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Improvement and Application of Smoothed
Particle Hydrodynamics in Elastodynamics

Lisha He

Abstract

This thesis explores the mesh-free numerical method, Smooth Particle Hydrodynamics
(SPH), presents improvements to the algorithm and studies its application in solid
mechanics problems. The basic concept of the SPH method is introduced and the
governing equations are discretised using the SPH method to simulate the elastic solid
problems. Special treatments are discussed to improve the stability of the method,
such as the treatment for boundary problems, artificial viscosity and tensile instability.
In order to improve the stability and efficiency, (i) the classical SPH method has been
combined with the Runge-Kutta Chebyshev scheme and (ii) a new time-space Adaptive
Smooth Particle Hydrodynamics (ASPH) algorithm has been developed in this thesis.

The SPH method employs a purely meshless Lagrangian numerical technique for
spatial discretisation of the domain and it avoids many numerical difficulties related
to re-meshing in mesh-based methods such as the finite element method. The explicit
Runge-Kutta Chebyshev (RKC) scheme is developed to accurately capture the dy-
namics in elastic materials for the SPH method in the study. Numerical results are
presented for several test examples applied by the RKC-SPH method compared with
other different time stepping scheme. It is found that the proposed RKC scheme offers
a robust and accurate approach for solving elastodynamics using SPH techniques. The
new time-space ASPH algorithm which is combining the previous ASPH method and
the RKC schemes can achieve not only the adaptivity of the particle distribution during
the simulation, but also the adaptivity of the number of stage in one fixed time step.
Numerical results are presented for a shock wave propagation problem using the time-
space ASPH method compared with the analytical solution and the results of standard
SPH. It is found that using the dynamic adaptive particle refinement procedure with
adequate refinement criterion, instead of adopting a fine discretisation for the whole
domain, can achieve a substantial reduction in memory and computational time, and
similar accuracy is achieved.



Declaration

The work in this thesis is based on research carried out in the Mechanics Group, School
of Engineering and Computing Sciences, Durham University. No part of this report
has been submitted elsewhere for any other degree or qualification and it is all my own
work unless referenced to the contrary in the text.

Journal
L. He and M. Seaid. Runge-Kutta-Chebyshev SPH algorithm for elastodynamics.

International Journal for Numerical Methods in Engineering 2015 (under review).

L. He and M. Seaid. Time-space adaptive SPH method for shock propagation in
solids. Advances in Applied Mathematics and Mechanics 2015 (submitted).

Conference
L. He, R.S. Crouch, M. Seaid and C.E. Augarde. Strong-stability preserving explicit

Runge-Kutta methods for SPH elastodynamics. Asia Pacific Congress on Computa-
tional Mechanics and International Symposium on Computational Mechanics (APCOM
& ISCM), Singapore, 2013.

L. He, R.S. Crouch and M. Seaid. Comparative study of time-stepping schemes for
SPH solution in elastodynamics. International Conference on Computational Mechan-
ics (CM13), UK, 2013.

ii



Acknowledgments

I would like to thank my supervisor Dr Mohammed Seaid for his patience

and giving me the freedom to really explore this challenging topic,

Professor Roger Crouch who first led me to this area, imparted knowledge patiently

and unreservedly and provided me invaluable supervision and insight,

Professor Charles Augarde for his encouragement and help,

my husband Yang who has encouraged and supported me throughout the whole process,

my parents for fostering my love of all things science

and supporting me all the time,

my daughter who gave me infinite power to finish this thesis.

Thank you all.

iii



Contents

Abstract i

Declaration ii

Acknowledgments iii

Contents vii

List of Figures xi

List of Tables xii

Nomenclature xiii

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Limitation of grid-based methods . . . . . . . . . . . . . . . . . . . . . 3

1.3 Mesh-free methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Strong form methods . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.2 Weak form methods . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.3 Combination of different methods . . . . . . . . . . . . . . . . . 6

1.4 Smoothed Particle Hydrodynamics . . . . . . . . . . . . . . . . . . . . 7

1.4.1 Standard SPH method . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.2 Adaptive SPH method . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Purpose of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

iv



CONTENTS v

2 Smoothed particle hydrodynamics 14

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1 Kernel approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Kernel approximation of a function . . . . . . . . . . . . . . . . 15

2.1.2 Kernel approximation of the derivatives . . . . . . . . . . . . . . 17

2.2 Smoothing functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Particle approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Boundary accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.1 Correction forms . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 Neighbouring particle searching methods . . . . . . . . . . . . . . . . . 31

2.5.1 All-pair search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5.2 Linked-list search algorithm . . . . . . . . . . . . . . . . . . . . 32

2.5.3 Tree search algorithm . . . . . . . . . . . . . . . . . . . . . . . . 34

Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 SPH and dynamics 36

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1 Eulerian and Lagrangian approaches . . . . . . . . . . . . . . . . . . . 36

3.2 Deriving the SPH equations . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 Artificial viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5 Tensile instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5.1 Reason for the instability . . . . . . . . . . . . . . . . . . . . . . 45

3.5.2 Solution of tensile instability . . . . . . . . . . . . . . . . . . . . 46

3.6 SPH system with special treatments . . . . . . . . . . . . . . . . . . . . 50

3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52



CONTENTS vi

4 Runge-Kutta Chebyshev scheme 53

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1 Euler time stepping scheme . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Predictor-corrector scheme . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 Runge-Kutta time stepping scheme . . . . . . . . . . . . . . . . . . . . 55

4.3.1 Second and fourth order Rouge-Kutta . . . . . . . . . . . . . . . 55

4.3.2 General formulation of Runge-Kutta methods . . . . . . . . . . 57

4.4 Runge-Kutta Chebyshev scheme . . . . . . . . . . . . . . . . . . . . . . 58

Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 Application to pure elastodynamic problems 62

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.1 One-dimensional wave propagation problem . . . . . . . . . . . . . . . 63

5.1.1 Shock wave problem . . . . . . . . . . . . . . . . . . . . . . . . 63

5.1.2 Convergence analysis . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2 Two-dimensional elastic plate . . . . . . . . . . . . . . . . . . . . . . . 70

5.3 Two-dimensional oscillatory beam . . . . . . . . . . . . . . . . . . . . . 78

5.4 Elastodynamics in a porous plate under compression . . . . . . . . . . 82

Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6 Time-space adaptive SPH method 86

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.1 Adaptive kernel estimation . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.1.1 Varying smoothing length . . . . . . . . . . . . . . . . . . . . . 89

6.1.2 The symmetric influence between particles . . . . . . . . . . . . 91

6.2 Refinement criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.3 Particle splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.4 Error control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.4.1 Refinment error . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.4.2 Density refinement error . . . . . . . . . . . . . . . . . . . . . . 97

6.5 Merging of particle properties . . . . . . . . . . . . . . . . . . . . . . . 98

6.6 Adaptive stages for one time step . . . . . . . . . . . . . . . . . . . . . 100

6.7 Application of ASPH method . . . . . . . . . . . . . . . . . . . . . . . 101

6.7.1 Shock wave propagation with the ASPH method . . . . . . . . . 101

6.7.2 Static compressive problem . . . . . . . . . . . . . . . . . . . . 108

Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109



CONTENTS vii

7 Conclusions 112

7.1 General remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.2 Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Bibliography 128

A Appendix 129

A.1 Substantial Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

A.1.1 Divergence of the velocity . . . . . . . . . . . . . . . . . . . . . 131

A.2 Conservation of Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

A.3 Momentum equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

A.4 Stress tensor calculation . . . . . . . . . . . . . . . . . . . . . . . . . . 136



List of Figures

2.1 (a) Computational domain contains the support domain of the smooth-
ing function. (b) Computational domain intersects with the support
domain of the smoothing function. . . . . . . . . . . . . . . . . . . . . 19

2.2 Different commonly used smoothing functions . . . . . . . . . . . . . . 21

2.3 The spatial derivatives of different commonly used smoothing functions. 22

2.4 The difference between the cubic B-spline function first used by Mon-
aghan and Lattanzio [78] and the new quartic smoothing function con-
structed by Liu et al. [59] (here f(R, h) includes W(R, h), W′(R, h) and
W′′(R, h)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Particle approximation by smoothing function W in support domain V
with radius κh. (a) Top view of the problem domain and the support
domain of the smoothing function. (b) The surface of the smoothing
function in a two-dimensional case. . . . . . . . . . . . . . . . . . . . . 24

2.6 The support domain has been truncated by the boundary. There is
no sufficient neighbouring particles in the support domain, when the
particle is near the boundary. . . . . . . . . . . . . . . . . . . . . . . . 26

2.7 (a) Comparison of results of real function, original approximation and
corrected approximation methods; (b) Comparison of results of spacial
gradient of a function. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.8 (a) and (b) are the comparative results of approximation of the function
and its derivative with different numbers of particles; (c) and (d) show
the L1 and L2 norm error of the approximations results of the function
and its derivative with different numbers of particles. . . . . . . . . . . 31

2.9 All-pair search method for searching for the neighbouring particles in a
two-dimensional case. The distances between every considered particle
and other particles is compared with the radius of the support domain of
the considered particle to identify whether these two particles are adjacent. 32

2.10 Cell linked-list algorithm for searching for the nearest neighboring par-
ticles in two-dimensional cases. The smoothing length is constant for
each particle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

viii



LIST OF FIGURES ix

2.11 Tree structure and tree search algorithm in two-dimensional space. The
tree is constructed by recursively splitting the maximal problem domain
into octants that contain particles, until the leaves on the tree are in-
dividual particles. The tree search algorithm is performed by checking
whether the volume of the search cube (shaded area) for a given particle
overlaps with the volume represented by the current node. . . . . . . . 34

3.1 (a)Eulerian Approach. (b)Lagrangian Approach. ( Anderson [1]) . . . . 38

3.2 Solid boundary treatment with ghost particles. . . . . . . . . . . . . . . 41

3.3 The particle distribution of the square plate after t = 1 ms under the
compression and tension loading. . . . . . . . . . . . . . . . . . . . . . 46

3.4 (a) The velocity change of the perturbation particle. (b) The second
derivative of the cubic spline kernel. . . . . . . . . . . . . . . . . . . . . 47

3.5 One dimensional case for the SPH method with stress points, when
rs
∆p

= 0.5, it becomes the standard SPH method. . . . . . . . . . . . . 47

5.1 Compression loading of the one-dimensional magnesium bar. . . . . . . 63

5.2 (a) Velocity distributions at t = 1.2×10−4 s along the bar with different
time stepping schemes; (b) the stress at the end of the bar (x = L); the
time evolution of velocity (c) and stress (d) at the mid point of the bar
(x = L

2
) using different stepping schemes. . . . . . . . . . . . . . . . . . 64

5.3 (a) Velocity distributions at t = 1.2×10−4 s along the bar with different
time stepping schemes; (b) the stress at the end of the bar (x = L); the
time evolution of velocity (c) and stress (d) at the mid point of the bar
(x = L

2
) using the RK4 time. . . . . . . . . . . . . . . . . . . . . . . . . 65

5.4 (a) Velocity distributions at t = 1.2×10−4 s along the bar with different
time stepping schemes; (b) the stress at the end of the bar (x = L); the
time evolution of velocity (c) and stress (d) at the mid point of the bar
(x = L

2
) using RKC method. . . . . . . . . . . . . . . . . . . . . . . . . 66

5.5 (a) Velocity distributions at t = 1.2×10−4 s along the bar with different
time stepping schemes; (b) the stress at the end of the bar (x = L); the
time evolution of velocity (c) and stress (d) at the mid point of the bar
(x = L

2
) using RKC method with more particles. . . . . . . . . . . . . . 67

5.6 (a) The L1 and L2 error norms of the velocity distribution at t = 1.2×
10−4 s; (b) the L1 and L2 error norms of the time evolution of the stress
at the end of the bar (L = 1 m). . . . . . . . . . . . . . . . . . . . . . . 68

5.7 (a) The stress distribution along the bar at t = 40 s; (b) the L1 and L2

error norms of the stress distributioin at t = 40 s. . . . . . . . . . . . . 69

5.8 (a) Whole problem domain. (b) Squared distribution. (c) Radial distri-
bution. (d) Equally radial distribution. . . . . . . . . . . . . . . . . . . 70



LIST OF FIGURES x

5.9 The stresses σxy (left column), σyy (middle column) and velocity v (right
column) fields using squared distribution at different times. (a) t1 =
331.6336 ms. (b) t2 = 663.2731 ms. (c) t3 = 994.9097 ms. . . . . . . . 71

5.10 The stresses σxy (left column), σyy (middle column) and velocity v

(right column) fields using radial distribution at different times. (a)
t1 = 331.6336 ms. (b) t2 = 663.2731 ms. (c) t3 = 994.9097 ms. . . . . . 72

5.11 The stresses σxy (left column), σyy (middle column) and velocity v (right
column) fields using equally radial distribution at different times. (a)
t1 = 331.6336 ms. (b) t2 = 663.2731 ms. (c) t3 = 994.9097 ms. . . . . . 73

5.12 σyy along the cross section of the plane with circular hole (y = 0) using
different particle distributions. . . . . . . . . . . . . . . . . . . . . . . . 74

5.13 σyy along the cross section of plane with circular hole (y = 0) by using
different methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.14 Errors for the stress σyy distribution along the cross section of plane
with different number of particles. . . . . . . . . . . . . . . . . . . . . . 76

5.15 The stresses σxy (left column), σyy (middle column) and velocity v (right
column) fields using equi-radial distribution with more particles (3504)
at different times. (a) t1 = 331.6336 ms. (b) t2 = 663.2731 ms. (c)
t3 = 994.9097 ms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.16 A two-dimensional beam fixed at left and free on right is pulled by a set
of velocity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.17 The principal stress fields σxx (left column), σyy (middle column) and
velocity v (right column) of the oscillation beam (L = 0.5 m and d =
0.05 m) using the RKC SPH method at different times t1, t2, t3 and t4. 80

5.18 Comparative results of the velocity (a) and displacement (b) at the end
of the beam with different numbers (n= 11, 21 and 31) of particles
allocated on the width (L = 0.5 m, d = 0.1 m and Vf = 0.01) . . . . . . 81

5.19 The errors for the frequencies from the RKC-SPH method results with
different numbers of particles. . . . . . . . . . . . . . . . . . . . . . . . 81

5.20 (a) The plate with nine circular holes inside. (b) The particle discreti-
sation for the problem domain. . . . . . . . . . . . . . . . . . . . . . . 82

5.21 The stresses σ11 (left column) and σ22 (right column) fields using Runge-
Kutta-Chebyshev SPH method at different times. (a) t1 = 0.00667 s.
(b) t2 = 0.01333 s. (c) t3 = 0.02 s. . . . . . . . . . . . . . . . . . . . . . 84

6.1 The basic concept of the new Adaptive SPH method in one dimensional
space. (a) The particle splitting at t = t1. (b) The particle merging and
splitting at t = t2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.2 The refinement pattern stated by Lopez et al. [66] in 2D space, when
ǫr = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94



LIST OF FIGURES xi

6.3 Particle splitting process in one-dimensional problems. . . . . . . . . . 94

6.4 Particle merging process in one-dimensional problem. . . . . . . . . . . 98

6.5 (a) The relationship between stages and particle spacing with different
fixed time steps. (b) The relationship between stages and time steps
with different fixed particle spacing. . . . . . . . . . . . . . . . . . . . . 100

6.6 Compression loading on a one-dimensional solid bar. . . . . . . . . . . 101

6.7 (a) The change of time steps during the simulation. (b) The change of
stages in one time step for the time-space ASPH. . . . . . . . . . . . . 103

6.8 Velocity (a) and stress (b) distributions at t = 5× 10−3 s along the bar;

(c) Time evolution of the velocity at the mid point of the bar (x =
L

2
);

(d) Time evolution of the stress at the right end point of the bar (x = L).104

6.9 Velocity (a) and stress (b) distributions at t = 5 ms s along the bar
with different particle combinations through the time-space Adaptive
SPH methods; (c) the time evolution of velocity at the mid point of the

bar (x =
L

2
); (d) the time evolution of stress at the right end point of

the bar (x = L) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.10 Velocity (a) and stress (b) distributions at t = 4 × 10−3 s along the
bar with 50 original particles plus 101 extra refinement particles by the
Adaptive SPH method; (c) time evolution of the velocity at the mid

point of the bar (x =
L

2
); (d) time evolution of the stress at the right

end point of the bar (x = L) . . . . . . . . . . . . . . . . . . . . . . . . 106

6.11 (a) The velocity distribution along the bar at t = 40 s; (b) the L1 and
L2 error norms of the stress distributioin at t = 40 s. . . . . . . . . . . 107

6.12 (a) The number of particles in the simulation. (b) The change of number
of stages in the simulation. . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.13 Displacement at the left end of the bar. . . . . . . . . . . . . . . . . . . 109

6.14 Velocity (a) and stress (b) at the mid point of the bar (x =
L

2
). . . . . 110

6.15 (a) The velocity distribution along the bar at the steady stage. (b) The
error of the stress along the bar at the steady stage. . . . . . . . . . . . 110

A.1 Fluid element moving in the fluid flow. . . . . . . . . . . . . . . . . . . 129

A.2 Moving control volume for the physical interpretation of the divergence
of velocity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

A.3 Force analysis in y dimension. . . . . . . . . . . . . . . . . . . . . . . . 135

A.4 The deformation analysis of a small element in two dimensions. . . . . 136



List of Tables

2.1 Error rates of using the different types of SPH approximation for func-
tion g(x) = (x− 0.5)5 and its spatial derivative. . . . . . . . . . . . . . 30

2.2 Error rates of the SPH approximation with different numbers of particles
for function g(x) = (x− 0.5)5 and its spatial derivative. . . . . . . . . . 30

4.1 Butcher tableau for Runge-Kutta methods . . . . . . . . . . . . . . . . 58

4.2 Butcher tableau for 3/8 rule RK4 method . . . . . . . . . . . . . . . . 59

5.1 Errors of using the SPH method for solving shock-wave propagation with
different time schemes at t = 1.2× 10−4 s. . . . . . . . . . . . . . . . . 68

5.2 Errors for the stress distribution σyy along the cross section of plane
with circular hole (y = 0). Because this is a two-dimensional case and
the number of particle is not linearly increasing when the particle spac-
ing decreases, then the particle spacing is adopted to investigate the
convergence rate of the method. . . . . . . . . . . . . . . . . . . . . . . 75

5.3 Oscillation frequency and period for analytical and SPH results. . . . . 79

6.1 Errors and computational time of using the standard, ASPH and time-
space ASPH methods for solving shock-wave propagation at time t = 5 ms.103

6.2 Errors and computational time of using time-space ASPH methods for
solving a shock-wave propagation problem at time t = 5 ms with differ-
ent types of coarse and fine particle combinations. . . . . . . . . . . . . 106

xii



Nomenclature

W smoothing function
∇W spatial gradient of the smoothing function
W′′ second derivative of the smoothing function
V integral volume of the support domain
S surface of the support domain
h smoothing length of the support domain
κ scaling factor and represents the spread of the smoothing function
κh radius of the support domain
R relative distance between two position comparing with the smoothing length
αd scaling factor to promise the unity feature of the smoothing function
∇ spatial gradient operator
i index of a particle
j index of neighbouring particle
N number of particles within the support domain
∆V finite volume of a particle
m mass of a particle
ρ density of a particle
xi position of a particle i
O truncation error term

W̃ correction form of the smoothing function

∇W̃ correction form of the spatial gradient of the smoothing function
error1 L1 norm error
error2 L2 norm error
D

Dt
substantial derivative

v velocity vector
∂ partial differential operator
g acceleration caused by external force
σ stress tensor
σ̇ rate of stress tensor
ε strain tensor
ε̇ rate of strain tensor
E Young’s modulus
G shear modulus
K elastic bulk modulus

xiii



LIST OF TABLES xiv

ν poisson’s ratio
tr trace of a matrix
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Chapter 1

Introduction

1.1 Background

Computational simulation has become more and more popular in solving complicated
problems in engineering applications and scientific research. Numerical simulation has
provided an alternative means of scientific research, whether for the expensive, time
consuming or dangerous experiments in laboratories or on site. For those problems that
cannot be directly computed or observed to obtain specific and complete information,
numerical methods give better performance and are much more practical than tradi-
tional experimental methods. The benefit brought by numerical simulation through
computers is the capability of providing the verification for theory, explaining the ex-
periment’s results and new findings.

The processes of numerical simulation are similar for different numerical methods
in practical applications. Mathematical models can be set up by feasible simplification
and assumptions through observing physical phenomena. These mathematical models
are usually represented in the form of governing equations with initial and boundary
conditions. Governing equations can be a series of ordinary differential equations,
partial differential equations or other forms of equations defined by well known physical
laws.

The essence of numerical simulation is to solve the governing equations and obtain a
solution to the physical problem from these equations. To achieve this, the problem do-
main should be first discretised into several components. Different numerical methods
have different techniques of domain discretisation and discretised components, which
can involve a set of grid-based elements or mesh-free components. Domain discretisa-
tions with a set of grid-based elements are the traditional problem domain discretisation
techniques and widely applied in several numerical methods, i.e. finite element method
(FEM) and finite difference method (FDM) etc. Numerical methods using domain dis-
cretisations with a set of mesh-free elements are called mesh-free numerical methods

1
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and will be introduced in Section 1.3. The grid-based elements usually contain a finite
number of grid nodes and also make up the geometry of the problem domain. The
variables at the locations of the grid nodes are evaluated, and each grid node is related
to others by a certain kind of nodal connectivity. This nodal connectivity is the ba-
sis of generating a mesh for grid nodes in the problem domain. The accuracy of the
numerical discretisation depends on the size and shape of the mesh cell.

The numerical discretisation process has provided a method of transferring the in-
tegral and derivative operations of the governing equations from a continuous form into
a discretised form. This is highly related to the technique of domain discretisation. Liu
pointed out that numerical discretisation is based on the function approximation the-
ory [56]. Once the domain and numerical discretisations are performed, the governing
equations are transferred to a set of algebraic equations or ordinary differential equa-
tions whose solution can be obtained through numerical methods currently available.

In the process of numerical simulation using computers, we need to convert the
domain discretisation and numerical method into a computer program. The accuracy
and computational cost are very important factors which need to be taken into con-
sideration while coding, as well as the robustness (continuity and error checking) and
operability (ease of reading, utilization and modification) of the program. Before per-
forming numerical simulation, the code should be verified through experimental results,
theoretical solutions, or other available numerical methods to ensure the accuracy of
the code in solving practical engineering problems.

In the numerical simulation of a hydrodynamics problem, the governing equations
are established through conservation laws which can be expressed using the field vari-
ables in the system. For example, mass, momentum and energy should be conserved
during system evolution. The details of the conservation laws will be discussed in Chap-
ter 3. By combining these three fundamental conservation laws with the characteristics
of the material, the boundary and initial conditions and the behaviour characteristics
of the fluid and solid systems can be determined. These physical conservation laws are
usually represented by basic mathematical equations, partial differential equations in
most cases.

With some exceptions, it is very difficult to compute the analytical solution for or-
dinary or partial differential equations. The approximation technique usually applied
in solid mechanics is to discretise the integral or differential terms of the equations
into a set of simple algebra summation formulations first and then adopt these sum-
mation formulations to spatially approximate these integral or differential terms. This
approximation will generate a series of algebraic equations (or simple ordinary differ-
ential equations related only to time). By solving these equations, we will obtain the
numerical value of the field function at the discretised point in the time and space
frames (such as density, pressure, velocity). The classical solid mechanics numerical
simulation includes the following:
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• Governing equations.

• Boundary and initial conditions.

• Discretise the problem domain into a set of individual components.

• Appropriate numerical discretisation method to approximate the governing equa-
tions.

• Numerical method on solving the corresponding algebraic equations or ordinary
differential equations.

1.2 Limitation of grid-based methods

Numerical methods can be classified as two different types through the different forms of
the discretised components, with or without mesh (grid). Classical grid-based methods
(i.e. FEM and FDM) have been widely employed and achieved success in different
areas of computational solid mechanics. The discretisation techniques adopted are the
main methods of domain and numerical discretisation. However, grid-based numerical
methods must still confront unavoidable difficulties in some practical applications. In
this section, the limitations of grid-based methods will be discussed in detail.

The primary work in grid-based methods is to discretise the problem domain and
then generate the mesh. For the methods with Eulerian grids like FDM, it is very
difficult to generate a regular mesh for irregular and complex domains. To construct
the mesh for a complex geometry domain, additional complicated mathematical trans-
formations are necessary and are sometimes even more complex than the problem
itself. This disadvantage makes it difficult to simulate the problems with free surfaces,
deformation boundaries or moving interfaces using this method. Eulerian grid-based
methods are not sufficient when applied to problems which need to monitor the proper-
ties of the material in a fixed geometry domain, such as particulate flows [57]. Similarly,
in the methods using a Lagrangian grid like FEM, the mesh generation work usually
entails a large computational cost during the numerical simulation. Additionally, it
is very important for Lagrangian grid-based methods to simulate large deformation
problems which normally require special treatment such as mesh rezoning, which is
very complicated and computationally time consuming [26]. This sometimes leads to
inaccurate solutions.

When using grid-based numerical methods to simulate hydrodynamic problems such
as high velocity impact, the disadvantages of these kind of numerical methods are
especially evident. Shock wave propagation in high velocity impact problems behaves
like similar phenomena in fluid dynamics when impacting or colliding with objects.
Theoretically, motion and high-pressure state equations are the key features used to
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describe the material behavior property. Problems like moving material interfaces,
large deformations, free surfaces and boundary deformations also exist in high velocity
impact simulations. Evidently, they are very difficult to solve when applying grid-based
numerical methods [57].

Grid-based methods also face limitations and challenges when the main simulated
domain is a series of physical discretised particles rather than a continuum domain, for
instance star interactions in astrophysics, atomic movements in an equilibrium or non-
equilibrium state, dynamic behaviour of molecules in heat systems, etc. Continuum
grid-based numerical methods have no capability to simulate these kinds of discrete
systems, but mesh-free methods can.

1.3 Mesh-free methods

There is a new generation of numerical methods, mesh-free methods, which are rec-
ognized as a better choice than grid-based numerical methods like FDM and FEM
in many applications. The main idea of the mesh-free method is to adopt a set of
randomly distributed nodes (particles), which do not need to be connected to each
other through the mesh to simulate the problem system. These can then solve all
kinds of integral equations or PDEs including the boundary conditions. More accurate
and stable numerical solutions can be obtained with this kind of method. Initially,
the purpose of studying mesh-free methods is to amend the internal mesh structure of
grid-based methods like FDM and FEM in order to make the methods more stable,
adaptive and robust. Thus a lot of effort has been spent on problems that can not
be solved by traditional FDM and FEM, free-surface boundary deformation, moving
interface (for FDM), large deformation (FEM), and the generation of complex mesh
and self adaptivity of the mesh (for FEM and FDM) problems [56]. Recently, many
mesh-free methods have been applied in the solid, structure and fluid fields. These
mesh-free methods have some common points, but the approximation of function and
the implementation processes are different. The mesh-free methods can be classified
into two types by the forms of the equations: mesh-free based on strong form equations
will be introduced in Section 1.3.1 and mesh-free based on weak form equations will
be introduced in Section 1.3.2. Section 1.3.3 will provide an overview the combination
of mesh-free methods and traditional methods.

1.3.1 Strong form methods

In mesh-free methods based on strong forms, there is no requirement for the integral
form when establishing the discretisation system, the advantages are simple imple-
mentation, high efficiency of computation and ‘real’ mesh-free, such as the type of



CHAPTER 1. INTRODUCTION 5

mesh-free collocation methods. However these methods are not stable and have low
accuracy in many cases, especially the problem with irregular distribution of nodes
used for governing equations with Neumann boundary conditions, such as problems in
solid mechanics with the stress boundary conditions.

Of all mesh-free methods, smoothed particle hydrodynamics (SPH) has proved to
be one of the most popular. Standard SPH is a ‘real’ mesh-free method which was
first invented to simulate astrophysical phenomena by Lucy, Gingold and Monaghan
in 1977 [67, 30], and then widely applied in continuous solid and fluid mechanics. The
SPH method and its different variants are among the most popular particle methods in
engineering, and have been incorporated into commercial software [53, 88, 110, 111, 69,
100, 87]. The reproducing kernel particle method (RKPM) proposed by Liu and Chen
is based on the study of the consistency and reproducing ability of the SPH method
[63]. This approach showed better accuracy of the SPH approximation, especially on
the boundary. For details of RKPM and its application, see the works of Liu et al., Li
and Liu [64, 50].

