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Abstract 

How to facilitate students’ understanding of mathematics is a major concern for the 

mathematics education community as well as education authorities, especially in England, 

UK and Shanghai, China. However, research into such understanding in these two regions is 

still in its infancy. The aim of this thesis is to contribute to this research area by investigating 

how well students understand a particular mathematical concept, linear function, and describe 

how their understanding has been shaped. A model of understanding function is defined in 

terms of six levels: Variable Perspective, Dependent Relationship, Connecting 

Representations, Property Noticing, Object Analysis, and Inventising. These six levels are 

developed by examining the most prominent theories from existing Western and Eastern 

literature on understanding function. Using this model, three perspectives around 

understanding linear function are investigated: what the official documents expect; what 

students actually achieve; and teachers’ views of how students’ understanding of linear 

function develops. Mixed methods are adopted to portray a holistic view of understanding 

function in the two regions. The quantitative data analysis includes three curricula and seven 

selected textbooks to identify their characteristics and requirements. The main study also 

analyses student tests from 403 Year 10 Higher Level English students and 907 Grade 8 

Shanghai students. Findings demonstrate that the Shanghai students have more abstract 

understanding than the English Higher Level students, and are more comfortable with 

algebraic expression, which is emphasised heavily in the Shanghai curriculum and textbook. 

The graphic representation dominates the Higher Level English students’ solution 

approaches, which is again emphasised in their textbooks. This study recommends that the 

more emphasis should be on algebraic expression for understanding linear function in 

England and graphic representation in Shanghai. 

Key words: comparative study, linear function, understanding 
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Part One: Research Context 

This study is an analysis of students’ understanding of linear function in England and 

Shanghai. It attempts to identify how to enhance students’ learning with understanding, 

which remains one of the central aims in mathematics education around the world. From a 

comparative education perspective, the consistent superiority of Shanghai students’ 

performance in mathematics (PISA specifically), as evidenced by their top ranking in 

international league tables, suggests that there must be something in the process of teaching 

and learning that Shanghai has developed which is absent in what England does now. 

However, what England could learn from Shanghai and what Shanghai could learn from 

England, in terms of the understanding of linear function, is an important contributory factor 

for this thesis. The league tables from large-scale cross-national projects for student 

assessment, which illustrate the gap in mathematics performance between England and 

Shanghai, also imply that what makes Shanghai students so successful should be related to 

how well they understand mathematical concepts and use them in real world situations. 

Therefore, this study aims to investigate the resemblances and discrepancies of mathematical 

understanding concerning both the pure knowledge and the real world application of that 

knowledge. Further inquiry into how these differences and similarities may have been shaped 

in the case of linear function will be probed by analyses of the curricula, the respective 

textbooks and interviews with selected teachers.  

In seeking to explain the realities of understanding of mathematical concept in 

English and Shanghai junior secondary school students, this thesis is organised into three 

main parts. In the first part, I set out the research context, introduce relevant literature from 

similar comparative studies, and examine their methodologies to verify this study’s 

methodology.  
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Chapter 1 Introduction 

The purpose of the first chapter is to provide an overview of this study. It has six main 

sections and begins with what the thesis is about, followed by the rationale of this study. 

Then the research questions as well as the structure of the thesis will be addressed. Fifthly, 

the significance of the phenomenon being studied will be highlighted. The sixth section will 

outline the reasons for choosing case study approach. 

1.1 The Focus of the Study 

This study investigates the development of students’ understanding of mathematical 

concept as well as identifying their strengths and weaknesses during the learning process, 

within England and Shanghai by considering a specific topic, namely linear function. The 

definition of understanding of linear function comes out by forming a general model of 

understanding function through summarising the most prominent theories from existing 

Western and Eastern (particularly in the Shanghai situation) literature. This model focuses 

primarily on the understanding of pure mathematics knowledge. The application in the real 

situation, however, will be explored as a consequence of the extent of understanding of pure 

knowledge. This use of knowledge shows the diverse approaches in the two regions towards 

understanding mathematical concept and reflects the ways in which students’ understandings 

are shaped. Within each region, this study intends to measure students’ developing 

understanding by examining four elements that constitute a coherent whole. These aspects 

are: the requirements of the compulsory curricula – England’s national curricula and 

Shanghai’s municipal curriculum; features of official textbooks; students’ performance in two 

set of tests – one which tests pure knowledge understanding and a second which tests 

students’ ability to apply that; and selected teachers’ views. 

Each aspect will be explored as follows: 
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1) The respective curriculum analysis. Both regions’ curricula will be assessed in two ways:  

the background information concerned with distinctive features of curricula and the way 

towards understanding development, and the attainment targets for linear function.  

2) The respective textbooks’ analyses. Results will provide a detailed perspective of how 

these requirements of the curricula are interpreted, and how the topics are conceptualized 

and enacted towards real world situations.  

3) Student tests. The present study will address the main barriers to each level of 

understanding - primarily focusing on what students could not do at the time. It will also 

examine which approach (algebraic or visual) students are more comfortable to use in 

order to solve problems in the real world, as which representation they prefer: the 

algebraic expression, the graphic representation, or the tabular representation.  

4) Teacher interviews. Findings will provide teachers’ views on what they perceive to be the 

barriers to understanding that students would encounter and how they plan lessons in 

order to overcome these barriers. Furthermore, teachers’ beliefs of students’ learning with 

understanding will be investigated to explain and justify their teaching approach.  

This study therefore seeks to make evaluative comparisons by means of conducting a 

fair instrument and understandable comparisons advocated by Clarke (2003); addressing the 

interconnectedness of similarities and differences towards understanding between England 

and Shanghai; and attaching value to students’ performances in terms of the model of 

understanding function to enforce the evaluative comparisons. It is hoped that a comparison 

of the results from the two regions will provide a holistic view of understanding linear 

function. The study will identify the inevitable gaps in the understanding of pure knowledge 

by applying the model that brings together the requirement of the national curriculum, the 

respective textbooks, and students’ performances in understanding basic knowledge tests. 

Meanwhile, in the application section, the expectations of the textbooks and students’ 
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preferred approaches to solutions in the tests will illustrate not only how students use 

knowledge, but also the reasons why they prefer a certain type of representation. 

1.2 Rationale of this Study 

In this section, the importance of this study is highlighted, based on four relevant 

research areas: (1) research on understanding; (2) research on algebraic learning in terms of 

the concept of function; (3) research on international comparative education, especially 

related to England and Shanghai; and (4) research on problem-solving. 

1.2.1 Learning with understanding 

How to evaluate understanding plays a central role in this study. Current thinking 

within the field of mathematical education suggests that learning with understanding is a 

well-accepted aim of mathematics education. Educators have sought to identify both the 

importance of understanding (Newton, 2000) and the definition of understanding  (Hiebert & 

Carpenter, 1992; Sierpinska, 1990; Skemp, 1976). In order to facilitate the development of 

understanding, the process of understanding mathematics has been described by using 

different hierarchical models, for example the Pirie and Kieren (1994b) model and the APOS 

theory as proposed by Dubinsky and McDonald (2002). Although these models articulate the 

ways in which students understand mathematical knowledge in general, especially within 

Western culture, it is worthwhile to take a closer look at how understanding development 

takes place under different cultural dispositions in terms of a certain mathematical concept.  

1.2.2 Learning of function in algebra 

Algebra has been regarded as ‘the most important gatekeeper in mathematics’ (Cai, 

Ng, & Moyer, 2011, p. 26). From the 1980s, the letter-symbolic emphasis of algebra research 

has moved towards the study of function (Kieran, 2006). Function is a key algebraic topic in 

secondary schools (Brenner et al., 1997; Llinares, 2000) and a foundation of the whole 

curriculum around the world (Akkoç & Tall, 2005). In recent years, although researchers 
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have made efforts to study the learning of function through specially designed software 

(Schwartz & Yerushalmy, 1992) or the difficulties experienced by connecting multiple 

representations (Zaslavsky, Sela, & Leron, 2002), little is known of what shapes these 

difficulties and how the learning process is related to characteristics of official curriculum 

materials within different cultures.  

1.2.3 International comparison 

This study gathers data from two different countries. In the area of comparative 

education, Chinese students (mainly those in mainland China), and students from Hong 

Kong, Taiwan, Singapore, Japan and South Korea have consistently performed highly in the 

large-scale international comparative studies, e.g. those organised by the International 

Association for the Evaluation of Educational Achievement (IEA), and the Organization for 

Economic Cooperation and Development (OECD). The results of these cross-national studies 

have become indicators of success of the participating countries’ school systems (Stanat & 

Ludtke, 2013). The success of Singapore has resulted in a decentralization of power to 

schools a little (Ng, 2013), while the strength of the South Korea school system is partly 

attributed to the extent of parents’ involvement (Shin, 2013). However, the consistent higher 

performance of Chinese students led researchers to the features of Chinese learners (Biggs, 

1996). Cultural factors have been underlined (Leung, 1998). In order to explore the Chinese 

learners’ secrets, researchers have also focused on the common culture that these East Asian 

countries share, mainly being Confucian Heritage Cultures (CHC) (Lee, 1996). The findings 

from research on CHC students have expressed some possible contradictions, such as ‘CHC 

students are perceived as using low-level, rote-based strategies’, and on the one hand ‘CHC 

students report a preference for high-level, meaning based learning strategies’ (Biggs, 1996, 

p. 49). This contradiction needs to be examined in the light of handling a certain topic in 

mathematics, instead of tending to generalise for all mathematical problem-solving strategies.     
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Currently, the interest of international governments, academia, and the public in the 

reasons for East Asian students becoming the best in the world at mathematics is abundant 

and growing. This is especially so in the United Kingdom. The current UK government’s 

2010 White Paper, The Importance of Teaching, noted the importance of international 

comparisons: ‘The truth is, at the moment we are standing still while others race past… The 

only way we can catch up, and have the world-class schools our children deserve, is by 

learning the lessons of other countries’ success’ (Department for Education, 24 November 

2010, p. 3). Elizabeth Truss, Parliamentary Under Secretary of State for Education and 

Childcare at that time, claimed that mathematics was most important for England’s future 

(Truss, 2013, September 18). Therefore, England seems prepared to learn lessons from a 

higher performing society in order to improve their own students’ mathematics performance. 

The importance of learning from other societies is also embedded in the ancient Chinese 

saying such as, ‘know yourself and your others’.  

Chinese learners, particularly Shanghai students, have consistently outperformed 

other countries in the large-scale cross-country project - PISA (the Programme for 

International Student Assessment). Shanghai’s top performance has been regarded as ‘an 

important reference society’ in terms of the schooling systems for the USA, England, and 

Australia (Sellar & Lingard, 2013, p. 479). The results of PISA 2012 (Mathematics, Reading 

and Science) revealed that Shanghai students ‘have the equivalent of nearly 3 years of (extra) 

schooling’ above the international average around which the performance of United Kingdom 

students were located (OECD, 2013, p. 17). This result has intrigued both education 

authorities and academics in England. In February 2014, Elizabeth Truss visited Shanghai to 

learn how mathematics was being taught there (Howse, 2014, Feb 18). Following her visit, an 

announcement that Shanghai maths teachers would be flown to England as part of an 

exchange project was released (Coughlan, 2014, March 12). This thesis therefore has 
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implications that reach beyond simply illuminating the mechanisms by which way 

mathematics is taught more effectively. Indeed, even though the features of better 

mechanisms might be identified, there are still a range of factors that impact on students’ 

performances. Meanwhile, the triumph of the Shanghai situation or the lack of success of 

English students in PISA or the Third International Mathematics and Science Study (TIMSS) 

does not indicate how the understanding is developed which this study will do.  

In the case of UK, although two projects presented contrasting results: PISA showed 

England’s performance to be decreasing from 2000 to 2009, while TIMSS between 1995 and 

2003 revealed ‘steady improvements’ (Brown, 2011, p. 153), English students’ academic 

performances in both PISA and TIMSS have been seen as disappointing by the government 

and academia when compared with their counterparts in East Asian countries. Examining the 

reasons for this gap between England and East Asia countries, researches have approached 

the issue in different ways. Jerrim and Choi (2014) discerned the point in English students’ 

schooling at which this gap appears, namely at the beginning or the end of middle school. In 

addition, most of the comparative studies related to England focus on features of official 

curriculum documents (Haggarty & Pepin, 2002; Park & Leung, 2006; Sun & Jia, 2003) and 

corresponding classroom interaction (Leung, 1992; L. Wilson, Andrew, & Below, 2006). 

Researchers have carefully and systematically explained the outcomes from different 

perspectives. Learning outcomes are, however, influenced by complex factors (Broadfoot, 

Osborn, & Planel, 2000). Among these factors, the fact that understanding could facilitate 

learning has been well acknowledged (Newton, 2000) as discussed at the beginning of this 

chapter. Studies regarding how English students understand mathematical concept compared 

with their counterparts in East Asian countries are impoverished, although one recent 

example is the study by H. Li (2014) analysed English and Taiwanese students’ performances 

(age 12 and 13) in case of fraction addition from procedural and conceptual knowledge 
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perspective. The present study attempts to explore some features of students’ understanding 

development within a coherent picture of four perspectives which has been discussed in the 

first section, as originated in a general model of understanding function to explore the 

performance gap in more details.  

1.2.4 Problem-solving 

Problem-solving is considered to be the foundation of learning mathematics (P. 

Thompson, 1985), a basic trend for reform in curriculum and instruction (Hiebert et al., 

1996), and also related to understanding (Kluwe, 1990). The meaning of problem-solving 

varies from ‘working [with] rote exercises to doing mathematics as a professional’ 

(Schoenfeld, 2009, p. 334). One of three aims in the national curricula in England from 

primary school to secondary school (KS1 to KS4) is to apply ‘their mathematics to a variety 

of routine and non-routine problems with increasing sophistication’ (Department for 

Education, 2013b, p. 3; 2013c, 2014). Although it has been noted that students’ performance 

in school mathematics could not be used to predict their ability to solve non-routine problems 

(English, 1996), the underlying causes of these performance gaps should be investigated from 

how well students understand mathematical concepts and how to use these concepts. 

Another report also released from PISA 2012, concerning students’ skills in tackling 

real-life problems, highlighted that the mean score for Shanghai is 536 while 517 for England 

(OCED, 2014). This PISA 2012 mainly involves decision-making problems, system-analysis 

problems, resource-allocation problems, and so on, without requiring students’ expert 

knowledge in mathematics. English students who do well in these tests demonstrate relative 

strength in the ability to apply their knowledge creatively in dealing with real-life context. It 

indicates that Shanghai students are relatively weaker in solving problems in a creative way, 

compared to the conventional use of mathematics as shown in PISA 2012. This test revealed 

that ‘86% of Shanghai students perform[ed] below the expected level in problem solving, 
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given their performance in mathematics, reading and science’ (OCED, 2014, p. 70), whose 

items in PISA 2012 were related to specific subject knowledge in application. Of particular 

significance to tackling real-life problems was that Shanghai students showed their strength 

in knowledge-acquisition processes over knowledge-utilisation procedures, while English 

students show strengths in combining these two aspects. Students’ strengths, to some extent, 

give an impression of how they approach, understand, and use the knowledge in each region.  

When narrowing down to a certain topic within school mathematics, the present study 

not only focuses on the acquisition of knowledge and its application, but also the balance 

between the two in order to increase the effectiveness of problem-solving. The relationship 

between how well students understand basic knowledge and their application performance 

has previously remained under-researched. 

1.3 Research Questions 

This study investigates students’ mathematical understanding within different cultural 

backgrounds. It is designed not only to explore the reality of what students understand, or 

what they do not, but also to look behind that ‘what’, to ‘how’ the understanding has been 

developed or shaped. One aim of this comparative study is to explore better way in the 

teaching and learning with understanding linear function for each region, as it is hoped that 

both should learn from each other.  

To this end, Research Question 1 addresses the extent to which students in each 

region are expected to understand the topic and the different emphases placed on the topic by 

curricula and textbooks. Research Question 2 explores what students actually understand in 

the topic of linear function, as well as their approaches towards application in real world 

situations. Research Question 3 explores teacher views of teaching towards understanding 

mathematics. Through a comparison of the external differences between each group in terms 

of curricula, textbooks, and student tests, along with gaining the views of teachers, the 
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underlying reasons for the differences in understanding will be explored in Research 

Question 4. The four research questions are specifically put forward as follows:      

Research Question 1: What are the requirements of the intended curriculum and 

officially used textbooks of the two regions in terms of linear function?  

Research Question 2: What do English and Shanghai students actually achieve (the 

attained curriculum), with regards to linear function? 

Research Question 3: What are teachers’ views regarding the teaching and learning 

linear function? 

Research Question 4: What shapes students’ understanding of linear function? 

1.4 Structure of the Thesis 

In this section, I outline the structure of the thesis in three parts:  

Part One consists of the broader research context, from Chapter 1 to Chapter 4. 

According to the title of this thesis, the first part is about comparative study while the second 

one is related to the understanding of function. Correspondingly, the two chapters of 

literature review will reflect on these two areas. Chapter 2 provides an overview of the 

education systems in the two regions, including the prevailing views on the nature of 

mathematics and current comparative mathematics education researches related either to 

England or to China. Chapter 3 contains a detailed literature review examining firstly the 

research on function and secondly the notion of ‘understanding’ (including models of 

understanding function) in order to form a general model of understanding function which 

can be applied as the theoretical framework at this study. Chapter 4 sets out the methodology 

used to approach the research questions, including considerations of ethics, validity, and 

limitations.  

Part Two details the results from the four parts of the research: curriculum analysis in 

Chapter 5; textbook analysis in Chapter 6; student tests in Chapter 7; and findings from 
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teacher interviews in Chapter 8. Results from the curricula in the two regions in Chapter 5 

and official textbooks in Chapter 6 will be used to answer the first research question. The 

findings from the student tests revealing the strengths and weaknesses within student 

understanding in each region, and also patterns within the application, are presented in 

Chapter 7 to answer Research Question 2. The selected teacher interviews are documented in 

Chapter 8 which explores the perceived barriers to understanding linear function and their 

views on teaching and learning in detail. These findings will answer Research Question 3.  

Part Three includes a discussion of findings, Chapter 9, and the conclusion, Chapter 

10. In the discussion, synthesising the important findings of each results chapter highlight 

several key issues explaining the performance gap between England and Shanghai from an 

understanding perspective, relating these issues to the existing literature, in answering 

Research Question 4 and the contribution for knowledge. The conclusion raises the issue of 

considering measurement processes used for comparative projects and the needs to focus on 

Shanghai students’ understanding development using a more holistic picture of context in 

further studies.     

1.5 Significance of the Study 

As a result of the current interest in understanding mathematical concepts within the 

two different cultural contexts, one of the main values of the study is the step towards 

revealing the reasons for the gap in students’ performance in mathematics, as generally 

shown in current large-scale cross-national projects. Although Alexander (2012, p. 12) stated 

that the quality of teaching matters most and proposed studies to explain how PISA high-

flyers achieve their success using ‘first-hand empirical data systematically and transparently 

presented’, Elliott (2013, p. 454) additionally argued that research should examine what kinds 

of knowledge and skills were ‘considered to be most worthy by students’. Therefore, this 
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study will also reveal how each region values the knowledge and skills involved in the 

concept of linear function.  

Despite the fact that little mathematics comparative research has been undertaken 

between England and Shanghai, this study will increase the understanding of not only how 

the mathematical concept is handled in the two regions, but also the strengths and weaknesses 

of the approach that each region takes. Underlying the specific examples of mathematical 

concepts, unique social expectations, educational aims and social meanings of curricula are 

also central to the comprehension of these different requirements of understanding 

mathematics (Bishop, 1994). It suggests the importance of curricula in understanding 

development. Both commercial or compulsory textbooks represent the requirements of the 

respective curricula, and their role is deemed to link the curriculum with pedagogy (Pepin & 

Haggarty, 2001). Through an exploration of the emphasis of curricula and textbooks in terms 

of understanding, teachers, textbook writers, and national curriculum-makers will be able to 

reflect on current learning trajectories. The results of this study will enable them to evaluate 

what kind of change will be the most worthwhile to improve students’ mathematical 

understanding development.  

Another aim of this study is to explore students’ mathematical understanding by using 

a general model of understanding function. This model is an innovative aspect of the research 

with the following benefits: (1) the facilitation of the diagnosis of students’ understanding of 

linear function; (2) helping teachers invent suitable pedagogical activities and strategies to 

enhance students’ understanding development; and (3) offering teaching guidance.  

Finally, although the student performance gap has been explained by cultural factors, 

pedagogy and problem-solving strategies; few studies have examined how to present the 

nature of mathematical knowledge under these factors or strategies’ influences. Shanghai or 

China advocates four basics of learning mathematics: basic knowledge, basic skill, basic idea 
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and method (simply called basic method), and basic experience as will be discussed at 

Chapter 5 and 8. How these basics shape the way mathematics is being taught will be 

revealed in case of linear function. Furthermore, how England develops students’ 

understanding will be compared with the Shanghai approach. As noted earlier, this study is 

not only interested in students’ understanding, but also in the way in which they are expecting 

to arrive at the higher levels of understanding. That is, the comparison of different approaches 

seeks to discover the most effective way to understanding function from a perspective of 

different representations. 

1.6   Case Study 

This study aims not only to explore students’ understanding development through an 

international comparison perspective, but also to develop an understanding model which 

would be useful in other algebraic topics or other countries. Therefore, mixed methods will 

be adopted with an initial exploratory feature – the pilot study. In order to undertake the in-

depth study of understanding development and what shapes this development in each area, a 

case study approach involving three schools in each education system will be chosen for the 

study.      

1.6.1 The English case 

In England, The Office for Standards in Education (Ofsted) inspects and regulates 

services that care for children and young people, and services providing education and skills 

for learners of all ages (Ofsted, 2015). Ofsted visits schools to help them improve, monitor 

the progress and share the best practice they find. The results for each school can be found on 

school websites as well as Ofsted website (http://reports.ofsted.gov.uk/). Ofsted grade 

descriptors have four grades: Grade 1 is Outstanding, Grade 2 is Good, Grade 3 is Requires 

improvement, and Grade 4 is Inadequate (Ofsted, 2014, p. 38).  

http://reports.ofsted.gov.uk/
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Table 1 below shows the details of the sample schools from their latest school 

inspection report. Two sample schools (School SEN1 and SEN2) were related ‘Good’ (Grade 

2, having very positive features of a school and serving its pupils well) during this research. 

Specifically, four elements: achievement of pupils, quality of teaching, behavior and safety of 

pupils, and leadership and management, were all considered as Grade 2 for these two schools. 

The third school, School SEN3, was rated as ‘outstanding’ (Grade 1, being highly effective 

and providing exceptionally well for all its pupils’ needs) for overall effectiveness by Ofsted 

report with Grade 1 in both pupils’ achievement and the extent to which they enjoy their 

learning, and the effectiveness of leadership and management in embedding ambition and 

driving improvement; and Grade 2 in terms of the quality of teaching.  

Table 1 

The Details of the English Sample Schools 

School 
School 

category 

Age range 

of pupils 
Appropriate authority 

Grade for 

overall 

effectiveness 

SEN1 Academy 

11-18 

 

Excel Academy 

Partnership 
Good 

SEN2 
Voluntary 

aided 
The governing body Good 

SEN3 Community The governing body Outstanding 

The case in England, to some extent, represents how well students in ‘good’ and even 

‘outstanding’ schools understand mathematical concept. With regards to student achievement 

in mathematics, the schools’ GCSE rankings are considered and will be discussed in Chapter 

4: Methodology. Meanwhile, the structure of GCSE mathematics being offered by the three 

main examination boards: AQA, EDEXCEL and OCR which will be discussed in Chapter 2. 

Three sample schools, however, have covered all three examination boards which have also 

reflected on their individual choice of the official used textbooks.  
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1.6.2 The Shanghai case 

In Shanghai, the equivalent to Ofsted is Supervision Office. The supervision and 

inspection is envisaged as ‘school developmental supervisory evaluation’. The reports they 

produce have three elements of school life: educational resources, school management, and 

student development. However, neither grades nor marks are shown in the report. The report 

only reflects on the progress or otherwise that the school has achieved since the last 

supervisory evaluation, what issues are remaining in the school, and their suggestions for 

further development. The key indicator for school quality is, however, considered to be 

students’ academic outcomes and entrance levels to higher education, namely two 

standardized student assessments: Entrance examination for senior secondary school 

(Zhongkao) and Entrance examination for Higher Education (Gaokao) (Jung Peng, Thomas, 

Yang, & Li, 2006). These two assessments will be discussed in Chapter 2 section 1: 

Education in England and Shanghai.  

Educational aims in China have heavily emphasised well-round individual 

development since 1990s, namely quality education rather than examination-oriented 

education. Moral education, physical, aesthetic education, education for ethnic minorities and 

so on, have been listed by the banner of quality education in the 1999 Action Plan 

(Department of Education, 1998). Although Dello-Iacovo (2009, p. 248) argues that 

examination-oriented nature of education in secondary school level ‘remains unchanged’, 

curriculum reforms in China have actually led to the emphasis of physical and aesthetic 

education. The three sample schools in Shanghai are all state secondary schools with 

common characteristics: arts and sports, but they have their own distinctive features. During 

the data collection period, sample schools’ specialism was orchestra, harmonica, and drama 

respectively. Meanwhile, two of them have been both named as bilingual schools (Chinese - 

English) in Shanghai. In 2015, all of them were named as traditional sports school which 33 
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state schools (118 in total) have at district level. The case in Shanghai represents, to some 

extent, those schools which under the examination-oriented nature of education successfully 

promote quality education curriculum.  

With regard to mathematics performance, the similar ranking corresponding to the 

English sample school will be addressed in Chapter 4: Methodology as well as compulsory 

textbooks used in Shanghai. The typical case study can ‘make previously obscure theoretical 

relationship suddenly apparent’ (Mitchell, 1984, p. 239). Therefore, from analytical 

interpretation perspective, this study is a typical (or paradigm) case rather than critical (or 

telling) case.  

1.7 Summary  

This chapter has presented the outline of this study, the rationale, the four research 

questions, the structure of the following chapters, and the importance and significance of the 

study. In the next chapter, the background of each education system and studies in 

comparative education will be explored.  
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Chapter 2 Research on Comparative Education 

This comparative study focuses on two regions, England and Shanghai. It is necessary 

to review relevant comparative studies, so as to set out the rationale for my own 

methodology, which will be detailed in Chapter 4: Methodology. This current chapter has 

four main sections. The first section will introduce some of the important educational 

differences between England and Shanghai. This will involve the organisational factors of 

schooling and a discussion of their different cultural and systemic contexts. Based on these 

differences, a summary of current comparative mathematics education studies will be 

presented in the second section. This summary will set out the themes emerging from two 

large-scale cross-national projects, PISA and TIMSS, as well as other smaller scale studies 

concerning the respective national curricula and the used textbooks. Thirdly, this study will 

also focus on perceptions of the nature of mathematics as a way of explaining opposing 

stereotypical views of mathematical knowledge prevailing in the two regions. Finally, 

research about teachers’ belief and practices related with two regions will be addressed.   

Although Boote and Beile (2005) stated that a thorough examination of the field and 

the ability of synthesize the existing results were central for both literature review and 

methodology issue in doctoral research, Maxwell (2006, p. 29) argued that ‘relevance, rather 

than thoroughness or comprehensiveness, is the essential characteristic to literature review in 

most scholarly works’. Two chapters’ literature review of this thesis will be following this 

approach. Chapter 2 focuses on mathematics education area from a global perspective which 

will be divided into the four aforementioned sections. The first section aims to provide the 

overall view of education system. To do so, literature proposed by English academia was the 

main foci to highlight the different features. The following three sections will include 

literature from four perspectives related to each result part: student assessment, curriculum 

analysis and textbook analysis in the second section; and teacher’s belief in the fourth section.    
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2.1 Education in England and Shanghai 

The disappointing performance of England in mathematics and science among 

international studies since the 1960s led the Office for Standards in Education in England (the 

English national inspectorate) to review results from these studies. This review also included 

a review of other smaller scale studies on the processes and effectiveness of the English 

system itself. In the Review of International Surveys of Educational Achievement involving 

England, Reynolds, Farrell, and Britain (1996) explored the possible explanations for the 

students’ performance gap in maths and science between England and the Pacific Rim 

countries. Attention fell on four potential explanatory factors: cultural factors, systemic 

factors, important school factors, and key classroom factors. This section focuses on the first 

two factors. The third factor, important school factors, partly referred to specialist teachers 

which are the same for the two regions at the secondary school stage. Some key classroom 

factors, such as the use of the same textbook, will be subsequently discussed in Chapter 6: 

Textbook Analysis.  

Therefore, this section will briefly introduce the basic education systems in England 

and Shanghai from a schooling perspective in order to gain a broader picture. The second 

sub-section will address the culture factors, and this is followed by the systemic factors in the 

third sub-section.   

2.1.1 Schooling  

In both regions, the majority of state schools are non-selective in nature, having pupils 

of all abilities. The whole compulsory education period in England and Shanghai has been 

illustrated in Table 2 for the purposes of clarification.  
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Table 2  

School Systems in England and Shanghai  

England 

Primary Junior secondary 

Key Stage 1 Key Stage 2 Key Stage 3 Key Stage 4 

Year 

1 

(age 

5) 

Year 

2 

Year 

3 

Year 

4 

Year 

5 

Year 

6 

 (age  

11) 

Year 

7 

Year 

8 

Year 

9 

Year 

10 

Year 

11 

(age 

16) 

Shanghai  

Primary Junior secondary 

 

Grade 

1  

(age 

6) 

Grade 

2 

Grade 

3 

Grade 

4 

Grade 

5  

(age 

11) 

Grade 

6 

Grade 

7 

Grade 

8 

Grade 

9 

(age 

15) 

England. Most children in England attend a reception class at primary school from 

the age of 4 years old. Students receive six years of primary schooling (age 5 - 11) excluding 

reception, and five years of junior secondary schooling (age 11-16), where compulsory 

education leads up to a national examination for sixteen year olds, the General Certificate of 

Secondary Education (GCSE). Candidates will hopefully complete eight to ten individual 

subjects. Among these subjects, mathematics is one of the three compulsory subjects (English 

and science being the other two). If students continue post-secondary schooling (age 16 - 18), 

then they would be given the choice whether or not to continue learning mathematics. After 

two years, they will undertake examinations for the General Certificate of Education at 

Advanced and Advanced Supplementary (A/AS) level, which is regarded as the primary 

measurement for entry requirements for undergraduate study. The grade at GCSE 

mathematics that students gained, however, is also an indicator of eligibility in the 

undergraduate application.     

Shanghai. Shanghai children start their schooling at the age of six, with five years at 

primary school (age 6 - 11) and four years at junior secondary school which covers the ages 

of 11 to 15 (Grade 6 - 9). After this compulsory education stage, students have to take the 

senior secondary school entrance examination (called Zhongkao) at age 15, one year earlier 

than that of English students in their GCSEs. There then follows three years of senior 
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secondary schooling (age 16 - 18) and, within this period, students take the Shanghai 

Certificate of Senior Secondary examination (called Huikao). Most of them then participate 

in the college or university entrance examinations (known as Gaokao). In senior secondary 

school, mathematics which is the compulsory subject has two forms differing in their degree 

of difficulty and these are referred to as the Arts and Science levels. The requirements of the 

Science level will be higher than the Arts one.  

In summary, the different settings in the respective region illustrate that mathematics 

is an important subject for both but it is significant in Shanghai in pre-university schooling. 

The end of compulsory education in England is also notably one year later than that in 

Shanghai. 

2.1.2 Cultural factors 

This sub-section has three parts. The overview of cultural features will be briefly 

introduced by how these values serve the education system in England as well as how values 

of Confucian thought are embodied in the Chinese or Shanghai education system. Cultural 

factors embody the characteristics of education systems (Alexander, 2012). Consequently, 

studies on cultural differences provide an insight into how culture impacts on the learning 

process. The role of the examinations in Shanghai will be discussed from a cultural 

perspective. Following this view, the form of final assessments for compulsory education 

stage in the two regions will be compared.  

Cultural values. From a religious perspective, Sharpe (1997) suggests that England’s 

Protestant authority and democratic heritage has influenced the education system. 

Historically, English students have been acknowledged as ones with individual needs and 

abilities (Osborn, Broadfoot, McNess, & Ravn, 2003). As a result, the Education Act of 1994, 

which has influenced the current structure of English schools, proposed that secondary school 

students should be split into three broad groupings; but now, they are generally separated into 
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two groups, the Higher Level and Foundation Level. The evaluation system for student 

performance, GCSE, which will be introduced at following section, is the tiered examination 

which also implies or requires splitting pupils into two groups. Schools normally arrange 

students according to their ability levels. That is, students are typically organised into 

different hierarchical class groupings, called ‘sets’, such as four sets for Higher Level 

students in mathematics, within which students have the opportunity to change during school 

years. That is, students can move towards a higher set if they perform very well in their 

current set.  

In Eastern countries, Confucianism or Confucian-heritage Cultures (CHC) have been 

regarded as traditional cultural values. This has deeply influenced the educational process for 

thousands of years. However, Wong (2004) argues that it is particularly the examination 

culture within East Asian societies that impacts on students’ higher performances rather than 

that of Confucianism. From the 7
th

 Century to the beginning of 20
th

 Century, the Civil 

Service Examination, also called imperial examination, had been taken and its purpose was to 

select candidates for the state bureaucracy. Chinese education is therefore considered to be a 

‘scholar-nurturing education’ with a rigorous examination system (An, 2004, p. 464). 

In particular, Tan (2012a, p. 161) illustrated that Shanghai has had a ‘dominant high-

stakes exam-oriented culture’. Historically in China, exams have functioned like a 

conductor’s baton which ‘determines how the music score is to be played’ (Tan, 2012b, p. 

60). This means that each perspective of the education system would be influenced by the 

examinations, such as what kind of knowledge would be highlighted at the tests. Behind this 

exam-oriented system, there are three elements currently changing within the Shanghai 

education system: the selection function of suitable students which has not changed 

fundamentally but has been highly diversified; independence, as teachers and schools have 
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more autonomy working towards national, local, and school-based curricula; and justice, as 

migrant children have the right to compulsory education in Shanghai state schools.  

The selection function is dependent on how students perform in the final examinations 

(called Zhongkao). This will be discussed in more detail later. In terms of the second element, 

the newly-acquired independence of students and teachers is constrained by frequent 

standardized assessments at district level. Every term the district educational authority 

organises uniform tests for all of the state schools. During the term, some secondary schools 

whose academic performance is similar will join together to hold the same examinations at 

mid-term or even monthly tests. Therefore, there is actually not much room for the autonomy 

of teachers or schools in Shanghai. The nature of justice, the third element, is related to all 

students’ equal rights to attend the Zhongkao and Gaokao in Shanghai, which is as yet 

unresolved as some of migrant students from other provinces in China still cannot attend the 

university entrance examinations in Shanghai (similar with A-level in England) (Deng & 

Zhao, 2014). All these three factors are tied to assessments. Therefore, the examinations still 

play an essential role in the whole education system. In line with the heavy emphasis on 

examinations in Shanghai, Burghes (1999) in fact recommended more regular mathematics 

assessments for English students to enhance the evaluation of students’ learning outcomes.  

The evaluation system for students’ performance - GCSE and Zhongkao. 

Following the achievement tests, it is relevant to see how each education system monitors the 

final assessment when students finish their compulsory education stage. 

In England, the evaluation system for students’ academic performance is conducted 

by different examination boards, though all of them follow the requirements of the national 

curriculum. Therefore, the content of these examinations is basically the same. The exam 

boards are responsible for setting and awarding secondary education level qualifications 

including GCSEs. Three exam boards are widely used: AQA (Assessment and Qualifications 



39 

 

 

 

Alliance); OCR (Oxford, Cambridge and RSA Examinations); and Edexcel (Pearson Edexcel 

as of April 2013). All of the exam boards include Higher Tier and Foundation Tier 

assessments for students with different abilities. Each school or department is free to pick the 

appropriate exam board for their students. In the case of mathematics, students are required to 

attend three exams in mathematics: GCSE Mathematics (Linear) paper 1 (non-Calculator 

exam); GCSE Mathematics (Linear) paper 2 (Calculator allowed); and the exam for the 

GCSE Applications of Mathematics Unit. Student performance is indicated by grades ranging 

from A* to G and U, where Grade C and above is regarded as passes.  

At the end of the compulsory education period, students in both regions have to 

undertake a final examination. The result of students’ performance is not only used in their 

applications for further education, but also used to demonstrate the quality of schools. For 

example, all state schools in England are evaluated within a national league table according 

to GCSE performance at each subject. Although there is no official league table for state 

schools released in Shanghai, schools’ performance in Zhongkao, such as how many students 

in the school can enroll in the key senior secondary schools, is also highly valued.  

Compared with GCSEs, Shanghai’s Zhongkao is a one-off examination and a 

student’s performance is calculated by overall scores of six subjects: Chinese, Mathematics, 

English, Physics, Chemistry, and Physical Education (P.E). Calculators are not allowed in 

any subjects within Zhongkao. Full mark in the mathematics exams amounts to 150 points, 

nearly one quarter of the total available score: 630 points. Public examinations therefore play 

a leading role in the process of teaching and learning, and mathematics will be given much 

more attention than other subjects. M. Han and Yang (2001) put forward the criticism that 

students would, as a result of the exam system, be put in a passive position in order to gain 

proficiency skills in answering paper-and-pencil examinations. These skills may be one 

possible reason for Shanghai students obtaining a higher level of performance in PISA.  
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In conclusion, English students are divided into two ability levels in order to meet the 

different stages of assessment. In terms of two levels of assessments, basically there are two 

corresponding levels of textbooks in England. Some KS3 textbooks have several levels. It is 

notable that teachers in England are the lowest users of textbooks, apart from Iran and Islamic 

Rep. in TIMSS 2003 (Mullis, Martin, Gonzalez, & Chrostowski, 2004). In school, other 

resources, for example the Framework or the scheme of work, are important. Conversely, 

Shanghai’s centralised education system leads to the uniform requirements for all Shanghai 

students within mixed ability classes. Shanghai students are expected to take only non-

calculator assessments. Therefore, it is assumed that Shanghai teachers tend to heavily 

emphasise the importance of numeracy skills or procedural knowledge which will be 

discussed at Chapter 8: Teacher Interviews.  

2.1.3 Systemic factors 

Systemic factors mainly refer to mixed ability classes and high quantities of school 

time including cramming institutions (Reynolds et al., 1996). Mixed ability classes and 

frequent testing in core subjects in Pacific Rim countries were applied to enhance student 

attainment on achievement tests. So did Shanghai which has been discussed in the previous 

section, as was the evaluation system for students’ performance.  

Looking at other elements, an examination of the high quantities of school time will 

present the similarities and differences between organisational factors, especially time spent 

in mathematics classes. In English secondary schools, weekly mathematics is generally 

delivered over  three lessons with one hour of homework, adding up to four hours overall as 

reported by the selected English teachers in Chapter 8: Teacher Interviews. Conversely, the 

Shanghai junior secondary schools normally arrange mathematics lessons and corresponding 

homework every day, amounting to roughly 1.5 hours of one school day in total. That comes 

to 7.5 hours per week, nearly double the time that the English students experience. The time 
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that students put into mathematics, differs between two regions, not merely for school maths. 

In addition, researchers have identified that private supplementary tutoring in cram schools is 

also highly demanded in China (Kwok, 2010), and more significant in East Asia than in any 

other area of the world (Bray & Kwok, 2003). These are additional hours. Therefore, that 

students spend more time in private tutoring can also provide a possible reason of the 

performance gap between England and Shanghai.  

2.2 Comparative Mathematics Studies 

This section contains three sub-sections pertaining to the comparative mathematics 

area. The first sub-section provides a general overview of students’ performance within two 

large-scale cross-national studies, PISA and TIMSS. Both Shanghai and England have taken 

part in the former, while other East Asian countries and England have participated in the 

latter. Additionally, TIMSS offers an analytical framework for three different curricula: the 

intended curriculum, the implemented curriculum, and the attained curriculum, which is 

adopted in this study’s research questions. In the second sub-section, the consideration of 

methodologies used for comparative studies will be addressed, because the results from these 

two projects have been criticised, especially with regards to the methodology they use and the 

tendency to generalise the findings. Finally, comparisons of official documentary materials 

related with England and China will be discussed to delineate trends for curriculum and 

textbook research area.  

2.2.1 PISA and TIMSS  

In the area of comparative research, large-scale cross-national projects have been 

employed over the last few decades. The results from these projects have uncovered students’ 

performances and relevant factors which might influence their learning. These results provide 

a comparative overview of how well students do in mathematics on a country-by-country 

basis, as well as providing a reference point for policy makers and the educational 
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community to determine how to enhance students’ learning outcomes. The purpose of PISA 

considers the question of ‘what can you do’, while TIMSS focuses on ‘what do you know’ 

(Hutchison & Schagen, 2007, p. 26). Although their scope and foci are different, the 

correlation of PISA and TIMSS has reached up to ‘0.91’ in the Germany study (R. Adams, 

2003, p. 380). League tables have been produced in order for academics and policy makers to 

see what is possible (Fan, 2011), but in fact, the results have been  interpreted as the sole 

parameters of system quality (Broadfoot et al., 2000).  

Over the years, the PISA test has taken on greater significance around the world as 

countries look to learn from others. The results of PISA 2003 suggest that there exists a 

positive relationship between a country’s Gross Domestic Product (GDP) and students’ 

mathematics performance (Anderson, Lin, Treagust, Ross, & Yore, 2007). On the basis of the 

league table, high-performance education systems or new reference societies are identified, 

such as Shanghai (Sellar & Lingard, 2013). These reference societies are able to offer other 

countries’ policy-makers potential information which can be transferred to their local context 

(OECD, 2013).  

PISA was launched by OECD in 1997 and started in 2000. The target sample is ‘aged 

between 15 years 3 months and 16 years 2 months at the time of the assessment, and who 

have completed at least 6 years of formal schooling’ (OECD, 2013, p. 26). The students’ 

performances are evaluated from three perspectives: reading, mathematics, and science. 

There are three year cycles of PISA, each of which mainly focuses on one aspect, such as 

reading in 2000, mathematics in 2003, science in 2006, reading in 2009, and mathematics in 

2012 (the fifth PISA cycle). PISA aims to look into the relationship between several factors 

related to learning and students’ achievements; for example, student attitudes, home 

background variables, and school information (Anderson et al., 2007).  
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Either in mathematics performances or in the overall achievement for both PISA 2009 

and 2012, Shanghai has remained in the top position, while Hong Kong (3
rd

 position) and 

Chinese Taipei (4
th

 position) also did very well in the area of mathematics at PISA 2012. 

England was around the international average in terms of mathematics performance: 28
th

 in 

PISA 2009 (2 positions below the OECD average mean score), and 26
th

 in PISA 2012 

(exactly on the average).  

The PISA 2012 assessments paid primary attention to mathematics proficiency which 

means the capacity of individuals to ‘formulate, employ and interpret’ mathematics in various 

contexts (OECD, 2013, p. 25). The PISA 2012 problem-solving skill assessment, however, 

pointed out that Shanghai students demonstrated weaknesses regarding ‘curiosity, 

perseverance and creativity’ (OCED, 2014, p. 91).  

Although Tan (2012a) argued that questions in PISA were presented in a testing 

situation rather than a real-life situation, PISA did provide an outline of how well 15- and 16-

year-old students are prepared for life’s challenges in each participating country. TIMSS, 

however, may imply how to improve teaching and learning (M. Wu, 2009).  

The IEA planned the first international surveys in education in 1958 and the Second 

International Mathematics Study (SIMS) in 1976. TIMSS in 1995 was the largest assessment 

at that time, with over 40 countries participating (Beaton & Robitaille, 1999). In the 

mathematics section, it focused on 9 year olds, 13 year olds, and the final year of secondary 

school. Six content areas were covered for 13 year olds (Grade 7 and 8): (1) fractions and 

number sense; (2) measurement; (3) proportionality; (4) data representation, analysis, and 

probability; (5) geometry; and (6) algebra. Among these, the percentage of algebra questions 

was 18% of all the content. Shanghai did not participate in TIMSS. There was a specific 

example of a given algebra question to solve a linear equation for x in TIMSS (Beaton et al., 

1996, p. 77), as follows: 
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ITEM 15. If  (   )    , then x=    

A. 2    B. 5   C. 10   D. 95 

Results revealed that in England the correct response was only 61% while the 

international average was 72%. This item assessed students’ basic skills for solving a simple 

linear equation. These findings indicated that, in terms of this algebraic skill, English students 

were at a much lower level than the international average, though in terms of this item there 

was not reported the indications of statistical significance. The results on this item, however, 

suggest a weakness in English students’ basic skills.  

Four years later in 1999, the Third International Mathematics and Science Study-

Repeat (TIMSS-R), namely the fourth comparison study sponsored by IEA, was conducted in 

order to track changes in achievement. Table 3 compares the average mathematics 

achievement of Grade 8 students in TIMSS-R (U.S. Department of Education, 2000, p. 86) as 

well as the mean mathematics achievement in TIMSS (Beaton et al., 1996, p. 22). The 

achievement of English students had improved, and was slightly above the international 

average.  

Table 3  

Mathematics Standardized Scores in Grade 8 Students in TIMSS and TIMSS-R 

Country Average in TIMSS Average in TIMSS-R 

England 496 506 

International average 487 (38 nations) 513 (41 nations) 

   
In summary, PISA and TIMSS including TIMSS-R have all demonstrated the lower 

mathematical performance of English students, although their performance has slowly 

improved. The algebra section has been in fact the weakness of English students compared 

with the average international achievement.  

In addition to this, the TIMSS project divided the mathematics curriculum into three 

levels (see Figure 1 below): the intended curriculum, the implemented curriculum, and the 



45 

 

 

 

attained (or achieved) curriculum. These classifications have been widely acknowledged and 

applied by many comparative researches (Cai & Ni, 2011; Valverde, Bianchi, Wolfe, 

Schmidt, & Houang, 2002). The intended curriculum includes official curricula and syllabi, 

normally produced at a state level, such as statutory guidance in England, or at a provincial 

level in which the province is allowed its own educational system, such as the local 

curriculum in Shanghai. At the classroom level, teachers have to implement the curriculum 

according to the various levels of students’ previous knowledge or backgrounds. Schools and 

teachers may ‘go beyond’ or ‘ignore’ some aspects of intended curriculum (Foxman, 1999, p. 

5). Finally, students’ learning outcomes would as a result be regarded as the achieved 

curriculum (Cai & Ni, 2011).  

Results from TIMSS also reveal that the implemented curriculum is ‘not identical’ to 

the intended curriculum (Mullis et al., 2004, p. 164). Here, textbooks link the intended 

curriculum at the national level with the implemented curricula at the level of the classroom 

(Foxman, 1999; Y. Li, Chen, & An, 2009). Textbooks are also extensively used in the 

classroom around the world (Fan, Chen, Zhu, Qiu, & Hu, 2004). The comparison of the 

intended curricula, textbooks research, and the subsequent tendencies of how learners deal 

with problems will be discussed below. Before that the next sub-section focuses on the 

methodological approaches adopted by the large-scale cross-national projects.  
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Figure 1. The Tripartite Model of curricula classification (Valverde et al., 2002, p. 13) 

2.2.2 A rationale for methodology 

To a great extent, the results from large-scale cross-national comparative studies in 

mathematics education have aroused widespread concerns regarding the methodology used 

within academia, namely quantitative-led methods. Therefore, there are two aspects in 

particular that have been the foci of these concerns: quantitative approach and generalisation. 

Actually, they are interwoven as the quantitative approach is associated with the problem of 

generalisation. Here, it is notable that Shanghai students’ performance cannot present or be 

generalised towards the whole country, as they top the national group of pupils in China 

(Sellar & Lingard, 2013). 

There are two main criticisms of quantitative research whose method dominated in 

PISA:  

1. The reliance on instruments and procedures hinders the connection between research 

and everyday life. 

2. The analysis of relationships between variables creates a static view of social life that 

is independent of people’s lives (Bryman, 2004, pp. 159-160). 
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Basically, these criticisms cause the demands for qualitative researches. These large 

projects indeed value quantitative measures of performance over qualitative ones. The results 

have given rise to two types of methodological concerns: whether the sample could be 

representative of all students within each country, and whether a valid conclusion could then 

be generalised to describe the education reality in each country. In other words, the debates 

surrounding these projects lay stress on the generalised students’ performances around the 

country, and the so-called several related major factors which influence students’ 

achievements. One typical enquiry into these projects focuses on choosing the factors related 

to students’ learning outcomes, what these factors are and why they are chosen. 

In terms of the first concern, there was a debate within English academia regarding 

the disparate nature of English students’ performances in the results of PISA 2000 compared 

with that of TIMSS 1995 and TIMSS 1999. First, Prais (2003) argued that the fewer 

representatives of schools in England would cause bias in reported average scores and 

representations of students; the strict 15-year-old criteria would exclude older students, so 

that it might impact on related factors, such as teachability. R. Adams (2003) then criticised 

Prais’ incomplete understanding of methodology in large-scale assessments. He argued that 

even non-responses from schools could be caused by a variety of factors, but there was no 

significant relationship between schools’ average score in GCSEs and whether or not they 

took part in the survey. Later, Prais (2004) still retained his previous judgement of poor 

reliability, due to the low response to these projects in England. These criticisms of the 

inadequate sample of respondents in fact reflect the issue of the representation of schools or 

individuals, because the purpose of a purely quantitative approach is to generalise the 

findings.  

Particularly, several concerns for how to interpret the league tables have been made 

because PISA tested how to use knowledge instead of what certain mathematics knowledge 
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is. Moreover, the diverse foci of the curricula in each participating country influence 

students’ performance in some ways. Some curricula place emphasis on the solving of 

problems; some prefer the recall of mathematical knowledge; and others might concentrate 

on justification and proof (Clarke, 2003). The results have also been criticised as the higher 

scores that students achieve in these questionnaires only reveal that they could correctly 

answer more questions. Clarke also proposed the curricular alignment to form the assessment 

which will be discussed at Chapter 10: Discussion. Secondly, there is the public’s impression 

that whichever country achieves the higher ranking relates to the intelligence of their 

students. Press coverage within the countries that achieved low results showed their refusal to 

accept their less successful position, such as Canada (Stack, 2006). Similarly, the England’s 

academic debate proved that the PISA outcome did not meet academic writers’ 

preconceptions (R. Adams, 2003). It has been increasingly demanded that the quantitative 

results should be explained in comparative research (Creswell & Clark, 2007) and that other 

contextual differences should be acknowledged (Lin, Bumgarner, & Chatterji, 2014). This 

desire of explaining more has resulted in the quantitative data being reused.  

Then, those data collected from large-scale projects has been used or combined with 

other data for other research purposes. In terms of discerning whether USA teaching changes 

between TIMSS 1995 and TIMSS 1999 had an impact, Jacobs et al. (2006) used videotapes 

from these two projects to look at eighth-grade (age 13/14) classrooms. In comparing how 

teachers handle the same topic between Hong Kong and Shanghai, Huang (2002) used the 

data from Hong Kong classrooms from the TIMSS-Repeat Video study, while Shanghai 

classrooms were videotaped following the procedure suggested by TIMSS-Repeat. In order to 

figure out when the students’ performance gap between England and Eastern countries 

increases, Jerrim and Choi (2014) compared English students’ and East Asian students’ 

(Japan, Hong Kong, Singapore and Taiwan) achievements between 10-year-old and 16-year-
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old students using the data from TIMSS (4
th

 grade, age 9/10 in TIMSS 2003 and 8
th

 grade, 

age 13/14 in TIMSS 2007) and PISA 2009 (aged 15/16). In summary, the studies that re-used 

data within a more contextualised approach are another branch of the comparative study 

movement, because these studies offered another view of interpreting students’ performance. 

However, those findings are still not wholly satisfactory for academia, government, or public 

stakeholders who are eager to identify what can be done to improve students’ performance in 

a practical way. This study will further examine the students’ performance gap between 

England and Shanghai, but the gap shown in these large-scale projects is acknowledged as 

the background view to the present study. 

In terms of the second concern, whether or not conclusions from quantitative research 

are valid for the reality of education has been a controversial issue. Firstly, it is questioned 

that the sum of each element, such as students’ performance and teachers’ questionnaires, 

could present the total of the educational reality in each country. Secondly, results from these 

questionnaires might lack consistency, namely in relation to how individual element operates 

with respect to others. Thirdly, the generalisation gained from quantitative results only 

explains the nature of the whole educational reality from a fragmental approach (Cohen, 

Manion, & Morrison, 2011) as opposed to considering education from a social science 

perspective.  

In the next sub-section, narrowing towards curriculum comparisons, findings are able 

to provide more details about what has been identified so far in comparative studies.  

2.2.3 Curriculum comparisons 

Clarke (2003, p. 149) argued that international comparative studies should be 

‘evaluative’, rather than a mere comparison of the similarities and differences. From this 

point of view, the following intended curriculum comparison and textbook research will 

document the literature findings related to England or China, or both.   
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The Intended Curriculum comparisons. Since TIMSS proposed the tripartite model 

of curricula (see Figure 1 above), researchers have sought to discover whether the coherence 

between the intended curriculum and the implemented curriculum matters with regards to 

successful learning outcomes. Oates (2011) proposed that it should be the foci of education 

reform in England, developing curriculum coherence and curriculum control as high-

performance education systems did. Curriculum coherence is defined as the process in which 

‘standards move progressively towards the understanding of a deeper structure’ (Schmidt, 

Wang, & McKnight, 2005, p. 529). The meanings of control and autonomy are opposite 

concepts in public education policy. Curriculum control policies might include ‘textbook 

adoption, curriculum guidelines and testing’ (Archbald & Porter, 1994, p. 22). Curriculum 

control is essential to curriculum coherence. Curriculum coherence includes the national 

curriculum content, textbooks, teaching content, pedagogy, assessment, or incentives which 

can reinforce one another. For example, Singapore’s success is mainly secured by promoting 

curriculum coherence through the approval of textbooks and other teaching materials. 

Singapore’s textbooks which follow its national framework facilitated students’ 

understanding development compared with USA situation (Ginsburg, Leinwand, Anstrom, & 

Pollock, 2005). In Finland, textbooks and teaching materials are also tightly controlled. The 

curriculum coherence in terms of understanding linear function for both regions will be 

explored in Chapter 9: Summary and Discussion.  

Cheng and Wong (1996) identified the features of conformity which shape the more 

uniform education systems such as Shanghai’s: the single, consistent textbook and 

standardized assessments at the province or municipal levels. The Shanghai education system 

is highly centralised and controlled by the local municipal government rather than being 

regulated at the national level. In 1997, Shanghai was allowed to have its own curriculum. 

The local municipal (metropolis) curriculum and centralisation of textbook production are 
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both now subject to educational authority in the Shanghai government. Conversely, the 

English education system tends to be much less centralised ‘in terms of educational 

experience provided’ (Whitburn, 1995, p. 347). 

Secondly, studies have been carried out to compare features of the intended 

curriculum in different countries. A national curriculum consists of concepts, principles, 

fundamental operations, and key knowledge. Elizabeth Truss, Parliamentary Under Secretary 

of State for Education and Childcare as mentioned at first chapter, advises that ‘a rounded 

curriculum’ is required for the curriculum reform in England (Truss, 2013, September 18). 

With respect to the content or structure of national curricula, Oates considered that the 

national curriculum in England has had ‘significant structural problems’ which should have 

been ‘concept-led and knowledge-led, not context-led’ (Oates, 2011, p. 132). Referring to 

how to introduce topics in the English curriculum, the intended curriculum has a distinctive 

attribute for arranging topics, which is separated into different years and becoming more 

complicated as students are allowed to progress and accumulate knowledge from year to year, 

which will be discussed at Chapter 5: Curriculum Analysis. A convoluted approach is 

adopted in USA as well. In comparison to the ‘spiral curriculum’ in USA schools’ 

curriculum, the Chinese curriculum and instruction are much more ‘sequential and non-

repetitive’ (Moy & Peverly, 2005, p. 253). Burghes (1999) suggested that topics in the 

mathematics curricula should have been treated more in-depth as well as with better 

organisation for the topics. The narrow yet deeper scope of the curriculum in China has also 

enabled students to gain basic knowledge and skills, but may not be appropriate for 

cooperative learning (Cai, Lin, & Fan, 2004).  

It has been argued that the requirements of the mathematics curricula in East Asian 

countries are much more difficult than those in Western countries in terms of mastering the 

complexity of mathematics knowledge (Bao, 2002). For example, researchers examined the 
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difference between England and Japan regarding the solution of quadratic equations in junior 

secondary schools (Whitburn, 1995). The results showed that in England the approach to this 

topic is too limited, while in Japan it would be taught both algebraically and graphically. The 

approach towards mathematics in terms of linear function will be compared in Chapter 6: 

Textbook Analysis.  

Thirdly, researchers also looked specifically at how students’ understanding changed 

during the curriculum reform, especially in terms of algebra learning. For example, in the 

secondary school mathematics curricula in the USA, there was a fundamental change from 

the traditional emphasis on symbol-manipulation to a focus on problem-solving and 

application of mathematics knowledge. Comparing traditional curricula with the implemented 

reforms (to a standards-based mathematics curriculum), by using algebra and function as 

specific cases, Huntley, Rasmussen, Villarubi, Sangtong, and Fey (2000) found the algebra 

instruction that emphasised the use of graphing technology in order to solve authentic 

application problems (AAP), would be of benefit not only for students’ problem-solving, but 

also for articulating abstract mathematical ideas. That is, the foci of curriculum changing 

towards solving real world situation facilitate students’ understanding of mathematical topics, 

while how to balance these two perspectives should be carefully considered. For example, 

Cai and Wang (2006) have examined the difference between the traditional and reformed 

curricula in the USA in terms of their learning objectives, definition, and the development of 

equation-solving abilities in the case of linear function. From a mathematical perspective, 

they suggested that (1) the USA reformed curriculum should introduce more interpretations 

of the concept instead of just one explanation; (2) that the idea of ‘variable as an unknown’ in 

traditional curricula gave rise to confusion; and (3) that the application of linear function in 

real-world situations, such as weight and height, articulates the relationship between two 

variables. Therefore, the curriculum reform contributes to a deepening of students’ 
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understanding of mathematics and successfully addresses the drawbacks from the traditional 

one. The question for policy makers is what will be the most effective changes to improve 

students’ understanding for their own country, fitting in with different cultures, organisations 

and other realities.    

