduce energy consumption. Other works

like the ones from Andrews et al. [14] or Irani et al. [94] proposed non-linear models, claiming

that energy could be saved by running processes at the lowest possible speed.

Moving to the empirical field, we first classify works in two different groups, depending on

whether they onsider the effect of frequency in their analysis. We start with works not considering

frequency. In this category we find articles proposing models where server components follow a

linear behavior, like in [101, 108, 155] or more complex ones, like in [29, 62, 106]. In [108], Liu

et al. proposed a simple linear model and evaluate different hardware configurations and types of

workloads by varying the number of available cores, the available memory, and considering also

the contribution of other components such as disks. Vasan et al. [155] monitored multiple servers

on a datacenter as well as the energy consumption of several of the internal elements of a server.

However, they considered that the behavior of this server could be approximated by a model based

only on CPU utilization. Similarly, Krishnan et al. [101] explored the feasibility of lightweight

virtual machine power metering methods and examined the contribution of some of the elements

that consume energy in a server like CPU, memory and disks. Their model depends linearly

on each of these components. In [62], Economou et al. proposed a non-intrusive method for

modeling full-system energy consumption by stressing its components with different workloads.

Their resulting model is also linear on the utilization of server components. Finally, Lewis et

al. [106] and Basmasjian et al. [29] presented much more complex models which, apart from the

contribution of different components of the server, consider extra parameters like temperature and

cache misses as well as multiple cores. In particular, Lewis et al. [106] reported also an extensive

study on the behavior of reading and writing operations in hard disk and solid state drives.

Next we move to the works which also consider frequency in their analysis. Miyoshi et

al. [125] analyzed the runtime effects of frequency scaling on power and energy. Brihi et al. [39]

presented an exhaustive study of DVFS using a cpufrequtils as we do. Main differences

with our work were that they studied four different power management policies under DVFS and

26 Related Work

centered their study on the relationship between CPU and power utilization. However, they also

presented interesting results about disk consumption that match partially our results, showing a

flat consumption in reading operations and variations in the writing ones that they attribute to the

size of the files being written. Although it was not the main objective of their work, Raghavendra

et al. [138] performed a per-frequency and core CPU power characterization of two different

blade servers. However, they claimed that CPU power depends linearly on its utilization. The

main difference with our analysis is that we consider that the load supported by a server increases

with the number of active cores and, hence, this load should not be represented in percentage.

Gandhi et al. [73] published an analysis of global energy consumption versus frequency, based

on DVFS and DFS and gave some intuition about the non-linearity of this relation.

Moreover, there are studies that model the energy consumption behavior for clouds and try

to balance the load in order to operate the cluster in its most efficient load-power combination.

MUSE [49] is one of the first works that consider a resource management architecture for data

centers. Its energy efficient approach dynamically assigns jobs to the servers based on the work-

load (for CPU and disk) and the potential energy consumption. The authors measure the energy

consumption of servers and switches involved in the cluster and conclude that at least 29% of

the energy can be saved by MUSE for typical web workloads. In [147] the authors proposed a

consolidation algorithm that considers the workloads of the servers in the cloud in order to find

the least possible energy consumption point. Their study shows that the energy consumption of a

server using variable loads for CPU and disks has an optimal operating point. Given the data from

the various servers the algorithm can estimate the ideal load distribution among the servers. The

authors in [23] modeled the energy consumption of data centers equipment (i.e., servers, storage,

switches) for cloud computing based on existing energy consumption measurements or publicly

available data sheets for each of the components (CPU, disk, network, switches). The model es-

timates the energy consumption per bit from the data center to the user and further analyzes the

energy consumption for different types of services, i.e., storage, software, processing. However,

existing works on clouds lack experimental inputs on energy consumption.

We conclude with some works that also consider frequency but do not model the energy

consumption of a server. First of them, the work from Le Sueur et al. [104] presented an analysis

of the evolution of the effectiveness of DVFS and how it is reduced in the newest and most

optimized servers. They show that DVSF might be soon obsoleted by the adoption of ultra low

power sleep modes. Ge et al. proposed PowerPack [76], a framework that includes a set of

toolkits to perform an exhaustive profile of the power utilization of servers and its components.

Their analysis is centered in showing the contribution of multicore system to the efficiency of

several applications and, hence, no power characterization is presented. Finally, Basmadjian et

al. [30] published an in deep analysis of the components of a processor and its contribution to the

energy consumption of the CPU, shedding some light on the behavior of multicore servers. Some

of their conclusions are very relevant to our work, as they show, for instance, that the energy

consumption of multiple cores performing parallel computations is not equal to the sum of the

2.5 Power Aware Assignment of Virtual Machines to Physical Machines 27

power of each of those active cores. Our experiments and model support their findings and shed

light on the nature of such effect.

2.5 Power Aware Assignment of Virtual Machines to Physical Ma-
chines

2.5.1 Background

The current pace of technology developments, and the continuous change in business re-

quirements, may rapidly yield a given proprietary computational platform obsolete, oversized, or

insufficient. Thus, outsourcing has recently become a popular approach to obtain computational

services without incurring in amortization costs. Furthermore, in order to attain flexibility, such

service is usually virtualized, so that the user may tune the computational platform to its particu-

lar needs. Users of such service need not to be aware of the particular implementation, they only

need to specify the virtual machine they want to use. This conceptual approach to outsourced

computing has been termed cloud computing, in reference to the cloud symbol used as an ab-

straction of a complex infrastructure in system diagrams. Current examples of cloud computing

providers include Amazon Web Services [1], Rackspace [5], and Citrix [3].

Depending on what the specific service provided is, the cloud computing model comes in dif-

ferent flavors, such as infrastructure as a service, platform as a service, storage as a service, etc.

In each of these models, the user may choose specific parameters of the computational resources

provided. For instance, processing power, memory size, communication bandwidth, etc. Thus, in

a cloud-computing service platform, various virtual machines (VM) with user-defined specifica-

tions must be implemented by, or assigned to1, various physical machines (PM)2. Furthermore,

such a platform must be scalable, allowing to add more PMs, should the business growth re-

quire such expansion. In this work, we call this problem the Virtual Machine Assignment (VMA)

problem.

The optimization criteria for VMA depends on what the particular objective function sought

is. From the previous discussion, it can be seen that, underlying VMA, there is some form of

bin-packing problem. However, in VMA the number of PMs (i.e., bins for bin packing) may

be increased if needed. Since CPU is generally the dominant power consumer in a server, as

shown in Figure 1.2 and as we will show in Chapter 6, VMA is usually carried out according to

CPU workloads. With only the static power consumption of servers considered, previous work

related to VMA has focused on minimizing the number of active PMs (cf. [32] and the references

therein) in order to minimize the total static energy consumption. This is commonly known as VM

consolidation [103,128]. However, despite the static power, the dynamic power consumption of a

1The cloud-computing literature use instead the term placement. We choose here the term assignment for consis-
tency with the literature on general assignment problems.

2We choose the notation VM and PM for simplicity and consistency, but notice that our study applies to any
computational resource assignment problem, as long as the minimization function is the one modeled here.

28 Related Work

server, which has been shown to be superlinear on the load of a given computational resource [24,

82], is also significant and cannot be ignored. Since the definition of load is not precise, we use the

definition we provide in Chapter 6 and define the load of a server as the amount of active cycles per

second a task requires, an absolute metric independent of the operating frequency or the number of

cores of a PM. The superlinearity property of the dynamic power consumption is also confirmed

by the results that we show in Chapter 6. As a result, when taking into account both parts of

power consumption, the use of extra PMs may be more efficient energy-wise than a minimum

number of heavily-loaded PMs. This inconsistency with the literature in VM consolidation is

supported by the results that will be presented in Chapter 6 and, hence, we claim that the way

consolidation has been traditionally performed has to be reconsidered. In this work, we combine

both power-consumption factors and explore the most energy-efficient way for VMA. That is, for

some parameters α > 1 and b > 0, we seek to minimize the sum of the α powers of the PMs

loads plus the fixed cost b of using each PM.

Physical resources are physically constrained. A PMs infrastructure may be strictly con-

strained in the number of PMs or in the PMs CPU capacity. However, if usage patterns indicate

that the PMs will always be loaded well below their capacity, it may be assumed that the capacity

is unlimited. Likewise, if the power budget is very big, the number of PMs may be assumed

unconstrained for all practical purposes. These cases yield 4 VMA subproblems, depending on

whether the capacity and the number of PMs is limited or not. We introduce these parameters de-

noting the problem as (C,m)-VMA, where C is the PM CPU capacity, m is the maximum number

of PMs, and each of these parameters is replaced by a dot if unbounded.

2.5.1.1 Problem Definition

We describe the (·, ·)-VMA problem now for a better understanding of some of the works

presented in the following related work section. Given a set S = {s1, . . . , sm} ofm > 1 identical

physical machines (PMs) of capacity C; rational numbers µ, α and b, where µ > 0, α > 1 and

b > 0; a set D = {d1, . . . , dn} of n virtual machines and a function ` : D → R that gives the

CPU load each virtual machine incurs3, we aim to obtain a partition π = {A1, . . . , Am} of D,

such that `(Ai) ≤ C, for all i. Our objective will be then minimizing the power consumption

given by the function

P (π) =
∑

i∈[1,m]:Ai 6=∅

(
µ
(∑
dj∈Ai

`(dj)
)α

+ b

)
. (2.2)

Let us define the function f(·), such that f(x) = 0 if x = 0 and f(x) = µxα + b otherwise.

Then, the objective function is to minimize P (π) =
∑m

i=1 f(`(Ai)). The parameter µ is used for

consistency with the literature.

3For convenience, we overload the function `(·) to be applied over sets of virtual machines, so that for any set
A ⊆ D, `(A) =

∑
dj∈A `(dj).

2.5 Power Aware Assignment of Virtual Machines to Physical Machines 29

We also define several special cases of the VMA problem, namely (C,m)-VMA, (C, ·)-VMA,

(·,m)-VMA and (·, ·)-VMA. (C,m)-VMA refers to the case where both the number of available

PMs and its capacity are fixed. (·, ·)-VMA, where (·) denotes unboundedness, refers to the case

where both the number of available PMs and its capacity are unbounded (i.e., C is larger than the

total load of the VMs that can ever be in the system at any time, or m is larger than the number

of VMs that can ever be in the system at any time). (C, ·)-VMA and (·,m)-VMA are the cases

where the number of available PMs and their capacity is unbounded, respectively.

2.5.2 Related Work

To the best of our knowledge, previous work on VMA has been only experimental [50, 109,

116,153] or has focused on different cost functions [11,32,48,54]. First, we provide an overview

of previous theoretical work for related assignment problems (storage allocation, scheduling, net-

work design, etc.). The cost functions considered in that work resemble or generalize the power

cost function under consideration here. Secondly, we overview related experimental work.

Chandra and Wong [48], and Cody and Coffman [54] study a problem for storage allocation

that is a variant of (·,m)-VMA with b = 0 and α = 2. Hence, this problem tries to minimize

the sum of the squares of the machine-load vector for a fixed number of machines. They study

the offline version of the problem and provide algorithms with constant approximation ratio. A

significant leap was taken by Alon et al. [11], since they present a PTAS for the problem of

minimizing the Lp norm of the load vector, for any p ≥ 1. This problem has the previous one as

special case, and is also a variant of the (·,m)-VMA problem when p = α and b = 0. Similarly,

Alon et al. [12] extended this work for a more general set of functions, that include f(·) as defined

above. Hence, their results can be directly applied in the (·,m)-VMA problem. Later, Epstein et

al. [66] extended [12] further for the uniformly related machines case. We will use these results

in Chapter 7 in the analysis of the offline case of (·,m)-VMA and (·, ·)-VMA.

Bansal, Chan, and Pruhs minimize arbitrary power functions for speed scaling in job schedul-

ing [24]. The problem is to schedule the execution of n computational jobs on a single processor,

whose speed may vary within a countable collection of intervals. Each job has a release time, a

processing work to be done, a weight characterizing its importance, and its execution can be sus-

pended and restarted later without penalty. A scheduler algorithm must specify, for each time, a

job to execute and a speed for the processor. The goal is to minimize the weighted sum of the flow

times over all jobs plus the energy consumption, where the flow time of a job is the time elapsed

from release to completion and the energy consumption is given by sα where s is the processor

speed and α > 1 is some constant. For the online algorithm shortest remaining processing time

first, the authors prove a (3 + ε) competitive ratio for the objective of total weighted flow plus

energy. Whereas for the online algorithm highest density first (HDF), where the density of a job

is its weight-to-work ratio, they prove a (2 + ε) competitive ratio for the objective of fractional

weighted flow plus energy.

Recently, Im, Moseley, and Pruhs studied online scheduling for general cost functions of the

30 Related Work

flow time, with the only restriction that such function is non-decreasing [93]. In their model, a

collection of jobs, each characterized by a release time, a processing work, and a weight, must

be processed by a single server whose speed is variable. A job can be suspended and restarted

later without penalty. The authors show that HDF is (2 + ε)-speed O(1)-competitive against the

optimal algorithm on a unit speed-processor, for all non-decreasing cost functions of the flow

time. Furthermore, they also show that this ratio cannot be improved significantly proving impos-

sibility results if the cost function is not uniform among jobs or the speed cannot be significantly

increased.

A generalization of the above problem is studied by Gupta, Krishnaswamy, and Pruhs in [82].

The question addressed is how to assign jobs, possibly fractionally, to unrelated parallel machines

in an online fashion in order to minimize the sum of the α-powers of the machine loads plus the

assignment costs. Upon arrival of a job, the algorithm learns the increase on the load and the cost

of assigning a unit of such job to a machine. Jobs cannot be suspended and/or reassigned. The

authors model a greedy algorithm that assigns a job so that the cost is minimized as solving a

mathematical program with constraints arriving online. They show a competitive ratio of αα with

respect to the solution of the dual program which is a lower bound for the optimal. They also

show how to adapt the algorithm to integral assignments with a O(α)α competitive ratio, which

applies directly to our (·,m)-VMA problem. References to previous work on the particular case

of minimizing energy with deadlines can be found in this paper.

Similar cost functions have been considered for the minimum cost network-design problem.

In this problem, packets have to be routed through a (possibly multihop) network of speed scal-

able routers. There is a cost associated to assigning a packet to a link and to the speed or load

of the router. The goal is to route all packets minimizing the aggregated cost. In [13] and [14]

the authors show offline algorithms for this problem with undirected graph and homogeneous

link cost functions that achieve polynomial and poly-logarithmic approximation, respectively.

The cost function is the α-th power of the link load plus a link assignment cost, for any con-

stant α > 1. The same problem and cost function is studied in [82]. Bansal et al. [25] study

a minimum-cost virtual circuit multicast routing problem with speed scalable links. They give

a polynomial-time O(α)-approximation offline algorithm and a polylog-competitive online algo-

rithm, both for the case with homogeneous power functions. They also show that the problem is

APX-hard in the case with heterogeneous power functions and there is no polylog-approximation

when the graph is directed. Recently, Antoniadis et al. [17] improved the results by providing a

simple combinatorial algorithm that is O(logα n)-approximate, from which we can construct an

Õ(log3α+1 n)-competitive online algorithm. The (·,m)-VMA problem can be seen as a especial

case of the problem considered in these papers in which there are only two nodes, source and

destination, and m parallel links connecting them.

To the best of our knowledge, the problem of minimizing the power consumption (given

in Eq.2.2) with capacity constraints (i.e., the (C,m)-VMA and (C, ·)-VMA problems) has re-

ceived very limited attention, in the realm of both VMA and network design, although the ap-

2.5 Power Aware Assignment of Virtual Machines to Physical Machines 31

proaches in [14] and [25] are related to or based on the solutions for the capacitated network-

design problem [47].

The experimental work related to VMA is vast and its detailed overview is out of the scope

of this paper. Some of this work does not minimize energy [45, 110, 123] or it applies to a model

different than ours (VM migration [130, 147], knowledge of future load [112, 147], feasibility

of allocation [32], multilevel architecture [96, 116, 130], interconnected VMs [37], etc.). On the

other hand, some of the experimental work where minimization of energy is evaluated focus on a

more restrictive cost function [96, 159, 168].

In [96], for an energy cost model that is linear, the authors evaluate experimentally the alloca-

tion of VMs to clusters following 9 placement policies, some of them included in popular cloud

platforms [68,135]. Namely, Round Robin, Striping, Packing, Load Balancing (free CPU count),

Load Balancing (free CPU ratio), Watts per Core, Cost per Core. We adapt 5 of these policies

(defined later in Chapter 7) to our model and cost function for the purpose of simulations.

In [147], the authors focus on an energy-efficient VM placement problem with two require-

ments: CPU and disk. These requirements are assumed to change dynamically and the goal is to

consolidate loads among servers, possibly using migration at no cost. In our model VMs assign-

ment is based on a CPU requirement that does not change and migration is not allowed. Should

any other resource be the dominating energy cost, the same results apply for that requirement.

Also, if loads change and migration is free, an offline algorithm can be used each time that a load

changes or a new VM arrives. In [147] it is shown experimentally that energy-efficient VMA does

not merely reduce to a packing problem. That is, to minimize the number of PMs used even if

their load is close to their maximum capacity. For our model, we show here that the optimal load

of a given server is a function only of the fixed cost of being active (b) and the exponential rate of

power increase on the load (α). That is, the optimal load is not related to the maximum capacity

of a PM.

Part II

Structural Issues

33

Chapter 3

Bisection Width and Bisection
Bandwidth of Product Networks

3.1 Overview

In this chapter we study different families of product networks and how to compute their

bisection width and bandwidth. In particular, we propose two theorems that will allow us to

derive upper and lower bounds on the bisection width of a product network as a function of some

simple parameters of its factor graphs.

We prove that this method allows to compute the exact bisection width of several traditional

interconnection networks. Concretely, we study the families of product graphs derived from the

combination of paths and complete binary trees and the product graphs derived from the combina-

tion of rings and extended trees. Among these results, the bisection width of the multidimensional

torus stands out as the most remarkable one, given that, as mentioned in Chapter 1, it has been

a long standing problem, unsolved for more than 20 years. To obtain the bisection bandwidth of

these networks, we assume that every edge removed by the bisection width is in fact a duplex link

with bandwidth of T in each direction. This directly implies that for any of these networks G, the

bisection bandwidth is computed as BBW (G) = 2T ·BW (G)

Apart from traditional interconnection networks, we also target newly proposed topologies for

data centers. In particular, we show how the bisection width of BCube can be also approximated

by using this method. However, there is an important difference between this and the previous

topologies. While the traditional networks only had one kind of nodes, new topologies such as

BCube have, at least, two different kinds, in this case, servers and switches. This fact leads to

an essential difference regarding the traditional ones. Now, edges do not connect nodes directly,

and, hence, the direct relation between bisection width and bisection bandwidth does not hold

anymore.

A BCube is the Cartesian product of factors networks formed by k nodes connected via a

k-port switch. In networks with switches like this one, the switching capacity s of the switch

35

36 Bisection Width and Bisection Bandwidth of Product Networks

Table 3.1: Bisection bandwidth of different product networks

Product graph Factor graphs β(G) CC(G) Bisection bandwidth
Torus Ring 1/8 2 4T · Ψ(α)

Product of
XTs 1/8 2 4T · Ψ(α)

extended CBT
Product of

Rings & XTs 1/8 2 4T · Ψ(α)
extended CBT & rings
Mesh connected trees CBT 1/4 1 2T · Ψ(α)

Product of
Paths & CBTs 1/4 1 2T · Ψ(α)

CBT and paths

BCube
Model A

even k−1
k2

k
2

2T kd+1

4(k−1)
≤ BBW (BCA

(d)
k) ≤ 2T kd

2

odd 1
k+1

k−1
2

2T k+1
4

kd−1
k−1

≤ BBW (BCA
(d)
k) ≤ 2T kd−1

2

Model B
even k−1

2k
1 s kd

2(k−1)
≤ BBW (BCB

(d)
k) ≤ s k

d−1
k−1

odd k
2(k+1)

1 s k+1
2k

kd−1
k−1

≤ BBW (BCB
(d)
k) ≤ s k

d−1
k−1

comes into play as well. Since the bisection bandwidth is the parameter of interest in datacenters,

we derive bounds on its value for two cases: when the bottleneck for the bisection bandwidth is

at the links (Model A), and when it is at the switches (Model B).

Table 3.1 summarizes the results derived for the bisection bandwidth obtained for the dif-

ferent parallel topologies and for BCube. As can be seen, for the former the values obtained

are exact, while for the latter the upper and lower bounds found do no match exactly. Howe-

ver, they differ by less than a factor of two. The value Ψ(α) introduced in Table 3.1 denotes the

bisection width of the multidimensional array. The value of the bisection width of the array is

Ψ(α) = BW (A
(d)
k1,k2,...,kd

) =
∑α

i=1Ci =
∑α

i=1

∏d
j=i+1 kj . For readability, since the value of

the bisection width of the array will appear frequently, we will use the notation Ψ(α), throughout

Chapter 3.

RoadMap The rest of this chapter is organized as follows. Section 3.2 presents some basic

definitions used in the rest of the chapter. In Section 3.3 we provide the general results to derive

bounds on the bisection bandwidth of product networks. Section 3.4 and Section 3.5 present our

results for the bisection bandwidth of some classical parallel topologies. Bounds on the bisection

bandwidth of the BCube network are presented in Section 3.6. Finally, in Section 3.7 we present

our conclusions and some open problems.

3.2 Definitions

3.2.1 Graphs and Bisections

In this section we present definitions and notation that will be used along the text. Given a

graph1 G, we denote its sets of vertices and edges as V (G) and E(G), respectively. In some

1Unless otherwise stated we will use the terms graph and network indistinctly throughout this chapter.

3.2 Definitions 37

cases, when it is clear from the context, only V or E will be used, omitting the graph G. Unless

otherwise stated, the graphs considered are undirected.

Given a graphGwith n nodes, we use S(G) to denote a subset of V (G) such that |S(G)| ≤ n
2 .

We also use ∂GS(G) to denote the set of edges connecting S(G) and V (G) \ S(G). Formally,

∂GS(G) = {(u, v) ∈ E(G) : u ∈ S(G), v ∈ G \ S(G)}. The graph G may be omitted from this

notation when it is clear from the context.

The main object of the work presented in this chapter is to calculate the bisection width and

bisection bandwidth of different product networks. These bisections can be defined as follows.

Definition 1. The bisection width of an n-node graphG, denotedBW (G), is the smallest number

of edges that have to be removed from G to partition it in two halves. Formally, BW (G) =

minS:|S|=bn
2
c |∂GS|.

Definition 2. The bisection bandwidth of a networkG, denotedBBW (G), is the minimal amount

of data per time unit that can be transferred between any two halves of the network when its links

are transmitting at full speed.

As mentioned above, unless otherwise stated we assume that all the links in a network G are

duplex and have the same capacity T in each direction. Then, we can generally assume that the

relation between the bisection bandwidth and the bisection width is BBW (G) = 2T ·BW (G).

3.2.2 Factor and Product Graphs

We first define the Cartesian product of graphs.

Definition 3. The d-dimensional Cartesian product of graphs G1, G2, ..., Gd, denoted by G1 ×
G2 × · · · × Gd, is the graph with vertex set V (G1) × V (G2) × · · · × V (Gd), in which vertices

(u1, ..., ui, ..., ud) and (v1, ..., vi, ..., vd) are adjacent if and only if (ui, vi) ∈ E(Gi) and uj = vj

for all j 6= i.

The graphs G1, G2, ..., Gd are called the factors of G1 ×G2 × · · · ×Gd. Observe that G1 ×
G2 × · · · × Gd contains

∏
j 6=i |V (Gj)| disjoint copies of Gi, which form dimension i. We now

define some of the basic factor graphs that will be considered.

Definition 4. The path of k vertices, denoted by Pk, is a graph such that V (Pk) = {0, 1, . . . , k−
1} and where E(Pk) = {(i, i+ 1) : i ∈ [0, k − 2]} .

Definition 5. The complete graph (a.k.a. the clique) of k vertices, denoted byKk, is a graph such

that V (Kk) = {0, 1, . . . , k − 1} and where E(Kk) = {(i, j) : (j 6= i) ∧ (i, j ∈ V (Kk))}.

Definition 6. The r-complete graph of k vertices denoted by rKk, is a graph such that V (rKk) =

{0, 1, . . . , k − 1} and where E(rKk) is a multiset such that each pair of vertices i, j ∈ V (rKk)

is connected with r parallel edges.

38 Bisection Width and Bisection Bandwidth of Product Networks

Using these and other graphs as factors, we will define, across the text, different d-dimensional

Cartesian product graphs. For convenience, for these graphs we will use the general notation

G
(d)
k1,...,kd

, where G is the name of the graph, the superscript (d) means that it is a d-dimensional

graph, and k1, . . . kd are the number of vertices in each dimension. (Superscript and subscripts

may be omitted when clear from the context.) It will always hold that k1 ≥ k2 ≥ . . . ≥ kd, i.e.,

the factor graphs are sorted by decreasing number of vertices. We will often use n to denote the

number of nodes in the graph G(d)
k1,...,kd

, i.e., n = k1k2 · · · kd, and we will always use α to denote

the index of the lowest dimension with an even number of vertices (if there is no such dimension,

α = d, where d is the index of the lowest dimension). According to this notation we will present

different d-dimensional product graphs as follows.

Definition 7. The d-dimensional array, denoted by A(d)
k1,...,kd

, is the Cartesian product of d paths

of k1, . . . , kd vertices, respectively. I.e., A(d)
k1,...,kd

= Pk1 × Pk2 × · · · × Pkd .

Definition 8. The d-dimensional r-Hamming graph, denoted by rH(d)
k1,...,kd

, is the Cartesian prod-

uct of d r-complete graphs of k1, . . . , kd nodes, respectively. I.e., rH(d)
k1,...,kd

= rKk1 × rKk2 ×
· · · × rKkd .

Observe that the Hamming graph [20] is the particular case of the r-Hamming graph, with

r = 1. For brevity, we use H(d)
k1,...,kd

instead of 1H
(d)
k1,...,kd

, to denote the Hamming graph.

3.2.3 Boundaries and Partitions

We define now the dimension-normalized boundary [21].

Definition 9. Let G(d)
k1,...,kd

be a d-dimensional product graph and S(G) a subset of V (G). Then,

the dimension-normalized boundary of S(G), denoted by BG(S), is defined as

BG(S) =
|∂G1 S|
σ1

+
|∂G2 S|
σ2

+ . . .+
|∂Gd S|
σd

, (3.1)

where, for each i ∈ [1, d], ∂Gi is the subset of the edges in the boundary ∂G that belong to

dimension i, and σi is defined as

σi =

{
k2
i if ki is even

k2
i − 1 if ki is odd.

(3.2)

Observation 1. For rH(d)
k1,...,kd

, any subset S of nodes, and any dimension i, it holds that

|∂rHi S| = r · |∂Hi S|. Hence,

BrH(S) =
|∂rH1 S|
σ1

+ · · ·+
|∂rHd S|
σd

= r

(
|∂H1 S|
σ1

+ · · ·+
|∂Hd S|
σd

)
= rBH(S).

3.3 Bounds on the BW of Product Graphs 39

Table 3.2: Basic notation in Chapter 3.

Notation
(B)BW (G) Bisection (Band)Witdh of graph G

n Number of nodes in graph G
ki Number of nodes in dimension i
d Dimension index

G
(d)
k1,...,kd

Graph G with d dimensions of sizes k1, k2, . . . , kd
α Lowest index of an even ki

Ψ(α) Bisection Width of a d-dimensional array
∂gS(G) Edges connecting S(G) and V (G) \ S(G)

Bg(S) Dimension normalized boundary of S(G)

CC(G) Central Cut of graph G
βr(G) Normalized congestion of graph G of multiplicity r
mr(G) Congestion of graph G with multiplicity r
E Set of all possible embeddings Mr of rKn onto G
T Links capacity
s Switching capacity

Let us define the lexicographic-order. Consider graph H
(d)
k1,...,kd

, we say that vertex x =

(x1, x2, . . . , xd) precedes vertex y = (y1, y2, . . . , yd) in lexicographic-order if there exists an

index i ∈ [1, d] such that xi < yi and xj = yj for all j < i. Azizoglu and Egecioglu [20] proved

the following result.

Theorem 1 ([20]). Consider a d-dimensional Hamming graph H(d)
k1,...,kd

, with k1 ≥ k2 ≥ · · · ≥
kd. Let S be any subset of V (H) and S̄ the set of first |S| vertices of H in lexicographic-order2,

then BH(S̄) ≤ BH(S).

Table 3.2 summarizes the basic notation used in this chapter.

3.3 Bounds on the BW of Product Graphs

In this section we present general bounds on the bisection width of product graphs as well as

two important parameters, the normalized congestion and the central cut, which are used to obtain

them. These bounds will be used in the upcoming sections to find the bisection width of several

instances of product graphs.

3.3.1 Lower Bound

We start by defining the normalized congestion of a graph. Let G be a graph with n nodes.

Then, an embedding of the graph rKn onto G is a mapping of the edges of rKn into paths in

G. We define the congestion of G with multiplicity r, denoted by mr(G), as the minimum (over

2Observe that we have reversed the ordering of dimensions with respect to the original theorem of [20].

40 Bisection Width and Bisection Bandwidth of Product Networks

all such embeddings) of the maximum number of embedded paths that contain an edge from G.

To formally define this concept, we first define the congestion of an edge e ∈ E(G) under an

embedding Mr of rKn onto G as cMr(e) = |{e′ ∈ E(rKn) : e ∈ Mr(e
′)}|. (Observe that

Mr(e
′) ⊆ E(G) is a path in G.) Then, the congestion mr(G) is

mr(G) = min
Mr∈E

max
e∈E(G)

{cMr(e)}, (3.3)

where E is the set of all possible embeddings of rKn onto G. Then, using Eqs. (3.3) and (3.2),

we define the normalized congestion with multiplicity r of G as βr(G) = mr(G)/σn. Having

defined the normalized congestion, we proceed to extend Theorem 1 to r-Hamming graphs.

Theorem 2. Consider a d-dimensional r-Hamming graph rH(d). Let S be any vertex subset

of V (rH(d)) and S̄ the set of first |S| vertices of rH(d) in lexicographic order, then BrH(S̄) ≤
BrH(S).

Proof : We prove the theorem by contradiction. Assume that there is a set of vertices X 6= S̄

such that |X| = |S̄| and BrH(S̄) > BrH(X). Then, applying Observation 1 to both X and S̄,

we obtain that BH(S̄) = BrH(S̄)/r > BrH(X)/r = BH(X), which contradicts Theorem 1 and

proves the theorem. �

We now present the following lemma.

Lemma 1. Let S̄ be a subset of the vertices of graph rH(d)
k1,k2,...,kd

, such that S̄ are the first bn2 c
vertices of rH in lexicographic order, and n is the number of vertices of rH . Then, the dimension-

normalized boundary of S̄ is BrH(S̄) = rΨ(α)/4.

Proof : We will derive first the value of BH(S̄), and then use Observation 1 to prove the

claim. It was shown in [21], that ∂Hi S̄ = ∅ for all i > α.3 The number of edges in each

dimension i ∈ [1, α] on the boundary of S̄ in H is

|∂Hi S̄| =

{
ki
2 (
∏d
j=i+1 kj)

ki
2 if ki is even

ki−1
2 (
∏d
j=i+1 kj)

ki+1
2 if ki is odd.

(3.4)

Then, from the definition of BH(S̄), we obtain that

BH(S̄) =
k1−1

2 (
∏d
j=2 kj)

k1+1
2

k2
1 − 1

+
k2−1

2 (
∏d
j=3 kj)

k2+1
2

k2
2 − 1

kα
2 (
∏d
j=α+1 kj)

kα
2

k2
α

=

∏d
j=2 kj

4
+

∏d
j=3 kj

4
+ · · ·+

∏d
j=α+1 kj

4
=

∑α
i=1Ci
4

=
Ψ(α)

4
.

Finally, from Observation 1, we derive BrH(S̄) = rBH(S̄) = rΨ(α)/4. �

Using Definition 3, Lemma 1, and Eq. (3.3), we obtain the following theorem.

3Observe that they use reverse lexicographic order and sort dimensions in the opposite order we do.

3.3 Bounds on the BW of Product Graphs 41

Theorem 3. Let G = G1 × . . .×Gd, where |V (Gi)| = ki and k1 ≥ k2 ≥ . . . ≥ kd. Let βr(Gi)

be the normalized congestion with multiplicity r of Gi (for any r), for all i ∈ [1, d]. Consider any

subset S ⊂ V (G) and the subset S̄ which contains the first |S| vertices of G, in lexicographic

order. Then, BrH(S̄) ≤
∑d

i=1 βr(Gi)|∂Gi S|.

Proof : First, observe that, for any Si ⊂ V (Gi), |∂rKkiSi| ≤ mr(Gi) · |∂GiSi|. Then, for

S ⊂ V (G) as defined, |∂rHi S| ≤ mr(Gi) · |∂Gi S|. Finally, using Theorem 2, we can state that

BrH(S̄) ≤ BrH(S)

≤ mr(G1)
|∂G1 S|
σ1

+ · · ·+mr(Gd)
|∂Gd S|
σd

= βr(G1)|∂G1 S|+ · · ·+ βr(Gi)|∂Gd S|.

�

From this theorem, we derive a corollary for the case of |S| = bn2 c.

Corollary 1. Let G = G1 × . . .×Gd, where |V (Gi)| = ki and k1 ≥ k2 ≥ . . . ≥ kd. Let βr(Gi)

be the normalized congestion with multiplicity r of Gi (for any r), for i ∈ [1, d]. Consider any

subset S ⊂ V (G) such that |S| = b |V (G)|
2 c. Then rΨ(α)/4 ≤

∑d
i=1 βr(Gi)|∂Gi S|.

Corollary 2. Let G = G1 × . . . × Gd, where |V (Gi)| = ki and k1 ≥ k2 ≥ . . . ≥ kd. Let

βr(Gi) = β be the normalized congestion with multiplicity r of Gi (for any r), for i ∈ [1, d].

Consider any subset S ⊂ V (G) such that |S| = b |V (G)|
2 c. Then rΨ(α)/4β ≤ BW (G).

3.3.2 Upper Bound

Having proved the lower bound on the bisection width, we follow with the upper bound. We

define first the central cut of a graph G.

Consider a graphG with n nodes, and a partition of V (G) into three sets S−, S+, and S, such

that |S−| = |S+| = bn2 c (observe that if n is even then S = ∅, otherwise |S| = 1). Then, the

central cut of G, denoted by CC(G), is

min
{S−,S+,S}

max{|∂GS−|, |∂GS+|}.

Observe that, for even n, the central cut is the bisection width. Now, we use the definition of

central cut in the following theorem.

Theorem 4. Let G = G1 × . . . × Gd, where |V (Gi)| = ki and k1 ≥ k2 ≥ . . . ≥ kd. Then,

BW (G) ≤ maxi {CC(Gi)} · Ψ(α).

Proof : It was shown in [21] how to bisect A(d) by cutting exactly BW (A(d)) = Ψ(α) links.

Furthermore, this bisection satisfies that, if the paths Pki in dimension i are cut, each of them can

be partitioned into subpaths P+ and P− of size bki2 c (connected by a link if ki is even or by a

42 Bisection Width and Bisection Bandwidth of Product Networks

node with links to both if ki is odd) so that the cut separates P+ or P− from the rest of the path.

Each path is then cut by removing one link. We map the sets S+ and S+ of the partition that

gives the central cut of Gi to P+ and P−, respectively. Then, any cut of a paths Pki in dimension

i becomes a cut of Gi with at most CC(Gi) links removed.

Then, if S is the subset of V (G) that ends at one side of the bisection described above, we

have that |∂Gi S|/CC(Gi) ≤ |∂A
(d)

i S|, which also holds if the paths in dimension i are not cut.

Applying this to all dimensions, we obtain

|∂G1 S|
CC(G1)

+ · · ·+
|∂Gd S|
CC(Gd)

≤ BW (A(d)) = Ψ(α). (3.5)

This yields, BW (G) ≤ |∂G1 S|+ · · ·+ |∂Gd S| ≤ maxi {CC(Gi)} ·Ψ(α), proving Theorem 4. �

3.4 BW of Products of CBTs and Paths

In this section we will obtain the bisection bandwidth of product graphs which result from the

Cartesian product of paths and Complete Binary Trees (CBT). We will present, first, the different

factor graphs we are using and the product graphs we are bisecting, then, we will compute the

congestion and central cut of these factor graphs and, finally, calculate the bisection width of these

product graphs.

3.4.1 Factor and Product Graphs

In this section we will work with paths, which were defined in Section 3.2, and CBTs, which

is defined now.

Definition 10. The complete binary tree of k vertices, denoted by CBTk , is a graph such that

V (CBTk) = {1, 2, . . . , k}, with k = 2j − 1 (j is the number of levels of the tree), and where

E(CBTk) = {(i, j) : ((j = 2i) ∨ (j = 2i+ 1)) ∧ (i ∈ [1, 2j−1 − 1])}.