1.3.2 Weak form methods

Weak form methods such as the element free Galerkin method (EFGM), meshless local
Petrov-Galerkin method (MLPGM), point interpolation method (PIM) and material
point method (MPM) have better stability and accuracy. The problems with Neu-
mann boundary conditions can be successfully solved by the employment of weak form
equations including smooth (integral) operators. However, weak form methods do not
represent the real meaning of mesh-free, because they require a background mesh for
the integration during the process. Therefore, most of the weak form methods are also
called meshless methods, such as EFGM, MPM and MLPGM.

Harlow proposed the particle-in-cell method (PIC) to solve the solid and fluid me-
chanics in 1957 [38]. Sulsky, Chen and Schreyer develop the material point method
(MPM) based on the combination of PIC and FEM in solid mechanics [104]. In the
MPM method, the points carry the material information including density, velocity
and stress etc. and then the information is mapped to the background mesh to up-
date for next time step. Then the MPM method is generalized using a PetrovGalerkin
discretization scheme by Bardenhagen and Kober and they named this new method
the generalized interpolation material point (GIMP) method [6]. Liu et al. invented
the Points Interpolation Method (PIM). They focused on solving the singularity of the
polynomial PIM method, and propose many different ways of finding a solution [56].
With the employment of the radial primary function (or combined with the polyno-
mial), the problems of local Petrov-Galerkin weak form and Global Galerkin weak form
are both solved [54, 116]. Mesh-free methods are also used to develop boundary inte-
gral methods, and as a result, to propose boundary mesh-free methods. In this kind of
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method, only the boundary of the domain is arranged with particles. Mukherjee and
Mukherjee formulated an equation which is based on the employment of the element
free Galerkin equation by using moving least square approximation [83, 84]. Gu and
Liu proposed the Boundary Point Interpolation Method (BPIM) by applying the Poly-
nomial Point Interpolation Method (PIM) and the Radial Point Interpolation Method.
They obtained a set of small discretisation system equations from the property of the
Dirac function of PIM shape functions [35] .

The Diffuse Element Method (DEM) is one of the weak form methods developed
by Nayroles et al., which introduces the moving least square approximations to the
Galerkin method [85]. On the basis of the DEM, Belytschko et al. proposed the
element free Galerkin method (EFGM), which is now one of the most widely used
mesh-free methods [7]. This method can be applied to many solid mechanics problems
by the employment of the background mesh through integration. Atluri and Zhu
(1998) proposed the Meshless Local Petrov-Galerkin method (MLPG), which computes
the integral for the local background mesh [4]. Since the MLPG method does not
compute the integral for the global background mesh, it is widely used in the analysis
of structure beams and plates, fluid flow problems and many other mechanical problems
[3]. These two methods basically transformed the original problem into a local weak
formulation and the shape functions were constructed from using the moving least-
squares approximation to interpolate the solution variables.

.

1.3.3 Combination of different methods

In practical applications, one mesh-free method can be used in combination with other
mesh-free methods or other traditional grid-based methods to obtain the advantages of
different methods. Examples include the combination of SPH and FEM, the element
free Galerkin method coupled with the boundary element method (BEM) and the
meshless local petrov-Galerkin method can also be applied in combination with BEM
or FEM [57]. EFGM can also be coupled with Boundary Point Interpolation Method
in solid mechanics [36]. Liu and Gu have proposed the Mesh-Free Weak-Strong method
(MWS) based on strong form and local weak form [55]. In this method, the strong form
equation is applied on the internal points and the points on the essential boundaries.
However, the local weak form (Petrov-Galerkin weak form) equation is only applied on
the points near the natural boundaries. Therefore, there is no need to do the numerical
integrals for all the internal nodes and the nodes on the essential boundary. The
numerical integral operation is only carried out for those nodes on the natural boundary.
In other words, this method only needs to arrange the local background mesh for the
nodes near the natural boundary. The shape function of the MWS method is set up
by local radial point interpolation and moving least square approximations. The final
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system matrices are sparse and band matrices, which will improve the computational
efficiency. The MWS method preserves the stable solution even with the irregularly
distributed nodes while it only has a very coarse mesh in the system in the whole
computational process. This makes the method approach the condition fulfillment of
a ‘real’ mesh-free method, which obtains stable and accurate results by using irregular
distributed nodes for solid mechanics problems.

Most research on mesh-free methods focuses on the complex application of com-
putational solid mechanics and computational fluid dynamics. Since the analysis in
mesh-free methods is made of a number of randomly distributed nodes, rather than
fixed nodes in mesh-based systems, it is useful to apply mesh-free methods to problems
that traditional grid-based methods cannot solve, such as large deformation problems in
solid mechanics, oscillation analysis, nonlinear foundation consolidation problems and
incompressible flows, etc. The application of the shock wave propagation to impact
problems and large deformation problems will be analysed in following chapters.

In this thesis, the discussion will focus on one of the earliest mesh-free methods, the
SPH method, which derives from an integral representation to approximate the field
function. The SPH method is very similar to the mesh-free methods based on weak
form equations [56]. The difference is that the weak form operation of the SPH method
is carried out in the function approximation process but in ordinary weak form methods
like EFG, MLPG, RKPIM, PIM etc., the weak form operation is implemented in the
generation process of a discretised system. As the integral representation is applied
on a field function, the differential operators of a field function will be passed to the
smoothing function (weight function). This reduces the requirement of continuous
order to the approximation of a field function. The SPH method has determined that
stable numerical results can be obtained by using even randomly distributed points for
many large deformation problems [58]. The accuracy of the SPH method is dependent
on the selection of the smoothing function to a great degree, which will be discussed
in Section 2.2.

1.4 Smoothed Particle Hydrodynamics

1.4.1 Standard SPH method

In the SPH method, the problem system is represented by using a number of particles
which have the individual properties of material and the behaviour of each particle
follows the principle of conservation governing equations. The SPH method was de-
veloped to solve the astrophysical problem in three-dimensional open space [67, 30].
It has been widely investigated and expanded, and then applied to the solid dynamics
response problem and fluid dynamics with large deformation.
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As a Lagrangian mesh-free method, the SPH method has specific characteristics.
Comparing with other traditional numerical methods based on meshes, it has some
special advantages, the most outstanding is the self-adaptive character of the SPH
method. The self-adaptive character can be obtained in the early stage of field function
approximations, which is carried out on the current randomly distributed particles in
each time step. Due to this special property of the SPH method, the construction of
the SPH equations is not affected by the random distribution of particles. In other
words, this method can be applied to solve an extremely large deformation problem.
This makes the SPH method both attractive and powerful.

The mesh-free properties of the SPH method can be attributed to the following
three factors: firstly, the adaptive character as mentioned above; secondly, the problem
domain is represented by particles; finally, the particles are used as the computational
frame of the approximations for the field variables. In the process of computation,
there is no requirement on a predefined mesh for the SPH approximation to provide
connection information between particles. The mesh-free property shows its usefulness
especially for those problem that are hard to solve by using traditional FEM and FDM.

As mentioned previously, the SPH method was developed to simulate nonaxisym-
metric 3-D phenomena in astrophysics. Because the movement of these points is similar
to the movement of fluid or gas, we can use classical Newton conservation laws in this
method to solve the dynamics problems.

Apart from the mesh-free and self-adaptive characteristics, another attractive char-
acteristic is the combination of Lagrangian equations and the particle approximation.
The SPH particles represent the field variable at the position of the problem domain
that makes the method more powerful. The difference between the SPH method and
the other mesh-less methods such as PIC, MPM and GIMP methods, lies on the fact
that the SPH method does not need the background mesh to calculate spatial deriva-
tives as in the above mentioned methods. On the other hand, the implementation of
the SPH method is far simple than other mesh-less methods. It should also be men-
tioned that it would be difficult for other mesh-less methods using background mesh
such as MPM to solve the large deformation problems. This is mainly because of
the errors caused by the mesh mapping process when the material points move across
several mesh grids in one step. It is necessary for these mesh-less methods to include
special treatments and complex correction techniques on the mapping process to solve
large deformation problems. However, the implementation process of the SPH method
is much simple as the particles of the SPH method carry all the information required
for computations. They can move in space and construct the computation frame for
solving the partial differential equations based on classical conservation laws without
relying on background meshes. This feature makes the SPH method attractive and
powerful to solve the large deformation problems.

The core ideas of the SPH method are described by three words: smoothed, parti-
cles, hydrodynamics. The first word, smoothed, means to obtain the stable smoothing
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approximation by calculating the weighted average of the neighbouring particles. The
second word, particles, represents that the property of the basic computational frame
in this method is a kind of particle method. The third word, hydrodynamics, refers
to this method’s application to hydrodynamical problems. The combination of self-
adaptive, particle and Lagrangian characteristics make the SPH method popular in
the field of engineering applications.

As mentioned before, since the SPH method is very powerful in introducing the
complex physical effects into the SPH equations, the SPH method is widely applied
in computational mechanics. When SPH approximations are applied to construct the
point-dependent shape function, they can be employed to other areas of mechanics not
only classic hydrodynamics. Therefore, Kum et al. [46] and Posch et al. [90] also called
the SPH method smoothed particle mechanics.

The early applications of the SPH method were mainly in the field related to
fluid dynamics, such as elastic flow, quasi-incompressible flows, gravity currents, flow
through porous media, heat conduction, shock simulations, heat transfer and mass
flow, etc. [76]. A very important application area is the high velocity impact (HVI)
problem caused by high speed particles colliding with space equipment (satellite, space
shuttle, space station). In HVI problems, when the shock wave propagates through the
body the physical behaviour resembles that of fluid [119, 120]. Libersky, Randles and
their collaborators have contributed to the application of the SPH method to impact
problems [52, 93, 92]. Another noteworthy application is the explosion phenomena
caused by high-efficiency explosives. Swegle and Attaway have studied the feasibility
of simulating underwater explosions with the SPH method [106]. Liu et al. simu-
lated a series of explosion phenomena with the SPH method, including the explosion
of high-efficiency explosives, underwater shock and the remittance of underwater shock
[60, 62, 61].

The SPH method has had many improvements and advances during the application
process. Numerical computation has been improved, some internal weaknesses of the
SPH method are pointed out as well as the corrective technique and improvement
method. Swegle et al. pointed out the problem of tensile instability for a material with
strength [105]; Morris has solved the inconsistency problem of particles which leads to
the lower accuracy to the SPH method [81]. Monaghan has introduced a symmetrised
equation with better performances [78] for the method. Liu and Chen have proposed
the Reproducing Kernel Particle Method (RKPM) which can bring higher accuracy
in particle approximation [63]. Chen et al. developed a Corrective Smoothed Particle
Method (CSPM), which brings better accuracy for both inside the problem domain
and near boundary areas [16, 17]. Other famous corrected and revised SPH methods
include: moving least square particle hydrodynamics (MLSPH) by Dilts [21, 22] and
corrected integration kernel by Bonet and Kulasegaram [11]. An open SPH code,
called SPHysics, was developed by Gomez-Gesteira et al. [32] in 2007 and improved
into several versions in recent years. Rogers et al. adopted the open-source code
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SPHysics combining with a Riemann solver-based formulation to simulate the caisson
breakwater movement [97]. Currently, SPHysics code can simulate general dynamics
problems very well [53, 88, 110, 111, 69, 100, 87].

Libersky and Petschek extended the SPH method to solid Mechanics [51, 52]. This
method was then applied to simulate the fracture of brittle solids by Benz and Asphaug
[9] and metal forming by Bonet and Kulasegaram [11]. In the application of simulating
large deformation and impulsive loading, the SPH method is powerful and attractive.
In recent years, some correction and improvement has been developed to restore the
consistency of the method and enhance its accuracy. These modifications have gen-
erated many versions of the SPH method and corresponding equations. Randles and
Libersky [94] have applied the stress point method, which was developed by Dyka and
Ingel [24], to multi-dimensional space problems; this improved the tensile instability
problem and zero energy mode problem.

Although the SPH method has been applied to different fields, there are still many
problems which need further investigation, especially this method’s numerical analysis
with its mesh-free nature; the techniques that were developed from grid-based Euler
or Lagrangian methods are not suitable to be directly applied in the SPH method.

SPH is a method ideally suited for dynamics with large nonlinear deformation, the
SPH system is to be solved for a time interval endowed with given initial properties
and boundary conditions. The information on each particle in the problem domain
is updated by time integration. To simulate the time integration, the time interval is
discretised into several steps. Explicit time stepping schemes can be chosen for ordinary
partial equations (ODEs) in the SPH method [58]. It should be stressed that, because
explicit time stepping schemes evaluate explicitly the right-hand side of the ODEs,
then it has to satisfy a stability condition. This stability criterion can be based on the
Courant-Friedrichs-Levy (CFL) condition. This leads to the small size of the time step
in the SPH method and limits the efficiency of the method: the large number of time
steps will lead to error accumulation, and the accuracy of the SPH method will also
be affected.

1.4.2 Adaptive SPH method

In some real engineering applications, only part of the problem domain has dynamic
behaviour (i.e. change of velocity, stress or temperature) during a certain time. For
example, consider a beam in the shock wave propagation problem, which is fixed at
the right end, the loading velocity is at the left end of the beam. The right part of the
beam will not receive the dynamic information until the propagation of the shock wave
reaches the right end. In this situation, the properties of the particles in the right part
of the beam are not the feature of interest but will still need to be calculated, this is
time consuming and limits the efficiency of the SPH method.
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For this reason, a new version of the SPH method with a time-varying particle
distribution, called the Adaptive SPH method (ASPH), is attractive. Kitsionas and
Whitworth first implement a particle splitting method to the classical SPH method for
the astrophysics problem in 2002 [44]. Due to the adaptivity property of the particle
distribution in the ASPH method, the accuracy of the method is increased using a
relatively smaller number of particles compared to the standard SPH method. Then
Lopez applied the Adaptive Particle Splitting (APS) technique, which is the basic
concept of Adaptive Mesh Refinement (AMR) being adopted on the particle methods,
for the SPH method in fluid flow simulations [65]. Although the APS technique is not
as mature as the AMR technique, it is still worth studied, improved and applied to the
SPH method to obtain the new Adaptive SPH algorithm.

Omidvar et al. applied variable mass particle distribution to simulate 2D and 3D
fluid dynamic problems [87, 88] through the SPH method and Lastiwka et al. presented
a more general algorithm with particle insertion and removal for the SPH method based
on this [48]. Feldman and Bonet developed a dynamic particle refinement algorithm
for the SPH method [27]. Then Vacondio et al. expanded the method with splitting
and coalescing techniques on fluid dynamics [108, 109, 110]. Spreng et al. then applied
the adaptive discretization algorithm for the SPH method on solid mechanics [101].
Lopez et al. expanded the application of the particle refinement in SPH from fluid to
non-cohesive soil model. [66].

A new refinement procedure is developed by Barcarolo et al. [5]. In their work, the
mother particle is not removed but turned off by an operator and daughter particles
are turned on when they are created. One of the key points in the particle refinement
technique is the varying smoothing length, which can then be adopted as the adaptive
smoothing length for this new algorithm, unlike the method proposed by Shapiro et al.
[98] and Owen et al. [89], which only focuses on the adaptive kernel estimation. The
adaptive SPH algorithm studied by the above researchers includes not only the adaptive
kernel estimation but also the adaptive number and distribution of particles during the
time integration process. Since the size of time step depends on the particle spacing, the
time step will become smaller after the particle splitting. A smaller time step should be
chosen for all particles after the splitting process in previous ASPH simulations [5]. In
this thesis, the work will focus on improve the efficiency and stability of the standard
SPH and ASPH methods.

1.5 Purpose of the thesis

There is significant interest in the SPH method and its application in solid mechanics.
Comparison with traditional grid-based methods (FEM and FDM, etc.) shows the
SPH method to have these benefits:
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• The SPH method can perform better solution in several application areas than
using some traditional grid-based methods, such as FEM and FDM. For example
Jankowiak and Lodygowski compared the SPH and FEM simulations on the blast
impact problem and obtain the conclusion that SPH is more suitable for this
problem [42]. Bui et al. investigated the advantages of SPH for simulating the
discontinuous soil failure problems comparing with the FEM and LEMs methods
[13].

• The SPH method can be widely applied in several areas, from micro-scale to
astronomical problems. It can solve both discretised and continuum systems.

• The SPH method is one of the oldest mesh-free particle methods and approaching
maturity. A variety of modifications and corrections have been developed to
improve the performance of the method in the engineering practical applications.

However, there are still limitations to the method during engineering practical ap-
plication and science research, as mentioned in the last section. The limitations which
will be solved for the SPH method in this thesis can be summarised as following:

• The explicit SPH method is limited by the CFL condition. The small size of the
time step will influence the efficiency and accuracy of this method.

• Increasing the number of particles can result in higher accuracy of the method
but lower efficiency, since the entire domain may not need a uniform distribution
of particles to simulate the physical behaviour.

The emphasis of this thesis will be on the improvement and modification of the
SPH method to solve the problems presented above. A combination of the Runge-
Kutta Chebyshev time stepping scheme and the SPH method will be introduced in
this thesis to increase the size of the time step and also demonstrate the accuracy of
this method. A new form of the ASPH method will be developed for the application
of elastodynamics to improve the efficiency of the method and save computational cost
during the analysis. Some applications, which are difficult for FEM and FDM, will also
be presented in detail, such as the shock wave problem and large deformation problem.

The basics of the SPH method will be introduced in Chapter 2. The method of
kernel approximation and the particle discretisation will be discussed in this chapter.
Different smoothing functions will be introduced for different usages. The treatment
for the boundary accuracy problem will also be solved by using a correction form for
the SPH approximation of the system properties and their spatial derivatives. Three
different neighbouring particle searching methods are discussed.
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In Chapter 3, the discussion will focus on applying the SPH approximation concept
to the dynamics problem. First both Eulerian and Lagrangian approaches are intro-
duced. The SPH method belongs to the Lagrangian numerical method. The governing
equations are derived for the dynamics problems using the classical conservation laws.
The stress tensor calculation is derived through Hooke’s law, then the governing equa-
tions and the stress tensor for each particle are represented in the SPH approximation
form. In addition, the special treatments for the SPH method to improve its perfor-
mance will also be discussed in this chapter, such as boundary condition treatment,
artificial viscosity and a treatment for tensile instability. The SPH system with the
special treatments will be summarised at the end of Chapter 3.

One of the key improvements for the application of the SPH method is discussed
in Chapter 4, the Runge-Kutta Chebyshev time stepping scheme. The importance of
the time stepping scheme for the numerical methods will be presented. The classical
Euler and Runge-Kutta family time integration algorithms are discussed here, including
the error analysis for each scheme. Finally, the Runge-Kutta Chebyshev (RKC) time
integration algorithm, which is developed by Verwer [112], will be proposed for the
SPH method to improve its performance.

The application of the SPH method combined with the RKC time integration
scheme will focus on the shock wave propagation problem and large deformation prob-
lems in elastodynamics, which are challenging for traditional numerical methods, such
as FEM and FDM. These applications will be presented in Chapter 5.

A new algorithm of the SPH method will be proposed in Chapter 6, which is
referred to as time-space adaptive smoothed particle hydrodynamics in this thesis.
The smoothing length in the time-space ASPH method is varying with the adaptive
particle spacing. The calculation of the SPH approximation with varying smoothing
length is first raised by Monaghan [71, 73]. Omidvar et al. also applied variable mass
particle distribution to simulate 2D and 3D fluid dynamic problems [87, 88]. However
Monaghan and Omidvar et al. only considered the situation of disorder distribution
particles caused by partly compression or tension in fluid dynamics with all initial
uniform particle distribution. Then Vacondio et al. expanded the method with splitting
and coalescing techniques on fluid dynamics [110]. In this thesis, the time-space ASPH
is developed in which the distribution of the particles and the stages in one step is
adjusted during the time integration. The techniques of particles splitting and merging
will be introduced and then the algorithm is applied to elastodynamics. The details
about this new algorithm will be shown in Chapter 6.

Chapter 7 summarises the contribution of this thesis: the combination of the RKC
method to improve the stability and efficiency of the SPH method, proposing a new
time-space ASPH algorithm and its applications. The potential future work of the
method is then explored along with suggestions of where further modifications might
be made to improve the method in engineering practical applications.



Chapter 2

Smoothed particle hydrodynamics

Introduction

The Smoothed Particle Hydrodynamics (SPH) method was first developed by Lucy, and
Gingold and Monaghan [67, 30]. In this method, the continuum domain is discretised
into particles which carry the field variables. These variables are calculated from the
contribution of the neighbouring particles by means of a kernel function. The SPH
method is a true mesh-free method based on the transformation of differential equations
into integral ones which are then discretised using a distribution of moving particles.
It is traditionally applied to modeling fluid flows. In recent years, there has been a
growing interest in applying the SPH method to solid mechanics problems. The main
feature of the SPH method is that it is a particle-based technique and does not require
any underlying grid structure to represent the problem geometry. This feature makes
the SPH avoid the disadvantage ideally associated with traditional mesh-based methods
methods (FEM, FVM and BEM), for example, maintaining mesh integrity and quality
under large deformation. The mesh-free nature of the SPH method makes it ideally
suit to model processes that involve large deformations and discontinuities, fracture
and fragmentation, metal forming, etc. It produces good results in many applications
in both fluid and solid mechanics.

The primary concept and the essential formulations of the SPH method are dis-
cussed to understand the various ingredients of the SPH method. The SPH method
is developed to simulate the hydrodynamic problems with a set of partial differential
equations (PDE). Normally, it is difficult to get an exact solution of the PDEs except
for some simple cases. Therefore, the basic SPH concept for the hydrodynamic problem
is to first discretise the continuous problem domain defined by the PDE into particles
and then approximate the solution function and its derivatives for each particle. Af-
ter the function approximation, the PDE can be transformed into a set of ordinary
differential equations (ODE) which are solved by each individual particle.

14
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The SPH algorithm can be divided into two steps: (i) representing the field vari-
ables and their derivatives in an integration form by using smoothing functions, (ii)
discretising the continuous problem domain into a set of particles, which carry physical
properties, i.e. mass, volume and density.

In this chapter, these two main steps of the SPH method will be introduced in
Section 2.1 and Section 2.3, including the error order analysis of the approximation.
The boundary accuracy problem as well as the solution to the problem will be discussed
in Section 2.4. Furthermore, three common neighbouring particle searching algorithms
are applied for the SPH method. The SPH method combined with PDEs for the
dynamics is further discussed in Chapter 3.

2.1 Kernel approximation

2.1.1 Kernel approximation of a function

In the SPH method, a kernel approximation is applied to a function and its spatial
derivatives by using smoothing functions (also called weight functions). The kernel
approximation can be derived by beginning with the Dirac function,

f(x) =

∫

V

f(x′)δ(x− x′)dx′, (2.1)

where f is a spatially dependent function with respect to x and δ(x− x′) is the Dirac
Delta function. x′ and x indicate points with respect to the integral volume V.

δ(x− x′) =

{
1, x = x′,
0, x 6= x′.

(2.2)

Equation (2.1) indicates that a certain function could be rewritten into integral form
by using the Dirac delta function, under the condition that f(x) is continuous in the
integral volume V [58].

Since the Dirac delta function has only one point in the domain, it cannot be applied
to construct discrete numerical models. However, if the point is enlarged to be an area
of radius κh, (where h is the smoothing length discussed later and κ is the number
of smoothing lengths that defines the radius of compact support), we can assume the
total integral of the points in this finite area is 1. Then the kernel approximation of
a function f(x) can be expressed by replacing the Delta function with a smoothing
function W(x− x′, h),

< f(x) >=

∫

V

f(x′)W(x− x′, h)dx′. (2.3)
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It can be noted that W(x− x′, h) is also known as the smoothing function and κh is
the radius of the influence area. The Dirac function can be considered as a special
case of this function. Here < f(x) > indicates an approximation to f(x) and x′ is
a random point in the integral region. Since the smoothing function is not exactly a
Dirac function, the integral form of the function f(x) can only be an approximation,
except for some special cases. It is worth noting that h is the smoothing length, which
defines the size of the influence domain of the smoothing function and κ is the number
of smoothing lengths in the influence domain (the factor κ is fixed for one particular
smoothing function). The smoothing length is empirically chosen from 0.8 to 1.8 times
of the initial particle spacing for different application problems [58]. El-Gammal et al.
[26] also investigated the influence of smoothing length in 2013.

The kernel approximation is proven to have a second-order accuracy [73, 76]. This
can be simply derived by applying the Taylor series to Equation (2.3) shown as (2.4).
There are several special properties of smoothing functions which will be discussed
in detail in Section 2.2. The smoothing function has the normalization condition

(

∫
W(x−x′, h)dx′ = 1) and is an even function. The support domain of the smoothing

function is |x′ − x| ≤ κh (κ is the scaling factor) and the value should be zero when
|x′ − x| > κh. This property is named the compact support condition. Therefore, the
integration domain V is the same as the support domain. The errors of kernel approx-
imation can be identified by applying a Taylor series to the function f(x′) around the
point x′ = x. This then gives us,

< f(x) > =

∫

V

(
f(x) + f ′(x)(x′ − x) +O((x′ − x)2)

)
W(x− x′, h)dx′ (2.4)

= f(x)

∫

V

W(x− x′, h)dx′ + f ′(x)

∫

V

(x′ − x)W(x− x′, h)dx′ +O(h2),

where O((x′ − x)2) represents the residual terms after the second-order derivative.
Since W(x−x′, h) is an even function, the term (x′−x)W(x−x′, h) should be an odd
function. Hence, ∫

V

(x′ − x)W(x− x′, h)dx′ = 0. (2.5)

Combining Equations (2.4), (2.5) and the property of the smoothing function, we find
that the kernel approximation of a function has a second-order accuracy, i.e.

< f(x) >= f(x) +O(h2). (2.6)

Normally, for a small value of h, the term O(h2) can be ignored, giving,

f(x) =

∫

V

f(x′)W(x− x′, h)dx′. (2.7)
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2.1.2 Kernel approximation of the derivatives

The kernel approximation of a function’s derivative can be obtained by replacing f(x)

with ∇
(
f(x)

)
in equation (2.7) (where ∇ = [

∂

∂x

∂

∂y

∂

∂z
]),

< ∇
(
f(x)

)
>=

∫

V

∇f(x′)W(x− x′, h)dx′, (2.8)

where the term on the right hand side

(
∇
(
f(x′)

)
W(x − x′, h)

)
is found using the

product rule,

∇
(
f(x′)W(x− x′, h)

)
= ∇

(
f(x′)

)
W(x− x′, h) + f(x′)∇

(
W(x− x′, h)

)
. (2.9a)

Then we find,

∇
(
f(x′)

)
W(x− x′, h) = ∇

(
f(x′)W(x− x′, h)

)
− f(x′)∇

(
W(x− x′, h)

)
. (2.9b)

Combining Equations (2.8) and (2.9), a function derivative kernel approximation can
be represented as,

< ∇
(
f(x)

)
>=

∫

V

∇
(
f(x′)W(x− x′, h)

)
dx′ −

∫

V

f(x′)∇
(
W(x− x′, h)

)
dx′. (2.10)

The first term on the right-hand side in equation (2.10) can be rewritten into an
integration on the surface S of the original domain V by using the Divergence Theorem.
Then Equation (2.10) becomes,

< ∇
(
f(x)

)
>=

∮

S

(
f(x′)W(x− x′, h)

)
· ~ndS −

∫

V

f(x′)∇
(
W(x− x′, h)

)
dx′, (2.11)

where ~n is the unit vector normal to the surface S. Since the smoothing function
includes the compact condition and is continuous in the domain, the value of the
smoothing function on the surface of the domain is zero. Hence, the first integral term
of (2.11) is zero, and

< ∇
(
f(x)

)
>= −

∫

V

f(x′)∇
(
W(x− x′, h)

)
dx′. (2.12)

Here the differential operation can be seen to be transferred from the function to the
smoothing function in the kernel approximation. In other words, a function spatial
gradient kernel approximation can be represented by the integration of the product of
the function’s value and the smoothing function spatial derivative.
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Similar to determining the accuracy of the kernel approximation of a function, the
accuracy of the kernel approximation of its derivative can be determined by using the
Taylor series expansion on ∇

(
f(x′)

)
around x′ = x,

< ∇
(
f(x)

)
> =

∫

V

(
∇
(
f(x)

)
+∇

(
f(x)

)′
(x′ − x) +O((x′ − x)2)

)
W(x− x′, h)dx′ (2.13)

= ∇
(
f(x)

) ∫

V

W(x− x′, h)dx′ +∇
(
f(x)

)′
∫

V

(x′ − x)W(x− x′, h)dx′ +O(h2).

Since W(x − x′, h) is an even function, (x′ − x)W(x − x′, h) will be an odd func-
tion. Hence the integration of (x′ − x)W(x− x′, h) with its complete support domain

will be zero. Combining with

∫

V

W(x − x′, h)dx′ = 1 it can be seen that the kernel

approximation of a function’s derivative has a second-order accuracy, i.e.