In conclusion, curriculum coherence, emphasis on knowledge depth, and approaches 

to presenting a topic are the features of high performance education systems. The numerous 

ways in which to introduce the topic and being aware of the students’ confusion raised by the 

arrangement of the curriculum is also becoming a trend of comparative education.   

Textbook comparisons. The intended curriculum in all countries has been supported 

by ministry directives, instructional guides, school inspection, and recommended textbooks 

(Mullis et al., 2004). The importance of textbooks is embodied in several perspectives. First, 

textbooks not only act as a mediator between curricula policy and classroom instruction 

(Valverde et al., 2002), but they also link the curriculum and activities in classrooms 

(Johansson, 2003), though considerable gaps between curriculum standards and textbooks 

still exist (Fan & Zhu, 2007). For example, Johansson (2005) found that there was an 

objective gap of requirements between commercial textbooks and the national curriculum in 

the case of Sweden. Secondly, as a major conveyor of the curriculum (Fan, Zhu, & Miao, 

2013), textbooks are the visible manifestations of the curriculum in most classrooms (Son & 

Senk, 2010). With regards to the implication of textbooks, they appear to influence teaching 

strategies (Fan, 2013). For example, classroom lessons have been compared in London, 

Beijing, and Hong Kong that have shown that teaching was highly influenced by the 

textbooks in these places (Leung, 1995). Thirdly, textbooks help teachers to learn not only 

the subject matter, but also the pedagogical knowledge (Collopy, 2003). Nicol and Crespo 

(2006) also found that prospective teachers felt that textbooks could offer more guidence on 

the basic teaching requirements, particularly because textbooks differed from the one with 
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which they were taught as students. The function of textbooks in England and Shanghai will 

be revealed by teacher interviews at Chapter 8.  

Another trend of textbook comparative studies aims to discover what mathematics 

textbooks actually looks like, for example their layout. Compared with French and German 

textbooks, the layout of English textbooks has fewer questions and the structure is relatively 

brief (Pepin & Haggarty, 2001). That is, English textbooks are much concise on structure and 

the number of questions. Another kind of investigation is related with the content presented 

in textbooks. Eastern textbooks have focused on pure mathematics knowledge, while Western 

textbooks emphasise real-life situations. For example, Park and Leung (2006) compared the 

Grade 8 textbooks of Eastern countries (including China, Japan, and Korea) and Western 

countries (including England and the USA) and found the Eastern textbooks to be more 

beneficial for students when conveying an idea, but less successful in motivating students. 

The Western textbooks are effective in expressing the importance of mathematics in real-life, 

but unclear about the link between real-life situations and the mathematical concepts. 

Furthermore, focusing on characteristics of problems presented in textbooks, Zhu and Fan 

(2006, p. 614) argued that Chinese textbooks should present more authentic application 

problems (AAP) ‘whose conditions and data are, indeed, from real-life situations or collected 

by students themselves from their daily lives’; whereas USA textbooks should consider more 

challenging problems for students with involving more steps in the solution, as China does. 

USA textbooks also include more visual information than Chinese ones. Furthermore, after 

comparing the content presentation of the addition and subtraction of integers between 

American and Chinese mathematics textbooks, the Chinese textbooks contain ‘more 

problems with high level mathematics content’ (Y. Li, 2000, p. 239). 

The solution strategies in examples of Eastern textbooks such as China and Singapore 

are also less in number than in Western textbooks such as in the USA. Fan and Zhu (2007) 
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compared China, Singapore, and USA mathematics textbooks for problem-solving 

procedures in terms of two layers: general strategies referring to Polya’s four-stage problem-

solving model (understanding the problem; devising a plan; carrying out the plan; and 

looking back); and specific strategies. Chinese and Singapore textbook series merely 

presented the ‘carrying out the plan’; while more than two-thirds of problem solving 

procedure presented in USA textbooks adopted at least two stages. This finding may partly 

explain why American students perform better than Chinese pupils in more open-ended 

problem-solving, as observed by Cai (1995).  

Furthermore, due to the recent boom in textbook research, Fan (2013) proposed a 

framework for mathematics textbook research (see Figure 2 below). This framework involves 

three factors: the subject of the textbooks itself; textbooks as a dependent variable (how 

textbooks are affected by other factors); and textbooks as an independent variable (how they 

affect other factors). This framework has launched an appeal for the continuation of 

textbooks research. With regards to the dependent variable, the intended curriculum is 

supposed to be the main influence. In terms of the independent variable aspect of the 

continuation, studies have demonstrated ‘how mathematics textbooks are used by teachers 

and students’, ‘how they impact the behaviour of teaching and learning of mathematics’, and 

‘what the influences of textbooks on students’ achievement in mathematics are (Fan, 2013, p. 

772). Furthermore, Fan et al. (2013) pointed out that, although textbook studies have 

provided better understanding in terms of the role of textboooks, textbook analysis and 

comparison, and textbook use, research into the relationship between textbooks and students’ 

learning outcome is still lacking. Especially in English situation, the relationship between the 

use of textbooks in England as discussed in TIMSS and student performance should be 

investigated further.  
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Figure 2. The framework of textbook research (Fan, 2013, p. 771) 

2.3 Perceptions on the Nature of Mathematics  

This study will not go into any further arguments about how the cultural and systemic 

factors (discussed in the first section) are able to point out the underlying reasons of the 

performance gap between the two regions. These two factors have been listed as an existing 

fact or background. To explain the gap, this study will be related to how the mathematical 

concept, in the case of linear function, is going to be taught and learnt. To do so, a discussion 

of the nature of mathematics needs to be addressed before the literature reviews on the 

concept of function.  

2.3.1 Pure maths and applied maths 

Mathematics has been considered to be the cornerstone of human knowledge. 

Schoenfeld (1992, p. 344) states that ‘mathematics consists of systematic attempts, based on 

observations, study, and experimentation, to determine the nature of principles of regularities 

in systems defined axiomatically or theoretically (pure mathematics) or models of system 

abstracted from real world objects (applied mathematics)’. Here, two aspects of mathematics 

are outlined: the pure and the applied. Mathematical knowledge is considered to be either a 

kind of ‘a priori knowledge’ or ‘the paradigm of a certain knowledge’ (Ernest, 1991, p. 4).  

Furthermore, there are two main distinct views of mathematics: the absolutist view 

and the fallibilist one. The absolutist view regards mathematics as the type of knowledge 
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which is isolated and discrete from human knowledge. This isolation leads mathematics to 

become objective and value-free or, at least, not imbued with human values (Ernest, 1991). It 

is viewed as a pure knowledge. In an extreme case, it is considered that advanced 

mathematical thinking cannot be perceived by our common senses (Sfard, 1991). This view 

effectively contends that learning mathematics is to ‘discover the already existing truths of 

formal logic’ (Stigler & Baranes, 1988, p. 257). It leads to two kinds of worlds: a 

mathematics one and a human one. The danger of holding the absolute view of mathematics 

is to ‘trivialize mathematics’ as it was ‘severely impoverished if it focused largely, if not 

exclusively, on issues of grammar’ (Schoenfeld, 1992, p. 335). Schoenfeld also suggests that 

this view leads to the erroneous analogy that learning mathematics is to master a set of 

mathematical facts and procedural knowledge.  

On the other hand, the fallibilist view considers mathematical knowledge to be 

‘corrigible and perpetually open to revision’ (Ernest, 1991, p. 18), in line with applied 

mathematics. Lakatos (1922-1974) developed the quasi-empiricism school of the philosophy 

of mathematics which is not prescriptive but descriptive (Ernest, 1991). His logic of 

mathematical discovery is a cycle of conjecture, refutation, and new conjecture (Wilding-

Martin, 2009). According to Lakatos’ view, mathematical theories are fallible and may be 

‘the bottom-up retransmission of falsity’ (Glas, 2001, p. 358). Wood (1995) also describes 

mathematics as the product of a taken-as-shared or human activity.  

Nowadays, mathematics, in line with other forms of knowledge, is treated as ‘domain-

specific, context-bound and procedurally rooted’ as well as influenced by culture (Stigler & 

Baranes, 1988, p. 258).  

2.3.2 Culture and mathematics 

Mathematics education in England takes an empiricist view which refers to and is 

rooted in useful experiences (Freudenthal, 1991). The implementation of this philosophy 
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influences and shapes the teaching and learning processes from a constructivist approach 

which will be discussed in greater detail in the next chapter: Research on Understanding 

Function. Constructivism lays the foundation for the freedom of activities designed in the 

classroom by teachers and the learner-centred teaching approach which will be reflected on 

Chapter 8: Teacher Interviews.  

Socratic culture has significantly influenced western countries, including England, 

particularly from a religious perspective. Sharpe (1997) proposed that a Protestant outlook, 

which has enculturated democratic, individualistic, reductionist and utilitarian psychologies 

and philosophies has constrained education systems. Individualism was translated into child-

centred educational philosophy. The overall aim was to ‘develop in children an attitude to 

mathematics and an awareness of its power to communicate and explain which will result in 

mathematics being used wherever it can illuminate or make more precise an argument or 

enable the results of an investigation to be presented in a way which will assist clarity and 

understanding’ (The committe of Inquiry into the teaching of Mathematics in primary and 

secondary schools in England and Wales, 1982, p. 96).  

In terms of typical learning difficulties for English students, I concentrate primarily on 

the numeracy skills which in previous section TIMSS 1995 showed the weakness of English 

students. To investigate primary and secondary school mathematics in England and Wales, 

Mathematics counts known as Cockcroft report (The committe of Inquiry into the teaching of 

Mathematics in primary and secondary schools in England and Wales, 1982) in the 1980s has 

had a far-reaching significance for teaching mathematics. The report clearly demonstrated 

students’ fundamental insufficiency of computational skills, especially in terms of ‘fluency in 

mental arithmetic’ (ibid.: 14), although primary schools did pay ‘sufficient attention’ to it 

(ibid.: 88). Here, computational skills comprised of three kinds of calculations: mentally, with 

pencil-and-paper and with a calculator (ibid.: 19) and also included ‘the ability to carry out a 
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particular numerical operations’ and ‘the ability to know when’ to use these operations (ibid:. 

80)’.  

When the People’s Republic of China was established in 1949, initially the education 

system imitated the former Soviet Union. Notwithstanding its impact, this influence has 

gradually fallen away (Xu, 2013). Since the first set of unified syllabus and textbook, the 

style of the former Soviet Union, which paid more attention to the systematic nature and the 

rigors of knowledge, has influenced Chinese mathematics (Xu, 2013). Although textbooks in 

China have been revised several times and tend to focus more on problem-solving, this 

historical factor still remains in the mathematics curriculum, embodied by two basics (basic 

knowledge and basic skill), and extended towards four basics (the basic methods and basic 

experience), which are highly valued by teachers, as reported in Chapter 8. In turn, higher 

requirements for mathematics understanding in China and Shanghai also foster these 

characteristics. That is, achieving higher requirements causes the advanced expectations for 

students about their solid foundation knowledge, including proficiency in employing 

procedural knowledge or skills which will be addressed in Chapter 8: Teacher Interview. 

After several curriculum reforms, the last curriculum reform, the Curriculum Reform 

Guidelines for the Nine-Year Compulsory Education issued by the Ministry of Education 

2001, focused on the construction of knowledge by students and enhancing real-life 

applications (Q. Li & Ni, 2011).  

The dominant philosophy in China can be referred to as Confucianism. Leung (2001) 

identified six distinctive characteristics of mathematics education in East Asia: (1) the content, 

including two basics, is fundamental; (2) meaningful learning including memorization; (3) 

enjoying studying hard; (4) students’ extrinsic motivations, such as familial and communal 

expectations; (5) whole class teaching rather than individualised learning; and (6) teachers’ 

subject matter knowledge prior to pedagogy. The first two aspects will be illustrated in 
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Chapter 5: Curriculum Analysis as well as Chapter 8: Teacher Interviews. The middle two 

aspects are associated with social factors, namely the incentives from family or community 

expectations which are not the foci of this study. The final two aspects are related to the 

suggestion from Reynolds et al. (1996) for pedagogical solutions such as whole-class 

instruction should be more often taken up in England.  

Whole-class interactive instruction was regarded as one of the key classroom factors 

for high achievement in Pacific Rim societies including Chinese by Reynolds et al. (1996). 

There are fundamentally different characteristics between Western and Eastern schools, such 

as a disparity between the two nations in terms of class size, and examination-oriented and 

expository teaching which became the initial negative impression of the Chinese approach 

from the Western educators’ perspective (Biggs, 1996). These early comparisons showed 

how other societies were doing, or what they look like, but for certain mathematics 

knowledge how and what were unclear.  

2.3.3 Mathematics and classroom 

In the area of mathematics, Tall (2004) proposed three worlds of mathematics 

containing elementary mathematics and advanced mathematics: concept acquisition from the 

direct perception of physical or geometric systems and how these are interpreted; a perceptual 

world; and a formal axiomatic world, whose properties determine objects rather than vice 

versa. Focusing on the narrower perspective - the mathematical classroom, however, there are 

four linguistic domains: Research Math; Inquiry Math; Journal Math; and School Math 

(Richards, 1991). The inquiry approach to teaching and learning is grounded in 

‘constructivist epistemology’ (Richards, 1991, p. 17). School Math in linguistic domains 

signifies that ‘students had been treated as passive recipients of information’ (Richards, 1991, 

p. 16). Meanwhile, Tan (2012a, p. 164) argued that the traditional approaches in Shanghai, 

such as memorisation, repeated practice, and didactic teaching, facilitates students ability to 
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‘gain a deep understanding of the content knowledge, develop logical thinking, and possess 

strong application ability, as it might be used to explain the high performance in PISA’. 

2.4 Teachers’ beliefs and practices 

This section introduces the research on teachers’ beliefs and practices. First, two 

general mathematics teaching models will provide the background of the teaching approach, 

following research about English teaching approach as well as Shanghai’s. Secondly, among 

teacher’s knowledge, pedagogical content knowledge will be highlighted.   

2.4.1 Mathematics teaching  

Teacher education research has recently focused on the correlation between teachers’ 

beliefs and their teaching practices (Fang, 1996). The relationship between the two aspects, 

however, is not directly one of cause-and-effect (A. Thompson, 1992, p. 140). There are 

different ways of teaching and learning mathematics as introduced first, and each area will 

have its unique view of the effective way, or the expected teaching approach in the second.   

With regards to what teachers believed, there are two models of mathematics teaching 

in teacher education research which closely correspond with each other (A. Thompson, 1992). 

The first model of mathematics teaching identified by Kuhs and Ball (1986) which describes 

four distinctive categories of teacher beliefs: learner-focused; content-focused with an 

emphasis on conceptual understanding; content-focused with an emphasis on performance; 

and classroom-focused. In the second model of mathematics teaching, Ernest (1989) 

categorised three key elements on which the practice of teaching depended: (1) teachers’ role 

in the intended outcome; (2) the use of curricular materials; and (3) the enacted model of 

learning mathematics (see Table 4).  
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Table 4  

Ernest’s Model 

Key elements of 

mathematics 
Patterns 

Teacher’s role in 

intended outcome 

1. Instructor: skills mastery with correct performance 

2. Explainer: conceptual understanding with unified 

knowledge 

3. Facilitator: confident problem posing and solving 

The use of curricular 

materials 

1. The strict following of a text or scheme 

2. Modification of the textbook approach, enriched with 

additional problems and activities 

3. Teacher or school construction of the mathematics 

curriculum 

Enacted model of 

learning mathematics 

1. Mastery of skills model 

2. Reception of knowledge model 

3. Active construction of understanding model 

4. Exploration and autonomous pursuit of own interests model 

In line with the work of A. Thompson (1992), I linked the two models with 

philosophical backgrounds as shown in Table 5.  

Table 5  

Models of Mathematics Teaching 

View on teacher beliefs Philosophy background Teacher’s role Learning 

Learner-focused Constructivist Facilitator 

Active construction 

of understanding 

model 

Content-focused with an 

emphasis on conceptual 

understanding 

Platonist (Ernest, 1989) Explainer 
Reception of 

knowledge model 

Content-focused with an 

emphasis on 

performance 

Instrumentalist view of 

the nature of 

mathematics 

Instructor 
Mastery of skills 

model 

Classroom-focused from 

teaching effectiveness 

studies 

Not from any learning 

theory 

Classroom 

activities 

Active construction 

of understanding 

model 

In the rise of constructivism in Western education community, it is well accepted that 

knowledge is constructed by learners themselves rather than transmitted from teachers (Hoy, 

Hughes, & Walkup, 2008). Along with these two main learning theories, the learning 

environment has two extremes as well, student-centred view or teacher-centred view of 
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classroom instruction. Later, Swan (2005) summarised two extreme teaching approaches: 

transmission and challenging (see Figure 3). In the transmission approach, methods will be 

explained step by step and the teacher plays key role on the learning direction. This teaching 

approach fit with the belief of mathematics as pure maths. Swan (2005) also argued that the 

transmission approach can only be effective in short-term. The short-term learning outcome 

from students of the teacher-centred lesson would achieve significantly better than student-

centred where the motivation was higher (Sturm & Bogner, 2008). Furthermore, Swan (2006) 

proposed to develop a collaborative orientation towards teaching instead of teacher-centred or 

transmission pedagogic practice for England through five teaching activities: classifying 

mathematical objects, interpreting multiple representations, evaluating mathematical 

statements, creating problems, and analysing reasoning and solution.  
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Figure 3. Two views of teaching (Swan, 2005, p. 5) 

Between the extreme teacher-centred teaching approach and the learner-centred one, 

Land, Hannafin, and Oliver (2012, p. 8) suggested four core values and assumptions: ‘(a) 

centrality of the learner in defining meaning; (b) scaffold participation in authentic tasks and 

sociocultural practices; (c) importance of prior and everyday experiences in meaning 

construction; and (d) access to multiple perspective, resources, and representations’. Pampaka 

et al. (2012) divided the middle into three levels: Level 1, students-centered connectionist 

practice; Level 2, medium – teaching practices from both ends; Level 3, teacher-centred, 

transmissions, fast pace, exam orientated. Here, connectionism has two aspects: (a) 
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connecting teaching to students’ mathematical understanding and productions; and (b) 

connecting teaching and learning across mathematics’ topics, and between mathematics and 

other subject knowledge. Although the distinct teaching style cannot easily be identified by 

English large scale, qualitative studies (Askew, 2001), the connectionism is regarded as the 

desirable teaching approach in England.  

In China, effective teaching and learning mathematics has been summarised by a 

theory named teaching with variation (Gu, Huang, & Marton, 2004) which explains the 

paradox of Chinese learners (discussed in the first chapter) from mathematics classroom 

perspective. The abstract mathematics concepts are built upon concrete and perceptual 

experience, while teaching with variation connects the experience and the concept.  

Teaching with variation, this pedagogy has two forms: conceptual variation and 

procedural variation. The former one focuses on mastering the essential features of the 

mathematics concept by two forms: concept variation and non-concept variation. The concept 

variation varies the multiple perspectives of the concept (see Figure 4), standard figures and 

non-standard figures. Particularly, the non-standard figures provide different orientations to 

enhance the understanding of key characteristics of the concept. Another set of examples are 

related with the figures which do not belong to the concept, as called non-concept variation. 

Then, the essential of the concept could be understood by comparing with the non-concept 

examples (see Figure 5) or counterexamples. Teaching with non-concept variation can help 

student build upon the relationships between related concepts and clarify the confusion 

students might have. In case of linear function in the Shanghai textbook, a set of exercises 

requires the students to distinguish which algebraic expression belongs to linear function: 

  
 

 
   ,      ,        , and       . These samples are mainly of non-concept 

variation.  
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The conceptual variation, however, regards the concept as a static object during the 

teaching and learning process. Each concept might also have its own development process 

which the procedural variation emphasises on.  

 

Figure 4. Examples of the concept variation(Gu et al., 2004, p. 317) 

 

Figure 5. Non-concept example in terms of the concept of vertical opposite angles 

The assumption that teaching with procedural variation will be effective is that 

experiencing the formation process of the concept helps students understand the concept step 

by step. For example, teaching the concept of equation can be formed by three scaffoldings: 

‘representing the unknown by concrete things’; ‘symbolizing the unknowns’; and ‘replacing 

unknown x with symbolic “□”’ (Gu et al., 2004, p. 321). Meanwhile, Gu et al. proposed a 

framework to explain how procedural variation is applied for problem-solving (see Figure 6). 

For example, after learning alternate angles, corresponding angles and co-interior angles and 

angles in a triangle, students are expecting to solve problems from the first known-problem in 

Figure 7 to the rest of three unknown-problems through procedural variation for problem-

solving teaching method.  
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Figure 6. Procedural variation for problem-solving (Gu et. al., 2004, p.322) 

        

 Figure 7. Examples of procedural variation for problem-solving   

In sum, the teaching belief or effective teaching approach in England priorities 

students, and different activities; while Shanghai or China tends to focus on the mathematics 

itself.  

2.4.2 Pedagogical content knowledge 

Teachers’ beliefs usually refer to their pedagogical beliefs about teaching, or the 

subject matter, or those beliefs that are of relevance to how students learn (Borg, 2001). 

Teachers’ pedagogical beliefs dispose or guide teachers’ behaviour in the classroom (Borg, 

2001), and influence teachers’ lesson plans as well as how they conduct the teaching process.  

Many scholars have identified teachers’ knowledge as a decisive way of enhancing 

student achievement (Hiebert, Gallimore, & Stigler, 2002; Hill, Rowan, & Ball, 2005; Monk, 

1994). Shulman (1986) proposed three kinds of teacher knowledge: content knowledge as 

subject-matter knowledge; PCK as how teachers bring the content knowledge to their work 

with students; and curricular knowledge as how particular content relates to other forms of 
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knowledge in the curriculum. No strong relationship was found, however, between teachers’ 

content knowledge and students’ success (Mathematics Learning Study Committee, 2001), 

though teachers’ content knowledge can provide ‘an effective structure’ for setting up 

activities to facilitate learning (Hodgen & Marshall, 2005, p. 169). Recently, Coe, Aloisi, 

Higgins, and Major (2014) state that PCK and the quality of instruction are proven to have a 

strong impact on students’ performance. Due to Chinese students’ consistently higher 

performance in several international assessments, the research on PCK related to Chinese 

teachers has become the foci of teacher knowledge research in comparative studies (An, 

Kulm, & Wu, 2004; Chee Mok, 2006; Y. Li & Huang, 2008; Y. Li & Shimizu, 2009). An et 

al. (2004) proposed a network (see Chapter 8 discussion) to explain secondary school 

teachers’ PCK. In this network, teacher knowledge of students, in effectively analysing how 

their pupils think and learn, is related not only to how well students perform, but also how to 

teach (Mathematics Learning Study Committee, 2001). This model of teachers’ pedagogical 

content knowledge (PCK) will be used in Chapter 8 to compare the differences and 

similarities of two groups of teachers. 

2.5 Summary 

In this chapter, the backgrounds of the education systems in both regions have been 

briefly introduced. Current comparative mathematics studies related to England or Shanghai, 

then accounted for students’ learning outcomes in general, and some features of the 

mathematics curricula in particular. These provide a foundation for building up the view of 

comparative education taken in this current study, which will be discussed in Chapter 4: 

Methodology. The two views of the nature of mathematics have been reviewed. In the 

susequent chapter, the literature review on the concept of function and understanding will be 

presented.  
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Chapter 3 Research on Understanding Function 

This chapter focuses on the literature related to three relevant research areas within 

this study: research on the concept of function, research on the definition of understanding 

and following the general view of understanding, and research on models of understanding. 

The first section of this chapter is about the concept of function. The second one will discuss 

the notion of understanding in general and the understanding of function in particular. The 

similarities and differences in the views on the development of understanding between the 

two cultural contexts – England and Shanghai, will also be explored to illustrate the potential 

influence of this difference on the process of teaching and learning mathematics in the two 

regions. In the third part of the chapter, a total of nine models of understanding will be 

explored: two predominant models of understanding in general; five prominent conceptual 

models of understanding function proposed by Western educators; and two models of 

understanding function for Shanghai situation. Based on these researches, a general model of 

understanding function will be proposed at the fourth section. This general model will be 

applied in this study as a theoretical framework to discern how curricula and the offical 

textbooks describe the requirements of understanding linear function, how well students 

understand linear function, and how the teachers predict what barriers students will encounter 

in their understanding development.  

The main purpose of this chapter is to form the model of understanding function 

through the synthesis of arguments from Eastern and Western cultural approaches. It starts 

with studies on the concept of function from secondary school textbooks’ definitions in 

England and Shanghai fitting with the target group in this thesis. Following the different 

forms of the definition, literature about the two different approaches to function and the issue 

of visualisation, therefore, will be selected to elaborate the nature of arguments for algebraic 

and graphic ways, so as to support further curriculum and textbook analysis. The second 
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section demonstrates the defining understanding from a wide range of literature, and Eastern 

and Western views of understanding will be used to provide initial embodiment from a 

cultural perspective. The models of understanding development shown in the third section 

represents from general ones in the algebraic area to specific ones for function. The specific 

models are either typical samples of different theoretical backgrounds in Western researches 

or precisely working for Shanghai situation. 

3.1 Studies on the Concept of Function  

When focusing on one of the seven key ideas of mathematics in secondary schools, 

namely functional relations between variables or function (A. Watson, Jones, & Pratt, 2013b), 

this section explores the nature of function. First, the definition of function will be outlined, 

mainly focusing on how the topic is introduced in junior secondary school’s textbooks in 

England and Shanghai. Initially, the learning of function is approached in two ways: 

algebraically or graphicially (Leinhardt, Zaslavsky, & Stein, 1990). The disadvantages of 

each approach’s ability to construct the concept will then be discussed. Particularly for the 

graphic method, the power of visualization for mathematics learning will be noted in the 

fourth sub-section. Meanwhile, visualization leads to another aspect, namely the benefits of 

technology in helping students’ understanding of the concept of function at the fifth sub-

section.  

3.1.1 The definition of function  

 ‘The function is a mathematically powerful and pervasive idea’(Schwartz & 

Yerushalmy, 1992, p. 262). The fundamental element of this concept is a ‘dependence’ with 

univocal correspondence for ordered pairs (Piaget, 1977, p. 167). It has been considered as 

‘the univalence requirement: each element in the domain corresponds to exactly one element 

in the range’, as one-to-one or many-to-one corresponding properties, with multiple 

representations (Dubinsky & Wilson, 2013, p. 85). There are three key aspects within this 
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defintion: (1) the ‘dependence’ and ‘univalence requirement’ are both embodied by the rule, 

f ; (2) the rule f could be presented by multiple representations; and (3) the ordered pairs have 

one-to-one corresponding property which means that the first ‘one’ refers to the independent 

variable and the second ‘one’ is called as the dependent variable. This concept includes 

mathematical relationships which ‘can be presented in several different ways’ (Stein, Baxter, 

& Leinhardt, 1990, p. 651). Function is therefore a complex concept: (1) this concept has a 

considerable number of sub-concepts associated with it, for example, the independent value 

and one-to-one property; (2) it is connected to geometry and algebra from a representational 

perspective; and (3) it is represented in a number of different settings (Dreyfus & Eisenberg, 

1982).  

The concept of function has evolved since Leibniz used this term in 1692. Two 

definitions had far-reaching effects which were proposed by Dirichlet and Bourbaki 

respectively. In 1837, Dirichlet developed an accurate definition of function by considering 

‘an arbitrary nature of function’ (Kleiner, 2009, p. 20):  

y is a function of a variable x, defined on the interval a<x<b, if to every 

value of the variable x in this interval there corresponds a definite value of 

the variable y. Also, it is irrelevant in what way this correspondence is 

established.  

 The second sentence of Dirichlet’s definition caused debate in the  

mathematics community at the time and later in 1939, Bourbaki gave the formal 

definition of function based on the meaning of set and mapping: 

Let E and F be two sets, which may or may not be distinct. A relation 

between a variable element x of E and a variable element y of F is called a 

functional relation in y if, for all     there exists a unique     which is 

in the given relation with x.  
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We give the name of function to the operation which in this way associates 

with every element     the element     which is in the given relation 

with x; y is said to be the value of the function at the element x, and the 

function is said to be determined by the given functional relation. Two 

equivalent functional relations determine the same function (cited in Kleiner 

(2009, p. 25) ). 

Turning to schools’ mathematical definition of function, English students encounter 

the idea of function from primary school through to secondary school, while Shanghai 

students only begin to study the concept from junior secondary school and continue to senior 

secondary school. Therefore, the presentation of the concept of function was examined in 

commercial textbooks used in secondary schools in England, and complusory textbooks in 

Shanghai secondary schools.  

The concept of function is developed using a visual approach in England. It is initially 

represented as a function-machine, such as in Figure 8, at primary school and then later as a 

flow diagram (see Figure 9) at KS3 and KS4. Words are often used to describe the rule in 

primary schools, while symbolic notation is applied in the secondary school.  

 
Figure 8. Function machine (McGowen, DeMarois, & Tall, 1999) 
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Figure 9. The definition of the concept of function in an English textbook (GCSE Maths 2 

tier-foundation for AQA A) 

Alternatively, secondary school textbooks in Shanghai (aged 12 to 18) offer two types 

of explanations for the concept of function: co-variation between two variables (rule-based) 

which tend to reflect Dirichlet’s definition; and a correspondence between two sets (mapping) 

which fits more closely with Bourbaki’s definition. Dirichlet’s definition contained the 

concept of variable, while Bourbaki held the ‘purely structural’ view of function (Sfard, 1991, 

p. 15). The concept of function which appears first at Grade 8 (approx. aged 14) complusory 

textbook in junior secondary school is defined as a rule-based relationship:  

There are two variables, for example x and y; within the range of values 

allowed for x, variable y changes once x changes as they have a certain 

dependent relationship. Variable y is referred to as the function of 

variable x. x is referred to as the independent variable.  

In Shanghai senior secondary school (approx. age 17), after the introduction of the 

concept of set, the concept of function is accommodated to a relation between two sets, set A 

and set B, with each member of set A exactly mapping onto one number of set B.   

Sfard (1991) argued that the concept of function has two aspects, operational and 

structural, in line with the dual nature of mathematical concepts (process and structural). 

According to Sfard, the operational process is the first step towards a new notion of concepts 

(Kieran, 1997); therefore, Sfard’s model was drawn from a process-oriented basis, through 

manipulating symbolic representations, and after this, the object-oriented stage by visual 

structural representations. From a psychological perspective, Sfard (1991, p. 18) also 
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proposed a three-stage model of concept development: ‘interiorization, condensation, and 

reification’. In terms of function, through a process involving the function machine, variables 

and formulae have been acquired by students via interiorization. At the second stage, students 

focus on the relationship of input-output rather than actually undertaking the operations. This 

relationship also contains translations between different representations. These two stages 

lead to qualitative changes in the last stage which allow students to probe into some 

properties or to solve equations with parameters, referred to as reification. Similarly, 

Doorman, Drijvers, Gravemeijer, Boon, and Reed (2012, p. 1246) argued that there are ‘three 

interrelated aspects of function’: as an input-output assignment; as a dynamic process of co-

variation; and as a mathematical object. In the first aspect, students carry out calculations and 

notice which one determines the patterns and the methods behind this determination. In the 

second aspect, the notions of independent variables and dependent variables are noticed in the 

form of a table and graph. In the third aspect, students have the full structural view of 

function at the global level to deal with complex problems related to other mathematics 

knowledge. In terms of junior secondary schools, the definition in England is mainly related 

to input-output assignment, while Shanghai emphasises the co-variation view. Both are 

operational-based. The Shanghai textbook offers rigourous mathematical definitions; 

however, England’s textbooks use the visual approach.  

Representations in function. The concept of function mainly contains three different 

and complementary representational systems: algebraic expression, tabular, and graphic 

representation. These are called the ‘three standard types of representations’ (Francesca, 

Dave, & Ornella, 2006, p. 255). These three systems jointly construct the definition of this 

concept, connecting three types of representations into a whole set. Students use one 

symbolic system to expand and understand others. There were two trends of research in these 

symbolic systems: one trend focuses on the alternative nature of an algebraic equation and a 
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graphic representation (Stein et al., 1990); and the other emphasised the role of tabular 

representation as an activity of generalization (Kieran, 2006).  

3.1.2 Two approaches to the concept of function 

In approaching the concept of function, there are two methods: one can start from the 

formal notational system of algebra in order to link with the graph; while the other approch 

stems from the system of Cartesian graphing to make sense of algebraic expression 

(Leinhardt et al., 1990). Researchers have tried to compare these two approaches in order to 

discover which would be more suitable in approaching the concept of function. The 

advocates of the algebraic method consider function to be the ‘central content for school 

algebra’ (Heid & Blume, 2008, p. 56). Other evidence, however, suggests  that the second 

method is much easier for students to understand function (Francesca et al., 2006). The first 

method moves from an algebraic approch to a graphic one via ordered pairs, while the latter 

approach demonstrates a scientific presentation from observation using an array of data, 

through ordered pairs and graphs. Although it is better to approach this topic in a way that 

benefits students (Schwartz & Yerushalmy, 1992), the possible disadvantages of each 

approach should be identified and acknowledge in the teaching and learning processes.  

Each approach to function has its own main representation. The algebraic process has 

the algebraic expression, while the graphical one has the graphical representation. Here, some 

drawbacks of each representation will be revealed, and it should be noted that the 

disadvantages of one might be the advantages of the other.  

Guin and Trouche (1998) argued that students normally misinterpret the graphical 

representation of function. In the case of the gradient, one of the basic properties in linear 

function, there are two ways of exploring this property: visually and analytically (Zaslavsky 

et al., 2002). With the visual approach the gradient is computed as a quotient of segment-

lengths. The drawback of the visual approach is that students sometimes encounter 
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difficulties in a non-homogeneous system (see Figure 10), because, in this instance, ‘the 

isomorphism between the graphic and the algebraic systems loses its utility, indeed its 

meaning’ (Zaslavsky et al., 2002, p. 136). That is, the gradient of these two lines has the same 

value, but it does not look as the same steepness.   

 

Figure 10. The gradient of the same function in two visual approaches (Zaslavsky et al., 2002, 

p. 121) 

A second disadvantage of the graphical approach is that students may find it difficult 

to deal with abstract context of problem-solving. Leinhardt et al. (1990) argued that real-life 

contexts did not always facilitate the learning process. Furthermore, A. Watson, Jones, and 

Pratt (2013a, p. 179) argued that ‘time’ on the x-axis was drawn from ‘chronological 

progression rather than being seen as a variable’. Additionally, the utilisation of transport, 

such as cars and trains, in examples of real-life situations is regarded much more successful, 

as it is easy for students to imagine, and they could ‘serve as a reification of linear function’ 

(Toom, 1999, p. 37). But students will encounter difficulty when dealing with reasoning tasks, 

which are not physically accessible to them or when their intuitions and the definitions within 

the question are conflicted (Edwards, Dubinsky, & McDonald, 2005).  
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In terms of the algebraic expression, children whose ages are between 11 and 14 years 

old can understand the algebraic concept at the formal operations stage (Dreyfus & Eisenberg, 

1982). Besides the requirements of age, there are two perspectives which should be 

considered when using algebraic expression. First, compared with other represesentations, the 

algebraic expression is extremely difficult. Lue (2013, p. 450) concluded that the algebraic 

expression is the most challenging representation ‘to be handled’, even by Grade 10 students 

in Taiwan, after having examined the translations between representations within six types of 

elementary function, including linear function. Due to the difficult, there is a tendency for 

students to remember the procedure, computed as a coefficient in the analytic approach. As 

for the manipulation of algebraic expressions, some pupils could be in control of this 

manipulation and some appear to be controlled by it (Cottrill et al., 1996). That is, students 

could tackle the question in a mechanical or algorithmic way, namely devoid of meaning or 

understanding. One concern is that the overuse of these rules in learning function may 

contribute to ‘structurally weak’ understanding for students (Stein et al., 1990, p. 660). As a 

result, students tend to misunderstand that function must have an equation or rule (Rasmussen, 

2001) in their future study at senior secondary school and university level, such as expecting 

a certain type of standard algebraic expression. On the other hand, the algebraic approach 

may also be dangerous for students’ non-routine problem-solving. When relying on 

traditional rigid practices to develop students’ procedural and conceptual knowledge in China, 

students experienced more difficulties with non-routine problems and tended to leave these 

blank (Ni, Li, Li, & Zhang, 2011).  

The next subsection will consider how to construct the whole concept of function by 

integrating another approach.    
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3.1.3 How to construct the concept of function? 

The concept of function is one of the ‘big ideas’ in mathematics (Confrey, 2002, p. 

113). The construction of this concept is not simply a case of learning the algebraic and then 

graphical approaches, and as a result to have the sum of these two approaches, or vice versa.  

First, the nature of the two approaches are not the same. The graphical world is not 

isomorphically the same as the algebraic expression (Leinhardt et al., 1990), as they are ‘two 

different external systems of representation’ of function (Goldin & Kaput, 1996, p. 405). The 

two approaches represent two differing perspectives. Students who use and understand one 

method do not automatically use and comprehend the other perspective (Leinhardt et al., 

1990). The nature of symbolic representation and graphic representation will be further 

discussed in Chapter 9: Summary and Discussion. 

Secondly, the concept of function has multiple representations that present the whole 

concept (Habre & Abboud, 2006). The main three ones (graphs, tables, and formulae) are 

regarded as separate static entities in students’ minds (Schwarz & Dreyfus, 1995). Students 

regard different representations as individual tasks, instead of considering that these may 

represent the same idea (Gagatsis & Shiakalli, 2004). The perceived static nature of these 

approaches causes students’ difficulties with connecting representations. Different 

psychological processes are employed when translating from formulae to graphs, and from 

graphs to formulae (Guin & Trouche, 1998), where the latter process would be more difficult 

for students than the former one. The lowest accuracy in connecting representations was 

between graphs and formulae (De Bock, Van Dooren, & Verschaffel, 2013). In particular, 

Gagatsis and Shiakalli (2004) argued that the low percentage of translating between different 

representations was related to the use of iconic representations.  

In summary, constructing the concept involves two aspects of meaning: understanding 

the relationship between the different representations and the concept of function, and 
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connecting these representations. Once students overcome these difficulties in translating, 

another struggle is to be flexible in choosing the most appropriate representations in order to 

resolve tasks (Nistal, Van, Clarebout, Elen, & Verschaffel, 2009).  

The algebraic approach is normally regarded as the triditional method, while the 

graphical approach is just as powerful. The next subsection will discuss the use of 

visualization in mathematics.   

3.1.4 Visualization in mathematics 

Mathematicians had a strong preference for symbolic representation in the nineteenth 

century, but this preference was challenged in the twentieth century. As a result, the power of 

the visual approach as a thinking process, and graphic representation as a product of that 

process, has been recognised (Stylianou & Silver, 2004). The term visualization was defined 

as a visual image in the person’s mind when doing mathematics with or without the use of 

graphs (Presmeg & Balderas-Cañas, 2001). The graphical approach to function is one such 

visualisation, as Zarzycki (2004, p. 108) argued that ‘visualization is the process of using 

geometrical illustrations of mathematical concepts’.  

Within this meaning, visualization was regarded as an analytical process with the 

same function as the algebraic method. Visualization was, therefore, compared with the 

algebraic approach in order to illustrate its effectiveness in learning mathematics (Presmeg, 

2006). The debate started with students’ reluctance to think or use picutres which was 

initially reported around the late 1990s (Eisenberg, 1994). Arcavi (2003) proposed three 

causes for this reluctance: the cultural belief that visual proofs were not valued; the cognitive 

aspect, that reasoning with the visual approach cannot always be relied on; and sociological 

dificulties, such as whether it is encouraged by teaching process. Essentially, there were two 

levels of concern: the perception of the usefulness of visualization; and the ways in which 

visualization was explained as a method.  



80 

 

 

 

Research has confirmed that visualization can be effectively used. In solving non-

routine mathematical problems, for example the importance of graphical representations has 

become well recognised (Pantziara, Gagatsis, & Elia, 2009). Also in the advanced 

mathematical area, both novices and experts were observed using a graphical representation 

in their solutions (Stylianou & Silver, 2004). Rösken and Rolka (2006) observed that Grade 

12 (approx. 17 years old) German students showed their willingness to use visualization in 

solving problems, but were unable to solve it correctly. This led to another question regarding 

the accuracy of the answer when the visualization process is applied to solve mathematical 

problems.  

When task complexity was higher, those primary school Australian students who 

preferred visual methods  successfully solved problems without any gender differences 

(Lowrie & Kay, 2001). Furthermore, Presmeg and Balderas-Cañas (2001) investigated the 

question of whether, when, how, and why American doctoral Maths students used 

visualization. The results showed that some students used visual reasoning at the beginning of 

their problem-solving, even those students who chose an algebraic method for their solutions. 

Other students were observed using visual reasoning, only then to check their answer through 

the algebraic method.  

In summary, the visual process is seen to be important. First, the use of visualization 

as a thinking method or part of a process to solve a problem is evident. Second, if the result 

of this visual problem-solving method is presented using the graphic representation, it may 

not be as reliable or credible as the answer provided by the algebraic method provided. The 

effectiveness of the result from visualization influenced the extensive use of it. 

3.1.5 The benefits of software in learning function 

In order to enhance the learning of the concept of function, the medium of computers 

has been used to facilitate the visual process. This method has sparked arguments within the 
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mathematical community regarding whether or not computer software aids learning and 

whether or not understanding is limited by such a visual approach.  

Artigue (2002) noted that the use of software and computational tools was a 

constructivist approach. That is, this approach was not only a pedagogical instrument, but 

also changed the perspective from which students consider mathematics. In his research, 

students developed ‘framing schemes’ around the graph using the graphic calculator or within 

the computer environment. Students’ conceptual image of function became window-

dependent which would improve students’ preference for the structrual view of the concept of 

function. The benefit of this window-dependency was that students can develop a global view 

of the graph without actually experiencing the process of construction.  

The software can also help to construct the concept of function by linking different 

representations automatically. Schwarz and Dreyfus (1995) argued that technical software, 

such as Triple Representation Model (TRM), remedied the difficulty of constructing the 

concept of function (connecting representations) because the software could give students 

these notational systems of function immediately. Moreover, Hazzan and Goldenberg (1996) 

indicated that dynamic geometry environments (DGEs) can strongly impact on a robust 

understanding of function from two perspectives: (1) students could have two pictures of 

function together without reference to algebraic language or graphs; and (2) it could broaden 

students’ ideas of function. In additional, computer software could certainly provide students 

with unprecedented visual capabilities (Habre, 2000).  

Doorman et al. (2012) contended that the switch between an operational-based view 

and a more structural perspective was fundamental to the understanding of function. 

Computer tools were applied by their research to identify ways in which to encourage 

students to make progress in this transition. In this case, the advantages of software were that 

it simplified the calculation procedures. For example, software can automatically generate the 
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graph representation and linking with the algebraic expression (see Figure 11). Students were 

therefore able to highlight the ‘reasoning abilities’ and moved to the ‘object’ view more 

smoothly.  

 

Figure 11. The computer tool use (Doorman et al., 2012, p. 1250) 

Conversely, some researcheres investigated whether using software was more 

effective than traditional teaching methods, even in a symbolic computer-system context. 

From a graphic perspective, Asiala, Cottrill, Dubinsky, and Schwingendorf (1997) revealed 

that students had the better understanding within the graph of the concept of function 

compared with those who used traditional pencil-and-paper instruments. Meanwhile, 

O'Callaghan (1998) proposed four competencies within problem-solving ability related to 

function problems: modeling, interpreting, translating and reifying which will be further 

discussed at the final section of this chapter. Computer-Intensive Algebra (CIA) was used to 

test whether or not students improved in any of the competencies compared with the 

traditional way. The results showed that students’ performances improved significantly in 
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three of the four competencies (only reifying did not improve significantly). Furthermore, 

students’ attitudes towards mathematics was enhanced considerably in this case.  

It has been noted that the most effective way to construct students’ own mathematical 

understanding is for them to combine different resources including theoretical text, calculator, 

and calculation by hand, with the aid of a teacher’s assistance (Guin & Trouche, 1998), as 

using diverse methods. The next section will introduce the research on understanding in order 

to clarify its features and to link with other studies of understanding function.  

3.2 Studies of Understanding  

This section begins by examining two views of knowledge which gave rise to two 

opposite learning theories: behaviourism and constructivism. The latter led to the necessity 

and definition of understanding in the learning process which will be depicted in the second 

sub-section by examining variations in the definition of understanding within Western and 

Eastern contexts. How Chinese educators perceive understanding in the learning process will 

then be delineated. Both sides of the literature agree that understanding is a process and 

involves a hierarchical division from obtaining the concept to being able to use the concept 

flexibly. The final sub-section will describe what is known about understanding function 

more specifically.    

3.2.1 Behaviourism and constructivism  

Learning theories aim to explain the ways in which students study new knowledge. It 

is important to note what knowledge is because different perceptions influence the approach 

to knowledge. In philosophy, the epistemology of knowledge has sought to grasp the 

‘inherent properties of knowledge’ (Fagin, Halpern, Moses, & Vardi, 1995, p. 1). Differing 

views of ‘inherent properties’ have demonstrated how to access the structure of that 

knowledge. There are two primary opposing perspectives on knowledge: one is the absolutist 

view, while the other is the fallibilist view, as discussed in Chapter 2. Within the absolutist 
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outlook, knowledge represents an independent world (Von Glasersfeld, 1995) and is a 

finished product, expressed as a body of proposition (Ernest, 1991). Within the fallibility 

view, knowledge is an activity of knowing and changes along with the time and place (Ernest, 

1991). These two contrasting views lead to two differing learning theories, namely 

behaviourism and constructivism. With regards to behaviourism, learners are passive as 

knowledge is delivered by others. Xu (2004) argued that some of the Shanghai students in 

primary school were passive learners and that their learning approach belonged to 

memorization. On the opposite extreme, constructivism involves learners actively 

constructing their knowledge. The question remains, then, as to whether behaviourism and 

constructivism are in fact incompatible in the process of learning mathematics from a 

practical perspective. The following will first explore the theories of  behaviourism and 

constructivism a little deeper.   

Behaviourism. Behaviourism reflects the view that knowledge has a structure and 

that students should incorporate this pre-existing structure into their own knowledge base (N. 

Adams, 2007). J. B. Watson, the father of behaviourism, defined the aim of learning as 

adjustment and the learning process as trial, error, and success (J. Watson, 1924). In essence, 

behaviourism is a strictly ‘operational theory’ (Suppes, 1975). Based on this perspective, 

knowledge or behaviour was accumulated and reinforced by drill and practice. 

These results explain ‘the learning of animals and simple human tasks’, but not the 

more sophisticated process of learning knowledge (Watkins, 1996, p. 6). Critics also 

highlighted that behaviourists eliminated the distinction between training and teaching (Von 

Glasersfeld, 1995). The behaviourist view was a ‘clinical’ one (Harries & Spooner, 2000) as 

more mechanical than conceptual. However, this was not to deny the importance of the 

practice and class exercises for some of the skills that students would likely need to construct 

important conceptions and principles (Davis, Maher, & Noddings, 1990). In addition, 
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although teaching mathematics is largely related to real world situations, the ‘esoteric domain 

of mathematics’ must be taught (Dowling, 2008, p. 27). It is evident therefore that, to some 

extent, certain knowledge and skills should be taught along the lines of the behaviourism 

learning theory.  

Constructivism. Constructivism holds another view that knowledge is contextualized 

rather than acquired (N. Adams, 2007). Knowledge is actively constructed by the individual 

(Bodner, 1986) and social interactions play an important role in knowledge construction (Hoy 

et al., 2008, p. 411). The learning process, in which every student possesses his or her own 

unique knowledge as a foundation, is recreated, reproduced, or restructured in the interaction 

of subject and object (Ernest, 1991).  

There are two main schools of constructivism: ‘psychological/individual 

constructivism’ pioneered by Piaget; and ‘social constructivism’, pioneered by Vygotsky 

(Hoy et al., 2008). Piaget’s psychological constructivism focuses on the internal factors in 

terms of the development of knowledge. Vygotsky’s social constructivism positions the 

learning process as discovery together with the interaction between learners and the social 

community (Denis Phillips, 1995).  

Psychological constructivism. Piaget (1972, p. 24) suggested that ‘between stimulus 

and response there is the organism’. This view presented a model of equilibration and self-

regulation to explain how the structure of organism comes to be. Knowledge construction is 

directed by internal processes (Hoy et al. 2008). This dynamic internal cognitive process has 

two aspects, a process of assimilation and accommodation, in order to adapt to the 

environment and organise internal structures. Assimilation results in a variation in quantity, 

while accommodation causes change in the qualitative characteristics of the knowledge. 

Accommodation could alter the old schema or set up a new one. When an individual cannot 

make sense of a situation with their current schema, real changes occur, involving the 

https://mail.google.com/mail/html/compose/static_files/blank_quirks.html#_ENREF_3
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assimilation and accommodation of the new information within the old schema, through the 

process of disequilibrium to equilibration. Thus, it is through this process that individuals 

develop their thinking and learning. 

As for the teacher’s role in the learning process, Piaget comments that ‘what is desired 

is that the teacher cease being a lecturer, satisfied with transmitting ready-made solutions; his 

roles should rather be that of a mentor stimulating initiative and research’ (Good, Kromhout, 

& Mellon, 1979, p. 430). Teachers listen to students’ current thinking instead of ‘correcting 

wrong answers’ as within more behaviourist approaches (Hoy et al., 2008, p. 430).  

Social constructivism. Vygotsky emphasised the importance of social interaction and 

cultural tools in the leaning process (Lerman, 1996). That is, students could construct their 

knowledge through acculturation and interaction with their teachers. In terms of teaching, 

Vygotsky (1978) proposed the concept of the zone of proximal development (ZPD) and 

scaffolding. ZPD is the gap between students’ existing level and students’ potential level of 

learning. Students need to cooperate with others for their cognitive development, as this is 

where the ‘most efficient learning happens’ (Wilding-Martin, 2009, p. 30). Teachers are 

expected to understand what students already know and to support them in achieving the 

learning objectives through scaffolding. Once students achieve the initial goal, a new zone 

develops accordingly (Kalina & Powell, 2009), and teachers scaffold again. The aim of the 

instructions from the teacher is to reorganise students’ cognitive structures rather than 

transmitting information (Cobb, 1988). That is, teaching and learning is integrated instead of 

separated in behaviourism (Lerman, 1996). In terms of Vygotsky’s constructivism, the 

teacher’s role is also slightly different from the individual constructivist perspective. In the 

social constructivism view, teachers co-participant and co-construct different interpretations 

of knowledge (Hoy et al., 2008, p. 430), while in Piaget’s constructivism, teachers normally 

listen to what students say. That is, for individual constructivism, this activity is built upon 
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individual cognition, while social constructivism relies on social processes (Denis Phillips, 

1995).   

Both branches of constructivism consider the learning process to be an activity. 

Teachers and students are active meaning-makers (Cobb, 1988). Constructivism forces us to 

think critically and imaginatively about the learning environment. Its function is to provide 

the setting, pose the challenges and offer support to students (Davis et al., 1990). On the other 

hand, Richards (1991, p. 38) contended that through teachers’ tasks designs, students could 

‘ask questions, pose problems and set goals’. In addition, the learning environment should be 

created and maintained in a positive manner for students’ ongoing active learning (Hoy et al., 

2008). Mathematics education therefore focuses on how children engage in mathematical 

activity, and how teachers can promote this activity (Davis et al., 1990).  

From a practical perspective, teaching basic skills is in fact based on ‘memorization, 

drill and practice’, and understanding comes after one has mastered the algorithms (Tobin, 

1987, p. 297). This will be discussed later in Chapter 5. But it becomes clear that 

behaviourism and constructivism could therefore be reconcilable. From a mathematical 

perspective, rote learning and memorization is useful in a purely mechanical way. Yet, it is 

more important to invite students to consider the reasons why the particular conceptions or 

theories are deemed important (Von Glasersfeld, 1995). Western educators no longer think 

that memorization leads to understanding, while Chinese educators believe that memorization 

could be used not only to deepen but also to develop understanding (Cai, 2004). Two queries 

remain: the extent to which proficiency skills influence students’ understanding of 

mathematical concepts, and the ways in which to balance the relationship between 

algorithmic learning and reasoning, and the elements of mastering skills or procedural 

knowledge with the purpose of understanding a mathematical concept, as will be addressed in 

Chapter 9: Summary and Discussion.  
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Furthermore, the constructivist view of examining a student’s understanding of a 

mathematical concept was assumed to be as follows (Confrey, 2002, p. 115): ‘a constructivist 

seeks to represent how a student approaches the mathematical content. S/He expects diversity 

– and idiosyncratic rationality. The interviewer’s knowledge of the mathematical content, 

complete with multiple representations, competing interpretations, various applications […] 

create a model which may well transform the interviewer’s own understanding of the 

mathematical content in fundamental ways’. At next section, the definitions of understanding 

will be explored.  

3.2.2 The definitions of understanding in mathematics 

Understanding is important in the learning process. First, the necessity of developing 

understanding exists not only to meet the demand of the individual but also of society. 

Newton (2000) summarised five aspects that understanding offers: it can satisfy the 

individual’s need to seek for the ‘why’ as well as the ‘what’; it can facilitate learning 

including the speed of learning new knowledge, retrieving the learned material, and flexibly 

applying knowledge in a new situation; it enables people to evaluate different situations; it 

can aid the construction of the information; and it can spur on creativity. In terms of the final 

point, creativity is a personal activity intended to produce something new (Bolden, Harries, & 

Newton, 2010). The function of understanding is to ‘creatively use presented information to 

solve transfer problems’ (Mayer, 1989, p. 43).  

On the other side, understanding generates a sophisticated kind of memory (Hiebert & 

Carpenter, 1992). Behaviourism regards learners as passive receivers and views learners’ 

memories to work like storage in a library. As a result, isolated and fragmentary knowledge 

has easily forgotten which lead to mechanical memorizing. Frederic Bartlett’s research results 

(1932, as cited in Hiebert & Carpenter, 1992, p.74) demonstrated that memory was 

constructive. When information has been integrated into a whole network, misplacement is 
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less likely to happen. In this integrated network, information is linked with other information. 

When specific information is needed in a mental search, this integrated network becomes 

effective because there are already abundant routes of retrieval in existence. 

There are two approaches to perceiving and interpreting the definition of 

understanding. One is focused on the naming of diverse types of understanding towards 

different mathematical knowledge. For example there exists mathematical knowledge that 

never being questioned or interrogated at primary or secondary school level, such as 1+1=2. 

Others pay attention to the explanatory function of understanding. The former aims to 

classify the different categories of mathematical knowledge that are expected to be 

understood by students. The latter describes what happens if understanding appears, for 

example having mental objects, as will be discussed below.  

Focusing on types of understanding. Hiebert et al. (1996) suggested the 

understanding that can be identified at two periods of time as functional understanding and 

structural understanding. The functional view focused on the activity during class, while the 

structural view indicated what students acquired after class. Here, structural understanding 

revealed internal relationships between pieces of information, and therefore represented a 

much more holistic picture of the knowledge. Most researchers, however, divided 

understanding into types according to different forms of mathematical knowledge.   

The categorization of understanding was initially proposed by Richard Skemp. Skemp 

(1976) first defined understanding in two ways: instrumental understanding and relational 

understanding. Instrumental understanding means that one can apply rules but be unaware of 

the reason why the rules work. For example, students can calculate the area of a rectangle by 

multiplying the length and breadth without questioning why these rules provide the correct 

answer. This kind of knowledge is delivered by teachers straightaway. Fundamentally, 

instrumental understanding means that pupils demonstrate their comprehension by showing 
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their ability to discern the function of rules, as where and when to use them. Instrumental 

understanding is related to procedural knowledge which can be gained through practice; first 

by building meaning for symbols and then practising rules (Hiebert & Carpenter, 1992). 

Although instrumental understanding indicates that learners acquire the meaning of the 

procedure through interpreting why this step is followed by the next one, the boundary 

between instrumental understanding and rote learning remains vague. When knowing both 

‘what’ and ‘why’, relational understanding occurs. It is inappropriate to consider the 

understanding process to be merely relational understanding (Hiebert & Wearne, 1996). 

Usually, both instrumental and relational understandings are mixed during the understanding 

process.  

Symbols involved in the process of understanding were also highly valued by Skemp. 

Later in his work, he proposed another type of understanding, symbolic understanding, which 

was defined as a mutual assimilation between a symbol system and a conceptual structure in 

mathematics (Skemp, 1982). He listed ten functions of symbols: (1) communication; (2) 

recording knowledge; (3) the formation of new concepts; (4) making multiple classifications 

straightforward; (5) explanations; (6) making possible reflective activity; (7) helping to show 

structure; (8) making routine manipulations automatic; (9) recovering information and 

understanding; and (10) creative mental activity (Skemp, 1971). It demonstrates the power of 

symbols but is unclear as to how symbolic understanding worked together with two other 

types of understanding.  

Based on Skemp’s work, other forms of understanding were identified, thereby 

forming certain ways of viewing understanding, which have become favoured by academics. 

For example, Newton (2000) identified three kinds of understanding: descriptive 

understanding, procedural understanding and causal understanding. Besides instrumental and 

relational understanding, Byers and Herscovics (1977) extended another two types of 
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understanding from what students are able to do to solve a problem: intuitive understanding 

as a direct insight to solve problems without analysis, and formal understanding as 

connecting mathematical symbolism and notation with relevant mathematical ideas and to 

combine these ideas into chains of reasoning. Furthermore, A. Watson (2003) proposed four 

forms of understanding based on Skemp’s work as well, especially for teaching secondary 

mathematics: instrumental and procedural understanding; contextual understanding for 

contextual knowledge; relational understanding; and transformable, generalised and abstract 

understanding as a higher level of abstraction. The last type of understanding indicates the 

importance of abstract level of understanding.   

Focusing on understanding itself. Dewey argued that understanding was a result of a 

thinking process (Sierpinska, 1990). This thinking process was mainly delineated by two 

interwoven aspects: the act and the linking. Newton (2000) described understanding as 

connecting new knowledge with the existing knowledge network in order to shape a new one. 

