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Abstract 
 
 
Microliths are small cutting implements made from stone and found around the world in a 

variety of prehistoric contexts. It is assumed without question, due to their size, that these 

pieces were made with the intention of being hafted. Their presence in the prehistoric 

record is often interpreted as indicative of multi-component composite toolkit designs. While 

the possibility of alternative functions cannot be ruled out of consideration, they have 

traditionally been, and are still most commonly interpreted as having served as armatures 

for hunting weaponry. As a global phenomenon, the term microlith encompasses a great 

deal of regional variation. Traditionally, studies of microlithic assemblages have been 

insularly rooted within the particular research frameworks of these regions. It is only 

recently that the potential for comparative assessment has been highlighted as a sig-

nificantly underexplored avenue for further establishing the values that made microlithic 

technology desirable in different times and places. 

 
 
This research focusses on three study regions with strong distinct trends of microlithic 

technology, primarily associated with hunting weaponry: northern Spain, southern Africa 

and interior Alaska. Using a small sample of sites from each region, variation in microlithic 

assemblages was assessed over time in each area relative to contemporary trends in 

ungulate fauna and environmental proxies. This facilitated discussion of how microlithic 

based hunting practices related to particular prey or conditions, or changes in these factors. 

Overall, the study found that it is difficult to singularly characterise conditions associated 

with microlithic technology, even in individual regional analyses. This supports the notion 

that an important virtue of microlithic armatures is their versatility, allowing for flexible 

weapon designs that could accommodate variable risk related stresses. 
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1 Introduction 
 

Microliths are small, deliberately made cutting implements, almost universally 

understood to have been hafted as elements of multi-component tools (Burdukiewicz 

2005).  Archaeological evidence suggests that these small stone insets may have 

served in a number of capacities (Torrence 2002), but the popular view maintained by 

many researchers (Elston and Kuhn 2002), combined with the majority of evidence 

relating to their function suggests that their main use was most often as armatures for 

hunting weaponry.  In this capacity, they are usually envisioned as functioning as 

projectile tips, laterally hafted cutting edges, and barbs designed to further damage or 

secure the projectile upon impact.  Industries considered to be microlithic have been 

recovered from around the world, and this trend appears to have been a widespread 

technological adaptation at various times throughout the late Pleistocene and early 

Holocene.   

 

Their small size means that they are often regarded as synonymous with projectile 

technology, i.e. hunting weaponry that is thrown or launched as opposed to a thrusting 

spear.  While hand thrown weaponry has not been readily encountered in recent 

ethnographic surveys (Churchill 1993), it is generally believed that microlithic 

armatures were likely components of atlatl / spear-thrown darts, or bow and arrow 

weapon designs.  The stone armatures sometimes used to equip the shafts of these 

weapon systems, often made from wood, bone or antler, are often the only 

components that preserve archaeologically, although notable exceptions to this rule 

from areas with fortuitous conditions for organic preservation do exist (e.g. Hare et al. 

2004; Larsson and Sjöström 2011).  Unfortunately, efforts to distinguish weapon 

delivery systems from these armatures have proved unsuccessful (Nuzhnyi 1990; 

Dockall 1997; Cattelain 1997) or remain largely inferential (Shea 2006) rather than 

observable or quantifiable.   

 

Projectile weapon systems allow hunters to target their prey from a distance, and it is 

assumed that different weapon-systems would be suited to different hunting strategies 

(Churchill 1993).  Indeed, while the efficacy of the tool-kit is of undoubted concern, it 

has long been recognised that knowledge of prey behaviour is often the more 
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important consideration for many hunters (Laughlin 1968).  Nevertheless, it may be 

expected that archaeologically observable changes in hunting weaponry may have 

also entailed a shift in the general strategies employed by their users (Churchill 1993), 

which in turn may be reflected by changes in their subsistence economy. 

 

1.1 Aims    

Despite the fact that microlithic industries have been identified on nearly every 

continent, and have received attention from a wide variety of researchers, the 

advantages they offer as a technological adaptation remain poorly understood.  Until 

the development and implementation of more modern, rigorous methods of 

excavation and recording, microliths were relatively neglected.  Sometimes occurring 

in overwhelmingly large quantities, many assemblages have been inadequately 

quantified or detailed, with investigative attention focussing on more visually 

diagnostic forms.  Attitudes have substantially improved with the potential 

significance of these pieces being better appreciated in recent years.  It is clear from 

surveying the geographically and chronologically disparate archaeological instances 

of this technology that the term microlith encompasses a significant amount of 

variability.  A volume compiled and edited by Elston and Kuhn (2002) showcases this 

fact through a collection of regionally focussed articles providing overviews and 

details of themed investigations by a variety of archaeologists who may be considered 

authorities on their respective periods and regions.  The variability highlighted 

throughout this volume suggests that if the term microlith is to mean anything more 

than a superficial descriptor used as a generalisation, then research must further 

attempt to target what commonalities and differences are apparent in these different 

regional characterisations.   

 

With only a few exceptions (Torrence 2002; Hiscock et al. 2011), the value of cross-

examining regional variability in microlithic technology, and more specifically the 

circumstances surrounding its adoption and use, remains surprisingly under-explored.  

In summarising the directions best advocated by the various contributions to Elston 

and Kuhn‘s volume, Robin Torrence suggests that observing variations in the 

occurrence of behaviours through time is important for understanding how microlithic 

technology may have represented a common response in different historical 
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trajectories (Torrence 2002, 182).  A common approach used by archaeologists is to 

monitor changes in faunal and environmental data and see how they relate to changes 

in technology in order to assess whether these changes relate to functional adaptation 

or rather some other cause (Ibid 2002, 183; Burdukiewicz 2005, 348). 

 

This thesis seeks to redress this issue by cross-examining archaeological variability 

associated with microlithic technology in three longitudinally, latitudinally and 

chronologically distinct traditions.  These regional traditions include the final Upper 

Palaeolithic of Cantabrian Spain, the Howieson‘s Poort of Southern Africa, and the 

earliest occupants of Interior Alaska during the terminal Pleistocene / Holocene 

transition.  The evidence examined broadly comprise technological, faunal, and 

palaeoenvironmental datasets.  In comparing and contrasting regional variability, this 

investigation ultimately aims to address whether a common or series of common 

explanations may be invoked for the selection of microlith based hunting technology 

in different times and places throughout human history.   

 

This may be summarised as an attempt to relate macroscale interpretations of 

technological strategies (Torrence 2001) to specific archaeological examples.  To 

achieve this end, the ultimate aim of the thesis entails two secondary aims.  Firstly, as 

the nature and timing of changes in technological, faunal and environmental data is of 

primary concern, it will be possible to assess the extent to which a coherent pattern of 

archaeological variability associated with the selection of microlithic technology may 

be established for each individual study area.  Secondly, through assessing these 

patterns of regional variability and the fertility of cross-regional comparison, this 

thesis will help illustrate some of the value and shortcomings of attempting to 

compare archaeological data in this manner.   

 

1.2 Research Design 

The study areas chosen for this investigation were selected for a number of reasons.  

Firstly, they represent locations from a broad longitudinal and latitudinal range that is 

truly transcontinental in scope (Figure 1).  Secondly, while two of the case-studies 

overlap chronologically, the time-spans encompass broadly different periods.  

Thirdly, with the nature of the data gathered for each site entirely dependent upon 
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existent research, regions were picked where the archaeological techno-complexes 

associated with microlithic assemblages have been well documented, and are 

accompanied by some combination of faunal and environmental data.   

 

Two of the case-studies, Cantabria and South Africa, afforded an archaeological 

record with ―type-sites‖ that could be utilised in the construction of diagrams 

comparing variation in multiple strands of archaeological evidence over time.  These 

sites, deemed to be of substantial influence in the broader prehistory of their 

respective regions, formed the centre of my assessment.  With the deep chronology 

afforded by their stratigraphy, I was able to broadly assess data from other sites with 

more piecemeal investigations or less extensive stratigraphy.  The type site for 

Cantabrian Spain was La Riera, and Klasies River for Southern Africa.  Among the 

Interior Alaskan sites, Dry Creek is often regarded as a type-site for the Denali, but 

because the region is characterised by open air sites rather than the deeper cave and 

rockshelter deposits of Cantabria and Southern Africa, an alternative diagram catered 

to the breadth of multiple chronologically overlapping sites was adapted.   

 

The section on Cantabrian Spain, and particularly La Riera, is afforded a preamble as 

it was the first site investigated, acting as something of a pilot study.  Likewise, the 

section on Interior Alaska starts with an introductory prelude due to the 

restructuration of the design format as a result of the substantially different nature of 

the archaeological record.  The structure of each case-study area varies according to 

the nature of the data available: the Southern African sites were arguably most 

similar, a small number of sites, all with relatively detailed excavation reports.  This 

meant that investigation of Sibudu and Diepkloof followed a similar, if truncated and 

less detailed pattern, to that of Klasies River.  The Cantabrian sites were more 

piecemeal in nature regarding the extent and nature of published details, excavation 

data, and time-period spanned in the site‘s archaeology.  Information from the Interior 

Alaskan sites was generally more regular, but invariably less detailed than sites from 

the other case-study areas with larger individual representations of chrono-

stratigraphy.    
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Figure 1: World Map with Case Study Areas Shown in Red
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The chronological span of the sites included for investigation is intended to provide a 

window of time within which variation in microlithic technology will be apparent, 

along with known climatic fluctuations that likely impacted upon local environment 

and faunal populations.  The sites from Cantabrian Spain span the end of the Late 

Glacial Maximum through to the Younger Dryas (c. 20kya – 10kya).  Microlithic 

assemblages at two of the sites from Southern Africa likely pertain to either the end of 

OIS 4 or the beginning of OIS 3 with various estimates broadly falling between 70 

and 55 kya (Tribolo et al. 2005).  The third site, Diepkloof Rockshelter, has a more 

extensive and older Howieson‘s Poort sequence that extends through OIS 4, stretching 

as far back as the later OIS 5 sub-stages (Tribolo et al. 2013).  The earliest occupation 

of Alaska meanwhile spans the Pleistocene / Holocene transition, including the 

Younger Dryas (c. 13,000-8000 kya).          

 

The geographical area for each case-study varies according to the resolution of sites.  

Cantabrian Spain is a naturally confined ecological niche, much of it surrounded by 

various mountain ranges and bordering the sea to the north.  Six sites are included 

alongside La Riera that occupy various positions within the landscape and add, in 

various ways, to the wealth of information gathered from the type site.  The 

Howieson‘s Poort case-study covers a substantially larger area and includes a small 

number of sites due to the poor geographically discrete resolution of archaeological 

sites from this period.  The small number of sites compensate by spanning the known 

geographical extent of the phenomenon and each providing deeply stratified deposits 

with a good breadth and depth of archaeological data.  The area delimited for Interior 

Alaska is dictated by the location of the earliest well dated sites with good 

stratigraphic integrity.  The number of sites utilised for this case-study is higher than 

the others due to the lack of a clear type site with continuous stratigraphy and the fact 

that generally less information has been made available.  These sites mostly occupy 

lowland floodplain promontories or foothill settings (Hoffecker 2001; Holmes 2001).        

 

Faunal and environmental data were selected as the primary datasets for investigation 

alongside technological variability.  These categories of data collection are the most 

universally understood and undertaken in general prehistoric archaeological 

investigation.  The categorisation of data in this manner reflected the desire to 

consider the selection of microlithic technology from a functional perspective of 
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adaptation, corresponding changes in technology with changes in conditions and 

results (Torrence 2002, 183).  Faunal data is regarded as indicative of subsistence 

economy, and environmental data indicates changes in the habitat of the site and the 

prey being hunted, which over time may favour different species or hunting strategies 

(Rozoy 1989; Bergman 1993; Churchill 1993; Burdukiewicz 2005).    

 

In particular, medium-large prey species (mostly ungulates) were considered as the 

main economic base.  While acknowledging that these species are not always the most 

important, they are generally the most visible and are believed to account for a 

significant portion of subsistence focus.  Furthermore, ethnographic research has 

shown that stone-tipped points are nearly always reserved for such prey, with organic 

armatures preferred for smaller fauna (Ellis 1997).  Information regarding the 

quantification of technological, faunal and environmental data from these sites is 

integrated where possible, along with considerations of other recorded details and 

investigations deemed to be pertinent (for example the results of use-wear analyses).  

Through this approach it is hoped that a broad picture of how change in technology, 

subsistence and environmental conditions may be reconstructed for each study area. 

 

1.3 Research Context 

While a conventional literature review is unnecessary due to the historical grounding 

provided through the presentation of each of the regional case-studies, it is important 

to acknowledge and detail some of the other issues of pertinence to the investigation.  

This section summarises the unique nature of the archaeological periods selected for 

investigation, considers the question of regionally variable definitions regarding what 

constitutes a microlith, and finally elaborates upon some of the technological concepts 

used later in the thesis.   

                            

1.3.1 Historical Significance 

While there may be many instances when microlithic technology was selected for at 

times that otherwise appear to be relatively un-notable archaeologically, Kuhn and 

Elston observe that there are many that coincide with periods of economic, climatic 

and demographic stress that have come to be seen as defining periods in human 

history (2002).  The three case-studies chosen for this investigation are ideal examples 
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of this.  The survival of a hospitable landscape along the Cantabrian Plain was, along 

with a handful of other glacial refugia, vital for the survival of humans in Europe 

during the harshest conditions of the LGM (Straus 1991).  Throughout this time, the 

coastal plain of Cantabria likely experienced an increase in population density as 

people were forced out of much of Europe (Ibid 2000).  The Howieson‘s Poort of 

Southern Africa is widely regarded as one of the earliest archaeologically visible 

flourishes of precociously modern appearing material culture that, according to some 

scholars, may also have represented the beginnings of an early expansion out of 

Africa (Mellars 2006).  The reasons behind it remain mysterious, though climatic 

stress and upheavals in population demographics have both been suggested (Lombard 

2008b; Ambrose and Lorenz 1990).  Finally, microblade technology was clearly of 

great importance to the earliest occupants of Alaska, who presumably faced numerous 

challenges while colonising new and unexplored territories (Coutouly 2012; Holmes 

2011; Hamilton and Goebel 1999).  In this light, each of the case-studies selected can 

be seen to show microlithic technology of varying nature having played an important 

technological strategy during formative periods of human history.                 

 

1.3.2 Varying Definitions  

While as a concept the ―microlith‖ is understood throughout the world among 

prehistorians, there is no unified definition of exactly what this technological type 

constitutes.  As a result of this, in a global sense, the term microlith encompasses a 

variety of forms, criteria and terminology, greatly restricting the operative utlility of 

the word at such a broad resolution.  At best, a microlith may be defined as a 

deliberately crafted small cutting edge, intended for hafting as part of a composite tool 

(Andrefsky 2005, 258; Torrence 2002, 181).  Although standards and definitions of 

microlithic technology may be established within regionally insular research 

discourses as clearly evidenced by the multiple contributions in Elston and Kuhn‘s 

volume (2002), reconciling the various incompatibilities that arise from these 

necessarily specific research traditions may be problematic (Torrence 2002).   

 

1.3.2.1 Form 

Microliths may be differentiated from flakes by being made with a specific utility 

(almost universally assumed to involve hafting) and design in mind.  Consequently, 
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microliths are most often, although not exclusively (Ambrose 2002, 10), created using 

techniques of blade production (Kuhn and Elston 2002, 2).  Through retouch it is 

possible to sharpen and blunt edges.  Blunting of edges is usually referred to as 

backing and is almost universally assumed to be intended to facilitate hafting, though 

this is clearly not a necessary condition in all traditions.  Retouch and snapping 

techniques also allows the shaping of a number of forms from these blanks (Bordaz 

1971), most commonly rectangular (i.e. a more regular version of the basic blank 

form), crescent, trapezoidal and triangular.  From these forms a number of regionally 

specific sub-variants may in turn be crafted, although the point at which variation in 

form transcends functional significance is the subject of debate (Rozoy 1989; Wadley 

and Mohapi 2008).   

 

1.3.2.2 Terminology               

In describing microlithic assemblages, a variety of different words may be used to 

describe similar forms.  A good example of this relevant to the assessment of the 

Howieson‘s Poort is the use of crescent and lunate segments to refer to the same type. 

Microlithic traditions that are dominated by particular types may not be identified as 

microliths per se but rather as the specific forms that dominate.  Most commonly, in 

cases where pieces are not described as microliths, they are referred to as bladelets or 

microblades.  Both ―bladelet‖ and ―microblade‖ refers to pieces that retain the basic 

laminar form of a blade/bladelet blank.  ―Microblade‖ is more commonly used in Asia 

and North America, while ―bladelet‖ is more common in European and African 

writing.  These terms are not necessarily interchangeable with one another though, as 

their appropriation is often inextricably tied to the regionally specific traits of the 

types they refer to.  For example, Alaskan microblades are deemed to be created with 

a degree of standardisation that distinguishes them from bladelets (Wygal 2011), 

whereas in the Howieson‘s Poort, Wurz advocates the distinction of bladelets from 

similar, earlier MSA forms on the grounds that they are made to be more standardised 

(Wurz 1999).            

 

1.3.2.3 Criteria 

Although microliths are universally understood as being small, there are no 

universally accepted criteria as to how small a piece must be in order to qualify as 
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microlithic.  A popular rule regarding the classification of bladelet and microblade 

pieces, indeed all blades microlithic or otherwise, is that their width measurement 

should not exceed that of half their length, though this statement is by no means 

rigidly adhered to.  Quantifying length is problematic among bladelet and microblade 

assemblages due to issues relating to breakage and establishing a meaningful cut-off 

distinction between regular blades and their microlithic variant forms (Kaufman 

1986).  Various regionally specific criteria for size exist, with many of them surmised 

by Brown et al. (2012, 4 SOM).  Many of the geometric backed pieces of the 

Howieson‘s Poort would be considered, strictly speaking, too large to qualify as 

microliths elsewhere.  For the purposes of this study, the form and supposed function 

is attributed greater significance, and so all such pieces are indeed considered 

microlithic.  Size is obviously a relative quality (Kuhn and Elston 2002), indeed some 

researchers even suggest that the use of such criteria for defining pieces as microlithic 

may be undesirable (Kuhn 2002, 84), or at least insignificant (Burdukiewicz 2005, 

348).                    

 

1.3.2.4 Sample Variability 

The microlithic traditions examined in this investigation include a variety of different 

types.  For each study area there is one particular form that dominates.  Research on 

microliths from Upper Palaeolithic assemblages from Cantabria mainly focus upon 

backed bladelets (Straus 2005) although a variety of variant forms, unretouched 

bladelets, and even occasional geometric pieces, have also been documented among 

these assemblages.  The Howieson‘s Poort of the Southern African Middle Stone Age 

is characterised by geometric backed pieces, usually in the form of crescent and 

trapeze shapes along with other truncated variants (Ambrose 2002).  In addition to 

these type-fossils, unretouched pieces sometimes referred to as bladelets or flake-

blades are also found in the Howieson‘s Poort and other MSA deposits (Thackeray 

1992).  Unlike Cantabrian Spain and Southern Africa, where retouched forms have 

traditionally been the overwhelming focus of interest, microlithic assemblages from 

Alaska comprise almost exclusively unretouched microblades (Dixon 1985; 2011).  

Figure 2 compares examples of these pieces from the ―type sites‖ of La Riera, Klasies 

River and Dry Creek.     
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Figure 2 Characteristic Microlith Types from each Case Study Area: A = Backed Bladelet (La 

Riera), B = Backed Crescent (Klasies River), C = Microblade (Dry Creek) 

 

1.3.3 Technological Concepts 

Since Lewis Binford popularised such approaches in the 1970‘s with his model of 

technological organisation based around curated and expedient designs (Binford 

1979), a variety of other means by which technological strategies and the factors that 

shape these strategies may be conceptualised have been developed through an 

extensive body of literature (Oswalt 1973; Winterhalder 1981; Torrence 1983; 1989a; 

Bleed 1986; 1997; Bamforth 1986; Bamforth and Bleed 1997; Shott 1986; 1996; 

Parry and Kelly 1987; Nelson 1991; 1997; Churchill 1993).  These concepts are 

designed at a macroscale level (Torrence 2001) to facilitate the discussion and 

comparison of different technological strategies relative to particular concerns and 

stresses.  Among the most important of these models for researchers interested in 

understanding variability in hunting technology are those that focus upon costs such 

as time, energy, and risk, and how these stresses may be conceptualised as a system 

that relates to the archaeological record (Winterhalder 1981; Torrence 1983; 1989b; 

Bousman 1993; Bleed 1996; 2002; Fitzhugh 2001; Bamforth and Bleed 1997; Elston 

and Brantingham 2002).  Of particular interest are values attributed to different 

designs including reliability, maintainability and flexibility/versatility (Bleed 1986; 

Shott 1986; Nelson 1991) as briefly outlined below:         

 

Reliability: Overdesigned with carefully fitted parts to reduce risk of failure, 

requiring specialist knowledge for creation and maintenance (Bleed 1986). 
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Maintainability: Light, portable, modular design that can be readily 

maintained during use and generally easily repaired (Bleed 1986).   

 

Flexibility/Versatility: Flexibility is regarded as a variety of uses enabled by a 

changeable form, whereas versatility allows for this adaptability without the 

requirement of change (Nelson 1991). 

    

1.3.4 The Value of Use-wear Investigations 

It has been suggested that researchers concerned with the function of microlithic 

assemblages should invest more greatly in use-wear analyses (Torrence 2002).  

Indeed, the application of these approaches to microlithic assemblages has generally 

been lacking (Evans 2009, 252), but they have recently been applied to Howieson‘s 

Poort materials, producing provocative results (Lombard 2011).  Use-wear analyses 

clearly do hold great potential for any technological analyst, but I believe that there 

are a number of problems with these studies which have actually distorted the image 

many archaeologists now have regarding the functional properties of microlithic 

pieces.  The results of various use-wear investigations that have been conducted form 

important considerations in my own work, but before beginning my data assessment, I 

have decided to elaborate on my views regarding interpretations of use-wear data, and 

in doing so justify why this route of analysis was not considered a viable method for 

my own investigation.      
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2 Discussion of Use-Wear Analyses and Interpretive Biases 

 

Of all the analytical techniques developed over the last half a century for investigating 

functionality in stone tools, microwear analysis has had arguably the greatest impact 

upon lithic research.  The study of stone tools for evidences of wear relating to use has 

an extensive history (Olausson 1980; Donahue 1994; Van Gijn 2014), but microwear 

studies, the use of microscopy to detect fractures, marks, abrasions, polishes and other 

visible evidences otherwise imperceptible to the naked eye, is a relatively young 

analytical procedure.  Since the translation of Semenov‘s seminal work (1964) into 

English and the early development and popularisation of the technique among Anglo-

American scholars by the likes of Lawrence Keeley (1980) and George Odell (1980) 

among others, microwear has divided opinion in the lithics research community.  One 

of the biggest attractions of microwear as an investigative method is the ability to test 

assumptions of morphological form in relation to ideas of use, with the former often 

the single biggest influencing factor in the determination of the latter (Odell 1981).      

 

2.1 Methodological Issues 

Using different levels of magnification, microwear can be used to infer different 

details about the use-life of prehistoric tools, most commonly the materials they 

interacted or ―worked‖ with, and the motion or manner of their application.  The use 

of replicated experimental data as a comparative analogue for archaeological 

specimens is a central premise of all microwear analyses and blind testing is 

commonly used in efforts to eliminate observer bias when using comparative 

analogue data.  Although the impact of microwear analyses on lithic research has 

undoubtedly been huge (Andrefsky 2005, 5), there remain a number of problems with 

these approaches.           

 

There has been much debate over various methodological issues which have called 

the reliability of microwear studies into question, perhaps most notably with regard to 

the high magnification method pioneered by Lawrence Keeley (Newcomer et al. 

1986; Newcomer et al. 1988; Hurcombe 1988; Moss 1987; Bamforth 1988; Bamforth 

et al. 1990).  Through disputing methodological efficacy, the validity of the results 
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from such analyses has also been thrown into question, contributing to the somewhat 

muted reception that microwear studies have received in the wider field of lithic 

research.  Nevertheless, efforts to develop and refine methods in response to criticism 

have continued (Ibáñez and González 2003) and new analytical techniques have been 

formulated (e.g. Evans and Donahue 2008).  Arguably the largest problem that 

continues to face analysts is the subjectivity of their investigations (Grace et al. 1985).   

 

A substantial body of literature now exists on the methodological quandaries of the 

analytical techniques used in microwear investigations (see Evans et al. (2014a; b) 

and Van Gijn (2014) for further references in addition to those given throughout).  

Variability in raw materials, post-depositional alteration and the replicability of polish 

signatures are just some key examples of ongoing concerns that microwear analysts 

continue to face (Andrefsky 2005, 6; Evans et al. 2014a; Van Gijn 2014).  The 

importance of blind-testing as a control for bias and ultimately credibility remains 

something of an agenda for microwear specialists (Evans 2014), as do continued calls 

for closer engagement with ethnographic data sets, the interpretive value of which has 

been stressed throughout the development of the technique (Olausson 1980; Ibáñez 

and González 2003; Rots and Williamson 2004; Van Gijn 2014). 

 

2.2 Interpretive Biases 

Ethnographic datasets allow microwear specialists to consider elements of 

technological systems that are often not preserved archaeologically, acknowledging 

that often their results are restricted to singular tool components rather than the whole 

tool itself.  Thus the use of ethnographic information serves as one of the most 

apparent means by which archaeologists may facilitate a more elaborate theorisation 

of different tool-kits.  It is in this manner, through consideration of different 

technological systems (e.g. Macdonald 2010, 24), that most microwear studies are 

now conducted.  The benefits of adopting such an approach lies in the ability to 

potentially infer greater detail regarding the origin of indentified wears, and exercise 

greater caution through awareness of how variability in the life-history of a tool may 

influence the data from which we draw our interpretations of function.     

It is perhaps surprising then, given the wealth and variety of archaeological literature 

dedicated to the use of microliths, that relatively little in the way of functional 
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analyses have been conducted until quite recently (Evans 2009, 252).  Accordingly, 

detailed theorisation of the tool to accompany such work has remained relatively 

modest.  The ubiquity with which microliths occur across time and space throughout 

prehistory renders the invocation of specific ethnographic datasets problematic when 

informing archaeological interpretation.  There is, however, a need to explicitly 

theorise, even if only generically, about possible explanatory factors behind observed 

evidences of wear.  With regards to investigations concerning the function of 

microliths, there are two areas where our understanding of results may be bettered 

through such theorising.   

 

1) Explaining why a significant proportion (in many cases a majority) of the 

analysed sample population are found to have wear resulting from 

indeterminable action, or no wear at all.      

 

2) Explaining why some types of use are not well represented due to biases in the 

generation of identifiable wears.  This issue can be of particular concern in 

assemblages where a large number of pieces are examined only to find 

functionally indeterminable wears, or an altogether absence of traces, as it may 

explain why so much of the assemblage is left unaccounted for.    

 

Various tests have demonstrated that some tool-functions are rendered invisible 

through the lack of indelible trace (Newcomer, Grace, and Unger-Hamilton 1986).  

While such results may reflect a surplus to requirement in the production or caching 

of tool components, it is important to consider how certain aspects of technological 

systems may conspire with limitations in methodology to prevent the formation of 

identifiable wears.  As an example of this, an overview of data compiled from 

microwear analyses conducted on microlithic assemblages from Mesolithic sites 

across the UK is presented below. 

 

2.3 Review of Microwear Studies Conducted on UK Microliths 

Data from microwear studies conducted on microliths from Mesolithic sites in the 

UK, has been synthesised by Adrian Evans (2009).  At the time of collation, and 

including his own work, it is apparent that out of 852 microlithic pieces (microliths 
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and fragments of microliths), only 212 have yielded wear patterns sufficient for 

determining function (Ibid 2009, 50; 221).  This means that less than 25% of all 

microliths examined from Mesolithic sites across the UK have yielded positive 

results.  While it should be stressed that this success rate is not universal (see for 

example Keeley 1988 as discussed later), it is also not restricted to UK based 

investigations (e.g. Crombé et al. 2001, 265).  Deriving statements from amalgamated 

datasets in this fashion is problematic, but three of the constituent studies are 

highlighted for closer review.  Separated by approximately ten years each, these 

particular investigations could be considered, for various reasons, to be the most 

notable to be conducted thus far in the UK.  The studies focus on materials from the 

sites of Star Carr, North Yorkshire (Dumont 1988), Gleann Mor and Bolsay Farm, 

Southern Hebrides (Finlayson and Mithen 2000; 1997), and the sites of East Barns, 

North Park Farm, Runnymede Bridge and Malham Tarn Site A, located throughout 

the UK (Evans 2009).      

 

From Dumont‘s study, the sample population, and certainly the number of microliths 

upon which evidences of use-wear were detected, was deemed prohibitively small for 

an effective functional interpretation.  The investigations conducted on Bolsay Farm 

and Gleann Mor concluded that microliths likely served a variety of functions.  

Noting the scarcity of traces pertaining to use in projectile weaponry (Finlayson and 

Mithen 2000), it was suggested that plant processing technologies were likely the 

main function (Finlayson and Mithen 1997, 123) as advocated by Clarke (1976).  

Lastly, Evans‘ research, which, among other aims, sought to test for inter-site 

variability in function, identified wear relating to a variety of uses, although the 

majority of cases, certainly among smaller pieces, were suggestive of use in projectile 

weaponry (2009). 

   

Out of thirty-one microliths and microlithic fragments examined from Star Carr, only 

3 returned positive results, and only 1 bore traces that were suggested as pertaining to 

use (Dumont 1988, 120–121).  From a sample of 120 microliths and microlithic 

fragments from Gleann Mor, 46 returned positive results, of which 33 exhibited 

sufficient wear to suggest function (Finlayson and Mithen 1997, 119).  A sample of 

101 microlithic pieces from Bolsay Farm yielded 37 where evidence was sufficient 

enough to suggest function (Finlayson and Mithen 2000).  Finally, from the four sites 
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of East Barns, North Park Farm, Runnymede Bridge and Malham Tarn Site A 

collectively, 62 out of 238 microliths and microlithic fragments bore evidence of use-

wear that could be used to interpret function (Evans 2009, 221).  The percentage of 

each respective sample population to yield results from which function could be 

determined is presented in Table 1.  The highest frequency with which the 

determination of function through microwear analysis was achieved was around 36% 

of the sample population, recorded at Bolsay Farm and Runnymede Bridge.   

 

Investigators Sites 
Study Determinable  

DF % 
of  

Sample Function (DF) Sample 

Dumont (1988) Star Carr 31 1 3.2 

Finlayson & 
Mithen 

Gleann Mor 120 33 27.5 

(1997; 2000) Bolsay Farm 101 37 36.6 

Evans (2009) 

East Barns 48 17 35.4 

North Park Farm 98 24 24.5 

Runnymede 
Bridge 

25 9 36.0 

Malham Tarn Site 
A 

67 15 22.4 

 

Table 1: Results from three selected microwear analyses of microliths from mesolithic sites in the 

UK 

 

It is clear from the description of the results from these studies that with some 

regularity, the analysts are unable to provide functional interpretations for substantial 

portions of the analysed assemblages.  This trend is not restricted to materials or 

studies based within the UK.  Another notable and relatively recent study directed at 

Mesolithic microliths from the site of Verrebroek in Belgium found similarly high 

frequencies of pieces bearing no evidence of wear among their sample population 

(Crombé et al. 2001, 265).  It should also be stressed, however, that these results are 

by no means true for all cases in which microlithic pieces have been examined.  

Lawrence Keeley‘s consideration of backed bladelets, considered in the section 

dealing with Cantabrian Spain, found a high frequency (82-90%) to bear traces 

pertaining to projectile use (1988, 22).   
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2.4 Identification of Functional Traces on Projectile Armatures 

So far, discussion has focussed exclusively upon microwear studies, as it is this 

particular analytical approach that has received the most scrutiny from the lithics 

researchers.  The establishment of microwear approaches has paved the way for the 

development of other microscopy based analytical techniques.  Micro-residue 

analyses offer an alternative assessment of function.  The early development of these 

techniques was also plagued by methodological troubles, and for a time, contradicting 

requirements in preparatory procedures meant that microwear and micro-residue 

analyses seemed incompatible with one another (Cattaneo et al. 1993; Cattaneo et al. 

1994).  Advancements in the field have delivered promising results however, as 

evidenced by recent work by Marlize Lombard and others (Lombard and Wadley 

2009), considered in greater detail in the Howieson‘s Poort Section.  A notable 

limitation of residue analyses remains the inability to infer action from these analyses.   

 

As well as complementary techniques, allowing further cross-testing of function 

through multi-faceted approaches, speciality sub-fields have developed.  Most 

notably, in regard to the identification of projectile armatures, has been the 

development of micro-fracture analysis, examining particular wears and breakage 

patterns.  Some of these fractures and wears are considered diagnostic and exclusive 

to projectile use (Fischer et al. 1984; Dockall 1997). 

 

2.5 Biases against the formation of wears from projectile use 

Rather than speculating openly regarding the full range of activities in which 

microliths may have been used without resultant use-wear formation, the next section 

focuses specifically on theorising their life-history in their commonly assumed role as 

projectile armatures.  Through exploring various factors in this possible use-life, 

reasons for diminished representation will be clarified.  This will be done through 

considering a number of factors including discussion of the method of delivery, nature 

of the hafting, nature of penetration, the frequency of use and re-use, the impact of 

use-related breakage on re-use, the possibility of multifunctional uses obscuring 

projectile related wears, and factors that may influence representation of pieces used 

in this manner within the archaeological record.  There are two main reasons for 

considering these issues in greater detail. 
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Firstly, and perhaps because of the relative lack of functional analyses directed 

towards microliths, there has been inadequate discussion of biases at work in the 

formation and representation of certain use related wears, particularly those pertaining 

to projectile use.  The issues considered below highlight limitations within 

microscopy based studies of function that have been insufficiently discussed in the 

evaluation of data production.   

 

Secondly, while the supposition that microliths indeed served primarily as projectile 

armatures in the majority of cases prevails overall (Torrence 2002, 181), a number of 

functional studies have called these assumptions into question (e.g. Finlayson and 

Mithen 1997; Finlayson and Mithen 2000; Hardy and Svoboda 2009).  It is not the 

intention of this work to rebut specific cases where hypotheses of projectile weaponry 

have been rejected, merely to identify reasons as to why additional characterisations 

of the study material are necessary before forming such conclusions.  Indeed such a 

statement is true of most all archaeological approaches when treated independently.  I 

am inclined to agree with Torrence‘s assessment (2002) that in many cases microliths 

may well have served an array of purposes in addition to or instead of their widely 

assumed default function as projectile armatures.  I feel that appropriate consideration 

of the issues discussed below may offer a more critically reflexive approach to the 

interpretations we draw from use-wear studies, particularly when based upon sample 

populations for which considerable portions remain functionally unaccountable.            

 

2.5.1 Projectile Polishes and Fractures 

Tests have shown that polishes generated from contact with meat form only rarely 

(Newcomer et al. 1986).  The short length of time with which projectile armatures are 

in contact with meat potentially further lessens the likelihood of creating any 

diagnostic polishes.  It is also often difficult to differentiate between tools used for 

cutting meat, and those used in weaponry from these polishes alone, resulting in 

assumptions regarding tool morphology being factored into interpretation (Newcomer 

et al. 1986, 207).  A more reliable indicator of use as projectile weaponry is damaged 

incurred from impact.  Fractures and breakages are induced at the moment of impact 

or when subjected to stress subsequent to impact.  Wears may form from the abrasive 
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contact of chipped stone upon the main armature during and after breakage.  The 

hardness of the struck material and angle of impact are crucial in the determining the 

nature of these traces.  Several diagnostic and even exclusive wears and fracture 

patterns can be identified from such impacts.  Many of these have been documented 

and loosely categorised by John Dockall (1997).   

 

2.5.2 Method of Delivery 

The matter of identifying delivery methods utilised in hunting strategies remains 

problematic for archaeologists, as already discussed.  Unfortunately, attempts to 

differentiate between hand-delivered spears, spear-thrower projectiles and the bow 

and arrow have not been met with success (Cattelain 1997).  It remains difficult in 

many cases to differentiate between these and fracture patterns associated with 

thrusting spears (Dockall 1997, 328).  Through using several complementary 

approaches in combination with other circumstantial evidence, some analysts have felt 

suitably vindicated in their assessments of delivery method (Lombard 2011; see also 

Mohapi 2008), although concede that their suppositions remain, at this stage, 

impossible to verify.  Consequently, such assertiveness has not escaped without 

cautionary responses (Villa et al. 2010, 640; Villa and Roebroeks 2014 SOM).  

Comparison of the rates of wear and trace formation in different delivery mechanisms 

is problematic due to the wide number of variables that must be accounted for, 

including the design of the projectile itself.   

 

2.5.3 Tips, Barbs and Cutting Insets 

In designs of projectile weaponry, microliths most likely served one of three roles: as 

either the tip of the weapon, as a laterally hafted barb, or as a laterally hafted cutting 

inset designed to enlarge the wound (Friis-Hansen 1990) (but not necessarily to catch 

and hold within the flesh).  While traces generated by barbs and cutting insets have 

been investigated, the majority of attention has focussed upon weapon tips, perhaps 

because this constitutes a far more ubiquitous design feature.  Bearing the brunt of 

immediate impact, it is unsurprising that damage sustained by projectile tips can be 

quite different to that generated on barbs and cutting insets.  Broadly speaking, from a 

functional perspective, barbs are assumed as intended to catch within the flesh once 

penetrated, and/or maximise the damage of the initial impact by further tearing the 
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wound both upon entry and subsequent struggle once lodged inside the prey, causing 

further laceration in the event of any breakages incurred (Crombé et al. 2001).  

Laterally hafted elements may also serve to shred flesh upon entry rather than to hook 

the projectile in place.  This theory has been deemed as particularly plausible but 

overlooked in the case of Upper Palaeolithic bladelets (Pétillon 2008, 67), although 

barbing and shredding need not be seen as mutually exclusive functions.             

 

2.5.4 Nature of Hafting  

Microliths have the potential to be hafted in a variety of designs.  Different 

configurations may affect the chances and nature of any wears (macro and 

microscopic).  Different weapon designs, and particularly different delivery methods, 

may be characterised by different approaches with regards to the quantity, positioning 

(both upon the shaft and the angle at which they are inset) and method of hafting.  For 

example, while some arrows have been characterised as having laterally hafted barbs 

(see Yaroshevich et al. 2010; Chesnaux 2008; Bergman 1993 among others for 

examples), larger series of multiple insets are usually only hypothesised for spears.  

The positioning of the microlith, whether laterally upon the shaft, or as the tip of the 

projectile, may relate to intended aerodynamics, the desired effect upon prey, as 

documented recently in experiments by Yaroshevich et al. (2010), as well as stylistic 

preferences (Blankholm 1990).    Hafting position may be influenced by the type of 

microlith as well as the hafting method used, with particular morphologies intended 

for specific design configurations (Pétillon et al. 2011, 1279).  Figure 3 shows a 

variety of hafting positions for microliths as weapon tips and barbs as envisioned 

from the Epipalaeolithic of the Levant (Yaroshevich et al. 2010).  The extent to which 

elements inserted within the shaft and mastic (or other hafting facility) will limit the 

area upon which any use-related wear or damage may form from impact. 
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Figure 3: Variety of Epipalaeolithic Levantine type microliths shown in an array of hafting 

configurations.  Original Photograph from Yaroshevich et al. (2010) 

 

As mentioned above, analysts typically expect different wears to be identified on 

laterally hafted pieces compared to armature tips.  Wears are arguably less likely to 

form on barbs than tips as they do not bear the brunt of impact in the same manner.  

The types of striations and fractures associated with projectile use are largely 

dependent upon the angle at which the armature is hafted and therefore intended to 

impact.  As an example of this, the study of microliths at Gleann Mor (Finlayson and 

Mithen 1997) has been criticised for utilising a very conservative range in variation 

for the wears that they deem diagnostic of projectile use.  Criteria comparable to that 

used in other studies may have given a very different interpretation (Evans 2009, 37–

38).  

 

2.5.5 Penetration  

Assuming a constant force behind the propulsion of the projectile, the hardness of the 

material being penetrated will affect the likelihood and nature of certain wears and 

breakages.  For example, contact with bone upon impact is likely to induce breakage 

more than softer tissue.  The extent of penetration depends upon a number of 

variables, including the prey hunted, and the method of delivery.  Traditionally, many 

researchers have held great belief in the penetrative power of the bow and arrow 

(Friis-Hansen 1990; Bergman 1993), with Jean-Georges Rozoy having once claimed 

(1989, 19) that a microlith tipped arrow drawn by a bow 1.6m long would be able to 

pass right through a bear at 50m!  Early experiments attested to the penetrative power 

of the bow and arrow (Fischer et al. 1984; Fischer 1990), although the Brommian 

points used in the studies would not generally be classified as microlithic.  
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Recent tests have shown that penetration depth can vary greatly depending upon a 

number of variables (Chesnaux 2008; Grimaldi 2008; Yaroshevich et al. 2010; 

Pétillon et al. 2011).  Specific details regarding the parameters of the tests (draw 

weight of the bow, distance from target etc) are given in the respective studies 

(Chesnaux 2008, 141; Grimaldi 2008, 154).  Chesnaux gives estimates regarding 

arrows shot into the rib cage (14 cm) and back bone (9 cm).  The limited penetration 

recorded in each of these experiments led the investigators to consider the possibility 

of use in conjunction with poisons administered via the projectiles (Chesnaux 2008), 

or that such weapons were designed specifically for smaller game where damage 

potential would be maximised (Grimaldi 2008).  Penetration depths recorded by 

Yaroshevich et al. from arrows fired into a goat carcass varied according to the design 

of the arrow and particularly the configuration of the tip, with the maximum depth of 

22-23cm achieved by arrows tipped with oblique, transversal, and ―self‖ points (those 

lacking stone tips)  (2010, 372).  In tests where antler pointed spears, both with and 

without laterally hafted bladelets as cutting insets, were launched using a spear 

thrower at two young female deer, it was found that on average those with insets 

penetrated further (c. 28cm) than those without (c. 15cm).        

 

A penetration depth of 14cm (as recorded by Chesnaux) in the area of the rib cage 

would certainly be sufficient in the targeting of many smaller prey species, assuming 

also that the ribcage itself was penetrated.  Larger prey, with larger skeletal structures 

may pose a greater obstacle to penetration through the resistance of greater bone mass 

and larger muscle and sinew attachments, with projectiles potentially either failing to 

pierce the rib cage or reach the ribs at all.  Penetration of the rib cage is necessary to 

target many (although not all) vital organs for a fatal blow (Friis-Hansen 1990).  

Experimental research into the extent and nature of projectile penetration utilising 

microlithic armatures in this manner has generally been lacking, with most of the few 

studies that have been conducted focussed upon the bow and arrow as a delivery 

mechanism.  The behaviour of projectiles at the moment of impact and once 

embedded within the target not only affects the likelihood of wear, polish and fracture 

formation, it also influences the chances of re-use and archaeological visibility.  These 

concerns relate to incidents of breakage and detachment caused from impact and 

stresses from subsequent embedment within the prey.        
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2.5.6 Effect upon Impact      

Projectile design, and particularly the type of tip and hafting of any barbs or shredding 

implements, may reflect the intentions of the hunter with regards to the nature of the 

impact.  Experimental replication of bow and arrow hunting conducted by Crombè et 

al. have shown how Mesolithic hunters at the site of Verrebroek (Belgium) illustrate 

two types of breakage that must be considered (2001).  The arrow tips themselves 

suffer impact damage leaving macro and microscopic traces.  Most of the barbs used 

in these experiments became detached once embedded within the target carcass, most 

likely due to the manner in which they were hafted using resin mastic, while others 

came loose upon extraction of the shaft (Ibid 2001).  Out of 96 barbs fired, only three 

exhibited visible damage, and none bore any traces of microscopic linear impact 

traces or meat polish (Ibid 2001, 260).          

 

It can only be assumed that when subjected to the strains of being embedded in a 

moving target, the chances of detachment would be even higher.  The additional 

cutting line provided by the penetration of barbs will enlarge the wound, and post-

impact breakage, whether of the projectile tip or barb embedded within the target, will 

certainly maximise damage to the prey (Friis-Hansen 1990; Grimaldi 2008, 158).  It is 

unclear whether these breakages were an intentionally designed strategy on the part of 

the hunters in question, or whether this occurrence was simply affordable within the 

economy of manufacturing hunting weaponry.  Similar episodes of tip breakage and 

barb detachment have been documented in other experimental reconstructions of 

microlith armed bow and arrows (Grimaldi 2008; Chesnaux 2008) and spears 

(Pétillon et al. 2011) lending credence to suggestions of intentionality, although 

ethnographic support for such claims remains limited (Ellis 1997).   

 

In Chesnaux‘s study of Sauveterrian microliths fired into a wild boar carcass, four 

barbs were hafted laterally, two on each side of the shaft (Figure 4) for forty arrows.  

Forty arrows were made in total, of which thirty two were fired into the carcass, and 

the remaining eight fired into the ground.  The final location of the 160 (total) barbs is  
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Figure 4: Schematic of Sauvetterian point tipped arrows with laterally hafted crescent segment 

(a) and triangle segment (b) barbs.  From Chesnaux (2008) 

 

 

detailed in Table 2.  The majority of these had become detached, although the final 

location of these pieces varied; a notable portion had become detached upon impact 

prior to embedding within the flesh, with similar effects experienced in other 

experiments featuring laterally hafted insets.  As an undesirable result, this effect has 

been attributed to oversights in design and construction (Pétillon et al. 2011), but the 

stripping of insets upon impact may have been a legitimate concern even for more 

professional hunters.  Details regarding the final circumstances of the 32 barbs 

belonging to the 8 arrows fired into the ground were not specified, rendering these 

results inextricable from those fired into the cadaver.  High rates of armature loss 

were also recorded by Yaroshevich et al. (2010, 384) and Pètillon et al. (2011, 1277–

1278). 

 

In the experiments conducted by Crombè et al., arrows were only fired once, with 

breakage and detachment of armatures occurring during either the impact or process 

of extraction (2001, 260).  Difficulty in extraction was also noted by Chesnaux (2008, 

141) and as a cause of armature detachment by Yaroshevich et al. (2010, 379).  With 

such high rates of breakage and detachment, rates of replacement must have been 

high; only pieces that remained attached to the shaft or, perhaps retrievable from the 
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carcass, and without having sustained irreparable damage would be suitable for re-

use.  It seems less likely that pieces that ended up on the ground around where the 

target was shot might be reclaimed unless the hunters were being particularly 

fastidious.  The high rates of damage (particularly in projectile tips) and detachment 

(particularly in barbs) have several implications for the chances of finding diagnostic 

wears, polishes and fractures.   

 

Final Location Triangles Crescents Combined 
% of total 

(n=160) barbs 

Remained Hafted 26 17 43 27 

Found during 
butchery and 
consumption 

21 25 46 29 

Found on the 
ground 

16 13 29 18 

Unaccounted for 17 25 42 26 

 

Table 2: Whereabouts of armatures following experimentation. Data from Chesnaux (2008) 

 

2.5.7 Short Use-Life 

Microwear polishes are unlikely to form on hunting weaponry such as lithic projectile 

armatures as the implement is only in contact with the target and in motion for a 

relatively short period of time.  This is the explanation assumed for the lack of wears 

recorded in experimental studies (Fischer et al. 1984, 28; Fischer 1990, 30).  Any 

chances of these polishes forming, and indeed of any other use-related traces being 

generated, are greatly decreased by the potentially much shortened use-life of the 

objects if they require replacing after only a few shots.  It is a widespread assumption 

among many researchers that microliths, in the context of the bow and arrow at least, 

represent an armature type that is cheap, quick and easy to produce and replace 

(Rozoy 1989; Zvelebil 1986; Bergman 1993; Yaroshevich et al. 2010; Dusseldorp 

2012).  Such maintainability is less apparent in other weaponry in which microliths 

may have been utilised, where greater time and care may have been necessary in the 

replacement of armatures (Pétillon et al. 2011, 1281).  If reparations and replacements 

were conducted whilst out on the hunt (Zvelebil 1986, 89; Edwards 2007), this further 

decreases the chances of used materials being deposited at an archaeological site.     
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If armatures are broken or detached with the expectation of a short use-life, it may be 

assumed that used pieces are drastically underrepresented in many archaeological 

assemblages.  It has been suggested, again with regards to the bow and arrow, that tips 

(and presumably other detached components) are lost once shot (Rozoy 1989, 18) 

unless they remain attached to the shaft and are re-useable.  As the majority of 

projectile weaponry is used outside settlement areas, this further decreases the 

likelihood of archaeological visibility (Yaroshevich et al. 2010, 372).  The high 

frequency of breakage, detachment and general loss documented in recent 

experiments involving a number of configurations (Crombé et al. 2001; Grimaldi 

2008; Chesnaux 2008; Pétillon et al. 2011) suggests that overall, few pieces sustain 

damage that can be considered clearly diagnostic of their use and become deposited at 

archaeological sites.  

 

It is generally assumed, relative to other forms of stone tool production, that the 

manufacture of microliths is relatively cheap and easy, both in terms of material cost 

and time necessary for production (Rozoy 1989; Zvelebil 1984).  This may not always 

be the case both in terms of the lithic reduction process itself (see Elston and 

Brantingham 2002 for a detailed example), but also within the greater endeavour of 

constructing hunting weaponry.  For example, while the manufacture of a batch of 

microliths may, in of itself, require little time, the arrangement of pieces in composite 

weaponry such as the cutting insets commonly envisioned in Magdalenian hunting 

equipment may compromise the idea of this being a time-efficient investment 

(Pétillon et al. 2011, 1281).  The ability for microliths themselves to be manufactured 

in a way that is relatively cheap in terms of labour costs supports the appeal of batch 

manufacture (Eerkens 1998), particularly for weapon designs in which the armatures 

are likely to require regular replacement.  Such approaches to production may have 

been further accommodated by the ease and monotony of manufacturing the basic 

form (Close and Sampson 1998; Close 2002).  In cases where these sorts of 

production methods dominated, it may be likely that a great many microliths and 

particularly blank forms (without retouch) are manufactured but never used or even 

finalised for use.  These pieces would likely cluster where they were made or become 

either discarded or stored for potential future use.  While their archaeological 

visibility in such a hypothetical scenario could not be described as over-represented, it 

could certainly contribute to the obscuration of pieces that were used.               
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2.5.8 Multi-functionality 

Finally, the possibility of multiple uses may affect the visibility of wears and damages 

pertaining to projectile use, particularly considering the biases against formation 

already established.  Despite an influential article by David Clarke (1976) in which it 

was posited that microliths may have often served as components of various tools 

other than hunting weaponry, overall prevailing attitudes in many areas maintain this 

view (Torrence 2002).  Perhaps this is true of the majority of cases, but evidence 

attests to alternative functions in some contexts. 

Several studies that have focussed specifically on microwear have contradicted 

assumptions of use in projectile technology in favour of other activities (e.g. 

Finlayson and Mithen 1997; Finlayson and Mithen 2000; Hardy and Svoboda 2009).  

In scenarios where they were utilised for multiple functions however, certain polishes 

are more likely to form than others, and perhaps masquerade other uses.           

 

A hunting toolkit found in the Levant attests to this sympatric functionality, with 

lunate/crescent segments commonly associated with projectile weaponry found 

alongside bladelets hafted in what appears to be a sickle (Edwards 2007).  In this case, 

it seems different microlith designs were used for different purposes, but the premise 

of multi-functionality remains, and the uniqueness of the find emphasises how 

difficult it may be in reality to extricate the intended purpose of these artefacts.  

Beyond scenarios where microliths have been shown to have ranging utility, it 

remains possible that individual pieces themselves were used for multiple purposes.   

 

Ethnographically recorded multi-functionality in stone spear tips, particularly those 

hafted in detachable foreshafts, has been documented among a number of peoples, but 

is much rarer, although not altogether unknown, with arrowheads (Ellis 1997, 54).  

The small size of microliths might make them less suitable as general cutting 

implements, and complex composite haftings with lateral barbs might be rendered 

unwieldy compared to other available implements.  In a recent case where arrowheads 

were documented as serving as cutting implements (Greaves 1997), the pieces were 

larger lanceolates made of iron.  It is assumed that the narrow shafts of arrows are too 

thin to sustain heavy use (Ellis 1997, 54).     
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Overall, the multifunctional use of microlithic armatures cannot be ruled out.  

Analyses of residues on segments from the site of Sibudu have suggested various 

potential uses within a seemingly homogenous morphological type with, in some 

cases, varying residues occurring on a single piece (Lombard 2008a).  More generally 

speaking, it is a truism that the potential to haft a small cutting edge in variety of 

configurations offers a range of possibilities in design, even if projectile weaponry 

remains the most widespread realisation of this potential.       

 

2.6 Summary 

As the above discussion has shown, there are a number of reasons why we should be 

wary of underrepresentation of projectile weaponry in investigations of function.  This 

may be through no particular fault of the analytical methodologies used, but rather the 

nature of the evidences being dealt with and the variables of use-life and taphonomy 

that may affect their archaeological visibility.  The behaviour of microlithic armatures 

both upon and after impact is determined by a number of variables.  The types of 

evidences left from these actions, and the likelihood of their formation also vary 

accordingly, and do not always conform to what is more broadly considered 

diagnostic.  Furthermore, there is a high chance if used in hunting weaponry, and 

particularly as armatures for arrows, that many microliths used in this capacity may 

not be deposited at archaeological sites.  Consequently, investigators should be 

particularly wary of assemblages where large numbers of the sample population 

appear to have no discernible evidences of use or evidences of an indeterminable 

nature.  While this problem is not limited to microlith assemblages, it does seem 

particularly prevalent within studies of this morphological type, and the reasons 

detailed above could sufficiently account for the trend in results. 

 

Unquantifiable interpretive obstacles in the characterisation of microlith use through 

functional analyses have been insufficiently considered in many previous 

investigations.  Unless these issues can be accounted for, then it is difficult to allay 

the concerns that may arise with non-critical characterisations of microlith 

functionality through these methods.  While it is desirable that these issues are 

afforded greater exploration in future assessments, they do not negate the contribution 

that varying forms of functional analysis offer, but rather stress the need to exercise 
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caution in some areas of interpretation.  As these approaches continue to develop, and 

the importance of experimental and ethnographic data and tighter methodological 

rigour are better understood, our expectations of the data accordingly, will also be 

refined.  The contribution of such methods, particularly when integrated with other 

functional and contextual data remains a fruitful area of investigation with the 

potential to greatly inform our understanding of prehistoric tool use.  This 

contribution is evident both in much of the material that has helped facilitate the 

above discussion and also in many of the examples included for consideration later in 

the regional case studies, most notably in the Howieson‘s Poort of Southern Africa. 
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3 Final Palaeolithic of Northern Spain (La Riera) 
 

Cantabria in Northern Spain is recognised today as an autonomous community nestled 

between Asturias, Castile and León and the Basque Country Figure 5.  The area seems 

to have a somewhat more flexible definition archaeologically.  ―The Cantabrian 

region‖, as well as referring to Cantabria sensu stricto, may sometimes refer to the 

broader coastal plain of Northern Spain, which is often subdivided into Asturias to the 

west, Cantabria (or Santander, the capital of Cantabria) centrally, the two Basque 

provinces of Vizcaya and Guipuzcoa to the east and sometimes Navarra to the 

southeast.  The area is abutted by the Cantabrian Sea to the north and Cantabrian 

Mountains to the South.  When including the Basque Provinces, the region is 

sometimes known as Vasco-Cantabria (Straus 2000).   

 

 

 

Figure 5: Map showing modern day Cantabria 

 

The high density of late Pleistocene and early Holocene sites in this region has 

stimulated much research.  For example, as of 1985, there were 38 confirmed 

Solutrean sites (Straus 1992, 97), and over 15 years this number had risen to 52 

(Straus 2000, 50).  Although the archaeology of the Iberian peninsular extends much 

further back in antiquity, the unprecedented density of Solutrean sites in Cantabria 
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suggests an explosion of activity at this time, probably a concentration resulting from 

the area‘s suitability as a refugium from the worst of the LGM (Jochim 1987; Straus 

2000).  Today, the area is a part of ―Green Spain‖, a climatic zone defined as 

temperate and oceanic.  The attractiveness of this area probably persisted through 

time, as archaeological sites from the Mesolithic Asturian are also concentrated here  

(Straus 2008).   

 

The wealth of sites in Cantabrian Spain continue to attract archaeological attention, 

and this, combined with the fact that microlithic industries are known to feature 

throughout this period of prehistory in the region, make the area an ideal focus for my 

research and a suitable choice as a pilot/first case study.  The question of subsistence 

has proved a major research focus among Cantabrian prehistorians, and this issue has 

been addressed through narrow focus research and broader regional syntheses of data.  

While some of these studies have explicitly targeted hunting studies, very few have 

successfully integrated multiple bodies of evidence, with many studies content to 

summarise aspects of compartmentalised datasets (Straus 1987; 1993; Arroyo 2009b).  

The site of La Riera, has proved particularly important in studies of later Cantabrian 

prehistory.  The rich and extensive sequence of the site makes it a suitable referential 

framework from which to explore the evidence from some other sites, as well as 

considering the more general regional overviews of Cantabrian prehistory.  Following 

the section on La Riera, other sites in Cantabria with complementary datasets are 

reviewed.  These are: Rascano and El Miron, along with faunal assemblages from La 

Fragua Cave, and use-wear studies conducted on assemblages from Santa Catalina, 

Laminak II and Berniollo.   

 

3.1 Introduction to La Riera 

Situated at 43º25‘31‖ north latitude, 4º51‘25‖ west of the Madrid Meridian (used 

prior to the adoption of the Greenwich Meridian) on the narrow coastal plain of 

eastern Asturias, the prehistoric cave site of La Riera is approximately equidistant 

between the Cantabrian Sea in the north and Sierra de Cuera coastal mountain range 

to the south (Straus 1999, 21).  Straus and Clark‘s seminal report (1986a) detailed 

comprehensive investigation, and integrated their findings with research conducted on 

contemporary sites, giving La Riera an enduring importance in Cantabrian prehistory.  
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Figure 6 shows La Riera to the west of the other sites considered.  Below are some of 

the reasons why the site has remained so influential: 

 

 The La Riera stratigraphic sequence spans nearly 14,000 years from the 

terminal Aurignacian to the early Asturian.  Such chronological depth has 

rarely been paralleled in sites of such antiquity. 
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Figure 6: Map showing the 7 sites included for analysis: 1 = La Riera, 2 = Rascano, 3 = La Fragua, 4 = El Miron, 5 = Santa Catalina, 6 = Laminak II, 7 = 

Berniollo.  The rectangle delineates the Ason River Basin 
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 A substantial quantity and broad variety of remains were recovered during 

excavation, and these were analysed by a wide team of specialists of mixed 

professional and national backgrounds.  This allowed for comprehensive 

investigation of a scale and nature previously unprecedented in the region.    

 

 The project was overseen by the two American archaeologists Lawrence 

Straus and Geoffrey Clark, both of whom were familiar with some of the most 

contemporary ideas in theory and practice of the time from their respective 

backgrounds.  Of the two, Straus in particular has remained an industrious and 

prolific presence in this area, frequently referring to La Riera in works of 

broader geographical focus.     

 

 The cohesion brought by Straus and Clark‘s integration of La Riera into the 

broader regional and temporal framework was of a scale previously 

unprecedented in Cantabrian prehistory.  It has served to perpetuate La Riera‘s 

position at the heart of many further studies. 

 

 Being published in English made the report accessible to a much wider 

audience than would have otherwise been attainable. 

 

 Many of the findings established in the La Riera report have been consolidated 

by the subsequent works of Straus (e.g. Straus 2011) and others, though of 

course, it must be acknowledged that the site‘s enduringly powerful presence 

in Cantabrian prehistory has been likely been a significant influence over this. 