< ∇
(
f(x)

)
>= ∇

(
f(x)

)
+O(h2). (2.14)

Once again the term O(h2) can be ignored, and combining (2.12) and (2.14) we find,

∇
(
f(x)

)
= −

∫

V

f(x′)∇
(
W(x− x′, h)

)
dx′. (2.15)

Therefore the kernel approximation of higher order derivatives can be achieved by
recursively using (2.15) with regards to the first-order derivative of its next lowest order
derivative. Since a function’s kernel approximation and its derivatives all have second
order accuracy, the SPH method is referred to as a second-order accurate method.
Note that (2.6) and (2.14) are true only when the problem domain V contains the
support domain of the smoothing function (|x′ − x| ≤ κh) as shown in Figure 2.1(a).
However, it is possible that the computational domain intersects the support domain
of the smoothing function as shown in Figure 2.1(b), where the support domain is cut
by the boundary of the problem domain. In this case, the integration of the smoothing
function with respect to x will not be unity and Equation (2.5) will not be satisfied.
The SPH kernel approximation does not necessarily have second-order accuracy in this
case. This issue is called boundary accuracy and will be discussed in more detail in
Section 2.4.

2.2 Smoothing functions

Effective approximation is a major issue of mesh-free methods. The SPH method
adopts the weighting function (also called smoothing function) to establish the kernel
approximation. The smoothing function not only represents particle interpolation for
the research object but also defines how a particle influences others and gives the
influencing area (support area or domain) of the particle. The choice of the smoothing
function in the SPH method strongly affects the accuracy of the approximation. Many
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problem domain problem domain

(a) (b)

Figure 2.1: (a) Computational domain contains the support domain of the smooth-
ing function. (b) Computational domain intersects with the support domain of the
smoothing function.

researchers have studied the properties and requirements of smoothing functions to
improve the performance of the SPH method. Different smoothing functions have
been adopted in the SPH method in the literature [28, 29, 80, 81]. Various properties
and requirements for smoothing functions have been discussed in different situations in
these papers. However, all smoothing functions should satisfy some basic requirements:

1. The smoothing function should be normalised over its support area, which means
that the integration of a smoothing function over the support domain is Unity
i.e., ∫

V

W(x− x′, h)dx′ = 1. (2.16)

2. Compact condition: The weight function should only be supported in a reduced
’support domain’,

W(x− x′) = 0 when |x− x′| > κh, (2.17)

where h is the smoothing length, κ is a scaling factor and represents the spread
of the smoothing function. |x−x′| ≤ κh indicates the dimensions of the influence
area at point x. This property transfers the global problem domain into the local
support domain of the smoothing function. This property is also called compact
support.

3. Values of the smoothing function in the support domain at any point x should be
positive (i.e. W(x − x′) ≥ 0). It is not a necessary requirement mathematically
for convergence but is important to ensure the physical meaning for some physical
phenomena. In SPH simulations of real hydrodynamics problems, negative values
of smoothing functions would lead to problematic consequences, for example
negative density or energy. This property is called positivity.
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4. The value of the smoothing function at particle x = x′ should be at the peak
point. The field value of particles in the support domain should have decreased
with the distance away from the associated particle. In other words, particles
near the associated particle will have more influence than those far away from
the considered particle. This property is called decay.

5. The smoothing function should satisfy the Dirac Delta function property when
the smoothing length approaches zero,

lim
h→0

W(x− x′, h) = δ(x− x′). (2.18)

This delivers the real function value when the smoothing length tends to zero
(< f(x) >= f(x) when h→ 0), and is called the Delta function property.

6. The smoothing function should be symmetric, which means that it has to be
an even function. In other words, particles at the same distance but different
positions have the same influence on the associated particle. This property is
called the symmetric property.

7. The smoothing function should be sufficiently smooth. For the kernel approx-
imation of a function and its derivative, a smoother weight function can bring
higher accuracy to the approximation and better numerical stability. When the
smoothing function is smoother, it leaves less room for the errors of a kernel
approximation caused by irregularly spaced particles. This property is called
smoothness.

Any function satisfying the requirements above can be regarded as a smoothing func-
tion. Several commonly used smoothing functions are presented below. These smooth-
ing functions and their spatial derivatives are shown in Figure 2.2 and Figure 2.3.

The smoothing function adopted by Lucy in the original SPH paper [67] is the
Bell-shaped function,

W(R, h) = αd

{
(1 + 3R)(1−R)3 R ≤ 1,
0 R > 1,

(2.19)

where R is the relative distance between two particles at points x and x′, R =
r

h
=

|x− x′|
h

. αd equals
5

4h
,

5

πh2
and

105

16πh3
respectively in one-, two- and three-dimensional

space. In Figure 2.2, the one-dimensional case is shown for h = 1. For two- and three-
dimensional problems, (x− x′) becomes the L2-norm of the vector difference between
the two locations.

The Gaussian function has also been selected as a smoothing function by Gingold
and Monaghan [30] in Figure 2.2. The authors first applied this smoothing function to
simulate non-spherical stars,

W(R, h) = αde
−R2

, (2.20)
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Figure 2.2: Different commonly used smoothing functions

where αd equals
1√
πh

,
1

πh2
and

1

π
3

2h3
respectively in one-, two- and three-dimensional

space. The Gaussian function has a sufficiently high smoothness even for high orders of
derivatives. This property makes the approximation very stable and gives high accuracy
on disordered distributions of particles. However, the function does not satisfy the
compact support condition. The value of the function never reaches zero theoretically
unless R equals infinity. However, since the function numerically approaches zero very
fast, the error caused by the kernel approximation can almost be ignored. However
these non-zero values can lead to higher computational cost as there are more particles
inside the support domain with very small values.

One of the most popular smoothing functions is the cubic B-spline function, which
was first used by Monaghan and Lattanzio [78] shown in Figure 2.2,

W(R, h) = αd





2

3
−R2 +

1

2
R3, R ≤ 1,

1

6
(2−R)3, 1 ≤ R ≤ 2,

0, R > 2,

(2.21)
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Figure 2.3: The spatial derivatives of different commonly used smoothing functions.

where αd equals
1

h
,

15

7πh2
and

3

2πh3
respectively in one-, two- and three-dimensional

space. This function has been most widely applied in previous SPH literature, because
its curve is close to the Gaussian function but has a completely compact support.
However, the second derivative of this function is a linear piecewise function, not a
smooth function and can lead to a loss of stability of the SPH method compared to
other smoothing functions.

Johnson et al. developed a quadratic smoothing function to simulate high velocity
impact problems [43] in 1996.

W(R, h) = αd





3

16
R2 − 3

4
R +

3

4
, R ≤ 2,

0 R > 2,

(2.22)

where αd equals
1

h
,

2

πh2
and

5

4πh3
respectively in one-, two- and three-dimensional

space. The derivative of the quadratic smoothing function increases as particles move
closer and decreases as particles move apart. The authors believed the application of
this smoothing function brought an improvement over the cubic spline function. It
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can solve the compressive instability problem, because of the rate of repulsive force
between particles increasing as particles moving closer.

Liu et al. developed an algorithm to construct a smoothing function to meet differ-
ent requirements [59]. A new quartic smoothing function was constructed to demon-
strate the advantage and effectiveness of the algorithm, i.e.

W(R, h) = αd





2

3
− 9

8
R2 +

19

24
R3 − 5

32
R4, R ≤ 2,

0 R > 2,

(2.23)

where αd equals
1

h
,

15

7πh2
and

315

208πh3
respectively in one-, two- and three-dimensional

Figure 2.4: The difference between the cubic B-spline function first used by Monaghan
and Lattanzio [78] and the new quartic smoothing function constructed by Liu et al.
[59] (here f(R, h) includes W(R, h), W′(R, h) and W′′(R, h)).

cases. The behaviour of this smoothing function and its spatial derivative are very
close to the cubic B-spline function as shown in Figure 2.4, but is has smoother second
order derivatives. Liu et al. [59] thought that this smoothing function could bring
stable SPH simulations.

2.3 Particle approximation

In the SPH method, the continuum domain is discretised into a set of particles. These
particles carry their individual physical properties to present the physical system. For
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example, particles carry volume to represent the integral finite small volume such as
the mass and density. The integral form of a function and its derivative (Equations
(2.7) and (2.15)) can also be transformed to the discretised form as a summation
of all the particles in the support domain. This is the second key step of the SPH
concept, which is called particle approximation. This step is carried out by using the
smoothing functions and the properties of particles. The term dx′ in Equation (2.7) is

(a) (b)

Figure 2.5: Particle approximation by smoothing function W in support domain V
with radius κh. (a) Top view of the problem domain and the support domain of the
smoothing function. (b) The surface of the smoothing function in a two-dimensional
case.

determined to be an infinitesimal segment, area and volume in one-, two- and three-
dimensional cases respectively. Equation (2.7) can be represented in a common form
for any dimensional problem,

f(xi) =

∫

V

f(xj)W(xi − xj, h)dVj , (2.24a)

where xi and xj indicate the locations of particles i and j, the same as x and x′ in
Equation (2.7), and dVj is a common representation of dx′. The integral form can be
approximated by a summation form by discretising the domain into a finite number of
particles,

fi =
N∑

j=1

fjWij∆Vj, (2.24b)

where fi, fj and Wij are abbreviations for f(xi), f(xj) and W(xi −xj, h) respectively.
The subscript j indicates a neighbouring particle of the considered particle i; ∆Vj
indicates the volume of the particle j; N is the number of particles within the support
domain V. The finite volume ∆Vj of particle j can be calculated by the mass mj and
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density ρj of particles by relating them to physical phenomena,

∆Vj =
mj

ρj
. (2.25)

Combining Equations (2.24) and (2.25), the discretised form of the kernel approxima-
tion can be found as

fi =
N∑

j=1

mj

ρj
fjWij. (2.26)

This formula states that the value of the function at the position of particle i is the
summation of contributions of neighbouring particles j in the support domain.

The particle approximation of a function’s derivative can be achieved by following,
the same process as Equation (2.15), i.e.

∇
(
f(xi)

)
= −

∫

V

f(xj)
∂W(xi − xj, h)

∂xj

dxj (2.27)

=

∫

V

f(xj)
∂W(xi − xj, h)

∂xi

dxj

∼=
N∑

j=1

f(xj)
∂W(xi − xj, h)

∂xi

∆Vj

=
N∑

j=1

mj

ρj
f(xj)

∂W(xi − xj, h)

∂xi

,

or

∇fi =
N∑

j=1

mj

ρj
fj∇iWij , (2.28)

where

∇iWij =
xi − xj

Rij

∂Wij

∂Rij

=
xij

Rij

∂Wij

∂Rij

. (2.29)

In the second line of Equation (2.27), the minus sign can be removed because the

derivative of W(xi−xj, h) is an odd function and
∂W(xi − xj, h)

∂xj

= −∂W(xi − xj, h)

∂xi

.

Equation (2.28) once again shows that the spatial derivative operator is transformed
from the variables on particle i to the smoothing function by summing the contribution
of variables on all the neighbouring particles in the support domain.

It can be noted that the leading truncation error term of the SPH approximation is
O(h2). The finiteness of the kernel approximation support means that only a limited
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number of neighbouring particles play a role in all the sums of conservation equa-
tions. This is used to reduce the computational time by building a linked list between
particles.

Using particle approximation in Equations (2.26) and (2.28), we can transform the
continuous integral representation of a function and its derivatives into the discretised
summation form through a finite number of particles. Obviously, the application of
particle approximation by discretising integration into a summation form plays an
essential role in making the SPH method purely mesh-free.

2.4 Boundary accuracy

2.4.1 Correction forms

As mentioned in Section 2.1, the SPH approximation will not have second order ac-
curacy when the problem domain intersects with the support domain of a smoothing
function; for example, when the support domain is cut by the boundary of the problem
domain. It is clear that for a particle near a domain boundary, the support domain
may lack sufficient neighbouring particles, as shown in Figure 2.6. Equation (2.5) will
not be satisfied, and consequently Equation (2.14) will not be true. Therefore, particles

Figure 2.6: The support domain has been truncated by the boundary. There is no
sufficient neighbouring particles in the support domain, when the particle is near the
boundary.

near the boundary will affect the accuracy of the SPH method. In this section, this
’boundary accuracy’ problem will be discussed and a correction method to be applied
to the approximation function will be introduced to overcome this drawback [11].
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The correction forms are based on the Unity property of the smoothing function as
mentioned in Section 2.2. In other words, the sum of the volumes of neighbouring par-
ticles multiplied by the values of the smoothing function should be one, when particle
i is not near the problem boundary,

N∑

j=1

mj

ρj
Wij = 1. (2.30)

When a particle is near the boundary, Equation (2.30) is not met. To ensure the unity
property of the smoothing function in the SPH method for all particles, we use the
original representation (2.26), divide the correction form (left-hand side of equation
(2.30)) and obtain a new form particle approximation in the SPH method.

fi =

N∑

j=1

mj

ρj
fjWij

N∑

j=1

mj

ρj
Wij

=
N∑

j=1

mj

ρj
fjW̃ij, (2.31a)

where W̃ij gives the correction form of the smoothing function,

W̃ij =
Wij

∑N
j=1

mj

ρj
Wij

. (2.31b)

Equation (2.31b) ensures that the correction form works only when particle i is near the

domain boundary; when particle i is inside the problem domain we will find W̃ij = Wij.

For the spatial derivative of a function, accuracy is also influenced by the boundary
accuracy problem. To solve this, a correction form for the derivative is used. We know

the spatial derivatives of functions a(x) = x and b(x) = 1 are ∇
(
a(x)

)
=
∂x

∂x
= 1 and

∇
(
b(x)

)
=

∂1

∂x
= 0 respectively. Combining these two equations with the equation

(2.28) we obtain,

∇xi =
N∑

j=1

mj

ρj
xj∇Wij = 1, (2.32a)

and

xi∇1 = xi

N∑

j=1

mj

ρj
∇Wij =

N∑

j=1

mj

ρj
xi∇Wij = 0. (2.32b)

Combining these two equations we find

N∑

j=1

mj

ρj
(xj − xi)∇Wij = 1. (2.32c)
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However, equations (2.32) are also based on the unity condition of the smoothing
function. When the particle is near the boundary, the accuracy of the particle ap-
proximation (2.28) will not be second-order and neither Equation (2.16) nor Equation
(2.32c) will be satisfied. We solve this problem in the same way as before, using the
original representation (2.28) and divided by the spatial correction form (2.32c) to
obtain a new spatial particle approximation for derivatives,

∇fi =

N∑

j=1

mj

ρj
fj∇Wij

N∑

j=1

mj

ρj
(xj − xi)∇Wij

=
N∑

j=1

mj

ρj
fj∇W̃ij . (2.33a)

The difference and summation of the variables on the two particles can also be taken
to obtain the spatial derivative result,

∇fi =
N∑

j=1

mj

ρj
(fj − fi)∇W̃ij. (2.33b)

∇fi =
N∑

j=1

mj

ρj
(fj + fi)∇W̃ij. (2.33c)

where

∇W̃ij =
∇Wij

∑N
j=1

mj

ρj
(xj − xi)∇Wij

(2.33d)

This is the correction representation of the spatial derivative of the smoothing function.
When particle i inside the problem domain is far away from the boundary, we find
∇W̃ij = ∇Wij. This correction form for derivatives ensures that Equation (2.33d)
works only when particle i is near the domain boundary. Equation (2.33d) now contains
a denominator which is different for each particle which destroys the strict conservation
properties of SPH.

2.4.2 Examples

In order to present the difference between original particle approximations (2.26) and
(2.28) and the correction form of particle approximations (2.31) and (2.33), a simple
example is shown here to demonstrate the benefit brought by the correction forms.

For a 1-D problem with a function g(x), first derivative ∇g(x) and boundary 0 ≤
x ≤ 1,

g(x) = (x− 0.5)5, (2.34a)
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∇g(x) = 5(x− 0.5)4. (2.34b)

First, we discretise the problem domain ([0, 1]) for the function g(x) into 21 parti-
cles. Since this is a one dimensional problem, the volume of each particle should be a
segment. The volume of each particle can be calculated by ∆V = ∆x = 0.05. Note
that the cubic B-Spline function has been chosen as the smoothing function in this
thesis with κ = 2 and the value of the αd depends on the dimension of the problem

and the smoothing length (αd equals
1

h
,

15

7πh2
and

3

2πh3
respectively in one-, two- and

three-dimensional space). Since the summation of the volumes of neighboring particles
multiplied by the values of the smoothing function is one (

∑
∆xWij = 1) when h = ∆x

in the cubic B-Spline function, the smoothing length is chosen to be the same as the

spacing of the particles (h = ∆x). Thus the value of αd is
1

h
= 20 in this example.

(a) (b)

Figure 2.7: (a) Comparison of results of real function, original approximation and
corrected approximation methods; (b) Comparison of results of spacial gradient of a
function.

In above figures, the curves are the analytical function and its first-order gradient.
The line with circles shows the results of using traditional uncorrected methods with
Equations (2.26) and (2.28). The line with plus signs gives the results of considering
boundary accuracy by using Equation (2.31) and (2.33a). The line with star signs
presents the results by using Equation (2.33b) to solve the boundary problem. The line
with diamond signs shows the results by using Equation (2.33c) to solve the boundary
problem. It is easy to see that the internal parts of the simulation results are the same
in different methods as shown in Figure 2.7. The corrected SPH approximation only
works on the boundary and increases the accuracy of the simulation near the boundary.
The L1 and L2 norm errors of different versions of the SPH approximation are shown
in Table 2.1, where the L1 and L2 norm errors are defined as,

error1 =

∑
|uSPH − uexact|∑ |uexact| .
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error2 =

√∑ |uSPH − uexact|2√∑ |uexact|2
.

Note that using differences between particles in the corrected SPH approximation
can obtain higher accuracy than others in the spatial derivative approximation.

Equations L1 norm error L2 norm error

< g(x) >=
∑
gj∆xjWij 0.1373 0.1943

< g(x) >=
∑
gj∆xjW̃ij 0.0680 0.0724

< ∇g(x) >=∑ gj∆xj∇Wij 0.6504 1.2282

< ∇g(x) >=
∑
gj∆xj∇W̃ij 0.8835 1.6841

< ∇g(x) >=∑(gj − gi)∆xj∇W̃ij 0.0940 0.1410

< ∇g(x) >=
∑

(gj + gi)∆xj∇W̃ij 1.6730 3.2283

Table 2.1: Error rates of using the different types of SPH approximation for function
g(x) = (x− 0.5)5 and its spatial derivative.

Then more particles (41, 61 and 81 particles) are applied to approximate the func-
tion and investigate the convergence of the SPH approximation. The volume of each
particle can be calculated by ∆V = ∆x = 0.025, 0.025, 0.0167, and 0.0125 re-
spectively. The corrected forms are applied in the approximation and the differences
between particles are adopted in the spatial derivative approximation to obtain higher
accuracy. The approximation results and the convergence order are shown in Figure
2.8. The errors are presented in the Table 2.2. It has been found in the literature that
the convergence rate of the SPH method is problem dependent and it also depends
on the number of neighbouring particles [102, 18, 118]. It is easy to obtain that the
convergence rate in this example is 1.9 in L1- norm and 1.4 in L2- norm.

< g(x) > < ∇g(x) >
Particles 21 41 61 81 21 41 61 81
L1 norm error 0.068 0.0215 0.0103 0.0060 0.0940 0.0279 0.0131 0.0076
L2 norm error 0.0724 0.0306 0.0177 0.0119 0.1410 0.0576 0.0329 0.0220

Table 2.2: Error rates of the SPH approximation with different numbers of particles
for function g(x) = (x− 0.5)5 and its spatial derivative.
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Figure 2.8: (a) and (b) are the comparative results of approximation of the function
and its derivative with different numbers of particles; (c) and (d) show the L1 and
L2 norm error of the approximations results of the function and its derivative with
different numbers of particles.

2.5 Neighbouring particle searching methods

In the SPH method, as the smoothing function has a compact support domain, the
supporting domain with the diameter of κh only includes a finite number of particles,
which are used in the particle approximations. These particles are called Nearest
Neighbouring Particles (NNP) of the considered particle. The process of searching
for the nearest particles is normally called Nearest Neighbouring Particle Searching
(NNPS). The difference between mesh-based numerical methods and SPH is that the
neighbouring particles of a considered particle can vary with time in the SPH method.
While, in the mesh-based numerical methods, the positions of the adjacent grid-cells
are fixed once the mesh is identified. The three widely used NNPS approaches in SPH
applications are the all-pair search algorithm, the linked-list search algorithm, and the
tree search algorithm.
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2.5.1 All-pair search

The all-pair search approach is a simple and direct NNPS method (Figure 2.9). For a
given particle i, the all-pair search approach is to calculate the distance Rij from i to
each particle (j = 1, 2, · · · , N , when N is the total number of particles in the problem
domain). If the distance Rij is less than the radius κh of the support domain for the
considered particle i, then the particle j belongs to the neighbouring particle of particle
i in the support domain. Therefore particles i and j are a pair of adjacent particles,
and particle i is also the neighbouring particle of particle j in the support domain.
This searching process is applied to all particles, i.e. conducting a pair searching for
all particles i = 1, 2, · · · , N , and each search includes all particles (j = 1, 2, · · · , N).
The order of all-pair search method is O(N2) and the efficiency is poor[23]. It is worth
noting that, NNPS is carried out in the computation of each time step; as a result,
this method is very time consuming and not favourable for problems involving large
number of particles. Therefore the all-pair search method is only efficient for numerical
problems with small particle numbers.

Figure 2.9: All-pair search method for searching for the neighbouring particles in a two-
dimensional case. The distances between every considered particle and other particles
is compared with the radius of the support domain of the considered particle to identify
whether these two particles are adjacent.

2.5.2 Linked-list search algorithm

When the smooth length is constant, the linked-list search algorithm is very effective.
Monaghan and Gingold (1983) mentioned that adopting cells as a bookkeeping device
can significantly reduce computation time [77]. By assigning all the particles into
different cells and identifying them by linked-lists, only a group of particles is searched
during the NNPS process which can save substantial computational time. Monaghan
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(1985) described the process of searching the nearest neighboring particle as using the
linked-list algorithm [70]. Hockney and Eastwood (1988) applied this method in their
discussion of short-range forces with particle simulation methods and introduced more
details of this linked-list search algorithm [40]. Rhoades (1992) has applied this method
to search the nearest neighbouring particles and claimed this algorithm is very effective
and practical in vector computation [95]. Simpson (1995) provided more details of the
linked-list search algorithm when applied to the SPH method in the three-dimensional
accretion disks problem [99].

Figure 2.10: Cell linked-list algorithm for searching for the nearest neighboring particles
in two-dimensional cases. The smoothing length is constant for each particle.

When implementing the linked-list algorithm, a temporary mesh is allocated on the
problem domain (Figure 2.10). The size of a mesh cell is based on the radius of the
support domain. If the computation scale of the support domain is κh, the size of the
mesh cell shall be set to κh. Then for a considered particle i, the neighbouring particles
can only be in the same mesh cell or the adjacent cells. Therefore when κ = 2, the
search range in one-, two- and three-dimensional space is in 3,9,27 cells respectively.
The linked-list algorithm allocates each particle in the mesh cell and connects all the
particles in each cell through simple allocation rules. Dominguez et al. (2010) discussed
four different allocation rules in [23].

Two different variants of the linked-list algorithm have been referenced in [23], cell
linked list and verlet list. The main difference between these two algorithms is the size
of the cells. The cell linked list has the size of cell κh and updates the neighbour list
for each time step. The size of the cell is 2h+∆h in the verlet list but it updates the
neighbour list after certain time steps. If the average number of particles in each cell is
small enough, the complexity of the linked-list algorithm is of order O(N). However,
the disadvantage is when the smooth length is variable, the mesh space is not able to
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adapt to each particle. Thus the searching efficiency of the linked-list algorithm is low
in this case.

2.5.3 Tree search algorithm

The tree search algorithm works well for problems with variable smoothing lengths.
It involves creating ordered trees according to the particle positions. Once the tree
structure is created, it can be used efficiently to find the nearest neighboring particles.
In this thesis, an adaptive hierarchy tree search method is adopted to suit the needs
of adaptive smoothing lengths. This tree method recursively splits the maximal prob-
lem domain into octants that contain particles, until a leaf on the tree has only one
individual particle (Figure 2.11). After the tree structure is constructed, the search
process can be performed.

1
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Figure 2.11: Tree structure and tree search algorithm in two-dimensional space. The
tree is constructed by recursively splitting the maximal problem domain into octants
that contain particles, until the leaves on the tree are individual particles. The tree
search algorithm is performed by checking whether the volume of the search cube
(shaded area) for a given particle overlaps with the volume represented by the current
node.

For a given particle i, a cube with the side of 2κhi is used to enclose the particle,
which is located at the center of the cube. At each level, checks are done to verify
whether the volume of the search cube overlaps with the volume represented by the
current node in the tree structure. If not, continuation is halted on that particular
path. If yes, the procedure continues the tree descent and goes down to the next level
repeatedly until the current node represents a particle. Then the algorithm checks
whether the particle is within the support domain of the given particle i and records
the one in the support domain as a neighbouring particle.
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The complexity of this tree search algorithm is of order O(N logN) (Hernquist
and Katz, 1989) [39]. Numerical tests show that the SPH method combined with tree
search method is very efficient and robust especially for a large number of particles of
variable smoothing lengths.

Concluding remarks

In this chapter, the basic concept of the SPH method has been presented. The first
step is to represent the field variables and their derivatives in an integration form
by using smoothing functions to do the kernel approximation. The second step is
to discretise the continuous problem domain into a set of particles, which carry the
field variables on the position of the particles. Different smoothing functions and their
applications are also introduced in this chapter. One example with the standard SPH
analysis result and corrected SPH result is shown to prove that accuracy is increased
by the correction form near the boundary. Three different nearest neighboring particle
searching methods are stated in Section 2.5. One of them, the k-d tree method, will
be adopted in this thesis.

This research applies the SPH method to solid mechanics. The SPH estimation
method will be adopted to approximate the governing equations to simulate solid dy-
namic physical behaviour. The difference between the Eulerian and Lagrangian ap-
proaches will be presented in the next chapter since the governing equations of these
two approaches are different. The SPH approximation form of the governing equations
will also be derived and different special treatments will be added into the equations,
like artificial viscosity and the treatment for tensile instability. Then an SPH system
will be obtained. All the details will be presented in Chapter 3.



Chapter 3

SPH and dynamics

Introduction

The concept and the essential equations of the SPH method have been derived in
this chapter, in order to illustrate the various components of the SPH method. The
SPH method is developed to simulate hydrodynamic problems using a set of governing
equations i.e., mass and momentum conservation equations. The governing equations
of elastic mechanics will be represented in the SPH approximation form in this chapter.
Therefore, the basic SPH concept for hydrodynamic problem is to first discretise the
continuous problem domain into particles and then approximate the solution function
and its derivatives for each particle. Based on the function approximation, the gov-
erning equations can be transformed to a set of ordinary differential equations (ODE)
which can be solved on each individual particle.

The governing equations can be derived using both Eulerian and Lagrangian ap-
proaches which will be introduced in Section 3.1. Then the SPH form of the mass and
momentum conservation equations is derived in Section 3.2, together with the applica-
tion of the Jaumann stress rate to large deformation problems. Unphysical oscillations
are observed when handling the shock wave problem through the SPH method [58].
To improve the stability and accuracy of the method, some special treatments will be
introduced into the SPH algorithm. The boundary condition will be discussed to avoid
the reduced accuracy caused by solid boundary, non-slip and slip boundary problems
in Section 3.3; artificial viscosity will be introduced into the momentum equation to
dissipate unphysical oscillations in Section 3.4; and artificial stress will be presented to
solve the tensile instability problem in Section 3.5.

3.1 Eulerian and Lagrangian approaches

The SPH approximation is applied to the governing equations to simulate dynamic
problems. The SPH method is a purely Lagrangian numerical method since the gov-

36
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erning equations are derived based on the Lagrangian approach. In this section, both
Eulerian and Lagrangian approaches will be introduced since the governing equations
can be derived based on either Eulerian or Lagrangian approaches.