Using the idea of a schema, Skemp explained that to understand something means ‘to 

assimilate it into an appropriate schema’ (Skemp, 1971, p. 46). Here, the term, schema, refers 

to the mental structure used to organise the existing knowledge system in order to either solve 

new problems or acquire new knowledge. Skemp also used the concepts of ‘assimilation’ and 

‘accommodation’, as proposed by Piaget, to account for the growth of schema: ‘the 

individual organizes his past experience and assimilates new data to itself’; and ‘the schema 

must accommodate to the new situation’ (Skemp, 1971, p. 44). During the teaching process, 

the teacher is expected to be aware of when assimilation takes place and when 

accommodation occurs (Skemp, 1971). In this, Skemp chose the psychological perspective in 

order to interpret understanding following Piaget’s theory. However, two views: Sierpinska 

who mainly focuses on the meaning of act, and Hiebert and Carpenter who stress the link, 

have profound implications for mathematics education area.  
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Sierpinska. Sierpinska (1990) described an act of understanding as grasping the 

meaning of a concept. An act of understanding is comprised of four components: the 

understanding subject; the object of understanding; the basis of understanding; and the 

operation of the mind (Sierpinska, 1994). The understanding subject refers to the person ‘who 

understands’. The object of understanding signifies that which is expecting to be understood, 

for example concepts. The basis of understanding consists of four issues: representations, 

mental models, apperception, and through that. Apperception occurs in the highest level of 

abstract thinking and it aims to draw conclusions. Through that represents an individual’s 

explanations of logical reasons. There are four types of mental operations: identification, 

discrimination, generalization, and synthesis. These components work in the following way: 

first, the understanding subject (the person) identifies the object of understanding (what the 

person wants to understand), then looks for the basis of understanding (four issues); and if the 

object of understanding is linked to some initial basis of understanding through the mental 

operations (four types), the object of understanding can be understood. In terms of making 

this link, Sierpinska (1994, p. 72) considered processes of understanding to be ‘lattices of acts 

of understanding linked by reasonings’. The ability to prove reasoning as deductive or 

inductive reasoning could create these links, namely through logic. The acting of 

understanding is moving towards abstract thinking.   

Hiebert and Carpenter. Hiebert and Carpenter (1992) offered the explanation of 

linking, related to external representations such as the object of understanding, and internal 

representations which were in learners’ minds. Hiebert and Carpenter (1992, p. 67) elucidated 

that mental representation was part of ‘a network of representations’. This framework of 

understanding based on a cognitive perspective is now predominantly recognised by the 

mathematics education community.  

This framework for understanding involved three assumptions as follows:   
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(1) ‘knowledge is represented internally, and that these internal representations are 

structured;  

(2) there is a relationship between external and internal representations, but internal 

ones can be inferred by how external ones show, such as how to use written symbols and how 

to explain ideas;  

(3) internal representations can be connected’ (Hiebert & Carpenter, 1992, p. 66).  

The internal network of connecting mental representations could be viewed as a 

‘spider’s web’ or ‘vertical hierarchies’ or a mix of spider’s web and vertical hierarchies 

(Hiebert & Carpenter, 1992, p. 67). Understanding occurs when new information can make 

connections with existing networks, as in linking. This ‘smooth cumulative’ way of 

understanding (Hiebert & Carpenter, 1992) seemed simple in order to create the link, in line 

with the meaning of assimilation in Piaget’s theory. In fact, the connections are more 

complex and could even be contrary to other existing connections. An existing network 

would therefore be adjusted in order to be reorganised. This kind of change is also similar to 

the meaning of accommodation in Piaget’s theory. Through the connections, the network 

expands and its construction becomes more logically organised. 

The progress of understanding does not move linearly when it occurs (Newton, 2000) 

and cannot be predictable (Hiebert & Carpenter, 1992). It may be spiral (Sierpinska, 1990), or 

even folding back (Pirie & Kieren, 1994b) when building internal representations. The levels 

of understanding are determined by the quantity of connections from one idea to another, and 

whether the connections are weak or strong (Hiebert & Carpenter, 1992). Thus the question 

turns to whether the understanding development of mathematics knowledge could be levelled 

towards abstract understanding. Hart (1981) investigated mathematics topics with over 

10,000 secondary school children, looking at their understanding of number operations, place 

value and decimals, fractions, positive and negative numbers, ratio and proportion, algebra, 
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graphs, reflections and rotations, vectors and matrices. Every topic’s results were provided 

with a ‘matching of hierarchies’ (Hart, 1981, p. 187). Likewise, Pirie and Kieren (1994b) 

stated that the process of understanding was levelled. Nickerson (1985) suggested that the 

nature of understanding was non-binary, and that understanding can vary in degree or 

completeness. Based on this type of opinion, mathematics education researchers have sought 

to build up the levels within model of understanding which will be introduced in the third 

section.  

Good understanding. In mathematics education, ‘to understand’ often means to 

‘understand well’ (Sierpinska, 1994, p. 117). Researchers proposed good understanding from 

three theoretical perspectives: schema; the connection; and representations. From a schema 

perspective, Skemp (1971, p. 40) suggested that ‘the more other schemas we have available, 

the better our chance of coping with the unexpected’. It indicates the importance of structure, 

while within this structure, from the related networks view. Hiebert and Carpenter (1992) 

considered stronger and more numerous connections in existing networks as a way of 

determining whether students had a more thorough comprehension. More well-organised 

schemas or specifically more strengthened connections would denote better understanding. 

How to connect is related with representational perspective. Post, Wachsmuth, Lesh, and 

Behr (1985) suggested that the development of children’s understanding is related to the 

flexibility of thought in representations and the transformation among these representations.  

Another way of identifying good understanding is more practical. Sierpinska (1994, p. 

124) regarded good understanding to be a significant act of understanding; that is, to 

overcome obstacles and finally reach an ‘ideal’ way of understanding the object. In line with 

this ideal version, Nickerson (1985) investigated the expert’s view in certain knowledge areas 

and the nature of such expertise. Furthermore, he compared beginners with advanced students 

when they dealt with the same problems. He reached the conclusion that the ability to resolve 
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truly novel situations indicates a better understanding of the concepts involved. That is, 

‘being able to use a concept’ exceeded simply ‘having the concept’ (Lesh, 1981). In this 

situation, students’ ability to sort out certain novel situations is related to other mathematical 

knowledge. Students can flexibly choose relative knowledge with which to approach the 

solution in the complex problems. Next section will highlight differences on understanding 

between Eastern (China) and Western.  

3.2.3 Understanding in the Chinese literature 

Understanding is a process shown in Chinese literature as Chen and Weng (2003) 

explained that the understanding process should obtain the nature of the knowledge through 

updating, modifying, rearranging, and restricting the existing knowledge. Other researchers, 

however, followed Skemp’s definition of understanding. H. Zhang (2006) put forward three 

types of understanding: operational understanding; relational understanding; and migratory 

understanding. The first two types share similarities with Skemp’s instrumental 

understanding and relational understanding. The third type, migratory understanding, refers 

to the use of mathematical ideas and methods, and involving existing mathematical 

knowledge migrating to novel situations (the basic ideas and methods will be addressed in 

Chapter 5: Curriculum Analysis). The introduction of this third understanding reveals that the 

non-standard situation for problem-solving (non-routine problems) is one independent part of 

understanding in Chinese educators’ views as well. Another opinion, however, is that 

migratory understanding was part of relational understanding as F. Ma (2001) proposed four 

levels of relational understanding:  

(1) knowing - know the definitions, key attributes, typical examples, and differences 

of other definitions or key attributes;  

(2) applying - apply some features in the similar situation; solve problems through 

following the examples; and know the justifiability of solutions;  
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(3) connecting – connect the new knowledge with existing mathematical concepts and 

expand the knowledge network;  

(4)  problem-solving – solve problems in the novel situation and use a new methods 

and ideas. 

Furthermore, D. Zhang and Yu (2013) not only divided understanding into three types 

- instrumental understanding, relational understanding, and creative understanding, but also 

suggested that these three types were hierarchical. Additionally, each level of understanding 

was comprised of several types of understanding. In general, Chinese educators believe that 

understanding involves different forms and understanding itself can be levelled.   

D. Zhang and Yu (2013) also indicated some differences between Western and 

Eastern studies regarding understanding from Eastern scholars’ perspective, especially 

concerning views of procedural knowledge. In the case of the addition of fractions, if students 

could use visual methods to solve the problem, this kind of solution is regarded as 

understanding in the West. Zhang argued, however, that visual method which would take 

students too long compared with the pure algebraic approach was not enough for 

understanding, as an inefficient way. The underlying reason for this was that the Western 

educators regarded the visual method, specifically drawing, to be a significant part of 

understanding. Eastern educationalists, however, considered the drawing method to be a 

facilitator of understanding and that students’ understanding should be shown without this 

facility by using the more abstract method. For example, in relation to the understanding of 

equivalent fractions, there were six tasks involved as follows (M. Simon & Tzur, 2004, pp. 97, 

99, 100):  

1. Draw a rectangle with 
 

 
 shaded. Draw lines on the rectangle so that it is divided into 

sixths. Determine how many sixths are in 
 

 
. 
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2. Draw a rectangle with 
 

 
 shaded. Draw lines on the rectangle so that it is divided into 

twelfths. Determine 
 

 
 

 

  
. 

3. Draw diagrams to determine the following: 

a. 
 

 
 

 

 
 

b. 
 

 
 

 

  
 

c. 
 

 
 

 

  
 

4. Drawing diagrams to solve equivalent fractions problems is not much fun when the 

numbers get large. For the following do not draw a diagram. Rather describe what 

would happen at each step if you were to draw a diagram. Use that thinking to answer 

the following:  

a. 
 

 
 

 

  
 

b. 
 

 
 

 

  
 

5. Without drawing a diagram, think in terms of cutting up a rectangle. Use a calculator 

to calculate the following. Write down each step that you do and the result you get. 

Justify each step in terms of how it is related to cutting up a rectangle.  

a. 
  

  
 

 

   
 

b. 
  

  
 

 

   
 

6. Write a calculator protocol for calculating a problem of the form 
 

 
 

 

 
.  

Task 3 represents the Western preferable way towards understanding equivalent 

fractions, whereas Task 6 demonstrates the Eastern one. This raises two queries surrounding 

understanding: how to value the visual method in the Chinese definition of understanding 

which will be explored in Part 2: Results; and how Western educators view the role of rote 
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learning in understanding especially from the teacher perspective which will be discussed in 

Chapter 8: Teacher Interviews.  

As well as the divergent Western and Eastern approaches to understanding, both sets 

of educators hold different views of teaching and learning mathematics. According to the 

dual nature of mathematical concepts (Sfard, 1991), Shiqi Li (1996) proposed two different 

views of learning mathematics between Western and the Eastern scholars. The Western way 

perceives drill as the school of behaviourism so that they do not adopt any more. Conversely, 

the Eastern way regarded rote learning to be a fundamental aspect of learning mathematics. 

Li explained this division from a psychological perspective. Later, he produced two other 

papers which profoundly influenced Chinese mathematics education, as warning of the 

disadvantages of overemphasising the implementation of drill: students would stupefy (Shiqi 

Li, 1999) even being bored by mathematics (Shiqi Li, 2000).  

3.2.4 Understanding the concept of function 

Hiebert and Carpenter (1992) considered mathematical understanding to be a network 

of internal representations. They argued that any idea, procedure, or fact can only be 

understood when represented in the mind as part of an internal network of representations. 

There are two further inquiries into a certain mathematical concept that require consideration 

in terms of internal network: the appearance, what it looks like; and the development, how to 

develop. In this subsection, relevant literature on understanding the concept of function will 

be addressed.  

In relation to the first inquiry, Vinner (1983) put forward an explanation of the 

internal network, termed the concept image. A concept image refers to a person’s mental 

picture of a particular concept, including any visual representation and a set of properties. 

The concept image of function by Grade 9 Israel students may involve linear and quadratic 

functions. This kind of concept image tended to have concrete types of function. Schwarz and 
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Hershkowitz (1999) summarised three aspects of the concept image of function by Grade 10 

Israel students: prototypical, which means to use specific examples; part-whole reasoning, 

which means the ability to classify; and attribute understanding, which means to find 

attributes from representations. For first year college students and junior high school teachers, 

four categories of concept image were identified by Vinner and Dreyfus (1989): one-

valuedness, which means one-to-one correspondence; discontinuity when the graph has a gap; 

split domain about piecewise function, such as   {
        (    ]

       (    )
; and exceptional 

point. Different grades of students demonstrated differing explanations of the definitions. The 

construction and development of these concept images are outlined by the second inquiry.  

From a psychological perspective, the development of an internal network is related to 

how it occurs during the interaction between the information and the human brain. Cognitive 

psychology has established a series of theories with which to interpret learners’ cognitive 

progress, such as the information processing model of learning. Mathematical concepts are 

logical, while cognitive progress cannot be conceived in a logical way (Tall & Vinner, 1981). 

This conflict between mathematical concepts and cognitive progress means that their 

progression is not simultaneous. This disparity between the development of mathematical 

concepts and cognitive progress explains why students experience potential cognitive conflict 

in their minds, especially when learning abstract mathematical concepts. The cognitive 

conflicts stem from the logical nature of mathematical concepts. The nature of these conflicts 

can be perceived through the different levels involved in the development of understanding. 

Models of understanding can clarify the problems with which learners are currently faced. 

The next sub-section therefore focuses on previous literature about models of understanding. 

3.3 Models of understanding development 

This section begins with the examination of two models of understanding 

mathematics which have mainly been applied in the algebraic area in general, and seven 
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models of understanding function in particular. The first two general models of understanding, 

Pirie and Kieren’s model and the APOS theory, both proposed by Western educators, have 

been widely applied in China (Shuwen Li & Zhang, 2002; J. Wu, 2011; J. Zhang, 2011). 

Reviews of two general models’ features also reveal that to understand mathematical 

concepts, especially in the algebraic area, there are two approaches: bottom-up and top-down. 

The model of understanding function will then be separated into two parts: those proposed by 

Western educators in the second sub-section, and those by Eastern educators, particularly in 

the case of Shanghai at the third sub-section.  

3.3.1 Pirie and Kieren’s Model and APOS 

In describing two predominant models of the development of understanding, this sub-

section has two objectives. The first introduces two predominant models of understanding 

models relevant to the area of algebra. Both models took on a constructivist perspective, by 

regarding understanding as a continual and never-ending process, and were based on 

observations of classroom teaching and interviews. Meel (2003) illuminated that both the 

APOS theory and Pirie and Kieren’s model successfully met the eight standards for a theory 

proposed by Schoenfeld (2000): descriptive power, explanatory power, scope, predictive 

power, rigor and specificity, falsifiability, replicability, and triangulation respectively. The 

similarities and differences between the two models will then be compared.  

Pirie and Kieren’s Model. Pirie (1988) found that a student’s understanding of the 

division of fractions could not be classified by understanding categories such as relational 

understanding or instrumental understanding. She therefore concluded that understanding was 

dependent on context and also involved many different levels. Later, Pirie and Kieren (1994a, 

p. 39) referred to mathematical understanding as a process ‘grounded within a person, within 

a topic, within a particular environment’. At the same time, Pirie and Kieren (1994b) 

presented their growth of understanding model as a dynamic, levelled but non-linear and 
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recursive process. The model contained eight potential levels: Primitive Knowing; Image 

Making; Image Having; Property Noticing; Formalising; Observing; Structuring; and 

Inventising (see Figure 12).  

 

Figure 12. Pirie and Kieren model (Pirie & Kieren, 1994b, p. 167) 

Level 1 is the starting point named Primitive Knowing, which involves pre-conception, 

prior knowledge, and any basic proficiency in or knowledge of the new mathematical 

information. Through pre-tests or oral tests, the teacher or researcher can identify whether 

students have some relative knowledge or skills related to this new concept. These tests can 

hardly judge, however, whether students have enough previous knowledge and skills. Level 2 

and 3 both involve ‘pictorial representation’ about the new knowledge, but the word, image, 

does not connote a picture in the mind but any mental and physical activity. In Image Making, 

students use the new ways of representing ideas to reconsider their Primitive Knowing. In 
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Image Having, students have the initial new image already in their minds without having to 

retrieve the previous image. From Level 1 to Level 3, mathematical understanding is based 

on particular contexts and deals with specific problems (Pirie & Kieren, 1994a). The first 

three levels describe how students obtained the new knowledge, by linking with the old 

network and ready to assimilate a new one.  

At Level 4 Property Noticing, students can identify the properties of this newly 

acquired knowledge in a more abstract way. This leads to the level of Formalising in which 

students formulate a formal mathematical definition using their own words and methods. 

Within these levels, students can therefore recognise general characteristics within informal 

patterns and apply proper methods in order to defend their views. Moving on to the level of 

Observing, the previous formal organisation of properties can be reorganised and recombined, 

while in the Structuring Level learners can justify and verify these restructured properties 

through mathematical proof. At this point, students have developed the new schema and 

know the structure of the new knowledge. 

Finally, Inventising, the outermost layer, involves a fully structured understanding of 

a given mathematical area which can be used to generate new questions and process into the 

Primitive Knowing of a more abstract area of mathematical knowledge, forming a new cycle 

of understanding once more.  

The Pirie and Kieren model has been widely used to analyse the process of students’ 

understanding with primary school students (Thom & Pirie, 2006), low-ability students at 

secondary school (Pirie & Martin, 1997), undergraduates (Walter & Gibbons, 2010) and 

prospective teachers (Cavey & Berenson, 2005). It depicts the growth of understanding in 

detail from a cognitive perspective and is based on the subject’s previous understanding or 

daily life experiences.  



103 

 

 

 

When students meet advanced mathematics in which concepts are more abstract, 

formal, and logical, they may find it hard to make connections with an existing network as 

there is little relationship between school maths and out-of-school maths, with school maths 

being far away from students’ daily living experiences (school maths will be addressed at 

Chapter 8: Teacher Interview).  

APOS Theory. Dubinsky and McDonald (2002) proposed a hierarchically ordered 

understanding theory, known as APOS, to probe undergraduate students’ understanding. 

APOS was composed of four stages: Action; Process; Object; and Schema.  

The first level forms an Action through repeated operations with the help of external 

stimuli. In fact, this step is normally algorithmic so that individuals can experience the 

relationship between operation and concept.  

When learners are familiar with actions, they no longer require the external stimuli 

any more. Actions become interiorised to form an internal Process. Learners can then 

describe actions, reverse the steps, and infer other processes through coordination with other 

processes or through the reversal process. That is, in Process, students reflect on Actions by 

interiorising and encapsulating. 

When learners regard the processes as a whole upon which to operate, the Process is 

encapsulated to become an Object. The mathematical concept comprises of properties. 

Understanding a mathematical concept stem from learning the properties of the concept, then 

identifying some ‘salient elements’ among these properties (Meel, 2003, p. 151). Once 

learners recognise the nature of the concept, properties, their understanding of concept can 

become an Object. Learners may return to the Process stage in order to perform new 

manipulations, namely to de-encapsulate.  

Finally, learners have a mental structure of this concept, namely Schema. Schema is a 

generalisation of Action, Process, and Object combined in order to resolve a problem. 



104 

 

 

 

Schema is analogous to the notion of ‘concept image’ proposed by Tall and Vinner (1981) as 

discussed in the previous section: Understanding the concept of function. Furthermore, Clark 

et al. (1997) proposed a framework for schema development which includes three steps, intra 

schema, inter schema, and trans schema. For the single object, the learners’ mind involves 

intra schema. For the different objects connected with each other, inter schema occurs. Once 

the inter schema comes into being as a continuous complete construct, trans schema appears.  

Comparing the two models. The differences between the Pirie and Kieren model and 

APOS theory will initially be addressed and their similarities will then be presented.     

Differences. Firstly, two models’ approaches to understanding differ. APOS theory 

aims to establish that the advanced mathematical understanding processes are built on 

recognising the main mathematical characteristics of a concept. This kind of concept may be 

more abstract in mathematics while emphasising properties. Among these properties, the 

main features are distinguished. Instruction relies on the features of a certain concept rather 

than students’ prior knowledge; Hiebert and Carpenter (1992) called this the top-down 

approach. Conversely, the Pirie and Kieren model tends to connect with prior knowledge, and 

Hiebert and Carpenter (1992) labelled this a bottom-up approach.  

The second difference is related to the teacher’s role. The role of the teacher differs in 

relation to fostering conceptual thinking. In the Pirie and Kieren model, teachers are expected 

to organise the classroom environment in order to encourage mathematical learning. The 

APOS theory is inclined to present dis-equilibrating environments so that teachers help the 

students to manage their frustration. For abstract concepts, learners’ understanding is 

supposed to be developed from part to whole. Dubinsky (1991) used genetic decomposition 

to describe the possible construction of a concept. For example, the concept of function 

involves two approaches to construction as discussed earlier. When arriving at the full 
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structure, the process opens up a new horizon for learners. Teachers would therefore have to 

take a more leading role in the development of understanding.  

Similarities. In addition to these differences, some similarities between the two 

models have been identified. First, the folding back in the Pirie and Kieren model is similar to 

the process of de-encapsulation in APOS theory (Meel, 2003). Secondly, the same 

phenomena are explained by both models, such as misconceptions and concept images. Pirie 

and Kieren’s model described misconceptions as troublesome limited images in learners’ 

minds, while the APOS theory considers it to be a form of cognitive dissonance between a 

narrow scope and the broader context. Finally, overcoming obstacles involves recognising 

non-conformity among existing connections and developing the more successful links in the 

Pirie and Kieren’s model, while the APOS theory considers the process of overcoming 

obstacles to be a reflection on existing understanding and the integration of new elements.  

The two models summarise the general understanding process in mathematics 

learning. The next section will focus on the understanding development within a certain 

concept, namely function, from the models proposed by Western educators.  

3.3.2 Five models of understanding function in Western literature 

The development of students’ understanding of function is demonstrated by several 

steps in the understanding development model which reflected a significant shift in their 

cognitive progress. Five current models of understanding function provide the answers from 

different perspectives of how understanding is developed.   

Model 1. This model revealed how 16-years old students understood the concept of 

function f(x) from a symbolic view. Sajka (2003) used the PROCEPT framework proposed by 

Gray and Tall (1994) to illuminate students’ cognitive stages. The PROCEPT framework 

stemmed from revealing the cognitive progress of understanding in elementary mathematical 

concepts from a symbolic perspective. Gray and Tall (1994) demonstrated the ambiguity of 
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symbols. The same symbol could be interpreted in two ways, as a concept and a process. 

Concept referred to the production of process, namely the results of process. For example, 

this symbol itself,  ( )      , could be represented in two ways: one was the calculation 

of the value when given x, which meant the process; the other was the completed product for 

the general value of x, which meant the object, the concept of linear function. Gray and Tall 

(1994) combined the concept and process to define the notion of PROCEPT as follows: 

An elementary procept is the amalgam of three components: a process that produces a         

mathematical object, and a symbol that represents either process or object.  

A procept consists of a collection of elementary procepts which have the same object.  

(Gray & Tall, 1994, p. 121) 

Here, the ‘elementary procepts’ were similar to the ‘process’ stage in APOS theory, 

while PROCEPT would be the same as ‘object’ stage. Tall (1999, p. 5) acknowledged that 

‘the PROCEPT notion has strong links with APOS theory’.   

Six steps were described in the PROCEPT of function in a study by Sajka (2003, p. 

250):  

Step 1: Absence of a notion of function; thinking in terms of numerical equations and 

unknowns; 

Step 2: Function as the beginning of a new thought or new task;  

Step 3: Function as a formula;  

Step 4: Function as that which ‘determines all the rest in the formula’;  

Step 5: Function as a computational process;  

Step 6: Function as a kind of formula which leads to drawing a graph.  

At Step 1, student’s understanding remained at the process of construction. At Step 2, 

when the symbol f appears, function was understood as the rule to look for a value. Step 3 

demonstrated that students could not distinguish between the concept of equation and 
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function. At the following step, students could tell the difference. Furthermore, f  linked with 

‘value’ x, namely f(x), as it could determine the value of function in case of  ( )      . 

In the last step, students had the object aspect of algebraic expression, so that another 

operational aspect towards graphic representation emerged.   

Model 2. The second model focused on different representations. Previously in this 

chapter, it had been discussed that one of the main learning difficulties regarding the concept 

of function is how to connect these representations. This model assumed that students had 

already grasped the meaning of individual representation, so that their understanding was at 

least at the ‘Image Making’ level of Pirie and Kieren’s model.  

Hitt (1998) identified teachers’ difficulties with representations and compared these 

with previous literature about students’ struggles. He suggested five levels of understanding 

mathematical concepts to measure how to develop the understanding of representations: 

Level 1: Imprecise idea about a concept; 

Level 2: Identification of different representations of a concept; 

Level 3: Translation with preservation of meaning from one system of representation 

to another; 

Level 4: Coherent articulation between systems of representation; 

Level 5: Coherent articulation of different systems of representation in the solution of 

a problem (Hitt, 1998, p. 125). 

At Level 1, teachers showed their imprecise ideas of graphical representation when 

they were required to discern whether a certain curve corresponds to a function. This graphic 

representation was not as strong as the formal definition. At Level 2, the different ways of 

presenting the algebraic expression for the same function influenced the identification. The 

different writing approaches gave rise to misunderstanding; for example, whether  ( )    

was equal to  ( )  √  for all    . Level 3 required the ability to connect different 
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representations. Within Level 4, the different representations should be understood as they 

offered the same concept. But, teachers showed the barriers as they cannot successfully link 

the graphical representation with domain (the sub-concept of function). When placing 

graphical representations within a real context, it was difficult for teachers to articulate the 

relationship between different representations. Hitt’s study demonstrated teachers’ 

weaknesses when faced with a curve (as a type of graphical representation) in purpose of 

associated with the algebraic expression.    

Model 3. In this model, the emphasis was on the connection between graphical and 

symbolic representations based on the SOLO taxonomy (Biggs & Collis, 1991). SOLO 

taxonomy was one of the neo-Piagetian theories of cognitive development. Five levels 

(prestructural, unistructural, multi-structural, relational, extended abstract) and three models 

(previous, target, next) were categorised (see Table 6).  

Table 6  

SOLO Taxonomy (Biggs & Collis, 1991, p. 65) 

Models Levels Structural level 

Previous 1. Prestructural 

The task is engaged, but the learner is distracted or 

misled by an irrelevant aspect belonging to a previous 

stage or mode. 

Target 

2. Unistructural 
The learner focuses on the relevant domain, and picks up 

one aspect to work with. 

3. multi-structural 
The learner picks up more and more relevant or correct 

features, but does not integrate them. 

4. Relational 
The learner now integrates the parts with each other, so 

that the whole has a coherent structure and meaning. 

Next 5. Extended abstract 

The learner now generalizes the structure to take in new 

and more abstract features, representing a new and 

higher mode of operation. 

The first model (Previous) and first level (Prestructural) both signalled that ‘the task is 

engaged’ (Biggs & Collis, 1991, p. 65). For the concept of function, students can be engaged 

with the function machine such as a calculation game. The variable perspective at the 

prestructual stage provided students with an early understanding of function. Students 
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possessed the fundamental image of function, but this was not necessarily relevant to the 

kernel element of the concept of function.  

The last model (Next) or the last level (Extended abstract) can also be regarded as the 

foundation for further learning. During the understanding development, not only was the 

content on function knowledge and skills carried over to the next level of study, but also the 

experience and feelings related to the concept of function. SOLO taxonomy, however, 

focused on the middle three levels: unistructural, multi-structural and relational. 

Zachariades, Christou, and Papageorgiou (2002) investigated the first year mathematics 

undergraduate students’ cognitive development when they connected these representations in 

the concept of function. Three cognitive developmental levels of the concept of function were 

identified (see Table 7). 

Table 7  

Zachariades et al. (2002)’s Cognitive Levels about Function 

Level Cognitive levels about function SOLO taxonomy 

1 Identify some kinds of function representations Unistructural 

2 
Discriminate and recognize symbolic and graphical 

functions in a consistent way 
Multi-structural 

3 
Make precise connection between graphical and 

symbolic representations 
Relational 

At Level 1, the identification of some forms of function representation means that 

students can recognise these representations individually. At Level 2, students can connect 

corresponding representations, from graphical to algebraic expression and from algebraic 

expression to graphs. Level 3 demonstrated the degree of accuracy of translation. The precise 

connection may result from plenty of practice. Once students can integrate the relevant 

representations for function, the initial outline of particular types of function can appear in 

students’ concept image. This can therefore be counted as a coherent structure and meaning. 

Model 4. This fourth model delineated Grade 8, 9, 10 students’ developing 

understanding of the algebraic expression. Compared with the other main representations 
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(tabular and graphic), the algebraic expression was a versatile way for students to understand 

function. The equation form was considered as a statement of equality first and a 

representation of relationship second. In this model, there were four big ideas as follows 

(Ronda, 2009): 

Growth Point 1: Equations are procedures for generating values; 

Growth Point 2: Equations are representations of relationships; 

Growth Point 3: Equations describe properties of relationships; 

Growth Point 4: Functions are objects that can be manipulated and transformed. 

 Each growth point included the strategies, knowledge, and procedures. At Growth 

Point 1, students focused on the results either for the value of x or that of y, without 

considering the relationship between x and y. Within Growth Point 2, students noticed the 

relationship between the variables. Moving to Growth Point 3, students recognised properties 

from the algebraic expression, for example the y-intercept and gradient in linear function. 

After identified these properties, students’ understanding grew towards the object. By this 

point, they can regard the entire equation as the whole to manipulate or transform.  

Model 5. Although the concept of function had three main representations: geometric 

(graph), numeric (tables), and symbolic (algebraic expression), DeMarois and Tall (1996) 

argued that the connections between representations should also be included within this list, 

such as the way of thinking about the connection and how to demonstrate the connection. 

From a much broader representations perspective, DeMarois and Tall (1996) proposed a two-

dimensional structure, namely horizontal and vertical scaling to specify the understanding 

model of function (see Figure 13). Horizontal scaling was related to eight forms of 

representations. Besides three main representations, five other facets outlined various ways of 

presenting function such as notion f(x), or expressing concepts such as written or verbal 
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descriptions - written, verbal (spoken), kinesthetic (enactive), colloquial (informal or 

idiomatic), and notational conventions (DeMarois & Tall, 1996, p. 2).  

 

Figure 13. Facets and layers in Demarois and Tall’s model 

There were five layers in the vertical part of the model (pre-action, action, process, 

object and proceptual) with three of these aligning with the APOS theory, specifically Action, 

Process, and Object. The first layer, pre-action, indicated ‘a ground floor’ or a foundational 

basis for students’ learning. Within the action layer, learners relied on the specific operation. 

In the process layer, learners began to understand the idea of ‘input-output’ without being 

aware of the concrete steps involved. For the object layer, learners can regard the process as 

an object, while in the last layer, proceptual, they demonstrated flexibility by shifting 

between different processes and object layers. This model was used to examine community 

college students’ understanding of function.  

In summary, each model was proposed from different considerations. The model 

proposed by Sajka (2003) was concerned the initial conceptualization of function. The other 

three models by Hitt (1998), DeMarois and Tall (1996), and Zachariades et al. (2002) mainly 

examined how to handle representations, while the model proposed by Ronda (2009) 
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especially paid attention to certain type of representation, the algebraic expression. These 

models were all proposed by Western educators. The next sub-section will introduce 

understanding models from the perspective of Shanghai.  

3.3.3 Two models of understanding function in Shanghai 

As discussed at the beginning of this chapter, in Shanghai the concept of function 

underwent a change from the junior secondary school to the senior secondary school. Initially 

it was known as the variable view, but then altered to become known as the mapping view.  

The teaching aim of the variable view of function was to focus on the relationship between 

variables on a macro scale. The specific and concrete types of this function played a vital role 

in the understanding of function. At the mapping view stage, the major task of teaching 

function turned to focus on the meaning of domain, range, and correspondence as three main 

factors of function, instead of specified algebraic expression or mathematic terminology.  

There were two models depicting secondary school students’ cognitive processes 

proposed by Zeng (2002) and Jia (2004). Jia (2004)’s model was developed from Zeng 

(2002). Both considered students’ understanding development of the concept of function 

during the whole secondary school stage. With more careful and clearer divisions, Jia’s idea 

regarding the understanding process was more dynamic instead of an incremental shift. Jia 

considered students’ understanding progression to be built upon cognition, feedback, and 

recognition. Table 8 shows the relationship between the two models with examples. 
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Table 8  

Two Models of Understanding Function in Shanghai, China 

 Zeng (2002) Examples for Zeng (2002) Jia (2004) Examples for Jia (2004) 

Junior 

secondary 

school 

(Year 11-

15) 

  
Stage 1 Understanding 

variable 
Change view of       . If t changed, 

then s would also change. 

Level 1 Function 

as ‘process of 

operation’ (Year 

14) 

Connect function with equation. 

Cannot answer graph problem to 

judge if it is a function such as: 

 

Stage 2 Stressing 

relations 

      , students focus on the 

relationship between t and s, presenting 

as the algebraic expression 

  
Stage 3 Employing 

formula 

Using functional view to re-examine the 

former concept, including equation, 

inequality and algebraic expression. 

Senior 

secondary 

school 

(Year 16-

18) 

Level 2 Function 

as ‘process of 

variation (Year 

15) 

Find out the maximum value and 

minimum value of quadratic 

function,          , 

  [    ]. 

  

  
Stage 4 Knowing 

correspondence 

Find endpoints in a certain piecewise 

function 

  
Stage 5 Grasping 

formal description 

Explain the meaning of 

   ( )     

Level 3 Function 

as ‘relation of 

correspondence’ 

(Year 17) 

Multiple choice 

Choose the right answer: 

A. function is just an expression; 

B. function reflects a changing 

process; C. function is a 

corresponding relationship. 

Stage 6 Understanding 

it as an object 

Draw a graph of 

      (  
 

 
)    
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At the beginning of learning the concept, namely Stage 1, Understanding variable (Jia, 

2004), students were required to distinguish the differences between the constant and variable, 

which is in line with the first level of understanding in Sajka’s model (Sajka, 2003). For 

example, in terms of the formula     , if v was given by 2 miles per hour, then distance 

would be     . Before learning the concept of function, students would regard s and t as 

two constants, provided the value of t then calculated s, and vice versa such as in the input-

output assignment in Doorman’s model (Doorman et al., 2012). At this level of understanding, 

they should be able to recognise that the letter t was a set of numbers instead of a certain 

number as called variable. 2t became an object instead of merely a calculated number or a 

certain value, and the value of 2t was equal to the value of s. This description corresponded to 

the elementary concept of PROCEPT (Gray & Tall, 1994). With this new perspective, the 

relation between equation and function, which shared the same form, was reappraised. 

Algebraic expression or symbolic representation therefore became the primary impression of 

function for Shanghai students.  

 At Stage 2, Stressing relationship (Jia, 2004), this process demonstrated the nature of 

the process (Schwartz & Yerushalmy, 1992). If given the equation       , students 

automatically re-arranged it as        , viewing it as one certain type of function, 

linear function. This process, however, only related to equation and not to graph. It implied 

the algebraic approach to function in Shanghai.  

At Stage 3, Employing formula (Jia, 2004), students acquired the understanding that 

function can contain equation and inequality. They therefore gained the ability to link with 

other knowledge. For example, one unknown equation       can be explained as 

function       when the dependent variable equals 0; and one unknown inequality 

      can be regarded as above x-axis part at graph of function      . Within 

Zeng’s model, the function of this level was the ‘process of operation’.  
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Both Stage 4, Knowing correspondence, and Stage 5, Grasping formal description (Jia, 

2004) can be regarded as another form of Stage 2 Stressing relationship under the condition 

of set. Level 2 function as ‘process of variation’ at Zeng’s model required not only 

connecting ability, but also the reasoning ability as shown in the example.  

Compared with models proposed by Western scholars, the two Shanghai models show 

their strong links with the definition of concepts in textbooks and the tendency to use the 

algebraic approach towards the concept.    

3.4 A General Model of Understanding Function  

This section will present a general model of understanding function based on my own 

perspective alongside illustrative examples. The aspects of the five Western models and two 

Shanghai models are reflected in this general model. The general model will then link back to 

the Pirie and Kieren’s model and the APOS theory.  

3.4.1 The general model applied in this study 

The general model divides the growth of students’ understanding of the concept of 

function into six levels: Variable Perspective, Dependent Relationship, Connecting 

Representations, Property Noticing, Object Analysis, and Inventising. The understanding of 

function starts with two elements: ‘variables; and the expression of the relationship between 

variables by the  means of equations’ (Kleiner, 2009, p. 15) as the first two levels in this 

general model.  

Level 1 Variable Perspective. The first understanding step is to take views of the 

variables instead of unknown. There are two different approaches to explaining the variable 

perspective, visually or algebraically. Images, such as the input-output machine and graphs, 

present the importance of visualization in understanding function. On the other hand, 

algebraic expression demonstrates the rigor of the formal style.  
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Students start with an input-output assignment as an operational task. Slavit (1997) 

considered that this input-output view would be based on a point-to-point view, namely a 

coordinate which is a point in the graph. The function machine is the foundation of 

understanding the concept of function (McGowen et al., 1999). That is, input is a prototype of 

the independent variable, while output is a prototype of the dependent variable. The set of 

inputs is presented by a symbol x, while y signals the outputs. The notion of variables 

depends on ‘the notion of domain’ (Schoenfeld & Arcavi, 1988, p. 423) as the meaning of 

domain will be highlighted for further stage learning function (senior secondary school stage 

in Shanghai). Students now therefore make sense of the x represented in all of the inputs at 

this level of understanding function, regarding the input from ‘constant quantities’ into 

‘changing magnitudes’ (Sfard & Linchevski, 1994, p. 200).  

In Shanghai situation, the variable perspective is based on an equation. Function is 

developed from the concept of equation. In terms of the two variables in an equation such as 

          , students should be able to differentiate between the views of function 

and equation (Oehrtman, Carlson, & Thompson, 2008). The understanding of the concept of 

the equation is expanded from ‘thinking in terms of numerical equations and unknowns’ as in 

Step 1 of the study of Sajka (2003), to regard the left and right sides of equation as two 

separate functions. At the beginning, students usually use two approaches, the numerical and 

the functional, to tackle the problems (Sfard & Linchevski, 1994).  

Alternatively, graphs can be a form of input-output (see Figure 14) as follows 

(McGowen et al., 1999): 

 

Figure 14. The example for Level 1 
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Meanwhile the relationship between the input and output can be visually obtained 

from graphs, while the process of discerning whether the relationship involves function 

occurs at the next level of understanding function, Dependent Relationship.  

At Level 1 Variable Perspective, the concept of function is a pre-action aspect of 

DeMarois and Tall (1996)’s model, a new thought or new task at Step 2 in Sajka (2003)’s 

model, understanding variable at Stage 1 in Jia (2004)’s model.  

Level 2 Dependent Relationship. At this level, the dependent relationship between 

two variables is the focus, while Level 1 is concerned much more with finding the unknown 

number in a given operation. The dependent relationship indicates a one-to-one or many-to-

one property of the rule instead of one-to-many. Here, students’ understanding is shaped by 

the action, in line with the second layer of DeMarois and Tall (1996). The rule is expressed 

by different representations. Hitt (1998) proposed that students acquired the different 

representations first and then developed an ability to identify them. Here, these two steps are 

interwoven together to develop students’ understanding of the dependent relationship.  

Three main representations (algebraic expression, tabular and graphic representations) 

show the dependent relationship from three perspectives. In the case of the algebraic 

expression, function can be seen initially as a formula; and this formula then determines all 

the rest; finally there occurs a computational process as in Steps 3, 4, and 5 in the model of 

Sajka (2003). Similarly, Ronda (2009) described how to develop the dependent relationship 

in terms of the algebraic expression: the first (a procedure to generate values) and second 

growth points (a product as a representation of relationships). Two Shanghai models also 

explained it as stressing relations (Stage 2 at Jia’s model) and process of operation (Level 1 at 

Zeng’s model).  

There is an example provided by O’Callaghan of the development of the dependent 

relationship in terms of tabular representation. The following table (Table 9) gives the value 
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(V) in dollars of a car in the years (t) after it has been purchased (O'Callaghan, 1998). 

Students have to find out the dependent relationship between two variables first in order to 

solve the value of V.  

Table 9  

An example for Level 2 

t V 

0 16800 

2 13600 

4 10400 

6 7200 

10 ? 

After this level of understanding, students should overcome the point-to-point 

understanding of function, and be ready to undertake the process perspective (Llinares, 2000) 

in the next level.  

Level 3 Connecting Representations. Connecting representations requires students 

not only to translate one representation into another, but also to understand the relation 

between them as they present the same concept. For example, when given the algebraic 

expression       , students could draw the graph, which is a straight line, through a 

table to produce two ordered pairs such as (   ) and ( 
 

 
  ). That is, function becomes a 

kind of formula which leads to drawing a graph, as the sixth step in Sajka’s model. Through 

this process, students can discriminate and recognise functions in form of symbolic and 

graphical as a consistent way, described as Level 2 in model of  Zachariades et al. (2002).  

Akkoç and Tall (2005) indicated that many students fail to connect different 

representations together. Particular difficulties with the translation from the graph 

representation to the algebraic rather than vice versa have been noted (Markovits, Eylon, & 

Bruckheimer, 1986). In this case, if the translation process is involved in recognising the 

property of function, it may be regarded as the next level of understanding.  
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Students can then make a precise connection between graphical and symbolic 

representations, as described in Level 3 in model of Zachariades et al. (2002). It leads to the 

preservation of meaning from one system of representation to another as in Stage 3 of Hitt’s 

model. For further learning, students can defend their solutions via multiple representations 

which need more flexible views of function. This level of understanding can provide different 

perceptions of function’s appearance.  

Level 4 Property Noticing. This level is built on different representations that have 

been recognised and connected. Here, Property Noticing is the terminology that Pirie and 

Kieren used to describe the fourth layer in their understanding model (Pirie & Kieren, 1994b). 

Some local properties can be understood at this level and students can describe the y-intercept 

and the slope, in a similar way to growth point 3 as proposed by Ronda (2009): Equations 

describe properties of relationships. For example, with the standard form of linear function 

       (   ), the intercepts are the points at which the graph meets the y-axis in the 

graphic representation. It can also be summarised by the standard form of point (   ). 

Students’ understandings, therefore, are based on acquiring a coherent articulation between 

systems of representation, as described at Stage 4 in the model of Hitt (1998).  

Level 5 Object Analysis. This term is similar to the object stage in the APOS theory. 

Within the APOS theory, after the process stage, students can develop the object stage. At 

Level 5, students can understand linear function as a whole thing; for instance, dealing with 

the transformation of the graph of    ( ) by a vector (
 
 
). For a concrete example, 

students can discern whether            could move to           ; and, if so, 

to which direction and how many units move in x-axis and y-axis at the Cartesian coordinate 

system.  

In another example of this level, students would be able to articulate the relationship 

between  (   ) and   ( ) through the perspective of transformation. Students should also 
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be able to articulate the similarities and differences based on a certain property. This is in line 

with the growth point 4 as proposed by Ronda (2009) as functions are objects can be 

manipulated and transformed. Meanwhile, this understanding level fits with the aspect of the 

concept of function as revealed by Doorman et al. (2012) which characterises understanding 

function as a mathematical object with differentiation or integration.  

Distinguishing Level 4 from Level 5. As discussed in the first section, some 

properties have local features and some have global ones; the local features are in Level 4 and 

the global features are in Level 5 respectively. The former characterises individual pairs, such 

as intercepts, while the latter analyse ‘the entire function’, for example, monotonicity and 

period (Slavit, 1997, p. 264). If individual pair is concerned in the noticing of the properties, 

this understanding can be regarded as Level 4, while the whole ‘picture’ that emerges from 

the property can be considered Level 5.  

Reason abilities (Doorman et al., 2012) are required at these two understanding levels. 

In the case of linear function      (    ), the more oblique the graph is, the bigger the 

value of a. The assumptions of the implications of this conclusion are based on the 

combination of the graphical representation and the algebraic expression (see Figure 15). The 

first step involves achieving the same value of x in each straight line,       and      . 

Suppose, for example, that the lower point is B (    ), namely(     ),  while the higher 

point is C (    ), namely (     ), with the same value of x. From the graph, the y-axis 

coordinate of point C,    , is greater than that of B,    . If    , then   >   . Similarly, if 

   , the opposing conclusion can also be inferred.  
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Figure 15. Example of gradient 

From this example, the reasoning ability is still drawn from several related pairs. The 

understanding shown here is positioned in Level 4.  

There is an example of Level 5. The general form of a quadratic graph is       

     (   ). Investigate what happens to the graph if the values of a, b and c change 

(Rayner, 2006, p. 379). This question requires students to perceive the changing quadratic 

graphs as a whole.  

Level 6 Inventising. At this final level of understanding, learners are more flexible 

when dealing with the concept of function. Students are capable of linking this knowledge to 

other mathematical knowledge and making new connections stronger. As a result, they can 

invent and explore new knowledge.  

First, their internal network of function concepts connects to other mathematical 

knowledge such as inequalities and geometrical knowledge. Learners can apply the 

knowledge to novel situations or non-routine problems, displaying ‘good understanding’ as 

previously discussed. Here is an example chosen from the final examination of the first term 

in Grade 9 (age 15) in Shanghai, January 2013. As shown in Figure 16, in the rectangular 

coordinate system XOY, the graph of the quadratic function    
 

 
        has an 
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intersection point with the x-axis at point A (   ) and the y-axis at point B, and there is a 

point C in this graph in which the abscissa is 3. Students were asked to undertake the 

following tasks’:  

(1) Find out the algebraic expression of this quadratic function;  

(2) Find out the value of tan∠BAC; 

(3) If there is a point D in the graph of quadratic function and ∠DAC = 45°, please 

find out the ordinates of point D. 

 

 

Figure 16. Example for Level 6 

In this question, trigonometric function and geometry knowledge, such as similar 

triangles, are all linked to linear function. In order to solve this problem, students must have 

all of the basic knowledge of linear function as well as quadratic function, and using 

representations and properties in a much deeper way.  

Secondly, Inventising was the term used in Pirie and Kieren’s model to distinguish the 

outermost layer. The meaning is used here, i.e. it acts as a full structure of understanding and 

a basis to develop new concepts. That is, students do not only develop new types of function, 

A 

C 

D 

O x 

y 

 

B 
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but also defend their mathematical procedures. There is an illuminating example from Wells 

(1988, p. 414):  

What can you predict about the graph of   (   )(   )(   ), before you 

draw it? To solve this problem, students should identify some properties, such as 

intersections, monotonicity and symmetry for this new function. There are three points of 

graph which will be located on the x-axis, (   ) (   ) (   ) and one point on the y-axis, 

(    ). As for monotonicity, when     or    , y increases faster as x increases. As 

compared with the graph of     , when     or    , the graph increases in magnitude. 

When the value of x is between 1 and 3, the graph would be smooth and point (   ) is the 

point of symmetry. That is, the value of y when   (    ) is the opposite number of the 

value of y when   (    ). There is the algebraic proof as follows: suppose there are two 

points, (      ) and  (      ), to fill in the algebraic expression, i.e.    (    

 )(     )(     )  (   )    (   ) and    (     )(     )(  

   )  (   )  (  )  (    ). Simplify the second one    (   )  (  )  

(    )  [ (   )]  (  )  [ (   )]   (   )    (   )     .   

This process demonstrates not only that students can justify their judgment, but also 

can show the ability to develop the unknown concept, drawing the graph of   

(   )(   )(   ) (see Figure 17), based on flexible applying the properties (local and 

global).  

 

Figure 17. Example of exploring a new concept 
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Although students’ understanding is not supposed to jump between the levels, the 

development of their understanding is not strictly sequential. Their learning does not ‘proceed 

linearly’ (M. Simon, 1995, p. 140). It is assumed in Pirie and Kieren’s model that students 

would go back to former levels from time to time in order to expand their primitive 

knowledge or skills from the perspective of new levels. However, in this general model of 

understanding function, the preparative mathematical knowledge of the current level of 

understanding should be combined with the former levels of understanding, as a crucial 

aspect of the development of the current students’ understanding level. For example, at Level 

4, students are required to make sense of y-intercept. They would recall the characteristic of 

coordinate located in y-axis (   ), and combine it with algebraic expression with aids of 

graph to get this property.  

This general model focuses on one specific concept rooted in Western and Shanghai 

models of understanding linear function. At the following sub-section this model will be 

linked with two general models.  

3.4.2 A comparison with Pirie & Kieren’s model and APOS  

Pirie and Kieren model and the general model of understanding function. Table 

10 shows the comparison between the Pirie and Kieren’s model and the general model. 

Table 10  

Link with Pirie and Kieren’s Model 

The model of understanding function Pirie and Kieren model 

 Primitive Knowing 

Variable Perspective Image Making 

Dependent Relationship Image Having 

Connecting Representations  

Property Noticing Property Noticing 

Object Analysis 
Formalising 

Observing 

Inventising 
Structuring 

Inventising 
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In the Pirie and Kieren model, Primitive Knowing is regarded as a ‘starting place’ of 

understanding (Pirie & Kieren, 1994b, p. 170). Conversely, the model of understanding 

function considers more the preparative knowledge related to each level of understanding as 

discussed above.  

Image Making is defined as making ‘distinctions in previous knowing and using it in 

new ways’ (Pirie & Kieren, 1994b, p. 170). As for function, the first step involves shifting the 

perspective, using the variable perspective to take an alternative look at quantity and equation 

as the level of Variable Perspective.  

In Image Having, students can ‘use a mental construct about a topic without having to 

do the particular activities’ (Pirie & Kieren, 1994b, p. 170). This mental construction of 

function is where multiple representations connect. It is divided into two levels in the model 

of understanding function: Dependent Relationship and Connecting Representations. M. 

Wilson (1994, p. 347) proposed six crucial aspects of deep understanding for the concept of 

function, two of which are ‘interpreting functions represented by graphs, situation 

descriptions, formulas, and tables’, and ‘translating among multiple representations of 

function’. The former aspect is about the rule (the dependent relationship), while the latter 

aspect describes the connections. Dependent Relationship and Connecting Representations 

should therefore be separate from Image Having. 

Property Noticing does not have the exact same meaning in Pirie and Kieren’s model 

and in the general model because of the global and local categorisation of the properties in 

function as discussed above.  

Two levels in Pirie and Kieren’s model, Formalizing and Observing, are combined 

into one level, Object Analysis in the general model. Reasoning ability is necessary for both 

of these levels in order to construct a coherent and systematic mental network. Formalising 

means that students could ‘abstract the methods about how to find these properties’ (Pirie & 
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Kieren, 1994b, p. 170). Here, students should have some skills or experience in the discovery 

of local properties. They can make sense of these different approaches to properties and then 

visualise ‘class-like mental objects’ (Meel, 2003, p. 145). Observing is described as ‘looking 

for patterns’ (Pirie & Kieren, 1994b, p. 171). Students can identify essential components and 

connect ideas (Meel, 2003). These two psychological processes are interwoven together to 

develop students’ abilities of inference; for example, the transformation of the function.  

Structuring and Inventising are categorised under Inventising in the general model of 

understanding function. Structuring is involved in ‘justification or verification’ (Pirie & 

Kieren, 1994b, p. 171) and, in this process, students can make a connection ‘across multiple 

domains’ (Meel, 2003). Students are more flexible in dealing with non-routine problems 

which associate with other mathematics topics as Inventising Level.  

APOS theory and the general model of understanding function. Students have an 

image of Dependent Relationship at the input-output assignment, which also occurs in Action 

in the APOS theory (see Table 11). They follow the teacher’s instructions in order to make 

sense of the dependent relationship in three main representations of function.  

In Process, students can reverse the process and combine other processes (Dubinsky 

& McDonald, 2002). Connecting Representations and Property Noticing link with Process in 

the APOS theory. The process of connecting the representations provides opportunities and is 

a foundation to identify properties. These properties have two types of meaning: algebraic 

and graphic. For example in linear function, y-intercept can be noticed as the point that the 

graph passed the y-axis. On the other hand, if given an algebraic expression,      

  (   ), students can recognise that the intercept is (   ), rather than actually plotting a 

graph to discover the y-intercept. The way in which they note these properties is based on 

their automatic connection of the two main representations. In the case of the y-intercept of 

quadratic function            (   ), it is (   ). Reciprocal function, however, has 
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no y-intercept point. In this case, property therefore stems from a graph and later is connected 

to the algebraic expression.  

Considering function as an Object can be reflected in the fact that students can create 

graphic transformations in algebraic expressions and defend their statements. Object Analysis 

highlights the students’ abilities of logic and reasoning. Object can be an outcome, whereas 

Object Analysis emphasises the process as well. Instinctively, action, process and object can 

‘be organized to form schemas’ (Asiala et al., 1996, p. 8). Schema can be a medium through 

which to resolve non-routine problems such as Inventising level of understanding function.   

Table 11  

Links with APOS Theory 

The model of understanding function APOS theory 

Variable Perspective 
Action 

Dependent Relationship 

Connecting Representations 
Process 

Property Noticing 

Object Analysis Object 

Inventising Schema 

In conclusion, from a theoretical perspective, the general model of understanding fits 

with or was reified two understanding models: Pirie and Kieren’s model, and APOS theory.  

3.4.3 Link with application 

Whereas England’s curricula require all the students to ‘modify’ or ‘translate’ the real 

life situation towards an algebraic explanation, the Shanghai curriculum simply emphasises 

applying pure knowledge into real life which will be introduced in Chapter 5: Curriculum 

Analysis. The main concern of application for both was how to connect the mathematics with 

real life. O'Callaghan (1998) proposed that this process consists of four competencies: 

modeling, interpreting, translating, and reifying in case of the concept of function (see Table 

12).  
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Table 12  

Four Competencies in the Function Model  

Competencies Description Ability 
Associated procedural 

skills 

Modeling 

Transition from a 

problem situation to a 

mathematical 

representation 

Represent problem 

using functions 

Three core 

representations: 

equations, tables, and 

graphs 

Interpreting 
The reverse procedure of 

modeling 

Interpretation of 

different 

representations of 

the problem 

Make different types of 

interpretations or different 

aspects of a graph 

Translating 
Move from one 

representation to another 

Translating 

representations 

Translating among three 

core representations 

Reifying 
Creation of a mental 

object 

Possess certain 

properties or other 

higher level 

processes, such as 

composition 

Conceptualization of 

functions 

The task environment consists of the structure of facts in the real world, the related 

mathematical concepts, and their interrelationships between the structure and the concepts 

(H. Simon, 1978). The first two competencies, modeling and interpreting, as opposing 

processes, are applied to probe into the interrelationships between the structure and concepts. 

Modeling tries to extract mathematics information from the context using mathematical 

representation system, while interpreting involves using these representations, for example to 

explain the meaning of real-life graphs. The latter two competencies are related with 

understanding function. In terms of the Translating competency, related with understanding 

Level 3 Connecting Representations, these representations are required to be connected. As a 

result, students have the mental object for the problem as shown by the fourth competency, 

reifying, related with higher level of understanding, Object Analysis. In the case of function, 

Sfard (1991) demonstrated reification as the proficiency in solving equations, articulating 

with general properties, and recognising that computability does not play a vital role in 
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functions. In summary, the successful application also requires the higher levels of 

understanding function in the model of understanding function.  

3.5 Summary 

The literature discussed in this chapter has provided two in-depth perspectives of the 

research questions: the concept of function, including linear function; and the development of 

understanding. In addition, a general model of understanding function has been put forward 

as the theoretical framework for this study. This model aligns with seven models proposed by 

Western educators and slightly differs with two Shanghai models. The next chapter will now 

present the research design employed in this study.   
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Chapter 4 Methodology 

This chapter sets out the chosen methodology of this research, consisting of six main 

sections. It starts with the theoretical background for the methodology, taking into account 

two extreme methodological perspectives. A discussion of their different ontological and 

epistemological assumptions is followed by a justification of realism as the philosophical 

foundation for this study, as well as views on comparative education. The second part 

describes the proposed analytical framework of mixed-methods as these methods are applied 

to the two phases of this study: the pilot (Phase 1), and the main study itself (Phase 2). 

Thirdly, the chosen methods for the four aspects of the comparative research will be 

discussed, as followed by a brief discussion of the data collection process. Issues of validity 

and ethics are then explored before ending with an exploration of the limitations of the 

chosen approaches.   

4.1 Methodological Perspective 

A methodology shows ‘how research questions are articulated’ (Clough & Nutbrown, 

2012, p. 25). In other words, it clarifies the research decisions. Cohen et al. (2011, p. 3) 

highlight the principle of methodology as ‘fitness for purpose’ towards real world enquiry. 

This section illuminates the methodological consideration of realism and the corresponding 

standpoint on this comparative study.  

4.1.1 Objectivism, subjectivism and critical realism  

A decision concerning methodology entails a consideration of one’s own view of 

social reality and this requires a discussion of two important concepts: ontology and 

epistemology. There are two opposite views concerning the nature of social science, both of 

which adopt very different ontological and epistemological assumptions: the traditional view 

(objectivist) and the interpretive view (subjectivist). The former regards social sciences and 
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natural sciences as having the same ability to ‘discover the universal laws’ (Robson, 2002, p. 

5), while the latter focuses on the description and explanation of people’s different 

behaviours rather than objects.  

The objectivist approach holds a static view (also called standard view) of social 

science. Knowledge is assumed to exist outside of the knower as an independent existence, 

which is ‘hard, objective and tangible’ (Cohen et al., 2011, p. 6). It separates facts from 

values, and is known as positivism (Robson, 2002). Therefore, this ontology follows from an 

absolutist epistemology which has four characteristics: cause-and-effect thinking; select 

variables to interrelate; observations and measures; and theory verification (Creswell & 

Clark, 2007). Therefore, in a similar way to natural science or physical science, the 

objectivist view focuses on what we can see to uncover social laws (Johnson & 

Onwuegbuzie, 2004). However, few studies in social science would take this extreme view as 

it implies that data is time-, context- and value-free. Therefore, post-positivism as an 

extended approach emerged in the middle part of the 20
th

 century. Post-positivism admits the 

limitations of research, especially from the researcher’s perspective, such as the values they 

hold may result in research biases. But post-positivism still insists on scientific reasoning. 

From this objectivist approach, quantitative methods are applied extensively, mainly 

emphasising deduction and confirmation. Experiments and surveys are the main methods of 

quantitative research (Bryman, 2003). For example, an experimental group and a control 

group are used to examine the impact of independent variables on dependent variables, in the 

form of quasi-experiments in the educational research area. Surveys or tests by random 

sample are able to generalise the results to the entire population. The validity and reliability 

of the test or survey could be confirmed and improved through piloting. However, a 

problematic issue with these methods is the possibility of unrepresentative or skewed 

sampling (Cohen et al., 2011).  
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Subjectivism. At the opposite extreme, subjectivism argues that reality is value-

bound and socially constructed, because the context legalizes the claimed truth. That is, 

knowledge can only be based on individual experience, as empirical knowledge. There is no 

external reality; however, reality is what the individual makes sense of. The epistemology of 

subjectivism has become known as constructivism or interpretivism. Advocates of 

subjectivism insist that value-free generalizations are impossible and inadvisable (Johnson & 

Onwuegbuzie, 2004). Meaning is shaped by social interaction with others and from their own 

personal histories (Creswell & Clark, 2007). The ontology, called nominalism, suggests 

‘there is no truth and facts’ and are ‘all human creations’ (Easterby-Smith, Thorpe, & 

Jackson, 2012, p. 19). This dynamic view of ontology, which leads to a fallibilist 

epistemology, sheds light on individual experience to explore or interpret the reality, rather 

than seeking external reasons and universal laws to explain the world. Within the fallibilist 

epistemology, illustration is more important than proof (Cohen et al., 2011). This leads to 

grounded theory that aims to understand how individuals create, modify and interpret their 

world. From this subjectivist approach, qualitative methods such as interviews could explain 

the reality from multiple perspectives by understanding a small group of people in-depth. The 

reliability and validity of the research ‘rarely seems appropriate or relevant’ to qualitative 

research (Kirk, 1986, p. 14).  