Combining these factor graphs through the Cartesian product, we obtain the product networks

that we define below.

Definition 11. A d-dimensional mesh-connected trees and paths, denoted by MCTP
(d)
k1,k2,...,kd

, is

the Cartesian product of d graphs of k1, k2, . . . , kd vertices, respectively, where each factor graph

is a complete binary tree or a path. I.e., MCTP
(d)
k1,k2,...,kd

= Gk1×Gk2×· · ·×Gkd , where either

Gki = CBTki or Gki = Pki .

We also define the d-dimensional mesh-connected trees [65], denoted by MCT
(d)
k1,k2,...,kd

as

the graph MCTP
(d)
k1,k2,...,kd

in which all the factor graphs are complete binary trees. (Observe that

the array is also the special case of MCTP
(d)
k1,k2,...,kd

in which all the factor graphs are paths.)

3.4 BW of Products of CBTs and Paths 43

3.4.2 Congestion and Central Cut of Paths and CBTs

The bisection widths of the aforementioned product graphs can be calculated using the bounds

defined in Section 3.3. To do so, we need to compute first the values of the normalized congestion

and central cut of their factor graphs, it is, of a path and of a CBT.

We start by computing the congestion of a path and of a CBT and, then, their central cuts. We

present the following lemma.

Lemma 2. The congestion of Pk with multiplicity r, denoted mr(Pk), has two possible values,

depending on whether the number of vertices k is even or odd, as follows,

mr(Pk) =

{
r k

2

4 if k is even

r k
2−1
4 if k is odd

(3.6)

Proof : This proof is illustrated in Figure 3.1 where it can be seen that there are two possible

cases, depending on whether k is even or odd. The congestion mr(Pk) is defined as the minimum

congestion over all embeddings of rKk onto Pk. As there is only one possible path between every

pair of vertices, the congestion of an edge will always be the same for any embedding Mr of rKk

into Pk. Let Mr be an embedding of rKk onto Pk. Then,

mr(Pk) = min
M∈E

max
e∈E(Pk)

{cM (e)} = max
e∈Pk
{cMr(e)}. (3.7)

If we fix e = (i, i+ 1) ∈ E(Pk), i ∈ [0, k − 1], the congestion of e follows the equation

cMr(e) = r(i+ 1)(k − i− 1). (3.8)

The value of i that maximizes cMr(e) is i = k
2 − 1. As k is an integer, depending on whether k

is even or odd, k2 will be exact or not. Hence, we consider two possible cases, i = k/2− 1 when

k is even or i = (k − 1)/2 − 1 when k is odd. Using these values in Eq. (3.8) leads to the final

result

mr(Pk) =

{
r k

2

4 if k is even

r k
2−1
4 if k is odd

�

Corollary 3. The normalized congestion of a path is βr(Pk) = r
4 .

The value of the congestion of a CBT is exactly the same as the congestion of a path with

an odd number of nodes. CBT share with paths the property of having only one possible routing

between two nodes. As can be seen in Figures 3.1 and 3.2, the possible cuts are similar. We

present Lemma 3 for the congestion of a CBT.

Lemma 3. The congestion of CBT k with multiplicity r is mr(CBT k) = r(k2 − 1)/4.

44 Bisection Width and Bisection Bandwidth of Product Networks

(a) The 4-vertex path and clique.

(b) The 5-vertex path and clique.

Figure 3.1: Paths and possible cuts.

Figure 3.2: The 7-vertex complete binary tree and the 7-vertex clique, with their possible cuts.

Proof : Let CBT 2j−1 be a complete binary tree of j levels with k = 2j −1 nodes. Whichever

edge we cut results on two parts, one of them being another complete binary tree, let us call it A

and assume it has l < j levels; and the other being the rest of the previous complete binary tree,

let us call it B. The number of nodes in A will be 2l − 1 while the number of nodes in B will be

k − 2l + 1. For any embedding M of rKk into CBT k, the congestion of any edge e follows the

equation cMr(e) = r(2l−1)(k−2l+1). The value of l which maximizes the equation is l = j−1,

which is equivalent to cut one of the links of the root. This divides the tree into subgraphs of sizes
k+1

2 and k−1
2 . Then, the final value for congestion will be mr(CBT k) = r(k2 − 1)/4. �

Corollary 4. The normalized congestion of a CBT is βr(CBT k) = r/4.

The value of thecentral cut of both the path and CBT can also be easily deduced from Figures

3.1 and 3.2, being CC(Pk) = CC(CBT k) = 1.

3.4.3 Bounds on the BW of Products of CBTs and Paths

Having presented both the congestion and the central cut of the possible factor graphs, we can

compute now the lower and upper bound on the bisection width of a product of CBTs and paths.

We will start by the lower bound on the bisection width.

3.5 Products of Rings and Extended Trees 45

Lemma 4. The bisection width of a d-dimensional mesh-connected trees and paths, MCTP (d),

is lower bounded by Ψ(α).

Proof : As we can see in Corollaries 3 and 4, the normalized congestion of both factor graphs

is the same value r/4. Then, we can apply Corollary 2, so rΨ(α)(4r/4) ≤ BW (MCTP (d)),

which yields, BW (MCTP (d)) ≥ Ψ(α). �

We follow now by presenting an upper bound on the bisection width of d-dimensional mesh-

connected trees and paths.

Lemma 5. The bisection width of a d-dimensional mesh-connected trees and paths, MCTP (d),

is upper bounded by Ψ(α).

Proof : Obviously, as this graph can also be embedded into a d-dimensional array, we can use

Theorem 4. We know that the central cut of both CBTs and paths is 1 independently of their sizes

or number of levels, and hence also maxi{CC(Gki)} = 1 (where Gki is either a CBT or a path).

Then, BW (MCTP (d)) ≤ Ψ(α). �

From the results obtained from Lemma 4 and Lemma 5 the proof of Theorem 5 follows.

Theorem 5. The bisection width of a d-dimensional mesh-connected trees and paths

MCTP
(d)
k1,k2,...,kd

is Ψ(α).

We can also present the following corollary for the particular case of the d-dimensional mesh-

connected trees MCT
(d)
k1,k2,...,kd

.

Corollary 5. The bisection width of the d-dimensional mesh-connected trees MCT
(d)
k1,k2,...,kd

is

BW (MCT (d)) = Ψ(d).

3.5 Products of Rings and Extended Trees

In this section we will obtain a result for the bisection bandwidth of the product graphs which

result from the Cartesian product of rings and extended complete binary trees.

3.5.1 Factor and Product Graphs

The factor graphs which are going to be used in this section are rings and XTs. We define

them below.

Definition 12. The ring of k vertices, denoted byRk, is a graph such that V (Rk) = {0, 1, . . . , k−
1} and where E(Rk) = {(i, (i+ 1) mod k) : i ∈ V (Rk)} .

Definition 13. The extended complete binary tree (a.k.a. XT) of k vertices, denoted by Xk, is

a complete binary tree in which the leaves are connected as a path. More formally, V (Xk) =

V (CBTk) and E(Xk) = E(CBTk) ∪ {(i, i+ 1) : i ∈ [2j−1, 2j − 2]}.

46 Bisection Width and Bisection Bandwidth of Product Networks

Combining these graphs as factor graphs in a Cartesian product we can obtain the following

product graphs:

Definition 14. A d-dimensional mesh-connected extended trees and rings, denoted by

MCXR
(d)
k1,k2,...,kd

, is the Cartesian product of d graphs of k1, k2, . . . , kd vertices, respectively,

where each factor graph is a extended complete binary tree or a ring. I.e., MCXR
(d)
k1,k2,...,kd

=

Gk1 ×Gk2 × · · · ×Gkd , where either Gki = Xki or Gki = Rki .

Definition 15. The d-dimensional torus, denoted by T (d)
k1,k2,...,kd

, is the Cartesian product of d

rings of k1, k2, . . . , kd vertices, respectively. I.e., T (d)
k1,k2,...,kd

= Rk1 ×Rk2 × · · · ×Rkd .

And, as happened in Section 3.4 with MCT (d), we also define the d-dimensional mesh-

connected extended trees, denoted by MCX
(d)
k1,k2,...,kd

, a special case of MCXR
(d)
k1,k2,...,kd

in which

all factor graphs are XTs. (The torus is the special case of MCXR
(d)
k1,k2,...,kd

in which all factor

graphs are rings.)

3.5.2 Congestion and Central Cut of Rings and XTs

The congestion and central cut of both a ring and an XT are needed to calculate the bounds

obtained in Section 3.3. We present the following lemma for the congestion of a ring.

Lemma 6. The congestion of Rk with multiplicity r = 2 has two possible upper bounds depend-

ing on whether the number of vertices k is even or odd, as follows,

m2(Rk) ≤

{
k2

4 if k is even
k2−1

4 if k is odd
(3.9)

Proof : While a path had only one possible routing, for Rk we have two possible routes

connecting each pair of nodes. When we embed rKk, for r = 2, into Rk, we embed the parallel

edges connecting two nodes through the shortest path, when this is unique. Otherwise, when two

nodes are equally distant along each of the two available routes (note that this happens only if k

is even), each parallel edge is embedded following a different route.

A counting argument yields the congestion on any edge under this routing. Let us consider

without loss of generality the edge e = (0, 1). Any two nodes that are at distance at most bk−1
2 c

by a shortest path that crosses e, have the two parallel edges connecting them embedded in this

path. Then, there are bk−1
2 c shortest paths that cross e and end at node 1, bk−1

2 c−1 shortest paths

that cross e and end at node 2, and so on. Hence, the congestion in e due to the embedding of

these edges is

2

b k−1
2 c∑
i=1

⌊
k − 1

2

⌋
− i+ 1 =

⌊
k − 1

2

⌋(⌊
k − 1

2

⌋
+ 1

)
.

3.5 Products of Rings and Extended Trees 47

(a) The 4-vertex ring and clique. (b) The 5-vertex ring and clique.

Figure 3.3: Rings and possible cuts.

Figure 3.4: Central cut on a extended complete binary tree.

When k is odd, this is the congestion of the edge e, which becomes(
k − 1

2

)((
k − 1

2

)
+ 1

)
=
k − 1

2

k + 1

2
=
k2 − 1

4
.

When k is even, edge e is also crossed by one of the parallel embedded edges connecting nodes

at distance k/2. This increases the congestion in edge e by k/2. Hence, given that b(k− 1)/2c =

(k − 2)/2, the congestion for k even is(
k − 2

2

)((
k − 2

2

)
+ 1

)
+
k

2
=
k2

4
.

�

Corollary 6. The normalized congestion with multiplicity r = 2 of a ring is β2(Rk) = 1/4.

Similarly to what happened with paths and CBTs, the congestion of rings and XTs is the

same. The extended complete binary tree Xk has a Hamiltonian cycle [65], so we can find a ring

Rk contained onto it. Consequently, the congestion of an XT and a ring with the same number of

nodes will be the same.

Corollary 7. The normalized congestion with multiplicity r = 2 of an XT is β2(Xk) = 1/4.

Due to these similarities, central cuts of both graphs are also going to be the same. As can be

easily deduced from Figures 3.3 and 3.4, CC(Rk) = CC(Xk) = 2.

48 Bisection Width and Bisection Bandwidth of Product Networks

3.5.3 Bounds on the BW of Products of XTs and Rings

With the normalized congestion and central cut of the different factor graphs, we can calculate

the lower and upper bounds on the bisection width of products of XTs and rings. We will start by

the lower bound on the bisection width presenting the following lemma.

Lemma 7. The bisection width of a d-dimensional mesh-connected XTs and rings, MCXR(d), is

lower bounded by 2Ψ(α).

Proof : The normalized congestion of both factor graphs is β2(Rk) = β2(Xk) = 1/4. Then,

applying Corollary 2 with r = 2, we get 2Ψ(α)/(4(1/4)) ≤ BW (MCXR(d)). This yields,

BW (MCXR(d)) ≥ 2Ψ(α). �

We calculate now the upper bound on the bisection width of a d-dimensional mesh-connected

rings and XTs.

Lemma 8. The bisection width of a d-dimensional, MCXR(d), is upper bounded by 2Ψ(α).

Proof : The d-dimensional mesh-connected XTs and rings graph can also be embedded into

a d-dimensional array, so then, we can use Theorem 4. As happened with the congestion, the

value of the central cut of both XTs and rings is the same, concretely, CC(Rk) = CC(Xk) = 2,

independently of their sizes or number of levels. Hence, maxi{CC(Gki)} = 2 (where Gki is

either a ring or an XT). Then, BW (MCXR(d)) ≤ 2Ψ(α). �

From Lemma 7 and Lemma 8, Theorem 6 follows.

Theorem 6. The bisection width of a d-dimensional mesh-connected extended trees and rings

MCXR
(d)
k1,k2,...,kd

is 2Ψ(α).

From the bisection width of the d-dimensional mesh-connected XTs and rings, we can derive

the following corollaries for the particular cases where all the factor graphs are rings, Torus T (d),

or XTs, mesh-connected extended trees MCX (d).

Corollary 8. The bisection width of the d-dimensional torus T (d)
k1,k2,...,kd

is BW (T (d)) = 2Ψ(α).

Corollary 9. The bisection width of the d-dimensional mesh-connected extended trees

MCX
(d)
k1,k2,...,kd

is BW (MCX (d)) = 2Ψ(d).

3.6 BCube

We devote this section to obtain bounds on the bisection width of a d-dimensional BCube [79].

BCube is different from the topologies considered in the previous sections because it is obtained

as the combination of basic networks formed by a collection of k nodes (servers) connected by

a switch. These factor networks are combined into multidimensional networks in the same way

product graphs are obtained from their factor graphs. This allows us to study the BCube as

an special instance of a product network. The d-dimensional BCube can be obtained as the d

dimensional product of one-dimensional BCube networks, each one of k nodes.

3.6 BCube 49

3.6.1 Factor and Product Graphs

We first define a Switched Star network and how a d-dimensional BCube network is built from

it.

Definition 16. A Switched Star network of k nodes, denoted SSk, is composed of k nodes con-

nected to a k-ports switch. It can be seen as a complete graph Kk where all the edges have been

replaced by a switch.

An example of SS 5 is presented in Figure 3.5(a). Combining d copies of SSk as factor

networks of the Cartesian product, we obtain a d-dimensional BCube.

Definition 17. A d-dimensional BCube, denoted by BC (d)
k , is the Cartesian product of d SSk (the

switches are not considered nodes for the Cartesian product). I.e., BC (d)
k = SSk × SSk × · · · ×

SSk.

The topology of BC
(2)
5 (which results from combining 2 copies of SS 5) is shown in Fi-

gure 3.6. BC (d)
k can also be seen as a d-dimensional homogeneous array where all the edges in

each path have been removed and replaced by a switch where two nodes (u1, ..., ui, ..., ud) and

(v1, ..., vi, ..., vd) are connected to the same switch if and only if (ui 6= vi) and uj = vj for all

j 6= i.

Strictly speaking, the bisection width of BC (d)
k is the smallest number of links (connecting

nodes to switches) that have to be removed to bisect it (extending the definition to networks with

switches). However, the main reason for obtaining the bisection width of a d-dimensional BCube

is to be able to bound its bisection bandwidth. However, as the d-dimensional BCube is not a typ-

ical graph, the bisection width can have different forms depending on where the communication

bottleneck is located in a BCube network.

We present two possible models for SSk. The first one, Model A or star-like model, denoted

by SSAk, consists of k nodes connected one-to-one to a virtual node which represents the switch.

This model corresponds with the actual physical topology of BCube. The second one, Model B

or hyperlink model, denoted by SSBk, consists of k nodes connected by a hyperlink4. While the

two presented models are logically equivalent to a complete graph, they have a different behavior

from the traffic point of view. We show this with two simple examples.

Let us consider that we have a SS 3 where the links have a speed of 100 Mbps while the switch

can switch at 1 Gbps. Under these conditions, the links become the bottleneck of the network and,

even when the switches would be able to provide a bisection bandwidth of 1 Gbps, the effective

bisection bandwidth is only of 200 Mbps in both directions.

Consider another situation now, where the BCube switch still supports 1 Gbps of internal

traffic but the links also transmit at 1 Gbps. In this case, the switches are the bottleneck of the

network and the bisection bandwidth is only 1 Gbps, although the links would be able to support

up to 2 Gbps.
4This model is quite similar to the one proposed by Pan in [136].

50 Bisection Width and Bisection Bandwidth of Product Networks

(a) Star-like model SSA5. (b) Hyperlink model SSB5.

(c) Congestion of SSA5. (d) Congestion of SSB5.

S- S+S
(e) Central cut of SSA5.

S- S+S
(f) Central cut of SSB5.

Figure 3.5: Proposed models for a 5-node switched star, SS 5, their congestion and central cut.

The first example illustrates an scenario where we would bisect the network by removing

the links that connect the servers to the switches, which corresponds to Model A. On the other

hand, what we find in the second example is a typical scenario for Model B, where we would

do better by removing entire switches when bisecting the network. In particular, being s the

switching capacity of a switch, and T the traffic supported by a link, we will choose Model A

when s ≥ bk2c ·2T and Model B when s ≤ 2T . (Note that this does not cover the whole spectrum

of possible values of s, T , and k.)

3.6.2 Congestion and Central Cut of BCube

We will compute now the congestion and central cut of both models in order to be able to

calculate the respective lower and upper bounds. We start by the congestion and central cut

of Model A. If we set r = 1, the congestion of every link of the star is easily found5 to be

mr(SSAk) = k− 1 as shown in Figure 3.5(c). The central cut, which is also trivial, can be found

in Figure 3.5(e). Both will depend on whether the number of nodes k is even or odd.

Corollary 10. The normalized congestion of SSAk is βr(SSAk) = k−1
k2−b , and the central cut is

CC(SSAk) = k−b
2 , where b = k mod 2.

Having computed the congestion and the central cut for Model A, we will compute them now

for Model B. If we set r = 1 there will be only one edge to be removed, the congestion of the

5Note that in the computation of the congestion, the switch is not considered a node of the graph.

3.6 BCube 51

Figure 3.6: Cartesian product of two SSA5 networks.

graph will be total amount of edges of its equivalent Kk, i. e., mr(SSBk) = k(k−1)
2 . The central

cut is also easily computed, as there is only one hyperlink. Both mr(SSBk) and CC(SSBk) are

shown in Figure 3.5.

Corollary 11. The normalized congestion of SSBk is βr(SSBk) = k−1
2(k2−b) , where b = k mod 2,

and the central cut is CC(SSBk) = 1.

3.6.3 Bounds on the BBW of BCube

Having computed the congestion and central cut of both models, we can calculate the lower

and upper bounds on the bisection width of each one of them. We will start by the lower and

upper bounds on the bisection width of Model A and, then, we will calculate both bounds for

Model B. We first present the following lemma for the lower bound on the bisection width of a

Model A BCube.

Lemma 9. The bisection width of a Model A d-dimensional BCube, BCA(d)
k , is lower bounded

by kd+1

4(k−1) if k is even, and by k+1
4

kd−1
k−1 if k is odd.

Proof : Using the value of the normalized congestion of a Model A BCube in Corollary 2, it

follows that

BW (BCA
(d)
k) ≥

{
1
4
k2

k−1Ψ(α) = kd+1

4(k−1) if k is even
k+1

4 Ψ(α) = k+1
4

kd−1
k−1 if k is odd

�

52 Bisection Width and Bisection Bandwidth of Product Networks

After presenting the lower bound on the bisection width of a Model A d-dimensional BCube,

we follow with the upper bound.

Lemma 10. The bisection width of a Model A d-dimensional BCube, BCA(d)
k , is upper bounded

by kd

2 if k is even, and by kd−1
2 if k is odd.

Proof : The Cartesian product of Model A star-like factor graphs can be embedded into a

d-dimensional array, so Theorem 4 will be extremely useful again. If we use the values of the

central cut of Model A in Theorem 4, is immediate to compute the following upper bound

BW (BCA
(d)
k) ≤

{
kd

2 if k is even
kd−1

2 if k is odd.

�

Now, from the combination of Lemma 9 and Lemma 10 we can state Theorem 7:

Theorem 7. The value of the bisection bandwidth of a Model A d-dimensional BCube, BCA(d)
k ,

is in the interval [2T · kd+1

4(k−1) , 2T ·
kd

2] if k is even, and in the interval [2T · k+1
4

kd−1
k−1 , 2T ·

kd−1
2]

if k is odd.

From the observation that the topology of BCube is the same as that of Model A, we derive

the following corollary.

Corollary 12. The bisection width of a d-dimensional BCube BC
(d)
k satisfies,

BBW (BCA
(d)
k) ∈

{
[kd+1

4(k−1) ,
kd

2] if k is even

[k+1
4

kd−1
k−1 ,

kd−1
2] if k is odd.

Let us calculate now the bounds of a Model B d-dimensional BCube. As we did with Model A,

we will first prove the lower bound and then the upper one. For the lower bound we present the

following lemma.

Lemma 11. The bisection width of a Model B d-dimensional BCube, BCB (d)
k , is lower bounded

by kd

2(k−1) if k is even, and by k+1
2k

kd−1
k−1 if k is odd.

Proof : Like in the case of Model A, we use the value of the normalized congestion of Model B

in Corollary 2. Since all the dimensions have the same size k, it follows that

BW (BCB
(d)
k) ≥

{
1
4

2k
k−1Ψ(α) = kd

2(k−1) if k is even
1
4

2(k+1)
k Ψ(α) = k+1

2k
kd−1
k−1 if k is odd

�

We present now Lemma 12 for the upper bound on the bisection width of a Model B d-

dimensional BCube.

3.7 Conclusions 53

Table 3.3: Gap between bounds (results in Gbps)

k d
Model A Model B

BBW LB UB BBW LB UB
3 2 0.8 0.8 0.8 4 2.667 4
4 2 1.6 1.067 1.6 5 3.125 5
7 2 4.8 3.2 4.8 8 4.571 8
8 2 6.4 3.657 6.4 8 4.571 9
3 3 2.6 2.6 2.6 13 8.667 13
4 3 6.4 4.267 6.4 16 10.667 21
7 3 34.2 22.8 34.2 57 32.571 57
8 3 51.2 29.257 51.2 64 36.571 73

Lemma 12. The bisection width of a Model B d-dimensional BCube, BCB (d)
k , is upper bounded

by kd−1
k−1 .

Proof : As for Model A, the d-dimensional BCube resulting from the Cartesian product of

Model B graphs can be embedded into a d-dimensional array. Thanks to this fact, we can use the

computed value of its central cut in Theorem 4 to obtain the upper bound on the bisection width,

BW (BCB
(d)
k) ≤ 1 · Ψ(α) = kd−1

k−1 . �

Combining the previous lemmas we can state the following theorem.

Theorem 8. The value of the bisection bandwidth of a Model B d-dimensional BCube, BCB (d)
k ,

is in the interval [s · kd

2(k−1) , s ·
1−kd
1−k] if k is even, and in the interval [s · k+1

2k
kd−1
k−1 , s ·

kd−1
k−1] if k is

odd.

In Table 3.3 we present some results for some concrete BCube networks. We assume the same

2 scenarios we used in the previous example: links of T = 100 Mbps and switches with s = 1

Gbps for Model A (s ≥ bk2c · 2T); and links of T = 1 Gbps and switches with s = 1 Gbps for

Model B (s ≤ 2T).

3.7 Conclusions

Exact results for the bisection bandwidth of various d-dimensional classical parallel topolo-

gies have been provided in this chapter. These results consider any number of dimensions and

any size, odd or even, for the factor graphs. These multidimensional graphs are based on factor

graphs such as paths, rings, complete binary trees or extended complete binary trees. Upper and

lower bounds on the bisection width of a d-dimensional BCube are also provided. Some of the

product networks studied had factor graphs of the same class, like the d-dimensional torus, mesh-

connected trees or mesh-connected extended trees, while some other combined different factor

graphs, like the mesh connected trees and paths or mesh-connected extended trees and rings. See

Table 3.1 for a summary of the results obtained.

Chapter 4

Reducing Wiring in Data Centers. A
Simulated Annealing Approach

4.1 Overview

In this chapter we study a version of the Multidimensional Arrangement Problem (MAP) that

embeds a graph into a multidimensional array minimizing the aggregated (Manhattan) distance of

the embedded edges. This problem includes the minimum Linear Arrangement Problem (minLA)

as a special case, among others.

We propose JAM, a tabu-based two-stage simulated annealing heuristic for this problem. JAM

uses a novel median-based neighborhood function and non-trivially adapts multiple techniques

from the minLA literature to work for multiple dimensions. We describe each one of the JAM

components in detail.

Due to the scarcity of specific benchmarks for MAP, the performance of JAM has been tested

with benchmarks for the minLA and the Quadratic Assignment Problem (QAP). In particular,

more than 80 different instances, either weighted or unweighted, have been used. It is worth to

notice that the host graph in minLA is a one-dimensional array while for QAP is, in general,

a 2 dimensional graph. JAM obtains the optimal or best known result in most of the problem

instances and even improves the results of some minLA instances.

Finally, the results in this chapter are not limited to the original minLA and QAP instances.

From these instances we generate a whole benchmark for MAP, defining instances for 1, 2 1 and

3 dimensions, enlarging, hence, the benchmark resources for the research community. The results

obtained by JAM for these set of instances are also provided as a reference.

RoadMap The chapter is organized as follows. In Section 4.2 we present our own algorithm as

well as a detailed description of its different elements. In Section 4.3 we present the numerical

1We prepared two different sets of instances for the 2-dimensional case. The first one is restricted to the case in
which guest and host graphs have the same size, i.e., where |V ′| = |V |. The second one is for a deployment which is
more compact (square) and that allows having extra locations, i.e., where |V ′| ≥ |V |.

55

56 Reducing Wiring in Data Centers. A Simulated Annealing Approach

Algorithm 1: JAM Pseudo Code

ϕ∗ ← SetInitialSolution();
ϕbest ← ϕ∗;
k ← 0; T (k)← SetInitialTemperature();
while the termination criteria do not hold do

for the predefined number of iterations at temperature T (k) do
Choose a node u uniformly at random;
with probability pN : set L← Nu;
else set L← {l}, where l is a location chosen uniformly at random;
Discard all locations l ∈ L that would lead to a move in the tabu list;
Φ← {ϕl : ϕl is the arrangement after moving u to l in ϕ∗, ∀l ∈ L};
ϕ′ ← arg minϕ∈Φ{C(ϕ)};
if C(ϕ′) > C(ϕ∗) then

ϕ′ ← ϕ chosen from Φ with probability proportional to C(ϕ);
δ ← C(ϕ′)− C(ϕ∗);
with probability e−δ/T (k): ϕ∗ ← ϕ′; ϕbest ← arg min{C(ϕbest), C(ϕ∗)};

k ← k + 1; T (k)← UpdateTemperature(T (k − 1));
GuidedRestart(ϕ∗, ϕbest);

results obtained with our heuristic for multiple benchmarks from the minLA and QAP literature

and for which we provide results in 1, 2 and 3 dimensions. We finish the chapter by presenting

some conclusions in Section 4.4.

4.2 The Algorithm JAM

In this section we present JAM, a tabu based two-stage simulated annealing algorithm applied

to MAP. First, we introduce the notation used throughout the rest of the chapter, then provide an

overview of JAM, and finally describe each one of its elements.

4.2.1 Notation

Given a graph G = (V,E), V and E denote its sets of vertices and edges, respectively. Each

edge (i, j) ∈ E has an associated weight denoted by wij . We denote by Au the set of nodes

adjacent to node u in G.

The host graph H(V ′, E′) is a D-dimensional array. Recall that |V ′| ≥ |V |. The nodes of H

are called locations. Each location l ∈ V ′ is defined by a D-vector (l1, l2, . . . , lD), where li is the

dimension i coordinate of location l. On the other hand, di(X) is used to denote the dimension i

coordinate of all elements of a set X of locations.

In order to improve the cost C(ϕ) of an arrangement ϕ, JAM performs node “movements.”

By movement we refer to the action of “moving” node u from a location l to a location l′, and

“moving” the node v, if any, which is at location l′ to l. Formally, this means transforming the

arrangement ϕ into a new ϕ′ such that ϕ′(x) = ϕ(x) for all x ∈ V \ {u, v}, ϕ′(u) = l′, and

4.2 The Algorithm JAM 57

ϕ′(v) = l. There is only a set of valid locations to which a node u can move (see Section 4.2.3

below), this set is called its neighborhood and is denoted Nu.

4.2.2 Overview of JAM

A sketch of JAM is provided as pseudo code in Algorithm 1. Similarly, a flow diagram can

be found in Figure 4.1. JAM is a two-stage heuristic whose first stage provides an initial solution

based on the McAllister heuristic [113]. This arrangement is also the initial best known solution.

The current solution and the best known solution are stored in ϕ∗ and ϕbest, respectively (Lines

1−2). Then, the initial temperature T (0) (Line 3) for the SA is computed. After that, the cooling

down process starts, which will take place until the termination criteria are met (Line 4). For

every temperature T (k), JAM runs a predefined number of iterations (Line 5), starting with T (0).

In each iteration, a node u to be moved is chosen uniformly at random (Line 6). Then, with

Figure 4.1: Flow diagram of JAM.

58 Reducing Wiring in Data Centers. A Simulated Annealing Approach

probability pN , the set of locations L to which u may be moved is chosen to be the neighborhood

Nu (Line 7). Otherwise the only location that will be considered is a randomly chosen one l (Line

8). Not explicitly shown in Algorithm 1, JAM maintains a tabu list of movements that are not to

be redone. Hence, all elements in L that lead to a move in this tabu list are discarded (Line 9).

Now, the arrangements Φ resulting of moving u to the remaining locations in L are obtained (Line

10), and the arrangement ϕ′ with the lowest cost among them is chosen (Line 11). If the cost of

this ϕ′ is larger than the cost of the current solution ϕ∗, ϕ′ is replaced by an arrangement chosen

from Φ with probabilities proportional to their respective costs (Line 12 − 13). To complete the

iteration, the proposed ϕ′ is adopted with probability e−δ/T (k), which implies updating ϕ∗ and,

if corresponds, ϕbest (Line 15). (Observe that if δ < 0 then ϕ′ is always adopted.) Once the

given number of iterations for T (k) is reached, it is updated (Line 16) and it is decided whether

resetting ϕ∗ to ϕbest is needed (Line 17).

4.2.3 Elements of JAM

We now provide a detailed description of the elements mentioned above that conform JAM.

4.2.3.1 First Stage: Initial Solution

McAllister heuristic [113] has been adapted to multiple dimensions and used to obtain an ini-

tial solution. McAllister’s is a greedy heuristic based on a frontal increase minimization strategy.

It chooses a starting node at random and maps it to some location. Then, it greedily maps the rest

of nodes. To do so, it maintains three sets of nodes U (Unplaced), P (Placed) and F (Front, the

set of placed nodes with at least one neighbor in set U). The next node to be mapped is the one

with the least neighbors in set U \ F , so the front set is minimized.

We implement McAllister’s heuristic with all the proposed refinements: a tie breaking strat-

egy, improved initial node selection and deferred node placement (We refer the reader to [113] for

further details). Then, we devised a multidimensional allocation technique which maps the first

node to location (0, 0, . . . , 0) in the host graph, and then greedily decides which of the neighbor-

ing locations to those of the already allocated nodes is the best position, in terms of cost, for the

next node. One example of how this allocation technique works in 2 dimensions is provided in

Figure 4.2.

4.2.3.2 Initial Temperature

We decided to initialize the temperature using the same method as Tello et al. [139], which

employs the technique proposed by Varanelli and Cohoon [154]. This method approximates the

simulated annealing temperature T (k) at which a solution ϕ∗ with cost C(ϕ∗) can be found as

4.2 The Algorithm JAM 59

Figure 4.2: Example of a possible evolution for the multidimensional McAllister allocation
heuristic in 2 dimensions. The allocated nodes are represented in blue, the nodes belonging to the
front in yellow.

best solution. Hence the initial temperature is given by2

T (0) ≈
∣∣∣∣ σ2

∞
C∞ − C(ϕ∗)− γ∞σ∞

∣∣∣∣ ,
where C∞ and σ∞ represent the expected cost and average deviation of the cost over the solution

space; C(ϕ∗) represents the cost of the initial solution and γ∞ represents the difference between

the expected cost C∞ and the best known solution ϕbest at temperature T (k). γ∞ can be calcu-

lated probabilistically from the number of iterations predefined at each temperature. We refer the

reader to [154] for further details.

4.2.3.3 Cooling Schedule

Our cooling schedule is based on the work from Aarts and Korst [7]. They propose a statis-

tical cooling schedule which depends on the previous temperature, the average deviation of the

solutions obtained with the previous temperature σT (k−1), and a tuning parameter λ (such that for

small values of λ we obtain small temperature reductions). The cooling schedule is given by the

following equation:

T (k) = T (k − 1)

(
1 +

log (1 + λ)T (k − 1)

3σT (k−1)

)−1

.

4.2.3.4 Neighboring Solutions

In order to reduce the search space of locations to which a certain node u can be moved, we

define a median-based neighborhood function. This function returns a set of neighborsNu, which
2We use the absolute value of the expression, unlike in [154], to deal with some cases that resulted in negative

values.

60 Reducing Wiring in Data Centers. A Simulated Annealing Approach

is the set of contiguous locations that will be considered for the movement of u. Intuitively, we

choose the set Nu to be the locations that minimize the cost of the edges incident in u assuming

that only u changes its location (in this fictitious arrangement u may share location with other

nodes).

We describe now the process we use to obtain Nu. Let us assume that the nodes adjacent to

u in G are Au = {v1, v2, . . . , vn}, and that their respective current location is lj = ϕ∗(vj),∀j ∈
[1, n]. Let us fix one dimension i ∈ [1, D], and let us sort the nodes in Au by the dimension i

coordinate of their current location, so that lj1i ≤ l
j2
i ≤ · · · ≤ l

jn
i . Then, we compute the smallest

m ∈ [1, n] that satisfies

∆(m) =
m∑
k=1

wuvjk −
n∑

k=m+1

wuvjk ≥ 0.

If ∆(m) = 0 then we define a range of values ri = [ljm , ljm+1). Otherwise, if ∆(m) > 0 then

we define the range as the singleton value ri = [ljm].

After applying this method to each dimension separately we have ranges r1, r2, . . . , rD. The

D-polytope obtained by the combination of these ranges is the set of locations in Nu. I.e., all

locations l such that li ∈ ri, ∀i ∈ [1, D] belong to Nu. In our implementation of JAM we

extended Nu with all the locations that are within distance 2 of the set described, just to increase

the movement options.

Figure 4.3 shows how our neighboring function works for a 2-dimensional graph. In it we can

see, in Subfigure 4.3(a), a subset of nodes G formed by the candidate node, depicted in red, and

its set of neighbors, in blue. Then, in Subfigure 4.3(b), we have where each one of these nodes

are located in the host graph H and the ranges r1 and r2 that define the sets of ideal locations for

each dimension. Finally, in Subfigure 4.3(c), we can see the 2-dimensional polytope that defines

the set of ideal locations which become candidates to host the candidate node.

4.2.3.5 Evaluating Solutions

We defined the cost of an arrangement C(ϕ) in Eq. 2.1. However, two different solutions

might have the same cost. To consider these cases, we use instead a cost function C ′(ϕ) intro-

duced in [140]. The authors there proposed a refined method for estimating the cost of solutions

in a minLA problem which considers not only the cost derived from the paths in H but also how

the costs of these paths are distributed. The cost of an arrangement ϕ is then given by

C ′(ϕ) =

Θ∑
k=1

(
k +

n!

(n+ k)!

)
ek, (4.1)

where Θ =
∑D

i=1 di − 1 is the diameter of H and ek is the number of paths of length k in H .

Note that the second term of this formula is always smaller than 1. Then, for solutions where the

4.2 The Algorithm JAM 61

(a) Subset of nodes G.

(b) Locations in Host graph H . (c) 2-dimensional polytope of ideal
locations.

Figure 4.3: Example of JAM neighboring function in 2 dimensions.

cost would be the same if we had only considered the first term, the total cost will be smaller if

the arrangement has longer paths. A solution with a larger number of longer paths is preferred as

it would be, in principle, easier to improve.

4.2.3.6 Tabu Search (TS)

In order to favor the exploration abilities of JAM we incorporate TS. As we said, moving a

node u from position l to position l′ implies moving the node v in position l′, if any, to position

l. Our TS mechanism will check that neither u nor v have been in locations l or l′, respectively,

during the last Ts moves, being Ts the size of our tabu list.

To control when a move is tabu we use a |V | × |V ′| matrix. Every time a node is moved to a

certain location, we store the iteration number at which that move was done. If a proposed move

has been done during the last Ts iterations, it is discarded. There is one exception to this rule, the

aspiration criterion. We implemented the most common one: a move will be accepted, despite of

being tabu, when it leads to a smaller C ′(ϕbest).