 

There are inevitable issues of ontology when one particular site dominates our 

understanding of the past, and it is important to be aware of these when informing 

studies of broader areas.  The extent to which this is the case with La Riera is 

constantly diminishing as work on contemporary sites expands.  However, given that 

to this day, no complete site investigation rivals it in depth or breadth, it is only 

reasonable that it forms the epicentre of my own work in this region.  The extensive 

variety and detailed nature of the data presented in the La Riera monograph and 

associated publications present an excellent case to develop as a pilot study.  
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3.1.1 Geographical Setting     

Located between the coastal Cantabrian plain and the hills and valleys that back it, La 

Riera would have provided its occupants with access to different landscapes, resource 

bases, and ecological niches, which would have developed with time.  Situated 30m 

above present sea level, and 1.5km from the foot of Peña Llabres (max elevation 

715m), the site would have also had close access to the Rio Calabres stream valley, 

the current course of which is around 40m away from the cave (Straus and Clark 

1986a, 4).  The Sierra de Cuera mountain range is a further 10km to the southeast.  At 

present, La Riera is 1.75 km away from the shore, but may have been as far as 9.7 km 

around 18,000BP (Ibid 1986b).  The cave itself is a small west-facing solution cavity 

formed out of Lower Carboniferous limestone.  Although 7m wide, the entrance to the 

cave is low, and sunlight penetration would have been restricted, particularly in the 

summer when the sun is higher in the sky (Ibid 1986b, 9).                  

 

3.1.2 History of Investigation 

La Riera was first investigated by the Conde de la Vega del Sella in the early 20th 

century, and excavated in collaboration with Hugo Obermaier between 1917 and 

1918.  Although details of their work can be found in several of their other 

publications, the first dedicated explicitly to La Riera was published by the Conde in 

1930.  The standard of their work is widely regarded as laudable for its time, and of 

pioneering importance in the field (Straus and Clark 1986a, 9; González Morales and 

Fano Martinez 2005) but nevertheless incomparable to the standard of more recent 

works.  As with many other sites investigated at this time, very little of their 

collections have survived through Francoist Spain (Straus and Clark 1986a, 9).  Since 

the Conde‘s excavations, the site experienced repeated looting and also some action 

during the Spanish civil war (Ibid 1986b).  The next excavations were the preliminary 

trials conducted by Geoffrey Clark in 1969.  Details of this are extensively covered in 

Straus & Clark‘s monograph, with certain elements also having been published 

separately elsewhere (Clark and Richards 1978; Straus and Clark 1978).  These 

excavations were the primer for initiating the much larger scaled La Riera 

Palaeoecological Project (Straus et al. 1981), culminating in the final report (Straus 

and Clark 1986c).  My own assessment is based entirely upon work derived from 

Straus and Clark‘s most recent excavations.   
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Figure 7: Overhead Plan of excavations at La Riera 

 

Stratigraphy throughout the cave varies both naturally, and also because of the limits 

to excavation in some quarters.  Several section drawings, deemed to be broadly 

representative of the site stratigraphy are provided in Laville (1986).  Details of the 

units excavated are given in Table 3. 

 

 



38 

 

Level 
Area 

Excavated m² 

Estimated Average 

Thickness (cm) 

1 5 30 

2 3.2 4 

3 5.2 16.5 

4 5.5 6 

5 5.5 7 

6 4 4 

7 8.5 10 

8 9 4.5 

9 8 5 

10 7 5 

11 5.5 3 

12 3.3 2.5 

13 2.3 4 

14 8 11.5 

15 8 4 

16 8 15 

17 7.5 2.5 

18 8 7 

19 7 8 

20 6.5 8 

19/20 2.5 16 

21-23 9 25 

24 6 10 

25 1.3 2.5 

26 5 2.5 

27 8 25 

28 3 8.5 

29 3 7 

30 1.3 10 

 

Table 3: Excavation Unit Details for La Riera 

 

3.1.3 Issues of Stratigraphy 

For reassessment of La Riera, it has been necessary to reconfigure some aspects of the 

report to facilitate the identification of actual trends.  While it is important not to 

neglect the actual measurements recorded during excavation, the quantification of 
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various datasets (e.g. various assemblage components) have been recalculated as 

proportions.  This allows a more meaningful comparison to be made between two 

stratigraphic units which may vary substantially in size as excavation units: a rise in 

the number of microliths through time is only meaningful if it is relative to the rest of 

the assemblage.  Further to this, decisions regarding appropriate ordering of the La 

Riera sequence have also had to be made.   

 

Treatment of the stratigraphic levels at La Riera by different investigators varies 

throughout the original report depending on the dataset in question.  Some matters are 

uniform, for instance the decision to treat levels 21-23 as a singular and monolithic 

depositional unit, while others, e.g. the differentiation of level 8 and level 8 (top) by 

Altuna (1986b, 421) have been tailored to suit specialist analysis and are not 

uniformly acknowledged by different specialists.  In the ensuing discussion, it has 

been necessary at times to revise some of these systems to facilitate cross-analysis of 

different suites of evidence. 

 

3.2 The La Riera Diagram Explained 

The (Appendix 1) presents the La Riera sequence, starting with level 29 at the top and 

descending to the oldest of the excavated levels, level 1.  The column to the furthest 

left shows the radiocarbon chronology in years BP (uncal) as cited in Craighead 

(Craighead 1999, 12) and the original report (Straus 1986b), with n/a representing 

levels where no dates were collected, and dates dismissed as inconsistent by the 

original investigators written in red.  The youngest date recorded, 6500±200 BP, was 

taken from the top of level 29.  A ‗*‘ besides a radiocarbon date denotes a date 

obtained by Alan Craighead (1999) rather than during the original site investigation.  

The next column to the right gives the ‗type fossil stratigraphy‘, which assigns 

portions of the site sequence to different archaeological periods based upon 

supposedly diagnostic artefacts.  Solid lines denote levels where these so called type 

fossils are found, and dot-dash lines identify levels where assignment was based on 

their being bracketed between these levels rather than the yielding such artefacts 

themselves.  The ‗radiocarbon stratigraphy‘ assigns levels to these periods according 

to the dating chronology provided by Straus (Straus 1986b, 21), with n.d. denoting 
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deposits that were not dated at the time.  Both the ‗type fossil stratigraphy‘ and 

‗radiocarbon stratigraphy‘ are taken from Straus, 1986 (Table 2.1).   

 

Coloured levels indicate problematic excavation units.  Levels 19 and 20 are 

incomplete due to an uncertain horizon between the two (level 19/20, which is not 

included in this investigation).  Levels 21-23 are collapsed into one excavation unit 

due to the dearth of material remains recovered and the possibility of a hiatus in 

deposition (Laville 1986).  Level 25 was an ephemeral lens, yielding only 2 retouched 

pieces.  In level 29, materials recovered from the 1969 excavations were conflated 

with those from 1976/9 excavations to compensate for the small assemblage size of 

the latter, complicating assessment of this unit.  Level 30 is not included due to the 

fact that it is a stalagmitic crust that was not formally excavated. 

 

Some levels have been excluded from consideration having been deemed as being 

distortive of overarching trends.  Level 19/20 has been removed from consideration as 

an artificial depositional unit born out of ambiguity; this in turn means levels 19 and 

20 must be regarded as ultimately incomplete as interface materials from both were 

incorporated into the constitution of level 19/20.  Levels 21-23 are considered as a 

single unit, due to the conflation of a large amount of sediment.  Level 25 is excluded 

from reassessment, but included in the diagram on the grounds that it is too small a 

deposit to be considered representative of any broader trends.  Quantification of level 

29 conflated some details of the 1969 excavations with those from the 1970‘s 

investigation to compensate for the small scale of the latter (Straus and Clark 1986b, 

180); this complicates further assessment in some regards.  Level 30 is not included 

due to the fact that it is a stalagmitic crust that was not formally excavated.  The 

(Appendix 1) synthesises the main data pertaining to hunting activities throughout the 

La Riera sequence.  The levels identified above as problematic for analysis are 

coloured in the diagram.  

 

The ‗Climatic Indicators‘, as adapted from Straus (Straus 1986b, 22–23), comprise 

four categories of evidence.  The first two columns show the climatic reconstructions 

afforded by sedimentological (Laville, 1986) and palynological (Leroi-Gourhan, 

1986) analyses of the site; dashed lines represent hiatuses in deposition.  The double 

line between levels 21 and 22 of the sedimentology column represents a cryoturbation 
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event.  Episodes of erosion are not shown on the diagram; these occur between levels 

1 and 2, 23 and 24, and 26 and 27 (Straus and Clark 1986b).  The third provides 

reconstruction of the vegetation as according to Leroi-Gourhan (1986), and the fourth 

are faunal species considered to be indicators of notable climatic variability as 

recognised by Altuna (1986c), highlighted in the units in which they were found.   

 

The ‗dominant fauna‘ columns show the three most dominant species in the 

assemblages of each level throughout the sequence by quantity of remains.  Levels 

where the third most dominant species account for less than 5% of the assemblage are 

not given.  This data was taken from Altuna (1986a).  The next section of the diagram 

shows the proportional representation of backed bladelets, with a rounded percentage 

given within each plot.  The actual number of backed bladelets recovered in each 

instance is given as ‗n‘, adjacent to the plots.  The dominant three flint types recorded 

in each of these levels is also given (coding explained later), along with whether the 

lithic assemblage is dominated overall by flint or quartzite materials by both count 

and weight.  The dashes in level 25 indicate that data was not included from these 

levels for this study.  Lithics data is derived from Straus & Clark (1986), Straus et al. 

(1986), and my own reanalysis discussed later in the chapter.    

 

The diagram neatly summarises the main bodies of evidence pertaining to hunting 

activities recorded at La Riera within the internal chronological framework developed 

for the site.  While this allows for easy visual correlation, some of the more specific 

details about the information presented here has been excluded.  These aspects of the 

data are discussed elsewhere.  Consequently, while this diagram concisely illustrates 

some key features, it should not be consulted in isolation. 

 

3.3 Radiocarbon Dates 

A total of 28 radiocarbon dates were acquired from La Riera, making it one of the 

most extensively dated Palaeolithic sequences of its time (Laville 1986, 42).  There 

were however a number of difficulties in integrating them with the broader 

archaeology.  As well as some substantial margins of error, it has proved difficult both 

to correlate various environmental indicators with cultural remains, and to correlate 

the La Riera sequence with events recorded at other contemporary sites (Straus 1986c, 



42 

 

67; Straus 1986a, 225).  As well as this, there are internal inconsistencies within the 

sequence itself: for example, level 16 was dated to 18,200 BP, which was deemed too 

old when bracketing determinations from levels 15 and 17 were considered (Straus 

and Clark 1986b, 132).  Finally, there was also some disparity between results from 

the same levels as recorded by different laboratories, leading some of the La Riera 

team to use the C
14

 dates as secondary indicators rather than the primary basis of their 

chronologies (Laville 1986, 42; Straus 1986c, 68).   

 

While the establishment of a radiocarbon sequence has proved invaluable for 

understanding the La Riera deposits, the problems detailed above mean they also raise 

many questions regarding the site‘s chrono-stratigraphy.  For example, despite 

obtaining a date more consistent with the Azilian as recorded at other Vasco-

Cantabrian sites, Level 24 yielded two fragments of a single cylindrical section 

biserial Magdalenian harpoon, and was thus classed as an Upper Magdalenian deposit 

(Straus 1986a, 225).  Radiocarbon dates only provide a useful framework if we can 

successfully integrate them with existing patterns in the archaeological record.  

Therefore, it is imperative that some of the issues with the La Riera chrono-

stratigraphy are addressed.     

 

3.4 Chrono-Stratigraphy 

The thirty levels of La Riera range from the Aurignacian, or at least ―pre-Solutrean‖, 

through to the Asturian across a time span of approximately 14,000 years.  The 

majority of the sequence comprises Solutrean deposits, and it is the transitional stages 

between this and between subsequent periods which are most problematic to define.  

Each major cultural horizon (e.g. Lower Magdalenian) is defined by differences in 

artefact association, and where these ―type-fossils‖ are absent, our ability to assign 

levels accordingly is reduced to relying upon identifiable bracketing levels.  Only 

three levels between Level 21 and 29 (24, 28 and 29) contained incontrovertibly 

recognisable type-fossils, the rest being ascertained to varying degrees of reliability 

according to bracketing layers and other indicators, such as correlating radiocarbon 

dates with those from contemporary site stratigraphies.  The type fossils confirm that 

Level 24 is Upper Magdalenian, while Level 28 is Azilian and Level 29 is Asturian.   
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3.4.1 Lower Magdalenian Levels 

Prior to Level 24, there are no typologically confirmed Lower Magdalenian levels.  

Level 18 is the first presumed Lower Magdalenian level, identified only because of 

the lack of a cultural affiliation with either the Upper Solutrean or Upper 

Magdalenian.  The layer does, however, have quadrangular sectioned bone and antler 

points which are ―supposedly‖ typical of Cantabrian Lower Magdalenian assemblages 

(Straus and Clark 1986b, 139).  In qualifying the above observation with 

―supposedly‖, Straus and Clark clearly exhibit some doubt in this association.  This 

doubt is only strengthened by their own admission that, aside from the lack of 

archaeological index fossils, the composition of retouched tool components of Level 

18 (―Lower Magdalenian‖) and Level 17 (―Upper Solutrean‖) are statistically 

identical (Ibid 1986, 139).  Level 17 is considered Upper Solutrean on the basis of a 

single but characteristic willow leaf point fragment and two flakes with invasive 

retouch (ibid: 134).  Levels 19, 19/20 and 20 are all considered Lower Magdalenian 

on the grounds that they lack index fossils and are bracketed by Level 18 and Level 

24 (24 being confirmed as Upper Magdalenian).  None of the levels assigned to the 

Lower Magdalenian by Straus and Clark are confirmed by traditional typological 

methods; at best they can be said to fill the gap in the sequence where the Lower 

Magdalenian should be.  In reality, while some levels are more questionable than 

others, there is little evidence to challenge this classification.   

 

3.4.2 Upper Magdalenian Levels 

Levels 21-23 are suggested as most likely being Upper Magdalenian based on a single 

radiocarbon date from Level 23 of 10,300 BP (considerably younger than Level 20) 

and approximately equal quantities of burin and endscraper percentages.  Such a ratio 

is  more common of Upper Magdalenian assemblages, though it should be noted that 

there is, in general, a dearth of material remains, and retouched pieces are 

proportionately more common than elsewhere in the site (Straus and Clark 1986b, 

155).  I would dispute the value of this criterion as a chronological indicator, at least 

in the case of La Riera, as the same trend can also be found in supposedly Solutrean 

level 17 and Lower Magdalenian levels 18, 19 and 20.  This does not negate the 

radiocarbon date though. The possibility of a major episode of erosion after the 
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deposition of level 20, and a 5000 year hiatus in stratigraphy would rule out any 

possibility of a transitional horizon (Ibid 1986, 159).       

 

Levels 25 and 26, the former considered in amalgamation with the latter, lack 

diagnostic type fossils but are deemed probably Upper Magdalenian according to 

bracketing layers and internally homogenous lithic assemblages through from L24-

L27 (Straus and Clark 1986b, 165–171).  Level 27 on the other hand is more 

problematic, as it lacks diagnostic index finds, but comes just before Azilian level 28.  

Despite dividing the level into two sub-units (an upper and lower L27), and 

suggesting with some confidence that L27 must span the Magdalenian/Azilian 

transition, there is no clear horizon event in the level according to Straus and Clark‘s 

synopsis (1986, 171–175).   

 

3.4.3 Azilian / Asturian Levels 

While levels 28 and 29 contain clear index fossils of the Azilian and Asturian 

respectively, there is only one occupation level from each of these (Level 30 is an 

unexcavated stalagmitic ceiling crust), in comparison with eleven Magdalenian layers 

and up to maybe 16 Solutrean levels.  In the case of the Asturian, the sequence 

unfortunately terminates, and the Azilian is by definition is a short time period.       

 

3.5 The Lithics 

The La Riera lithic assemblages, of which there are 55,634 pieces in total, have been 

the subject of extensive investigation, including raw material studies (Straus et al. 

1986), use-wear (Clark et al. 1986, 342–345), and multivariate analysis (Clark 1989).  

52,835 (94.7%) of the stone artefacts were placed in 15 categories of debitage and 5 

of manuports (Clark et al. 1986, 326).  The other 2,799 (5.3%) retouched pieces were 

classified according to the descriptive tool typology developed by de Sonneville-

Bordes & Perrot (1953), despite some expressions of dissatisfaction with the 

appropriateness of this system (Straus 1996, 40).  In their original analysis, the types 

recovered are displayed in histograms, along with more detailed lithic inventories 

provided for each level (Straus & Clark, 1986).   
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Classically accepted forms of hunting weaponry found at the site included the larger 

Solutrean points (shouldered points, willow points, and foliates), and a variety of 

microlithic armatures, by far the most profuse of which is the backed bladelet.  As 

Figure 8 shows, the former are found only in the earlier part of the sequence, levels 4-

8 particularly, and the backed bladelets are more prominent in the latter part, 

particularly between levels 17 and 20.  There is some degree of intergrading though, 

with backed bladelets being present in notable quantities in levels 4 and 5, and 

transitional phases such as levels 15 and 16 which bridge their paucity in earlier levels 

and their proliferation in level 17.  There are some levels where neither Solutrean 

points nor backed bladelets were recovered in any significant quantities.  This 

potentially indicates periods when the site was not a focus of hunting related 

activities, when evidence of hunting technology is less readily apparent, or 

alternatively, when deposits of these tool types lay outside of the excavated area.      
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Figure 8: Graph showing Solutrean points and backed bladelets at La Riera 

 

 

3.5.1 The La Riera Bladelets 

Of the ten types of retouched bladelet found at La Riera, by far the most dominant is 

the backed bladelet.  From level 16 onwards, backed bladelets comprise the vast 

majority of all the retouched bladelets, and also account for over 50% of the total in 

levels 4 and 5, although in absolute terms they are much less common in these levels 

(Figure 9).  They feature less prominently in levels 1-3 and 6-15, and retouched 
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bladelets as a whole are less abundant in these levels.  Figure 9 shows that variation in 

the quantity of retouched bladelets when backed bladelets are excluded from 

consideration is much less marked, peaking at 13 pieces in level 10.  With the 

exception of a small peak in levels 4 and 5, backed bladelet use increased 

substantially in level 17, remained high until level 20, and fluctuated throughout the 

rest of the sequence, peaking at 50% in level 28 and falling as low as 16% in levels 

21-23 (Appendix 1). 
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Figure 9: Graph showing backed bladelets (excluding microlithic points) as a proportion of total retouched bladelets at La Riera 
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Figure 10: Retouched Bladelet Types at La Riera. 1 backed and denticulated - level 4; 2 backed 

and truncated – level 19; 3 denticulated – level 7; 4 double backed – level 5; 5 Dufour – level 6; 6 

Notched – level 18; 7 backed – level 27; 8 backed – level 4; 9-15 backed – level 17  

 

The other eight types of bladelet are described as: Bracketed, Notched, Dufour, 

Denticulated, Denticulated and Backed, Truncated, Truncated and Backed, and 

Double Backed.  Divided into their constituent types, only dufour bladelets and 

denticulated bladelets ever exceed more than two in number in more than one level.  It 

is clear that backed bladelets are easily the most significant type.  It is difficult to 

identify patterns or say anything meaningful of these bladelets in such insignificant 

quantities; their very recognition may even be the result of overly-zealous adherence 

to morphological categorisation.  Consequently, the overwhelming predominance of 

backed bladelets is my main focus.  Consideration is therefore divided between the 

early representation of backed bladelets in levels 4-8, and the concentration in later 

levels from level 17-28.  A more detailed breakdown of the backed bladelets can be 

found in the relevant sections below. 
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Figure 11: Graph comparing variant retouched bladelet types at La Riera 
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3.5.2 Debitage 

Debitage pieces, which comprise the majority of the La Riera lithics, are absent from 

the diagram despite containing bladelets as a defined type.  Debitage bladelets 

generally exhibited little evidence (< 9%) of use wear analysis (Clark, 1989: 39), 

compared to backed bladelets where 56% of the sample had evidence of damage, but 

the fact that some did is intriguing.  While the primary emphasis, in accordance with 

that of the site report, focuses on retouched microlithic elements, it is interesting to 

note any parallel trends in debitage bladelets.  These can be said to loosely match that 

of retouched bladelets in some levels (Figure 12).  The spike in retouched bladelets 

from levels 4 and 5 is not replicated in debitage bladelets, and the proportion of 

debitage bladelets recovered from levels 21-23 is curiously high.  Interestingly, 

debitage bladelets only exceed retouched bladelets as proportions of their respective 

assemblages in levels 1, 2-3 and 29. 

 
Comparison of retouched and debitage bladelets as proportions of 

their respective assemblages at La Riera
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Figure 12: Graph showing retouched and debitage bladelets as proportions of their respective 

assemblages at La Riera 

 

 

3.6 Palaeoenvironmental and Climatic Evidence 

The La Riera excavations yielded three main sources of climatic evidence, from 

palynological studies, sedimentological analysis, and the presence of certain 

indicative species of fauna.  This last category is problematic for two reasons.  Firstly, 

as shown in (Appendix 1), very few levels provided this evidence, and the only 

indicators found will be either cave dwelling fauna or species procured by the 
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occupants (human or otherwise) of the cave.  Secondly, there is a degree of 

contradiction and imprecision in some levels between these climatic indicator species.  

For instance, in level 24, where both Rangifer tarandus and Capreolus capreolus are 

present despite inhabiting starkly contrasting environments (Straus 1986c, 67).  While 

the presence of some species, such as Microtus oeconamus (the arctic vole) can prove 

valuable for palaeoclimatic reconstruction, much of the La Riera faunal deposits are 

perhaps best focussed towards interpretations of subsistence (Straus and Clark 1986d, 

370).  

 

The sedimentological (Laville 1986) and palynological studies (Leroi-Gourhan 1986) 

provide the best sources for palaeoclimatic reconstruction.  As (Appendix 1) shows, 

the inferences made from these bodies of evidence are, for the most part, in general 

agreement with one another, with slight differences in timing resulting from the 

different speeds and resolutions at which processes are felt in these records.  These 

disparities become more numerous and more difficult to reconcile later in the 

sequence from level 20 onwards; the palynological record has a number of gaps in the 

Magdalenian levels (Leroi-Gourhan 1986, 59), and the upper deposits of the sequence 

lack the qualities necessary for definitive interpretation from sedimentological 

analysis (Laville 1986, 42).  Occupation of La Riera was characterised by generally 

cold conditions throughout much of the Würm upper pleniglacial and the late glacial, 

punctuated by more temperate oscillations, which were never pronounced or long 

enough to permit extensive reforestation (Straus 1986c, 72).  In the same manner, 

while some periods may have been severely cold, sufficient refugia (probably within 

the valleys) were sustained for a continued presence of red deer (Leroi-Gourhan 1986, 

59). 

 

Reconstructing vegetation in the vicinity of the site has proved difficult.  Few plant 

macrofossils have been recovered as a result of poor preservation and the sampling 

strategies employed (Cushman 1986, 65).  Other than this, reconstruction is mostly 

limited to palynological evidence, which is known to be problematic when used for 

such purposes, along with supplementation from other climatic inferences, the 

supposed food/habitat preferences of fauna, and inference from the palaeobotanical 

record from contemporary sites with similar geographical locations. 
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3.7 Fauna        

The La Riera deposits yielded a substantial quantity of terrestrial faunal remains.  

Those identified to species level have been recorded according to NISP, as a 

proportion of assemblage weight, and as MNI when possible.  (Appendix 1) is based 

upon the proportion of assemblage according to NISP.  Faunal remains were found in 

extremely fragmented condition: of 200,000+ remains, 31,480 were identifiable, 

31,336 of which were mammalian, which in turn comprised 31,125 ungulate remains 

(Altuna 1986c, 237).  All terrestrial faunal types, including birds (Eastham 1986), are 

covered in the La Riera report, but ungulate remains have understandably dominated 

subsistence oriented research as the most obvious source of meat.  While the 

precedent of marrow extraction has been found in zooarchaeological studies of other 

Late Glacial Cantabrian sites (Arroyo 2009b), the variety and extent of breakage at La 

Riera suggests that cave taphonomy is a more probable explanation, though these two 

processes are obviously not mutually exclusive.  The highly fragmentary state of the 

assemblages reduces interpretive power. 

 

Jesus Altuna, who is responsible for the majority of early prehistoric mammalian 

zooarchaeological studies in Cantabrian Spain, was the main analyst of the La Riera 

collection.  The extent of his analyses is clear from Appendix B in the site report:  As 

well as recording the quantities and proportional representation in each level of 

different species, he also recorded the MNI, weight, adult/juvenile ratio, distribution 

of remains by skeletal elements for all levels and individual measurements recorded 

for each species (Altuna 1986b).  Through calculating the age at death and sex of 

specimens, it was sometimes possible to shed light on hunting strategies and seasonal 

exploitation patterns.  Although this level of information is not provided in (Appendix 

1), Altuna‘s original report (1986c; 1986a) may be consulted for further details. 

 

In general, red deer (Cervus elaphus) dominate throughout most of the assemblage 

except in levels 2-5.  The extent of this dominance varies throughout, but never falls 

much below 70% of the overall faunal assemblage except in level 24.  Ibex remains a 

consistent secondary prey to red deer in most levels.  While much of the site history is 

characterised by a relatively homogenous breadth of prey, rarely featuring more than 

2 species of note, the latter stages of the sequence bear witness to the introduction of 

newer species with climatic amelioration and reforestation such as Capreolus 
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capreolus and Sus scrofa.  Some of the larger species, including Equus and Bos which 

were largely absent since the beginning of the sequence also make sporadic and lesser 

returns to prominence in these later levels. 

          

3.7.1 Problems with Faunal Quantification 

The challenges facing most zooarchaeological analyses are further exacerbated by the 

highly fragmented nature of the assemblages.  For example, in scenarios as at La 

Riera, MNI will often overvalue the importance of poorly represented species while 

undervaluing the importance of main species (Altuna 1986c: 249).  The weight and 

number of remains are susceptible to, among other complicating factors, variation in 

element representation.  The collective weight of a species remains may be 

comparable to that of another, but different in number, and vice versa.  For example, 

in levels 4-6, there is a minor majority of red deer remains over ibex, yet in terms of 

weight (and, importantly, meat bearing weight) red deer are by far the dominant 

species represented (Altuna 1986b: B.15) 

 

The problems inherent with these methods of quantification only serve to compound 

attempts at further extrapolation.  Interpretations of the La Riera fauna have been 

made regarding the sex, age and seasonality of species, yet the confidence with which 

such inferences can be made varies from level to level.  While individual elements 

may be sexed, these might not provide an accurate reflection of the actual population.  

For example, while analyses have sexed 14 red deer remains as female to 1 male, a 

conservative estimation (MNI) suggests 34 individuals (Altuna, 1986b: B.24; B.23).  

While this does not undermine the fact that to the best of our knowledge red deer 

exploitation in level 7 was targeted towards females, it does show that this 

information is far from representative of the whole population.      

 

A final note for consideration should be the stratigraphic differentiation used by 

Altuna (1986c).  All the values regarding fauna here are from his work (1986a; 

1986b), and if, as in some instances, such as the faunal remains from level 7 for 

example, they do not match their originally recorded format, it is the result of 

averaging to make the data more comparable.  Level 7 is divided into three 



54 

 

components by his assessment, whereas other levels also divided into subcomponents 

were already averaged e.g. level 12. 

 

3.8 Reanalysis of Raw Materials at La Riera 

The original raw material analysis included in the site report showed that flint and 

quartzite alternated with one another as the dominant material used for lithic 

technology.  Although general tendencies of preference are described (Straus et al. 

1986, 189), there is no specific association between morphological tool types and 

material choices for each level.  The aim of this reappraisal of the data is to reveal 

trends in raw material selection pertaining to microlith manufacture that were not 

apparent from the original analysis. 

 

Trends in flint and quartzite were recorded and compared by both weight and number 

(Figure 13 Figure 14).  Microliths may be underrepresented in measurements of 

assemblage weight due to their small size, unless they are present in relatively large 

numbers.  Fortunately, the backed bladelets, which are the only microlithic element to 

occur in any great quantity at La Riera, were made almost entirely of flint (Straus, 

pers comm; 2002: 137).  This means that through isolating the flint component of the 

lithic assemblages, it may be possible to observe trends in material selection that 

match substantial peaks and troughs in quantities of backed bladelets.  Such 

observations would only be possible when backed bladelets account for the dominant 

tool type by a substantial margin, and consequently this reassessment only applies to 

the later levels (17-28) of the La Riera assemblage. 
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Recreation of Straus et al.'s Graph Comparing Flint and Quartzite at 

La Riera - Percents by Weight
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Figure 13: Flint and Quartzite by weight at La Riera 

 

Graph Comparing Flint and Quartzite at La Riera - Percent By Count
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Figure 14: Flint and Quartzite by Count at La Riera 
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Sixteen different types (Types A, B, C, D, E, F, G, H, O, Q, R, U, W, AA, BB and 

miscellaneous type ‗Ω‘) of flint were recorded at La Riera.  Impressionistic and 

(some) petrographic descriptions can be found in Straus et al. (1986: 191-201).  The 

weight of different types was presented as a proportion of the overall assemblage for 

each level in histograms.  Numerical quantification was not provided.  Whereas with 

the inventories of lithic tool types it is possible to distinguish between retouched and 

debitage assemblage components, this is not the case for considerations of material 

types.  For trends in flint material selection associated with backed bladelet 

manufacture to become apparent, backed bladelets must be the prevailing tool type in 

an assemblage, and we must assume that the debitage component for each level at 

least approximately represents waste material from the retouched component i.e. the 

backed bladelets. 

 

3.8.1 Reanalysis     

Below are descriptions of the raw material breakdown of different portions of the La 

Riera sequence.  The proportional values of flint types given for each level (Straus & 

Clark, 1986) have been recalculated as percentages of the flint component to remove 

quartzite artefacts from consideration.   

 

3.8.1.1 Levels 6-16 

Levels 6-16 are characterised by a relative dearth of backed bladelets and are 

dominated by quartzite in both weight and number (Figure 13 Figure 14).  The 

dominant flint types in this section are recorded in Table 4.  Type B dominates in 

every level except 14, but to varying degrees, with the margin as much as 22% in 

level 13 and as little as 1.5% in level 11.  
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Table 4: Dominant Flint types in La Riera levels 6-16 

 

3.8.1.2 Levels 14 & 17 

Backed bladelets account for just 2.5% of the retouched assemblage in level 14 and 

70.9% in level 17 (Figure 8).  The most notable differences between these levels are 

increased representation of types E and C in level 17.  Types Q, W and B are all 

diminished in representation.  Levels 15 and 16, which show some increase in backed 

bladelets, are much closer to level 14 in their flint materials.   

 

3.8.1.3 Levels 17-20    

Levels 17-20 represent the peak representation of backed bladelets in the La Riera 

sequence.  shows the six most represented flint types (A, B, C, D, E and Q) in these 

levels.  Level 17 is dominated by flint types A and C, and to a lesser extent type D 

with proportional weights of 22.58%, 20.40% and 15.78% respectively.  By contrast, 

type B dominates other flint types in levels 18-20, and by a much more considerable 

margin (the smallest being by around 8% in level 18).  Type B only accounted for 

9.52% of level 17‘s assemblage weight, behind types A, C, D and E. 

 

  L 17 L 18 L 19 L 20 

A 22.58 19.47 2.37 12.93 

B 9.52 27.71 43.22 30.11 

C 20.40 11.22 11.18 11.19 

D 15.78 12.82 7.96 11.00 

E 10.61 2.75 0.43 1.35 

Q 4.62 9.85 13.76 10.23 

 

Table 5: Dominant Flint Types in La Riera Levels 17-20 

 L 6 L 7 L 8 L 9 L 10 L 11 L 12 L 13 L 14 L 15 L 16 

A 13.00 11.40 11.72 17.03 11.89 17.52 12.38 15.61 22.81 15.55 15.81 

B 24.97 25.37 22.68 26.49 25.42 21.90 32.71 37.57 20.80 24.52 18.87 

C 17.10 15.39 16.63 8.99 5.74 4.38 6.63 9.83 8.72 7.18 11.22 

D 8.21 8.27 16.63 17.03 17.63 10.22 11.05 7.51 12.75 19.14 11.22 

Q 16.07 13.97 11.34 12.77 15.17 10.95 9.28 12.14 10.07 16.15 14.79 

W 8.89 8.27 10.21 12.30 8.61 20.44 21.22 8.67 15.43 7.18 13.77 



58 

 

Curiously, while flint type A is relegated to the second most dominant type in levels 

18 and 20 (marginally so in the latter), it drops to just 2.37% in level 19.  Type C, 

which had been prominent in level 17, diminished to around 11% in levels 18-20.  

Type D and E also diminish in representation, with the latter present only in very 

minor quantities.  Conversely, type Q rises from relative insignificance in level 17 to 

more notable quantities in levels 18-20.  The apparent continuity of backed bladelet 

use in levels 17-20 belies a shift in material preferences that marks level 17 as quite 

different from the following levels.   

 

3.8.1.4 Levels 20-28 

Excluding level 25, levels 20-28 are all dominated by backed bladelets, though the 

quantities in levels 21-23 and 26 are probably too insufficient to register a clear 

majority impact in measurements of assemblage weight.  Table 6 shows the five most 

prevalent flint types in this sequence (A, B, C, D and Q).  It is also worth noting that 

type O, which was not included, rises to 8.45% in level 26 and 6.98% in level 28 from 

otherwise marginal quantities.  Levels with high proportions of backed bladelets (20, 

24, 27 & 28) are clearly dominated by one type of flint, more so than levels 21-23 and 

much more so than level 26.  In levels 20 and 24 type B is the dominant material 

(30.11% and 53.52% respectively), continuing a trend seen in levels 17-20, whereas 

type A dominates in levels 27 (43.86%) and 28 (46.04%).  Levels 21-23 are 

dominated by flint type B, and level 26 the main flint is type A.   

 

   

  L 20 L 21-23 L 24 L 26 L 27 L 28 

A 12.93 1.35 7.92 30.76 43.86 46.04 

B 30.11 35.78 53.52 26.36 26.18 16.74 

C 11.19 8.33 5.28 7.77 7.14 15.07 

D 11.00 21.83 18.00 15.21 11.22 6.70 

Q 10.23 15.08 6.00 5.75 3.74 0.00 

 

Table 6: Dominant Flint Type in La Riera Levels 20-28 

 

Type B is the second most dominant flint in levels 26, 27 and 28, while type D is 

second in levels 21-23 and 24; the other dominant flints in level 20 are all roughly 
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equal.  Interestingly, flint type A drops to 1.35% in levels 21-23.  Flint type Q rises 

from 10.23% of the flint assemblage in level 20 to 15.08% of levels 21-23 before 

falling to increasingly lesser quantities, one level before the rise in Type O.   

 

3.8.1.5 Levels 28 & 29  

It is difficult to compare these levels properly due to the fact that level 29 comprises 

amalgamated results from Clark‘s earlier excavations to compensate for the lacking 

retouched tools recovered in the main excavation.  Flint types represented in minor 

proportions in level 28 (i.e. < 7%) are absent from level 29.  Type U, absent from 

level 28, is present in level 29, but almost the entirety of the level can be divided 

between flint types A, B and C.  Flint type A diminishes by around 12% in level 29, 

while flint type C increases by 6%.  Flint type B more than doubles from 16.74% of 

level 28, to 37.97% of level 29.  While it is tempting to associate the drop in backed 

bladelets (Figure 8) with the disappearance of minor flint types, it should be noted 

that the drastic reduction of assemblage size in level 29 further compounds 

interpretation.   

 

3.8.2 Conclusions  

With the exception of level 26, levels 18-28 are characterised by a strong domination 

by one flint type over all others.  This contrasts strongly with levels 6-16, where 

dominant flint types have a much less significant majority.  Level 17 is also notable 

for not having a single flint type dominant by any substantial margin.  Type B is the 

most dominant flint type in levels 18-24, with a shift to type A in 27-28.  Type A is 

also dominant in levels 17 and 26, but by relatively insubstantial margins.  In general, 

a greater diversity of flint types is represented in levels where backed bladelets 

dominate, though level 28 is notably anomalous in this respect.  It is difficult to 

identify any further trends that may be associated with increases and decreases in 

backed bladelets.     

 

3.9 Bladelet Based Hunting at La Riera: Levels 4-8 

Early in the La Riera sequence, levels 4-5 stand out as relatively high concentrations 

of retouched bladelet activity.  More notable however is a proliferation of Solutrean 
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points in levels 4-6.  The dominant fauna in these levels are ibex with red deer as a 

secondary species (red deer likely having overtaken ibex in economic significance by 

level 6).  Consequently, these levels have been interpreted as specialised ibex hunting, 

probably in association with Solutrean projectile points, according to the results of 

multivariate analysis (Clark et al. 1986: 339).  In this section, I seek to shed further 

light on the potential archaeological significance of backed bladelets in the early 

levels of La Riera.  These levels are reassessed in the context of the broader early 

sequence to elicit further interpretation.  Before this, however, further information 

about previous interpretation and on the nature of the levels themselves is necessary. 

 

The levels in question represent a relatively discrete portion of the La Riera sequence.  

This makes the difference in the dimensions of levels 4-6 relative to bracketing 

deposits more noticeable Figure 8.  Level 1 is a thick (1.50m
3 

excavated) deposit of 

pre-Solutrean material.  It is followed by levels 2 and 3 which mark the inception of 

the Solutrean according to type-fossil based chronology.  Levels 2 to 3 have been 

amalgamated by Altuna for the purposes of faunal analyses due to the small 

assemblage size of the former (1986c).  For example, the retouched lithics 

assemblages, which were not completely conflated, show level 2 to have 7 pieces 

compared to 44 in level 3.  This probably relates to the small deposit size (0.128m
3
 

excavated).  Levels 4-6 represent thin deposits, with level 5 providing the greatest 

volume (0.385m
3
).  Some faunal remains from these levels were combined during 

excavation (Altuna 1986c, 244).  This is worth noting, as it highlights the stratigraphic 

homogeneity of these deposits, and the potential for discrepancies that may have been 

made in other aspects of recording.  Level 7 by contrast was larger (0.85m
3
 

excavated) and one of the richest strata in the whole sequence.  Level 8 is also 

relatively rich, but a thinner deposit (0.405m
3
 excavated).                 

 

The thinness, lack of features, and preference for exotic (though the distance has not 

been verified) lithic materials from levels 4-6 has led Straus and Clark to suggest that 

these levels represent a relatively short (or series thereof) occupations by people who 

were mobile around the landscape (Straus & Clark, 1986, 80-86).  This apparent 

mobility, further evidenced by the presence of plains dwelling species in minor 

quantities, namely horse (levels 4 and 5) and bovines (level 4), along with visitations 

to the coast evidenced by shellfish deposits, has helped lead to the conclusion that this 



61 

 

specialised ibex/red deer hunting aspect of the economy was an ―added strategy for 

subsistence‖ (Clark & Straus, 1986, 352).  Level 6 is somewhat of an intermediary 

level.  The level is thin once more, and red deer and ibex are represented on a more 

level footing, however raw materials are less exotic (with quartz dominating the lithic 

industries), and a significant focus on laurel leaf points.  Following this level, the 

occupants of La Riera made the transition to a red deer specialised economy.   

 

While they are still the numerically dominant bladelet type in levels 4-5, the ratio of 

backed bladelets to other bladelets is much less pronounced than in the later levels of 

the sequence.  However, when bladelets are broken into their individual 

subcategories, backed bladelets are still the only type recovered in any notable 

quantity.  From being absent in levels 1-3, they account for 12 and 13% of the 

retouched assemblages in levels 4 and 5 respectively.  Their presence continues 

through levels 6-8, though never reaching more than 5% of their retouched 

assemblages.  From levels 9-12, they are absent once more.  Thus when considered 

separately from the later levels of the La Riera sequence, levels 4 and 5 can be seen as 

a peak, albeit a minor one, in backed bladelet based activity.  While this peak is not 

reflected in the debitage bladelets, the drop in levels 6-8 is (Figure 12). 

 

3.9.1 Faunal Representation 

The faunal assemblages of the early La Riera sequence are often typified as a mid-

Palaeolithic exploitation of large steppe prey such as Bos/Bison and Horse (Equus 

ferus) in levels 1-3, supplanted by Spanish ibex (Capra pyrenaica) specialised 

hunting in levels 4-5 giving way to red deer (Cervus elaphus) hunting in following 

levels (Clark & Straus 1986, 352-353).  There is a danger in this characterisation that 

more subtle trends might be concealed through simplification (graph 8).  The biggest 

change between levels 2/3 and 4 is the drop in the importance of horse, from 32% and 

49.8% of the faunal remains in levels 1 and 2 respectively, to 3.6% in level 4 and 

1.5% in level 5.  Bos/bison also fall below 5% from level 4, but were already in 

notable decline during levels 2/3, having dropped from 17.1% of the faunal remains in 

level 1 to 7.5%.  Curiously, red deer also drop in representation from a dominant 

44.3% in level 1, to 17.4 % in levels 2/3 before rising again in a consistent manner 

through levels 4 to 11.  Ibex on the other hand rise from 5% of faunal remains in level 



62 

 

1, to 24.9% in level 2/3 before peaking in representation at 63.1% in level 4, before 

tailing off through layers 5 to 11 (Figure 15).  Although levels 4 and 5 represent a 

significant early break in the faunal assemblages of La Riera, the preceding levels 1-3 

were hardly homogenous.                   

 

Levels 4 and 5 signify the beginning of an economy based on two principal taxa.  In 

these levels, ibex are the dominant taxa, and red deer are secondary.  Their dominance 

is most pronounced in level 4, and by level 6 onwards, ibex are no longer clearly 

dominant, becoming secondary to red deer over the ensuing levels (Figure 15).  By 

level 9 ibex fall below 25% of the faunal assemblages and never again exceed this 

quotient in the sequence, with the exception of in level 24.  The focus on two species 

persists until level 25 when other prey began to be taken in notable quantities (> 5% 

of the faunal assemblage).  Other prey was also taken during these levels, and 

although never in excess of 5% of the faunal assemblages, the inclusion of certain 

species and absence of others may still be of note.  For example, although it does not 

occur in significant quantity, the presence of roe deer (Capreolus capreolus) in levels 

6-11 having been absent in levels 2-5 may be indicative of slight changes in hunting 

practices relating to the shift away from ibex. 
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Figure 15: Graph showing faunal diversity (% NISP) in levels 1-11 at La Riera 

 

 

3.9.2 Seasonality, Sexing, Adult/Juvenile Ratio and Carcass Representation 

3.9.2.1 Ibex 

It was impossible to determine the precise age of the seven young ibex recovered 

from levels 4-6 beyond knowing that they were not killed during the birthing months 

or immediately thereafter (May, June) due to the fact that their milk teeth were all 

worn (Altuna 1986c, 248).  In levels 2-3 and 7-8 no comparable studies were 

conducted, but in level 1 one young ibex was killed at less than 4 months of age 

suggesting sometime in the summer (Ibid 1986b, 242).  It should be noted that 

throughout all of these levels adults are more numerous than juveniles (MNI: 21), so 

the question of season of death remains uncertain for many individuals.  In levels 4-8, 

where it has proved possible, the sexing of remains shows the ratio of females to 

outnumber that of males in all levels except level 6 (Table 7).  Level 7 has an 

exceptionally high ratio of female to male ibex remains. 
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Level Female Male 

4 7 3 

5 4 3 

6 0 1 

7 14 1 

8 3 1 

 

Table 7: Sexed Elements of Ibex in levels 4-8 La Riera 

 

While this does indeed suggest that females were more commonly hunted, it should 

be remembered that these are sexed remains and not individuals.  It seems that whole 

or mostly whole ibex carcasses were being returned to the cave in levels 4-6, with a 

focus on the meat bearing hind quarters of the animals, and evidence to suggest the 

possibility of marrow extraction (Altuna 1986c, 248).  This behaviour is similar to 

that exhibited in levels 2/3.  Little of significance is noted as different in levels 7/8 for 

both ibex and red deer, except that the marked prevalence for hind limbs is more 

pronounced in red deer for those levels. 

 

3.9.2.2 Red Deer 

Unfortunately, comparable seasonality and sex data for the red deer remains from 

levels 4-6 are not available.  Seasonality data for levels 7-8 suggest red deer were 

hunted throughout the year, with the exception of a small gap between September and 

December in level 8 (Altuna 1986c, 251).  Throughout levels 1-8, the ratio of adults to 

juveniles varies much more than in ibex.  The minimum numbers of juvenile and 

adult red deer are equal in level 7 (17 each).  The number of juveniles is greater in 

levels 2/3 (2 young and 1 adult).  In levels 1, 4-6, and 8, adults outnumber juveniles.  

In levels 4-8, the ratio of juveniles to adults in red deer is either equivalent to or less 

than that of ibex, whereas in levels 1-3 the reverse is true, with adult ibex more 

preferred to their young than red deer adults to theirs.  Skeletal representation matches 

the same pattern as ibex in levels 4-6 and in levels 2/3.      
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3.9.3 Climate and Palaeoenvironment 

The palynological data retrieved from levels 4 and 5 seem to show evidence of 

disturbance and do not fit well into the diagram (Leroi-Gourhan 1986, 59).  The basal 

levels can be divided into level 1, which marks the end of a temperate zone featuring 

pine (Pinus), oak (Quercus) and hazel (Corylus), and levels 2 and 3 which mark a 

transitional episode with humid conditions, suggested by the presence of ferns 

(Polypodium vulgare) and Gramineae.  With the exception of sporadic and small 

quantities of hazel, juniper and oak, the only tree species to survive well is pine.  The 

first evidence of an Atlantic ericaceous heath also appears at this time.  Following a 

hiatus in the record, level 4 shows the ericaceous heath to have widely colonised at 

the expense of Gramineae in a cold, dry episode.  It has been suggested that these 

conditions, which do not favour horse and bovines proved the catalyst for a shift 

towards ibex and red deer hunting in different habitats (Leroi-Gourhan 1986, 63). 

 

Levels 4-8 were seemingly deposited under similar climatic and environmental 

conditions, about the most severe cold of the Upper Pleniglacial (Straus 1986c, 69).  

As a whole, this block can be characterised by dry open vegetation, combining aspects 

of heath and steppe along the coastal plain with very few thermophilic tree taxa.  The 

cold conditions are attested to by the presence of the tundra vole (Microtus 

oeconomus) in level 7.     

  

3.9.4 Solutrean Points 

The early levels of the La Riera sequence are when Solutrean points Figure 16 are 

found in their greatest quantities.  First appearing in level 2, they occur in every level 

until level 10, with some laurel leaf and willow leaf points occurring in levels 14, 15 

and 17.  Differences in trends can be identified when broken into their subcategories.  

Shouldered points first appear in level 3 (< 4% of the retouched assemblage), and 

peak in level 4 (18.87%), remaining high in level 5 (13.23%) before diminishing in 

level 6 (5.13%).  Rising again in level 7 (9.4%), they nevertheless disappear 

altogether after level 8 (< 2%) with the exception of a single point recovered from 

level 10 (Figure 17). 
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Figure 16: Solutrean Points from La Riera. 1 Shouldered Point – level 4; 2 Willow Leaf Point – 

level 9; Concave Base Laurel Leaf Point – level 6 
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Figure 17: Graph showing Solutrean Point types at La Riera levels 1-10 

 

In contrast, the laurel leaf points, the first of which appears in level 2, are absent from 

level 3, before rising throughout levels 4 and 5 before a massive peak (41.02%) in 

level 6.  Following this, they fall to a quantity comparable with earlier deposits in 

level 7, diminishing further in level 8 (< 4%) followed by absence in level 9.  

However, unlike the shouldered points, the laurel leafs also feature in levels 10, 14 

and 15.  Only 2 willow leaf points were recovered from the La Riera sequence: one 

from level 9, and the other from level 17.   

 

3.9.5 Raw Materials  

Straus et al. divided this section of the sequence into two groups (levels 2-5 and levels 

6-16) of raw materials according to whether flint or quartzite dominated as a material 

(1986,204-205).  Quantities of backed bladelets in most of these levels were 

insufficient for my reanalysis of the raw materials.  Levels 2-5 were noted for 

featuring exotic flint types less common from other levels, though it should be noted 

that these types are only exotic relative to other materials at the site; they were also 

probably found locally and their absolute quantities are small (Straus 1992,104).  

Levels 4-5 were acknowledged as having specialised artefact and fauna assemblages 

compared to levels 2-3, and level 6 which had similarly specialised assemblages, 

varied by having a very different raw material composition (1986, 204).  Level 4 

marks a notable increase in the breadth of flint materials over levels 2 and 3.  The 

number in level 3 doubles from 7 types to 14 in level 4.  Overall, flint type B becomes 
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the most dominant flint from level 4 until level 13, having been second in levels 1 – 3.  

It is dominant over the next type by 11% in level 4 (Type A) and by 7% in level 5 

(Type Q).  Flint type C is the second most dominant material in levels 6-8.     

 

3.9.6 Bone Points 

Like the Solutrean points, bone and antler points were not included in (Appendix 1).  

Only 136 sagaie point fragments were recovered from La Riera, and the small sample 

size combined with uneven distribution makes interpretation difficult.  It has been 

noted that levels 3-10 are rich in lithic points, and that sagaie/point fragments gain in 

importance later in the sequence (González Morales 1986, 217).  However, I would 

go further and note that the greatest increase numerically is between the grouping of 

levels 3-6 (7 point fragments) and levels 7-10 (34 point fragments) (Table 7).  From 

level 7 onwards the importance of Solutrean points begins to diminish.  The rise in 

bone saigaie and points seems to correlate with the reduction of significance in 

Solutrean points throughout these levels. 

 

3.9.7 Conclusions 

Such is the wealth of data at La Riera that it is difficult to elucidate much of a 

coherent pattern from the reviews of individual categories of evidence as presented 

above.  A number of trends are apparent however, seemingly pertaining to the hunting 

of ibex relative to other species.  Below clearly isolates these trends. 
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 % Ibex 

Remains 
Climate 

% Backed 

Bladelets 

% Shouldered 

Points  

Level 1 5  0 0 

Level 2 
24.9 

 0 0 

Level 3  0 3.9 

Level 4 63.1 Cold, 

dry & 

very 

few 

trees 

12 18.9 

Level 5 55 13 13.2 

Level 6 40.3 3 5.1 

Level 7 25 5 9.4 

Level 8 28.6 4 1.7 

Level 9 16.5  0 0 

Level 10 16.4  0 1.4 

Level 11 7.5  0 0 

 

Figure 18: Correlation between Ibex, climate, backed bladelets and shouldered points in levels 4-

8 at La Riera 

   

Levels 4-5 have already been noted as evidence of specialised ibex hunting, giving 

way in level 6 to the beginnings of a shift in focus towards red deer.  The 

reassessment of data as surmised in the diagram above allows further comment.  

Based upon this evidence, ibex were an economically important species throughout 

the cold and dry conditions of the LGM, the prelude to which is noted in the climatic 

assessment of level 3.  Solutrean shouldered points were probably associated with the 

pursuit of this prey, and backed bladelets seem to have been used in conjunction with, 

or at least as a contemporary alternative to this technology.  With the end of the cold 

conditions in level 8, ibex ceased to feature as prominently in Solutrean economy, 

accounting for less than 25% of faunal assemblages.  This also marks the effective 

end of Solutrean shouldered points and backed bladelets as prominent features of the 

early La Riera sequence.  A further possible correlation is the rise in representation of 

bone point/sagaie pieces contra to shouldered points and backed bladelets (Table 8). 
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 % Shouldered 

Points 

No. of Bone Point 

/ Sagaie Pieces  

Level 1 0  

Level 2 0  

Level 3 3.9 

7 
Level 4 18.9 

Level 5 13.2 

Level 6 5.1 

Level 7 9.4 

34 
Level 8 1.7 

Level 9 0 

Level 10 1.4 

Level 11 0 

37 

Level 12 0 

Level 13 0 

Level 14 0 

Level 15 0 

Level 16 0 

Level 17 0 

 

Table 8: Shouldered Points and bone points/sagaies from La Riera levels 1-17 from Gonzalez 

Morales (1986) 

 

Figure 18 is deliberately selective in order to clearly illustrate certain trends.  There 

are various details of the archaeological record that this presentation overlooks, but 

these may also be factored in for consideration.  The relationship between three of the 

evidence categories presented above are strengthened when it is considered that the 

peak representation of backed bladelets and shouldered points coincides with levels 4-

5, when ibex are the dominant species represented.  Red deer are also synchronised 

with the trend presented above between levels 3-5, but continue to rise in 

representation as ibex, backed bladelets and shouldered points wane.  While this 

seems to further support the relationship between ibex and this hunting technology, 

there is no suggestion that this is an exclusive relationship by any means.  It is 

interesting to note the appearance of roe deer in minor quantities in levels 6-11 

considering this species‘ preference for wooded habitats of more temperate 

conditions.  It is, however, notably absent from levels 4 and 5 when ibex are the 
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dominant fauna.  Their appearance might link to the shift in focus towards red deer as 

hunting trips perhaps shifted to lower elevations away from ibex habitats. 

 

Inferences regarding the seasonality of hunting are difficult, as while we know that 

ibex were most likely taken during the autumn and winter during levels 4-6, there are 

no suitable remains in levels 7-8 with which to compare and contrast.  In general 

however, it has been noted that most other ibex yielding levels where there have been 

suitable remains for seasonality studies have suggested that late spring/early summer 

was preferred.  In this regard levels 4-6 stand out in the context of the broader 

sequence.  The fact that the seven juvenile individuals were dispersed throughout the 

deposits Table 9 means that the significance of the continuation of this pattern into 

level 6 remains speculative.  Red deer remains from levels 7-8 suggest hunting 

occurred throughout much of, if not the whole year.  This further suggests a change 

from the mobility pattern witnessed in levels 4-5, to either more permanent or more 

frequent visitations. 

 

 Min. Number of Juvenile Ibex 

Level 4 2 

Level 5 2 

Level 6 1 

Levels 4-6* 2 

*Remains from Levels 4-6 were combined during excavation. 

Table 9: Dispersal of identified juvenile ibex from levels 4-6 at La Riera 

 

 

The increased exoticness of flint materials in levels 2-5 is well documented, but the 

most significant increase is in levels 4-5, which is also characterised by an increase in 

the breadth of lithic materials with more flint.  Flint types revert to more commonly 

found materials from level 6 onwards, when quartzite is once more the dominant 

overarching raw material type.  This shift may possibly relate to the supplanting of 

ibex as the dominant fauna by red deer and the reduction in importance of shouldered 

points and backed bladelets.  This is further supported by the idea that a shift in raw 

material procurement to more abundant local resources being representative of a shift 

in mobility patterns (Straus & Clark 1986b, 89).  There is a proliferation of laurel leaf 
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points in level 6, many with concave bases, and these are preferentially made on 

quartzite whereas shouldered points are almost exclusively flint (Straus 1992, 104).   

 

It is apparent that the relationship between the correlates is far from simple.  

However, when the extra considerations discussed above are integrated with the 

evidence used to illustrate the trend presented in Figure 18, further interpretation is 

possible.  It seems that the behaviour of the occupants of La Riera changed between 

levels 5 and 7.  A shift in raw material procurement strategies is evidenced in level 6, 

combined with the rise of red deer as the primary species economically.  The 

possibility of a change in seasonal exploitation of prey in the much thicker level 7 

further suggests that the broader mobility pattern of La Riera‘s occupants changed.  

Level 6 seems a key transitional stage in this possible shift.  With this shift, utilisation 

of the cave probably also changed, and it seems that this marked the beginning of a 

reduction in focus on ibex with shouldered points and backed bladelets, with red deer 

taking precedence.  Over the course of levels 6-8, quartzite materials became 

increasingly dominant over flint, possibly matching this shift.  The limited evidence 

for bone points also seems to increase in importance from level 7 onwards.   

 

3.10 Bladelet Based Hunting at La Riera: Levels 17-28 

This stage of the La Riera sequence is larger and in many respects more variable than 

the earlier levels assessed above.  Broadly speaking, levels 17-20 (Figure 9) represent 

a consistent peak in backed bladelet representation, followed by fluctuation 

throughout the remainder of the sequence.  As with levels 4-8, these levels are 

considered in the context of some of the bracketing deposits to help further elicit 

interpretation, and also because backed bladelets are present (although in less 

substantial quantities) in levels 13-16 and 29. 

 

3.10.1 Stratigraphy 

The latter half of the La Riera sequence was spatially constricted, providing a smaller 

excavation area from level 24 onwards (Straus & Clark 1986a, 13).  To reiterate 

complications discussed earlier, levels 19-20 were partially discarded, levels 21-23 

are conflated and yielded a paucity of finds, and level 25 likely represents a fleeting 

occupation incomparable with other deposits.  Level 28 also yielded relatively small 
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lithic and faunal assemblages.  These issues add to the challenge of inferring patterns 

from the later deposits of La Riera.  

 

3.10.2 Backed Bladelets in Levels 17-28  

The second period of the La Riera sequence characterised by a proliferation of backed 

bladelets spans between levels 17-28.  The ratio of backed bladelets to other bladelet 

types is much greater than in the earlier sequence, suggesting a more concentrated 

focus on their use in later levels.  The peak quantities of backed bladelets recovered 

from level 17 is unprecedented following the steady but small rise in levels 14-16 

(Figure 9).  Proportionally, quantities remain comparably high in levels 18-20 before 

reducing to 16% of the retouched assemblage in levels 21-23.  The remainder of the 

sequence exhibits fluctuation, with peaks in levels 24 and 28, and a trough in level 26.  

Level 27 represents an intermediary quantity between level 26 and 28.  The peaks in 

levels 24 and 28 are not as substantial as in levels 17-20.  The sequence terminates in 

level 29, where backed bladelets are greatly reduced in representation relative to 

earlier levels.     

 

3.10.3 Backed Microlithic Points 

The microlithic points at La Riera can be divided into three main types (Figure 19): 

Font Yves points, which are Aurignacian in their origins, although regularly 

microlithic in nature, Microgravettes, which are scaled down models of the larger 

Gravettian points, and Azilian points, so called because of their originally perceived 

association with the Azilian phenomena, and characterised by being curved along the 

backed edge of the point.  As well as being straight-backed, microgravettes are 

generally not very thick, relative to Azilian points which can be (Ibánez Estevez and 

González Urquijo 1996, 39).  These points do not appear in the La Riera sequence 

until the latter stages of the sequence, with the exception of a single Font Yves point 

in level 8.   
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1 2 3

 
Figure 19: Types of microlithic point from La Riera. 1 Azilian Point – level 24; 2 Microgravette – 

level 24; 3 Font Yves Point – level 26 

 

 

Figure 20 shows the quantity of these points relative to backed bladelets as a 

proportion of retouched assemblages and Figure 21 breaks these points into their 

constituent types.  It is interesting to note the dearth of microlithic points from levels 

17-20, when backed bladelets are at by far their most dominant, although they are not 

entirely absent from levels 19 and 20.  After a rise in representation in level 24, 

microlithic points account for just over 10% of the retouched assemblages in levels 

26-28.  Microgravettes peak in level 26, sharing dominance with Azilian points, and 

Font Yves points also appear in this level for the first time since level 16 (Figure 21).  