Each of the two extreme views holds an absolute approach to the real world, either 

purely emphasising on the proven unique truth or merely focusing on subjective personalised 

judgement. That is, objectivism tends to accept existing facts in real-world situations but 

excludes the function of individuality as it continues to build up the facts and meaning of this 

world. By contrast, subjectivism focuses on meaning or subject consciousness of the world 

but neglects the power of external structures in society. These two styles explore and 

understand social reality with two opposing lenses (Cohen et al., 2011).  
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Critical realism. Both objectivism and subjectivism have advantages and 

disadvantages. However, a combination of the two reflects the view of social reality that is 

taken in this study, namely a realist view. Between these two poles, critical realism adopts a 

middle ground (see Figure 18), as embracing both the existing knowledge and the importance 

of the context of justification. It represents the theoretical foundation of this research.  

 

 

 

Figure 18. Critical realism as a middle ground between objectivist and subjectivist views 

Specifically within the area of education research, critical realism has been proposed 

as the pragmatic approach. Pragmatists advocate that truth is ‘what works’ (Robson, 2002, p. 

43) and this provides the best workable solution as using both qualitative and quantitative 

research (Johnson & Onwuegbuzie, 2004). It leads to and is consistent with a mixed-method 

approach for breadth and depth of understanding of social research. Mixed methods, which 

encourage multiple views of the world, effectively address the complexity of social research 

problems (Creswell & Clark, 2007).  

My choice of research methodology, critical realism, is widely reflected by my view 

of mathematical concepts in schools. As I have previously discussed, although the concept of 

function has been socially developed within learning in schools, the absolute knowledge 

exists in the curricula, relevant textbooks and other teaching materials. As the learning object, 

knowledge is regarded as a static reality. That is, the presented information or resource that is 

required to be obtained by students.  On the one hand, this study is going to discover the 

‘objective’ differences in knowledge levels of the national curricula, the textbooks, and 

student performance. Within this, however, the different requirements of knowledge of the 

Objectivist                                                            Subjectivist 

Critical realism 
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curriculum in each country, to a large extent, show the divergent values of certain knowledge. 

Though these values have been influenced by a strong cultural and historical background, the 

context is also related to the process of teaching and learning, and views of the teachers. 

Therefore, a possible compromise, namely the pragmatic approach of realism, would be 

suitable in order to comprehend both what the differences are and the mechanisms behind 

performance, namely how these differences occur.  

The chosen methodology also fits with my view of comparative education, laying 

stress on descriptions and explanations of the quantitative data as it will be discussed in the 

next section. This view is also built on the fundamental importance of comparison to 

understand other societies (Stenhouse, 1979).  

4.1.2 Views of comparative education 

Comparative education has its origins in the first half of the last century. This area 

reflected the need of global economic development in dealing with mutual issues that all 

societies and school systems could encounter (Robin, 2001). The development of 

comparative education research contains three dimensions, and the present study chose the 

global view. Following the realism methodology and standpoint of comparative education, 

the next section will analyse how to balance quantitative and qualitative approaches to suit 

the purpose of this comparative study.  

Three dimensions. Arnove (2003) proposed three dimensions of comparative 

education: scientific, pragmatic, and global. Within the scientific dimension, researchers 

verified a positive relationship between ‘education system and notional productivity’ 

(Arnove, 2003, p. 4). As for the pragmatic dimension, it considered a better way to borrow 

some favourable elements from others and lend our own in the purpose of ameliorating or 

improving domestic policy and practice. Therefore, comparative education was able to have a 

corrective and supportive function (Robin, 2001). Japan and the United State were the first 
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successful examples of learning from others, although David Phillips (1989, p. 273), quoting 

William Cummings, commented that Japanese successes ‘come at too high a price, a price 

Americans are unwilling to pay’.   

The global labour market needs well-educated workers who have enough scientific 

knowledge, and the education system of each country tries to respond to this demand (S. Han 

& Jarvis, 2013). It has been increasingly the case that education is directed toward 

globalization (Tsui & Treagust, 2013). From the global dimension, comparative studies are 

based on a fairly large number of mainly quantitative tests (including pre- and post-tests) as 

well as qualitative and ethnographic investigations. Students’ performance, their attitudes 

towards mathematics, opportunity to learn and so on are interwoven in PISA assessment. In 

addition, the IEA and the International Assessment of Educational Progress (IAEP) also look 

for the ideal pedagogies which include the most worthwhile teaching methods and best 

classroom practices. 

Comparing pedagogy between different countries has gradually become the 

mainstream in the field of comparative education (Alexander, Broadfoot, & Phillips, 1999). 

At the same time, the interests of studies have moved toward not only the causal relationship 

between pedagogy and children’s understanding, but also toward the process of how 

pedagogy promotes or fails to promote students’ understanding (Robin, 2001). Therefore, the 

causal relationship might be assessed by the quantitative approach, while the qualitative 

approach enables an explanation of the process between the two variables. From this point, 

the mixed-method used by a global dimension of comparative research fits with the present 

methodological choice.   

The balance of two approaches. Traditional views of comparative education, based 

on the macroscopic view (based on the state as unit) and the microscopic view (based on the 

school as unit) are inseparable and interacted (Dale, 2005). K. Watson (2001) criticised the 
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de-contextualized data and stated that statistics could not reflect the underlying educational 

philosophy of each country. Likewise, outcomes should not be isolated from the processes 

that have produced them (David Phillips, 1989).  

The large volume of data available raises a further question: how can this quantitative 

data be explained, as Novoa and Yariv-Mashal (2003) argue that comparative education 

should be illustrative in purpose. Although international assessments, such as TIMSS, have 

included some observations in classrooms, Novoa and Yariv-Mashal (2003) suggest that 

observation and description have priority in this area of research rather than focusing on the 

results of students’ performance. Consequently, explaining and describing have become 

extensively used for research in this area. Notwithstanding, Noah (1984, p. 562) asserts that 

the role of comparative education is to cultivate a ‘rich understanding and knowledge of the 

other societies’. For example, researches about teacher beliefs (Cai & Wang, 2010), as well 

as teacher’s content knowledge (L. Ma, 1999), have become another stream merely using 

qualitative methods such as interviews.  

Ultimately, the function of qualitative data should be carefully balanced. Following 

this view of comparative education, this study will mainly use a quantitative approach to 

explore the reality of what students know, while the qualitative approach is mainly to provide 

some explanations for what the quantitative data is suggesting. The reason is that observation 

and description are necessary but insufficient to replace the strengths of quantitative results. 

The methods this study adopts will be explored further in the next section.  

4.2 Overview  

This section starts with how to combine the quantitative approach using document 

analysis and student tests, and the qualitative approach by interviews to answer the research 

questions. Before I justify my research design for each individual method, a literature review 

of how other small-scale comparative studies have been conducted and the main features of 
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their methodology will indicate the decisions for chosen methods. Finally, these methods will 

be presented chronologically. 

4.2.1 The mixed-methods 

Two approaches in this study. Both quantitative and qualitative approaches are 

involved in the study as follows:  

Quantitative approach 1. Content and document analysis was used in order to 

delineate the official materials in both regions in respect to the basic knowledge contained 

and the expectations of how to apply this knowledge to real world situations. Here, the study 

considered national curricula at a regional level and textbooks used at the sample schools 

level as the official documents. The analysis of documents could be undertaken in both 

quantitative and qualitative ways (May, 2011). It is worth noting that Bryman (2004, p. 291) 

identifies content analysis as unable to answer any ‘why’ questions. This study, however, 

took the quantitative form. Instead, it investigates ‘what’, thereby fitting with this thesis’ own 

tendencies to examine the ‘what’ over the ‘why’. 

The generated theoretical categories of the understanding model identified the 

requirements from the curricula, and the examples and exercises within textbooks at certain 

levels of understanding. In addition, the ways in which textbooks present the application 

questions and solutions was analysed from the perspective of the three main representations 

for linear function. Thus, each category was transformed into numbers in order for 

comparisons to be made between different regions.  

Quantitative approach 2. Tests were undertaken in order to identify how well 

students understand linear function in each region using self-designed instruments. Student 

understanding was measured by the model of understanding function that was comprised 

from existing research and described in Chapter 3. Here, construct validity, which evaluates 

‘how well the measure conforms with theoretical expectations’ (De Vaus, 2014, p. 54), needs 
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to be a focus. Therefore, a pilot study was conducted first. The self-designed tests at the pilot 

stage were based on the general model. Findings from the pilot tests would not only identify 

issues of validity, but also indicate necessary changes for the main research (Matthews & 

Ross, 2010). Later, the specific barriers to understanding basic knowledge and favoured or 

inferior solutions shown in application for each cohort would also be examined from the 

modified paper-pencil tests in the main study.  

Qualitative approach. Teacher interviews were used in order to answer research 

questions about the contextual factors of teaching and learning processes. The results would 

reveal teachers’ underlying beliefs towards the implemented curriculum, namely the lesson 

plan based on their perception of barriers to student’s understanding. Harding (2013) 

described three frequently used interview types: biographical interviews; semi-structured 

interviews; and unstructured interviews. According to Bryman (2004, p. 439), if there is a 

‘fairly clear focus’, then semi-structured interviews are best suited to the task. Thus, semi-

structured interviews were chosen in this study. It was expected that the two groups of 

teachers would express their beliefs and understanding in their own way, using their own 

words as fully and as spontaneously as possible. Each interviewee was provided with an 

outline of the interview before conducting the data collection. The content of the interview 

focused on how teachers understand the official documents and perceive students’ learning in 

order to gain a better understanding of the implemented curriculum.  

Mixed-methods used in other small-scale comparative studies. There are three 

distinctive features involved in smaller scale comparative studies: (1) the tendency to employ 

several different questionnaires/tests for diversified mathematics rather than one assessment 

for the whole; (2) the importance of a pilot study; and (3) the trends towards systematic 

explanation as a continuum rather than as discrete categories.    
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Instead of one test to imply the whole of mathematical learning, many studies have 

made efforts to develop more targeted questionnaires that assess different types of 

mathematical performance, for example, comparing the reality of students’ problem-solving 

and problem-posing between China and USA (Cai & Hwang, 2002); problem-solving for 

word problems between China and Singapore (Jiang & Chua, 2010); and problem-solving 

behaviour between Japanese and USA students (Becker, Sawada, & Shimizu, 1999).  

Furthermore, more studies advocate a pilot study to form these assessments and 

qualitative methods in order to explain the results from tests. Harpen and Sriraman (2013) 

explored high school students’ mathematical creativity and problem-solving and problem-

posing in China and USA. Both the mathematical content test and the problem-posing test 

were conducted after several pilot phases. Meanwhile, follow-up interviews with students 

aimed to achieve explanations of performance within these tests.  

Another series of studies was also related to Chinese and USA students in respect to 

their problem-solving performance. For example, Cai (1995) examined how students reacted 

to three types of problems: computation problem, simple problem, and complex problem. The 

assessment tasks were used after three pilot studies and were followed by interviews with 

their teachers. The purpose of the interviews was to find out a causal relationship between 

what students were taught and what they carried out on different types of problems. 

Therefore, the following interviews for either students or teachers played a supplementary 

role to the whole research. Meanwhile, the trend of current comparative education studies 

turned to investigate the holistic views of participants instead of one aspect so that more than 

one method of inquiry and more than one type of data were needed. 

Furthermore, the multiple approaches used by those researchers also indicate that the 

findings from mixed methods could be verified with each other as measured by triangulation, 

which will be explained in a later section of this chapter: Validity of the study. Cai (2004) 
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investigated the relationship between students’ problem-solving strategies and their use of 

representations. In order to figure out why students would have a particular tendency, 

interviews with teachers were used to discover their beliefs. Meanwhile, teachers’ marking 

for each representation was collected to connect what teachers believe with what they 

actually did in a practical way. An et al. (2004) proposed a framework for secondary school 

teachers’ pedagogical content knowledge which will be discussed at Chapter 8: Teacher 

Interviews. Mixed methods, such as questionnaires, interviews and observations, were 

applied for views of the Chinese and USA teachers in their study. The data from classroom 

observations and interviews was used to confirm the feedback from teachers’ questionnaires.  

Therefore, my chosen methods approach conforms to the main features of small-scale 

comparative studies. Two sets of student tests for understanding were devised and piloted: 

one to test pure knowledge and another to test application of that knowledge. To explore how 

students’ understandings were shaped, curricula and textbooks provided explanations from a 

presenting mathematical knowledge perspective, while teachers offered their views to make 

students’ understanding development clear. The procedure for the whole data collection will 

be discussed in the next section. 

4.2.2 The procedure 

Figure 19 demonstrates the framework of this research design as a pilot study at Phase 

1 and main study at Phase 2.   
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Figure 19. A framework of this research 

Phase 1: pilot study (June 2013). The functions of this pilot study include: (1) to 

gain feedback on the validity of the students’ tests; (2) to check the time taken to complete 

the tests; (3) to identify which questions, if any, were too easy or difficult; and (4) to test the 

proposed coding system for data analysis (Cohen, Manion, & Morrison, 2013). Although 

Converse (1986) suggested two pre-tests were necessary for development, evaluation, and 

polishing tests, the limited time and cost only allowed one trial in this study. Findings of a 

pilot study would indicate possible category changes to the content of tests and the 

procedures of administration. The feedback from the teachers helped to check the testing time 

with regard to administration and the appropriate complexity of questions in the tests.  
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In the first two weeks of June 2013, pilot tests in Shanghai were completed. In the 

final two weeks of June 2013, pilot tests in England were implemented. Two groups of 

students were both given the tests near the end of the academic year.  

Phase 2: main study (February 2014 - May 2014). After analysing the data from the 

pilot study, the schedule for data collection in Phase 2 was set up. In November 2014, I 

convened three brief meetings with the Heads of Maths at each sample school in England to 

explain the purposes of the Phase 2 data collection in order to gain their understanding and 

support. For the Shanghai context, Head Teachers at three sample schools cooperated fully in 

this phase of the study via telephone meetings.  

Besides gaining support from mathematics departments, another purpose of the 

meetings was to discuss three aspects of conducting the research in school level: the 

arrangement of instruments, interviews with the Heads of Maths, and the details of the 

proposed classroom observations. During the meetings, I also gave the outline of interviews 

to each Head of Maths in England and emailed the translated Chinese versions to the selected 

Shanghai teachers. Before the end of January 2014, the Heads of Maths at the sample schools 

in both regions gave me a confirmation of an interview date and a time for the students’ tests 

(at a time linear function/graph would be being taught). For the school visits, each sample 

school agreed to several classroom observations involving linear function/graph. In England, 

up to four classes were observed at each sample school for this topic. In addition, the English 

schools also offered other classroom observations involving other topics in different year 

groups. In Shanghai, one school offered all nine required and continuous Maths classes for 

this topic. Due to very similar teaching schedules, I managed to observe three classes at 

another school, but did not have time to observe more at the third school.  

School visits were arranged in order to carry out participant observation. Participant 

observation aims to achieve ‘intimate knowledge’ of people (Matthews & Ross, 2010, p. 
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257). In this study, what happened in the classroom played a comprehensive role in the 

teaching and learning process at each region. Classroom observations provided further 

contextual information for the study. Meanwhile, teacher interviews following the classroom 

observation started with a concrete question about the lesson plan. Visiting was also 

beneficial in building positive relationships between the teachers and I.  

During classroom observations, I acted as participant when students had their own 

tasks or group activities. During times of teacher input, I remained a complete observer. 

Expanded notes of the field experiences were made after each classroom observation. The 

function of these notes was to help me to inspect the different ways in which students would 

encounter difficulties during their classroom experience, and to be familiar with the teaching 

process especially in England. Three examples, one from an English classroom and another 

two from Shanghai classrooms, were used in the following Result part to make teacher’s 

views clear with more details or to reveal relevant facts.   

4.3 Methods 

A method refers to an individual technique employed for data collection, while 

methodology refers to a set of methods used to inquire into the research questions (Hitchcock 

& Hughes, 1995) which are often underpinned by certain ontological and epistemological 

assumptions. Since quantitative and qualitative methods are ‘compatible’ (Tashakkori & 

Teddlie, 1998, p. 12), the second phase of design is to ‘obtain different but complementary 

data on the same topic’ (Morse, 1991, p. 122). Findings from qualitative and quantitative data 

could be combined to ‘produce a general picture’ of the reality (Bryman, 2003, p. 137). 

Through this triangulation process this research aims to illuminate the interrelationships 

between the development of students’ understanding and the wider education system. It 

attempts to do so via interrogation of four sources of information. First, documentary 

research of the official national curricula would examine the findings from the intended 
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curriculum. Clarke (2003, p. 156) argued that the similarities and differences in mathematics 

curricula would be a ‘signature of international comparative’ research. Secondly, document 

analysis of the textbooks would provide how textbook writers explain the requirements of 

curricula/syllabi and their hypotheses about  students’ learning and thinking, referred to as the 

‘hypothetical learning trajectory’ (M. Simon, 1995, p. 133). Thirdly, students’ tests would 

describe the outcomes of the attained curricula. Finally, teacher interviews would provide 

insights into the implemented curricula. Table 13 shows the samples in terms of the four 

perspectives used in the whole study.  

Table 13  

The Outlining of the Samples 

Perspective England Shanghai 

Curriculum analysis 

Mathematics programmes of 

study: Key Stages 3 and Key 

Stage 4 National Curriculum 

in England 

The Shanghai City Primary 

and Secondary Mathematics 

Curriculum Standard 

Textbook analysis 

Collins New GCSE Maths for 

Edexcel Modular: Foundation 

1 and Higher 1 

Collins GCSE Maths 2 tier-

foundation and tier-higher for 

AQA A; 

Foundation and Higher GCSE 

Mathematics: Revision and 

Practice; 

Shanghai nine-year 

compulsory education 

textbook: Mathematics 

Grade 8 (Volume 2).  

 

Student test 
Pilot study 96  292 

Main study 561 907 

Teacher interviews 3 Heads of Maths  
3 Heads of Maths and 1 

research teacher  

The detailed method will be addressed throughout this section. Each sub-section is 

broadly divided into three parts: the brief research design; the selection of the sample; and the 

data collection process and analysis.  

4.3.1 Curriculum analysis 

The research design. Recent studies have examined existing literature or official 

documents through content analysis. It has two trends, comparing the reformed curriculum 
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with previous curricula in the same country; or with other countries’ curricula as the features 

of national curricula between different countries are compared (Bao, 2002; Cai et al., 2011). 

This approach to curriculum analysis which this research adopts only traced current official 

documents, with introduced little for the historical background.  

Selection of the sample. Within this study, content analysis is conducted on national 

curricula documents from England and the local one for Shanghai. It aims to delineate the 

requirements of intended curricula in the case of linear function in both regions. Specifically 

the latest released curricula in England will be analysed. From 1
th

 September 2013, the 

national curriculum programmes of mathematics at Key Stages 3 and 4 have no longer 

applied. The new national curriculum will be applied from September 2014. During the 

academic year of 2013, ‘schools are free to develop their own curriculums for mathematics 

that best meet the needs of their pupils, in preparation for the introduction of the new national 

curriculum’ (Department for Education, 2013a). However, the draft programme of study for 

KS2 to KS4 was provided for the 2013 academic year.  

In September 2013 the new mathematics curriculum in England, Mathematics 

programmes of study: Key Stages 3 National Curriculum in England (Department for 

Education, 2013c) was released. Later, in July 2014, the Mathematics programmes of study: 

Key Stages 4 National Curriculum in England (Department for Education, 2014) were 

launched. As to content of the new curricula, however, there were minor improvements made 

to earlier draft programmes (Steers, 2014). Therefore, this new KS3 national curriculum 

instead of the draft was chosen. In terms of linear function, the requirements in the draft and 

the formal curriculum were similar as well. Thus, in line with KS3, this new formal KS4 

curriculum was chosen as well.  

The Shanghai City Primary and Secondary Mathematics Curriculum Standard 

(Shanghai City Education Committee, 2004) was chosen for this study. In 1997, Shanghai 
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was allowed to have its own curriculum instead of following the national curriculum in China 

(See Chapter 2 for a fuller discussion of this). Four years later, Shanghai implemented the 

second edition of the mathematics curriculum. In 2004, Shanghai modified it again and called 

it the new mathematics curriculum which is still in use.  

Data collection. The statutory guidance including the statutory programmes of study 

and attainment targets for mathematics at Key Stages 1 to 4, can be accessed from UK 

government website (see https://www.gov.uk/government/publications/national-curriculum-

in-england-mathematics-programmes-of-study). As a former secondary school teacher in 

Shanghai, the Chinese curriculum was provided by Maths departments in schools. The 

analysis for the data will be addressed in Chapter 5. 

4.3.2 Textbook analysis 

The research design. Due to the commercial textbook market in England, the 

textbook research is expected to examine not only the books’ characteristics but also how to 

use them (Fan, 2013). The textbooks analysis focuses on the features, while its function for 

lesson plans will be illuminated in Chapter 8: Teacher Interviews.  

Selection of the sample. All the selected textbooks were officially used by the sample 

schools in England and Shanghai. Due to limited time and resources, a convenience sample 

of chosen schools was selected for this research. The limitation of the convenience sample 

would be that it would ‘not represent any group apart from itself’ (Cohen et al., 2013, p. 164). 

As discussed in later sections regarding the limitations of this study, I will claim that the 

findings do not intend to be generalised into a theory.  

In England, there exists a variety of mathematics textbooks used for classroom 

teaching and learning. The English textbook series were developed for two different ability 

levels: Foundation level and Higher level, in line with the ‘additional mathematical content’ 

which is expected to ‘be taught to more highly attaining pupils’ (Department for Education, 

https://www.gov.uk/government/publications/national-curriculum-in-england-mathematics-programmes-of-study
https://www.gov.uk/government/publications/national-curriculum-in-england-mathematics-programmes-of-study
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2013c, p. 3; 2014, p. 3). Both followed the same national curriculum in England. Each 

school, however, has a considerable degree of autonomy to choose the appropriate series of 

textbooks for their students.  

Three secondary schools located in the North East of England volunteered to take part 

in this study. According to the national league table for mathematics based on the 

qualification results at the end of secondary schooling in 2012, students’ performance in these 

three schools were within the top 30% of all secondary state schools in England which will be 

explained thoroughly at next part. Each sample school, however, had a different series of 

school mathematics textbooks. Therefore, all of the textbooks used in these schools were 

included in this study. Thus, although the selected textbooks may provide a typical pattern for 

presenting knowledge in England, I acknowledge that they are a convenience sample and not 

representative.  

In contrast, the choice of textbook is not flexible in Shanghai. The uniform textbooks 

were developed based on The Shanghai City Primary and Secondary Mathematics 

Curriculum Standard (Shanghai City Education Committee, 2004) instead of the national 

curriculum in China, but it also remains a centralised education system in Shanghai. 

Therefore, mandatory textbooks are widely used by all Shanghai students at state schools as 

well as at public schools during the compulsory education stage (from age 7 to 15). Each 

term in the school year has one separate mathematics textbook. Linear function is introduced 

in the second term of Grade 8 (approx. age 14) and, therefore, the one appropriate Shanghai 

textbook was selected in the present study.  

Therefore, the following seven textbooks containing linear function were examined in 

this study: 

England:  
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1. Collins New GCSE Maths for Edexcel Modular (Foundation 1), published by Collins, 

2010; 

2. Collins New GCSE Maths for Edexcel Modular (Higher 1), published by Collins, 

2010; 

3. Collins GCSE Maths 2 tier-foundation for AQA A, published by Collins, 2006; 

4. Collins GCSE Maths 2 tier-higher for AQA A, published by Collins, 2006; 

5. Foundation GCSE Mathematics: Revision and Practice, published by Oxford 

University Press, 2006; 

6. Higher GCSE Mathematics: Revision and Practice, published by Oxford University 

Press, 2006; 

  Shanghai:  

7. Shanghai nine-year compulsory education textbook: Mathematics Grade 8 (Volume 

2), 2007.  

Data collection. English textbooks were collected at the meeting with the sample 

schools in November 2013, and I have already possessed the compulsory Shanghai textbooks 

from the junior secondary school stage. Again, details concerning the analysis of the content 

of linear function/graph will be set out in Chapter 6. 

4.3.3 Student tests 

The research design. Students’ performance will be analysed using paper-and-pencil 

tests, including the results from both the pilot study and the main study. This study focuses on 

how well students understand a certain topic and what supports or constrains the development 

of this understanding. As both the Year 10 English students and Grade 8 Shanghai students 

are still teenagers, it might be hard for them to evaluate their own understanding, or to reflect 

with their barriers to that understanding, or to articulate the development of their 
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comprehension of a certain concept. Therefore, student interviews were not included in this 

study. 

Selection of the sample. In this research, North-East England and Shanghai were 

selected as two regions to be investigated for students understanding (see Chapter 1 for 

justification). Linear function/graph is covered in Grade 8 (approx. age 14) in Shanghai, and 

in Year 8, 9, and 10 in England. The detailed arrangements of topic within the curricula will 

be illuminated in Chapter 5: Curriculum Analysis. Year 10 students in England (approx. age 

15) were selected for this research as they are supposed to have covered the knowledge for 

linear function required by the KS4 national curriculum. I acknowledge, however, that there 

was an avoidable one-year difference between the two samples which will be discussed at 

later section: Limitations.  

English participants came from three state schools as discussed in the methods section 

for the textbooks analysis. In the three sample schools, all Higher Level and the majority of 

Foundation Level students in Year 10 took part in the study. The students in the lowest set of 

Foundation Level students, however, were not selected for this study on the recommendation 

of the Heads of Maths.  

After the English sample was chosen, the Shanghai sample was selected 

correspondingly, i.e. with schools at a similar percentage of school performance in 

mathematics. The Shanghai sample was drawn from the Pudong District which is the biggest 

district with about one-fifth of total Shanghai students. Shanghai has no uniform league table 

for the senior secondary School Entrance Examinations (Zhongkao) whose function is similar 

to GCSEs in England as discussed in Chapter 2. However, students’ academic performance in 

mock examinations could be regarded as providing a similar ranking of schools, especially in 

the second mock exam whose timing is roughly two months before Zhongkao. Therefore, 

according to the district league table for mathematics based on the second mock examination 
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in 2012, three schools that ranked at around the top 30% among all state schools in the 

Pudong District were selected for this research. All Grade 8 registered students in the three 

sample schools participated in this research. Due to mixed-ability classes in the Shanghai 

education system, the lower ability students were also included in the study.  

Data collection. In the main study, students’ tests were conducted once students had 

finished learning the topic. The tests were administered by the students’ regular classroom 

mathematics teachers in both regions.  

In Shanghai, two schools participated in the pilot study. The feedback from teachers 

suggested that the two tests should be combined into one test so that it would be more 

convenient for students to answer. I adopted this idea and the time given to students was 

increased to one hour to complete this combined test. Due to the uniform teaching schedule in 

Shanghai, two Shanghai schools finished teaching this topic on Friday 21
st
 February 2014 and 

another on the following Monday, 24
th

 February 2014. After that, all three schools 

immediately arranged an agreed time for the whole Grade 8 students to complete the test.  

When back in England, I presented the Heads of Maths with the combined test and 

they were all happy with the layout. Two of the three sample schools also took part in the 

pilot study so were familiar with the administration procedure. I had a brief meeting with the 

Head of Maths at the third school. Due to the different teaching schedule in England, one 

school finished teaching this topic at the beginning of April 2014, one at the end of April 

2014, and one in the middle of May 2014 respectively. Once they finished the topic, each 

respective Year 10 mathematics teacher then immediately arranged the tests.  

4.3.4 Teacher interviews 

Selection of the sample. In terms of teacher selection, the Head of Maths in each 

sample school was asked to participate in an interview. These teachers are well recognised 
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within their respective schools. Moreover, their beliefs often represent accepted values from 

the sample schools with regards the process of the teaching and learning of mathematics.  

In general, the Head of Maths in English schools is in charge of the Scheme of Work 

which every mathematics teacher within the whole department will follow. The Scheme of 

Work prescribes the arrangement of topics in each Key Stage, for example how long a certain 

topic should be taught and the different requirements for corresponding levels of students, 

reported by the selected English teachers at their interviews. The Head of Maths in Shanghai 

normally pays more attention to difficulties in the teaching and learning in each grade, which 

is discussed at every departmental meeting usually scheduled every two weeks. Therefore, 

the views either of English or Shanghai Heads of Maths will be more informed than other 

mathematics teachers.  

In addition, Shanghai has a unique researcher-teacher system that is also in operation 

in other parts of China. One researcher-teacher in the Pudong District was also interviewed. 

The researcher-teachers in Shanghai (normally they were in-service maths teachers before 

this role) are mainly responsible for the teaching and learning of mathematics at the district 

level. The research topic of linear function was arranged in Grade 8, and therefore, the Grade 

8 researcher-teacher participated in the interview. His views about teaching and learning 

represent another level of expert perspective. However, in Chapter 8, Teacher Interviews, I 

did not distinguish the views from the expert and Heads of Maths, because the purpose of the 

interview was not to discern the differences between them. Both the Shanghai sample and 

English sample of teachers are specialists who only teach mathematics subject.  

Data collection. The Head of Maths in each sample school was interviewed 

separately. Interview data was collected during the classroom observation period. Before the 

interview began, all the interviewees signed consent forms (see Appendix A) according to the 

requirements of the Ethics Committee at Durham University (discussed in more detail at 
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section: Ethics). Meanwhile, every interviewee was informed that I would send them the 

transcription of each interview for the purpose of verification. In Shanghai, linear function 

would be taught from 11
th

 February 2014, so I returned to Shanghai on 7
th

 Feb 2014. The 

teaching schedule of mathematics is approximately nine classes over two weeks. During 

these two weeks, four interviews in Shanghai were conducted in schools and all were audio-

recorded. About two days after the interview, each teacher in England and Shanghai received 

the transcription but there were no significant modifications proposed by any interviewees. 

Before the student tests data collection in Shanghai, the interview transcriptions and 

confirmations had been received.  

After the Shanghai trip, interviews at the three sample schools in England were 

carried out from the end of March to the beginning of April. The data collection procedure in 

English sample schools was the same as that in Shanghai.  

4.3.5 The equivalence of transcriptions 

This research has involved two languages, Chinese and English. The issue of meaning 

equivalence in different languages and appropriateness in different cultures might lead to bias 

(May, 2011). Therefore, in terms of the two sets of instruments and teachers’ interview 

outlines, it is essential to ensure transcription equivalence.  

Students’ tests were first formed in English. Both the pilot study and the main study 

tests were discussed with Heads of Maths in the sample schools to ensure English students 

were comfortable with the expression of these questions. The collaboration between two 

regions’ Head of Maths to develop tests could conform to the values of diverse cultures in 

this study.  

Later, I translated the English version into Chinese and then checked with the 

researcher-teacher and Heads of Maths in the Shanghai sample schools in order to guarantee 

that the mathematical terms would fit with the expressions with which students were familiar.  
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With regard to the teachers’ interview questions, they were also initially composed in 

English. Later, a process of Chinese-back translation was carried out. That is, after translating 

the interview outline into Chinese, I sent the Chinese version to an English teacher working 

in a Shanghai secondary school. She translated this Chinese version back to English. Then we 

compared the two English versions, before and after translation, in order to ensure more 

accurate expression.  

A similar translation process was carried out with the Shanghai teachers’ interview. 

The translation of Shanghai teachers’ interview transcription principally used key words in 

Chinese in order to maintain equivalence, as Lawrence (1988, p. 102) commented that the 

interviewer should understand that ‘his job is to end up with an enlarged understanding, not 

to teach other people English’.  

4.4 Ethics  

As mentioned above, this comparative study has required access to schools in each 

area. In England, I have visited schools based in County Durham, North East of England, 

since November 2012, which has provided the foundation for this comparative study.  

At the beginning of the research, I sent an email to the Head Teacher or the Head of 

Maths in order to explain the purposes of this research in both regions. Having confirmed 

their interest in this research, I had a brief meeting with the Heads of Maths at each possible 

school. Data collection with student tests, teacher interviews, and classroom observations 

involved possible ethical issues.  

First, data would be collected using two student tests, which would last approximately 

sixty minutes in total, and be taken twice due to the pilot and main study stages. Both tests 

would include questions that students were expected to experience in their usual day-to-day 

learning in their maths classes. As a result of discussions with the Heads of Maths, it was 

deemed unnecessary to acquire informed consent from students’ parents or guardians, as the 
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tests would be completely anonymous. Neither student nor school identities would be 

revealed. Furthermore, all data would be held under the rules of the Data Protection Act 

(1998) and the British Educational Research Association’s Revised Ethical Guidelines for 

Educational Research (2004).  

Secondly, the teacher interview would examine two aspects: the barriers faced by 

students with regards the research topic; and general information about how teachers plan 

lessons. Neither aspect would be related to highly personal or sensitive information. Informed 

consent was requested from six Heads of Maths in all sample schools and one researcher-

teacher in Shanghai before the interviews began.  

Furthermore, all selected sample schools agreed to the classroom observations during 

maths lessons on linear function. Two English schools provided classroom observations for 

linear function, mainly in Year 10, and other topics, as well as different year groups, 

specifically Year 7, Year 8, and Year 11. I have obtained an Enhanced Criminal Record 

Certificate in the UK since 2013, and have had teaching certification for secondary schools in 

China. These allowed me to work with students in the classroom if necessary.  

The Ethics Committee in the School of Education at Durham University approved this 

study before my data collection.   

4.5 Validity of the study 

Validity is defined as ‘the extent to which measures and research findings provide 

accurate representation of the things they are supposed to be describing’ (Easterby-Smith et 

al., 2012, p. 347). All researches are striving for the maximum degree of validity. There are 

many types of validity. Among them, internal validity, content validity, and cultural validity 

were involved within this study.  

Internal validity considers the accuracy of explanation sustained by the data. This 

research, from the realist methodological perspective, uses triangulation to map out 
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secondary school students’ understanding to enhance the internal validity of the research. 

Methodological triangulation means two or more methods used in the data collection of one 

study (Cohen et al., 2011). It could help to overcome ‘method-boundedness’ (Cohen et al., 

2011, p. 142), where method-boundedness means if there was only one particular method 

used, it might not be certain that the method chosen was as a result of a researcher’s habit, or 

whether the researcher considered this method as superior to others methods. If the outcome 

of different methods corresponds to each other, the findings could be more confidently 

assumed to be valid by researchers.  

Content validity demonstrates that the instrument should cover the domain of research. 

In this research, each requirement of curricula had been located at a certain understanding 

level in the model of understanding function. Each understanding level that curricula and 

textbooks required had been covered by the student tests. Each item tests different aspects of 

basic knowledge. Furthermore, Heads of Maths at sample schools examined the tests to 

approve the content in line with the research topic, linear function. Meanwhile, interview 

questions were aimed at students’ learning of linear function which related to teaching and 

teachers’ views about their pupils’ understanding barriers. Further, the reliability and validity 

of the tests I designed have been checked to verify what teachers view.  

Cultural validity is concerned with cross-cultural comparative research in order to 

ensure that research is fair and sensitive within different cultural contexts. There are two 

issues within this study: the theoretical framework to assess understanding and the researcher, 

me. This thesis investigates students’ understanding based on the model of understanding 

function which was developed from current models proposed by Western and Chinese 

educators. In a previous chapter, the model has been shown to fit well with five Western 

models and cover two Eastern models in junior secondary school stage. It is unclear whether 
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this model could be applied for assessing both regions’ students. Therefore, a pilot study was 

necessary to verify its applicability.  

Additionally, my personal perspective has been shaped by Eastern culture rather than 

that of Western cultures. It might, therefore, influence the objectivity of the findings, 

especially from England. To minimize the threat of the researcher impinging on the main 

research, I always keep in mind that the analysis of the data is my priority without making 

any prior assumptions. This will be discussed in the limitation section below.  

4.6 Limitations 

Although the methodology chosen has fitted with the purposes of this study, there 

have been four limitations: (1) no generalization is possible either from the sample or from 

linear function to any other mathematical topic; (2) the possible threat from the one-year gap 

between English and Shanghai students; (3) the possible bias from me, the researcher; and (4) 

the possible limited scope due to the time for this study.  

First, although this research has been conducted using a considerable sample of 

students’ tests and sample schools with similar backgrounds, this study is not representative 

of students’ performance within the top 30% of schools in both countries. Due to the small-

scale nature of the study, this research does not generalise the findings for all schools in the 

top 30% and their students. However, the intention of this research is to show possible 

examples of students’ understanding of linear function and provide a better understanding of 

how to handle this topic in each country.  

In addition, this research focuses on specific content- linear function. The findings 

regarding the advantages or disadvantages of the ways in which each region possibly handles 

the teaching of the topic cannot be applied to other mathematical content. Furthermore, 

working within one content area cannot infer students’ understanding for other concepts or 

the whole mathematics subject. 
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Secondly, there is a one-year age gap between the England and Shanghai student 

samples which may slightly distort the comparability of the data from the students. Due to the 

spiral structure of the English curriculum, students would not learn all the basic knowledge 

that the curriculum requires until Year 10 (age 15). The data needs to reflect students’ 

understanding after they have mastered all the basic knowledge so that the comparison can be 

considered much fairer than focusing on the same age, i.e. age 14. Therefore, slightly 

different age groups of students were sampled to solve this potential issue but the one-year 

age difference must be recognised.  

Thirdly, one primary problem in comparative research is the ability of researchers to 

well understand other cultural or social beliefs (May, 2011). My previous teaching experience 

in Shanghai may influence the objectivity of the model of understanding or the interpretation 

of this research. I have, however, been working in Shanghai for over a decade, so I have had 

a better understanding of Shanghai students and teachers than of their English counterparts. 

This might cause a diversity of depth and breadth of the conclusions when conducting the 

analysis of documents and interviews in both countries. In order to increase my experience in 

the English education system, I insisted on undertaking classroom observations even after the 

data collection finished. Meanwhile, other actions, such as talking about my findings with 

school teachers here, presenting my work at several international conferences, department PG 

seminar and college seminar, and lecturing undergraduates, also resulted in a better 

understanding of the English situation and getting a balance between my previous experience 

in Shanghai and current experience in England.  

Finally, the current curricula used in each country and textbooks used in the sample 

schools fit with four criteria for the validity and reliability of the data: ‘authenticity 

(unquestionable sources), credibility (free from error and evasion), representativeness 

(typicality) and meaning (clear and comprehensible)’ (Scott, 1990, p. 6). Since each country 
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changes their curriculum at certain points in time, these altering factors will influence 

classroom practice, the content of textbooks, student learning outcomes, and so on. The 

English schools may change their textbooks in the future when new curricula are introduced 

from 2014 academic year. The changing of these official documents would be a limitation of 

the current research’s implications. But in keeping with the realism view, it is acknowledged 

that knowledge is a social and historical product which can be specific to a particular time, 

culture or situation (Robson, 2002). This study depicted the particular year 2013 when 

English schools had to make their own preparations for new curricula.    

4.7 Summary 

This chapter has explained the methodology chosen for this research, including the 

justification of the views of a comparative study. It articulated both quantitative and 

qualitative approaches and the design of the two phases of data collection. Furthermore, 

details of the four individual methods – curriculum analysis, textbook analysis, student tests, 

and teacher interviews – were described. Finally, the issue of ethics, validity, and limitations 

from a methodological perspective were presented. Having explained the methodology, data 

collection, and data analysis, the next chapter will present and interpret the data. 
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Part Two: Results 

Having described the research context, related literature, theoretical framework of 

understanding development for the concept of function, and research design in Part One of 

this thesis, Part Two will set out the findings from the four sources discussed above. Chapter 

5 will present an analysis of the respective curricula. In doing so, the topic of linear function 

will be scrutinised in terms of the intended curricula of both regions. In addition, how each 

region views understanding in mathematics will also be compared. Chapter 6 will focus on 

the analysis of the respective textbooks in order to get further insight into the governing 

levels of understanding linear function in each region, distinct approach towards each level, 

and how this understanding is embodied in the application part. These two chapters provided 

the learning trajectories towards understanding linear function from official documents. 

Chapter 7 discusses the analysis of the student tests. Here the attained curriculum will be 

compared under the general model of understanding function first. It is hoped that the results 

will also illustrate the strengths and weaknesses each group of students have in terms of 

understanding pure knowledge and application. Finishing off the discussion of results, 

Chapter 8 presents the analysis of the teacher interviews. This focuses on how the selected 

teachers perceive the teaching and learning process of mathematics in general as well as 

linear function in particulars.  
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Chapter 5 Curriculum Analysis 

This chapter aims to answer the first part of research question of the thesis in terms of 

the curriculum’s perspective: ‘What are the requirements of the intended curriculum and 

officially used textbooks of the two regions in terms of linear function?’ Here, the intended 

curriculum consists of three official documents: two national curriculum documents from 

England setting out the requirements of Key Stage 3 (Department for Education, 2013c) and 

Key Stage 4 (Department for Education, 2014); and one curriculum document from Shanghai 

setting out its local curriculum (Shanghai City Education Committee, 2004). The curriculum 

document from Shanghai applies to the pre-university stage (from primary school to senior 

secondary school) but the analysis will mainly focus on the junior secondary school stages as 

mentioned in Chapter 4. The analysis assesses understanding in two ways: the general 

meaning of understanding mathematics, and a more focused and specific meaning of 

understanding linear function. With regards to the first, the analysis will be drawn from the 

background information from the general aims in the curriculum to show the bigger picture of 

how understanding is stated. A narrower perspective will be discussed with regards to the 

particulars of understanding linear function which provides a more detailed, specific 

examination of this concept.  

The first section of the chapter will, therefore, provide the detailed analytical 

framework. The second one will present a comparison of results from the general aims. The 

third one will set out the outcomes of the more specific findings concerning understanding of 

linear function. The discussion in the fourth section will address the importance of 

understanding function to successfully solve the real world situation, ending with a summary 

for further exploration.  



161 

 

 

 

5.1 An Analytical Framework  

A curriculum acts as a guide to the prescribed content of what pupils learn in school 

(Kirst & Walker, 1971). Analysis of different curricula plays a vital role in realising the 

differences of students’ learning (Nie, Cai, & Moyer, 2009). Therefore, what the statutory 

curricula proposed in both regions will be compared in the case of general understanding of 

mathematics first. The results will examine similarities and differences of how each 

educational system conceives understanding mathematics. To do so, this first part of the 

analysis will explore how each curriculum defines understanding and then draw out some of 

the most distinguishing differences between the two regions. It is hoped that this general 

analysis will provide some insight into the views of structure of mathematical topics in each 

region, including the certain types of function that each intended curriculum covers.  

Following on from the large-scale cross-national projects discussed earlier, Oates 

(2011) suggested that curricula should focus on the essential areas of knowledge in key 

subjects in order to improve schooling systems. This raises the question of what essential 

knowledge is, a query answered by Alexander (2012) who recommended an investigation 

into how high performing education systems do as discussed in Chapter 2. Such general 

analysis would look into the definition of essential knowledge, and will form the basis of the 

following section. The importance of the concept of function has been discussed in Chapter 1 

and now, a comparison of the varying types of function between England and Shanghai’s 

curricula will not only illustrate the background but also justify the chosen research topic, 

linear function.  

This chapter’s focus then turns to a detailed examination of the attainment targets in 

particular for understanding linear function. The content of linear function is split into two 

parts to investigate the requirements: pure mathematical knowledge, and the application of 
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that knowledge in real-life situations. The whole analytical framework is therefore put 

forward as follows: 

A. From the background information: 

1. Two distinctive features: the arrangement of subject knowledge including 

function; and the focus of applying the knowledge; 

2. The expected way in which to develop mathematical understanding in the two 

regions. 

B. From the particulars of understanding linear function: 

1. Understanding levels in the requirements of basic knowledge by the model of 

understanding function; 

2. The emphasis of applying knowledge to real world situations. 

5.2 General Aims of the Curricula 

The overview of aims in both regions’ curricula demonstrates that both are interested 

in developing students’ positive attitudes towards mathematics. The development of their 

attitudes and interests in the process of teaching every subject is valued in the Shanghai 

curriculum; while ‘an appreciation of the beauty and power of mathematics, and a sense of 

enjoyment and curiosity about the subject’ is stated in England’s curricula (Department for 

Education, 2013c; 2014, p. 3).  

As discussed in Chapter 2 regarding the issue of curriculum control, the Shanghai 

curriculum also elaborates some more specific issues, such as student assessments, teaching 

materials, and the schedule of classes, which verifies the centralised characteristic; while 

England’s curricula do not include these, as Oates (2011) argues that some degree of 

curriculum control is necessary in England discussed in Chapter 2.  
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5.2.1 Two distinctive features 

 The arrangement of subject content. This sub-section starts with how the basic 

content in general is arranged in the respective curricula, and how it is then exemplified by 

the concept of function. One way of doing this, developed by TIMSS, was to use an analysis 

called Topic Trace Mapping (Foxman, 1999, p. 13), developed by Schmidt (1992). It aims to 

examine the depth and breadth of topic in the curriculum, including for how long (how many 

academic years) a certain topic is covered.  

Repeated or non-repeated approach. The two English curricula (KS3 and KS4) 

arrange the subject content in a spiral pattern, while Shanghai shows a non-repeated approach 

as discussed in Chapter 2. Both the KS3 and KS4 curricula applying at the junior secondary 

school stage in England categorise mathematics into the same six parts of the subject content: 

(1) Number; (2) Algebra; (3) Ratio, proportion and rates of change; (4) Geometry and 

measures; (5) Probability; and (6) Statistics. Topics in KS3 are further explored and extended 

in KS4, although KS4 also introduces new topics. That is, there are large amounts of overlap 

of mathematics topics between the two Key Stages.   

Similarly, the Shanghai curriculum is divided into two stages: Grade 6 to 7; and 

Grade 8 to 9. The four sections of the subject content, however, are slightly different in each 

stage (see Table 14). As mentioned in Chapter 2, the subject content is arranged in a more 

sequential and non-repetitive pattern in China’s curriculum, which Shanghai follows. It 

means that the topics in each strand would be separated by two stages of learning. For 

example, in the case of equations in the strand of Equation and algebraic, Grade 6 to 7 

contains three types of equation: linear equation, simultaneous linear equations such as, 

{
     
      

 and ternary linear equations such as {
     
     
     

. Meanwhile, Grade 8 to 9 will 
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introduce another type of equation, the quadratic equation, excluding the previous types 

shown in Grade 6 and 7. There is little overlap of topics between these two stages.  

Table 14  

Subject Content in Shanghai Curriculum 

Grade Strands 

6 to 7 
Number and 

Operation Equation 

and Algebra 

 

Graph and 

Geometry 

 

 

Data process and 

Probability; and 

Statistics 
8 to 9  

Function 

and 

Analysis 

Function. In England, two types function are introduced at KS3: linear and quadratic. 

As well as deepening these two types, KS4 also extends to simple cubic functions such as 

       , and ‘the reciprocal function   
 

 
 with    ’ for all the students (Department 

for Education, 2014, p. 8), making a total of four types of functions. Additionally, higher 

attaining students are expected to learn ‘the exponential function      for positive values 

of k, and the trigonometric functions (with arguments in degrees)       ,        and 

       for angles of any size’ (Department for Education, 2014, p. 8).  

In Shanghai, the concept of function is introduced in the strand of Function and 

Analysis (Grade 8 to 9) with three specific types: linear function        (   ) 

including proportional function      (   ); reciprocal function   
 

 
 (   ); and 

quadratic function            (   ) for all students.  

Besides the fact that the first type of function students would have to learn is linear 

function, another reason that linear function was chosen for this study is because other types 

of function are not suitable for a fair comparison due to the different depth of the 

requirements in the curricula. The overlap of the types of function between the two regions 

occurs for linear, quadratic, and reciprocal function for all the students in two regions. The 
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reciprocal function is taught as a standard form (  
 

 
) in Shanghai but as a specific form 

(  
 

 
) in England, and is therefore not considered an appropriate topic to draw an analogy 

of learning approach. In terms of the quadratic function, the Shanghai curriculum introduces 

more properties, such as symmetry, and heavily emphasises links with other knowledge of 

both algebra and geometry. The KS4 statutory guidance requires students to ‘identify and 

interpret roots, intercepts and turning points of quadratic functions’ (Department for 

Education, 2014, p. 8) as merely introducing properties. Therefore, quadratic function is also 

not suitable to measure or evaluate the similarity or dissimilarity between two regions.  

The aims for applying the knowledge. In general, all curricula pay a great deal of 

attention to applying knowledge. England prefers students to solve non-routine problems 

where application in the real world is included, while Shanghai emphasises the significance 

of real-world situations.  

In England, an overall aim of the national curricula is to ‘solve problems by applying 

their mathematics to a variety of routine and non-routine problems’ (Department for 

Education, 2013c, p. 3; 2014, p. 3). Generally, in order to solve routine problems, a standard 

step by step solutions is used (Harskamp & Suhre, 2007), while there is no straightforward 

solution for non-routine problems (Elia, van den Heuvel-Panhuizen, & Kolovou, 2009). Non-

routine problems were initially regarded as novel or non-standard problems in the learning 

process. This division of problems separates out what students are taught to do, and what 

students could deal with after their learning.  

In contrast, applying knowledge in Shanghai is set within meaningful contexts. Two 

of the four criteria in choosing the content of teaching materials are to value these real world 

situations (Shanghai City Education Committee, 2004, p. 93): 
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 The content should be closely associated with real life. The introduction of 

mathematics knowledge and its concept development should emphatically derive 

from real life, students’ previous knowledge, or other subjects.  

 Application should be enhanced as well as problem-solving, projects, and practical 

activities. 

To sum up, England emphasises the importance of solving non-routine problems to 

show what students can do to apply the knowledge they have learned. Many studies have 

examined children’s strategies in solving non-routine problems (Pantziara et al., 2009; Selter, 

2009). For example, English (1996) found that the process of solving non-routine problems 

could help construct mathematical understanding. In her research, even if students lacked 

formal domain knowledge; they still could combine domain-general strategies and their 

existing informal models to generate a solution, as a sign of applying what they know. On the 

other hand, Shanghai merely focuses on the real world application problems as a way to show 

what students can do to use that knowledge.  

The next sub-section will discuss the differences of developing mathematical 

knowledge stated in the curricula.  

5.2.2 The definition of understanding 

Aims for fundamental mathematics. Both the curricula prioritise the learning of the 

fundamentals of mathematics as their first aim. England focuses on conceptual understanding 

and knowledge growth through graphic representations. In Shanghai, fundamental 

mathematical concepts consist of three basics: (1) basic knowledge; (2) basic skills; and (3) 

basic ideas and methods (as simply called basic methods). The development of understanding 

or conceptual understanding builds on basic methods through algebraic expressions in 

Shanghai. 
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In England, the first overall aim of KS1 to KS4 is to ‘become fluent in the 

fundamentals of mathematics, including through varied and frequent practice with 

increasingly complex problems over time, so that pupils develop conceptual understanding 

and the ability to recall and apply knowledge rapidly and accurately’ (Department for 

Education, 2013c, p. 3). It essentially indicates the importance of conceptual understanding in 

mathematics. Understanding refers to the connection of mathematical knowledge to form a 

bigger and better connected network of concepts as discussed in Chapter 3. In addition, 

conceptual understanding refers to ‘an integrated and functional grasp’ of isolated 

mathematical ideas and methods (National Research Council, 2001, p. 118). It can be 

examined by how students use representations, the ability to provide different solutions, and 

being aware of the strengths and weaknesses of each representation.  

Within the English curricula furthermore, the development of understanding 

mathematics is built on the use of graphic representations. For example, in terms of linear 

function, both KS3 and KS4 require students to ‘find approximate solutions of simultaneous 

linear equations’ by using the graphical representation of linear function (Department for 

Education, 2013c, p. 7; 2014, p. 8). That is, the graphical representations link the knowledge 

of linear equation to other knowledge, such as solving simultaneous linear equations. For 

example, pupils discover the solution of the simultaneous linear equations {
      
   

 from 

graphs. English students, therefore, have been provided graphic way to solving simultaneous 

linear equations. Basically, the England’s curricula show that using visual representations 

(through the use of graphs) aids the understanding of mathematics knowledge.  

English students’ understanding links between functions and equations is enhanced 

through the graphical representation of different types of function and using these to solve 

equations.  
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Conversely, in the Shanghai case, the different types of equations are the basics of 

learning function developed through algebraic expressions. The first aim of mathematical 

study is to have the ‘three basics’ (Shanghai City Education Committee, 2004, p. 32). That is, 

learning mathematics includes three aspects: the concept; the skills involved in grasping that 

concept; and the idea and method linked with the concepts. Here, basic skills consist of 

calculation, plotting, reasoning; communication including speaking, listening and writing; 

and data handling including using calculators for the junior secondary school stages 

(Shanghai City Education Committee, 2004, p. 35). The development of mathematical 

knowledge means not only the connection between concepts such as linear equation (   

       ) and the linear function (          ) through symbolic ways of 

representation: algebraic expressions, but also the same methods or strategies that were used 

in understanding mathematics during previous school years.  

The meaning of the basic idea and methods (also called basic methods) will be 

addressed first and followed by an exemplified case to clarify it. Four main types of basic 

methods are stipulated by the Shanghai curriculum in the junior secondary school stage: the 

Xiaoyuan method, known as Elimination method in English textbooks, which could be used 

to solve simultaneous linear equations with two variables; the Peifang method, known as 

Completing the square in English textbooks; the Huanyuan method, which is to substitute 

and exchange the same value; and the Daidingxishu method, which is to find out the 

coefficients of the equations, for example the pure algebraic approach to gradient in linear 

function as shown in the next section.  

Memory and understanding in the Shanghai curriculum. In Western countries, 

memory is less emphasised when it comes to developing understanding; however, in China, it 

can be intertwined with understanding (see Figure 20) (Marton, Dall’Alba, & Tse, 1996).  
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Figure 20. The relationship between memorization and understanding (Marton et al., 1996, 

pp. 76-77) 

The Shanghai curriculum illuminates three cognitive stages: memorization; 

understanding for explanation; and understanding for inquiry. These stages are hierarchical, 

sequential, and relative. The memorization stage requires students to discern or remember 

some mathematical fact as well as to apply procedures simply in routine contexts or to imitate 

examples (Shanghai City Education Committee, 2004, p. 30). Memory is regarded as the 

prerequisite to understanding. The curriculum acknowledges the importance of memory in 

the development of understanding and regards it as a necessary path towards that 

understanding. Meanwhile, the memorization stage was analogous with two categories of 

performance expectations in the TIMSS Mathematics Curriculum Framework: Knowing: 

Recalling Mathematical Objects and Properties; and Using Routines: Performing Routine 

Procedures (Foxman, 1999).  

With regards to the  concept of function, the first learning objective is to 

‘acknowledge’ variables, both independent and dependent variables within real life; to 

‘know’ the concept of function and domain, and the value of function and range; and to 

‘know’ the constant function (Shanghai City Education Committee, 2004, p. 66). Two verbs 

used here, ‘acknowledge’ and ‘know’, indicate that the cognitive requirement is at the 

memorization level (Shanghai City Education Committee, 2004, p. 30). The understanding of 

the concept, therefore, starts with the memorization.   
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5.3 Results from Linear Function in Attainment Targets 

5.3.1 Analysis of understanding levels  

Statutory guidance in England. Both the KS3 and KS4 national curricula have the 

attainment targets for each topic. Linear function is part of algebra. Although there are the 

same requirements for both Higher Level and Foundation Level students in KS3, the KS4 

curriculum stipulates that ‘additional mathematical content [is] to be taught to more highly 

attaining pupils’ (Department for Education, 2014, p. 3). Table 15 summarises not only these 

attainment targets, but also how this concept is expected to develop from KS3 to KS4. 

According to the general model of understanding, the greatest level of understanding of linear 

function is reached in KS3 (see the second column in Table 15). KS4 deepens the knowledge 

of linear function in KS3 and completes the understanding of Level 6 Invertising.  

With regards to algebra, in the later 1990s The Royal Society / Joint Mathematical 

Council (1997) recommended that algebraic symbols should be a powerful way as solutions. 

At the revised national curriculum, the concept of linear graph is initially developed from 

sequences and patterns, while the algebraic method is highlighted by KS3 stage, shown in 

Level 2 in Table 15.   
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Table 15  

The General Model Applied to the Statutory Guidance of KS3 and KS4 

The model of 

understanding 

function 

KS3 Algebra 

Pupils should be taught to 

KS4 Algebra, in addition to 

consolidating subject content 

from KS 3. Pupils should be 

taught to 

Level 2 

Dependent 

Relationship 

reduce a given linear equation in  two 

variables to the standard form 

       (Department for 

Education, 2013c, p. 7) 

 

Level 3 

Connecting 

Representations 

recognise, sketch and produce graphs 

of linear and quadratic functions of 

one variable with appropriate scaling, 

using equations in x and y and the 

Cartesian plane (Department for 

Education, 2013c, p. 6) 

recognise, sketch and interpret 

graphs of linear functions, 

quadratic functions, simple cubic 

functions, the reciprocal function 

  
 

 
 with    , {the 

exponential function      for 

positive values of k, and the 

trigonometric functions (with 

arguments in degrees)       , 
       and        for angles 

of any size}  

 

Level 4   

Property 

Noticing 

calculate and interpret gradients and 

intercepts of graphs of such linear 

equations numerically, graphically and 

algebraically (Department for 

Education, 2013c, p. 7) 

find the equation of the line 

through two given points or 

through one point with a given 

gradient (Department for 

Education, 2014, p. 8) 

Level 5 Object 

Analysis 

 use the form        to 

identify parallel {and 

perpendicular} lines (Department 

for Education, 2014, p. 8) 

Level 6 

Inventising 

use linear and quadratic graphs to 

estimate values of y for given values 

of x and vice versa, and to find out 

approximate solutions of simultaneous 

linear equations (Department for 

Education, 2013c, p. 7) 

solve two simultaneous equations 

in two variables (linear/linear {or 

linear/quadratic}) algebraically; 

find approximate solutions using 

a graph (Department for 

Education, 2014, p. 8) 

At Level 2, numeracy skill will be required to shape the standard form. Level 3 

indicates the ability to connect representations, mainly from the algebraic expression to 

graphical representation. English students are expected to understand linear function by 

actually drawing the linear function in the Cartesian plane during KS3, while KS4 students 

have built up the relationship between the straight line and the algebraic expression. When 
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connecting these two representations, however, the tabular representation acts as a bridge. 