4.2.3.7 Guided Restarts

We implement guided restarts in order to help the algorithm to escape from some strong local

minima. A restart consists in resetting ϕ∗ to ϕbest. We decide if a restart is needed after finishing

62 Reducing Wiring in Data Centers. A Simulated Annealing Approach

all the iterations at a certain temperature. A restart occurs with probability

P (restart) = 1− e(− |ϕ
∗−ϕbest|
ϕbest

T (0)
T (k)

γ)
,

where T (0) and T (k) are the initial and current temperatures, and γ is a tuning parameter that

depends on the size of the graph.

4.2.3.8 Termination Criteria

We use two termination criteria. Our algorithm will stop when (1) T (k) goes below a pre-

defined temperature threshold Tth or when (2) the percentage of accepted moves improving ϕ∗

while at temperature T (k) goes below a second predefined threshold Pth. The values for these

thresholds depend on the size of the graph.

4.3 Evaluation of JAM

In this section we present the results obtained for a set of benchmark instances ran in order

to evaluate JAM’s performance. Ideally, we would have used a set of instances for which we

had results in multiple dimensions. However, due to non-existence, to the best of our knowledge,

of such a set of instances, we used graphs belonging to benchmarks from the minLA and QAP

literature. Our intention, however, is two-fold. First, we want to create such a collection of

instances so they can be used in future MAP works as benchmark. Second, by running these

graphs in 1 and 2 dimensions, we are broadening the available number of instances and results

for both minLA and QAP benchmark collections.

JAM results for graphs from both collections of instances are presented in Tables 4.1, 4.2, 4.3

and 4.4. We provide two different results for 2 dimensions. First, with either |V ′| = |V | or the

original configuration (for the case of QAPLIB instances). Second, for a more compact layout

allowing that |V ′| ≥ |V |. The BKV (Best Known Value) and a δ (the difference between JAM’s

result and the BKV in percentage) are provided when a BKV is available. In particular, they are

given for 1 dimension results in Table 4.1 and for the first results in 2 dimensions in Table 4.4.

For the 3-dimensional host graphs we chose the number of nodes in each dimension so that the

number of empty locations is minimized. In these tables R, C and D denote the number of nodes

in the respective dimensions of H (the letters come from rows, columns and depth).

We provide results for 81 different graphs. We ran JAM a minimum of 5 times per instance,

for the sake of statistical significance. We used different configurations that depended on the

number of edges of the graph. In particular, the parameters being changed were the predefined

number of iterations per temperature, Tth, Pth and γ. The values used can be found in Table 4.5.

Other parameters used during the experiments which fixed for all the graph instances were the

probability pN , fixed at a 0.9; λ, which was fixed to 0.1; and Ts, which was fixed to 2 · |V |.

4.3 Evaluation of JAM 63

Table 4.1: Results for the minLA benchmark instances with 1 & 3 dimensions

Graph |V | |E| 1D 3D
BKV δ Cost R C D Cost

bcspwr01 39 46 106 0% 106 2 4 5 50
bcspwr02 49 59 161 0% 161 2 5 5 66
bcspwr03 118 179 [588, 679] -2,50% 662 4 5 6 225
bcsstk01 48 176 1132 1,77% 1152 2 4 6 314
bcsstk02 66 2145 47916 -0,02% 47905 2 3 11 10945
bcsstk04 132 1758 [27569, 29804] 0,03% 29812 3 4 11 5192
bcsstk05 153 1135 [9653, 11057] 0,02% 11059 2 7 11 2895
bcsstk22 110 254 - - 981 2 5 11 353
bintree10 1023 1022 3696 0% 3696 3 11 31 1098
c1y 828 1749 62230 0.33% 62436 6 6 23 3962
can 144 144 576 [2304, 3224] 0% 3224 4 6 6 990
can 161 161 608 [5657, 6696] 0% 6696 4 6 7 1012
can 24 24 68 210 0% 210 2 3 4 98
can 61 61 248 1137 0% 1137 3 3 7 425
can 62 62 78 [187, 212] -0,94% 210 3 3 7 84
can 73 73 152 [971, 1100] 0% 1100 3 5 5 229
can 96 96 336 [2105, 2702] 0% 2702 4 4 6 525
curtis54 54 124 454 0% 454 3 3 6 179
dwt 162 162 510 [2032, 2431] 0,25% 2437 3 6 9 766
dwt 209 209 767 [5905, 6387] 20,78% 7714 5 6 7 1258
dwt 221 221 704 [3603, 3779] -0,13% 3774 5 5 9 1062
dwt 245 245 608 [3422, 3860] 4,53% 4035 5 7 7 920
dwt 59 59 104 289 0% 289 3 4 5 128
dwt 66 66 127 192 0% 192 2 3 11 159
dwt 72 72 75 167 0% 167 3 4 6 80
dwt 87 87 227 932 0% 932 2 4 11 334
fidap005 27 126 414 0% 414 3 3 3 242
fidapm05 1003 0% 1003 2 3 7 487
gd95c 62 144 506 0% 506 3 3 7 210
gd96b 111 193 1416 0% 1416 4 4 7 380
gd96c 65 125 519 0% 519 2 3 11 166
gd96d 180 228 2391 0% 2391 5 6 6 382
ibm32 32 90 485 0% 485 2 4 4 155
impcol b 59 281 [1810, 2076] 0% 2076 3 4 5 588
lunda 147 1151 [10772, 11323] 0,03% 11326 3 7 7 2483
lundb 147 1147 [10712, 11187] 0,04% 11192 3 7 7 2452
mesh33x33 1089 2112 31729 3,03% 32693 9 11 11 2764
nos4 100 247 1031 0% 1031 4 5 5 367
pores 1 30 103 383 0% 383 2 3 5 147
RandomA1 1000 4974 866968 3,00% 892986 10 10 10 26757
RandomA2 1000 24738 6522206 0,44% 6550805 10 10 10 196135
steam3 80 424 1416 0% 1416 4 4 5 842
tub100 100 148 246 0% 246 4 5 5 152
will57 57 127 335 0% 335 2 5 6 180

64 Reducing Wiring in Data Centers. A Simulated Annealing Approach

Table 4.2: Results for the minLA benchmark instances with 2 dimensions

Graph |V | |E| 2D
R C Cost R C Cost

bcspwr01 39 46 3 13 57 5 8 51
bcspwr02 49 59 7 7 72 -
bcspwr03 118 179 2 59 384 10 12 255
bcsstk01 48 176 6 8 384 -
bcsstk02 66 2145 6 11 12155 8 9 11505
bcsstk04 132 1758 11 12 7126 -
bcsstk05 153 1135 9 17 11060 11 14 3508
bcsstk22 110 254 10 11 374 -
bintree10 1023 1022 31 33 1231 32 32 1233
c1y 828 1749 23 36 5760 27 31 5752
can 144 144 576 12 12 1058 -
can 161 161 608 7 23 1371 12 14 1253
can 24 24 68 4 6 98 -
can 61 61 248 1 61 1137 7 9 485
can 62 62 78 2 31 130 7 9 90
can 73 73 152 1 73 1100 7 11 284
can 96 96 336 8 12 600 9 11 599
curtis54 54 124 6 9 194 7 8 191
dwt 162 162 510 9 18 812 12 14 814
dwt 209 209 767 11 19 1588 14 15 1653
dwt 221 221 704 13 17 1184 15 15 1176
dwt 245 245 608 7 35 1143 15 17 1054
dwt 59 59 104 1 59 289 7 9 134
dwt 66 66 127 6 11 164 8 9 163
dwt 72 72 75 8 9 78 -
dwt 87 87 227 3 29 448 8 11 384
fidap005 27 126 5 6 250 -
fidapm05 6 7 545 -
gd95c 62 144 2 31 318 7 9 233
gd96b 111 193 3 37 602 10 12 461
gd96c 65 125 5 13 196 8 9 188
gd96d 180 228 12 15 518 13 14 517
ibm32 32 90 4 8 192 5 7 183
impcol b 59 281 1 59 2076 7 9 713
lunda 147 1151 7 21 2866 11 14 2802
lundb 147 1147 7 21 2836 11 14 2787
mesh33x33 1089 2112 33 33 2112 -
nos4 100 247 10 10 424 -
pores 1 30 103 5 6 167 -
RandomA1 1000 4974 25 40 57855 29 35 57436
RandomA2 1000 24738 25 40 427480 29 35 415460
steam3 80 424 8 10 946 -
tub100 100 148 10 10 158 -
will57 57 127 3 19 218 7 9 187

4.3 Evaluation of JAM 65

Table 4.3: Results for the QAPlib benchmark instances with 1 & 3 dimensions

Graph |V | |E| 1D 3D
Cost R C D Cost

nug12 12 45 1000 2 2 3 524
nug14 14 68 1866 2 2 4 920
nug15 15 75 2186 2 2 4 1030
nug16a 16 93 3050 2 2 4 1398
nug16b 16 84 2400 2 2 4 1130
nug17 17 101 3388 2 3 3 1466
nug18 18 113 3986 2 3 3 1646
nug20 20 141 5642 2 2 5 2352
nug21 21 137 5084 2 3 4 1988
nug22 22 153 6184 2 3 4 2344
nug24 24 185 8270 2 3 4 2938
nug25 25 200 9236 3 3 3 3100
nug27 27 233 11768 3 3 3 3802
nug28 28 251 13090 2 3 5 4302
nug30 30 293 16502 2 3 5 5240
scr12 12 28 42776 2 2 3 30490
scr15 15 42 80862 2 2 4 49968
scr20 20 62 183270 2 2 5 101686
sko100a 100 3431 757188 4 5 5 103176
sko100b 100 3414 771792 4 5 5 104186
sko100c 100 3372 736510 4 5 5 100438
sko100d 100 3367 747542 4 5 5 101452
sko100e 100 3366 745104 4 5 5 101330
sko100f 100 3377 746562 4 5 5 100922
sko42 42 603 51050 2 3 7 13758
sko49 49 811 81964 2 5 5 18856
sko56 56 1061 128106 2 4 7 28396
sko64 64 1386 193878 4 4 4 34962
sko72 72 1781 278408 3 4 6 48800
sko81 81 2274 410562 3 3 9 73022
sko90 90 2771 547124 3 5 6 82248
ste36a 34 172 20574 3 3 4 8226
tho150 150 4732 48711062 5 5 6 5088332
tho30 30 217 348124 2 3 5 109408
tho40 40 312 729452 2 4 5 192988
wil100 100 4459 1372700 4 5 5 184756
wil50 50 1099 163508 2 5 5 37090

66 Reducing Wiring in Data Centers. A Simulated Annealing Approach

Table 4.4: Results for the QAPlib benchmark instances with 2 dimensions

Graph |V | |E| 2D
R C BKV δ Cost R C Cost

nug12 12 45 3 4 578 0% 578 -
nug14 14 68 3 5 1014 0% 1014 -
nug15 15 75 3 5 1150 0% 1150 -
nug16a 16 93 4 5 1610 0% 1550 4 4 1550
nug16b 16 84 4 4 1240 0% 1240 4 4 1240
nug17 17 101 4 5 1732 0% 1672 3 6 1672
nug18 18 113 4 5 1930 0% 1900 3 6 1900
nug20 20 141 4 5 2570 0% 2570 -
nug21 21 137 3 7 2438 0% 2438 4 6 2270
nug22 22 153 2 11 3596 0% 3596 4 6 2742
nug24 24 185 4 6 3488 0% 3488 -
nug25 25 200 5 5 3744 0% 3744 -
nug27 27 233 3 9 5234 0% 5234 5 6 4612
nug28 28 251 4 7 5166 0% 5166 5 6 4988
nug30 30 293 5 6 6124 0% 6124 -
scr12 12 28 3 4 31410 0% 31410 -
scr15 15 42 4 4 51140 0% 51140 -
scr20 20 62 5 4 110030 0% 110030 -
sko100a 100 3431 10 10 152002 0,016% 152026 -
sko100b 100 3414 10 10 153890 0,005% 153898 -
sko100c 100 3372 10 10 147862 0% 147862 -
sko100d 100 3367 10 10 149576 0,011% 149592 -
sko100e 100 3366 10 10 149150 0,008% 149162 -
sko100f 100 3377 10 10 149036 0,005% 149044 -
sko42 42 603 6 7 15812 0% 15812 -
sko49 49 811 7 7 23386 0% 23386 -
sko56 56 1061 7 8 34458 0% 34458 -
sko64 64 1386 8 8 48498 0% 48498 -
sko72 72 1781 8 9 66256 0% 66256 -
sko81 81 2274 9 9 90998 0% 90998 -
sko90 90 2771 9 10 115534 0% 115534 -
ste36a 34 172 2 17 9526 0% 9526 5 7 9258
tho150 150 4732 10 15 8133398 0,114% 8142732 12 13 7926106
tho30 30 217 3 10 149936 0% 149936 5 6 128772
tho40 40 312 4 10 240516 0% 240516 6 7 232752
wil100 100 4459 10 10 273038 0% 273038 -
wil50 50 1099 5 10 48816 0% 48816 7 8 45672

4.4 Conclusions 67

Table 4.5: Parameters used depending on the number of edges of the graph

Parameter # Edges
≤ 500 ≤ 1000 ≤ 5000 ≤ 10000 ≥ 10000

Iterations per Temperature 2 · 105 2 · 106 2.5 · 106 3 · 106 3.5 · 106

Tth 0.25 0.5 0.75

Pth 0.125 0.075 0.05

Restart Factor γ 0.3 0.5 1 1.5

4.3.1 Numerical Results

There are three types of best known values (BKV) that can be found in Tables 4.1, 4.2, 4.3

and 4.4. The first ones are optimal results (in boldface); the second ones are values computed by

heuristics and, hence, we do not know whether they are optimal or not. Finally we have instances

for which only upper and lower bounds are found in the literature and are represented with a

range of values. The BKVs from Table 4.1 come from works [139] and [142] and the upper/lower

bounds from [43] and [44]. On the other hand, the BKVs from Table 4.4 come from [55, 71, 119,

150]. The results shown in Tables 4.2 and 4.3, as well as the ones from the aforementioned tables

which are not accompanied by a BKV value belong to new instances devised to work as new

benchmark instances for MAP.

These results show that JAM is capable of matching most of the BKVs for the evaluated

instances. Moreover, JAM even improved some of the results found in [44] for some minLA

instances. The remarkable aspect of matching and improving some of these results is that, while

they were achieved by heuristics devoted and optimized for a particular problem, JAM is able

to perform with very competitive results with benchmark instances from multiple problems and

in multiple dimensions. This fact also allows us to propose different layouts, enabling extra

locations, that let us find layouts for which the evaluated graphs would reduce their costs. This

means that, for an unconstrained real problem, we would be able to propose a layout with more

locations than facilities and aim to find the best possible arrangement.

4.4 Conclusions

In this chapter we have presented the JAM algorithm for the Multidimensional Arrangement

Problem. We have tested its practicality with benchmarks from the minLA and QAP literature.

The results obtained with JAM often match the best known results and even improve some of

them. Our experiments provide results for 1, 2 and 3 dimensions for 81 different graphs, broaden-

ing the available instances for both minLA and QAP as well as creating a valid set of benchmark

instances for MAP.

Part III

Understanding and Reducing Energy
Consumption in Data Centers

69

Chapter 5

Incorporating Rate Adaptation to
Green Networking

5.1 Overview

This chapter is devoted to study and present some of the possible benefits that rate adaptation

can bring to data center networking. Although we don’t have the required technology available

yet, some devices, like Infiniband devices [4], are already mimicking some of the aspects that are

needed to use rate adaptation in Data Center Networks (DCN).

We start by presenting the energy-efficient routing problem we are dealing with. Then, mak-

ing some realistic assumptions, we provide a formal model to describe how rate adaptation can be

used in DCNs. However, we can easily find, analyzing the model, that our problem is NP-hard,

in fact, it can be reduced to the edge-disjoint-path problem, a well known NP-hard problem.

This hardness comes from two different places, our non-convex objective function and a bi-

nary variable. Hence, we propose a two step relaxation process where we first study how to

appropriately replace the step cost function with a polynomial cost function of the type µxα; and,

afterwards, replace our binary variable with a real one. Thanks to this two-step relaxation we are

able to approximate the problem within a constant ratio to the optimum.

We will finally validate the performance of our algorithm by carrying out extensive simula-

tions and finding how much energy savings can we get by applying rate adaptation to Data Center

Networks. These simulations will be performed using real and synthetic traces as well as over

different data center topologies, namely, a Fat Tree, BCube and Dcell.

RoadMap The remainder of this chapter is organized as follows. Section 5.2 models the rate-

adaptive energy-efficient routing problem and analyzes the hardness of solving it. Section 5.3

presents our main algorithm and shows that the proposed algorithm can approximate the optimal

solution within a constant factor. Section 5.4 verifies the performance of the proposed algorithm

by simulations. Section 5.5 concludes the chapter.

71

72 Incorporating Rate Adaptation to Green Networking

5.2 Problem Description

We describe the rate-adaptive energy-efficient routing problem in detail in this section. We

provide a formal model and analyze its complexity.

5.2.1 Basic Assumptions

We restrict our attention on communication intensive data centers such as MapReduce systems

due to the following reasons: the network traffic in those systems is more considerable; because

the energy consumption is also quite remarkable in these systems; and because it also more fea-

sible to predict traffic with more accuracy. Also we do not claim any novelty and contribution on

the system architecture and implementation as they can be simply adapted from ElasticTree [87].

Recall that in Elastic Tree, there are three main components: optimizer, power control and rout-

ing. The optimizer in Elastic Tree is responsible for finding network subset satisfying the current

traffic conditions such that the power is minimized, while in our system it is replaced by solv-

ing the rate-adaptive energy-efficient routing problem, providing routes for flows and appropriate

operating rates for network devices, as we will explain in detail later in this chapter. Similarly

the power control in our system aims to control the operating rates of ports, links, and switches

instead of toggling them on and off, while routing remains the same as in Elastic Tree.

5.2.2 Modeling

Now we describe the rate-adaptive energy-efficient routing problem that the optimizer aims

at solving. Consider a data center network G = (V,E), where V is the set of nodes and E is the

collection of edges. Here nodes represent the chassises of network devices, while edges represent

the network links and the corresponding link cards. In order to simplify the presentation, we

consider the case where all the network devices used in a data center network are identical with

the same technical specification, since data center networks such as FatTree, BCube are usually

homogeneous. All the edges in E are assumed to have the capability of adapting their operating

rates according to their carried traffic loads. It is quite reasonable that manufactures will provide

many different operating rates in future network devices, due to the trend of being green. Assume

we have given m discrete rates R = (r1, r2, ..., rm) for all the edges in E, where ri < ri+1 for

i ∈ [1,m − 1]. Each rate ri ∈ R (1 ≤ i ≤ m) has a cost defined by function f(ri) which is

uniform in the network, representing the power consumed by edge e when working at rate ri.

We have a set of traffic demands D = (d1, d2, ..., dk) to be routed on G. For the i-th demand,

a di units of bandwidth are requested to be provisioned from a source node si to a destination node

ti. For the simplicity of exposition, we first consider unit demands, i.e., di = 1 for i ∈ [1, k]. We

will show later that the proposed algorithm can be adapted to other kinds of demands (uniform

and non-uniform). In order to avoid packet reordering, we assume that all the demands will be

routed in an unsplittable way, i.e., follow a single path (one TCP flow). The total cost of the

5.2 Problem Description 73

network is defined as the summation of the costs of all the edges, which can be formalized as

C =
∑
e∈E

Ce =
∑
e∈E

f(ze) (5.1)

where ze is the operating rate chosen for edge e. This cost represents the total power consumption

of the whole network. The rate-adaptive energy-efficient routing problem now can be formulated

with the following integer program.

(P1) min C =
∑

e∈E f(ze)

subject to

xe =
∑

i ϕi,e ∀e
xe ≤ ze ∀e
ze ∈ {r1, r2, ..., rm} ∀e
ϕi,e ∈ {0, 1} ∀i, e
ϕi,e : flow conservation

where ϕi,e is an indicator to show whether the i-th demand will be routed through link e which

follows the flow conservation. Flow conservation means that for the i-th demand, the source si
generates a flow of di (1 in this case) units and the sink absorbs it. For any other vertices, the

ingress and egress flows are the same. xe and ze are the total load and the chosen operating rate

for edge e respectively. For any rate ze ∈ {r1, ..., rm}, we have f(xe) = f(ze) if we choose

ze such that xe ≤ ze. In other words, if we have rj−1 < xe ≤ rj , then f(xe) = f(rj), which

inevitably results in the discreteness of the power cost function. In fact, f(x) is a non-decreasing

step function of the amount of the total traffic going through an edge.

Not surprisingly, solving P1 is NP-hard, due to the fact that the objective function C is not

convex. Moreover, it is also impossible to achieve any finite ratio approximation for this problem.

This can be proved by a reduction from the edge-disjoint-path problem. Specifically, we can

prove that any algorithm that gives a finite approximation ratio for (P1) can be used to solve the

edge-disjoint-path problem in polynomial time. This contradicts the fact that the edge-disjoint-

path problem is NP-hard and have no polynomial time algorithms as long as P6=NP. A detailed

proof is provided in [163]. Observe that in this proof we use a step function f(·) with unbounded

step ratios, which is exactly where the inapproximability comes from. Actually, a constant bound

for step ratios can be assumed as the power consumption of network devices is usually bounded

in reality. For this reason, we adopt this assumption in the rest of the chapter. Note that even so,

the problem remains NP-hard and we have no hope on finding the optimal solutions. We aim at

approaching efficient approximations.

74 Incorporating Rate Adaptation to Green Networking

5.3 Approximation

We present our main algorithm, a constant ratio approximation for solving the rate-adaptive

energy-efficient routing problem. The main idea of this approximation algorithm is transforming

program (P1) into a standard convex program and solve it with convex programming, which is

inspired by the observation that the complexity of the problem comes from the non-convexity of

the cost function f(·). To this end, a two-step relaxation and rounding process is introduced in

this algorithm. The algorithm solves the problem guaranteeing a constant approximation ratio.

The details of the proofs of Theorems 9,10, and 11 belong to the work of Wang et al. and can be

found in [163].

5.3.1 Relaxations

The first relaxation is made on the step function f(·). We try replacing f(·) with a convex

function g(·) while introducing a bounded error. This transformation is accomplished by a special

interpolation method.

Before introducing the interpolation, choosing an appropriate form for g(·) is essential as

our goal is to determine the expression of g(·). Since function f(·) is the power curve of a

network device, the target function g(·) should satisfy the basic properties of the way power

being consumed by network devices. It has been suggested in [13] that most network components

consume energy in a superadditive manner. Here we omit the idle power as the chassis of network

devices are not considered in our model. Nevertheless, the idle power can be handled by the

power-down based energy saving approaches which can be integrated with our model friendly.

More formally, we set g(·) to be a polynomial function µxα where µ and α are constant associated

with the network devices. The constant α is usually assumed to be in (1, 3] [40]. As a result,

function g(·) will be convex and replacing f(·) with g(·) will simplify program (P1).

Now the problem is how to determine parameters µ and α, with which the exact expression

of g(·) can be obtained. We introduce an interpolation method for it. In order to contain the

interpolation error, we devise a new interpolation method which aims at minimizing the difference

between the two functions. As we have discussed in the previous section, function f(·) is defined

as

f(x) =

p1, 1 ≤ x ≤ r1,

p2, r1 < x ≤ r2,

...

pm, rm−1 < x ≤ rm,

(5.2)

where pi = f(ri) is the power consumption of an edge with operating rate ri. ri and ri+1

represent the lower and upper boundaries of each operating rate. Then, the interpolation is carried

5.3 Approximation 75

out by minimizing the maximal ratio between f(·) and g(·) which given by the following formula.

∆(µ, α) = max
x∈[1,rm]

{
f(x)

g(x)
,
g(x)

f(x)

}
. (5.3)

It is reasonable to restrict x to interval [1, rm] as f(0) = g(0) and in any feasible integral solution,

x 6∈ (0, 1). As g(·) is not linear, this minimization problem is hard to tackle. But it can be ob-

served that g(·) becomes linear if we apply a logarithmic transformation on it, as well as ∆(µ, α).

Then, it is equivalent to minimize

Φ(µ, α) = max
x∈[1,rm]

| log f(x)− log g(x)| (5.4)

= max
x∈[1,rm]

| log f(x)− (logµ+ α log x)| (5.5)

Nevertheless, the absolute operation becomes an obstacle. We propose to use an alternative,

minimizing the integral of the square of the difference between the two functions. Let v = log x

and q = log f(x). Then, we have vi = log ri and qi = log pi for 1 ≤ i ≤ m. We set v0 = log 1 =

0 and λ = logµ. Then, the alternative we aim to minimize is

Ψ(λ, α) =
m∑
i=1

∫ vi

vi−1

(qi − (λ+ αv))2 dv. (5.6)

The parameters λ and α can then be obtained by minimizing the above formula, which can be

achieved by setting the first derivatives of Ψ(λ, α) with respect to λ and α to zero. This is due to

the fact that minimizing Ψ(λ, α) is a quadratic optimization problem and its second derivatives

are all positive.

We define the error in this interpolation as the maximum ratio between f(·) and g(·), i.e.,

∆(µ, α). We also assume that g(·) intersects with f(·) in every step of f(·), which is quite

reasonable because g(·) is assumed to be a proper description of the superadditive fashion power

being consumed. If not, there could be a big difference in trend between f(·) and g(·) and we

cannot obtain any bounds. In other words, this would mean that the superadditive rule doesn’t

apply to this network. Combining with our another assumption that the ratio of the steps of f(·)
is bounded by a constant, we have the following result.

Theorem 9. Given function f(x), if f(x) satisfies pi/pi−1 ≤ δ where δ > 1, then in interval

[1, rm], the interpolation error satisfies

δ

δ + 1
≤ ∆(µ, α) ≤ max{δ, f(1)}

µ
. (5.7)

The proof is conducted by considering two cases f(x) ≥ g(x) and f(x) < g(x). In both

cases we assume there is a bound for the interpolation error, and then we derive the conditions

that this bound needs to satisfy in order to maintain the bound.

76 Incorporating Rate Adaptation to Green Networking

With function g(·) determined, a new program is then obtained by replacing f(·) with g(·) in

the objective of (P1).

(P2) min C̄ =
∑

e∈E g(xe)

subject to

xe =
∑

i ϕi,e ∀e
xe ≤ rm ∀e
ϕi,e ∈ {0, 1} ∀i, e
ϕi,e : flow conservation

where the second constraint means that no edge can be loaded beyond its maximum operating

rate. However, solving (P2) is still NP-hard because of the binary constraint.

Note that (P2) is a convex program with binary variable ϕi,e. It is then obvious that (P2) can

be optimally solved if we relax the binary variable to real values. By replacing constraint ϕi,e ∈
{0, 1} with ϕi,e ∈ [0, 1], the resulted program can be efficiently solved by convex programming

algorithms. We denote the solution obtained by convex programming, the optimal fractional

solution, as ϕ∗i,e. Notice that in this solution, a demand can be splitted over multiple paths, which

is not feasible to our problem. We will show how to transform the optimal fractional solution to a

feasible one to (P1) by rounding operations.

5.3.2 Roundings

We introduce now some rounding techniques in order to retrieve feasibility from the optimal

fractional solution. The rounding process contains two main steps which correspond to the two

steps in the relaxation process. We will show that a feasible solution that is within a constant

factor of the optimal can be obtained for the original problem by applying the proposed two-step

rounding process.

The first rounding step is performed to convert the routes for demands from multi-path to

single-path. Recall that in the optimal fractional solution ϕ∗i,e, we may have more than one path

for routing each demand. Our goal is to choose a single path Pi for each demand di such that

{e | e ∈ Pi} ⊆ {e | ϕ∗i,e > 0}. To this end, we borrow here the Raghavan-Thompson randomized

rounding technique. The overall rounding procedure is described as follows: once the optimal

fractional solution ϕ∗i,e has been found, the flows assigned to edges are mapped to paths. For each

demand di, we construct a graph Gi using the edge that satisfy ϕ∗i,e > 0 and their corresponding

nodes. Then, we extract a simple path A connecting the source and destination nodes. The edge e

that has the smallest ϕ∗i,e in this path will be chosen as the bottleneck edge and the corresponding

ϕ∗i,e is selected as the weight of this path, denoted as WA. After that, the weight of every edge on

this path will be decreased by WA, i.e., We ←We−WA for all e ∈ A. The above path extraction

operation will be repeated until ϕi,e = 0 for all e ∈ E. Note that this will always happen due to

the flow conservation constraint. As a result, for this demand, we have obtained a collection of

5.4 Evaluation 77

paths {A} attached with weights {WA}. We then randomly select one path from all the candidate

paths {A} using the path weights as the selection probabilities. This selected path will be used

as the route for demand di. When all the demands have been processed, we denote the obtained

solution as ϕ̂i,e.

The operating rate of each edge can then be determined according to the load each edge carries

which is calculated by x̂e =
∑

i∈[1,m] ϕ̂i,e. Then, the minimum speed in R that can support this

load is selected for this edge to operate. Formally, we choose

ze = min{ri ∈ R | i ∈ [1,m] ∧ x̂e ≤ ri}. (5.8)

Denote the solution obtained after this rounding procedure as ϕi,e, which is feasible for our orig-

inal problem (P1). At the same time, we have the following theorem.

Theorem 10. For unit demands, the expected power consumption obtained by the two-step relax-

ation and rounding algorithm is a γ-approximation of the expected optimal power consumption,

where γ is a constant that depends on σ and δ.

The proof of this theorem can be conducted by analyzing the error introduced in each step

and combining them together. We omit the details here. This result can also be extended to cases

with uniform and non-uniform demands. Specifically, we have

Corollary 13. The two-step relaxation and rounding algorithm can guarantee a γ-approximation

for the rate-adaptive energy-efficient routing problem with uniform demands.

Theorem 11. For non-uniform demands, the two-step relaxation and rounding algorithm can

achieve a O(logα−1 d)-approximation for the rate-adaptive energy-efficient routing problem,

where d = maxi∈[1,k] di.

For the case with uniform demands, Theorem 10 can be easily extended by normalizing all

the demands to unit demands, while the case with non-uniform demands needs some results from

[13].

5.4 Evaluation

We carry out comprehensive simulations to evaluate the performance of our proposed al-

gorithm in this section. Particularly, we will focus on four main aspects: interpolation error,

approximation ratio, potential energy saving effect and delay stretch.

5.4.1 Experimental Settings

We use a synthetic power function f(·) which we believe is similar to the fashion power

being consumed by future rate-adaptive commodity network devices, as shown in Figure 5.1. The

maximum operating rate of network devices is set to be 60 units. We also believe that the precise

78 Incorporating Rate Adaptation to Green Networking

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50 60

P
ow

er
 c

on
su

m
pt

io
n

(E
4)

Number of demands

f(x)
g(x)

Figure 5.1: The synthetic power function f(·) and the convex alternative g(·) obtained by the
proposed interpolation.

Table 5.1: Main parameters for the three topologies

Topology # of hosts # of switches # of links
FatTree 128 80 384
BCube 144 24 288
DCell 132 12 198

form of f(·) can be easily obtained from vendors in the future. The alternative convex function

g(·) is obtained by applying the interpolation method we proposed in section 5.3.1, as also shown

in Figure 5.1.

We carry out the validation for both interpolation error and approximation ratio basing on

two topologies in different scales, 4-ary and 20-ary FatTree. The number of demands are varied

from on to six times the number of physical machines in each topology. The source and desti-

nation nodes of these demands are chosen uniformly at random from these physical machines,

while the bandwidth each demand requests is generated randomly following a normal distribution

N (1, 0.2).

The efficiency of energy saving of our algorithm is verified with both synthetic traffic condi-

tions and real network traces. In both cases, the numbers of physical machines are chosen as 128

which is determined by the real network traces. We conduct our simulations using three popular

kinds of data center network topology: FatTree, BCube and DCell. The detailed parameters of the

three topologies are demonstrated in Table 5.1. These parameters are determined by the topology

characteristics and our requirement that at least 128 physical machines have to be involved. The

traffic condition for the synthetic testing is generated using the same setting as described before,

while for the real testing it is extracted from a university data center [35]. The traffic patterns of

the real network traces is worth 15 minutes long and the endpoints in the traces are mapped to the

three topologies we use.

5.4 Evaluation 79

 0

 2

 4

 6

 8

 10

 12

 0 1 2 3 4 5 6 7

R
el

at
iv

e
er

ro
r (

%
)

Number of demands (times #machines)

4-ary
20-ary

(a)

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 1 2 3 4 5 6 7

A
pp

ro
x.

 ra
tio

Number of demands (times #machines)

4-ary
20-ary

(b)

Figure 5.2: Simulation results for testing (a) the interpolation error and (b) the approximation
ratio of the proposed algorithm based on two topologies: 4-ary and 20-ary FatTree.

5.4.2 Interpolation Error

We verify the interpolation error in this subsection since the effectiveness of the interpolation

will condition heavily the whole algorithm. Although we have already proved that this error is

bounded by some constant, the simulation results will help us know that the error occurred in the

interpolation is also ignorable in practice. Here we define the relative error as

|Eg − Ef |
Ef

× 100%, (5.9)

where Ef is the power consumption under f(·) while Eg is the power consumed under g(·). As

we cannot solve the routing problem under f(·) efficiently, we propose to use the shortest-path

routing algorithm instead. This is reasonable because the interpolation does not reply on the

routing method. The shortest path routing is accomplished by Dijkstra algorithm. We calculate

Ef and Eg with power curve f(·) and g(·) respectively when routing demands in shortest path

manner.

The simulation results are shown in Figure 5.2(a), where all the values are averaged among

ten independent repeats. We can observe that the interpolation error is quite small in both small-

and large-scale networks, while even smaller in the large-scale network. With the number of

demands increasing, this error decreases dramatically. When the number of demands is large

enough (e.g. four times the number of physical machines), the interpolation error is within 4%

and is around 2% during most of the time. Considering the fact that each physical machine that

is involved in a MapReduce job has to communicate with a set of other physical machines for the

same job, having the number of demands more than four times the number of physical machines

is quite reasonable in communication-intensive systems. This convinces us that the proposed

interpolation method is efficient enough in practice.

80 Incorporating Rate Adaptation to Green Networking

5.4.3 Approximation Ratio

The theoretical analysis has given a strict constant bound for the approximation ratio. Ho-

wever, it is still necessary to understand the goodness when the constant approximation performs

in real data centers. We verify now the approximation efficiency by simulations. Basing on two

topologies of FatTree in different scales, we compare our solution with the optimal fractional so-

lution as the optimal fractional solution is a lower bound for the optimal integral solution. The

obtained ratio between our solution and the fractional optimal solution will be an upper bound for

the approximation ratio.

The simulation results are presented in Figure 5.2(b) where all the values are averaged among

ten independent repeats. It can be noticed that the approximation ratio of the proposed algorithm is

quite small and approximately converges to 1 quickly with the increase of the number of demands,

regardless of the scale of the topology. This confirms that the constant approximation performs

nearly optimally in large-scale data center networks.

5.4.4 Potential Energy Savings

We evaluate now the energy saving efficiency of the proposed routing algorithm when being

applied in real data centers. To be fair, we assume that all the network devices are capable of rate

adaptation no matter what routing algorithm is used. We compare our algorithm with the shortest

path based routing which is a common practice in most networks. We focus on two aspects of

interest - the energy savings and the ratio of idle links (not used for routing any demand). The

energy saving ratio is calculated as the ratio between the energy consumption of our algorithm

and the shortest path based algorithm, while the ratio of idle links is calculated using the number

of idle links divided by the total number of links.

5.4.4.1 Synthetic Traffic

The simulation results under synthetic network traffic are shown in Figure 5.3. It can be

observed that the proposed energy-efficient routing approximation algorithm can achieve up to

60% energy savings in FatTree and more than 30% in both BCube and DCell. Moreover, this

savings tends to be stable with the increase of the number of demands, convincing us that a global

energy-efficient routing optimization can help reduce a substantial amount of power consumption.

We also observe that the link utilization in a data center stays quite low during most of the

time. As shown in Fig. 5.3(b), with a reasonable amount of demands, only 50% of the links are

needed. This reveals that for normal traffic patterns, all the traffic can be carried by only half of

the total links, as a consequence of the high link redundancy in the network.

5.4 Evaluation 81

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7

E
ne

rg
y

sa
vi

ng
s

(%
)

Number of demands (times #machines)

FatTree
BCube

DCell

(a)

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7

Id
le

 li
nk

s
(%

)

Number of demands (times #machines)

FatTree
BCube

DCell

(b)

Figure 5.3: Simulation results for testing the energy saving efficiency using synthetic network
conditions based on three different topologies: FatTree, BCube and DCell.