Azilian points dominate in levels 27 and 28.  Generally, numbers of backed bladelets 

surpass microlithic points in most levels where both are present.  Surprisingly, the 

retouched assemblage with the greatest proportion of microlithic points is level 26, 

noted for low numbers of backed bladelets, with the effect of approximately equal 

quantities of both (Figure 20).  Although comparable proportions of microlithic points 

are found in levels 27 and 28, a greater ratio of backed bladelets is resumed.     
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Figure 20: Microlithic Points and Backed Bladelets as a Percentage of Retouched Assemblages in 

Levels 17-29 
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Figure 21: Microlithic points from La Riera levels 16-28 
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3.10.4 Bone and Antler Points and Sagaie 

The section profile of bone and antler points and sagaies are often used as fossil 

indicators for distinguishing between different periods in Cantabrian Spain.  Their 

reliability in this capacity is questionable.  For example, level 18 of La Riera is 

assigned to the lower Magdalenian, and accordingly should yield quadrangular 

sagaies, yet 9 round or oval points were found to just 3 square/rectangular section 

pieces (González Morales 1986, 213).  Only four point fragments were recovered 

from level 17, of various cross sections (Straus & Clark 1986b, 136).  The rest of 

levels 19-23 are characterised by a majority of quadrangular points.  The presence of 

one small, circular-sectioned biserial antler harpoon has led to level 24 being assigned 

to the late Magdalenian, and level 26 is ascribed to the terminal Magdalenian because 

of a single biserial antler harpoon fragment (Straus & Clark, 1986, 162; 166). 

Likewise level 28 yielded a singular and nearly complete, flat, uniserial harpoon 

deemed as characteristic of the Azilian (Ibid, 177).  Worked bone in level 27 is 

negligible.   

 

Overall, sagaies increase in number beginning in level 14 with the first appearance of 

quadrangular section pieces in level 15 (González Morales 1986, 213).  Quantities 

drop in levels 21-23, along with all other bone artefacts.  Level 24 has the largest 

osseous assemblage, but sagaies form a relatively small portion (30%) of it and in 

levels 26-28, the bone assemblages as a whole are greatly reduced (ibid: 218).  The 

numerical peak of sagaie point representation is in levels 18-20.  Distinction between 

bone and antler as materials is not always clear throughout the La Riera report. 

 

3.10.5 Raw Materials 

As Figure 14 shows, levels 17-24 represent a continuum of flint dominated levels.  

This pattern is also evidenced in Figure 13 where flint is at its closest in weight to 

quartzite for the latter part of the site sequence.  Reanalysis of the raw materials has 

revealed little about the relationship of shifts in raw material procurement and the 

shift towards backed bladelet technology.  Levels 18-28 are characterised by a 

narrower focus of dominant materials.  With the exception of levels 17 and 26, a 

single type dominates by a greater majority in these levels than the dominant types in 

quartzite dominated levels 6-16.  Type B dominates in levels 18-24, and type A in 
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levels 27-28.  Type A dominates in levels 17 and 26, but by much less substantial 

margins.  In general, backed bladelet dominated levels have a greater diversity of flint 

types represented.  Level 28 has an unusually narrow breadth of materials for a level 

with a majority of backed bladelets.  Ultimately, the observed patterns in these levels 

cannot be entirely confirmed as relating to backed bladelet manufacture.   

 

3.10.6 Climate and Palaeoenvironment 

Levels 17-18 mark a cooling period following the climatic optimum experienced in 

level 15, and levels 19 and 20 continue this trend into a progressively colder and drier 

period (Laville 1986, 41), probably marking the event of Dryas I (Straus 1986c, 70).  

In level 16 the replacement of ericaceous heath with composites (Liguliflorae and 

Tubuliflorae), a family including the daisy and aster, began, as the area turned into a 

dry steppe environment (Leroi-Gourhan 1986, 62).  Arboreal pollen is low in these 

levels, although oak, elm, willow, alder, hazel and birch were still present.  From this 

point onwards, there are a number of disparities between the results of the 

sedimentological and palynological investigations.  Both methods have associated 

problems, but palynology is arguably the weaker of the analyses in this case at least.  

Problems with cave taphonomy including vertical movement across stratigraphic 

levels as noted by Straus (1986, 19), the colourful history of the site subsequent to its 

prehistoric occupation, and the possibility of localised microhabitats overshadowing 

broader landscape environments, are just some potential complications.  These 

problems are further compounded in levels 21-23 due to its conflation into one 

excavation unit.   

 

Straus‘ synthesis of palaeoenvironment references Butzer‘s regional study (1981) 

among others, to aid contextualisation, though gaps in sequences and other 

complications prevent consensus on some interpretations.  Levels 21-23 most likely 

represent a consistently humid period tempered by some extremely low temperatures 

(Straus 1986c, 71).  Poor resolution of climatic fluctuation and a paucity of material 

remains prohibit any strong associations being made with the relative drop of backed 

bladelets (down to 16% of the retouched assemblage) in these levels.  Level 24 is 

dated to the Alleröd, but probably pertains to Dryas II at the beginning of this phase, 

characterised by cold temperatures and very humid conditions.  Heather and Juniper 
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are absent from this level, and although oak, alder and hazel pollen are present in 

small/trace amounts, pine pollen is very abundant.  Composites continue to 

outnumber gramineae, and ferns begin a meteoric increase (Ibid 1986).  Five reindeer 

remains recovered from this level also confirm the climate of this time. 

 

Levels 25-26 seem more typical of the Alleröd, with very temperate, humid climatic 

conditions.  Roe deer and wild boar are relatively abundant for the first time, and level 

26 shows a dramatic increase in arboreal pollen, with high percentages of birch, pine 

and hazel (Straus 1986c).  Levels 27 and 28 correspond to Dryas III, the last cold snap 

of the Pleistocene, and would have experienced some severe cold conditions as 

suggested by the presence of the tundra vole (Microtus oeconomus) in level 27.  This 

has led to the suggestion that the temperate portrayal from the pollen sample from 

level 27 belies the colder nature of the climate, as a result of representing a protected 

valley microenvironment (Straus & Clark, 1986, 175).  Level 28 represents a marked 

reduction in arboreal pollen, though overall quantities remain high, suggesting this 

cold period was not enough to incur complete deforestation.  Overall, while biotopes 

changed to a great degree in the later levels of La Riera, climatic oscillations never 

completely forested or deforested the landscape.  Level 29, however, which marks the 

beginning of the Asturian, and a number of significant changes in the archaeology of 

the site and broader region, is notable for an enormous percentage of arboreal pollen 

(ca. 50%).  From this point onwards, the Cantabrian lowland coastal plain would have 

been characterised by dense mixed deciduous forest.       

       

3.10.7 Fauna 

Red deer are the dominant fauna in every level of the La Riera sequence from level 6 

onwards.  Between levels 9 to levels 21-23 representation is relatively consistent, 

never falling below 75% of the faunal remains, and accounting for up to 85% in some 

levels, with a peak value of 90.4% recorded in level 11.  As Figure 22 shows, 

following a drop to 52.2% in level 24, red deer representation is between 67 and 77% 

for the remainder of the sequence until level 29, peaking finally at 84.3%.  The slight 

drop in dominance in these levels corresponds with the diversification of fauna being 

exploited at La Riera at this time. 
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Figure 22: Percentage Breakdown of La Riera Ungulate Fauna levels 17-29 
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Patterns among the less represented species are complex.  The drop in red deer in 

level 24 is evidence of a much stronger emphasis on ibex (42.4%).  Bos/bison also 

make enough of a return in level 28 (8.9%) to rank as the third most represented 

species in the latter deposit (Appendix 1).  From level 24 onwards, roe deer feature as 

a notable taxon, particularly in level 28 where representation peaks at 14.6% of the 

faunal assemblage.  Prior to this level, roe deer had been present at times, but never 

accounting for more than 2.5% of an assemblage.  Wild boar (Sus scrofa) appear for 

the first time in levels 21-23, and their presence throughout levels 26-28 is notable as 

an indicator of changes in environment.  Even chamois (Rupicapra rupicapra), which 

is present throughout most of the La Riera sequence but only in minor quantities, 

reaches peak representation at 3.3% in level 27.     

 

The general increase of roe deer and wild boar towards the end of the sequence is 

taken to indicate an increase in localised thermophilic forested habitats preferred by 

these species.  Some levels have evidence of ecologically contradictory fauna, such as 

the presence (barely visible in Figure 22) of reindeer (Rangifer tarandus) and wild 

boar in neighbouring levels (levels 22 and 23).  This most likely indicates the 

complexity of changing biotopes, and suggests that the scales of some changes may 

not always be clearly visible at the resolution provided by the archaeological record.  

Beyond these interpretations however, it is difficult to gain a detailed impression of 

the economic value of these species individually when present in such small 

quantities.  Their collective presence in these later levels reflects changing 

environments and at least experimentation with alternative prey, even if red deer 

remain the presiding taxa.   

   

3.10.8 Seasonality, Sexing, Adult/Juvenile Ratio and Carcass Representation 

 

3.10.9 Seasonality 

Information on the season of death of adult animals is lacking (Clark & Straus 1986, 

353), and given that there are generally more adults, it must be accepted that 

seasonality data on the hunting of different species is severely restricted.  Seasonality 

data at La Riera is mostly obtained from individuals of all species under 3 years of 

age.  Figure 23 shows a crude maximal estimation of seasonality based on red deer 
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and ibex remains from levels 9-28 based on the analysis by Altuna (1986c).  Levels 

13-15 and 25-27 were conflated in his analysis and consequently the chart reflects 

this.      
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Figure 23: Maximal Estimation of Seasonality Based on Red Deer and Ibex Remains From La 

Riera Levels 9-28 

 

The season of death recorded from red deer and ibex in levels 16 and 17 suggest the 

cave was used heavily in the summer.  Summer and spring periods are recorded for 

red deer in level 18, with no results recorded for ibex.  Clark and Straus state that 

spring kills are not clearly apparent from level 18 onwards (1986, 353), even though 

Altuna clearly states that two red deer juveniles were taken in their second spring 

(1986c, 258).  Level 19 shows a bi-seasonal pattern with summer (1 red deer and one 

ibex) and winter kills (two red deer) represented.     

 

In level 20, a red deer and an ibex were killed soon after birth (presumably in the 

summer months), and one red deer died between late summer and autumn (Altuna 

1986c, 259-262).  The age at death was recorded for three red deer from levels 21-23, 

with no indication of a specific provenance within this unit.  They were killed 

between summer and autumn, but the significance of these results is greatly reduced 
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when the expanse of time in question is considered.  Two young red deer fawns killed 

soon after birth would also suggest a summer season of death during level 24. 

 

The season of death recorded for animals in levels 25-27 is presented in. Figure 24 

This figure was originally labelled as showing only red deer deaths, though I believe 

this to be a misnomer due to the major disparity with Altuna‘s written summary of the 

levels.  Unfortunately, if true, this mistake prohibits the identification of the species 

each plot represents on the seasonality chart.  The species that have been labelled in  

are inferences based upon MNI data for adults and juveniles (Altuna, 1986b: B.85), 

and the following information provided by Altuna: Among summer deaths, there are 

eleven red deer, one ibex, three roe deer and two boar, with all but one red deer being 

killed within their first summer.  One red deer and two ibex died in the autumn, two 

red deer in autumn or winter, one boar in the winter, and one red deer at the end of 

winter or in spring (1986c: 265).   

 

 

Figure 24: Seasonality Recorded in La Riera Levels 25-27 adapted from Altuna 1986 
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Based on what little can be reconstructed from Figure 24 it can be safely said that 

there was a significant focus on taking prey not long after birth within their first 

summers.  This was the only season of death recorded for roe deer.  Other than this, 

red deer seem to have been taken during the autumn and winter and possibly (in level 

26) the spring.  Boar were being taken in the winter (level 27), and ibex in the autumn 

(level 27). 

 

The season of death was ascertained for only one specimen from level 28: a red deer 

fawn killed soon after birth at the end of spring or early summer (Altuna 1986c, 267).  

Of the two red deer juveniles recorded in level 29, one was killed soon after birth 

(likely summer?) and the other between 17 and 21 months of age, some time between 

November and March (Ibid 1986a, 268). 

 

3.10.10Adult/Juvenile Ratio 

The minor quantities of most species recovered renders it difficult to infer anything 

meaningful from the adult/juvenile ratios recorded.  Occasionally, sufficient remains 

allow for some inference.  For example, the four wild boar individuals identified in 

level 27 are all juvenile, whereas there were three juvenile and three adult roe deer 

recovered from level 26.  Long term trends in the hunting of these taxa are generally 

difficult to reconstruct though.  Red deer remains are numerous enough to permit 

further investigation. 
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Figure 25: Minimum number of adult and juvenile Red deer from La Riera levels 9-28 



84 

 

Figure 25 reveals that in levels 17-20, there is a generally greater representation of 

juvenile red deer than in levels 9-16, though it should be noted that levels 11-13 have 

similar ratios.  Figure 25 also shows that from levels 24-28, juvenile red deer are 

either equal to, or greater in number than adult red deer.  Limitations of the MNI data 

render it impossible to certify the extent to which these patterns are actually true, but 

there is little reason to suggest they are not broadly representative.  Levels 21-23 have 

been excluded for lacking a suitable quota of data for comparable assessment. 

 

3.10.11Carcass Representation 

Overall, skeletal element representation remains relatively consistent throughout 

levels 16-29, with Altuna repeatedly citing previous levels as being comparable in 

their structure (1986c).  The general trend shows that whole bodies were often being 

returned to the cave, with a general preference for hind limbs.  There are nuanced 

variations along this theme.  For example, level 29 is notable as the first level where 

forelimbs exceed hindquarters, and ibex limb bones reach their highest proportional 

representation in levels 21-23 (Ibid 1986a, 268; 262).  Studies have, again, largely 

been restricted to red deer and ibex as the two taxa with sufficiently consistent 

quantities of remains. 

 

3.10.12Sexing  

It was possible in most levels to sex at least some remains.  However, reconciling 

sexed remains with MNI is highly problematic.  In levels 16 and 17, there are similar 

numbers of male and female red deer and ibex skeletal remains (Altuna 1986c, 258).  

However, the presence of 57 small red deer antler fragments greatly bolsters the 

number of male remains, even though we have no idea how many individuals these 

fragments pertain to.  For example, in level 18, fourteen remains of red deer were 

sexed as female to twenty-nine male, except for the fact that 28 of the male remains 

comprise fragmented antler pieces (Altuna 1986b, B.62).  When it is considered that 

there are only 28 antler fragments from an assemblage of 1,648 red deer remains, this 

statistic could actually be portrayed as indicative of a preference towards females.  In 

level 19, by contrast, 36 small red deer antler fragments were found in contrast to one 

single female metacarpal.  The absence of non-antler material for sexing in this level 

creates the quite probably false impression of a male dominance. 



85 

 

 

As has been demonstrated by reviewing the sexed remains of levels 16-19, sexing 

hunted populations is highly problematic, particularly as the non-skeletal remains 

sexed from many of these levels are extremely few.  This renders reviewing each level 

in detail relatively redundant.  The only deposits where notable numbers of skeletal 

remains were sexed were levels 26-27.  The trend identified in these levels was of a 

dominance of female remains in all red deer and ibex, as well as wild boar in level 26 

(Altuna 1986b, B.86).  While individually each species does not have many female 

remains, these are greater emphasised by the complete absence of male remains 

except for 9 red deer antler fragments in level 27.  The fact that this representation of 

female remains occurs across more than one species has led the site investigators to 

suggest that a female targeting hunting pattern went in hand with the strategy of 

targeting young of all species within the first Summer months after birth (Altuna 

1986c, 265-267), a strategy that is also apparent in these levels. 

 

3.10.13Conclusions 

It is difficult to discern any clear trends that match the fluctuation of backed bladelets 

throughout the later levels of the La Riera sequence.  Although by no means 

exclusive, backed bladelets seem to be most prolific in levels characterised by cold or 

cooling conditions rather than more temperate environments.  This pattern is similar 

to that exhibited in levels 4-8.  In terms of vegetation coverage, it can be said that 

there is a general association with more open landscapes.  The peak quantities of 

backed bladelets recovered from levels 17-20 coincide with an increase in composites 

and steppe vegetation at the expense of ericaceous heath, and a drop in arboreal pollen 

from preceding levels.  Level 24 suggests a similarly open environment, although pine 

pollen is abundant and ferns begin to rise in number significantly (Straus 1986c, 71), 

and level 28 represents a sharp dip in arboreal pollen, though wooded areas 

comprising thermophilic species remained during this cold period. 

 

While backed bladelets are at their most numerous in these levels, they still account 

for substantial portions of the retouched assemblages in levels 21-23, 26 and 27 when 

compared with other tool types.  While they are at their most numerous in cooler/cold 

levels characterised by open landscapes, this is by no means a strict association.  
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While it seems fair to note the concurrent shift in local landscape vegetation with the 

peak of backed bladelets in levels 17-20, correlations in later levels are less clear. 

 

From levels 21-23 onwards, the diversity of species represented in faunal assemblages 

increases.  The prominent rise of ibex in level 24 recalls the earlier period of ibex 

hunting with backed bladelets (levels 4-8).  Although their dominance is slightly 

diminished from levels 24-28, red deer remain the dominant prey throughout the 

sequence.  The broadening diversification of prey probably reflects the overall trend 

of ameliorating climate, with each cold period being less severe than the last (Arroyo, 

2009b).  This perhaps explains how roe deer and wild boar are at their highest 

representation proportionally in level 28 despite being a period characterised by cold 

conditions.  

 

Closer analysis of the faunal assemblages reveals an interesting trend in the ratio of 

red deer young and adults (Figure 25).  Juveniles increase in importance in levels with 

high quantities of backed bladelets, and remain approximately equal to or greater than 

adults throughout the later sequence.  Beyond an apparent trend for targeting females 

and young of red deer, ibex and wild boar in levels 26 and 27, little can be reliably 

inferred from sexed remains.  Also in these levels, it has been noted that although red 

deer were probably being hunted throughout much of the year, there was a clear 

emphasis on taking juveniles in the summer months not long after birth.  The popular 

period for this, ranging from late spring to summer, is roughly equivalent for ibex as 

well.  Whereas levels 9-15 are characterised by more generalised patterns of seasonal 

exploitation, from level 16 onwards, a shift in focus to late spring / summer is 

apparent.  This coincides with an appreciable rise in backed bladelet quantities, 

presaging the substantial majorities of levels 17-20, and also the inception of a 

progressively cooling trend in the wake of the climatic optimum reached in level 15. 

 

The raw material structure of assemblages with backed bladelet majorities are also 

characterised by subtle differences in comparison with earlier levels.  Levels 18-28, 

with the exception of level 26, have a greater emphasis on a singular dominant flint 

type and variation in the quantities of flint types is much higher in these levels.  Type 

B is clearly dominant in levels 18-24, and Type A in levels 27-28.  Type A also 

dominates in levels 17 and 26, but by much less substantial margins.  The pattern of 
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raw material use in level 28 differs most notably from other backed bladelet 

dominated levels, and has fewer total types represented.  Level 17 is also unusual in 

that it is characterised by a more evenly spread focus of materials, unlike the 

following levels 18-20.    

 

Finally, it is interesting to note that trends in the number of microlithic points are not 

synchronous with backed bladelets.  Most of these points were recovered from levels 

24-28, when quantities of backed bladelets fluctuated.  In level 26, they nearly equal 

the total number of backed bladelets.  When broken into their constituent types, it can 

be seen that Azilian points, while present in levels 24 and 26, peak in levels 27 and 

28.  Microgravettes share their last appearance in level 26 with the first Font Yves 

points (excluding one recovered from level 8), which peak in level 28.  Beyond an 

absence in levels 17-20, the relation between these points and backed bladelets, if 

indeed there is one, is not immediately apparent.  It is interesting to note that bone and 

antler points reach their peak representation in levels 18-20 when backed bladelets are 

at a peak, and are present in reduced quantities in the following levels when 

microlithic points become more prolific.   

 

3.10.14Summary of levels 17-28       

Levels 17-28 encompass too much variation to be neatly summarised in a few tables 

and diagrams as was the case with levels 4-8.  Backed bladelets increase in levels 15 

and 16 following the climatic optimum.  They become the clearly dominant retouched 

tool type from level 17-20, which coincides with the replacement of ericaceous heath 

by composites and dry steppe vegetation.  Climatic conditions during this period were 

increasingly cool and dry.  From level 16 onwards, the emergence of a clear (but not 

exclusive) Spring/Summer targeting of red deer and ibex becomes apparent.  Levels 

17-20 also represent a break from previous levels in that red deer young are nearly as 

numerous as adults in faunal assemblages.  By virtue of the recovery of a single 

Solutrean point, level 17 is classified as Solutrean, despite the wealth of backed 

bladelets seemingly much closer to the first Magdalenian deposits of levels 18-20.  

Reanalysis of the raw materials in level 17 however revealed the composition of the 

flint assemblage to be notably different from levels 18-20, with a more widely spread 
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range of materials.  These levels, with peak quantities of backed bladelets, also 

represent the peak period of bone and antler points and sagaies in the sequence. 

 

After level 20, patterns in the La Riera sequence become even more complex.  A 

number of problems make it difficult to interpret levels 21-23.  These levels are 

notable for exhibiting evidence of cold and warm phases, and marking the beginning 

diversification of fauna, although this accounts for a very small fraction of the overall 

assemblage.  The next deposit, level 24, seems to mark a cold phase. Backed bladelets 

are the predominant retouched tool type, though not by as great a margin as in levels 

17-20.  Microlithic points become notable additions to the retouched assemblages 

from this level onwards.  The environment around La Riera during this period was 

fairly open with few trees.  Arguably the most interesting feature of level 24 is the 

increase of ibex representation at the expense of red deer to a ratio similar to that last 

experienced in level 6.   

 

Level 26 was deposited during warmer conditions with a greater coverage of 

vegetation.  While levels 27 and 28 signified colder conditions (probably pertaining to 

Dryas III), vegetation coverage persisted throughout this period.  Representation of 

backed bladelets increases in levels 27 and 28, having been low in level 26.  From 

level 26 onwards, the dominant flint type shifts from type B to type A.  Level 28 is 

further unique by having a much narrower range of flint materials compared to other 

backed bladelet dominated levels.  The trend of faunal diversification in these three 

levels continues throughout these levels with roe deer supplanting ibex as the second 

most popular species after red deer in level 28.  Microlithic points also peak during 

these levels, with Azilian points replacing Font Yves points as the dominant type, 

peaking in levels 27 and 28.  Bone and antler points and sagaies are very scarce by 

this time.  Level 29 concludes the sequence with the nature of the site occupation 

having apparently changed considerably, with hunting apparently no longer a primary 

associated activity.    

 



89 

 

4 Final Palaeolithic of Northern Spain (Comparative Sites)  
 

Acting as something of a pilot study for the other regional case-studies, this section 

briefly outlines the broader framework within which other sites included for 

assessment may be compared with the extensive La Riera sequence.   

 

The general consensus apparent from much of the literature is that bladelet technology 

as recognised throughout the Palaeolithic of Cantabrian Spain was primarily used as 

armature components for hunting weaponry.  This supposition has largely been based 

on popular opinion regarding comparable assemblages from elsewhere in Europe 

(Straus, 1992: 109), but has been further supported by the findings of a few regionally 

specific use-wear studies (Clark & Straus, 1986; Keeley, 1988; Ibáñez & González, 

1996; 1998).  Bladelet technology of various forms is evident throughout much of the 

Cantabrian Upper Palaeolithic, but it is in the Magdalenian that they are found in 

profuse quantities.   

 

The chrono-cultural framework for the Upper Palaeolithic of Cantabria was 

essentially modelled on the same system devised for the south-west of France.  With 

time, it was recognised that the Cantabrian record was incompatible with this system, 

and so the framework has developed in a more individually specific direction.  

However, many aspects of the framework‘s origins remain apparent.  For example, 

the de Sonneville-Bordes / Perrot lithic classificatory scheme continues to be used 

despite dissatisfaction expressed with this typology (Straus, 1996: 40). 

 

The Magdalenian (approximated in this region as generally between 17,000-10,000 

kya) is a cultural phase of the Cantabrian Upper Palaeolithic recognised as marking 

the end of the preceding Solutrean (regionally between 22,000-17,000 kya), a phase 

commonly characterised by cold-adapted technologies in response to the LGM.  The 

Magdalenian is frequently divided into less easily definable sub-components.  At 

many sites, distinction is made between the Lower Magdalenian and Upper 

Magdalenian, with a Middle Magdalenian also sometimes identified.  The Azilian 

(11,500/10,000-9,500 kya), although nominally a distinct cultural phase that marks 

the end of the Palaeolithic in Cantabria, is widely acknowledged to be a permutation 
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of the final Magdalenian, to the extent that it is not even perceptible at some sites 

according to classically defined material traits.  Recent research into the Solutrean / 

Magdalenian transition, at both site (Straus & González Morales 2010; 2012) and 

regional level (Aura et al. 2012), has led to a renewed interest in the inception of the 

Magdalenian, which has prompted calls for the definition of a new sub-phase: the 

―Initial Magdalenian‖. 

 

In order to examine the developmental trajectory of bladelet technology, a broad 

understanding of the cultural-chronological sequence that underpins it is necessary for 

context.  Refining our understanding of these sequences and their timing is a common 

goal in prehistoric archaeology, as improved temporal resolution may offer insight 

into contemporary developments.  It is particularly important in Cantabrian Spain, as 

the sequence itself is based largely on distinctions made in assemblages of hunting 

equipment.  Consequently, my own research includes the sites of La Riera, El 

Rascaño and El Mirón, which lay claim to being the only three sites in Cantabria 

excavated and recorded to relatively modern standards, and show evidence of this so 

called Initial Magdalenian in the context of deeper chronology (Straus & González 

Morales 2010, 34), although the recording of the former two sites predates the wide-

spread acknowledgement of the Initial Magdalenian conceptually.  El Rascaño lacks 

Solutrean deposits and is published entirely in Spanish which I have attempted to 

translate, while the El Miron investigations are ongoing and much remans to be 

published.  Bolstering information from these sites are the faunal analyses of 

Magdalenian, Azilian and Mesolithic deposits at La Fragua cave (the only aspect of 

the site reported in English), and use-wear analyses of bladelet assemblages from 

Santa Catalina and Laminak II to the east of the Cantabrian plain, and Berniollo to the 

south east.  Collectively, while small in size, this sample survey encompasses 

considerable variation. 
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4.1 Rascaño 

 

Rascaño (Figure 6) is a small cave site located 30km from the present coast, situated 

near the small village of Mirones in the Miera river valley (coordinates: 3 41‘ 44‘‘ 

east, 43 17‘ 38‘‘ north).  Approximately 275m above sea level, Rascaño is situated in 

a montane landscape, and is one of only a few Cantabrian montane sites to be well 

excavated with assemblages of lithic and faunal remains (Arroyo 2009b), something 

which should be noted, given the frequency with which the site is compared with 

others not located in comparable environments.  Prior to the excavations reported by 

González Echegaray and Barandiarán Maestu (1981), several excavations had been 

conducted but of a relatively poor standard and without good recording (Joaquín 

González Echegaray and Maestu 1981, 8). 

 

Ten levels were identified in the stratigraphy of Rascaño. Table 10 below provides the 

thickness, radiocarbon dates and chrono-cultural affiliations for each deposit.  Level 

10 is not included because it was not completely excavated and no date was acquired.  

Levels 4 and 2 can both be divided into two sublevels: 4 and 4b, and 2 and 2b 

respectively.



92 

 

 

  Thickness R.C. Date (BP) 
Chrono-Cultural 

Affiliation 

Lithic 

Pieces 

Faunal 

Remains 

Level 9 25-30 cm > 27,000 

Aurignacian? 

22 7 

Level 8 18-25cm   5 21 

Level 7 30-35cm 
27,240 +950 -

810 
13 10 

Level 6 26-28cm   Sterile 0 2 

Level 5 26-30cm 16,433 ± 131 

Lower Magdalenian 

207 1433 

Level 

4b 35-40cm 15,988 ± 193 
195 1495 

Level 4 130 738 

Level 3 15-20cm 15,173 ± 160 324 543 

Level 

2b 45-50cm 
12,896 ± 137 

Upper Magdalenian 
196 

640 

Level 2 12,282 ± 164 27 

Level 1 25-30cm 10,558 ± 244 Azilian 13 672 

 

Table 10: Basic details from excavations at Rascaño 

 

The site‘s excavators attributed industries from levels 7-9 to an unspecified 

Aurignacian older than 27,000 years before present.  Industrial and faunal remains in 

these levels are relatively sparse in contrast to later levels which yielded a greater 

wealth of archaeological and palaeontological data. The Azilian is also notably poor 

in terms of the quantity of lithic pieces recovered.  The most faunal remains were 

recovered from levels 5 and 4b.  Separating levels 1-5 and 7-9 is level 6, a sterile 

deposit with exceptionally few remains found.  Although only 2 cm thick, level 6 

accounts for potentially 10.5 ky, suggesting not only an occupational hiatus, but quite 

likely a depositional one too, with the sediments indicating temperate and humid 

conditions (Laville and Hoyos 1981).  Given Rascaño‘s location in a montane 

environment, it may have been too cold during the LGM to permit a Solutrean 

occupation.  The lack of a Solutrean occupation at the site suggests that the trend of 

most Solutrean sites (70%) being below 200m was an actual shift in settlement pattern 

rather than a bias in the geographical concentration of archaeological research (L. G. 
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Straus and Morales 2009, 120).  Regardless of the reasons for its abandonment, it is 

the archaeologically rich levels 5-1, spanning the Magdalenian and Azilian that are 

the focus of this reassessment. 

 

4.1.1 Retouched Bladelets 

Table 11 shows the breakdown of retouched bladelets found in levels 1-5.  They 

account for a far smaller percentage of the assemblages than in the Magdalenian 

levels at La Riera: Retouched bladelets never exceed more than 15% of the 

assemblages at Rascaño, whereas in their greatest quantities at La Riera they 

constitute up to 75% of the assemblage.  A number of bone point fragments were also 

recovered from these levels, but despite detailed description (Barandiarán, 1981), poor 

preservation restricted meaningful quantification and investigation to typological 

ordering based upon shaft section (Joaquín González Echegaray and Maestu 1981). 

The paucity of retouched bladelets from the site, considered to have been excavated to 

an acceptably modern standards of procedure, has been noted in reference to other 

Cantabrian sites in regional surveys (Straus 1986a; 1992), but they are nevertheless 

noted as the third (of nine) most frequently recovered tool type in levels 3 and 4 at 

Rascaño, being ranked lower in levels 5 (fifth), 2b (sixth) and 4b (eighth) (Maestu and 

Echegaray 1981, 332).  Levels 1 and 2 are excluded from their ranking, presumably 

because of the dangers of over amplified percentages in smaller assemblage sizes. 
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 1 2 2b 3 4 4b 5 

 No % No % No % No % No % No % No % 

Backed Bladelets 2 ~ 3 11.1 2 1 14 4.3 11 5.6     7 3.4 

Dufour Bladelets     2 3.7 2 1 24 7.4 11 5.6 1 0.8 11 5.3 

Microgravettes         1 0.5     1 0.5         

Truncated Bladelets             2 0.6 1 0.5         

Notched Bladelets         2 1 2 0.6             

Denticulated Bladelets         1 0.5                 

Backed and Denticulated             1 0.3             

Backed and Truncated             1 0.3         1 0.5 

Triangles                 1 0.5     1 0.5 

Total 2   5 14.8 8 4 44 13.5 25 12.7 1 0.8 20 9.7 

 

 

Table 11: Retouched lithic assemblage at Rascaño
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Caution is necessary in extrapolating from numerical quantification however.  

Conclusions regarding the quantity of a tool type are often made relative to the 

quantity of other types in the assemblage, and again relative to the quantities 

recovered at comparable sites.  The manner of utilisation is also an important factor to 

consider: bladelets are commonly assumed to be facets of multicomponent composite 

tools, meaning that a single ―tool‖ may hold several pieces, whereas other stone tools 

may only be hafted singularly.  Another important factor in shaping our 

interpretations is the morphological criteria we use to classify lithic pieces.  For 

example, criteria were used in the concluding chapter of the Rascaño report differing 

to the classificatory method used in the earlier lithic analysis section (Echegaray 

1981).  Thus from different perspectives, we might find statements seemingly at odds 

with each other, with Keeley, for example, noting that backed bladelets are common 

(albeit less common than dufour bladelets) at Rascaño (1988, 20), in contrast with 

Straus‘ observation that Rascaño was not very rich in backed bladelets (Straus 1992, 

144). 

 

Arguably the most notable feature of the retouched bladelet assemblages at Rascaño is 

that unlike many other Cantabrian sites, backed bladelets do not overwhelmingly 

dominate.  In most levels they are equal to or less than the quantities of dufour 

bladelets recovered.  They are equal in quantity to backed bladelets in level 4, and 

double the number in level 3: the two levels with the most retouched bladelets overall.  

In the lithic analysis it is noted that many of the pieces classified as dufour bladelets 

are irregular in morphology and do not strictly conform to the typological convention  

(Echegaray 1981, 69; 76; 84).  The doubt cast by these qualifications potentially 

undermines the conviction with which we can ascertain the numerical significance of 

backed bladelets relative to other bladelet types.  The apparent lack of homogeneity in 

dufour bladelets may suggest that differences with backed bladelets might have been 

morphological rather than functional, though this remains speculative.  In the levels 

that yielded greater quantities of backed and dufour bladelets other bladelet types 

were also recovered. 
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4.1.1.1 Use-Wear Analysis 

Eighteen backed bladelets were included in Keeley‘s use wear investigation of the 

site, although curiously only 1 dufour bladelet was examined.  Of the backed 

bladelets, 82-90% were found to bear traces indicative of having served as projectile 

armatures, with the remainder showing indeterminate traces (Keeley 1988, 22).  

Keeley believes the findings concur with Moss‘ supposition that pointed types were 

more likely projectile tips, while rectangular types were barbs or side blades on 

composite points (Ibid 1988, 22).  Following his analysis, Keeley reconfigured his 

sample typology to reflect his results rather than morphological form, with (what I 

suppose to be) the dufour bladelet being included with the backed bladelets.  

Although not associated with backed bladelets, bone working appears to have been an 

important activity at the site as opposed to hide working, something which might be 

expected considering Altuna‘s conclusion that the trunk the main ungulate prey was 

rarely returned to the site (1981, 231).   

 

4.1.2 Faunal Analysis 

Details left unpresented here from Altuna‘s analysis of the faunal assemblages can be 

found in Appendix 2-4.  In the analysis of faunal remains from Rascaño, the 

distinction between levels 2 and 2b is dissolved, and only sometimes kept for levels 4 

and 4b (with the two being amalgamated for assessments of MNI for example) (J. 

Altuna 1981).  5773 faunal remains were recovered from Rascaño.  The 

overwhelming predominance (around 90%) of Capra pyrenaica remains in the faunal 

assemblages of levels 1-5 have led to the site being interpreted as primarily focussed 

around ibex hunting.  Other ungulates recovered include red deer, wild horse, cattle 

(bos/bison), chamois and wild boar, and an array of other fauna were also found in 

minor quantities.  Even though remains in general (cultural and faunal) are markedly 

reduced in levels 6-9, ibex remains the dominant species in levels 6-8.  With the 

exception of three chamois in level 1, and two horse in level 5, red deer were the only 

species other than ibex to have an MNI count greater than one 

. 
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Levels Newborn 

< 2 yrs 

(excluding 

neonates) > 2 yrs 

5 2 6 26 

4 1 9 49 

3   5 15 

2 1 4 10 

1   9 17 

Translated from Altuna (1981) 

Table 12: Age at death for Ibex at Rascaño 

 

 

 

 

 

Levels 5 4 3 2 1 

< 2 yrs 1 2 2 1 3 

> 2 yrs 3 10 2 3 6 

Translated from Altuna (1981) 

 

Table 13: Age at death for Red deer at Rascaño  
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Rough determinations of age were achieved for each identified ibex (Table 12) and 

red deer (Table 13) individual.  In both species, individuals over the age of 2 are more 

common than juveniles and neonates.  This preference is particularly marked in levels 

4 and 5 for ibex and level 4 for red deer.  Although neonates are not found in all 

levels, young (of both ibex and red deer) are present in all levels, and in level 1 and 

they account for the greatest percentage in level 1 (Altuna 1981, 233).  Sex 

determinations were also possible for some Capra pyrenaica remains (Altuna 1981), 

with a clear majority of male remains from levels 4 and 5, and female remains in level 

1 , but this data refers to elements and not individuals, limiting potential for 

interpretation (Table 14). 

 

Levels 1 2 3 4 5 

Male 5 14 8 86 51 

Female 17 13 4 52 35 

 

Table 14: Sexed ibex elements at Rascaño 

 

Estimations of the season of death for several individuals (ibex and red deer) were 

also possible (Figure 26). Shaded bars represent red deer kills and black bars represent 

ibex.  With the exception of levels 2 and 3, which are clearly restricted in data in 

comparison with other levels, there is no evidence of strictly defined seasonal 

occupations at the site.  Summer seems a preferred time for hunting in levels 1 and 5, 

with ibex kills restricted to early summer (May to June) in level 5.  In contrast, the 

majority of kills in level 4 took place between October and April, with a particular 

emphasis on November and December.  There are, nevertheless, two kills recorded 

between May and June.  Although data for red deer is minimal, it seems that they 

were not targeted during the late autumn and winter months.  There is less potential 

overlap between red deer and ibex hunting in level 5 than in level 1, though the data 

for red deer is too minimal to place much conviction in this interpretation. 
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Figure 26: Seasonality chart for Ibex and Red Deer at Rascaño
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Studies of element representation were also conducted to assess the nature of carcass 

transportation.  It was suggested that ibex and probably deer were frequently being 

processed, at least in part, elsewhere, and that the limbs and cranial elements were 

brought to the site, but not the trunk (Altuna 1981, 231).  This pattern is unusual for 

ibex due to their relatively small size.  The presence of atlas and axis vertebrae but not 

lumber vertebrae supports this interpretation.  The scarcity of femurs is attributed to 

poor preservation conditions for this particular type of bone matrix, and comparisons 

of the distal ends of humerus and tibia remains show there to be little differentiation 

between fore and hindlimbs (Ibid 1981, 231).  It is also noted that female horn cores 

and fragments were recovered in greater quantity than those of males, even in levels 4 

and 5 where males account for the majority of remains (Ibid 1981, 235).  Antlers are a 

frequently represented element of red deer, comprising up to 40% of red deer remains 

in level 5, 25% in level 4 and 28.4% in level 2 (Altuna 1981, 238).  The high ratio of 

antlers to skeletal remains must cast doubt upon how reflective quantifications of sex 

and gender actually are of the broader assemblage  In level 3, only 4 pieces were 

recovered.  Fragmentation remains a problem in assessing how many actual antler sets 

were found. 

 

4.1.3 Palaeoenvironment 

Level 5 pertains to the end of a humid, temperate phase according to both 

palynological (Boyer-Klein 1981) and sedimentological studies (Laville and Hoyos 

1981).  Arboreal pollen is fairly low in this level, as at La Riera in the earliest 

Magdalenian.  Level 4 exhibited evidence of cooler conditions (most likely Dryas I), 

again from both sedimentological and palynological analyses (Straus 1986c, 70; 

Boyer-Klein 1981; Laville and Hoyos 1981).  Arboreal and fern pollen is virtually 

absent, with composites and heath both more dominant, leading Boyer-Klein to 

suggest extreme cold during this period (1981, 219).  Level 3, which lacks a clear 

contemporary at La Riera, exhibits rapid oscillations between temperate, humid 

conditions and cold, dry periods (Straus 1986c, 70).  Level 2, which potentially 

corresponds with the date of levels 21-23 at La Riera during the end of Dryas II, is 

characterised by cold but humid conditions, with composites and ferns abundant, but 

trees and heathers scarce (Ibid 1986b, 71).  Level 1 is characterised by temperate, 

humid conditions with high percentages of hazel pollens, fern spores, and also the 



101 

 

appearance of alder and oak pollens in small quantities (Boyer-Klein 1981, 220).  The 

beginnings of Dryas III are possibly witnessed in the sedimentology of the uppermost 

sequence (Laville and Hoyos 1981) during the Azilian.                 

   

4.1.4 Summary 

Rascaño is an important site for understanding hunting practices in Cantabrian Spain, 

as it is one of the only montane sites in the region to have provided assemblages of 

both material and faunal remains that have been subjected to relatively modern 

excavation, recording and analytical methods.  However, in their original site report, 

Barandiarán Maestu and González Echegaray refrain from commenting in any depth 

upon the hunting practices that may have been employed at Rascaño (1981, 347).  The 

fact that many of the technologies at the site have been interpreted as having been 

deposited in their ‗final‘ stages (Ibid 1981, 344), combined with the evidence of use 

wear on most of the bladelets (Keeley 1988), further adds to Rascaño‘s potential 

importance, as a site of post-hunting activity rather than gearing up for the hunt.  It is, 

however, difficult to identify correlations between bladelet use and other patterns of 

evidence.  The relatively small size of the lithic assemblages here enhances the risk of 

over extrapolating the significance of varying quantities of tools.   

 

In terms of palaeoenvironment, levels 3 and 4, in which retouched bladelets were 

ranked the most significant numerically, both experienced very cold conditions, 

however the more temperate and humid level 5 also yielded a comparative quantity of 

bladelets.  In terms of fauna, ibex remain dominant throughout levels 1-5, although 

absolute quantities increase greatly in level 4b-5, with seemingly little correlation 

with quantities of retouched bladelets.  Level 4b is notable for yielding only a single 

dufour bladelet, and no others.  For whatever reason, perhaps relating to previous 

excavation or the spatial geography of activities within the cave, retouched bladelets 

are curiously absent from this particular sublevel, although it is worth noting the 

minor peak representation of red deer in this deposit.  Levels 4 and 5 (and to a much 

lesser extent level 3) mark a shift in ibex hunting towards targeting older prey (> 

2yrs), though this trend is preferential rather than exclusive.  Level 4 also marks a 

clear preference for adult red deer (> 2yrs), though this is not so apparent in level 5.  

From levels 3-5 there is a notable increase in the ratio of male to female ibex 
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recovered.  It is possible that the increase in bladelet technology might be related to 

this shift in targeting. 

 

Levels 4 and 5 also have the clearest seasonal patterns, with hunting activities 

focussed in the cooler months during the cold harsh climate of level 4, and in the 

summer months (particularly May-June) in the more temperate and humid level 5.  

Shifts in seasonal hunting patterns may well be responses to changing ecology and 

behaviour resulting from contrasting climates.  Level 1, which was also deposited 

under mostly temperate and humid conditions exhibited evidence of a seasonal 

exploitation pattern more comparable with that of level 5.  Unfortunately, less insight 

is available for levels 2 and 3 due to restricted seasonality data.  One of the most 

interesting features of the bladelet assemblages from Rascaño is the relative numerical 

importance of dufour bladelets in levels 3, 4 and 5.  Even though many pieces may 

not conform to the typological definition of dufour bladelets sensu stricto, they are at 

least deemed sufficiently irregular in morphology to be rejected as plain backed 

bladelets.  It is unfortunate that Keeley‘s study sample did not include more of these 

pieces. Dufour bladelets are generally curved in profile and exhibit evidence of semi-

abrupt retouch, making these points potentially useful both as barbs but also projectile 

tips.  It is possible that the relatively high quantity of these bladelets may indicate a 

very specific style of microlithic weaponry, or alternatively, a site where tips are 

extracted from carcasses during processing, perhaps for re-hafting. 
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4.2 Lithic Analyses at Berniollo, Santa Catalina and Laminak II 

 

Following from Keeley‘s analysis of bladelets at Rascaño, it was decided to include 

three other Upper Palaeolithic sites from Northern Spain which, although lacking 

complete excavation details, have been the subject of microwear investigation. A 

series of lithic analyses with use-wear studies as the central focus were conducted on 

assemblages from the late Palaeolithic sites of Berniollo, Santa Catalina cave, and 

Laminak II in the mid 1990‘s, of which two reports were published in English (Ibánez 

Estevez and González Urquijo 1996; 1998).  Although not located along the 

Cantabrian plain itself, Santa Catalina and Laminak II are both situated along the 

northern Spanish coastal margin further to the east (Figure 6), and Berniollo further 

south and inland (approx 20km west from the town of Vitoria-Gasteiz in the province 

of Alava).   

 

4.2.1 Berniollo 

Berniollo is an open-air site situated in the middle of the Bayas river basin.  

Excavations at the site in 1984 and 1985 showed the site to have two separate 

habitation areas, one Neolithic and the other Palaeolithic.  The Palaeolithic (likely 

Azilian) occupation comprises just one deposit, between 10 and 15cm thick and dated 

to 9940±490 BP (Mariezkurrena 1990).  As well as studies on the manufacturing 

techniques and spatial distribution of the lithic assemblage, 217 pieces were submitted 

for use wear analysis, of which 22 were backed bladelets (Ibánez Estevez and 

González Urquijo 1996). 

 

4.2.2 Santa Catalina 

The cave site of Santa Catalina is located in a limestone cliff near the lighthouse of 

Lekeitio on the east coast of Vizcaya in northern Spain.  Excavations at the site began 

in 1982, with nine seasons of work completed by the time of Ibáñez Estevez and 

González Urquijo‘s analyses.  Excavations within a 9m
2
 area of the exterior chamber 

revealed two levels, with one Azilian (10,500 – 9600 BP) and the other late 

Magdalenian (12,200-11,400 BP) (Ibánez Estevez and González Urquijo 1998).  

Lithic production during the Azilian was mostly focussed on bladelets, which account 
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for 75% of laminar pieces at the site, but the proportion of blades and bladelets was 

more similar during the Magdalenian (Ibid 1998, 27).  From these levels, functional 

analysis was conducted on 167 stone tools from the Azilian deposit, including 34 

backed bladelets, and 300 from the Magdalenian deposit, including 36 backed 

bladelets. 

 

4.2.3 Laminak II 

Laminak II is a cave site situated on a northern slope, 3km from the current coastline 

and 5km from Santa Catalina.  There is a level dated to 11,700 ± 140 BP in the final 

Magdalenian (Ibánez Estevez and González Urquijo 1998, 24).  Analysis of the stone 

tool assemblage at this site included assessment of manufacturing techniques, and also 

use wear analysis on 136 tools (Ibid 1998).  The majority of flakes at the site appear 

to have derived from blade and bladelet production; bladelets used for making backed 

bladelets and backed points comprise 80% of the laminar pieces at the site (Ibid 1998, 

24) (Ibáñez and González 1998, 24).  Laminak II was not included in Ibáñez Estevez 

and González Urquijo‘s use-wear comparison of Berniollo and Santa Catalina (Ibid 

1996), but was subsequently included in a later article focussing on production and 

use at these sites (Ibid 1998).  A number of similar conclusions to those reached in the 

earlier report are referred to in the later article.    

 

4.2.3.1 Unretouched Pieces, Retouched Flakes and Macroblades (Berniollo and 

Santa Catalina) 

Unretouched lithics under 2cm in length were rejected for analysis, as it is commonly 

assumed that such pieces were not used, due to the awkwardness of their size unless 

they were hafted (Ibánez Estevez and González Urquijo 1996, 21).  While it is true 

that unretouched pieces are often disregarded for these reasons, this justification is 

nevertheless teleologically flawed when one considers that the size of microliths 

commonly predicates the assumption that they are hafted elements.  Of the retouched 

flakes and blades that were analysed from Berniollo (9) and Santa Catalina (Azilian: 

10; Magdalenian: 9), results suggested functional heterogeneity, with evidence of a 

variety of use wear traces in comparison to other morphologically- defined tool types 

(Ibid 1996, 23).  The traces most frequently recorded on macroblades are commonly 
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associated with motions of cutting, whereas flakes tended to exhibit more similar 

proportions of longitudinal and transverse action (Ibid 1996, 35). 

 

4.2.3.2 Backed Microlithic Points (Berniollo and Santa Catalina) 

Of the backed microlithic points, 12 were recovered from Berniollo, 14 from the 

Azilian deposit of Santa Catalina, and 29 from the Magdalenian level.  Most can be 

classified as Azilian points (16) or microgravettes (20), though there are some that do 

not correspond to these categories, such as double backed points.  Use wear analysis 

suggested two types of use, with 17% of the points bearing traces suggestive of 

utilisation in the working of soft animal remains i.e. cutting, scraping, hide boring and 

butchery, 38% indicative of impact resulting from use as a projectile, and the 

remaining 45% bearing no distinguishable use-traces (J. J. Ibánez Estevez and 

González Urquijo 1996, 40).  Interestingly, only one point showed evidence of 

utilisation both as a projectile tip and for other activities (butchery), suggesting 

duality of function in the same point was not common (Ibid 1996, 40).  I believe that 

this should be of little surprise, as depending on the ergonomics, the utilisation of one 

point for such different activities may well have required re-hafting in a new format.    

 

 
Microgravettes 

(Quantity and Proportion %) 

Azilian Points 

(Quantity and Proportion %) 

Without use traces 8   (40%) 7   (41.1%) 

Impact traces 10   (50%) 3   (17.6%) 

Butchering or hide 

working traces 
2   (10%) 5   (29.4%) 

Butchering and 

impact traces 
0 1   (5.9%) 

 
Table 15: Types of use traces identified on microlithic backed points from Berniollo and Santa 

Catalina 

 

 

At Berniollo all damage traces indicated impact as the cause.  At Santa Catalina, the 

proportion of points used for ―soft‖ animal working is higher in the Magdalenian level 

than in the Azilian (Ibánez Estevez and González Urquijo 1996, 40).  Table 15 shows 

that although no function is associated exclusively either type, microgravettes were 
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preferred as projectile points and Azilian points were preferred as butchery and hide 

working tools.  It seems, therefore, that straight and relatively narrow bladelets 

retouched to a symmetrical point were preferred for projectile points (Ibid 1996, 45) 

(Ibid: 45).  Although the specific details of the study were unavailable, it is clear that 

the results from analysis of the Laminak II assemblage were in concord with these 

observations (Ibid 1998, 30).   

 

It is also interesting to note that two retouched and pointed blades from Berniollo (56 

x 21mm and 62 x 28mm) were also used as projectile tips.  The dimensions of these 

points, and particularly the width of the haft diameter has led Ibáñez and González to 

suggest that these points were used in throwing spears, which would qualify two 

different types of projectile elements within an individual assemblage (Ibánez Estevez 

and González Urquijo 1996, 45). 

 

4.2.3.3 Bladelets (Berniollo, Santa Catalina and Laminak II)              

Bladelets are common at all three sites, but are particularly abundant at Laminak II 

and in the Azilian deposit of Santa Catalina.  They were mostly manufactured into 

backed bladelets or backed points; Ibáñez and González believe that they were rarely 

used without retouch as this was a prerequisite for their hafting (1998, 33).  The most 

notable characteristic of the bladelet assemblages at each of the three sites is the 

existence of two discrete groupings based upon their length.  The existence of two 

distinct classes of bladelet based on size has also been noted at the Magdalenian site 

of Ekain (Merino 1984).  The separation of the two groups varies at each site, and the 

authors‘ original thoughts on this matter are not entirely clear: First noting the smaller 

gap between the classes at Berniollo (Ibánez Estevez and González Urquijo 1996, 45), 

and later commenting that duality in the bladelet assemblages was found at Berniollo 

and Laminak II, but curiously with no mention of Santa Catalina (Ibid 1998).  Finally, 

their estimations of the average size categories vary without clearly detailing any 

adjustments in calculation (Ibánez Estevez and González Urquijo 1998, 30; 33).  

However, it remains true that a clear distinction in the size of bladelets can be made at 

all three sites, even at Berniollo where differentiation is the smallest (Table 16). 
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The distinction of these groups based on size is corroborated by the results of use-

wear analysis.  Of 92 backed bladelets subjected to analysis from Berniollo (22) and 

Santa Catalina (Azilian: 34; Magdalenian: 36), 50% showed use-traces, and of those, 

61.2% exhibited traces associated with meat cutting and butchery (Ibánez Estevez and 

González Urquijo 1996, 45).  It is suspected that many of those with more ambiguous 

traces may have also been used for the cutting of meat, which is an activity known for 

not always resulting in clearly recognisable use traces (Ibid 1996, 45).  The backed 

bladelets without signs of use-wear are all smaller in size than those that bore 

evidence of meat cutting.  This has led Ibáñez and González to believe that the 

differentiation in size is a likely indication of a difference in function, supposing the 

smaller backed bladelets to have been hafted as projectile barbs, reasoning that wear-

traces from such use are rarely generated (1996, 47).  Although quantities are not 

given, it is apparent that a similar conclusion was reached in their study of Laminak 

II, where it was also noted that the smaller backed bladelets appear to have been 

manufactured from flake cores, whereas longer bladelets were produced from block 

cores (Ibid 1998, 24).   

 

 Berniollo 
Santa Catalina 

(Azilian) 

Santa Catalina 

(Magdalenian) 
Laminak II 

Butchering 

Traces 
22.7mm 21mm 40mm 30 - 35mm 

Without 

Traces 
19mm 14.8mm 23.6mm 15 - 20mm 

 
Table 16: Average length of bladelets with different wear traces from Berniollo, Santa Catalina 

and Laminak II 

 

 

This interpretation is further strengthened by the strong spatial association of smaller 

backed bladelets and backed points used as projectiles in the cave at Berniollo (Ibánez 

Estevez and González Urquijo 1996, 47).  They are also associated with the bladelet 

cores and waste debris from their manufacture, suggesting they may have been 

discarded together during the process of repair or replacement (Ibid 1998, 24).  

Finally, it is interesting to note that at least three backed bladelets showed 

characteristic projectile tip wear-traces, suggesting that they had been recycled after 

fracturing from their original use (Ibánez Estevez and González Urquijo 1996, 47).  
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4.2.4 Summary 

The predominance of backed points and backed bladelets in the assemblage from 

Laminak II, combined with evidence of antler working at the site suggests that the site 

was used as a specialised hunting camp (Ibánez Estevez and González Urquijo 1998, 

32).  Red deer are dominant among the faunal assemblage, and were hunted at the end 

of spring and beginning of summer (Ibid 1998, 32).  However, the diversity of 

resources recorded at the site (including a number of other ungulates), the lack of 

evidence for butchery or fresh hide scraping (activities commonly associated with 

hunting camps), and the presence of bone and dry hide working activities associated 

with the Autumn months have cast doubt upon this interpretation (Ibid 1998, 32).  

Based upon this interpretation, I believe that Laminak II may well have been a 

specialised hunting site at least in the spring and summer months when red deer were 

most targeted, but that it may have had a less narrowly defined role for other times of 

the year, when the hunting of other game using similar technologies would have 

continued. 

 

The Azilian level of Santa Catalina does appear to have been primarily a hunting site, 

as reflected by the dominance of backed points and small backed bladelets, and the 

relative intensity of butchery and fresh hide working recorded at the site (Ibánez 

Estevez and González Urquijo 1998, 31).  Less intensive wood and bone working 

activities are explained as relating to the repair of hunting tools (Ibid 1998, 31).  In the 

preceding Magdalenian deposit, the site seems to have been less specialised, with 

evidence of hunting activities and bone, wood and dry hide working more equally 

represented (Ibid 1998, 32).  In contrast with the other two sites, hunting is (most) 

scarcely represented at Berniollo, with bone, wood and dry hide working more 

dominant (1998, 32).  Bladelets continue to be an important focus of lithic production, 

but less so than blades.  It is important to note that although Berniollo is not 

considered primarily a hunting site, the microgravettes from this site were most 

strongly associated with traces of impact damage, and bladelets in general remain a 

main feature of the assemblage, and a focus of production.  This point should be 

highlighted as it shows the potential ubiquity of hunting equipment, even at sites 

where this activity is not emphasised.   
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Little difference is found across the chronological span of these sites.  Although the 

Azilian of Santa Catalina marks a shift in activities from the Magdalenian, it seems 

that strategies of use rather than changes in the actual toolkits themselves are more 

responsible (Ibánez Estevez and González Urquijo 1998, 34).  I would argue that at 

this resolution, the location of the sites is a more significant influence on the activities 

and toolkits found at each site.  The main conclusions regarding Ibáñez and 

González‘s analyses of these lithic assemblages are the diversity of uses recorded for 

backed points, with microgravettes seemingly preferred as projectile tips, and the 

distinction in size between backed bladelets used for cutting and those hafted as 

projectile barbs. 

 



110 

 

4.3 La Fragua Cave 

 

In the 1990‘s, excavations began at a number of sites in the Asón river valley (Figure 

27) under the auspices of a major research project initiated at the beginning of the 

decade (led by González Morales) to investigate prehistoric salt marshes of the area in 

an effort to redress imbalances in the geographic resolution of prehistoric knowledge.  

One of these sites, the small cave of La Fragua (area: 16m
2
) excavated between 1990-

1996 (Morales 2000).  presents a particularly unique case among prehistoric sites in 

the area.  The site represents a temporary coastal occupation in a landscape where its 

occupants would have had access to a diverse array of habitats, and boasts a recently 

analysed faunal assemblage spanning the Pleistocene-Holocene transition. This 

analysis, which is easily accessible and written in English, forms the basis of this 

assessment. 

 
The small cave site of La Fragua is located in what was likely a strategic vantage 

point on the southeastern slope of Monte Buciero (Santoña, eastern Cantabria), 

overlooking the river Asón and beyond to the continental shelf, some 3-5km wide 

(Straus et al. 2002; Arroyo and González Morales 2007).  Situated at 125m above sea 

level at the head of the Asón river valley, a variety of habitats would have been 

accessible to the occupants of La Fragua, including the shore and present day coastal 

plain, and the montane interior of the valley, which likely served as an important 

regional topographic funnel, headed off inland by the Los Tornos and La Sía 

mountain passes (Straus et al. 2002, 1405–1406). 



111 

 

 

 

Figure 27: Map of the Ason Basin, eastern Cantabira. 1. La Fragua and El Perro Shelter, 2 El 

Otero Cave, 3 La Chora Cave, 4 El Valle Cave, 5 El Miron Cave, 6 El Horno 

 

4.3.1 Faunal Analysis 

A 6m
2
 area of the cave was excavated, uncovering 6 archaeological levels, of which 4 

pertained to a period spanning the Upper Magdalenian through to the Mesolithic, the 

dates of which are presented in Table 17.  The faunal assemblage comprises 2,922 

bone samples (Table 18) including fragments and teeth weighing 3,550 grams of 

which only 331 (2,125g) remains could be identified to species level, such was the 

fragmentary state of the assemblage, which probably relates at least in part to marrow 

extraction (Arroyo and González Morales 2007, 72).  Preferential breakage of bones 

from certain species has been dismissed although not entirely ruled out due to the size 

of bone fragments in levels 1, 3 and 4 (Ibid 2007).  
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As with most Cantabrian sites of contemporary date with faunal assemblages, all the 

common ungulates (red deer, ibex, bos/bison, wild horse, chamois, roe deer and wild 

boar) are represented to varying extents, with the Mesolithic level 1 exhibiting an 

overall greater diversity of representation.  Red deer remain dominant by weight in all 

levels, though they are second to wild boar in both levels 1 and 2.  It is interesting to 

note that in level 2 the representation of red deer is comparable in all respects to other 

species, unlike other levels.  This observation further supports the conclusion of the 

faunal analysis that the deposit of level 2 is of natural origin (Arroyo and González 

Morales 2007).      

 

 
R.C. Date 

(BP) 

"Cultural" 

Attribution 
Stratigraphy Description 

Number of 

Faunal 

Remains 

Level 

1 

6.650 ± 120 

6.860 ± 60 

7.530 ± 70 

Mesolithic 

Shell midden surface with 

dirt matrix from above 

stratum. 

547 

Level 

3 
9.600 ± 140 Azilian 

Lens of land snails with 

abundant charcoal and small 

bone fragments. 

608 

Level 

4 
12.960 ± 50 Upper Magdalenian 

Dark brown sediments with 

limestone fragments and 

lithic remains. 