Whether the role of tabular representation in this connecting process is necessary is unclear 

both in KS3 and KS4. Here is an example (see Figure 21) from a previous GCSE test (No. 

13, GCSE, Mathematics Syllabus A, Paper 1, Foundation Tier, 12 January 2010). The tabular 

representation and an instruction of how to draw the graph is a given in final assessment. The 

question is whether or not the table is a key point to go through this understanding level.  

Example 1 Complete this table for       

X -2 0 3 6 

Y   4  

On the grid, draw the graph of       for x from -2 to 6. 

 

Figure 21. The graph of the GCSE example in Level 3 

The way in which students are expected to construct the algebraic expression from 

two points of the graph is unclear because the property, gradient, might be involved in this 

connection. The requirements of KS4 also require students to form the algebraic expression 

through two points, moving from the graphical representation to the algebraic expression. 

There are two ways of establishing the formula: graphical or algebraic. One approach is 

related to the meaning of gradient learned in KS3 (see Figure 22) by constructing a right 

triangle with points ABC in the Cartesian plane. Through the graphic representation, y-

intercept should be noted to form the algebraic expression.  
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Figure 22. Graphical approach to gradient 

The other approach is by the purely algebraic calculation as follows: 

Put these two pairs of points into the algebraic expression:        (   ).  

{
             ( )
            ( )

 

( )  ( )                  

       (     ) 

  
     
     

 

When getting the value of a, the value of b can be solved. It is the possibility for 

students to work out the value of a and b by merely manipulating the symbols without being 

aware of the meaning of a and b.  

It is not specified how English students are expected to use either the graphical or 

algebraic approach to solve these kinds of problems. However, the meaning of the gradient 

(m) is introduced in KS3 with its meanings interpreted under the graphical representation. It 

is assumed that this property is calculated by the graphical approach as 
  

  
 by constructing a 

right-angled triangle ABC (Figure 22) in the Cartesian plane. Level 4 will be discussed more 

in the next chapter: Textbook Analysis. 
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Level 5 understanding in the general model of understanding function appears in KS4. 

Here, two global properties are introduced, parallel for all English students while the 

perpendicular property is added for Higher Level students.  

Level 6 understanding shows the connection with other mathematical knowledge, 

especially with simultaneous linear equations. Students are expected to make sense of the 

relationships between linear function, linear equation, and simultaneous linear equations 

through the graphical approach, by drawing the graphical representation of two linear 

functions.  

Requirements in Shanghai. Appendix I shows the requirements of the Shanghai 

curriculum in Chinese and English translation. The content for linear function includes the 

concept of linear function, the graph of linear function and properties, application of linear 

function, and the expression of function. The last one, the expression of function, is highly 

related to the concept of function in general, so this study does not analyse it as well as the 

corresponding requirements and advice (point 4 in appendix I). 

In general, the learning requirements (see Table 16) are more concise than that of 

England. It is unclear what kind of property is introduced in linear function at Level 4. In 

terms of Level 6, the basic ideas and methods have been discussed in the definition of 

understanding subsection of this chapter, in the case of solving quadratic equations by the 

square root method. The basic method here is about the combination of symbolic-graphic. 

There was an example of this basic method from one of the classroom observations in 

Shanghai.  

Example 2: Linear function       , the value of y increases if x increases. Its 

graph, x-axis, and y-axis consist of a triangle. If the area of this triangle is  
 

 
, find out the 

corresponding value of k.  



175 

 

 

 

Solution:        passes by (0, 3), the value of y increases if x increases. So the 

graph should roughly look like Figure 23. 

 

Figure 23. Graph of        

The area of triangle OAB = 
 

 
       

                        
 

 
 
 

 
      

                        OA = 3 

Because A (-3, 0) is located at the line 

      ,  

then     (  )    

                         So, k = 1. 

This example shows the tactical requirement to draw the graph according to the first 

sentence ‘linear function       , the value of y increases if x increases’, as revealing the 

property, monotonicity, for linear function. Meanwhile, this problem is related with other 

mathematical knowledge such as the area of a triangle. The basic method is based on a full 

structural understanding of current knowledge as located at Level 6. 

Cognitive development levels are also indicated at each requirement. Two verbs that 

are used to describe the requirements of linear function are ‘know’ and ‘master’. The former 

verb shows the memory stage for the requirement of this knowledge as previously mentioned 

in the cognitive levels. In addition, verbs such as ‘understanding’ or ‘explain’ are to describe 

the second stage of cognitive level: Understanding for Explanation; while verbs such as 

‘master’ or ‘proof’ are to describe the third stage of cognitive level: Understanding for 

Inquiry (Shanghai City Education Committee, 2004, p. 30). In case of Level 4 Property 

Noticing, the Shanghai curriculum demonstrates it through the two verbs: ‘know’ and 

‘master’, which also indicate the understanding development begins with memorization (the 
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first cognitive stage) – knowing the rule, and then moving towards ‘Understanding for 

Inquiry’ (the last cognitive stage).  

Table 16  

Requirements in the Shanghai Curriculum alongside the General Model 

The model of understanding 

function 
Learning objectives 

Level 2 Dependent Relationship To understand the concept of linear function 

Level 3 Connecting 

Representations 

To establish the relationship among linear function, 

linear equation for two unknowns and straight line 

To plot the graphical representation of linear function 

Level 4 Property Noticing 
To know and master the properties of linear function 

using the graph 

Level 5 Object Analysis 
To grasp the relationship between the motion of 

straight line and b in algebraic expression        

Level 6 Inventising 

 

To further experience the basic method: the 

combination of symbolic-graphic  

5.3.2 The content of application 

In terms of application, the common point between the two regions is that they both 

attach great importance to mathematical modeling. Modeling refers to the process that 

abstracts the real world problem to the mathematics (Blum & Niss, 1991). It acts as the first 

step towards application. Students are able to construct a mathematical model that fits the 

essence of the elements and the relations in the context (De Corte, Verschaffel, & Greer, 

2000). To create relationships is a hallmark feature of problem solving (P. Thompson, 1985). 

Modeling is intrinsically an open-ended task which could reflect students’ inadequate 

knowledge (Sleeman & Smith, 1981). However, it is unclear in the Shanghai curriculum 

where and how to apply knowledge into real life (see Table 17). In England’s situation, the 

mathematical modeling within both KS3 and KS4 takes place within graphical contexts in 

order to generate the algebraic expression in terms of distance, speed and acceleration 

problems. Furthermore, three particular types of graph are required for the higher level 

students: distance-time graphs, velocity-time graphs and graphs in financial contexts.  
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Table 17  

Requirements in terms of Application in Two Regions’ Curricula 

KS3 Algebra 

Pupils should be taught to 

KS4 Algebra, in addition to 

consolidating subject content 

from KS3, pupils should be 

taught to 

Shanghai learning objective 

model situations or 

procedures by translating 

them into algebraic 

expressions or formulae and 

by using graphs (Department 

for Education, 2013c, p. 6) 

translate simple situations or 

procedures into algebraic 

expressions or formulae 

(Department for Education, 

2014, p. 8) 

To apply linear function 

into real world situation 

and formalise initial 

function model 

find approximate solutions 

to contextual problems from 

given graphs of a variety of 

functions, including piece-

wise linear, exponential and 

reciprocal graphs 

(Department for Education, 

2013c, p. 7) 

plot and interpret graphs 

(including reciprocal graphs 

{and exponential graphs}) and 

graphs of non-standard 

functions in real contexts, to 

find approximate solutions to 

problems such as simple 

kinematic problems involving 

distance, speed and acceleration 

(Department for Education, 

2014, p. 8) 

 For Higher Level students,  

{calculate or estimate gradients 

of graphs and areas under 

graphs (including quadratic and 

other non-linear graphs), and 

interpret results in cases such as 

distance-time graphs, velocity-

time graphs and graphs in 

financial contexts} 

(Department for Education, 

2014, p. 8) 

 

5.4 Summary 

This chapter has presented some of the features of the two regions’ curricula with 

regards to their overall aims, and more specifically, the aims regarding linear function. 

Generally, between the features of the curricula and students’ performance, there does not 

exist any cause-effect relationship (Alexander, 2012). That is, higher students’ performance 

does not indicate that every feature of the respective curriculum is better than others. The 
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curriculum analysis however provides the foundation of how to make sense of what each 

region is expecting of their students’ learning outcomes and the approaches taken towards the 

mathematical concept.  

First, the analysis of the curricula justifies three aspects: topic chosen, test design, and 

sample selected. The topic chosen, linear function, is the paradigm case within the concept of 

function due to the depth of requirement being similar for pure mathematical knowledge – i.e. 

involves the same range of levels of understanding in both regions, from understanding Level 

2 Dependent Relationship to the highest Level 6 Inventising. The test design should be two 

sets of tests as the mathematics knowledge itself and what they can do (application in real 

world situation). The sample students chose as English students should be in KS4 stage while 

Shanghai students should be in Grade 8 or Grade 9.  

Secondly, the two regions’ curricula represent different approaches to learning 

fundamental mathematics. England prefers the graphic representation while Shanghai 

emphasises the use of the basic method in Shanghai. Furthermore, it is worthwhile to 

investigate how this concept is presented at each understanding level in the selected 

textbooks. In addition, the following specific questions will be clarified in the next chapters:  

In terms of basic knowledge understanding,  

1. How is the concept of linear function initially presented or defined; in the 

algebraic expression or as a graph? (Textbooks analysis) 

2. When English students connect the representations, is the tabular representation 

important for their understanding? (Student tests) 

3. What kind of properties do Shanghai students learn? (Textbooks analysis) 

In terms of application, 

1. How do Shanghai students explore the modeling? (Textbooks analysis) 

These questions will be explored in the subsequent chapters. 
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Chapter 6 Textbook Analysis 

The previous chapter has examined the intended curriculum, including the KS3 and 

KS4 national curricula in England, and the local curriculum in Shanghai. This chapter turns 

to the respective textbooks that the Maths departments in the sample schools currently 

provide for their teachers and students in the classroom. It presents an analysis of important 

features of linear function in the selected seven mathematics textbooks used by sample 

schools. It hopes to answer the second part of the Research Question 1: ‘what are the 

requirements of …the officially used textbooks of the two regions in terms of linear 

function?’ Following on from the curriculum analysis framework, the general features 

examined in this chapter will be related to the background information of linear function, and 

the specific features will narrow towards understanding linear function. All of these selected 

textbooks reveal that there are also two contexts in which linear function are displayed: basic 

knowledge; and applying this knowledge to real-life situations. In terms of basic knowledge, 

the general model of understanding function preciously discussed is applied in order to 

measure how each understanding level is presented. The application part examines the 

preferred approach that each region takes towards using mathematical concepts.  

The first section of this chapter, therefore, will address the detailed analytical 

framework and will be followed by an explanation of how the data was analysed. The results 

will be split into two sections: background information and then particulars of linear function. 

This will be followed by a discussion concerning the different approaches drawn from the 

findings from the data analysis, and their implication for the test design in this comparative 

study. The last section will summarise the main findings, the potential gap between the 

textbooks and the respective curricula, and point to three further questions to be clarified in 

the following chapter: Student Tests.  
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6.1 Method 

6.1.1 An analytical framework  

Results from the curriculum analysis in the previous chapter argued that linear 

function was the only possible type of function which could be used to make comparisons. It 

is still worthwhile to investigate, however, whether linear function has a similar importance 

among all mathematics topics in the textbooks. To do this, the percentage of pages covering 

the topic in the textbooks from different countries was counted. This has been done 

previously by Y. Li et al. (2009) whose research analysed the similarities and differences 

between conceptualising and organising the division of fractions among Chinese, Japanese, 

and USA textbooks. The percentage of page usage was calculated using the number of pages 

devoted to linear function and dividing that by the total number of pages in the selected 

textbooks used. In addition, the study further explored how this concept was presented or 

defined at the beginning, relating with previous knowledge. This background stage was, 

therefore, analysed from the following two perspectives:  

A. From the background information:  

1) The percentage of pages allocated;  

2) Previous knowledge related with the concept of function. 

The particulars of the linear function analytical framework is drawn primarily from 

the work of TIMSS (Bianchi & Wolfe, 2002). TIMSS used ‘blocks’ instead of sections in 

characterising textbooks. There were a total of ten blocks, for example, narrative blocks, 

graphic blocks, exercise and question sets, activities, worked examples, and an ‘other’ block 

(Valverde et al., 2002). On the other hand, Love and Pimm (1996, p. 386) suggested that the 

most frequent used organisation in textbooks was the ‘exposition – examples – exercises’ 

model. The different choice of ‘exposition’ however represented what learning theory 

textbooks’ authors took. Therefore, this analysis was carried out just for the examples and 
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exercises which were clearly marked as ‘Example’ or ‘Exercise’ in the selected textbooks. 

Especially, the worked examples indicated the detailed solution strategy to a problem where 

they ‘presuppose that students will follow the flow of that pursuit’ (Valverde et al., 2002, p. 

142). 

The particulars stage contained two parts related to linear function: pure knowledge 

and application. The former was examined using the model of understanding function, while 

the latter focused on the ways in which real world problems were presented and expected to 

be solved. With regards to pure knowledge, the Shanghai curriculum has not indicated which 

property of function should be introduced so that it can be answered by this chapter. Similarly, 

the Shanghai curriculum only stated the application in general, how students were expected to 

model the real life problem in Shanghai so that the application context was examined in the 

textbooks. Therefore,  

B. From the particulars of understanding linear function: 

1) Pure knowledge would be investigated from  

a) Understanding levels of Examples and Exercises on basic knowledge were 

examined according to the model of understanding function; 

b) Approaches towards each understanding level (how to present the knowledge). 

2) Application would be analysed based on:  

a) How examples and exercises are presented (for example, only pure word 

problems or with a visual approach);  

b) How students were expected to solve them with regards to the three main 

representations of linear function (algebraic expression/equation, graphical 

representation, tabular representation). 
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6.1.2 Data analysis 

In terms of background information, the format of the textbooks’ content was 

examined. This would look at the general arrangement of the topic in terms of page use, as 

well as identifying whether there was a separate chapter on linear function and, if not, how 

many sections were allocated. Secondly, the background knowledge context for linear 

function and how this concept was introduced at the beginning of the section/chapter was also 

explored.  

The particulars of linear function focused on the examples and exercises. In 

accordance with the model of understanding function, each example and exercise was merely 

allocated to a certain level of understanding. All the selected textbooks in England started 

with drawing the graphs from a concrete algebraic expression which is at Level 3. The first 

section of the Shanghai textbook concerned the definition of linear function to distinguish 

them from other types of functions, which the English textbooks did not cover, so that 

examples or exercises from this first section in the Shanghai textbook were not included in 

the study.   

The data coding of levels of understanding for examples and exercises was a two-

steps process. The first step involved identifying the number of examples and exercises at 

each level and the second involved calculating the percentage of these examples and 

exercises among the total of examples and exercises. Here, each example and exercise was 

designated at a certain level from the understanding model (see appendix J). If an example or 

exercise included a set of questions, the highest level of understanding conveyed within the 

example or exercise was assigned. At the same time, each understanding level had a certain 

number of examples and exercises in each textbook. Numbers at each understanding level in 

three Higher English textbooks were put together and calculated as a whole. Then, the 

percentage of these examples and exercises at each level in the textbooks could be calculated 
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and compared. The same procedure was also undertaken for the three Foundation textbooks. 

That is, the seven selected textbooks are divided into three types: Higher Level, Foundation 

Level, and Shanghai. 

With regard to application, only two Higher Level textbooks (New GCSE Maths 

Edexcel Modular and Collins GCSE Maths 2 Tier-Higher for AQA A) included independent 

sections on the ‘use of graph’ for linear graph. Meanwhile, these two textbooks arranged the 

same order in three sections: (1) linear graphs; (2) uses of graphs; and (3) parallel and 

perpendicular lines. Application and pure knowledge were interwoven together within the 

sections or chapter in other selected textbooks. The Shanghai textbook had an independent 

section to highlight the application part. As a result, these two English textbooks were chosen 

to compare with the Shanghai textbook for application.  

The section entitled ‘use of graphs’ has two types of knowledge application: 

discovering approximate solutions of simultaneous linear equations; and applying these in 

real life situations. It was argued earlier (Chapter 5: Curriculum Analysis) that solutions of 

simultaneous linear equations were regarded as the highest level in the model of 

understanding function. In a practical way, this knowledge is regarded as application of linear 

function in England as another method to solve simultaneous linear equations. But in the 

Shanghai textbook, solving simultaneous linear equations was presented as part of solving 

equation in Grade 6-7, which was arranged only before linear function. This difference was 

rooted in the different approaches towards the concept: algebraic method was highlighted in 

Shanghai. Therefore, this topic would not be suitable for forming standardised tests in this 

study. Solving simultaneous linear equations therefore would not be compared, neither as part 

of application, nor as pure knowledge in this chapter. The application in this study only 

included the real world context.  
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As for representing problems, two types were identified: using only pure word 

problems; or with visual approaches included tabular and graphical representations. The total 

number of examples and exercises of each type were examined. The tabular representation 

could not be found, however, in presenting any example or exercise within the selected 

textbooks. The visual approach is therefore only indicated by the graphical representation. As 

for the kind of solutions the textbooks were expecting, these answers were initially coded 

according to the three types of representations that were possibly involved. In fact, tabular 

representations could not be found here either. Meanwhile in the Shanghai textbook, some 

problems required both types of presentations within the full answer, namely algebraic 

expressions and graphs, while some could be solved flexibly by any method the students 

preferred. The approaches were therefore re-coded as using graphic representation, algebraic 

expression, both types, or as flexible choice.  

6.2 Background information  

6.2.1 The percentage of pages allocated 

Table 18 compares the amount of content in the English and Shanghai textbooks. This 

table does not imply the equivalent proportion of time, only showing how textbooks writers 

arranged the proportion of this topic. This content includes the knowledge substance part and 

sections and chapters related to the topic of linear function.  

Four of the English textbooks arranged linear function in the chapters entitled 

Algebra: Graph or Graphs. The ways in which the English textbooks presented different 

types of functions were based on the different shapes of graphs, in other words, from their 

graphical representations.   

It was found that the average percentage of page usage in the Foundation Level, 

Higher Level textbooks from England, and the Shanghai textbook was similar, as the 

difference between Higher Level and Shanghai was roughly around 0.4% and the difference 
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between Shanghai and Foundation Level was around 0.3%. In particular, the presence of 

linear function in one of the selected English textbooks, Collins GCSE Maths 2 tier-higher 

for AQAA, was the highest among these seven textbooks.  

Table 18 

Linear Function Content Placement in Textbooks  

Textbooks  Content organization Pages (%) 

England 

 Foundation level in 

textbooks 

New GCSE Maths Edexcel 

Modular (Foundation) 

A section of Chapter 

Algebra: Graph 

18 

(2.13%)
1
 

Collins GCSE Maths 2 tier-

foundation for AQA A 

A section of Chapter 

Graphs 
8 (1.43%)

2
 

Foundation GCSE 

Mathematics: Revision and 

Practice 

A section of Chapter 

Algebra 1 

10 

(1.95%)
3
 

  Average 1.84% 

England Higher level 

textbooks 

New GCSE Maths Edexcel 

Modular (Higher) 

Three sections of 

Chapter Algebra: Real-

life graphs 

18 (1.94%) 

Collins GCSE Maths 2 tier-

higher for AQA A 

A Chapter: Linear 

graphs and equations (4 

sections) 

21 (3.5%) 

Higher GCSE Mathematics: 

Revision and Practice 

Two sections of 

Chapter: Algebra 2 
10 (2.16%) 

  Average 2.53% 

Shanghai textbook  
A Chapter: Linear 

function 

20 

(2.16%)
4
 

6.2.2 Previous knowledge 

With regards to the expected background knowledge for function, results showed that 

English students have more experience in relating the concepts to real world situations.  

Meanwhile, their counterparts in Shanghai have more experience in algebraic approaches. 

                                                 
1
 The percentage of page usage is calculated in terms of all two textbooks for Foundation/Higher. There are two 

volumes of textbooks in Foundation level and higher level of this series respectively. For example in Foundation 

1, the percentage of page use age is 4.24% while in the two textbooks that is 2.13%.  
2
 There is only one volume of textbook in Foundation level/ higher level in this series.   

3
 There is only one volume of textbook in Foundation level/ higher level in this series.   

4
 This percentage calculated is based on all the page usage in Shanghai secondary school textbooks. There are 

eight volumes of textbooks in Shanghai secondary school.  
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English students are firstly introduced to straight-line distance-time graphs, straight-line 

velocity-time graphs, or conversion graphs, and then turn to other types of graphs. Linear 

function was therefore presented under this graphical approach. The term ‘linear function’ 

itself, however, was not shown in any selected English textbooks. On the other hand, in 

Shanghai, before the linear function chapter, students would have tackled the general concept 

of function and were familiar with two types of function: proportional function   

   (   ); and reciprocal function   
 

 
 (   ), while proportional function belongs to 

linear function. When learning these two types of function, Shanghai students started with 

mathematically rigorous definitions involving algebraic expressions. Their graphic 

representations, properties including intercepts and monotonicity, and application to real-

world problems were introduced later. This same arrangement was then applied for linear 

function.  

The two regions initially used quite opposing ways to present the concept of linear 

function, with England adopting a graphical method and Shanghai using an algebraic process. 

The initial presentation of linear function in two series of English textbooks (New GCSE 

Maths Edexcel Modular and Collins GCSE Maths) was related to the real life graphs. Here, 

the linear graph built upon the straight-line distance-time graphs which present ‘how far 

someone or something has travelled over a given time period’. For example, in travel graphs, 

the formula of average speed implies the meaning of gradient. Another series, GCSE 

Mathematics Revision and Practice, started with straight-line graphs, horizontal and vertical 

lines, and then related lines with x and y, the coordinates. These two sub-sections paved the 

way toward drawing graphs. Therefore, the linear graph started with drawing a concrete 

graph such as        for values of x from 0 to 5. The Shanghai textbook gave an 

algebraic definition of linear function as        (   ) and offered some examples to 

discern if a relationship belongs to linear function, while the learning process was based on 
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the special type of linear function, proportional function      (   ) arranged at the 

previous term. Shanghai students had mastered basic knowledge and skills such as how to 

connect representations before starting the linear function chapter.  

6.3 Particulars of understanding linear function 

Looking further at the structure of the concept in all the different sets of textbooks, 

both the English and Shanghai textbooks looked at students’ ability to deal with real world 

situations, although there were some differences. All of the textbooks, however, paid more 

attention to the basic knowledge.  

Application was intertwined with the basic knowledge in the English textbooks, both 

at the Foundation and Higher levels. Exercises after each part presented one or two real-life 

problems corresponding with the basic knowledge which had been introduced. The 

approximate ratios were calculated of pages about pure mathematics knowledge to pages 

about application for the two chosen compared High level textbooks: in the New GCSE 

Maths Edexcel Modular it was 2.2:1; and in the Collins GCSE Maths 2 Tier-Higher for AQA 

A was it was 7.5:1. Application was highly valued by the former textbook with nearly one 

third of the coverage of pages. Pure mathematics knowledge, however, played a more 

significant role in the other textbook.  

In Shanghai, application was the last section of the chapter on linear function. The 

ratio of pages about basic knowledge to application was 3.5:1. The basic knowledge section 

was demonstrated in a purely mathematical way, unrelated to any real-life context. There was 

a clear boundary between emphasis on basic mathematical knowledge and application in the 

Shanghai textbook. Here, again, a higher proportion of pure mathematics knowledge in the 

ratio suggests that it is more highly valued than the application.  
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6.3.1 Analysis of understanding levels  

This subsection will explore the overall distributions of examples and exercises across 

the understanding levels first. The differences of approaches towards each understanding 

level will be examined later.  

Overall distributions of understanding levels. Examples. A conceptual framework 

about understanding levels was previously established as a model of understanding function. 

Here, Table 19 shows the percentage of examples used in the textbooks at each level of 

understanding function. Both the Shanghai textbook and selected Higher level textbooks 

covered Levels 3 to 6 of the understanding model. For the more abstract understanding levels, 

namely Level 5 Object Analysis and Level 6 Inventising, the Shanghai textbook provides 

double the percentage of examples compared to the English Higher level textbooks, with 

particular emphasis on Level 5. The examples from selected Foundation level textbooks, 

however, evidently placed emphasis on Level 4, without presenting any examples from Level 

5 or Level 6. All the English textbooks emphasised Level 4 Property Noticing. Lower down, 

at Level 3 Connecting Representations, the Shanghai textbook contained more examples than 

the English Higher level textbooks, but fewer than the Foundation level ones.  

Particularly in the Shanghai textbook, the analysis suggests a big jump from Level 3 

to Level 5. The percentage at Level 4 was lower than that of any of the English textbooks due 

to only one property, y-intercept, being introduced here. The meaning of gradient was simply 

explained as how steep the straight line was, while there was only one example provided by 

the textbook that indicated how to calculate the gradient by a purely algebraic approach, 

namely solving simultaneous linear equations, using the basic method Daidingxishu, one of 

the basic methods mentioned in Curriculum Analysis chapter. Without a detailed introduction 

to the concept of gradient, however, the Shanghai textbook quickly moved on to how to apply 
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this concept in order to identify parallel lines, and focused on the higher level of 

understanding, Level 5 Object Analysis, which was the most prominent understanding level. 

By contrast, the English textbooks heavily emphasised Level 4, particularly the 

meaning of the gradient by drawing the graph. There are two methods to draw a line with this 

property: the gradient-intercept method, and drawing a line with a certain gradient. Methods 

used to draw a line in each region offered different ways of understanding this property.  

Table 19  

The Percentage of Examples at Each Level 

 

Level 3:  

Connecting 

Representations 

Level 4: 

Property 

Noticing 

Level 5: Object 

Analysis 

Level 6: 

Inventising 

English  

Higher level 

textbooks (total 

24 examples)  

13.6% 45.4% 36.4% 4.5% 

English 

Foundation level 

textbooks (total 

10 examples) 

22.2% 77.8% 0% 0% 

Shanghai 

textbook (11 

examples) 

18.2% 9.1% 63.6% 9.1% 

Exercises. Table 20 reveals that exercises in all the selected textbooks included the 

highest level of understanding. All the textbooks contained higher percentages of exercises at 

Level 6 Inventising, compared with the fact that there were no examples at this level for the 

Foundation level textbooks. The distribution of examples and exercises was quite different 

for England and Shanghai based on the model of understanding function. Selected 

Foundation and Higher English textbooks paid more attention to Level 3 and Level 4 

understanding, whereas the Shanghai textbook emphasised Level 5 and Level 6 

understanding in terms of teaching and learning linear function.  

The Foundation level textbooks heavily emphasised Level 3, with almost three times 

the percentage of exercises than that of examples. The Higher level textbooks emphasised 
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exercises at Level 4 in line with the situation of the examples, but contained more than 

double the percentage of exercises compared to examples at Level 3 Connecting 

Representations. In comparison to examples at Level 5 Object Analysis, there was half the 

percentage of exercises. The Shanghai textbook reduced the exercises at Level 3 but added 

more at Level 4.  

Table 20  

The Percentage of Exercises at Each Level 

 

Level 3:  

Connecting 

Representations 

Level 4: 

Property 

Noticing 

Level 5: Object 

Analysis 

Level 6: 

Inventising 

English Higher Level 

textbooks (total 124 

exercises) 

32.8% 41.2% 16.0% 10.1% 

English Foundation 

Level textbooks (total 

92 exercises) 

72.5% 19.8% 5.5% 2.2% 

Shanghai textbook (16 

exercises) 
6.3% 18.8% 50.0% 25.0% 

Different approaches towards each level. Level 3. Both regions’ textbooks started 

with a concrete example, using an algebraic expression, such as   
 

 
     in the Shanghai 

textbook, and         for values of x from 0 to 5 in English textbooks. Here, the 

difference was the domain (value of x) that English textbooks specified while Shanghai 

textbook did not. The graph in the Shanghai textbook therefore was a straight line, while part 

of a line between two points (segment) was shown in England. The initial expectation of 

drawing a linear graph/function therefore differed.  

Level 4. GCSE Mathematics Revision and Practice (Foundation) gave some exercises 

to translate graphic representation to algebraic expression using two ways: indicating the 

gradient in the graph (see Figure 24) or in words, for example to write the equation of the line 

with gradient 4 and y-intercept -3.  
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Figure 24.  An exercise for Level 4 

Particularly in the Shanghai textbook, the analysis from Table 19 suggests a big jump 

from Level 3 to Level 5. The percentage of examples at Level 4 in Shanghai was lower than 

that of any of the English textbooks due to only one local property, y - intercept, being 

introduced here. The meaning of gradient was simply explained as how steep the straight line 

was, while there was only one example provided by the textbook that indicated how to 

calculate the gradient using a purely algebraic approach of solving simultaneous equations. 

For example, the straight line        passes through points A (-20, 5), B (10, 20), find 

out (1) the value of k and b; (2) the points that this straight line cut the axes (of a Cartesian 

coordinate system). The solution of the first question was related with pure algebraic method 

to work out the gradient, because the straight line        passes through points A (-20, 

5), B (10, 20), so  

{
         
         

 

Solving the simultaneous equations, {
  

 

 
 

     
 

The solution of the second question is related with the concept of y-intercept, as this 

straight line cuts the y-axis at (0, 15).  

Without detailed introduction to the graphical approach towards gradient, Shanghai 

textbooks quickly moved on to how to apply this concept in order to identify parallel lines, 
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and focused on the higher level of understanding, Level 5 Object Analysis, which was the 

most prominent understanding level in Shanghai. 

By contrast, the gradient in the English textbooks was calculated by constructing a 

right triangle from a graph, e.g.          
                

                
 
  

  
 as discussed in previous 

chapter and indicated that a line which slopes upwards to the right has a positive gradient 

while upwards to the left has a negative gradient.   

Essentially, the two methods used by England and Shanghai are identical. If given 

point A (     ), and point B (     ) in Figure 22, the algebraic way to solve the gradient of 

straight line AB,          
     

     
, as discussed in Curriculum Analysis chapter. The 

graphic meaning of the gradient of a straight line AB in Figure 22 is 
  

  
 , as the coordinate of 

point C is (     ). The length of AC is       while the length of BC is      . Therefore, 

         
                

                
 
  

  
 
     

     
.  

Both regions’ textbooks illustrate the meaning of gradient as the steepness of the line. 

From this perspective, the algebraic approach cannot explain how this method links with the 

steepness. This property therefore is presented as rule-based procedure knowledge for 

instrumental understanding in the Shanghai textbook. The English textbooks are one step 

closer to conceptual knowledge for relational understanding, because the deepness rooted in 

the graph is determined by the degree of angle ABC in Figure 22. As the degree increases, 

the steeper line is.  

Level 5. The Foundation Level textbooks did not introduce the property of parallel 

lines in worked examples, which was in the statutory guidance in the England’s curricula. 

The exercises questioned the relationship between two parallel lines whose gradient was the 

same. In the Foundation GCSE Mathematics Revision and Practice, a note of exercise 
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pointed out ‘the parallel lines have the same gradient’. The selected Higher Level textbooks 

followed the statutory guidance to introduce parallel and perpendicular lines.  

The common global property introduced by England and Shanghai textbooks was the 

parallel. The approach towards this property however was opposing as well. In the Shanghai 

textbook, Example 4 required students to draw two straight lines,    
 

 
    and   

 
 

 
 , and then describe the geometrical relationship between the lines. The algebraic 

expression was offered, and the solution was obtained by observing the two lines on the 

Cartesian coordinate system. Conversely, the English textbooks gave the parallel lines first, 

and then required students to work out their algebraic expressions in order to find the same 

coefficient of x. In the selected Higher Level English textbooks, the two lines were presented 

by graphical representations, and the example required students to: (1) find the equation of 

each line; (2) describe the geometrical relationship between the lines; and (3) describe the 

numerical relationships between their gradients.  

In summary, moving from the algebraic to the graphical was emphasised in the 

Shanghai textbook, while the opposite approach was taken in the selected English textbooks. 

Level 6. The Shanghai textbook showed the link between linear function and 

inequalities from both the algebraic and graphical approach. In case of one example, namely 

for the given linear function   
 

 
   , (1) when    , find out the value of x; (2) when 

   , find out the value of x; (3) in the Cartesian Plane, there are some points located in the 

straight line   
 

 
   , as well as under the x-axis, find out the range of abscissa for these 

points. The textbook gives two approaches of solution by using the algebraic method first: (1) 

 

 
     , then    ; (2) 

 

 
     , then    ; (3) 

 

 
     , then    

 

 
. 

Following this solution, the textbook presented the graphical representation of   
 

 
   , 

explaining the solution from the graph.  
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Conversely, the Higher Level textbooks in England merely linked linear function to 

geometrical knowledge, the midpoint in both examples and exercises. There was an example 

in the New GCSE Maths Edexcel Modular, Higher 1, Example 12 (p.376) which shows a 

graph of AB in the Cartesian plane. The point A is (2, -1) and the point B is (4, 5) and 

students were expected to (a) find the equation of the line parallel to AB and passing through 

(2, 8); and (b) find the equation of the line perpendicular to the midpoint of AB. The solution 

of the second question first pointed out that the midpoint of AB was (3, 2), and then linked 

with the meaning of gradient of the perpendicular line. In Foundation Level textbooks, one 

exercise linked linear graph to the area of the triangle which was formed by the three lines, 

such as    ,    , and    .  

From these two examples and one exercise, the complexity of questions differed at the 

same understanding level.  

6.3.2 The content of application 

How application questions were presented. Table 21 summarises the ways in which 

problems were presented, including both examples and exercises related to application, using 

pure word problems or incorporating a graph. In general, the selected Higher level textbooks 

in England used the graphical representation to find a formulae in application; for example, a 

conversion graph between temperature in ºC and °F in the first quadrant. Given its graphical 

representation, it required students to find out the rule that was able to convert ºC to ºF. 

Conversely, the Shanghai textbook put the emphasis on pure word problems to model 

the situation by generating formulae. Some application problems involved two kinds of 

situations and required students to choose which one was more suitable for the context. 

Therefore, Shanghai students’ reasoning abilities might be highlighted through defending 

their solutions. 
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Table 21 

How Examples/Exercises was Presented and Their Purposes 

Textbook 

Examples/Exercises 

Purposes 

Word 

problem 

without 

graph 

Having 

graph 

New GCSE Maths 

Edexcel Modular 

(higher) 

0 9 

 Finding formulae or rules 

 Making sense of gradient and 

intercept in the graph 

Collins GCSE Maths 2 

tier-higher for AQA A 
0 6 

 Finding formulae 

 Making sense of gradient and 

intercept in the graph 

Shanghai textbook 6 1 

 Comparing with two 

conditions to enhance 

reasoning ability 

 Modeling the situation 

How problems are expected to be solved. Table 22 demonstrates that selected 

Higher level textbooks in England required a single type of solution, namely algebraic 

expression and equation. The Shanghai textbook additionally required students to use two 

kinds of representation (algebraic expression and graph) to answer the problem stated as 

‘both two types’ in Table 22, while there are two problems without this requirement but can 

be solved by two approaches, stated as ‘flexible’.  

Table 22 

Expected Solution 

Textbooks Graph Algebra 
Both two 

types 
Flexible 

New GCSE Maths Edexcel Modular 

(higher) 
1 8 0 0 

Collins GCSE Maths 2 tier-higher 

for AQA A 
0 6 0 0 

Shanghai Textbook 0 3 2 2 

In the Higher level English textbooks, problems tended to be presented in a graphical 

way and were solved through algebraic expression. In contrast, the Shanghai textbook mainly 



196 

 

 

 

used pure word problems and required both kinds of representations, algebraic expression 

and a graph within the solution. Shanghai students were therefore given more opportunities 

for using different representations in terms of application. This raises the questions: when 

there is a choice, which kind of solution do the Shanghai students prefer? This will be 

examined in the next chapter: Student Tests.  

6.4 Discussion 

This section discusses two issues: different approaches each region taken towards 

presenting linear function; and the implications for designing student tests. 

6.4.1 Different approaches towards presenting linear function 

Building on the findings from the curriculum analysis presented earlier, the selected 

textbooks in the two regions also show two distinct approaches to learning linear function: 

graphic approaches in England, and algebraic approaches in Shanghai. It is believed in the 

West that real-world situations and visual representations ‘help students learn the abstract 

ideas of mathematics with understanding’ (Fennema & Franke, 1992, p. 154). This distinct 

approach, however, is embodied by three perspectives: in what way to introduce linear 

function, how to schedule the whole topic content, and by what means to demonstrate the 

relevant pure mathematical knowledge.  

First, the topic is introduced with a slightly different meaning in the two regions. 

Linear function as proposed by England’s curriculum is explained as linear graph in the 

English textbooks. Technically, there are two slightly different concepts. Essentially, linear 

function describes a proportional relationship between two variables. The dependence rule for 

this relationship is presented by an algebraic expression,        (   ), and a straight 

line in the Cartesian plane. Not all straight lines belong to the concept of fuction, however; 

for example,     which does not conform to the one-to-one property required by the 

concept of function. That is, one value of x (   ) corresponds to infinite or any values of y 
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and does not fit with the univalence requirement. Pictorially, any vertical line in the Cartesian 

coordinate system with     (a could be placed by any real number) does not represent the 

concept of a function. In this study, two extreme examples of graphs (vertical and horizontal 

lines) are excluded, as it would not affect the research questions.  

Secondly, the English textbooks start from real-life graphs, moving to the system of 

Cartesian graphing, and then to form the formal notational symbol system of algebra. The 

concept of linear function is therefore initially based on the real world. In Shanghai, the 

approach to the issue of function progresses from an algebraic definition to a graphical 

representation and then moves to resolve the real-world problems. The method taken in 

Shanghai indicates that the abstract algebraic approach is the priority. These differences can 

be explained as differences in the cultural characters of the two education systems. For 

example, the English curricula emphasises the enrichment of contexts as the use of 

mathematics or the applicability (Brown, 2011), while the Chinese curricula pay more 

attention to mathematical knowledge structures and systems (Bao, 2002). 

Thirdly, the method of connecting representations and the meaning of property are 

both influenced by two approaches. The English textbooks offered a graphical definition for 

the meaning of gradient, especially from graphical representation to algebraic expression. In 

contrast, the Shanghai textbook merely uses an algebraic way to demonstrate either how to 

translate graphical representation to an algebraic expression, or discerning the property of 

gradient, even though the graphical meaning of gradient would be introduced in Grade 11 

(approx. age 17).  

6.4.2 Implications for designing student tests 

Before investigating student performance in linear function or linear graph in the two 

regions, it was important to give some thoughts to form the assessment taken in this study. 

This included the way in which problems were to be presented. 
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Textbooks largely embody the ‘student performance expectations presented in content 

standards’ (Valverde et al., 2002, p. 10). The selected English textbooks including Higher and 

Foundation Levels focus on the graphical approach to the construction of the meaning of 

linear function; and, based on graphs, the rules are generated in order to form an algebraic 

representation in the real-life application. Therefore, the English textbooks represent real-

world problems using graphical representations, while the Shanghai textbook uses pure word 

problems. The application problems in the English textbooks require students to explain the 

graph so that the formula can be generated. The assumed answer in England is merely in the 

form of algebraic expression (equation). Conversely, the Shanghai textbook expects mixed 

methods, algebraic and graphic answers, to solve problems, as Confrey (2002) advocated 

diversity in mathematical solutions instead of uniformity ones. This textbook analysis 

therefore suggests that the use of pure word problems might negatively influence the 

reliability of the tests for England’s part.  

6.5 Summary  

This chapter has discussed features of the selected textbooks in England and Shanghai 

in terms of understanding linear function. First, the findings have been summarised under 

three broad heading: 

 Point 1: Similar importance of the topic. Finding from the percentage of content 

covered suggests the importance of linear function in junior secondary school stage is similar 

as the percentage is around 2%. Therefore, this finding confirms that the topic chosen is 

suitable for the comparative study.  

Point 2: Different foci of understanding level. Findings also suggested that, although 

the curricula in two regions have the same depth of understanding requirement, the model of 

understanding function demonstrates that the more abstract understanding for linear function 

is indeed highlighted in the Shanghai textbooks more than the English textbooks.  
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The examples from the textbooks suggest it is reasonable to speculate that the 

Shanghai students might be encouraged to move towards more abstract levels of 

understanding linear function or be given much more opportunities to work on the questions 

located at higher levels of understanding. This potential deeper expected understanding of 

mathematics in Shanghai students might lead to better performance. On the other hand, the 

English students’ understanding development is constrained by the requirement of curriculum 

or textbooks in general. 

Point 3: Application. In terms of the application part, finding reveals the English 

Higher Level textbooks tended to present knowledge with graphs and expected the algebraic 

expression as the solution or answer. Conversely the Shanghai textbook heavily emphasised 

word problems and encouraged the two ways as solution: algebraic expression and graphic 

representation.  

Secondly, linking findings of the textbook analysis with the findings of the previous 

chapter (Curriculum Analysis), the coherence between the curriculum and the textbook in 

Shanghai is less diverse than in England. That is, the selected English textbooks do not 

follow the statutory guidance so closely. Linear function was presented as an official term in 

both the KS3 and KS4 curricula, but interpreted to be linear graph by the form of graph 

rooted in real-world situations. Furthermore, the Higher Level textbooks contain the 

Inventising Level of understanding, linking to geometry knowledge, midpoint of a segment, 

and by examples as well as exercises, which expand the requirements of the curricula.  

Thirdly, the selected Foundation Level textbooks do not reach all the statutory 

requirements for all students in the KS4 curriculum, as the parallel lines are not manifested in 

worked examples, though introduced in exercises. Conversely, Shanghai demonstrates 

uniformity between these two official sources.  
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The textbook analysis showed, however, that each region has their own patterns for 

expected teaching methods, which means that students’ understanding may ‘remain deficient’ 

(Pepin & Haggarty, 2007, p. 13). The pros and cons of each approach were weighted by the 

impact on students’ understanding development in linear function, from its positive and 

negative perspectives. Consequently, there are three questions that require clarification in the 

next chapter:  

1. What kind of role will tabular representations play in the learning of linear 

function/graph? 

2. Within the meaning of gradient, in which way will students perform better, algebraic 

or graphic? 

3. In terms of application, which kind of solution will Shanghai students choose: 

algebraic or graphic? 

In addition, the next chapter, which sets out the work around the student tests, will 

explore how students show their understanding of linear function in the two sets of 

understanding tests, pure knowledge and application in real life.  
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Chapter 7 Student Tests  

The previous document analysis examined the differences in the requirements for 

linear function within each education system in general, and how the textbooks present this 

knowledge in detail. However, these findings only revealed what students might be taught 

and in which possible way. Therefore a further examination of what students actually achieve 

will be presented in this chapter. Two types of tests are involved in the examination of 

students’ understanding of linear function: basic knowledge and application. In order to 

formalise the appropriate tests, a pilot study was conducted as detailed in Chapter 4: 

Methodology. The present chapter therefore consists of six sections. First, the following four 

aspects of method will be addressed: sample chosen; the criteria of how questions in each test 

were selected; data coding; and instrument reliability. Then the results are reported in three 

sections: the results from basic knowledge tests; the results from application tests; and the 

relationship of performances between the two tests respectively. The discussion section will 

explore two perspectives: the barriers at each understanding level and the English students’ 

weakness of numeracy skills. The final section will summarise the findings that emerge from 

the student results.  

7.1 Method  

7.1.1 Samples 

Participants in the Pilot Study. In each region, two of the three sample schools took 

part in the pilot study. In total, the pilot study involved 96 English students in Year 10 and 

292 students from Shanghai in Grade 8 (see Table 23 for further details concerning these two 

samples). Boys and girls were approximately equal in distribution throughout both groups. 
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Table 23 

A Profile of Sample in Pilot Study 

Area Boys Girls Unstated gender Total Mean age 

England 34 (35.42%) 54 (56.25%) 8 (8.3%) 96 15.25 

Shanghai 166 (56.8%) 126 (43.2%) 0 292 14.32 

As mentioned previously, English students are divided into Higher and Foundation 

Levels. Within each level there are several hierarchical sets according to the students’ 

abilities. The two English schools both offered the top set of each level in Year 10 

respectively. With regards to these 96 England students, 45 students were from the top set of 

the Higher Level, while 51 students came from the top set of the Foundation Level.  

Shanghai classes contain mixed-ability students. One sample school provided a list of 

all registered students in Grade 8. Another school offered half of the Grade 8 students who 

were selected from three classes taught by three different mathematics teachers.  

Participants in the Main Study. The participants for the main research phase were 

561 Year 10 English students, including 158 students from the Foundation Level and 403 

students from the Higher Level; and 907 Grade 8 Shanghai students (See Table 24). The 

profile of participants, such as the mean age and sex ratio, was very similar to that of the pilot 

study. All the sample schools were able to offer all students in the sample year or grade, apart 

from the bottom set of English students. During the fieldwork in England, there was one 

sample school, where the teaching of linear graph was arranged before the half-term break 

(which was one week) so that not all the teachers successfully managed to conduct the tests 

before the break. Therefore, I only chose the students whose teachers had been able to 

arrange the tests before the break. This minimized the possibility of English students 

forgetting mathematics knowledge over the break, as reported in selected English teacher 

interviews at Chapter 8. 
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Table 24  

A Profile of Subjects in Main Study 

 

 Higher Level students Foundation Level students Shanghai students 

Numbers 403 158 907 

The number of 

boys and girls 

189 Boys 

202 Girls 

66 Boys 

66 Girls 

440 Boys  

467 Girls 

Ratio of boys 

to girls 
1:1.07 (12 unstated) 1:1 (26 unstated) 1:1.06 

Mean age 15.26 15.14 14.04 

Std. Deviation 

of age 
0.31 0.32 0.52 

7.1.2 Instruments 

During the pilot stage, the content (questions) of the two types of tests was the same 

in each region, although with different language versions. However, the content was altered a 

little bit for the main study, as there were three types of basic knowledge tests: for English 

Higher Level, English Foundation Level, and Shanghai students respectively; and two types 

of application tests: for English and Shanghai students. The application tests used in the main 

study for English students did not cater for the two levels of students because similar types of 

questions appear in the selected Foundation and Higher Level textbooks which would be 

addressed in the application test subsection. All of the sample students were provided with 

two pencil-and-paper tests where calculators were not permitted.  

Piloting the basic knowledge test. Initially in the pilot study, the tests consisted of 9 

mathematical questions that covered all the understanding levels for linear function. As 

mentioned in Chapter 6, linear function was defined in terms of two different types of 

representation: algebraic expression in Shanghai; and graphic representation in England, as 

the corresponding relationship had been presented already. That is, the first two levels of 

understanding levels were omitted. The questions therefore started from Level 3 Connecting 

Representations, and ended at Level 6 Inventising, which was in line with the range of 

requirements of the intended curriculum and official used textbooks in both regions, as 
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measures of students’ achievement should be aligned with the respective curricula (Clarke, 

2003). All of the questions were selected either from standardized tests for GCSE, or from 

the final examinations of Grade 8 in the Pudong District, Shanghai. Appendix B shows the 

English version of the 9 questions using during the pilot study.  

The basic knowledge test during the main study. The main phase of the research 

aimed to gather the information from all sets from the Higher and most of sets from the 

Foundation Level students. Based on the results from the pilot study, therefore, tests in the 

main study were separated for the three groups, due to additional content of linear function 

knowledge for higher ability students within KS4 curricula. In each group, the tests featured 

the same number of questions (five). Each test used three different questions from the pilot 

study. Table 25 summarises the distribution of questions at each understanding level.   

Table 25  

Numbers of Questions at Each Understanding Level 

 Level 3 Level 4 Level 5 Level 6 

Higher Level test 0 2 (Item 1, 2) 2 (Item 3, 5) 1(Item 4) 

Foundation Level test 1(Item 1) 3 (Item 2, 3, 4) 1 (Item 5) 0 

Shanghai test 0 0 3 (Item 1, 2, 3) 2 (Item 4, 5) 

In terms of the English students’ tests, the two additional questions in the main study 

for both Higher Level and Foundation Level came from the corresponding level textbooks 

used by the sample schools. The reason for choosing these two new examples was that 

students might be more comfortable with types of questions from the textbooks which 

resembled their daily class activities. The findings from textbook analysis showed that 

worked examples from Level 5 Object Analysis and Level 6 Inventising were introduced by 

the textbooks for Higher Level students only. Thus, the Higher Level test covered Levels 4 to 

6, while the Foundation Level assessment included a question on Level 3 Connecting 

Representations, for the purpose of examining the role of tabular representation. Another 

purpose of this design was to identify which factors influenced the process of Connecting 



205 

 

 

 

Representation for English Foundation students; their basic numeracy skills or basic 

knowledge of plotting in the Cartesian plane. Appendix C shows the test used for Higher 

Level students and Appendix D presents the Foundation Level assessment.  

The two additional questions for Shanghai students were selected from previous 

assessments for the final examination of eighth-grade pupils used by all state schools in the 

Pudong District. Question selection was based on two criteria: (1) requiring higher 

understanding, Levels 5 and 6; and (2) having different mathematics knowledge linked with 

linear function in terms of Level 6. These two criteria demonstrated that questions 

represented the two levels: 5 and 6. The reliability and validity of the questions from these 

previous formal examinations had been previously checked during the usual standardisation 

process. These examinations, designed by experts, were well acknowledged by the education 

authority and schools. Therefore these types of questions were thought suitable for the 

requirements of the curriculum. However, worked examples in the uniform Shanghai 

textbook were not used, because students would have been overly familiar with them as 

teachers’ lesson plan has heavily relies on the examples in textbook reported by the selected 

Shanghai teachers at Chapter 8. Appendix E shows the test for Shanghai students in the 

Chinese version with English translation.  

Piloting the application test. Both phases of the study consisted of four questions 

that were designed to assess how students applied their knowledge to real life situations and 

the solution processes used.  

Questions originated from the following sources: (1) the ‘match’ question was from 

one of the selected textbooks - Higher GCSE Mathematics: Revision and Practice; (2) The 

‘delivery’ question was from GCSE, Mathematics A, paper 1, No calculator, Higher Tier, 11 

June 2012; (3) the ‘time-distance’ question was also from one of the selected textbooks 

(Higher), Collins GCSE Maths 2 tier-higher for AQA A; and (4) the ‘long word’ question 
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was taken from instrument used by Doorman et al. (2012) whose model was used to develop  

the model of understanding function described in an earlier chapter. Appendix F shows the 

application test during the pilot study and which was used for both regions.  

The ‘match’ question was developed from the KS1 and KS2 Algebra Statutory 

requirements: ‘generate and describe linear number sequences’ (Department for Education, 

2013b, p. 138). This is sometimes referred to as ‘guess my rule’ in primary school maths 

circles. Therefore, this question was thought suitable for the top set of the Foundation Level 

students as well. Although the second question - ‘delivery’ question, was drawn from the 

Higher Tier GCSE assessment, the heads of Maths thought it would be acceptable for the 

Foundation Level students as well. In terms of the third question, the selected Foundation 

Level textbooks provided distance-time graphs problems before introducing the concept of 

linear graphs. This kind of question also appeared after linear graphs shown in the 

‘Foundation examination questions’ section. Question 4, the ‘long word’ question, is an 

example of a piece-wise linear function. According to the requirement of the KS3 curriculum, 

all students are required to ‘find approximate solutions to contextual problems from given 

graphs of a variety of functions, including piece-wise linear, exponential and reciprocal graph’ 

(Department for Education, 2013c, p. 7). All four questions were consistent with the 

requirements of the Shanghai curriculum – to apply linear function into real world situation. 

Although similar types of questions are not found in the Shanghai textbook, the Head of 

Maths in Shanghai considered these questions as appropriate for the Shanghai students. 

The main study for application test. The tests in the main study did not distinguish 

between the two levels of English students. These tests were developed from the pilot study 

test as well (see Table 26).  

 

 



207 

 

 

 

 

Table 26 

The Changes of Application Test in the Main Study 

 
Match 

question 

Delivery 

question 

Time-distance question 

(replace a new one) 
Long word question 

England Remain in the main 

study 

 

Five sub-questions 
Changes to ‘Hire charge’ 

question 

Shanghai Four sub-questions 
Remain in the main study 

but is slightly changed 

In the main study, the ‘time-distance’ question was replaced by another question of a 

similar type due to the former’s low success rate in the pilot study for the English students. In 

this new ‘time-distance’ question, there were also slight differences in the sub-questions 

between the two regions. There were five sub-questions for English students, while the last 

sub-question was shortened for the Shanghai students as four sub-questions in total. That was 

because the final sub-question, which involved the graphical meaning of gradient, exceeded 

the requirements of the Shanghai textbook.  

The ‘long word’ question in the pilot study was not suitable for English students who 

were more familiar with a graphical approach, as confirming the speculation in the Textbook 

Analysis chapter, and verified by the pilot study. The alternative question in the main 

research was therefore tailored to explore particular issues regarding each country’s situation. 

The Shanghai test retained the ‘long word’ question used in the pilot study, which was 

consistent with the main type of examples and exercises in the Shanghai mandatory textbook. 

In the second sub-question, both algebraic and graphical approaches to solutions were 

required which was slightly different from the pilot study in which students had the flexibility 

of choice for the solution. This question, which involved the concept of piecewise function, 

not only assessed students’ performances in the two approaches, but also compared their 

achievements between two approaches.  
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In terms of the English test, a ‘hire charge’ problem drawn from an exercise in one of 

the selected textbooks, New GCSE Maths Edexcel Modular (Higher), assessed two properties, 

the y-intercept and the gradient, and then generate the corresponding algebraic expression. 

This was in line with the KS4 requirement for all students, i.e. to ‘translate simple situations 

or procedures into algebraic expressions’ (Department for Education, 2014, p. 8), but the 

labelling of axis in the graph was different. In solving this problem, students were expected to 

understand the meaning of labels in the x-axis and y-axis which differed from the students’ 

usual method of simply calculating the gradient as shown in the basic knowledge test. 

Appendix G reveals the application test for English students during the main study and 

Appendix H was the test used for the Shanghai students in Chinese version with English 

translation.  

The Process of Translation. Both tests in the pilot study were initially taken from the 

English version and then translated into Chinese. In the process of translating to Chinese for 

the application test, two of the background contexts were changed for Chinese students: the 

subjects’ names, for example ‘Bill’ and ‘Ed’ in English were replaced with ‘Xiaohua’ and 

‘Xiaobai’ in Chinese; and the currency, for example the pound as the monetary unit in 

England was changed to RMB (Yuan) for the Shanghai tests. These changes would not affect 

the mathematical difficulty and contextual meaning of both tests. Questions in the main study 

were built upon those in the pilot study which had been tested for the issue of translation 

equivalent. The additional questions in the basic knowledge Shanghai test were taken from 

previous Shanghai examinations which had already been in Chinese version. In terms of the 

application test, the new ‘time-distance’ question was translated into Chinese from the 

English main study assessment. 
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7.1.3 Data coding 

All the students who took the tests were included in the analysis. Data coding 

involved three stages: (1) marking their performance in each question; (2) identifying their 

level of understanding in the basic knowledge test; and (3) ascertaining the representation 

tendency in the application test. The coding criteria were the same for the three groups of 

students.  

Marking students’ performance. In terms of the basic knowledge test, every 

question has a unique right answer. Therefore, each student’s response was coded as correct 

or incorrect. If a student omitted an item, the student response on this item was coded as 

incorrect. Students’ scores were marked as 1 for corrected answers and 0 for uncorrected 

answers or leaving blank.  

With regards to the application test, each student response was marked on a scale of 0 

to 2. Students were given a score of 2 if the solution showed a correct and complete 

understanding of the problem. In order to achieve a score of 1, a student’s main processing of 

the item was essentially right except for a minor error. If an answer showed no understanding 

or had been left blank, the response was scored as 0. 

The reason that the application tests were marked as three levels instead of two: right 

or wrong, was that reasoning processes were involved in two questions: the last question, and 

the second question. In the case of the last question, at the initial data coding, around 20 per 

cent of the students got the question correct until the final step, because they chose the bigger 

number as the answer which did not fit with the best benefit of the customers’ financial (the 

cheaper price). This kind of situation was marked as 1.  

Identifying the Level of understanding. Due to the hierarchical levels of 

understanding linear function, students were clustered into one of five levels: four levels from 

Level 3 to Level 6; and another one for those ‘not reaching’ Level 3. There were three steps 
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involved in this identification process. First was to mark the total score in each understanding 

level. Each understanding level was represented in several questions. For example, if Level 3 

was contained in two questions, the marks gained by a student in these two questions would 

be added together. This process was continued for each level where every student was given a 

mark. The second step was to identify the cut-off score which delineated each level. In 

attempting this, the method that Nicolaou and Pitta-Pantazi (2014) used in their study for 

fraction understanding levels was applied. Their study deemed that half the maximum score 

was a useful cut-off score for the respective ability. Finally, the identification of students’ 

understanding levels began with the highest level due to the hierarchy in the model of the 

understanding function. That is, if students could achieve a higher level of understanding, it 

can be assumed that they have already progressed through the lower levels.  

For example, if a student’s score at Level 6 exceeded half of the overall achievable 

mark in that level, his or her understanding would be considered to be at Level 6. The highest 

achievable mark in Level 6 was 4, but, if the student gained a mark of 3, then this student’s 

understanding was still regarded as Level 6. If a student achieved 2 or less, the understanding 

level would not be Level 6. The score of the lower level, namely Level 5, would then be 

checked using the same method. Table 27 below shows a hypothetical example of a student’s 

mark at each level of understanding. According to the level coding method, the level of 

understanding of this theoretical student would be coded as Level 3. 

Table 27 

A Hypothetical Example of Understanding Level Coding 

 Overall achievable mark A student’s actual mark 

Level 3 Connecting Representations 7 4 

Level 4 Property Noticing 3 1 

Level 5 Object Analysis 4 2 

Level 6 Inventising 4 2 
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In the main study, this issue was raised in Higher Level understanding test as well. 