Consider a flow field described by streamlines in Figure 3.1. There are two ap-
proaches of representing the motion of the flow; Eulerian and Lagrangian. The Eu-
lerian approach assumes a control volume V fixed in the flow field with fluid moving
through it. The control surface S binds the control volume. Two different ideas can be
embedded into this approach. One assumes the control volume is infinitesimal whereas,
the other assumes a reasonably large and finite volume. The equations for the Eule-
rian description of fluid dynamics are known as a conservation form of the governing
equations, either integral or partial differential form [1]. Alternatively, the assump-
tion of the Lagrangian description is that the control volume moves with the flow and
the fluid particles inside the volume are kept the same. This approach (Lagrangian)
also has two kinds of ideas, one assumes the control volume is infinitesimal whereas,
the other is reasonably large and finite volume. The equations obtained from the La-
grangian approach are known by the non-conservation form of the governing equations
[1]. Thus, instead of studying the whole fluid flow at once, it is easier to pay attention
to the control volume itself and to describe the motion of the fluid flow. Fundamental
concepts are applied to the control volume and some key equations called governing
equations are obtained. These governing equations are based on the conservation of
mass, momentum and energy, which are discussed in Appendix. This project adopts
the particle based method, thus the infinitesimal moving fluid element model is used
to do further studies.

3.2 Deriving the SPH equations

In solid mechanics, conservation laws produce three important governing equations,
including mass, linear momentum and energy conservation. Since the temperature
change can be ignored in the problem presented here, energy conservation is not con-
sidered in this study. The rate of change of field variables can be expressed by these
governing equations, such as density and velocity, which are used to build up a set of
Ordinary Differential Equations (ODE) with respect to time. The governing equations
in elastodynamics express the conservation of mass and momentum as follows:

Dρ

Dt
= −ρ∇ · v, (3.1a)

Dv

Dt
=

1

ρ
∇σ + g, (3.1b)

where ∇ =

{
∂

∂x

∂

∂y

∂

∂z

}T

is the gradient operator, g is the acceleration caused

by external force which is ignored in this thesis, ρ is the density, v =
{
vx vy vz

}T
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(a)

(b)

Control volume V

dV

vV

Control surface S

S

Control volume Vd

Finite control volume
fixed  in space with the
fluid moving through it

Infinitesimal control
element fixed  in space
with the fluid  moving
through it

Infinitesimal fluid element  moving
with the fluid with the velocity

equal to the local flow velocity at
each point

v

Finite control volume moving
with the fluid such that the

same fluid particles are always
in the same control volume

Figure 3.1: (a)Eulerian Approach. (b)Lagrangian Approach. ( Anderson [1])

is the velocity, σ is the stress tensor,
D

Dt
=

∂

∂t
+ ∇ · v is the substantial derivative,

and ∇ · v =
∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

. The mass (3.1a) and momentum (3.1b) conservation

equations are derived in the Appendix.

Since the use of the product rule of differentiation, we can express the term
1

ρ
∇σ

of equation (3.1b) in the following form,

∇
(
σ

ρ

)
=

1

ρ
∇σ − σ

ρ2
∇
(
1

ρ

)
, (3.2a)

then we have,

1

ρ
∇σ = ∇

(
σ

ρ

)
+

σ

ρ2
∇
(
1

ρ

)
. (3.2b)
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As mentioned, elastodynamic problems will be analysed here. The total strain rate can
be written as,

ε̇ =
1

2

(
∇v+ (∇v)T

)
. (3.3)

The derivations of the strain and stress rate are included in the Appendix. According
to Hooke’s law, we can write a stress tensor into this expression,

σ̇ = 2Gė+K (tr(ε̇)) I, (3.4)

where tr(ε̇) means the trace of the matrix which is (εxx + εyy + εzz) in three dimen-

sional space; ė = ε̇ − 1

3
tr(ε̇)I is the deviatoric strain rate tensor, I is the Kronecker’s

delta tensor; K is the elastic bulk modulus and G is the shear modulus which can be
represented by Young’s modulus E and Poisson’s ratio ν ;

K =
E

3(1− 2ν)
and G =

E

2(1 + ν)
.

However, regarding a large deformation problem, the Jaumann stress rate ˙̂
σ will be

adopted to introduce a rotation influence on the constitutive relations.

˙̂
σ = σ̇ + σω − ωσ (3.5a)

Equation (3.4) then becomes,

σ̇ = 2Gė+K

(
tr(ε̇)

)
I− σω + ωσ, (3.5b)

where ω is the rotation tensor and can be represented by the gradient of velocity,

ω =
1

2

(
∇v− (∇v)T

)
. (3.6)

Then we discretise the continuum domain by particles and apply the kernel approx-
imation to the SPH system, obtaining the spatial gradient of the velocity as follows,

∇vi =
N∑

j=1

mj

ρj
vj∇W̃ij. (3.7a)

Since we know ∇(1) =
N∑

j=1

mj

ρj
∇W̃ij = 0, we can use the difference between neighbour-

ing particles to increase the accuracy by adding a term (−vi∇(1) = −
N∑

j=1

mj

ρj
vi∇W̃ij =

0) on the right-hand side of equation (3.7a) and obtain the following equation,

∇vi =
N∑

j=1

mj

ρj
(vj − vi)∇W̃ij. (3.7b)
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As mentioned before (∇·v =
∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

), the equation expressing rate of change

of density (3.1a) can be rewritten into the following form,

Dρi
Dt

= −ρi
N∑

j=1

mj

ρj
(vj − vi) · ∇W̃ij. (3.8a)

Then the kernel approximation of the acceleration equation (3.1b) can be represented
as,

Dvi

Dt
=

N∑

j+1

mj

(
σj

ρ2j
+

σi

ρ2i

)
∇W̃ij. (3.8b)

The stress rate of small and large deformations (3.4) and (3.5b) can be expressed by
the spatial gradient of velocity;

Dσi

Dt
= 2Gėi +K

(
tr(ε̇i)

)
I, (3.8c)

Dσi

Dt
= 2Gėi +K

(
tr(ε̇i)

)
I− σiωi + ωiσi, (3.8d)

where ėi, ε̇i and ωi could all be represented by the spatial gradient of velocity. Combine
Equations (3.3), (3.6) and (3.7b), then we will obtain the SPH discretisation form of
the strain and spin rate,

ε̇i =
1

2

( N∑

j=1

mj

ρj
(vj − vi)∇W̃ij +

( N∑

j=1

mj

ρj
(vj − vi)∇W̃ij

)T
)
, (3.9a)

ω̇i =
1

2

( N∑

j=1

mj

ρj
(vj − vi)∇W̃ij −

( N∑

j=1

mj

ρj
(vj − vi)∇W̃ij

)T
)
. (3.9b)

3.3 Boundary conditions

As mentioned in Section 2.4, the SPH method will generate errors when particles are
near or on the boundary, see Figure 2.6. Equations (2.31) and (2.33) aim to correct the
incomplete support of a truncated kernel for free-surfaces. To improve the accuracy of
solid boundary, non-slip and slip boundary problems, an approach with ghost particles
has been introduced and improved by many authors [74, 82, 93, 107, 12]. Herein, the
simple algorithm from Bui [12] is applied to solve the non-slip and slip (symmetric)
solid boundary problems.
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Figure 3.2: Solid boundary treatment with ghost particles.

This approach generates three layers of ghost particles outside of the solid boundary
with the uniform distribution as real particles. These particles are located in parallel
with the solid boundary with the distance ∆p/2 between first layer and solid boundary
Figure 3.2, where ∆p is the initial spacing of the particles. The ghost particles will
have the same density and mass as the corresponding real particles. The velocity of
a ghost particle is related to the velocity of the ith particle, the velocity of boundary
and the distance between particles and a non-slip boundary. The artificial velocity of
ghost particle j of the considered real particle i could be calculated as,

vij = vi − vj = βg(vi − vboundary), (3.10a)

where βg = min

(
βmax, 1.0 +

dj
di

)
, and βmax is the safety factor to avoid extremely

high velocity while the real particle is too close to the boundary. The factor βmax is
taken empirically to be 1.5. The velocity of the ghost particle can be represented in
the following form;

vj = (1− βg)vi − βgvboundary. (3.10b)

The stress tensor of the ghost particle j should also be identified in order to calculate
Equation (3.8b). The most general way to assign the stress tensor of ghost particle
j is derived by Randly and Libersky [93]. Herein, a simpler approach is applied as
introduced by [12]. In this approach, the stresses near the boundary are assumed to be
uniform. Therefore, if the ghost particle j is in the support domain of the real particle
i, then the stress tensor could be assigned the same value as the considered real particle
i. This approach can save a lot computational cost and still perform well compared
with other methods [12].

σj = σi, if j is in the support domain of particle i. (3.11)
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For the symmetric or slip boundary problem, we still allocate a set of ghost particles
outside the boundary. The physical properties of these ghost particles are the same
as the real particles except for the velocity and the stress. The rule of assigning
velocity and stress for ghost particles is different. The velocity component normal to
the boundary of the ghost particles will have the opposite direction of the corresponding
real particles, in order to prevent the real particles from moving across the boundary.
The velocity component parallel to the boundary of the ghost particle is set to be
the same as real particles. The stress tensor of ghost particles is set according to the
corresponding real particles.

σαβ
g =




σαβ
r , if α = β,

−σαβ
r , if α 6= β,

(3.12)

where the subscripts g and r indicate the ghost and real particles respectively, the
superscripts α and β are the indices of the stress tensor. The approach of ghost
particles works well in straight boundary problems but with less accuracy in curve
boundary problems [12].

3.4 Artificial viscosity

In isotropic elastodynamic problems including wave propagation, Klepaczko points out
that an optimisation term must be involved in the computational simulation [45], which
is assumed to be a proper artificial viscosity. This is because shock wave exists in most
numerical problems and frequently occurred at the early stage of the analysis with
relaxed initial conditions [12], such as the solid mechanics. The thickness of the shock
wave is usually much smaller than the length scale in continuum mechanics problems,
and it is impractical to simulate a macroscopic problem with such a small size particle
to express all the information of the shock wave [14]. The shock waves always exist at
the first stage of the simulation [12]. The discontinuity in the velocity, pressure, energy
and density leads to the unphysical oscillations in the simulation.

In order to simulate the hydrodynamic problem, the numerical methods should have
the capability of simulating shock waves. Otherwise this model may cause unphysical
oscillations around the shock regions. The system will become unstable unless we
introduce some special treatments into the the governing equations. The artificial
viscosity is usually applied in order to smooth out the unphysical oscillation caused
by the shock wave [14]. When the conservation of mass and momentum is applied
on the shock wave front, the kinetic energy should be transferred into heat energy for
the simulation. The transformation of energy can be expressed as a form of viscous
dissipation. To improve the stability of the numerical analysis and dampen out the
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unphysical oscillation, introducing a form of viscosity into the momentum equation to
dissipate the oscillations is necessary.

Dvi

Dt
=

N∑

j=1

mj

(
σj

ρ2j
+

σi

ρ2i
− ΠijI

)
∇W̃ij, (3.13)

where Πij is known as artificial viscosity.

In order to obtain the dissipation term Πij, it is necessary to mention the von
Neumann-Richtmyer artificial viscosity, which was developed by von Neumann and
Richtmyer in 1950 [115]. The developments of artificial viscosity in recent years are
based on this earliest equation,

Π1 =




a1∆x

2ρ(∇ · v)2, ∇ · v < 0,

0, ∇ · v ≥ 0,
(3.14)

where a1 is an adjustable non-dimensional constant. The von Neumann-Richtmyer
artificial viscosity is only considered during compression. It is worth noting that the
von Neumann-Richtmyer artificial viscosity is actually a quadratic function of velocity
divergence.

The von Neumann-Richtmyer artificial viscosity has been improved to be a linear
artificial viscosity Π2, which can dampen the unphysical oscillations further than the
quadratic artificial viscosity term.

Π2 =




a2∆xcρ∇ · v, ∇ · v < 0,

0, ∇ · v ≥ 0,
(3.15)

where a1 is an adjustable non-dimensional constant and c is the wave speed.

Both the von Neumann-Richtmyer artificial viscosity Π1 and linear artificial viscos-
ity Π2 are very popular in the application of FDM, FVM, FEM and etc., in order to
remove numerical oscillations during the simulation [57]. Dissipation terms are added
into the pressure term to diffuse the sharp variations in the simulation.

In early applications, the SPH method was used to simulate the problem of low or
no dissipation. Then Monaghan developed artificial viscosity for the SPH method and
applied it to simulate the shock problems [73]. This artificial viscosity Πij is the most
popular applied so far in SPH literature. It has the capability of improving numerical
stability and preventing penetration between particles during compression. The details
of the equations are as follows.
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Πij =





−αΠcijφij + βΠφ
2
ij

ρij
, vij · xij < 0,

0, vij · xij ≥ 0,

(3.16a)

where we have,

φij =
hijvij · xij

|xij|2 + ϕ2
, (3.16b)

cij =
ci + cj

2
, (3.16c)

ρij =
ρi + ρj

2
, (3.16d)

hij =
hi + hj

2
, (3.16e)

xij = xi − xj vij = vi − vj, (3.16f)

where c is the wave speed of the material and can be calculated by c =
√
E/ρ; cij, ρij

and hij are the average wave speed, density and smoothing length between particles
respectively; xij is the distance between particle i and j; vij is the difference in velocity
between particles i and j; the factor ϕ = 0.1hij is used to prevent numerical divergence
as two particles move closer; αΠ and βΠ are constants, the term associated with αΠ is a
bulk viscosity and the other term associated with βΠ, which is used to prevent particle
interpenetration at a high Mach number, is similar to the von Neumann-Richtmyer
artificial viscosity. The values of these two factors should be chosen depending on the
practical situation. Monaghan adopted αΠ = 0.01 and βΠ = 0 on the problem of
free-surface flows [74], he also suggested αΠ = 1 and βΠ = 1 would bring better results
in most cases [73]. Chapter 5 adopts αΠ = 2.5 and βΠ = 2.5 in the simulation since
Libersky et al. advised these in SPH simulation of solid mechanics [52].

As Monaghan introduced a shear viscosity into the artificial viscosity for hydro-
dynamics problems, Hernquist and Katz developed another type of artificial viscosity
depending on velocity divergence [39],

Πij =
qi
ρ2i

+
qj
ρ2j
, (3.17a)

where we have,

qi =




αΠhiρici|∇ · vi|+ βΠh

2
i ρi|∇ · v|2, ∇ · v < 0,

0, ∇ · v ≥ 0,
(3.17b)

This thesis adopts the artificial viscosity developed by Monaghan to improve the
numerical stability and smooth the unphysical oscillation.
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3.5 Tensile instability

3.5.1 Reason for the instability

Swegle et al. first studied the numerical instability of the SPH method [105], which
is referred to as tensile instability. The instability is considered to be caused by the
property of the second derivative of the smoothing function and the sign of stress in
[105]. Swegle et al. pointed out that neither artificial viscosity nor the time integration
method can solve the tensile instability problem.

A two dimensional example has been simulated to show the instability in tensile
situation but stable in compression. The problem domain is a two-dimensional square
plate with a uniform initial stress, either compressive or tensile. In order to avoid the
rebound of the wave, particles near the boundaries are fixed.

A very small perturbation velocity was applied on a particle in the center of the
problem domain (v = 10−7 m/s). The material chosen here is magnesium and the
smoothing length is h = 1.2∆p, here ∆p indicates the initial particle spacing. Figure
3.3 shows the particle distribution after 1 ms with the square plate under compression
and tension, respectively (the stress value of both compression and tension is σ =
3 GPa). It is easy to find that the particle distribution has no change when the stress
is compressive, as shown in Figure 3.3(a). However the particles clumped together and
the distribution became disordered in the results with the tension as shown in Figure
3.3(b).

Figure 3.4(a) shows the velocity of the perturbated particle with respect to time
under the different stresses. The results show that the value of stress only influences
time when the system becomes unstable under tension and changing the value of stress
cannot solve the problem. However, the change of the velocity of the perturbated
particle under compression is very small during the simulation.

Swegle et al. analysed the reason of tensile instability and identified the criterion of
stability for the SPH simulation in one-dimensional space [105]. The criterion is based
on the second derivative of the smoothing function and the stress state. The system
condition which becomes unstable is expressed as follows,

W′′σ > 0, (3.18)

where W′′ is the second derivative of the smoothing function and σ is the stress. The
SPH system becomes unstable when the product of W′′ and σ is larger than zero. The
second derivative of the smoothing function is shown in Figure 3.4(b). The stress is
negative in compression and positive in tension. Figure 3.4(b) shows the stability con-
dition for the cubic spline smoothing function. If the second derivative of the smoothing



CHAPTER 3. SPH AND DYNAMICS 46

(a) Compressive stress (b) Tensile stress

Figure 3.3: The particle distribution of the square plate after t = 1 ms under the
compression and tension loading.

function is negative, the SPH system will become unstable under compression. If the
second derivative is positive, the SPH system will become unstable under tension.

However, Robinson (2009) highlighted that this analysis did not fully explain the
reason behind tensile instability [96]. He simulated the forced turbulence problem by
using different smoothing functions and calculated the radial particle density func-
tion for particle pairs. Particle clumping occurred in the SPH simulation of forced
turbulence problems with positive pressure by using the cubic spline kernel function.
Analysis of the radial particle density function shows the relationship between the ten-
dency of particles clumping and the spline point of the cubic spline kernel. Robinson
performed the Fourier analysis of the forced turbulence simulation and obtained the
conclusion that this instability is caused by the property of the kernel functions. In
the research of Robinson, another smoothing function is used to avoid particle clump-
ing in the forced turbulence problem, Wendland kernel. The Fourier transform of the
Wendland kernel has also been analysed to strengthen the argument.

3.5.2 Solution of tensile instability

In order to solve the tensile instability, Dyka et al. developed an approach with stress
points for the SPH method to overcome this numerical instability [24, 25, 94]. In this
algorithm, the stress values are not calculated on the particle but on a set of virtual
stress points to overcome the tensile instability. The stress points are located away
from the SPH particles with a distance rs and rs is limited by Equation (3.19).

0 ≤ rs
∆p

≤ 0.5. (3.19)
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(a) (b)

Figure 3.4: (a) The velocity change of the perturbation particle. (b) The second
derivative of the cubic spline kernel.

When the
rs
∆p

equals 0.5, the algorithm is the traditional SPH method since the stress

points are located on the particle, shown in Figure 3.5. The stress rate of the stress
points is calculated by the velocity of the neighbouring SPH particles and the ac-
celeration of the SPH particles is computed by the stress on the neighbouring stress
points. The stress calculation in this algorithm is less accurate than the traditional
SPH method, but it can solve the tensile instability problem.

Since Robinson considered particle clumping caused by the property of the cubic
spline function, a new smoothing function which is one of the family of radial interpo-
lation functions ψl,k was applied to simulate the forced turbulence problem. The radial
interpolation function was developed by Wendland (1995), with the compact support

Figure 3.5: One dimensional case for the SPH method with stress points, when
rs
∆p

=

0.5, it becomes the standard SPH method.
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and positive values in the support domain [117] (ψ(R) = 0 when R > 2).

A = (ψ(|ri − rj|)), 1 ≤ i, j ≤ N. (3.20)

The components l and k of these functions ψl,k have the relationship that l = [[d/2]]+k+1
([[d/2]] means the integer part of d/2) and d indicates the dimensionality. Robinson chose
one of these functions (W(R, h) = ψ3,1 in two dimension) as the smoothing function
on simulation of the forced turbulence problem to remove the particle clumping [96] .

W(R, h) =
βW
hd

{
(2−R)4(1 + 2R), R ≤ 2,

0 R > 2,
(3.21)

where αd equal
7

64π
in two- and three-dimensional space.

Monaghan introduced an artificial repulsive force into the SPH algorithm [75] to
prevent neighboring particles clumping together under the tension. Gray et al. im-
proved this algorithm to determine the artificial stresses (artificial repulsive force) by
the signs of principal stresses [34], which is now the most popular method of address-
ing the tensile instability. According to the definition, this repulsive force should be
increasing as the two neighboring particles move together. The momentum equation
(3.13) can be replaced with,

Dvi

Dt
=

N∑

j=1

mj

(
σj

ρ2j
+

σi

ρ2i
− ΠijI+ fn

ij(Ri +Rj)

)
∇W̃ij, (3.22)

where factor n is the exponent dependent of term fij and n = 4 is demonstrated to
be the optimum value by Monaghan when h = 1.5∆p [75]. The repulsive force term
fij is specified to represent the effect of distance between two neighboring particles

fij =
Wij

W(∆p)
. We know ∆p is the initial spacing of the particles so that W(∆p) is a

constant. This term ensures that when the distance of two neighbouring particles is
smaller than ∆p, the repulsive force term (Ri +Rj) will be more effective.

According to Gray et al. [34], the components of artificial stress could be determined
by the principal stress of the particle. Only two dimensional examples are shown
herein, therefore the components of the artificial stress can be represented by standard
transformation. The rotation angle θi can be calculated as,

tan(2θi) =
2σxy

i

σxx
i − σyy

i

. (3.23)

The stress tensor can be transformed to the principal stress and the component can be
expressed as,

σ̄xx
i = cos2 θiσ

xx
i + 2 sin θi cos θiσ

xy
i + sin2 θiσ

yy
i , (3.24a)



CHAPTER 3. SPH AND DYNAMICS 49

σ̄yy
i = sin2 θiσ

xx
i − 2 sin θi cos θiσ

xy
i + cos2 θiσ

yy
i . (3.24b)

The principal stress is applied to identify the diagonal components of the artificial
stress,

R̄xx
i =





−ǫσ̄
xx
i

ρ2i
, σ̄xx

i > 0,

0, σ̄xx
i ≤ 0,

(3.25)

where ǫ is a constant parameter with a value ranging from 0 to 1; and the minus sign
indicates the cancellation of part of the stress while tension (σxx

i > 0 indicate the
state of tension). We will choose the constant parameter ǫ to be 0.3 since Gray et al.
suggested this is the best for elastic solid problem [34]. R̄yy

i can be simply calculated by
changing the subscript xx into yy of the equation (3.25). Then we need to transform
the diagonal components of the artificial stress to the original coordinates,

Rxx
i = R̄xx

i cos2 θi + R̄yy
i sin2 θi, (3.26a)

Ryy
i = R̄xx

i sin2 θi + R̄yy
i cos2 θi, (3.26b)

Rxy
i = (R̄xx

i − R̄yy
i ) sin θi cos θi, (3.26c)

where Rj can simply be calculated by replacing the subscript i with j in Equations
(3.23), (3.24), (3.25) and (3.26). This approach is only effective when the particles
clump together unphysical under the tension.

Vignjevic et al. proposed a total Lagrangian formalism for the SPH method to
remove the tensile instability [114, 113]. In this algorithm, the initial particle positions
x(t0) are used to evaluate the value of the smoothing function and the derivative during
the simulation. Equations (3.1a) and (3.1b) are re-written into the form,

Dρ

Dt
= −ρ0∇0 · v, (3.27a)

Dv

Dt
=

1

ρ0
∇0

σ + g, (3.27b)

where the superscript 0 indicates the initial configuration. The SPH discretisation form
of Equation (3.27) can be represented as follows,

Dρi
Dt

= −ρ0i

(
tr

( N∑

j=1

mj

ρ0j
(vj − vi)∇x

0

i
W̃

0

ij

))
. (3.28a)

Dvi

Dt
=

N∑

j+1

mj

(
σj

(ρ0j)
2
+

σi

(ρ0i )
2

)
∇

x
0

i
W̃

0

ij . (3.28b)
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The strain and spin rate (3.9a) and (3.9b) can be re-written into the total Lagrangian
formalism,

ε̇i =
1

2

( N∑

j=1

mj

ρ0j
(vj − vi)∇x

0

i
W̃

0

ij +
( N∑

j=1

mj

ρ0j
(vj − vi)∇x

0

i
W̃

0

ij

)T
)
, (3.28c)

ω̇i =
1

2

( N∑

j=1

mj

ρ0j
(vj − vi)∇x

0

i
W̃

0

ij −
( N∑

j=1

mj

ρ0j
(vj − vi)∇x

0

i
W̃

0

ij

)T
)
, (3.28d)

where the spatial derivative of the smoothing function is normalised to maintain the
zero order consistency,

∇
x
0

i
W̃

0

ij =
∇

x
0

i
W(|x0

i − x0
j |)

∑N
j=1

mj

ρ0j
(x0

j − x0
i )∇x

0

i
W(|x0

i − x0
j |)

(3.28e)

Equations (3.28c) and (3.28d) can be applied in Equations (3.8c) and (3.8d) to calculate
the stress rate.

According to the work of Robinson, the reason for the tensile instability is related
to the property of the smoothing function. However the Wendland smoothing function
applied in Robinson’s work [96] cannot solve the tensile instability in the solid problem
stated here. The total Lagrangian formalism of the SPH method has the capability to
eliminate the particle clumping in some problems [114], since the treatment focuses on
the approximation of the smoothing function. However, the total Lagrangian formalism
is not suitable for large deformation problem such as the oscillational beam in Section
5.3. In this thesis, the artificial stress will be applied to solve the tensile instability.

3.6 SPH system with special treatments

As mentioned in Section 3.2, the governing equations based on the conservation laws
can be represented in the SPH approximation form, then the special treatments should
be added into this system. This thesis only discusses one- and two-dimensional prob-
lems. Note that the substantial derivative equations of the velocity and density can be
changed into ordinary partial equations by the SPH discretisation. Combining (3.22)
with (3.8), the SPH discretisation in two-dimensional space can be reformulated in a
compact system of ODE of this term,

dU

dt
= F (U) , t ∈ [0, T ], (3.29)
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where U =
[
vx vy σxx σyy σxy xx xy

]T
, xx and xy indicate the components of

the location of a particle. The right-hand side F (U) should be calculated for each
particle i,

F (Ui) =




N∑

j=1

mj

(
σxx
j

ρ2j
+

σxx
i

ρ2i
−Πxx

ij + fn
ij(R

xx
i +Rxx

j )

)
∂W̃ij

∂x
+

N∑

j=1

mj

(
σxy
j

ρ2j
+

σxy
i

ρ2i
+ fn

ij(R
xy
i +Rxy

j )

)
∂W̃ij

∂y

N∑

j=1

mj

(
σyx
j

ρ2j
+

σyx
i

ρ2i
+ fn

ij(R
yx
i +Ryx

j )

)
∂W̃ij

∂x
+

N∑

j=1

mj

(
σyy
j

ρ2j
+

σyy
i

ρ2i
−Πyy

ij + fn
ij(R
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i +Ryy

j )

)
∂W̃ij
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mj

ρj

(
D11v

x
j −D11v

x
i

)
∂W̃ij
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mj
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,

where Dij are the entries of the elastic matrix D for plane stress i.e.,

D =
E

(1− ν2)



1 ν 0
ν 1 0

0 0
1− ν

2




.

The solution procedure for the system (3.29) is completed when a time integration
of the semi-discrete SPH equations is selected.

3.7 Discussion

The dynamic behaviour on solid will be considered in this research. Since both solids
and fluids are continuous, mass conservation and Newton’s second law are true in
any type of continuum mechanics problem, the governing equations of predicting their
motions are similar. Then the governing equations of the SPH system in solid dynamics
is also based on the continuity and momentum conservations, which are similar to fluid
dynamics. However, the constitutive law is different in solid dynamics.

Here, the constitutive model of a two dimensional plane is represented in the SPH
approximation form. The acceleration and stress rate is calculated through the SPH
method to model the motion of the system. It is worth noting that there are two types
of problem in this plane analysis: plane stress and plane strain. The problem using
plane stress is supposing the geometry of the problem domain to have one dimension
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much smaller than the others and the stress in that direction is zero. The problem
using plane strain is for the geometry to have one dimension much larger than the other
two dimensions and the strain in that direction is zero. Plane stress is adopted in this
research to calculate the stress rate in the SPH system for two dimensional problems.
Note that the governing equations in this thesis are limited in solving the linear elastic
problems and the computational domain should be continuous. Neither non-linear
problem nor discontinuous system (such as fracture problems) can be modelled by
these equations.

Concluding remarks

In this chapter, the Euler and Lagrangian approaches have firstly been introduced since
the governing equation can be derived based on these two different approaches. The
governing equations of hydrodynamics have been represented in the SPH discretisation
form. Special treatment for boundary conditions is also added into the system to
obtain high accuracy near the slip and non-slip boundaries. In order to eliminate the
numerical instability caused by the shock wave, artificial viscosity is included to smooth
out the unphysical oscillation. In Section 3.5, the reason for the tensile instability has
been investigated and different solutions have been introduced to remove the tensile
instability.

With the constructed SPH system, Equation (3.29) is combined with a time inte-
gration algorithm to obtain the predicted solution for the motion of the system. This
stage can be handled by any implicit ordinary differential equation (ODE) solver, since
they are computationally without risk by virtue of their accuracy and linear uncondi-
tional stability. This allows for larger time steps in the integration process. However,
due to the large set of linear system of algebraic equations at each time step, these
methods may be computationally inefficient. As an alternative, we use a series of ex-
plicit methods. It should be stressed that the explicit method has to satisfy a stability
condition, because explicit time stepping schemes evaluate explicitly the right-hand
side of the equation (3.29). This stability criterion can be guaranteed by the Courant-
Friedrichs-Levy (CFL) condition, which will be explained in Chapter 4. Different time
stepping schemes will be also introduced in Chapter 4.