1536 

 
Table 17: La Fragua stratigraphic divisions Magdalenian-Mesolithic 
 
Correspondence analysis has shown there to be a clear dichotomy between the 

Mesolithic and Magdalenian levels in terms of ibex and wild boar representation 

(Arroyo and González Morales 2007, 68).  The latter is represented in much greater 

quantities (NISP) in level 1, while the value for ibex is much greater in level 4 (Ibid 

2007, 67).  It is hypothesised that warmer conditions, favourable for temperate fauna 

in the Mesolithic, account for the increase in representation of wild boar, and that this 

climatic and environmental shift towards mixed deciduous woodland probably led to 

an increase in the altitude of preferred ibex habitats (Ibid 2007, 69).  The presence of 

wild boar in Magdalenian levels shows that although the species was present and 

exploited in this level, it was not yet prioritised in the subsistence economy of the site, 

or perhaps comparatively less common.  The NISP value for the two dominant species 
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(red deer and ibex) in level 4 is notably greater than the dominant species from other 

levels (Table 18), perhaps suggesting a greater intensity of frequency of use at this 

time, and possibly reflective of different subsistence strategies associated with the 

cervid/capra based dual economy.  The relatively high NISP for unidentified 

fragments in level 4 may suggest that many of these remains also pertain to ibex or 

red deer.             

 

In level 3, the amount of ungulate fauna drops significantly, with red deer continuing 

as the main source of meat, but ibex experiencing a reduction in representation.  It has 

been suggested that this might be due to a shift in exploitation to other resources such 

as land snails (Arroyo and González Morales 2007, 69), however it is also worth 

noting that carnivores are also absent from the assemblage.  This suggests to me that 

if carnivore remains were deposited in the cave as a result of human activity, as was 

apparently the case in at least some instances (Ibid 2007, 63), then the site 

experienced a relatively significant reduction in hunting activities in general if not an 

overall reduction in occupation intensity at this time. 
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 Level 1 Level 2 Level 3 Level 4 

 NISP Weight (gr) MNI NISP Weight (gr) MNI NISP Weight (gr) MNI NISP Weight (gr) MNI 

Bos / Bison 4 91.9 2 1 2.5 1 1 2.7 1 5 39.4 2 

Cervus elaphus 18 138.3 2 3 5.3 1 22 253.9 2 79 746 8 

Capreolus capreolus 8 8.7 3 2 4 2 6 8 2 13 13.3 3 

Capra pyrenaica 6 22 3 2 5.1 1 4 15.2 1 114 518.3 5 

Rupicapra 
rupicapra 

               1 0.7 1 

Sus scrofa 19 220.6 4 5 6.7 1      7 8.9 3 

                  

Canids 3 2.3 1                

Vulpes vulpes 1 1.3 1 1 0.9 1      5 7.2 1 

Meles meles 1 1.9 1                

                  

Non Identifiable 428 133.9   204 72   441 122.1   900 494.2   

Total 547 718.7 17 231 140 7 608 512 6 1536 2186 23 

 

Table 18: Faunal remains (NISP and MNI) from La Fragua cave (Arroyo and Morales Gonzales, 2007) 
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4.3.1.1 Seasonality and Carcass Representation 

Analysis of dentition shows that in level 4, red deer were hunted during the late 

summer and autumn, and that ibex were hunted during the autumn in their rutting 

season, which would have required relatively low human expenditure of time and 

energy (Arroyo and González Morales 2007, 67).  Red deer teeth from level 3 suggest 

a winter period of occupation during the Azilian (Ibid 2007, 69).  Unfortunately there 

are no details of the sample size for these estimations, and seemingly no results 

provided for the Mesolithic remains from level 1.  Combining these observations with 

seasonality estimates from other sites within the Asón Valley (El Valle, El Horno and 

El Mirón) has led to the supposition that La Fragua may have acted as a support base 

for incursions to the coast in the warm season for plant gathering and red deer hunting 

(Ibid 2007, 79), although seemingly at the end of this season prior to withdrawing 

inland up the valley.  The speculation that hunting during the warmer months was part 

of a strategy of seeking greater meat utility for winter reserves (Ibid 2007, 79) 

requires clarification as a statement, as it makes a number of suppositions about the 

economic system of the cave‘s occupants.    

 

Analysis of body element representation indicates differential transportation of red 

deer and ibex carcasses in both levels 3 and 4.  Ibex probably inhabited the landscape 

immediately local to the cave, and this perhaps explains why more complete carcass 

representation is apparent, whereas red deer, whose preferred habitat would have been 

around an hour‘s walk away, are most represented by extremities with a notably low 

number of axial remains (Arroyo and González Morales 2007, 71).  Analyses of wild 

boar and red deer in level 1 suggest a limbs and head pattern among the former, and 

variation according to age among red deer remains, with juveniles more frequently 

represented in whole and adults present in a pattern more similar to that of levels 3 

and 4.  Unfortunately, data for adult to juvenile ratios in other levels are not provided 

(at least in this publication), and so it is not possible to compare these trends any 

further.  That similar observations were not made for levels 4 and 3 suggests that this 

pattern was not apparent, or at least that data was too insufficient to justify comment.  

It is interesting that the authors note that whole ibex were returned to the cave 

regardless of age in level 1 (2007, 71), considering the site would have no longer been 

located in such close proximity to their habitat range.     
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4.3.2 Summary 

The original analysts of the site‘s faunal assemblages stress the importance of 

considering economic activities at La Fragua within the framework of a broader 

mobility pattern in the Asón Basin (Arroyo and González Morales 2007, 79) 

comprising El Miron and other less well known sites that are yet to be more 

thoroughly investigated.  The dual economy of red deer and ibex apparent in level 4 

(Upper Magdalenian), with red deer as the clearly dominant species gives way to a 

more generalised range of ungulates in level 1 (Mesolithic), with wild boar and red 

deer respectively as the most dominant species.  From 9,600 BP there is a notable 

decrease in ibex and the proportion of roe deer increases slightly (Ibid 2007, 78).  It is 

argued that sudden environmental change explains the confusing scenario presented 

by level 3, which yielded an industry typical of the cervus/capra based economies of 

many Azilian sites, but with a faunal assemblage more correspondent with the 

emergent postglacial, showing signs of diversification (Ibid 2007, 77–78).  The 

absence of wild boar from this level, the shift from land snails to marine molluscs 

between levels 3 and 4, and the interruption of level 2 all suggest that while level 4 

also represents a diversification of subsistence, the trend is not one of linear 

continuity.   

 

The site‘s investigators conclude that the site‘s occupants appear to have hunted based 

on their energy needs, difficulty of prey, and technological capacities (Arroyo and 

González Morales 2007, 77–78).  It only follows that considerations of the 

environment and environmental change at the end of the last glacial must have been 

an important factor (not necessarily a driving cause) in the developing economic 

strategies evidenced at La Fragua. 
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4.4 El Mirón 

 

The large cave mouth (16m wide x 20m high) of El Mirón Cave faces west, 

overlooking the confluence of the Calera and Gándara tributaries with the Asón river 

(Figure 27).  Located at the eastern end of the Ruesga Valley, within the Asón Valley, 

the site lies at approximately 100m above the valley floor, and 260m above sea level, 

surrounded by mountain summits and ridges up to and over 1000m above sea level 

(Straus and Morales 2009, 123).  As well as the mouth mentioned above, the structure 

of the cave comprises a vestibule (8-10m wide x 12-13m high) and an inner cave (6-

8m wide x 100m deep) (Figure 28).   First discovered in 1903, the site has been 

excavated since 1996 following Gonzalez Morales‘ reappraisal of prehistoric sites in 

the Asón River Valley (Straus et al. 2002).  Sixty five radiocarbon dates from the site 

show a nearly complete cultural sequence from terminal Mousterian (41,000 BP) to 

the early Bronze Age, as well as traces of medieval activities (AD 1400) (Straus and 

Morales 2009, 123).  So far, only excavation of the Holocene (Mesolithic and later) 

deposits has been published as a collective monograph volume (Straus and Gonzáles 

Morales 2012).  With the exception of reports about exceptional finds (González 

Morales and Straus 2009) the sondage excavation of a small area of Magdalenian 

deposits in the cave vestibule (Straus et al. 2008), and a few updates on excavation 

progress, little beyond two preliminary reviews (Straus and Morales 2009; 2012; 

Straus et al. 2011) has been published on the material culture of the Pleistocene 

deposits.  There is, however, more complete analysis of the faunal remains from Mid-

Magdalenian – Mesolithic levels (Arroyo 2009b; Cuenca-Bescós et al. 2009; 2012). 

 

4.4.1 Solutrean  

Solutrean materials recovered from El Mirón are scarce compared to the following 

Magdalenian levels, and this probably relates to one of four causes:  

 

1) The Solutrean of El Mirón Cave may well represent a genuine difference in 

the nature and intensity of occupation at the site. 

 

2) The area of the cave from which Solutrean materials were excavated was 

comparatively narrow, a 2m
2
 sondage (W-X/10) at the rear of the cave 
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vestibule (Figure 28).  Solutrean deposits were recorded elsewhere, but it is 

this sondage that comprises the bulk of the preliminary analysis and the focus 

of this assessment. 

 

3) The levels (120-130) that were excavated from this sondage show a double 

slope in profile toward the South and West, and into the darker recess of the 

vestibule, suggesting this may have been a relatively marginal area for human 

occupation (Straus and Morales 2009, 127; 2003, 55). 

 

4) The crater within which the sondage was placed had clearly been repeatedly 

dug in recent times, presumably by looters (Straus and Morales 2009, 124).  

Combined with previous unrecorded excavations, it is possible that these 

Solutrean deposits (seemingly undisturbed) may have been subjected to 

previous mixing as has been noted with level 120 (Ibid 2009, 129).     
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Figure 28: Excavation plan of El Miron Cave (Straus and Morales Gonzales 2012) 
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These deposits are nevertheless of great archaeological significance as they represent 

some of the only good quality evidence for a Solutrean presence in the Asón Valley at 

this time.  Three dates from this sondage (recorded below), supplemented with dates 

obtained from excavations elsewhere in the cave and from the presence of type fossils 

in the form of Solutrean points have led to the conclusion that levels 120-128 pertain 

to the Solutrean occupation of the cave (Straus and Morales 2003, 55).  Although 

level 128 is included in their analysis, the date retrieved (27,580 ± 210 BP) is strictly 

speaking more likely Gravettian or terminal Aurignacian, albeit lacking diagnostic 

artefacts from this time (Ibid 2009, 129). 

 

Dates from the W-X/10 sondage:  

 

Level 121: 18,390 ± 300 BP 

Level 125: 18,980 ± 360 BP 

Level 126: 18,950 ± 350 BP 

(Straus and Morales 2009, 127) 

 

In terms of palaeoenvironment, the landscape around El Mirón was largely open, 

dominated by composites, grasses and heaths, with a scarcity of trees (mostly pine 

and birch) during the Solutrean, with a spike in the representation of Microtus 

oeconomus reflecting the cold rigorous climate of the LGM (Straus and Morales 

2009, 129).  These findings are consonant with those from La Riera.  Analysis of the 

ungulate fauna from the Solutrean is yet to be published and remains are seemigly 

scarce (Straus et al. 2011), with most attention so far having focussed on the terminal 

Palaeolithic deposits (Arroyo 2009b; Cuenca-Bescós et al. 2012).  Only small 

amounts of macro-mammalian remains were recovered, and these were dominated by 

ibex and red deer, and are heavily fragmented, probably having been broken for 

marrow extraction (Straus and González Morales 2009, 129).  Combined with the 

presence of salmon and other species fish, the Solutrean faunal assemblage seems 

fairly similar to later Magdalenian assemblages, even if different in scale and overall 

diversity of taxa.  

 

Of the 3701 lithics recovered from levels 120-128, only 103 are retouched pieces, 

with the vast majority of waste materials classifiable as microdebitage (Straus and 
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González Morales 2009, 129).  Table 19 shows quantities of retouched bladelets and 

Solutrean points recovered from levels 120-123.  The small assemblage size restricts 

the conviction with which they can be interpreted.  Of thirteen retouched tools, all but 

three were found in levels 122 and 123.  Ten of the thirteen are backed bladelets.  This 

distribution is interesting given that the majority of retouched tools and indeed the 

twenty Solutrean points (which include unifacial, laurel leaf, willow leaf and 

shouldered variants) were recovered from levels 123-128 (Ibid 2009, 131).  

Proportionally, debitage bladelets account for between 4.5 and 10% of the debitage in 

Solutrean levels.  Although this range is not large, they were most significant in levels 

122 and 123.  Regarding osseous hunting equipment, bone artefacts are rare in 

Solutrean levels, with several sagaie/sagaie fragments recovered from the sequence 

exhibiting variety in cross-section profile (Ibid 2009, 134). 

 

 Levels 

Tool Types 120 122 123 124 125 126 127 128 

Unifacial Point        1 2       

Laurel Leaf Point       2    

Willow Leaf Point      1 1 2   

Shouldered Point 1  2 2* 1 4 1   

            

Backed Bladelet   3 5  1   1 

Truncated Backed Bladelet   1        

Notched Bladelet    1       

Nibbled Bladelet           1     

* May actually pertain to level 125 

Table 19: Solutrean points and retouched bladelets from El Miron Solutrean deposits 

 

While it is difficult to infer much from the results of a 2m
2
 sondage excavation, the 

Solutrean occupation of El Mirón has tentatively been interpreted as having 

comprised repeated, limited, and ephemeral human visits focussed on specific 

subsistence activities (Straus and González Morales 2009, 136).  Occupation of the 

site changed in nature and intensity in the following Magdalenian as the end of the 

Last Glacial Maximum brought about a shift in the economic possibilities for a site at 

this location (Ibid 2009, 136).    
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4.4.2 Magdalenian and Azilian 

Full details of the Magdalenian deposits excavated at El Mirón cave are not yet 

published.  It is possible, however, even at this early stage to gain a general 

impression of the site, even without detailed inventory descriptions.  Although El 

Mirón boasts one of the most complete and thoroughly dated Magdalenian sequences 

in Cantabria, the initial and middle phases are relatively poorly known, with less 

precise radiocarbon dates and an absence of diagnostic artefacts (Straus and González 

Morales 2012).  Consequently, some deposits are afforded their cultural assignation 

on a more arbitrary nominal basis, such as the relatively nondescript Azilian levels at 

the site (Ibid 2012, 16).  Table 20 shows the chronological ordering of the 

Magdalenian deposits excavated at the site, along with those attributed to the Azilian 

and earliest Mesolithic after Cuenca-Bescós et al. (2012).   

 

Prior to the classic Lower Magdalenian deposits, there are levels, not in clear 

stratigraphic order, pertaining to what has been termed the ―Initial Magdalenian‖.  

Dates from these deposits show them to be approximately contemporary with levels 

17-20 at La Riera, though unlike these levels, backed bladelets do not comprise a 

significant portion of the lithic assemblage (Straus and González Morales 2012, 6).  

Excavation of a sondage in the mid-vestibule of the cave led to the identification of 

another level pertaining to the so called ―Initial Magdalenian‖: level 313, curiously 

absent from Table 20 (312, the Lower Magdalenian deposit discussed in the same 

paper, is included in the table).  Unlike levels 117-119.2, this deposit yielded notable 

quantities of backed bladelets (45%) from an admittedly small (38 pieces in total) 

retouched tool assemblage (Straus et al. 2008, 212).  

 

The Lower Magdalenian deposits boasted abundant lithic assemblages, with the 

retouched component heavily dominated by backed bladelets.  There is also a small 

number of geometric microliths (triangles and circle segments).  As a whole, the 

assemblage is characterised by high-quality and non-local flints, probably from Upper 

Cretaceous outcrops along present day coastal cliffs (Straus and González Morales 

2012, 114), although it is not clear whether there is differentiation between the 

materials used for backed bladelets and other tools as noted at sites such as Berniollo.  

Antler sagaies are also abundant in these levels, and included a wide variety of cross-

sections and bases (Ibid 2012, 114).  Of particular note is the recovery of a small 
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antler atl-atl spearthrower from level 17, with similar examples having been found in 

the South West of France (González Morales and Straus 2009, 274–276). 

 

 

Table 20: Magdalenian, Azilian and Mesolithic deposits and dates from El Miron (taken from 

Cuenca-Bescos et al. 2012) 
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The Middle Magdalenian at El Mirón is not well represented, and proved problematic 

to date, with most suggestions as to the possible nature of these occupations coming 

from observations based on other sites (Straus and González Morales 2012).  Upper 

Magdalenian deposits at El Mirón coincided with the warming conditions of 

Greenland Interstadial 1e, with retouched assemblages comprising large quantities of 

backed bladelets, including backed micropoints (Straus and González Morales, 2012: 

13).  These levels are poor in osseous artefacts, although level 12 yielded a 

unilaterally barbed antler harpoon (Ibid 2012, 117).  Following these levels are a 

series of artefact-poor deposits that mark the end of the Pleistocene sequence, 

recognised nominally as the Azilian (Ibid 2012, 119).  The importance of backed 

bladelets in these levels is not clear from the summary provided by Straus and 

González Morales (Ibid 2012), but the asserted apparent similarities with the 

preceding Upper Magdalenian deposits, the presence of backed micropoints, and 

reference to quantities of backed bladelets recovered from other Azilian sites may at 

least validate the assumption that they were present in some quantity.  What is clear is 

that the relatively sparse Azilian levels comprise a much more ephemeral use of the 

cave in contrast to earlier levels from the Lower and Upper Magdalenian. 

   

4.4.2.1 Magdalenian and Azilian Fauna 

Faunal remains from the terminal Pleistocene (Mid Magdalenian – Azilian) deposits 

at El Mirón have been the subject of extensive analyses (Marín Arroyo 2009a; 2009b; 

Cuenca-Bescós et al. 2012).  Of 117,557 faunal remains recovered, only 5320 could 

be identified taxonomically (Cuenca-Bescós et al. 2012).  Of these, 19% exhibited 

anthropomorphic cut marks, and 30% were broken, with the presumed intent of 

marrow extraction (Cuenca-Bescós et al. 2012, 132).  The NISP values for the 

ungulate fauna are shown below in Table 21, which measures by stratigraphic level 

(Middle Magdalenian-Mesolithic), and in Figure 29, which shows change across time 

(16-10,000 BC).  The overwhelming majority of faunal remains come from Mid-

Magdalenian level 108. 
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Table 21: Ungulate NISP data with associated dates and cultural affiliation for El Miron. Taken from Cuenca-Bescos et al. 2012 
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Red deer and ibex are the dominant fauna throughout the Magdalenian and Azilian 

deposits, although an intentional diversification of resource exploitation is apparent in 

the latter deposits (Arroyo, 2009b: 79).  Figure 30 shows how, starting in the Azilian 

and becoming more apparent in the Mesolithic, mountain species (ibex and chamois) 

seem to decline in favour of lowland woodland species such as roe deer and wild boar 

(Cuenca-Bescós et al. 2012).  Analysis of carcass transportation in the Magdalenian 

and Azilian deposits has shown that processing regularly began prior to arrival at the 

cave, enforcing the interpretation of the site as a residential camp (Arroyo, 2009b: 

89).  Seasonality data shows that the site was mostly occupied during the warmer 

months throughout the final Palaeolithic (Ibid: 90).  Although this interpretation was 

derived exclusively from young prey, there is, at least in the later deposits, a clear 

shift towards the exploitation of juvenile taxa.  The pattern of occupation inferred is 

further corroborated by the presence of bearded vultures (Gypaetus barbatus, a 

predator that would not have cohabited with humans) established in the winter months 

(Ibid, 2009b).  With this pattern in mind, it has been suggested that the cave‘s 

occupants were tracking red deer as they migrated inland up the valley to higher 

pastures at this time of year (Ibid, 2010: 464). 

 

 

 

Figure 29: Graph of ungulate NISP at El Miron by millennia. Taken from Cuenca-Bescos et al. 

2012 
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Figure 30: Graph of ungulate NISP at El Miron by cultural affiliation. Taken from Cuenca-

Bescos et al. 2012 

 

The Magdalenian of Cantabria is often characterised by red deer hunting at lowland 

sites on the coastal plain, and ibex hunting in mountainous areas.  This dichotomy, 

based on game exploitation, has led to the recognition of three broad types of site in 

the area at this time. 

 

1. Sites located in open, coastal areas, and located close to rocky terrain (e.g. La 

Fragua) specialised in red deer hunting but with appreciable percentages of 

ibex and other species. 

 

2. Sites located in open terrain away from mountain areas, specialised in red deer 

hunting. 

 

3. Sites located in areas of steep hillsides, often at greater distance from the coast 

and with dominant quantities of ibex, and other montane species.   

 

(Arroyo 2009b, 69-70) 

 

El Mirón is notable for not conforming to this categorisation.  The site is located on 

the steep, rocky cliff-side of a mountain, but also overlooks the broad upper valley of 

the Asòn river, with faunal assemblages consistently dominated by red deer and ibex, 
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a trend continued from the earlier Solutrean and Lower Magdalenian deposits (Straus 

& González Morales, 2012).  Of the Magdalenian levels, red deer are the more 

dominant of the two except in levels 14 and 107, in which ibex predominate.  In the 

Upper Magdalenian, it is apparent that the young of both species, along with their 

mothers, are being preferentially targeted (Straus & González Morales 2012, 14).  

This trend is also evident in the hunting of woodland ungulates (wild boar and roe 

deer), which increase in number in the Azilian, although red deer and ibex remain the 

dominant prey (Ibid: 17).     

 

4.4.3 Summary 

El Mirón is, in many ways, the keystone site for our understanding of Pleistocene 

archaeology in the Asón river valley.  Already, despite research not yet being 

completed or fully published, the site has had a significant impact upon research into 

Palaeolithic Cantabria.  Details from the Solutrean are limited but show that Solutrean 

Points and retouched bladelets were used simultaneously, as in the early Solutrean at 

La Riera.  Further work is necessary before more in-depth assessment can be 

conducted, but from the details made available thus far, it seems that changes in the 

presence of bladelets in lithic assemblages appears to have very little relation on 

changes in fauna, which are in turn overshadowed by the prevailing duality of ibex 

and red deer that dominate throughout until the more diverse Mesolithic assemblage. 

 

So far, excavation of the complex stratigraphy at the cave has revealed a series of 

variable occupations throughout the Pleistocene.  Like La Riera, some twenty five 

years earlier, a significant emphasis has been the regional context of the site.  The 

scale of research conducted in the Asón river valley is such that archaeologists have 

been able to begin addressing broader questions through investigating subsistence and 

settlement mobility movements within the region.  El Mirón was most likely utilised 

as part of a complex mobility system, influenced by seasonal trends in red deer 

migration, but as the varied seasonality studies at other sites in the Asón valley have 

shown (Arroyo 2009b, 93), we should be wary of overly simplifying this system.     
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4.5 Northern Spain: A Summary 

 

Summary of the above chapters may be broken down into four distinct points of 

discussion: the hunting equipment, the prey, the environment, and changes in site 

distribution.  Archaeologically speaking, analysis of lithic and osseous implements 

comprise most of the evidence for assessment of hunting equipment, and ungulate 

anlyses account for much of the information on prey species.   

 

4.5.1 Hunting Equipment 

With the exception of rare finds such as triangle pieces, which make a precocious 

appearance in the Initial Magdalenian (Straus 2012, 114), the microlithic assemblages 

of the late Upper Palaeolithic of Cantabria almost are almost entirely comprised of 

bladelet technology.  Of the retouched bladelets, plain backed elements are by the far 

most dominant in the region.  It should be remembered that in essence, all retouched 

bladelets are backed bladelets, and other types that do not conform to the definition of 

a ‗backed bladelet‘ are derivative of this form.  Other types of bladelet are rarely 

found in significant quantities throughout the late Upper Palaeolithic of Cantabria.  

Combined with the widespread belief that unretouched or ―debitage‖ bladelets are 

merely manufacturing blanks, this has meant that backed bladelets receive the 

majority of attention.  While bladelets are not uncommon in Solutrean assemblages, 

they are generally found in much greater quantities in Magdalenian assemblages, so 

much so that they are sometimes considered indicative of the transition between these 

two cultural phases.  Their prominence continued in the Azilian, but they are less well 

represented at Asturian sites (Clark 1983b).   

 

These trends are generalised, and while larger quantities of bladelets are typically 

associated with the post-Solutrean Palaeolithic, they are not abundant in all such 

deposits, as evident in levels at La Riera, El Mirón, and throughout the sequence at El 

Rascaño.  Particular attention should also be given to the backed micro-points that do 

not commonly feature in assemblages until the Magdalenian.  The two main types are 

known as ―microgravettes‖ and ―azilian points‖.  As the name suggests, azilian points 

are common among Azilian assemblages, but are also found in many earlier 

assemblages also.  Usewear investigations have shown that backed bladelets, 
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particularly smaller pieces, and many ―micropoints‖ were used as projectile armatures 

(Keeley 1988; Juan Jose Ibánez Estevez and González Urquijo 1998).  Although it has 

proven difficult to differentiate, morphologically it would seem that regular backed 

bladelets would have served best as laterally hafted cutting insets for spearthrown 

projectiles.  

 

The Solutrean Points, from which the cultural phase takes its name, are far from 

ubiquitous during the period.  Consensus suggests that these points were used as 

armature tips, and that impact damage accounts for the nature and high frequency of 

damage noted in many examples (Straus 2000, 42).  Most were probably used as spear 

tips, though the smaller, lighter and abruptly (rather than invasively) retouched 

shouldered points, more frequently knapped from flint, may also have served as 

arrow-heads (Straus 1992, 104).  The Magdalenian marks the disappearance of these 

points, although their recovery from early levels is not unheard of, with El Mirón and 

arguably La Riera being two such examples.  This period is instead characterised by 

antler sagaies, some of which feature grooves potentially used for the hafting of 

bladelets (Straus, 1992), while some others have barbs carved into them, and still 

others have neither of these features.  It is possible to argue that bladelets and 

harpoons represent the replacement of Solutrean points with cheaper and lighter 

weaponry (Straus 1992, 109; 2000, 42) that were also likely more durable (Pokines 

1998), though the two are not mutually exclusive in Solutrean deposits.   

 

The Azilian, and main subdivisions of the Magdalenian, are distinguished chiefly by 

changes in the cross-section of antler harpoons, along with changes in base 

morphology.  While these trends may hold true at a general level, this rule is highly 

problematic as there are many exceptions, and further still many Magdalenian and 

Azilian sites where such artefacts are simply not present (Straus 2011, 5).  

Furthermore, such implements are difficult to quantify when fragmented.  Finally, 

excavations at El Mirón have yielded evidence of the first atlatl from Magdalenian 

Cantabria (González Morales & Straus, 2008), though it seems unreasonable to rule 

out the probability that this technology was also in use during earlier periods.  
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4.5.2 Prey 

Ungulate fauna were likely hunted for food but also hides and their antlers/horns.  The 

main ungulates characteristic of Cantabrian assemblages are Red Deer (Cervus 

elaphus), Ibex (Capra pyrenaica), Chamois (Rupicapra rupicapra), Wild Cattle 

(Bos/bison – usually indeterminate), Wild Horse (Equus Ferus), Wild Boar (Sus 

scrofa) and Roe Deer (Capreolus capreolus).  Following Leslie Freeman‘s seminal 

paper (1973), which proposed the idea of ‗wild-harvesting‘ of red deer, an idea that 

remains popular today (Straus 2005, 153), most faunal analyses have until recently 

been conducted or supervised by Jesus Altuna, ensuring a degree of consistency. 

 

Most faunal assemblages from the Solutrean and earlier stages of the Magdalenian are 

dominated by red deer and ibex to varying degrees.  In the Holocene, faunal 

assemblages are more diversified, and this shift is presaged at some sites in the 

Azilian and final stages of the Magdalenian, as noted to varying degrees at La Riera, 

El Mirón and La Fragua.  At these three sites, it seems that the emphasis on the 

exploitation of ibex and other montane species is decreased in favour of wild boar and 

roe deer, which are more commonly associated with temperate and forested 

environments (Altuna 1986c; Cuenca-Bescós 2012; Arroyo 2009b).  Despite the 

beginnings of this trend of diversification, red deer (and to a lesser extent) ibex 

regularly remain the dominant species at most Cantabrian sites even in the final stages 

of the Palaeolithic.  Concordant with this trend is an increase in the role of marine 

resources noted at some sites.       

 

Although many faunal assemblages can be described as conforming to the dual 

economy of red deer and ibex, most sites conform to one of three variations of this 

pattern: sites with faunal assemblages specialised in red deer but with appreciable 

quantities of ibex and other species located in open, coastal areas with access to rocky 

terrain (e.g. La Riera), sites with faunal assemblages specialised in red deer but 

located in open terrain away from mountainous areas, and sites with a significant 

presence of montane species located at greater distances from the coast and in areas of 

steep hillside (e.g. El Rascaño) (Arroyo 2009b, 70).  While this model is not 

necessarily incorrect, zooarchaeological analyses of the Magdalenian assemblages and 

those from other sites in the Asón valley has shown that inland sites in the uplands of 
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the valleys contributed to a more complex seasonal round, with evidence of residential 

sites deep inland with red deer as the dominant fauna (El Miron) (Ibid).  

 

As fine mesh-screen recovery systems were implemented, the resolution of micro-

fauna has greatly improved (Pokines 2000).  Some of these species, even if not of 

economic significance, still offer valuable insights as indicators of climate and 

palaeoenvironment, and even patterns of human behaviour (Cuenca-Bescós et al. 

2007; Marín-Arroyo, 2009c).  After analysis from sites such as La Riera revealed this 

potential, micro-fauna have increasingly gained attention with studies completed at 

the Magdalenian site of El Juyo (Pokines, 1998) and El Mirón (Cuenca-Bescós et al. 

2009; 2012).  However, much of the faunal analyses conducted on Cantabrian 

assemblages have proven to be of little use in attempts to correlate climatic shifts due 

to their monotony over time (Altuna 1995).  

 

4.5.3 Environment    

The environment in which prey are hunted is determined by a number of factors, 

including climate, landscape and topography, vegetation and a host of other even less 

archaeologically visible considerations (weather for example).  Reconstruction of the 

palaeoenvironment of the Cantabrian Palaeolithic has been a major focus of research 

over the past forty years.  Most efforts have revolved around assembling records at 

individual sites and correlating evidence of localised change with the larger-scale 

climatic events known to have taken place.  As noted above, unlike many other areas 

of Europe, changes in the palaeoenvironmental record of Cantabria are not as clearly 

reflected in the composition of many faunal assemblages at many sites (Altuna 1995).  

Furthermore, the chrono-cultural framework developed for archaeological deposits 

does not always neatly correlate with changes documented in climate or 

palaeoenvironment either.  Palynological and sedimentological analyses contribute the 

majority of evidence, and sites such as La Riera and El Mirón, with extensive and 

(relatively) continuous, well dated sequences, offer the most insight for the 

construction of regional trends (Straus 1986a; Straus et al. 2001, 629), though 

difficulties with the interpretation of these records can seemingly indicate 

contradictory conditions at contemporary deposits, and require critical knowledge of 

taphonomic processes (Straus 1990).   
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A chief motivation in efforts to reconstruct palaeoenvironment is the desire to 

understand the impact it had on the development of peoples inhabiting Cantabria at 

the time.  Two schools of thought have developed over explanations for change in the 

Palaeolithic of Cantabria, with one citing changes in environment as a catalyst  

(Bailey 1983; Clark 1983a), and others downplaying the effect of the environment in 

favour of internalised change (Arroyo 2009c).  While advocacy of the former has 

continued in some circles, the latter is seemingly more popular, and has also been 

championed (and espoused several times) by Straus (2005).  Broadly speaking, 

following the LGM, the climate ameliorated, but was punctuated by Dryas events of 

increasingly less severe (but nevertheless notable) cold conditions.  Although the 

region undoubtedly experienced significant shifts in ecosystem, climatic change was 

seemingly never severe enough to completely eradicate many species of flora and 

fauna entirely, and likewise conditions did not ameliorate sufficiently to permit 

extensive reforestation until the very terminal Pleistocene.                          

 

4.5.4 Site Distribution 

Assessments of site distribution in the Cantabrian Upper Palaeolithic are problematic 

due to preservation biases against open air sites.  There may have been times, 

particularly during cold periods such as the LGM, when cave shelters did indeed 

account for the majority of sites, but it must be accepted that this preservation bias 

potentially obscures important locations inhabited within the wider landscape.  In 

general, the Magdalenian represents an increase in site number over the preceding 

Solutrean, and the Azilian also marks a continuation of this trend.  However, this 

gradual increase in site density does not compare to the relative explosion of sites 

experienced in the Solutrean, in response to the suitability of Cantabria as a glacial 

refugium.  It is difficult to meaningfully compare site densities between these cultural 

phases though, as they span different time-depths, and have been subjected to varied 

taphonomic processes.  Although the increase in sites recorded in the Magdalenian 

over the Solutrean is only slight, the Magdalenian spanned a slightly shorter time 

period, and is generally believed to have experienced less severe climatic disruption.  

Furthermore, cave sites appear to have endured throughout this period as popular 

habitations, with little apparent variation in site distribution over time until the 

Asturian (Straus, 1992: 130; 206).   
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5 Howieson’s Poort of Southern Africa (Klasies River) 
 

The Howieson‘s Poort is the focus of the next regional case study.  Typically, 

Howieson‘s Poort (HP) lithic industries are characterised by various backed and/or 

truncated pieces (notably crescents and trapezes between 10-60mm in length 

alongside more conventional MSA flake-blades) (Figure 31) (Thackeray 1992, 390).  

As an archaeological industry, it has been identified at several sites across the 

southern African sub-continent with disparate clusters to the east, along the southern 

peninsular and in the west (Figure 32).  The Howieson‘s Poort provides some of the 

earliest evidence from a southerly latitude of early microlithic tools from a relatively 

early age (approx 65-59 kya) (Jacobs and Roberts 2008, 26), some of which were 

utilised for hunting (Pargeter 2007; Wurz and Lombard 2007; Lombard and Pargeter 

2008; Lombard and Haidle 2012).  New dates from Pinnacle Point show even earlier 

microlithic industries predating the HP.  Generally, the Howieson‘s Poort occurs as an 

intercession within the comparatively homogenous Middle Stone Age (MSA).  The 

MSA itself is broken down variously into sub-stages at most sites, usually based on 

associated lithic industries and / or depositional sequencing.  Chronologically, the 

Howieson‘s Poort occurred between MSA II and MSA III. 

 

 

Figure 31: Howieson's Poort Backed crescents (1-5) and trapeze (6-9) segment pieces (Thackeray, 

1992).
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Figure 32: Map of southern Africa showing sites of Klasies River, Sibudu and Diepkloof 

Rockshelter 

 

 
 

Figure 33: Pointed (convergent)  MSA "flake-blades" (Thackeray 1992) 
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Figure 34: Bifacial Still Bay points (Wadley 2007) N.B. Points can vary in form and size being 

much larger in some cases. 

 

The most commonly used format to transcend the homogeneity of the MSA is that of 

Volman‘s division into four stages (in Thackeray 1992, 398; Wurz 2012, 1001), based 

roughly on the scheme devised by Singer and Wymer at Klasies River Mouth (1982, 

43).  Chronologically and stratigraphically, the Howieson‘s Poort occurred between 

MSA II and MSA III.  Although assemblages vary from site to site, the MSA is 

typified by flake and blade industries that include prepared points and cores, and 

usually without any retouch (Figure 33) (Thackeray 1992, 393; Mcbrearty and Brooks 

2000, 456; Wurz 2005).  The Stillbay industry, typified by elongated bifacial points 

(Figure 34) (Wadley 2007, 682), is also worth noting as an earlier MSA interlude 

between 72 and 71 kya (Jacobs and Roberts 2008, 26).  Although it has remained 

more elusive as an archaeological phenomenon than the Howieson‘s Poort 

(Henshilwood and Dubreuil 2011, 369), the Stillbay has become a focus of interest in 

much the same way, being a notable temporary break from otherwise longstanding 

technological traditions.  Curiously, it is absent from most Howison‘s Poort yielding 

sites, including Klasies River Mouth (McCall and Thomas 2012, 36).              

 

5.1 Klasies River Mouth 

Klasies River Mouth, interchangeably referred to as simply Klasies River from herein 

(at the behest of Wurz (2000)), and regularly abbreviated to KRM or KR, is the ideal 

site to serve as the keystone for this case study.  It was at Klasies that the currently 

accepted relationship between the Howieson‘s Poort and other MSA phases was first 

established, in what is still one of the deepest stratigraphic sequences (20m) from a 

site of such antiquity in the area, spanning between approximately 110 – 60 kya 
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(Wurz 2005, 419–420).  The Howieson‘s Poort portion of the sequence is the most 

extensively dated of its kind (Lombard 2006c, 36), and has served almost exclusively 

as the primary source of reference for the industry until relatively recently (Ibid 2009, 

4).  Finally, and perhaps most importantly, Klasies gained significant attention for 

providing the archaeological context for what were thought to be the earliest known 

anatomically modern human remains at the time of their discovery (Thackeray 1992, 

385).   

 

Intense interest has continued, largely due to the role in which Klasies and other 

approximately contemporary sites play in informing us about the development of 

cognitively modern behaviour.  The view that humans of this period were indeed 

cognitively modern is one that, while not wholly accepted, has increasingly gained 

consensus in recent years (Deacon 1989; Wurz 1999; Wurz 2008; Mcbrearty and 

Brooks 2000; Wadley 2001; Wadley, Hodgskiss, and Grant 2009; Minichillo 2006; 

Marean et al. 2007; d‘ Errico et al. 2008; Jacobs et al. 2008; Jerardino and Marean 

2010; Henshilwood and Dubreuil 2011; Lombard and Haidle 2012).  Much of this 

thinking stems originally from the parallels traditionally drawn between the 

Howieson‘s Poort and the microlithic technology associated with Upper Palaeolithic 

and Mesolithic modern humans e.g. by Mcbrearty and Brooks (2000, 500–501).  

Klasies retains its position at the fore of discourse, remaining one of the best-known 

MSA/HP sites to this day.  The impact it has had on shaping the archaeology of the 

period is reflected by the publication of works such as Pyne‘s ―The Life History of 

Klasies River Mouth: A Case Study of Archaeology and the History and Philosophy of 

Science‖ (2008). 

 

5.1.1 Location Of The Site 

Klasies River actually comprises five individual caves Figure 35, all located within 

3km to the east of the actual river mouth (34º06‘ S, 24º24‘ E) along the Tsitsikamma 

coast in the Humansdorp district of the Eastern Cape Province, South Africa (Singer 

and Wymer 1982, 1).  The five caves actually constitute three different sites: caves 1 

and 2 (the main site), caves 3 and 4 (not considered in Singer and Wymer‘s 

investigations), and cave 5.  The main site is partly open air and presents a series of 

well stratified deposits against a quartzite cliff, filling the caves and niches labelled 
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Cave 1, 1A (or rock-shelter 1A) cave 1B, 1C and cave 2 (Villa et al. 2010, 630).  Cave 

1C is not visible in Figure 36, which shows a photograph of the main site.  Caves 1, 

1A and cave 2 can all be related to one another through stratigraphy (Figure 37 and 

Figure 38).         

 

 

 

Figure 35: Map showing the three site clusters of Klasies River (Villa et al. 2010) 

 

 

 

 

Figure 36: Photograph of Klasies River Main Site showing relation of caves 1 and 2 and 

rockshelter 1A (Thackeray 1992). 
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The base of the site rests 6-8m above sea level, at the foot of cliffs that rise to between 

60 and 100m, atop of which is a coastal plain that extends some 10km in width before 

a mountain range (average elevation of 600m) (Avery 1987, 406).  The site is located 

towards the eastern limit of the fynbos biome, and vegetation comprises a mixture of 

Dune Fynbos (mid-dense to closed shrubland) and Kaffrarian Thicket (closed 

shrubland and low forest) (Ibid 1987).  Howieson‘s Poort deposits were located in 

rock-shelter 1A and cave 2, suggesting an approximately contemporary age for the 

two.  Rockshelter 1A is the focus of this investigation, as the sequence provides 

Howieson‘s Poort deposits sandwiched within bracketing MSA phases.      

 

5.1.2 History Of Work At The Site 

Although Howieson‘s Poort industries had been documented since their discovery in 

the 1920‘s at their namesake site (Goodwin and Van Riet Lowe, 1929), Klasies was 

one of the first HP yielding sites to be excavated and recorded to relatively modern 

quality standards.  Few such excavations had been undertaken elsewhere in the Cape 

Province, with a few exceptions to the North, none of which had been extensively 

published (Singer and Wymer 1982, 5).  The site was excavated between 1967 and 

1968 by a team of archaeologists and labourers led by Ronald Singer and John 

Wymer.  Though the slope dynamics involved in site formation processes posed 

complications, the excavators were at least satisfied that there were no signs of 

previous human disturbance (1982, 7).  Their final site report was notable for 

including supplementary palaeoenvironmental studies based from the faunal (Klein 

1976) and sedimentological (Butzer 1978) analyses of the site, the latter in particular a 

relatively recent development for the field at the time.  The resultant publication was 

the source of much discussion, perhaps most notably from Lewis Binford who 

contested several of the excavator‘s conclusions regarding the stratigraphy of the site 

and significance of the faunal deposits recovered among other issues (Binford 1984).   

 

With time, many of Binford‘s objections regarding the site have been disproved 

(Deacon 1985; Singer and Wymer 1986; Deacon and Geleijnse 1988; Deacon 1989; 

Milo 1998).  Excavation at the site was renewed under the auspices of the late Hilary 

Deacon in 1984.  Deacon‘s meticulous excavations were intended to improve 

understanding of the site stratigraphy and formation processes, gain a tighter 
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resolution on the dating and palaeoenvironmental history of the site, and to ensure the 

future preservation of the site by stabilising the slope and sections (Villa et al. 2010, 

630).  Although work from this period has been published, there has been no complete 

synthesis or unified report since Singer and Wymer‘s, and the high-resolution focus of 

the investigation has ensured minimal intrusive removal during excavation.  

Consequently, Singer and Wymer‘s study remains the main source of documented 

archaeological material, including the lithics collected from Howieson‘s Poort 

deposits (Wurz 2000, 16).  The various revisions made to the stratigraphy throughout 

the history of work at the site make clarification of the order cited for this study 

necessary.     

 

5.1.3 Stratigraphy 

The stratigraphy of the Klasies River Mouth site has been subjected to several major 

revisions since excavations began in 1967.  The most detailed of these is the most 

recent reconfiguration by Wurz (2000; 2012).  Although it is possible to identify 

corresponding cultural divisions (Figure 38) according to changes in lithic industry, at 

any higher resolution the new depositional sequence is incompatible with the schema 

used by Singer and Wymer (1982).  The closest (partial) approximation of Wurz‘s 

new schema with Singer & Wymer‘s original sequence is presented by Villa et al. 

(2010) in (Figure 39).  Despite Wurz‘s revision, it is still common to find Singer and 

Wymer‘s sequence referred to, for example in Feathers‘ luminescence dating project 

(2002), as material is continually reanalysed, particularly for dating, demanding 

reference to the cruder original order.  The relatively small Howieson‘s Poort 

assemblage from Deacon‘s subsequent excavations (upon which Wurz‘s revised 

stratigraphy is based) (Wurz 2000, 16–17), and the lack of a complete report from 

these investigations at present made it more beneficial to consult the more complete 

analysis of Singer and Wymer‘s original investigations, and, accordingly, the 

stratigraphic sequence they devised. 
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Figure 37: General Stratigraphic relation of Klasies River Main Site 1A, 1B, 1 and 2 (Deacon and Geleijnse 1988) 
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Figure 38: Grouping of levels at Klasies River main site. Comparing Deacon and Singer & 

Wymer's excavations 

 

 

 
 

Figure 39: Cross section of Singer and Wymer's stratigraphy compared with Deacon's (Villa et 

al. 2010) 
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Although Klasies River Mouth main site comprises 5 separate sites, the relationship 

of caves 1, 2 and shelter 1A is such that through contiguous excavation profiles, it has 

proved possible to construct a relatively continuous general section across all three 

sites (Figure 39).  Although the original interpretation of the stratigraphy and internal 

chronology of the sites has been challenged (Binford 1984; Hendey and Volman 

1986), these challenges have been rejected by both the original and subsequent 

investigators of the site (Singer and Wymer 1986; Deacon and Geleijnse 1988).  The 

Howieson‘s Poort assemblages, sandwiched between MSA III (above) and MSA II 

deposits (below) are part of an apparently unbroken sequence from KR 1A.  A series 

of 5 standalone Howieson‘s Poort levels were also recovered from Cave 2, which the 

site excavators argue would have offered a habitation space approximately 

contemporary to the corresponding deposits in KRM 1A (1982, 2).  They cannot be 

confidently interdigitated with the deposits identified in shelter 1A though, and have 

clearly been subjected to a different series of taphonomic processes, with many of the 

remains being cemented to the cave wall or in breccia deposits (Ibid 1982, 23–24). 

 

It was decided to focus on material from KRM 1A, as this provided a relatively clear 

and uncontested depositional sequence with evidence of site use spanning before, 

during, and after the Howieson‘s Poort.  The levels in this sequence, from top to 

bottom, span MSA III (levels 1 – 9), Howieson‘s Poort (10-21), MSA II (22 – 36) and 

MSA I (37 – 40).  For the purposes of this investigation, the extent of the sequence 

considered terminates at level 33.  Excavation of levels 33-36 proved problematic 

(Singer and Wymer 1982, 22), but when removed (along with antecedent MSA I 

deposits), a sizeable portion of pre-Howieson‘s Poort sequence material remains 

available for reference.  Excavation of the site took place over 14 months between 

1967 and 1968, with deposits pertaining to either the ―Initial Cutting‖ of the rock 

shelter in 1967, or the main excavation in 1968, which expanded the investigation 

area (Figure 40).  Figure 41 shows a magnified portion of the plan in Figure 40 

focussing upon the study area of KR1A.  Sections detailing these excavations (Figure 

42, Figure 43 and Figure 44) are given in reference to Figure 41.  Between the 

completion of the 1967 Initial Cutting and the 1968 excavation, a revision was made 

to the stratigraphic sequence of the site, dividing the three initially identified 

Howieson‘s Poort levels further into eleven separate units.  This unfortunately 

rendered it impossible to precisely integrate material from the two excavations from 
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this portion of the sequence, unlike the MSA deposits where the two were 

amalgamated without such complication. 

 

 

 

Figure 40: Plan of Klasies River Main Site showing different excavation periods for cross 

reference of different interrelating sections (Wurz & Lombard 2007) 

 

Hilary Deacon noted that material excavated during Singer and Wymer‘s 

investigation was removed in gross stratigraphic units with minimal attention to 

contextual detail (Deacon 1985, 59). Singer and Wymer make no pretence that their 

sequence of the Howieson‘s Poort deposits represents any actual discrete occupation 

phases, conceding that difficulties in delineating such boundaries forced arbitrary 

divisions to be made on the basis of particularly visible laminations at 15-20cm 

intervals (1982, 21).  Wurz‘s reconfiguration of the site stratigraphy suggests that 

whole sequence of the rock shelter, and not just the Howieson‘s Poort deposits, 
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probably comprises many more occupation stages than were initially recorded (Wurz 

2000).  Deposits attributed to the Howieson‘s Poort were done so on the basis of large 

numbers of HP characteristic crescents and related forms recovered.   

 

 

 

Figure 41: Close up plan of Singer & Wymer’s “Initial Cutting” is highlighted in yellow. The 

locations of sections are also highlighted: figure 13 “top cutting” (blue), figure 14 “middle 

cutting” (green), and figure 15 “bottom cutting” (red). Original image from 

 

The broader boundaries by which the KRM 1A sequence was originally divided has 

withstood the various revisions that have been made: the Upper Member referring to 

levels 1 – 21 (MSA III and Howieson‘s Poort), Rockfall Member (RF) referring to 

level 22, a natural deposit that segregates the Howieson‘s Poort deposits from the 

earlier MSA II levels, which are included in the upper Shell and Sand (SAS) Member, 

referring to levels 23 – 40 (Deacon and Geleijnse 1988, 7–11).             
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Figure 42: Section facing NW through Top Cutting of KR1A (see figure 12). MSA III deposits 1-9 

(mixed), Howieson’s Poort deposits 10-21, and MSA II deposit 22 (Singer & Wymer 1982) 

 

 

 

 

 
 
Figure 43: Section facing NW through Middle Cutting (see figure 12). MSA II deposits 22-25 

(Singer & Wymer 1982) 
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Figure 44: Section facing NW through Bottom Cutting of KR1A (see figure 12). MSA II deposits 

26-34 (Singer & Wymer 1982) 

 

 

 

Figure 45: Drag Folding in SAS and RF members of the wall in the Initial Cutting of KR1A 

(Deacon & Geleijnse 1988). 

 



148 

 

The MSA II deposits preceding the Howieson‘s Poort levels are contorted and drag 

folded as a result of slumping (Deacon and Geleijnse 1988, 9) (Figure 45), while the 

cutting of the Upper Member of the sequence, containing Howieson‘s Poort and MSA 

III levels that cap the MSA II slope, have been affected by the partial collapse of a 

sediment column (Ibid 1988, 10).  The MSA III deposits are about 90 cm thick, the 

Howieson‘s Poort levels are 100 cm thick, and the MSA II deposits, including 

Rockfall Member level 22, are about 330 cm thick (Butzer 1978, 145).  Level 22 itself 

is a natural accumulation around 50 cm thick, and represents either a period of 

accelerated deposition or particularly low occupation intensity (Deacon and Geleijnse 

1988, 9).  Other MSA II deposits are sandy, and although Deacon and Geleijnse argue 

they represent periods of low occupation density (Ibid 1988, 9), they have mostly 

yielded relatively large lithic assemblages (Singer and Wymer 1982, 21–22).  The 

Howieson‘s Poort deposits comprise a series of laminations of ash, black 

carbonaceous soil and silty sand, becoming sandier towards the shelter wall, with a 

distinct depositional break between level 21 and level 22 (Deacon and Geleijnse 1988, 

10).  Even with the aid of Singer and Wymer‘s section drawings (Figure 42, Figure 43 

& Figure 44), it is difficult to clearly delineate these units; they are suggested as 

indicative of intense occupation (Singer and Wymer 1982, 26).  The MSA III deposits 

are mostly sandy with darker laminations throughout and also include admixed sandy 

scree in some levels, probably the result of the severe erosion these deposits have 

endured at the top of the sequence (Ibid 1982, 21; 27).  The top of the sequence is 

capped by scree containing micromammalian remains but no evidence of 

archaeological activity (Deacon and Geleijnse 1988, 10). 
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5.2 Recounting the Lithics 

 

In order that the lithics from each level could be represented proportionally to the rest 

of their assemblage, it was necessary to calculate the total number for each level, 

figures for which were not provided in the original site report.  While collating the 

appropriate data for these calculations, several inconsistencies in the recorded lithic 

counts were encountered.  So that cross reference comparisons between deposits and 

cultural units at the site could be made, as well as further comparisons with other 

sites, it was necessary to recount the data, identify these inconsistencies and, where 

possible, how they arose.  Some were due to the lack of clarity as to where data 

recorded during the excavation of the Initial Cutting had been amalgamated with that 

from the 1968 excavation, while others were likely the result of human error in the 

counting, recording or writing process.  This would likely have been compounded by 

the fact that there were slight changes to the field team between seasons, which also 

included a team of general labourers partaking in the excavation, and the fact that it 

took well over ten years for the final publication of the report (Singer and Wymer 

1982, 7).  While it has previously been acknowledged that material was excavated in 

gross stratigraphic units with hasty regard for contextual detail (Deacon 1985, 59), 

there has been no previous review of the integrity of the original data collection to my 

knowledge. 

 

The data presented in the Howieson‘s Poort chapter (chapter 6 of Singer & Wymer‘s 

report) is noted as excluding material recovered from the Initial Cutting due to a 

revision in the stratigraphic sequence rendering the data incompatible (Singer & 

Wymer, 1982: 87).  Although it is not made readily explicit, the data presented on the 

MSA I-IV industries (chapter 5 of Singer and Wymer‘s report), does, for the most 

part, incorporate material from the Initial Cutting (See Singer and Wymer (1982, 111) 

for confirmation of this).  In both chapters, the tools recovered from different levels in 

the KR main site sequence are detailed according to type, although no cumulative 

total for each level is given.  A separate table included in an overview chapter (Ibid, 

111: Table 7.2) details finds from levels excavated in the Initial Cutting, but not in the 

same level of detail as those from the 1968 excavation.  A further table, (Ibid, 110: 

7.1) presents the total number of tool types recovered from the different areas of the 



150 

 

main site as they pertain to different cultural orders.  Throughout these three chapters, 

there are various instances where the numbers recorded do not tally with one another.  

To assess the extent of this problem, and to make the numbers workable for my own 

investigation, the lithics data was recounted and compared to the totals presented in 

the monograph.   

 

The recounted lithic totals are presented in (Appendices 5-11) so that the corrections 

asserted below may be corroborated.  Without access to the assemblages themselves, 

the recount is based on the data given in chapters 5 and 6 of the monograph, as these 

were presented in the most detail.  Data for material from the Initial Cutting comes 

from chapter 7, which provides the most detailed information for these excavations.  

The main errors identified in the original report are described in brief below.  For the 

purposes of this investigation, only the lithics from KRM 1A have been recounted, 

with the rest of the site left un-reviewed.  For further information regarding the tool-

types discussed in this section, reference should be made to the original site report 

(Singer and Wymer 1982) or, for pieces classifiable as microlithic hunting armatures, 

the lithics analysis section below.  

 

5.2.1 MSA III 

 A note for Singer & Wymer‘s table 7.2 suggests that Initial Cutting 

assemblage totals were included for their tallies of MSA II pieces in an earlier 

chapter (chapter 5).  In fact, they were also combined for most of the MSA III 

assemblages, which are also presented in chapter 5 of their report. 

 

 The number of lithics recorded in Singer and Wymer‘s chapter 5 accords with 

the combined totals of the 1968 excavation and Initial Cutting excavation as 

given in their table 7.1, except for cores and core preparation and rejuvenation 

flakes, which, without explanation, exclude finds from the Initial Cutting.  

Appendix 5 shows these categories combined, as with other lithics from these 

assemblages. 

 

 According to Singer and Wymer‘s overall summary (Singer and Wymer 1982, 

table 7.1), excavation of the Initial Cutting yielded 391 flake-blades, when 
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there are only 196 accounted for in their detailing of the Initial Cutting 

assemblages (Singer and Wymer 1982, table 7.2).  This in turn affects the 

number of flake-blades estimated from the 1968 excavation.  In Singer & 

Wymer‘s table 7.1, 186 flake-blades are recorded.  If the 196 recorded in their 

table 7.2 are subtracted from the total of 577 given in the sum total presented 

in their chapter 5, then there are in fact 381 flake-blades from the 1968 

assemblage (Appendix 5).   

 

 The number of pointed flake-blades from the Initial Cutting recorded in Singer 

& Wymer‘s table 7.1 is 13, when there are 16 recorded in their table 7.2. 

 

 The number of worked points from the Initial Cutting is 17 rather than 16 as 

recorded in Singer & Wymer‘s table 7.2. 

 

 Although it is known that 8 crescents were recovered during the 1968 

excavation, their provenance and distribution throughout the sequence is not 

clearly stated Appendix 5. 

 

5.2.2 Howieson’s Poort   

 The total number of broken segments recovered from the 1968 excavation is 

given as 5880 when it is in fact 6080 (Appendix 6). 

 

 The number of cores made from local material is recorded as 363 when it is 

actually 361 and the number of exotic cores is recorded as 524 when it is in 

fact 514 (Appendix 6). 

 

 The number of flake-blades made from fine silcrete is reported as 889 when it 

is in fact 887, this brings the total of exotic flake blades from 1246 down to 

1244.  In (Appendix 6), this difference of 2 is reflected in the greater category 

of ―Non-local flakes including flake-blades and segments‖, which conforms to 

the format for tabulating other MSA assemblages.  
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 Seven worked points are recorded as recovered from Howieson‘s Poort layers 

excavated from the Initial Cutting (Singer & Wymer 1982, table 7.2) whereas 

none are noted in Singer & Wymer‘s table 7.1.    

 

 Although the total raw material count for crescents and allied forms in level 17 

is the same as the recorded lithics count, an extra ten pieces are have been 

erroneously added somewhere in the exotic materials.  Although purely 

speculative, it seems most likely that the 78 fine silcrete pieces should in fact 

number 68, as there is a greater likelihood of mistyping this number than the 

22 pieces of indurated shale or 11 pieces of quartz.  This value is corrected in 

(Appendix 7). 

 

 There are 11 completely blunted crescents recorded from level 15 in Singer & 

Wymer‘s original tabulation of crescents and allied forms.  This value has 

been reduced to 1 in order to match the totals recorded for the level, sub-type, 

and the number of pieces recorded in the raw material count (Appendix 7). 

 

 The total of 43 worked flakes recorded from the Initial Cutting (table 7.1) does 

not include worked points.  Although these points are included as a sub-

category under worked flakes from the Initial Cutting (Singer and Wymer 

1982, table 7.2), they are afforded a separate designation in their discussion of 

the MSA industries. The six worked points recorded in table 7.1 are included 

under the worked flakes in earlier discussion (Ibid 1982, 99-105).   

 

5.2.3 MSA II 

For MSA II deposits, the numbers for levels 22-36 were reviewed and corrected 

where necessary (Appendix 8) before being recalculated without levels 34-36 

(Appendix 9) in accordance to the stratigraphic configuration explained earlier.   

 

 As with the MSA III data, the total number of cores and core preparation and 

rejuvenation flakes given in chapter 5 excludes those recovered from the 

Initial Cutting, unlike the totals given for all other lithic types from this phase.  
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(Appendix 8) shows the two collections combined as with other tool types 

from MSA II deposits.  

 

 The number of cores recorded in MSA II deposits from the 1968 excavations 

is 295, with a further 150 coming from the Initial Cutting (Singer & Wymer 

1982, table 7.1).  The 150 cores do not include those made from exotic 

materials, with the total rising to 163 if this is taken into consideration 

(Appendix 10).  Furthermore, the 295 recorded from the 1968 excavations are 

in fact 371, bringing the combined total to 534 (Appendix 8).    

 

 The number of flakes recorded is 25076 (Appendix 8) rather than 25561 as 

recorded in Singer and Wymer‘s table 5.10. 

 

 The number of flakes recovered from the Initial Cutting is also recorded 

incorrectly, given as 12708 when the actual total is 12774 (Appendix 8). 

 

 Of ten MSA II assemblages from the Initial Cutting, six levels (levels 22, 23-

24, 25, 27, 28-29 and 34) are totalled incorrectly.     

 

 The total number of cores, worked flakes and crescents from the Initial Cutting 

as recorded in Singer and Wymer‘s table 7.1 excludes pieces made from exotic 

materials, unlike totals recorded for MSA III and Howieson‘s Poort 

assemblages.   

 

 1057 MSA II flake-blades from the Initial Cutting were recorded in Singer and 

Wymer‘s table 7.1, when there are in fact 1152 recorded in their table 7.2. and 

given in Appendix 8. 

 

 The flake-blade data recorded in Singer and Wymer‘s chapter 5 curiously only 

includes Initial Cutting material from levels 23-24 and 26, but the numbers 

given for levels 23-24 is less than the number of flake-blades from the Initial 

Cutting alone (Singer & Wymer 1982, table 7.2) without the 1968 material 

added.     
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 The above is also seemingly true for pointed flake-blades from MSA II, 

however, no flake-blades were noted in level 26 from Singer & Wymer‘s 

chapter 5, but 29 were noted in their table 7.2 from the Initial Cutting. 

 

 Singer & Wymer‘s table 7.1 in chapter 5 records 68 worked flakes (excluding 

worked points) from the Initial Cutting when there are in fact 69.  It also has 

only 6 crescents recorded when there are actually 8.  Presumably the total 

given in the table excludes the two quartz examples (Appendix table 10).  

 

A number of the problems detailed above can be rectified through reorganising some 

of the methods by which the assemblages have been classified to be more consistent 

with one another.  Others come from errors in tabulation or calculation which can be 

re-tallied.  The remainder of the inconsistencies identified have proved otherwise 

unsolvable.    

 

5.2.4 Refining the Data 

After taking the errors detailed above into account, it was possible to refine some of 

the data, which is presented and explained in this section and with accompanying 

Appendices 5-11.  Access to Singer & Wymer‘s original report facilitates easier cross-

reference.   