There were in total 11 students whose understanding achieved Level 6, but did not get 

expected marks in Level 4. Six of them got 0 point and 5 of them got score 1 at Level 4. But 

according to the coding procedure which was described for the pilot study, these 11 students’ 

understandings were coded as Level 6. Table 28 states the corresponding items and total 

mark for each testing understanding level in England. Appendix K gives an example of coded 

data for one English Higher Level student’s understanding test. According to the data coding 

procedure, the sample sheet was marked as Level 5. 

Table 28 

The Distribution for Understanding Test in England 

Understanding Level Item(s) Full mark 

Level 4 1 and 2 3 

Level 5 3 and 5 2 

Level 6 4 1 

      Table 29 shows the details of the Shanghai understanding test. According to the same 

procedure, a student sample in Appendix L was marked as Level 5.  

Table 29 

The Distribution for Understanding Test in Shanghai 

Understanding Level Items Full mark 

Level 5 1, 2, and 3 3 

Level 6 4 and 5 6 

This marking approach solved a dilemma which came out of the results from the pilot 

study in England. During the pilot study, five students were found to have the right answer in 

Level 5 but failed to get the correct answer in Level 4. Level 4 was about two properties: 

gradient and intercept. Most of them left it blank or did not calculate correctly. In this case, 

their understanding jumped to Level 5. The reason for marking it as Level 5 was that the 

basic knowledge test was designed to test how well students understood linear function or 

linear graph. Notwithstanding that calculation skills play a key role in effective performance 
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in secondary mathematics (Brown, 2011). The questions in Level 4 focused on following the 

right procedure to arrive at the correct answers, namely reproducing the rules or formulae 

(how to use it was irrelevant at Level 4). The suspicion was that in answering this question 

students might simply memorise a sufficient procedure and reproduce it but with no real 

understanding of the meaning and why it works. The analogy to that suspicion was the 

Searle’s (1987, p. 213) story about the ‘Chinese room’. Searle supposed that someone who 

did not know Chinese at all, but with instructions in the particular ‘room’, could translate the 

English into Chinese correctly. Searle (1987, p. 214) argued that there was ‘a distinction 

between manipulating the syntactical elements of languages and actually understanding the 

language at a semantic level’. Questions at Level 5 discerned how students use the meaning 

of gradient or intercept. The data coding could minimize the influence of numerical skill and 

discern if their understanding can achieve structural view. This situation however did not 

occur in the Shanghai sample.  

With regards to students’ tendency to use a certain type of representation in the 

application test, data coding involved the three main representations: algebraic expression, 

tabular representation, and graphical representation. This type of coding, however, did not 

calculate whether students achieved the right answer. Every type of representation shown in 

each student’s answer was counted.  

7.1.4 Reliability of the tests 

Reliability during the pilot study. In examining the reliability of the basic 

knowledge tests of the pilot studies in both regions, the Cronbach α values for the 

understanding test was found to be 0.85 in the English sample and 0.89 in the Shanghai 

sample. The Cronbach α values for the application test were 0.81 in the English sample and 

0.85 in the Shanghai sample. The Cronbach alpha values were above 0.7 in each case and 
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therefore the values could be regarded as acceptable, indeed, values greater than 0.8 could be 

considered desirable (Pallant, 2010).  

Reliability of the tests for Higher Level English and Shanghai students. All of the 

data analysis in the main study was based on the entirety of the English and Shanghai 

samples. All of the tests were developed from the pilot study which had been validated on the 

basis of a small group of students. Table 30 summarises the Cronbach alpha coefficients of 

the two tests for the English Higher Level students and the Shanghai students. The numbers 

in parentheses represent the standard deviations for each test.  

Table 30  

General Quantitative Results in Main Study 

 Understanding questionnaire Application questionnaire 

Higher Level students (403) 0.840 (2.068) 0.765 (5.166) 

Shanghai students (907) 0.813 (2.092) 0.795 (4.796) 

Reliability for the Foundation Level English students. The Cronbach alpha 

coefficient for the Foundation Level understanding test was low at 0.53 and that of the 

application test was 0.51. The lower Cronbach alpha values, however, may be due to the 

insufficient number of students, 158 Foundation Level students. As in the case of Foundation 

Level, the mean inter-item correlation for the understanding test was 0.14 and for the 

application test was 0.08. Both are lower than the optimal level, which fell between the range 

of 0.2 to 0.4 as recommended by Briggs and Cheek (1986), as lower than 0.1 is unlikely 

representable. It demonstrated that the two tests did not have an acceptable degree of 

reliability for the Foundation Level students. Most of the Foundation students only answered 

the first question in the understanding test, which asked them to draw the graph with having 

being given a table. With regards to the application test, they mainly answered the first 

question as well. As a result of its lower reliability the Foundation data was not included in 

the latter result sections of the study.  
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It was evident that the Foundation students could not progress beyond the beginning 

of both tests. In the first question in the basic knowledge test, 69% of the Foundation students 

could correctly translate the algebraic expression       into the tabular representation. 

The main error made by the rest of the students was that they incorrectly calculated the value 

of y when value of x equals -2; on average, they gave the answer as -3, whereas the correct 

answer was in fact -1. Their numeracy weakness, especially when dealing with negative 

numbers, was observed. For those correctly converting the algebraic expression into the table, 

78% of them could successfully draw the graph. That is, most of the Foundation students 

could reach the understanding Level 3 Connecting Representations only if they possessed 

strong numeracy skills. At Level 4, which involved assessing the meaning of the gradient, the 

responses were very low and the rate of success was below 4%. Similarly in the application 

test, most of the students left the questions blank apart from the first question which asked 

them to translate the real life example to a table. The Foundation Level data was therefore not 

analysed any further in the main study.   

7.2 Results from Basic Knowledge Test 

This section includes two parts of results: pilot and main study. Details of the pilot 

study are provided. There are two purposes: to indicate the certain understanding levels that 

the main study would assess for each area; and the adjustment of the same level’s question in 

main test. 

7.2.1 Results in the pilot study 

The general performance of the English and Shanghai students will first be described 

and compared, focusing on areas such as the distribution and descriptive statistics. According 

to the two types of data coding for the basic knowledge tests, marking their performance for 

each question will demonstrate the comparison in detail; and identifying the understanding 
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level will lead to a picture of their understanding for each level. Finally, the barriers to each 

level of understanding will be addressed.  

General quantitative results. In general, the students in Shanghai far outperformed 

the English students in the pilot study. Figures 25 and 26 below show the distribution of 

scores for English and Shanghai students respectively. On each graph, the horizontal scale 

shows the students’ scores in the test; and the vertical scale shows the percentage of students 

answering correctly. Comparing Figure 25 with Figure 26 reveals that a large percentage of 

Shanghai students achieved full marks (17) on basic knowledge understanding. 

 

Figure 25. Total score of basic knowledge 

for English students 

 

Figure 26.   Total score of basic 

knowledge for Shanghai students 

The mean score of the Shanghai students (M=14.76, SD=3.31) was much better than 

their counterparts in England (M=7.10, SD=3.45). Before checking whether the difference in 

means were statistically significant, statistical analysis for normality was assessed through 

examination of the values of the Kolmogorov-Smirnov (K-S) statistic. For the K-S test a 

significant result (      ) indicated non-normality. Mann-Whitney U test instead of t-test 
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for independent sample was therefore conducted. Results revealed that there was a significant 

difference between England and Shanghai (z (388) = -12.867, p=0.000, two-tailed). The 

effect size was calculated, as        which led to a large effect.  

Detailed results from each question. Table 31 summarises the percentage of 

students who answered correctly in each question geared towards a certain level of 

understanding function. Four English students and two Shanghai students failed to provide 

the right answer in the Level 3 questions. As these students comprised only a small 

proportion of the whole group, their low level of understanding positioned them as outliers. 

Table 31  

A Comparison of Students’ Understanding Function in Two Regions 

The general 

model 
The basic knowledge assessed in each question 

Correct percentage of 

students 

England Shanghai 

Level 3 

Connecting 

Representations 

No. 1a From algebraic expression to a table 91.7% 96.9% 

No. 1b From tabular to graphic representation 47.9% 79.5% 

No.2 To generate algebraic expression using two 

pairs
5
 (presented by word question) 

51% 88.7% 

Average 63.5% 88.4% 

Level 4 Property 

Noticing 

No. 3 Intercept in algebraic expression 20.8% 83.9% 

No.4a Gradient in a graph (positive) 28.1% 77.7% 

No. 4b Gradient in a graph (negative) 15.6% 76.7% 

Average 21.5% 79.4% 

Level 5 Object 

Analysis 

No. 5 Parallel and intercept presented in 

algebraic form 
5.2% 84.2% 

No. 6 Parallel and intercept in graphic approach 31.3% 91.1% 

No. 7 Transformation of the graph 34.4% 91.4% 

No. 8 Parallel and intercept presented in 

algebraic form, but intercept has been pointed out 
28.1% 94.5% 

Average 24.75% 90.3% 

Level 6 

Inventising 
No. 9 Related with geometry knowledge 1% 58.2% 

                                                 
5
 To translate two pairs which were supposed to be presented in Cartesian plane to algebraic expression, there 

are two methods; either using the graphic meaning of gradient that England taken, or solving the 
simultaneous equations the way Shanghai students did. In this question, two pairs were not presented in the 
graph. Neither solution got involved in the meaning of gradient to form the algebraic expression in English 
students, so that this question was still located in understanding Level 3.  
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In each item, the Shanghai students outperformed the English students. It indicates 

that a majority of the English students were struggling to understand properties such as 

gradient and intercept, while few if any Shanghai students had difficulty with questions at 

Level 5 or below. At Level 5 in particular, the English students performed well when the 

question presented them with the graphical approach, as opposed to word problems. In order 

to approach the meaning of gradient at Level 4, all of the English students unsuccessfully 

used the geometrical method for calculating the gradient; while the Shanghai students used 

the algebraic approach, successfully. 

Identification of understanding level. The higher mean score of the Shanghai 

students indicates their higher level of understanding. Figure 27 shows the percentage of each 

level of understanding in both areas, applying the data coding set out above. More than two-

third of the English students achieved Level 3 Connecting Representations (64.6%), while the 

majority of the Shanghai students reached Level 6 Inventising (72.7%). Most English 

students were grouped around the lower understanding levels whereas Shanghai students 

were centralised around the higher levels.  

 

Figure 27. Percentages achieving each understanding level in England and Shanghai 
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Barriers to each level of understanding. The two cohorts of students have shown 

their distinct distribution of understanding levels. Their performance at each level of 

understanding was compared in order to find out what hampered the development of 

understanding linear function.  

Level 3 Connecting Representations contained the first two questions. The first 

question investigated the conversion of the algebraic expression to a graphical representation 

by providing students with a table as follows:  

Question 1: Complete this table for       

x -2  3 6 

y  1   

 On the grid, draw the graph of       for x from -2 to 6. 

In the second step of the question, connecting the tabular representation with the 

graphical representation, 20.8% of the English students left the graph blank; and they were all 

Foundation Level students. All of the Higher Level students from England presented it 

accurately. In the main study, the Higher Level students therefore would not be given this 

type of question, while the Foundation Level tests had it as the first question. 79.5% of the 

Shanghai students gave the correct straight line.  

The second question: ‘A straight line passes through the point (0, 2) and (-2, 0). Find 

the equation of this line’, was a word problem without aids of graphic representation. Half of 

the English students (51%) could not provide the answer. And none of answer had been 

found by using a graphic representation. It assumes that English students might be not 

comfortable with the pure word expression. That is, the graph might be necessary for them to 

present the question. This speculation came from the findings that the knowledge of linear 

graph was presented alongside the graph at the previous chapter: Textbook Analysis. This 

question was therefore decided that this should be deleted in the main study. All the Shanghai 
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students used algebraic method to solve it. Without indicating any property, this question was 

deemed to be Level 3.  

Level 4 included two properties, intercept and gradient. Within intercept, only 20.8% 

of English students could simplify the linear function    (   )    into       , and 

then identify the value of y-intercept as 3. Their primary error was classifying 5 as the y-

intercept. It was hard to conclude whether the reason for this stemmed from the students’ lack 

of numeracy skills which would have enabled them to rearrange the algebraic expression to 

the standard form, or that they did not understand this property. The concept of y-intercept 

would however be reflected in the application test as discussed below.  

In terms of the concept of gradient, the English students performed better with a 

positive value gradient than a negative value. They normally drew a triangle in the graph then 

calculated the lengths of the two sides in order to get the value of gradient. This approach 

conformed to the presentation of gradient shown in the English textbooks. This solving 

process, however, differed from their counterparts’ method in Shanghai. The Shanghai 

sample showed that the students achieved a consistently accurate rate for both the positive 

and negative values of gradient. All of the Shanghai students solved the problem by 

constructing simultaneous equations, although some of them made a few computing mistakes. 

It is evident that the teaching process of this concept in Shanghai focused on the use of the 

algebraic approach, also in line with the findings from the textbook analysis. The coherence 

between how textbooks presented the knowledge and students’ solution for both regions was 

revealed.  

7.2.2 Results in the main study 

Findings from the textbook analysis and the results from the pilot study demonstrated 

that the English students preferred the graphical presentation when expressing questions, 

while the Shanghai students were more experienced with the pure word questions. Therefore, 
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in the main study, the questions in the English tests all included a graph, while word 

problems dominated the Shanghai test. The results from the English Higher Level students 

and the Shanghai students will be addressed separately. Findings from overlap questions 

would be shown in the Shanghai students’ performance. 

Understanding of the English Higher Level students. Table 32 shows the 

percentage distributions of understanding of the English Higher Level students. Generally, 

the English Higher Level students illustrated their weakness in understanding gradient and 

their strength in dealing with problems that required the highest understanding connecting to 

other mathematical knowledge.  

Table 32  

The English Students’ Performance Compared with the Pilot Study 

The general 

model  

The basic knowledge assessed in each 

question 

The correct percentage of 

students 

Level 4 

 

No.1 From graphic representation to 

algebraic expression (New question) 
44.4% 

No. 2a Gradient (positive) 36.7% (28.1% in pilot) 

No. 2b Gradient(negative) 16.4% (15.6% in pilot) 

Average 32.4%  

Level 5 

No.3 Parallel and intercept in word problem 32% (5.2% in pilot) 

No 5. Transformation 40.4% (34.4% in pilot) 

Average 36.2% 

Level 6 
No.4 connect to other mathematics 

knowledge, midpoint (New question) 
29% 

England and Shanghai have different approaches to translating from graphical 

representations to algebraic expressions. Nearly half of the English Higher Level students 

successfully used the graphical meaning of gradient and y-intercept to generate the algebraic 

expression.  

Looking further at how the students calculated the gradient, the English students were 

more successful in finding a positive gradient in line within the findings of the pilot study. 

The correct percentage for finding the positive gradient (36.7%) was more than doubles that 

of discerning the negative one (16.4%). These students knew how to calculate the gradient, 
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but were less successful in understanding why there were two conditions: the positive and the 

negative. Furthermore, the English students either understood this property (gradient) fully or 

not at all. In the case of the positive gradient question, 28.6% of students left it blank. One 

student commented that he or she ‘cannot remember how to do it’ (see Figure 28). The rest of 

the pupils (37.1%) showed no understanding of this property, with Figure 29 and Figure 30 

revealing the typical answers. Only 3% of students used the opposite way round ( 
  

  
 instead 

of  
  

  
) to calculate the gradient.  

 

Figure 28. An explanation of why the pupil could not answer this question 

 

Figure 29. No understanding of gradient example 1 

 

Figure 30. No understanding of gradient example 2 
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At understanding Level 5, the requirement of the English curriculum for the Higher 

Level students included the meanings of parallel and perpendicular. Perpendicular would be 

assessed at the next understanding level. Two questions were related to Level 5 in this test: 

one for the meaning of parallel, and another for the transformation of the whole graph. 

Within the first question, 32% of the students successfully combined the meaning of parallel 

and y-intercept to form a new algebraic expression. In terms of the second question, the 

English students showed their ability to deal with non-routine problems. In terms of the 

transformation of the graph, 40.4% of the students could regard the graph as a whole object 

rather than focusing on the individual pairs.        

The question at Level 6 required students to make sense of the meaning of midpoint 

within a segment and perpendicular in order to form the algebraic expression of a new 

straight line. Although the question came from one exercise in the selected English textbook, 

it cannot be sure that all of the students had previously encountered similar questions. The 

function of textbooks will be discussed further in the next chapter: Teacher Interviews. 

Nearly 30% of students could achieve the highest level of understanding, Level 6 Inventising.  

In conclusion, more than half of the Higher Level students successfully dealt with 

complex problems and achieved the more abstract levels: Object Analysis and Inventising, 

while the remaining pupils could not progress beyond Level 4. Questions in Level 4 were 

straightforward in that they required procedural knowledge and numeracy skills to solve it. In 

addition, understanding the specific knowledge of linear function was the important step in 

successfully solving complex problems in the higher level of understanding (see Table 33).   

Table 33 

English Higher Level Students’ Overall Understanding 

 Not reach Level 4 Level 4 Level 5 Level 6 

Percentage of English students  45.9%  3.5% 21.6% 29.0% 
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Shanghai students’ understanding. Half of the Shanghai students could answer 

every item correctly. Table 34 reveals their performance across each question and presents 

the comparison between the two regions’ answers in the tests. Although the majority of 

students could achieve at least an understanding of Level 5 Object Analysis, beyond 40% of 

the students could not reach the highest level required by the curriculum. All of the questions 

at Level 5 were required by the curriculum, and the similar types were also presented in the 

compulsory textbook. Almost all of the Shanghai students showed their solid basic 

understanding in the case of linear function.  

Table 34 

The Shanghai Students’ Performance Compared with That of the English Students 

The model of 

understanding 

function 

The basic knowledge 

required 

The percentage of 

correct answers 

Percentage of 

correct answers 

from English 

students for 

comparison 

Level 5 

 

No. 1 Parallel and 

intercept in word 

problem 

93.2%  

(84.2% in pilot) 

32% 

No. 2 Transformation  95.8%  

(91.4% in pilot) 

40.4% 

No. 3 Monotonicity (new 

question) 

88.8% N/A 

 Average 92.6% N/A 

Level 6 

 

No. 4 Related with 

geometry knowledge  

60.2%  

(58.2% in pilot) 

N/A 

No. 5 Related with 

algebraic knowledge 

(new question) 

45.4% N/A 

 Average 52.8% N/A 

Two questions were related to Level 6: one linking to the area of a triangle using 

geometry knowledge and another linking to the reciprocal function as algebra knowledge. 

The students’ performance indicated that they faced few barriers in dealing with linear 

function; however, they did express some difficulties in linking the linear function with or 

understanding other mathematical knowledge at Level 6.  
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Especially in terms of the second question, which linked the linear function with the 

reciprocal function, the students were not given an existing graph. Most of the students 

(73.5%) were able to form the correct simultaneous equations in order to calculate points of 

intersection of the reciprocal function and the linear function, and got two correct points of 

coordinates. However, the requirement of the point was in the third quadrant, which means 

they must choose the suitable one. The students were solely unsuccessful in the last step – to 

pick out the right one in these two points. It is reasonable to assume that none of the students 

attempted to draw the graph in solving this question; because if they did, they would have 

been careful to discern that only one point in the third quadrant was required, instead of two 

points in their answer which was drawn from the calculation. The main barriers to their 

understanding were therefore seldom related to the concept of linear function or finding out 

the intersection for the two types of functions. Instead, their primary obstacle was their failure 

to read the requirements of the question carefully enough, and merely relying on their habits 

by using the algebraic method. They may treat the graph and algebraic method as two 

separated ways, so that the answers from the algebraic way did not link with geometrical 

knowledge, the concept of quadrant which was relevant to the Cartesian plane. It also 

indicated that these Shanghai students might not use visual representations or actually draw 

the graph to help them connect the other knowledge with linear function.  

In summary, the Shanghai students demonstrated a higher general level of 

understanding in comparison to English students (see Table 35) in line with the conclusions 

of the pilot study.  

Table 35  

Overall Results of Shanghai Students’ Understanding 

 Did not reach Level 5 Level 5 Level 6 

Percentage of Shanghai students 3.7% 38.4% 57.9% 
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7.3 Results from Application Test 

Findings from the application test will reveal the strengths and weaknesses of students 

when they were faced with real-world situations in mathematical questions.  

7.3.1 Results in the pilot study 

This section consists of three sub-sections. First, general quantitative results will 

provide the overviews of how well students did. Secondly, the performance across the four 

questions used in the pilot study will be scrutinized and compared with each other. Finally, 

according to the data coding of solution tendency, the results will reveal the preferred 

representation students in each region used. An analysis of the data from the main study at 

next sub-section will examine if the alternative method would be a challenge for students in 

each region.  

General quantitative results. The Shanghai students consistently outperformed their 

counterparts in England in this test in the pilot study. The superiority of Shanghai students’ 

performance, however, was not as pronounced in the application test compared with the basic 

knowledge test. In other words, the difference between distributions was smaller in this test 

(see Figure 31 and Figure 32).  

 

 

Figure 31. Application performances of 

the England students in the pilot  

 

 

Figure 32. Application performances of 

the Shanghai students in the pilot 
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There was also a significant difference between England (M= 8.63, SD= 4.41) and 

Shanghai (M= 11.01, SD= 4.44; z (388) = -4.789, p=.000, two-tailed). The effect size is 0.25 

which indicates the small size. Thus, the Shanghai students were more successful in the basic 

knowledge test and less successful on the application assessment compared with the Higher 

Level English students. 

Results in detail. Table 36 summaries how well the two groups of students performed 

across each question. It was notable that in questions 2, 3b, and 4b, there was more than the 

10% difference between the two cohorts in the percentage of correct answers.  

In No. 2a, students can use the graph below to find the total cost of having a parcel 

delivered by Bill: Bill works for a company that delivers parcels. For each parcel Bill delivers 

there is a fixed charge plus £1.00 per mile he has to drive thereafter (see Figure 33), how 

much is the fixed charge?  

 

Figure 33. The graph of application test No.2 

Most of the English students showed their understanding of the concept of y-intercept. 

Linking back to the lower correct rate of the related question in the basic knowledge test in 

the pilot study, No. 3 (find the y-intercept of the straight line    (   )   ) required 

students to use the algebraic expression and find out the y-intercept; as the English students 
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performed worse. It was unclear in the basic knowledge test why students showed these 

difficulties. Now, No.2a in the application test demonstrated that the English students’ 

mathematical knowledge about y-intercept was not necessarily insufficient. They had 

difficulties in reducing the algebraic expression into a standard form as their numeracy skills 

constrained their presentation of understanding.  

Table 36  

English Students’ Performances in the Application Test 

 The purpose of each sub-question 

Percentage of correct 

answers 

England Shanghai 

No.1 Match 

question 

No. 1a From real life situation to a table 96.9% 95.2% 

No. 1b From table to algebraic expression 64.6% 72.9% 

 Average 80.8% 84.1% 

No.2 Deliver 

question 

No. 2a To discern intercept (the property) in 

graph 
70.8% 88.4% 

No. 2b To solve simultaneous equations 42.7% 56.9% 

 Average 56.8% 72.7% 

No.3 Time-

distance 

question 

No. 3a To plot graphs 46.9% 54.8% 

No. 3b To derive an equation and solve the 

equation 
21.9% 54.5% 

 Average 34.4% 54.7% 

No. 4 Long 

Word 

question 

No. 4a To translate simple situations or 

procedures into algebraic expressions or 

formulae 

52.1% 69.9% 

No. 4b To model situations or procedures by 

translating them into algebraic expressions or 

formulae, and by using graphs 

8.3% 16.4% 

 Average 30.2% 43.2% 

Apart from No. 2a, the other questions, No. 2b, No. 3b and No. 4b, all involved 

generating an algebraic expression. The comparatively lower percentage of correct answers 

implied that the English students met some challenges, and the main study would investigate 

it in detail.  

Solution tendency. When looking further at the ways in which English students 

demonstrated their solutions in terms of representations, they tended to use visual 
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representations, namely graphic and tabular representations, rather than algebraic expressions, 

a method on which the Shanghai students mainly focused.  

The Shanghai students modeled the situation by forming the algebraic expression for 

each linear function and then solving the two linear equations (see Figure 34). In the case of 

No. 2b, the number of Shanghai students using abstract algebraic expressions was nearly 2.5 

times that of the graphical representation. None of Shanghai students resolved problems by 

using tabular representations. In comparison, quite a few English students chose a tabular 

representation (see Figure 35). Figure 36 shows the percentage distributions of the English 

and Shanghai students who used the three types of representation in No. 2b.  

 

Figure 34. An example of Shanghai students’ solution tendency for No.2b 

 

Figure 35. An example of England students’ solution tendency for No. 2b 
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Figure 36. Percentages of England and Shanghai students who used different representations 

in No. 2b  

In No. 4b, English students showed a strong preference for the use of tabular 

representations with pure word problems, whereas, once again, the algebraic approach 

dominated in the Shanghai students’ solution-making processes (see Figure 37).  

 

Figure 37. Percentages of English and Shanghai students who used different representations 

in No. 4b  

In summary, the tabular representation was the popular strategy for English students 

(see Figure 38), while the algebraic expression was the primary choice of Shanghai students 

(see Figure 39), shown in No.4b. The Shanghai students’ superior performances in 

application are likely a result of their use of the algebraic approach. The algebraic approach 
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was therefore more effective than the more visual method, proven by the higher percentage of 

correct answers in the Shanghai sample. 

 

Figure 38. English students’ main solution 

for No.4b 

 

Figure 39. Shanghai students’ main 

solution for No.4b 

7.3.2 Results in the main study 

In this section, the performance of each region’s students will be presented first. There 

were three questions that both groups participated in so the second sub-section will analyse 

the results in detail. Results from the pilot study revealed that graphical or tabular 

representations were preferred by the English students. Therefore, the third sub-section will 

explore how the English students worked on generating an algebraic expression. Conversely, 

the Shanghai students opted for the algebraic methods shown in the pilot study. Findings 

from the Textbook Analysis (Chapter 6) demonstrated the requirement for two methods, 

algebraic expression and graphic representation. Consequently, the fourth sub-section will 

investigate how the Shanghai students dealt with the two methods when they were both 

required.  

General performance. In the main study the Shanghai students performed better in 

most of the questions than their English counterparts (see Table 37).  

 



231 

 

 

 

Table 37  

The English and Shanghai Students’ Performances in the Application Test at Main Study 

 Purpose of the item Percentage of English 

students with correct 

answer 

The Shanghai 

students’ correct 

percentage 

No. 1 Match 

question 

No. 1a Translation from 

real life situation to a table 

99.3%  

(96.9% in pilot) 

93.6%  

(95.2% in pilot) 

No. 1b Translation from 

tabular representation to 

algebraic expression 

48.4%  

(64.6% in pilot) 

76.6%  

(75.9% in pilot) 

No. 2 Deliver 

question 

No. 2a To discern intercept 

(the property) in graph 

81.6%  

(70.8% in pilot) 

96.4%  

(88.4% in pilot) 

No. 2b To solve 

simultaneous equations 

41.2%  

(42.7% in pilot) 

71.6%  

(52.9% in pilot) 

No. 3 Time-

distance 

question 

(revised) 

No. 3a – No. 3d Basic 

graph for linear function 

14.4% (mean 

percentage) 

22.6% (mean 

percentage) 

No. 3e The graphic 

meaning of gradient 

39.5% N/A 

No. 4 Hire 

charge question 

(only for 

English 

students) 

No. 4a Gradient in graph 10.9% N/A 

No.4b Intercept in graph  70.9% N/A 

No. 4c To form the 

algebraic expression 

8.2%  N/A 

No.4 Long 

word question 

(only for 

Shanghai 

students) 

No.4a To translate simple 

situations or procedures 

into algebraic expressions 

or formulae 

N/A 70%  

(69.9% in pilot) 

No.4b To model situations 

or procedures by 

translating them into 

algebraic expressions or 

formulae and by using 

graphs 

N/A 10.6% in 

algebraic 

expression 

13.9% in graphs 

6.6% in both 

ways 

Differences in performance across the three questions. Three questions were 

presented to students from both regions: a ‘match’ question; a ‘delivery’ question; and a 

‘time-distance’ question. Table 38 summarises the general quantitative results: mean scores, 

results of nonparametric independent t-tests, and effect sizes. The Shanghai students clearly 

outperformed the English students in the mean scores for all these questions. For each 

question there was a significant difference in the means between English and Shanghai 
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students as shown by Mann-Whitney U test. The magnitude of the differences in the means 

was medium for the ‘delivery’ question and small for the two others.  

Table 38  

General Quantitative Results of the Three Questions 

 Match question Delivery question Time-distance question 

England (n=403) 2.97 (1.02) 2.50 (1.40) 4.44 (2.16) 

Shanghai (n=907) 3.43 (1.14) 3.37 (1.06) 5.10 (2.18) 

Full Score 4 4 8 

Mann-Whitney U 

Test 

z (1310) =-9.14, 

p=.000, two-tailed 

z (1310) = -11.53, 

p=.000, two-tailed 

z (1310) =-5.13, p=.000, 

two-tailed 

Effect                      
Effect Size Small Medium Small 

The ‘match’ question. This question assesses how well students represent situations 

within a table and then how they translate from the tabular representations to algebraic 

expressions. In the first step, depicting situations within a table, the English students were 

more successful than the Shanghai students as almost everyone got the right answer, while 

the Shanghai students performed far better in the second part of the question. Half of the 

English students and nearly a quarter of the Shanghai students struggled to form the algebraic 

expression. The translation to an algebraic expression from a table can therefore be deemed 

as a universal problem for secondary school students.  

The most frequent wrong answer found in the second sub-question was        

(various different numbers of k in the students’ answers) for both groups. The reason why 

students gave the answer as plus 3 in the algebraic expression was assumed from these 

sequential visual pictures, i.e.  that three matches were added sequentially (see Figure 40). 

The students were therefore directly linked the increasing values of y (3) with the algebraic 

expression without identifying the corresponding x value. It indicates that these students 

cannot actually understand the dependent relationship in form of algebraic expression.  
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Figure 40. The match question 

The ‘delivery’ question. This question was meant to evaluate the ways in which 

students understand the meaning of the y-intercept in graphical representations, as well as 

identifying students’ preferred solutions. A majority of the students for both regions (81.6% 

English Higher Level and 96.4% Shanghai students) therefore understood this property.  

Table 39 summarises their solution tendencies towards certain representation. In line 

with the findings of the pilot study, the Shanghai students demonstrated their strong 

preference for algebraic expressions and the English students used the visual approach such 

as graphical and tabular representations to solve the problem. Most of the English students 

using tabular representation chose several integer numbers to represent the distance in miles, 

such as 5, 10, 15, 20, 25, etc., to discover the cheaper delivery cost. It is unclear as to how the 

English students would perform if the right answer was a decimal number. Particularly in 

terms of graphical representation, three of the English students could not discern the right 

intersection point due to their imprecise drawing. Their answer was 18 or 19, rather than the 

correct one: 20. This implied that the conclusion drawn from the graphical representation was 

not as precise as the algebraic method. There were 7.1% Shanghai students who used the 

graphical representation. These pupils, however, all re-examined the answer (20) given by the 

graph, by calculating through an algebraic method again to ensure that the delivery fee was 

the same in the ‘delivery’ question.   
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Table 39  

A Comparison of Students’ Solution Tendencies in the Delivery Question 

 No answer 
Algebraic 

expression 

Graphic 

representation 

Tabular 

representation 

% of English 

students 
41.9% 0.7% 23.8% 33.5% 

% of Shanghai 

students 
22.6% 70.3% 7.1% 0 

The ‘time-distance’ question. This question included four sub-questions for both 

groups, which assesses a student’s ability to identify information through the use of the whole 

graph. Table 40 summarises the percentages of correct answers in each sub-question for both 

regions. There was a similar proportion of correct answers in both the first and forth sub-

questions between England and Shanghai.  

The second sub-question examined English and Shanghai students’ understanding of 

gradient by providing distance and time in a graph in order to calculate the speed. There were 

three steps involved: to ascertain the distance; to discover the time; and, from these, to find 

the speed. According to the results from the fourth question, which involved discovering the 

distance travelled in a certain time, it was clear that that the same percentages of students in 

the fourth question did not have problems with identifying distance. The difficulty stems 

from the meaning of speed or deciphering the time in the x-axis. Additionally, as calculators 

were not allowed, 5% of English students could list the proper formula, but did not achieve 

the right answer, while only 0.4% of their counterparts in Shanghai gave the wrong answer. It 

also shows the higher proficiency of numeracy skill in Shanghai students.  

With regards to the third sub-question, the main problem that the students faced was 

their inability to understand the meaning of average speed. The confusion for students for 

both groups was to understand the average speed as being for the whole journey. That is, they 
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calculated the average of each segment of the speed as  
        

 
 instead of the whole distance 

divided by the corresponding whole time.  

Table 40 

A Comparison for the Time-distance Question 

Absolute correct 

answer 

The point of 

intersection two 

straight line 

cross 

The meaning of 

speed 

The meaning of 

average speed 

The distance at a 

certain time 

% of English 

students 
92.8 28 34.2 63.5 

% of Shanghai 

students 
94.5 37.5 50.2 69.7 

How English students explore the algebraic expression. Results from the pilot 

study illustrated that very few English students preferred to use the algebraic expression as 

their chosen solution, which is in line with that the understanding test found that the English 

students felt comfortable with the visual approach to presenting the question. It was also 

important in the main study to investigate whether the English students struggled with the 

algebraic approach, and if they did, what their main barrier to their understanding was. Table 

41 summarises English students’ performances in the ‘fire charge’ problem. They showed 

their limited understanding in creating an algebraic expression and were unsuccessful in 

mastering the meaning of the gradient.  

Table 41  

How the English Students Explore the Algebraic Expression 

 
No 

answer 

No 

understanding 

Partial 

understanding 

Full 

understanding 

The meaning of 

gradient 
53.1% 16.4% 19.6% 16.4% 

The meaning of y-

intercept 
28.8% 1% 0 70.2% 

To form an 

algebraic expression 
63.8% 27.8% 0.2% 8.2% 
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Only 8.2% of the students could successfully generate the algebraic expression and 

63.8% of the students left it blank. A student’s inability to form the algebraic expression 

(27.8% of students) was shown in three ways: the use of words (17.9% of 27.8%); informal 

algebraic expressions (8.4% of 27.8%); and tabular representation (1.5% of 27.8%). In terms 

of using words, most students demonstrated their difficulty in comprehending the meaning of 

the letter. They described the algebraic expression as ‘basic charge + daily charge’, ‘£100 for 

30 days’, or ‘for every 10 days up to £20 is added’. Figures 41 and 42 both show this kind of 

description. These students were primarily unable to come up with a solution or use formal 

mathematical language to express the solution. In terms of informal algebraic expressions, 

students therefore had to use words because they could not understand the symbolic letters 

(see Figure 43). A few students attempted to describe the rule by depicting a tabular 

representation, but were unaware of the limitations of a table, as it can only present particular 

variables.  

 

Figure 41. An answer for the algebraic expression 1 
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Figure 42. An answer for the algebraic expression 2 

 

Figure 43. An answer for the algebraic expression 3 

With regards to partial understanding, students knew the components and format of an 

algebraic expression, but produced the wrong gradient in their calculation; for example, 

‘        ’ or ‘  
 

 
    ’. This signified, however, that the students had at least 

progressed in their understanding towards the algebraic expression. The meaning of gradient 

was proved to be the main barrier for these students.   

This led to a further inquiry into the way in which English students make sense of the 

meaning of gradient, despite the fact that they did not perform well in this concept in the 

basic knowledge tests. There were two sub-questions related to the concept of gradient: the 

first sub-question in the ‘fire charge’ question; and the fifth sub-question in the ‘distance-time’ 

question. The ‘fire charge’ question required students not only to calculate the gradient 
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according to the graphical representation, but also to make sense of the different meaning of 

labelling between the x-axis and y-axis. 

The final question of the ‘time-distance’, however, aimed to investigate how well 

students understood the meaning of gradient from a visual perspective instead of using 

calculations. In this question, they were required to discover the steepest straight line.  

In the ‘fire charge’ question, over half of the English students (53.1%) left it blank. 

This percentage was much higher than that of the basic knowledge test in main study (around 

one-third in terms of positive gradient). The different response rate suggested that the English 

students had no preference for problem-solving situations over pure mathematical problems. 

Nearly one-fifth (19.6%) of the students who showed their partial understanding did not 

notice that the labelling of the x-axis and y-axis had different meanings. Actually, one grid 

for the x-axis was presented as 5 (days) while one grid of the y-axis was (£) 20. The wrong 

answer was therefore 
 

 
 which should have been calculated as: 

         
                         

                         
 
                 

                 
 
    

   
 
   

  
    .  

For the fifth sub-question of the ‘time-distance’ question, students were expected to 

identify that the steepest line represents the greatest speed. The number of blank responses 

resembled the proportion shown in the ‘fire charge’ problem. The remaining answers were all 

correct, proving that students understood the graphical meaning of gradient; namely the 

steeper the line, the greater the gradient’s value.  

The findings from the application tests have verified that the meaning of gradient was 

the main barrier for the Higher Level English students and influenced students’ performances 

in generating algebraic expressions.  

How Shanghai students explored the graphical representation. Although the 

Shanghai students showed their strong preference for the algebraic approach in the pilot study, 

it would be inaccurate to assume that they were proficient in using the graphical approach as 
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well. In the ‘long word’ question, students were required to find the solution by using both 

methods – algebraic and graphical. Table 42 summarises the percentage distribution of each 

approach.   

Table 42 

Shanghai Students’ Representational Tendency 

 No answer No understanding 
Partly 

understanding 

Full 

understanding 

% students using 

Algebraic 

approach 

28.4 10.6 50.4 10.6 

% students using 

Graphical 

approach 

34 20.9 31.2 13.9 

All of the Shanghai students initially solved the problem through the algebraic 

expression; they then translated it into a graphical representation. In other words, the 

graphical representation was built upon the algebraic one. 

No understanding. For those who exhibited no understanding of the graphical 

representation, the main error was that they could not correctly translate the algebraic 

expression into the graphical representation, even though they could identify the correct 

algebraic expression (see Figure 44). In addition, they did not notice that the value in the 

payment had to be a positive number. The graph also illustrated that the more time a 

customer called, the less he or she paid which did not fit with common sense. This error 

indicated that students’ understanding of pure mathematical knowledge was no guarantee that 

they could automatically and correctly apply the pure knowledge into real world situations. 

Alternatively, they might superficially apply the knowledge without considering too much of 

what the algebraic expression or graphic representation meant in the real world.  
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Figure 44. An example of no understanding of graphic representation 

Partial understanding. Partial understanding represented those who successfully 

completed the conversion process, but met challenges in the real world situation meaning. 

These students faced four types of obstacles. First, students could not foresee that the values 

of both the minutes and the money in the solution were not negative numbers, in a similar 

situation to that shown in Figure 44. Almost half of the students with a partial understanding 

(45.6%), however, provided negative answers (see Figure 45). That is, they completed the 

correct translation without considering the meaning of y and x, despite writing in the first line 

of their answer that ‘the value of y is the fee and the value of x is the minutes’.  

 

Figure 45. Partial understanding: example 1 

Secondly, four students provided the correct algebraic expression, proving their 

ability to translate the algebraic into the graphical expression. These students also displayed a 
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deficient understanding of the graphical representation. However, they were incapable of 

comprehending the domain of the x value in the real world situations (see Figure 46). These 

students also noted that the domain of x had two situations,      and     , which  

showed their awareness of the domain in the purely algebraic method instead of the graphical 

form.  

 

Figure 46. Partial understanding: example 2 

Thirdly, nearly one-third of partial understanding students (29.7%) did not understand 

that there would be two different offers for the phone charge (see Figure 47). The graph 

showed that, if there was no call at all, the fee would be 10.5 RMB instead of 22.5 RMB. It 

was unclear as to why students failed to recognise the discrepancy between the answer and 

the statement in the question.  

 

Figure 47. Partial understanding: example 3 
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Fourthly, a number of students (13.1%) noticed that the meaning of the domain was 

x>80 (see Figure 48). The graph lacked the domain for x between 0 and 80. The students’ 

answers implied that the concept of the piecewise function comprised of two linear graphs, 

which caused difficulty for the Shanghai students.  

 

Figure 48. Partial understanding: example 4 

In general therefore, the Shanghai students met challenges with the graphical 

representation. They also showed that they could solve the correct algebraic approach, 

without fully understanding the meaning. They generally ignored the meaning of domain and 

range in real world situation.  

7.4 The relationship between the two types of tests 

In this section, the relationship between the basic knowledge test and the application 

test will be examined. The first sub-section will initially explain the reasons why the 

relationship is necessary to explore, and later in Chapter 9, the relationship will be addressed 

again concerning the distinct teaching approach in each region. Based on this justification, 

the results of the pilot study will demonstrate whether there is positive or significantly 

positive relationship between what students know and what they can do with this knowledge, 

even though the positive relationship between PISA and TIMSS has been found as mentioned 

in Chapter 2, and at Curriculum Analysis chapter, the application model has been discussed 
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as the higher level of understanding required as one competency. Furthermore, data from the 

main study will illustrate which type of knowledge is more worthwhile in terms of 

understanding performance: the higher abstract levels of understanding, or the higher 

performance of application.  

7.4.1 Why explore the relationship 

During the discussion in Chapter 5: Curriculum Analysis, four competencies in 

application of function proposed by O'Callaghan (1998) illustrated that two competencies, 

translating and reifying, were related with how well students understand basic knowledge. To 

solve application questions requires basic knowledge understanding. The question is whether 

the higher level of understanding plays a crucial role in the higher performance of 

application. The application test from the Shanghai sample in the main study showed that 

Shanghai students whose understanding level were significant higher than the English sample 

might superficially apply knowledge by using algebraic method. It implies that too much 

emphasis on pure knowledge seemed to constrain students’ application ability. On the other 

hand, the English students’ understanding of pure knowledge hampered their performance in 

the application test. Therefore, the balance point between pure knowledge and application 

should be investigated.  

The findings from the Textbook Analysis (Chapter 6) revealed that the arrangement of 

the content of linear function in the English textbooks was rooted in real-life situations, 

however Shanghai focused on rigorous knowledge first. That is, understanding mathematical 

concept started with making sense of a concept in the real world in England, while 

understanding stemmed from rigorous mathematical definition in Shanghai. If students 

finally achieved the structural stage through either way, namely at understanding Level 5, 

Object Analysis, and Level 6, Inventising, it is worthwhile to compare their performance in 
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an alternative way in order to discern which approach: starting with real world or rigorous 

definition, to introducing the topic is more effective for students’ understanding.   

7.4.2 Strong positive relationship  

The relationship was investigated in two ways: between the total scores of basic 

knowledge and that of application, and between the understanding levels shown in basic 

knowledge test and total score of application test.   

The relationship between the two tests’ totals scores. In the pilot study, the 

relationship of students’ performances on the basic knowledge test and application test was 

investigated using the Spearman correlation coefficient. With regards to the Shanghai data, 

there was a strong, positive correlation between these two variables,   =.572, n=907, p<.001, 

with a higher performance of understanding basic knowledge associated with higher ability 

levels in application. The English data provided confirmation of this statement,   =.557, 

n=403, p<.001. Data from England and Shanghai suggested a relatively strong performance 

relationship between understanding basic knowledge and application. In addition, the amount 

of shared variance for the coefficient of determination was 41.5% (       ) in the 

Shanghai data and 32.9% (       ) in the English data. That is, mastering pure knowledge 

seems to be more important for application performance in Shanghai than that in England.  

The relationship between understanding levels and the total score of the 

application test. Besides the relationship between the performance of understanding and 

application, there was also a strong connection between understanding levels and application 

by Spearman correlation coefficient, with  =.501, n=907, p<.001 for Shanghai data. The 

English data showed the same conclusion,  =.542, n=403, p<.001, with higher levels of 

understanding associated with higher performance of application.    showed how much of 

the difference in the dependent variables (application performance) was explained by the 
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understanding levels. For the English results, the value was 0.266; and for the Shanghai case, 

it was 0.289.  

It was evident that the bivariate correlation between the performance of understanding 

test and the levels of understanding was straight and significant,   =.886, n=907, p<.001 for 

Shanghai data and   =.868, n=403, p<.001 for English data, as the tests were designed 

according to the general model of the understanding function. 

7.4.3 Mastering basic knowledge or use of knowledge   

In the main study, an additional investigation was undertaken to identify and examine 

the independent variable of students’ performance in two types of tests. This further inquiry 

considered whether the higher understanding levels, as the independent variable, can 

determine the higher application performance, or vice versa.  

The study explored the success of the students who reached Levels 5 and 6 in the 

application test, by calculating their average score in the application test. For example, the 

English students who achieved the understanding Level 5 were selected and their 

corresponding total scores in the application test were used to provide the average score of 

this group, which was 13.2. Using the same method, the Shanghai students whose 

understanding level was marked as Level 5 were picked out first and their average mark in 

the corresponding application test was then calculated (12.6). Due to different full marks in 

the two regions (24 for England and 22 for Shanghai), the percentage of their mean scores 

was compared, as 55% (       ) in England and 57.3% (       ) in Shanghai. The 

same method was applied for the Level 6 scenario as well. Figure 49 therefore shows the 

percentages of the Level 5 and Level 6 students’ mean scores in the application test. Both the 

English and the Shanghai groups had very similar mean score percentages in the application 

tests at these two levels. It also indicated that, if students understanding was at Level 6, their 
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application performance was much better (nearly 15%) than those with an understanding at 

Level 5 (see Figure 49).  

 

Figure 49. Percentage mean scores in application test with understanding Levels 5 and 6 

On the other hand, higher performance in the application test, as the independent 

variable, was compared with the higher understanding levels. A total score above 80 per cent 

of the respective full marks was deemed to be a high performance. The per cent of the 

students who can achieve 90 percent at application test was only 5.7 in England, while 11.4 

percent beyond 80 per cent. Due to lower proportion of 90 percent, this study chose the 80 

percent as the benchmarking for higher performance at application test.  

Those students whose score exceeded 80 per cent in the respective application test 

were examined. For example, 80 per cent of the full mark of English students in the 

application test was 19.2. The students who achieved a mark of 20 or higher were selected to 

discern their understanding level. Their corresponding understanding level was then 

identified (see Table 43 for the English situation). Due to the diverse number of students at 

each level, the identified number was divided by the total number of students in the 

corresponding understanding level. For example, there were 37 English students at Level 6 

reaching the higher performance in application; and the whole number of English students in 

Level 6 was 117. The percentage, therefore, was 31.4 for understanding Level 6. The same 

method was also applied for the Shanghai situation.  
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Table 43 

The English Situation for Higher Performance in the Application Test 

 Not beyond Level 4 Level 4 Level 5 Level 6 

Numbers of students who have 

the higher performance in 

application tests 

2 0 7 37 

The numbers of total students at 

each Level 
185 14 87 117 

The percentage  1.1 0 8.0 31.4 

In the Shanghai situation, in terms of those students with higher performance in the 

application test, their understanding level was located either in Level 6 or in Level 5. 

Therefore, only Level 5 and Level 6 are highlighted. Figure 50 shows the distribution of 

students’ understanding levels. Shanghai got higher percentage of students within the abstract 

levels compared with their counterparts in England. 

 

Figure 50. The understanding levels’ distribution with the higher performance in application  

In summary, the findings from the previous chapter, Curriculum Analysis, showed 

that the English curricula places an emphasis on more meaningful contexts related to real life 

in order to facilitate students’ understanding of mathematics, while the Shanghai curriculum 

focuses on a more abstract understanding of pure mathematical knowledge. Figure 49 shows 

the similarly successful performances in the application test for students who had achieved 

abstract understanding in both regions. Conversely, Figure 50 reveals that students who attain 

a higher performance in the application test in the two regions have a more diverse 
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percentage within the abstract understanding levels, especially at Level 6. There is a disparity 

between two regions. It indicates that the application approach does not facilitate the 

understanding development towards the highest understanding level in a satisfactory way.   

7.5 Discussion 

Both the pilot and main studies of students’ understanding basic knowledge tests 

illustrate that, in general, the English students show a varying distribution of understanding 

levels and Shanghai’s performance demonstrates a more unified picture. This results comply 

with that of PISA 2012 that Shanghai has the ‘largest proportion of top performers’ (OECD, 

2013, p. 18), and the lowest percentage, ‘3.8%’, for all the countries (OECD, 2013, p. 19).  

In this section, first, each of the level’s barriers that students encounter will be 

summarised. Two examples taken from English classroom observations will be described to 

show how students get confused with the property of gradient. The numeracy skills will then 

be addressed for English students.   

7.5.1 Understanding barriers at each level  

Level 3. The Foundation Level English students have unsuccessfully translated 

representations from the algebraic expression to a graphic representation despite being given 

a table as a transmitting stage. Their numeracy skill is the first obstacle which appears before 

learning the linear graph. This weakness embodies the difficulty of the ability to translate 

from the algebraic expression to a tabular representation during the learning process.  

Level 4. The graphic meaning of gradient is difficult for English students to 

understand, even those in the Higher Level. This barrier is partly derived from the definition 

in the textbooks:          
                

                
. During a classroom observation of this topic in 

one sample school, two questions were proposed by students: one asked for the reason why 

minus was used instead of plus to discern the differences of x or y; and the other was the 

reason why it was a rule to calculate the gradient. The first question that he proposed shows 
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that he faced a big challenge in terms of understanding what the segment in the axis meant 

and how to measure this segment under the Cartesian plane. The second question relates to 

the mathematical explanation of steepness of the graph: the steepness is presented by the 

degree of the angle ( ) with one side as a line parallel with the x-axis and another side as the 

straight line. This angle can be calculated by     , one of the three trigonometric functions 

(    ,     , and     ) which are introduced in the KS4 English curricula for higher 

attaining students. Furthermore, the meaning of gradient is related to     . At students’ 

current learning stage, these two concepts have not been related with each other. Only by 

asking the question of ‘how’, rather than ‘why’, are students unable to understand. This 

concept is based on an instrumental view of understanding for now, but in their future 

learning on trigonometric functions, the rule could be clarified by asking ‘why’.  

At another classroom observation in an English school, three different types of 

problems were used to discern the value of the gradient and to enhance students’ 

understanding: (1) if given the equation; (2) if given the graph; and (3) when given no graph 

or equation, just two points such as (a, b) and (c, d) presented in the word problems. In terms 

of type (3), without the aid of a graph, most of the students went astray due to the meaning of 

‘differences’ as shown in the rule. For example, two points without the graph, (-2, 2) and (1, 

4), were provided by the teacher to calculate the gradient. The most common incorrect 

solution for the pupils in the class was 
   

    
 instead of the correct solution of 

   

    
 or 

   

  (  )
. 

The underlying reason may be that students avoid the appearance of negative numbers in the 

denominator. An alternative reason might be that this concept came from the graph; but when 

the question is separated from the graph, there appears a difficulty for students to seek the 

meaning of difference in a pure word description. When facing a non-graph situation, 

students showed their confusion regarding the significance of the relationship between 
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‘differences in x’ and ‘differences in y’. The English students could not note that there was a 

strict rule as shown in the algebraic formula          
     

     
 or          

     

     
. 

In fact, over two-fifths of the English Higher Level students were unable to acquire 

Level 4 Property Noticing, as they failed to discern the value of gradient under a graphic 

representation; while half of them achieved Level 5 Object Analysis. The percentage of the 

students at Level 4 was quite small (6.7%) which indicates that this understanding level can 

be marked as a watershed in English Higher Level students’ understanding.  

The approach to linear function is dramatically different in England and Shanghai, 

especially when dealing with the concept of gradient. The symbolic method, as used in 

Shanghai, could be judged as more successful for students’ learning outcomes rather than the 

graphic way used in England. Healy and Hoyles (1999, p. 83) have pointed out, however, that 

only when using symbolic aspects would students lose the opportunity to ‘exploit the visual, 

to explain or justify their symbolic constructions, or to develop the capacity to move flexibly 

between representations’. Meanwhile, Huang (2002, p. 241) questioned that teachers in 

Shanghai who used ‘abstract representation and logical reasoning’ should use ‘more visual 

and concrete representation to blend the process of learning’.  

The English students approached the slope in the coordinate system, which involves 

both interpreting the graph and shifting from graph to equation. The core of understanding 

mathematics involves a ‘flexible and competent translation back and forth between visual and 

analytic representations of the same situation’ (Arcavi, 2003, p. 235). On the contrary, 

Shanghai students adopted an algebraic calculation that omitted the ‘Cartesian connection’ 

(Leinhardt et al., 1990, p. 36). That is, Schoenfeld’s work, as noted by Leinhardt et al. (1990), 

claimed that the algebraic way to slope was fragile in its meaning. The effectiveness of the 

formula method, the generation of simultaneous linear equations, was observed in the 
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Shanghai students’ tests. The far-reaching influence of the formula approach in the Shanghai 

pupils’ responses was valuable to the investigation in the future study.  

Level 5. Understanding function shifts towards the structural view since this level. 

Although the concept of linear function is based on input-output views of function in England, 

most of the Higher Level English students who attempted to answer this level’s questions 

normally could provide the right answer which shows their full understanding of the linear 

function, as a change in the quality of their understanding development.  

Level 6. The main barriers are rarely associated with understanding this topic. The 

barriers derive from other knowledge or the ability to identify the required information within 

the complex problem context for the Shanghai students.          

7.5.2 Numeracy skills  

The English students showed their weakness such as dealing with the negative 

number, reducing a linear function to a standard form, and an inadequate knowledge of 

gradient. In contrast, the essence of Chinese mathematics education emphasises that a solid 

foundation of basic knowledge with proficient numeracy skills is necessary before and while 

learning a new topic (Xu, 2010). The findings from Shanghai students confirmed their 

consolidated basic knowledge and skills. 

Theoretical perspective. Taking the numeracy skills from a theoretical perspective, 

Breidenbach, Dubinsky, Hawks, and Nichols (1992, p. 279) indicated that students normally 

failed to construct processes in their minds for the concept of function and suggested ‘de-

encapsulating the objects and representing these processes’. In terms of process, Schwartz 

and Yerushalmy (1992, p. 263) argued that the symbolic representation could effectively lead 

students to make sense of the ‘process’ nature of function, while the graphical representation 

would result in the ‘entity’ nature of the function, i.e. the shape. During the process, in order 

to master symbolic representation, the symbol manipulator was required. Sfard and 
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Linchevski (1994) explained that function tied ‘the arithmetical processes (primary processes) 

and formal algebraic manipulations (secondary processes)’ together, and that both related to 

relational understanding. The numeracy skills of students, as the primary processes, were the 

primary aspect in the English student tests that constrained their understanding development 

which will be discussed in Chapter 9 in detail.  

Foundation Level students. Figure 49 and 50 suggested that if a student’s 

understanding of linear function reached Level 5 Object Analysis, both their visual and 

algebraic approach to a mathematical problem of either basic knowledge or application, could 

be identified as representing their successful understanding. This resonated with earlier 

findings of Stylianou and Silver (2004, p. 381), who noted that novices failed to use visual 

representations because they could not ‘treat mathematical concepts as objects’ from a 

reflective abstraction theory perspective. At this study, the Foundation Level English students 

had not yet developed a rich structure of mathematical concepts; as a result, they could not 

progress in either their understanding of basic knowledge or application via a visual approach.  

7.6 Summary 

This chapter has provided a thorough exploration of and the delineation between 

English and Shanghai students’ understanding of the concept of linear function. Although the 

age group of the Shanghai sample was one year younger than the English sample, they 

surpassed the English students in both the pilot and main studies. One possible reason for this 

discrepancy is that the Shanghai students are used to more abstract methods, primarily the 

algebraic approach. In addition, the correlations between the higher level of basic knowledge 

understanding and higher performances in the application test were relatively higher. These 

correlations also suggested that an ideal understanding of basic knowledge should achieve the 

Object Analysis level.  
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The next chapter will investigate the selected teachers’ perceptions of the process of 

teaching and learning linear function, focusing especially on: what teachers view the role 

numeracy skills play in students’ understanding; and what kind of barriers the teachers 

identify in the students’ learning of linear function.  
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Chapter 8 Teacher Interviews 

This chapter will present the views of the selected teachers in order to perceive the 

reality of the classroom, focusing on the possible disparity between the intended curriculum 

and the attained curriculum, as well as exploring the ways in which students’ understanding 

was shaped. First, the details of the teachers’ semi-structured interviews will be addressed, 

including the outline of the interview content, limitations of the chosen method, and the 

analysis of the qualitative data. Secondly, two parts of the findings will be explored: the first 

issue focuses on how the selected teachers intended to carry out their lesson plans; the second 

issue will look at how they facilitate their students’ understanding development based on 

their experience of the potential barriers to students’ understanding of linear function. In 

terms of the former element, the interview starts with a set of questions related to how they 

plan a lesson. In looking at this issue, underlying their individual interpretations, teachers’ 

cultural beliefs concerning the process of teaching and learning are described and compared 

between England and Shanghai. With regard to the second issue, it will also be necessary to 

develop a clear perception of English and Shanghai teachers’ cultural perspectives 

concerning their definition of understanding. Thirdly, three points: the teachers’ beliefs about 

mathematics, the analysis of their pedagogical content knowledge, and the function of 

textbooks in each region, will be further addressed in the discussion section. Ultimately, it is 

hoped that teachers’ responses in the interviews will clarify how the description of their 

beliefs aligns with the findings from the study’s previous document analysis and the results 

from the students’ tests which will be discussed in the next chapter: Summary and Discussion.   

8.1 Semi-Structured Interview 

In the Methodology chapter, the reason for using semi-structured interviews and the 

ways in which these interviews were conducted in England and Shanghai were both 
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described. This section focuses on outlining the semi-structured interview process, some of 

the limitations of this method, and the process of data analysis.   

8.1.1 The outline of the semi-structured interview 

The questions used in the semi-structured interviews were designed to explore two 

important issues: how teachers approach the teaching of linear function; and the perceived 

barriers that impede students’ understanding of linear function. When considering the specific 

beliefs that teachers hold, the possible underlying cultural differences on viewing teaching 

and learning between England and Shanghai will be explored. Within Part 1, as the role of the 

textbooks differs between English and Shanghai contexts, the teachers were asked to express 

explicitly their views on how mathematics should be taught. It was followed up with the 

question on how mathematics should be learned. Part 2 focuses on the perceived barriers to 

students’ understanding linear function, and the teachers’ views of understanding will be 

examined. All of the questions below were included in the interview: 

Part 1: The teaching of linear function 

 How do you plan lessons? 