5.4.4.2 Real Traces

We repeat the above experiments using real traces from a university data center. The numer-

ical results are shown in Fig. 5.4. We can observe that the average energy saving is more than

50% in FatTree, while this value is 30% and 20% in BCube and DCell respectively. This is be-

cause the link redundancy is more significant in FatTree topologies, leading to better efficiency

of the network-global routing optimization. At the same time, the ratios of idle links presented in

Fig. 5.4(b) also proves that we can use about half of the links to carry all the traffic on a real data

center network.

Recall that in our model we do not have any assumption on powering down network devices.

Meanwhile, the rounding process in Equation 5.8 provides some extra capacity for each edge,

leading to better stability in the network while compared with power-down based approaches.

Nevertheless, we claim that our proposed method can also be integrated with power-down based

approaches for the reason that the ratio of idle links in data center networks is usually quite high

as indicated above. As a result, further energy can be saved by switching off these unused links.

5.4.5 Delay Stretch

We now focus on a main aspect of network performance, the network delay. It is quite pos-

sible that the proposed energy-efficient routing will use more hops to route a demand than the

shortest path based routing, bringing about lager network delay, thus the degradation of the net-

work quality of services. In order to justify how bad it can be, we compare the average hops for

routing each demand with the two routing algorithms. This comparison is quite sensible since

the maximum number of hops is bounded by the topology diameter in most data center networks.

The results are illustrated in Fig. 5.5(b). We can notice that the overhead brought by the energy-

efficient routing is always within one hop, being acceptable then. Furthermore, there is no delay

overhead in FatTree topology due to the special hierarchical property of FatTree. As a result,

82 Incorporating Rate Adaptation to Green Networking

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E
ne

rg
y

sa
vi

ng
s

(%
)

Time (min)

FatTree
BCube

DCell

(a)

 40

 50

 60

 70

 80

 90

 100

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Id
le

 li
nk

s
(%

)

Time (min)

FatTree
BCube

DCell

(b)

Figure 5.4: Simulation results for testing the energy saving efficiency using real network traces
based on three different topologies: FatTree, BCube and DCell.

 0
 1
 2
 3
 4
 5
 6
 7
 8

FatTree BCube DCell

N
um

be
r o

f h
op

s

Approx.
SP

(a)

 0
 1
 2
 3
 4
 5
 6
 7
 8

FatTree BCube DCell

N
um

be
r o

f h
op

s

Approx.
SP

(b)

Figure 5.5: The average number of hops for routing each demand under (a) the synthetic traffic,
(b) the real network traces.

it is evident that the energy-efficient routing is capable of reducing energy consumption while

introducing very small stretch to the network delay.

5.5 Conclusions 83

5.5 Conclusions

In this chapter, we have shown the potential of saving energy by introducing rate adaptation

in data center networks. Compared with power-down based approaches, rate adaptation is advan-

tageous because of the better stability when being applied in networks. It has been shown that

network-global optimization is necessary in order to achieve energy proportionality for the whole

network with energy-proportional network devices. However, it is also known that this network-

global optimization problem is usually hard to solve. To this end, we devise an approximation

algorithm basing on a two-step relaxation and rounding process. The proposed algorithm per-

forms very well by obtaining nearly optimal solutions in practice, while guaranteeing a constant

approximation ratio in theory. Comprehensive simulations show that by incorporating rate adap-

tation into data center networks, the network-global routing optimization can bring up to 40%

energy savings, even without switching off any network devices.

Chapter 6

Analysis of the Energy Consumption of
Data Center Servers

6.1 Overview

The work presented in this chapter is motivated by our disagreement with some of the models

that have been previously proposed in the literature which state that power consumption of data

center servers depends linearly on the load. Our belief is that more complex/complete models for

the power consumed by a server are necessary. In order to be consistent, these models have to be

based on empirical values. However, we found that, despite the large body of work in the field,

there is a lack of empirical work studying servers energy behavior.

Our work tries to partially fill this void by proposing a measurement-based characterization —

which is the first of its kind— of the energy consumption of a server components with DVFS and

multiple cores. We evaluate here different server machines and evaluate what is the contribution

to their power consumption of the CPU, hard drive disk, and network card (NIC). Our approach

captures the influence of the processing frequency and the multiple cores, not only to the CPU

power consumption, but also to that of disk input/output (I/O) and NIC activity.

Our contribution is threefold: (i) we propose a methodology to empirically characterize the

energy consumption of a server, (ii) we provide novel, experimental-based, insights on the energy

consumption behavior of the most relevant server’s components, and (iii) we propose an accurate

technique to estimate the energy consumption of cloud applications.

As concerns the methodology, we propose active CPU cycles per second (ACPS) as a new and

more convenient metric for CPU load in multi-core/multi-frequency architectures. We show how

to isolate the contribution of energy consumption due to CPU, disk I/O operations, and network

activity by just measuring server’s total energy consumption and a few activity indicators reported

by the operating system. We also show that the baseline energy consumption of a server — i.e.,

the energy consumed just because the server is turned on — has a strong impact on server’s total

consumption.

85

86 Analysis of the Energy Consumption of Data Center Servers

As concerns the components’ energy characterization, we show that, besides the baseline

consumption, the CPU has the largest impact among all components, and its energy consumption

is not linear with the load. Disk I/O operations are the second highest cause of consumption,

and their efficiency is strongly affected by the I/O block size used by the application. Eventually,

network activity plays a minor yet not negligible role in the energy consumption, and the network

impact scales almost linearly with the network transmission rate. All other components (e.g.,

memory, fans, GPU, etc.) can be accounted for the baseline energy consumption, which is subject

to minor variations under different operational conditions. Specifically, the main results of our

measurement campaign are listed below:

• The CPU power utilization depends on the number of working cores, the CPU fre-

quency, and the CPU load (in ACPS units). Our measurements confirm that the energy

consumption with a single working core at constant frequency can be closely approximated

by a linear function of the CPU load. However, given a CPU frequency, the energy con-

sumption in multicore architectures is a concave function of the CPU load and can be

approximated by a low-order polynomial. The energy consumption for a fixed CPU load

is, in general, minimized by using the highest number of cores and the lowest frequency at

which the load can be served. However, the minimum achievable energy consumption is a

piecewise concave function of the CPU load.

• The energy consumed by hard disks for reading and writing depends on the CPU

frequency and the I/O block sizes. Both reading and writing energy costs increase slightly

with the CPU frequency. While the energy consumption due to reading is not affected

by block size, the energy consumption due to writing increases with the block size. The

reading efficiency (expressed in MB/J) is barely affected by the CPU frequency, while

writing efficiency is a concave function of the block size since it boosts the throughput of

writing until a saturation value is reached.

• The energy consumption and the efficiency of the NIC, both in transmission and re-

ception, depends on the CPU frequency, the packet size, and the transmission rate. The

efficiency of data transmission increases almost linearly with the transmission rate, with

steeper slopes corresponding to lower CPU frequencies. Although a linear relation be-

tween transmission rate and efficiency holds for data reception as well, small packet sizes

yield higher efficiency in reception.

Overall, supported by our measurements, we provide a holistic energy consumption model

that only requires a few calibration parameters for every different server architecture which we

want to evaluate (a universal energy model will be too simplistic and inaccurate). We validate

our model by means of a server computing the PageRank metric of a graph and a WordCount

application in a Hadoop platform, first without network activity, next with bulky network activity,

6.2 Methodology 87

and finally in the cloud. We will find that the error of our energy estimates is below 4.1% on

average and never worse than a 10%.

RoadMap The rest of the chapter is organized as follows. Section 6.2 describes the method-

ology we used for our experiments. Section 6.3 presents our measurement campaign, for every

single component which we tested. In Section 6.4 we model the energy consumption of the

servers based on a few calibration parameters which we find during our measurement campaign.

In Section 6.5 we discuss our findings and their implications. Finally, Section 6.6 concludes the

chapter.

6.2 Methodology

In this section we introduce the measurement techniques we used to characterize the power

requirements of CPU activity, disk access (read and write operations), and network activity. Our

measurements start characterizing the CPU power consumption, from where we obtain informa-

tion about the baseline power consumption of the system. After CPU and baseline characteriza-

tion, we follow with experiments for the other two components, namely, disk and network. Note

that CPU and baseline measurements are of capital importance in order to evaluate the other com-

ponents, because any operation run in a machine is like a puzzle with multiple pieces and we must

know what is the contribution of each one of these pieces. Consider that, we are paying a cost

just for having a server switched on and the operating system running on it. Similarly, every time

we run a task in the system, some CPU cycles are needed in order to execute it as well as to use

the component that has to perform the task. Hence, in order to understand the contribution of any

component, we first need to identify the contribution of the CPU and compute the difference with

respect to the aforementioned baseline.

To explore the possible parameters which determine the power consumption of a server and

to obtain statistical consistency, we run our experiments multiple times. Similarly, we run these

experiments in different servers and architectures in order to validate our results and give consis-

tency to our conclusions.

6.2.1 Collecting System Data and Fixing Frequency Parameters

One prerequisite for our experiments is to have Linux machines due to the kind of commands

and benchmarks we wanted to use and, mainly, because of the possibility of adding some kernel

modules and utilities,1 which allows us to change CPU frequencies at will. In a Linux system,

CPU activity stats are constantly logged, so we can periodically record the core frequency and

the number of active and passive CPU ticks at each core.2 Once we have the number of ticks and

1For instance cpufrequtils, acpi-cpufreq.
2File /proc/stat reports the number of ticks since the computer started devoted to user, niced and system

processes, waiting (iowait), processing interrupts (i.e., irq and softirq), and idle. In our experiments we count both

88 Analysis of the Energy Consumption of Data Center Servers

the core frequency, since a tick represents a hundredth of second, cycles can be calculated as 100

ticks/frequency.

We use active cycles per second (ACPS) instead of CPU load percentage to characterize CPU

load. ACPS on the CPU frequency used, as the higher the frequency the more the work that

can be processed. Hence, a percentage of load is not comparable when different frequencies

are used, while the amount of ACPS that can be processed can be considered as an absolute

magnitude. In order to get (set) information about the operative frequency of the system we used

the cpufrequtils package.3 With those tools, we can monitor the CPU frequency at which

the system works and assign different frequencies to the cores. However, to limit the number of

possible combinations to characterize, we assign the same frequency to all cores.

6.2.2 CPU

In order to evaluate the CPU power requirements we prepared a script based on a benchmark

application, namely lookbusy.4 Note that lookbusy allows us to load one or more CPU

cores with the same load.Our lookbusy-based experiment follows the next steps: we first fix

the CPU frequency to the lowest possible frequency in the system; then we run lookbusy with

fixed amount of load for one core during timeslots of 30 seconds, starting with the maximum

load and then decreasing the load gradually. After the last lookbusy run we measure the power

required during an additional timeslot with no lookbusy load offered. We register the active

cycles and the power used during each timeslot.

After taking these different samples for one frequency we move to the immediately higher

frequency (we can list and change frequencies thanks to cpufrequtils) and repeat the pre-

vious steps. After going through all the available frequencies, we restart the whole process but

increasing by one the number of active cores. We repeat this whole process until all the cores of

the server are active. Note that when we change the frequency of the cores we change it in all of

them, active or not, for consistency. Similarly, when we have more than one active core, the load

for all the active cores is the same.

Once explained the scheme of our experiments, we must clarify the meaning of running a

timeslot with no load. Note that zero-load is clearly not possible as there is always going to be

load in the system due to, e.g., the operating system. However, during the timeslot in which we

do not run lookbusy, we measure the power corresponding to the operational conditions which

are as close as possible to the ones of an idle system. Moreover, the decision of using timeslots

of 30 seconds is to guarantee enough, yet not excessive, time for the measurements. In fact, as

we start and stop lookbusy at the beginning and end of the timeslots, we need to ignore the

first and the last few seconds of measurements in each timeslot to avoid measurement noise due

to power ramps and operational transitions.

waiting and idle ticks as passive ticks, while we denote the aggregated value of the rest of ticks as active.
3https://wiki.archlinux.org/index.php/CPU_Frequency_Scaling
4http://www.devin.com/lookbusy.

https://wiki.archlinux.org/index.php/CPU_Frequency_Scaling
http://www.devin.com/lookbusy

6.2 Methodology 89

The measured values of load (in ACPS) and power in each timeslot are used to obtain a

least squares polynomial fittings curve. These fittings characterize the CPU power requirements

for each combination of frequency and number of active cores. We will use as baseline power

consumption of each one of these configurations the zero-order coefficient of the polynomial of

these fittings curves.

6.2.3 Disks

The power consumption of the hard drive was evaluated using 2 different scripts (for reading

and writing) based on the dd linux command.5 We chose dd as it allows us to read files, write

files from scratch, control the size of the blocks we write (read), control the amount of blocks

written (read) and force the commit of writing operations after each block in order to reduce the

effect of operating system caches and memory. We combine this tool with flushing the RAM and

caches after each reading experiment.

In both our scripts we perform write (read) operations for a set of different I/O block sizes

and for different data volumes to be written (read). In each case we record the CPU active cycles,

the total power and time consumed in each one of these operations for each combination of block

size and available frequency.

Finally, we identify the contribution of the hard drive to the total power required by subtracting

the contribution of both the baseline and the CPU requirements from the measured total power.

Disk I/O experiments shed light on the relevance of the block sizes when reading or writing

as well as whether there is an influence of the frequency on these operations.

6.2.4 Network

In order to evaluate the contribution of the network to the power requirements of a server, we

devised a set of experiments based on a client-server C script devised on purpose for this task.

There are several aspects that we consider relevant in order to characterize the impact of the

NIC on the total power requirements of a server and that led us to choose these two tools. First,

the ability of performing tests in which the server under study acts as sender or as receiver during

a network connection, and therefore we can observe server’s power requirements while sending

data or receiving it. To clarify the terms, sender is the server which injects traffic to the network,

and receiver is the server which accepts traffic from the network. Second, the ability of those

tools to change several parameters that we consider relevant for the energy characterization of the

servers, namely, the packet size and the offered load, jointly with the frequency of the system.

Our experiments consist, then, on measuring the achieved data rate, the CPU active cycles

per second (ACPS) and the total power required by the server under study either as sender or as

receiver using different packet sizes and different transfer rates. We run each experiment multiple

times for statistical consistency.

5http://linux.die.net/man/1/dd.

http://linux.die.net/man/1/dd

90 Analysis of the Energy Consumption of Data Center Servers

Table 6.1: Characteristics of the servers under study

Component Servers
Survivor Nemesis Erdos

CPU (# cores) 4 4 64
freqs 8 11 5

Freqs List (GHz)
1.2, 1.333, 1.467,
1.6, 1.733, 1.867, 2,
2.133

1.596, 1.729, 1.862,
1.995, 2.128, 2.261,
2.394, 2.527, 2.666,
2.793, 2.794

1.4, 1.6, 1.8,
2.1, 2.3

RAM 4 GB 4 GB 512 GB

Disk 2 TB 2 + 3 TB
2× 146GB
4× 1 TB

Network 1 Gbps 3× 1 Gbps
4× 1 Gbps
2× 10 Gbps

Architecture Intel Intel AMD

Finally, using the CPU active cycles per second which were measured during the experiment,

we identify the power required by the CPU. Subtracting both CPU power requirements and the

baseline power from the total energy consumption of the experiment, we can isolate the power

requirements of the network.

6.3 Measurements

6.3.1 Devices and Setup

In order to monitor and store the instantaneous power required by a server during the different

experiments we used a Voltech PM1000+ power analyzer6, which is able to measure the total

instantaneous power required by the server under test on a per-second basis. In order to take our

measurements we connected the server being measured to the power analyzer and the latter to

the power supply. In the experiments where the network was not involved (CPU and disk), we

disconnected the server from the network, which has an impact on the power requirements as the

port goes idle. In the network based experiments we established an Ethernet connection between

the server under study and a second machine in order to study the server behavior, both as receiver

as well as as sender.

We evaluated three different servers: Survivor, Nemesis, and Erdos. We will now

present these servers although their main characteristics, including their sets of available CPU

frequencies, can be also found in Table 6.1. Survivor has an Intel Xeon E5606 4-core proces-

sor, with 4 GB of RAM, a 2 TB Seagate Barracuda XT hard drive and a 1 Gigabit Ethernet card

integrated in the motherboard. Nemesis is a Dell Precision T3500 with an Intel Xeon W3530

4-core processor, 4 GB of RAM, 2 hard drives (a 2 TB Seagate Barracuda XT and a 3 TB Seagate

Barracuda), a 1 Gigabit Ethernet card integrated in the motherboard, and a separate Ethernet card

6http://www.farnell.com/datasheets/320316.pdf

http://www.farnell.com/datasheets/320316.pdf

6.3 Measurements 91

with two 1 Gigabit ports. In this study we only evaluate the Seagate Barracuda XT disk and the

integrated Ethernet card. Both Survivor and Nemesis use the Ubuntu Server edition 10.4

LTS Linux distribution. Finally, Erdos is a Dell PowerEdge R815 with 4 AMD Opteron 6276

16-core processors (i.e., 64 cores in total), 512 GB of RAM, two 146 GB SAS hard drives config-

ured as a single RAID1 system (which is the “disk” analyzed here) and four 1 TB Near-line SAS

hard drives. It also includes four 1 Gigabit and two 10 Gigabit ports. Erdos is a high-end server

and uses Linux Debian 7 Wheezy.

6.3.2 Baseline and CPU

As mentioned in the previous section, for each server we have measured the power it con-

sumes without disk accesses nor network traffic. We assume that the power consumption observed

is the sum of the baseline consumption plus the power consumed by the CPU. We have obtained

samples of the power consumed under different configurations that vary in the number of active

cores used, the frequency at which the CPU operates (all cores operate at the same frequency),

and the load of the active cores (all active cores are equally loaded). The list of available and

tested CPU frequencies and cores can be found in Table 6.1. We tune the total load ρ by using

lookbusy, as described in the previous section. Each experiment lasts 30 s and it is repeated

10 times. Results are summarized in terms of average and standard deviation. Specifically, in the

figures reported in this section, the power consumption for each tested configuration is depicted

by means of a vertical segment centered on the average power consumption measured, and with

segment size equal to two times the standard deviation of the samples.

The results of these experiments for each of the 3 servers are presented in Figure 6.1 (the

measurements for some frequencies and some number of cores are omitted for clarity). Here, for

each configuration of number of active cores, frequency, and load in ACPS, the mean and standard

deviation of all the experiments with that configuration are presented. Also the least squares

polynomial fitting curve for the samples is shown for each number of cores and frequency. The

curves shown are for polynomials of degree 7, but we observed that using a degree 3 polynomial

instead does not reduce drastically the quality of the fit (e.g., the relative average error of the fitting

increases from 0.7% with 7-th degree polynomials to 1.5% with degree equal to 3 for Erdos,

while it remains practically stable and below 0.7% for Nemesis). In general, we can use an

expression like the following to characterize the CPU power consumption:

PBC(ρ) =
n∑
k=0

αkρ
k, n ≤ 7, (6.1)

where PBC includes both the baseline power consumption of the servers and the power consumed

by the CPU, and ρ is the load expressed in active cycles per second. Therefore, coefficient α0 in

Eq. 6.1 represents the consumption of the system when the CPU activity tends to 0, and we can

thereby interpret α0 as the baseline power consumption of the system. Note that the polynomial

92 Analysis of the Energy Consumption of Data Center Servers

fitting, and hence the baseline power consumption α0, depends on the particular combination of

number of cores and frequency adopted. However, for sake of readability, we do not explicitly

account for such a dependency in the notation.

A first observation of the fitting curves for each particular server in Figure 6.1 reveals that the

power for near-zero load is almost the same in curves (e.g., for Nemesis this value is between

84 and 85 W). Observe that it is impossible to run an experiment in which the load of the CPU is

actually zero to obtain the baseline power consumption of a server. However, all the fitting curves

converge to a similar value for ρ → 0, which can be assumed to represent the baseline power

consumption.

A second observation is that for one core the curves grow linearly with the load. However,

as soon as two or more cores are used, the curves are clearly concave, which implies that for a

fixed frequency the efficiency grows with the load (we will discuss later the efficiency in terms of

number of active cycles per energy unit).

A third observation is that frequency does not significantly impact the power consumption

when the load is low. In contrast, at high load, the consumption clearly increases with the CPU

frequency. More precisely, the power consumption grows superlinearly with the frequency, for a

fixed load and number of cores. This is particularly evident in the curves characterizing Erdos,

which is the most powerful among our servers.

From the previous figures it emerges that the power consumption due to CPU and baseline

can be minimized by selecting the right number of active cores and a suitable CPU frequency.

Similarly, we can expect that the energy efficiency, defined as number of active cycles per energy

unit, can be maximized by tuning the same operational parameters. We graphically represent the

impact of operation parameters on power consumption and energy efficiency in Figures 6.2 and

6.4 respectively for Nemesis and Erdos (results for Survivor are similar to the ones shown

for Nemesis and are omitted).

In particular, Figures 6.2(a) and 6.4(a) report all possible fitting curves for the power consum-

ption measurements, plus a curve marking the lowest achievable power consumption at a given

load. We name such a curve “minimal power curve” Pmin(ρ), and we observe that (i) it only

depends on the load ρ, and (ii) it is a piecewise concave function, which makes it suitable to

formulate power optimization problems. Finally, to evaluate the energy efficiency of the CPU,

we report in Figures 6.2(b) and 6.4(b) the number of active cycles per energy unit obtained from

our measurements respectively for Nemesis and Erdos. We compute the power due to active

cycles as the power PBC − α0, i.e., by subtracting the baseline consumption from PBC , and we

obtain the efficiency ηC by dividing the load (in active cycles per second) by the power due to

active cycles:

ηC =
ρ

PBC(ρ)− α0
. (6.2)

Also in this case we show the curve that maximizes the efficiency at a given load, which we

name “Maximal efficiency curve” ηmax(ρ). Interestingly, we observe that (i) ηmax(ρ) presents

6.3 Measurements 93

ρ

(a) Survivor

ρ

(b) Nemesis

ρ

(c) Erdos

Figure 6.1: Power consumption of 3 servers (Survivor, Nemesis, and Erdos) for baseline

and CPU characterization experiments.

94 Analysis of the Energy Consumption of Data Center Servers

ρ

ρ

(a) Minimal power.

ρ

η

η ρ

(b) Maximal efficiency.

Figure 6.2: CPU performance bounds of Nemesis.

6.3 Measurements 95

ρ

ρ

(a) Minimal power.

ρ

η

η ρ

(b) Maximal efficiency.

Figure 6.3: CPU performance bounds of Survivor.

96 Analysis of the Energy Consumption of Data Center Servers

ρ

ρ

(a) Minimal power.

ρ

η

η ρ

(b) Maximal efficiency.

Figure 6.4: CPU performance bounds of Erdos.

6.3 Measurements 97

multiple local maxima, (ii) for a given configuration of frequency and number of active cores,

the efficiency is maximized at the highest achievable load, (iii) all local maxima corresponds to

the use of all available active cores, but (iv) the absolute maximum is not achieved neither at the

highest CPU frequency nor at the lowest.

6.3.3 Disks

We now characterize the power and energy consumption of disk I/O operations. During the

experiments, we continuously commit either read or write operations, while keeping the CPU

load ρ as low as possible (i.e., we disconnect the network and we do not run other tasks). Still,

the power measurements obtained during the disk experiments contain both the power used by

the disk and power due to CPU and baseline. Indeed, Figure 6.5 shows, for each experiment, the

total measured power Pt, the power PBC computed according to Eq. 6.1 at the load ρ measured

during the experiment, and the power due to disk operations, computed as:

P xD = Pt − PBC(ρ), x ∈ {r, w}, (6.3)

where superscripts r and w refer to reading and writing operations, respectively. We test sequen-

tially all the available frequencies for each server (see Table 6.1), and I/O block sizes ranging

from 10 KB to 100 MB. Figure 6.5 shows average and standard deviation of the measures over 10

experiment repetitions for each one of our servers. Indeed, it can be easily seen that Survivor

and Nemesis have similar disks and file systems, while Erdos is equipped with SAS disks with

RAID. In all cases shown in the figure, the disk power is small but not negligible with respect to

the baseline consumption. Furthermore, we can observe that the two servers presented behave

differently. Indeed, while the power consumption due to writing is affected both by the block size

B for both machines, we observe that both Nemesis and Survivor’ disk writing power PwD
is not affected by the CPU frequency, while Erdos’ results show an increase with the frequency.

Moreover, the results obtained with Erdos are affected by a substantial amount of variability

in the measurements, which we believe is due to the caching operations enforced by the RAID

mechanism in Erdos.

Similarly to what was described for the CPU, we now comment on the energy efficiencies

ηrD and ηwD of disk reading and writing operations. Figure 6.6 reports efficiency as a function of

the I/O block size, and shows one line per each CPU frequency7. The efficiency is computed by

subtracting the baseline power from the total power, and by measuring the volume V of data read

or written in an interval T :

ηxD =
V

P xDT
, x ∈ {r, w}. (6.4)

We can observe that results are similar for all the servers. Specifically, reading efficiency is almost

constant at any frequency and for each block size, while writing is more efficient with large block

7For readability, results for Survivor are omitted.

98 Analysis of the Energy Consumption of Data Center Servers

sizes. We also observe that the efficiency changes very little with the adopted CPU frequency.

Another observation is that the efficiency saturates to a disk-dependent asymptotic value, which

is due to the mechanical constraints of the disk (e.g., due to the non-negligible seek time, the

number of read/write operations per second is limited). In addition, although not visible in the

figure due to the log-scale adopted, ηwD is a concave function of the block size B.

6.3.4 Network

The last server component that we characterize via measurements is the network card. Sim-

ilarly to the cases described previously, we run experiments in which only the operating system

and our test scripts are active. In this case, we run a script to either transmit or receive UDP

packets over a gigabit Ethernet connection and count the system active cycles ρ. We measure the

total power consumption Pt during the experiment, so that the power due to network activity can

be then estimated as follows:

P xN = Pt − PBC(ρ), x ∈ {s, r}, (6.5)

where superscripts s and r refer to the sender and the receiver cases, respectively.

In the experiments, we sequentially test all the available frequencies for each server (see

Table 6.1), and fix the packet size and the transmission rate within the achievable set of rates

(which depends on the packet size, e.g., < 950 Mbps for 1470-B packets). We report results for

the network energy consumption in terms of efficiencies ηsN and ηrN (volume of data transferred

per unit of energy). These efficiencies are computed as follows:

ηxN =
R

P xN
, x ∈ {s, r}, (6.6)

where R is the transmission rate during the experiment.

Figures 6.7, 6.8 and 6.9 show the network efficiencies of Survivor, Nemesis and Erdos,

respectively, averaged over 5 samples per transmission rate R.8 9 For the sake of readability, the

figures only show results for the biggest and smallest packet sizes, i.e., 64-B and 1470-B packets.

For Nemesis and Survivor we report four CPU frequencies: the lowest, the highest, the

most efficient (according to Figures 6.2(b) and 6.3(b)) and an intermediate one. For Erdos all

five available frequencies are shown. The figure also reports the polynomial fitting curves for

efficiency, which we found to be at most of second order. Since the efficiency is represented in

terms of network activity only, in the fitting we force the zero-order coefficient of the polynomials

to be 0. Therefore, we can use the following expression to characterize the network efficiencies

of our servers:

ηxN = β1R+ β2R
2, x ∈ {s, r}, (6.7)

8Network results are obtained by using a point-to-point Ethernet connection between two controlled servers.
9Due to technical and regulation reasons it was only possible to complete the sender part for Erdos, obtaining

only partial results which, because of this partiality, are not published.

6.3 Measurements 99

10

15

20

80

85

90

95

100

105

1.596
1.729
1.862
1.995
2.128
2.261
2.394
2.527
2.66
2.793
2.794
1.596
1.729
1.862
1.995
2.128
2.261
2.394
2.527
2.66
2.793
2.794
1.596
1.729
1.862
1.995
2.128
2.261
2.394
2.527
2.66
2.793
2.794
1.596
1.729
1.862
1.995
2.128
2.261
2.394
2.527
2.66
2.793
2.794

Frequency [GHz]

Po
w

er
 P

Dr
 [W

]

Measured Power
Disk Power
CPU + BL power

 1 MB 10 KB10 MB100 MB

(a) Power consumption during reading (Nemesis).

0

5

10

15

20

80

85

90

95

100

105

1.596
1.729
1.862
1.995
2.128
2.261
2.394
2.527
2.66
2.793
2.794
1.596
1.729
1.862
1.995
2.128
2.261
2.394
2.527
2.66
2.793
2.794
1.596
1.729
1.862
1.995
2.128
2.261
2.394
2.527
2.66
2.793
2.794
1.596
1.729
1.862
1.995
2.128
2.261
2.394
2.527
2.66
2.793
2.794

Frequency [GHz]

Po
w

er
 P

Dw
 [W

]

Measured Power
Disk Power
CPU + BL power

100 MB 10 MB 1 MB 10 KB

(b) Power consumption during writing (Nemesis).

10

15

20

25

30

75

80

1.2
1.333
1.467
1.6
1.733
1.867
2 2.133
1.2
1.333
1.467
1.6
1.733
1.867
2 2.133
1.2
1.333
1.467
1.6
1.733
1.867
2 2.133
1.2
1.333
1.467
1.6
1.733
1.867
2 2.133

Frequency [GHz]

Po
w

er
 P

Dr
 [W

]

Measured Power
Disk Power
CPU power

100MB 10MB 1MB 10KB

(c) Power consumption during reading (Survivor).

0

5

10

15

52.5

57.5

62.5

67.5

72.5

77.5

1.2
1.333
1.467
1.6
1.733
1.867
2 2.133
1.2
1.333
1.467
1.6
1.733
1.867
2 2.133
1.2
1.333
1.467
1.6
1.733
1.867
2 2.133
1.2
1.333
1.467
1.6
1.733
1.867
2 2.133

Frequency [GHz]

Po
w

er
 P

Dw
 [W

]

Measured Power
Disk Power
CPU power

100MB 10MB 1MB 10KB

(d) Power consumption during writing (Survivor).

65
75
85
95

225
235
245
255
265
275
285
295
305
315
325
335

1.4

1.6

1.8

2.1

2.3

1.4

1.6

1.8

2.1

2.3

1.4

1.6

1.8

2.1

2.3

1.4

1.6

1.8

2.1

2.3

Frequency [GHz]

Po
w

er
 P

Dr
 [W

]

Measured Power
Disk Power
CPU + BL power

100 MB 10 MB 1 MB 10 KB

(e) Power consumption during reading (Erdos).

25
35
45
55
65
75
85
95

235
245
255
265
275
285
295
305
315
325
335
345
355
365
375

1.4

1.6

1.8

2.1

2.3

1.4

1.6

1.8

2.1

2.3

1.4

1.6

1.8

2.1

2.3

1.4

1.6

1.8

2.1

2.3

Frequency [GHz]

Po
w

er
 P

Dw
 [W

]

Measured Power
Disk Power
CPU + BLmpower

100 MB 10 MB 1 MB 10 KB

(f) Power consumption during writing (Erdos).

Figure 6.5: Instantaneous power consumption for reading/writing operations. Results are pre-
sented for every frequency and for 4 different block sizes for each one of our servers.

100 Analysis of the Energy Consumption of Data Center Servers

η

η

Figure 6.6: Disk reading and writing efficiencies for Erdos (red dotted lines) and Nemesis
(blue solid lines).

where the βi coefficients are computed by minimizing the least square error of the fitting.

It can observed in Figures 6.7, 6.8 and 6.9 that efficiencies are almost linear or slightly su-

perlinear with the transfer rate, e.g., the receiving efficiency of Survivor exhibits an evident

quadratic behavior. Indeed, our measurements show that the network power consumption is in-

dependent from the throughput, which is a well known result for legacy Ethernet devices. In

fact, the NICs of our servers are not equipped with power saving features like, e.g., the recently

standardized IEEE 802.3az [92].

In all cases, the efficiency is strongly affected by the selected CPU frequency. Moreover,

efficiency is also affected by packet size, although the impact of packet size changes from server

to server, e.g., Survivor sending efficiency is only slightly affected by it.

Another observation is that, depending on the packet size and frequency used, sending can

be more energy efficient than receiving at a given transmission rate, and using the highest CPU

frequency is never the most efficient solution. Note also that the efficiency decreases with the

packet size, although this effect is particularly evident at the receiver side, while it only slightly

impacts the efficiency of the packet sender. However, network activity also causes non-negligible

CPU activity, as shown in Figure 6.10 for a few experiment configurations for all three servers.

Overall, the lowest CPU frequency yields the lowest total power consumption during network

activity periods.

6.4 Estimating Energy Consumption

While the results presented in the previous sections are useful to understand the energy con-

sumption pattern of CPU, disk and network, we believe that a much more important use of these

results is to estimate the energy consumption of applications. In this section we describe how this

can be done from simple data about the application. Moreover, we validate the proposed approach

6.4 Estimating Energy Consumption 101

η

(a) Receiver efficiency in Survivor when us-

ing 64-B packets.

η

(b) Sender efficiency in Survivor when using

64-B packets.

η

(c) Receiver efficiency in Survivor when us-

ing 1470-B packets.

η

(d) Sender efficiency Survivor when using

1470-B packets.

Figure 6.7: Network efficiencies for Survivor under different frequencies and 64-B and 1470-

B packets.

102 Analysis of the Energy Consumption of Data Center Servers

η

(a) Sender efficiency in Nemesis when using

64-B packets.

η

(b) Sender efficiency in Nemesis when using

64-B packets.

η

(c) Sender efficiency in Nemesis when using

1470-B packets.

η

(d) Sender efficiency in Nemesis when using

1470-B packets.

Figure 6.8: Network efficiencies for Nemesis under different frequencies and 64-B and 1470-B

packets.

6.4 Estimating Energy Consumption 103

η

(a) Sender efficiency in Erdos when using 64-

B packets.

η

(b) Sender efficiency in Erdos when using

1470-B packets.

Figure 6.9: Network efficiencies for Erdos under different frequencies and 64-B and 1470-B

packets.

by estimating the energy consumed by several map-reduce Hadoop computations.

6.4.1 Energy Estimation Hypothesis

The approach we propose to estimate the energy Eapp consumed by an application lays on the

basic assumption that the energy is essentially the sum of the baseline energy EB (baseline power

times application running time), the energy consumed by the CPU EC , the energy consumed by

the disk ED, and the energy consumed by the network interface EN :

Eapp = EB + EC + ED + EN . (6.8)

Hence, the process of estimating Eapp is reduced to estimating these four terms. In order to

estimate the first two terms, we need to know the total number of active cycles that the application

will execute, Capp, and the load ρapp (in ACPS) that the execution will incur in the CPU. From

this, the total running time Tapp can be computed as

Tapp = Capp/ρapp.

104 Analysis of the Energy Consumption of Data Center Servers

 0

 20

 40

 60

 80

 100

 120

 140

1.596

1.995

2.794

1.596

1.995

2.794

1.596

1.995

2.794

1.596

1.995

2.794

P
ow

er
 C

on
su

m
pt

io
n

[W
]

Frequency [GHz]

64-bytes 1470-bytes 64-bytes 1470-bytes
Sender Receiver

Baseline CPU Network

(a) Network efficiency (Nemesis).

 0

 20

 40

 60

 80

 100

 120

1.200

1.867

2.133

1.200

1.867

2.133

1.200

1.867

2.133

1.200

1.867

2.133

P
ow

er
 C

on
su

m
pt

io
n

[W
]

Frequency [GHz]

64-bytes 1470-bytes 64-bytes 1470-bytes
Sender Receiver

Baseline CPU Network

(b) Network efficiency (Survivor).

 0

 50

 100

 150

 200

 250

 300

 350

1.400

2.100

2.300

1.400

2.100

2.300

P
ow

er
 C

on
su

m
pt

io
n

[W
]

Frequency [GHz]

64-bytes 1470-bytes
Baseline CPU Network

(c) Network efficiency (Erdos, only sender side).

Figure 6.10: Power utilization with network activity for Erdos, Nemesis and Survivor (64-
B experiments were run with a transmission rate R = 150 Mbps, while R = 400 Mbps for the
experiments with 1470-B packets).

6.4 Estimating Energy Consumption 105

Then, once the number of cores and the frequency that will be used have been defined, it is

also possible to estimate the baseline power plus CPU power, PBC , from the fitting curves of

Figure 6.1. This allows to estimate the sum of the first two terms of Eq. 6.8 as

EB + EC = PBCTapp = PBCCapp/ρapp. (6.9)

The energy consumed by the disk is simply the energy consumed while reading and writing,

i.e., ED = ErD +EwD. To estimate these latter values, the block size to be used has to be decided,

from which we can obtain an estimate of the efficiency of reading, ηrD, and writing, ηwD (see

Figure 6.6). These, combined with the total volume of data read and written by the application,

denoted as V r
D and V w

D respectively, allow to obtain the estimate energy as

ED =
V r
D

ηrD
+
V w
D

ηwD
. (6.10)

Finally, to estimate EN , the transfer rate R and the packet size S have to be chosen, which

combined with the frequency used, yield sending and receiving efficiencies ηsN and ηrN (see Fi-

gures 6.7, 6.8 and 6.9). Then, if the total volumes of data to be sent and received are V s
N and V r

N ,

respectively,

EN =
V s
N

ηsN
+
V r
N

ηrN
. (6.11)

All is left to do to obtain the estimate Eapp is to add up the values obtained in Equations 6.9, 6.10,

and 6.11.