 

It is impossible to accurately combine Howieson‘s Poort assemblages excavated from 

the Initial Cutting with those from the 1968 excavation because of the incompatible 

stratigraphic sequences used in recording.  Conversely, it is difficult to confidently 

distil the 1968 and Initial Cutting components of some MSA lithics without losing 

finer detail such as size gradation, information for which is generally unavailable for 

pieces from the Initial Cutting.  The raw data (given per level) in chapters 5 and 6 of 

Singer and Wymer‘s report has been checked, re-tallied internally along with material 

recovered from the Initial Cutting (Appendix 10) with summary tables provided for 

each cultural unit (Appendices 5, 6 & 8).  These summary tables show the fully 

revised lithics data for the site, and are presented in a standardised fashion to facilitate 

easier comparison.   
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For MSA II and III assemblages, the quantity of lithics recovered from the 1968 

excavation is deduced from subtracting the revised total of Initial Cutting lithics from 

the revised combined totals.  As well as this data, the figures given in Singer & 

Wymer‘s original summary tables (1982, 110–111: Tables 7.1 & 7.2) are also 

provided for comparison (Appendices 12 and 13).  Some numbers in Appendices 5, 6 

& 8 are calculated from these tables but not explicitly given in the original 

presentation.  Not all of the numbers given from Singer & Wymer‘s report are 

consistent, and this serves to reflect the inconsistencies within the original work.  For 

example, none of the cultural unit totals for the Initial Cutting derived from table 7.2 

matches the equivalent values given in table 7.1, and consequently the combined 

totals of these also do not support those given in table 7.1, as is shown in Appendix 

10.     

 

For the summary Appendices 5, 6 & 8 broken blade segments are collapsed into one 

category, as are worked flakes.  Worked points are a category distinct from worked 

flakes, whereas they were originally amalgamated under worked flakes in Singer and 

Wymer‘s Howieson‘s Poort chapter (1982, 87–106).  In Singer and Wymer‘s 

tabulation of MSA II flake-blades, they note that only the undifferentiated levels 23-

24 and level 26 included Initial Cutting material, although the reason for this is not 

clear.  As there are 25 flake-blades recorded from level 26 of the Initial Cutting, there 

should be 8 from the 1968 deposit (Appendix 8).  For levels 23-24, there were 361 

flake-blades from the Initial Cutting (Appendix 8), but only 346 accounted for in 

total.  Flake-blades from the Initial Cutting were added to this data to present a format 

comparable with totals for other tools from the assemblage, with undifferentiated 

levels 23-24 left at 346.   

 

As with the flake-blades, pointed flake-blades also required the addition of Initial 

Cutting material in order that they are made consistent with the tabulation of other 

tool categories.  An ambiguously worded footnote from Singer & Wymer‘s original 

tabulation suggested that they were presented similarly to their corresponding flake-

blade assemblages (Singer and Wymer 1982, 61), and this was confirmed by the large 

number of Initial Cutting values that exceeded those originally presented for pointed 

flake-blades in Singer & Wymer‘s chapter 5.  The inability to accurately separate the 

Initial Cutting and 1968 excavation material in these levels (23-24 and 26) led to their 
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exclusion from the diagram (Appendix 14).  It was also necessary to add Initial 

Cutting material to the counts of MSA II and III cores and core preparation and 

rejuvenation flakes, as totals for these were, curiously, also recorded from just the 

1968 material (Singer and Wymer 1982, 47–52).     

 

There are several other instances where the number of Initial Cutting tools exceeds the 

combined count for the Initial Cutting and 1968 excavations, particularly in the MSA 

III deposits, where it is sufficiently notable to unbalance the cumulative level totals.  

After reviewing the cases in which such anomalies occur, it seems most likely that 

some of the material designated to the amalgamated units recorded from the Initial 

Cutting excavation have been reallocated to individual levels at some point during the 

post-excavation process, without the records for the Initial Cutting being updated.  

Instances where this has occurred are highlighted in red in the table, and the number 

for the combined total has been left as recorded in Singer & Wymer‘s chapter 5 

(1982, 43–86) following their reallocation of some artefacts.  This scenario would 

also explain why some of the Initial Cutting totals as recorded in Singer & Wymer‘s 

table 7.1 do not match with those recorded in table 7.2 (1982, 110–111).     

 

Finally, it should be noted that unlike the 1968 excavation HP assemblages, Singer & 

Wymer deemed it unnecessary to discern exotic material types for flake-blades and 

segments from MSA deposits.  This disparity in the recording of different 

technological industries is relatively minor as exotic flakes, even when amalgamated 

with exotic flake-blades comprise such a small portion of MSA assemblages (318 

from 1968 excavations of MSA II) compared with those of the Howieson‘s Poort 

(27368) (Appendix 11).  Although not all flakes can be regarded as waste products 

(Singer and Wymer 1982, 85; 95), they (both exotic and local quartzite flakes) are 

excluded from the assemblage totals used for calculating percentage portions of 

different tool types in the diagram (Appendix 14) as they account for such large 

portions of the assemblages, and this also provides a format more akin (although not 

identical) to the presentation of lithics data from La Riera, the central site for the pilot 

study in Cantabrian Spain.  The inability to distinguish exotic flake-blades from 

exotic flakes as a separate category among MSA assemblages means this very minor 

discrepancy between the MSA and HP is reflected in the representation of flake-blade 

data in the diagram (Appendix 14).                             
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Although there is a chance that some errors and inconsistencies have not been 

identified, or are undetectable, the revisions made here to the dataset for KR 1A 

provide a more internally consistent account of the assemblages.  Appendices 5, 6 and 

10 summarise the revised lithic totals per tool-type and per level for the portion of the 

KR 1A assemblage which was used for this investigation (levels 1-33). 
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5.3 The Klasies River Mouth Diagram Explained 

 

As with the master-diagram for the La Riera sequence, the aim of this chart is to 

compile the most pertinent aspects of data for microlithic hunting practices from the 

site in an approximately chronologically synchronous format.  With the appropriated 

stratigraphy justified along with revised lithic counts, the data was then used to 

construct an approximate visual chronology of the site.  The details specific to the 

construction and reading of the diagram are discussed in the following section.   

 

5.3.1 The Sequence 

The diagram surmises information from levels 1-33 of KR rockshelter 1A.  Level 1 

represents the top of the sequence with the youngest anthropic deposit, and level 33 is 

used to represent the base of the sequence, as the excavation of levels 34-36 was 

markedly hampered by instability and running water through the sequence (Singer and 

Wymer 1982, 22).  The extent of the sequence delineated is sufficient to assess the 

significance of the Howieson‘s Poort microliths within the context of the broader 

history of the site, although the original excavators asserted that the differences 

between MSA and HP deposits were so readily apparent that assessment of internal 

variation would perhaps be a more fruitful endeavour (Ibid 1982, 112).  

 

In some cases, levels were amalgamated and the material therein undifferentiated.  In 

the case of KR 1A, these levels likely reflect the original stratigraphic scheme used in 

the excavation of the Initial Cutting, although some of this material seems to have 

been subsequently reassigned to individual levels.  Following the revisions I have 

made to the assemblage counts, it is possible in most cases to distil the 1968 material 

from that of the Initial Cutting, as was done originally with the Howieson‘s Poort 

assemblages.  Unfortunately, it is not possible to adjust finer details of the 

assemblages, such as the size gradation of the artefacts.  In the case of flake-blades 

and pointed-flake blades, the assemblages presented with gradation of size comprise, 

for the most part, material exclusively from the 1968 excavation.  The two notable 

exceptions to this are level 26 and the undifferentiated levels 23-24 which include 

material from the Initial Cutting.  Consequently, these two units have been removed 

from consideration in the diagram.   
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The other undifferentiated assemblages from MSA II material are levels 28-29 and 

32-33, which are also excluded, as out of the tools considered in the diagram 

(Appendix 14), only middle segments were assigned to these units.  Conversely, 

flake-blades and pointed flake-blades were represented for amalgamated MSA III 

deposits (1-3; 7-9), and are presented as combined totals of 1968 and Initial Cutting 

material.  Their inclusion is why MSA III levels 1-3 and 7-9 were included in the 

diagram.  The amalgamated levels 7-9 lithics are included as well as individually 

recognised deposits for levels 7-9 in the sequence.  The collapsing of levels 1-3 is 

different as these levels are not marked as undifferentiated.  Although details of the 

individual assemblages exist for the Initial Cutting, the small size of assemblages 

from these levels was probably the reason for their overall conflation into one 

combined unit (Singer and Wymer 1982, chap. 5).  In the diagram, the four cores 

recorded in level 3 (Appendix 5) are also incorporated within this unit.    

 

5.3.2 Chrono-Stratigraphy and Dating 

The Chrono-stratigraphic divisions in the diagram reflect the division of lithic 

industries as recorded by the original excavators (Singer and Wymer 1982).  The 

dates provided come from relatively recent re-assessments of the sequence, and are 

separated according to the methods used: Uranium Series (Vogel 2001), TL (Tribolo 

et al. 2005), OSL (Jacobs et al. 2008) and Luminescence (Feathers 2002).  The 

original dates acquired for the site (Singer and Wymer 1982, 187–199) have been 

abandoned in favour of these revisions.  Klasies River boasts the most extensively 

dated Howieson‘s Poort sequence (Lombard 2006c, 36), even when dates acquired for 

Cave 2 are excluded from consideration; the unprecedented geographic scale of the 

OSL dating programme led by Jacobs et al. (2008) demonstrates the extent to which 

the Howieson‘s Poort in general has been the focus of attention.   

 

With the exception of MSA III level 9 and MSA II level 22, targeted mostly as 

bracketing deposits for the Howieson‘s Poort, dates from the MSA deposits at Klasies 

are comparatively lacking.  The MSA III deposits are perhaps difficult to reliably date 

with the amount of disturbance noted among the sediments, but dates for the MSA II 

sequence of KRM 1A comprise of a handful of Uranium series determinations and a 
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single ESR date (Wurz 2012, 1003).  One of the uranium series dates, from carbonate 

crust from level 14, reliably conforms within the range of dates acquired using other 

methods to assert the approximate age of the Howieson‘s Poort deposits (Tribolo et al. 

2005, 498), but only one other date was derived from carbonate crust (level 30), with 

other Uranium series dates being determined from shell and stalagmitic material 

(Vogel 2001).  A third Uranium series date of 28kya from final MSA II level 22 using 

shell can be rejected as too young (Wurz 2002, 1003).  Different dating methods 

operate at varying levels of precision, and the geochemical conditions and 

preservation of datable materials is not uniform throughout the site (Wurz 2012, 

1002).  Recently, doubt has been cast on the ages provided by Feathers‘ TL dates 

(Jacobs and Roberts 2008, 25).  It should also be noted that a date acquired from 

amino acid dating has been rejected due to problems with the methodology (Jacobs 

and Roberts 2008, 14), although a single ESR date of 52 ± 4 kya from near the base of 

the Howieson‘s Poort deposits (not included in the diagram) is within the range of TL 

dates acquired by Tribolo (Tribolo et al. 2005).          

 

5.3.3 OIS Correlation    

The sequence at KRM 1A was not deposited at a constant rate over a continuous 

period of time.  Consequently, any approximation to the OIS chronology can only be 

relative to specific periods of time represented at the site.  The relationship between 

the site history and OIS sequence is based on the changing interpretation of how the 

dates recorded from the sequence, and inferences regarding variation in environmental 

conditions, match with reference material for the chronology of the Marine Oxygen 

Isotope Stages.  Attempts to consolidate various correlations are usually then made 

through seeking to identify similar matches made at other approximately 

contemporaneous sites.  The lack of certainty surrounding such a unanimously agreed 

upon correlation, means that the representation provided in the diagram serves only as 

a loose estimation following more recent appraisals (Tribolo et al. 2005; Jacobs and 

Roberts 2008).               

 

5.3.4 Lithics 

Several analyses have been conducted on the lithic assemblages from KR1A, 

including both those from the original excavations (Singer and Wymer 1982), and 
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from Deacon‘s excavations (Thackeray and Kelly 1988; Wurz 2000; Villa et al. 

2010).  Of particular note is the recent study by Villa et al. focussing on the 

Howieson‘s Poort and MSA III lithics, and the integration their findings with Singer 

& Wymer‘s research, although it is perhaps curious that there is no mention in this 

paper of Thackeray and Kelly‘s assessment of antecedent assemblages from Deacon‘s 

earlier excavations.  The implications of microwear analysis conducted on backed 

pieces from KR Cave 2 (Wurz and Lombard 2007) are also discussed briefly.       

 

The lithics included in the Klasies Diagram are those that seem the most likely 

candidates for hunting weaponry.  As well as the crescents and other allied forms that 

characterise Howieson‘s Poort industries, the diagram also contains basic information 

about flake-blades (local quartzite, < 4cm in length), pointed flake-blades and broken 

middle segments (Figure 33).  Worked points may well have also served as armatures, 

but were excluded from the diagram because of their relatively low frequency 

throughout the sequence (Appendix 6).  The grey blocks represent roughly what 

percentage of their assemblage (excluding flakes) each tool type comprises for each 

respective level, with the exact percentage value given within the shaded block.  Next 

to each block is an ―n‖ value, the actual number of tools from which that percentage is 

derived.  Flakes are excluded as they largely comprise of waste material and account 

for such a large portion of the assemblages that their inclusion may obscure trends in 

other tool categories.  This manner of representation is used for crescents and flake-

blades.  Mean average percentages are also provided for the crescent and flake-blade 

counts in accordance with the stratigraphic units used in Klein‘s faunal analysis.   

 

The dominant raw materials used per level are given, with the three most dominant 

types per-level ranked.  Each letter representing a different material type, for which 

reference should be made to the raw materials section of the chapter.  The fluctuation 

in dominance of local quartzite and exotic materials is also shown.  Unlike the 

quantification of the tools themselves, the measures of raw material preference are 

exclusive to the tool categories in question.  For flake-blades, exotic material 

dominance reflects the entire flake-blade assemblage as limitations in Singer & 

Wymer‘s data render it impossible to link size gradation to material preference.    
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Pointed flake-blades are relatively small in number, and although gradations of size 

were included for those from MSA contexts, none was given for those from 

Howieson‘s Poort levels, perhaps because of their even smaller quantity.  

Consequently, they are simply represented by their total number in the diagram 

(Appendix 14).  Middle blade segments are given as a percentage value of broken 

segments overall, with a mean percentage value in accordance with the stratigraphic 

units used in Klein‘s faunal analysis along with a mean average per-cultural unit.  It is 

important when considering the lithics in the diagram to remember that the values for 

MSA III material represents the combination of 1968 and Initial Cutting material.  

With the exception of the MSA II broken middle segments, all other values are taken 

from just the 1968 material.   

 

5.3.5 Faunal Remains 

The numbers of fauna are taken from Klein‘s original work on the site (1976).  

Assemblages from rockshelter 1A were presented as MNI due to the highly 

fragmentary nature of the assemblages.  The diagram ranks the top three species 

according to this count, leaving a blank where no clear position is held.  The number 

after the name denotes the MNI value recorded for the species in that level.  The 

deposit groupings in the diagram reflect those used by Klein, i.e. the same system as 

reported for the Initial Cutting 1A (Singer and Wymer 1982, 111).  This may be 

because the revised stratigraphy of the 1968 season was not applied to the cataloguing 

of faunal remains, or simply that these levels were collapsed and amalgamated into 

cruder units to consolidate sparse data, as MNI counts for individual levels would 

have resulted in even more minimally informative data representation.  Alternatively, 

it could be (despite no acknowledgement of such being the case), that Klein‘s analysis 

simply did not incorporate the remains from both field seasons.   

 

The data presented here has been used to infer both evidence of subsistence and also 

palaeoenvironmental conditions along with other sources.  It is important to note that 

in Klein‘s analysis (Klein 1976), and subsequent reprints (Singer and Wymer 1982; 

Binford 1984), level 12 from the Howieson‘s Poort is curiously unaccounted for, and 

without explanation.  It is most likely that this reflects a typo, and that levels 10-11 

include data for level 12, in accordance with the divisions used in the Initial Cutting 
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which are followed by the rest of Klein‘s data presentation.  It has been treated as 

such in this investigation.                

 

5.3.6 Palaeoenvironment 

Palaeoenvironmental assessment of the site depends upon the implications of Klein‘s 

faunal analysis (1976) integrated with inferences drawn from sedimentological 

analysis of the site (Butzer 1978; Butzer 1982) and from the study of microfaunal 

remains recovered during Deacon‘s excavations (Avery 1987).  The resolution of 

these studies is much poorer than was possible in Northern Spain, with much grosser 

generalisations made rather than the more detailed break down of the sequence given 

at La Riera.  Butzer‘s sedimentological review was presented within the cultural unit 

framework devised for the site, and generalisations inferred from Avery‘s work are 

also presented in relation to these units even though Avery recognised that this defies 

the reality of cross-cultural trends: the cultural units delineated in the diagram do not 

represent major barriers or transition events in this regard.  The microfaunal analysis 

is the only aspect of the diagram that relies upon data collected from Deacon‘s 

subsequent (1984-1986) excavation (Avery 1987, 406). 
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5.4 Trends And Further Investigation 

 

In this section, trends identified through the construction of the KR 1A diagram are 

identified, along with some others that could not be included in this format, and are 

expanded upon where possible through further investigation. 

 

5.4.1 Dating 

A variety of methods have been used to obtain dates from the sequence at Klasies 

River main site.  The portion represented in KR 1A, particularly the Howieson‘s Poort 

deposits, are the most extensively dated of their kind.  There is general agreement 

between many of the independent methods that the Howieson‘s Poort at KR 1A dates 

to between 55 and 65,000 years ago (Lombard 2006, 36).  Unfortunately, dates for the 

extent of MSA II and III deposits are less numerous.  It seems that MSA III cannot be 

younger than 50,000 years as it is beyond the limit of radiocarbon dating (Wurz 2012, 

1002), while the oldest date acquired for the MSA II from rockshelter 1A is 82,000 

from level 30 (Vogel 2001).  Rockfall level 22 is most likely no younger than 70,000 

years old (Feathers 2002, 192; Jacobs et al. 2008, 734), implying a possible hiatus in 

occupation and deposition between MSA II and Howieson‘s Poort, supported by the 

relative decrease in density of anthropic material.  For similar reasons, a break 

between the end of the Howieson‘s Poort and the beginning of MSA III can be 

argued, although the length of the gap between the two is less clear.   

 

Although an approximate time span can be inferred from the range of dates acquired 

from the different programmes, a finer resolution is simply not possible.  This is 

exemplified in Figure 46 which shows the thirteen TL dates acquired by Chantal 

Tribolo in approximate stratigraphic order (Tribolo et al. 2005).  Although they are 

not evenly distributed throughout the sequence, the lack of any real trend in gradation 

of these dates illustrates the difficulty of generating a more fine-grained chronology 

for the site and indeed other deposits of such great antiquity.  In the absence of a more 

detailed chronology, relative stratigraphic superposition must substitute as 

chronometric reference scheme. 
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Figure 46: Graph showing thermoluminescence Dates from Klasies River lithics in sequential order (left-right) 
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5.4.2 Implications for OIS Stage Correlation 

Along with Border Cave, Klasies River was formative in early attempts at correlating 

Middle Stone Age industries from South Africa with the Marine Oxygen Isotope 

sequence.  In particular, Shackleton‘s assessment of δ 
18

O data from marine molluscs 

was instrumental in the initial interpretation that the Howieson‘s Poort industry 

occurred during a cooler part of OIS 5, although he did not rule out the possibility of 

deposition within OIS 3 (1982, 196).  A main goal of researchers at the time, working 

both at Klasies and other MSA sites in South Africa, focussed on integrating other 

aspects of palaeoclimatic and environmental data in consolidation of this estimation 

(Butzer 1978; 1982; Klein 1975; 1976; 1977; Avery 1987).  Revisions in estimates of 

sea-level relative to site stratigraphy (Hendey and Volman 1986; Van Andel 1989) 

resulted in challenges to the original estimate, and ultimately the realisation that 

attempts at interdependent conformity from a range of datasets from regionally 

disparate locations is highly problematic without tighter absolute chronology 

(Parkington 1990, 34–35). 

 

Productive dating programmes formulated in the years since Parkington‘s critique 

now allow for more credible attempts at correlating site stratigraphy with OIS stages.  

The weighted average (56 ± 3 kya) of Tribolo‘s TL dates could suggest an early OIS 3 

link for the HP at Klasies (Tribolo et al. 2005, 498).  A single date of 64.1 ± 2.6 kya 

recorded from the large-scale dating project undertaken by Jacobs et al. (2008, 734) 

puts the site within range of Howieson‘s Poort dates (64.8 – 59.5 kya) collected under 

the same programme at other sites, including those from KRM Cave 2 (Jacobs and 

Roberts 2008, 26).  This estimation puts the Howieson‘s Poort (in general) during the 

end of OIS 4, when the sea-level would have been around 5m below present day (Ibid 

2008, 26).  The slight discrepancy between dating methods raises a pertinent issue.   

 

Depending on which dates are consulted, the Howieson‘s Poort at Klasies River could 

be argued as pertaining to early OIS 3, late OIS 4, or both.  It would be a misreading 

of the data to infer that the variety of dates acquired from the site represent a 

concordant chronology.  The general consensus, informed by dates acquired from 

other sites, suggests OIS 4 is a more likely reality, even though the overall weight of 

dates from Klasies itself (courtesy of Tribolo) would favour OIS 3.  The fact that the 
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dates acquired by Jacobs et al. (2008) from Klasies conform to others collected as part 

of a systematic dating programme conducted on a large geographic scale favours their 

interpretation of a late OIS 4 correlation.  They claim that their dating programme has 

lifted the chronological haze that has traditionally surrounded the timing of the 

Howieson‘s Poort, by using a systematic methodology to acquire dates from a wide 

array of sites, eradicating the disparity instilled by variation in the materials and 

methods used previously in more piecemeal approaches (Jacobs and Roberts 2008, 

30).   

 

While their efforts are impressive and commendable in realising this aspiration, it 

does not negate the fact the differing ages offered by alternative methods might be 

replicated on a larger scale if a similar approach was put into effect.  As evidence of 

this, the TL dates acquired from Klasies are all relatively consistent with one another, 

along with other dates acquired using similar methods from Rose Cottage (Tribolo et 

al. 2005, 498).  While comparison of the rigour and merit of OSL and TL dating 

methods is open for discussion, it suffices to note that Jacobs and Roberts are unable 

to dismiss these results (2008, 17).  A possible OIS 3 date for the Howieson‘s Poort at 

Klasies cannot be ruled out.  We should be wary, at least for the immediate future, of 

any assertion that a single true date range safe from contradiction may be obtainable.  

Consequently, although the dating programme conducted by Jacobs et al. (2008) is 

arguably the most popular singular scheme, researchers continue to be open-minded 

in the date ranges they cite and reject any notion of a true geographically delineable 

age range for industries such as the Still bay and Howieson‘s Poort at this stage (Villa 

et al. 2010, 632; Henshilwood and Dubreuil 2011, 370). 

 

5.4.3 Fauna 

With only MNI data available for faunal remains from KR 1A, inferential information 

remains fairly limited.  There is insufficient data to attempt any assessment of 

seasonality, sex or age as with the La Riera assemblages.  Furthermore, it must be 

remembered that the extent of KR 1A so far excavated is likely just a portion of the 

preserved deposits and greater site, and is confined to one locale near the abutting 

rock face (an argument applicable to the representativeness of all remains recovered 

from the site).  As a result of these limitations, despite being the subject of numerous 
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studies, all analysts of the KR 1A faunal assemblages have been fairly restricted in 

their assessments.  Now that the scavenging argument from earlier phases of the site 

laid out by Binford (Binford 1984) has been fairly well refuted (Milo 1998), the 

faunal remains are perhaps best used as confirming the successful hunting of certain 

species at different periods.  Changes in the ratios of different species, or changes in 

their presence and absence may reflect changes in the hunting preferences throughout 

time, although the reliability of any such indication is limited by the problems detailed 

above. 

 

In the diagram (Appendix 14), only the top three species ranked according to MNI are 

shown.  As a supplement to the diagram, Figure 47 and Figure 48 are included for 

more detailed assessment.  Figure 47 shows MNI representation of species at the site, 

while Figure 48 shows MNI values as a percentage of the total assemblage per level.  

Both the graphs show that the Howieson‘s Poort levels have a much higher degree of 

diversity in their assemblages than is present in other levels.  The Howieson‘s Poort 

levels also have higher overall MNI counts (Appendix 14, Figure 47).  The faunal 

data for the KR 1A sequence is so limited, that it was only in these levels where there 

was sufficient information to clearly rank three species (Appendix 14). 
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Figure 47: Graph comparing MNI of ungulate fauna at KR1A 
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Figure 48: Graph showing KR1A ungulate fauna MNI proportionally
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Equus cf quaaga (Quagga) appear in the Howieson‘s Poort levels for the first time in 

the KR 1A sequence, and disappear after early MSA III (levels 7-9).  Connochaetes 

(Wildebeest) are also present only in these levels (although not in levels 13-16).  The 

preferred habitats of these species informed Klein‘s broad assessment of the 

assemblage, which he suggested supported a shift towards more open vegetation in 

the landscape at this time (Klein 1976, 80).  Tragelaphus scriptus (Bushbuck) also 

makes a small but unique appearance in levels 17-21. The internal variation within the 

Howieson‘s Poort levels makes it difficult to contrast the cultural phases 

monolithically with one another.   

 

In general, Taurotragus oryx (Eland) is a popular species at several points during the 

occupation of KR 1A, absent only in levels 25 and 22.  Syncerus caffer (Cape 

Buffalo) features in every level apart from levels 25 and 22 after levels 28-29.  In this 

respect, levels 25 and 22 are perhaps the most unique, with only two species noted in 

both.  Level 22 can perhaps be explained by its formation as a rockfall deposit.  The 

higher variety of species in the Howieson‘s Poort levels could suggest a more 

generalised spectrum of prey in these levels, with larger animals such as Pelorovis 

antiquus (Giant Buffalo) being taken alongside smaller specimens such as Raphicerus 

melanotis (Cape Grysbok).  The presence of these species in the same deposits is not 

entirely unique to the Howieson‘s Poort though, as both appear in levels 6-9 and 27 as 

well.  It is also important to remember that the amalgamation of Howieson‘s Poort 

levels means that the strict concurrence of different species is more difficult to 

confirm than during other phases of the rockshelter.   

 

Of twelve species recorded in the KR 1A rockshelter, ten (the most in the sequence) 

are noted from levels 17-21, with Pelea capreolus (Vaalribokk) and Damaliscus sp. 

(Bastard Hartebeest) the only omissions, the former a species found in only three 

deposits in the sequence, and the latter in only two.  Levels 13-16 have seven species, 

and levels 10-11 have nine.  In levels 13-16 there is a higher proportion of cape 

grysbok and blue antelope as well as vaalribbok.  Eland are reduced in number, and 

giant buffalo and wildebeest are absent in these deposits.  In levels 10-11, giant 

buffalo and cape buffalo are at their greatest representation in the Howieson‘s Poort 

levels, and wildebeest and are also present for the first time in this phase.  

Interestingly, the relatively diverse faunal spectrum of the Howieson‘s Poort levels is 
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continued to a lesser extent in the immediate MSA III levels, not returning to the more 

simple dichotomous levels of the earlier MSA II until after level 6.  This perhaps 

reflects the continued openness of the landscape during this time.  The amount of 

depositional disturbance during the formation of the MSA III levels makes it difficult 

to validate this trend.   

 

5.4.4 Palaeoenvironmental Reconstruction 

Along with Klein‘s assessment of the fauna (1976), and the sedimentological analysis 

by Butzer (1978; 1982), Avery‘s analysis of microfaunal remains from Deacon‘s 

excavations (1987) forms the main body of evidence for the inference of 

palaeoenvironment at the site.  Klein‘s assessment of the fauna led him to conclude 

that the surrounding landscape during the Howieson‘s Poort and MSA III was 

generally more open than in the preceding MSA II phase (Klein 1976).  Avery‘s data 

is largely in agreement with this, confirming varying densities of Dune Fynbos in the 

MSA II, although there is a suggestion of a return to closer vegetation near the top of 

the sequence as well, with Kaffrarian thicket featuring more prominently alongside 

the fynbos in this later stage (Avery 1987, 414).  The sedimentology data surmised in 

Appendix 14 is more a vague estimation of the general climate, and Klein‘s faunal 

assessment is also sweeping.  Although Avery‘s assessment is also not detailed 

beyond the reality of limitations with the data, the microfaunal remains in her analysis 

provide the most specific and finely attuned palaeoenvironmental indicators available 

for the site.  The importance of Avery‘s research continues with the comparatively 

sparse distribution of contemporary sites with good environmental evidence known in 

the area (Chase 2010).        

 

When making her inferences regarding the palaeoenvironment of the site, knowledge 

of previous work at the site along with the stability of the current fynbos setting was 

influential in Avery‘s determination that variations in microfaunal assemblage 

composition need not invoke major changes in vegetation, and that in turn, such 

changes are not exclusively the cause of significant climatic change (1987, 414; 406).  

Further knowledge of the topography of the site and its setting aids the explanation of 

the occasionally simultaneous occurrence of species with contradictory habitat 

preferences.  Unlike at La Riera, where certain species were used as indicators of 
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extreme climatic fluctuations, the microfauna at Klasies River were studied 

collectively to reconstruct certain aspects of past conditions, including generalised 

impressions of vegetation cover and seasonal variations in climatic variables such as 

rainfall.   

 

These broad inferences, derived by Avery, are presented in the diagram (Appendix 

14), and give the misleading impression of neatly coordinated environmental changes 

synchronised with changes in material culture, an artefact of constraining sample sizes 

(Avery 1987, 414).  While transitional phases between the MSA and Howieson‘s 

Poort deposits should not be delineated in such a rigid fashion, there is general 

agreement between Klein‘s and Avery‘s data that the Howieson‘s Poort at the site is 

more readily typified by open vegetation.  Avery further suggests that these 

conditions may well have begun before this period, and that the Howieson‘s Poort 

may well represent a slightly delayed adaptive response (Avery 1987, 418).  Finally it 

is worth noting that whereas MSA III can be broadly characterised by a more 

seasonally affected biome, with the early MSA II apparently more monotonous, 

varying representation of certain species such as Otomys irroratus (The Southern 

African Vlei Rat) (Avery 1987, 415–416) during the Howieson‘s Poort suggests a 

period of irregular fluctuations from periods of emphasised seasonal rhythms to less 

contrasting annual cycles. 
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5.5 Lithics Analysis 

 

The selected lithics from KR 1A are afforded their own section as they offer by far the 

most detail and potential for further investigation out of the evidence recovered from 

the site.  In this section, patterns identified within the diagram (Appendix 14) are 

clarified and elaborated upon, and further observations are also elicited.  The 

terminology used to describe MSA lithic technology has undergone several 

reformations in time, with the Klasies report itself presenting one of the last major 

revisions (Singer and Wymer 1982).  Most of the terms used in this study (unless 

noted otherwise), as a matter of necessity, are those used in their report, and can be 

found fully explained in the appropriate sections, namely chapters 5 and 6 (Singer and 

Wymer 1982).   

 

The primary emphasis of this assessment is on smaller (microlithic) components 

assumed as likely candidates for use in hunting equipment.  These include the 

crescent, trapeze, and other ―allied‖ backed forms diagnostic of the Howieson‘s Poort, 

but also flake-blades, pointed flake-blades and middle flake-blade segments.  The data 

presented here are the revised numbers provided from Singer & Wymer‘s 

excavations.  Additional information is supplemented from studies of material from 

Deacon‘s excavations (Thackeray and Kelly 1988; Wurz and Lombard 2007; Villa et 

al. 2010).  Unless noted otherwise, considerations of the assemblages are given with 

the flake count excluded.  This brings intra-assemblage analysis more in-line with the 

system used at La Riera, because the overwhelming assemblage majority that flakes 

account for obscures more nuanced trends when included.  Although flakes cannot be 

consigned exclusively as waste material and debris, this does undoubtedly form the 

predominant component.  Prior to consideration of individual tool types, 

familiarisation with the raw materials used at the site and basic trends identified from 

Appendix 14 is necessary. 

 

5.5.1 Raw Materials 

Raw material counts are provided in the diagram (Appendix 14) for crescents and 

allied forms and flake-blades from Howieson‘s Poort.  Full data for the raw materials 

discussed in this section can be found in (Appendices 15-26).  Referring back to the 



175 

 

retabulation of the lithics, 78 pieces of fine silcrete recorded for crescents and allied 

forms in level 17 (Singer and Wymer 1982, 99) have been reduced to 68, as it is 

believed that this figure was most likely recorded inaccurately in deriving a total of 

107 (Appendix 7).  It should also be noted that the number of flake-blades considered 

in terms of raw materials is 4439, when the actual number has been recalculated to 

4441 based on an error in tabulation of fine silcrete flake-blades (Appendix 6).  

Although the source of this error is unknown, it is hoped that it is sufficiently 

marginal to avoid significantly altering the results.  Raw materials counts were also 

provided for flakes, and for fine silcrete flake-blade segments (Singer and Wymer 

1982).        

 

In the diagram, the three most dominant materials for each level are recorded, but 

only when they comprise 5% or greater of the assemblage.  The different materials, as 

detailed by Singer & Wymer, have been coded alphabetically: local quartzite (A), fine 

silcrete (B), coarse silcrete (C), indurated shale (hornfels) (D), quartz (including 

crystal quartz) (E), Chalcedony (F) and Chert (G) (Appendix 14).  Only types A-E 

were recorded for flake-blades, with quartz category (E) including crystal quartz and 

―other rocks‖ (Singer and Wymer 1982, 90).  In their reassessment of the Howieson‘s 

Poort, Villa et al. describe the assemblages as comprising quartzite, silcrete, quartz, 

hornfels (described as indurated shale by Singer & Wymer) and chalcedony (only two 

pieces of chert were distinguished among 1245 crescents and other backed pieces) in 

descending order of frequency (2010).   

 

Exotic materials (i.e. not local quartzite) account for such a relatively minor portion of 

the MSA assemblages (318 pieces from pre-Howieson‘s Poort levels 22-36, and 246 

from post-Howison‘s Poort MSA III deposits) that the data for specific tool counts 

was not made available (Singer and Wymer 1982, 75–83).  Flake-blade raw material 

counts do not take size gradation into consideration except for local quartzite and fine 

silcrete, so it is unfortunately not possible to assess the relationship between size and 

material selection, although broad covariance of trends can at least be observed if not 

outright ascertained.  Generally, a clear preference for the use of silcrete in the 

manufacture of small blades, bladelets and other backed pieces has been noted 

(Minichillo 2006, 360).  The inability to discern size variation within divisions of raw 

material explains the discrepancy between the raw material count, which encompasses 



176 

 

the entire flake-blade assemblage, and the flake-blade count which focuses explicitly 

on pieces less than 4cm in length.   

 

5.5.2 Trends in Raw Materials From Diagram 

Appendix 15-26 show the raw material selection for crescents, their allied forms and 

flake-blades from the Howieson‘s Poort deposits of KR 1A.  They are represented as 

percentages of the total number of their respective tool-types from each level.  The 

diagram (Appendix 14) shows that quartzite is the dominant material used for flake-

blades in all levels except level 15, where it is the third most dominant material 

(16%), behind Hornfels (22%), and with fine silcrete the most dominant (60%) 

(Figure 49).  Fine silcrete is the second most dominant material in levels 11, 14, 16, 

17, 18, and 20.  Coarse silcrete and hornfels comprise the other dominant flake-blade 

materials except in levels 13 and 14 where quartz is the third most dominant material.   

 

The diversity of materials featured in the crescent and allied form assemblages 

appears greater, although it is not clear what ―other rocks‖ are included in the quartz 

category for flake-blades, and even cumulatively the chalcedony and chert 

populations never amount to more than 6% of the assemblage.  Quartzite dominates in 

levels 10-14 and 18-21, although it shares this position with fine silcrete in level 20 

(Appendix 14).  Fine silcrete is the dominant material in levels 15-17.  Quartzite is the 

second most dominant material in levels 15 and 17, but third in level 16, behind 

hornfels.  Quartz features more prominently as a material selected for the manufacture 

of crescents and allied forms, ranking as the second most dominant material in levels 

11-13, and jointly so in level 14 along with coarse silcrete.  It is the third most 

dominant material in level 15.  As with the flake-blades, coarse silcrete and hornfels 

account for the remaining dominant lithic materials. 
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Figure 49: Graph showing proportions of raw materials in HP flake-blades from KR1A 
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Figure 50: Graph showing proportions of raw materials in HP crescents and allied forms from KR1A. 
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Figure 51: Graph showing proportions of raw materials in HP flakes from KR1A. 
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It is not uncommon for the Howieson‘s Poort, and certainly that of Klasies River, to 

be characterised rather monolithically as a period turned over to a high preference of 

silcrete, usually associated with the production of the microlithic elements and other 

small tools characteristic of the industry (Minichillo 2006, 360; McCall 2007).  Such 

statements, whilst not untrue, ignore the more nuanced internal variation within the 

Howieson‘s Poort.  Fine silcrete is by no means a popular material throughout the HP, 

being absent in level 21, and increasing throughout levels 19-15 following a spike in 

level 20 (Figure 49, Figure 50 and Figure 51).  Following level 15, fine silcrete 

becomes a minor component in Howieson‘s Poort assemblages, never accounting for 

more than 9% of either crescents or flake-blades, except in level 14, where it still 

comprises 21% of the assemblage.  Hornfels follows a similar pattern to fine silcrete 

(Figure 49, Figure 50 and Figure 51), although its peaks (max: 28 % of crescents in 

level 16) are incomparable with those of fine silcrete, and its demise in later levels is 

not as acute.  Villa et al. confirmed the observation originally made by Singer and 

Wymer that quartz appears to peak in use following the peak of fine silcrete (2010, 

636), in what seems almost like a bow wave effect (Figure 50).  This pattern is more 

noticeable in crescents and other backed pieces, as although the prominence of quartz 

coincides with the demise in preference for fine silcrete for flake-blades too, it barely 

features in any other levels (Figure 49).  Quartzite also increases at when quartz peaks 

and fine silcrete diminishes (Ibid 2010, 636).  Coarse silcrete, while ubiquitous 

throughout most levels for both tool categories, is never very common (peaking at 

24% of the crescents in level 14) (Figure 49 and Figure 50).  As quartzite diminishes 

in popularity, the quantity of other materials included within the assemblage generally 

increases, although it decreases primarily at the expense of fine silcrete until level 14 

(Figure 49, Figure 50 and Figure 51).        
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Figure 52: Graph showing Local Quartzite frequency in flake-blades, flakes, and crescents and 

allied forms throughout the Howieson’s Poort of KR1A 
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Figure 53: Graph showing fine silcrete frequency in flake-blades, flakes, and crescents and allied 

forms throughout the Howieson’s Poort of KR1A 
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Figure 54: Graph showing coarse silcrete frequency in flake-blades, flakes, and crescents and 

allied forms throughout the Howieson’s Poort of KR1A 
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Figure 55: Graph showing hornfels frequency in flake-blades, flakes, and crescents and allied 

forms throughout the Howieson’s Poort of KR1A 
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Quartz Throughout The Howieson's Poort At Klasies River 1A
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Figure 56: Graph showing quartz frequency in flake-blades, flakes, and crescents and allied 

forms throughout the Howieson’s Poort of KR1A 

 

 

Figure 52, Figure 53, Figure 54, Figure 55 and Figure 56 plot quantities of different 

materials throughout the Howieson‘s Poort levels in crescents and allied forms, flake-

blades, and flakes as separate tool categories.  Quantities of local quartzite, fine 

silcrete, coarse silcrete, hornfels and quartz are represented as percentages of the 

different lithic categories.  In (Figure 49, Figure 50 and Figure 51), which show 

quantities of different materials throughout the Howieson‘s Poort in these three 

categories, there is approximate synchronicity in the trends they depict throughout the 

deposits.  In some levels, the increase or decrease of a material type is reflected more 

in one lithic type than another, and in some cases wiggle matching is necessary to 

exactly coordinate lag discrepancies in the peaks and troughs of trends (e.g. local 

quartzite in levels 16-14).  The most notable disparity is the much higher continuation 

of quartz throughout later flake assemblages.  However, approximate covariance in 

these categories shows that materials were not being gathered exclusively for one tool 

type over the other, reflecting a more generalised preference.  This is important as it is 

sometimes assumed that exotic material selection was particularly for the backed 

geometric forms.   

 

Approximately concurrent variation in the flake assemblage may show that 

manufacturing occurred in situ or nearby.  Where the trend in flakes does not follow 

that of the other tool categories so closely, it should be remembered that they include 
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waste material (and more) from the broader assemblage, that the number of debris 

pieces may have a different spatial distribution across the site, and that variation in 

manufacture and taphonomy may result in varying representation in this category.  

Although (Figure 49, Figure 50 and Figure 51) show that material exploitation was 

seemingly for the most part not exclusively for the purposes of flake-blades or 

crescents, further potential for differentiation in preference between the sub-categories 

of crescents and allied forms is explored in the crescents section (Figure 69, Figure 

70, Figure 71 and Figure 72).          

 

5.5.3 Flake-Blades 

After flakes, flake-blades account for the most dominant lithic type throughout the 

Klasies sequence.  Singer & Wymer used the term ―flake-blade‖, as many examples 

were deemed too irregular to be classed as blades (1982, 50).  In her analysis of 

material from Deacon‘s excavations, Wurz has argued that blades can be 

distinguished from flake-blades, as the former were manufactured using soft-

hammering techniques, which create a smaller platform and more diffuse bulb of 

percussion (Wurz 1999, 42).  However, she also notes that further testing is necessary 

to prove this (Ibid 1999, 43), and that the ―distinction is too restrictive to be 

operational‖ (Ibid 2000, 50).  Consequently, she concedes that the simpler option is to 

classify all elongated products in the MSA as blades (Ibid 2000, 50).   

 

Wurz also suggested at least a contemplation of whether the term bladelet could be 

effectively used considering the lack of a clear gap in the gradation of flake-blade size 

(Wurz 1999, 43).  Although admittedly somewhat arbitrary, such a suggestion must 

be rejected simply because our inability to clearly define a cut-off point does not 

negate the difference in use intended for smaller and larger flake-blades.  The 

difficulties in establishing a set cut-off size for microlithic flake-blades simply reflects 

the reality of the assemblages: that varying sized pieces were made and used as and 

when necessary rather than according to strictly defined archaeological criteria.  

Nevertheless, material from subsequent excavations, as discussed below, has been 

measured using width as the main index of size.     
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5.5.3.1 Size 

Our inability to segregate clearly discrete tool types based on size does not belie a 

difference in the design and purpose of pieces of varying sizes.  Instead it should 

encourage greater emphasis on the inference of use from characteristics other than 

morphometric data, and that if anything, we should perhaps be less blasé about 

relying upon these criteria.  In Villa et al.‘s recent reappraisal of the Howieson‘s Poort 

assemblages from Klasies River (Villa et al. 2010, 632), width, rather than length, is 

used to measure flake-blade assemblages.  This is in accordance with practices used 

by members of the research team at other MSA/HP sites (Villa et al. 2005), and a 

response to the unfortunately high frequency of fragmentation which is believed to 

affect these artefacts.  Singer & Wymer included fractured examples in a separate 

category: ―Broken Flake-Blade Segments‖ or simply ―Segments‖, which were divided 

into three possible sub-categories based on their fracture properties (Singer and 

Wymer 1982, 62).  It is possible, however, that some fractured examples escaped their 

attention, and they note that their division between the flake-blades under 2cm in 

length and small flakes is quite arbitrary (Ibid 1982, 50).  Furthermore, broken pieces 

that were twice as long as they were wide were also included as flake-blades rather 

than as flake-blade segments (Singer and Wymer 1982, 64).           

 

5.5.3.2 Flake Blades (Exotic Materials) 

Smaller flake-blades, those under 4cm in length, are regarded as the most likely 

bladelet candidates, and most likely microlithic according to most definitions based 

upon size.  Singer & Wymer noted that both the size and overall number of flake-

blades (local quartzite) decreased in the Howieson‘s Poort (1982, 112).  The raw 

material break-down for flake-blade assemblages from the Howieson‘s Poort levels is 

presented in Appendices 15-26, and summarised in Figure 49.  While the Howieson‘s 

Poort levels are notable for including more exotic materials, local quartzite remains 

the dominant throughout these levels except in level 15, where fine silcrete is the 

dominant material by a considerable margin.  Although fine-silcrete flake-blades are 

much more prominent in level 15, there is no obvious change in the proportions of 

different sized pieces within this population, with the proportion of fine-silcrete flake 

blades 2-4cm in length similar to those in preceding levels (Figure 57).  In levels 17-

14, a spike in fine silcrete sees the dominance of local quartzite diminished greatly.  
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Hornfels also becomes a notable component of flake-blade assemblages in these 

levels (Figure 49).  Coarse silcrete peaks, curiously, only in level 14, without 

precedent or continuation of the trend in the sequence.  Quartz only accounts for a 

little more than 5% of the flake-blades in levels 14 and 13, and so is regarded as 

relatively insignificant for this tool type.     

 

The spike in fine silcrete and hornfels (levels 17-14) prefaces the re-emergence of 

local quartzite as the overwhelmingly dominant flake-blade material, as well as a 

spike in the number of local quartzite flake-blades between 2 and 4cm long during 

levels 14-11 (Figure 58).  It is interesting to note that fine silcrete flake-blades were 

not recovered from level 13 (also level 21), and that the quantity of small (< 4cm) 

flake-blades in level 12 is greatly reduced compared to in other levels.               
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Figure 57: Graph showing size gradation of HP fine silcrete flake-blades as a proportion of the total fine silcrete flake-blade assemblages from KR1A 
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Figure 58: Graph showing size gradation of local quartzite flake-blades from KR1A 
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5.5.3.3 Local Quartzite Flake-Blades 

Figure 58 shows changes in the size of flake-blades of local quartzite throughout 

levels 33-1 of KR 1A, as percentages of their total local quartzite flake-blade 

assemblages.  This more clearly illustrates the trend depicted in the diagram 

(Appendix 14).  Levels 9-1 (MSA III) exhibit the most fluctuation with larger flake-

blades featuring particularly in levels 5-1.  Levels 9-6 do not appear to represent a 

radical departure from the trend apparent in the preceding Howieson‘s Poort levels 

when compared to MSA II or other MSA III deposits.  The number of flake-blades 

under 4cm in length is notably higher in levels 22-6.  Level 22, the rockfall member 

regarded as the terminal phase of MSA II occupation, is somewhat anomalous in its 

composition and probably compressed due to the unique formation processes of this 

deposit (Singer and Wymer 1982, 21).  Regarding the size of the flake-blades in the 

level, it seems closer to Howieson‘s Poort levels.   

 

Flake-blades under 4cm in length generally account for somewhere between 15 and 

20% of most MSA II assemblages (Figure 58).  In levels 22-6, they generally cluster 

between 35 and 50% of the flake-blade assemblage, except in levels 14-11, where 

they feature even more prominently, ascending to and descending from a peak 

representation of 74% in level 12.  Flake-blades between 4-6cm long remain fairly 

constant throughout the MSA II and Howieson‘s Poort deposits.  With the exception 

of levels 14-11, coinciding with the spike of smaller flake-blades, pieces between 4 

and 6cm long generally account for between 38 and 58% of the flake-blade 

assemblages.  Apart from the aforementioned spike in levels 14-11, the increased 

representation of flake-blades less than 4cm in length seems more at the expense of 

larger pieces, over 6cm in length.   
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Relationship Of Flake-Blades < 6cm Length From KR 1A
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Figure 59: Graph showing relationship of local quartzite flake-blades 4-6cm and 2-4cm long from KR1A. 
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Figure 60: Graph showing relationship (polynomial) of MSA III local quartzite flake-blades 4-6cm and 2-4cm long from KR1A 
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Figure 61: Graph showing relationship (linear) of HP local quartzite flake-blades 4-6cm and 2-4cm long from KR1A 
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Figure 62: Graph showing relationship (polynomial) of MSA II local quartzite flake-blades 4-6cm and 2-4cm long from KR1A. 
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Figure 63: Graph showing relationship (linear) of local quartzite flake-blades 4-6cm and 2-4cm long from levels 22-7 of KR1A. 
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Flake-blades less than 6cm in length account for the majority of all flake-blades.  The 

relationship between the two smallest categories (2-4cm and 4-6cm) is explored in 

(Figure 59).  From this, it seems there is a correlation between the two categories, at 

least for certain portions of the sequence where increases and decreases in the two 

categories seem harmonious.  Following this observation, linear regression analysis of 

the two size categories was conducted on the cultural sub-units of the KR 1A 

sequence (Figure 60, Figure 61, Figure 62, Figure 63).  In cases where the linear value 

was deemed relatively insignificant, with 60% of the population (r
2
 = < 0.6) used as 

an arbitrary benchmark, a polynomial regression was also conducted to assess for a 

non-linear relationship between the two categories.       

 

There was a striking linear correlation (r
2
 = 0.87) between the two categories in the 

Howieson‘s Poort (Figure 61).  Such a correlation was not so clear in the MSA III, 

although a polynomial curve (r
2
 = 0.66) shows a trend over time accounting for 

variation in the relationship between the two categories (Figure 60).  For the MSA II 

portion of the sequence, there is no significant correlation using either a linear or 

polynomial regression (Figure 62).  Using figure 52 to gauge periods of synchronicity 

in the two categories, patterns transcending designated cultural units were identified.  

A strong linear correlation (r
2
 = 0.88) was found to exist across levels 22-7 (Figure 

63), showing a continuation in the relationship identified in the Howieson‘s Poort into 

the older MSA III deposits.   

 

Although several linear (and at least one non-linear) relationships were found to exist 

across different expanses of the KR 1A sequence between these different size 

categories of flake-blade, the trends themselves are not unidirectional over time 

(Figure 59).  This shows that throughout certain periods of time, notably between 

levels 22 and 7, a clear choice was being made regarding the manufacture of one size 

category at the expense of the other.  This pattern is particularly clear during the spike 

of flake-blades less than 4cm in length in levels 14-11.  These graphs (Figure 59, 

Figure 60, Figure 61, Figure 62 and Figure 63) show the continuation of trends over 

time, and do not discern the expression of preference in individual levels.   

 

Recent assessments of flake-blade assemblages have suggested that fragmentation 

prohibits meaningful inference of length measurements, preferring to refer to width 
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instead (Villa et al. 2010).  Breakage is an immitigable problem, and it is difficult to 

assess the extent to which it has affected the assemblages.  As mentioned earlier, 

many broken flake-blades were classified as such, and are discussed in the section on 

flake-blade segments.  The correlation between flake-blade lengths recorded above 

suggests that the expression of preferential design underwrites at least a substantial 

portion of these assemblages. 

 

5.5.3.4 Pointed Flake-Blades 

Pointed flake-blades, which retain a central ridge (Figure 33) are found throughout the 

KR 1A sequence.  Although a notable feature of MSA assemblages, they are rarely 

found in very large quantities (n > 60) and are much less frequent in post MSA II 

phases, particularly in the Howieson‘s Poort (Appendix 14).  Measurements of the 

points were excluded for Howieson‘s Poort examples, negating any further 

elucidation of trends. In the prior SAS member deposits however, it has been noted 

that length became shorter relative to width over time, and a higher degree of 

standardisation is also apparent (Thackeray and Kelly 1988, 20).  Singer & Wymer 

posit that many of these pointed flake-blades were likely but not exclusively used as 

projectile points (1982, 60).  In more recent reanalyses, they are commonly referred to 

simply as points (Wurz 2000, 49).  The uni-directional core preparation utilised in the 

chaine operatoire of the tool, a detailed description of which is provided by Wurz 

(2000, 65–66), suggests a relatively expensive manufacturing process, albeit a cost 

alleviated by the abundance of local quartzite that was available (Singer and Wymer 

1982, 62).  The comparatively low frequency of pointed flake-blades in the 

Howieson‘s Poort and post-Howieson‘s Poort levels may reflect the rise of alternative 

projectile armature tips if not a shift in the style of hunting pursued.  The manufacture 

of such alternative forms may have conserved exotic materials better. 

 

5.5.3.5 Segments    

The term ―segment‖ is used here in reference to the typology justified by Singer & 

Wymer (1982, 43).  Subsequent revisions to nomenclature mean that the term is now 

more commonly used as a reference to the general category of crescent and trapeze 

forms as per various examples of Wurz‘s work (e.g. 1999; 2000; 2005; 2008).  Here, 
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at least in reference to Klasies, the term segment refers to broken flake-blade pieces, 

as according to Singer & Wymer‘s report.   

 

Flake-blades frequently break into one of three variants: the distal end (non-bulbous), 

the proximal end (with the bulb of percussion), or the mid-section.  This final 

category is of most interest, as these mid-section pieces were considered by Singer & 

Wymer as the most likely intentionally made pieces (Singer and Wymer 1982, 64), 

although the more or less constant ratio of the three sub-categories, the majority 

always being bulbous pieces (Figure 64), suggests the creation of many of these 

segments was by chance rather than design.  This ratio remains relatively constant 

throughout the KR 1A sequence, despite Howieson‘s Poort levels having a generally 

much higher quantity of segments.  This might simply reflect a higher degree of 

fragmentation from the seemingly more frequent episodic occupation of the area, or 

alternatively it might result from an intentionally driven increase in production, 

perhaps similar to the snapping processes used to create the` basic crescent and 

trapeze forms that characterise these deposits. 

 



198 

 

 

 

Figure 64: Graph showing ratio of different flake-blade segments throughout KR1A 
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Figure 65: Graph showing ratio of HP flake-blades to flake-blade segments throughout KR1A 
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Figure 65 compares the ratio of flake-blades (blue) and segments (red) made of local 

quartzite to those made of fine silcrete (yellow and green respectively), as fine silcrete 

segments are the next most numerous material type used for this tool category.  The 

ratio of quartzite flake-blades to segments is comparatively restricted in range.  In 

nearly every deposit, the ratio of fine-silcrete segments is higher, albeit if only 

marginally.  There is, however, a greater degree of variation in the range of values 

recorded, particularly if the counts from levels 10 and 11 are included, although the 

overall quantity of fine silcrete pieces in these two levels is notably smaller than 

earlier in the sequence (Figure 49, Figure 50 and Figure 51).  This comparison allows 

further speculation: the fracturing properties of silcrete would generally suggest a 

greater susceptibility (although not always) to breakage than quartzite.  While it 

would be naïve to assume uniform patterns of breakage resulting from manufacturing 

error or post-depositional effects, one might predict a greater degree of consistency in 

all material types, with silcrete breakage being on average higher than in quartzite.  

Although hardly conclusive, the comparative fluctuation in the percentages of silcrete 

segments could be construed as reflective of varying preference of material type for 

deliberate manufacture of flake-blade mid-segments.  While there is still a high 

likelihood of accidental breakage either in manufacture or after deposition, Thackeray 

and Kelly, through measuring pieces from Deacon‘s excavations, also believed subtle 

stylistic variation was apparent over time (1988, 18).   

 

In dealing with the MSA assemblages, Singer & Wymer excluded finer grained 

materials on the grounds that the nature and size of the material would dictate their 

size (1982, 50).  Although they do not divulge further detail, it is at least worth noting 

that while finer-grained materials are often of a more brittle nature, they are also 

usually easier to manipulate and control during knapping, allowing for greater 

controlled variation in the determined size of the end product (Bordaz 1971, 11–12).  

It is important to note however, that the greatest ratio of fine silcrete segments to 

flake-blades occurs in level 18, prior to the rise in prominence for fine silcrete flake-

blades in the sequence.     The creation of longer flake-blades, potentially as blanks 

for increased design possibilities, may explain the seeming varying preference for 

fine-silcrete segments across time, but flake-blades made of these materials tend to be 

smaller overall (Singer and Wymer 1982, 93). 
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5.5.3.6 Worked flakes (Comparison with La Riera) 

At Klasies River, the term ―worked flakes‖ was used to describe a variety of flake or 

flake-blade types exhibiting modification through secondary working (Singer and 

Wymer 1982, 73).  Although not entirely absent from the MSA, retouched forms are 

relatively scarce in these deposits compared to in the Howieson‘s Poort.  Worked 

flake categories from Klasies River include scrapers, denticulates, and notched flakes 

among others.  These three categories are also noted in the La Riera sequence.  

Although retouched forms are relatively ubiquitous throughout the later Upper 

Palaeolithic of Cantabrian Spain, side-scrapers, denticulates and notches are noted in 

the La Riera report as being prominent in the sequence during periods when backed 

bladelets are not so prolific at the site (Straus et al. 1986, 189).  Although the 

proliferation of worked pieces associated with the Howieson‘s Poort is largely due to 

the crescents and allied forms, it is nevertheless interesting to note that relative to 

other MSA deposits at the site, scrapers and denticulates are relatively sparse in these 

levels.  Of 58 scrapers recorded for the Howieson‘s Poort, 35 were concentrated in 

levels 20 and 21; only 4 denticulates were recovered from the entire phase.  This 

apparent similarity between trends in scrapers and denticulates between the two sites 

merits further investigation.     

 

At La Riera, the scrapers most commonly associated with pre-Magdalenian 

assemblages are side-scrapers, whereas most scrapers from Klasies (exact figures are 

not provided) in both MSA and HP deposits are end-scrapers (Singer and Wymer 

1982, 75; 98).  In both regions these types are manufactured predominantly from local 

quartzite.   

 

There is some debate as to the function of these tools, with Singer & Wymer 

remarking that their own experiments suggested poor longevity for their traditionally 

supposed use in the preparation of skins (1982, 75).  Without case-specific use-wear 

analysis, a single exact function for these tools cannot be ascertained at either site.  An 

assessment of end-scrapers from La Riera (Figure 66) shows that they do not strongly 

correlate with bladelets in the same manner as side-scrapers, although levels 17-20 

when backed bladelets are most numerous is a period when end-scraper representation 

is consistently low (6-8% of the retouched assemblage).  The significance of this trend 

is not clear other than that they do not negatively correlate as strongly with backed 
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bladelets as much as the side-scrapers, and might have been a functionally distinct 

tool group from one another.  Therefore it may be inappropriate to stress a common 

trend in this area.   

 

 

Figure 66: Graph showing percentage of retouched assemblage comprising endscrapers at La 

Riera, Cantabria 

 

Denticulated flakes go from being the most numerous type of worked flake in MSA 
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Wymer 1982, 73; 99).  It is important to note, however, that in the MSA II levels from 
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It could result from difference in the spatial patterning of activities at the sites, 

perhaps relating to the exposed nature of KR 1A compared to more protected areas, or 
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times.  Alternatively, given the expanse of time covered by the MSA II, it could 

simply be the result of temporal variation in behaviour.  Whatever the reason, the 
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unclear, and their categorisation allows for a high degree of internal morphological 

variation.  At Klasies it was speculated that they may have been used in minor, less 

strenuous butchery activities or fish processing (Singer and Wymer 1982, 75), while 

at La Riera it has been suggested that they may have served for tendon cutting (Clark 

et al. 1986, 341). 

 

The final worked flake type, notched flakes, is noted as relatively uncommon in 

backed bladelet dominated levels at La Riera.  At Klasies, conversely, they are most 

prevalent in the Howieson‘s Poort levels and barely present in MSA phases, 

seemingly at odds with the trend noted at La Riera.  This is arguably the result of a 

disparity between regionally defined lithic terminologies.  Although, as discussed 

earlier, the term flake-blade as used at Klasies is not restricted exclusively to neat and 

regular blade or bladelet classes, they nevertheless conform to a loose categorisation.  

The notched pieces referred to by Straus & Clark (1986) are generally larger and more 

variable in form.  Notched bladelets are afforded separate designation (Straus and 

Clark 1986b); accordingly it may be assumed that notched blades (had there been any 

recovered) would have also been distinguished.  Although their representation 

throughout the sequence is sparse, there is no clearly discernible chronological 

restriction on their distribution.  This disparity in the terminology means that a 

comparison between ―notched flakes‖ at Klasies and ―notched pieces‖ at La Riera is 

inappropriate. 