Chapter 4

Runge-Kutta Chebyshev scheme

Introduction

The SPH system (3.29) is to be solved for a time interval (0, T ] with given initial
and boundary conditions. The information on each particle in the problem domain is
updated by time integration. To develop the time integration, the time interval [0, T ]
is discretised into several time steps ∆t with

0 = t0 < t1 < t2 < · · · < tn−1 < tn = T,

where the time step ∆t = tn − tn−1.

In explicit hydrodynamic methods, the Courant-Friedrichs-Levy condition (CFL)
plays an important role in time integration of the simulation. It is a necessary condition
of the stability of the analysis when solving Partial Differential Equations (PDE). The
CFL condition ensures that the computational domain of dependence in a numerical
simulation contains the physical domain of dependence, which means that the propa-
gation speed of the numerical simulation should be smaller than the speed of physical
propagation. In other words, the size of time step in the simulation is limited by the
CFL condition. Large time steps will cause instability of the numerical simulation,
whereas, small time steps can bring high accuracy for the numerical simulation but
require an increased computational cost.

This chapter discusses different time stepping schemes, Euler, predictor-corrector,
Symplectic schemes and Classical Runge-Kutta methods. Then a new time integration
method will be introduced, Runge-Kutta Chebyshev (RKC) scheme, to improve the
performance of the SPH simulation.

53
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4.1 Euler time stepping scheme

The Euler method is the simplest time integration scheme for explicit hydrodynamic
methods. As mentioned previously, the time at the nth step is denoted as tn and the
computational solution of the SPH system at the nth step is presented as U(tn) with
the abbreviation Un. The Euler time stepping scheme is based on the Taylor series
expansion. Expanding U(tn) around t = tn+1

U(tn+1) = U(tn) + (tn+1 − tn)U
′(tn) +O((tn+1 − tn)

2)

= U(tn) + ∆tU′(tn) +O(∆t2). (4.1)

Then the explicit Euler method can be expressed as,

U(tn+1) = U(tn) + ∆tF (U(tn)) . (4.2)

It is worth noticing from equation (4.2) that an error has occurred in each step as
a result of ignoring the truncation term O(∆t2) in the Taylor series. This is called the
local truncation error (LTE) of the scheme. Note that the LTE is different from the
global error (gn), which is defined as the absolute value of the difference between the
analytical and numerical solutions, i.e. ,gn = |U(tn) − Un)|. However the analytical
solution is unknown in most situations, as a result the global error cannot be calculated.
If we ignore the round-off errors, it is reasonable to calculate global errors at the nth

time step tn by multiplying n and the LTE, which means the error is accumulated at

each time step in physical sense. Since the steps n are proportional to
1

∆t
(because

n =
T

∆t
), then gn should be proportional to

LTE

∆t
= (∆t). This means that the

Euler time stepping scheme is a first-order method, which also implies that the time
integration method where LTE = O(∆tk) is a (k − 1)th-order method.

In the explicit Euler method, the LTE equals O(∆t2) which is obviously related
to the time step ∆t. Therefore, the accuracy of the Euler time stepping is related to
both the number and size of the time step. As mentioned in Section 4, when the time
stepping scheme (4.2) evaluates explicitly the right-hand side of the equation (3.29), it
has to satisfy a stability condition (CFL condition),

c
∆t

∆p
≤ 1, (4.3)

where c =

√
E

ρ
is the wave speed and ∆p is the initial spacing between two particles.

Notice that ∆t should depend linearly on initial spacing between two particles and
reciprocal of the wave speed. It can be observed from the restriction (4.3) that, either
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by decreasing the smoothing spacing or increasing the wave speed, the considered
explicit scheme needs time steps ∆t small enough to maintain its stability. In other
words, the time step is limited by the CFL condition. The small time step will lead to
a large number of steps in the same time duration compared with other time stepping
schemes. Both of these mean the accuracy of Euler method is very poor.

4.2 Predictor-corrector scheme

Monaghan raised a time stepping scheme to predict the evolution of the SPH system
[72], which is widely used in combination with the SPH method [31], predictor-corrector
scheme. This scheme conserves the linear and angular momentum and has second-order
errors in time and space (O(∆t2) and O(h2)).

In this algorithm for the SPH method, the velocity will be corrected by the contri-
bution of neighbouring particles,

ṽi = vi +
N∑

j=1

mj

ρij
(vj − vi)Wij. (4.4)

The procedure of the scheme is first to calculate the field valuables (U 1

2 ) at the half

time step. Then the values (Ũ 1

2 ) will be corrected by the slope computed at the half

step values (F
(
U 1

2

)
) and finally calculate the field variables at the next time step

(U(tn+1)),

U 1

2 = U(tn) +
1

2
∆tF (U(tn)) ,

Ũ 1

2 = U(tn) +
1

2
∆tF

(
U 1

2

)
, (4.5)

U(tn+1) = (2Ũ 1

2 −U(tn)).

4.3 Runge-Kutta time stepping scheme

4.3.1 Second and fourth order Rouge-Kutta

According to Section 4.1, the Euler time stepping scheme is a first-order method.
In order to improve the performance of the SPH approximation, high-order accuracy
methods should be developed to increase the size of time steps and the accuracy of
time integration methods.
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Assuming tn+ 1

2

= tn +
1

2
∆t, and then applying a Taylor expansion series to the

system (3.29),

U(tn+1) = U(tn+ 1

2

) +
∆t

2
U′(tn+ 1

2

) +
∆t2

8
U′′(tn+ 1

2

) +
∆t3

48
U′′′(tn+ 1

2

) +O(∆t4), (4.6a)

and

U(tn) = U(tn+ 1

2

)− ∆t

2
U′(tn+ 1

2

) +
∆t2

8
U′′(tn+ 1

2

)− ∆t3

48
U′′′(tn+ 1

2

) +O(∆t4). (4.6b)

It is easy to get the expression of
U(tn+1)−U(tn)

∆t
by taking (4.6a) subtracting (4.6b)

and then divide by ∆t,

U(tn+1)−U(tn)

∆t
= U′(tn+ 1

2

) +
∆t2

24
U′′′(tn+ 1

2

) +O(∆t4), (4.7)

where the term U′(tn+ 1

2

) on the right-hand side can be expressed as (Euler method has

been applied on the spatial derivatives here),

U′(tn+ 1

2

) =
1

2
(U′(tn) +U′(tn+1)). (4.8)

Therefore, Equation (4.7) can be reformulated into,

U(tn+1) = U(tn) +
∆t

2

(
U′(tn) +U′(tn+1)

)
+O(∆t3). (4.9)

Here, the term U′(tn+1) on the right-hand side of Equation (4.9) has two different
forms, explicit and implicit form.

U′(tn+1) = F (U(tn+1)) , (4.10)

where the term U(tn+1) on the right-hand side is the real solution implicit form. The
explicit form of the term U′(tn+1) is presented as follows,

Û(tn+1) = U(tn) + ∆tU′(tn) = U(tn) + ∆tF
(
U(tn)

)
, (4.11a)

whereˆdenotes the estimation solution of the field value in tn+1 step. Then we have,

U′(tn+1) = F
(
Û(tn+1)

)
. (4.11b)

In order to get the explicit Runge-Kutta method expression, we combine equations
(4.9) and (4.11) to obtain the explicit trapezoidal method,

Û(tn+1) = U(tn) + ∆tF
(
U(tn)

)
, (4.12a)

U(tn+1) = U(tn) +
∆t

2

(
F
(
U(tn)

)
+ F

(
Û(tn+1)

))
. (4.12b)
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This set of equations explains the procedure of the explicit second order Runge-Kutta
scheme.

The procedure of the classical fourth-order Runge-Kutta (RK4) method to advance
the solution from the time tn to the next time tn+1 can be carried out as:

U (1) = U(tn),

U (2) = U(tn) +
∆t

2
F
(
U (1)

)
,

U (3) = U(tn) +
∆t

2
F
(
U (2)

)
, (4.13)

U (4) = U(tn) + ∆tF
(
U (3)

)
,

U(tn+1) = U(tn) +
∆t

6

(
F
(
U (1)

)
+ 2F

(
U (2)

)
+ 2F

(
U (3)

)
+ F

(
U (4)

))
,

where the abbreviation U (k) indicates the value of U at the kth stage of time step n.

This kind of explicit time integration scheme has become popular in computational
fluid dynamics, [33]. The main feature of this method lies in the fact that (4.13) is a
convex combination of first-order Euler steps which exhibit strong stability properties.
Therefore, the scheme (4.13) is Total Variation Diminishing (TVD) and stable under
the usual CFL condition equation (4.3).

4.3.2 General formulation of Runge-Kutta methods

In numerical simulations, the family of Runge-Kutta schemes plays an important role
of application in temporal discretisation for the approximation of solutions of ordinary
differential equations. The general formulation of Runge-Kutta schemes is developed
by Press et al. [91].

In an s-stage Runge-Kutta method, the ordinary differential equations (ODE) sys-
tem (3.29) should be first written into the following form,

F
(
U(tn)

)
= F

(
U(tn), tn

)
. (4.14)

We can then write the general procedure of a RK method as:

U(tn+1) = U(tn) + ∆t
s∑

k=1

bkLk, (4.15a)
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where k is the kth stage of the method and s is the total number of stages, Lk indicates
the slope of each stage and can be represented as follows;

L1 = ∆tF
(
U(tn)

)
,

L2 = ∆tF
(
U(tn) + a21L1, tn + c2∆t

)
,

L3 = ∆tF
(
U(tn) + a31L1 + a32L2, tn + c3∆t

)
, (4.15b)

...
...

Ls = ∆tF
(
U(tn) + as1L1 + as2L2 + · · · as,s−1Ls, tn + cs∆t

)

To identify a particular order of the method, the number of stages s should be provided
as well as the coefficients akl (for 1 ≤ l < k ≤ s), bl (for k = 1, 2, · · · , s) and ck (for
k = 2, 3, · · · , s). These three factors are called a Runge-Kutta matrix, weights and
nodes respectively [41]. These factors are usually arranged in a Butcher tableau as
shown in Table 4.1,

0
c2 a21
c3 a31 a32
...

...
. . .

cs as1 as2 . . . as,s−1

b1 b2 . . . bs−1 bs

Table 4.1: Butcher tableau for Runge-Kutta methods

The Runge-Kutta matrix [alk] and nodes cl should satisfy the condition,

cl =
l−1∑

k=1

alk with l = 2, 3, · · · , s. (4.16)

These conditions imply that there may be variations in certain orders of Runge-Kutta
methods, for example the RK4 method. There is another version of the RK4 method
called 3/8-rule [37]. The advantage of this version of the method is that the error
coefficients are smaller than the popular version, however more floating point operations
are required per time step. Its Butcher tableau is given in Table 4.2.

4.4 Runge-Kutta Chebyshev scheme

Difficulties often appear when the spectral radius of the Jacobian of F, ∂F/∂U, have
large eigenvalues. This may give rise to numerical stiffness. Thus, time integration
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0
1

3

1

3
2

3
−1

3
1

1 1 −1 1

1

8

3

8

3

8

1

8

Table 4.2: Butcher tableau for 3/8 rule RK4 method

schemes for (3.29) depend strongly on the spectral radius ρ (∂F/∂U) and node refine-
ments. For these reasons it is preferable that these schemes have to be either implicit
or explicit with large stability regions. The current work considers the Runge-Kutta
Chebyshev (RKC) method studied in many papers [19, 112, 20]. The RKC method
has been designed for explicit time integration of systems of parabolic equations. To
solve (3.29) the RKC scheme takes the form

U (0) = U(tn) ,

U (1) = U(tn) + µ̃1∆tF
(0)
n

(4.17)
U (k) = µkU (k−1) + νkU (k−2) + (1− µk − νk)U (0) + µ̃j∆tF

(k−1)
n + γ̃j∆tF

(0)
n , 2 ≤ k ≤ s ,

...

U(tn+1) = U (s) ,

where U(tn) is the solution computed at time step tn, F
(k)
n denotes the term F

(
tn +

ck∆t,U (k)
)
and U (k) are the internal vectors for RKC stages. The coefficients in (4.17)

are available in an analytical form for arbitrary s ≥ 0 from some others’ work[19, 112].
For the convenience of the reader the formulation for these coefficients is included here.
Consider the Chebyshev polynomial of the first kind of degree k;

Tk(z) = cos(karccosz), −1 ≤ z ≤ 1 .

Then

ǫ =
2

13
, q0 = 1 +

ǫ

s2
, q1 =

T ′

s(q0)

T ′′
s (q0)

,

bk =
T ′′

k (q0)

(T ′

k(q0))
2
, (2 ≤ k ≤ s), b0 = b2, b1 =

1

q0
,

and

µ̃1 = b1q1, µj = 2q0
bk
bk−1

, νk = − bk
bk−2

, µ̃k = 2q1
bk
bk−1

,

γ̃k = −(1− bk−1Tk−1(q0))µ̃k, (2 ≤ k ≤ s) .
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The coefficients ck are

ck =
T ′

s(q0)

T ′′
s (q0)

T ′′

k (q0)

T ′

k(q0)
≈ k2 − 1

s2 − 1
(2 ≤ k ≤ s), c0 = 0, c1 = c2, cs = 1 .

It should be pointed out that two criteria have been taken into consideration for
the calculation of the above coefficients; (i) the real stability boundary, β(s), has to be
as large as possible to obtain good stability properties for parabolic equations, and (ii)
the application of the method with an arbitrary number of stages should not damage
the convergence properties. That is, the accumulation of local errors does not grow
without boundaries. Observe that the number of stages s in our SPH method and the
conventional RKC scheme varies with ∆t such that, see [112],

s = 1 +

[[√
1 +

c∆t

0.131∆p

]]
, (4.18)

where [[ x ]] denotes the integer part of x, c =
√

E
ρ
is the wave speed and ∆p is the initial

particle spacing.

It is easy to verify that this method can adapt the stages in one time step itself for
a particular CFL value. The number of stages in one step is large when we have a large
CFL value (a large ∆t). As we know, the accuracy of the traditional Runge-Kutta
method reduces as the number of stages in one time step increases. This is because
an increased number of stages increasingly dissipates more simulation information to
obtain smoother results. However, this problem does not exist in the Runge-Kutta
Chebyshev method. The accuracy is not influenced when we use a large number of
stages in one large time step. This will be shown by the numerical results in Chapter
5.

Concluding remarks

The SPH method should be combined with the time integration algorithm to obtain
the predicted motion of the system in the simulation. As mentioned in Section 3.7, the
integration stage can be achieved by the explicit method. In explicit hydrodynamic
methods, the Courant-Friedrichs-Levy condition (CFL) plays an important role in time
integration of the simulation. Different time stepping schemes are introduced to do the
time integration for the SPH method and they will be then compared through the CFL
values and accuracies in Chapter 5.

As with other explicit numerical hydrodynamic methods, one can apply standard
time stepping schemes to integrate the discretised SPH equations; i.e. the Euler,
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predictor-corrector and RK4 schemes, etc. Euler is the traditional time stepping
scheme. It is simple but produces low accuracy. The predictor-corrector scheme is
currently one of the most popular time stepping algorithms in the SPH application,
since it has higher accuracy and stability than the Euler [72]. However the time step
size in the Euler and predictor-corrector schemes may be very small when the smooth-
ing length is small in some cases. In this situation, the RK4 schemes show more
stability for the numerical simulation and the capability of larger time steps, which
may be larger than the time step estimated by CFL condition. However, increasing
the number of stages per time step, increases the computational cost.

Compared with other time stepping methods which are currently widely used, the
RKC method has the advantages of flexible size and stages of each time step. Verwer
et al. has done the stability analysis for the RKC time-stepping scheme and shown the
stability region for RKC is larger than the other classical methods in the Runge-Kutta
methods family [112]. The RKC also has the properties that it can adapt the number
of stages for different time steps itself. However, unlike the other high order accuracy
schemes such as Total Variation Diminishing shock capturing technique in [49], the
RKC method only has second order accuracy. The applications will be simulated to
demonstrate the advantages of this method in Chapter 5.



Chapter 5

Application to pure elastodynamic

problems

Introduction

In order to build a firm foundation for the application of the Runge-Kutta-Chebyshev
SPH algorithm in solid mechanics, a set of benchmark problems, which have a the-
oretical solution, are simulated in this chapter to investigate the advantage of this
algorithm in key areas of elastodynamics. Although the SPH method is usually used
to solve dynamical system, in the present study we use the steady-state SPH results to
be compared to the FEM applied to a static problem. The benefit of this is that when
the RKC-SPH method is applied in a traditional dynamic problem, the results at any
time interval can be shown. We first solve a one-dimensional shock wave problem and
compare the results with other time stepping schemes. Then the compression loading
on a two-dimensional plate with a circular hole are simulated to compare with the
static result of the FE simulation. After these benchmark problems, large deformation
problems are analysed here. The capability of solving large deformation problems is
proved by the results of using the RKC-SPH method.

In Section 5.1, a one-dimensional shock wave problem is first simulated by the RKC-
SPH method. Since it is easy to obtain the analytical solution in wave propagation
problems. In this simulation different time stepping schemes, such as Euler, predictor-
corrector and Fourth-order Runge-Kutta (RK4) integration schemes, are applied and
compared with the performance of the RKC method. The algorithm is then applied
to simulate the quasi-static limit problem and compare the results with the standard
FE solutions and the SPH method with predictor-corrector scheme in Section 5.2.
Although the SPH is a dynamic behaviour simulating method, the result of the RKC-
SPH method is still better than the the FEM applied to this static problem. In this
example, the stress field of the two-dimensional finite plate with a circular hole in the
middle under compression is investigated. These two examples are used to demonstrate
the performance of the RKC-SPH method.

62
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Figure 5.1: Compression loading of the one-dimensional magnesium bar.

The RKC-SPH method is shown to have the capability to solve large deformation
problems, i.e. the two-dimensional oscillatory beam problem in Section 5.3. The
stress fields and velocity vectors are presented to show the dynamic behaviour of the
problem. The oscillation frequencies of different beams are presented to compare with
the analytical frequency. In Section 5.4, the dynamic process of compression loading
on a porous structure is simulated through the RKC-SPH method and the results show
the stability of this algorithm.

5.1 One-dimensional wave propagation problem

5.1.1 Shock wave problem

In order to examine the performance of the different time stepping schemes for the
SPH method in classical elastic problems, the problem of propagation of a shock wave
in a one-dimensional elastic Magnesium bar is solved in this section.

The length of the magnesium bar is L = 1m (see Figure 5.1), with material proper-
ties of ρ = 1738 kg/m3 and Young’s modulus is E = 45× 109 Pa. Initially, the bar is
at rest with v = 0 and σ = 0. The velocity at the right end of the bar is fixed (v = 0)
and we apply a compression stress on the left boundary σ0 = 8.8436× 106 Pa. This is
a simple one-dimensional wave propagation problem which has a theoretical solution.
Here, the velocity under the compression loading can be calculated as follows;

v0 =
σ0√
ρE

= 1. (5.1)

The wave will propagate through the bar with the wave speed,

c =

√
E

ρ
. (5.2)

The wave propagates through the bar and bounds back at the fixed right end of the
bar and the amplitude of the stress shock will be doubled when the wave arrives at the
right end. The original wave and the reflective wave meet at the middle point of the
bar and the stress value will be the double of the initial stress.

In this simulation, Euler, predictor-corrector, RK4 scheme and RKC scheme are
applied in combination with the SPH method. A set of 250 particles is arranged in the
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analysis to simulate the dynamic behaviour of the elastic bar and we take h = 1.5∆x,
here ∆x is the initial spacing of the particles. We set CFL= 0.6 for all four time
stepping schemes. Here PC2 is the abbreviation of the predictor-corrector scheme in
all the figures. The number of stages in the RKC scheme is calculated by the equation
(4.18) and for this text example we obtain the stage,

s = 1 +

[[√
1 +

c∆t

0.131∆p

]]
= 3. (5.3)

Note that the number of stages is fixed in the simulations presented in Chapter 5.
Artificial viscosity (3.16) is applied for this analysis using,

αΠ = 2.5, βΠ = 2.5, (5.4)

These values are suggested by Libersky et al. [52] in solid mechanics.

(a) (b)

(c) (d)
Figure 5.2: (a) Velocity distributions at t = 1.2 × 10−4 s along the bar with different
time stepping schemes; (b) the stress at the end of the bar (x = L); the time evolution
of velocity (c) and stress (d) at the mid point of the bar (x = L

2
) using different stepping

schemes.
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At time t = 1.2×10−4 s, the velocity distribution along the bar is displayed in Figure
5.2(a) and the stress at the end of the bar is shown in Figure 5.2(b). Figures 5.2(c) and
5.2(d) show the time evolution of velocity and stress at the mid point of the bar (x = L

2
)

respectively. These are obtained using the considered time stepping schemes and 250
particles. It is easy to see that there is some oscillation in the results obtained by the
Euler and predictor-corrector schemes. The results of the RKC scheme only showed
slight improvement compared to the RK4 scheme. However, the computational cost of
the RKC is smaller than the RK4, since there are four stages in the RK4 time stepping
scheme but only three stages in the RKC time integration algorithm. The simulation
with the predictor-corrector scheme was found to become unstable when CFL> 0.6.

(a) (b)

(c) (d)
Figure 5.3: (a) Velocity distributions at t = 1.2 × 10−4 s along the bar with different
time stepping schemes; (b) the stress at the end of the bar (x = L); the time evolution
of velocity (c) and stress (d) at the mid point of the bar (x = L

2
) using the RK4 time.

In order to further compare the performance of the RKC scheme and the RK4
scheme, this wave propagation problem is simulated using different CFL values for
these two time stepping schemes. The results of the RK4 and RKC schemes are shown
in Figure 5.3 and Figure 5.4.
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(a) (b)

(c) (d)
Figure 5.4: (a) Velocity distributions at t = 1.2 × 10−4 s along the bar with different
time stepping schemes; (b) the stress at the end of the bar (x = L); the time evolution
of velocity (c) and stress (d) at the mid point of the bar (x = L

2
) using RKC method.

The results of the RK4 scheme in Figure 5.3 show that the oscillation and the
dissipation increase as the values of CFL grow and the accuracy deteriorates as the
CFL values increase. For the RK4 time stepping scheme, CFL= 1.2 is the upper-limit
value, i.e. the solution becomes unstable when the CFL value is larger than 1.2.

However, it is easy to observe that the accuracy and numerical dissipation of the
RKC time stepping scheme for the SPH method with different CFL are very similar in
Figure 5.4. The stages of the RKC time stepping scheme are calculated for different
CFL values. We obtain three stages for CFL= 0.6 and 1.0, four stages for CFL=
1.2 and five stages for CFL= 2.5. It is worth noting that the CFL value cannot be
increased without limitation when increasing the number of stages, because the RKC
time stepping scheme is still an explicit scheme. A too large CFL value will lead to
deterioration of the solution’s accuracy. The errors for Euler, predictor-corrector, RK4
and RKC schemes of the SPH method in this shock-wave propagation simulation are
shown in Table 5.1. Only the RKC time stepping scheme produces a reasonable error
when CFL= 2.5.
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Figure 5.5: (a) Velocity distributions at t = 1.2 × 10−4 s along the bar with different
time stepping schemes; (b) the stress at the end of the bar (x = L); the time evolution
of velocity (c) and stress (d) at the mid point of the bar (x = L

2
) using RKC method

with more particles.
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CFL = 0.6 CFL = 1.0

Euler Predictor RK4 RKC Euler Predictor RK4 RKC

L1 error 0.1469 0.1056 0.1005 0.0889 — — 0.1260 0.0889

L2 error 0.1943 0.1737 0.1710 0.1612 — — 0.1899 0.1611

CFL = 1.2 CFL = 2.5

Euler Predictor RK4 RKC Euler Predictor RK4 RKC

L1 error — — 0.2497 0.0888 — — — 0.0888

L2 error — — 0.2632 0.1616 — — — 0.1614

Table 5.1: Errors of using the SPH method for solving shock-wave propagation with
different time schemes at t = 1.2× 10−4 s.

We then apply a large number of particles to simulate this wave propagation prob-
lem in order to obtain high accuracy results, as in Figure 5.5. The error rates are
calculated to show the convergence of the RKC-SPH method in Figure 5.6. Figure
5.6(a) shows the errors of the velocity distribution at t = 1.2 × 10−4 s and Figure
5.6(b) shows the errors of the time evolution of the stress at the end of the bar. Here
the rates of convergence in these two figures are 0.75 for L1-error norm and 0.5 for
L2-error norm, which do not agree with the convergence rate of the SPH method in
Section 2.4.2.

(a) (b)
Figure 5.6: (a) The L1 and L2 error norms of the velocity distribution at t = 1.2 ×
10−4 s; (b) the L1 and L2 error norms of the time evolution of the stress at the end of
the bar (L = 1 m).
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Since the shock wave problem stated in this thesis is a discontinuous solution, it is
necessary to include artificial viscosity to smooth the unphysical oscillation. However,
the artificial viscosity will dissipate the accuracy of the simulation. Therefore, the
rates of convergence for the numerical results with artificial viscosity are reduced for
the RKC-SPH method. In order to investigate the rate of convergence for the RKC-
SPH method, another example with a smooth analytical solution in [49] is presented in
Section 5.1.2. Rates of convergence of the RKC-SPH method obtained in this section
will be compared with the theoretical order of the RKC-SPH method.

5.1.2 Convergence analysis

Similar to the problem in Section 5.1.1, a compression stress is loaded at the left end of
a one-dimensional bar with unity Young’s modulus E and density ρ. The bar is fixed
at the right end and with the length L = 40 m. In order to avoid a discontinuous exact
solution, a forcing function of the compression stress in [49] is given by,

σ(t) = ζ(sin(
π

20
t− π

2
) + 1), t ≥ 0, (5.5)

where ζ = 0.001 is the constant. There is no artificial viscosity in this analysis. Dif-
ferent numbers of particles (20, 40, 60, 80, 100, 160, 500 particles) are arranged to
simulate this problem. Choosing CFL=1.0, the number of stages is calculated to be
3 by (4.18). Figure 5.7(a) represents the stress distribution along the bar at t = 40 s
with different numbers of particles. The L1 and L2 error norms are shown in Figure
5.7(b). The rate of convergence of the RKC-SPH method obtained here is 1 for L1

error norm and 1.5 for L2 error norm without the influence of artificial viscosity.
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Figure 5.7: (a) The stress distribution along the bar at t = 40 s; (b) the L1 and L2

error norms of the stress distributioin at t = 40 s.
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5.2 Two-dimensional elastic plate

In this section a classical example in two-dimensional space is analysed using the RKC-
SPH method since it has an analytical solution for the stress on the cross section. The
compression loading on a two-dimensional plate with a circular void in the middle is
simulated here. Since the SPH method is a particle-based method, the distribution of
particles would influence the accuracy of the analysis. In this section, we first allocate
three different distributions of particles for the compression loading on a plate with a
circular void in the middle, in order to explore the influence of particle distribution.
The plate is shown in Figure 5.8(a) and the analysis can be applied on a quarter of the
plate because of the symmetric property. The plate material is still Magnesium and
all the material constants are the Magnesium properties. The sizes of the plate are
X=Y=2 m and r = 0.3 m. The compression velocity is v = 2 m/s loaded on the top
and bottom boundary and the left and right boundaries are free. The loading duration
is 1 s. Take the center of the plate as the origin of coordinates, three different particle
distributions for the quarter of the plate are considered, see Figure 5.8.

(a) (b)

(c) (d)
Figure 5.8: (a) Whole problem domain. (b) Squared distribution. (c) Radial distribu-
tion. (d) Equally radial distribution.

These three distributions are squared distribution (Figure 5.8(b)), radial distribu-
tion (Figure 5.8(c)) and equally radial distribution (Figure 5.8(d)). The numbers of
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particles in the different distributions are slightly different, 897 for the squared, 922
for the radial and 916 for the equally radial. The initial particle spacing for squared
and equally radial distributions are the same ∆p = 0.033 m. Since the change of σxx is
very small during the whole process, the results of the σxx field are not displayed. The
stresses (σxy and σyy) fields using a squared distribution at different times are shown
in Figure 5.9.
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Figure 5.9: The stresses σxy (left column), σyy (middle column) and velocity v (right
column) fields using squared distribution at different times. (a) t1 = 331.6336 ms. (b)
t2 = 663.2731 ms. (c) t3 = 994.9097 ms.