6.4.2 Applications and Scenarios for Validation

In this subsection we present the applications and scenarios we experimented with in order

to validate the model presented in Section 6.4.1. Our goal was to be able to estimate the energy

consumed by an application deployed on a data center based on the usage of its different com-

ponents. For that, we executed two different Hadoop applications, PageRank and WordCount, in

three different scenarios: first with an Isolated Server (no network), second with a server con-

nected to the network, and finally with a two-server cloud. For the first two scenarios we used

Nemesis, whereas, for the cloud case, we used both Nemesis and Survivor. We describe

applications and scenarios in detail below.

Our first application is a Hadoop Map-Reduce PageRank based application that follows the

approach from Castagna [46]. This application, that we denote PageRank for simplicity, computes

several iterations of the pagerank algorithm on an Erdos-Renyi random (directed) graph with 1

million nodes and average degree 5 (In the cluster scenario we used 2 instances of this graph

as input in order to use both our nodes during the simulation). The execution of the PageRank

application has three phases: preprocessing, map-reduce, and postprocessing. On its side, the

map-reduce phase is a sequence of several homogeneous iterations of the PageRank algorithm

106 Analysis of the Energy Consumption of Data Center Servers

that runs until a certain threshold is met. For simplicity, we only estimate the energy consumed

during the map-reduce phase of the pagerank algorithm, which we force to run 10 times.

Our second application is the Hadoop Map-Reduce WordCount. This is a simple program

that reads text files and counts how often words occur. For WordCount we use a few hundreds of

books as input and estimate the energy consumed for the whole map-reduce process.

As we have mentioned above, these applications are run in 3 different scenarios. In the first

scenario, denoted as Isolated Server, we run Hadoop in Nemesis keeping it disconnected from

the network. When we run our applications in this scenario we are basically measuring the impact

on the energy consumption of the baseline, CPU and hard disk.

In the second scenario, denoted as Connected Server, we run Hadoop in Nemesis while

it exchanges data on a gigabit LAN. In order to measure the effect of the network on the energy

consumption, we evaluate 4 different cases for each application. These cases result from com-

bining 2 different behaviors, depending on whether Nemesis acts as a sender or as a receiver of

data, with 2 different packet sizes, 64 and 1470 bytes. To do so, we run Iperf, as a server or as a

client according to the case, in parallel with Hadoop.

Finally, in the third scenario, denoted as Cloud, we set up a two-server Hadoop cluster with

Nemesis and Survivor. In this scenario Nemesis is configured as the master node of the

cluster and Survivor as a slave node. The execution of the applications is shared by both nodes

so Hadoop itself exchanges traffic between both servers, and we do not insert additional network

traffic in this case. Finally, in order to have a better control of the experiment, we force the reduce

tasks to be mandatorily run in Nemesis, which also conditions the way the data is exchanged

between Nemesis and Survivor.

Observe that all 3 scenarios are based on Hadoop. This implies that, apart from the map and

reduce tasks due to the applications being run, there are some extra processes executed in the

servers we are using. The most important processes that we can find in Nemesis are NameNode

(the process that keeps the directory tree of all files in the file system, and tracks where across

the cluster the file data is kept), Secondary NameNode (that performs periodic checkpoints of the

NameNode), DataNode (the process that is in charge of storing data in the Hadoop File System

(HDFS)), JobTracker (that receives the jobs and submits MapReduce tasks to the cluster nodes)

and TaskTracker (a per node process that can accept a determined number of MapReduce tasks).

On its side, Survivor runs, in the cloud scenario, DataNode and TaskTracker.

6.4.3 Experiments and Observed Results

For the sake of consistency in the results, we ran both applications 10 times per frequency for

each one of the considered scenarios and averaged the results.

We start by describing the Isolated Server scenario. For each run i we record the total number

of active cycles executed Ciapp, the time consumed T iapp and the volume of data read (written),

V r,i
D (V w,i

D). Since we cannot measure the instantaneous CPU load, we assume that the CPU load

6.4 Estimating Energy Consumption 107

is the same during the run for a given frequency. Hence, the CPU load can be estimated as

ρiapp = Ciapp/T
i
app.

Then, from ρiapp we obtain the estimate of the instantaneous power P iBC using the fitting curves

as described in Section 6.3. Finally, using Eq. 6.9 we compute the estimate EiB + EiC . In order

to estimate the energy consumed by the disk operations, we use the fact that Hadoop uses a block

size of 64 MB. This allows us to estimate the reading (writing) efficiencies, ηr,iD (ηw,iD) that we

compute, in Joules per byte. Combining these values with the measured volume of data read and

written (V r,i
D and V w,i

D), as described in Eq. 6.10, we obtain EiD.

The total estimated energy of the application in run i, Eiapp, is obtained by summing up the

energy of the different components used in run i, as stated in Eq. 6.8 (remember that, in the

Isolated Server the network is not used). Then, by summing the values of the ten runs of an

experiment, we obtain the total estimated energy as

Eapp =

10∑
i=1

Eiapp.

The (approximated) total real energy Êiapp consumed in run i is computed by the average value of

the power samples which we registered with the power analyzer during the run, and we multiply

it with the run time Tapp. Finally, the total energy consumed by the experiment is obtained as

Êapp =
10∑
i=1

Êiapp.

The estimation error for each experiment is then computed as Êapp − Eapp.
We show the results obtained for the Isolated Server scenario with the minimum, the maxi-

mum, and the most efficient10 frequencies (the results for the remaining frequencies are similar)

in Figure 6.11. The figure shows the results for both PageRank and WordCount. As can be seen,

the error is relatively small, except for the case when we run WordCount at the maximum fre-

quency. Errors are of 4%, 4%, 7%, 5%, 7% and 10% respectively, following the same order as in

Figure 6.11.

We move now to the Connected Server scenario. As we described in the previous section, this

scenario is studied in 4 different cases depending on whether Nemesis acts as sender or receiver

and whether the size of the packets is of 64 or 1470 bytes. Of course, another relevant parameter

is the rate at which these packets are sent. The rates used are 150 and 400 Mbps when using

packets of 64 or 1470 bytes, respectively.

The total energy consumed in these cases is computed in the same way as we did for the

Isolated Server scenario but adding the contribution of the network. In order to estimate the net-

10According to the results shown in Section 6.3.

108 Analysis of the Energy Consumption of Data Center Servers

Figure 6.11: Energy consumption of Nemesis in the Isolated Server scenario.

Table 6.2: Error measured in the different cases of the Connected Server scenario.

Packet Size Freq Cases
PR - Send PR - Rec WC - Send WC - Rec

64-B
1.596 0.5% 6.0% 2.9% 2.7%
2.128 2.0% 4.7% 6.4% 1.5%
2.794 0.5% 2.9% 4.0% 2.9%

1470-B
1.596 0.7% 6.9% 1.6% 6.5%
2.128 1.1% 6.5% 5.8% 5.8%
2.794 3.8% 0.3% 0.9% 1.5%

work consumption in one run with Nemesis sending traffic (resp., receiving traffic), the sending

efficiency ηsN , (resp., receiving efficiency ηrN) is obtained from the transfer rate R, the frequency

and packet size used (see Figures 6.8). The amount of data sent (resp., received) can be obtained

from the server itself by consulting the OS registers11. Therefore, the energy of the network for

an run i, EiN , is obtained using Eq. 6.11. Then, including EiN for each run in the computation of

Eiapp we can obtain the total energy consumed by the application. Following the same steps as

in the previous scenario, we get the results shown in Figure 6.12 and 6.13. The error measured

is again relatively smaller for PageRank than for WordCount. The error measured for each of the

cases can be found in Table 6.2.

We finally analyze the Cloud scenario. In this scenario we set up a cluster with two servers,

Nemesis and Survivor, and run the 2 aforementioned Hadoop applications in it. This sce-

nario may seem relatively similar to the Connected Server scenario, but it has is a major dif-

ference. While in the previous scenario we were the ones controlling the network traffic, here

the traffic is controlled by Hadoop. Specifically, we know that, in this scenario, there are two

11We can read the registers rx bytes, rx packets, tx bytes or tx packets from
/sys/class/net/eth0/statistics.

6.4 Estimating Energy Consumption 109

(a) PageRank, sender side.

(b) PageRank, receiver side.

Figure 6.12: Energy consumption of Nemesis running PageRank in the Connected Server sce-
nario, with either small or big packets.

110 Analysis of the Energy Consumption of Data Center Servers

(a) WordCount, sender side.

(b) WordCount, receiver side.

Figure 6.13: Energy consumption of Nemesis running WordCount in the Connected Server
scenario, with either small or big packets.

6.4 Estimating Energy Consumption 111

 0

 0.2

 0.4

 0.6

 0.8

 1

 64 65-1469
1470

>1470
 64 65-1469

1470
>1470

P
ac

ke
t d

is
tri

bu
tio

n
[%

]

Packet size [Bytes]

Pagerank Wordcount

Nemesis->Survivor Survivor->Nemesis

Figure 6.14: Distribution of the sizes of the packets exchanged between Nemesis and
Survivor for both PageRank and WordCount in the Cloud scenario.

main sources of traffic: requesting input data when it is not present in a server, and sending the

mapper tasks outputs to the reducer tasks. The only condition we impose in the server to have

some control over the traffic is related to this later aspect, we force the reducers to be always in

Nemesis.

Although we are able to retrieve the total amount of data received or sent by each server, we

know neither the size of the packets used nor the rate. Therefore, we can compute neither the

sending efficiency ηsN nor the receiving efficiency ηrN . In order to be able to compute both the

sending and receiving efficiencies we analyze the traffic exchanged by both servers for each one

of the applications. Figure 6.14 shows the amount of packets of each size that were exchanged by

both servers (and the direction of the exchange) for both applications. The results show the vast

majority of packets are either small (64 bytes) or big (1470 bytes). Moreover, it shows that most

of the packets sent from Nemesis to Survivor are small packets for both applications, while

big packets are sent in the opposite direction.

Given these results, we approximate the energy consumed by the network assuming that all the

packets exchanged are of the same size and that the rate is the maximum achievable rate for each

packet size according to the results from Section 6.3. For instance, we consider roughly 30 Mbps

when Survivor receives 64-Byte packets and roughly 970 Mbps if it sends 1470-Byte packets.

These assumptions allow us to compute now ηsN and ηrN . The remaining parameters are computed

as for the other scenarios, so to determine Êapp and Eapp. The results are shown in Figure 6.15.

As in the previous scenarios, errors are relatively low. In particular, the error in Nemesis when

running PageRank is 3.1% and 1.4% for 2.128 GHz and 2.794 GHz, respectively, and of a 9.7%

and a 6.5% for 2.128 GHz and 2.794 GHz when running WordCount. On the other hand, the

measured errors for Survivor are 3.3% and 3.6% for 1.867 GHz and 2.133 GHz when running

PageRank and 5.1% and 5.2%, respectively, when running WordCount.

112 Analysis of the Energy Consumption of Data Center Servers

(a) Nemesis

(b) Survivor

Figure 6.15: Energy consumption of Nemesis and Survivor in the Cloud scenario.

6.5 Discussion 113

6.5 Discussion

We discuss now some of the implications of our results. We start with consolidation as a

technique for energy saving. It has been often assumed that the best way of saving energy is

by using the highest frequency available and applying consolidation (which is to fill servers as

much as possible). This reduces the total number of servers being used, allowing to switch off the

rest. This assumption has led to proposing bin-packing based solutions [33, 124, 164]. However,

the results presented in Figures 6.2(b), 6.3(b) and 6.4(b) show that the highest frequency is not

always the most efficient one, and this has been found to be true for two different architectures

(Intel and AMD). This implies that, by running servers at the optimal amount of load, and the

right frequency, a considerable amount of energy could be saved.

A second relevant aspect is the baseline consumption of servers. The results presented for

all 3 servers show that their baselines are within a 30-50% of the maximum consumption. Then,

it is obvious that more effort has to be done for reducing baseline consumption. For instance, a

solution could consist in switching off cores in real time, not just disabling them, or in introducing

very fast transitions between active and lower energy states, i.e., to achieve real suspension in idle

state.

There is another relevant issue related to the CPU load associated to disk and network activity.

It can be observed in Figure 6.5 that disks do not incur much CPU overhead. In fact, the power

used by the CPU plus baseline does not change much across the experiments. Instead, the energy

consumed by the CPU due to network operations is even larger than the energy consumed by

the NIC (see Figure 6.10). Some works [74] have already pointed out that the way packets are

handled by the protocol stack is not energy efficient. Our results reinforce this feeling and point

out that building a more efficient protocol stack would certainly reduce the amount of energy

consumed due to the network.

Finally, it is worth to mention that in this work we have assumed that the power utilization of

the RAM memory is included in the baseline. The characterization experiments have been run

in such a way that there were few memory accesses, so its power utilization did not affect our

measurements. However, RAM memory became an uncontrolled source of power utilization in

Section 6.4.3 when we validated our proposed model. In fact, all the Hadoop processes that run in

the servers consume significant RAM memory. This impacts more significantly the memory used

by the cluster’s master node, since it runs internal Hadoop processes (such as the NameNode or the

JobTracker) whose memory requirement increases with the number of mappers and reducers. This

cost is, therefore, paid only in Nemesis, the master node of our cluster, and not in Survivor,

which explains the different accuracy of the model for the two servers. This error is particularly

evident when when WordCount is run, due to the fact that the required number of mappers for

WordCount is larger than for PageRank and, therefore, the RAM required in Nemesis increases

and so does the uncontrolled energy consumption.

114 Analysis of the Energy Consumption of Data Center Servers

6.6 Conclusions

In this chapter we have reported our measurement-based characterization of energy and power

consumption in a server. We have exhaustively measured the power consumed by CPU, disk, and

NIC under different configurations, identifying the optimal operational levels, which usually do

not correspond to the static system configurations commonly adopted. We found that, besides the

baseline component, which does not changes significantly with the operational parameters, the

CPU has the largest impact on energy consumption among all the three components. We observe

that CPU consumption is neither linear nor concave with the load, i.e., the systems are not energy

proportional. Disk I/O is the second larger contributor to power consumption, although perfor-

mance changes sensibly with the I/O block size used by the applications. Finally, the NIC activity

is responsible for a small but not negligible fraction of power consumption, which scales almost

linearly with the network transmission rate. In general, most of the energy/power performance

figures do not scale linearly with the utilization, in contrast to what is commonly assumed in the

literature. We have then shown how to predict and optimize the energy consumed by an applica-

tion via a concrete example using 2 different Hadoop applications, PageRank and WordCount, in

three different scenarios. First We ran both applications without network activity, next with bulky

network activity, and finally in a two-server cluster. Our model achieves very accurate energy

estimates, within 4.1% from the measured total power consumption on average and never worse

than a 10%.

Chapter 7

Efficient Assignment of Virtual
Machines to Physical Machines

7.1 Overview

Having studied how nowadays servers use power, we now show a way in which this knowl-

edge can be useful. In this chapter we will apply the concept of the optimal operational point of a

server to the Virtual Machine Assignment problem (VMA), which basically consists in deciding

in which server we want to place a new task arriving to a system. Having an optimal operational

point conditions drastically the way we must load a server in order to optimize the energy which

is being consumed.

Having this in mind, we study, in particular, the hardness and online competitiveness of the

four versions of the VMA problem that we described in Chapter 2. This 4 versions of VMA

differed in whether we considered PMs with bounded or unbounded capacity C or a limited or

unlimited number of PMs m in the system. We denoted these versions as (·, ·)-VMA, (C, ·)-

VMA, (·,m)-VMA and (C,m)-VMA1.

We start by showing various lower and upper bounds on the offline approximation of VMA.

The first fact we observe is that there is a hard decision version of (C,m)-VMA: Is there a feasible

partition π of the set D of VMs? By reduction from the 3-Partition problem, it can be shown that

this decision problem is strongly NP-complete. We then show that the (·, ·)-VMA, (C, ·)-VMA,

and (·,m)-VMA problems are NP-hard in the strong sense, even if α is constant. This result

implies that VMA problems do not have a fully polynomial time approximation scheme (FPTAS),

even if α is constant. Nevertheless, using previous results derived for more general objective

functions, we notice that (·, ·)-VMA and (·,m)-VMA have a polynomial time approximation

scheme (PTAS), while the (C, ·)-VMA problem can not be approximated beyond a ratio of 3
2 ·

α−1+(2
3

)α

α (unless P = NP). On the positive side, we show how to use an existing Asymptotic

PTAS [69] to obtain algorithms that approximate the optimal solution of (C, ·)-VMA. All our

1The central dots (·) imply unboundedness.

115

116 Efficient Assignment of Virtual Machines to Physical Machines

offline results as well as the online ones can be seen in Table 7.1.

Then we move on to online VMA algorithms. We show various upper and lower bounds

on the competitive ratio of the four versions of the problem. Observe that the results are often

different depending on whether x∗ is smaller thanC or not. In fact, when x∗ < C, there is a lower

bound of (3/2)2α−1
2α−1 that applies to all versions of the problem. Rather than attempting to obtain

tight bounds for particular instances of the parameters of the problem (C,m,α, b) we focus on

obtaining general bounds, whose parameters can be instantiated for the specific application. The

bounds obtained show interesting trade-offs between the PM capacity and the fixed cost of adding

a new PM to the system. For clarity, we will consider µ = 1 throughout the whole chapter. All

the results presented apply for other values of µ.

The resulting bounds are shown in Table 7.1. As can be observed, the resulting upper and

lower bounds are not very far in general. To give some intuition on the tightness of these bounds,

we instantiate them for a realistic value of α = 3, and normalized values of b = 2 and C ∈ {1, 2}.
These values for α are obtained from the servers we studied in Chapter 6, in particular from the

ones denoted as Erdos and Nemesis. In them the values for α are close to 1.5 and 3 and

x∗ values of 0.76C and 0.9C respectively (x∗ denotes the load that minimizes the ratio power

consumption against load.). The bounds based on these realistic values are shown in Table 7.2.

RoadMap The rest of the chapter is organized as follows. Section 7.2 includes some prelimi-

nary results that will be used throughout the chapter. The offline and online analyses are included

in Section 7.3 and 7.4 respectively. In Section 7.5 we compare different state of the art allocation

policies and compare them with the algorithms proposed in Section 7.4. Section 7.6 discusses

some practical issues and provides some useful insights regarding real implementation. Section

7.7 concludes the Chapter.

7.2 Preliminaries

The following claims will be used in the analysis. We call power rate the power consumed per

unit of load in a PM. Let x be the load of a PM. Then, its power rate is computed as f(x)/x. The

load at which the power rate is minimized, denoted x∗, is the optimal load, and the corresponding

rate is the optimal power rate ϕ∗ = f(x∗)/x∗. Using calculus we get the following observation.

Observation 2. The optimal load is x∗ = (b/(α− 1))1/α . Additionaly, for any x 6= x∗,

f(x)/x > ϕ∗.

The following lemmas will be used in the analysis.

Lemma 13. Consider two solutions π = {A1, . . . , Am} and π′ = {A′1, . . . , A′m} of an instance

of the VMA problem, such that for some x, y ∈ [1,m] it holds that

• Ax 6= ∅ and Ay 6= ∅;

7.2 Preliminaries 117

VMA subprob. x∗ < C x∗ ≥ C

(C, ·) offline
ρ ≥ 3

2
α−1+(2/3)α

α ρ ≥ 3
2
α−1+(2/3)α

α

ρ < m
m∗

(
1 + ε+ 1

α−1 + 1
m

)
ρ < 1 + ε+ Cα

b + 1
m

(C, ·) online
ρ ≥ (3/2)2α−1

2α−1 ρ ≥ Cα+2b
b+max{Cα,2(C/2)α+b}

ρ = 1 if Ds = ∅, else

ρ ≤
(
1− 1

α

(
1− 1

2α

)) (
2 + x∗

`(Ds)

) ρ ≤ 2b
C

(
1 + 1

(α−1)2α

)(
2 + C

`(D)

)

(C,m) online
ρ ≥ (3/2)2α−1

2α−1 ρ ≥ Cα+2b
b+max{Cα,2(C/2)α+b}

(·, ·) online
ρ ≥ (3/2)2α−1

2α−1 not applicable
ρ = 1 if Ds = ∅, else

ρ ≤
(
1− 1

α

(
1− 1

2α

)) (
2 + x∗

`(Ds)

)
(·,m) online ρ ≥ max{ (3/2)2α−1

2α−1 , 3α

2α+2+ε
} not applicable

ρ ≤ O(α)α In [82]

(·, 2) online
ρ ≥ max{ 3α

2α+1 ,
(3/2)2α−1

2α−1 , 3α

2α+2+ε
}

not applicable
ρ = 1 if `(D) ≤ α

√
b/(2α − 2), else

ρ ≤ max{2,
(

3
2

)α−1}

Table 7.1: Summary of bounds on the approximation/competitive ratio ρ. All lower bounds are
existential. The number of PMs in an optimal (C, ·)-VMA solution is denoted asm∗. The number
of PMs in an optimal Bin Packing solution is denoted as m. The load that minimizes the ratio
power consumption against load is denoted as x∗. The subset of VMs with load smaller than x∗

is denoted as Ds.

• A′x = Ax ∪Ay, A′y = ∅, and Ai = A′i, for all i 6= x and i 6= y; and

• `(Ax) + `(Ay) ≤ min{x∗, C}.

Then, P (π′) < P (π).

Proof : Let `(Ai) = x and `(Aj) = y. First we notice that π′ is feasible because x+ y ≤ C.

Now, using that x+ y ≤ x∗, we have

b = (x∗)α(α− 1) ≥ (x+ y)α(α− 1) > (x+ y)α ≥ (x+ y)α − (xα + yα)

where the second inequality comes from the fact that α > 1. The above inequality is equivalent

to

2b+ xα + yα > b+ (x+ y)α,

118 Efficient Assignment of Virtual Machines to Physical Machines

VMA subprob. x∗ < C x∗ ≥ C

(C, ·) offline
ρ ≥ 11

9 ρ ≥ 11
9

ρ < m
m∗

(
3
2 + ε+ 1

m

)
ρ < 3

2 + ε+ 1
m

(C, ·) online
ρ ≥ 11

7 ρ ≥ 20
17

ρ ≤ 17
12

(
1 + 1

2`(Ds)

)
ρ ≤ 17

2

(
1 + 1

2`(D)

)
(C,m) online ρ ≥ 11

7 ρ ≥ 20
17

(·, ·) online
ρ ≥ 11

7 not applicable
ρ ≤ 17

12

(
1 + 1

2`(Ds)

)
(·,m) online ρ ≥ 11

7 not applicable

(·, 2) online
ρ ≥ 11

7 not applicable
ρ ≤ 9

4

Table 7.2: Summary of bounds on the approximation/competitive ratio ρ for α = 3, b = 2, and
C = 2 on the left and C = 1 on the right.. All lower bounds are existential. The number of
PMs in an optimal (C, ·)-VMA solution is denoted as m∗. The number of PMs in an optimal Bin
Packing solution is denoted as m. The load that minimizes the ratio power consumption against
load is denoted as x∗. The subset of VMs with load smaller than x∗ is denoted as Ds.

which implies the lemma. �

From this lemma, it follows that the global power consumption can be reduced by having 2

VMs together in the same PM, when its aggregated load is smaller than min{x∗, C}, instead of

moving one VM to an unused PM. When we keep VMs together in a given partition we say that

we are using Lemma 13.

Lemma 14. Consider two solutions π = {A1, . . . , Am} and π′ = {A′1, . . . , A′m} of an instance

of the VMA problem, such that for some x, y ∈ [1,m] it holds that

• Ax ∪Ay = A′x ∪A′y, while Ai = A′i, for all x 6= i 6= y;

• none of Ax, Ay, A′x, and A′y is empty; and

• |`(Ax)− `(Ay)| < |`(A′x)− `(A′y)|.

Then, P (π) < P (π′).

Proof : From the definition of P (·), to prove the claim is it enough to prove that

`(Ax)α + `(Ay)
α < `(A′x)α + `(A′y)

α.

7.3 Offline Analysis 119

Let us assume wlog that `(Ax) ≤ `(Ay) and `(A′x) ≤ `(A′y). Let us denote

L = `(Ax) + `(Ay) = `(A′x) + `(A′y),

and assume that `(Ax) = δ1L and `(A′x) = δ2L. Note that δ2 < δ1 ≤ 1/2. Then, the claim to be

proven becomes

(δ1L)α + ((1− δ1)L)α < (δ2L)α + ((1− δ2)L)α

δα1 + (1− δ1)α < δα2 + (1− δ2)α

Which holds because the function f(x) = xα + (1− x)α is decreasing in the interval (0, 1/2). �

This lemma carries the intuition that balancing the load among the used PMs as much as

possible reduces the power consumption.

Corollary 14. Consider a solution π = {A1, . . . , Am} of an instance of the VMA problem with

total load `(D), such that exactly k of the Ax sets, x ∈ [1,m], are non-empty (hence it uses k

PMs). Then, the power consumption is lower bounded by the power of the (maybe unfeasible)

solution that balances the load evenly, i.e.,

P (π) ≥ kb+ k(`(D)/k)α.

7.3 Offline Analysis

7.3.1 NP-hardness

As was mentioned, it can be shown that deciding whether there is a feasible solution for an

instance of the (C,m)-VMA problem is NP-complete or not, by a direct reduction from the 3-

Partition problem. However, this result does not apply directly to the (C, ·)-VMA, (·,m)-VMA,

and (·, ·)-VMA problems. We show now that these problems are NP-hard. We first prove the

following lemma.

Lemma 15. Given an instance of the VMA problem, any solution π = {A1, . . . , Am} where

`(Ai) 6= x∗ for some i ∈ [1,m] : Ai 6= ∅, has power consumption P (π) > ρ∗`(D) =

ρ∗
∑

d∈D `(d).

Proof : The total cost of π is P (π) =
∑

i∈[1,m] f(`(Ai)) which, from Observation 2, satisfies

P (π) >
∑

i∈[1,m]:Ai 6=∅

`(Ai)ρ
∗

= ρ∗
∑

i∈[1,m]:Ai 6=∅

∑
d∈Ai

`(d) = ρ∗
∑
d∈D

`(d).

�

120 Efficient Assignment of Virtual Machines to Physical Machines

We show now in the following theorem that the different versions of the (C,m)-VMA prob-

lem with unbounded C or m are NP-hard.

Theorem 12. The (C, ·)-VMA, (·,m)-VMA and (·, ·)-VMA problems are strongly NP-hard, even

if α is constant.

Proof : We show a reduction from 3-Partition defined as follows [75], which is strongly NP-

complete.

INSTANCE: Set A of 3k elements, a bound B ∈ Z+ and, for each a ∈ A, a size s(a) ∈ Z+

such that B/4 < s(a) < B/2 and
∑

a∈A s(a) = kB.

QUESTION: can A be partitioned into k disjoint sets {A1, A2, . . . , Ak} such that∑
a∈Ai s(a) = B for each 1 ≤ i ≤ k?

The reduction is as follows. Given an instance of 3-Partition on a set A = {a1, . . . , a3k} with

bound B, and given a fixed value α > 1, we define an instance I of (·, ·)-VMA as follows: D =

{a1, . . . , a3k}, `(·) = s(·), and b = Bα(α− 1) (i.e., x∗ = B). (For the proof of the (C, ·)-VMA

and (·,m)-VMA problems it is enough to set C = B and m = k when required.) We show now

that the answer to the 3-Partition problem is YES if and only if the output π = {A1, A2, . . . , Am}
of the (·, ·)-VMA problem on input I is such that

∑m
i=1 f(`(Ai)) = kf(B).

For the direct implication, assume that there exists a partition {A1, A2, . . . , Ak} of A such

that for each i ∈ [1, k],
∑

a∈Ai s(a) = B. Then, in the context of the (·, ·)-VMA problem,

such partition has cost
∑m

i=1 f(`(Ai)) = kf(B). We claim that any partition has at least cost

kf(B). In order to prove it, assume for the sake of contradiction that there is a partition π′ =

{A′1, A′2, . . . , A′m} of (·, ·)-VMA on input I with cost less than kf(B). Then, there is some i ∈
[1,m] such that A′i 6= ∅ and `(A′i) 6= B. From Lemma 15, P (π′) > ρ∗`(D) = (f(x∗)/x∗)kB.

Since B = x∗, we have that P (π′) > kf(B), which is a contradiction.

To prove the reverse implication, assume an output π = {A1, A2, . . . , Am} of the (·, ·)-VMA

problem on input I such that P (π) =
∑m

i=1 f(`(Ai)) = kf(B). Then, it must be ∀i ∈ [1,m] :

Ai 6= ∅, `(Ai) = B. Otherwise, from Lemma 15, P (π) > kf(B), a contradiction. �

It is known that strongly NP-hard problems cannot have a fully polynomial-time approxima-

tion scheme (FPTAS) [158]. Hence, the following corollary.

Corollary 15. The (C, ·)-VMA, (·,m)-VMA and (·, ·)-VMA problems do not have fully

polynomial-time approximation schemes (FPTAS), even if α is constant.

In the following sections we show that, while the (·,m)-VMA and (·, ·)-VMA problems have

polynomial-time approximation schemes (PTAS), the (C, ·)-VMA problem cannot be approxi-

mated below 3
2 ·

α−1+(2/3)α

α .

7.3.2 The (·,m)-VMA and (·, ·)-VMA Problems Have PTAS

We have proved that the (·,m)-VMA and (·, ·)-VMA problems are NP-hard in the strong

sense and that, hence, there exists no FPTAS for them. However, Alon et al. [12], proved that if a

7.3 Offline Analysis 121

function f(·) satisfies a condition denoted F∗, then the problem of scheduling jobs in m identical

machines so that
∑

i f(Mi) is minimized has a PTAS, where Mi is the load of the jobs allocated

to machine i. This result implies that if our function f(·) satisfies condition F∗, the same PTAS

can be used for the (·,m)-VMA and (·, ·)-VMA problems. From Observation 6.1 in [66], it can

be derived that, in fact, our power consumption function f(·) satisfies condition F∗. Hence, the

following theorem.

Theorem 13. There are polynomial-time approximation schemes (PTAS) for the (·,m)-VMA and

(·, ·)-VMA problems.

7.3.3 Bounds on the Approximability of the (C, ·)-VMA Problem

We study now the (C, ·)-VMA problem, where we consider an unbounded number of ma-

chines with bounded capacity C. We will provide a lower bound on its approximation ratio,

independently on the relation between x∗ and C; and upper bounds for the cases when x∗ ≥ C

and x∗ < C.

7.3.3.1 Lower bound on the approximation ratio

The following theorem shows a lower bound on the approximation ratio of any offline algo-

rithm for (C, ·)-VMA.

Theorem 14. No algorithm achieves an approximation ratio smaller than 3
2 ·

α−1+(2
3

)α

α for the

(C, ·)-VMA problem unless P = NP.

Proof : The claim is proved showing a reduction from the partition problem [75]. In the

partition problem there is a set A = {a1, a2, . . . , an} of n elements, there is a size s(a) for each

element a ∈ A, and the sum M =
∑

a∈A s(a) of the sizes of the elements in A. The problem

decides whether there is a subset A′ ⊂ A such that
∑

a∈A′ s(a) = M/2.

From an instance of the partition problem, we construct an instance of the (C, ·)-VMA prob-

lem as follows. The set of VMs in the system is D = {a1, a2, . . . , an}, the load function is

`(·) = s(·), the capacity of each PM is set to C = M/2, and b is set to b = Cα(α − 1) (i.e.,

x∗ = C). Let us study the optimal partition π∗ such that the total power consumption P (π∗) is

minimized. If there is a partition of D such that each subset in this partition has load M/2 then,

from Observation 2, π∗ has all the VMs assigned to two PMs. Otherwise, π∗ needs at least 3

PMs to allocate all the VMs. From Corollary 14, the power consumption of this solution is lower

bounded by the power of a (maybe unfeasible) partition that balances the load among the 3 PMs

as evenly as possible. Formally,

∃A′ :
∑
a∈A′

s(a) = M/2 ⇒ P (π∗) = 2b+ 2

(
M

2

)α
= 2b+ 2Cα

@A′ :
∑
a∈A′

s(a) = M/2 ⇒ P (π∗) ≥ 3b+ 3

(
M

3

)α
= 3b+ 3

(
2C

3

)α
.

122 Efficient Assignment of Virtual Machines to Physical Machines

Comparing both values we obtain the following ratio.

ρ =
3b+ 3

(
2C
3

)α
2b+ 2Cα

=
3Cα(α− 1) + 3

(
2C
3

)α
2Cα(α− 1) + 2Cα

=
3

2
·
α− 1 + (2

3)α

α
.

Therefore, given any ε > 0, having a polynomial-time algorithm A with approximation ratio

ρ− ε would imply that this algorithm could be used to decide if there is a subset A′ ⊂ A such that∑
a∈A′ s(a) = M/2. In other words, this algorithm would be able to solve the partition problem.

This contradicts the fact that the partition problem is NP-hard and no polynomial time algorithm

solves it unless P = NP. Therefore, there is no algorithm that achieves a ρ−ε = 3
2 ·

α−1+(2
3

)α

α −ε
approximation ratio for the (C, ·)-VMA problem unless P = NP. �

7.3.3.2 Upper bound on the approximation ratio for x∗ ≥ C

We study now an upper bound on the competitive ratio of the (C, ·)-VMA problem for the case

when x∗ ≥ C. Under this condition, the best is to load each PM to its full capacity. Intuitively, an

optimal solution should load every machine up to its maximum capacity or, if not possible, should

balance the load among PMs to maximize the average load. The following lemma formalizes this

observation.

Lemma 16. For any system with unbounded number of PMs where x∗ ≥ C the power consum-

ption of the optimal assignment π∗ is lower bounded by the power consumption of a (possibly

not feasible) solution where `(D) is evenly distributed among m PMs, where m is the minimum

number of PMs required to allocate all VMs (i.e., the optimal solution of the packing problem).

That is,

P (π∗) ≥ m · b+m(`(D)/m)α.

Proof : Denote the number of PMs used in an optimal (C, ·)-VMA solution π∗ by m∗. By

Corollary 14, we know that

P (π∗) ≥ m∗b+m∗(`(D)/m∗)α.

Given that m ≤ m∗, we know that `(D)/m∗ ≤ `(D)/m ≤ C ≤ x∗. Thus, for evenly-balanced

loads the power consumption is reduced if the number of PMs is reduced, that is

m∗b+m∗(`(D)/m∗)α ≥ m · b+m(`(D)/m)α.

Hence, the claim follows. �

7.3 Offline Analysis 123

Now we prove an upper bound on the approximation ratio showing a reduction to bin pack-

ing [75]. The reduction works as follows. Let each PM be seen as a bin of capacity C, and each

VM be seen as an object to be placed in the bins, whose size is the VM load. Then, a solution for

this bin packing problem instance yields a feasible (perhaps suboptimal) solution for the instance

of (C, ·)-VMA. Moreover, using any bin-packing approximation algorithm, we obtain a feasible

solution for (C, ·)-VMA that approximates the minimal number of PMs used. The power con-

sumption of this solution approximates the power consumption of the optimal solution π∗ of the

instance of (C, ·)-VMA. In order to compute an upper bound on the approximation ratio of this

algorithm, we will compare the power consumption of such solution against a lower bound on the

power consumption of π∗. The following theorem shows the approximation ratio obtained.

Theorem 15. For every ε > 0, there exists an approximation algorithm for the (C, ·)-VMA

problem when x∗ ≥ C that achieves an approximation ratio of

ρ < 1 + ε+
Cα

b
+

1

m
,

where m is the minimum number of PMs required to allocate all the VMs.

Proof : Consider an instance of the (C, ·)-VMA problem. If `(D) ≤ C, the optimal solution is

to place all the VMs in one single PM. Hence, we assume in the rest of the proof that `(D) > C.

Define the corresponding instance of bin packing following the reduction described above. Let

the optimal number of bins to accommodate all VMs be m. As shown in [69], for every ε > 0,

there is a polynomial-time algorithm that fits all VMs in m̂ bins, where m̂ ≤ (1 + ε)m+ 1. From

Lemma 14, once the number of PMs used m̂ is fixed, the power consumption is maximized when

the load is unbalanced to the maximum. I.e., the power consumption of the assignment is at most

m̂b + (`(D)/C)Cα. On the other hand, as shown in Lemma 16, the power consumption of the

optimal (C, ·)-VMA solution is at least m · b + m
(
`(D)
m

)α
. Then, we compute a bound on the

approximation ratio as follows.