 

While the trend in denticulates associated with backed bladelets at La Riera and 

retouched crescents and allied forms at Klasies may be similar, analogous patterns in 

scrapers and notched pieces are unclear.  Further clarification of the specific scraper 

form weakens the apparent similarity, and a difference in the configuration of the 

assemblages means there is no suitable equivalent piece at Klasies for the notched 

pieces described at La Riera.  These superficially similar trends in lithic patterns are 

therefore not actually as strong as they may seem.   

    

5.5.4 Crescents, Trapezes and Allied Forms 

Singer & Wymer divided these backed elements into several sub-categories: 

completely blunted crescents, partially blunted crescents, trapezes, triangles, obliquely 
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blunted points forming an angle, obliquely blunted points forming an arc, broken 

indeterminate forms, unfinished or aberrant forms, notched and snapped rejects (1982, 

98).  The most common forms, crescents and lunates (confusingly referred to at other 

sites e.g. Sibudu as segments) and trapezes are shown in Figure 31.  The Howieson‘s 

Poort crescents and allied forms, whilst microlithic in form in accordance with some 

other African microlithic industries (Ambrose 2002), have a high upper size limit 

(some pieces are over 5cm in length).  Unfortunately, these tools are not graded in 

size, so it is impossible to isolate truly microlithic forms.   

 

Although not strictly part of this study population, backed forms from 

stratigraphically contemporary deposits in KR Cave 2 have been subjected to 

microwear analysis, and 18 out of a sample of 85 artefacts (21%) were found to have 

diagnostic impact fractures (Wurz and Lombard 2007, 7).  Similar studies have been 

conducted on Howieson‘s Poort assemblages that also strongly suggest these pieces 

served as hunting armatures (Lombard 2005a; 2005b; Pargeter 2007; Lombard and 

Pargeter 2008; Lombard and Haidle 2012), bearing out Singer and Wymer‘s original 

interpretations (Singer and Wymer 1982).  It remains unclear as to whether these 

particular pieces were part of hand-delivered spears or projectile armatures (Wurz and 

Lombard 2007, 11).  In addition to the results discussed above, the examination of 

222 backed pieces from Deacon‘s re-excavation of KR1A identified visible impact 

scars on 6.3 % (n = 14) (Villa et al. 2010, 638).           
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Figure 67: Graph showing ratio of “crescent and allied form” sub-types from the Howieson’s 

Poort of KR1A 

 

 

 

 

Figure 68: Graph showing flake-blades < 4cm long (local quartzite and fine silcrete) relative to 

crescents and allied forms throughout the HP at KR1A 
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Figure 67 shows the different variants according to Singer & Wymer (1982) as 

percentages of the total tool category throughout the Howieson‘s Poort.  Three 

variants are excluded from this graph: triangles, unfinished or aberrant forms and 

notched and snapped rejects.  Although their presence is important, they never 

account for more than a minor component of the crescent assemblages at the site.  

Figure 67 shows that completely blunted crescents are the dominant type in levels 21-

19, and 15-11, and are dominant by a clear margin (> 10%) in levels 20, 19, 15, 14 

and 13.  Broken and indeterminate forms replace them as the dominant form in levels 

18-16 and again slightly in level 10.  The only other form to notably surpass 

completely blunted crescents is trapezes in level 16.  Following a downturn in 

trapezes in level 15 after this peak, they then comprise an absolutely negligible 

portion of assemblages for the remainder of the Howieson‘s Poort.  Other forms 

fluctuate moderately in low quantities throughout the sequence, with partially blunted 

crescents curiously absent in levels 16 and 15 when completely blunted crescents 

transition from relatively low representation back to a dominant portion of the 

assemblages.   

 

In Figure 68, the number of crescents and allied forms is compared to the number of 

flake-blades less than 4cm in length of local quartzite and of fine silcrete.  The 

relationship is expressed as a percentage of the total assemblage excluding flakes for 

each level.  Although the value of comparing a tool type with no size restrictions 

against another with an arbitrary cut-off point might seem questionable, it is 

nevertheless interesting to note that with the exception of level 13, the disparity 

between crescents and their allied forms and local quartzite flake-blades less than 4cm 

in length never exceeds 15%.    

 

5.5.4.1 Raw Material Use For Crescents and Allied Forms                 

Visual comparison of the raw material division among Crescents and allied forms 

(Figure 50) with fluctuation in the sub-types of tool within this category (Figure 68) 

suggest some potential correlations for further exploration.  (Figure 69 - Figure 72) 

isolate some of these relationships.  Using spearman‘s rank correlation coefficient, it 

was possible to assess whether these perceived trends in tool sub-types and raw 

material selection are significant or not.  The significance value is always assessed at 
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10 degrees of freedom, as there are 12 levels (data sample points) being compared, 

when the degrees of freedom is derived from ―n-2‖ where ―n‖ is the number of 

samples (Blalock 1972, 400).  The relationship between quartz and completely 

blunted crescents was found to be significant, accepted at over 95% confidence with a 

value of 0.67.  The relationship between fine silcrete and trapezes was even more 

significant, accepted at over 95% and only just less than 99% confidence with a value 

of 0.74.  Perceived similarities between completely blunted crescents and quartzite, 

and trapezes and broken indeterminate forms with hornfels were shown to be 

insignificant.  Appendices 27-30 show the input data for generating these values.   

 

If material use within the tool category was exclusive to one single sub-type of tool, 

then there would be no difference between the two in their percentage of the crescent 

assemblages.  This is clearly not the case.  However, the fact that trends in raw 

materials significantly correlate with the quantity of particular tools shows that some 

types clearly favoured certain materials over others.  Most notably, trapezes heavily 

utilised fine silcrete, and much of the quartz within the assemblage was used for 

completely blunted crescents (although this by no means suggests that the completely 

blunted crescents were made mostly of this material).  Perceived relationships 

between fine silcrete and hornfels with broken and indeterminate forms (Figure 69 

and Figure 70) were also tested.  The perceived similarity between these types was 

deemed insignificant.     
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Figure 69: Graph showing crescents and allied forms made of silcrete plotted against trapezes 

and broken indeterminate forms 

 

 

 

 

Figure 70: Graph showing crescents and allied forms made of hornfels plotted against trapezes 

and broken indeterminate forms 
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Figure 71: Graph showing crescents and allied forms made of quartz plotted against 

completely blunted crescents 

 

 

 
 

Figure 72: Graph showing crescents and allied forms made of local quartzite plotted 

against completely blunted crescents 

 

5.5.5 Worked Bone 
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the Howieson‘s Poort at Sibudu. 
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5.5.6 Trends In Flake-Blades and Crescents & Allied Forms 

Howieson‘s Poort deposits have a generally lower proportion of flake-blades than 

other KR1A levels, with level 15 being the notable exception (Singer and Wymer 

1982, 108).  Small flake-blades (< 4cm long) are a proportionally greater component 

of the flake-blade assemblages between levels 22 and 10 though.  Within the 

Howieson‘s Poort, the proportion of small flake-blades is increased between levels 

17-11.  This is largely the result of an increase in fine-silcrete flake-blades (which are 

mostly < 4cm) between levels 17-14, which is followed by an increase in small flake-

blades of local quartzite between levels 14-11.  During this latter stage of the 

Howieson‘s Poort sequence, crescents and allied forms reach their greatest level of 

representation.  In the fine-silcrete dominated phase of the HP sequence, crescents and 

allied forms are found in their lowest frequency.  This period is also when trapezes 

become a more dominant crescent sub-type, correlating strongly with the rise in fine-

silcrete.  As the peak in trapezes begins to decrease in level 15, a more substantial 

increase in completely blunted crescents begins, peaking at 64% of the crescent 

assemblages in level 13.  Quartz correlates with this sub-type, and while it is well 

represented in flake assemblages from level 15-10, it barely features at all in flake-

blade assemblages.  For the rest of the Howieson‘s Poort (before and after levels 17-

14), local quartzite is generally the dominant material for both flake-blades (> 80%), 

and crescents and their allied forms (> 70%) in most levels. 

 

5.5.6.1 ―Exotic‖ vs. ―Non-Local‖ Materials 

The Howieson‘s Poort lithic industry at Klasies River Mouth is notable for 

comprising a high quantity of so-called ―exotic‖ fine-grained stone materials 

compared to other deposits within the sequence (Singer and Wymer 1982, 90–93; 

Villa et al. 2010, 634).  The frequency of fine-grained materials in the final MSA II 

and earliest MSA III deposits is also high (Ambrose 2006, 366).  This has led to 

suggestions that as a technological development, the Howieson‘s Poort was facilitated 

by changes in exotic material procurement networks (Lombard 2006c, 38).   

 

In Villa et al.‘s assessment of the KR1A HP assemblages, hornfels, chalcedony and 

crystal quartz account for a relatively minor overall portion, with quartzite, silcrete 

and vein quartz being the dominant materials (2010, 364).  Singer and Wymer 
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originally divided the silcrete assemblage into coarse (still finer-grained than most 

quartzites) and fine grained categories, which have subsequently been further divided 

for material from Deacon‘s excavations to distinguish fine and very fine-grained 

varieties (Villa et al. 2010, 635).  The use of ―exotic‖ and ―non-local‖ to describe 

fine-grained materials from the site are no longer interchangeable, as the latter is now 

considered to imply a known origin point a certain distance from the site (Minichillo 

2006).  Accordingly, they are now referred to as ―exotic‖ materials.   

 

5.5.6.2 Material Procurement 

Several attempts have been made at modelling the raw material procurement 

strategies used during the Howieson‘s Poort.  Ambrose maintains (2006) the view, 

first set out in the 1990‘s (Ambrose and Lorenz 1990) that the proliferation of fine-

grained exotic materials in the Howieson‘s Poort reflects expanded networks of 

contact during this period as a response to the deteriorating environments of OIS4.  

The return to quartzite and abandonment of small backed geometric elements in MSA 

III is explained by the collapse of these networks, their necessity being relieved in the 

wake of ameliorating climates (Ambrose 2006, 367).  An alternative hypothesis posits 

that these changes result from intensification in lithic foraging, as a response to the 

requirements of hunting technology adapted for the maintenance of MSA prey 

selection in increasingly arid climates (Minichillo 2006).  Both hypotheses relate the 

importance of ecological change as a factor in raw material selection.  While much of 

the quartzite used throughout the MSA was likely sourced locally, perhaps from 

beach cobbles, a main issue of contention between the models summarised above is 

the supposed distance travelled in the procurement of ―exotic‖ materials.  With our 

continued ignorance regarding the provenance of many of these materials, this issue 

remains irresolvable.  What is clear, and supported by both the models mentioned 

above, is that the changes in raw material selection and tool design are intrinsically 

related, with the tool design seemingly occurring after the shift in selection. 
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5.6 Review   

 

The transition into the Howieson‘s Poort is not as smooth as is perhaps sometimes 

portrayed: Level 22, the rockfall member, represents a serious disruption in the 

depositional history of the site.  Likewise, the amount of scree interspersed among 

and between delineated MSA III deposits also makes comparative inference with 

other portions of the KR 1A sequence complicated.  These issues have probably also 

complicated the attainable accuracy of dating programmes e.g. (Feathers 2002).  

Although the KR 1A sequence is easily mistaken for being largely uninterrupted, the 

disruption in deposition both before and after the Howieson‘s Poort gives cause for 

evaluating this view.   

 

While Deacon‘s excavations of the site have provided a much clearer record of the 

site stratigraphy at KR 1A (Thackeray and Kelly 1988; Deacon and Geleijnse 1988; 

Wurz 2000; Villa et al. 2010), the majority of excavated and recorded material is 

ordered according to the gross units outlined in Singer & Wymer‘s original 

investigation.  Villa et al. (2010) provide the most informative alignment of the two 

matrices, but transferring between schema remains too problematic an endeavour.  

What is clear from comparing the Howieson‘s Poort levels to other portions of the KR 

1A sequence is that the occupation of the site changed dramatically during this period.  

It is important to note that this should neither imply homogeneity in the occupation of 

the site during the Howieson‘s Poort, nor during the rest of the MSA as has been 

attested by Wurz (2002; 2005), and that similarity between levels in other portions of 

the sequence may belie less superficial differences.  The laminar series of dark 

carbonaceous deposits that comprise the Howieson‘s Poort does, however, support a 

departure in the occupational history of the site, with most interpretations agreeing on 

more frequent episodic use of the cave.  Concurrent climatic and environmental 

changes may also be a factor in the formation of these unique deposits.  The number 

of individual occupation episodes masked by Singer & Wymer‘s scheme (Wurz 2000) 

means that the data collated through their excavations can only be used to infer 

general changes through time, assuming that the repeated occupation of the site during 

this time did not significantly disturb the superposition of material and deposits, 

something which may well have been the case.   
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Unfortunately, the degree of conflation in deposits of such antiquity limits the extent 

to which internal variation within the chrono-cultural units can be detailed.  In this 

respect, Appendix 14 is inherently less insightful than its La Riera counterpart, with 

both diagrams designed within the restrictions of the stratigraphic frameworks of the 

sites.  Nevertheless, it is possible to distil some trends, particularly with further 

investigation of the lithics which have the most qualitative data recorded.  These 

remains have offered the only real avenue for assessing the internal variation within 

the Howieson‘s Poort that Singer & Wymer called for (Singer and Wymer 1982).  

 

5.6.1 Summary  

As noted by Singer and Wymer in their original report (1982, 107–104), the contrast 

between the Howieson‘s Poort and MSA deposits of Klasies River is stark, 

particularly in the lithic industries.  Although subsequent research has revealed far 

more nuanced variation in the other MSA sub-phases of the sequence (Wurz 2000; 

2005), the Howieson‘s Poort industry remains by far the most visibly distinct juncture 

in the history of the site.  Although there is no dramatic shift in the prey represented at 

the site, the change in the lithics is matched by some broadly synchronous changes in 

the fauna, with a much more diverse range of species being hunted, and with cape 

buffalo and zebra coming to the fore, the latter being unprecedented at the site until 

this time.  These changes are underpinned by changing trends in the local 

palaeoenvironment, with the Howieson‘s Poort itself characterised as a cool and open 

period from evidence at the site.  With dating estimates having regularly been refined 

or revised over the last three decades, a major research focus has been matching the 

period to a suitable climatic stage.  Different methods have resulted in differing 

estimations, with those that put the deposits during late OIS4 conforming with dates 

obtained from other Howieson‘s Poort yielding sites.      

 

Trends in lithic use at the site are most apparent.  While previous researchers have 

elaborated on the continuation and innovation of particular aspects of behaviour 

throughout the Howieson‘s Poort (Singer and Wymer 1982; Thackeray and Kelly 

1988; Wurz 2000; Wurz 2002; Villa et al. 2010), this study has shed some further 

insight.  The trend of ―microlithisation‖, associated so strongly with the Howieson‘s 

Poort, is restricted neither to the classic geometric forms characteristic of the industry, 
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or to pieces made from exotic materials.  In fact, local quartzite continues to play a 

dominant role throughout most of the Howieson‘s Poort, albeit much less so than in 

bracketing MSA phases.  Interesting nuances over this period of time in the selection 

of different materials for certain tool-types and size categories have been identified, 

addressing Singer and Wymer‘s request for greater detail regarding internal variation 

within the period.  It has also been shown, in some of the lithic analyses but also the 

palaeoenvironmental and faunal studies, that what might be considered ―typically‖ 

Howieson‘s Poort trends actually extend moderately beyond the stratigraphically 

delineated boundaries for the period.  The key findings of the work presented here is 

summarised in the discussion section, where the implications for understanding 

hunting behaviour are also considered.        
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6 Howieson’s Poort of Southern Africa (Comparative Sites) 

6.1 Sibudu 

Sibudu cave, which is technically a rock-shelter on account of its size (55m long x 

18m across), is located 40km north of Durban and 15km inland from the Indian ocean 

in the KwaZulu-Natal province of western South Africa (Figure 73) (Wadley and 

Jacobs 2006).  Excavations have revealed an extensive sequence spanning from the 

Iron Age through to the MSA including Howieson‘s Poort and Still Bay phases.  The 

shelter is around 100m a.m.s.l but the site‘s southern entrance is around 12m lower 

than the excavation area, giving an abrupt north-south slope to the floor surface 

(Wadley and Jacobs 2004, 145).  The shelter is situated in cliffs of shale and 

sandstone, and was probably formed after the lowering of the channel for the Tongati 

river during a marine regression (Wadley and Jacobs 2004, 145), which today flows 

some distance below the shelter.  The location of the site is partially hidden by forest 

where woodcutters and sugarcane farmers have not yet reached (Wadley and Jacobs 

2006, 2).                

6.1.1 History of Work 

The first archaeological excavation at Sibudu was in 1983 by Aron Mazel in the form 

of a small trial trench located where grid squares C3 and D3 (Figure 74) (Wadley and 

Jacobs 2006, 4).  Although recording of this excavation remains unpublished, 

radiocarbon dates acquired from the excavation inspired the renewal of more 

extensive investigation under a team headed by Lyn Wadley in 1998 (Wadley and 

Jacobs 2004).  With work at the site having been conducted more or less continuously 

since then, there is no single site report to contain the various analyses that have been 

pursued.  However, the site is notable for the range in scope of research that it and the 

material it has yielded have been subjected to.  As well as the intermittent publication 

of research elsewhere, two notable collations of work have been so far published.  The 

first is a collection of papers presented in the March/April 2004 edition of the South 

African Journal of Science volume 100, where the discovery of Howieson‘s Poort 

deposits were first discussed (Wadley and Jacobs 2004), and the second is the 

November 2006 instalment of Southern African Humanities, volume 18(1), devoted in 

its entirety to discussion of work conducted at the site featuring, among other projects, 

research into the recently uncovered Howieson‘s Poort occupation.  An in depth 
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analysis of specifically the Howieson‘s Poort lithic assemblages was published in 

2008 (Wadley 2008).  Pre-Howieson‘s Poort deposits identified as pertaining to the 

Still Bay were announced in 2007 (Wadley 2007). 

 

 

 

Figure 73: Map of South Africa showing Sibudu 

 

The most recent detailed documentation of the excavations conducted at Sibudu is 

that provided by Wadley and Jacobs (2006).  At this time, excavations had been 

conducted in an area of 21m
2
 with a 2m

2
 trial trench begun in 1998 representing the 

deepest extent of the sequence (Figure 75).  A rock base (rock fall) was found after a 

depth of around 3m was reached in 2005 (Pickering 2006) and initially, it was only in 

these squares that sufficient depth had been reached to reveal Howieson‘s Poort and 

pre-HP deposits (Wadley 2007), although by the time of Lyn Wadley‘s assessment of 

the Howieson‘s Poort lithics was published, excavation had been extended to included 

material recovered from neighbouring squares C5 and C6 (Wadley 2008).   
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Figure 74: Sibudu site plan 
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Figure 75: Sibudu Stratigraphic Section B6/B5 
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Lithics from these deposits have been extensively analysed (Cochrane 2006; 

Cochrane 2008; Delagnes et al. 2006; Lombard 2006a; 2006b; 2008a; Lombard and 

Phillipson 2010; Lombard 2011; Wadley 2005; Wadley 2007b; Wadley 2008; Wadley 

and Mohapi 2008; Williamson 2005) and despite the limited area of excavation in the 

rock-shelter, provide a strong database.  The faunal assemblages have also been well 

documented (Plug 2004; Clark and Plug 2008) including microfauna (Glenny 2006) 

and bird remains (Plug and Clark 2008) among others.  A range of investigations have 

also targeted environmental reconstruction at different points throughout the extensive 

occupational history of the shelter, although not all of these have focussed on the 

Howieson‘s Poort deposits (Allott 2005; Allott 2006; Glenny 2006; Reynolds 2006; 

Sievers 2006; Wadley 2004; Wells 2006).  A reflective synopsis of the significance of 

these and other projects for interpretations of life at the site has also been published by 

Lyn Wadley (2006).   

 

6.1.2 Stratigraphy 

The stratigraphic sequence at Sibudu spans from pre-Still Bay through to final MSA.  

It is one of only a few sites where Still Bay and Howieson‘s Poort deposits are 

stratified with one another at the same site.  Although by 2008 excavations had 

extended to include material from squares C5 and C6 (Wadley 2008), the main 

stratigraphic reference sequence remains that of B5 and B6 detailed by Wadley and 

Jacobs and located in the northern sector of the excavation grid (2006).  Figure 75 

shows broad chrono-cultural phases as delineated archaeologically in the stratigraphic 

sequence by Jacobs et al. (2008).  Individual level names serve as abbreviations for 

their basic descriptions, detailed in Wadley and Jacobs (2006).  The Howieson‘s Poort 

pertains to levels GR (Grey Rocky), GR2 (an artificial split to GR), GS (Grey Sand), 

GS2 (an artificial split to GS) and PGS (Pinkish Grey Sand).  These levels directly 

overlay RGS (Reddish Grey Sand) and RGS2 (an artificial split to RGS) identified as 

Still Bay deposits (Figure 75).  Levels identified as artificial splits serve to divide the 

material of the site at this antiquity into more manageable units.  As well as several 

hearth deposits, levels WA, DRG (Dark Reddish Grey) and DRG2 are also 

sandwiched within the Howieson‘s Poort chronology.  Although DRG is noted as 

being an undated small lens of loose silt with small rock spalls, DRG2 and WA are 

not described (Wadley and Jacobs 2006, 10).  Following the convention established at 
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the site, it might be assumed that DRG2 refers to an artificial division of DRG on the 

grounds that the deposit is over 10cm deep (despite also being noted as a small lens), 

and WA most likely refers to a deposit of White Ash, as described elsewhere higher in 

the sequence (Wadley and Jacobs 2004; 2006) and in accordance with a tiny level 

labelled as ―WA hearth‖ between GS and GS2 in grid square B5 (Figure 75).   

 

6.1.3 Dating 

Both radiocarbon and OSL dating methods have been employed at Sibudu, with the 

former proving the more accurate and reliable of the two methods, as experienced 

with attempts at providing chronologies for other sites of MSA antiquity (Wadley and 

Jacobs 2004, 146).  Much of the archaeological sequence is beyond the effective limit 

of the radiocarbon curve.  Consequently, only OSL estimations have been provided 

for the Howieson‘s Poort at Sibudu.  Dates for this phase were not announced until 

2008 (Jacobs et al. 2008; Jacobs and Roberts 2008; Wadley 2008), although dates 

acquired from deposits in the overlying sequence strongly suggested a conventional 

approximation of older than 60kya (Wadley and Jacobs 2006).  Likewise, prior to 

obtaining actual dates directly from the Still Bay levels, it was possible to provide a 

rough terminus post quem for their deposition at around 70kya (Wadley 2007b).  Both 

of these estimates have been confirmed by the extension of dating efforts at the site 

presented below in Figure 76. 

 

 

Figure 76: Sibudu OSL Dates (Wadley 2008) 
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Prior to obtaining dates for these phases, it was already possible to assess the 

generalised overall occupational history of the site from those acquired from the 

overlying sequence.  The site has been characterised by relatively short and 

punctuated occupations separated by long hiatuses (Wadley and Jacobs 2006).  This 

interpretation is supported by the clustering of dates at around 60, 50 and 37kya.  

These suspected hiatuses are not geologically delineable events, but this has been 

suggested as perhaps due to wind preventing the accumulation of sediment during 

periods of non-occupation (Wadley and Jacobs 2006, 14).     

 

6.2 Lithics 

Several lithic analyses have been conducted on stone tools from Sibudu focussing on 

particular aspects of the assemblages.  Basic quantification of the Howieson‘s Poort 

lithic assemblages recovered from B5 and B6, excluding debitage from level PGS, 

which was not ready for analysis at the time, was published by Delagnes et al. (2006).  

This study does not provide a comprehensive breakdown of the assemblages however, 

and much of their analysis focuses in particular on the quartz pieces from level GS 

which, at the time, had provided the most backed quartz pieces (Delagnes et al. 2006, 

43).  Advancement in post-excavation has allowed later studies to incorporate 

material from squares C5 and C6 into their analyses, with level PGS now recognised 

as having thus far yielded the largest quantity of backed quartz pieces (Wadley and 

Mohapi 2008; Wadley 2008).  The report by Delagnes et al. (2006) remains the most 

detailed published account of the assemblages overall though, with other projects 

focussing almost exclusively on backed crescent segments.  Lithics from the as yet 

undated (Wadley 2008) lens levels DRG and DRG2, if indeed there are any, are yet to 

be described.  The section below summarises the main findings of the work published 

thus far on the Howieson‘s Poort assemblages from Sibudu, themed according to the 

main avenues of inquiry that have been pursued: the pertinent findings of the initial 

report (Delagnes et al. 2006), the key findings of research into the morphometric 

attributes of the backed pieces (Wadley and Mohapi 2008), and the key findings of the 

various use-wear investigations that have been conducted (most notably Lombard and 

Pargeter 2008; Lombard 2006b; 2008a; 2011).  Another section, focussing on further 

extrapolation from the basic raw material data information provided in the initial 

report (Delagnes et al. 2006) is also included.   
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6.2.1 Preliminary Assessment  

The initial account of the Howieson‘s Poort lithic assemblages from Sibudu was 

provided by Delagnes et al. (2006).  Although this study focussed primarily on backed 

quartz pieces from level GS, it also serves as the most generalised overview of the 

basic material quantification from this phase of the site.  Among the more notable 

findings of their report for my own investigation are those summarised below.   

 

Debitage       

Layer 
Crystal 
Quartz 

Milky 
Quartz Hornfels Dolerite Indeterminate Total 

GR 8 45 153 426 22 654 

GR2 17 44 176 422 13 672 

GS 44 53 177 274 18 566 

GS2 0 2 37 42 1 82 

       

       
Formal 
Tools       

Layer 
Crystal 
Quartz 

Milky 
Quartz Hornfels Dolerite Indeterminate Total 

GR 0 1 11 7 0 19 

GR2 0 2 20 15 3 40 

GS 8 1 19 3 3 34 

GS2 0 2 15 4 1 22 

PGS 5 1 28 9 0 43 

       
Backed 
Pieces       

Layer 
Crystal 
Quartz 

Milky 
Quartz Hornfels Dolerite Indeterminate Total 

GR 0 0 8 5 0 13 

GR2 0 1 13 10 0 24 

GS 8 1 11 3 2 25 

GS2 0 2 14 3 0 19 

PGS 5 1 21 6 0 33 

       

  = Different to originally recorded value (Delagnes et al. 2006)  

 

Table 22: Sibudu Raw Materials: Debitage, Formal Tools & Backed Pieces 

 

The Howieson‘s Poort at Sibudu is blade-rich with a high quantity of segments and 

other backed tools (Wadley 2008, 123).  Table 22 shows quantities of debitage, 

formal tools and backed pieces (a subcategory of formal tools) as recorded by 

Delagnes et al. (2006) from squares B5 and B6.  The debitage totals coloured yellow 

differ with those initially recorded by Delagnes et al., seemingly due to miscalculation 

on the part of the original analysts.  Backed pieces are manufactured on blades, while 
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other formal tools comprise almost exclusively of non-normalised retouched flakes 

(Delagnes et al. 2006, 45).  This perhaps explains the lack of further classification 

attempted for the assemblages. 

 

6.2.2 Blades or Bladelets? 

Delagnes et al. 2006 describe blades from GS according to their length, with mean 

estimates for dolerite, hornfels and quartz provided below (Table 23). 

 

Raw Materials Mean Blade Length (mm) 

Dolerite 30.8 ± 9.9 

Hornfels 29.1 ± 8.9 

Quartz 16.8 ± 4.5 

 

Table 23: Mean Blade Length 

 

It is clear that quartz was used for the production of smaller blades, and this relates to 

restrictions inherent in the dimensions of the original material (Delagnes et al. 2006, 

46).  The relatively large standard deviations, at least for pieces made of dolerite and 

hornfels, creates a unimodal distribution in size, i.e. there is no clear cut off point for 

two distinct populations.  This, combined with the fact that they all appear to have 

been produced by the same manufacturing process, leads Delagnes et al. to refrain 

from classifying bladelets as a separate category (2006, 46), as was also the case made 

at Klasies River (Wurz 1999, 42).  In line with the argument I made regarding Klasies 

River, our inability to separate two populations based upon size does not preclude the 

presence of what, under most classificatory criteria, would be recognised as bladelets.  

Furthermore, although width measurements are not provided, with a maximum length 

of around 40mm, I would suggest that the vast majority of what Delagnes et al. refer 

to as blades could be reclassified as bladelets according to the parameters of this 

investigation.     

 

6.2.3 Segments 

When used more generally, or not specifically in relation to Klasies River where the 

term was given a separate meaning by Singer and Wymer, segment is often used to 
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refer to the classic HP geometric backed pieces.  Regarding the segments, it is noted 

that crescents, trapezes and various intermediary forms are made from each of the raw 

materials.  Not all the pieces classed as segments are backed, and the mean length of 

quartz segments (13.3 ± 3.6mm) is notably smaller than that of hornfels and dolerite 

(a single value of 35 ± 12.2mm) provided (Delagnes et al. 2006, 48).  The proportion 

of quartz segments at Sibudu is higher than that recorded at Klasies in levels PGS, 

GS2 and GS but not GR2 and GR (2006, 47).  As with the ―blades‖ discussed above, 

quartz segments are notably smaller in size (Figure 77).  Those pieces that are backed 

(not exclusively segments) are presented as a percentage of the formal tool population 

(Table 24).   

 

 

 

Figure 77: HP Backed Crescent Pieces from Sibudu 

 

Phase 
% Formal 

Tools 

GR 68 

GR2 60 

GS 74 

GS2 86 

PGS 77 

 

Table 24: Sibudu HP backed pieces as a % of formal tools 
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6.2.4 Raw Materials 

In their basic quantification of the Howieson‘s Poort assemblages, Delagnes et al. 

(2006) provide some information regarding raw material use across the categories of 

debitage, formal tools and, within the category of formal tools, backed pieces.  

Comparison of trends within these categories allows us to make further inferences 

regarding raw material use at the site throughout this period.   

The main lithic materials used during the Howieson‘s Poort at Sibudu, as already 

mentioned, are the coarse-grained igneous rock Dolerite and the finer-grained 

Hornfels and Quartz.  Dolerite occurs in the immediate vicinity of the site and 

outcrops for both Hornfels and Quartz have been noted within approximately 20km of 

the site with the possibility of closer sources concealed by dune formation (Delagnes 

et al. 2006, 44).  Examples of all three types from level GS show that river cobbles 

were a source of lithic raw materials as well as geological outcrops (Ibid 2006).  

Following this assessment, the three materials used during the Howieson‘s Poort can 

all be regarded as locally occurring (Wadley 2008, 124).  Quartz has garnered the 

most interest of all the materials (Delagnes et al. 2006; Wadley and Mohapi 2008; 

Lombard 2011).   

 

The quartz tools recovered at the site can be divided in to one of two descriptive 

categories: milky quartz and crystal quartz.  Crystal quartz lacks the conchoidal 

fracturing properties associated with most other hard rocks, rendering its breakage 

unpredictable but producing smoother and sharper edges than most other hard rocks 

(Delagnes et al. 2006, 44).  Curiously, milky quartz is not distinguished in Wadley‘s 

analysis; only crystal quartz is discussed (Wadley 2008, 123).  Both types are found 

from the same sources as evidenced by adjoining pieces of milky and crystal quartz.  

It is unclear how much the fracturing properties of milky quartz differs though the 

specific reference to crystal quartz by Wadley perhaps suggests that milky quartz is 

more conducive to conventional breakage patterns.  In her discussion of the properties 

of quartz, Wadley notes that the edges neither become blunt nor require sharpening 

(Wadley 2008, 123), surely an important trait for the consideration of any prospective 

knapper.  It has been noted that the smoothness and sharpness of crystal quartz is 

greater than that of milky quartz (Delagnes et al. 2006, 54).  By contrast, knapping 

experiments conducted on locally occurring dolerite and hornfels has shown the 

former to require a high degree of impact force, limiting the amount of control that 
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can be effectively exercised, while hornfels is more brittle and allows greater control 

(Cochrane 2006, 74).         
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Debitage Raw Materials From The Howieson's Poort at Sibudu
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Figure 78: Graph showing debitage raw materials throughout the HP at Sibudu 

 

Formal Tools Raw Materials From The Howieson's Poort at Sibudu
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Figure 79: Graph showing formal tool raw materials throughout the HP at Sibudu 

 

Backed Pieces Raw Materials From The Howieson's Poort at Sibudu
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Figure 80: Graph showing backed pieces raw material use throughout the HP at Sibudu 
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Figure 78, Figure 79 and Figure 80 are derived from values (Table 22) calculated 

from data provided by Delagnes et al. (2006) and show raw material representation in 

debitage, formal tools and backed pieces as a sub-category of formal tools.  The total 

number of debitage pieces from levels GR2 and GS given by Delagnes et al. (2006, 

45) have both been corrected from 671 and 565 to 672 and 566 respectively (Table 

22) based on the assumption that the values for each level were recorded correctly.  

Dolerite accounts for the majority of debitage in each Howieson‘s Poort level (never 

less than 48%), followed by Hornfels (never more than 46%), and with the two 

quartzes never accounting for more than 18% (Figure 78).  For formal tools however, 

hornfels is by far the dominant material, never accounting for less than 50%.  Dolerite 

is the second most dominant material in all levels apart from GS, where it is surpassed 

by Crystal Quartz and is represented in equivalent amounts to rocks of indeterminate 

nature.  The percentage of dolerite in levels GR and GR2 (36-38%) is much higher 

than in levels GS, GS2 and PGS (8-21%).  Although there is a higher quantity of 

dolerite debitage in levels GR and GR2, the contrast is not nearly so great (Figure 79).  

The notably higher (>20%) proportional quantity of crystal quartz in GS is also 

reflected more moderately in the debitage assemblage (Figure 78), but amplified in 

the ratio of backed pieces (Figure 80).  Broadly speaking, the trends in backed pieces 

(Figure 80) reflect those shown in the formal tool category (Figure 79).  This is 

because they always account for a dominant portion of formal tools in each level 

(never less than 60%) (Table 24). 

 

Several broad trends across time can be identified.  Overall, hornfels remains the 

clearly dominant material in formal tools and backed pieces, and comfortably the 

second most dominant material in the debitage assemblages.  Dolerite, dominates 

debitage assemblages throughout the Howieson‘s Poort, and is the second most 

dominant material for formal tools and backed pieces in every level except GS where 

it is third.  Dolerite increases in importance in GR2 and GR.  Although this trend is 

only slight in the debitage assemblages, the contrast is greater in formal tools and 

backed pieces.  Milky quartz remains consistently low throughout all assemblages, 

and is completely absent from backed pieces in GR.  Crystal Quartz, on the other 

hand, is a notable component of formal tools and backed pieces in PGS and more so 

in GS, but absent from these assemblage groups in other levels.  Representation of 

crystal quartz also increases in the debitage assemblage of GS, perhaps reflecting the 
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higher instances with which it was recorded in formal tools and backed pieces from 

this level.  It remains relatively small in quantity however and both Dolerite and 

Hornfels seem even less reflective of trends in material use apparent in the 

manufacture of formal tools at this time (Figure 79).                          

6.2.5 Tip Cross Section Area (TCSA) and Metric Analyses 

Seeking to expand upon the findings suggested by the preliminary report by Delagnes 

et al. (2006), and compliment the contemporary and ongoing work of Marlize 

Lombard (2006b; 2008a; 2011), Wadley and Mohapi provided a more detailed record 

of the metric attributes of backed crescent segments (Wadley and Mohapi 2008).  In 

their analysis, they use TCSA (tip cross-sectional area) measurements to compare the 

Sibudu pieces to North American projectile armatures, as recorded by Shott (1997).  

They found there to be three discrete populations within the crescent segment type 

based upon size, and seemingly influenced by raw material selection (Wadley and 

Mohapi 2008).  They also noted a trend over time in the material and size of the 

pieces which is discussed below in the raw material section.  Finally, they observed 

similar TCSA values between quartz segments and arrowheads from their North 

American analogue population, believing their apparently standardised shape, in 

conjunction with residue analyses (Lombard 2006b), to indicate transverse hafting in 

the majority of cases.  The standardised shape of the quartz segments is taken to infer 

a lack of recycling or re-sharpening (Wadley and Mohapi 2008, 2600), a proposition 

supported by the fracturing properties recorded for the material (Wadley 2008, 124).    

Segments of Hornfels and Dolerite are suggested as having been hafted differently 

and with a closer affinity in size (respectively) to dart tips and spear heads (Wadley 

and Mohapi 2008, 2603).            

      

6.2.6 Residue and Use-Wear Analyses 

Marlize Lombard has, among others, subjected a range of artefacts from the Sibudu 

sequence to micro-residue analysis (Lombard 2004; 2005a; 2005b; 2006a; 2006b; 

Williamson 2005).  Similar analyses have been conducted on tools from other sites 

including Klasies River (Wurz and Lombard 2007), Rose Cottage (Gibson, Wadley, 

and Williamson 2004), Umhlatuzana (Lombard 2007) and most recently, Diepkloof 

(Charrié-Duhaut et al. 2013).  They have proved particularly effective at Sibudu 

because of the excellent organic preservation conditions associated with much of the 
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site‘s sequence.  These assemblages remain the most extensively studied using this 

methodology (Lombard and Wadley 2009), with 53 backed segments examined for 

residue traces (Lombard 2008a).  A further 16 quartz segments from Sibudu have 

been subjected to combined residue and use-wear analysis (Lombard 2011). 

 

6.2.6.1 Residue Analyses 

Of the 53 backed crescent segments subjected to micro-residue analysis, 11 were from 

GR and GR2, 20 from GS and GS2, and 20 from PGS.  The other two segments are 

not from Howieson‘s Poort deposits, with one from immediately overlying level YA2 

and the other from preceding Still Bay deposit RGS (Lombard 2008a, 31).  Not all the 

data recorded in Lombard‘s results table (Lombard 2008a, 32 Table 2) enumerate 

correctly (Table 25), but the trends show that animal processing, while not exclusive, 

is by far the best represented activity, particularly in GS, GS2 and PGS.  Traces of 

ochre and resin, likely used as adhesive mastic, were shown to be concentrated on the 

backed portions of most segments (Lombard 2006b, 64).  The distribution of the 

identified residues on individual segments helped inform estimations of hafting 

position.  Although distinguishing the full variety of suggested hafting possibilities is 

problematic, the results suggested change in preference over time, with transverse or 

longitudinal variants preferred in PGS, diagonal formats in GS and GS2, and an equal 

difference between the two preferences in GR and GR2 (Table 25) (Lombard 2008a, 

33).  Finally, Lombard was able to infer a chronological trend in the hafting materials, 

which appear to be predominantly bone in PGS, and wood in GR and GR2 with a mix 

of both hafting materials in intermediary levels GS and GS2 (Table 25) (Lombard 

2008a, 32).  It should be noted however, that some of the segments bear no traces of 

hafting, and that in many other cases the hafting material was indiscernible, 

potentially weakening the trend described for PGS and in GS and GS2.           
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Deposit 

OSL 
 Dates (kya) 

(Jacobs & Roberts 
2006) 

Hafting Material % Hafting Angle % Insets Used In 
Composite 

Hunting Tools 
(%) 

Wood Bone Uncertain Unhafted 
Longitudinal 

or Transverse 
Diagonal Uncertain 

GR   
54.5 0 27 9 45.5 45.5 0 63.5 

GR2 61.7 ± 1.5 

GS   
15 10 60 20 25 50 20 85 

GS2 63.8 ± 2.5 

PGS 64.7 ± 1.9 0 50 40 10 50 30 10 75 

 

Table 25: Results of Analysis (Lombard 2008a)  for tests on segment hafting materials and angle from Sibudu 

 



231 

 

6.2.6.2 Use-Wear Analyses 

Complementary to the studies of micro-residue traces, use-wear analyses have also 

been conducted that further support the notion of Howieson‘s Poort segments having 

been hafted as inserts in hunting weaponry (Lombard and Pargeter 2008; Lombard 

and Phillipson 2010a; Lombard 2011).  From a sample of 132 pieces, 22% exhibited 

what are recognised as diagnostic impact fractures, a value similar to that observed at 

Klasies and Umhlatuzana (Lombard and Pargeter 2008, 2528).  The frequency of 

diagnostic impact fractures recorded in these Howieson‘s Poort assemblages is around 

half of that (40%) recorded in Pargeter‘s experimental assemblage (n = 30).  This 

possibly results from the fact that each of Pargeter‘s experimental sample was shot 

into carcasses multiple times (x ≤ 10) into the ribcage, thus increasing the likelihood 

with which stress fractures may have occurred. 

 

 

 

Figure 81: Sibudu Notched Segment 

 

Lombard and Pargeter acknowledge that use as weapon tips is just one possibility for 

the use of these segments, albeit generally the favoured theory (Lombard and Pargeter 

2008, 2527).  The difference in the representation of diagnostic impact fractures may 

be indicative that HP segments had a more catholic use, that they may not have been 

used as intensively (repeatedly), or that the parameters of the delivery mechanism 

used by Pargeter differ notably with those used by Howieson‘s Poort hunters.  Results 

from Lombard and Pargeter‘s initial investigation formed the basis for their 

interpretation of notching, which occurs along the cutting edge of segments from 
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various Howieson‘s Poort assemblages (Figure 81), and is suggested as resulting from 

impact damage in cases where it has not been deliberately retouched (Lombard and 

Pargeter 2008, 2528).  Following on from these earlier analyses (Lombard 2006a; 

Lombard 2008; Lombard and Pargeter 2008), and the suggestions derived from 

studies of metrical attributes (Delagnes et al. 2006; Wadley and Mohapi 2008; 

Wadley 2008), subsequent investigations have focussed specifically on smaller quartz 

segments hypothesised as having potentially served as arrowheads (Lombard and 

Phillipson 2010a; Lombard 2011).  

 

Most recently, Lombard has published the results of a sample of 16 freshly excavated 

quartz segments, subjected to both residue and use-wear analyses.  In particular, she 

sought to investigate evidence of impact damage and traces indicative of having been 

transversely hafted in accordance with the hypothesis that these particular segments 

functioned as arrow tips (Lombard 2011).  Nine of the backed quartz tools appear to 

have been hafted in this manner.  Eight of these nine specimens show evidence of 

scars and striations associated with impact damage from this method of hafting as 

documented in hunting experiments (Lombard & Pargeter 2008).  Eight also bore 

traces of animal residue, but not the exact same eight that exhibit impact scars.  The 

sample size is too small to derive any informative diachronic trends from the study, 

although the results of Lombard‘s analysis further supports a trend from earlier 

investigations regarding a possible shift in the preferred hafting material from bone to 

plant between levels PGS and GS (2008a, 32; 2011, 1927).     

 

It is clear from these most recent investigations (Lombard and Phillipson 2010; 

Lombard 2011) and subsequent works (Lombard and Haidle 2012) that the notion of 

the bow and arrow as a delivery mechanism during the Howieson‘s Poort has gained 

favour in recent years.  The results of these integrated analytical methods seem 

compelling, but a method for unequivocal distinction between propulsion mechanisms 

remains unknown (Lombard and Phillipson 2010b, 638; Cattelain 1997), and other 

Howieson‘s Poort researchers remain sceptical of the hypothesis (Villa and Roebroeks 

2014; Villa et al. 2010, 640; Rots and Plisson 2014, 10; Igreja and Porraz 2013).  It 

should be remembered that the study sample examined is small.  The results 

interpreted as indicative of propulsion via bow and arrow delivery mechanisms only 

account for 56% of Lombard‘s most comprehensive investigation (2011).  Although 



233 

 

this may be a consequence of limitations with the analytical techniques used, it must 

be acknowledged that at this early stage in research, only a handful of pieces conform 

to the hypothesis, which itself only refers to a specific subset of Howieson‘s Poort 

segments as viable candidates, and belong to a single MSA site.  Aside from the fact 

that the bow as a delivery method need not be the only means by which the results 

observed were generated, much data is necessary to strengthen this hypothesis.           

 

6.2.7 Still Bay Lithics 

Preceding the Howieson‘s Poort at Sibudu is a Still Bay deposit divided into two sub-

units labelled RGS 1 and 2 (Reddish Grey Sand) and dated to 70.5kya (Jacobs et al. 

2008).  The date and stratigraphical relation of these deposits along with a lithic 

assemblage characterised by (mostly broken) bifacial points (n = 32) and very few (n 

= 4) backed pieces (one of which is a segment) confirms their designation as 

pertaining to the Still Bay (Wadley 2007b).  A total of 11,552 pieces were recovered 

from these deposits, of which 75 are exhibit retouch.  Table 26 below shows the 

frequencies of different tool types in these assemblages.  Bifacially worked tools 

account for 47% of retouched tools, the majority of which are broken points (only 2 

complete examples).  Of the broken point fragments, distal elements are best 

represented, but proximal elements and other fragments are also well represented 

(Table 26). 

 

  
Number of Retouched 

Pieces 
% Retouched 
Assemblage 

Unifacial Point 2 2.7 

Bifacial Point 2 2.7 

Partly Bifacial Point 1 1.3 

Broken Bifacial Point, proximal 
end 10 13.3 

Broken Bifacial Point, distal end 14 18.7 

Broken Bifacial Point, other piece 5 6.7 

Bifacial Tool 2 2.7 

Broken Bifacial Tool 1 1.3 

Scraper 5 6.7 

Notch 1 1.3 

Scaled Piece 8 10.7 

Broken Retouch 20 26.7 

Backed Tool 3 4.0 

Broken Backed Tool 1 1.3 

Total 75 100.0 

Table 26: Retouched Still Bay tools from Sibudu 
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Figure 82: Graph to show raw material use according to lithic type from the Still Bay at Sibudu 

 

Although the possibility of a Still Bay at Klasies River has been mooted, there 

remains insufficient evidence to certify anything archaeologically recognisable as 

such in the levels preceding the Howieson‘s Poort (Wurz 2000, 91).  Following the 

recent dating efforts by Jacobs et al. (2008), the Still Bay is widely considered the last 

archaeologically visible period prior to the Howieson‘s Poort, and it is the diagnostic 

bifacial points that are generally considered to have functioned as components of 

hunting tools or alternatively perhaps as knives (McCall and Thomas 2012, 15) that 

are predominantly cited as type-fossils for the industry.  Assessment of the points 

from Sibudu, largely informed from the results of preliminary residue analysis 

(Lombard 2006a) favour an interpretation of hunting (Wadley 2007b).  The basal 

form of these points is either rounded or pointed, although in the case of the latter, this 

is not interpreted as evidence of having both been utilised (Wadley 2007b).  It is 

believed that they may have been re-sharpened within their hafts (Lombard 2006a).  

Based on TCSA measurements, Wadley has likened their form (and from this their 

function), to that of thrusting spears (2007b, 686).  The assemblage debitage is 
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characterised as being flake oriented rather than blade based contra the Howieson‘s 

Poort assemblages.                              

 

Dolerite, quartzite, hornfels and quartz were all used during the Still Bay, with other 

rock types amalgamated.  A diversity of these materials is represented, if at times 

minimally, across many of the different tool types (Figure 82).  The assemblage size 

of the Still Bay deposits is relatively small, rendering it difficult to infer meaningful 

trends in raw material use.  It is clear however, that dolerite dominates as the main 

material type for nearly every tool type (scrapers being the exception where hornfels 

is slightly better represented).  In particular, it accounts for 70% or more of chunks, 

flakes, broken flakes, blades and bladelets, and broken blades, but between 

approximately 40 and 55% for points and point fragments, scrapers, backed tools and 

cores.  Hornfels is the second most dominant material (except in scrapers as already 

mentioned) and generally accounts for between 10 and 25% of each tool type.  

Quartzite is represented in every tool type except backed pieces, and accounts for 

more than 10% of points, point fragments, scrapers and cores.  Quartz features 

notably (25% +) in backed tools (although this tool type is small in number) and cores 

(total n = 22).           

 

6.2.8 Post-Howieson’s Poort Lithics 

The 35 levels immediately overlying the Howieson‘s Poort are referred to as the 

―post-Howieson‘s Poort‖.  Dates from layers deposited after the Howieson‘s Poort 

have a weighted mean age of 57,500 ± 1400 kya (Jacobs et al. 2008), but the seven 

levels immediately overlying the Howieson‘s Poort have not yielded dates.  The 

youngest age of the HP is 61.7 ± 1.5 kya from GR2 (Wadley 2008), which grounds 

the theory that the seven undated levels (approximately 20cm thick in total) that 

represent the stratigraphically immediate post-Howieson‘s Poort likely do not 

represent a significant temporal lag (Cochrane 2008, 162).  The first level following 

the Howieson‘s Poort to be dated is ―B/G mix‖, with an age estimate of 58.2 ± 2.4 kya 

(Jacobs et al. 2008).  Levels BuYA2 to G1 (Figure 83) comprise a phase of the 

sequence (approx 40cm thick) referred to as ―post-HP MSA 2‖ (Cochrane 2008, 162; 

Clark and Plug 2008) which is considered to constitute the immediate post-

Howieson‘s Poort.  Two of these deposits, GuYA and BLBY1, are not clear in any 
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stratigraphic matrix I have been able to find published, and are apparently not 

discussed in Wadley and Jacob‘s more comprehensive discussion of the site 

stratigraphy (2006).  A ―post-HP MSA 1‖ is also noted overlying the post-HP MSA 2 

phase, comprising levels P1 (a discontinuous lens not shown in section) through to 

level BSp (Cochrane 2008, 162).  The lithics from these and other later MSA deposits 

are among the best documented assemblages from the site (Cochrane 2006), and 

although investigators have refrained from labelling it as such, these levels appear to 

be at least approximately contemporaneous in age and stratigraphic location with the 

MSA III deposits as recorded at Klasies River (Feathers 2002; Jacobs et al. 2008).  

 

 

 

Figure 83: Stratigraphic section of Sibudu showing horizon between post-HP MSA 2 and 1 

 

 

Lithics from the post-Howieson‘s Poort have been presented in aggregate because of 

the clustering of dates (Cochrane 2006) but perhaps also to negate small assemblage 

sizes from some of the smaller deposits within the sequence.  Raw material 

frequencies for the assemblages (excluding pieces classified as chips) represent the 

only lithic data detailed at the resolution of individual deposits (Cochrane 2006).  
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Otherwise, the only further partitions of this period are the sub-phases described 

above.  While the assemblage structure of the Howieson‘s Poort is given per-

stratigraphic level (5 delineated in total) it remains poorly detailed, whereas the 

assemblage structure of the post-Howieson‘s Poort is well detailed overall but 

presented in aggregate (35 levels delineated in total).  Furthermore, the terminology 

used to describe the two phases varies, with the Howieson‘s Poort divided into 

debitage and formal tools, and the post-Howieson‘s Poort afforded a more fine-

grained description according to retouch and form.  This renders attempts to contrast 

the phases problematic leaving it best to refer directly to the descriptions provided by 

the site research team themselves (Wadley 2006; Cochrane 2006; Cochrane 2008).      

 

Figure 84: Graph showing dolerite and hornfels in contrast to quartz and quartzite in the Post-

HP MSA 2 of Sibudu (Cochrane 2008) 

 

Within the post-HP MSA 2 phase, 3163 artefacts were excavated, of which only 12 

(0.4%) were retouched.  The only backed piece came from the deepest layer, although 

two backed pieces were also recovered from the retouched tool assemblage of 

overlying post-HP MSA 1 (Cochrane 2006).  Blade and bladelet production continued 

but became a comparatively minor technological mode with flake production 

replacing it as the main manufacturing emphasis.  Interestingly, dolerite and hornfels 

combined do not account for more than 15% of raw materials in the first three layers 
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above the Howieson‘s Poort but increase after these levels, with quartz and quartzite 

corresponding in an approximately inverse trend (Figure 84).  Despite being a 

potentially important component of Howieson‘s Poort (Lombard 2011), quartz does 

not account a large portion of these assemblages (Figure 85).  In general, the trends 

established by the end of post-HP MSA 2 are consolidated in the ensuing post-HP 

MSA 1 (Cochrane 2008, 163).  Retouched tools account for a negligible portion of the 

overall assemblage (1.33%) excluding chips, which is certainly less than the 

percentage of ―formal tools‖ counted among Howieson‘s Poort assemblages.  There is 

little standardisation in form, and they consist primarily of scrapers and unifacial 

points (Cochrane 2006), different to the bifacial forms that predominate in the pre-HP 

Still Bay assemblage.         

 

 

 

Figure 85: Graph showing dolerite and hornfels in contrast to quartz and quartzite throughout 

Post-HP MSA 2 and 1 at Sibudu (Cochrane 2008) 

 

6.2.9 Overview of Lithics  

Although comprehensive data for the Sibudu lithics remains unpublished, research 

into the material and particularly the Howieson‘s Poort assemblages has been 

characterised by relatively newly developed investigative methods that had not 
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previously been pursued to any great degree on other assemblages.  In this sense 

alone, Sibudu can be regarded as a milestone in the development of our understanding 

of the Howieson‘s Poort phenomena (Barham and Mitchell 2008, 277–278).  The 

integrated methods of Lombard‘s exploration of tool function has, in particular, 

forged the idea that certain elements of the Howieson‘s Poort (small quartz segments) 

served as arrow tips (Lombard 2011).  Such conclusions support the earlier 

speculations of Singer and Wymer (1982, 209), and furthers research agendas 

concerning the cognitive capacity of the people behind the Howieson‘s Poort 

(Lombard and Haidle 2012).  There is, as yet, no consensus on the use of the bow 

during this period however, and various hurdles remain before such an idea may 

become more universally accepted.  Use of bow and arrow technology remains un-

certifiable with current evidence.  

 

While research into the Howieson‘s Poort material has allowed insight into the 

possibility of internal variation in the manufacture and use of classic backed 

Howieson‘s Poort segment pieces, analysis of assemblages from deposits prior to and 

overlying this phase reinforce typical contrasts made regarding the industry‘s 

precociousness in the grand trajectory of the MSA.  There are few HP style backed 

pieces in the Still Bay, and even fewer in the post-Howieson‘s Poort.  Data from all 

phases represented in the sequence are described as limited in nature having been 

sourced initially at least from the same two square metres.  Faunal data from the Still 

Bay at Sibudu is not available, limiting the extent to which hunting behaviours from 

this period can be compared with the subsequent Howieson‘s Poort.  Faunal and 

climatic data from the Howieson‘s Poort and post-Howieson‘s Poort facilitate further 

comparison however.   

 

6.3 Worked Bone 

Evidence of worked bone, although known from Still Bay deposits at sites elsewhere, 

has not been found from Still Bay contexts at Sibudu, nor has any been recovered 

from the post Howieson‘s Poort ~57 000 BP layers (Wadley 2007b; Cochrane 2008).  

While this leaves nothing of substance to comment upon, their absence 

archaeologically does not preclude the possibility of their use in these periods.  Three 

worked bone artefacts have been recovered from Howieson‘s Poort deposits however, 
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one of which is a (refitted) bone point tip that may have been used for hunting 

(Wadley 2008, 127).  Only the point tip itself (about 5cm long) has been recovered so 

it is difficult to learn more about the artefact.  It is described as comparable to 

bushman arrows (Ibid 2008, 127), although morphometric analyses show it to bear 

some similarities to the thinnest of Still Bay bone points found at Blombos, and a 

specimen from Peers Cave (Backwell et al. 2008, 1575).  The uniqueness of these 

results may simply reflect the small database available for comparison, at least from 

deposits of an approximately contemporary age.  It is believed that the tip most likely 

belonged to a bow and arrow system of weaponry (Wadley 2008; Backwell et al. 

2008) in accordance with the Marlize Lombard‘s research, which purports the use of 

bone in the hafting of Howieson‘s Poort segments, albeit seemingly in only a small 

percentage of cases (Lombard 2008a, 31). 

 

6.4 Faunal Data 

 

6.4.1 MSA Fauna             

As established with assessments of other sites, microfaunal analyses can provide 

indications of climate and environment in addition to the information larger species 

offer regarding direct evidence of subsistence systems.  Analysis of the microfauna at 

Sibudu was conducted by Glenny (2006) and is reviewed below.  As well as this, 

studies have also been conducted focussing on avian fauna (Plug and Clark 2008) and 

aquatic prey along with other marine resources (Plug 2006).  Excellent organic 

preservation makes Sibudu one of the most important sites for understanding MSA 

subsistence strategies since Klein‘s work (1976) at Klasies River.  Clark and Plug‘s 

consideration of the post-HP fauna in conjunction with the HP fauna (2008) is 

referred to for the purposes of this study.  Their study presents the most 

comprehensive and assessment of the fauna to date.   

 

Faunal remains from the site are considered as an aggregate of depositional units 

corresponding to chronological phases of the site.  The Howieson‘s Poort is treated as 

a single unit, and the post-Howieson‘s Poort is divided into two sub-phases, ―post-HP 

MSA2‖ and post-―HP MSA1‖ as detailed earlier in the discussion of the lithics and 

advocated by Cochrane (Clark and Plug 2008; Cochrane 2008).  This division of time 
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precludes assessment of temporal variation within the Howieson‘s Poort, but 

facilitates a broader resolution of changes between the Howieson‘s Poort and within 

the post-Howieson‘s Poort.  Although bone preservation is good in the Still Bay, no 

analysis from these levels has been published.  A brief description suggests a prey 

spectrum very similar to that documented in the Howieson‘s Poort with blue duiker, 

bushpig and vervet monkey dominating along with other small creatures (Wadley 

2007a, 682).  The fact that the majority of remains come from a discrete area of 2m
2
 

renders means spatial patterning of activities cannot be precluded as a factor in the 

differential representation of some species across time (Clark and Plug 2008, 892).  
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Phase NISP 
NISP as % of 

Total Fragments 
Unidentified 
Bone < 2cm 

Unidentified 
Bone >2cm 

Total Unidentified 
Bone 

NISP as % of Remains 
(Identified and 

Unidentified) > 2cm 
Total Fragments 

HP 2408 2.25 99533 5055 104588 32.26 106996 

Post HP 
MSA 2 

322 0.58 51886 3610 55496 8.19 55818 

Post HP 
MSA 1 

542 0.83 57932 7176 65108 7.03 65650 

 

Table 27: Faunal assemblage fragmentation at Sibudu 

 

 

 

Table 28: Bovid size categories after Brain (1974) 
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Phase 
NISP 
Total 

Prey 
NISP 

Prey (% of total 
NISP) 

Bovid NISP 
(Total) 

Bovids (% of total 
NISP) 

Bovids (% of prey 
NISP) 

HP 2408 2134 88.6 1893 78.6 88.7 

Post HP MSA 
2 322 312 96.9 261 81.1 83.7 

Post HP MSA 
1 542 526 97.0 458 84.5 87.1 

 

Table 29: NISP Data for Sibudu faunal assemblage differentiating prey (ungulates) and bovids from other taxa 

 

 

 

 

 

% Bovid NISP Bov I Bov II Bov III Bov IV / V 

Post-HP MSA 1 5 22.5 56.3 16.2 

Post-HP MSA 2 19.2 46.7 24.5 9.6 

HP 60.5 25.1 12.3 2.1 

 
Table 30: Size categories of bovids (% bovid NISP) at Sibudu 
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Figure 86: Graph showing change in bovid size over time at Sibudu 

 

 

Humans are considered the main contributors responsible for the faunal remains 

recovered (Clark and Plug 2008, 892) but the assemblages are unfortunately highly 

fragmented (Clark and Plug 2008, 889).  Table 27 shows the percentage of fragments 

that could be identified (NISP %) revealing the full extent of comminution at the site 

and showing that the post-HP material is more damaged than the HP assemblage.  

These conditions are favourable for the preservation of the diagnostic elements of 

smaller species such as the blue duiker (Clark and Plug 2008).  The higher quantity of 

these and other smaller bovids in the Howieson‘s Poort may be in some small part 

partially due to this difference (Table 27).  As well as the high degree of 

fragmentation recorded, evidence of burning is recorded at high frequencies 

throughout the assemblages, particularly in the earliest post-HP MSA 2 (Clark and 

Plug 2008, 892).    