It is clear from the results using square distribution, that there are some unphysical
oscillations at the boundary of the circular hole and the velocity near the circular hole
becomes disordered. This is because the particle distribution near the circular hole is
not uniform enough to avoid the error accumulating during the simulation process.
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The stresses σxy and σyy and the velocity v field using radial distribution at different
times are shown in Figure 5.10. It is worth noting that the smoothing length of each
particle here can be different because of the different initial particle spacing.
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Figure 5.10: The stresses σxy (left column), σyy (middle column) and velocity v (right
column) fields using radial distribution at different times. (a) t1 = 331.6336 ms. (b)
t2 = 663.2731 ms. (c) t3 = 994.9097 ms.

In this simulation, the oscillation of the stress field occurs in the problem domain.
There are still slightly disordered situations for the velocity inside the problem domain.
This is because the smoothing length of each particle is different and the number of
particles in the support domain is different. This will reduce the accuracy of the
method if there is no special treatment (the solution of different smoothing lengths will
be introduced in Chapter 6).



CHAPTER 5. APPLICATION TO PURE ELASTODYNAMIC PROBLEMS 73

The stresses σxy and σyy and the velocity v field using equally radial distribution
at different times are shown in Figure 5.11.
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Figure 5.11: The stresses σxy (left column), σyy (middle column) and velocity v (right
column) fields using equally radial distribution at different times. (a) t1 = 331.6336 ms.
(b) t2 = 663.2731 ms. (c) t3 = 994.9097 ms.



CHAPTER 5. APPLICATION TO PURE ELASTODYNAMIC PROBLEMS 74

Theoretically, the stress fields on an infinite plate with a circular hole under uniaxial
far field compression loading σ∞ can be predicted by (5.6), which is given by Ashby
and Jones [2]. Take the polar coordinates ̺ and ϑ for the plate and the stress field can
be presented as,

σ̺(̺, ϑ) =
σ∞

2
(1− r2

̺2
) +

σ∞

2
(1− r2

̺2
)(1− 3

r2

̺2
) cos 2ϑ, (5.6a)

σϕ(̺, ϑ) =
σ∞

2
(1 +

r2

̺2
)− σ∞

2
(1 +

r4

̺4
) cos 2ϑ, (5.6b)

σ̺ϑ(̺, ϑ) = σϑ̺(̺, ϑ) = −σ
∞

2
(1− r2

̺2
)(1 + 3

r2

̺2
) sin 2ϑ. (5.6c)

Therefore, the normal stress σyy along the y = 0 can be calculated by σϑ with ϑ =
π

2
,

σyy(x, 0) = σ∞

(
1 +

1

2

r2

x2
+

3

2

r4

x4

)
. (5.7)

Figure 5.12: σyy along the cross section of the plane with circular hole (y = 0) using
different particle distributions.

In this simulation, the compression stress is loaded on top and bottom of far field
with σ∞ = 20 MPa and the stresses on the each boundaries are set to be the analyt-
ical solution, which can be calculated by Equation (5.6). The σyy distributions along
the cross section of the plane for each particle distribution are shown in Figure 5.12.
Compared with the other two particle distributions, the equally radial distribution per-
forms better than other distributions for the RKC-SPH method in this problem. This
is because the initial particle spacing of the distribution is relatively more uniform than
the other two distributions. This can reduce the error accumulation which leads to an
unstable solution.

In order to further investigate the performance of the RKC-SPH method, equal
radial distribution is used for the SPH method with both classical predictor-corrector
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r = 0.2 m r = 0.3 m

FEM SPH (PC2) RKC-SPH FEM SPH (PC2) RKC-SPH

Number of par-
ticles for whole
domain

3222 2560 2560 3025 2459 2459

Number of parti-
cles on cross sec-
tion

41 41 41 36 36 36

L1 error norm 0.0521 0.0309 0.0304 0.0422 0.0272 0.0272

L2 error norm 0.0537 0.0498 0.0442 0.0434 0.0367 0.0357

Table 5.2: Errors for the stress distribution σyy along the cross section of plane with
circular hole (y = 0). Because this is a two-dimensional case and the number of particle
is not linearly increasing when the particle spacing decreases, then the particle spacing
is adopted to investigate the convergence rate of the method.

(a) r = 0.2 m (b) r = 0.3 m
Figure 5.13: σyy along the cross section of plane with circular hole (y = 0) by using
different methods.
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Figure 5.14: Errors for the stress σyy distribution along the cross section of plane with
different number of particles.

and the RKC time stepping schemes. The CFL value in this problem is 2.5 in the RKC
method with five stages and 0.6 in the Predictor scheme. The initial particle spacing
is ∆p = 0.02 here and Table 5.2 shows the different numbers of particles arranged for
different void radius of the domain (r = 0.2 m and r = 0.3 m). Then the traditional
grid-based method (FEM) is also used to simulate this problem as a comparison with
the RKC-SPH method. In order to be consistent with the SPH simulations, the same
number of nodes (41 nodes for r = 0.2 m and 36 nodes for r = 0.3 m) is arranged on
the cross section, then the number of nodes for this domain is shown in Table 5.2. The
FEM simulation is carried out by the ABAQUS software.

Note that the SPH method is a dynamic method and the results calculated by it
are only snapshots of the whole dynamic process rather than a perfectly steady state
but the FEM result is from a static simulation. In order to obtain results close to
steady state, the stresses of particles over the last 10 time steps were averaged for
the SPH simulations. It is also necessary to run the simulation for a long time until
the shock waves have been dissipated. The comparison results of the FEM, SPH with
predictor-corrector scheme and RKC-SPH method for different sizes circular holes in
the plane are shown in Figure 5.13. The L1 and L2 error norms for different methods
are shown in Table 5.2.

It is easy to see from Figure 5.13 and Table 5.2, the SPH method has the capability
to achieve higher accuracy compared to the FEM. Compared to the SPH method
with the predictor-corrector scheme, a larger CFL value in the RKC scheme can save
computational cost and slightly higher accuracy is obtained in the RKC-SPH simulation
since a larger number of time step will increase the error accumulation in the simulation.

Next, the equally radial distribution for the RKC-SPH method with more particles
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Figure 5.15: The stresses σxy (left column), σyy (middle column) and velocity v (right
column) fields using equi-radial distribution with more particles (3504) at different
times. (a) t1 = 331.6336 ms. (b) t2 = 663.2731 ms. (c) t3 = 994.9097 ms.
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(3504) is applied to simulate this problem (r = 0.3 m). The stresses and velocity fields
of the whole domain are shown in Figure 5.15. Here the results of the whole domain
show the accuracy is proved to be higher than the traditional grid-based method, FEM.
The L1 and L2 error norms for the stress σyy distribution along the cross section are
presented in Figure 5.14. Note here the size of the particle spacing is the X axis
since the number of particles does not linearly increase when decreasing the size of
particle spacing in two-dimensional space. As mentioned in Section 5.1.1, the rate of
convergence (0.5 for both L1 and L2 error norms) here is influenced by the artificial
viscosity and accuracy for the RKC-SPH method. The real rate of convergence for the
RKC-SPH method is 1.5 for L2 and 1 for L1 error norms as outlined in Section 5.1.2.

It is worth noting that there is another way to solve the problem caused by the
non-uniform particle distributions in the SPH method. In this study, the mass of each
particle is assumed to be constant in any distribution in an attempt to simplify the
simulation process and focus on how to improve the SPH algorithm. If we adopt the
voronoi area time the density to calculate the masses for particles, the problem caused
by the nonuniform distribution near the boundary can be solved and similar results
obtained (Figure 5.15).

5.3 Two-dimensional oscillatory beam

A large deformation problem which is similar to the example in [34] is modelled in this
section. The large deformation problem of a thin two-dimensional beam with a fixed
end is considered, see Figure 5.16. A set of perpendicular velocities vy is loaded on the
beam at the initial time. The length of the beam is L and the width of the beam is d.

Figure 5.16: A two-dimensional beam fixed at left and free on right is pulled by a set
of velocity.

The values of the velocity at each point on the beam can be expressed as follows,

vy
c

= Vf
M (cos(κx)− cosh(κx))−N (sin(κx)− sinh(κx))

Q
, (5.8a)
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L = 0.5 m d = 0.1 m L = 0.5 m d = 0.05 m

ωtheoretic ω
SPH

error ωtheoretic ω
SPH

error

Vf = 0.05 2066 Hz 1888 Hz 8.62% 1033 Hz 982 Hz 4.94%

Vf = 0.02 2066 Hz 1929 Hz 6.63% 1033 Hz 983 Hz 4.84%

Vf = 0.01 2066 Hz 1943 Hz 5.95% 1033 Hz 1000 Hz 3.19%

Vf = 0.005 2066 Hz 1943 Hz 5.95% 1033 Hz 1007 Hz 2.52%

Vf = 0.002 2066 Hz 1943 Hz 5.95% 1033 Hz 1007 Hz 2.52%

Vf = 0.001 2066 Hz 1943 Hz 5.95% 1033 Hz 1007 Hz 2.52%

Table 5.3: Oscillation frequency and period for analytical and SPH results.
where c is the wave speed of the material, Vf is a factor for the velocity calculation
and the factor κ should satisfy the condition;

cos(κL) cosh(κL) = −1. (5.8b)

It is easy to obtain κL = 1.875 in this mode and other factors can be calculated as
follows;

M = sinκL+ sinh(κL),

N = cos(κL) + cosh(κL),

Q = 2(cos(κL) sinh(κL)− sin(κL) cosh(κL)). (5.8c)

The equation of frequency ω calculating for a two-dimensional oscillatory beam with
left end fixed and the other end free is given by Landau and Lifshitz [47];

ω =

√
Ed2κ4

12ρ
, (5.9)

We discretise the two-dimensional beam into a set of particles to simulate the
oscillation process. The material of the beam here is still chosen to be Magnesium.
Here we take h = 1.5∆x (∆x is the initial spacing of the particles) and the initial
particle distribution is placed on a Cartesian square grid. The factor Vf = 0.02. The
size of this beam is L = 0.5 m and d = 0.05 m. The principal stress fields σxx, σyy and
the velocity v are shown in Figure 5.17 at different times.

We then select different values for the factor Vf to simulate the oscillation process
for the two-dimensional beams with different sizes to further determine the accuracy of
this method. The oscillation frequency and period obtained by the RKC-SPH method
are shown in Table 5.3 compared with the analytical frequency.
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Figure 5.17: The principal stress fields σxx (left column), σyy (middle column) and
velocity v (right column) of the oscillation beam (L = 0.5 m and d = 0.05 m) using
the RKC SPH method at different times t1, t2, t3 and t4.
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(a) (b)

Figure 5.18: Comparative results of the velocity (a) and displacement (b) at the end
of the beam with different numbers (n= 11, 21 and 31) of particles allocated on the
width (L = 0.5 m, d = 0.1 m and Vf = 0.01)

In order to determine the convergence of the RKC-SPH method, different numbers
of particles are arranged to simulate a problem. The length of the beam is 0.5 m and
width is 0.1 m, using three sets of particles with the initial spacing ∆p = 0.01 m,
0.005 m and 0.0033 m to simulate the oscillation process. The changes of velocity
and displacement at the end of the beam are shown in Figure 5.18. The errors for
the frequencies from the RKC-SPH method and analytical results are shown in Figure
5.19, here the L1 and L2 error norms for the frequency is the same. It is easy to see
that the results of this method converge when we decrease the size of particles spacing
and the rate of convergence is 1 here.
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Figure 5.19: The errors for the frequencies from the RKC-SPH method results with
different numbers of particles.
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5.4 Elastodynamics in a porous plate under com-

pression

The deformation problem in a porous structure is also modelled by the RKC-SPH
method. The material is Magnesium and the whole plate is shown in Figure 5.20(a).
The sizes of the plate are L = 2 m, r1 = 0.3 m, r2 = 0.2 m and l = 0.7 m. There are
nine circular holes inside the plate, the radius of middle one is r1 and the rest of the
holes have the same radius r2.

(a) (b)

Figure 5.20: (a) The plate with nine circular holes inside. (b) The particle discretisation
for the problem domain.

Note that the equi-radial distribution is only equally distributed for the problem
with one void in the center. Here we select the equi-radial distribution to present the
problem domain and arrange another 8 sets of particles on the boundary of the circular
holes which are not in the middle as shown in Figure 5.20 (b). The loading velocity
is vy = 10 m/s applied on the top and bottom surface and the duration is 0.02 s.
After the loading process, the total strain of the plate will be ε = 0.2. 4616 particles
are allocated for a quarter of the problem domain in this simulation, since the porous
structure is a symmetric domain. The smoothing length is h = 1.5∆p. The factors of
artificial viscosity are given by αΠ = 2.5 and βΠ = 2.5. In order to distinguish each
void, the nine voids have been numbered in Figure 5.20 (a). In this simulation, another
set of particles is arranged on the circular boundaries of the voids except the middle
voids 5, see Figure 5.20(b).
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The principal stress fields of the compression plate are shown in Figure 5.21. As
mentioned before, the particle is non-uniform distributed near the boundary of circular
holes, this non-uniform particle distribution will cause some unphysical oscillation as
shown in Figure 5.21. The stresses σ11 and σ22 always concentrate on the boundary of
the four circular voids (1, 3, 7 and 9) near the corners and middle void 5. Most of the
deformation occurs near these five circular holes and the strain on the two voids 4 and
6 is smaller than these five voids. The tension occurs on the upper and lower surface
of the middle void 5 and there is very small strain on the voids 2 and 8. This property
is very important in engineering applications, such as the design of the cellular solid.
Since the total strain of the plate in Section 5.4 is ε = 0.2, this compression loading
simulation on the porous plate is a large deformation problem. The results of this
simulation show that the RKC-SPH method has the promising capability to solve the
large deformation on the porous structure.

Concluding remarks

The applications of the SPH method have been analysed by using different time step-
ping schemes to investigate the advantages of the Runge-Kutta Chebyshev time inte-
gration algorithm in this chapter. Note that although the SPH method is a dynamic
behaviour simulating technique, the performance of the method shown in the static
problem still proved better than the traditional static grid-based method.

Two benchmark problems with theoretical solution have been analysed in one-
and two- dimensions to show the advantages of the RKC-SPH method. A shock
wave problem is first simulated by the Runge-Kutta-Chebyshev SPH method in a
one-dimensional case in Section 5.1, comparing with the Euler, Predictor and RK4
time stepping schemes. The results show that the RKC-SPH method can bring higher
accuracy results than applying other time stepping schemes in the SPH method and the
size of time step can be larger to save the computational cost. The accuracy will not
been influenced by the larger CFL value in the RKC method compared with the RK4
scheme. The influence of the particle distribution has been investigated by analysing
the compression loading process on a two-dimensional elastic plate with a circular hole
in the middle, as described in Section 5.2. And then the best distribution, equal radial
distribution has been applied with the RKC-SPH method to compare the performance
with the Predictor scheme and the FEM result. Even though the RKC-SPH method
is a dynamic method, the results of quasi-static problem analysed by the RKC-SPH
method show higher accuracy than the static FEM method and the SPH method with
the Predictor time stepping scheme.

Then the RKC-SPH method is applied to simulate large deformation problems, a
two-dimensional oscillatory beam in Section 5.3 and loading process on the high poros-
ity structure in Section 5.4. The simulation results show the promising performance of
the RKC-SPH on solving large deformation problems.
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Figure 5.21: The stresses σ11 (left column) and σ22 (right column) fields using
Runge-Kutta-Chebyshev SPH method at different times. (a) t1 = 0.00667 s. (b)
t2 = 0.01333 s. (c) t3 = 0.02 s.
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In this chapter, the advantages of the RKC-SPH method have been demonstrated
by the test cases. Larger size of time step can be used by combining the RKC time
stepping scheme with the SPH method to improve the efficiency and save computational
cost. And the results show that the RKC-SPH method has the promising capability to
solve large deformation problems. The adaptivity property of the RKC-SPH method
can then be explored, such as the adaptive number of particles and spacing, which will
be presented in Chapter 6.



Chapter 6

Time-space adaptive SPH method

Introduction

SPH is a purely Lagrangian particle method based on the kernel interpolation in which
the problem domain is discretised into particles. As mentioned before, the SPH method
has been applied on complex and nonlinear problems in areas from large-scale astro-
physical systems to small-scale fluids and solids. Unlike the traditional grid-based
methods, it is fully mesh-free and easy to simulate problems with complex physics and
arbitrary geometries.

In practical engineering applications, the current status of the SPH method simula-
tion has reached a limit by which a large scale problem domain requires arrangement of
a large number of particles to get sufficient resolution, in order to obtain high accuracy.
However, even arranging a large number of particles on high performance computers
still cannot meet the requirement for large spatial problems in some cases and also
leads to expensive computational cost.

In some real engineering applications, only part of the problem domain has dynamic
behaviour (i.e. change of velocity, stress or temperature) during a certain time. For
example, consider a beam in the shock wave propagation problem, which is fixed at
the right end, the loading velocity is at the left end of the beam. The right part of the
beam will not receive the dynamic information until the propagation of the shock wave
reaches the right end. In this situation, the properties of the particles in the right part
of the beam are not the feature of interest but will still need to be calculated, this is
time consuming and limits the efficiency of the SPH method.

For this reason, a new version of the SPH method with, called the Adaptive SPH
method, a time-varying particle distribution is attractive and studied by several re-
searchers [5, 65, 87, 110, 88, 108, 109, 101]. First a particle splitting method has been

86



CHAPTER 6. TIME-SPACE ADAPTIVE SPH METHOD 87

implemented by Kitsionas and Whitworth for the astrophysics problem in 2002 [44].
Due to the adaptivity property of the particle distribution in the ASPH method, the
accuracy of the method is increased using a relatively smaller number of particles com-
pared to the standard SPH method. In order to achieve this, the basic concept of
Adaptive Mesh Refinement (AMR) can be adopted on the particle methods, and is
called the Adaptive Particle Splitting (APS) technique. Although the APS technique
is not as mature as the AMR technique, it is still worth studied, improved and ap-
plied to the SPH method to obtain the new Adaptive SPH algorithm. Lopez applied
the APS technique for the SPH method in fluid flow simulations [65]. Omidvar et
al. applied variable mass particle distribution to simulate 2D and 3D fluid dynamic
problems [87, 88] through the SPH method and Lastiwka et al. presented a more
general algorithm with particle insertion and removal for the SPH method based on
this [48]. Feldman and Bonet developed a dynamic particle refinement algorithm for
the SPH method [27]. Then Vacondio et al. expanded the method with splitting and
coalescing techniques on fluid dynamics [108, 109, 110]. Spreng et al. then applied
the adaptive discretization algorithm for the SPH method on solid mechanics [101].
A new refinement procedure is developed by Barcarolo et al. [5]. In their work, the
mother particle is not removed but turned off by an operator and daughter particles
are turned on when they are created. One of the key points in the APS technique is
the varying smoothing length, which can then be adopted as the adaptive smoothing
length for this new algorithm, unlike the method proposed by Shapiro et al. [98] and
Owen et al. [89], which only focuses on the adaptive kernel estimation. The adaptive
SPH algorithm studied by the above researchers includes not only the adaptive kernel
estimation but also the adaptive number and distribution of particles during the time
integration process.

Take a one-dimensional bar as an example, the particle distribution is refined to
be varied at different times. The basic concept of the new Adaptive SPH method in
a 1D problem is shown in Figure 6.1. The two original particles A and B were split
into three refined particles each with a smaller mass at t = t1. The total mass and
momentum of the system should be conserved (the sum of the mass of three refinement
particles should be the same as one original particle). Then the refinement particles
which are split at t = t1 are merged to the coarse particles A′ and B′ at t = t2. Another
two of the original particles C and D are split into six refinement particles at t = t3,
see Figure 6.1. Then the refinement particles which are split at t = t4 are merged to
the coarse particles C ′ and D′ at t = t4.

Since the size of time step depends on the particle spacing, the time step will
become smaller after the particle splitting. A smaller time step should be chosen for
all particles after the splitting process in previous ASPH simulations [5]. In this thesis,
the adaptivity of the method proposed here is different from the method introduced by
the other researchers; here it involves not only the adaptive particle spacing but also
the adaptive number of stages in one time step. One consistent time step relating to the
initial particle spacing can be applied in the whole simulation and the number of stages
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Figure 6.1: The basic concept of the new Adaptive SPH method in one dimensional
space. (a) The particle splitting at t = t1. (b) The particle merging and splitting at
t = t2.
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in one time step will be adaptive when particle splitting and merging occur. This is
achieved by combining the ASPH with the RKC time-stepping method, because of the
stage adaptivity of the RKC scheme. This method is called the time-space Adaptive
SPH method. The time-space Adaptive SPH method will be applied on elastodynamics
to demonstrate the accuracy and efficiency of the method.

In this chapter, varying smoothing length will be first introduced and then devel-
oped to be the adaptive smoothing length for the adaptive SPH method. Different
approaches to the adaptive kernel estimation will be discussed and one will be chosen
for the ASPH method. Then the APS technique will be discussed and applied for the
SPH method, including the splitting and merging of the particles. The technique of
error control is applied in this method to minimise errors after particle splitting. The
adaptive stages for a time step will be introduced to achieve the time adaptivity of the
time-space Adaptive SPH method. Finally, the time-space ASPH method is applied
to the simulation of the shock wave propagation in one-dimensional space to prove the
accuracy and efficiency. Another static compressive problem in a one-dimensional case
will be also analysed using the time-space ASPH method.

6.1 Adaptive kernel estimation

6.1.1 Varying smoothing length

In the SPH method, the choice of smoothing length h directly affects the accuracy of
the simulation result and the computational efficiency. If the smoothing length is too
small, there are not enough particles in the support domain (r ≤ κh) to represent the
properties of the considered particle by the total contribution from the neighbouring
particles, leading to a low accuracy of the results. Whereas if the smoothing length
is too large, the computational efficiency will obviously decrease and the accuracy will
also suffer as too many particles in the support domain will smooth out the local
properties and information in the considered particle.

The particle approximation in the SPH method requires a sufficient but not exces-
sive number of particles in the support domain to ensure the accuracy of the results
[57]. The efficiency of the analysis will also be influenced by the number of particles.
The smoothing length is empirically chosen from 0.8 to 1.8 times the initial particle
spacing for different application problems [58]. For example, the number of neighbour-
ing particles should be about 5, 21, 57 respectively in one-, two- and three- dimensional
cases, when h = 1.2∆p (∆p is the initial particle spacing) and κ = 2.

In the early application of the SPH method, the smoothing length was chosen
based on the initial average density of the whole problem system. Then the individual
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smoothing length of each particle should be modified to depend on the local density of
the considered particle for the expansion or compression problem of the fluid, this can
maintain the consistency of the accuracy through the whole problem domain [71, 73].
Later many researchers recognised that the smoothing length should be adaptive in
both space and time [39, 86, 103], which can be treated as the foundation of the
Adaptive SPH method. Shapiro et al. [98] and Owen et al. [89] both developed an
Adaptive SPH method only focusing on the adaptive kernel estimation with a fixed
number of particles, which is different from the new ASPH algorithm developed in this
thesis.

The main purpose of a varying smoothing length is to ensure relatively constant
number of neighbouring particles inside the support domain during the simulation.
There are many ways to achieve this and the common point of them is that the
smoothing length can be updated according to the average local density. The sim-
plest approach can be represented as;

hi = h0i

(
ρ0i
ρi

)1/d

, (6.1)

where hi indicates the individual smoothing length of particle i and h0i is the initial
smoothing length. Similarly, ρi indicates the local density of particle i and ρ0i is the
initial local density and d refers to the number of dimensions.

Benz suggested another way to identify the smoothing length during the time inte-
gration of the analysis [8]. The equation includes the time derivative of the smoothing
length;

dhi
dt

= −1

d

hi
ρi

dρ

dt
. (6.2)

This equation can be easily discretised by using the SPH approximation and added
into the SPH system (3.29) to be calculated in parallel.

In this thesis, the method for evolving the varying smoothing length is different.
Since only solid mechanics is considered here, the change of density can be ignored
during the simulation. The only thing that influences the choice of smoothing length
is the spacing of the particles. The distribution of the particles changes with time.

hi(t) = a∆pi(t). a ∈ [0.8, 1.8], (6.3)

where ∆pi(t) is the local spacing of particle i at time t and a is a given constant. This
equation means that the smoothing length hi(t) is changing with respect to space and
time. This equation can be applied in one- two- and three-dimensional space.
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6.1.2 The symmetric influence between particles

In this method, every particle has an individual smoothing length which varies both
in space and time, rather than a constant smoothing length for the whole system as in
the original SPH method. If the smoothing lengths of two different particles i and j are
different, the support domain of particle i may include the particle j but not necessarily
vice versa. This means that the force exerted from particle i to particle j may be not
the same as the corresponding reaction from j to i. This situation violates Newton’s
third law. In order to solve this problem, some treatments have been proposed to
ensure the symmetric property of particle interactions. There are two main approaches
for the treatment to maintain the symmetry of particle interactions, one is to correct
the smoothing length and the other is to adopt the averaged value of the smoothing
function for the two different particles.

There are several different ways to obtain a symmetric smoothing length for two
particles with a different original h. Benz proposed a way of calculating the symmetric
smoothing length, which is simply to take the arithmetic mean or the average of the
smoothing lengths of two different interacting particles [9].

hij =
hi + hj

2
. (6.4)

Other treatments can be adopted to obtain the symmetric smoothing length for two
interacting particles i and j by calculating the geometric mean of hi and hj,

hij =
2hihj
hi + hj

. (6.5)

Sometimes the maximal value of the smoothing lengths is used,

hij = max(hi, hj), (6.6)

or the minimal value of the smoothing lengths,

hij = min(hi, hj). (6.7)

All these treatments for the smoothing lengths are to ensure symmetric values of the
smoothing function between particles i and j (i.e. Wij = Wji). Then the value of the
smoothing function can be obtained by using the symmetric smoothing length,

Wij = W(Rij, hij). (6.8)

There are advantages and disadvantages of each method to ensure the symmetric
smoothing length hij. Using the arithmetic mean or the maximal value of the smooth-
ing lengths will lead to more neighbouring particles being included in the support
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domain and increase the computational cost. Sometimes a larger symmetric smooth-
ing length will also smooth out the interactions between particles. On the other hand,
the geometric mean or the minimal value of the smoothing length will tend to include
less neighbouring particles inside the support domain and reduce the accuracy.

As mentioned before, the main purpose is to maintain the symmetry of particle
interactions. The other approach is to directly calculate the average of the smoothing
function values without adopting the symmetric smoothing length [39],

Wij =
1

2

(
W(Rij, hi) +W(Rij, hj)

)
. (6.9)

These approaches that maintain the symmetry of the particle interactions are both
widely used in the application of the SPH method. The arithmetic mean of the smooth-
ing lengths (equation (6.4)) is adopted to achieve symmetric particle interactions in
this thesis.

6.2 Refinement criterion

There are several ways to identify where and when to carry out the APS technique.
Monaghan applied a linked-cell list containing particles and considered it as a guide
to splitting particles [79]. Kitsionas and Whitworth adopted a criteria called Jeans
condition to split particles [44]. The particle velocity gradient was used by Lastiwka et
al. [48] as a guide to carry out the APS technique. And there are some other criteria
to detect which particles should be split in [27, 65].

As far as we know, the criteria on where and when to carry out the APS technique
depends much on the application problems and cannot be unified. The system domain
will be classified into the splitting and merging sub-domains through the refinement
criteria. The original particle i belonging to the splitting sub-domains will be split
into several (ni) refinement particles, which we call fine particles (i, f), while the fine
particles belonging to the merging sub-domains will merge with other neighbouring
fine particles into a coarse particle.

This thesis applies two different refinement criteria in the simulation addressed here.

1. The particle velocity gradient will be a prescribed criterion to assign the split-
ting and merging sub-domains in shock wave problem simulations. The velocity
gradient of each particle will be calculated and a maximum value of the velocity
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gradient will be identified. The system domain will be then be classified into dif-
ferent sub-domains through comparison between the reference velocity gradient
ξ and the velocity gradient of particles

|∇ · vi| ≥ ξ Splitting, (6.10a)

|∇ · v(i,f)| < ξ, (f = 1, 2, . . . , ni), Merging. (6.10b)

2. We should adopt the particle splitting technique to obtain high accuracy when
the particles are near the boundary. The particles will be split when the distance
between the considering particles and boundary (xboundary) smaller than reference
distance ζ,

|xi − xboundary| ≤ ζ Splitting, (6.11a)

|x(i,f) − xboundary| > ζ, (f = 1, 2, . . . , ni), Merging. (6.11b)

6.3 Particle splitting

In the SPH simulations, it is possible that part of the problem domain is simulated
with slowly varying behaviour; i.e. the sub-domain with a low gradient of velocity or
slow velocity. In this case, only few particles are required to ensure accuracy in these
sub-domains. On the other hand, some sub-domains with sharp change of property
or wave rebound behaviour, require more particles to obtain the solution with high
accuracy. In this case, it is necessary to carry out the APS technique to achieve the
balance between accuracy and computational cost in the SPH simulation. Note that
the computational cost of the APS technique should be compared with the fully refined
domain and that the accuracy is only a little lower than the fully refined domain.