ρ ≤
m̂b+

(
`(D)
C

)
Cα

m · b+m
(
`(D)
m

)α (7.1)

<
m̂b+

(
`(D)
C

)
Cα

m · b+m
(
C
2

)α , (7.2)

where the second inequality comes from `(D)/m > C/2. (If `(D)/m ≤ C/2, there must be two

PMs whose loads add up to less than C, which contradicts the fact that m is the number of bins

used in the optimal solution of bin packing.) Let γ = (x∗/C)α. Then, replacing b = γCα(α−1),

124 Efficient Assignment of Virtual Machines to Physical Machines

in Eq. (7.1) we have

ρ <
m̂γCα(α− 1) +

(
`(D)
C

)
Cα

mγCα(α− 1) +m
(
C
2

)α
=

m̂γ(α− 1) +
(
`(D)
C

)
mγ(α− 1) +m

(
1
2

)α ≤ m̂γ(α− 1) +m

mγ(α− 1) +
(
m
2α

) (7.3)

≤ (m(1 + ε) + 1))γ(α− 1) +m

mγ(α− 1) +
(
m
2α

) (7.4)

=
(1 + ε)γ(α− 1) + 1

γ(α− 1) +
(

1
2α

) +
γ(α− 1)

mγ(α− 1) +
(
m
2α

)
=

2α((1 + ε)γ(α− 1) + 1)

2αγ(α− 1) + 1
+

2αγ(α− 1)

m(2αγ(α− 1) + 1)

<
(1 + ε)γ(α− 1) + 1

γ(α− 1)
+

1

m

= 1 + ε+
1

γ(α− 1)
+

1

m
= 1 + ε+

Cα

b
+

1

m

Inequality (7.3) follows from `(D)/C ≤ m, Inequality (7.4) from the approximation algorithm

for bin packing, and the last inequality is because m > 0. �

7.3.3.3 Upper bound on the approximation ratio for x∗ < C

We study now the (C, ·)-VMA problem when x∗ < C. In this case, the optimal load per PM

is less than its capacity, so an optimal solution would load every PM to x∗ if possible, or try to

balance the load close to x∗. In this case we slightly modify the bin packing algorithm described

above, reducing the bin size from C to x∗. Then, using an approximation algorithm for this bin

packing problem, the following theorem can be shown.

Theorem 16. For every ε > 0, there exists an approximation algorithm for the (C, ·)-VMA

problem when x∗ < C that achieves an approximation ratio of

ρ <
m

m∗

(
(1 + ε) +

1

α− 1

)
+

1

m∗
,

wherem∗ is the number of PMs used by the optimal solution of (C, ·)-VMA, andm is the minimum

number of PMs required to allocate all the VMs without exceeding load x∗ (i.e., the optimal

solution of the bin packing problem).

Proof : Consider an instance of the (C, ·)-VMA problem. If `(D) ≤ x∗ then the optimal

solution is to assign all the VMs to one single PM. Then, in the rest of the proof we assume that

`(D) > x∗. Assuming m∗ to be the number of PMs of an optimal (C, ·)-VMA solution π∗ for

load `(D), from Corollary 14, we can claim that the power consumption P (π∗) can be bounded

as P (π∗) ≥ m∗b+m∗(`(D)/m∗)α.

7.4 Online Analysis 125

Now, let m be the minimum number of PMs required to allocate all the VMs of the (C, ·)-

VMA problem without exceeding load x∗. As shown in [69], for every ε > 0, there is a

polynomial-time algorithm that fits all VMs in m̂ bins, where m̂ ≤ (1+ε)m+1. From Lemma 14,

this approximation results in a power consumption no larger than m̂b+ (`(D)/x∗)(x∗)α. Hence,

the approximation ratio ρ of the solution obtained wit this algorithm can be bounded as follows.

ρ ≤
m̂b+

(
`(D)
x∗

)
(x∗)α

m∗b+m∗
(
`(D)
m∗

)α . (7.5)

Since `(D) > x∗, we know that `(D)/m∗ > x∗/2, since otherwise there are two used PMs

whose load is no larger than x∗, contradicting by Lemma 13 the definition of m∗. Also, from the

definition of m, it follows that `(D) ≤ m · x∗. Finally, recall that b = (x∗)α(α − 1). Applying

these results to Eq. (7.5) we have the following.

ρ <
m̂(x∗)α(α− 1) +

(
x∗m
x∗

)
(x∗)α

m∗(x∗)α(α− 1) +m∗
(
x∗

2

)α
=

m̂(α− 1) +m

m∗(α− 1) +m∗
(

1
2

)α ≤ (m(1 + ε) + 1)(α− 1) +m

m∗(α− 1) + m∗

2α

=
m(1 + ε)(α− 1) +m

m∗(α− 1) + m∗

2α
+

α− 1

m∗(α− 1) + m
2α

=
m

m∗
2α((1 + ε)(α− 1) + 1)

2α(α− 1) + 1
+

2α(α− 1)

2αm∗(α− 1) +m∗

≤ m

m∗

(
(1 + ε) +

1

α− 1

)
+

1

m∗
,

where the first inequality comes from applying the results aforementioned, and second one from

using m̂ = m(1 + ε) + 1, while the last one results from simplifying the previous equation. �

7.4 Online Analysis

In this section, we study the online version of the VMA problem, i.e., when the VMs are

revealed one by one. We first study lower bounds and then provide online algorithms and prove

upper bounds on their competitive ratio.

7.4.1 Lower Bounds

In this section, we compute lower bounds on the competitive ratio for (·, ·)-VMA, (C, ·)-

VMA, (·,m)-VMA, (C,m)-VMA and (·, 2)-VMA problems. We start with one general con-

struction that is used to obtain lower bounds on the first four cases. Then, we develop special

126 Efficient Assignment of Virtual Machines to Physical Machines

constructions for (·,m)-VMA and (·, 2)-VMA that improve the lower bounds for these two prob-

lems.

7.4.1.1 General Construction

We prove lower bounds on the competitive ratio of (·, ·)-VMA, (C, ·)-VMA, (·,m)-VMA

and (C,m)-VMA problems. These lower bounds are shown in the following two theorems. In

Theorem 17, we prove a lower bound on the competitive ratio that is valid in the cases when C is

unbounded and when it is larger or equal than x∗. The case C ≤ x∗ is covered in Theorem 18.

Theorem 17. There exists an instance of problems (·, ·)-VMA, (·,m)-VMA, (C, ·)-VMA and

(C,m)-VMA when C > x∗, such that no online algorithm can guarantee a competitive ratio

smaller than (3/2)2α−1
2α−1 .

Proof : We consider a scenario where, for any online algorithm, an adversary injects VMs

of size εx∗ (ε > 0 is an arbitrarily small constant) to the system until the algorithm starts up a

new PM. Let us assume that the total number of VMs injected is k. According to the adversary’s

behavior, the assignment of the VMs should be that all the VMs except one are allocated to a

single PM while the second PM has only one VM. Depending on what the optimal solution is, we

discuss the following two cases:

Case 1: k ≤ 1
ε

(
α−1

1−21−α

)1/α
. The optimal solution will allocate all the VMs to a single PM.

Consequently, the competitive ratio of the online algorithm satisfies

ρ(k) ≥ lim
ε→0

(
((k − 1)εx∗)α + (εx∗)α + 2b

(kεx∗)α + b

)
.

It can be easily verified that function ρ(k) is monotone decreasing with k. That is, ρ(k) is mini-

mized when k = 1
ε

(
α−1

1−21−α

)1/α
. As a result, we obtain,

ρ(k) ≥ lim
ε→0

((

α−1
1−21−α

)1/α
x∗
)α

+ (εx∗)α + 2b((
α−1

1−21−α

)1/α
x∗
)α

+ b

=

((
α−1

1−21−α

)1/α
x∗
)α

+ 2(x∗)α(α− 1)((
α−1

1−21−α

)1/α
x∗
)α

+ (x∗)α(α− 1)

=
3− 21−α

2− 21−α =
(3/2)2α − 1

2α − 1
.

Case 2: k > 1
ε

(
α−1

1−21−α

)1/α
. The optimal solution will use two PMs with k/2 PMs assigned to

7.4 Online Analysis 127

each PM. Accordingly, the competitive ratio of the online algorithm satisfies

ρ(k) ≥ lim
ε→0

(
((k − 1)εx∗)α + (εx∗)α + 2b

2
(
kεx∗

2

)α
+ 2b

)
.

Similarly, we observe that ρ(k) is monotone increasing with k. Consequently, the following

inequality applies.

ρ(k) ≥ lim
ε→0

((

α−1
1−21−α

)1/α
x∗
)α

+ (εx∗)α + 2b

2

(
1
2

(
α−1

1−21−α

)1/α
x∗
)α

+ 2b

=

((
α−1

1−21−α

)1/α
x∗
)α

+ 2(x∗)α(α− 1)

2

(
1
2

(
α−1

1−21−α

)1/α
x∗
)α

+ 2(x∗)α(α− 1)

=
3− 21−α

2− 21−α =
(3/2)2α − 1

2α − 1

Note that it can also happen that C <
(

α−1
1−21−α

)1/α
x∗. In this case, k is smaller than

1
ε

(
α−1

1−21−α

)1/α
. Therefore, the competitive ratio is always larger than (3/2)2α−1

2α−1 , proving the

lower bound. �

Theorem 18. There exists an instance of problems (C, ·)-VMA and (C,m)-VMA when C ≤ x∗

such that no online algorithm can guarantee a competitive ratio smaller than (Cα + 2b)/(b +

max(Cα, 2(C/2)α + b)).

Proof : Similarly to the proof of Theorem 17, we prove the result by considering an adver-

sarial injection of VMs of size εC. This injection stops when a new PM started up by an online

algorithm. We discuss the following two cases:

Case 1: k ≤ 1/ε. In this case, the optimal algorithm will assign all the VMs to a single PM. The

competitive ratio of the online algorithm satisfies

ρ(k) ≥ lim
ε→0

((k − 1)εC)α + (εC)α + 2b

(kεC)α + b

≥ lim
ε→0

(1− ε)αCα + 2b

Cα + b

≥ Cα + 2b

Cα + b
≥ 2− 1

α

The second inequality results from applying k ≤ 1/ε, which is observed from the monotone

decreasing property of function ρ(k). The last inequality comes from computing the limit when ε

goes to 0 and by applying b ≥ Cα(α− 1).

Case 2: k > 1/ε. In this case, the adversary stops injecting VMs as there will be, mandatorily,

128 Efficient Assignment of Virtual Machines to Physical Machines

two active PMs, one of them not capable to allocate more VMs and the second one hosting one

single VM. Since all the VMs can not be consolidated to a single PM. The optimal solution would

use also two PMs but evenly balancing the loads among them. The competitive ratio of the online

algorithm satisfies

ρ(k) = lim
ε→0

(
((k − 1)εC)α + (εC)α + 2b

2
(
kεC

2

)α
+ 2b

)

= lim
ε→0

(
Cα + (εC)α + 2b

2
(
C+εC

2

)α
+ 2b

)

=
Cα + 2b

2
(
C
2

)α
+ 2b

.

Hence, combining the results from both cases 1 and 2 we obtain the bound presented in Theorem

18. �

7.4.1.2 Special Constructions for (·,m)-VMA and (·, 2)-VMA

We show first that form PMs there is a lower bound on the competitive ratio that improves the

previous lower bound when α > 4.5. Secondly, we prove a particular lower bound for problem

(·, 2)-VMA, that improves the previous lower bound when α > 3.

Theorem 19. There exists an instance of problem (·,m)-VMA such that no online algorithm can

guarantee a competitive ratio smaller than 3α/(2α+2 + ε) for any ε > 0.

Proof : We prove the result by giving an adversarial arrival of VMs. We evaluate the competi-

tive ratio of any online algorithm ALG with respect to an algorithm OPT that distributes the VMs

among all the PMs “as evenly as possible”. We define a value β > 1 such that ε ≥ (α − 1)/βα

for some value ε > 0. Note that such value β can be defined for any ε > 0. The adversarial arrival

follows. In a first phase, m VMs arrive, each with load βx∗.

Let π be the partition given by ALG. We show first that if π uses less than 3m/4 PMs2 or

some PM is assigned more than 2 VMs there exists another partition that can be obtained from π,

it uses exactly 3m/4 PMs, no PM is assigned more than 2 VMs, and the power consumption is

not worse.

If π uses less than 3m/4 PMs, then there exists another partition π′ that uses exactly 3m/4

PMs with a power consumption that is not worse than P (π). To see why, notice that there are

PMs in π that are assigned more than one VM and that each load is βx∗ > x∗. Then, applying

repeatedly Lemma 13 until 3m/4 PMs are used, where `1 and `2 are the loads of any pair of VMs

assigned to the same PM, a partition π′ such that P (π′) ≤ P (π) can be obtained.

If in π′ some PM is assigned more than 2 VMs, then there exists another partition π′′ where

no PM is assigned more than 2 VMs with a power consumption that is not worse than P (π′). To

2For clarity we omit floors and ceilings in the proof.

7.4 Online Analysis 129

see why, consider the following reassignment procedure. Repeatedly until there is no such PM,

locate a PM si with at least 3 VMs. Then, locate a PM sj with one single VM (which exists by

the pigeonhole principle). Then, move one VM from si to sj . From Lemma 14 each movement

decreases the power consumed. Hence, π′′ is still a partition that uses 3m/4 PMs, each PM has

at most 2 VMs assigned, and P (π′′) ≤ P (π′).

Then, we know that P (π) is not smaller than the power consumption of a partition where

exactly 3m/4 PMs are used and no PM is assigned more than 2 VMs. On the other hand, OPT

would have assigned each VM to a different PM. Thus, using that x∗ = (b/(α − 1))1/α, the

competitive ratio is

ρ ≥ (2βx∗)αm/4 + (βx∗)αm/2 + 3mb/4

m(βx∗)α +mb

≥ (2α−2 + 1/2)βα

βα + (α− 1)
≥ 2α−3 + 1/4,

where the last inequality follows from βα ≥ (α − 1). Finally, observe that 2α−3 + 1/4 ≥
3α/(2α+2 + ε) for α > 1. No more VMs arrive in this case.

Let us consider now the the case where ALG assigns the m initial VMs to more than 3m/4

PMs. Then, after ALG has assigned the first m VMs, a second batch of m/2 VMs arrive, each

VM with load 2βx∗. Let π be the partition output by ALG after this second batch is assigned. If

in π two of the second batch VMs are assigned to the same PM si, by the pigeonhole principle

there is at least one PM sj with at most load βx∗. Then, from Lemma 14, the power consumed is

reduced if one of the new VMs is moved from si to sj . After repeating this process as many times

as possible, a partition π′ is obtained where each of the VMs of the second batch is assigned to a

different PM, and P (π′) ≤ P (π). Since ALG used more than 3m/4 PMs in the first batch, in π′,

there are at least m/4 PMs with load 3βx∗. On the other hand, OPT can distribute all the VMs

in such a way that each PM has a load of 2βx∗. Thus, the bound on the competitive ratio is as

follows.

ρ ≥ m(3βx∗)α/4

m(2βx∗)α +mb
≥ 3α

2α+2 + ε
,

where the last inequality follows from ε ≥ (α− 1)/βα. �

Now, we show a stronger lower bound on the competitive ratio for (·, 2)-VMA problem.

Theorem 20. There exists an instance of problem (·, 2)-VMA such that no online algorithm can

guarantee a competitive ratio smaller than 3α/2α+1.

Proof : We prove the result by showing an adversarial arrival of VM. We evaluate the com-

petitive ratio of any online algorithm ALG with respect to an optimal algorithm OPT that knows

the future VM arrivals. The adversarial arrival follows. In a first phase two VM d1 and d2 arrive,

with loads `(d1) = `(d2) = 6x∗ (Recall from Section 7.2 that x∗ = (b/(α− 1))1/α).

130 Efficient Assignment of Virtual Machines to Physical Machines

If ALG assigns both VMs to the same PM, the power consumed will be (12x∗)α+ b, whereas

OPT would assign them to different PMs, with a power consumption of 2((6x∗)α + b). Hence,

the ratio ρ would be

ρ =
(12x∗)α + b

2((6x∗)α + b)
>

12α

2(6α + α− 1)

>
12α

2(6α + 2α)
=

6α

2(3α + 1)
,

where the first inequality follows from α > 1 and the second from α− 1 < 2α for any α > 1. It

is enough to prove that 6α/(2(3α + 1)) ≥ (3/2)α /2, or equivalently 4α ≥ 3α + 1, which is true

for any α > 1. Then, there are no new VM arrivals.

If, otherwise, ALG assigns each VM d1 and d2 to a different PM, then a third VM d3 arrives,

with load `(d3) = 12x∗. Then, ALG must assign it to one of the PMs. Independently of which

PM is used, the power consumption of the final configuration is (18x∗)α + (6x∗)α + 2b. On

its side, OPT assigns d1 and d2 to one PM, and d3 to the other, with a power consumption of

2((12x∗)α + b). Hence, the competitive ratio ρ is

ρ =
(18x∗)α + (6x∗)α + 2b

2((12x∗)α + b)
>

18α + 6α

2(12α + α− 1)

>
18α + 6α

2(12α + 4α)
≥ (3/2)α /2,

where the first inequality follows from α > 1, the second from α − 1 < 4α for any α > 1, and

the third from (9α + 3α)/(6α + 2α) ≥ (3/2)α, what can be checked to be true. Then, there are

no new VM arrivals and the claim follows. �

7.4.2 Upper Bounds

Now, we study upper bounds for (·, ·)-VMA, (C, ·)-VMA, and (·, 2)-VMA problems. We start

giving two online VMA algorithms, that we denote as VMA1 and VMA2 and that can be found in

Algorithm 2 and Algorithm 3. We study algorithm VMA1 for both (·, ·)-VMA and (C, ·)-VMA

problems while VMA2 is only studied for the (·, ·)-VMA case. These algorithms use the load

of the new revealed VM in order to decide the PM where it will be assigned. The behaviour of

both algorithms is similar. In algorithm VMA1, if the load of the revealed VM is strictly larger

than min{x∗, C}/2, the algorithm assigns this VM to a new PM without any other VM already

assigned to it. Otherwise, the algorithm schedules the revealed VM to any loaded PM whose

current load is smaller or equal than min{x∗,C}
2 . Hence, when this new VM is assigned, the load

of this PM remains smaller than min{x∗, C}. If there is no such loaded PM, the revealed VM is

assigned to a new PM. On the other hand, algorithm VMA2 shares the same behaviour but uses a

different threshold. In this case, if the load of the revealed VM is strictly larger than min{x∗, C},
the algorithm assigns this VM to a new PM. If the load is smaller than x∗, VMA2 schedules the

7.4 Online Analysis 131

new VM to the most loaded PM whose load is smaller than x∗.

Note that, since the case under consideration assumes the existence of an unbounded number

of PMs, there exists always one new PM. As mentioned, a detailed description of these algorithms

is shown in Algorithm 2 and Algorithm 3. As before, Aj denotes the set of VMs assigned to PM

sj at a given time.

Algorithm 2: Online algorithm VMA1 for (·, ·)-VMA and (C, ·)-VMA problems.

for each VM di do
if `(di) > min{x∗,C}

2 then
di is assigned to a new PM

else
di is assigned to any loaded PM sj where `(Aj) ≤ min{x∗,C}

2 . If such loaded PM
does not exist, di is assigned to a new PM.

Algorithm 3: Online algorithm VMA2 for the (·, ·)-VMA problem.

for each VM di do
if `(di) ≥ x∗ then

di is assigned to a new PM
else

di is assigned to the PM sj such that `(Ak) ≤ `(Aj) < x∗ for all k. If such loaded
PM does not exist, di is assigned to a new PM.

7.4.2.1 Upper Bounds for the (·, ·)-VMA and (C, ·)-VMA problems

We prove the approximation ratio of Algorithm 2 in the following two theorems.

Theorem 21. There exists an online algorithm for (·, ·)-VMA and (C, ·)-VMA when x∗ < C that

achieves the following competitive ratio:

ρ = 1, if no VM di has load such that `(di) < x∗,

ρ ≤
(
1− 1

α

(
1− 1

2α

)) (
2 + x∗

`(Ds)

)
, otherwise.

Proof : We proceed with the analysis of the competitive ratio of Algorithm 2 shown above.

Let us first consider an optimal algorithm, that is, an algorithm that gives an optimal solution

for any instance. Let us denote by π∗ the optimal solution obtained by the optimal algorithm,

and Ai the load assigned to PM si in that solution, for a particular instance of VMA problem.

Furthermore, load Ai is decomposed in di1 , di2 , . . . , diki , where each dij is a VM that π∗ assigns

to si. Using simple algebra, it holds:

f(`(Ai)) =
f(`(Ai))

`(Ai)
(`(di1) + `(di2) + · · ·+ `(diki)).

132 Efficient Assignment of Virtual Machines to Physical Machines

It is possible now to split the set Ai in two sets, one with those VMs assigned to si whose load

is strictly smaller than x∗ and a second set that contains those VMs assigned to si whose load is

bigger than x∗. In terms of notation, we say that Ai is split in Bi and Si (where B stands for Big

loads and S stands for Small loads). Therefore, it also holds:

f(`(Ai)) =
∑
dij∈Bi

f(`(Ai))

`(Ai)
`(dij) +

∑
dij∈Si

f(`(Ai))

`(Ai)
`(dij).

On the other hand, by definition of x∗, it holds that:

f(`(Ai))/`(Ai) ≥ f(x∗)/x∗

for all i (indeed, for any load). Moreover, if a PM has been assigned with a load `(dij) bigger

than x∗, it also holds that

f(`(Ai))/`(Ai) ≥ f(`(dij))/`(dij).

Hence, we obtain the following inequality:

f(`(Ai)) ≥
∑
dij∈Bi

f(`(dij)) +
∑
dij∈Si

f(x∗)

x∗
`(dij).

In order to lower bound the power consumption of the solution π∗, we plug the above inequal-

ity into the corresponding equation:

P (π∗) =
∑
Ai 6=∅

f(`(Ai))

≥
∑
Ai 6=∅

∑
dij∈Bi

f(`(dij)) +
f(x∗)

x∗

∑
Ai 6=∅

∑
dij∈Si

`(dij),

or, equivalently expressed in more compact notation:

P (π∗) ≥
∑

di:`(di)≥x∗
f(`(di)) +

f(x∗)

x∗

∑
di:`(di)<x∗

`(di). (7.6)

Consider now Algorithm 2. Let us denote by π a solution that Algorithm 2 gives for a par-

ticular instance. Also, let us denote by Âi the load assigned by Algorithm 2 to PM si. Note that

due to the design of the algorithm, after the last VM has been assigned, either there is only one

loaded PM whose current load is smaller than x∗/2, or every loaded PM has a load at least x∗/2.

We study these two cases separately.

Case 1: `(Âi) ≥ x∗/2 for all i. In this case, in a solution provided by π there are PMs with two

types of load: those that are loaded with one VM whose load is no smaller than x∗, and those that

7.4 Online Analysis 133

are loaded with VMs whose load is strictly smaller than x∗, nonetheless, their total load is bigger

than x∗/2. Note that due to the design of the algorithm, none of the PMs in the second group has

a load bigger than x∗. Let us denote by B the set of VMs with load at least x∗, and Ds the set of

VMs with load less than x∗. Therefore, it holds:

P (π) =
∑
d∈B

f(`(d)) +
∑

x∗
2
≤`(Âi)≤x∗

f(`(Âi))

≤
∑
d∈B

f(`(d)) +
f(x

∗

2)
x∗

2

`(Ds).

Computing the ratio ρ between P (π) and P (π∗), we obtain the following inequality:

ρ ≤

∑
d∈B f(`(d)) +

f(x
∗
2

)
x∗
2

`(Ds)∑
d∈B f(`(d)) + f(x∗)

x∗ `(Ds)

≤

f(x
∗
2

)
x∗
2

`(Ds)

f(x∗)
x∗ `(Ds)

= 2
f(x

∗

2)

f(x∗)
= 2

(
1− 1

α

(
1− 1

2α

))
.

Case 2: there exists si such that `(Âi) < x∗/2. In this case, π gives solutions with three types

of loaded PMs: those that are loaded with one VM whose load is bigger than x∗, those that are

loaded with VMs whose load is strictly smaller than x∗, but which total load is at least x∗/2,

and one PM whose total load is is strictly smaller than x∗/2. Let us denote such a PM by s′.

Therefore, it holds:

P (π) =
∑
d∈B

f(`(d)) +
∑

x∗
2
≤`(Âi)≤x∗

f(`(Âi)) + f(`(Âs′))

≤
∑
d∈B

f(`(d)) +
f(x

∗

2)
x∗

2

(
`(Ds)− `(Âs′)

)
+ f(`(Âs′))

=
∑
d∈B

f(`(d)) +
f(x

∗

2)
x∗

2

(
`(Ds)− `(Âs′)

)
+ `(Âs′)

α + b.

Let us denote the latter expression by Π(π). Computing the ratio ρ between P (π) and P (π∗), we

134 Efficient Assignment of Virtual Machines to Physical Machines

obtain the following inequality:

ρ ≤ Π(π)∑
d∈B f(`(d)) + f(x∗)

x∗ `(Ds)

≤ 2

(
1− 1

α

(
1− 1

2α

))
+
`(Âs′)

α − `(Âs′)
f(x
∗
2

)
x∗
2

+ b

f(x∗)
x∗ `(Ds)

≤ 2

(
1− 1

α

(
1− 1

2α

))
+
`(Âs′)

α + b
f(x∗)
x∗ `(Ds)

≤ 2

(
1− 1

α

(
1− 1

2α

))
+

(x
∗

2)α + b
f(x∗)
x∗ `(Ds)

=

(
1− 1

α

(
1− 1

2α

))(
2 +

x∗

`(Ds)

)
.

Since x∗/`(Ds) is always positive, the competitive ratio of Algorithm 2 is equal to 2α−1 +

x∗/`(Ds). Observe that, when no VM d has load `(d) < x∗, i,e., S = ∅, P (π) and P (π∗)

are equal. Hence, the competitive ratio is 1. �

Theorem 22. There exists an online algorithm for (C, ·)-VMA when x∗ ≥ C that achieves com-

petitive ratio ρ ≤ 2b
C

(
1 + 1

(α−1)2α

)(
2 + C

`(D)

)
.

Proof : We proceed with the analysis of the competitive ratio of Algorithm 2 in the case when

x∗ ≥ C. The analysis uses the same technique used in the proof for the previous theorem. Hence,

we just show the difference.

On the one hand, when x∗ ≥ C, it holds that f(`(Ai))/`(Ai) ≥ f(C)/C due to the fact

that f(x)/x is monotone decreasing in interval (0, C]. It is also obvious that all the PMs will be

loaded no more C. As a result, the optimal power consumption for (C, ·)-VMA can be bounded

by

P (π∗) ≥ f(C)

C
`(D).

On the other hand, the solution given by Algorithm 2 can also be upper bounded. We consider

the following two cases.

Case 1: `(Âi) ≥ C/2 for all i. In this case, every PM will be loaded between C/2 and C.

Consequently,

P (π) =
∑

C
2
≤`(Âi)≤C

f(`(Âi)) ≤
f(C2)
C
2

`(D).

The competitive ratio ρ then satisfies

ρ ≤

f(C
2

)
C
2

`(D)

f(C)
C `(D)

= 2
f(C2)

f(C)
≤ 2b

C

(
1 +

1

(α− 1)2α

)
.

7.4 Online Analysis 135

Case 2: there exists si such that `(Âi) < C/2. In this case, it holds:

P (π) =
∑

C
2
≤`(Âi)≤C

f(`(Âi)) + f(`(Âs′))

≤
f(C2)
C
2

(∑
di:`(di)≤C

`(di)− `(Âs′)
)

+ f(`(Âs′))

=
f(C2)
C
2

(
`(D)− `(Âs′)

)
+ `(Âs′)

α + b.

The competitive ratio ρ then satisfies

ρ ≤ P (π)
f(C)
C `(D)

≤ 2b

C

(
1 +

1

(α− 1)2α

)
+

+
`(Âs′)

α − `(Âs′)
f(C

2
)

C
2

+ b

f(C)
C `(D)

≤ 2b

C

(
1 +

1

(α− 1)2α

)
+
`(Âs′)

α + b
f(C)
C `(D)

≤ 2b

C

(
1 +

1

(α− 1)2α

)
+

(C2)α + b
f(C)
C `(D)

=
2b

C

(
1 +

1

(α− 1)2α

)(
2 +

C

`(D)

)
.

�

7.4.2.2 Approximation Ratio for Algorithm VMA2

We prove the approximation ratio of Algorithm 3 in the following theorem.

Theorem 23. For a system with unbounded number of PMs, Algorithm 3 achieves a competitive

ratio of 1 if no VM di has `(di) < x∗, and of 2α−1 + x∗
/∑

di:`(di)<x∗
`(di), otherwise.

Proof : Maintaining the same notation we used for proving Theorem 21, let us denote by π a

solution that Algorithm 3 gives for a particular instance and by Âi the load assigned by Algorithm

3 to PM si. Note that due to the design of the algorithm, after the last VM has been assigned,

either there is only one loaded PM whose current load is smaller than x∗, or every loaded PM has

a load bigger than x∗. We study these two cases separately.

Case 1: `(Âi) ≥ x∗ for all i. In this case, in a solution provided by π there are PMs with two

types of load: those that are loaded with one VM whose load is no smaller than x∗, and those that

are loaded with VMs whose load is strictly smaller than x∗, nonetheless, their total load is bigger

than x∗. Note that due to the design of the algorithm, none of the PMs in the second group has a

load bigger than 2x∗. Let us denote by B the set of demands with load at least x∗, and S the set

136 Efficient Assignment of Virtual Machines to Physical Machines

of demands with load less than x∗. Therefore, it holds:

P (π) =
∑
d∈B

f(`(d)) +
∑

x∗≤`(Âi)≤2x∗

f(`(Âi))

≤
∑
d∈B

f(`(d)) +
f(2x∗)

2x∗

∑
`(d∈S

`(d).

Computing the ratio ρ between P (π) and the expression for P (π∗) from Eq. (7.6), we obtain

the following inequality:

ρ ≤
∑

d∈B f(`(d)) + f(2x∗)
2x∗

∑
d∈S `(d)∑

d∈B f(`(d)) + f(x∗)
x∗

∑
d∈S `(d)

≤
f(2x∗)

2x∗
∑

d∈S `(d)
f(x∗)
x∗

∑
d∈S `(d)

≤ 2α−1. (7.7)

Case 2: there exists si such that `(Âi) < x∗. In this case, π gives solutions with three types

of loaded PMs: those that are loaded with one VM whose load is bigger than x∗, those that are

loaded with VMs whose load is strictly smaller than x∗, but which total load is bigger than x∗, and

one PM whose total load is is strictly smaller than x∗. Let us denote such a PM by s′. Therefore,

it holds:

P (π) =
∑
d∈B

f(`(d)) +
∑

x∗≤`(Âi)≤2x∗

f(`(Âi)) + f(`(Âs′))

≤
∑
d∈B

f(`(d)) +
f(2x∗)

2x∗

(∑
d∈S

`(d)− Âs′
)

+ f(`(Âs′))

=
∑
d∈B

f(`(d)) +
f(2x∗)

2x∗

(∑
d∈S

`(d)− Âs′
)

+ `(Âs′)
α + b.

Let us denote the latter expression by Π(π). Computing the ratio ρ between P (π) and P (π∗),

we obtain the following inequality:

ρ ≤ Π(π)∑
d∈B f(`(d)) + f(x∗)

x∗
∑

d∈S `(d)
(7.8)

≤ 2α−1 +
`(Âs′)

α − Âs′ f(2x∗)
2x∗ + b

f(x∗)
x∗

∑
d∈S `(d)

≤ 2α−1 +
`(Âs′)

α + b
f(x∗)
x∗

∑
d∈S `(d)

≤ 2α−1 +
(x∗)α + b

f(x∗)
x∗

∑
d∈S `(d)

= 2α−1 +
x∗∑

d∈S `(d)
.

7.4 Online Analysis 137

Since x∗/
∑

d∈S `(d) is always positive, the competitive ratio of Algorithm 2 is equal to

2α−1 + x∗/
∑

d∈S `(d). Observe that, when no VM d has load `(d) < x∗, i,e., S = ∅, equations

(7.7) and (7.8) become P (π)
P (π∗) ≤ 1. �

7.4.2.3 Upper Bounds for (·, 2)-VMA problem

We now present an algorithm (detailed in Algorithm 4) for (·, 2)-VMA problem and show an

upper bound on its competitive ratio. A1 and A2 are the sets of VMs assigned to PMs s1 and s2,

respectively, at any given time.

Algorithm 4: Online algorithm for (·, 2)-VMA.

for each VM di do
if `(di) + `(A1) ≤ (b/(2α − 2))1/α or `(A1) ≤ `(A2) then

di is assigned to s1;
else

di is assigned to s2;

We prove the approximation ratio of Algorithm 4 in the following theorem.

Theorem 24. There exists an online algorithm for (·, 2)-VMA that achieves the following com-

petitive ratios.

ρ = 1, for `(D) ≤
(

b

2α − 2

)1/α

,

ρ ≤ max

{
2,

(
3

2

)α−1
}
, for `(D) >

(
b

2α − 2

)1/α

.

Proof : Consider Algorithm 4 shown above. If `(D) ≤ (b/(2α − 2))1/α, then the competitive

ratio is 1 as we show. Algorithm 4 assigns all the VMs to PM s1. On the other hand, the optimal

offline algorithm also assigns all the VMs to one PM. To prove it, it is enough to show that

`(D)α+b < `(A1)α+`(A2)α+2b. Using that `(A1)α+`(A2)α > 2 (`(D)/2)α and manipulating,

it is enough to prove `(D) < 2 (b/(2α − 2))1/α. This is true for `(D) ≤ (b/(2α − 2))1/α.

We consider now the case (b/(2α − 2))1/α < `(D) < 2 (b/(2α − 2))1/α. Within this range,

for the optimal algorithm is still better to assign all VMs to one PM, as shown. Then, the compet-

itive ratio ρ is

ρ =
`(A1)α + `(A2)α + 2b

`(D)α + b
≤ `(D)α + 2b

`(D)α + b
< 2. (7.9)

Consider any given step after `(D) ≥ 2 (b/(2α − 2))1/α. Within this range, the optimal

algorithm may assign the VMs to one or both PMs. If the optimal algorithm assigns to one PM,

138 Efficient Assignment of Virtual Machines to Physical Machines

Inequality 7.9 applies. Otherwise, the competitive ratio ρ is

ρ =
`(A1)α + `(A2)α + 2b

2(`(D)/2)α + 2b
≤ 2α−1 `(A1)α + `(A2)α

`(D)α

= 2α−1 `(A1)α/`(A2)α + 1

(`(A1)/`(A2) + 1)α
.

Then, in order to obtain a ratio at most xα/2, where x will be set later, it is enough to guarantee

2α−1 `(A1)α/`(A2)α + 1

(`(A1)/`(A2) + 1)α
≤ xα

2

(`(A1)/`(A2))α + 1

(`(A1)/`(A2) + 1)α
≤
(x

2

)α
.

Without loss of generality, assume `(A1) ≤ `(A2). This implies that (`(A1)/`(A2))α ≤
`(A1)/`(A2). Then, it is enough to have

`(A1)/`(A2) + 1

(`(A1)/`(A2) + 1)α
≤
(x

2

)α
.

Let us now define `(A1) + ` = `(A2) for some ` ≥ 0. Manipulating and replacing, it is enough

to show

`

`(A1)
≤ 2− (2/x)α/(α−1)

(2/x)α/(α−1) − 1
. (7.10)

If Inequality 7.10 holds the theorem is proved. Otherwise, the following claim is needed.

Claim 1. If `(D) ≥ 2 (b/(2α − 2))1/α, then there must exist a VM di in D such that `(di) ≥
|`(A2)− `(A1)|.

Proof : If `(A2) = `(A1) the claim follows trivially. Assume that `(A2) 6= `(A1). Consider

any given time when `(D) ≥ 2 (b/(2α − 2))1/α. For the sake of contradiction, assume that for

all di ∈ D it is `(di) < |`(A2)− `(A1)|. Let d1, d2, . . . , dr be the order in which the VMs were

revealed to Algorithm 4. And let the respective sets of VMs be calledDi = {dj |j ∈ [1, i]}, that is

Dr = D. Given that `(D) ≥ 2 (b/(2α − 2))1/α > (b/(2α − 2))1/α, the VM dr was assigned to

the PM with smaller load. Then, either `(dr) ≥ |`(A2)− `(A1)| which would be a contradiction,

or if `(dr) < |`(A2) − `(A1)| the PM with the smaller load before and after assigning dr is the

same. The argument can be repeated iteratively backwards for each dr−1, dr−2, etc. until, for

some j ∈ [1, r), either it is `(dj) ≥ |`(A2) − `(A1)| reaching a contradiction, or the total load

is `(Dj) < (b/(2α − 2))1/α. If the latter is the case, we know that for i ∈ [1, j] every di was

assigned to s1. Recall that for i ∈ (j, r] each di was assigned to the same PM. And, given that

dj+1 is the first VM for which the total load is at least (b/(2α − 2))1/α, that PM is s2. But then,

we have `(A2) < `(A1) < (b/(2α − 2))1/α, which is a contradiction with the assumption that

`(D) ≥ 2 (b/(2α − 2))1/α. �

7.5 Experimental Evaluation 139

Using Claim 1 we know that there exists a di in the input such that

`(di) ≥ ` > `(A1)
2− (2/x)α/(α−1)

(2/x)α/(α−1) − 1
.