 

A complete list of species recovered is provided by Clark and Plug (2008, 890–891), 

although only ungulate remains recovered from the site, regarded (numerically) as the 

main source of prey, are the main focus (Appendix 31).  The high level of 

fragmentation further distorts the representativeness of MNI, and so NISP is used 

both here and by Clark and Plug in their analysis.  The number of different species 



245 

 

identified is too large to effectively present graphically.  The vast majority of species 

account for less than 5% of the total NISP for each phase.  Some specimens were 

designated cf. if taxonomic resemblance was apparent but could not be verified.  

Bovids account for the majority of ungulate remains at the site.  Those that could not 

be assigned to individual species were categorised according to size following a 

modified version of Brain‘s method of classification (1974) summarised in Table 28.  

Some remains straddle these categories and are excluded from further analysis to 

avoid complication.  Table 29 shows NISP values for total fauna, species designated 

as prey, and bovids.  Figure 86 and Table 30 hows %NISP for different bovid size 

classes through time at Sibudu.  Smaller bovids (class I) were the focus of hunting 

during the Howieson‘s Poort, with size class II becoming dominant in post-HP MSA 

2 and bovid class III dominating in post-HP MSA 1.  Size classes IV and V are 

amalgamated because of low representation.  With the exception of amalgamated 

class IV/V, bovid remains that could not be assigned to a singular category were 

excluded from consideration as per Clark and Plug (2008, 893).   

 

No other individual species is represented nearly as well as the blue duiker is in the 

Howieson‘s Poort where it is the best represented taxonomic designation within the 

entire sequence.  The only other singular species accounting for more than 5% NISP 

is bushpig, also in the Howieson‘s Poort.  Blue duiker accounts for the substantially 

higher proportion of bovid size I remains in the Howieson‘s Poort.  When removed, 

the proportion of unidentified bovid remains of this size is relatively comparable with 

post-HP MSA 2.  Given the high state of fragmentation in both these phases, it would 

seem that blue duiker were simply not such a main focus for hunting in post-HP MSA 

2.  Although the representation of bovid classes II and III are higher in the post-HP 

MSA 2 than the HP, it is specifically the blue duiker that comprises the majority by 

which smaller bovids feature in the Howieson‘s Poort.  It must be remembered when 

comparing the HP with the post-HP MSA 2 that substantially fewer remains were 

identifiable to the species level, and that the overall NISP count for post-HP phases is 

significantly less than that recorded for the Howieson‘s Poort (Table 29).  

 

Overall, across all phases, bovids overwhelmingly dominate, never accounting for 

less than 78% of the assemblages.  Species considered to have been main sources of 

prey (all ungulates) account for only 88.6% of the overall HP assemblage, due to a 
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higher frequency of monkeys (Vervet and Sykes), the Gambian giant rat, and rock 

hyrax.  The higher frequency of these species in the Howieson‘s Poort further 

supports interpretations of the local palaeoenvironment of the site being relatively 

closed and forested, and hunting practices as being targeted towards smaller fauna 

(Wadley 2006; Wadley 2008; Clark and Plug 2008; Glenny 2006).  The low number 

of upper limb elements among class I bovids in the Howieson‘s Poort has been 

interpreted as possible evidence of intense processing for marrow (Clark and Plug 

2008, 895).  The high proportion of lower limbs or feet throughout the sequence for 

bovids of all sizes throughout the sequence, cumulatively never less than 40% of 

skeletal elements (Clark and Plug 2008, 895), may suggest that much of the carcasses 

was generally returned to site.  The lack of skull and horn elements from class IV/V 

bovids in the HP and post-HP MSA 2 have been suggested as potentially indicative of 

a larger ranging distance involved in their transportation back to site (Clark and Plug 

2008, 895), but they are not substantially more scarce than those from bovids of other 

size classes.  If the high frequencies of lower limb elements and feet are indicative of 

wholesale carcass transportation, then an alternative interpretation may pose that 

hunting ranges actually may not have covered an insurmountably long distance.  

Small sample sizes for certain anatomical units (most notably axial elements) and 

taxa, perhaps because of the high level of fragmentation among other reasons, inhibits 

more detailed quantitative analysis of skeletal representation (Clark and Plug 2008).   

 

The presence of larger game in the assemblages suggests that hunters had, at times 

during the Howieson‘s Poort, access to either open woodland or savanna 

environments where African buffalo, blue wildebeest and roan antelope were more 

likely available.  In the post-HP MSA 2, the majority of species identified suggest a 

localised riverine forest habitat around the site, with access to more open landscapes 

again maintained, as evidenced by the rare presence of warthog and eland (Clark and 

Plug 2008, 893).  The presence of species such as blue wildebeest, red wildebeest, 

giraffe and zebra suggests that post-HP MSA 1 was quite dry.  This conflicts 

somewhat with the interpretation of the charcoal data from this phase (Allott 2006), 

with Clark and Plug suggesting that while a forest environment persisted around the 

vicinity of the site, prey sourcing may have reached further afield to more open areas 

(Clark and Plug 2008, 893).  It is difficult to infer the surrounding palaeoenvironment 

from this data and know whether the faunal remains reflect changes in local habitats 
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or logistical forays and movements.  It seems unlikely that landscapes would have 

preserved unaltered through the stretch of time under consideration, but it has been 

suggested that the site was ideally situated near the convergence of several different 

ecological zones, much as it is today (Wadley and Jacobs 2004).   

 

Throughout the Sibudu sequence, remains identified as juvenile account for less than 

10% of the respective assemblages, suggesting that a focus towards prime-age adults 

prevailed throughout the sequence (Clark and Plug 2008, 896).  Although the 

emphasis in Howieson‘s Poort hunting seems to have been directed towards smaller 

game, they were still able to take relatively dangerous species such as the nocturnal 

and aggressive bushpig, or the African Buffalo rather than the eland (Clark and Plug 

2008).  The significance of smaller bovids in the Howieson‘s Poort for subsistence 

strategies may also relate to the recovery of many smaller mammals from the same 

deposits, absent from later phases.  The possible contribution of raptors and other 

small carnivores for these smaller animals cannot be ruled out from contention 

although they are relatively poorly represented (Plug and Clark 2008, 138–140; 

Glenny 2006; Clark and Plug 2008).  Although in the post-HP MSA 2 larger bovids 

feature more prominently, the majority of bovids are from this phase are still smaller 

than size class III, with post-HP MSA 1 showing a majority of bovids from size class 

III or larger.  Comparison between the HP and post-HP MSA 1 affords the greatest 

contrast in procurement strategies.  Clark and Plug interpret the changes in fauna over 

time as reflecting change in prevailing environmental conditions surrounding the site, 

and indeed indicator species generally (but by no means perfectly) correspond with 

changes recorded in charcoal data (2008, 897; Wadley 2006).  A gradual transition is 

represented, seemingly at odds with the sharp departure from Howieson‘s Poort 

technology recorded by Cochrane with the inception of the post-HP MSA 2 (2008), 

from a predominantly closed evergreen forest to more open savanna like landscapes 

with but retaining some more densely vegetated woodland zones (Clark and Plug 

2008, 897).       

 

6.4.2 Microfauna 

Microfaunal analysis at Sibudu (Glenny 2006) was conducted to derive information 

about prevailing environmental conditions during different occupation phases at the 
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site that could be integrated with other data indicative of environmental conditions, 

such as seeds (Wadley 2004; Sievers 2006), charcoal (Allott 2004; 2005) and 

macrofaunal remains (Plug 2004; Reynolds 2006; Clark and Plug 2008).  In the 

analysis, two MNI counts were conducted using different skeletal elements: one at the 

genus level (using post-cranial elements), and the other at species level (using cranial 

elements) (Glenny 2006).  The species count proved the most informative regarding 

conditions of habitat preference, although comparison of the two counts shows the 

species count to be much less representative of abundance (Glenny 2006, 285).  The 

MNI of different species was determined through the assessment of 259 cranial 

elements from the 29 levels delineated at the site, with thirteen different species 

identified (Glenny 2006, 282).  An MNI total of 8 specimens were recorded from 

Howieson‘s Poort levels GR, GS, and GS2.  The eight specimens comprised four 

different species.  Information of their habitat preferences, along with those of the 

barn owl Tyto alba, also indirectly evidenced at the site, are provided below as 

documented by Glenny (2006). 

 

Gambian Giant Rat (Cricetomys gambianus): Prefers forests and forest scrub areas 

that receive >800mm rainfall per annum. 

 

Laminate Vlei Rat (Otomys laminatus): Prefers grasslands, inhabiting sub-montane 

and coastal areas. 

 

Vlei Rat (Otomys irroratus): Prefers grasslands in close proximity to streams and 

marshes. 

 

Geoffroy‘s Horseshoe Bat (Rhinolophus clivosus): Prefers woodlands but has a wide 

habitat tolerance.  Roosts in caves and hollow trees. 

 

Barn Owl (Tyto alba): The majority of micromammalian remains at Sibudu were 

accumulated and deposited by birds of prey, most notably barn owls.  While the barn 

owl is noted by Glenny as preferring to hunt in open habitats such as savanna adjacent 

to grasslands and low scrub, it is also acknowledged that they are a highly mobile 

species with relatively catholic tolerances.  Although the barn owl is suggested as the 

most likely species responsible for the accumulation of micromammalian remains at 
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the site, two other raptors: the grass owl (Tyto capensis) and marsh owl (Asio 

capensis), cannot be ruled out as perpetrators.     

 

With the exception of a few deposits (dating to around 37 and 50ka), Glenny refrained 

from attempting to derive interpretations of the environmental history of the site, 

deeming microfaunal remains too sparse throughout much of the sequence to allow 

reconstruction, even when considered in conjunction with other indicators (2006: 

286).  Furthermore, the presence of micromammalian remains is not continuous 

throughout the sequence. Periods of absence separate the aforementioned HP levels 

from other micromammalian yielding deposits, complicating any inference regarding 

temporal variation immediately prior to and after the Howieson‘s Poort.  Prior to the 

HP, levels LBG2 and LBG are the only deposits to have yielded micromammalian 

remains.  Levels MY and Or are the first to contain micromammalian remains 

following the HP.  One Vlei Rat was found in LBG, a single Gambian Giant Rat in 

LBG2; one Laminate Vlei Rat along with 2 Natal Multimammate mice (Mastomys 

natalensis) were recovered from MY, and one Striped Mouse (Rhabdomys pumilio) 

and one Vlei Rat from Or.   

 

The minimal and disparate nature of the database renders interpretation of the 

environmental history before and after the Howieson‘s Poort untenable.  On one hand, 

the presence of Natal Multimammate Mouse in level MY, which was not recovered 

from Howieson‘s Poort or pre-HP levels, suggests that conditions were no longer arid 

(Glenny 2006, 283) as is sometimes associated with the Howieson‘s Poort.  However, 

conversely, the Gambian Giant Rat, which is found exclusively in HP and pre-HP 

deposits, is a firm indicator of evergreen forest and woodland conditions, which along 

with Geoffroy‘s Horseshoe Bat, has allowed a broad impression of humid and moist 

conditions in layers older than 60kya (Wadley 2006, 328).      
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6.5 Other Palaeoenvironmental Indicators 

 

6.5.1 Charcoal Analysis 

The high degree of organic preservation at the site has meant that Sibudu is one of the 

first MSA sites in southern Africa where detailed charcoal analysis has been made 

possible (Allott 2004; Allott 2005).  Although exact explanations for how charcoal 

comes to be a part of an archaeological deposit are rarely determinable, its presence is 

in this case predominantly a result of human activities (Allott 2006).  Through 

comparison with modern plants, and assuming little change in habitat association and 

requirement over time, it is possible to infer climatic variability from changes in the 

taxa represented over time.  Changes in abundance of charcoal can, however, relate to 

variation in deposition and preservation over time, as well as rates of fragmentation, 

and the frequency of taxa represented may be biased by selections for uses such as 

fuel, perhaps having been sought from further afield than the immediate vicinity of 

the site (Allott 2006).  Due to the episodic nature of the occupation history at Sibudu, 

with clusters of dates within the sequence, environmental indications inferred from 

microscopic charcoal analysis pertain to four stages including the >60kya Howieson‘s 

Poort (levels GS, GR2 and GR) and ~60kya post-HP MSA 1 (Eb SPCA BSp).  Data 

from the intermediary post-HP MSA 2 and preceding Still Bay was either insufficient 

for analysis or is yet to be presented.  The Howieson‘s Poort levels are amalgamated, 

perhaps to conflate otherwise insufficiently small sample sizes.           

 

The combination of taxa recorded from the Howieson‘s Poort is not known in South 

Africa today, but mostly suggests an evergreen forest prevailed at the time (Wadley 

2006).  In particular, the presence of Podocarpus (a genus of conifer) predicates a 

high level of moisture, as it is most commonly found today in environments with 

>900mm of rainfall per annum, though moisture may not come exclusively through 

precipitation (Allott 2006, 185).  Buxus or boxwood may have been a common 

constituent of understorey vegetation (Ibid 2006, 185).  Identified taxa do not solely 

indicate evergreen forest, however, with the occurrence of Kirkia, a subfamily of 

Sapindales, indicative of savanna woodland (Ibid 2006, 186) which may have been a 

nearby ecozone at the time.  In general, the charcoal recovered from Howieson‘s 

Poort deposits indicates a warm and humid climate with the site located within a 
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predominatly evergreen forest setting, largely supported by accompanying faunal and 

microfaunal indicators (Wadley 2006; Clark and Plug 2008; Glenny 2006).  The 

presence of Kirkia suggests a warmer and drier climate than that of Sibudu today 

(Allott 2006, 186), but perhaps pertains to wood imported from further afar or from a 

temporal fluctuation in local climate.  Even if conditions were generally warm and 

humid, conditions may have been cooler within a tall forest (Ibid 2006).      

 

There is no data currently available from levels immediately preceding or overlying 

the Howieson‘s Poort, with faunal data offering the best source of inference, from 

which it has been suggested that the majority of identified species most likely 

inhabited riverine forest (Clark and Plug 2008, 893).  Deposit Eb is the next level in 

the site sequence to have yielded charcoal data, with identified specimens suggestive 

of conflicting conditions (Allott 2006, 187–188).  Whether this reflects conflated 

ecological fluctuation recorded within the deposition event, that the site was situated 

opportunely in an ecotone, or simply that the environmental habitat of the site was a 

complex and varied one lacking an immediately clear modern parallel, is unclear.  In 

levels SPCA and BSp, identified taxa suggest the local environment was 

predominantly evergreen forest, although cooler than conditions today, with some 

types that indicate the presence of a nearby source of running water (2006, 188).  

Curiously, the preferred habitat of several of the species of fauna recorded from post-

HP MSA 1 does not accord with this interpretation, being more suggestive of a dry 

and open landscape (Clark and Plug 2008, 893).  More so than SPCA, BSp has a 

mixture of evergreen and deciduous components, which is interpreted as evidence of 

an extended range of sourcing (Allott 2006).  This explanation accords with the 

interpretation of faunal procurement at the time offered by Clark and Plug (2008).   

 

6.5.2 Seed Analysis 

As well as the charcoal analysis conducted by Allott, a pioneering series of studies 

have reported on the seeds and fruiting structures recovered from the sequence 

(Wadley 2004; Sievers 2006).  To compensate for the poor frequency with which 

remains were recovered, deposits were amalgamated according to the supposed 

cultural and dated clusters identified at the site, and although their frequency was 

particularly low from Howieson‘s Poort and older deposits, both the Howieson‘s 
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Poort and Still Bay yielded small samples along with the post-HP MSA 2 as well as 

the post-HP MSA 1.  It is the carbonised seeds that are the main focus of interest, as 

uncarbonised or mineralised seeds are mostly attributed to contamination from 

modern or Iron Age times (Sievers 2006, 209).  As with the identification of charcoal, 

it remains rare in many cases that analysis can identify fragments beyond the level of 

genus (Wadley 2004).  Many of the species identified were considered catholic in 

their habitat and vegetation type preference and so should not be used to infer local 

conditions of temperature and moisture (Sievers 2006).  Nevertheless, several 

observations may be made.     

 

Sedges account for the overwhelmingly dominant seed type in the Still Bay and 

Howieson‘s Poort.  These remains indicate a high moisture level (Sievers 2006), but 

this is not surprising given the proximity of the Tongati river, and the fact that riverine 

taxa is likely to have survived at varying densities throughout the site‘s history.  Their 

presence fluctuates more in the levels from 60kya and younger.  Their absence in 

some phases such as levels SU-Mi in the early post-HP MSA 1 (including level Eb 

from which charcoal remains were identified), may indicate warm drier climatic 

oscillations (Ibid 2006, 215). Overall, through cross referencing the results of the 

study with those of the charcoal analysis, Sievers identified a broad transition between 

levels clustering around ~60kya, with evergreen taxa predominant, and ~50kya when 

deciduous species had become more dominant (Ibid 2006, 220).  More nuanced 

variation within the sequence is also apparent, but should not be reliably referred to 

for interpretation of palaeoenvironmental conditions at present (Ibid 2006).    
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Figure 87: Chart showing the correlation of climatic zones with post-HP MSA deposits 

 

6.5.3 Archaeomagnetic Data              

Throughout the archaeological sequence of Sibudu, measurements of magnetic 

susceptibility were taken and assessed for fluctuation.  Periods of stability or peaks 

and troughs in the values recorded over time may reflect climatic variation.  With 

dates obtained for the sequence it is possible to cross refer these changes with the 

known approximate transition between OIS 4 / 3 from glacial to interglacial 

conditions (Herries 2006).  Although measurements have not been obtained for the 

sequence prior to the ~60kya layers (i.e. the Howieson‘s Poort), records do extend 

back to the post-HP MSA 2.  In his analysis, Herries was able to delineate four 

climatic zones, numbered from most recent to oldest.  Climatic zone 4 (Figure 87) 

pertains to the post-HP MSA 2 and is believed to represent the cold final stages of the 

OIS 4 glacial (Wadley 2006, 334).  The date of these levels, and nature of the contrast 

with overlying levels is consistent with that documented through the Vostok ice core 

(Herries 2006, 144).  The transition occurs between deposits G1 and P1, the latter of 

which is not marked on the stratigraphic section but lies between Su2 and Ch2 serving 

as a useful distinguishing barrier between the post-HP MSA 1 and post-HP MSA 2 

(Cochrane 2008).  Conditions became warmer and moister during this transition into 

the interstadial (Herries 2006, 144).  There does not appear to have been a hiatus in 

site occupation associated with the transition (Wadley and Jacobs 2006).                          
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6.5.4 Summary of palaeo-environmental trends 

Tying the strands of multiple perspectives on the trajectory of environmental change 

throughout the MSA occupations of Sibudu is not possible without encountering some 

contradiction.  A general overview of these analyses has been best surmised by Lyn 

Wadley (Wadley 2006; 2008).  It is more difficult, however, to elucidate internal 

changes within the Howieson‘s Poort due to small and conflated samples.  Broadly 

speaking, during the Howieson‘s Poort, Sibudu was located in an area of evergreen 

forest with warm and humid conditions and riverine vegetation nearby, but, according 

to faunal evidence, with deciduous forest and savanna style ecozones located not too 

far away.  The post-HP at the site seems to have been colder and dryer, at least by 

post-HP MSA 1.  Data for post-HP MSA 2 is not so plentiful, but seems to have 

experienced conditions not too dissimilar to the HP.  A chronological gap between the 

Still Bay and Howieson‘s Poort prevents assessment of the transition between the pre-

HP MSA and the HP.  Although they have not been published in any great detail, 

early indications suggest that faunal assemblages from the Still Bay levels at the site 

are not vastly different in composition to the Howieson‘s Poort. 
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6.6 Diepkloof Rockshelter 

 

Diepkloof rockshelter is situated approximately 180km north of Cape Town in the 

Western Cape Province in South Africa, 120m above the southern bank of the 

Verlorenvlei River, which flows into the Atlantic Ocean 14km to the northwest 

(Figure 88) (Parkington et al. 2013).  As a generic name, Diepkloof refers to a 

complex of sites akin to Klasies River, comprising Diepkloof rockshelter (the main 

focus of research) and Diepkloof kraal (Figure 89).  The site complex is part of a 

quartzitic sandstone outcrop, and the local geology consists of sandstones, siltstones, 

shales, and conglomerates from the nearby Table Mountain Group (Miller et al. 

2013).  A large boulder along with other large fallen rocks along the edges of 

Diepkloof rockshelter has protected much of the site interior from erosive processes 

(Miller et al. 2013; Parkington et al. 2013)     

 

Unless otherwise specified, the name Diepkloof (or DRS) is used here as shorthand to 

refer to Diepkloof Rockshelter.  The rockshelter was originally investigated as part of 

research into the Holocene deposits identified at the cave in the 1970‘s and 80‘s 

(Parkington and Poggenpoel 1987), but interest was reignited following investigations 

conducted at Klasies River and other sites with MSA deposits (Parkington et al. 

2013).  As part of the renewed investigations into the site, excavations have been 

conducted more or less continuously since 1998 (Rigaud et al. 2006).  The floor 

surface of the shelter is 25m across and 17-22m from the back of the cave to the drip-

line, giving a protected space of around 200m
2
 (Figure 90).   

 

The two main ambitions of the renewed investigation have been to explore the nature 

and chronological extent of the archaeological sequence and to evaluate the integrity 

of these deposits by reviewing the sedimentary processes at work in their formation.  

The site is one of the best known occurrences of the Howieson‘s Poort in the Western 

Cape, and has attracted attention for, among other reasons, the discovery of engraved 

ostrich eggshells from the HP deposits associated with symbolic expression (Texier et 

al. 2013), and the fact that Diepkloof is one of only a few sites to have yielded both 

Howieson‘s Poort and Still Bay deposits within the same sequence (Henshilwood 

2012).  Following on from earlier preliminary publications (Rigaud et al. 2006; Porraz 
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et al. 2008), work at Diepkloof has been more extensively detailed in a recent special 

edition of the Journal of Archaeological Science (Parkington et al. 2013). 

 

 

Figure 88: Map West Cape showing Diepkloof Rockshelter 
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Figure 89: Diepkloof Rock Shelter (DRS) and Diepkloof (DK) 

 

 

Figure 90: Excavation Plan of Diepkloof Rockshelter 
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6.6.1 Stratigraphy         

Most recently, excavation has sought to connect the areas investigated in the 1970‘s 

and 1980‘s (Figure 91) in an effort to explain the notable differences in lithic 

assemblages reported from these different areas.  It is in this newly excavated area, in 

squares L to N6 (3m
2
 total), that the deepest extent of the site around 3.1m has been 

excavated reaching to pre-Still Bay deposits (Parkington et al. 2013).  These squares 

are referred to as part of the ―Main Sector‖ of the site (Figure 91), along with the 

―Trench‖ (excavated 1986) and ―Back Sector‖ (excavated 1973) areas.  While 

Howieson‘s Poort material has been recovered from all these areas of the site, the 

majority of the recently published work has focussed on endeavours in the ―Main 

Sector‖ as the deepest extent of the site sequence.  The ―Trench‖ holds great potential 

for investigation into the HP / post-HP transition, while it is hoped that the Back 

Sector will enable exploration into the spatial distribution of late Howieson‘s Poort 

activities at the site (Parkington et al. 2013, 371).   

 

 

 

Figure 91: Diepkloof Rockshelter excavation plan showing phases of fieldwork 

 

In the Main Sector of the site, 53 stratigraphic units (SUs) have been identified, 

delineating distinct complexes of often discontinuous beds and lenses that constitute 
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main sedimentary episodes documented across larger areas of the site (Parkington et 

al. 2013; Miller et al. 2013, 3433).  These have been assigned names in alphabetic 

order from top to bottom (Figure 92) (Figure 93).  Smaller individual depositional 

events i.e. discontinuous beds, lenses and laminations labelled as microfacies units 

(MF units), are too numerous to count, and are not detailed individually but instead 

are grouped according to type as different microfacies types (MF types) (Miller et al. 

2013, 3433).   The SUs themselves are grouped into four lithostratigraphic units 

which represent larger scale diachronic variations within the sequence, but also 

according to technocultural units according to assemblage variability.  

 

Diepkloof makes a perfect addition to the study sample because it has an extensive 

archaeological sequence exposed by the Main Sector excavations, and contrasts 

geographically with Sibudu in the east and Klasies on the south coast.  Furthermore, 

somewhat uniquely among MSA sites with comparable sequence depth, there appear 

to have been no major hiatuses in deposition with the exception of the MSA / LSA 

transition (Miller et al. 2013, 3451), giving DRS a marked contrast with Sibudu and 

KR.  Figure 92 shows the stratigraphy of the east-facing section as recorded from 

squares K6/7 to M6/7 with SUs delineated.  K6 was only partially excavated due to 

obstruction from a nearby boulder, and only part of M6 is recorded in section due to 

an expansion of the excavated area to the western interior of the shelter (Figure 90).  

A separate stratigraphic south-facing sequence from N/O6 is also included (Figure 

93).   
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Figure 92: DKR Stratigraphy K6/M6 East Facing Section 
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Figure 93: DKR Stratigraphy O6/N6 South Facing 
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Somewhat similar to the manner in which data from La Riera and Klasies in this study 

have been synthesised, the investigations from the main sector of DRS have been 

presented in a summarised diagram form by the investigation team by Porraz et al. 

(2013), shown here in (Figure 94).  Table 31 should be referred to for a more detailed 

breakdown of which techno-complexes the individual stratigraphic units concerned 

for this investigation pertain to.  These divisions were made based upon observed 

differences in patterns of raw material selection, blank production and tool 

manufacture (Parkington et al. 2013, 3378).  For the purposes of this study, 37 

stratigraphic units are included, and these span from the pre-Still Bay MSA through to 

the post-Howieson‘s Poort.  The Howieson‘s Poort accounts for 24 of these 

stratigraphic units, and is broken into three constituent stages, with an intermediary 

MSA stage (MSA type ‗Jack‘) separating the early and intermediate HP portions of 

the sequence.          
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Figure 94: Diagram showing change over time at DKR (Porraz et al. 2013) 

 

6.6.2 Dating    

Besides Sibudu, DRS is one of the only thoroughly investigated sites to have yielded 

both Still Bay and Howieson‘s Poort deposits.  Consequently, the dating of the site 

has been of particular interest.  Originally, Diepkloof Rockshelter was dated under the 

extensive single-grain OSL programme overseen by Jacobs et al. (2008).  The dates 

obtained seemed to conform to the chronologically discrete windows of time 

generally inferred for both the Still Bay and Howieson‘s Poort.  Subsequent revisions 

of cultural designation within the sequence of deposits has led the site‘s investigators 

to reject these estimations in favour of new dates obtained by a team led by Chantal 

Tribolo (Porraz et al. 2013, 3545).  These dates were acquired using a combination of 
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the lithic based thermoluminescence methods used previously at sites such as Klasies 

River and Rose Cottage (Tribolo 2005), and the sediment based OSL methods 

(Tribolo et al. 2009; Tribolo et al. 2013).  The new dates suggest an unusually early 

start for both the Still Bay and Howieson‘s Poort industries, with the latter being 

pushed back in its earliest permutation to around 105 kya.  Dates from the late 

Howieson‘s Poort were obtained from samples taken from elsewhere on the site.  An 

age of 52 ± 5 kya from the back section suggests a long extent for the Howieson‘s 

Poort phase of the site, hence the fragmentation of the period into three stages (Porraz 

et al. 2013).     

 

The re-dating of the DRS sequence has had several implications for how we 

understand our broader conceptualisation of the Howieson‘s Poort. 

 

1. If the early estimations for the HP are indeed true, then it would appear that 

the techno-complex as a wider phenomenon was a lot less coherent and 

unified in its emergence (Parkington 1990), or that we are missing the early 

HP at most of the sites where the industry has been identified (Tribolo et al. 

2013, 3409). 

 

2. The reassignment of stratigraphic units to different techno-complexes contra 

the designations asserted in earlier works (Jacobs et al. 2008; Tribolo et al. 

2009) means that there is no intermediary between the Still Bay and 

Howieson‘s Poort at the site as had previously been thought (Porraz et al. 

2008).   
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Table 31: DKR Stratigraphy Phasing 

 

Techno-
Complex 

Techno-Complex 
sub-phases 

Stratigraphic 
Units 

TL Mean Age 
Estimates 

Post HP Post HP ('Claude') 

Claude   

Denzel   

Danny   

Late HP 

Late HP ('Eric') 

Debbie   

Dean   

Darryl   

Deon   

Eric   

Ester   

Edgar   

Late HP ('Frans') 

Eve   

Eben-HB Eve   

Frans   

Intermediate HP 

Interm. HP ('Fiona') 

Fred  83 ± 8 

Frank   

Fox-fannie 85 ± 9 

Fiona   

Governor   

Interm. HP ('Jeff') 

John  77 ± 8 

Jeff   

Joy 

89 ± 9 
MSA  MSA Type 'Jack' 

Jack 

Jude 

Early HP 

Early HP ('Kate') 

Jess 109 ± 10 

Julia   

Kate 
105 ± 10 

Early HP ('Kerry') 

Kerry 

Kenny    

Kegan   

Still Bay  Still Bay Type 'Larry' 

Keeno   

Kim 
109 ± 10 

Larry  

Logan   

Leo 
100 ± 10 

Pre-SB Pre-SB Type 'Lynn' Lynn 

MSA  MSA Type 'Mike' 
Lauren   

Mike   
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The contrast in time-span for the Howieson‘s Poort is even further emphasised when 

compared with dates acquired at other sites using Tribolo‘s TL method (Tribolo et al. 

2005), where age ranges at Klasies and River Cottage were slightly younger those 

proposed by the census undertaken by Jacobs et al. (2008).  In deference to the 

authority of the site‘s primary investigators, Tribolo‘s dates are cited here as the most 

recent and reliable determinations for DRS.  Details of the full dating schema can be 

found in Tribolo et al. (Tribolo et al. 2013).  Table 32 shows the nine mean ages 

derived from the portion of the main section that is the focus of this study with their 

corresponding stratigraphic units and associated technocomplexes. 

 

6.6.3 Lithics 

Porraz et al. have provided the main lithics analysis, focussing on material from 

squares M-N6 (2013).  Material from square L6 was studied as part of an unpublished 

PhD thesis.  The analysis of material from M-N6 terminates at level Noël, as levels 

Nina downwards were considered to have yielded an insufficient frequency of 

artefacts for informative investigation (Porraz et al. 2013, 3377).  Figure 95 refers to 

the extent of the sequence from which assemblages have been analysed, with SU 

Mike referring to the lowest extent of MSA deposits (Miller et al. 2013).  Table 31 

shows the techno-complexes and sub-phases assigned to these stratigraphic units.  

Lithic assemblages are classified by the technological phases they represent (referring 

to modes of production), variations noted in raw material usage and in a more 

conventionally recognised typological format (Porraz et al. 2013).  They are 

considered at the resolution of techno-complex sub-phases, with data for individual 

stratigraphic units provided in supplementary material (Porraz et al. 2013).  Pieces 

less than 20mm in length were quantified separately, and invariably classified as 

flakes, shaping flakes or fragments.       
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Table 32: DKR TL Dates 

 

Various difficulties in reconciling certain aspects of this data become apparent when 

attempting to further cross-reference different facets.  For example, in the 

classification of the assemblages according to technological phases, fragments and 

manuports are seemingly excluded from quantification (Appendix 32).  In (Appendix 

33), manuports and fragments (> 20mm) are included resulting in different subtotals.  

Not all the differences in quantification can be explained by this though (Appendix 

32).  It is suspected that these discrepancies reflect errors in assemblage 

quantification.  In other cases, it is simply unclear how some values have been 

derived.  When ―formal tools‖ are given as a percentage (Porraz et al. 2013, 3383), it 

is not clear which sample total the value pertains to. Whether considered per techno-

complex sub-phase or per individual stratigraphic unit, the percentage of formal tools 

(Figure 96) does not seem to correspond to any of the totals or subtotals presented 

elsewhere in the analysis.  For the purposes of this analysis, lithics data is regarded at 

the sub-phase level, as this is the resolution at which the site‘s analysts primarily 

focussed.     

 

The classification of assemblages according to technological phasing is not ideally 

suited for cross-reference with the Klasies material, but comparison is nevertheless 

possible typologically.  The typological classification for DRS material describes 

―truncated pieces‖, referring to elements with straight or concave truncation oblique 

to the axis of the tool edge, otherwise known as trapezes, and ―backed pieces‖ which 

include lunate / crescent segment forms with curved backed edges (Porraz et al. 2013, 

Techno-Complex 
Stratigraphic 

Unit 
Mean Age 

(ka) 

Intermediate HP 

Fred 83 ± 8 

Fox 85 ± 9 

John 77 ± 8 

MSA Jack Jude / Joy 89 ± 9 

Early HP 
Jess 109 ± 10 

Kerry-Kate 105 ± 10 

Still Bay 
Kim-Larry 

109 ± 10 
Larry 

Pre-SB Lynn-Leo 100 ± 10 

Lower MSA Mark 107 ± 11 
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SOM).  In the technological classification, blades (regular and irregular) and bladelets 

are considered as a subtype of flakes (Porraz et al. 2013, SOM 13).  Such a 

description recalls that which Singer and Wymer used at Klasies River, termed flake-

blades (1982).  Bladelets are qualified as blades whose width is less than 11mm 

(Porraz et al. 2013, SOM 13).  It appears that different production methods as 

documented at Klasies River by Wurz (1999, 42) are noted in the study of chaîne 

opèratoire, but not otherwise delineated in their technological classification.           
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Figure 95: DKR Section showing the extent of the sequence from which lithics data was assessed 
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6.6.3.1 Raw material procurement at DRS   

The raw material survey conducted by the Diepkloof team provides the first 

systematic documentation of lithic raw material availability on the West Coast of 

South Africa (Porraz et al. 2013).  Three zones of procurement have been identified, 

<5km, 5-20km, and >20km, and it is believed that locally available raw materials 

would have been coarse grained and fairly poor quality, with finer grained silcrete 

only available from >20km away from the site (Porraz et al. 2013, 3380).  Appendix 

34 shows the seven different material types petrographically identified at the site 

based on the geological survey of the surrounding area. 

 

Figure 97 is from the analysis by Porraz et al. (2013), and shows the representation of 

raw materials at the site characterised both petrographically by individual 

stratigraphic units and according to distance from the site.  Hornfels does not appear 

to be represented in the graph, but is acknowledged as present throughout the 

sequence although never as a dominant material (Porraz et al. 2013, 3381).  I believe 

that the quartzite categories have been amalgamated.  Both coarse and fine grained 

varieties fall within the category of (sub)local, and generally fine grained quartz is 

only minimally represented (never more than 2.2%) in any particular stratigraphic 

unit. 
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Figure 96: Graph showing Formal Tools at DKR 
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Figure 97: Graph showing distance of raw material procurement over time at DKR 

 

6.6.3.2 Chronological trends in raw material use 

It is possible to identify three broad changes in trends over time regarding raw 

material use at the site.  Figure 98 shows raw material quantification for all pieces 

greater than 20mm in length.  The first three sub-phases (Mike – Larry) are 

overwhelmingly dominated by quartzite (>60%).  These early sub-phases are similar 

in most other respects, although silcrete representation is notably smaller in MSA 

Mike, in deference to what is the highest representation of quartzite in the sequence 

(86.3%).  Over the next three sub-phases (Kerry – Jack) there is a trend in which 

silcrete decreases, and quartzite and quartz both increase.  Early HP Kerry is generally 

comparable with intermediate and later stages of the Howieson‘s Poort, with Early HP 

Kate less similar, and Jack sufficiently different to be classified differently from the 

HP.  Quartzite is higher in Kate and Jack than any other HP levels, as is quartz, with 
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the exception of Late HP Eric in which it occurs most frequently.  While apparently 

distinct from later HP phases, Jack is no more favourably comparable with earlier pre-

HP phases either.  Intermediate to post-HP phases (Jeff-Claude) represent the final 

trend in which silcrete tends to dominate comfortably over other materials, with the 

exception of Eric, in which it is slightly surpassed by quartz as the dominant material 

type.  The fact that all material types are exploited to some degree no matter how 

minor in extent throughout the entire sequence demonstrates that material 

procurement ranges may have varied in frequency and nature rather than outright 

distance. 
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Figure 98: Graph showing raw material selection over time at DRK 
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Figure 99: Graph showing "technological types" at DKR 
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Figure 100: Graph showing truncated and backed pieces as a percentage of formal tools throughout DKR 
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6.6.3.3 Assemblage variability 

Figure 99 shows the percentage of technologically classified pieces greater than 

20mm in length excluding fragments and manuports, and also non-specific flakes, as 

this type accounts for a substantial majority (> 40%) of each assemblage.  The most 

immediately noticeable trend is that generic flakes are least frequent in the 

Howieson‘s Poort and Still Bay designated phases.  Blades account for a consistently 

large (>20%) portion of post-Still Bay phases, and bladelets increase dramatically in 

these levels with the exceptions of Jack and Claude in which they account for less 

than 8% of the assemblages.  Cores are present in small quantities throughout, but are 

rarer than usual in SB Larry and Pre-SB Lynn.  Bifacial pieces, as may be expected, 

are found in Still Bay phases and are fractionally represented in bracketing phases, 

even in early HP Kate.  Shaping flakes are present only in phases Lynn – Kate, but 

account for the overwhelming majority (38.2%) of Still Bay Larry.  Broadly speaking, 

there is a trend between silcrete use and bladelet frequency, and, to a lesser extent, 

blade frequency, although the correlation is clearly not strict as evidenced in Claude 

and Jack.     

 

Figure 100 shows truncated (including trapezes, triangles and similar variants) and 

backed pieces (crescent segments) as percentages of the formal tool assemblages 

recognised at DRS.  It is not made explicitly clear what is meant by ―formal tools‖ in 

this case, but I believe it to refer to retouched pieces.  In Porraz et al. (2013 table 3), a 

―percentage of formal tools‖ is given.  I believe this refers to the percentage of the 

overall assemblage that formal tools comprise, although I could not find the values 

from which they were derived in their analysis.  Nevertheless, this percentage of 

formal tools is shown throughout the sequence for each sub-phase (Figure 96).  

Formal tool representation is over 9% (9-17%) in all levels apart from MSA Mike, 

MSA Jack and, curiously, Intermediate HP Jeff, when it is less than 6%.  Returning to 

Figure 100, both types of HP geometric are present from the Still Bay onwards, with 

the exception of the disappearance of backed pieces in EHP Kate.  Generally, these 

crescent style backed pieces do not become important (> 6% of the formal tool 

assemblage component) until the Late Howieson‘s Poort (27.5 - 23.8%), which is also 

when truncated pieces (trapezes and similar forms) are most prevalent (20.7 - 16.6%).  

These truncated pieces are also represented with a lesser peak earlier in the sequence 



278 

 

(> 11%) in the Early Howieson‘s Poort and MSA Jack.  In late HP Eric, a shift in raw 

material selection sees a higher use of quartz but seemingly exploited in the same 

manner as other rocks (Porraz et al. 2013, 3397) In many respects, the post-HP does 

not represent a significant departure from the preceding techno-complex aside from a 

greater number of flakes (Figure 99).  The main difference is identified in the chaîne 

opèratoire process discussed by Porraz et al. (2013, 3397).    

 

The specifics of the data utilised renders it difficult to draw any firm conclusions 

regarding interrelated patterning.  It is worth noting that formal tool representation is 

low in the Late HP, when geometric forms are most prolific both numerically and 

proportionally a component of formal tools.  There does not appear to be an 

immediately visible relationship between trends identified in technological 

classification and typological classification.  This is perhaps to be expected, as the 

former categorisation should include a far greater sample size.  Likewise, it is difficult 

to relate raw material use to formal tool counts because of the disparity in assemblage 

size, though it can be said generally that classic HP geometric forms and formal tools 

in general tend to co-occur with a greater diversity in raw materials.               

 

It is curious that although MSA Jack and, to a lesser extent, Early HP Kate appear 

different when contrasted with raw material usage and the technological classification 

of bracketing sub-phases, they are less immediately anomalous in appearance when 

formal tool counts and geometric forms are considered.  Likewise, it is unusual that 

the representation of geometric forms in the Intermediate Howieson‘s Poort is 

relatively low.  Although the site‘s investigation team seem currently to be of the 

opinion that DRS is one of, if not the only site at which such a complete and extensive 

Howieson‘s Poort sequence has been documented (Tribolo et al. 2013; Porraz et al. 

2013) I believe the matter to be open to debate.  As much as sub-phases Kate and Jack 

could be regarded as anomalous developments within the trajectory of the Howieson‘s 

Poort, they could equally be techno-complexes with certain pre-emptive HP 

characteristics, rendering EHP Kerry a sub-phase with a precociously early affinity to 

the later Howieson‘s Poort.    

 

As well as the summary detailed above, the DRS team also recorded basic chaîne 

opèratoire systems for the different sub-phases.  This enabled the identification of a 
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particular (but not exclusive) method of blade production during the Howieson‘s 

Poort, as noted at both Klasies River and Rose Cottage (Porraz et al. 2013, 3394). 

Among other trends highlighted by the research of Porraz et al. (2013) it has been 

noted that materials procured from greater distances generally tended to be subjected 

to a higher degree of retouch.  The stratigraphic integrity of the sequence and chaîne 

opèratoire suggests that bifacial points were manufactured during the Early 

Howieson‘s Poort, and do not result from stratigraphic mixing.  It is believed that 

these bifaces, when made on finer grained more exotic materials, were frequently 

circulated, curated, transported and maintained, while those made on local coarse-

grained quartzite were less so, and were also more prone to breakage.  Regarding the 

Howieson‘s Poort, geometric pieces are not regarded as characteristic of the early and 

intermediate phases (Figure 100), although it is my suspicion that it is these type-

fossils that have earned the assignment of the techno-complex.  There is also 

considerable variation in size and shape over time, with the most standardised pieces 

coming from the Earlier HP.  Likewise, a trend of increasingly standardised 

microlithisation is not evident for blade and bladelet production, with the largest and 

most irregular blades occurring in the Intermediate HP.                 

 

6.6.3.4 Microwear Analysis 

In addition to the basic analyses conducted by Porraz et al. (2013), studies of micro-

wear and residue traces have also been conducted.  The microwear analysis focussed 

on 135 artefacts from the Early Howieson‘s Poort sub-phase, including 20 truncated 

and bi-truncated pieces (trapezes and similar obliquely edged forms such as triangles), 

4 segments (crescent backed pieces), and 73 blades and bladelets (Igreja and Porraz 

2013).  Table 33 shows the raw material divisions among the artefact types in 

question.  The total of 21 truncated and bi-truncated pieces given in Table 33 reflects 

an error in the original analyst‘s quantification (Ibid 2013, 3483–3484), perhaps most 

likely in the silcrete sample considering the small sample sizes across different raw 

materials.  
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Table 33: Results of DKR Early HP microwear analysis (Igreja & Porraz 2013) 

     

Despite generally good preservation, only 20% (n=10) of the blades and bladelets 

examined exhibited microscopic use-wears, seemingly for use as cutting implements 

for a variety of materials (Igreja and Porraz 2013, 3484).  The low incidence of 

detectable use-wears on these tools is interesting considering the assertion that, at 

Diepkloof at least, blades and bladelets were not primarily remnants from the 

manufacture of backed pieces (Mackay 2008). A cutting function was interpreted for 

all of the truncated and bi-truncated pieces upon which wears were detected (50% of 

the examined sample).  This figure accords more closely with the number of pieces 

that were deemed as having preserved well.  The analysts failed to note that the only 

segment upon which wears were detected is suggestive of impact damage, although if 

the paucity of positive results from the other categories assessed is problematic for 

inferring tool function, then such an anomalous detail as this is merely a curious 

footnote without further investigation.  As mentioned earlier in the thesis, both the 

interpretation of blades/bladelets and truncated pieces as cutting implements and the 

low frequency of results identified may be due to a variety of factors regarding the 

use-life of these tools which we simply cannot ascertain.  The good preservation of 

many pieces, indicative of their functional viability (Ibid 2013, 3486), may reflect that 

many pieces in the assemblage were prepared but not used.  In addition to the 

microwear study conducted, residues, presumably from hafting adhesives, have been 

identified on a variety of Howieson‘s Poort blades, bladelets, flakes and truncated 

pieces (Charrié-Duhaut et al. 2013). 

 

 Silcrete Quartz Hornfels Total Preservation: 

Weathered 

Preservation: 

Good 

Use-

Wear 

(bi)Truncated 18 1 2 21 9 12 10 

Crescent 

segments 

4 - - 4 2 2 1 

Blades/bladelets 67 6 - 73 24 49 10 



281 

 

6.6.4 Faunal Analysis 

The MSA faunal remains from Diepkloof represent, along with those from Sibudu, 

the largest such assemblage from any sites with stratified Howieson‘s Poort and Still 

Bay deposits (Steele and Klein 2013, 3454).  These remains were assessed along with 

those from LSA deposits by Teresa Steele and Richard Klein, the latter investigator 

having examined the fauna at Klasies and a number of other notable MSA sites.  NISP 

and MNI data from the pertinent culture-stratigraphic units for main ungulate and 

other medium-large prey is detailed in Appendices 35-36.  In addition to the levels 

represented in these tables, MSA data was also recorded for the ―lower MSA‖ culture-

stratigraphic unit underlying MSA Mike.  These were excluded as being prior to the 

period of interest.  Bovids, as already noted in the consideration of faunal analyses at 

Sibudu, are notoriously difficult to distinguish at a Linnaean level in the southern 

African MSA record.  As was the case at Sibudu, these remains have been divided 

according to size, although seemingly not according to Brain‘s categorisation.    

 

Faunal remains from the site are highly fragmented, and although no chewed bones 

were found, there is evidence of other carnivore activity at the site through the 

remains of species such as Leopard, Hyena and Cape Fox and the fact that three 

elements from small bovids exhibit evidence of gastric acid damage (Steele and Klein 

2013, 3457).  The preservation and representation of faunal remains at the site is 

further exacerbated by chemical degradation (and post-depositional crystal growth), 

burning and trampling (Miller et al. 2013), which renders assessment of pre-

depositional damage difficult.  Nevertheless, Steele and Klein tentatively conclude 

that despite visits from known scavenging carnivores such as Hyena, humans were the 

main accumulators of remains in the shelter, although raptor activity may be a 

primary contributor of smaller species such as hyraxes and hares etc (Steele and Klein 

2013, 3457).   



282 

 

MSA Ungulate Fauna (MNI) at Diepkloof 
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Figure 101: Graph showing macrofaunal MNI at DKR 
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MSA Ungulate Fauna NISP (%) at Diepkloof
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Figure 102: Graph showing macrofauna % NISP  at DKR 
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As Figure 101 and Appendices 35-36 show, both the MNI and NISP values of earlier 

MSA levels tend to be lower than those from later in the period.  This is perhaps 

partially due to the earlier cultural denominations generally comprising fewer 

stratigraphic units.  Bovids are prominent throughout the Diepkloof sequence.  NISP 

data is used for assessment unless otherwise stated.  Large and large-medium sized 

bovids account for around 20% of the fauna in every phase apart from Pre-SB Lynn 

and the Intermediate HP.  Small bovids account for the majority of remains in each 

phase, usually between 45 and 55% of the overall fauna.  They are notably less 

prevalent in the Still Bay (37%) and post-HP (28%) phases however (Figure 102, 

Appendix 37).  Although only ever a small portion of the total remains in phases 

where they are present, both cape zebra and equids are very poorly represented in 

Howieson‘s Poort deposits (although not altogether absent).  Some larger species, 

such as rhinoceros, hippopotamus and possibly long-horned buffalo may be over 

represented on the grounds that their significantly larger and denser skeletal elements 

may have better survived fragmentation.  Unfortunately, an assessment of element 

representation has not been conducted.   

 

Bovid exploitation seems to have become an even more predominant focus in the 

Howieson‘s Poort, where non-bovid species account for less than 15% of the total 

fauna per phase.  In the post-HP and pre-HP phases, non-bovid species account for 

between 20 and 30% of their respective assemblages, and nearly 40% of the Still Bay 

assemblage, which is bolstered somewhat by larger than usual quantities (>5%) of 

both rhinoceros and hippopotamus.  The assemblage of MSA-Jack is fairly consistent 

in structure to the Howieson‘s Poort phases within which it is sandwiched, but with 

seemingly greater emphasis on large and large-medium bovids.  Species diversity 

throughout the sequence is relatively consistent throughout the earlier phase of the 

sequence, with between nine and twelve different species per phase from MSA Mike 

until MSA Jack, but in the subsequent later portion of the sequence, 16 or 17 different 

species were identified per phase Figure 101.  Despite this, phases MSA Mike, pre-SB 

Lynn and Still Bay have the greatest diversity of species representation.  Although 

Cape zebra and other equids return in the post-HP, there is little other similarity in the 

composition of the non-bovid ungulate fauna with pre-HP phases.   
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6.6.5 Palaeoenvironment              

The surrounding environment of Diepkloof during the MSA was likely much grassier 

than that of today or recent historic times.  This assessment is based upon the large 

number of now regionally extinct grazing species identified from the remains 

including Cape zebra, blue antelope, southern reedbuck, black wildebeest, and long-

horned buffalo.  These species are characteristic of both glacial and interglacial 

Pleistocene sites from this region (Steele and Klein 2013), and consequently, it is 

difficult at this stage to differentiate more nuanced changes in habitat based upon the 

current faunal data.  Prey such as Klipspringer, Vallribbok (or grey rhebuck) as well 

as baboon and hyraxes attest to the presence of the exploitation of rocky slopes within 

the vicinity of the site (Ibid 2013, 3457).  Although no complete analysis of the 

microfauna recovered from the site has been conducted, it has been observed that 

among the dune mole rats, variation in size over time probably reflect changes in 

humidity.  A greater presence of grasses is already suggestive of a moister climate, 

and analysis of the dune mole rat remains from the sequence have lead the analysts to 

suggest that during the Still Bay and prior MSA phases during the last Interglacial 

(MIS 5), conditions were particularly moist (Ibid 2013, 3458).      

 

Analysis of charcoal recovered from pre-Still Bay, Still Bay and Howieson‘s Poort 

phases has allowed for recognition of some of the key vegetation communities 

exploited by occupants of the site.  ―Vegetation communities‖ are described because it 

is more meaningful when attempting to reflect changes in prevailing environment to 

observe patterns in associations of different genera rather than the presence or absence 

of individual species (Cartwright 2013, 3467).  The pre-Still Bay charcoal samples are 

characterised by diverse afromontane forest taxa, with the remaining taxa as being 

from fynbos (Ibid 2013, 3468).  The presence of afromontane species is perhaps 

surprising considering the elevation of the site (120m a.s.l today).   

 

The Still Bay, in contrast, has a more diverse array of vegetation communities, which, 

coupled with an apparent increase in the procurement of non-local lithic materials, 

may suggest a greater sourcing range as the reason for this.  These communities 

include afromontane, afrotemperate (a sub type of afromontane forest peculiar to the 

Western Cape), riverine woodland and fynbos among others.  In the Howieson‘s 

Poort, this diversified further, but the increased presence of thicket and shrubland 
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species, presumably within the expanding fynbos may suggest drier conditions than in 

previous periods, a trend that seemingly continued into the post-HP.  It is also 

important to note that the large number of stratigraphic units comprising the 

Howieson‘s Poort compared to those from preceding cultural phases may help 

account for some of this variation. 

 

The impressive level of detail of Cartwright‘s analysis to an extent belies efforts to 

invoke simplistic prevailing trends in climate change (2013, 3474), even though this 

remains the resolution that MSA archaeology is restricted to.  The research at DRS is 

ongoing, and Cartwright is rightfully cautious of over extrapolating environmental 

proxies in acknowledgement of the limitations inherent to the nature of the data.  

Nevertheless, it seems that mosaic environments of varying composition and relation 

were exploited throughout the assessed portion of the MSA, with the diversity of 

represented species and vegetation communities increasing over time.  Following 

analysis of the MSA fauna, it was concluded that grasslands must have figured more 

prominently in the landscape than in more recent times.  Although the vegetation 

communities (such as fynbos) identified through charcoal analysis do not preclude the 

presence of grass species, grassland biomes themselves are probably underrepresented 

though studies such as these.   
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6.7 Summary 

 

At each of the sites studied for this case-study, the Howieson‘s Poort started suddenly, 

although at Diepkloof, there is apparently some modest overlap between Still Bay and 

HP pieces.  The sudden appearance of the Howieson‘s Poort is difficult to verify due 

to the small number of sites at which these horizons co-occur or are not separated by a 

hiatus in deposition.  Similarly, understanding how and why the Howieson‘s Poort 

ended has also proved difficult due to dearth of well known post-HP MSA deposits.  

Although geographically disparate, the sites of Klasies River, Sibudu and Diepkloof 

are therefore of considerable importance.  They broadly cover the extent of the area 

across which Howieson‘s Poort assemblages have been documented.  Environmental 

contexts for these sequences have been considered individually due to problems with 

generalised inferences about prevailing climatic fluctuation.       

 

Various approaches to dating these deposits have, until recently, seemed to indicate a 

terminal OIS 4 or early OIS 3 age range for the Howieson‘s Poort.  New dates from 

Diepkloof and the discovery of microlithic and geometric assemblages outside of the 

conventionally accepted range, if verified, confronts archaeologists with one of two 

likelihoods: either the Howieson‘s Poort is substantially more variable in nature and 

duration than was commonly thought, or alternatively the small geometric pieces so 

distinctively characteristic of the industry may not have been so unique after all.  

Considering the geographic area across which the HP has been reported, and the 

generally poor archaeological resolution of non-HP and Still Bay phases of the MSA 

in southern Africa, perhaps these challenges should not be so surprising. 

 

The geometric pieces synonymous with the Howieson‘s Poort are in fact just one 

defining feature of a broader shift in technological modes.  Broadly speaking, shifts in 

material selection strategies appear to correspond to the appearance, although in some 

cases, these changes appear to have begun prior to, or continued some time after the 

appearance of these forms (Lombard 2006c; Cochrane 2008).  It is difficult to 

correlate environmental change with technological phases due to the spatial resolution 

of sites (Chase 2010), and the gradual nature of habitat transformation documented at 

many of these sites (e.g. Guillaume Porraz, Parkington, et al. 2013).  Nevertheless, it 
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seems that HP technology was utilised in a variety of environmental settings.  At 

Diepkloof and Sibudu, HP technology appears to coincide with a greater emphasis on 

bovids, although species diversity at all sites remains high even if many are only 

minimally represented.  The faunal signature for the HP at Klasies River is 

particularly diverse, though this may relate to problems with the quantification of the 

assemblage being restricted to MNI (Dusseldorp 2012; Klein 1976).         

                                    

The geometric pieces of the Howieson‘s Poort may represent new technological 

adaptations relating to weapon-systems (Lombard and Phillipson 2010).  Certainly 

their unique form may have facilitated new hafting possibilities, and the new 

production strategies that they, and other HP pieces represent, suggests a different 

mode of technological organisation.  While I would hesitate to concur with those who 

advocate the use of these pieces as armatures for bow and arrow weaponry, I also 

believe that many of the more regular flake-blade/bladelet pieces of the MSA and 

smaller pointed flake blades (Singer and Wymer 1982) may have equally facilitated 

composite hunting technology.  Further research directed to these pieces is required to 

test this belief and allow a greater appreciation of just how technologically significant 

the geometric pieces actually were. 
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7 Early Interior Alaskan Microblade Sites 
 

Despite a long tradition of prolific archaeological research (Nelson 1935), driven 

largely by the belief that eastern Beringia holds the key to understanding the earliest 

settlers of the Americas, the record of late Pleistocene and early Holocene adaptations 

in Alaska remains in a somewhat myopic state.  The sheer variability in the 

archaeological record both temporally and geographically has made singular 

narratives increasingly less tenable (Goebel and Buivit 2011b).  With time, the impact 

of AMS radiocarbon dating has begun to show (Yesner 1996; Bever 2006; Mason et 

al. 2001; Potter 2008b; Wygal 2011; Dumond 2001; 2011), although attempts at 

refining chronological resolution have if anything further complicated matters.  

Although the archaeological industries identified in the region do not all have tightly 

delineated geographical bounds, the danger of normative thinking with regards to 

environmental variability across the vast expanse has been increasingly acknowledged 

as the resolution of the Beringian palaeoecological record has improved (Bigelow and 

Powers 2001; Alfimov and Berman 2001; Begét 2001; Brigham-Grette 2001; Muhs et 

al. 2001; Mason et al. 2001; Murray 2002; Hoffecker and Elias 2003).  The sites 

considered in this investigation are geographically restricted to a region referred to as 

Interior Alaska to provide some control over this issue.   

 

7.1 Interior Alaska: The Tanana and Nenana Valleys 

Interior Alaska represents the best area for study for a number of reasons.  For the 

purposes of this investigation, Interior Alaska comprises the Tanana and Nenana 

Valley systems (Figure 103).  The latter is a tributary of the former (Figure 104).  The 

majority of dated late Pleistocene and early Holocene sites known from across eastern 

Beringia are located within these two valley systems (Magne and Fedje 2007; 

Ackerman 2007).  Although microblade activity was widespread well beyond these 

interior river valleys, these locales represent both the oldest confirmed occupation 

sites currently known in Alaska, and also represent relatively discrete geographical 

and topographical ranges within which to consider microblade function (Holmes 

2001; Hoffecker 2001).  The sites in these regions are also among the most 

extensively researched and widely published, providing the most suitable data-set for 
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consideration relative to the time period which many of these sites span: the 

Pleistocene / Holocene transition across the Younger Dryas cold period.     

 

 

Figure 103: Map of Interior Alaska 
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Figure 104: Map of early Alaskan sites showing interior cluster 

 

7.1.1 Chronological Range 

Early microblade industries from the late Pleistocene and early Holocene form the 

main focus of attention here.  This time range covers the earliest known occupants of 

Alaska through the Younger Dryas and the post-YD Holocene Thermal Maximum (or 

Milankovitch Maximum).  In central Alaska, these earlier archaeological components 

are better known and understood than those from the mid and late Holocene.  While 

there are more known sites including those with microblade assemblages from the 

mid-late Holocene, these have been less extensively investigated, and lack the 

chronological control and environmental and faunal data of earlier period sites.  The 

quantity of AMS radiocarbon dates from occupations of this period is much less than 

that from older sites, and the shallower stratigraphic depth from which many of these 
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occupations are recovered renders many of the associated dates vulnerable to various 

complications arising from young buried forest soils in Alaska (Erlandson et al. 1991, 

35; Yesner 1996; Wygal 2011, 236).  Although there have been recent efforts to 

redress the imbalance of attention afforded to older sites in east Beringia (Potter 

2008a; Potter et al. 2007), the quality and resolution of data still compares poorly with 

that of sites from earlier periods (Wygal 2011).               

 

The chronological range of microblade industries in Alaska does not, at present, 

appear to have clear limits.  Rather, it seems that microblade technology persisted to 

varying degrees throughout most of the extant Pleistocene and early-mid/late 

Holocene records (Wygal 2011).  As mentioned above, the overwhelming majority of 

attention has focussed upon the earlier assemblages from the late Pleistocene and 

early Holocene which are generally agreed upon as pertaining to the Denali industry 

(Ackerman 2007).  Revisions in the interpretation of the core-reduction process 

utilised in the oldest microblade assemblage from Swan Point have favoured 

distinction from the Denali (Holmes 2011; Graf and Bigelow 2011), though at present 

this occurrence remains an anomaly.  Microblade assemblages are perhaps best 

differentiated according to assemblage variability because of their ubiquity as a 

technological mode throughout much of the early colonisation and occupation of 

Alaska (Wygal 2011).  There is a lack of consensus over the definition and 

constitution of later Holocene techno-complexes, with multiple nomenclatures for 

different regional and chronological variations (Clark 2001; Ackerman 2007; Holmes 

2008; Dumond 2011).  Among these later microblade industries is included the ―late 

Denali‖, an industry known for its affinities with its earlier namesake industry, but 

dated to the later Holocene (e.g. Yesner and Pearson 2002; Pearson and Powers 

2001), although acceptance of this classification has not been accepted by everyone 

(Holmes 2008).  Until better agreement can be reached upon the classification of these 

assemblages, a focus upon the earlier Denali assemblages remains less contentious.  