 Which curriculum materials do you use most regularly? Do you follow the textbook(s) 

closely?  

 In your opinion, how can mathematics be best taught? 

 And how can mathematics be best learned? 

Part 2: The perceived barriers to students’ understanding of linear function 

 What are the main barriers when students learn linear function? 

 What are your views on how to aid students’ understanding of linear function? 

 Many people believe that, in order to learn mathematics, understanding is essential. 

What do you think?  

 How do you define ‘understanding’? 
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8.1.2 Limitations of the semi-structured interview 

Qualitative research is considered to have some weaknesses, such as problems of 

representativeness and generalizability of findings, and problems of objectivity and 

detachment (Sarantakos, 1993). There were two main concerns regarding the use of semi-

structured interviews in the present study. First, the interview is limited by its scope and 

sample. It was confined to a small scale, with a total of seven teachers. Although their views 

could represent the main values or culture of mathematics teaching and learning in the sample 

schools, the findings were not representative of all teachers’ beliefs, neither within the sample 

schools nor in both regions.  

Secondly, Cohen et al. (2013) suggested that the practical way to achieve a valid 

interview is to minimize the possible impact of researcher and respondent bias in order to 

address the issue of objectivity. Although this point has been generally discussed in Chapter 4, 

I feel it is also necessary to address it especially from the perspective of the teacher 

interviews. The main concern for the Shanghai interviews was that interviewees would regard 

me as an expert or a peer, and assume that I hold certain opinions about these questions to 

expect specific answers. My working experience in a secondary school in Shanghai might 

influence Shanghai interviewees’ responses. I also had a personal connection to all the 

sample schools in Shanghai. In order to minimize this potential bias, the interview started 

with specific questions related to a previous classroom observation, such as how to choose 

examples during a lesson.  

In England, the teachers were aware of the goals of this study and my teaching 

background in Shanghai secondary school. The primary concern in this situation was that 

they might hold a reserved attitude towards the interview. In order to overcome this obstacle, 

I needed to build rapport, to ensure and reassure the teachers of the confidentiality of their 

responses, and to establish trust. Before the interviews, I observed at least one class in each 
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sample school, mainly with the Head of Maths in each school. Even after the interviews and 

tests which had been conducted, I continued classroom observation in order to gain a fuller 

understanding of the teaching and learning processes in the English schools. Although the 

interview data would be compared with quantitative data from the tests, which could balance 

the bias, during the interview I always asked for clarifications, including examples of 

statements made by the interviewee.  

Finally, due to the limited interview sample and focusing merely on certain topic, 

linear graph, the results of what kind of software English teachers would use or how often 

they would use might contradict with other researches. For example, the Bretscher’s survey 

(Bretscher, 2011) illustrated that (1) interactive whiteboards would be the most accessible 

hardware in England; (2) English teachers do not routinely use graphing software; and (3) 

MyMaths is frequently used source. However at this study, the teachers did not mention the 

interactive whiteboards and in terms of this topic, the software was frequently used to explain 

the meaning of gradient.  

8.1.3 Data Analysis 

Cohen et al. (2013) suggest four stages in the analysis of interview data: (1) 

generating natural units of meaning; (2) classifying, categorizing, and ordering these units of 

meaning; (3) structuring narratives to describe the interview contents; and (4) interpreting the 

interview data.  

I adopted this four - phase process to code and analyse the transcribed data. The first 

phase was an open-coding approach in order to develop categories for each part and to find 

all of the themes emerging from the data using a paper-and-pencil method. The second phase 

was to re-examine all of the data using a start list of codes by the Nvivo 10 software, which 

could easily retrieve the context (see Appendix M for two examples of a section for English 

and Shanghai interview transcript respectively). The purpose of using Nvivo instead of a 
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manual check again was to classify and re-examine if these codes covered everything. During 

this phase, the reappearance of specific themes, the similar and different points mentioned by 

the teachers, were noted. In the third phase, four themes were identified: (1) views of lesson 

plans; (2) views of teaching and learning; (3) views of the definition of mathematical 

understanding; and (4) barriers to students’ understanding of linear function. Finally, I 

compared the similarities and differences between England and Shanghai teachers’ views in 

each theme, and then read back through the transcripts to ensure that the findings reflected 

what the interviewees said. Meanwhile, the results of the question on predicted students’ 

barriers would be linked back to the model of understanding function in the next chapter.  

8.2 Findings from the Teacher Interviews 

Four themes were identified from the teacher interviews as discussed above. Apart 

from the third theme, namely the views on the definition of mathematical understanding, the 

remaining three themes will be examined below in turn by firstly exploring the English and 

Shanghai results separately, and then comparing the two. In terms of Theme 3, teachers’ 

comments will be compared from the start, rather than firstly being explored separately. 

Teachers’ words will be used to support the existence of these themes, and I will use the 

following protocol in referring to teachers: the three English teachers will be referred to as 

ENT1, ENT2, and ENT3; and the Shanghai teachers, SHT1, etc.    

8.2.1 Theme 1: Views of lesson plans 

It is important to obtain teacher views because they ‘always bring their own frames of 

understanding and their knowledge of the local context to bear on how they use curricular 

materials’ (Stein, Remillard, & Smith, 2007, p. 324). All of the interviews were followed by a 

classroom observation. The process started with the teachers’ familiar daily scene - the 

planning of the lesson. Teachers’ responses to this part were used to identify patterns in 
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lesson planning. From their responses, teachers’ primary consideration in lesson planning 

could be revealed. 

English teachers: focusing on students’ ability. Point 1: Starting with the Scheme 

of Work. The Scheme of Work written by each department in English schools indicates what 

should be taught and when it should be taught in the current academic year. The ENT3 gave a 

clear explanation of the function of the Scheme of Work: 

So, a Scheme of Work means that all the staff - all teachers - follow the same order of 

programme… it allows students to move between classes.  

For each level of students, rough learning objectives were listed in the Scheme of 

Work, as the ENT2 stated: 

Within the same topic, [for example] equations, we have three columns which say that most 

kids, children, should learn this. So, for example, children in lower sections should definitely 

learn this, pupils in higher sections should learn this, so we have three different sections 

within each topic. So if you have a lower class, you know the type of things you have to do. 

You might then want to help them to be able to do the next section, so it’s not laid down. 

When you have a class, it does not say Set 5 does this, Set 4 does this. It just says that the 

main part of Year 8 will do this, and if they’re very bright they will do this or if they’re very 

slow they’ll do this.  

The Scheme of Work also provided teachers with ‘other documents, their links to 

resources, and links to textbook pages they can use to help them plan it’ (ENT1). These links 

were only suggestions for teachers to use in the lesson plan.  

Point 2: Students’ ability. The expectation of achievement within a certain level was 

already factored into a teacher’s lesson plan, but in quite a basic way. The teacher had to 

consider what challenges students would meet and how to allocate lesson time. Developing 

students’ ability was the teacher’s priority.    

And as a teacher, you would tailor it to your particular class. For example, I would look at the 

Collins that has ‘C’ grade working because that is where my students are targeting. And I 
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would look at the ‘C’ grade topics and I might go through it and write on it that they couldn’t 

do this very well, or I need to do another lesson on this, or whatever it might be. (ENT2) 

Point 3: Looking for teaching materials. Results from the interviews showed that 

apart from the Scheme of Work, there was no mandatory resource that teachers must strictly 

follow in the English schools. Many open resources were available for teachers, enabling 

them to choose any that teachers thought would help their lesson planning. The selected 

English teachers tended to use online searches including: (1) online websites such as the well-

known TES site: http://www.tes.co.uk/, or Boardworks: http://www.boardworks.co.uk/; and 

(2) worksheets designed by teachers based on various materials. Or they will make their own 

worksheet (ENT3). When facing topics related to graphs, a commercial graph package such 

as Autograph was a popular choice. In summary, teachers had the flexibility to structure their 

own lessons, as long as it met the requirements for their students located within various sets 

or levels.  

Notably, textbooks played a very limited role in the planning of lessons, e.g.: 

 It is not linked at all with the textbook (ENT2) 

Textbooks we don't use as resource here (ENT1);  

The ENT3 used textbooks for a ‘particular lesson’ such as ‘drawing graphs’. The 

reason that teachers dismissed the textbooks was that they were not satisfied with the 

structure of the textbooks provided for the topics: ‘because textbook lessons tend to be quite 

dry, quite less discussion-based’ (ENT1). In terms of linear function, the textbooks’ 

arrangement showed that ‘the strength is there are plenty of different types of questions. But 

there are not necessarily enough of the same types for students to practice. So there is not 

enough to consolidate, it moves on quite quickly’ (ENT1). 

Shanghai teachers: The requirements of the curriculum. There were three 

documents officially provided to in-service teachers in Shanghai: the local curriculum; the 

compulsory textbook; and official teaching guidance. The teaching guidance included 

http://www.tes.co.uk/
http://www.boardworks.co.uk/
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detailed information about learning objectives, the emphasis, and the difficulties students 

might encounter for each lesson. The Shanghai teachers would carefully study the textbook 

before planning the lesson, as the SHT3 argued: 

First of all, we will identify what kind of position this class has in the whole topic, students’ 

previous knowledge, and after this what new knowledge students will learn. 

Then, regarding a certain class, the SHT1 said:  

Teachers basically focus on textbooks to understand the mathematical content.    

The textbook not only provided the content; the examples also embodied the 

requirements of this content in detail. The SHT2 gave an explanation of how to work out the 

requirements from examples in the textbook:  

When reading the textbooks, we need to understand the writer’s tendency. For example, in 

terms of rational number addition, there are two examples in textbooks, 

（1）16+（-25）+24+（-32）, （2）       
 

 
 (  

 

 
)  (     )     

The trick of the first one is to calculate the positive number together while the second one is 

to add 0.125 to  
 

 
, and add  

 

 
  to -0.25, so that the fraction part could be counteracted. 

Every example has its purpose which needs to be found out in planning a lesson. Textbooks 

would not remind us. But teachers must know about the purpose of each example in the 

textbook. (SHT2) 

Although teaching guidance contained the specific difficulties and emphasis for each 

class, the SH2 commented that new teachers tended to read the teaching guidance carefully; 

while experienced teachers had profound knowledge of the guideline content, and they would 

focus on other materials such as previous assessments, as the SHT1 said: 

We focus on the objectives, difficulties and key points (in the teaching guidance). According 

to these requirements, teachers will find out some examples which could be in a textbook or 

from previous assessments in order to test if students could achieve these requirements.  
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A comparison of the two regions’ way to lesson plan. This sub-section described 

the ways in which mathematics teachers planned their daily lessons in England and Shanghai. 

It was found that the planning of lessons in both regions had a particular context: the English 

teachers were allowed to be flexible to schedule the lessons within the topic, while the 

Shanghai textbook or teaching guidance provided the basic structural context that the teachers 

were followed with. When narrowing to a certain topic, the lesson plans in each region had a 

very similar format: firstly looking for the objectives of a lesson; then deciding on the content 

of a lesson in order to achieve these objectives; and finally identifying the suitable teaching 

materials for a lesson (see Table 44).  

Table 44 

A Comparison of Two Regions’ Way to Lesson Plan 

Structure of lesson 

planning 
England Shanghai 

Objectives for a lesson 

Different objectives for different 

level students in the Scheme of 

Work 

The same objective for all 

students in textbook or 

teaching guidance 

The content of a lesson 
Decided by teachers according to 

their students’ ability 

Described by textbook or 

teaching guidance 

Teaching materials for 

a lesson 

Open resource, such as website and 

worksheet 
Mainly textbook 

Within this similar structure, the following differences were noted: 

 In relation to the function of textbooks in lesson planning, the English teachers 

seemed to hold negative attitudes towards the textbooks, even though the school and 

department had considerable autonomy to choose a suitable textbook. Meanwhile, the 

Shanghai teachers relied heavily on the compulsory textbook and teaching guidance. 

The findings from England clashed with one assumption of the usefulness of textbook 

analyses research that ‘teachers of mathematics in all countries rely very heavily on 

textbooks in their day-to-day teaching’ (Robitaille & Travers, 1992, p. 706).  
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 From the requirements or learning objectives perspective, England had a multi-level 

structure for the different abilities of students, whereas Shanghai had a uniform one-

size-fits-all approach. 

 With regards to the presentation of a topic, the English teachers would consider 

students’ ability first, what they can do or cannot do, and often intensively seek the 

help of open resources. The Shanghai teachers would initially study the requirements 

that the textbook presented or questions in previous assessments which embodied the 

requirements of the intended and attained curricula. Thus, it was evident that students’ 

ability had the priority in England, while the requirements of the curriculum including 

textbook was emphasised in Shanghai.  

 In the case of linear function, the English teachers frequently used commercial graph 

packages, as Patterson and Norwood (2004) recommended that the display of visual 

representations (tabular and graphical) in technological tools may assist in learning 

the various concepts.  

The striking difference of the function of textbooks between England and Shanghai 

was indeed affected by each country’s education policy as discussed in Chapter 2. 

Furthermore, it is necessary to discover the underlying cultural beliefs that the teachers 

possess. The following section explores teachers’ cultural perspectives on how mathematics 

should be best taught and learned.  

8.2.2 Theme 2: Views of teaching and learning 

The objective of this section is not merely to document teachers’ perspectives on the 

process of teaching and learning in the two regions, but also to indicate whether these models 

fitted with teaching and learning patterns in England and Shanghai. This section’s findings 

will explain the results from the previous section, views of lesson plans.  
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Based on the specific questions about lesson plans, I explored teachers’ general 

approaches to teaching and learning. Teaching and learning cannot be separated into two 

distinct parts. In terms of a particular question on how students could best learn mathematics, 

the answers may reflect how teachers view effective teaching methods from other 

perspectives. However, teachers’ responses might be limited by the previous question of how 

they planned the lesson for learning new knowledge and what kind of materials they used 

frequently. Therefore, their replies mainly focused on how to teach a new mathematics topic 

rather than from a broader background, for example how to do the revision.  

Two teachers from both regions agreed that the premise of successful teaching was 

that students had basic foundation knowledge for a new topic. The ENT1 stated that the ideal 

foundation for teaching and learning a new topic was that students already had a 

‘consolidated basis’:  

Basically when you teach a new topic, it is important you go, you make sure students have 

the basics; if I am teaching straight line [linear graph], making sure that they can choose 

numbers to make a table, and make the negative numbers, that they could plot the coordinates, 

make all the basics before you go on to the next step.  

This view indicated that English teachers highly valued relevant previous 

knowledge and skills before learning new mathematical knowledge. That does not 

imply that the English teacher would pursue students’ accurate numeracy skills, namely 

the proficiency of skills. On the other hand, Shanghai teachers emphasised the need for 

students to obtain the two basics: basic knowledge and basic method in the teaching 

process.  

English approach: learner-focused with multiple activities. Point 1: Best taught. 

With the flexibility to structure their own classes, the English teachers placed emphasis on 

designing multiple activities in the classroom for students, as ENT3 said:  
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But I honestly believe that a mixture of visual aids, fun activities and written work - because I 

think a combination of everything works best…  

The ENT2 preferred to use visual verification for students’ discovery, especially 

in the linear function topic: 

If we do gradient, for example, we will tell pupils how to set it out but not what they’ll find, 

so we ask them to plot     ,     ,     … what do you notice, are the lines getting 

steeper? They discover then the number in front of the x, the meaning of gradient. You do not 

tell them that is the gradient; you let them discover it’s the gradient as that number gets 

bigger. They often write down what they notice - that as the number gets bigger, the line gets 

steeper...  Then you would do a set of ones in which the intercept stays the same,       , 

      ,       , so the gradient changes but the intercept stays the same.  

The teachers would keep ‘questioning students’ (ENT1) during these activities in 

order to probe any confusion: 

…making sure also when you are teaching them, you are not just telling them how to do 

something, you are getting them to tell you with great questions. (ENT1) 

It was found that all teachers emphasised students’ mathematical exploration with 

various activities rather than a clear structure of lessons or effective instruction which was 

one assumption of a classroom-focused view in Table 5 at Chapter 2. From the interview 

responses and classroom observations, it was evident that the teachers in England paid great 

attention to the visual approach, especially graphical representations, when introducing the 

concept of linear function. They were all aware that, as teachers, they should avoid adopting 

the role of instructor or explainer. The goals of these activities were viewed as ultimately to 

be able to uncover students’ inadequacies in their understanding through students’ feedback 

in the classroom, rather than teacher’s dominating by monitoring and correction.  



266 

 

 

 

Point 2: Best learned. In terms of teaching beliefs, the English teachers held a 

relatively positive attitude towards the function of practice; for example, the ENT3 argued 

that:    

I think… by them doing it - I think with maths, the more practice you have, the better you get. 

I honestly believe that. While it is important to hook them into a topic, you also need to have 

the practice as well.  

This perspective is closely aligned with that of Cai and Wang (2010, p. 275): 

‘USA and Chinese teachers see practicing as a key to consolidating knowledge and 

facilitate understanding’.  

Meanwhile, it is reasonable to assume that a ‘lack of time’ (ENT1) had affected 

the efficacy of teaching and learning in England: 

We only have three hours Maths in the school per week and one hour homework. So one 

week, just 4 hours for Maths. It might be fair enough they are forgetting. It is hard, they do 

basically need time. (ENT1) 

Apart from the importance of practice, the English teacher mentioned ‘having a 

consolidated teacher’ (ENT2) for students’ best learning: 

Give them a clear explanation of what’s going up, not just saying do this and do it now, 

actually explaining to them. I am going to put this here, why I am going to do that, because I 

explain. It is really important, I think. Students like that. And also to give students the 

opportunity to ask questions and not feeling stupid to ask questions. Making mistakes is 

important; they could deal with that and learn from it. Have a consolidated teacher in 

classroom. (ENT2)  

From this statement, the teacher acted as facilitator, not only providing students with 

answers to their questions but also explaining mathematical processes.  

Shanghai approach: basic method – focused. Teacher-dominated classrooms and 

rote learning were two common western misconceptions of teaching and learning under 

Confucian-Heritage Culture (CHC) for Chinese students (Biggs, 1998). Huang and Leung 
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(2005) argued that teacher-centric and student-centric approaches were not dichotomous but 

integrative to the reflection of the characteristic of CHC mathematical classrooms. However, 

Kuhs and Ball (1986) suggested that Shanghai classrooms tended to mainly concentrate on 

content.  

All of the selected Shanghai teachers described ‘teaching with purpose’ as the best 

method for teaching. The ‘purpose’ initially stemmed from the content or requirements of 

assessments which were based on that of the curriculum:  

There are two approaches. One is the traditional teaching style. Based on knowing what 

students have already known, teachers express new knowledge using the language and 

examples which students could accept, skilfully and patiently. This method could pass on lots 

of knowledge. The key is if teachers’ expression is clear and students could digest… 

Teachers should think about certain strategies and methods in advance, aiming at this topic, 

based on students’ ability. In fact, under the classroom teaching system (mix-ability students), 

teachers barely control the progress to meet every student’s situation. Therefore, teachers 

should choose the proper methods including mixing these two methods. This way of tailoring 

the teaching approach hardly comes true. But for some students who have more difficulties, 

teachers could mobilize the initiative of good learners (their classmates) to help them to meet 

the requirement. (SHT1) 

Teaching with purpose means teachers have a certain purpose to teach what kind of concept 

or idea, for example, understanding concept or mastering properties. Teachers pay attention 

not only to mathematical knowledge, but also ideas, how to introduce a basic method as 

combination of symbolic-graphic, or classified discussions through examples. (SHT3) 

The SHT3 explained that the best way to learn mathematics from a student’s 

perspective was by ‘learning consciously’ which means that students must be aware of what 

kinds of requirements they should meet:  

Learning consciously means that students initially learn the lesson by themselves from the 

textbook before being taught the content by the teacher. They could therefore make sense of 
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the new knowledge when teaching occurs in the classroom. Of course, not all of the students 

could achieve the requirement, but high ability students could do that. (SHT3) 

Teachers divided mathematics into two categories: basic knowledge; and basic 

methods (basic ideas and basic methods). The former, basic knowledge, could apply to the 

teacher-centred and students-centred teaching approaches; while the latter, basic methods, 

could only be taught by teachers:  

Teacher-centred does not mean cramming education. For example, when teaching how to 

calculate |  |   , teacher clarifies to regard –x as ‘the whole’. If the teacher did not 

indicate that guidance, students might have the right answer by only depending on feeling 

and experience. However, students are not clear about basic ideas and methods. When 

meeting |   |   , it requires students to consider     as ‘the whole’ as well. The idea 

and methods are from the teacher’s guidance. (SHT2) 

Basic ideas and methods need teachers to introduce them. For example, the basic method of 

combination of symbolic-graphic is not clearly expressed in the textbook. Students could not 

know it from a higher level when looking at the examples. Teacher-centred is more important. 

Maybe one or two classes could be open for students’ exploring, but it still needs to be 

controlled. It also depends on the average student’s ability level in the class; sometimes it 

would not have a good effect. For teachers, we could enhance the teaching effectiveness, 

choosing some typical examples, focusing on teaching design, but it needs students to be 

actively learning. Teachers and students working together is a key to improve the learning 

outcome. (SHT3) 

From the teachers’ view, these methods could not be learned or discovered by 

students themselves. The teacher had to control what the students were supposed to 

understand or learn by his or her careful lesson planning towards the basic methods. 

Meanwhile, it was verified that the requirement of the curriculum focused on basic method as 

discussed in the Curriculum Analysis chapter. The selected Shanghai teachers therefore held 

a negative attitude for the effectiveness of students-centred approach to teaching and learning 
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mathematics: 

Student-oriented definitely has much more benefits but is not effective. Students’ inquiry 

might give rise to taking detours. At the end, knowledge might not be investigated thoroughly. 

In fact, it is impossible for students to go through so much mathematics knowledge one by 

one. (SHT1) 

On the other hand, because basic methods were unreachable, highly qualified 

experienced teachers who mastered these basic methods were crucial to meet with the 

precondition of best teaching.  

There are two ways to support in-service teacher professional development in 

Shanghai: the mentor system working within the school for new teachers and the research-

teacher system in the subject area at district level for all the in-service teachers. The mentor 

system for new teachers in Shanghai ensured that every new teacher could get support from 

the senior teachers. One of these supports was about mathematical professional knowledge, 

such as which basic methods should be delivered to students in a certain topic and how to 

make sense of the worked examples in the textbook. Meanwhile, another researcher-teacher 

system for professional development provided all the in-service teachers with a 

communication platform and opportunities to gain advice from experts or colleagues in other 

schools. That is, highly qualified teachers were regarded as playing a significant role in the 

best teaching. It was assumed that students’ learning outcomes heavily relied on the 

performance of their teacher, or how profoundly the teachers could help these outcomes. As a 

result, this opinion could reflect how teachers perceived the best way to learn mathematics, 

‘depending on teaching’ basic methods (SHT3): 

During the learning process, a student is required to master certain mathematical methods. 

For example, with regards to the concept of absolute value, the basic method of classified 

discussion needs to be taught. If students did not master this method and focused on practice, 

it would not be enough. Learning mathematics depends on students themselves, especially for 
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junior secondary school students, which will be unpractical. The mathematical methods are 

taught by teachers. Mathematics content or knowledge could be learned by students 

superficially. (SHT2) 

Students’ interest was also regarded as a foundation of the best learning. 

Learning processes can be seen as to ‘explore the unknown’, so that students were 

required to develop mathematical ‘ability’ for future study.   

During the teaching and learning process, teachers should cultivate students’ ability, as 

knowledge is a kind of medium. Knowledge is explicit which could be testable while ability 

is implicit which could not be reflected at the current stage. (SHT1) 

Based on the Shanghai teachers’ responses to the best methods for teaching 

and learning mathematics, the following main findings were identified: 

 After the teachers carefully studied the curriculum materials, including 

textbooks, teaching guidance, and previous assessments, they separated the 

content into the underlying basic methods to handle a certain topic.  

 The Shanghai teachers directly led the teaching of basic methods in the 

classroom because they believed that basic methods could only be taught by 

teachers.  

A comparison of the two countries’ views of teaching and learning. Simply 

labelling classrooms as teacher-centred (teacher-dominated) or students-centred (learner-

centred) cannot explain the whole picture in terms of patterns of interaction, especially in 

East Asian classrooms (Chee Mok, 2006). Further, Mok indicated that the content-oriented 

and teacher-dominated image in Shanghai classrooms was not negative for learning, because 

the teachers valued the students’ responses, and it actually was an ‘alternative form of 

student-centredness’ (Chee Mok, 2006, p. 141). Table 45 shows different views on teaching 

and learning mathematics within a cultural context for the two areas.  
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Table 45  

Views of Teaching and Learning in the Two Regions 

 England Shanghai 

Teachers’ beliefs 
Learner-centred with 

multiple activities 

Content-centred emphasis on performance as 

well as conceptual understanding 

Teachers’ role 
Facilitator and 

explainer 
Instruction and explainer 

The use of 

curricular 

materials 

Provide Learning 

Objectives 

Mainly follow curricular materials enriched 

with additional problems 

Learning 

mathematics 

Active construction of 

understanding model 

Active construction of understanding model 

for mathematics knowledge, but reception of 

mathematics method 

Essentially, the English teachers believed that active exploration was the best way to 

learn, while the Shanghai teachers preferred direct instruction and skills practice, because 

their views of teaching and learning for mathematics were different as it will be further 

discussed in the next chapter. These two opposing approaches would lead to different 

pedagogical intents (Stein et al., 2007) as addressed in the point: pedagogical content 

knowledge in the discussion section.   

8.2.3 Theme 3: Views on the definition of mathematical understanding 

Hiebert and Carpenter (1992, p. 67) defined understanding as a way that ‘information 

is represented and structured’. Teaching or learning with understanding has been widely 

acknowledged by the mathematical education community. Llewellyn (2013) argued, however, 

that the definition of understanding within the education system slightly differed from that of 

the research area. That is, the research area considered understanding to be important; 

however, although in a practical way understanding might be deemed desirable, mastering of 

skills would be more highly valued to enhance students’ achievement in assessments. The 

following sub-section shows the definition of understanding in practical teaching from the 

teachers’ perspectives.  
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The results from Table 46 revealed that the England and Shanghai teachers’ 

conceptions of mathematical understanding were closely associated with their respective 

views on of the content of mathematics.  

Table 46 

Views on Mathematics Understanding 

Understanding mathematics  
Views of English 

teachers 
Views of Shanghai teachers 

A process with 

understanding how and why 
Agreed Agreed 

Linking with other 

knowledge 

When introducing 

new topic 

New topic beginning and 

finishing 

Procedural knowledge 
Not part of 

understanding 
Part of understanding 

How to probe students’ 

understanding 
Speaking Written work 

The nature of mathematic 

knowledge 
Not mentioned 

Four basics; 

Three languages 

translating 

What did understanding mathematics mean to the teachers? Answers to this question 

varied, depending on whether opinions were taken from a mathematical or educational 

perspective. Bishop (1992) examined the relationship between mathematics and education 

within mathematics education research, an exploration that requires more consideration than 

has been previously given. Each contending attitude towards the identity of mathematics 

tends to consider teaching and learning from different directions. In general, the Shanghai 

teachers primarily focused on the nature of mathematics. All of the English and Shanghai 

teachers agreed that learning with understanding is essential, but held different views on 

mathematical understanding. These views embodied their attitudes towards procedural 

knowledge and the ways in which they examined students’ understanding.   

Point 1: As a process. The two groups proposed that understanding would be a 

process instead of a one-off event. The ENT3 stated: 
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I think time tells as well. So you know, one lesson does not always say everybody understood 

everything. But over a series of a fortnight, you would expect them to see that understanding 

as well.  

As for a specific topic or problem, the development of understanding combines the 

reason, ‘why’, and the process, ‘how’.   

Point 2: Linking with other knowledge. The capability of linking to other 

knowledge can be identified as understanding, which matched with the highest level of the 

general model of understanding. The two regions, however, had different ways of articulating 

the act of linking knowledge. England tended to connect knowledge when introducing a new 

topic, while Shanghai focused on ‘the beginning’ and ‘the after’. Especially after finishing a 

new topic, Shanghai teachers would deepen students’ understanding by giving them complex 

problems in order to strengthen their knowledge links.   

Point 3: Instrumental understanding and relational understanding. Conceptual 

knowledge is defined as ‘a connected web of knowledge’, while procedural knowledge 

means formal language including symbolic representation and algorithms (Hiebert & Lefevre, 

1986, p. 3). The English teachers focused on understanding conceptual knowledge rather than 

procedural knowledge. That is, instrumental understanding was not part of understanding as 

ENT1 did not believe that mastering the procedural knowledge could be part of 

understanding because students were told to do it. She provided an example:  

But I am convinced that there are still some techniques that just have to be learned. For 

example, division of decimal, 6.38 divided by 2, got 3.1, then 18, but this is not really 18. 

They are not really doing it from understanding.  

Learning procedural knowledge was considered by the English teachers as either 

knowing or not knowing. Alternatively, the Shanghai teachers were deeply influenced by the 

four basics (basic knowledge, basic skill, basic method, and basic experience of fundamental 

action which will be discussed at Point 5), so that in Shanghai the subject of mathematics 
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consisted of these basics. Therefore the basic skills or procedure knowledge is much more 

highly valued in Shanghai than England.  

Point 4: Speaking or writing. In order to probe into students’ understanding, the 

English teachers preferred to question them, especially through students’ oral expression: 

They could explain it back to me, how and why and they can spot the steps. If they can, their 

understanding is good. If they cannot, they do not understand it. (ENT1) 

By questioning them, for example “tell me where you got the answer from”, “talk to me 

about your solution, where you get it”, “why is this?” - Lots of questions. (ENT2) 

I think through questioning them mainly, so asking them and having that discussion going 

between them. So there were two girls at the back who, when one of them got the answer and 

the other one said “I do not understand how you got that”, I said “right, you explain it to her”. 

They will then go away and explain it to each other and that demonstrates their understanding. 

(ENT3) 

On the contrary, the Shanghai teachers preferred to check students’ written work 

because of the more abstract level of requirement for mathematical concepts: 

Mathematical concepts normally are quite abstract... Doing (solving questions) could make 

sense of it. Students will have experience. When they correct their mistakes, they will be 

close to understanding well. (SHT3) 

When students are doing, we could give some comments. (SHT4) 

The Shanghai teachers also emphasised application: 

If students could abstract the real world problems into mathematics problem, they could be 

regarded as understanding. (SHT2) 

Chen and Weng (2003) suggested three levels to probe into students’ understanding: 

(1) the sign of understanding was that students could explain mathematics knowledge 

through speech; (2) the sign of exact understanding was that students could solve problems, 

namely through judgement, calculation, deduction, and proof; (3) the sign of deep 

understanding was that students could apply knowledge to real world situations. According 
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to this classification, the English teachers tended to use speech to confirm students’ basic 

comprehension, while the Shanghai teachers placed more emphasis on exact understanding 

and deep understanding of mathematical knowledge. In Shanghai, paper-and-pencil was a 

primary approach to examining students’ understanding, so that ‘reading ability’ was 

proposed by the SHT4 as a crucial element of understanding, especially reading long word 

questions.  

Understanding was also highly valued by the education authority in Shanghai. The 

Shanghai Teaching and Research Office proposed to ‘focus on dialogue in classrooms, and a 

promotion of students’ mathematics understanding’ as the emphasis of year 2014, while in 

2012 the theme was an ‘emphasis on mathematics reading, and to enhance understanding 

ability’. Therefore, the speaking or communicating maths has become much weighed.  

Point 5: The nature of mathematics knowledge. Three of the four selected 

Shanghai teachers defined their understanding of the nature of mathematics when asked 

‘what mathematics understanding is’. The SHT2 believed that ‘it needs to understand two 

basics’ (basic knowledge and basic skills), while the SHT1 mentioned ‘four basics’. Wang, 

Wang, and Wang (2008) explained the relationship between the ‘four basics’ (see Figure 51), 

that the above two basics and the basic experience of fundamental action would be refined as 

the basic mathematics method.    
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Figure 51. The relationship between the four basics 

Additionally, the SHT2 expressed her unique understanding of mathematics 

knowledge, which consists of translating three languages. The understanding or 

learning of mathematics involved the translation of these three languages. She also 

thought that this understanding could address students’ main barriers in the 

comprehension of linear function:  

Actually, learning mathematics is to translate three kinds of language: word, symbolic and 

graphic. For example, ‘absolute values’ is for word; '| |' is for symbolic language; and 

graphic (geometry) language is to show the distance between this point and origin (zero). 

These three languages should be combined together (to understand). Once seeing the word, 

students could reflect in symbolic and the distance in the number axis between two points; or 

seeing the symbolic representation, students could think about the word and the number axis. 

If students could figure it out clearly, mathematics would be easier for them. Another 

example, if seeing    , students could understand it as a positive number in terms of word,  

and in graphic representation it is located at the right side of zero. If three languages could be 

used well then it would not be a big problem for students’ learning. I think mathematics 

understanding is to translate three languages.  



277 

 

 

 

8.2.4 Theme 4: Barriers to students’ understanding of linear function 

The results for this theme are presented in three parts: the predicted English students’ 

barriers to understanding, the predicted Shanghai students’ barriers to understanding, and 

connecting these barriers to the model of understanding function. The teachers’ views on 

what caused these barriers to understanding were interwoven with their descriptions of what 

these barriers were. Furthermore, their predictions would determine the direction of the 

teaching they intended to promote, in view of facilitating students to overcome these 

understanding barriers.  

English students’ barriers to understanding. The English teachers summarised 

students’ barriers from three perspectives: (1) previous related knowledge and skills; (2) 

connecting representations; and (3) the meaning of gradient. ‘Forgetfulness’ as shown in the 

English student test where one student commented ‘cannot remember it’ (see Figure 28 at 

Chapter 7), and ‘fear of algebra’ (ENT1) were also described as barriers to understanding by 

the selected teachers, but would not be discussed or compared with each other as not fitting 

with the purpose of this study. 

Point 1: Previous related knowledge and skills. In identifying the students’ barriers 

to understanding, the first thought of all three English teachers was about the students’ 

previous related knowledge and skills, as ENT3 pointed out: 

I think linear graph is a very accessible topic. I think students of all abilities can access it at 

some level... The biggest barrier is their prior knowledge and what skills they have acquired 

previously to; then build on to get to the new topic. 

Previous knowledge, especially considering the coordinate system, confused the English 

students from three aspects: 

(1) The meaning of substitution into algebra: 

 Where they’ve got the equation, actually the substitution into the algebra, their misconceptions, 

   means 2 times x, you know, that kind of thing. (ENT3) 
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(2) Labelling coordinates in the square sheets frequently used in English classrooms: 

… Confusion is the number being in the middle for the bar chart (see Figure 52) as opposed to 

being on the line for the coordinate system. Another is that they need the same distance between 1 

and 2, or 2 and 3 – they don’t realise it matters (Figure 53). (ENT2) 

 

Figure 52. Labelling in bar chart 

 

Figure 53. Labelling in coordinate system 

(3) The meaning of coordinate: 

Understanding the connection between the x in the table and those coordinates. They don’t always 

make that connection. (ENT1)   

They have trouble with plotting as well. At primary school they are taught to do it “along the 

corridor and up the stairs”. For example, (3, 4), they just find 3 at anywhere in the diagram, maybe 

in the y-axis. They get it the wrong way round regularly…The other confusion is… we write it as 

    . If you told them that, they come to the coordination for that, typically they will say (6, 3) 

instead of (3, 6). Because the x is the right and the y is to the left. (ENT2) 

So things like if we are going to do        with a negative x value, they will go the wrong 

way up the number line, that kind of thing. Actually, those kinds of things hinder their 

understanding of linear graph. Despite the fact that they might understand what a linear graph is - 

they might understand the gradient and the y-intercept - but actually being able to draw the graph 

in the first place can sometimes be a bit tricky. (ENT3) 
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All teachers expressed their concerns for students’ numeracy skills, specifically 

dealing with negative numbers: 

When plotting linear graphs, how to calculate negative numbers. (ENT1) 

They’re very bad with negative numbers. (ENT2) 

For foundation groups, generally speaking, their numeracy work is weaker. (ENT3) 

This weakness has an effect on the ability of correct calculations for procedure 

knowledge. Apart from prescribing more practice in order to deal with the lack of numeracy 

skills, the ENT2 provided a tip that enabled the students to double check their answers:  

Another thing I did recently which I’m very proud of is when you do        in our 

lower group, you have a table that you’re trying to do in four quadrants. You’ve got negative 

numbers at the start of the table, but they’re very bad with negative numbers, so they need to 

practice it. If you tell them not to fill it from left to right, but from right to left, then after 

they’ve done two or three, they can spot what the pattern is and then they just continue the 

pattern downwards. For example,       , when you fill in the tables from right to left, 

then pupil know it just keep down the 3, as follows:   

x -1 0 1 2 3 

y    7 10 

During their interviews on handling these barriers, all of the English teachers 

mentioned the importance of practice. Two of the three teachers emphasised students’ 

misunderstanding or insufficiency of related previous knowledge as a major barrier to 

progression and comprehension.    

Point 2: Connecting Representations. Two teachers noted that students could only 

connect representations, from the algebraic expression to the tabular representation, and then 

from the tabular representation to the graphical representation, but failed to link the algebraic 

expression to the graphical representation directly, namely without being given a table in the 

question. For example, the ENT3 explained that ‘linking a graphic topic and an algebraic 

topic together they find quite difficult’. More specifically, the ENT1 stated that: 
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So if I just give them the linear equation in Year 10, they do not know how to plot without a 

table. But as soon as you give them tables, they could figure it out and link them, because 

they recognise the table. I don’t think they necessarily understand what they are doing.  

None of them mentioned whether students would have problems connecting the converse 

approach, namely translating a graphic representation to an algebraic expression (equation). 

The results from the last chapter showed that the majority of the Foundation Level English 

students had encountered difficulties with this process.  

Point 3: The meaning of gradient. The ENT1 argued that students could not actually 

understand the meaning of gradient from procedure perspective:  

They do it, but they don’t understand what they are doing. Another one is gradient calculated, 

if you got the straight line and calculate gradient, you take two points, some of them will take 

any points regardless ... Not the intersection point, they just go for anywhere, [and] they don’t 

understand why they cannot calculate it. They don’t actually understand the concept of 

gradient. 

Shanghai students’ barriers to understanding. Two main barriers were highlighted 

by Shanghai teachers: long word questions and stereotype of solution in application; and the 

basic method: the combination of symbolic-graphic in understanding knowledge.  

Point 1: Application. Two of the four teachers not only presented clear descriptions 

of two main barriers in application, but also were aware the underlying reasons: these 

obstacles were derived either from examples in the textbook or the arrangement of topics.  

First, the SHT3 commented that ‘(application) questions are too long so that students 

have barriers to read through it’. As discussed in Theme 1, the Shanghai teachers heavily 

relied on textbooks for their daily lesson planning. Findings from the textbook analysis 

chapter verified that examples and exercises in the textbook were mainly presented as long 

word problems. Secondly, the SHT2 considered broader barriers that students would face 



281 

 

 

 

after learning all types of function. The students might be clear at individual topic of 

application, but meet difficulty to choose the proper type of function to solve the question.   

In application, students have had a prototype for solutions. During this time, they would 

consider all application related with linear function. Because all exercises in the textbook 

choose the solution related with algebraic expression of linear function. Students lost 

opportunities to choose which kind of function to solve the problem. (SHT2) 

Point 2: Basic method of the combination of symbolic-graphic. All the selected 

Shanghai teachers thought that complex problems which were interwoven with other 

mathematics knowledge were main barriers for the Shanghai students’ learning of linear 

function. This linking was embodied in the basic method: the combination of symbolic-

graphic as involving visualization.  

Visualization, as discussed in an earlier chapter, had two specific meanings in case of 

linear function: students could derive information from a graphical representation and then 

translate it to an algebraic expression; or students could translate information from an 

algebraic expression or words to a graphical representation.  

The students’ weaknesses in the utilization of the graphical representations were 

initially observed from their solution tendency towards the algebraic solution in the 

application tests, as set out in Chapter 7: Student Tests. Especially in connecting linear 

function with linear inequality of one unknown (          ) shown in the 

compulsory textbook, the SHT4 argued: 

In classroom teaching, both two methods (algebraic and graphical approach) are taught. But 

when facing the actual problems, they will tend towards the algebraic approach... Students are 

quite familiar with the algebraic one so it is unnecessary to use the graphic one.  

There was an example of this basic method from the observation of SHT4’s classroom. 

This question could be solved by two approaches as graphic approach would be more 

effective, but almost every student chose the algebraic one.  
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Linear function        passes through (-1, -12) and (33, 2). Find out the 

quadrants that the graph passes through.  

Solution 1: Algebraic approach   

Because        passes by (-1, -12) and (33, 2), 

So {
        
       

 

then   
 

  
 ,    

   

  
 

Because             

Then this graph passes through the first, third and fourth quadrant.  

Solution 2: Graphical approach 

Draw the straight line through two given points in Cartesian plane (Figure 54). From 

the graphical representation perspective, this graph passes through the first, third and fourth 

quadrant.  

 
Figure 54. Graphic representation in the example 

Although the algebraic approach solution was not easy to calculate correctly, only two 

students in that class (35 students in the whole class) initially used the graphical approach. 

This example also indicated that the students had the higher proficiency of numeracy skills.  

On the other hand, the teachers highlighted this basic method mainly because it 

played the vital role on assessments, as the SHT3 stated that ‘in the assessment or final 

examination or high school entrance examination, the requirements for this method are higher 

and lots of questions will be related to it’.  
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The expression of these types of questions usually provided solely algebraic 

expression of linear function without presenting the graph so that students were not able to 

notice the necessary of drawing a graph to effectively solve it. In order to overcome this 

barrier, SHT4 suggested: 

… by trial-and-error. From the start, students are not familiar with the idea of drawing the 

graph, and then slowly by slowly, they could know that, if they draw the graph, they could 

resolve the problems. Geometry knowledge emphasises on the graph, while the algebraic one 

focuses on calculation. For the concept of function, we need to combine both. Students do not 

get used to doing it at the beginning. Both graphical representations of proportional function 

and inverse proportional function are simple; if students do not draw the graph, they could 

resolve most of questions. But for linear function, they need to develop a habit [drawing the 

graph]. 

A comparison of barriers on understanding pure knowledge. Table 47 reveals that 

the English teachers’ main concern focused on Level 3 and 4, with the basic knowledge, 

gradient and basic skill of connecting representations without a table. Conversely, the 

Shanghai teachers emphasised that basic method.  

Table 47  

Understanding Barriers in the Model of Understanding Function 

Model of understanding 

function 

View of English students’ 

understanding barriers 

View of Shanghai students’ 

understanding barriers 

Level 3 Connecting 

Representations 

Linking algebraic expression 

with graphic representation 

directly 

 

Level 4 Property Noticing The meaning of gradient  

Level 5 Object Analysis   

Level 6 Inventising  

Mathematical method of 

combination of symbolic-

graphic 
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8.3 Discussion 

In this chapter, teachers’ views on the teaching and learning mathematics, including 

linear function, portray the different considerations of the two regions. The first sub-section 

will address mathematics in classroom, as the teachers hold certain beliefs as to what the 

nature of mathematics in the classroom should be. Secondly, teachers’ pedagogical content 

knowledge (PCK) in two areas will be depicted according to the model discussed in literature 

review. Finally, the function of textbooks will be compared.   

8.3.1 Mathematics in the classroom 

This study suggests that English teachers prefer to use Inquiry Math; while findings 

from the Shanghai teachers revealed that they mainly applied School Math in the classroom. 

The selected English teachers demonstrated their tendency to use Inquiry Math in 

their classroom, which fitted with ‘three aspect of inquiry by design’ (Richards, 1991, p. 38): 

‘creat[ing] an inquiry environment’ by using multiple activities; students inquiring actively, 

as the ENT1 said ‘getting them to tell you [something]’; and ‘students [acting] as designer’, 

with the ENT3 mentioning that students were encouraged to make their own questions based 

on what they learned. Speaking is highlighted by the English teachers, as it promotes 

mathematical thinking and learning which is a Western assumption (Jin, 2004). The inquiry 

approach to Inquiry Math contains the use of blended instructions as the English teachers 

advocated. All of the selected Shanghai teachers talked of the best teaching method as 

‘teaching with purpose’. This purpose normally indicates a basic method which requires 

teachers to deliver information to students. This ‘delivery’ belief demonstrates that the 

teaching approach is didactic. This didactic traditional method shows the invaluable role 

teachers play in governing students’ understanding development, because students cannot 

construct these basic methods by themselves. According to the didactic teaching approach to 

basic method, within the classroom dialogue, it is reasonable to speculate that teachers adopt 
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the behaviourism learning theory, playing the role of information transfer. As with the 

example of the rational number addition that the SHT2 talked about, this example can be 

solved by other methods, but the teacher emphasised a certain procedure and evaluated it as 

the only proper solution. 

8.3.2 Pedagogical content knowledge (PCK) 

While comparing PCK between Chinese and USA teachers in middle school, Chinese 

teachers emphasised developing knowledge, including procedural and conceptual, while USA 

teachers focused on various activities (An et al., 2004). Findings from the selected Shanghai 

teacher interviews within this study, as teachers tend to be content-focused, are aligned with 

Chinese teachers. Meanwhile, the English teachers are inclined to use multiple activities, like 

the USA teachers. I use four perspectives from Knowing Students’ Thinking (see Figure 55) 

in their network to demonstrate the similarities and differences between the selected England 

and Shanghai teachers.  
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Figure 55. An et al. (2004, p. 147) network of teachers’ pedagogical content knowledge 

First, in terms of Building on students’ Math Ideas, understanding mathematical 

concepts was underlined by the English teachers, as ENT1 noted that ‘they don’t actually 

understand the concept of gradient’ (at understanding Level 4). The Shanghai teachers 

indicated the basic method: the combination of symbolic-graphic (at understanding Level 6), 

which proved to be an effective way of solving complex problems.  

Secondly, with regards to Promoting Students’ Thinking Mathematics, questioning 

students, encouraging students to ask questions and multiple activities are all approaches 

adopted by the English teachers; the Shanghai teachers lay stress on examining their students’ 

written work and directly delivering the basic methods. The basic method is tacit, so that 

teachers’ content knowledge is highly valued in order to develop students comprehension in 

Shanghai, evidenced by L. Ma (1999) appeal for USA primary school teachers to obtain a 
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profound understanding of fundamental mathematics. It can be inferred from this study that 

in the Shanghai situation, the importance of teachers’ content knowledge, especially in terms 

of basic methods, cannot be underestimated.  

Thirdly, regarding Engaging Students in Math Learning, however, a solid previous 

knowledge is essential to the development of new concepts concerning the teachers in both 

regions.  

Fourthly, looking upon Addressing students’ misconceptions, findings concerning 

how the teachers perceive students’ barriers to understanding reveal teachers’ strategies when 

addressing them. These barriers influence teachers’ decisions, and cause them to design the 

implemented curriculum, as ENT2 mentioned regarding the lesson plan: ‘what students could 

do and could not do’. All of the selected English teachers also offered a particular perspective 

on the causes of these barriers which have been noted. For example, when drawing axes in 

the graph, ENT2 identified students’ confusion between the continuous numbers and discrete 

set of numbers in labels, which were in line with the finding from A. Watson et al. (2013a). 

The evaluation of students’ barriers, however, have already been contextualised (Clarke, 

2003).  

In summary, it is impossible to make an outright, clear cut judgment as to which PCK 

knowledge the English or Shanghai teachers have is the best. The differences shown in 

teacher interviews illustrate that the teaching approach in each region is also constrained by 

the textbooks, as Elliott (2014) contends that pedagogic practices have their underlying 

factors (such as the culture of schooling, and students’ academic motivation and engagement) 

and cannot be imported to other cultures effectively.  

8.3.3 The function of textbooks 

Research has shown that textbooks largely influence how teachers portray a 

mathematical topic and implement their understanding of students’ learning trajectories in a 
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classroom, as there is a ‘statistically significant’ relationship between textooks and classroom 

instruction (Valverde et al., 2002, p. 10). Many researchers have revealed that textbooks are 

closer to the classroom than the national curricula (Howson, 2013), as embodied in teaching 

strategies or designing activities (Fan, 2013; Fan et al., 2013; Johansson, 2003; Leung, 1995; 

Son & Senk, 2010).  

Textbook use in the two regions has very different roles in the teaching and learning 

process. In terms of textbook use in English classrooms, initial reports from TIMSS revealed 

that, through the key stages, the use of textbooks increased considerably from 66% of Year 5 

pupils to 84% in Year 9 students, when teachers use textbook schemes over half of their 

teaching time (Foxman, 1999). However, in the case of linear function, ENT1 was 

dissatisfied with the lack of the number of the same type of practice questions.  

The data from English teachers’ suggests that  the role of textbooks within lesson 

plans is limited, as some of the selected textbooks are even designed for students to use for 

exam preparation instead of initial classroom learning. Instead, teachers work from the 

Scheme of Work. Within English schools, the Scheme of Work is written by the Head of 

Maths and taken from the respective exam broad. Every exam broad is required to follow the 

National Curriculum. Those textbooks designed espcially for the GCSE examination, all 

explain these requirements from the authors perspective, as Howson (2013, p. 652) noted that 

England textbooks are written ‘not by experienced teachers, but by experienced examiners’. 

The English teachers might not follow the textbooks in their entirety, but their approach to 

topics, such as students’ performance expectations, instructional features, and their 

perspectives, are not different to the textbooks. In addition, teachers’ lesson plan is reflected 

by their understanding of learning trajectories. This understanding is also based on teachers’ 

experiences as a student (Fennema & Franke, 1992), specifically how they were taught and 

how their own teachers presented the knowledge. The selected English teachers’ attitudes 
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towards instrumental understanding might be explained by their own lack of attention 

towards this procedural knowledge during their secondary school education.  

The Shanghai teachers regarded the compulsory textbook as the foundation of the 

lesson plan. Y. Li and Huang (2008) suggest that further investigations into ‘what exactly 

Chinese teachers do and learn with the textbooks’ are needed. Although Chinese teachers 

study textbooks very carefully and classrooms are textbook-based (L. Ma, 1999), the SHT2’s 

idea, as discussed earlier, of mathematics involving the translation of three languages was not 

listed in the textbook. The function of the textbooks in Shanghai is likely to provide the 

content; teaching is then built on, but not limited to this content.  

In conclusion, these three issues: the kinds of mathematics in classrooms, the PCK, 

and the function of textbooks in lesson plans within the two regions differed markedly, due to 

the different views of mathematics itself, the students’ reality, and the education policy.  

8.4 Summary 

By comparing the views on lesson plans, teaching and learning processes, the nature 

of mathematical understanding, and students’ barriers to understanding linear function (four 

themes), this chapter has identified some similarities and differences between England and 

Shanghai. 

In terms of education policy, high control and coherence among teaching materials in 

Shanghai, for example the same requirements for all the students, and uniform standard tests,  

leads to a content-centred emphasis on teaching (Theme 2) shown in their lesson plan (Theme 

1). The mathematics content is explained as four basics (Theme 3) so that the teachers focus 

on students’ abstract levels of understanding as well as the basic skills. Students’ written 

work is stressed rather than their verbal expression. Among these basics, the basic method in 

linear function was proved to be the main barrier of the Shanghai students within the pure 

knowledge section, while in real life problems, reading long word problems is difficult for 
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students (Theme 4). The teachers also pointed out that the arrangement of application 

misleads students into undertaking all of the application questions through linear function 

simultaneously, which hindered their selection of solutions when having to decide which kind 

of function was more suitable to solve the real life situation.  

The English education system is more flexible than that of Shanghai. Different levels 

of requirements lead to a student-centred lesson plan (Theme 2) with multiple activities 

(Theme 1). Procedural knowledge or instrumental understanding (Theme 3) is less valued by 

the English teachers than in Shanghai. As a result, one of the English students’ barriers is 

drawn from a lack of instrumental understanding (Theme 4).    

Behind these four themes, the views of mathematics that the two regions’ teachers 

have hold differed: School Math in Shanghai and Inquiry Math in England. This underlying 

belief of mathematics led to the views of understanding mathematics (Theme 3), while these 

views caused diverse approaches to lesson planning (Theme 1). Teachers’ pedagogical 

knowledge is also shaped by both the policy and views of mathematics. From the discussion 

section, the reason why the teaching approach (Theme 2) is inappropriate to import from each 

other has been addressed from a theoretical perspective. Students’ barriers (Theme 4) were 

shaped by the preferred ways of handling the topic at each region.  

As well as documenting cultural differences, comparative studies should 

accommodate the interrelationship of student achievement, curriculum content, and teachers’ 

approaches (Clarke, 2003). A discussion related to all of the findings will now be presented 

in the next chapter.  
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Part Three: Discussion and Conclusion  

The preceding chapters have offered a thorough exploration of the expectations of 

curricula, the ways in which respective textbooks convey these statutory requirements, and 

the Heads of Maths’ views of the teaching and learning process, focusing on understanding 

mathematics in general and understanding linear function in particular. Meanwhile, what 

students actually achieve in terms of pure knowledge and application has been illustrated. 

These findings which comprise Part Two of this thesis not only individually answer the first 

three research questions, but also offer a closer look at the bigger picture, in terms of factors 

that support or constrain students’ understanding development, providing an answer to the 

fourth research question. Part Three of the thesis (Chapters 9 and 10) will present a 

discussion of the key findings and assess the answers to the research questions in light of the 

extant research. The key findings will also serve as a mechanism for drawing out implications 

for future practice, for other researchers as well as suggesting recommendations for further 

study. The limitations of this study will also be addressed in the last chapter. 
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Chapter 9 Summary and Discussion  

This chapter has three main sections. The key findings from the four result chapters 

will be briefly listed in the first section of this chapter. Answers to the four research questions 

will then be combined with the literature to explore the underlying issues. Finally, the main 

contribution will be highlighted.   

9.1 Key Findings with respect to the four Result chapters 

The key findings will be summarised according to the analytical framework set out in 

each results chapter. The first two sub-sections relate to Chapter 5 and 6, and will address 

results from the curricula and textbooks in terms of the background information as well as the 

particulars of understanding linear function. The key findings from student performance will 

be categorised by the pure knowledge test and application test in the third sub-section. 

Finally, three key findings from the teacher interviews will be highlighted.  

9.1.1 Key findings of the Curriculum Analysis 

The findings from Chapter 5 justified three decisions made in this study: the sample 

chosen (as in key findings 1.1 below), the topic chosen (key findings 1.5), and two sets of test 

design (key findings 1.2). The different meaning of highest understanding level was 

identified (key findings 1.3) as implying the expectations of understanding at curriculum 

level. Particularly, the Shanghai curriculum pointed to the importance of memorization (key 

findings 1.4) in the process of understanding development.  

In terms of background information of linear function in the curriculum.  

Key findings 1.1: the sample chosen. The English students will be taught all the 

required knowledge at KS4 (Year 10 and Year 11) while linear function is arranged at Grade 

8 in Shanghai. In order to test the understanding of this topic, there was an unavoidable one-

year age gap between two groups.  
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Key findings 1.2: the two sets of tests design. The content of linear function has been 

split into two parts by both regions’ curricula: pure mathematics knowledge and application. 

Therefore, the student tests corresponded to these two parts.  

In terms of understanding linear function.  

Key findings 1.3: the approach towards the highest understanding level. Graphic 

representations play a central role in relating other mathematics knowledge in England; while 

Shanghai pays more attention to the algebraic expression within the basic method: the 

combination of symbolic-graphic.  

Key findings 1.4: memorization. It is deemed to be part of the understanding process 

in Shanghai as the first level of cognitive development.  

Key findings 1.5: the topic chosen. Linear function is the only suitable concept in 

function for the two regions, because of the same depth of requirement for understanding 

pure mathematical knowledge according to the general model of understanding function.  

9.1.2 Key findings of the Textbook Analysis 

The textbooks explain in detail the aims of learning within the respective curricula. 

Along with the justification of the topic chosen, content coverage in the textbooks indicated 

the similar importance for the topic in both regions (key findings 2.1). The differences of how 

to structure this topic combining real life situation with pure knowledge (key findings 2.2) 

offered the distinct views of handling linear function in each region. Looking further, the 

different emphasis of a certain understanding level (key findings 2.3) and preferred 

representation (key findings 2.4) illustrated what textbooks bring the focus and how each 

region handled this topic.   

In terms of background information of linear function in the selected textbooks. 

Key findings 2.1: content coverage. The selected Higher Level textbooks from 

England paid more attention to linear graph than the Shanghai compulsory textbook, while 
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the Foundation Level introduced less content concerning linear function. However, overall, 

the percentage of content coverage for linear function was roughly similar, at around 2%.   

Key findings 2.2: the arrangement of linear function. The selected English textbooks 

started with real life situations, moving towards Cartesian graphing, ending with the symbolic 

system of algebra, while the rigorous definition was introduced in the Shanghai textbook 

first, mainly keeping with the algebraic approach towards the basic method, and ending with 

application to real life situations.  

In terms of understanding linear function.   

Key findings 2.3: different foci of understanding levels. The worked examples in the 

selected English textbooks including Foundation and Higher Levels primarily focused on 

Level 4 Property Noticing while the Shanghai textbook focused on Level 5 Object Analysis.  

Key findings 2.4: different approaches. In the pure knowledge part, graphs were 

noticeable in the English textbooks. Conversely, the algebraic expressions dominated the 

Shanghai textbook. In the application part, the English textbooks required students to 

generate the algebraic expression from real world situations which were represented with the 

aid of the graphic representation while the generation of the rule in Shanghai was rooted in 

long word problems with the expectation that students can use two representation systems: 

algebraic and graphic.  

9.1.3 Key findings from the Student Tests (main study) 

Generally, the Shanghai students did significantly better than the English Higher 

Level students in both sets of tests. Results also portrayed the distribution of understanding 

levels for each group (key findings 3.1). Furthermore, probing into the understanding levels, 

what students succeeded at and what they failed at were diagnosed (key findings 3.2 for the 

English Higher Level students and key findings 3.3 for the Shanghai students). From the 

application test, the preferred representations (key findings 3.4) noticeably differed between 
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the two groups of students, as another way to reflect how their understanding was shaped. 

The relationship between achieving higher levels of understanding and higher performance in 

application (key findings 3.5) is statistically significant. 

In terms of understanding pure knowledge tests. 

Key findings 3.1: overall views of understanding function. The distribution of 

understanding levels that the English Higher Level students showed was more diverse than 

their counterparts in Shanghai. The Shanghai students mainly were located at Levels 5 and 6; 

while the English Higher Level students were dispersed from below Level 4, Level 4, and 

Level 5 to Level 6.  