Feldman and Bonet proposed an approach for general refinement [27]. Lopez et
al. and Vacondio et al. also applied this approach in their work and obtained good
solutions for different simulations [66, 110]. In their approach, an original mother
particle is refined into four daughter particles with a symmetric pattern location in
two-dimensional space. There are two refinement parameters: the separation parame-
ter ǫr and smoothing ratio αr. The separation parameter ǫr represents the spacing ratio
of the daughter particles compared to the corresponding mother particle. The smooth-
ing ratio αr indicates the smoothing length ratio of daughter particles and mother
particle. According to the stability analysis, the parameters (ǫr, αr) = (0.5, 0.5) in
two-dimensional problems can avoid numerical instability [66]. This means that the
spacing between the daughter particle from two different mother particles are the same
as the spacing of the daughter particles from one mother particle, see Figure 6.2. Note
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Figure 6.2: The refinement pattern stated by Lopez et al. [66] in 2D space, when
ǫr = 0.5.

that the circles with dashed outlines indicate the positions of the previous mother
particles after particle splitting.

Here we will apply this symmetric pattern with the parameters (ǫr, αr) = (0.5, 0.5)
to the distribution of refinement particles in one-dimensional space. In this thesis, the
original particles are called coarse particles and refinement particles are named fine
particles. Let i denote the original coarse particle, (i, f) represent corresponding fine
particles and ni be the number of fine particles for one coarse particle i. The properties
of fine particles should be identified for the simulation,

{
x(i,f),m(i,f), ρ(i,f), h(i,f),v(i,f),σ(i,f)

}
. (6.12)

First, a coarse particle is split into several fine particles with a symmetric pattern
location around the considered coarse particle in a one-dimensional case, see Figure
6.3 (five fine particles in the figure).

Figure 6.3: Particle splitting process in one-dimensional problems.



CHAPTER 6. TIME-SPACE ADAPTIVE SPH METHOD 95

The spacing of fine particles is ∆p(i,f), which can be represented as,

∆pi =

(ni)
1/d∑

f=1

∆p(i,f), (6.13a)

where d is the dimension of the system. Normally, the fine particles will be uniformly
distributed and have the same spacing with the fine particles split from other coarse
particles, see Figure 6.3. Therefore the spacing can be rewritten as,

∆p(i,f) =
∆pi

(ni)1/d
. (6.13b)

Then it is easy to obtain the smoothing length of the fine particles through equations
(6.3) and (6.13b),

hi,f = a∆p(i,f), a ∈ [0.8, 1.8], (6.14a)

or

hi,f =
hi

(ni)1/d
. (6.14b)

In this algorithm, the splitting procedure presented should be based on mass and
momentum conservation. The total mass and momentum of the system should be
conserved during the splitting process. Therefore the mass of one coarse particle should
be the same as the sum of the corresponding fine particles.

mi =

ni∑

f=1

m(i,f) or m(i,f) =
mi

ni

. (6.15)

Since only solid mechanics are discussed here, the density is normally uniformly dis-
tributed in solids and the spatial gradient of the density can be ignored. Then the
density of the fine particles is the same as the coarse particle.

ρ(i,f) = ρi. (6.16)

For the velocity of the fine particles, Lopez et al. [66], Feldman and Bonet [27] applied
the same velocity as the original coarse particle,

v(i,f) = vi, f = 1, 2, . . . , ni. (6.17)

This approach ensures that the linear momentum and kinetic energy of the system are
conserved before and after the particle splitting process.
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The stresses of the fine particles will be interpolated by the method in the work
of Lopez et al. [66], Feldman and Bonet [27], which is originally from the Corrective
Smoothed Particle Method (CSPM) [15],

σ(i,f) =

N∑

j=1

mj

ρj
σjW(x(i,f) − xj, hj)

N∑

j=1

mj

ρj
W(x(i,f) − xj, hj)

, (6.18)

6.4 Error control

6.4.1 Refinment error

The procedures of particle splitting and merging will introduce an error in the sim-
ulation system, since the local properties are modified by the particle interpolation
technique. This error will influence the accuracy of the simulation and leads to the
instability of the system. It is important to estimate and minimise the error in order to
keep the simulation accuracy. Feldman and Bonet defined a measurement method for
the density refinement error [27], which is the error of the refinement particle approx-
imation of a function. This measure is also been improved by Vacondio et al. [109].
However, the momentum equation of the SPH method is based on the spatial gradi-
ent of the smoothing function and the method derived by Feldman and Bonet cannot
measure the errors on the refinement particle approximation of the spatial gradient of
a function. Then Lopez et al. proposed a similar method to measure the error of the
particle approximation of the spatial gradient of field variables [65, 66].

Consider a set of particles, the particle approximation of the spatial gradient of
field variables are determined by (2.33). Now the candidate particle i is refined into ni

fine particles, then we obtain,

< ∇fi >∗=< ∇fi > −mi

ρi
fi∇W̃i +

ni∑

j=1

m(i,f)

ρ(i,f)
f(i,d)∇W̃(i,f). (6.19)

The local error of the splitting procedure applied on particle i can be calculated by the
sum of the squares of the difference between the original properties and the properties
after splitting in each direction of the gradient. Combining with (6.15) we obtain,

ei(x) = m2
i

(
fi
ρi

∂W̃
α

i

∂xα
− 1

ni

ni∑

j=1

f(i,d)
ρ(i,f)

∂W̃
α

(i,f)

∂xα

)2

, (6.20)
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where the summation convention applies when a super-script α appears twice in a term
and here (6.20) will be the summation of the components of the gradients. Then the
global error is the integration of (6.20) in the whole problem domain,

Ei =

∫

Ω

ei(x)dx, (6.21)

where Ω indicates the problem domain.

6.4.2 Density refinement error

The local error of density after refinement is then calculated by using the continuity
density approach (3.8a) and Equation (6.19). Since the velocity of refinement particles
is the same as the original coarse particle, the local error of density after refinement
caused by the particle approximation of the spatial derivative can be written as,

eρi (x) = <
Dρ(x)

Dt
> − <

Dρ(x)

Dt
>∗ (6.22)

= mi(v(x)− vi)

(
∇W̃i(x)−

1

ni

ni∑

f=1

∇W̃(i,f)(x)

)
.

Then the global error of density after refinement can be presented as,

Eρ
i =

∫

Ω

(eρi (x))
2dx, (6.23)

Here it is obvious that the density global error is related to the velocity, which changes
with location and time. This means the error should be calculated for each time step
and leads to high computational cost. The aim is to identify the variables (x(i,f), h(i,f))
in Equation (6.23) in order to minimise the error. Since the velocity does not change
when carrying out particle splitting at time t, the optimisation of the density global
error can be achieved by minimising the value of the following equation,

E∇W̃
i =

∫

Ω

(∂W̃α

i (x)

∂xα
− 1

ni

ni∑

f=1

∂W̃
α

(i,f)(x)

∂xα

)2
dx, (6.24)

which is called the kernel gradient error in the work of Lopez et al. [66].

It is clear that the E∇W̃
i depends on the h, which changes with location and time.

However, the smoothing length h(i,f) of the refinement particles is proportional to the
smoothing length hi of the original coarse particles in this thesis, see Equation (6.14b),
which is related to the number of refinement particles for one coarse particle. Consider-
ing this, the kernel global error (6.24) can be simplified to depend on two components:
initial smoothing length of the coarse particles and the number of refinement particles

for one coarse particle. The target is to find the smallest value of E∇W̃
i to obtain the

approximation of the refinement particle distribution for problems.
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6.5 Merging of particle properties

The procedure of particle merging will be simpler than that for particle splitting. All
the corresponding fine particles of a certain original coarse particle will be merged
together into a coarse particle when the merging criterion is satisfied. Figure 6.4
presents the process of fine particles merging in a one-dimensional case.

Figure 6.4: Particle merging process in one-dimensional problem.

The properties of new coarse particles should be identified for the simulation,

{
xi,mi, ρi, hi,vi,σi

}
.

Since the fine particles are normally uniformly distributed at the beginning of the
splitting process, it is easy to merge the mass, location and density for the new coarse
particle i using Equations (6.25), (6.26) and (6.27),

mi = nim(i,f), (6.25)

xi =

∑ni

f=1 x(i,f)

ni

, (6.26)

ρi = ρ(i,f). (6.27)

The velocity of the new coarse particle should be the average velocity of the corre-
sponding fine particles to ensure momentum conservation.

vi =

ni∑

f=1

v(i,f)

ni

, (6.28a)
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and the total momentum after particle merging is conserved,

mivi =

ni∑

f=1

m(i,f)v(i,f). (6.28b)

The CSPM interpolation is still applied to obtain the value of the stress for the new
coarse particle after merging. Note that the neighbouring particles are all from the fine
particles in (6.29),

σi =

ni∑

j

m(i,f)

ρ(i,f)
σ(i,f)W

(
xi − x(i,f), h(i,f)

)

ni∑

f=1

m(i,f)

ρ(i,f)
W

(
xi − x(i,f), h(i,f)

) . (6.29)

Vacondio et al. and Spreng et al. proposed an approach to achieve the new smooth-
ing length without error [101, 110], which is adopted in the revised thesis. Since the
density at position xi should be constant before and after the particle merging process,
which means the density error at xi after merging is zero,

e(xi)
ρ = miW(xi − xi, hi)−

ni∑

f=1

m(i,f)W

(
xi − x(i,f), h(i,f)

)
. (6.30)

Since the value of W(xi − xi, hi) is equal to
3

2
hi for the cubic B-spline function in

one-dimensional space, Equation (6.30) can be rewritten into,

e(xi)
ρ = mi

3

2
hi −

ni∑

f=1

m(i,f)W

(
xi − x(i,f), h(i,f)

)
= 0. (6.31)

Then the smoothing length of coarse particle i after merging can be calculated by,

hi =

2
∑ni

f=1W

(
xi − x(i,f), h(i,f)

)

3ni

. (6.32)

Note that the merging strategy stated here is only suitable for small deformation prob-
lems, since the technique assumes the refinement particles stay close together.
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6.6 Adaptive stages for one time step

It is known that the size of a time step should satisfy the CFL condition. According
to Equation (4.3), if the CFL value is fixed, then the size of the time step depends
on the particle spacing. In the traditional SPH method applied to solid mechanics,
the change of particle spacing is very small in the simulation. Therefore, the size of
the time step will not change during the standard SPH simulation. However particle
spacing is adaptive in the ASPH simulation. Then the smallest time step will be chosen
to do the time integration after the particle splitting in the whole simulation in order
to ensure accuracy [5].

As mentioned in Section 4.4, the stages of one time step depend on the size of ∆t
and the particle spacing ∆p in the RKC time stepping scheme, shown in Equation
(4.18). In other words, the number of stages will only depend on the particle spacing
when the size of the time step is fixed. Figure 6.5(a) represents the relationship between
the number of stages and the particle spacing for the problem in Section 5.1 with three
fixed time steps ∆t = 0.157 µs, 0.236 µs and 0.393 µs. Figure 6.5(b) shows the
number of stages depending on the size of time steps with three fixed particle spacing
∆p = 10 mm, 4 mm and 2 mm.

(a) (b)

Figure 6.5: (a) The relationship between stages and particle spacing with different
fixed time steps. (b) The relationship between stages and time steps with different
fixed particle spacing.

It is clear to see from Figure 6.5, that the number of stages in one fixed time step will
adapt itself according to the changed particle spacing. Therefore the time adaptivity,
which indicates one fixed time step in the simulation but with different stages, can be
achieved by combining the RKC time stepping scheme and the ASPH method.
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The time integration process of the previous ASPH method is unlike the Adaptive
mesh refinement method, in which there are different time steps according to the mesh
discretisation. For example, the time step in the regions with refined mesh is smaller
than the coarse-mesh regions [10]. In the previous ASPH method, the smallest time
step was chosen to do the time integration for all the particles after the particle splitting
in order to ensure the accuracy of the ASPH method [5].

However, in this time-space ASPH method, there is only one fixed time step before
or after not only the particle splitting but also merging process by combining the RKC
time stepping scheme and the ASPH method. The stages at different time steps will
adapt themselves according to the particle spacing after the particle splitting or merging
process. The error analysis in Section 5.1 also proves that the influence of the number
of stages and the CFL values on simulation accuracy is very small. For instance, the
accuracy of the analysis with a small time step and fewer stages is very similar to the
analysis with a large time step and more stages in the RKC-SPH method. Therefore,
combined with the RKC time stepping scheme, the time-space ASPH method can bring
very similar accuracy as the previous ASPH method which applies the smallest time
step, but save computational cost.

6.7 Application of ASPH method

6.7.1 Shock wave propagation with the ASPH method

In order to examine the performance of the time-space ASPH method for the classi-
cal elastodynamics, here we solve the problem of shock wave propagation on a one-
dimensional elastic bar in the work of Mabssout [68] through the time-space ASPH
method.

Figure 6.6: Compression loading on a one-dimensional solid bar.

The length of the considered elastic bar is L = 1m as shown in Figure 6.6, with
material property of ρ = 2000 kg/m3 and the Young’s modulus is E = 80 × 106 Pa.
Initially, the bar is at rest with v = 0 and σ = 0. The velocity at the right end of the
bar is fixed (v = 0) and we apply a velocity on the left boundary as follow;

v(t) =




1 m/s, if 1 ms ≤ t ≤ 3.5 ms,

0 m/s, otherwise.
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This is a one-dimensional wave propagation problem which has an analytical so-
lution. Here, the value of stress under the compression loading can be calculated as
follow:

σ0 = v0
√
ρE = 4× 105 Pa. (6.33)

The stress wave will propagate through the bar with the physical wave speed, c =√
E

ρ
= 200 m/s. The wave propagates through the bar and bounds back at the fixed

right end. Then the stress σ at this point (L = 1 m) will be doubled to a value of
8× 105 Pa and the velocity of the shock wave after reflecting will also propagate along
the bar with the opposite direction and the value is v0 = −1 m/s.

First, we apply the standard SPH, ASPH and time-space ASPH method to simulate
this model in order to investigate the advantages of the time-space ASPH method. 240
particles are arranged to model the behaviour by using the standard SPH method
(∆pSPH = 4.167 mm here), and we take h = 1.5∆p here. In both the ASPH and time-
space ASPH analysis, 120 original coarse particles are allocated for this one-dimensional
bar, the initial spacing is ∆p0 = 8.333 mm. One coarse particle will be split into two
fine particles when the refinement criterion is satisfied. Using two fine particles in
these two cases ensures that the smallest spacing in these three simulations is the
same ( ∆p(i,f) = ∆pSPH = 4.167 mm). Here the analytical solution of the problem is
discontinuous, we choose 1% of the largest analytical velocity gradient as the reference
velocity gradient. The reference velocity gradient is calculated as ξ = 1% ∗ 1 = 0.01
and the reference distance as ζ = ∆p. Several simulations using the time-space ASPH
method with different frequency of particle refinement have been implemented to find
the value of frequency which can balance the accuracy and CPU time. Here the criteria
for splitting and merging will be detected every ten time steps.

Because of the boundary condition, the state of the bar is steady before t = 1 ms
and the refinement criterion will be satisfied after t = 1 ms. Taking CFL= 0.6 for these
three methods, the initial time step is ∆t1 = 0.0125 ms for the standard SPH simulation
with 240 particles and ∆t2 = 0.025 ms for the ASPH and time-space ASPH simulations
with 120 coarse particles. Then the change of time steps in two ASPH simulations is
shown in Figure 6.7(a). The blue line in Figure 6.7(b) presents the change of stages
in one time step in this time-space ASPH simulation (with ∆t2 = 0.025 ms). The red
line is the change of stages in one time step if the CFL value is 1.2 and size of time
step is ∆t2 = 0.05 ms.

The results of different methods are shown in Figure 6.8. Figure 6.8(a) and (b)
present the velocity and stress distributions at t = 5×10−3 s along the bar respectively;
Figure 6.8(c) shows the time evolution of the velocity at the mid point of the bar

(x =
L

2
) and (d) is the stress at the right end point of the bar (x = L). It is easy to

find that there are more particles in the sub-domain where there is a sharp change in
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(a) (b)

Figure 6.7: (a) The change of time steps during the simulation. (b) The change of
stages in one time step for the time-space ASPH.

velocity and stress in the ASPH simulations, see Figure 6.8(a) and (b). The accuracies
of the analysis simulated by these three methods are very similar in Table 6.1, but the
CPU time of the time-space ASPH method is smaller than the other two methods, the
computational cost can be reduced by the time-space ASPH method.

Standard Adaptive SPH Time-space ASPH

L1 error 0.1274 0.1287 0.1284

L2 error 0.1958 0.1970 0.1969

Refinement error E∇W̃
i - 1.48× 10−4 1.48× 10−4

CPU time(s) 1193.7 892.7 642.6

Number of particles 240 172 171

Table 6.1: Errors and computational time of using the standard, ASPH and time-space
ASPH methods for solving shock-wave propagation at time t = 5 ms.

It is worth investigating the influence of the number of extra fine particles on the
analysis accuracy. We apply different combination types of the coarse particles and fine
particles to simulate the shock wave propagation problem. Keeping the same smallest
particle spacing ∆p = 4.167 mm and the time step ∆t = 0.05 ms, seven different types
of combination of the coarse and fine particles can be obtained as follows,

• Type 1: 120 original coarse particles, splitting into 2 fine particles each.

• Type 2: 80 original coarse particles, splitting into 3 fine particles each.
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(a) (b)

(c) (d)

Figure 6.8: Velocity (a) and stress (b) distributions at t = 5×10−3 s along the bar; (c)

Time evolution of the velocity at the mid point of the bar (x =
L

2
); (d) Time evolution

of the stress at the right end point of the bar (x = L).

• Type 3: 60 original coarse particles, splitting into 4 fine particles each.

• Type 4: 48 original coarse particles, splitting into 5 fine particles each.

• Type 5: 40 original coarse particles, splitting into 6 fine particles each.

• Type 6: 30 original coarse particles, splitting into 8 fine particles each.

• Type 7: 24 original coarse particles, splitting into 10 fine particles each.

The results of the analysis are shown in Figure 6.9. The change of the stages,
accuracy and CPU time of the results for each combination of coarse and fine particles
are presented in Table 6.2. The CPU time is increasing when one coarse particle is
split into more than four fine particles. However, the accuracy is decreasing with the
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(a) (b)

(c) (d)

Figure 6.9: Velocity (a) and stress (b) distributions at t = 5 ms s along the bar with
different particle combinations through the time-space Adaptive SPH methods; (c) the

time evolution of velocity at the mid point of the bar (x =
L

2
); (d) the time evolution

of stress at the right end point of the bar (x = L)

number of fine particles increasing. In other words, the number of fine particles cannot
be increased without limit regarding not only accuracy but also computational cost.

Finally, we take 1000 coarse particles with one coarse particle splitting into two
fine particles to simulate this shock wave propagation problem to obtain high accuracy
results. Taking CFL= 1.0 for the initial particle spacing, the time step is ∆t = 5 µs.
The number of stage is 3 calculated by (4.18) at the beginning and the number of stage
will become to 5 after splitting. The simulation results are shown in Figure 6.10.
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Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7

L1 error 0.1286 0.1309 0.1361 0.1416 0.1482 0.1655 0.1865

L2 error 0.1968 0.1987 0.2026 0.2068 0.2120 0.2256 0.2424

Refinement error E∇W̃
i 0.00017 0.00059 0.0015 0.0026 0.004 0.0079 0.0133

Stages before splitting 4 3 3 3 3 2 2

Stages after splitting 5 5 5 5 5 5 5

CPU time(s) 559.7 499.4 464.6 478.6 489.4 492.0 512.2

Table 6.2: Errors and computational time of using time-space ASPH methods for
solving a shock-wave propagation problem at time t = 5 ms with different types of
coarse and fine particle combinations.

(a) (b)

(c) (d)

Figure 6.10: Velocity (a) and stress (b) distributions at t = 4 × 10−3 s along the bar
with 50 original particles plus 101 extra refinement particles by the Adaptive SPH

method; (c) time evolution of the velocity at the mid point of the bar (x =
L

2
); (d)

time evolution of the stress at the right end point of the bar (x = L)
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Convergence analysis

Similar to the RKC-SPH method, the rate of convergence for the numerical results is
reduced by the artificial viscosity for the time-space ASPH method. To investigate the
rate of convergence for this method, an example which is similar to the example in
Section 5.1.2 is simulated by the time-space ASPH method without artificial viscosity
here. A velocity is loaded at the left end of a one-dimensional bar with unity Young’s
modulus E and density ρ. The bar is fixed at the right end and with the length
L = 40 m., the loading velocity is given by,

v(t) =




ζ(sin(

π

15
t− π

2
) + 1) m/s if t ≤ 30 s,

0 m/s, otherwise.

where ζ = 0.001. Then different numbers of coarse particles ( 20, 30, 40, 50, 80, 100,
250 coarse particles) are arranged to simulate this problem and one coarse particle will
be split into two fine particles when the refinement criteria (ξ) is satisfied. Choosing
CFL= 1.0 for the initial spacing of different particle arrangements, the number of stage
is 3 obtained from (4.18) at the beginning and the number of stage will become to 5
after splitting. Figure 6.11(a) present the velocity distribution along the bar at t = 40 s
with different numbers of particles. The L1 and L2 error norms are shown in Figure
6.11(b). The rate of convergence of the RKC-SPH method obtained here is 1 for L1

error norm and 1.3 for L2 error norm without the influence of artificial viscosity, which
is slightly lower than RKC-SPH because of the refinement error.
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Figure 6.11: (a) The velocity distribution along the bar at t = 40 s; (b) the L1 and L2

error norms of the stress distributioin at t = 40 s.
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6.7.2 Static compressive problem

In this section, a static compressive loading problem on a one-dimensional bar will be
simulated to investigate the capability of the time-space ASPH method in the static
problem. Take the same properties of the bar as the example in Section 6.7.1, a
compression stress is loaded at the left end of the bar.

σ0 = 100 Pa,

then the strain of the bar will be ε =
σ0
E

= 1.25 × 10−6 on elastic problem. The

displacement of the left end of the bar will be ∆L = 1.25 µm. In dynamic, the velocity

at left end caused by loading will be v0 =
σ0√
Eρ

= 2.5−4 m/s. The wave propagates

through the bar and bounds back at the fixed right end. Then the original wave and
the reflective wave meet at the middle point of the bar and the stress value will be
the double of the initial stress σmid = 200. However the bar will reach a steady stage
and maintain quiescent condition in real case. Therefore the amplitude of stress at any
point of the bar will be close to 100 Pa and the amplitude of velocity will be close to
zero.

100 coarse particles are arranged to simulate this problem by using the time-space
ASPH method. One coarse particle will be split into two fine particles when the
refinement criteria is satisfied. The refinement criteria depends on the spatial derivative
of the velocity as in (6.10), ξ = 2.5 × 10−6 and ζ = ∆p are chosen for this problem.
The CFL value is 1.0 for the initial particle spacing, so the time step is ∆t = 5×10−5 s
here. The time evolutions of number of particles and stages for the simulation are
shown in Figure 6.12. This is because the spatial gradient of the velocity are smaller
than ξ after t = 1.4 s for all the particles, all the fine particles have been merged into
coarse particles. Therefore the stage remain to be three after t = 1.4 s.

Figure 6.13 shows the displacement of left end simulated by the time-space ASPH
methods, which is approaching to 1.25 µm. The velocity (a) and the stress (b) at
the middle of the bar have been presented in Figure 6.15. The amplitudes of the
stress and velocity are approaching to 100 Pa and zero after 1 s, respectively. The

gradient of density error after splitting is E∇W̃
i = 0.00021 and the error after merging

is E∇W̃
i = 4.3× 10−5.

Since the velocity gradients of all the coarse particles are smaller than the reference
velocity gradient at the steady stage, the number of particles reduces to 100 as shown
in Figure 6.15(a). The theoretic solutions of the velocity and stress at the steady stage
are v = 0 m/s and σ = 100 Pa for the whole bar. The associated plot of the stress
errors at the steady stage is shown in Figure 6.15(b). The error of the stress for each
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(a) (b)

Figure 6.12: (a) The number of particles in the simulation. (b) The change of number
of stages in the simulation.

Figure 6.13: Displacement at the left end of the bar.

particle is smaller than 1%. It is clear that the quiescent condition can be maintained
in this problem by using the time-space ASPH method and the time adaptivity of this
method are demonstrated.

Concluding remarks

In this chapter, the ASPH method is combined with the RKC time stepping scheme,
in which the distribution of particles adjusts itself and the stages in one time step
is adaptive before and after splitting. This is called the time-space ASPH method.
The varying smoothing length is introduced and then developed to be the adaptive
smoothing length for the adaptive SPH method. Different approaches to the adaptive
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(a) (b)

Figure 6.14: Velocity (a) and stress (b) at the mid point of the bar (x =
L

2
).

(1) (b)

Figure 6.15: (a) The velocity distribution along the bar at the steady stage. (b) The
error of the stress along the bar at the steady stage.

kernel estimation will be discussed and the one raised by Benz [9] will be adopted in
the ASPH method. The APS technique is applied for the SPH method, including the
splitting and merging of the particles. The technique of interpolating and merging
particle properties in [5, 27, 65, 101, 108, 109, 110] is applied in this chapter. The
refinement error is measured and optimised by the method in [65, 66]. The adaptivity
of the number of stages is explored for the time-space ASPH method in Section 6.6.
Due to the adaptive property of the particles distribution and stages in one step, the
accuracy and efficiency of the method will be greatly improved with small number of
particles and fixed time step.

In order to determine the performance of the new algorithm, the time-space ASPH
was applied on the simulation of the shock wave propagation in one-dimensional prob-
lems to prove the accuracy and efficiency of this method compared with the standard
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SPH and ASPH methods. The refinement criterion was chosen to be the spatial gra-
dient of the velocity for each particle. The particles near the boundary are also split
to ensure the accuracy. The computational time and accuracy of the standard SPH
method, ASPH and time-space ASPH method are compared in the analysis. In the
time-space ASPH simulation, one fixed time step is applied in the whole simulation.
The stages of one time step adjust themselves according to the smallest particle spacing.
It is found that the results of the time-space ASPH simulation have similar accuracy
to the standard SPH and ASPH simulation. However the large fixed time step can
be applied in the time-space ASPH method to save computational cost. The accuracy
of the time-space ASPH method by using different combinations between coarse par-
ticles and fine particles has been investigated using the technique in [65]. It can be
concluded that the time-space ASPH method has adaptivity on both time and space.
It can achieve a substantial reduction in memory and computational time, moreover
nearly the same accuracy is obtained.



Chapter 7

Conclusions

7.1 General remarks

This thesis presents improvements of the Smoothing Particle Hydrodynamics method.
A strong interest is focused on the application of the improved SPH method to elas-
todynamics. The contribution and achievement of the research will be outlined in this
chapter, including the improvements and applications of the SPH method.

In Chapter 1, the importance and the key points of numerical methods were first
introduced. Numerical methods can be classified into two types based on the form of
problem domain discretisation: the grid-based and mesh-free methods. Compared with
mesh-free methods, grid-based numerical methods are limited by the complex mesh
generation in the simulation and challenged by the dis-continuum problem domain.
Mesh-free numerical methods avoid the grid to make the discretisation components
more flexible and powerful in many applications. The SPH method is one of the oldest
mesh-free methods, uses integral representation to approximate the field function which
is discretised to give the particle summation. In this research the SPH method will be
improved and applied on elastodynamics.

The basic concept and the equations are derived for the SPH kernel estimation
process in Chapter 2. The SPH approximation can be divided into two steps: (i) kernel
approximation to represent the field variables and their derivatives in an integration
form by using smoothing functions and (ii) particle approximation to discretise the
continuous problem domain into a set of particles, which carry physical properties, i.e.
mass, volume and density. Different smoothing functions are introduced and compared
in this chapter. The approximation accuracy was influenced by the domain boundary
and there are several versions of the corrected SPH method to solve this problem. A
function approximation example is presented to compare the different versions of the

112
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corrected SPH method. The convergence analysis indicates that the SPH method with
corrected form has second order convergence.