From the latter, it can be seen that if x ≥ 2(3/4)
α−1
α , then we have that ` > 2`(A1). Then, the

competitive ratio ρ is

ρ =
`(A1)α + (`(A1) + `)α + 2b

(2`(A1))α + `α + 2b

≤ `(A1)α + (`(A1) + `)α

(2`(A1))α + `α
.

Using calculus, this ratio is maximized for ` = 2`(A1) for ` ≥ 2`(A1). Then, we have ρ ≤
(1 + 3α)/(2 · 2α). Then, in order to obtain a ratio at most xα/2, it is enough to guarantee

(1 + 3α)/(2 · 2α) ≤ xα/2 which yields x ≥ ((1 + 3α)/2α)1/α.

Given that, for any α ≥ 1, it holds:

2(3/4)1−1/α ≥ ((1 + 3α)/2α)1/α .

Then, the competitive ratio is ρ ≤ (2(3/4)1−1/α)α/2 = (3/2)α−1. �

7.5 Experimental Evaluation

In this section we experimentally evaluate the performance of two of the online algorithms

proposed in Section 7.4.2, namely VMA1 and VMA2, and compare them to other state-of-the-art

online placement algorithms.

Both VMA1 and VMA2 have been extended to handle a bounded number of PMs when nec-

essary. This is achieved by assigning the incoming task to the least loaded machine when no

more new PMs are available. Similarly, VMA2 has also been extended to deal with the bounded

capacity case, when required, by using a threshold of min{x∗, C} and checking whether a new

load fits into the targeted PM. In case a new load does not fit, it is assigned to the first possible

PM with available resources. Although the competitive ratios of VMA2 are worse than the ones

from VMA1, it exhibits a better behavior in simulation.

7.5.1 Experimental Setup

The performance of both VMA1 and VMA2 is first compared with a lower bound, denoted

LBVMA, that is obtained as follows. The input VMs are sorted in non-increasing order of their

loads. Then, using this order, as many VMs as possible with load at least x∗ are assigned to

different PMs. Let L be total load of the VMs still unassigned. If there are bL/x∗c still unused

140 Efficient Assignment of Virtual Machines to Physical Machines

PMs they will be used. Otherwise all PMs will be used. Finally, the load L is assigned among all

used PMs as if it could be infinitely divided (i.e., as a fluid), using a water-filling algorithm [38].

We evaluate both (·,m)-VMA and (C,m)-VMA problems, therefore, in the (C,m)-VMA

case a VM can only be assigned to a PM if the latter has sufficient capacity to host it. We test both

algorithms VMA1 and VMA2 and also compare them with the following algorithms proposed in

the literature:

• Random Fit (RF) [116]: It chooses a PM for each VM uniformly at random among

the PM. If the chosen PM cannot allocate the load of the VM, the process is repeated, until

the VM is assigned to a PM.

• Next Fit (NF) [116]: Starting initially at the first PM, each new VM is assigned to

the next PM after the latest PM to which a VM was assigned (in a cyclic fashion) and with

sufficient capacity to host it.

• Least Full First (LFF) [116]: Each new VM is assigned to (one of) the least loaded

PM(s) in the system with enough capacity to host it.

• Striping (S) [96]: Each new VM is assigned to (one of) the PM(s) with the smallest

number of VMs assigned and with enough capacity to host it.

• Watts per Core (WC) [96]: Assigns each new VM to the PM whose power would

suffer the smallest increase and with enough capacity to host it.

• First Fit (FF) [116]: Starting initially at the first PM, each new VM is placed in the

first PM that can host it.

• Round Robin (RR) [96]: Like FF but, after the first VM is assigned, the search starts

from the latest PM in which a VM was allocated.

• Packing (P) [96]: Each new VM is assigned to (one of) the PM(s) with the largest

number of VMs assigned provided that the PM can host it.

• Most Full First (MFF) [116]: Each new VM is assigned to the most loaded PM in

which it fits.

Observe that, given its nature, First Fit, Round Robin, Packing and Most Loaded First can

be only considered for the (C,m)-VMA problem. If PMs had infinite capacity, these algorithms

would place all VMs in only one PM. The remaining algorithms are evaluated for both (·,m)-

VMA and (C,m)-VMA.

The behavior of the aforementioned algorithms is evaluated by inputting the two sets of traces,

synthetic and real, shown in Figure 7.1. We call them Trace A and Trace B, respectively. Trace

A is generated by randomly choosing the load of each VM following a power-law distribution

with exponential cutoff, which has been chosen so 100% is the maximum task load of a VM.

7.5 Experimental Evaluation 141

(a) Trace A (synthetic traces) (b) Trace B (Google traces)

Figure 7.1: VM load distributions used in the evaluations.

We randomly select 10000 integer loads using this distribution. This leads us to the VM load

distribution shown in Figure 7.1(a).

Trace B is obtained from public Google traces [88]. We extract all the tasks from these traces,

assuming that each task is an independent VM. The VMs (tasks) are sorted by the time at which

they join the system. The task load of a VM is the maximum CPU load of the task. The trace

then contains 124885 VMs with loads varying between 0.31% and 12.5%. The resulting VM load

distribution can be seen in Figure 7.1(b). The load values of the VMs for both distributions are

given in percentage in order to scale them up depending on the maximum capacity of a PM in the

(C,m)-VMA case or to an appropriate value in the (·,m)-VMA case.

Each execution of the algorithms is run with a fixed number of PMs. This number of PMs

increases from 1 to the number of VMs in the trace being used. This allows us to see how the

power consumption and how the algorithms behavior evolve when the number of available PMs

in the system varies. Finally, in order to evaluate both (·,m)-VMA and (C,m)-VMA, we emulate

different PMs by determining their α, b, µ and x∗ parameters as well as the PM maximum capacity

or the maximum task load when it corresponds. Then we run the proposed algorithms for each

one of these emulated PMs and compare the influence of the different values for these parameters

on the final results.

7.5.2 Experimental Results for (·,m)-VMA

We first evaluate (·,m)-VMA. The first step is to define the set of PMs that we are go-

ing to use to evaluate it. To do so, we fix the values of α, b and x∗ and compute µ de-

pending on the previous parameters. In particular, we used α = {1.5, 2, 2.5, 3} and x∗ =

{10, 30, 50, 75, 100, 130, 150, 300, 500, 750, 1000} (given in (Giga)Cycles per Second (GCPS)

following the conclusions from Chapter 6). The values of b are determined by interpolation of

the baseline costs of Nemesis, Survivor and Erdos, whose values for b (∼ 85 W, 67 W and

215 W) are known from the experiments performed in Chapter 6. As we mentioned, the values

142 Efficient Assignment of Virtual Machines to Physical Machines

Table 7.3: Simulation parameters for a set of machines for the (·,m)-VMA case.

(·, ·)-VMA case
b x∗ [GCPS] α = 1.5 α = 2 α = 2.5 α = 3

73.05 10 1.46E-13 7.31E-19 4.87E-24 3.65E-29
92.15 30 3.55E-14 1.02E-19 3.94E-25 1.71E-30

111.25 50 1.99E-14 4.45E-20 1.33E-25 4.45E-31
135.125 75 1.32E-14 2.40E-20 5.85E-26 1.60E-31

159 100 1.01E-14 1.59E-20 3.35E-26 7.95E-32
187.65 130 8.01E-15 1.11E-20 2.05E-26 4.27E-32
206.75 150 7.12E-15 9.19E-21 1.58E-26 3.06E-32

350 300 4.26E-15 3.89E-21 4.73E-27 6.48E-33
541 500 3.06E-15 2.16E-21 2.04E-27 2.16E-33

779.75 750 2.40E-15 1.39E-21 1.07E-27 9.24E-34
1018.5 1000 2.04E-15 1.02E-21 6.79E-28 5.09E-34

of b, α and x∗ determine the value of µ. These combination of parameters results in 44 different

instances of PMs which are shown in Table 7.3.

Additionally, taking advantage of the fact that the task loads from Trace A and B are given

in percentage, and in order to study the importance of the x∗ to task load ratio, we define the

maximum VM load λ as the maximum load that a VM arriving to the system can have. Therefore,

the load of the VMs arriving to the system will be the product of the task load (in percentage) and

λ. λ will take the following values: 10, 30 and 100 GCPS.

We study three different scenarios. In the first one we study the effect of α for different

values of λ and x∗ when using VMA1, VMA2, and the lower bound LBVMA. Second and third

scenarios are devoted to compare our proposed algorithms with the state-of-the-art algorithms,

always keeping LBVMA as a reference. In the second scenario we study the relevance of λ while

keeping α and x∗ constant. Finally, in the third one, we study the effect of having different values

of x∗ while λ and α remain unaltered.

Scenario 1 compares the power consumed by partitions obtained with VMA1 or VMA2 and

for Trace A and Trace B. We compare these results to the ones achieved by LBVMA, that lower

bounds the optimal power consumption. The results obtained are presented as graphs in which

the power consumed is represented as a function of the number of PMs used.

Figure 7.2 and Figure 7.3 show the results for Trace A and Trace B, for 2 different values of

x∗, 30 and 300 GCPS, and 2 different values of λ, 10 and 100 GCPS. We can clearly see how

the power consumption is smaller for larger values of α once the optimal number of used PMs is

reached, mainly conditioned by how µ decreases as α increases (See Table 7.3. Also, as it can be

observed, there is no qualitative difference in the solutions when α varies for a given configuration

(Similar results are obtained with other values of x∗ and maximum task load).

Regarding the performance of the algorithms, we can see how the power consumed by the

partitions found with VMA2 is lower, in all cases, than the ones obtained by VMA1 and is always

7.5 Experimental Evaluation 143

(a) 10 GCPS, x∗ = 30 GCPS (b) 10 GCPS, x∗ = 300 GCPS

(c) 100 GCPS, x∗ = 30 GCPS (d) 100 GCPS, x∗ = 300 GCPS

Figure 7.2: (·,m)-VMA: Comparing the power consumed by VMA1 and VMA2 with the lower
bound LBVMA for x∗ = {30, 300} GCPS, α = {1.5, 2.5} and λ = {10, 100} GCPS for Trace
A (Synthetic traces).

closer to the lower bound obtained by LBVMA. This shows that the performance of VMA2 is close

to the optimal for (·,m)-VMA. We can see how, in general, VMA1 is able to match the results

of VMA2 when the number of PMs is relatively low. However, due to the threshold imposed on

the load of the PMs for each algorithm, VMA2 is able to pack the load in less PMs. We only

find an exception in Figure 7.2(c), when x∗/λ < 1/3 and we are using synthetic traces. In

this case VMA2 exhibits a behavior relatively similar to VMA1, not being able to hold to its best

power consumption and reducing the quality of the solution when the number of PMs increases.

However, this flaw is not replicated when using Trace B, due to the smaller amount of big loads

in comparison with Trace B.

Scenario 2 compares the performance of LBVMA, VMA1 and VMA2 with the other assignment

algorithms proposed in the literature. Here, the values of x∗ and α are fixed to 30 GCPS and 2,

respectively, while the value of λ varies. In particular we use λ = {10, 30, 100} GCPS. Figures

144 Efficient Assignment of Virtual Machines to Physical Machines

(a) 10 GCPS, x∗ = 30 GCPS (b) 10 GCPS, x∗ = 300 GCPS

(c) 100 GCPS, x∗ = 30 GCPS (d) 100 GCPS, x∗ = 300 GCPS

Figure 7.3: (·,m)-VMA: Comparing the power consumed by VMA1 and VMA2 with the lower
bound LBVMA for x∗ = {30, 300} GCPS, α = {1.5, 2.5} and λ = {10, 100} GCPS for Trace
B (Google traces).

7.4 and 7.5 present the results for Trace A and Trace B3.

We can easily see, in general, 3 different trends in Figures 7.4 and 7.5. The first trend would

include LBVMA, VMA1 and VMA2; then we have a second one including Striping, RF, NF and

LLF; and, finally, in some sort of no-man’s land, we have WC. These trends have their origin

in power awareness. While LBVMA, VMA1, VMA2 and WC are power aware, the rest are not.

According to Figures 7.4 and 7.5, power aware algorithms outperform the non power aware ones.

It is interesting to see how WC reduces its power consumption (for Trace A) as the ratio x∗/λ

decreases and even performs better than VMA1 for λ = 100 GCPS. This does not happen, though,

for Trace B due to the smaller average task load, that gives advantage to VMA1 and VMA2. With

Trace B, due to its nature, WC obtains partitions that use less PMs and hence, because of the

3For the sake of clarity, we do not show the power consumption resulting of using only one (or a few) machines
and center the figure into more relevant cases

7.5 Experimental Evaluation 145

(a) λ = 10 GCPS

(b) λ = 30 GCPS

(c) λ = 100 GCPS

Figure 7.4: (·,m)-VMA: Comparing the power consumed by the different assignment algorithms
for x∗ = 30 GCPS, α = 2 and λ = {10, 30, 100} GCPS for Trace A (Synthetic traces).

146 Efficient Assignment of Virtual Machines to Physical Machines

(a) λ = 10 GCPS

(b) λ = 30 GCPS

(c) λ = 100 GCPS

Figure 7.5: (·,m)-VMA: Comparing the power consumed by the different assignment algorithms
for x∗ = 30 GCPS, α = 2 and λ = {10, 30, 100} GCPS for Trace B (Google traces).

7.5 Experimental Evaluation 147

superlinear dependence of the power consumption on the load, have higher power consumptions.

Similarly, we can observe that the results in Figure 7.4(c) are tighter. This is a consequence,

again, of the low value of x∗/λ, resulting in many PMs not allocating more than 1 or 2 VMs. In

fact, steady state for VMA1, VMA2, WC and even LBVMA is reached between the 4000 and the

5000 PMs while in the previous cases was reached before the 2000 PMs. Again, this behavior is

not replicated with Trace B due to its lower average task load.

Note also that the non power aware algorithms pay a higher power bill due to the use of a

larger amount of PMs (in general) with a smaller amount of load per PM, resulting in a very

inefficient usage of the available resources. This behavior is consistent for both Traces A and B.

Finally, observe how the larger the ratio x∗/λ, the larger the gap between our proposed algo-

rithms, VMA1 and VMA2, and the other ones. This would be the case when we have tasks that

consume a very small amount of CPU in the system.

Let us now analyze the results of the last scenario. Here we keep λ = 30 GCPS and α = 2

constant while we vary the value of x∗. These results are shown in Figure 7.6 for Trace A and in

Figure 7.7 for Trace B.

The results are similar for both traces. We can see how for the smallest value, x∗ = 10 GCPS

(x∗/λ = 1/3) all algorithms achieve a similar result. As the ratio x∗/λ increases, the results

obtained by VMA1 and VMA2 become better than the ones achieved by WC, LLF, NF, Striping,

and RF, that increase with x∗ and, therefore, lead to a larger power consumption. These results

are in line with the results from Scenario 1 and are is motivated by the fact that the state-of-the-art

algorithms tend to use a large amount of PMs keeping its average load low and, hence, paying a

high price because of the b parameter. This, however, is not the case of WC, which, on the other

hand, obtains a more packed partition, loading PMs beyond x∗ and paying an extra cost due to

the superlinearity of the power consumption with respect to the load.

7.5.3 Experimental Results for (C,m)-VMA

As we did with (·,m)-VMA in Subsection 7.5.2, we start by defining the set of PMs we are

going to work with. While for (·,m)-VMA we assumed that PMs had infinite capacity, in (C,m)-

VMA the PMs capacity is bounded. We denote the capacity as C. We define 3 sets of instances

that we name after 3 real PMs from our laboratory, Nemesis, Euler, and Erdos. We use, as

a reference, their maximum capacity, 11.2, 41.6, and 153.6 GCPS; and approximated idle cost b,

80, 100, and 200 Watts.

Jointly with C and b, we need a value of α and x∗ to compute each value of µ. We will

use α = {1.5, 2, 2.5, 3}, and x∗ = {0.5, 0.65, 0.75, 0.9, 1, 1.1} · C. We can now compute the

value of µ for each combination of these 4 parameters fully defining, then, our set of PMs. The

combination of values for each one of these PM instances can be found in Tables 7.5, 7.6 and

7.4. We base the performance analysis of our proposed algorithms and the other state of the art

assignment algorithms on these sets of PM instances.

Like for the (·,m)-VMA case, we also consider three different scenarios. In the first one we

148 Efficient Assignment of Virtual Machines to Physical Machines

(a) x∗ = 10 GCPS (b) x∗ = 100 GCPS

(c) x∗ = 30 GCPS (d) x∗ = 300 GCPS

(e) x∗ = 50 GCPS (f) x∗ = 500 GCPS

Figure 7.6: (·,m)-VMA: Comparing the power consumed by the different assignment algorithms
for λ = 30 GCPS, α = 2 and increasing values of x∗ for Trace A (Synthetic traces).

7.5 Experimental Evaluation 149

(a) x∗ = 10 GCPS (b) x∗ = 100 GCPS

(c) x∗ = 30 GCPS (d) x∗ = 300 GCPS

(e) x∗ = 50 GCPS (f) x∗ = 500 GCPS

Figure 7.7: (·,m)-VMA: Comparing the power consumed by the different assignment algorithms
for λ = 30 GCPS, α = 2 and increasing values of x∗ for Trace B (Google traces).

150 Efficient Assignment of Virtual Machines to Physical Machines

Table 7.4: Simulation parameters for a set of machines with b and C similar to Erdos.

Erdos-like Family Max. Capacity C = 153.6 GCPS
b = 200 W

x∗ [GCPS] x∗[%C] α = 1.5 α = 2 α = 2.5 α = 3
76.8 50 1.88E-14 3.39E-20 8.16E-26 2.21E-31

99.84 65 1.27E-14 2.01E-20 4.23E-26 1.00E-31
115.2 75 1.02E-14 1.51E-20 2.96E-26 6.54E-32

138.24 90 7.78E-15 1.05E-20 1.88E-26 3.79E-32
153.6 100 6.64E-15 8.48E-21 1.44E-26 2.76E-32

168.96 110 5.76E-15 7.01E-21 1.14E-26 2.07E-32

Table 7.5: Simulation parameters for a set of machines with b and C similar to Nemesis.

Nemesis-like Family Max. Capacity C = 11.2 GCPS
b = 80 W

x∗ [GCPS] x∗[%C] α = 1.5 α = 2 α = 2.5 α = 3
5.6 50 3.82E-13 2.55E-18 2.27E-23 2.28E-28
7.28 65 2.58E-13 1.51E-18 1.18E-23 1.04E-28
8.4 75 2.08E-13 1.13E-18 8.25E-24 6.75E-29

10.08 90 1.58E-13 7.87E-19 5.23E-24 3.91E-29
11.2 100 1.35E-13 6.38E-19 4.02E-24 2.85E-29

12.32 110 1.17E-13 5.27E-19 3.17E-24 2.14E-29

Table 7.6: Simulation parameters for a set of machines with b and C similar to Euler.

Euler-like Family Max. Capacity C = 41.6 GCPS

b = 80 W
x∗ [GCPS] x∗[%C] α = 1.5 α = 2 α = 2.5 α = 3

20.8 50 5.33E-14 1.85E-19 8.55E-25 4.44E-30
27.04 65 3.60E-14 1.09E-19 4.44E-25 2.02E-30
31.2 75 2.90E-14 8.22E-20 3.10E-25 1.32E-30
37.44 90 2.21E-14 5.71E-20 1.97E-25 7.62E-31
41.6 100 1.89E-14 4.62E-20 1.51E-25 5.56E-31
45.76 110 1.63E-14 3.82E-20 1.19E-25 4.17E-31

b = 100 W
20.8 50 6.67E-14 2.31E-19 1.07E-24 5.56E-30
27.04 65 4.50E-14 1.37E-19 5.54E-25 2.53E-30
31.2 75 3.63E-14 1.03E-19 3.88E-25 1.65E-30
37.44 90 2.76E-14 7.13E-20 2.46E-25 9.53E-31
41.6 100 2.36E-14 5.78E-20 1.89E-25 6.95E-31
45.76 110 2.04E-14 4.78E-20 1.49E-25 5.22E-31

b = 120 W
20.8 50 8.00E-14 2.77E-19 1.28E-24 6.67E-30
27.04 65 5.40E-14 1.64E-19 6.65E-25 3.03E-30
31.2 75 4.35E-14 1.23E-19 4.65E-25 1.98E-30
37.44 90 3.31E-14 8.56E-20 2.95E-25 1.14E-30
41.6 100 2.83E-14 6.93E-20 2.27E-25 8.33E-31
45.76 110 2.45E-14 5.73E-20 1.79E-25 6.26E-31

7.5 Experimental Evaluation 151

(a) C = 153.6 GCPS, x∗ = 0.65 · C (b) C = 153.6 GCPS, x∗ = 0.9 · C

Figure 7.8: (C,m)-VMA: Comparing the power consumed by VMA1 and VMA2 with the lower
bound LBVMA for x∗ = {0.65, 0.9} ·C, C = 153.6 GCPS, α = {1.5, 2.5} for Trace A (synthetic
traces).

compare again VMA1 and VMA2 with LBVMA for different values of α to evaluate its influence.

In the second scenario, we evaluate the performance of VMA1, VMA2, and LBVMA jointly with

FF, MLF, Packing, RR, RF, LFF, NF, Striping and WC when alpha, b and C are fixed and x∗

varies. Finally, in the third scenario, we evaluate the influence of b on the performance of the

different algorithms when α and C are fixed and different values of x∗ and b are considered.

Note that all experiments are run for both Trace A and Trace B. Similarly, observe that results

are presented, again, as graphs in which the power consumed is represented as a function of the

number of PMs used but, this time, these results do not start from 1 PM. Basically, each one of

the results of the different algorithms starts from the number of PMs for which it obtained a valid

solution and PMs where PMs do not have to be loaded beyond their capacity C.

The results for the first scenario, shown in Figures 7.8 and 7.9, throw very similar results

to the ones obtained for (·,m)-VMA. As for (·,m)-VMA, VMA2 performance is very close to

LBVMA when it does not match it. Similarly, VMA1 is again worse than VMA2 due to the fact

that it tends to pack less VMs per PM than VMA1.

The results for the second scenario are presented in Figure 7.10 and Figure 7.11 for Traces A

and B, respectively. In them we compare the performance of VMA1, VMA2, LBVMA, FF, MLF,

Packing, RR, RF, LFF, NF, Striping and WC for PMs such as the ones defined in Table 7.5. We

can easily observe, independently of the trace used, that RP, LFF, NF and Striping consistently

obtain partitions which result in a higher cost in Watts than the other algorithms. The nature of

this set of algorithms implies using a large number of PMs with a small amount of load per PM,

resulting, always, in a higher power consumption. For this reason, and for the sake of clarity

when plotting and comparing the other algorithms, we only show RP, LFF, NF and Striping in

subfigures 7.10(a), 7.10(b), 7.11(a) and 7.11(b) as an example. The rest of the subfigures from

Figure 7.10 and Figure 7.11 zoom in the results of the other algorithms.

152 Efficient Assignment of Virtual Machines to Physical Machines

(a) C = 153.6 GCPS, x∗ = 0.65 · C (b) C = 153.6 GCPS, x∗ = 0.9 · C

Figure 7.9: (C,m)-VMA: Comparing the power consumed by VMA1 and VMA2 with the lower
bound LBVMA for x∗ = {0.65, 0.9} · C, C = 153.6 GCPS, α = {1.5, 2.5} for Trace B (Google
traces).

Oppositely to the (·,m)-VMA case, WC exhibits a better performance than VMA1, that also

loses in the comparison with the group formed by FF, MLF, Packing and RR in every case except

for Trace A and x∗ = 0.5 · C, shown in Figure 7.10(f)4. This worse performance of VMA1

is a consequence of the ability of the other algorithms to obtain more packed solutions whose

load is, additionally, closer to x∗ than VMA1’s solution. On the other hand, VMA2 results are

similar or slightly worse than FF, MLF, Packing and RR for Trace A when when x∗ > 0.75C

(Figures 7.10(a), 7.10(b) and 7.10(c)). However, VMA2 still outperforms the other algorithms

when x∗ ≤ 0.75C (Figures 7.10(d),7.10(e) and 7.10(f)) or when the average VM task load is

smaller, i.e., all the cases of Trace B. Once again, VMA2 stays close to the optimal and, in general,

performs better than the other algorithms.

We finally evaluate the influence of b when fixing other parameters. These results are shown

in Figures 7.12 and 7.13 for Traces A and B, respectively. We compare, again, the performance

of VMA1, VMA2, LBVMA, FF, MLF, Packing, RR, RF, LFF, NF, Striping and WC when α = 2,

C = 41.6 GCPS, x∗ = {0.65, 0.9} · C and b = {80, 100, 120} W. Similarly to what happened

in Scenario 2 (Figures 7.10 and 7.11), the results obtained by RP, LFF, NF and Striping are

consistently worse than the ones obtained by the other algorithms. Therefore, as in the previous

case, we only show them in the two first figures for each trace, namely Figures 7.12(a), 7.12(b),

7.13(a) and 7.13(b). The rest of the subfigures from Figures 7.12 and Figure 7.13 zoom in the

results of the other algorithms.

Observing these results we can barely appreciate any difference in behavior/shape between

the different algorithms when we x∗ remains constant. Of course there are differences in the

power consumed for each value of b, but this is mainly because of the contribution of b. The

4This behaviour is not replicated for Trace B because of the smaller average load of Trace B VMs.

7.5 Experimental Evaluation 153

(a) x∗ = 1.1 · C (b) x∗ = C

(c) x∗ = 0.9 · C (d) x∗ = 0.75 · C

(e) x∗ = 0.65 · C (f) x∗ = 0.5 · C

Figure 7.10: (C,m)-VMA: Comparing the power consumed by the different assignment algo-
rithms for C = 11.2 GCPS, α = 2 and different values of x∗ for Trace A (Synthetic traces).

154 Efficient Assignment of Virtual Machines to Physical Machines

(a) x∗ = 1.1 · C (b) x∗ = C

(c) x∗ = 0.9 · C (d) x∗ = 0.75 · C

(e) x∗ = 0.65 · C (f) x∗ = 0.5 · C

Figure 7.11: (C,m)-VMA: Comparing the power consumed by the different assignment algo-
rithms for C = 11.2 GCPS, α = 2 and different values of x∗ for Trace B (Google traces).

7.5 Experimental Evaluation 155

(a) b = 80 W, x∗ = 0.65 · C (b) b = 80 W, x∗ = 0.9 · C

(c) b = 100 W, x∗ = 0.65 · C (d) b = 100 W, x∗ = 0.9 · C

(e) b = 120 W, x∗ = 0.65 · C (f) b = 120 W, x∗ = 0.9 · C

Figure 7.12: (C,m)-VMA: Comparing the power consumed by the different assignment algo-
rithms fixing for C = 41.6 GCPS, α = 2 and 2 different values of x∗ while varying b for Trace
A (Synthetic traces).

156 Efficient Assignment of Virtual Machines to Physical Machines

(a) b = 80 W, x∗ = 0.65 · C (b) b = 80 W, x∗ = 0.9 · C

(c) b = 100 W, x∗ = 0.65 · C (d) b = 100 W, x∗ = 0.9 · C

(e) b = 120 W, x∗ = 0.65 · C (f) b = 120 W, x∗ = 0.9 · C

Figure 7.13: (C,m)-VMA: Comparing the power consumed by the different assignment algo-
rithms for C = 41.6 GCPS, α = 2 and 2 different values of x∗ for Trace B (Google traces).

7.6 Discussion 157

reason for these results is basically a limitation of our model when trying to emulate different

PMs changing only the value of b. In this case, as µ depends also on b absorbs the changes on

its value, resulting in an identical behavior when x∗ is kept constant. The results are, therefore,

similar to the ones achieved in the second scenario.

7.6 Discussion

We discuss in this section practical issues that must be addressed to apply our results to pro-

duction environments.

Heterogeneity of Servers. For the sake of simplicity, we assume in our model that all servers

in a data center are identical. We believe this is reasonable, considering that modern data centers

are usually built with homogeneous commodity hardware. Nevertheless, the proposed model and

derived results are also amenable to heterogeneous data center environments. In a heterogeneous

data center, servers can be categorized into several groups with identical servers in each group.

Then, different types of applications can be assigned to server groups according to their resource

requirements. The VMA model presented here can be applied to the assignment problem of

allocating tasks from the designated types of applications (especially CPU-intensive ones) to each

group of servers. The approximation results we derive in this paper can be then combined with

server-group assignment approximation bounds (out of the scope of our work) for energy-efficient

task assignment in real data centers, regardless of the homogeneity of servers.

Consolidation. Traditionally, consolidation has been understood as a bin packing prob-

lem [123, 164], where VMs are assigned to PMs attempting to minimize the number of active

PMs. However, the results we derived in this chapter, as well as the results shown in Chapter 6,

show that such approach is not energy-efficient. Indeed, we showed that PM’s should be loaded

up to x∗ to reduce energy consumption, even if this requires having more active PMs.

VM arrival and departure. When a new VM arrives to the system, or an assigned VM

departs, adjustments to the assignment may improve energy efficiency. Given that the cost of

VM migration is nowadays decreasing dramatically, our offline positive results can also be ac-

commodated by reassigning VMs whenever the set of VM demands changes. Should the cost of

migration be high to reassign after each VM arrival or departure, time could be divided in epochs

buffering newly arrived VM demands until the beginning of the next epoch, when all (new and

old) VMs would be reassigned (if necessary) running our offline approximation algorithm.

Multi-resource scheduling. This work focuses on CPU-intensive jobs (VMs) such as

MapReduce-like tasks [59] which are representative in production datacenters. As the CPU is

generally the dominant energy consumer in a server, assigning VMs according to CPU workloads

entails energy efficiency. However, there exist types of jobs demanding heavily other computa-

tional resources, such as memory and/or storage. Although these resources have limited impact

on a server’s energy consumption, VMs performance may be degraded if they become the bottle-

neck resource in the system. In this case, a joint optimization of multiple resources (out of the

158 Efficient Assignment of Virtual Machines to Physical Machines

scope of our work) is necessary for VMA.

Implementation on real systems. Most of the allocation algorithms that we have tested in

Section 7.5 are already available in popular cloud platforms like OpenNebula [135] or Eucalyp-

tus [68]. Including another allocation policy, such as our algorithms, in the cloud controllers of

these and other platforms (e.g. Apache Mesos [18]) is feasible. Introducing our algorithms would

make those platforms power efficient, providing power-aware allocation policies. This feature is

not found on any of the algorithms tested in Section 7.5 except for the Watts per Core algorithm

from [96]. We leave such integration for future work.

7.7 Conclusions

In this chapter, we have studied a particular case of the generalized assignment problem with

applications to Cloud Computing. We have considered the problem of assigning virtual machines

(VMs) to physical machines (PMs) so that the power consumption is minimized, a problem that

we call virtual machine assignment (VMA). In our theoretical analysis, we have shown that the

decision version of (C,m)-VMA problem is strongly NP-complete. We have shown as well that

the (C, ·)-VMA, (·,m)-VMA and (·, ·)-VMA problems are strongly NP-hard. Hence, there is no

FPTAS for these optimization problems. We have shown the existence of a PTAS that solves the

(·, ·)-VMA and (·,m)-VMA offline problems. On the other hand, we have proved lower bounds

on the approximation ratio of the (C, ·)-VMA and (C,m)-VMA problems. With respect to the

online version of these problems, we have proved upper and lower bounds on the competitive

ratio of the (·, ·)-VMA, (C, ·)-VMA, (·,m)-VMA, and (C,m)-VMA problems.

Chapter 8

Conclusions

Cloud computing is alive and probably no more than a toddler yet. However, even in this

early age we are already able to see many of the advantages, surely not all, that cloud computing

can offer us. Despite of all these advantages we must not forget about its drawbacks and this was

one of the targets of this thesis.

The main objective of this thesis was to face two of the main problems of data centers, struc-

tural costs and energy consumption, which were introduced in Part I. Reducing the costs asso-

ciated to these two issues is not only an economical target but also, most clearly in the case of

energy consumption, an environmental problem. Power is generated at a cost and, indefinitely

increasing our power consumption will have a prejudicial effect on our world. It is our duty, as

researchers, to care about sustainability and ensure that future times will be better.

For these reasons we have provided of several tools to directly or indirectly tackle these prob-

lems. Part II was devoted to the case of structural costs. There, we provided, first, a way of com-

puting the bisection (band)width of all the topologies that are or can be seen as product graphs.

Bisection (band)width can help us to choose the most appropriate topology for our purposes when

designing a data center. Choosing the right topology should result in a most efficient design of

our network and probably lead to savings in deployment costs or energy savings.

Chapter 4 was also centered around reducing structural costs. In this case we proposed a

heuristic that is able to achieve promising results for the Multidimensional Arrangement Problem

(MAP). We can easily think of a data center as a 3-dimensional array or pseudo array where

each one of the nodes is a server and the connections between these servers are the links of a

graph. Therefore, mapping the graph that represents the data center topology to this 3-dimensional

array representing the data center can be seen as a MAP. Our algorithm is useful to reduce the

total length of the wires deployed, the length of the longest wire of a deployment, and also to

simplify the deployment itself. Apart from the reduction on the deployment costs, it also implies

a reduction on the energy wasted on the wires as well as a reduction on the latency.

Part III moved to the problem of energy consumption. Regarding this problem we proposed

a different technique whose adoption would derive in a reduction of the energy consumption on

159

160 Conclusions

data center networks, rate adaptation; studied how to reduce power consumption by optimizing

how virtual machines are placed in physical machines, the virtual machine assignment problem;

and finally studied how servers consume power and energy in a data center, characterizing the

contribution of each component and confirming the superlinearity on the load that we assumed

for both rate adaptation and virtual machine assignment.

Rate Adaptation, in Chapter 5, was showed to be able to achieve savings on the energy con-

sumed by the network of more than a 20% on average, regardless of the topology employed.

However, for fat tree topologies, probably the most common topology in nowadays data centers,

it is able to achieve more than a 60% of instantaneous savings with the traces employed. We must

bear in mind that we only considered rate adaptation, and did not combined it with powering

down devices what, seeing the large amount of idle links when using our proposed algorithm,

could result in a larger reduction of the energy consumed.

Moving then to servers, in Chapter 6 we characterized how different components of a data

center server consumes power. One of the most interesting aspects, and also differentiator from

previous works, is how we studied the effect of having multiple cores and how varying their

frequency affects, not only to their energy consumption, but also to other components. The main

idea to be extracted here is that a server is a puzzle, where each piece is a component, and some

pieces needed others to perform a task, thus, being affected by how those other pieces are being

operated. This study throw very interesting results as clearly confirming the superlinearity of

power consumption on the load in the server as well as showing that the Active Cycles per Second

are a proper unit to measure the load in a server. We concluded this part of the study showing

how the characterization of these components can be used to predict the energy consumption of

an application from its profiling.

Finally, taking advantage of some of the conclusions of the previous chapter, as the superlin-

earity of the power consumption on the load, we studied the virtual machine assignment problem

and how such a superlinear power consumption model affects it. We thoroughly analyzed four

different cases, depending on whether the capacity and the number of the servers where bounded

or not. For each one of them, when possible, we provided upper and lower bounds on the approx-

imation ratio, as well as upper and lower bounds on the competitive ratio of the algorithms we

proposed for them. We also proved, by simulation, that the algorithms we proposed can obtain

substantially cheaper solutions, from the point of view of power consumption of the system, than

other algorithms proposed in the literature.

In general we proved that huge amounts of energy can still be saved in data centers with no

need of updating the already deployed hardware, in some cases, and that new solutions are waiting

for the new generation of servers and network devices, ready to optimize the way energy is used

in data centers.

8.1 Future Work and Open Problems 161

8.1 Future Work and Open Problems

As we said at the beginning of this section, Cloud Computing is still a toddler. This means

that the amount of open problems is practically unlimited and that, usually, an answer bring up

two more questions. Allow us, then, to focus only in the particular issues that we have worked at

during this thesis.

Starting with Chapter 3, there are some particular and generic problems that remain open.

The first one, regarding the bisection width of product graphs, computing the bisection width of

graphs resulting from combining factor graphs with different normalized congestion or central

cut remains open. One good example of these kind of graphs would be the cylinder, which results

from combining paths and tori. Similarly, obtaining an exact result for the bisection bandwidth of

the d-dimensional BCube remains as an open problem.