Key findings 3.2: the main strength and weakness of the English Higher Level 

students. The main strength of their understanding was shown in the highest level of 

understanding. Nearly 30 per cent of the students could successfully solve the questions 

related to geometry knowledge which were beyond the requirements of the respective 

curriculum. Their main weakness appeared at Level 4, the meaning of gradient. The positive 

value of gradient was fully understood by one third of the students while the percentage for 

the negative value of gradient was only one-sixth of the students.  

Key findings 3.3: the main strength and weakness of the Shanghai students. The 

Shanghai students heavily relied on algebraic method to solve the complex question. This 

strong preference caused their insufficient understanding of graphic representation embodied 

in the basic method: combination of symbolic-graphic required by the Shanghai curriculum.   

In terms of application tests.  

Key findings 3.4: preference for representations. The solutions offered by the 

English Higher Level students demonstrated their tendency of graphic representations, while 

the strong preference of algebraic expression was observed from the Shanghai students. In 
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other words, the English students were not good at generating algebraic expressions while the 

Shanghai students showed their difficulties in using graphic representations in their solutions.  

Key findings 3.5: understanding and application. Understanding Level 5 has been 

identified as a benchmark for higher performance of application in both regions. On the other 

hand, the higher performance of application showed less successful influences of highest 

level of understanding.  

9.1.4 Key findings from the Teacher Interviews 

Interviews with the selected teachers examined issues around students’ understanding: 

what they prioritised when doing the lesson plan (key findings 4.1), what they perceived to be 

the barriers to students’ understanding of linear function (key findings 4.3), and how they 

facilitated students’ understanding (key findings 4.2).  

Key findings 4.1: lesson plan. The selected English teachers tended to focus on 

students’ ability in order to design a suitable lesson, along with flexible seeking of suitable 

materials; while the Shanghai teachers would carefully consider the requirements of the 

textbook first.    

Key findings 4.2: understanding development. Both groups of teachers agreed that 

understanding was a process and students were supposed to understand both how 

mathematics knowledge works and why. The teachers in England particularly drew attention 

to students’ spoken language and using multiple activities to engage their learning with 

understanding; while written work was highly valued by the Shanghai teachers because of the 

more abstract understanding involved in the tasks. In terms of procedural knowledge, the 

English teachers did not regard it as a part of understanding; while the Shanghai teachers 

perceived it as basic skills, as one of four basics which understanding was divided into.    

Key findings 4.3: perceived barriers to students’ understanding. The English 

teachers predicted that their students would meet the challenges of linking algebraic 
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expressions with graphic representations without being given tabular representation 

(understanding Level 3), and the meaning of gradient (understanding Level 4), but also 

identified the lack of related previous knowledge (such as the meaning of substitution, 

coordinates) and basic numeracy skills such as dealing with negative numbers. The Shanghai 

students were expected to overcome the basic method: the combination of symbolic-graphic, 

located at understanding Level 6. Long word problems in application were difficult to handle 

for Shanghai students.  

9.2 Discussion of the research findings in response to the Research Questions 

The answers for each research question from each chapter have been partly stated in 

the first section, and will not be repeated here. But findings emerging from the overlapping 

issues in each results chapter will be synthesised in this section and related to the literature. 

There are four key discussion points in response to the four research questions: the coherence 

of requirements between the curricula and the selected textbooks in terms of understanding 

linear function; the coherence between achieved curriculum and intended curriculum; 

different teaching approaches towards understanding; and the holistic map of student 

understanding development in the two regions, such as the notion of mathematical 

proficiency in Shanghai and different emphases on representations. Therefore, each sub-

section consists of three parts: a restatement of research question, additional answers to the 

question, and discussion of that research question in terms of the related literature.  

9.2.1 Research question 1 

What are the requirements of the intended curriculum and officially used textbooks in 

the two regions in terms of linear function? 

In response to Research Question 1. The key findings from Chapter 5: Curriculum 

Analysis and Chapter 6: Textbook Analysis in the previous section, have briefly answered 

Research Question 1.  
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Particularly, due to the different arrangement of simultaneous linear equations in the 

two regions, this knowledge was excluded by this study as discussed in Chapter 6: Textbook 

Analysis. Therefore, the requirements of the intended curriculum (KS4) for all English 

students reached understanding Level 5 for pure knowledge understanding. With regards to 

worked examples, there was incoherence between the national curriculum and commercial 

textbooks in England. Additionally, linear function was introduced as linear graph in the 

English textbooks, and they were different concepts. Conversely, the coherence of 

understanding levels between official documents was present in the Shanghai situation.  

Discussion: two approaches towards mathematics. As discussed in Chapter 2: 

Research on Comparative Education, there are two types’ views of mathematics, pure and 

applied mathematics. The English textbooks avoid defining the formal concept of linear 

function as well as the concept of function. Furthermore, linear graph is built upon particular 

contexts such as time-related graphs. The textbooks therefore cultivate the pragmatical 

approach towards mathematics. Conversely, mathematical concepts are rigorous in the 

Shanghai situation. Linear function has the rigorous definition in the form of      

  (   ), distinguished from the constant function (   ). Shanghai’s intended curriculum 

emphasises three basics in line with this formalist view of mathematics. Furthermore, teacher 

interviews reveal that basic methods are highly valued in the process of teaching and 

learning. Meanwhile, these basic methods do not rely on knowledge which students can bring 

from outside of school, and can only be taught as a separate subject. The findings from the 

Shanghai student tests confirm that students mainly use the formal symbolic method. 

Therefore the learning trajectory in Shanghai curriculum and textbook conforms to the 

description of the pure view towards teaching mathematics.  
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9.2.2 Research question 2 

What do English and Shanghai students actually achieve (the attained curriculum), 

with regards to linear function? 

In response to Research Question 2. The findings from the Student Tests have 

answered this question. In this section, the students’ learning outcomes will be compared 

with what the curricula expect according to the general model of understanding function, to 

ascertain how close students achieve these required criteria. 

In terms of the consistency between the intended and the attained curriculum in 

England, the understanding level required by the statutory guidance sits at Level 5, and 50.6% 

of the English Higher Level students (21.6% at Level 5 and 29.0% at Level 6) have reached 

the understanding requirements of the intended curriculum. In the Shanghai situation, this 

percentage is 57.9%. Although Shanghai students have done better than their counterparties in 

England in general, the percentage of students who have fulfilled the respective curriculum 

requirements does not demonstrate the disparity between the English Higher Level and the 

Shanghai situations. It is reasonable to assume that these students’ understanding is highly 

related to the depth of knowledge students are expected to master in each region. This relation 

is correlation rather than causality. It does not imply that to increase the complexity of 

curriculum is a possible effective way to enhance English Higher Level students’ achievement. 

This finding only gives another perspective to interpret the students’ performance gap.  

Discussion: the more effective representation to solve problems. This study’s 

findings of students’ performance in application tests are in line with the results of PISA. In 

additional, the English and Shanghai students adopted opposing approaches and showed 

differing preferences for representation system. The visual approach dominated the Year 10 

(15 years old) English students’ test responses; but a study of outstanding senior secondary 

school students (16-17 years old) showed that they were always non-visualisers, preferring to 
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use methods other than visualisation in order to solve problems (Presmeg, 1986). To examine 

this issue further, the inquiry is whether the algebraic method or algebraic expression has 

helped the Shanghai students to achieve better results. That is, which representation could be 

the most effective in terms of students’ learning outcomes: the graphical one or the algebraic 

expression?  

Advocates for the symbolic representation. With respect to learning outcomes, it 

appears that the symbolic or algebraic approach is better than the visual ones, graphic and 

tabular. Indeed, students who used symbolic representations showed higher mean scores on 

tests than those who used other representations, such as visual representations (Cai & Lester 

Jr, 2005). Nistal, Van Dooren, and Verschaffel (2012) illustrated that students who worked 

with formulae produced a higher accuracy rate than those who used tables. The tabular 

representation was unable to list all variables, and findings from the application test (No.4b) 

in the pilot study demonstrated the superiority of algebraic expression.  

Gagatsis and Shiakalli (2004) suggested that the use of symbolism is fundamental to 

enhancing understanding. Similarly, Aspinwall, Shaw, and Presmeg (1997) examined the 

function of graphic representation in college-level calculus in order to understand the 

derivative function via analytic modes of thinking, with results showing that graphic 

instruction handicapped students’ understanding. In terms of the understanding tests, the 

Shanghai students revealed their statistically significant better performance in this study. 

Symbolic representation facilitates their understanding development.  

On the other hand, British students struggle with algebraic expressions (Herscovics & 

Linchevski, 1994), which resonates with this study’s findings from the application tests in 

main study (with only 8.2% displaying an ability to form an algebraic expression). Most of 

the Higher Level English students failed to use the formal symbolic method to construct an 

algebraic expression. Apart from their insufficient understanding of gradient, there were two 
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other concepts associated with difficulties: the meaning of variable, and the ‘=’ sign. The 

notion of a variable is normally ‘associated with algebraic symbols’ (Leinhardt et al., 1990, p. 

22). Nearly 30% of the English Higher Level students in the application test in the main study 

(‘fire charge’ question) showed that they avoided the use of symbols when generating the rule. 

It implies that the perspective of variable should be more focused in England.  

Although students’ understanding of the ‘=’ sign in the algebraic expression was 

unclear in this research, 15-year-old British students were reported to regard this sign as 

working out a result rather than demonstrating a relation (Sfard & Linchevski, 1994), and the 

main barrier in moving from arithmetic to algebra is the ‘=’ sign (Mathematics Learning 

Study Committee, 2001, p. 379). Additionally, Herscovics and Linchevski (1994, p. 75) 

found a considerable cognitive gap between arithmetic and algebra for gifted British students, 

as they could not ‘operate with or on the unknown’. Operating ‘spontaneously with or on the 

unknown’ was viewed as the demarcation between arithmetic and algebraic understanding 

(Herscovics & Linchevski, 1994, p. 63). The results of the study suggest that further research 

should investigate whether these English students’ understanding still remains at the 

arithmetic level.  

After examining students’ preferences for visual solutions in mathematics in three 

countries, South Africa, Sweden, and the United States, Presmeg and Bergsten (1995, p. 59) 

argued that visualization was not given enough attention in the classroom or subject system, 

and visualization might be downplayed or devalued in certain classrooms or systems’, but 

that, if given the opportunity, students would prefer visual methods. Results from the 

Shanghai students did not show this preference. However, the partiality for algebraic 

expression might have weakened their graphical understanding or visualization which was 

also related to their insufficient grasp of the meaning of gradient. The Shanghai students’ 

responses implied that this tendency also weaken their understanding development in graphs. 
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Advocates of the graphic representation. Although Cox and Brna (1994) argued that 

graphical representations limit the presented information and are less expressive of 

abstraction, findings from the application test illustrated that only three English students got 

the inaccurate answer from graphic representation. It verified the power of visualization in 

case of linear function. 

On the other hand, the symbolic approach towards solving problems has been 

criticised. The dangers with the algebraic approach, as Sfard and Linchevski (1994) warned, 

were that students can easily focus simply on the automatic symbolic manipulations, resulting 

in their inability to explain or justify their problem-solving methods and reasoning. Further, 

Abdullah (2010) argued that students who operated superficially with symbols showed 

difficulties when using the Cartesian graph. The Shanghai students did show their difficulties 

when linking to basic knowledge in the Cartesian plane in the highest understanding level 

question.  

Focussing on the property of gradient, the visual approach to the meaning of this 

property could seemingly lead to some degree of confusion, because the scale of the axes 

could be changing in different contexts, while the algebraic approach would not meet this 

problem (Zaslavsky et al., 2002). Ayalon, Watson, and Lerman (2014) argued that English 

students only at Year 13 showed strong understandings of gradients. Results from the 

understanding tests in terms of gradient showed that graphic meaning of gradients was 

unsuccessful for English students to understand and their teachers also expressed their 

worries.   

Connecting algebraic expression with graphical representation. Translation from 

algebraic expression to graphical representation is much easier than the opposite way round 

(Markovits et al., 1986). It was recommended that the crucial steps of the transition from 

visual representations to internalized abstract representations, such as algebraic expression, 
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should be a focus (National Mathematics Advisory Panel, 2008). In this case, the algebraic 

method was much more effective, as the Shanghai students outperformed the English 

students in the conversion of a tabular representation to an algebraic expression in terms of 

the ‘match’ question in the application test. This finding was analogous to the study by 

Ayalon et al. (2014) about generating a formula from the similar series of figures that 

compared Israeli and English school students, their results showing that only 50% of the 

English students successfully resolved the question. The researchers assumed that the formal 

algebraic approach to function used by the Israeli students had more advantages than the 

adaptive reasoning used by the English students. In this case, it is reasonable to speculate that 

Shanghai students used two pairs of points in the table to form simultaneous equations to 

discover the appropriate formula. The English students had to undertake the deduction from 

the pairs of points in the table to form the algebraic expression, which was much harder. In 

this respect, the algebraic approach played a crucial role in the Shanghai students’ superior 

performance in connecting representations.  

Therefore, ideally, textbooks should use a variety of representations to promote 

understanding (Gagatsis & Shiakalli, 2004), and introducing different approaches leads 

students to pay more attention to how to get the solution instead of merely solving the 

problem without any comprehension (Xu, 2004). The textbook in Shanghai not only presents 

more opportunities for students to use the two types of representations (algebraic and 

graphic), but also encourages the use of two kinds of solutions in their answers. If more than 

one representation is used in problem-solving, students’ performances would be higher than 

those students merely using one (Ainsworth, 1999).   

9.2.3 Research question 3 

What are teachers’ views regarding the teaching and learning of linear function? 
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In response to Research Question 3. The findings from the Teacher Interviews have 

answered this question.  

Discussion: two approaches towards understanding development. As discussed in 

the Literature Review, there are two approaches to teaching mathematics knowledge: bottom-

up, such as the Pirie and Kieren model (Pirie & Kieren, 1994b), or top-down, such as APOS 

theory (Dubinsky & McDonald, 2002) by didactic approach. These two approaches were in 

line with the findings from this chapter: the English teachers perceived mathematics 

classroom as inquiry maths based on activities that students undertake, i.e. bottom-up; while 

school maths was applied in the Shanghai teachers, i.e. top-down.   

The bottom-up approach (mathematising) – otherwise known as the ‘realistic 

approach’, emphasises the actual ‘doing’ of mathematics which involves ‘solving real life 

problems’ so that various contextual problems not only play an essential role in learning with 

understanding, but are also integrated into the curriculum from the start (Gravemeijer, 1997, 

p. 330). This method, the bottom-up approach, is well rooted in the English situation. On the 

other hand, the top-down approach (transfer), also known as the ‘information processing 

approach’, separates the process of learning mathematics into ‘learning formal mathematical 

knowledge and learning to apply it’ (Gravemeijer, 1997, p. 330), as adopted in Shanghai. In 

terms of the bottom-up approach, the doubts of the selected Shanghai teachers stem from two 

perspectives: this method is criticised as ‘not effective’ for teaching by SH1 and SH3, and as 

a means of ‘taking detours’ for learners by SH1.  

Although the Shanghai students’ performances are generally better than the English 

students in this study, it cannot be concluded that the bottom-up method fails in its pragmatic 

approach to understanding mathematics in secondary school level. There are two reasons for 

this, as shown in the student tests. First, when comparing what percentage of the students 

achieved of the requirements the intended curriculum, there was not a great difference, with 
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50.6% of the English Higher Level students and 57.9% of the Shanghai students reaching the 

necessary point in the respective course. Secondly, the relationship between higher 

performance in understanding (total score and understanding levels) and higher performances 

of application is statistically positive. However, findings from the Student Tests showed that 

in terms of learning outcomes, the top-down approach was more effective in terms of the 

highest level understanding than the bottom-up one.  

9.2.4 Research question 4 

What shapes students’ understanding of linear function? 

In response to Research Question 4: differences between predicted barriers by 

teacher and actual barriers by students. When referring to effective support for students, 

the views of teachers about students’ barriers are important. The selected teachers for both 

groups have demonstrated their accurate prediction of students’ barriers to understanding 

which were verified by the student tests in the main study (see Table 48 and Table 49). 

Approximately two-thirds of English Higher Level students successfully overcame their 

problem-solving obstacles. In Shanghai, however, the majority of students could not fully 

overcome their barriers to application, and beyond one-quarter of students struggled in the 

highest level of understanding – the basic method, even though Shanghai has a higher 

expectation of students’ deep understanding of mathematics should be considered.  

Table 48 

The English Teachers’ Prediction and Students’ Real Barriers  

Predicted by English teachers 
Affected at understanding 

test 

Affected at 

application test 

Point 1 

Previous 

knowledge 

and skills 

The meaning of 

substitution 
 

27.8% of the Higher 

Level students  

The weak numeracy 

skills (negative number) 

31% of the 

Foundation Level 

students  

 

Point 2 the 

meaning of 

gradient 

 
73.5% of the Higher 

Level students  
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Table 49  

The Shanghai Teachers’ Prediction and Student’ Real Barriers  

Predicted by Shanghai 

teachers 

Affected at understanding 

test 
Affected at application test 

Basic method of combination 

of symbolic-graphic 

26.5% of students had no 

habit to draw a graph when 

solving the complex 

questions 

 

Application for long word 

problem 
 

Around 10% of students 

could fully deal with the long 

word problem 

In summary, the coherence between students’ barriers as shown in the tests and 

teachers’ predictions was dissimilar in the two regions. This indicates to what extent students 

might receive support to overcome these barriers, although acknowledging the complex and 

higher levels understanding of barriers for Shanghai students.   

Discussion: holistic views of understanding. The underlying reasons why the 

Shanghai students had the more abstract understanding using the preferred algebraic 

representations will be explored from three perspectives. First, the comparisons of the main 

aspect of definition and the preferred representation will illustrate the less effective way of 

presenting the knowledge in England. In Point 2, a comparison of the view of understanding 

will be addressed from the notion of a mathematical proficiency perspective. Following the 

divergent views of understanding, the importance of skill-algorithm in understanding 

development will be discussed.  

Point 1: main aspect of definition and the preferred representation. In the England’s 

situation, the KS4 English curriculum requires that students ‘where appropriate, interpret 

simple expressions as functions with inputs and outputs’ (Department for Education, 2014, p. 

7), revealing the input-output view in the concept of function. Correspondingly, the input-

output assignment aspect of function is introduced by the junior secondary textbook as 

discussed in the Literature Review. The results from the Textbook Analysis revealed that the 
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graphic representation is widely applied at each understanding level as well as the application 

part in England. Schwartz and Yerushalmy (1992, p. 263) pointed out that ‘the graphical 

representation of the function is relatively more effective in making salient the nature of the 

function as an entity’. The graph itself offers a tendancy to a global analysis view of the 

mathematical object. In other words, the process aspect might be missing in England.  

In the case of the concept of gradient, how to present this knowledge and how to teach 

it in England confirmed this issue. First, there is seemingly a conflict between the nature of 

function and the graphical representation for English students as well as for teachers to cope 

with. That is, students might find it easier to grasp the meaning of gradient: the steepness of 

the line, when regarding the graph as the object. However, how to work out the value of the 

gradient is through constructing three coordinates within a right triangle. Therefore, 

understanding the gradient requires two perspectives together: intuitive understanding of 

steepness and calculation from points. These two seperate issues might cause the students to 

experience difficulties in mastering this property, in terms of how to go through the process. 

Secondly, the English teacher interviews illustrated that commercial software was widely 

used in their classrooms to help students understand the concept of gradient. Researchers 

(Artigue, 2002; Schwarz & Dreyfus, 1995) have confirmed the positive influence of a 

computer environment in the enhancement of balancing these two perspectives as discussed 

in Chapter 3. The less successful English student performance in this study did not imply the 

disagreement of the benefit of computer environment. However, the reason why the meaning 

of the gradient became one of the main barriers for the English students can be speculated as 

the gap between the non-calculator test environment in student tests, which means that 

students have to go through the process stage, and the commercial software environment 

teachers used in the teaching and learning process, which would automatically go through the 

process stage.  
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In addition, the variable aspect of function (Doorman et al., 2012) is missing in 

England with respect to function, although both the KS3 and KS4 national curriculum 

documents have pointed out the concept of variable in the section titled ‘Reason 

mathematically of Working mathematically’: ‘identify variables and express relations 

between variables algebraically and graphically’ in KS3 (Department for Education, 2013c, p. 

4) and ‘extend their ability to identify variables and express relations between variables 

algebraically and graphically’ in KS4 (Department for Education, 2014, p. 5). The concept of 

variable was introduced in another chapter in the selected textbooks titled Algebra: ‘this is 

what the letters used to represent numbers are called’ and ‘the variables are treated just like a 

set of (x, y) coordinates’. But the link between the concept of variable and function or linear 

function was weak. Schwartz and Yerushalmy (1992, p. 263) argued that ‘the concept of 

function and the concept of variable are intimately linked and we believe that each can serve 

to shed light on the other’. This missing of the variable view in function led to the English 

Higher Level students’ difficulty of generating the rule, as shown in the application tests, 

where only 8.2% of pupils presented a full understanding of the form of an algebraic 

expression. This resonates with the fact that British students have been struggling with 

algebraic expressions (Herscovics & Linchevski, 1994) as discussed above.  

In the Shanghai situation, the dynamic process of co-variation aspect of function was 

introduced in Chapter 3, where the algebraic expression played a crucial role in 

understanding function. Schwartz and Yerushalmy (1992, p. 263) put forward that ‘the 

symbolic representation of the function is relatively more effective in making salient the 

nature of the function as a process’. This coherence helped students to build the operational 

view of function which is the first step towards understanding (Sfard, 1991).  

Point 2: different perspectives on understanding. The Chapter 3 revealed the 

different perspectives on understanding between the West and China. The Shanghai 
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curriculum, as discussed in a previous chapter, is built on the development of proficiency, 

like most top-performing countries.  

Mathematical proficiency has five strands: (1) conceptual understanding; (2) 

procedural fluency; (3) strategic competence; (4) adaptive reasoning; and (5) productive 

disposition (Kilpatrick, 2001, p. 107; National Research Council, 2001, p. 5). These five 

strands match with the four basics emphasised in the Shanghai classroom (basic knowledge, 

basic skills, basic methods, and basic experience). Conceptual understanding relates to 

understand conceptual knowledge. Procedural fluency can correspond to mastering basic 

skills or procedural knowledge. Strategic competence and adaptive reasoning are relevant to 

basic methods as students have the capability to evaluate the question first, then to identify 

the appropriate strategy, and finally to defend their solution. The last strand, productive 

disposition, which describes students’ attitudes and beliefs towards and regarding 

mathematics, is similar to basic experience to shape their values towards mathematics. The 

common factor between mathematics proficiency and the four basics is that they can be 

developed together. In England’s curriculum, only conceptual understanding is stated.  

Point 3: understanding and skill-algorithm. Findings from the teacher interviews 

also revealed that the English teachers did not consider numeracy skills to be part of 

understanding mathematics. Instead, they separate the procedural knowledge and conceptual 

knowledge. The latter is regarded as developing understanding and is highly valued by the 

English teachers. Conversely, the Shanghai teachers believe that both forms of knowledge 

contribute to understanding development. Procedural knowledge contains numeracy skills. It 

is unnecessary for teachers and students, however, to understand why a calculator or 

computer algebra system can solve mathematical problems (Howe, 1999). But using 

procedural knowledge is also to indicate the ability to choose the right procedure to solve the 

problems.  
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Moreover, Fan and Bokhove (2014) proposed an algorithms learning model which 

consists of three hierarchical cognitive development: (1) knowledge and skills; (2) 

understanding and comprehension; and (3) evaluation and construction. The first level is a 

straightforward employing of the rules; for example, how to calculate the gradient of a linear 

graph, or how to use the given gradient to draw a straight line. It leads to a view of rote 

learning. The English students’ weakness in numeracy skills is largely related to this level 

according to their performance in the tests. The second level involves comprehending the 

procedure knowledge. In the case of gradient, the steepness rooted in the graph is determined 

by the degree of angle between the graph and horizon line. As the angle increases, the steeper 

the line is. The angles of any size can be positively related with trigonometry      which 

equals the graphic meaning of gradient. The third level, evaluation and construction, entails 

between choosing several algorithms in a complex situation to solve the problem. The latter 

two levels involve more reasoning abilities which are built on the first level, knowledge and 

skills. The lack of the first cognitive level of algorithms and teachers’ views of pure 

knowledge will weaken the procedural fluency as well as the adaptive reasoning which are 

two aspects of mathematics proficiency. Results from the student tests showed that the 

majority of the Foundation Level and a considerable number of the Higher Level English 

students cannot go through the first level, so that it might be hard to improve their other two 

higher cognitive levels of algorithms learning.    

9.3 Contribution 

This section will highlight two main contributions of this study to the knowledge in 

comparative mathematics area and understanding development area. First is, to what extent, 

the cultural features in China support abstract mathematics understanding type. Secondly, the 

model of understanding is an innovative aspect of the understanding research area. The 

strengths of the model have been validated in the result part of the thesis and the limitations 
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will be discussed in next chapter. The further use of this model will be illustrated by its 

potential value and aware of its weaknesses.   

9.3.1 Understanding mathematics and cultures 

The first main contribution of this study is to link the main characteristics of Chinese 

culture with that of mathematics education, specifically shown in terms of curriculum, 

textbooks, and teacher’s belief. Furthermore, these impacts from the cultural perspective 

directly or indirectly have shaped students’ understanding development in Shanghai. Findings 

from this study have identified the main reason that Shanghai students performed better is 

their more abstract understanding of mathematics than their counterparts in England. The 

algebraic approach instead of the graphic way of approaching mathematics, in terms of linear 

function, can be viewed as the consequence of the requirements of abstract understanding and 

the foci of the basics.  

Leung (2006) stated that according to TIMSS and TIMSS-R reports, the higher 

achieving East Asian students had surprisingly held lower positive attitudes towards maths 

than the Western students. It appears that this achievement is not strongly influenced by 

features of education system (centralised system or instruction in and out school). The 

cultural perspective in comparative studies with regards to mathematics teaching and learning, 

however, has been widely used to interpret the results (Leung, 1995, 2005, 2006; Leung & 

Park, 2002). Leung (1995) summarised four perspectives of CHC culture to explain the 

striking differences on mathematics education between China and West countries: (1) the 

integration and harmony social orientation of the Chinese, (2) the importance and necessity of 

memorization and practice, (3) the high expectations on student achievement and the parents’ 

attribution, and (4) diligent and persevering attitude towards study.   

The third perspective - higher expectation and parents’ involvement, brings about the 

considerable possibility that students are encouraged by parents in the family, teachers in the 
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classroom, and ethos of the school to obtain higher performance from education traditional 

aspect. Competitive examinations in China would correspondingly have more complex 

questions. A key to the success of these important assessments is to acquire abstract 

understanding of maths. The degree of complexity has been embodied in curriculum, the 

compulsory textbooks, and teaching strategies towards higher understanding levels shown in 

this study. The result part has indicated that Shanghai had put more efforts in facilitating 

students’ abstract understanding development than England did. 

In terms of the forth perspective, the whole community appreciates the diligence and 

perseverance which lay the foundation for students to be proficient in three basics: basic 

knowledge, basic skills, and basic method from mathematics tradition. Students’ efforts 

especially for mastering basic skills in China are more appreciated than their ability (Shiqi Li, 

2006). Similarly, the findings from teacher interview show different teacher attitudes towards 

procedural knowledge.  

The function of memorization from second cultural perspective has been written and 

acknowledged by the Shanghai local curriculum as the preliminary step towards 

understanding. Leung and Park (2002) replicated the study of profound understanding 

conducted by L. Ma (1999) to investigate Hong Kong and Korea primary teachers’ 

competence in mathematics. Hong Kong and Korea students’ performance both have 

consistently been in the top performance group in PISA and TIMSS while still being lower 

than Shanghai students. The teaching strategies used by their teachers tended towards 

procedurally understanding instead of conceptual understanding one which Shanghai teachers 

follow, according to Ma’s study (Leung & Park, 2002). The findings also explained that the 

reason that East Asian students and teachers achieved mathematical competence would be 

‘through repeated practice of well-designed exercises that the learner progressively gains 
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conceptual understanding’ (Leung & Park, 2002, pp. 127-128). In other words, the 

importance of memorization actually expedites the conceptual understanding.  

Concerning Chinese social orientation, Chu and Choi (2011, p. 267)  suggest that 

Chinese culture tends towards horizontal collectivism where social relationship development 

‘focus[es] on close bonding with great influence on attitudes, norms, and behaviours’. This 

kind of bonding has certainly nurtured the effectiveness of the whole-classroom instruction 

and large size of class. Meanwhile, the nature of harmony or bonding is to balance opposing 

views of mathematics, for example ‘the application of maths and the formal nature of maths’ 

(Zheng, 2006, p. 385). From the negative influence of culture, due to the high pressure of 

examination, teachers in China lacked adequate awareness of the application part and allowed 

little space to develop students’ creativities (Zheng, 2006). In this study, compared with the 

outperformance of understanding tests in Shanghai (large effect size), results from the 

application did not have that stronger advantage (middle or small effect size). Conversely, 

English mathematics teaching has given much more attention to real-world examples (Kaiser, 

Hino, & Knipping, 2006).  

The Chinese culture factors have gradually fostered the abstract mathematics 

understanding which conversely reinforces those cultural features. There is an on-going 

debate in academia about what can be learned in comparative studies due to completely 

different cultural background - the Western and the Eastern (Fan, 2011; Ginsburg et al., 2005; 

Jeynes, 2008). In case of America and East Asia, parent-teacher relationships and advocacy 

of effort instead of ability are considered, as America can learn and transfer from the Eastern 

culture (Jeynes, 2008). This suggestion is drawn from the culture perspective or education 

background. Similarly, what England can do is to rethink the role of procedural knowledge in 

understanding development and the importance of effort, even though English students are 

levelled by ability throughout their junior secondary school. The thesis, however, shows the 
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pragmatic approach towards the mathematics background: the balance point at understanding 

level, Object Analysis. It is important for Shanghai to stress more in the application part and 

release a little from the Inventising level of understanding; while England should emphasis 

more the in Object Analysis level of understanding.  

In future research, the two areas under different cultures should collaborate with each 

other to improve students understanding development. To do so, this study is a start or a pilot 

to set out this collaboration. It does not mean comparative assessments or other kinds of 

collaborations were unimportant. A more fundamental aspect of comparative study is to focus 

on mathematics itself, the concept and how to present the concept. The potential differences 

in these two perspectives of mathematics present us with the chance to enrich and complete 

ourselves.  

9.3.2 The model of understanding mathematics  

The second main contribution is the model of understanding mathematics which has 

particular relevance in the areas of understanding development not only from student 

perspective, but also for teaching materials. As a result, student performance can be explained 

by mathematical aspect. After comparing the East Asian classroom with the West, the East 

Asian mathematics content was regarded much ‘more complex and advanced’ (Leung, 1995, 

p. 210). The model, however, has indicated a method to measure the complexity and advance 

within three perspectives: curriculum, textbooks and student performance. From the 

competition perspective, it is important to explore the degree of this complexity to which the 

model offers useful perspectives for understanding how the understanding develop and 

towards which level. Furthermore, the model of understanding developed shows the 

correlation among these three perspectives.  

Secondly, the model gives the level of understanding function as well as the certain 

method at each level. It demonstrates that a certain method - algebraic one, seems to aid a 
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higher level of understanding development. In England, the CSMS study (Concept in 

Secondary Mathematics and Science) in the 1970s has had a far-reaching influence on 

investigating mathematics understanding (Hart, 1981). This study was designed to level the 

understanding instead of probing certain methods. The model, however, combines these two 

perspectives.  

Thirdly, the model can be used to monitor the change of curriculum in terms of 

understanding development. Hodgen, Brown, Kuchemann, and Coe (2010) conducted the 

ICCAMS (Increasing Competence and Confidence in Algebra and Multiplicative Structures) 

as replicating CSMS in terms of three topics: Algebra, Decimals and Ratio 30 years later. 

Although algebra results illustrated that fewer Year 9 English students reached the higher 

Levels as possible negative trend. ICCAMS did not explore more at this point and the results 

cannot be explained well.  

The role of curriculum should be listed as an indicator of investigating understanding 

development. In addition, this study shows that different arrangement in curriculum for 

learning mathematical concept. The algebraic concept in CSMS study was considered as 

variable and generalised number. These two weak understandings in algebraic concept shown 

in ICCAMS can also be found in this thesis which clearly indicates that English students, 

even in Year 10 Higher Level, have been facing difficulties in understanding variable due to 

lack of enough awareness of the variable perspective in the concept of function in the 

curriculum and selected textbooks.  

The strength of the model will be the importance of analysing curriculum and 

textbook requirements; while this strength also causes the possible weakness. The standpoint 

of the model is based on the concept of function because the term ‘linear function’ is listed in 

both curricula. The textbooks, however, differ in their approach to linear function, with 

Shanghai predominantly exploring the context of function, and England introducing graphs 
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within the context of modeling real world situations. In the CSMS study, understanding linear 

graph had three levels: Level1 ‘which involve plotting points, others on interpreting block 

graphs, recognition that a straight line represents a constant rate and simple interpretation of 

the scattergram’; Level 2 which ‘includes simple interpolation from a graph, recognition of 

the connection between rate of growth and gradient, use of scales shown on a graph, 

interpretation of simple travel graphs and awareness of the effect of changing the scale of a 

graph’; Level 3 which ‘consists of items that require an understanding of the relation between 

a graph and its algebraic expression’ (Hart, 1981, p. 134). Normally, the concept in 

mathematics and science are often thought to be the same across all contexts. The start 

understanding level obviously differs between linear function and linear graph. Further 

comparative study should compare the similarities and differences of the concept, not only in 

the curriculum, but also in the textbooks and how teachers deliver it.  

9.4 Summary 

Based on the summary of the key findings from the data, the student performance gap 

between England and Shanghai from the understanding mathematics viewpoint was 

explained from three perspectives: representations (discussion of research question 2), the 

role of skill-algorithm, and mathematics proficiency (both in discussion of research question 

4). The different backgrounds of understanding mathematics were distinguished from official 

documents (discussion of research question 1) and the teaching approach (discussion of 

research question 3). In the next chapter, it is hoped that findings from the current study can 

be used to enhance students’ understanding in each region and also indicate further research 

threads to be developed.  
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Chapter 10 Conclusion 

In the first section of this chapter, the additional limitations after having conducted the 

current study will be addressed. The second section will discuss the implications of the study 

for three groups of potential stakeholders: teachers, researchers and education authorities. 

General recommendations for future studies in the mathematics education area related to 

England and Shanghai will also be put forward.  

10.1 Limitations of the Current Research 

The students’ achievement can be influenced by many factors, for example the 

different motivation towards learning, parental engagement, attribution, life outside of school, 

and peer influence (Elliott, Hufton, Ilyushin, & Willis, 2005), but this study only focused on 

student learning with understanding of the mathematical concept. After having conducted all 

the data collection and data analysis, there were three further restrictions which will be 

identified as follows:  

First, the model of understanding function was successfully applied for the Higher 

Level English and the Shanghai students. However, due to the low reliability of the tests for 

English Foundation Level students, their understanding development did not fit well with this 

model. This failure mainly resulted from the complexity of questions which proved to be too 

difficult for them since the starting level of understanding linear function was Level 3 

Connecting Representations. This might have resulted from the fact that in the pilot study, 

only the highest set of Foundation Level students were involved. Therefore, the findings from 

their performance failed to apply to other sets in the Foundation Level. It is recommended 

that further study should focus on Foundation Level students’ understanding.  

Secondly, calculators were not allowed for all the participants in order to balance the 

two regions’ situations, partly because no sophisticated calculation was involved in any self-
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design test. Another reason was that the uniform assessments in Shanghai for all grades of 

junior secondary school students did not allow the use of calculator, even though the English 

GCSE mathematics tests included both calculator and non-calculator types. This will have 

likely affected the English students’ performances more than that of the Shanghai students. 

The English students, especially at the Foundation Level, showed their weakness in numeracy 

skills, and the selected teachers mentioned this as their main barrier for learning mathematics. 

It is unclear if students would performance better with the aid of calculators.  

Thirdly, although some examples from the classroom observations in both England 

and Shanghai were used in this study, the whole classroom analysis was not involved. There 

may have been a gap between the teachers’ planned activities and what they actually 

implemented in the classroom, and the effectiveness of these activities or instructions. But 

this study predominately focused on students’ understanding rather than what teacher actually 

did. Further research can explore which instruction is better for certain level of students.  

10.2 Implications  

10.2.1 Practical implication 

Better handling with linear function. How to overcome Level 3 for the Foundation 

Level English students, Level 4 for the Higher Level and the Shanghai students’ weaknesses 

of graphic representation will be addressed to provide suggested ways that teachers can do 

better.   

At Level 3, the English Foundation students met challenges in calculations related to 

negative numbers. The solution as identified in an English teacher’s interview was to fill the 

table from right to left, as Fan and Bokhove (2014, p. 489)  recommended ‘direct teaching’, 

which involves telling, demonstration, drill-and-practice, and remediation. Another way was 

to do more practice. The selected English teachers indicated that several similar types of 

practice could reinforce these skills.  
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At Level 4, Shanghai students are not expected to understand the graphic meaning of 

gradient, while English students are not required to comprehend the algebraic meaning. The 

approach has restricted Shanghai students’ understanding of the graphic issues, such as the 

basic method: the combination of symbolic-graphic. On the other hand, as the previous 

discussion on the drawbacks of graphic representations noted, the formation of algebraic 

expressions may be rooted at this level for English students. It is therefore recommended that 

teachers provide the alternative approach for students to explain the meaning of gradient. By 

using the different approaches in order to make sense of the gradient, the concept would be 

reinforced. Furthermore, Shanghai students may counteract their graphical defects and lay a 

foundation for the basic method. The algebraic approach can not only be complementary, but 

also exemplified by the graph and vice versa. It seems that striking a balance between 

algebraic and graphic is the possible answer that will enable the facilitation of understanding 

development. Such awareness of the drawbacks of the textbooks, however, could hardly 

derive from the teachers themselves, because their views were constrained by the curriculum 

and textbooks as discussed in the Summary and Discussion chapter.   

Through the comparative study, how to properly handle the topic leads to an inquiry 

of borrowing good practice from others.  

Borrowing good practice. If good practices are adopted for other regions’ students, a 

detailed examination of these practices will be necessary to figure out the obstacles and to 

determine the extent to which students could make sense of these (Sparapani, Perez, Gould, 

Hillman, & Clark, 2014). Shanghai handles the topic in the traditional symbolic way, while 

England does it both pictorially and with time-based graphs. It is reasonable to speculate that 

simply borrowing either practices or textbooks cannot effectively work for both English and 

Shanghai students due to their different approaches to basic knowledge. Furthermore, this 

speculation is analogous to that of Leung (2005) as the practice include cultural values which 
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are difficult to transfer. Instead of borrowing practice from other countries, it is 

recommended to extend the understanding of the alternative way to presenting the knowledge. 

Further research can investigate how other mathematical concepts were introduced first, and 

then the supplementary way can be found as well as the corresponding practice.  

10.2.2 Methodological implications  

The selection of sample. Results from the different arrangements of the subject 

content indicate that scheduling of the sample of students leads to the consideration that what 

students are expecting to learn is based on priority rather than age- or grade-based when 

investigating the understanding of mathematics knowledge. This justifies my chosen sample, 

which placed emphasis on when the linear function has been fully learned in two regions. In a 

comparative study, therefore, this knowledge- based factor in related to the sample chosen 

should be considered.  

How to form a fair assessment. Clarke (2003, p. 153) considered three issues related 

to international comparative tests: ‘curricular alignment’, ‘equity’, and ‘data aggregation’. 

First, the degree of alignment between the test and the mathematics curriculum influences 

student achievement. The test in this study was drawn from not only matching the statutory 

requirements in the England and Shanghai curriculum, but also how the official textbooks 

presented the research topic. It increased the validity of tests as a measure of understanding 

basic knowledge and application. Secondly, students’ particular characteristics of 

mathematical understanding were considered as an equity issue, for example how to present 

the questions. It leads to the data aggregation issue. For example, the question at Level 5 

produced different requirements for the English and Shanghai students between the two 

phases of the tests. The process of how to choose the questions has also indicated a way of 

measuring students’ understanding more fairly. As Cai (1995, p. 106) recommended, the use 

of ‘a wide array of mathematical tasks’ in comparative studies should be carried out, with 
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questions being selected considering the students’ familiarity with certain expressions, 

ensuring that the problems are in line with questions they had faced in the class and therefore 

enabling them to achieve the requirements of their syllabus, textbooks, and assessments. 

Before designing the tests, a thorough examination of related mathematical topics is 

recommended. 

10.2.3 Implications for education authorities 

England: teachers’ professional development support. From the previously 

mentioned English teacher interviews, the Head of Maths (ENT1) would convene a meeting 

for all the maths teachers once a half term. Conversely, China has a more formal and 

sophisticated system for in-service teacher professional development (Huang & Li, 2008). 

Chinese teachers have gotten the chance to develop substantial subject knowledge and are 

offered ample opportunities to observe others classrooms. Such a research-teacher system is 

available at the town, city, and provincial levels, as it plays a crucial role within in-service 

teachers’ professional development (J. Li, 2008).  

English teachers do not have much settled time for their reflection, although they refer 

to a specified website for advice or support. The issue remains as to what extent the in-

service teacher professional development is beneficial for teachers’ lesson plans compared 

with the website in England on which teachers can share their experience, find resources, and 

acquire guidance. The implication for educational authorities is to establish more effective 

face-to-face network support for teachers’ professional development.  

Shanghai: the curriculum approach. The English curriculum approach is a 

spiralling kind, while Shanghai follows a linear non-repeated approach. Leung (1987) argued 

that a linear approach leads to a limited scope of mathematics. This was in line with the 

drawback of this approach reported by the Shanghai teacher that students might not be able to 

discern which type of function should be used in the real world situation. Students would 
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automatically draw on the linear function for all questions. Leung suggested that the ideal 

solution to this restriction would be the acquisition of a broader knowledge at a lower level 

alongside a deeper knowledge of one or two topics. There remains the question of how much 

deeper and what kinds of topics should be focussed upon. Findings from this study suggest 

that the ideal level is located at Level 5 Object Analysis in linear function.  

10.3 Recommendations for Further Study 

This study can be extended and enriched, for example, in order to examine the effects 

of the general model for further study and could reproduce it in research with other countries. 

Apart from this, another two potential studies will be addressed in this section: the balance 

approach towards linear function, and the Chinese learning theory.   

Practically speaking, the purpose of identifying students’ barriers to understanding is 

for them to learn this topic more effectively. Some tentative suggestions for overcoming these 

barriers have been provided for Levels 3 and 4. In terms of the higher levels, Levels 5 and 6, 

which are based on the solid foundations of Levels 3 and 4, the Shanghai students’ 

understanding barriers are possibly caused by a deficiency in the comprehension of graphic 

meaning, while English students lack an understanding of the algebraic meaning. It is 

therefore recommended for researchers to design an experimental study; for example, by 

comparing English students who are provided with an algebraic meaning with students with 

the traditional English approach, or Shanghai students who would be offered the graphic 

meaning compared with those only experiencing the algebraic approach, in order to discern 

how well the balanced way would facilitate their understanding development of linear 

function.  

Western educators, who use Western methods to interpret the success of Chinese 

learners, have produced opposing conclusions, called the paradox of the Chinese learner by 

Biggs and Watkins (1996). Furthermore, Huang and Wong (2007) have made an appeal to 
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establish a learning theory based on cultural and societal factors for the Chinese community 

instead of duplicating Western theories.  

Previous researches have investigated different learning environments and teaching 

approaches, as Biggs (1996) clarified misconceptions held by the West for proficient learning 

under CHC classroom, and Huang (2002) identified characteristics of Chinese mathematics 

teaching by comparing Hong Kong and Shanghai classrooms. This study indicated the 

importance of the four basics for students’ understanding development. A feasible way to 

establish learning theory in Shanghai or China is to combine these previous studies with 

understanding development by highlighting the role of the four basics, after examining 

several comparable topics, by taking the western perspective as a mirror to reflect on what 

Shanghai or China is doing.  
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Appendix B Pilot test for basic knowledge 

Name: 

D.O.B. (DD/MM/YY):            

Circle a or b: a. Male     b. Female        

1. Complete this table for       

X -2  3 6 

Y  1   

  

On the grid, draw the graph of       for x from -2 to 6. 

 

 

 

 

2. A straight line passes through the point (0, 2) and (-2, 0). Find the equation of this line. 
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3. Find the intercept of the straight line    (   )   . 

 

 

 

 

4. Find the gradients of BC and AC. 

 

 

 

5. The diagram shows lines A and B. The equation of the line A is       . The straight 

line B is parallel to A. Find the value of p. 
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6. A straight line passes through the point (0, 3) and is parallel to 12  xy . Find the 

equation of this straight line.  

 

 

 

 

 

 

 

 

 

 

 

 

7. A straight line        (as seen below) will be translated upward 4 units. Find the 

equation of the new line． 
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8. A straight line        is parallel to another straight line       . The intercept 

of this straight line is 3. Find the equation of this straight line.  

 

 

 

 

 

9. A straight line       , passes through the point C (2, 4) and meets the x-axis at 

point A. Another straight line DE meets the x-axis at point D (18, 0). The straight lines 

DE and AC have the point of intersection E. Point E is located at the second quadrant.  

1) Find b. 

 

2) Find the coordinate of point A. 

 

3) Find the length of segment DA. 

 

4) If the area of triangle DAE is 72, find the coordinate of point E.

O 

 

 

E 

C 

A D 
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Appendix C Main test for Higher Level students – basic knowledge 

Birthday (DD/MM/YY):                  Circle a or b:  a  Male  b  Female   

1. Find the equation of the line shown in diagram. Show how you found your answer. 

 
2. Find the gradients of BC and AC. 

 

3. A straight line passes through the point (0, 3) and is parallel to       . Find the 

equation of this straight line.  

 

4. A is the point (1, 5). B is the point (3, 3). Find the equation of the line perpendicular to 

AB and passing through the midpoint of AB.  

 
5. A straight line        (as seen below) will be translated upward 4 units. Find the 

equation of the new line． 
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Appendix D Main test for Foundation Level students – basic knowledge 

Birthday (DD/MM/YY):                  Circle a or b:  a  Male   B  Female   

1. Complete this table for       

X -2 0 3 6 

Y     

On the grid, draw the graph of      . 

 

 

2. Other than the method of finding points, could you find another way of plotting   
    ? Explain your method.  
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3. Find the equation of the line shown in diagram. Show how you found your answer. 

 
 

 

4. Find the gradients of BC and AC. 

 

5. A straight line        (as seen below) will be translated upward 4 units. Find the 

equation of the new line． 
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Appendix E Main test for Shanghai students (the Chinese version with English 

translation) – basic knowledge 

姓名(name):                                 班级(class)：                                  学号(Enrolled No.)： 

性别(Gender)：                                 出生年月日(Birth: YY/MM/DD): 

1. 一条直线经过点 (0,3) 并且平行于直线 . 求这条直线的表达式. 

 

(A straight line passes through the point (0, 3) and is parallel to        . Find the 

equation of this straight line.)  

 

 

2. 直线 2 1y x  向上平移 4 个单位. 求平移后的直线表达式. 

(A straight line        will be translated upward 4 units. Find the equation of the 

new line.)  

 

3. 一次函数  (   )   中，y 随着 x 的增大而减小，求 k 的取值范围. 

(Linear function   (   )   , when the value of x increase, the value of y increases 

as well. Find out the range of k.) 

 

 

 

 

 

 

 

 

12  xy
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4. 如图，在平面直角坐标系中，直线 AC: 经过点 C（2,4），与 x 轴相交于

点 A，直线 DE 与 x 轴交于点 D（18,0），直线 DE 与直线 AC 都经过点 E，且点 E

在第二象限． 

（1）求 b； 

（2）求点 A 坐标； 

（3）求线段 DA 长度； 

（4）若△DAE 的面积为 72，求点 E 坐标. 

 

 

 

 

 

(A straight line,       , passes through the point C (2, 4) and meets the x-axis at 

point A. Another straight line DE meets the x-axis at point D (18, 0). The straight lines 

DE and AC have the point of intersection E. Point E is located at the second quadrant. 

1) Find b. 

2) Find the coordinate of point A. 

3) Find the length of segment DA. 

4) If the area of triangle DAE is 72, find the coordinate of point E.) 

 

5. 已知一次函数 2y x  与反比例函数
k

y
x

 ，其中一次函数 2y x  的图象经过点

P (   )． 

(1) 试确定反比例函数的表达式； 

(2) 若点 Q 是上述一次函数与反比例函数图象在第三象限的交点，求点 Q 的坐标． 

(The linear function      , and the reciprocal function   
 

 
, the graph of linear 

function       passes by the point P(   ).  

(1) Find out the algebraic expression for this reciprocal function; 

(2) If the point Q is the intersection of the linear function and reciprocal function at 

the third quadrant, find out the coordinate of point Q.)

y x b  

O 

 

 

E 

C 

A D 
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Appendix F A pilot test for application 

Name:     

1. Here are some matches formed into a sequence of triangles. 

 

 

a. Complete this table.  

Triangles (t)     

Matches (m)     

 

b. Find a formula connecting m and t  

      Formula: m=  
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2. Bill works for a company that delivers parcels. 

For each parcel Bill delivers there is a fixed charge plus £1.00 per mile he has to drive 

thereafter. 

You can use the graph below to find the total cost of having a parcel delivered by Bill. 

 

 

a. How much is the fixed charge? 

 

 

Ed works for a rival delivery company.  

There is no fixed charge but for each parcel Ed delivers it costs £1.50 for per mile. 

  

b. Compare the cost of having a parcel delivered by Bill with the cost of having a 

parcel delivered by Ed. At what point would you rather have a parcel delivered 

by Bill? At what point are the costs of having a parcel delivered by Bill and Ed 

identical? 
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3. Steve travelled from home to school by walking to the bus stop and then catching the 

bus to school. 

a) Use the information below to construct a travel graph showing Steve’s journey. 

              Steve left home at 8.00 am. 

             He walked at 6 km/h for 10 minutes. He then waited for 5 minutes before catching 

the bus. 

            The bus took him a further 8 km to school at a steady speed of 32 km/h. 

 

 

b) How long would it take Steve to cycle from home to school at an average speed of 15 

km/h? Give your answer in minutes.  
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4. A mobile phone company offers a newest mobile phone either of the following plans: 

 The Seldom Plan: this involves a monthly subscription charge of £7.50, plus 25p per 

minute on phone calls. The first 30 call minutes are free. 

 The Often Plan: this involves a monthly subscription charge of £22.50, plus 15p per 

minute on phone calls. The first 80 call minutes are free. 

 

a. Nadia usually uses her phone for about 100 minutes per month. Which 

plan should Nadia choose the Seldom Plan or the Often Plan? Explain your 

answer. 

 

 

 

 

 

 

b. Find a way to show how the costs of the Often Plan vary when you call less or 

more minutes each month. 
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Appendix G Main test for English students – application 

6. Here are some matches formed into a sequence of triangles. 

 

a. Complete this table.  

Triangles (t)     

Matches (m)     

b. Find a formula connecting m and t  

      Formula: m= 

 

 

 

7. This graph shows the hire charge for heaters over a number of days.  

a) Calculate the gradient of the line. 

b) What is the basic charge before the daily hire charge is added on? 

c) Write down the rule used to work out the total hire charge.  
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8. Bill works for a company that delivers parcels. For each parcel Bill delivers there is a 

fixed charge plus £1.00 per mile he has to drive thereafter. 

You can use the graph below to find the total cost of having a parcel delivered by Bill. 

   

a. How much is the fixed charge? 

 

Ed works for a rival delivery company. There is no fixed charge but for each parcel Ed 

delivers it costs £1.50 for per mile. 

b. Compare the cost of having a parcel delivered by Bill with the cost of having a 

parcel delivered by Ed. At what point would you rather have a parcel delivered 

by Bill? At what point are the costs of having a parcel delivered by Bill and Ed 

identical? 
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9. The graph shows the journeys of a bus and a car along the same road. The bus goes from 

Leeds to Darlington and back to Leeds. The car goes from Darlington to Leeds and back 

to Darlington.  

 

i. When did the bus and the car meet for the second time? 

 

ii. At what speed did the car travel from Darlington to Leeds? 

 

iii. What was the average speed of the bus over its entire journey? 

 

iv. Approximately how far apart were the bus and the car at 09.45? 

 

v. What was the greatest speed attained by the car during its entire journey? 
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Appendix H Main test for Shanghai students (the Chinese version with translation of 

English) - application 

姓名：                   学号：                        班级： 

 

6. 用若干根火柴棒拼成如下图所示的三角形， 

 

根据图示填表，并写出 Y 关于 X 的函数表达式：  

三角形数量 x 

(个) 
1 2 3 4 … 

火柴棒数量 y 

(根) 
    … 

 

函数表达式为 

 

Here are some matches formed into a sequence of triangles. 

 

a. Complete this table.  

Triangles (t)     

Matches (m)     

b. Find a formula connecting m and t  

      Formula: m= 
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7. 小白用货车运送快递，每英里收取 1 英镑钱的运费。下图显示了小白运送的总

费用和英里数的函数图像. 

Xiao Bai works for a company that delivers parcels. For each parcel Xiao Bai delivers 

there is a fixed charge plus £1.00 per mile he has to drive thereafter. You can use the 

graph below to find the total cost of having a parcel delivered by Xiao Bai. 

 

 

 

a. 小白运送快递的起步价是多少英镑？ 

 

How much is the fixed charge? 

 

小花运送快递没有起步价，但是每英里收取 1.5 英镑钱的运费. 

b. 比较小白和小花的快递运费用后回答：什么情况下选用小白运送快递、

什么情况下选用小花运送快递运费合算？ 

Xiao Hua works for a rival delivery company. There is no fixed charge but for each 

parcel Xiao Hua delivers it costs £1.50 for per mile. 

Compare the cost of having a parcel delivered by Xiao Bai with the cost of 

having a parcel delivered by Xiao Hua. At what point would you rather have a 

parcel delivered by Xiao Bai? At what point are the costs of having a parcel 

delivered by Xiao Bai and Xiao Hua identical? 

运费（英镑） 

路程（英里） 
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8. 下图显示了巴士和轿车行驶同一旅程的情况。巴士从利兹（Leeds）到达灵顿

（Darlington）， 然后返回利兹（Leeds）. 轿车从到达灵顿（Darlington）到利

兹（Leeds）， 然后返回达灵顿（Darlington）. 

 

The graph shows the journeys of a bus and a car along the same road. The bus goes from 

Leeds to Darlington and back to Leeds. The car goes from Darlington to Leeds and back 

to Darlington.  

 

 

 

i. 什么时候巴士和轿车第二次相遇？ 

When did the bus and the car meet for the second time? 

ii. 求轿车从到达灵顿到利兹的行驶速度. 

At what speed did the car travel from Darlington to Leeds? 

iii. 求巴士在整个旅程中的平均速度. 

What was the average speed of the bus over its entire journey? 

iv. 在 9：45 分时， 求轿车和巴士的距离. 

Approximately how far apart were the bus and the car at 09.45? 
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9. 某通讯公司对手机收费推出两种不同的套餐： 

             A: 每月月租为 7.5 元, 接听免费，打出电话则每分钟 0.25 元. 前 30 分钟打出电话免费. 

B: 每月月租为 22.5 元, 接听免费，打出电话每分钟 0.15 元. 前 80 分钟打出电话免费.  

A mobile phone company offers a newest mobile phone either of the following plans: 

            A: this involves a monthly subscription charge of RMB7.50, plus 25p per minute on 

phone calls. The first 30 call minutes are free. 

B: this involves a monthly subscription charge of RMB22.50, plus 15p per minute on 

phone calls. The first 80 call minutes are free. 

 

1) 小明每个月大约要打出电话 150 分钟. 哪个套餐更适合他? 为什么？ 

Xiao Ming usually uses her phone for about 100 minutes per month. Which 

plan should Xiao Ming choose, the Plan A or the Plan B? Explain your 

answer. 

 

 

 

2) 对于 B 套餐 求函数解析式并画出图像. 

Using algebraic expression and drawing the graph to show how the costs of the 

Plan B vary when you call less or more minutes each month.  
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Appendix I  The Requirement of Shanghai Curriculum in terms of Linear Function 

 

 

Figure 1. The requirements in terms of linear function in the Shanghai curriculum (p.66) 

学习内容 

(content) 

学习要求及活动建议 

(The requirements and advice) 

一次函数的概念 

(The concept of linear 

function) 

1. 以实际为背景引入一次函数，理解一次函数的概念，
(linear function is introduced from real life background, 

understand the concept of linear function) 

建立一次函数，二元一次方程，直线之间的关系， 

(To establish the relationship among linear function, linear 

equation for two unknowns and straight line) 

掌握直线平移与一次函数解析式      中 b 之间

的关系。 

(To grasp the relationship between the motion of straight 

line and b in algebraic expression       ) 

从中感知辩证的观点，进一步体会数形结合的思想 

(to perceive dialectical ideas, To further experience the 

basic method: the combination of symbolic-graphic) 

2. 会画一次函数的图像， 

(To plot the graphical representation of linear function) 

并借助图像的直观，认识和掌握一次函数的性质 

(and from the intuition of graph, to know and master the 

properties of linear function using the graph ) 

3. 选取实例讨论一次函数的实际应用，初步认识函数模

型 

一次函数的图像和性质
(The graph of linear 

function and the 

properties) 

一次函数的应用
(Application of linear 

function) 

函数的表示方法 

(The expression of 

function) 
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(from the chosen examples to apply linear function into 

real world situation and formalise initial function model ) 

4. 通过实例分析以及正比例函数，反比例函数，一次函

数等案例，理解函数的意义， 

(through analysis of examples and cases of proportional 

function, inverse proportional function, linear function 

and so on, to understand the meaning of function) 

知道函数的表示方法有解析法，列表法，图像法，知

道符号 ’  f( )’ 的意义 

(to know there are analytical, tabular, graphic way to 

present function, to know the meaning of symbol ’  
f( )’) 

 

Figure 2. The English translation of the requirements
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Appendix J An example of how to allocate the understanding level in textbook 
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Appendix K An example for one English Higher Level student’s answer in the 

understanding test  
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Appendix L An example for one Shanghai student’s answer in the understanding test 
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Appendix M Raw data extracts from Nvivo Sections for teacher interview 

 

Figure 1. An English sample 

 

Figure 2. A Shanghai sample 

 