To fulfill the requirements of the physical model, the governing equations of the
hydrodynamics are represented in the SPH approximation form in Chapter 3. Since the
governing equations can be derived based on both Eulerian and Lagrangian approaches,
these two approaches were introduced. The governing equations of hydrodynamics have
been derived into the SPH discretisation form. In addition, the accuracy near the slip
and non-slip boundaries is improved by including the ghost particles. Artificial viscosity
is introduced to smooth out the unphysical oscillation caused by the shock wave in the
elastodynamics. The SPH method is challenged by the tensile instability and different
special treatments are introduced to solve this numerical problem in Chapter 3. The
SPH system has been built by the particle approximation of the governing equations
and the special treatments to improve the accuracy of the method.

The SPH system is then combined with a time integration algorithm to obtain the
predicted solution for the motion of the system. This stage can be handled by the
explicit ordinary differential equation (ODE) solver, in which the Courant-Friedrichs-
Levy (CFL) condition plays an important role. The Runge-Kutta Chebyshev (RKC)
time stepping scheme is introduce in Chapter 4 to integrate the discretised SPH equa-
tions including other time integration methods, such as the Euler, predictor-corrector
and classical Runge-Kutta (RK) schemes. Compared with other time stepping meth-
ods which are currently widely used, the RKC method has the advantages of flexible
size and stages of each time step. The RKC time stepping scheme is more robust than
the other classical methods in the RK methods family since the stability region for
RKC is larger than others [112].

As a explicit hydrodynamic method, the RKC time stepping scheme is combined
with the SPH method to increase efficiency and accuracy. In order to explore the advan-
tages of the RKC-SPH method, different time stepping schemes are applied to perform
the time integration for the SPH method and they will be then compared through the
CFL values and accuracies in Chapter 5. A set of benchmark problems, which have a
theoretical solution, are simulated in this chapter to investigate this algorithm applied
to key areas of elastodynamics. A one-dimensional shock wave problem is first sim-
ulated by the RKC-SPH method to show the performance of the RKC-SPH method,
compared to the Euler, Predictor and RK4 time stepping schemes. Although the SPH
method is usually used to simulate dynamical systems, in the present study we use the
steady-state SPH results in comparison to the FEM applied to a static problem. The
results of quasi-static problem analysed by the RKC-SPH method show higher accu-
racy than the static FEM method and the SPH method with the predictor-corrector
time stepping scheme.

The RKC-SPH method is shown to have the capability to solve large deformation
problems, i.e. the two-dimensional oscillatory beam problem in Section 5.3. The stress
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fields and velocity vectors are presented to show the dynamic behaviour of the prob-
lem. The oscillation frequencies of different beams are presented to compare with the
analytical frequency. A large number of particles is used in the RKC-SPH method to
show the convergence of the method. In Section 5.4, the dynamic process of compres-
sion loading on a porous structure is simulated through the RKC-SPH method and the
results show the stability of this algorithm. These simulation results show the strong
capability of the RKC-SPH in solving large deformation problems.

Since the RKC-SPH method is a particle-based method, the influence of the initial
particle distribution on the simulation results has been explored in the problem of the
two-dimensional elastic plate (Section 5.2). Three different particle distributions were
arranged to simulate the compression process of the two-dimensional elastic plate with
a circular void; square distribution, radial distribution and equally radial distribution.
Comparison results of the stresses and the velocity fields among the three distributions
show that the equi-radial distribution has the best performance since particles are more
uniformly distributed near the boundary in this allocation plan.

However, there is another way to solve the problem caused by the non-uniform
particle distributions in the SPH method. In this research, the mass of each particle
is assumed to be constant in distributions because we try to simplify the simulation
process and only focus on how to improve the SPH algorithm. If we adopt the area
times the density to calculate the masses for particles, the problem caused by the
nonuniform distribution near the boundary can be solved.

In engineering practical applications, the current status of the SPH method sim-
ulation has reached a limit is here that a large-scale problem domain requires using
a prohibitively large number of particles to get the sufficient resolution, in order to
ensure high accuracy. However, even using a large number of particles on high per-
formance computers still cannot meet the requirement for large spatial problems in
some cases and also leads to expensive computational cost. To address this, a new
time-space ASPH has been proposed in Chapter 6. Unlike previous ASPH simulations,
the smallest time step is chosen for all particles after the splitting process, one fixed
time step can be applied for the time-space ASPH method. The number of stages for
one time step is adaptive according to the refinement of the particles. The time-space
ASPH is applied to elastodynamics to obtain similar accuracy as the standard SPH
but with a small number of particles. In this new method, not only the distribution
of the particles but also the number of stages are adjusted during the time integration
in order to save computational cost in the analysis. A one-dimensional shock wave
problem is simulated by the time-space ASPH method to demonstrate the efficiency
and accuracy compared to the standard SPH and ASPH methods. Another static com-
pressive loading problem is modelled to prove the capability of the time-space ASPH
on elastodynamics.
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7.2 Achievements

Considerable achievement has been made throughout this thesis to provide the im-
provements of the SPH method applied to elastodynamics. The contribution of the
work can be summarised into two aspects:

1. It is the first to combine the SPH method with the RKC time stepping scheme to
achieve high accuracy and efficiency of the simulation. In the explicit hydrody-
namic method, the Courant-Friedrichs-Levy condition (CFL) plays an important
role in the simulation of time integration. This is a necessary condition of the
numerical stability when solving ODEs. The CFL condition ensures that the
propagation speed of the numerical simulation should be smaller than the speed
of physical propagation, which means the size of the time step in the simulation
is limited by the CFL condition. Large time steps will cause instability in the
numerical simulation, whereas small time step sizes can bring high accuracy for
the numerical simulation but high computational cost.

The RKC time stepping scheme is a new algorithm in the Runge-Kutta methods
family. The advantage of this method is that it can adapt the number of stages
itself in one time step according to the value of CFL. When we have a large
CFL value (large size of ∆t) the number of stages in one step is large to avoid
instability. The stability region of the RKC method is larger than the other tradi-
tional Euler and Runge-Kutta family methods. Unlike the other traditional time
stepping schemes, the accuracy of the RKC method is not influenced when we
have large numbers of stages in one large time step. In the other traditional time
stepping schemes, accuracy reduces while the size of time step increases, because
larger sizes of time step dissipate more simulation information. This is demon-
strated by the numerical results of the one-dimensional shock wave propagation
example in Chapter 5.

The application results of the SPH method combined with the RKC time stepping
scheme in Chapter 5 show a strong stability for this time integration algorithm
compared with other traditional algorithms, such as Euler, predictor-corrector
and Fourth order Runge-Kutta methods. The efficiency of the RKC-SPH al-
gorithm is also improved by the RKC time stepping scheme since it can use a
small number of stages when the CFL value is the same as RK4 scheme, saving
computational time.

Note that the SPH method is a dynamic method and the results calculated by it
are only snapshots of the whole dynamic process rather than a perfectly steady
state. However, this RKC-SPH algorithm still shows strong capability in the
steady state result compared to the FEM result when handling the quasi-static



CHAPTER 7. CONCLUSIONS 116

problem, even the FEM result is from a static simulation carried out by the
software ABQUAS. The result of the SPH method with the predictor-corrector
time stepping scheme has slightly lower accuracy than the RKC-SPH and the
FEM results. In other word, combining with the RKC time stepping scheme
improves the performance of the SPH method. The convergence analysis results
also show that the rate of convergence for the RKC-SPH method has the 1.5 for
L2 error norm.

In conclusion, the RKC-SPH method has the advantages:

• Improve the stability of the method compared with the other traditional
time stepping schemes.

• Save the computational cost during the simulation since the CFL value can
be much larger than in other schemes.

2. The new time-space Adaptive SPH method has been explored and applied on elas-
todynamics. As mentioned before, the current limitation of the SPH method
is the requirement of a large number of particles in order to ensure high accu-
racy when solving large scale problems. In this situation, a new version of the
SPH method, which can adapt the particle distribution in the simulation, has
been raised by some researchers [65, 87, 88, 110]. In previous ASPH simulations,
the smallest time step will be chosen for all particles after the splitting process
[5], the new time step ∆tnew is regarding as the new particle spacing (∆pnew or
∆p(i,f)). In other words, the size of ∆t in previous ASPH will be reduced af-
ter the particle splitting process. In this research, the adaptivity of the method
proposed here is different from the method introduced by the other researchers.
One consistent time step ∆t regarding to the initial particle spacing (∆pinitial or
∆pi) can be applied in the whole simulation and the number of stages s will be
adaptive according to the process of particle splitting and merging. Therefore,
this method involves not only adaptive particle spacing ∆p but also an adaptive
number of stages s in one fixed time step ∆t. This is achieved by combining the
ASPH with the RKC time-stepping method, because of the stage adaptivity of
the RKC scheme. This method is called the time-space Adaptive SPH method.
The adaptivity of the stages is explored in this research. Due to the adaptive
property of the particles distribution and the stages s in one time step ∆t, the
accuracy of the method is similar to the simulation with large number of particles
and the computational cost is reduced.

In this method, the basics of adaptive mesh refinement (AMR) are adopted into
the particle methods. This is called the adaptive particle splitting (APS) tech-
nique, studied by Lopez in fluid flow simulations [65]. Since the particle distri-
bution is changed, the smoothing length is also varied for each particle. The
calculation of varying smoothing length and the adaptive kernel estimation are
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introduced. The properties of the refinement particles are defined by the CSPM
interpolation method. On the other hand, the properties of the particles after the
merging process are also calculated based on the CSPM interpolation method.

The refinement criterion also plays an important role in the ASPH method, which
defines when and where to interpolate refinement particles and merge refinement
particles into a coarse particle. As far as we know, the criteria on where and when
to carry out the APS technique depend much on the application problems and
cannot be unified. The system domain will be classified into splitting and merging
sub-domains through the refinement criteria during the simulation. The original
particle belonging to the splitting sub-domains will be split into several refine-
ment particles, while the fine particles belonging to the merging sub-domains will
merge with other neighboring fine particles into a coarse particle. The error after
carrying out the APS technique compared with the original distribution will be
analysed and the error minimisation approach of the work in [65] is applied to
ensure the stability of the ASPH method.

A dynamic adaptive particle refinement algorithm for SPH is presented in Chap-
ter 6 and the ASPH method is applied on two benchmark one-dimensional prob-
lems, which have the theoretical solutions. The results of the standard SPH,
ASPH and time-space ASPH are compared and the rate of convergence for this
method has been proved to be 1.3 for L2 error norm.

The time-space ASPH method is first used to model the classical one-dimensional
shock wave problem. The results determine the performance of the time-space
ASPH method in comparison with the standard SPH method and ASPH method,
since there is a analytical solution for this shock wave problem. The refinement
criterion is the spatial gradient of the velocity of each particle. The second
example is the simulation of a classical static compressive problem, which also
has an analytical solution. The refinement criterion is the spatial gradient of the
velocity of each particle and the distance to the solid boundary.

The computational time and accuracy of the stand SPH, Adaptive SPH and
time-space SPH methods are compared and it is found that it only needs a small
number of particles in the time-space ASPH simulation to obtain similar accuracy
results with standard SPH simulation. The large size of the time step can be
chosen in the time-space SPH method and the stages adjust according to the
particle distribution. Using the dynamic adaptive particles refinement procedure
and adaptive stages for one time step with the adequate refinement criterion,
instead of adopting a fine discretisation for the whole domain and a small size of
time step in the whole simulation, can deliver a substantial reduction in memory
and computational time, while nearly the same accuracy is achieved. The results
of the ASPH method show its strong capability to solve elastodynamic problems.
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In conclusion, the time-space ASPH method has the advantages:

• Improve the stability of the method compared with the original ASPH
method since the number of stages is adaptive with the particle refinement
procedure.

• Save computational cost during the simulation.

7.3 Future work

During the research process, unsolved and partially unsolved issues were encountered.
These are presented here as suggestions for future work.

1. Reconstruction of asymptotic-preserving schemes to resolve different time scales.

Through applying the Runge-Kutta Chebyshev time stepping scheme for the SPH
method, it is found that an adequate time integration algorithm plays an impor-
tant role in the SPH simulation. It is worth reconstructing asymptotic-preserving
time stepping schemes to resolve different time scales for SPH simulations in fu-
ture.

2. Apply the time-space ASPH method to nonlinear elastodynamics and elastoplastic
dynamic cases.

In this research, all the applications focus on pure elastodynamic problems. It is
worth enhancing the application of the time-space ASPH method to the areas of
nonlinear elastodynamics and elastoplastic dynamic cases.

3. Combine the time-space ASPH method with the FEM method to solve large size
scale problems

In the real engineering application, the analysed structure always has a large
scale size, requiring a large number of particles to be allocated (probably 107 −
109 particles for the whole domain). As we know, it is very time consuming
for the SPH simulation with such large numbers of particles. Therefore, it is
worth considering the combination of the time-space ASPH method and the FEM
method to construct a more efficient numerical method.

Take a large scale structure formed by cellular solids as an example, the initial
work involves building an ASPH code to simulate the deformation of a small
cube of cellular solids. The boundary conditions need careful attention offering
alternative approaches to be explored to capture zero and full rebound responses.
After the mechanical response has been simulated in the cube, subjected to many
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different boundary stresses (uniform on each face, but of different magnitude in
the three dimensions), a plasticity model will be constructed to represent the
macroscopic relationship between stress and strain. Then the FEM employing
this plasticity model will be used to simulated the mechanical behaviour of the
(large) structural component.

4. Implementation on GPUs for 3D problems. The simulation of complex three-
dimensional system is always limited by the computational cost in CPU. The
parallel feature of GPUs has the ability on modelling large scale and complex
structure domain. It is more powerful for the computational capability of the
graphical processing units (GPUs) to carry out the numerical simulation.
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Appendix A

Appendix

A.1 Substantial Derivative

Before the derivation of governing equations, the physical meaning of substantial deriva-
tive should be introduced. For this we choose the infinitesimal moving fluid element
model. and we assume the vector velocity (Figure 3.1) is,

v = ui+ vj+ wk. (A.1)

Here bold-face notation is used to denote the vector quantities. i, j and k are the
orthogonal directions of the Cartesian Coordinates.

Figure A.1: Fluid element moving in the fluid flow.

The components in three dimensions are determined as,

u = u(x, y, z, t),

129
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v = v(x, y, z, t),

w = w(x, y, z, t).

Here, we assume that the flow is unsteady and density changes with the time and space.

ρ = ρ(x, y, z, t)

Considering an infinitesimal element of fluid at time t1(A), the density of the fluid
element can be presented as,

ρ1 = ρ(x1, y1, z1, t1).

At time t2, the same element has moved to B in Figure A.1. Therefore the density of
this element at time t2 is;

ρ2 = ρ(x2, y2, z2, t2).

Using a Taylor Series to expand the density function ρ = ρ(x, y, z, t) at point A. The
Taylor Series is as follow,

f(x) = f(x0) +
∞∑

n=0

f (n)(x0)

n!
(x− x0)

n.

So we have,

ρ = ρ1+
∂ρ

∂x

∣∣∣∣
x=x1

(x−x1)+
∂ρ

∂y

∣∣∣∣
y=y1

(y−y1)+
∂ρ

∂z

∣∣∣∣
z=z1

(z−z1)+
∂ρ

∂t

∣∣∣∣
t=t1

(t−t1)+. . . (A.2)

ρ2 can be expressed as follows

ρ2 = ρ1+
∂ρ

∂x

∣∣∣∣
x=x1

(x2−x1)+
∂ρ

∂y

∣∣∣∣
y=y1

(y2− y1)+
∂ρ

∂z

∣∣∣∣
z=z1

(z2− z1)+
∂ρ

∂t

∣∣∣∣
t=t1

(t2− t1)+ . . .

Ignoring higher-order terms and dividing by (t2 − t1), we have,

ρ2 − ρ1
t2 − t1

=
∂ρ

∂x

∣∣∣∣
x=x1

(
x2 − x1
t2 − t1

) +
∂ρ

∂y

∣∣∣∣
y=y1

(
y2 − y1
t2 − t1

) +
∂ρ

∂z

∣∣∣∣
z=z1

(
z2 − z1
t2 − t1

) +
∂ρ

∂t

∣∣∣∣
t=t1

. (A.3)

This gives the rate of change in density of an infinitesimal fluid element moving from
A to B. If the step ∆t between t1and t2 is very small, this term becomes

lim
t2→t1

ρ2 − ρ1
t2 − t1

≡ Dρ

Dt

∣∣∣∣
t=t1

.

Note that, Dρ/Dt is different from ∂ρ/∂t. Dρ/Dt is the time rate of change in density
for the moving fluid element from t1(A) to t2(B). ∂ρ/∂t is the time rate of change in
density for the fixed point A. The notation D/Dt is called the substantial derivative.

Because we have,

lim
t2→t1

x2 − x1
t2 − t1

≡ u,
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lim
t2→t1

y2 − y1
t2 − t1

≡ v,

lim
t2→t1

z2 − z1
t2 − t1

≡ w.

When the time interval ∆t is very small (t2 → t1), the equation (A.3) will become;

Dρ

Dt

∣∣∣∣
t=t1

= u
∂ρ

∂x

∣∣∣∣
x=x1

+ v
∂ρ

∂y

∣∣∣∣
y=y1

+ w
∂ρ

∂z
|z=z1 +

∂ρ

∂t

∣∣∣∣
t=t1

.

This form for a particular point can be transfer into general form,

Dρ

Dt
= u

∂ρ

∂x
+ v

∂ρ

∂y
+ w

∂ρ

∂z
+
∂ρ

∂t
. (A.4)

Then the expression of substantial derivative can be extracted;

D

Dt
= u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
+
∂

∂t
. (A.5)

Furthermore, the Nabla operator is the spatial gradient defined as follows;

∇ = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
. (A.6)

Then, combining (A.4) and (A.5), the substantial derivative can be expressed as,

D

Dt
=

∂

∂t
+ v · ∇. (A.7)

Where D/Dt is the substantial derivative; ∂/∂t is the local derivative, which is the
time rate of change at a fixed point; v · ∇ means convective derivative, which is the
time rate of change caused by the movement of the element in a field spatially different
[1].

A.1.1 Divergence of the velocity

Consider a moving control volume of fluid with volume V (Figure A.2). The mass of
the moving element is not changed by time and the element is made up of the same
particles moving with the fluid flow. Since the element with the surface dS is moving
with the velocity v, the change of volume ∆V is due to the movement of dS during a
time interval ∆t.

∆V = [(v∆t) · n]dS = (v∆t) · dS, (A.8)

where n is the unit vector to the surface at dS and the vector dS has the expression

dS = ndS. If dS is small, the volume of the fluid element can equal

∫ ∫

s

(v∆t) · dS.
Dividing by ∆t, the result is the time rate of volume change;

DV

Dt
=

1

∆t

∫ ∫

s

(v∆t) · dS =

∫ ∫

s

v · dS. (A.9)
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V

S

v

△v t

n

dS

Figure A.2: Moving control volume for the physical interpretation of the divergence of
velocity.

The divergence theorem is,

∫ ∫

s

v · dS =

∫ ∫ ∫

V

(∇ · v)dV .

Therefore, we can represent (A.9) as,

DV

Dt
=

∫ ∫ ∫

V

(∇ · v)dV . (A.10)

Equation (A.10) is for the control volume. When the control volume is very small δV .
The case becomes an infinitesimal moving fluid element case. We could rewrite (A.10)
as,

D(δV )

Dt
=

∫ ∫ ∫

δV

(∇ · v)dV . (A.11)

Assuming δV is small enough that ∇ · v stays the same value throughout δV . Then
we have,

D(δV )

Dt
= (∇ · v)δV,

or

∇ · v =
1

δV

D(δV )

Dt
. (A.12)

A.2 Conservation of Mass

For mass conservation, we consider an infinitesimally small element moving with the
fluid flow (right of Figure 3.1b). The mass of this small element is conserved, but the
volume and density change during the volume moving process. We identify the mass
of the small element as δm. So;

δm = ρδV. (A.13)

Because the element’s mass is fixed, the substantial derivative of mass is zero.

D(δm)

Dt
= 0
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Combine these two equations above and do the ordinary derivation, we have

D(ρδV )

Dt
= δV

Dρ

Dt
+ ρ

D(δV )

Dt
= 0

or
Dρ

Dt
+ ρ(

1

δV

D(δV )

Dt
) = 0. (A.14)

It is easy to see that the term in bracket of (A.14) is the same as divergence of the

velocity (∇ · v =
1

δV

D(δV )

Dt
). So by combining (A.14) and (A.12),

Dρ

Dt
+ ρ∇ · v = 0. (A.15)

Expanding the equation above, it becomes,

Dρ

Dt
= −ρ

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)

= −ρ
(
∂vx
∂x

+
∂vy
∂y

+
∂vz
∂x

)
.

This equation can be rewritten in another form which will be used in SPH in the next
section,

Dρ

Dt
= −ρ∂v

α

∂xα
= −ρ∇ · v. (A.16)

Note that the summation convention applies when a super-script appears twice in a

term. That is,
∂vα

∂xα
implies

(
∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

)
.

A.3 Momentum equation

First we introduce the fundamental physical principle (Newton’s second law),

F = ma. (A.17)

Assuming an infinitesimally small moving fluid element, applying Newton’s second law
here means that the sum of forces on the element is equal to the acceleration times the
mass. We only consider the forces in the y direction first;

Fy = may,

where the Fy and ay are the y component of force and acceleration respectively.

There are two sources of this force: body force and surface force. The surface force,
we also have two sources: pressure and viscosity. Assume the body force per unit mass



APPENDIX A. APPENDIX 134

F a=m

Body forces Surface forces

Pressure Viscous

Normal stress Shear stress

Weight
(due to gravity)

Electro-magnetic

acting on the fluid element is f . So fy is the body force in y direction. Thus the body
force on fluid element in y direction is ρfy(dxdydz).

Figure A.3 shows the force analysis in the y dimension of an infinitesimal moving

fluid element. The pressures, including p and (p +
∂p

∂y
dy) are the fluid pressure in

y direction. The normal stresses, including σyy and (σyy +
∂σyy
∂y

dy), are a suction

from other elements to keep all the fluid elements staying together. The shear stresses,

including σxy, σzy, (σxy+
∂σxy
∂x

dx) and (σzy+
∂σzy
∂z

dz), are frictional from other elements

to move together. According to the force analysis Figure A.3, we obtain the surface
force Fs in the y direction,

Fs =

(
− ∂p

∂y
+
∂σyy
∂y

+
∂σxy
∂x

+
∂σzy
∂z

)
dxdydz. (A.18)

The total force in the y direction Fy can be given by the sum of body force and surface
force,

Fy = (−∂p
∂y

+
∂σyy
∂y

+
∂σxy
∂x

+
∂σzy
∂z

)dxdydz + ρfy(dxdydz). (A.19)

Because m = ρdxdydz, the acceleration in the y direction is ay , ay is equal to
Dv

Dt
.

Then we find,

ρ
Dv

Dt
= ρ

Dvy
Dt

= −∂p
∂y

+
∂σyy
∂y

+
∂σxy
∂x

+
∂σzy
∂z

+ ρfy.

Using a similar method, the equations of acceleration in x and z directions can be
represented as,

ρ
Du

Dt
= ρ

Dvx
Dt

= −∂p
∂x

+
∂σxx
∂x

+
∂σxy
∂y

+
∂σxz
∂z

+ ρfx,

ρ
Dw

Dt
= ρ

Dvz
Dt

= −∂p
∂z

+
∂σzz
∂z

+
∂σxz
∂x

+
∂σyz
∂y

+ ρfz.

When the problem turns to solid mechanics, there is no pressure in a solid only a large
stress σ. Then we have;

ρ
Dvx
Dt

=
∂σxx
∂x

+
∂σxy
∂y

+
∂σxz
∂z

+ ρfx, (A.20a)



APPENDIX A. APPENDIX 135

Figure A.3: Force analysis in y dimension.

ρ
Dvy
Dt

=
∂σyx
∂x

+
∂σyy
∂y

+
∂σyz
∂z

+ ρfy, (A.20b)

ρ
Dvz
Dt

=
∂σzx
∂x

+
∂σzy
∂y

+
∂σzz
∂z

+ ρfz. (A.20c)

The three equations (A.20a), (A.20b) and (A.20c) can be combined into one which is
used in the next section.

Dvα

Dt
=

1

ρ

∂σαβ

∂xβ
+ fα, (A.21a)

or

Dv

Dt
=

1

ρ
∇σ + f. (A.21b)
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Figure A.4: The deformation analysis of a small element in two dimensions.

A.4 Stress tensor calculation

In a similar manner to stresses, strains also can be classified in two types, normal strain
and shear strain. In an isotropic solid, Hooke’s law states that normal strain is caused
by normal stress. First, consider a two-dimensional problem Figure A.4. There is a
small element with length dx and height dy. After a loading is applied, the element
becomes a rhombus and moves some distance (r(x, y)). From the analysis in Figure
A.4, we have the original size of the element,

AB = dx and CD = dy.

Then after loading, the sizes become,

ab =

√(
dx+

∂rx(x, y)

∂x
dx

)2

+

(
∂ry(x, y)

∂x
dx

)

= dx

√

1 + 2
∂rx(x, y)

∂x
+

(
∂rx(x, y)

∂x

)2

+

(
∂ry(x, y)

∂x

)
.

For a small displacement, the squares of the displacement gradient can be ignored, and
we will obtain,

ab ≈ dx+
∂rx(x, y)

∂x
dx.
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The normal strain in the x-direction can be written as,

εxx =
ab− AB

AB
=
∂rx(x, y)

∂x
.

Similarly, transforming the equation in to three dimensions,we can get the normal
strain in the y and z directions as well,

εxx =
∂rx(x, y, z)

∂x
, (A.22)

εyy =
∂ry(x, y, z)

∂y
, (A.23)

εzz =
∂rz(x, y, z)

∂z
. (A.24)

The definition of shear is the change of angle between AB and AC. Therefore, the
shear strain in Figure A.4 equals,

γxy = θ + φ.

For the analysis in Figure A.4, we find,

tan θ =
∂ry(x,y)

∂x
dx

dx+ ∂rx(x,y)
∂x

dx
=

∂ry(x,y)

∂x

1 + ∂rx(x,y)
∂x

,

tanφ =

∂rx(x,y)
∂y

dy

dy + ∂ry(x,y)

∂y
dy

=

∂rx(x,y)
∂y

1 + ∂ry(x,y)

∂y

.

Since the displacement gradient can be ignored, we find,

∂rx(x, y)

∂x
<< 1;

∂ry(x, y)

∂y
<< 1.

As the change in angle is very small, tan θ ≈ θ and tanφ ≈ φ. Thus the angle values
are,

θ ≈ ∂ry(x, y)

∂x
; φ ≈ ∂rx(x, y)

∂y
.

Therefore, the shear strain can be represented as;

γxy = θ + φ =
∂ry(x, y)

∂x
+
∂rx(x, y)

∂y
.

Because εxy is equal to εyx and εxy + εyx = γxy, we have,

εxy = εyx =
1

2

(
∂ry(x, y)

∂x
+
∂rx(x, y)

∂y

)
.



APPENDIX A. APPENDIX 138

We can apply this for all three dimensions, we can obtain,

εxy = εyx =
1

2

(
∂ry(x, y, z)

∂x
+
∂rx(x, y, z)

∂y

)
,

εxz = εzx =
1

2

(
∂rz(x, y, z)

∂x
+
∂rx(x, y, z)

∂z

)
,

εyz = εzy =
1

2

(
∂rz(x, y, z)

∂y
+
∂ry(x, y, z)

∂z

)
.

We can write the normal strain and shear strain into a short form;

εαβ =
1

2

(
∂rα

∂xβ
+
∂rβ

∂xα

)
. (A.25)

and the time rate of strain can be presented as,

ε̇αβ =
1

2

(
∂vα

∂xβ
+
∂vβ

∂xα

)
. (A.26)

The relationship between a strain tensor and a stress tensor can be represented by
this matrix [27];




εxx
εyy
εzz
2εyz
2εzx
2εxy



=

1

E




1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0
0 0 0 2(1 + ν) 0 0
0 0 0 0 2(1 + ν) 0
0 0 0 0 0 2(1 + ν)







σxx
σyy
σzz
σyz
σzx
σxy



, (A.27)

where ν is Poisson’s ratio and E is Young’s Modulus. (A.27) can be represented as,

εαβ =
1 + ν

E
σαβ − ν

E
δαβσkk, (A.28)

where σkk is equal to σxx + σyy + σzz and δαβ is the Kronecker delta function,

δαβ =

{
1, α = β,
0, α 6= β.

Therefore, the stress can be calculated by (A.27),

σαβ = 2µεαβ + λδαβεkk, (A.29)

where λ equals
2ν

1− 2ν
µ, µ equals

E

2(1 + ν)
and εkk equals εxx + εyy + εzz.