At a more general level, we believe that it would be interesting to explore the properties of

product networks as topologies for data centers (currently, to our knowledge, only BCube fits in

this category). The Cartesian product operation has been used in the past for building parallel

processing topologies. We believe that it can be also used to build efficient topologies for data

centers. Finally, another interesting problem would be to define more metrics that can help us to

compare the newest data center topologies.

Regarding the Multidimensional Arrangement Problem presented in Chapter 4, the most ob-

vious open problem is finding exact algorithms for large instances of graphs. While these exact

algorithms are found, finding the amount of energy saved or the monetary reduction in deploy-

ment costs achieved by efficient deployments obtained by heuristics such as JAM, is a really

interesting aspect to be studied. However, making such a comparison is complicated given the

lack of information about deployment costs of real data centers or even regarding which are the

topologies being used.

Although promising, rate adaptation cannot be deployed nowadays because of hardware lim-

itations. We expect this open problem to be solved in the near future. In the meantime, studying

how its combination with another techniques, such as powering down network devices, might

reduce the energy consumption without degrading the performance of the network.

We are aware that the characterization of power consumption we presented in Chapter 6 is

neither complete nor perfect. However, this is a key problem because the more accurately can we

predict the power required by a server in a particular situation or the energy it will consume when

a certain application is run, the better we will be able to assign tasks to servers or maneuver in case

moving virtual machines across our servers is needed in order to increase the efficiency of our data

center. In any case, we believe that some of the aspects we have proposed here will be helpful

for future works. The most obvious open problems in this case are, first, to properly characterize

the power consumption due to the RAM and, second, improve power characterizations so the

accuracy is increased.

Finally, regarding the virtual machine assignment problem presented in Chapter 7, our future

162 Conclusions

work will consider the possibility that the load incurred by a VM changes over time or that the

assignment of VMs to PMs is not final (and VMs can migrate, maybe at a cost). In fact, if the

migration of VMs is available for free, our offline positive results can also be used in these new

models, since an offline approximation algorithm can be run each time a load changes or a new

VM arrives. Then, the VMs can be redistributed accordingly. Another future extension of the

model will consider that the power consumption of a feasible solution of the VMA problem de-

pends on several parameters simultaneously (e.g., memory space or communication bandwidth, in

addition to processing load). Finally, as stated in Section 6.5, we plan to deploy our algorithm in a

cloud platform, probably OpenNebula, and compare the performance of our proposed algorithms

against other state-of-the-art allocation algorithms such as the ones analyzed in Section 7.5.

References

[1] Amazon web services. http://aws.amazon.com. Accessed August 27, 2012.

[2] Cisco data center network topology. http://www.cisco.com/en/US/docs/

solutions/Enterprise/Data_Center/DC_3_0/DC-3_0_IPInfra.html.

[3] Citrix. http://www.citrix.com. Accessed August 27, 2012.

[4] Infiniband. http://www.infinibandta.org.

[5] Rackspace. http://www.rackspace.com. Accessed August 27, 2012.

[6] U.s. environmental protection agency’s data center report to congress. http://

tinyurl.com/2jz3ft.

[7] Emile H.L. Aarts and P.J.M. van Laarhoven. Statistical cooling: A general approach to

combinatorial optimization problems. Philips Journal of Research, 40(4):193, 1985.

[8] Dennis Abts, Michael R. Marty, Philip M. Wells, Peter Klausler, and Hong Liu. Energy

proportional datacenter networks. In ISCA, pages 338–347, 2010.

[9] Gerald Aigner and William H Whitted. Modular data center, October 9 2007. US Patent

7,278,273.

[10] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A scalable, commodity

data center network architecture. In ACM SIGCOMM Computer Communication Review,

volume 38, pages 63–74. ACM, 2008.

[11] Noga Alon, Yossi Azar, Gerhard J. Woeginger, and Tal Yadid. Approximation schemes for

scheduling. In Michael E. Saks, editor, SODA, pages 493–500. ACM/SIAM, 1997.

[12] Noga Alon, Yossi Azar, Gerhard J Woeginger, and Tal Yadid. Approximation schemes for

scheduling on parallel machines. Journal of Scheduling, 1(1):55–66, 1998.

[13] Matthew Andrews, Antonio Fernández Anta, Lisa Zhang, and Wenbo Zhao. Routing for

power minimization in the speed scaling model. IEEE/ACM Trans. Netw., 20(1):285–294,

2012.

163

http://aws.amazon.com
http://www.cisco.com/en/US/docs/solutions/Enterprise/Data_Center/DC_3_0/DC-3_0_IPInfra.html
http://www.cisco.com/en/US/docs/solutions/Enterprise/Data_Center/DC_3_0/DC-3_0_IPInfra.html
http://www.citrix.com
http://www.infinibandta.org
http://www.rackspace.com
http://tinyurl.com/2jz3ft
http://tinyurl.com/2jz3ft

164 REFERENCES

[14] Matthew Andrews, Spyridon Antonakopoulos, and Lisa Zhang. Minimum-cost network

design with (dis)economies of scale. In Proc. of 51-st Annual IEEE Symposium on Foun-

dations of Computer Science, pages 585–592, 2010.

[15] Matthew Andrews, Spyridon Antonakopoulos, and Lisa Zhang. Energy-aware scheduling

algorithms for network stability. In INFOCOM, pages 1359–1367, 2011.

[16] Matthew Andrews, Antonio Fernández, Lisa Zhang, and Wenbo Zhao. Routing and

scheduling for energy and delay minimization in the powerdown model. In INFOCOM,

pages 21–25, 2010.

[17] Antonio Antoniadis, Sungjin Im, Ravishankar Krishnaswamy, Benjamin Moseley,

Viswanath Nagarajan, Krik Pruhs, and Cliff Stein. Hallucination helps: Energy efficient

circuit routing. In Erlebach and Persiano [67].

[18] Apache. Apache mesos. http://http://mesos.apache.org/, 2014. Accessed

December 11th, 2014.

[19] M. Cemil Azizoğlu and Ömer Eğecioğlu. The isoperimetric number and the bisection width

of generalized cylinders. Electronic Notes in Discrete Mathematics, 11:53–62, 2002.

[20] M. Cemil Azizoğlu and Ömer Eğecioğlu. Extremal sets minimizing dimension-normalized

boundary in hamming graphs. SIAM J. Discrete Math., 17(2):219–236, 2003.

[21] M. Cemil Azizoğlu and Ömer Eğecioğlu. The bisection width and the isoperimetric number

of arrays. Discrete Applied Mathematics, 138(1-2):3–12, 2004.

[22] M Bailey, M Eastwood, T Grieser, L Borovick, V Turner, and RC Gray. Special study:

Data center of the future, 2007.

[23] Jayant Baliga, Robert WA Ayre, Kerry Hinton, and Rodney S Tucker. Green cloud com-

puting: Balancing energy in processing, storage, and transport. Proceedings of the IEEE,

99(1):149–167, 2011.

[24] Nikhil Bansal, Ho-Leung Chan, and Kirk Pruhs. Speed scaling with an arbitrary power

function. In Proc. of 20-th Annual ACM-SIAM Symposium on Discrete Algorithms, pages

693–701, 2009.

[25] Nikhil Bansal, Anupam Gupta, Ravishankar Krishnaswamy, Viswanath Nagarajan, Kirk

Pruhs, and Cliff Stein. Multicast routing for energy minimization using speed scaling. In

MedAlg, pages 37–51, 2012.

[26] Luiz André Barroso and Urs Hölzle. The case for energy-proportional computing. IEEE

Computer, 40(12):33–37, 2007.

http://http://mesos.apache.org/

REFERENCES 165

[27] Luiz André Barroso and Urs Hölzle. The datacenter as a computer: An introduction to the

design of warehouse-scale machines. Synthesis lectures on computer architecture, 2009.

[28] Luiz André Barroso and Urs Hölzle. The datacenter as a computer: An introduction to the

design of warehouse-scale machines, 2nd edition. Synthesis lectures on computer archi-

tecture, 2013.

[29] Robert Basmadjian, Nasir Ali, Florian Niedermeier, Hermann de Meer, and Giovanni Giu-

liani. A methodology to predict the power consumption of servers in data centres. In ACM

e-Energy, pages 1–10, 2011.

[30] Robert Basmadjian and Hermann de Meer. Evaluating and modeling power consumption

of multi-core processors. In Third International Conference on Future Energy Systems:

Where Energy, Computing and Communication Meet (e-Energy), pages 1–10. IEEE, 2012.

[31] CL Belady. Projecting annual new datacenter construction market size. Microsoft, Global

Foundation Services Report, 2011.

[32] Umesh Bellur, Chetan S. Rao, and Madhu Kumar SD. Optimal placement algorithms for

virtual machines. CoRR, abs/1011.5064, 2010.

[33] Anton Beloglazov, Jemal Abawajy, and Rajkumar Buyya. Energy-aware resource allo-

cation heuristics for efficient management of data centers for cloud computing. Future

Generation Computer Systems, 28(5):755–768, 2012.

[34] Una Benlic and Jin-Kao Hao. Breakout local search for the quadratic assignment problem.

Applied Mathematics and Computation, 219(9):4800–4815, 2013.

[35] Theophilus Benson, Ashok Anand, Aditya Akella, and Ming Zhang. Understanding data

center traffic characteristics. Computer Communication Review, 40(1):92–99, 2010.

[36] Bruno Biais and Paul Woolley. High frequency trading. Manuscript, Toulouse University,

IDEI, 2011.

[37] Juan Felipe Botero, Xavier Hesselbach, Michael Duelli, Daniel Schlosser, Andreas Fischer,

and Hermann de Meer. Energy efficient virtual network embedding. IEEE Communications

Letters, 16(5):756–759, 2012.

[38] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University

Press, New York, NY, USA, 2004.

[39] Alaa Brihi and Waltenegus Dargie. Dynamic voltage and frequency scaling in multimedia

servers. In IEEE AINA, 2013.

166 REFERENCES

[40] David Brooks, Pradip Bose, Stanley Schuster, Hans M. Jacobson, Prabhakar Kudva,

Alper Buyuktosunoglu, John-David Wellman, Victor V. Zyuban, Manish Gupta, and Pe-

ter W. Cook. Power-aware microarchitecture: Design and modeling challenges for next-

generation microprocessors. IEEE Micro, 20(6):26–44, 2000.

[41] Rainer E. Burkard, Stefan E. Karisch, and Franz Rendl. Qaplib–a quadratic assignment

problem library. Journal of Global Optimization, 10(4):391–403, 1997.

[42] R.E. Burkard and F. Rendl. A thermodynamically motivated simulation procedure for com-

binatorial optimization problems. European Journal of Operational Research, 17(2):169 –

174, 1984.

[43] Alberto Caprara, Adam N. Letchford, and Juan-José Salazar-González. Decorous lower

bounds for minimum linear arrangement. INFORMS Journal on Computing, 23(1):26–40,

2011.

[44] Alberto Caprara, Marcus Oswald, Gerhard Reinelt, Robert Schwarz, and Emiliano

Traversi. Optimal linear arrangements using betweenness variables. Mathematical Pro-

gramming Computation, 3(3):261–280, 2011.

[45] M. Cardosa, A. Singh, H. Pucha, and A. Chandra. Exploiting spatio-temporal tradeoffs

for energy-aware mapreduce in the cloud. In Cloud Computing (CLOUD), 2011 IEEE

International Conference on, pages 251 –258, 2011.

[46] P Castagna. Having fun with pagerank and mapreduce. Hadoop User Group UK talk.

Available: http://static. last. fm/johan/huguk-20090414/paolo castagna-pagerank. pdf.

[47] Deeparnab Chakrabarty, Chandra Chekuri, Sanjeev Khanna, and Nitish Korula. Approx-

imability of capacitated network design. In IPCO, pages 78–91, 2011.

[48] Ashok K. Chandra and C. K. Wong. Worst-case analysis of a placement algorithm related

to storage allocation. SIAM J. Comput., 4(3):249–263, 1975.

[49] Jeffrey S Chase, Darrell C Anderson, Prachi N Thakar, Amin M Vahdat, and Ronald P

Doyle. Managing energy and server resources in hosting centers. In ACM SIGOPS Oper-

ating Systems Review, volume 35, pages 103–116, 2001.

[50] Shih-Chang Chen, Chih-Chun Lee, Hsi-Ya Chang, Kuan-Chou Lai, Kuan-Ching Li, and

Chunming Rong. Energy-aware task consolidation technique for cloud computing. In

Proceedings of the IEEE Third International Conference on Cloud Computing Technology

and Science, pages 115–121, 2011.

[51] Susanta Nanda Tzi-cker Chiueh and Stony Brook. A survey on virtualization technologies.

RPE Report, pages 1–42, 2005.

REFERENCES 167

[52] Michael Chlistalla, Bernhard Speyer, Sabine Kaiser, and Thomas Mayer. High-frequency

trading. Deutsche Bank Research, pages 1–19, 2011.

[53] Antonio Cianfrani, Vincenzo Eramo, Marco Listanti, Marco Polverini, and Athanasios V.

Vasilakos. An ospf-integrated routing strategy for qos-aware energy saving in ip backbone

networks. IEEE Transactions on Network and Service Management, 9(3):254–267, 2012.

[54] R. A. Cody and Edward G. Coffman Jr. Record allocation for minimizing expected retrieval

costs on drum-like storage devices. J. ACM, 23(1):103–115, 1976.

[55] David T. Connolly. An improved annealing scheme for the qap. European Journal of

Operational Research, 46(1):93–100, 1990.

[56] Standard Performance Evaluation Corporation. Spec power benchmark, 2007.

[57] William Dally and Brian Towles. Principles and Practices of Interconnection Networks.

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2003.

[58] William J. Dally. Performance analysis of k-ary n-cube interconnection networks. IEEE

Trans. Computers, 39(6):775–785, 1990.

[59] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large clus-

ters. Commun. ACM, 51(1):107–113, 2008.

[60] Zvi Drezner. Compounded genetic algorithms for the quadratic assignment problem. Oper.

Res. Lett., 33(5):475–480, 2005.

[61] Jose Duato, Sudhakar Yalamanchili, and Ni Lionel. Interconnection Networks: An Engi-

neering Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2002.

[62] Dimitris Economou, Suzanne Rivoire, Christos Kozyrakis, and Partha Ranganathan. Full-

system power analysis and modeling for server environments. In Proceedings of Workshop

on Modeling, Benchmarking, and Simulation, pages 70–77, 2006.

[63] Kemal Efe and Gui-Liang Feng. A proof for bisection width of grids. World Academy of

Science, Engineering and Technology, 27(31):172 – 177, 2007.

[64] Kemal Efe and Antonio Fernández. Products of networks with logarithmic diameter and

fixed degree. IEEE Trans. Parallel Distrib. Syst., 6(9):963–975, 1995.

[65] Kemal Efe and Antonio Fernández. Mesh-connected trees: A bridge between grids and

meshes of trees. IEEE Trans. Parallel Distrib. Syst., 7(12):1281–1291, 1996.

[66] Leah Epstein and Jiri Sgall. Approximation schemes for scheduling on uniformly related

and identical parallel machines. Algorithmica, 39(1):43–57, 2004.

168 REFERENCES

[67] Thomas Erlebach and Giuseppe Persiano, editors. Approximation and Online Algorithms

- 10th International Workshop, WAOA 2012, Ljubljana, Slovenia, September 13-14, 2012,

Revised Selected Papers, volume 7846 of Lecture Notes in Computer Science. Springer,

2013.

[68] Eucalyptus. Eucalyptus. http://www.eucalyptus.com/. Accessed January 20th,

2013.

[69] W. Fernandez de la Vega and G.S. Lueker. Bin packing can be solved within 1 + ε in linear

time. Combinatorica, 1(4):349–355, 1981.

[70] Matteo Fischetti, Michele Monaci, and Domenico Salvagnin. Three ideas for the quadratic

assignment problem. Operations Research, 60(4):954–964, 2012.

[71] Charles Fleurent and Jacques A. Ferland. Genetic hybrids for the quadratic assignment

problem. In DIMACS Series in Mathematics and Theoretical Computer Science, pages

173–187. American Mathematical Society, 1993.

[72] Charles Fleurent and Fred Glover. Improved constructive multistart strategies for the

quadratic assignment problem using adaptive memory. INFORMS Journal on Comput-

ing, 11(2):198–204, 1999.

[73] Anshul Gandhi, Mor Harchol-Balter, Rajarshi Das, and Charles Lefurgy. Optimal power

allocation in server farms. In ACM SIGMETRICS, pages 157–168, 2009.

[74] Andres Garcia-Saavedra, Pablo Serrano, Albert Banchs, and Giuseppe Bianchi. Energy

consumption anatomy of 802.11 devices and its implication on modeling and design. In

ACM CoNEXT, pages 169–180, 2012.

[75] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

[76] Rong Ge, Xizhou Feng, Shuaiwen Song, Hung-Ching Chang, Dong Li, and Kirk W

Cameron. Powerpack: Energy profiling and analysis of high-performance systems and

applications. Parallel and Distributed Systems, IEEE Transactions on, 21(5):658–671,

2010.

[77] George Ginis. Low-power modes for adsl2 and adsl2+. White Paper, Broadband Communi-

cations Group, Texas Instruments, Jan. 2005.

[78] Albert Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kandula, Changhoon Kim,

Parantap Lahiri, David A. Maltz, Parveen Patel, and Sudipta Sengupta. Vl2: a scalable and

flexible data center network. SIGCOMM Comput. Commun. Rev., 39:51–62, August 2009.

http://www.eucalyptus.com/

REFERENCES 169

[79] Chuanxiong Guo, Guohan Lu, Dan Li, Haitao Wu, Xuan Zhang, Yunfeng Shi, Chen Tian,

Yongguang Zhang, and Songwu Lu. Bcube: a high performance, server-centric network ar-

chitecture for modular data centers. SIGCOMM Comput. Commun. Rev., 39:63–74, August

2009.

[80] Chuanxiong Guo, Haitao Wu, Kun Tan, Lei Shi, Yongguang Zhang, and Songwu Lu. Dcell:

a scalable and fault-tolerant network structure for data centers. SIGCOMM Comput. Com-

mun. Rev., 38:75–86, August 2008.

[81] Deke Guo, Tao Chen, Dan Li, Mo Li, Yunhao Liu, and Guihai Chen. Expandable and cost-

effective network structures for data centers using dual-port servers. Computers, IEEE

Transactions on, 62(7):1303–1317, 2013.

[82] Anupam Gupta, Ravishankar Krishnaswamy, and Kirk Pruhs. Online primal-dual for non-

linear optimization with applications to speed scaling. In Erlebach and Persiano [67], pages

173–186.

[83] Maruti Gupta and Suresh Singh. Greening of the internet. In SIGCOMM, pages 19–26,

2003.

[84] Maruti Gupta and Suresh Singh. Using low-power modes for energy conservation in ether-

net lans. In INFOCOM, pages 2451–2455, 2007.

[85] Mark D. Hansen. Approximation algorithms for geometric embeddings in the plane with

applications to parallel processing problems. In FOCS, 1989., 30th Annual Symposium on,

pages 604–609. IEEE, 1989.

[86] Ward Van Heddeghem, Sofie Lambert, Bart Lannoo, Didier Colle, Mario Pickavet, and

Piet Demeester. Trends in worldwide ICT electricity consumption from 2007 to 2012.

Computer Communications, Submitted.

[87] Brandon Heller, Srini Seetharaman, Priya Mahadevan, Yiannis Yiakoumis, Puneet Sharma,

Sujata Banerjee, and Nick McKeown. Elastictree: saving energy in data center networks.

In Proceedings of the 7th USENIX conference on Networked systems design and imple-

mentation, NSDI’10, pages 249–264, Berkeley, CA, USA, 2010. USENIX Association.

[88] Joseph L. Hellerstein. Google cluster data. Google research blog, Jan-

uary 2010. Posted at http://googleresearch.blogspot.com/2010/01/

google-cluster-data.html.

[89] Lei Huang, Qin Jia, Xin Wang, Shuang Yang, and Baochun Li. Pcube: Improving power

efficiency in data center networks. In Cloud Computing (CLOUD), 2011 IEEE Interna-

tional Conference on, pages 65–72. IEEE, 2011.

http://googleresearch.blogspot.com/2010/01/google-cluster-data.html
http://googleresearch.blogspot.com/2010/01/google-cluster-data.html

170 REFERENCES

[90] Lei Huang, Qin Jia, Xin Wang, Shuang Yang, and Baochun Li. Pcube: Improving power

efficiency in data center networks. In IEEE CLOUD, pages 65–72, 2011.

[91] IBM. Ibm’s integrated server room. http://www-935.ibm.com/services/in/

en/it-services/integrated-server-room.html.

[92] IEEE Std. 802.3az. Energy Efficient Ethernet, 2010.

[93] Sungjin Im, Benjamin Moseley, and Kirk Pruhs. Online scheduling with general cost

functions. In Proc. of 23-rd Annual ACM-SIAM Symposium on Discrete Algorithms, pages

1254–1265, 2012.

[94] Sandy Irani, Sandeep Shukla, and Rajesh Gupta. Algorithms for power savings. ACM

TALG, 3(4):41, 2007.

[95] Tabitha James, César Rego, and Fred Glover. Multistart tabu search and diversification

strategies for the quadratic assignment problem. Systems, Man and Cybernetics, Part A:

Systems and Humans, IEEE Trans. on, 39(3):579–596, 2009.

[96] R. Jansen and P.R. Brenner. Energy efficient virtual machine allocation in the cloud.

In Green Computing Conference and Workshops (IGCC), 2011 International, pages 1–8,

2011.

[97] D N Jayasimha, B Zafar, and Y Hoskote. On chip interconnection networks why they are

different and how to compare them. Intel, 2006.

[98] Zhu Jingwei, Rui Ting, Fang Husheng, Zhang Jinlin, and Liao Ming. Simulated annealing

ant colony algorithm for qap. In ICNC 2012, pages 789–793, 2012.

[99] Scott Kirkpatrick, D. Gelatt Jr., and Mario P Vecchi. Optimization by simmulated anneal-

ing. Science, 220(4598):671–680, 1983.

[100] Tjalling C. Koopmans and Martin Beckmann. Assignment problems and the location of

economic activities. Econometrica: Journal of the Econometric Society, pages 53–76,

1957.

[101] Bhavani Krishnan, Hrishikesh Amur, Ada Gavrilovska, and Karsten Schwan. VM power

metering: feasibility and challenges. ACM SIGMETRICS Performance Evaluation Review,

38(3):56–60, 2011.

[102] Dara Kusic, Jeffrey O Kephart, James E Hanson, Nagarajan Kandasamy, and Guofei Jiang.

Power and performance management of virtualized computing environments via lookahead

control. Cluster computing, 12(1):1–15, 2009.

http://www-935.ibm.com/services/in/en/it-services/integrated-server-room.html
http://www-935.ibm.com/services/in/en/it-services/integrated-server-room.html

REFERENCES 171

[103] Dara Kusic, Jeffrey O. Kephart, James E. Hanson, Nagarajan Kandasamy, and Guofei

Jiang. Power and performance management of virtualized computing environments via

lookahead control. Cluster Computing, 12(1):1–15, 2009.

[104] Etienne Le Sueur and Gernot Heiser. Dynamic voltage and frequency scaling: The laws of

diminishing returns. In Proceedings of the 2010 international conference on Power aware

computing and systems, pages 1–8. USENIX Association, 2010.

[105] F. Thomson Leighton. Introduction to parallel algorithms and architectures: array, trees,

hypercubes. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1992.

[106] Adam Wade Lewis, Soumik Ghosh, and Nian-Feng Tzeng. Run-time energy consumption

estimation based on workload in server systems. HotPower’08, pages 17–21, 2008.

[107] Yong Li, Panos M. Pardalos, and Mauricio G.C. Resende. A greedy randomized adaptive

search procedure for the quadratic assignment problem. Quadratic Assignment and Related

Problems, 16:237–261, 1994.

[108] Chenguang Liu, Jianzhong Huang, Qiang Cao, Shenggang Wan, and Changsheng Xie.

Evaluating energy and performance for server-class hardware configurations. In IEEE

NAS, pages 339–347, 2011.

[109] Ning Liu, Ziqian Dong, and Roberto Rojas-Cessa. Task and server assignment for reduc-

tion of energy consumption in datacenters. In Proceedings of the IEEE 11-th International

Symposium on Network Computing and Applications, pages 171–174, 2012.

[110] F. Machida, M. Kawato, and Y. Maeno. Redundant virtual machine placement for fault-

tolerant consolidated server clusters. In Network Operations and Management Symposium

(NOMS), 2010 IEEE, pages 32 –39, 2010.

[111] Priya Mahadevan, Sujata Banerjee, Puneet Sharma, Amip Shah, and Parthasarathy Ran-

ganathan. On energy efficiency for enterprise and data center networks. IEEE Communi-

cations Magazine, 49(8):94–100, 2011.

[112] C.C.T. Mark, D. Niyato, and Tham Chen-Khong. Evolutionary optimal virtual machine

placement and demand forecaster for cloud computing. In Advanced Information Network-

ing and Applications (AINA), 2011 IEEE International Conference on, pages 348 –355,

2011.

[113] Andrew J. Mcallister. A new heuristic algorithm for the linear arrangement problem. Tech-

nical Report TR-99-126a, University of New Brunswick, 1999.

[114] Xiaoqiao Meng, Vasileios Pappas, and Li Zhang. Improving the scalability of data center

networks with traffic-aware virtual machine placement. In INFOCOM, pages 1154–1162,

2010.

172 REFERENCES

[115] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller,

and Edward Teller. Equation of state calculations by fast computing machines. The Journal

of Chemical Physics, 21:1087, 1953.

[116] K. Mills, J. Filliben, and C. Dabrowski. Comparing vm-placement algorithms for on-

demand clouds. In Proceedings of the IEEE Third International Conference on Cloud

Computing Technology and Science, pages 91–98, 2011.

[117] Patrick Mills, Edward Tsang, and John Ford. Applying an extended guided local search

to the quadratic assignment problem. Annals of Operations Research, 118(1-4):121–135,

2003.

[118] M. Mirza-Aghatabar, S. Koohi, S. Hessabi, and M. Pedram. An empirical investigation of

mesh and torus noc topologies under different routing algorithms and traffic models. In

Proceedings of the 10th Euromicro Conference on Digital System Design Architectures,

Methods and Tools, pages 19–26, Washington, DC, USA, 2007. IEEE Computer Society.

[119] Alfonsas Misevičius. A modified simulated annealing algorithm for the quadratic assign-

ment problem. Informatica, 14(4):497–514, 2003.

[120] Alfonsas Misevičius. An improved hybrid genetic algorithm: new results for the quadratic

assignment problem. Knowl.-Based Syst., 17(2-4):65–73, 2004.

[121] Alfonsas Misevičius. A tabu search algorithm for the quadratic assignment problem. Comp.

Opt. and Appl., 30(1):95–111, 2005.

[122] Alfonsas Misevičius. An implementation of the iterated tabu search algorithm for the

quadratic assignment problem. OR Spectrum, 34(3):665–690, 2012.

[123] M. Mishra and A. Sahoo. On theory of vm placement: Anomalies in existing method-

ologies and their mitigation using a novel vector based approach. In Cloud Computing

(CLOUD), 2011 IEEE International Conference on, pages 275 –282, 2011.

[124] Mayank Mishra and Anirudha Sahoo. On theory of vm placement: Anomalies in existing

methodologies and their mitigation using a novel vector based approach. In IEEE CLOUD,

pages 275–282, 2011.

[125] Akihiko Miyoshi, Charles Lefurgy, Eric Van Hensbergen, Ram Rajamony, and Raj Rajku-

mar. Critical power slope: understanding the runtime effects of frequency scaling. In ACM

ICS’02, pages 35–44, 2002.

[126] Justin D Moore, Jeffrey S Chase, Parthasarathy Ranganathan, and Ratnesh K Sharma.

Making scheduling “cool”: Temperature-aware workload placement in data centers. In

USENIX annual technical conference, General Track, pages 61–75, 2005.

REFERENCES 173

[127] Koji Nakano. Linear layout of generalized hypercubes. Int. J. Found. Comput. Sci.,

14(1):137–156, 2003.

[128] Ripal Nathuji and Karsten Schwan. Virtualpower: coordinated power management in vir-

tualized enterprise systems. In SOSP, pages 265–278, 2007.

[129] Sergiu Nedevschi, Lucian Popa, Gianluca Iannaccone, Sylvia Ratnasamy, and David

Wetherall. Reducing network energy consumption via sleeping and rate-adaptation. In

NSDI, pages 323–336, 2008.

[130] Hien Nguyen Van, Frederic Dang Tran, and Jean-Marc Menaud. Autonomic virtual re-

source management for service hosting platforms. In Proceedings of the 2009 ICSE Work-

shop on Software Engineering Challenges of Cloud Computing, CLOUD ’09, pages 1–8.

IEEE Computer Society, 2009.

[131] Radhika Niranjan Mysore, Andreas Pamboris, Nathan Farrington, Nelson Huang, Pardis

Miri, Sivasankar Radhakrishnan, Vikram Subramanya, and Amin Vahdat. Portland: a

scalable fault-tolerant layer 2 data center network fabric. SIGCOMM Comput. Commun.

Rev., 39:39–50, August 2009.

[132] Volker Nissen and Henrik Paul. A modification of threshold accepting and its application

to the quadratic assignment problem. Operations-Research-Spektrum, 17(2-3):205–210,

1995.

[133] Bruce Nordman and K Christensen. Reducing the energy consumption of network devices.

IEEE 802.3 tutorial, pages 1–30, 2005.

[134] Axel Nyberg, Tapio Westerlund, and Andreas Lundell. Improved discrete reformulations

for the quadratic assignment problem. In Integration of AI and OR Techniques in Constraint

Programming for Combinatorial Optimization Problems, pages 193–203. Springer, 2013.

[135] OpenNebula. Opennebula. http://opennebula.org/. Accessed January 20th,

2013.

[136] Yi Pan, S. Q. Zheng, Keqin Li, and Hong Shen. An improved generalization of mesh-

connected computers with multiple buses. IEEE Trans. Parallel Distrib. Syst., 12:293–305,

March 2001.

[137] Jordi Petit. Experiments on the minimum linear arrangement problem. Journal of Experi-

mental Algorithmics (JEA), 8:2–3, 2003.

[138] Ramya Raghavendra, Parthasarathy Ranganathan, Vanish Talwar, Zhikui Wang, and Xi-

aoyun Zhu. No power struggles: Coordinated multi-level power management for the data

center. In ACM SIGARCH Computer Architecture News, volume 36, pages 48–59. ACM,

2008.

http://opennebula.org/

174 REFERENCES

[139] Eduardo Rodrı́guez-Tello, Jin-Kao Hao, and Jose Torres-Jiménez. An effective two-stage

simulated annealing algorithm for the minimum linear arrangement problem. Computers

& Operations Research, 35(10):3331–3346, 2008.

[140] Eduardo Rodrı́guez-Tello and Jose Torres-Jiménez. A refined evaluation function for the

minla problem. In MICAI 2006, pages 392–403, 2006.

[141] José D. P. Rolim, Ondrej Sýkora, and Imrich Vrto. Optimal cutwidths and bisection widths

of 2- and 3-dimensional meshes. In Manfred Nagl, editor, WG, volume 1017 of Lecture

Notes in Computer Science, pages 252–264. Springer, 1995.

[142] Ilya Safro, Dorit Ron, and Achi Brandt. Graph minimum linear arrangement by multilevel

weighted edge contractions. Journal of Algorithms, 60(1):24–41, 2006.

[143] Sartaj Sahni and Teófilo F. González. P-complete approximation problems. J. ACM,

23(3):555–565, 1976.

[144] Erno Salminen, Ari Kulmala, and Timo D H. Survey of network-on-chip proposals. Simu-

lation, (March):1–13, 2008.

[145] Steve Scott, Dennis Abts, John Kim, and William J. Dally. The blackwidow high-radix

clos network. In ISCA, pages 16–28, 2006.

[146] Yunfei Shang, Dan Li, and Mingwei Xu. Energy-aware routing in data center network. In

Green Networking, pages 1–8, 2010.

[147] Shekhar Srikantaiah, Aman Kansal, and Feng Zhao. Energy aware consolidation for cloud

computing. In Proceedings of the 2008 conference on Power aware computing and systems,

volume 10 of HotPower’08. USENIX Association, 2008.

[148] Matt Stansberry. Important to recognize the dramatic improvement in data center effi-

ciency, 2012.

[149] Thomas Stützle. Max-min ant system for quadratic assignment problems. Technical Report

Forschungsbericht AIDA-97-04, TU Darmstadt, 1997.

[150] Éric D. Taillard. Robust taboo search for the quadratic assignment problem. Parallel

Computing, 17(4-5):443–455, 1991.

[151] Éric D. Taillard and Luca Maria Gambardella. Adaptive memories for the quadratic as-

signment problems. Technical report, 1997.

[152] Wendy Torell. Tco analysis of a traditional data center vs. a scalable, containerized data

center. Technical Report 164, Schneider Electric, 2012.

REFERENCES 175

[153] R. Van den Bossche, K. Vanmechelen, and J. Broeckhove. Cost-efficient scheduling heuris-

tics for deadline constrained workloads on hybrid clouds. In Proceedings of the IEEE Third

International Conference on Cloud Computing Technology and Science, pages 320–327,

2011.

[154] James M. Varanelli and James P. Cohoon. A fast method for generalized starting tempera-

ture determination in homogeneous two-stage simulated annealing systems. Computers &

Operations Research, 26(5):481–503, 1999.

[155] Arunchandar Vasan, Anand Sivasubramaniam, Vikrant Shimpi, T Sivabalan, and Rajesh

Subbiah. Worth their Watts? - An empirical study of datacenter servers. In IEEE HPCA,

pages 1–10, 2010.

[156] Nedeljko Vasic, Prateek Bhurat, Dejan M. Novakovic, Marco Canini, Satyam Shekhar, and

Dejan Kostic. Identifying and using energy-critical paths. In CoNEXT, page 18, 2011.

[157] Nedeljko Vasic and Dejan Kostic. Energy-aware traffic engineering. In e-Energy, pages

169–178, 2010.

[158] Vijay V. Vazirani. Approximation Algorithms. Springer, March 2004.

[159] H. Viswanathan, E.K. Lee, I. Rodero, D. Pompili, M. Parashar, and M. Gamell. Energy-

aware application-centric vm allocation for hpc workloads. In Parallel and Distributed

Processing Workshops and Phd Forum (IPDPSW), 2011 IEEE International Symposium

on, pages 890 –897, 2011.

[160] M Mitchell Waldrop. Data center in a box. Scientific American, 297(2):90–93, 2007.

[161] Jiunn-Chin Wang. Solving quadratic assignment problems by a tabu based simulated an-

nealing algorithm. In ICIAS 2007, pages 75–80. IEEE, 2007.

[162] Jiunn-Chin Wang. A multistart simulated annealing algorithm for the quadratic assignment

problem. In IBICA 2012, pages 19–23. IEEE, 2012.

[163] Lin Wang, Antonio Fernández Anta, Fa Zhang, Chenying Hou, and Zhiyong Liu. Routing

for energy minimization with discrete cost functions. CoRR, abs/1302.0234, 2013.

[164] Meng Wang, Xiaoqiao Meng, and Li Zhang. Consolidating virtual machines with dynamic

bandwidth demand in data centers. In IEEE INFOCOM, pages 71–75, 2011.

[165] Xiaodong Wang, Yanjun Yao, Xiaorui Wang, Kefa Lu, and Qing Cao. Carpo: Correlation-

aware power optimization in data center networks. In INFOCOM, pages 1125–1133, 2012.

[166] Mark Weiser, Brent Welch, Alan Demers, and Scott Shenker. Scheduling for reduced CPU

energy. In Mobile Computing, pages 449–471. Springer, 1996.

176 REFERENCES

[167] Mickey R. Wilhelm and Thomas L. Ward. Solving quadratic assignment problems by

simulated annealing. IIE Transactions, 19(1):107–119, 1987.

[168] Jing Xu and José Fortes. A multi-objective approach to virtual machine management in

datacenters. In Proceedings of the 8th ACM international conference on Autonomic com-

puting, ICAC ’11, pages 225–234. ACM, 2011.

[169] Abdou Youssef. Cartesian product networks. In ICPP (1), pages 684–685, 1991.

[170] Abdou Youssef. Design and analysis of product networks. In Proceedings of the Fifth

Symposium on the Frontiers of Massively Parallel Computation (Frontiers’95), pages 521–

528, Washington, DC, USA, 1995. IEEE Computer Society.

[171] Chong Zhang, Zhangang Lin, and Zuoquan Lin. Variable neighborhood search with per-

mutation distance for qap. In Knowledge-Based Intelligent Information and Engineering

Systems, pages 81–88. Springer, 2005.

[172] Dawid Zydek and Henry Selvaraj. Fast and efficient processor allocation algorithm for

torus-based chip multiprocessors. Comput. Electr. Eng., 37:91–105, January 2011.