As well as being the most extensively studied and dated of the various microblade 

industries in Alaska, early Denali components comprise a relatively rich site density 

in the interior valleys, and boast the best accompanying faunal and environmental 

datasets.  This study follows the precedent of other assessments of microblade 

technology in focussing specifically upon the period between 14,000-9/7000 cal BP 

(Mason et al. 2001; Potter 2011; Wygal 2011).       
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7.1.2 Criteria for Inclusion   

Only sites with microblade components reliably dated to the late Pleistocene and early 

Holocene are included in this investigation.  From the Tanana Valley, these include 

Swan Point, Broken Mammoth, Gerstle River Quarry and Chugwater.  From the 

Nenana Valley, the sites of Dry Creek and Panguingue Creek are included.  A number 

of notable microblade yielding sites from these valley systems are excluded for failing 

to securely date to this period.  The Donnelly Ridge site, which formed the basis for 

West‘s initial definition of the Denali (1967), is excluded as the site lacks stratigraphy 

and has not yet been successfully dated (West 1996b).  The Campus site, which again 

played a notable role in the original definition of the Denali industry (Morlan 1970), 

is excluded as the microblade component of the site has so far only been securely 

dated to the mid / late Holocene (Pearson and Powers 2001).  Likewise, while the site 

of Healy Lake appears to have been occupied during the late Pleistocene and Younger 

Dryas, problems with stratigraphic integrity have rendered it impossible to 

characterise the nature of this occupation and to reliably date its deposits (Erlandson 

et al. 1991; Cook 1996; Hamilton and Goebel 1999, 169).  Little Panguingue Creek 

has yielded a Denali like assemblage that closely resembles that from Dry Creek, but 

seemingly has a much younger date, pertaining to the late Holocene (Hoffecker and 

Powers 1996).  Moose Creek qualifies for inclusion (Pearson 1999; Hoffecker 2001), 

but unfortunately the lithic assemblages from the site have not yet been sufficiently 

detailed to be of any substantially informative value.  Finally, from the valley adjacent 

to east of the Nenana river system, a Denali component was defined at Owl Ridge, but 

is excluded from consideration here because the assemblage lacks microblades 

(Hoffecker et al. 1996).  Teklanika West is also excluded as dates from the site are too 

young to qualify as Pleistocene or early Holocene deposits (Goebel and Buivit 2011, 

5).                              

 

Early Alaskan Assemblage Variability 

Although the early Alaskan industries are among the best known, a range of opinions 

exists regarding how they should be classified and defined typologically, 

chronologically and geographically.  The earliest widely recognised industries are the 

Nenana, Denali and Mesa technology types.  Some researchers have also advocated 

the recognition of the Chindadn as a distinct technological entity.  Although the small 

tear-shaped bifacial points unique to this classification (Figure 105) have been found 



294 

 

in association with microblade technology, they also occur in assemblages that 

otherwise conform to the Nenana designation (Goebel 2011).  Consequently, while 

Chindadn points represent a distinct tool type, the notion of their being associated 

with a separate cultural entity remains difficult to extricate from the traditional 

Nenana / Denali dichotomy (Holmes 2001, 165).  For Interior Alaska, relative 

working definitions for the Nenana and Denali are necessary (see below), but not the 

Mesa industry.  The hallmark of Mesa technology, named after the site at which the 

type-fossils were discovered, is large paleoindian points of a style not dissimilar to 

those of other North American archaic traditions such as the Clovis.  Traditionally, it 

was largely believed that Mesa technology was geographically restricted to the North-

West (Hoffecker 2011). Although large foliate points of a similar nature have been 

recovered in archaeological components from Interior Alaska, and while a connection 

has been posited (see discussion of Dry Creek component II) (Hoffecker and Elias 

2007, 198; Hoffecker 2011, 171), the presence of Mesa technology requires further 

substantiation before it can be satisfactorily recognised as part of the techno-historical 

trajectory of the region.  

 

 

Figure 105: Chindadn Point "Teardrop" Bifaces. Points a and b from Walker Road, and c from 

Moose Creek.  

 

 

7.1.3 Alaskan Microblades 

Microblades, as understood within the context of the late Pleistocene and early 

Holocene archaeology of eastern Beringia (Alaska and Yukon Territory) are most 

clearly defined as regular, elongated prismatic flakes (usually with three longitudinal 

facets on one side, and a plain face upon the reverse side), and generally between 0.4 

and 0.8cm wide and 2 and 3cm long (Clark 2001, 64).  There is no universally 
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recognised regional definition however, and varied standards continue to be used 

among Alaskan archaeologists (Wygal 2011, 234).  Although they may be subsumed 

within the generalised category of microlithic technology, the general attributes 

detailed above allow for the development of a more nuanced categorisation and 

understanding (Kuzmin et al. 2007, 3).  Brian Wygal distinguishes microblades from 

bladelets (and other blades) by suggesting that they were manufactured specifically 

for the purpose of hafting in composite tools, whereas he considers bladelet 

production to lack the control of standardisation necessary for this intention (2011, 

234).  Mason et al. concede that while it is unquestioningly assumed that microblades 

were used in the fashion advocated by Wygal, firm evidence for this practice from 

Alaskan contexts remains scarce (Mason et al. 2001, 526).              

 

7.1.4 Denali 

The Denali was first defined by Fred Hadleigh-West from assemblages from four 

sites, including (and primarily from) his work at Donnelly Ridge (West 1967).  The 

ambitiously well defined criteria he set forth for determining what constitutes the 

Denali has subsequently been abandoned as too restrictive as the discovery of more 

sites has highlighted the range of variability typical of early Alaskan lithic 

assemblages (Mason et al. 2001, 526).  Although currently, definitions of the Denali 

vary, most characterisations continue to emphasise microblades (and associated 

pieces: e.g. prismatic cores and burins) and bifacial knives as among the more 

diagnostic elements (e.g. Vasil‘ev 2011, 120).  Despite this, the Denali cannot be 

regarded as synonymous with microblade technology, and several occupations lacking 

microblade technology have also been assigned to the techno-complex (Mason et al. 

2001; Hoffecker et al. 1996).  Not long after West‘s proposition of the Denali, another 

similar schema was proposed for the recognition of many early Alaskan microblade 

assemblages, the ―American Paleo-Arctic Tradition‖ (Anderson 1970).  Definitions of 

both the Denali and Paleo-Arctic Tradition have undergone substantial revisions since 

their initial formulation, and although neither have been formally accepted or rejected 

(Goebel and Buivit 2011), Denali seems to have prevailed among many researchers 

concerned with early Alaskan microblade technology (Powers and Hoffecker 1989; 

Hoffecker et al. 1993; Mason et al. 2001; Bigelow and Powers 2001; Yesner and 

Pearson 2002; Potter 2011; Wygal 2011; Graf and Bigelow 2011), particularly in 
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Interior Alaska where West‘s work has been of the greatest influence (West 1967); the 

Paleo-arctic Tradition was initially designated specifically to industries in the north-

west (Bever 2001, 147).                       

 

7.1.5 Nenana 

The Nenana industry, initially proposed as a regional phenomenon restricted to 

Interior Alaska, was formulated following excavations at Dry Creek and other sites 

within the Nenana Valley (Powers and Hoffecker 1989; Goebel et al. 1991).  As with 

many other attempts at classifiying technological traditions in Alaskan prehistory, 

definitions can be quite variable.  The main defining feature upon which Nenana 

assemblages are distinguished is their lack of microblade technology (Powers and 

Hoffecker 1989, 280).  Consequently, the Nenana is most frequently characterised in 

juxtaposition or contrast to the Denali (Yesner and Pearson 2002).  Other commonly 

cited assemblage characteristics include bifacial knives, macro-blades, unifacial 

scrapers and knives, gravers, end scrapers, choppers and anvils (Vasil‘ev 2011, 120).  

The discovery of microblades in deposits previously typologically attributed to the 

Nenana (Swan Point CZ4 and Broken Mammoth CZ3) highlights the fragility with 

which these terms can be effectively employed. 

 

7.1.6 Microblades vs. Non-Microblades Dichotomy 

When the definition of the Nenana complex was first proposed, the absence of 

microblades was considered a stark contrast to the other Denali assemblages.  

Deposits assigned to the Nenana typically underlie the Denali stratigraphically.  

Consequently, the notion of a temporally dichotomous relationship between 

microblade and non-microblade technology, Denali and Nenana, has dominated 

discussions of early Alaskan prehistory in recent decades (Wygal 2011).  The 

discovery of microblades in the oldest deposits at Swan Point CZ4 and CZ3 (the 

former being the oldest confirmed archaeological deposit in Alaska) and also Broken 

Mammoth CZ3 shows that the microblade and non-microblade technology were likely 

contemporaneous with one another, and brings the effective utility of these definitions 

into question (Goebel and Buivit 2011, 14–16).  While the Nenana continues to 

underlie the Denali in most instances where the two are recorded at the same site, the 

range of overlap in radiocarbon dates has further exacerbated attempts to 
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chronologically distil one from the other.  As it is impossible to completely eschew 

existing paradigms, the nomenclature of Denali and Nenana is maintained in this 

investigation, but the emphasis remains upon the microblade aspect.       

 

7.1.7 Type Sites              

Although Alaska lacks sites with secure, deep stratigraphic sequences of human 

occupation, type-sites nevertheless come to dominate discussion through their use in 

the characterisation of assemblage variability, or through other unique analytical 

insights or combinations thereof that investigations have proffered.  In this sense, 

Broken Mammoth may be considered something of a type-site for the unique 

inference of faunal exploitation that analysis of the site has provided from oldest 

occupations CZ3 and 4, while the lithic assemblages from these components remain 

not yet extensively detailed and, until recently, small in size.  As far as lithic 

variability is concerned, Dry Creek (Component I) has been acknowledged as the 

type-site for the definition of both the Nenana complex (Graf and Goebel 2009, 57) 

and the Denali (Mason et al. 2001, 526), as for a long time Component II at the site 

represented the most substantial collection of early Denali pieces from a securely 

dated deposit.  Subsequent work at the site of Walker Road has established a larger 

more definitive Nenana complex and has become the type-site for the industry, largely 

through confirming details derived initially from Dry Creek Component I (Goebel 

2011).  Given that some scholars now question the certainty with which these techno-

complexes can be successfully demarcated (Potter 2011; Wygal 2011), the utility of a 

―type site‖ even in this regard is reduced to functioning as a reference for the 

terminology used in research.  

 

7.1.7.1 Alaskan Sites Diagram 

The diagram generated for this case-study area differs from those created for the 

south-african and cantabrian studies.  Whereas previous diagrams have focussed upon 

a single, well-documented site capable of providing an extended and relatively 

continuous stratigraphic and chronological sequence, such an approach was not 

possible for the Alaskan study area due to the substantially different nature of the sites 

in question.  Sites with extended stratigraphic and chronological ranges comparable to 

La Riera and Klasies River simply do not exist in Alaska.  As a compromise to this 
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problem, the Alaskan diagram amalgamates all the sites investigated in one 

pictograph.  By using multiple sites, the vertical axis (change over time) is measured 

in uncalibrated radiocarbon years as a replacement for a singular internally concordant 

stratigraphic sequence.  The inclusion of multiple sites also helps compensate the 

relative scarcity of data gathered; while early Interior Alaskan sites are among the 

most extensively studied in eastern Beringia, none have been studied in any level of 

detail approximating the investigations of La Riera or Klasies River. 

 

7.1.8 Occupation of Eastern-Beringia Prior to Swan Point 

Swan Point represents the only site assessed in this investigation where there is no 

antecedent occupation either at the site or in the broader region with which to 

contextualise the occurrence or proliferation of microlithic technology.  Concerns 

regarding the stratigraphic integrity of the site have been sufficiently allayed to allow 

widespread recognition of component CZ4 at Swan Point as, at present, the oldest 

identified occupation of Eastern Beringia (Goebel and Buvit 2011; Vasil‘ev 2011; 

Ackerman 2007; Hoffecker and Elias 2007) currently dated to 14,800 cal BP (12,360 

RCYBP) (Holmes 2011, 182).  Microblade traditions in Eastern Beringia are 

generally characterised as having been transmitted with an influx of people across the 

land bridge, or alternatively as having developed in-situ as an adaptive response to the 

conditions of the changing environment.  The acceptance of CZ4 at Swan Point 

greatly favours the former interpretation (Vasil‘ev 2011; Wygal 2011).  A variety of 

microblade types, or rather production techniques, have been identified throughout 

eastern Siberia, China and Japan (Chen 2007), and although the Diuktai tradition of 

eastern-Siberia is often cited as the ancestral tradition of both the Swan Point 

assemblages (Holmes 2011, 184; 2001, 165) or later east Beringian microblade 

complexes in general (Yesner and Pearson 2002, 156), there are sufficient divergences 

both within non-microblade assemblage components (Vasil‘ev 2011) and within 

microblade production techniques (Chen 2007) to merit caution in stressing the 

connection between the Diuktai and later Denali technologies. 

 

The anomalous date of the Swan Point microblades from CZ4, currently the only 

example of a confirmed microblade assemblage underlying a Nenana component 

(Ackerman 2007, 154), renders the question of origins speculative pending the 
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discovery of further contemporary deposits (Vasil‘ev 2011; Wygal 2011).  Several 

sites outside of the Tanana and Nenana valleys currently under investigation (Bluefish 

Caves, Lime Hills Caves, and Trail Creek Caves) have been suggested as similarly 

ancient if not older components than the Shaw Creek sites (Morlan 2003; Sattler et al. 

2001; Cinq-Mars and Morlan 1999), but have proven impossible to date satisfactorily 

due to various stratigraphic and taphonomic problems (Yesner 2001, 316; Hoffecker 

and Elias 2007, 130).  While the earliest occupation of Eastern Beringia may currently 

lie beyond our grasp, obsidian sourcing studies on material from Broken Mammoth 

and Swan Point may be interpreted as implicit evidence of good knowledge of the 

extended landscape and perhaps social groups (Holmes 2001, 167), belying an even 

older presence in the region (Hoffecker and Elias 2007, 130; Dixon 2011, 363).  

Furthermore, with the extension of dates for the Clovis and the widespread acceptance 

of pre-Clovis industries in North America, along with the site of Monte Verde and 

possibly other ancient sites in South America, it seems rational to suppose an earlier 

human presence within eastern Beringia if indeed this was the main or only entry 

point for peoples into the Americas (Bever 2006).      

 

7.2 Palaeoenvironmental Data 

 

While palaeoenvironmental reconstruction is partly possible at sites where faunal 

remains have been recovered from securely dated contexts, the scantiness of these 

assemblages means archaeologists must defer to other sources of information to 

supplement their understanding of conditions.  Among the most important of these are 

general trends in faunal extinction (Guthrie 2001; 2006) and pollen and vegetation 

reconstructions (Edwards and Barker Jr. 1994; Bigelow and Edwards 2001; Bigelow 

and Powers 2001).  Recent studies have incorporated this information into their own 

investigations to good effect (Mason et al. 2001; Wygal 2011; Graf and Bigelow 

2011).   

 

In a recent survey, Guthrie collated a large database of dated faunal remains from 

across Alaska and plotted them against one another along with estimated changes in 

vegetation (Guthrie 2006).  His results are best represented in (Figure 106).  Both 

mammoth and horse seem to go extinct in Alaska not long after the earliest evidence 
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of human presence.  The overlap between human presence and the decline of these 

species has been interpreted as insufficient to substantiate hypotheses of human 

predation as a driving factor in these extinctions (Guthrie 2006).  Horse body size 

began to decline long before humans are documented in Alaska (Guthrie 2003).  That 

said, it is likely that horse at least may have featured among the diet of Alaska‘s 

earliest inhabitants (Holmes 2011).  Holmes also believes that mammoths were 

hunted by the occupants of Swan Point CZ4, perhaps using microblade technology, 

although this particular scenario seems perhaps unlikely.  Mammoth remains have 

been found at a number of early Alaskan sites, even as late as 8860 RCYBP in 

Component III at Gerstle River Quarry (Potter 2001).  So far, no post-cranial 

mammoth remains have been found associated with human occupation in Alaska 

(Table 34).  Several of the ivory fragments, which comprise the majority of mammoth 

remains from archaeological deposits, significantly predate the archaeological 

deposits they are associated with.  This has led other researchers to suggest that 

remains were primarily scavenged rather than hunted (Yesner 2001, 323). 
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Figure 106: Diagram showing timing of increase and decrease in various species (floral and 

faunal).  From Guthrie (2006). 

 

More pertinent perhaps than the extinction of various megafauna for inhabitants of 

Alaska at this time was the emerging dominance of new grazing species: bison, moose 

and wapiti just prior to Swan Point CZ4 (Figure 106).  The arrival (wapiti and moose) 

and expansion (bison) of these species was likely a result of a change in climate that 

allowed for a higher abundance of graminoids, tree willow, and edible woody plants 

than had previously been available across the mammoth steppe (Guthrie 2006, 208).  

Wood was likely still scarce for the earliest populations at Swan Point CZ4 however, 

as hearth residue analysis suggests bone was the main source of fire fuel (Crass et al. 

2011).  This matches with evidence from pollen cores sampled from around the study 

area (Bigelow and Powers 2001; Bigelow and Edwards 2001).  Discordance exists 

within the record because of the disparity in AMS and non-AMS dates used.  

Windmill Lake at the southern end of the Nenana Valley and Birch Lake downstream 

to the east of the Shaw Creek flats are considered here as the most reliable proxies as 

these cores have been AMS dated (Bigelow and Powers 2001, 182).  These show that 

by 12,500 RCYBP, and beginning around a thousand years earlier (Guthrie 2006), a 

slight increase in moisture likely precipitated a greater abundance of many species, 

particularly sedges and willow prior to the establishment of widespread birch shrub 

tundra by 11,800 RCYBP, perhaps even earlier in lowland areas (Bigelow and 

Edwards 2001, 211).  Artemisia, a group of hardy herbaceous shrubs, appears to have 

been important at this time among the Tanana lowlands (Bigelow and Powers 2001, 

183).    
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Source Site Find Description 
Find Date 
Uncalibrated 

Associated 
Occupation  

Holmes (2001); Potter (2001) 
Gerstle River 
Quarry 

Ivory Rod Undated Component III 

Holmes (1996; 2001), Yesner (1996; 
2001)* 

Broken Mammoth 
Ivory Fragment 15,830 ± 70 BP 

Cultural Zone 4 
Ivory Fragment  11,540 ± 140 BP 

Yesner (1996; 2001)* Mead Ivory Fragment 17,370 ± 90 BP Cultural Zone 4 

Holmes (2011) Swan Point 

Tusk Midsection 12,060 ± 70 BP 

Cultural Zone 4 
Large Ivory Flake 12,050 ± 120 BP 

Mammoth molar 
plate 

12,110 ± 120 BP 

Gelvin-Reymiller et al. (2006) 
No Associated 
Site 

Incomplete tusk 35,150 ± 530 BP N/A 

 

Table 34: Dated Mammoth remains associated with human activity in Alaska 
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Prior to this time the landscape was sparsely vegetated, and glaciers may have 

persisted on the upland perimeter of interior valley systems.  Once birch was 

established as the dominant vegetation type however, it remained so throughout the 

ensuing millennia.  The landscape was far from homogenous though, and likely 

formed a variable mosaic habitat, with shrub species more prevalent in wind scoured 

areas (Ibid 2001, 188), perhaps as the Tanana Valley floodplain may have been at 

times (Mason et al. 2001, 536).  Graminoids and sedges also prevailed throughout 

much of the period providing a food source favoured by bison.  Spruce did not 

become widely established until around 8500 RCYBP, and poplar and alder even later 

(Bigelow and Edwards 2001, 213).  It is not clear how significantly the Younger 

Dryas affected the landscape, but increased aridity during the latter half seems to have 

retarded and perhaps temporarily diminished the expansion of birch in favour of 

Artemisia across much of Alaskan plains at this time (Ibid 2001, 212).                 

 

7.3 Sites 

 

7.3.1 Swan Point  

 

Swan Point (grid reference: 63º18‘N, 146º02‘W) is located approximately 7km north 

east of the Broken Mammoth site and 5km west of a tributary of the Shaw Creek river 

(Hoffecker and Elias 2007, 119), which itself feeds into the Tanana River to the south 

(Figure 107).  The site is situated upon a small knoll at the eastern end of a 1km long 

ridge, 25m above the surrounding lowlands of the Shaw Creek Flats (Holmes 1996).  

Swan Point has been known about since the early 1990‘s, and ongoing excavations 

and investigation at the site has led to the identification of 4 ―cultural zones‖ (CZ 1-4) 

of archaeological materials, spanning from the terminal Pleistocene to the early 

Holocene.  Excavations originally consisted of a 1m
2
 test pit, but have subsequently 

been expanded in area to around 60m
2
 to allow the delineation of identified hearth 

features in both CZ4 and CZ3 (Potter 2011; Holmes 2011).               
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Figure 107: Map of the Tanana Valley showing sites mentioned in text 

 

Swan Point has yielded the oldest evidence of Alaskan occupation currently known 

although, as discussed earlier, there is reason to believe that there earlier sites may or 

may have existed (Speakman et al. 2007).  The oldest component at the site is 

designated as CZ4, and is the only occurrence of microblade technology dated prior to 

13,000 cal BP in Alaska (Potter 2008b, 189).  As already discussed, the association of 

this date with the presence of microblade technology (Appendix 38) served to 

seriously challenge existing hypotheses regarding both the nature of America‘s initial 
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colonisation (previously supposed to pertain to the Nenana complex), and the role of 

microblade technology as a clear-cut marker of ethnicity (Vasil‘ev 2011).   

 

7.3.1.1 Stratigraphy and Dating 

The stratigraphy of Swan Point is very similar in sequence to that of Broken 

Mammoth (Figure 108) (Holmes 2001; Hoffecker and Elias 2007).  With the 

exception of the apparent intermission between CZ4 and CZ3 believed which 

coincides in part with the onset of the Younger Dryas, occupation of the site occurred 

throughout much of the Holocene (Holmes 2011, 182; Graf and Bigelow 2011, 437).  

The stratigraphy consists of one metre of aeolian sediments (greyish-brown sand) 

overlying basal colluvium and sand deposits and frost-shattered bedrock, consisting of 

two main phases of loess containing various palaeosols associated with CZ3 human 

occupation (Figure 109) (Holmes et al. 1996, 320).  Deposition of the loess started 

rapidly during the Younger Dryas but decelerated increasingly thereafter (Holmes et 

al. 1996, 320; Holmes 2011, 180).  Wind polished fragments within the lag deposits 

that precede the earliest deposition of loess suggest an open landscape susceptible to 

the elements at the time of CZ4, while it is hypothesised that CZ3 co-occurs with the 

so-called ―transitional period‖ (Holmes 2011, 182) featuring the YD and immediately 

post-YD.  CZ4 is separated from CZ3 by around 10-15cm of loess, estimated to 

represent a hiatus of around 1000 years (Holmes 2011, 183).  Maximum estimates for 

dates acquired from CZ4 span between 12,360 – 11,770 RCYBP, while the age range 

for CZ3 is 10,570 – 10,010 RCYBP (Holmes 2011; Holmes 2008; Holmes et al. 

1996).  CZ2 is located near the interface between the two loess deposits about 38cm 

from the top of the sequence, and is dated to 7400 RCYBP, while CZ1 is divided into 

two sub components (CZ1a and CZ1b) within the uppermost portion of the sequence 

(Figure 109), dated to between 1750 and 1220 RCYBP (Holmes et al. 1996, 320).              
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Figure 108: Comparison of stratigraphy from Shaw Creek sites 
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Figure 109: Swan Point Stratigraphic Section 

 

7.3.1.2 Lithics 

Although the lithic assemblages from Swan Point have not yet been completely 

analysed, preliminary details of the assemblages from CZ4 and CZ3 have been made 

available.  So far around 800 microblades have been recovered from CZ4 compared to 

just 36 from CZ3 (Holmes 2011).  A small number of the CZ4 microblades exhibit 

retouch, seen by Holmes as qualifying them as projectile insets or knives (2011, 184).  

In earlier reports, it was noted that finished forms were not common among the 

assemblages (Ibid 2001, 162).  The CZ4 microblades are made of chert, rhyolite and 

obsidian, and are found along with core preparation flakes, with geochemical analysis 

of three obsidian microblades suggestive of an unknown source (Speakman et al. 

2007).  Even less is known of the assemblage from CZ3, although the microblades are 

found in association with chindadn points (Potter 2008b, 189).  Holmes believes that 
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microblades from CZ3 were made in a fundamentally different way to those from 

CZ4 (Holmes 2011), although this interpretation is difficult to verify in the absence of 

any cores.  Those from CZ4 are apparently made with the Yubetsu or Diuktai/Dyuktai 

method 

(

 

 

Figure 110), a tradition confined, with the exception of this occurrence, to western 

Beringia, while those from CZ3 are assumed to be made using the Campus core 

technique of traditional Alaskan wedge-shaped microblade cores, which utilise 

platform rejuvenation techniques 
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(

 

 

Figure 110) (Coutouly 2012).  The Diuktai method uses bifacial cores to produce 

microblades (Flenniken 1987) and the identification of this method in CZ4 has been 

used to suggest a connection between west and early east Beringian populations 

(Holmes 2011; Coutouly 2012).  Although a range of other microblade core types 

occur in Alaska (Figure 111) (Morlan 1970), the Campus wedge-shaped method has 

been suggested as a historical development of the Yubetsu style (Coutouly 2012). 
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Figure 110: Comparison of Dyuktai and Campus microblade reduction techniques. From Coutouly (2012). 
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Figure 111: Alaskan microblade core types. From Morlan (1970) 
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Microblades were also recovered from cultural zones 2 and 1b (Figure 109) (Holmes 

et al. 1996), although even less is known about these assemblages.  Microblade cores 

from CZ2, dated to around 7400 ± 80 BP, are sub-conical or tabular, distinguishing 

them from other later Denali microblades in the region, i.e. the classic wedge shaped 

cores of CZ2 at Broken Mammoth, dated to c. 7700-7200 BP (Ackerman 2007, 155–

156), see (Figure 111).  Without further specifics regarding the quantification of both 

the lithic and faunal assemblages, it is difficult to attempt a more nuanced 

interpretation of behaviour at the site.         

 

7.3.1.3 Fauna 

The faunal assemblages collected from Swan Point are generally smaller in quantity 

and less well preserved than those from nearby Broken Mammoth (Holmes et al. 

1996, 321).  The CZ4 fauna are particularly sparse, although ducks, geese, upland 

game birds (grouse/ptarmigan) have been identified alongside horse and antler 

fragments from large cervids, likely moose, caribou or elk (Holmes et al. 1996, 321; 

Holmes 2011, 184).  Most notable among the faunal remains from this component are 

fragments of mammoth tusk ivory, including some worked pieces, clearly attesting to 

the scavenging if not hunting of these large megafauna (Holmes 2001; 2011).  The 

CZ3 assemblage contains similar species to those from Broken Mammoth CZ3, with 

an assemblage dominated by elk and bison, and also a continuation in the exploitation 

of waterfowl and game birds, but with the notable addition of fish remains (Holmes 

2011, 186). 

 

7.3.2 Broken Mammoth 

 

Broken Mammoth is arguably the most extensively investigated early Alaskan site to 

date, and consequently, also the best known.  The site has provided unique insights 

into the palaeoecology and archaeology of early Alaskan occupation, rendering any 

discussion of Alaska‘s earliest inhabitants obliged to give consideration of the site.    

More so than any other site included for this study, Broken Mammoth perhaps closest 

matches the criteria necessary to qualify as a type site as defined for the purposes of 

this study, representing an example of well preserved fauna (Yesner 2001) and lithic 

assemblages (Krasinski and Yesner 2008) from securely dated stratigraphic contexts 
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deposited over an extensive period of time (Yesner 1996).  However, given the lack of 

consensus both in the interpretation and clarification of technological traditions 

geographically and chronologically, the Broken Mammoth site cannot be considered a 

―type site‖ in any conventional sense.   The ability to directly compare other sites in 

the Tanana Valley (e.g. Swan Point and Mead) stratigraphically (Yesner 1996; 

Holmes 2001), and even in the neighbouring Nenana Valley (Hoffecker 2001) 

through proximity (Figure 103) has given Broken Mammoth a strong role in 

discussions of late Pleistocene and early Holocene archaeology of early Alaska 

(Yesner and Pearson 2002).       

 

The site is located near the confluence of Shaw Creek and the Tanana River (64º16‘N, 

146º07‘W) on a 30m high, well drained, south-facing bluff overlooking the river 

system (Figure 107) (Yesner 1996).  The site was discovered in 1989 from material 

eroding from the face of the bluff, and excavated intermittently throughout the 1990‘s 

and ensuing decade, although unfortunately a sizeable area of the site was destroyed 

during roadway construction during the 1970‘s (Holmes 1996, 312).  Discoveries at 

the site have been published as research has progressed, but a full report for the site is 

yet to emerge, although such is the site‘s importance as previously established, it has 

already assumed a dominant role in the prehistoric archaeology of the region.  The 

main details of investigation that have so far been made available are accessible 

through a handful of disparate sources (Holmes 1996; Yesner 1996; 2001; Yesner and 

Pearson 2002; Krasinski and Yesner 2008).  To date, information from the site is 

limited to material excavated up until 2002 (Krasinski and Yesner 2008).  Four 

cultural zones delineating densities of archaeological materials in the stratigraphic 

sequence of the site have been identified.  The oldest two zones, CZ4 and CZ3, extend 

the chronology of the site back to the early Holocene and late Pleistocene, and have 

received the majority of attention thus far (Holmes 2001).           

 

7.3.2.1 Stratigraphy 

The sequence of the site has been divided into four broad stratigraphic units, within 

which the four cultural zones delineating densities of archaeological materials have 

been identified.  The close proximity of the site to the river system is likely 

responsible for the greater mass of loess deposits documented at the site compared to 
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other Tanana sites further from the water (e.g. Swan Point) (Holmes et al. 1996, 321).  

As with other sites in the Tanana valley, loess deposits accumulated rapidly at Broken 

Mammoth, particularly thanks to the site‘s close proximity to the river.  These thick 

deposits are responsible for the excellent organic preservation at the site, unique 

among archaeological horizons of similar antiquity in the region, and have also 

afforded protection against taphonomic disturbance (Yesner 1996, 260).   

 

 

Figure 112: Broken Mammoth Stratigraphic Section 
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Figure 112 shows the stratigraphic sequence of the site.  An area of up to 326m
2
 has 

been excavated at the site (Potter 2011, 225), with the total area of the extant site 

estimated to be around 650m
2
 (Holmes 1996, 313).  Most of the palaeosols associated 

with the cultural zones 3 and 4 are regular, flat-lying, and extend for tens of meters 

across the site surface, attesting to the lack of cryoturbation at the site (Yesner 1996, 

260).  As with other sites in the Tanana basin, deposits comprise of loess and aeolian 

sands.  Figure 112 shows the four ―geological units‖ to which the deposits pertain.  

Figure 108 shows how this sequence compares to depositional units recorded at the 

nearby sites of Swan Point and Mead.  The grey sand of unit A is the oldest deposit at 

the site, overlying frost-shattered gneissic bedrock, with a terminus ante quem 

deposition date of 12,000 BP (Holmes 1996, 313).  Units B and D represent large 

compact loess deposits (B = Lower and D = Upper), within which the four cultural 

zones of the site were identified.  Unit C, which separates B and D is a thin layer of 

fine grey sand between 1 and 5cm thick deposited some time after 9000 BP (Ibid 

1996).  Unit D comprises silty sand deposited over the last 8000 years capped with 

two distinct soil horizons (containing CZ2 and 1) and the sod (Figure 112). 

 

Unit B is a large silt deposit subdivided into three phases according to associated 

palaeosol complexes (Figure 112), with only middle and basal palaeosols (B2 and B1) 

associated with cultural zones (CZ3 and 4 respectively).  Unit B2, associated with 

CZ3, represents the strongest palaeosol formation at the site (Holmes 1996, 313).   

Cultural zone 4 is sometimes divided into three sub-phases (Figure 112) in reference 

to the different sediments sampled to acquire dates.  CZ1 was also divided into two 

substages for similar reasons, but with the added distinction that CZ1a and 1b 

pertaining to different soil horizons within unit D.  CZ4 is separated vertically from 

CZ3 by about 15-25cm, which is in turn separated from CZ2 by around 75-90cm of 

overlying sediment (Yesner 1996).                     

 

7.3.2.2 Dating 

Dates for much of the Broken Mammoth sequence remain unchanged from Holmes‘ 

original catalogue (1996, 315).  Dating efforts focused upon cultural zones meaning 

that precise dates for geological units A and C are unavailable.  Twenty three dates 

associated with cultural zones 1-4 were acquired from charcoal and bone from 
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throughout the sequence, with CZ3 and 4 the best dated zones.  Table 35 shows the 

minimum and maximum date range (RCYBP) of the different cultural zones after 

Hoffecker and Elias (2007) and Holmes (1996). 

 

 CZ 1 CZ 2 CZ 3 CZ 4 

Uncalibrated 

C
14

 date range 

2040 –  

2815 BP 

7200 –  

7700 BP 

10,790 –  

9310 BP 

11,770– 

11,040 BP 

 

       Table 35: Dating of Broken Mammoth Cultural Zones 

          

7.3.2.3 Lithics 

Some preliminary details of the lithics from cultural zones 2-4 have been detailed to 

varying extents, although not comprehensively in any currently accessible format 

(Table 36) (Yesner 1996; Yesner and Pearson 2002; Krasinski and Yesner 2008).  

Krasinksi and Yesner‘s spatial analysis of the site‘s faunal and lithic assemblages is 

the most contemporary collation of data, spanning excavations from 1993-2002 (the 

1993 material remains incomplete).  Their analysis is restricted to cultural zones 3 and 

4 and microblades and formal tools are excluded from it as they are deemed too small 

in population size for the purposes of their investigations (2008, 32).  The most 

notable revision in the archaeology of the site in recent years has been the recognition 

of microblade technology as a component of the cultural zone 3 assemblages, albeit a 

relatively minor one (n =  44), whereas it has previously been assumed they did not 

appear at the site until the Holocene in cultural zone 2 (Yesner and Pearson 2002).  

They remain seemingly absent from the CZ4 assemblage.  The stratigraphic security 

of the site (Yesner 1996, 260) eliminates the possibility of mixing as an explanation 

for their provenance in CZ3.   

 

 

  Flakes Tools Microblades 

CZ3 39890 41 44 

CZ4 1284 35 0 

 

Table 36: Broken Mammoth CZ4 & 3 lithics 

 

CZ3 and CZ4 have both been identified as comparable to, if not directly pertaining to 

the Nenanan techno-complex (Yesner and Pearson 2002, 145).  The confirmation of 
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microblades within CZ3 complicates this assessment, and other researchers have  

expressed reticence in defining CZ4 and CZ3 as a Nenanan industry (Ackerman 2007, 

155; Holmes 2001, 165; Graf and Bigelow 2011).  Prior to the discovery of 

microblade technology within CZ3 assemblages, those from CZ1 and 2 were notable 

for seemingly further confirming a late date for the persistence of microblade 

technology in the region comparable to that of the Denali, recognised as Late Denali  

(Yesner and Pearson 2002, 145; although see Holmes 2008 for an alternative 

interpretation).  More details regarding the assemblages from these later cultural 

zones have not been made widely available, although it is known that over 8000 

microblades have been recovered from CZ1 and 2 so far (Yesner and Pearson 2002, 

152).  Around 75% of these later miroblades are confirmed as having been snapped, 

with many broken during the manufacture process, while others may have been 

broken during use (Ibid 2002).  The absence of edge retouch and preliminary results 

from unpublished microwear analyses suggests their use as insets within slotted bone 

tools (Kononenko, pers.comm in Yesner and Pearson 2002, 152).  The majority of 

faunal data from the site currently available is unfortunately limited to the earlier 

cultural zones.  

 

7.3.2.3.1 Raw Materials 

Precise details regarding assemblage material variability are not available, although 

generalised descriptions have been given for CZ3 and 4 (Yesner 2001, 324). Although 

no clear definition as to what constitutes exoticness is given, obsidian from the Batza 

Tèna region in NW Alaska present in CZ4 (Yesner 2001; Cook 1995) suggests that 

the procurement of material from distant sources was not necessarily a correlate of 

microblade technology.  This is further supported by the fact that the percentage of 

―exotic‖ materials increases greatly in CZ3 (Yesner 2001, 324), although microblades 

remain a relatively small component of the assemblage (Appendix 38).  This suits 

Yesner and Pearson‘s belief that microblade technology represented a technological 

adaptation to the lack of access to high quality raw materials (2002, 150).  They are 

also posited as a cold-adapted tool-kit, known to be less prone to costly breakage in 

extremely cold temperatures (Elston and Brantingham 2002).   
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More precise details for CZ2 and 1 are not available, but Yesner and Pearson‘s 

argument explicitly relates to the notion that the earlier occupants of Broken 

Mammoth were not as well aware of resources available within the extended 

landscape (Yesner 2001, 324).  Presumably, knowledge of these sources, if not access, 

would have increased over time, which does not sit comfortably with the idea that 

microblade technology is a greater feature of later, likely warmer occupations of the 

site.  I am inclined to believe that while microblade technology may indeed have 

mitigated the risk-costs of technologies that would have utilised larger stone 

components, particularly in times of great coldness, the presence of apparently exotic 

materials in CZ4, even in small quantities, demonstrates knowledge if not regular 

access to or appreciation of them.                                           

 

7.3.2.4 Fauna 

The good quality of organic preservation at Broken Mammoth is largely attributable 

to three factors: the calcareous nature of the deposits, themselves facilitated by the 

arid conditions of the early Holocene, the thickness of the loess cap at the site 

preventing destruction of deposits by the development of acidic podzols throughout 

the Holocene, and a probable higher than usual permafrost table that seemingly did 

not subject deposits to cryoturbation (Yesner 1996; Yesner 2001).  The quality of 

preservation, while unique, is also relative, and the vast majority of bones were less 

than 1cm in dimension (Krasinski and Yesner 2008, 33).  Over 10,000 fragments had 

been recovered from Cultural Zones 3 and 4 as of 2001, when the most detailed report 

of the Broken Mammoth faunal remains thus far was published.  Of these 10,000 

fragments, 3303 were identifiable to taxonomic categories of ungulate fauna, 

carnivores, small mammals, rodents, fish and birds.  In some cases where the 

assignment of specific taxonomic classes was not possible, classification based upon 

size was still possible.  Of these, unidentified ―large / medium fauna‖ and ―small 

mammal fauna‖ categories are included.  The more ambiguous ―unidentified 

mammal‖ category is excluded because of the lacking qualification of size. The NISP 

values for these categories are given in tables (Appendix 39) and Figure 113.  

Ungulate fauna, which are assumed to have constituted a main source of prey are 

presented in tables (Appendix 40) and Figure 114.  
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The character of the CZ3 and CZ4 assemblages differ notably.  Birds account for 47% 

of the CZ4 assemblage, but only 12% of CZ3, whereas rodents are much more 

prevalent throughout CZ3 (27%) than CZ4 (19%) (Figure 113).  Fragments of woolly 

mammoth tusk have been found from CZ4, but are not included in analysis; they 

should not be considered a regular prey species until more convincing evidence of 

their exploitation can be found contra Haynes and Krasinski (2010).  Whereas 

ungulate fauna accounts for an appreciable 14% of the CZ3 assemblage, it represents 

just 3% of the CZ4 assemblage according to estimates based on data from Yesner‘s 

most recent data (Figure 113).  Although the unidentified large / medium fauna cannot 

be restricted in reference to ungulate data, the relatively small portion of identifiable 

large-medium non-ungulate species suggests that this category probably comprises 

mostly ungulate specimens.  The ratio of identifiable ungulate species compared to 

unidentified large / medium fauna shows little variation between the two cultural 

zones.  Examination of the ungulate component shows that elk / wapiti go from being 

the dominant species in CZ4 to second most dominant in CZ3, replaced by wisent 

bison, which had been second most dominant in CZ4.  Other species, including 

mountain sheep, moose and caribou account for a greater percentage of the CZ4 

ungulate NISP than CZ3 (Figure 114).     

 

The wide variety of fauna in the Broken Mammoth assemblages testifies to the 

exploitation of a variety of nearby biomes.  Bison, elk and moose were most likely 

available from open parkland, while mountain sheep and potentially caribou indicate 

forays into upland environments (Yesner 2001, 322).  Fish and waterfowl, and 

particularly Tundra Swan in CZ4 (Appendix 39), show that nearby wetlands were also 

a profitable source of prey (Ibid 1996, 266).   
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Figure 113: Graph Comparing Broken Mammoth CZ3 & 4 NISP data 
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Figure 114: Graph comparing Broken Mammoth CZ3 & 4 Ungulate NISP data 
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These microenvironments were probably all within close proximity of the site, and the 

even distribution of skeletal elements among bison and elk suggest that at least these 

species were not acquired from too far afield (Ibid 2001, 322).  It has been suggested 

that the differences between CZ4 and 3, the shift from elk to bison as the most 

dominant ungulate and the drop in bird representation most likely reflects a shift in 

the seasonality of occupation (Ibid 1996).  Section analysis conducted on the teeth of 

elk and bison from CZ3 indicates an occupation focussed around autumn, while a 

spring season of occupation is inferred for CZ4 from the species of waterfowl 

recovered (Yesner 2001, 319).    

 

7.3.2.5 Spatial Analysis 

Although the spatial analysis conducted by Krasinski and Yesner does not give 

special consideration to the small microblade component of CZ3, they still elicited 

some general interpretations worth noting.  Spatial analysis of debitage and faunal 

remains from CZ3 and 4 allowed for the delineation of activity zones throughout the 

site, although it is difficult to fully ascertain the nature of these activities beyond 

generalised processing (Krasinski and Yesner 2008).  The increased lithic assemblage 

size of CZ3 is perceived as reflecting both a greater emphasis on lithic manufacturing 

and larger general population size during this period in comparison to CZ4, when 

faunal processing remained substantially the dominant activity.     

 

7.3.3 Chugwater 

 

The Chugwater site (64º41‘30‖N, 147º) is located 35km to the southeast of Fairbanks 

upon the eastern summit of a bluff known locally as Moose Creek Bluff, after Moose 

Creek village, which lies half a kilometre to the south (Lively 1996).  The bluff itself 

is an extension of the Yukon-Tanana upland approximately 5km west of the uplands 

in the Tanana River Valley.  Chugwater is situated 224m above sea level, and 67m 

above the surrounding flood plain of Moose Creek, which flows into the Tanana River 

3km to the west of the site (Ibid 1996).  Initially surveyed in the 1970‘s, the site has 

been excavated twice, between 1982-83 and 1984-87.  The first excavations there 

were conducted by members of the US Army Corps of Engineers.  A total area of 
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around 400m
2
 was uncovered, from which approximately 25,000 artefacts were 

recovered (Erlandson et al. 1991, 37).   

 

 

 

Figure 115: Chugwater Stratigraphic Section 

 

7.3.3.1 Stratigraphy and Dating 

The stratigraphic sequence for Chugwater is generally quite shallow, with loess 

deposits rarely exceeding depths of 25cm (Figure 115).  Overlying the bedrock and 

basal sands (stratums VI and V respectively) is coarse mixed colluvium deposit 

(stratum IV) comprising rubble, sand and silt (Lively 1996, 309).  This deposit marks 

the base of the loess silt, which is divided into two deposits, an upper (stratum II) and 

lower (stratum III).  A buried organic soil is used to demark the boundary between 

these deposits, and the upper silt deposit is oxidised, presumably as a result of soil 

formation processes (Ibid 1996).  Stratum I refers to the modern soil cap of the 

sequence (Figure 115).  Despite the shallow depth of the sequence at Chugwater, three 

discrete archaeological components have been identified within the loess.  The 

shallow sedimentation at the site has left deposits taphonomically affected by 
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cryoturbation, root penetration and subsequent human activities, rendering dating the 

site problematic.  While a suite of radiocarbon dates have been obtained from 

throughout the sequence, it has proved possible to relate just one of the archaeological 

components to any of these dates, and even this association is regarded with caution 

(Erlandson et al. 1991, 42).  These dates, associated with component II are: 8960 ± 

130 and 9460 ± 130 RCYBP, and represent the oldest dates acquired from the 

sequence, with most other dates at the site purporting to an age younger than 2500 

years old (Erlandson et al. 1991, 37–40).  

 

 Component I Component II Component III 

Unretouched Pieces 178 1203 1770 

Formal Tools 11 20 57 

Microblades 0 22 32 

 

Table 37: Chugwater Lithics Assemblage 

 

7.3.3.2 Lithics 

A total of 3239 artefacts have been recovered from Chugwater, encompassing a wide 

range of raw material variability, including 100 colours and textures of chert, 

chalcedony, obsidian, moss agate, quartzite, rhyolite, siltstone, slate, sandstone and 

miscellaneous others (Lively 1996, 310).  Although a small number of animal bones 

have been found, they were too fragmented to be identified, although it is believed 

that some represent the presence of small mammals and avifauna, with the presence of 

gastroliths, similar to those discovered at Broken Mammoth, serving as further 

evidence for the latter (Ibid 1996, 310).  Table 37 details the lithic inventories for the 

three archaeological components at the site.  Component I stratigraphically underlies 

component II, and shares typological affinities with Nenana assemblages (Erlandson 

et al. 1991).  It contains at least one tear-drop shaped chindadn point and end scrapers 

typical of other Nenana assemblages (Erlandson et al. 1991, 42).  The component II 

assemblage, characterised by bifacial knives and microblades, and with the 

aforementioned tentative date estimates, has been assigned to the Denali.  This 

assemblage also contained a wedge-shaped microblade core, gravers, scrapers and 

point fragments (Lively 1996, 311).  Component III lacks any clear chronological 

markers, although the assemblage contained microblades (late Denali?) and Northern 

Archaic point types (Ibid 1996, 311; Holmes 2008).  Among the varieties of point 
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type found in component III are leaf-shaped, notched, triangular, corner-notched and 

foliate points (Erlandson et al. 1991, 42).   More detailed quantification of these 

assemblages is, unfortunately, not published in widely available sources.   

 

7.3.4 Gerstle River 

 

The site of Gerstle River is located within the Tanana Valley, upon a south-facing 

―bench‖ or knob on a loess-mantled bedrock outcrop hill that rises 137m above the 

surrounding plain of the Gerstle River, a braided river system approximately one mile 

to the west of the site (Potter 2002, 73).  It is somewhat unique among late Pleistocene 

and early Holocene sites in Beringia due to the association of cultural material and 

preserved faunal remains recorded in some deposits.  The site is divided into two 

separate main areas of excavation (Figure 116), referred to as Upper and Lower loci, 

separated by around 30m (Ibid 2001, 52).  Much of the southern part of the hill, 

overlooked by the Lower Locus, has been destroyed by quarrying (Potter 2002, 73).  

In general, the vegetation of the surrounding area can be characterised by bottomland 

spruce forest, with an understory of sphagnum moss at the Upper Locus, and aspen 

and grass around the exposed Lower Locus (Ibid 2002).  Work at the site has been 

conducted since the 1970‘s by several different teams of investigators.  

 

As a result of these investigations, excavation has been piecemeal in nature, and 

publication of data has been largely restricted to grey literature and is difficult to 

collate.  Following the most recent excavations by Potter, it has been possible to 

correlate different portions of stratigraphy and dates sufficiently to delineate six 

archaeological components (Ibid 2002, 90), whose location and estimated date ranges 

are provided within a generalised stratigraphic section profile (Figure 117).  While 

detailed records of archaeological materials remains largely inaccessible (Ibid 2005), 

summary details have been made available, and the faunal analysis conducted on one 

of the components at the site is arguably the most extensive of it‘s kind among early 

Holocene sites in interior east Beringia (Ibid 2007).  It is only with Potter‘s work that 

any information on the site has become more widely available.



325 

 

 

Figure 116: Gerstle River Quarry Excavation Plan 
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Figure 117: Gerstle River Stratigraphic Section (Upper and Lower Locus aligned) 
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The pertinent details of the lithics data made available thus far is presented in Table 

38, along with calibrated radiocarbon dates for the identified archaeological 

components.  The dates used in (Appendix 38) are uncalibrated to conform with those 

from other sites. In addition to the components discussed here, a variety of artefacts 

were also recovered from disturbed or surface contexts (Ibid 2002, 90).  Component 

III, the main focus of investigation so far, also boasts a worked mammoth ivory rod or 

point, seemingly without the grooves assumed necessary for the hafting of microblade 

insets (Ibid 2001).   

 

      

  
Technologica
l Complex 

Dates (cal BP) 
Total 
Lithics 

Unmodified flakes Microblades 

Lower 
Locus 

Upper 
Locus 

Total 
% Total 
Lithics 

Total 
% Total 
Lithics 

Component I Unassigned 11,200   355 282 79 0 0 

Component II Denali 10,800   474 361 76 102 22 

Component III Denali 9,920 9,920 4355 3896 89 428 10 

Component IV Denali   ~8200 211 200 95 8 4 

Component V  Unassigned   ~6,300 1 0 0 0 0 

Component VI Unassigned   4,200 82 75 91 0 0 

 

Table 38: Lithics data and radiocarbon dates from Gerstle River. "~" denotes age average based 

off of bracketing dates. 

 

7.3.4.1 Stratigraphy 

The stratigraphic sequence of Gerstle River is up to 4m deep, comprising aeolian silt 

and sand deposits, containing several palaeosol horizons.  Figure 117 shows the full 

extent of the sequence through two coordinated sections covering the upper and lower 

portions of the section.  Post-depositional disturbances in the form of krotovinas 

(animal burrows) and microfaults have affected sediments from both the upper and 

lower loci, but these are all relatively minor and do not obfuscate the delineation of 

strata (Potter 2002, 76).  Although a total area of 182m
2
 has been excavated (as of 

2002), the full extent of the sequence has not been established in every trench.  Bands 

of loess are generally labelled Y or R according to colour (Yellow and Red).  The 

approximate vertical placement of archaeological components is shown in Figure 117.           

 

7.3.4.2 Fauna 

The overwhelming majority of remains recovered were from component 3, where all 

sediments were screened through 3.2mm mesh, and fragments over 3cm in size were 
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mapped in place for the purposes of spatial analysis (Potter 2007; 2011, 226–227).  

The assemblages were quantified using NISP, MNE (minimum number of elements), 

and MAU (minimum number of animal units), essentially MNI but without 

accounting for size, side, sex or age.  4224 fragments were recovered, weighing a total 

of 12.067 kg, from which 192 specimens were identifiable, accounting for 71% of the 

total assemblage weight (2007, 5).  Taxa identified were restricted to Wapiti and 

Bison (Table 39), although Mammoth is present in the form of a single worked ivory 

rod/point  (2001, 53).  In Potter‘s faunal analysis, Wapiti are detailed as (a subspecies 

of) Cervus elaphus (2007, 5), although this has recently been found to be a 

misconception, with classification of the species revised as Cervus canadensis (Ludt 

et al. 2004).  Classification of Bison is deferred to Bison sp. but is likely Bison priscus 

(Potter 2007, 5).        

 

 Total Wapiti Bison Mammoth Unidentified 

NISP 192 73 33 1 85 

MNE 134 67 31 1 35 

MNI - 5 3 1 - 

Table 39: Gerstle River faunal data. Unidentified specimens were identified as large or very large 

artiodactyla, likely wapiti or bison, but possibly also moose (Alces alces) 

 

Analysis has focussed upon the remains from component 3 as the most prolific 

assemblage both faunally and archaeologically.  Although remains were generally 

recovered in fragmented or fragile condition with only 28 complete elements, detailed 

information for assemblages from other components is not yet available, but seem to 

suggest that the absence of medium and small game from component 3 is not the 

result of bias in preservation (2007, 5).  Potter concluded that carnivore or rodent 

modification was not a major contributing factor in the formation of the assemblage 

(Ibid 2007, 8).  Reconstructions of age among the wapiti remains are suggestive of a 

prime-dominated mortality profile, possibly suggestive of selective ambush hunting; 

the age range of bison appears to be more mixed (Ibid 2007, 18).  The presence of 

predominantly high meat yielding elements among the assemblage has been used to 

support an interpretation of efficient hunting technology consistent with high 

residential mobility as inferred from Potter‘s assessment of the lithic assemblage  

(2007, 21).   It has not been possible to assess seasonality with confidence, although 
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circumstantial evidence combined with the presence of both male and female wapiti, 

which spend most of the year apart but rut in the autumn, may suggest this as the 

period during which the site was occupied, similarly to Broken Mammoth CZ3 (Ibid 

2007, 22).        

 

7.3.5 Dry Creek 

 

The site of Dry Creek lies on the west side of the Nenana Valley in the north-central 

foothills of the Alaska Range (63º53‘N, 149º02‘W), approximately 470m above sea 

level, overlooking its namesake creek which forms a braided flood-plain (Hoffecker 

2001, 141; Hoffecker et al. 1996).  The site is situated upon a southeast-facing bluff 

upon an outwash terrace (known locally as the Healy outwash after the nearby town 

of the same name) deposited during a pre-LGM glaciation (Graf and Goebel 2009).  

This position allows a view-shed that encompasses the upper valley and mountain 

front (Figure 118).     

 

The site was excavated by a team led by William Powers between 1974 and 1978.  

During this time, geological investigations at the site were also conducted by R.M. 

Thorson and T.D. Hamilton (Thorson and Hamilton 1977).  Excavations were 

renewed in the early 1990‘s to conduct geoarchaeological investigations and acquire 

additional radiocarbon dates (Bigelow and Powers 1994).  Through these excavations, 

which uncovered an area of 347m
2
, three delineable archaeological components were 

identified.  Initially, there were four components, and the third component remains 

known as component IV, but subsequent revisions have amalgamated components III 

and component II under the latter‘s title (Hoffecker et al. 1996).  Although the main 

excavation reports are restricted to grey literature, many details pertinent to 

components I and II (those important for consideration here) from these and 

subsequent investigations have been made available through assorted published 

materials (Powers and Hoffecker 1989; Hoffecker et al. 1993; 1996; Hoffecker 2001; 

Bigelow and Powers 1994; Graf and Goebel 2009; Graf and Bigelow 2011; Goebel et 

al. 1991).  R.D. Guthrie‘s faunal analysis is restricted to the original grey literature 

reports, but details can be inferred from the above listed citations and other sources 

(e.g. Yesner 2001; Hamilton and Goebel 1999).                   
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Figure 118: Map of Nenana Valley showing sites mentioned in text 

 

7.3.5.1 Stratigraphy and Dating 

The sequence at Dry Creek is about 2m deep.  At the base of the sequence overlying 

the outwash gravel is a sterile loess deposit of minor silt with sand, probably formed 

between 15 and 14kya (Hoffecker and Elias 2007).  Above this deposit is another 

sandy silt loess bed within which component 1 was identified and radiocarbon dated 

(11,120 ± 85 RCYBP), putting the earliest occupation of the site as pre-YD 

(Hoffecker 2001).  Component II occurs in a third loess deposit, also described as 

sandy silt, and separated from loess 2 (Figure 119) by an intermittent band of sand.  
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This third loess deposit contains a number of stringy organic lenses, divided into two 

palaeosol horizons.   

 

 

 

Figure 119: Dry Creek Stratigraphic Section
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Component II is most clearly associated with the first of these horizons, and has been 

dated within the range of 10,690 – 10,060 RCYBP (Graf and Bigelow 2011).  A date 

from palaeosol 2 that is perhaps also associated with this archaeological component 

potentially extends the terminus post quem of the occupation to as young as 9340 

RCYBP (Hoffecker et al. 1996).  The remainder of the sequence comprises alternating 

loess and aeolian sand deposits, and spans much of the Holocene.  The third 

component, component IV, is about 90cm higher in the sequence than component II, 

and is associated with the lower part of Palaeosol 4a, a buried forest soil (Figure 119).  

Based upon the dates from this component (3430-4670 RCYBP) and typological 

assessment of the materials recovered, the archaeological assemblage has been 

assigned to the Northern Archaic tradition (Hoffecker et al. 1996).  Although some of 

the dates (Figure 119) appear anomalously old, the overall chronology of the sequence 

compares favourably with other contemporary sequences in the Nenana valley such as 

Walker Road and Paguingue Creek (Powers and Hoffecker 1989, 269–270).  A small 

sample of pieces from both components is shown in Figure 120.                     

 

7.3.5.2 Lithics          

7.3.5.2.1.1 Tools 

In total, 34,811 artefacts were recovered from the site during the 1970‘s excavations.  

Component I yielded 3517, while 28,529 came from component II, and 2372 from 

component IV.  The combined total of these components is 34,418.  It is known, 

although not quantified, that some tools were found in isolation in otherwise sterile 

portions of the site sequence (Hoffecker 2001, 143).  Such pieces must account for 

much if not the entirety of the remaining figure.   

 

An inventory of the lithics collected from Dry Creek components I and II is given in 

(Appendix 41) based upon subsequent syntheses of the site (Powers and Hoffecker 

1989; Hoffecker et al. 1996; Hoffecker 2001).  The lithics are divided according to 

whether or not the excavators considered them to be tools (Powers and Hoffecker 

1989; Hoffecker et al. 1996).  Comparison of different syntheses shows there to be 

some confusion regarding the typological categories used to constitute these 

definitions.  The total number of tools in component I is described variously as 39 

(excluding cores n = 4 and retouched flakes n = 6) or 43 with cores, and 49 with cores 
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and retouched flakes.  Graf and Goebel note the inclusion of retouched blades within 

the component I tool assemblage (2009, 57), although it is not clear according to 

Powers and Hoffecker‘s inventory how such pieces were classified (Appendix 41).  In 

component II, there are 194 tools.  Appendix 41 compares these tool assemblages 

according to the categories used by the excavation team.  The table presents tools 

without cores, although burin / cores (n = 8) are included for component II as these 

pieces may have served in a capacity other than for flake reduction on the basis of 

macroscopic traces of edge-wear identified (Hoffecker et al. 1996, 347).         

 

Figure 120: Dry Creek Lithics from Hoffecker & Powers (1989) and Hoffecker (2001) 

 

Superficially, it appears that the tool component of the Dry Creek assemblages differs 

vastly, but I believe that this is due to semantic obfuscation.  From various reports 



334 

 

(Powers and Hoffecker 1989; Hoffecker et al. 1996), it is clear that while differences 

in size and exact morphology of tool types do exist between the two archaeological 

components, these do not always merit distinct classification.  Bifacial tools and 

scrapers are two such examples.  Unfortunately, without further details, it is 

impossible to know whether or how these categories should be further segregated.  It 

is mentioned that 9 of the component II bifaces may be classified as projectile points 

or point fragments, and that many more may be considered bifacial knives, but a 

substantial number including all those termed ―heavy bifaces‖ (Hoffecker et al. 1996) 

are not further differentiated, although these are referred to elsewhere as heavy-

percussion flaked implements (Powers and Hoffecker 1989, 273) and are, under this 

description, not necessarily bifacial!  Among the component I bifaces, the whole point 

and at least one of the bases appears to be of the Chindadn tradition (Hoffecker 2001, 

142) which are sometimes associated with microblades (Wygal 2011, 235; Holmes 

2008, 71), although not in this case.  The three bifacial knives from component I 

(Appendix 41) do not resemble Denali style knives in form (Powers and Hoffecker 

1989, 281).  Out of the nine projectile points and point fragments noted in component 

II, there is one small concave based point, two tips, and six point bases likely derived 

from lanceolate or stemmed points (Hoffecker 2001, 143).  Likewise, a variety of sub-

types are included under the category ―scraper‖, many of them apparently side 

scrapers (Graf and Goebel 2009), but precise details are not available.   

 

Once these discrepancies are adjusted for, a more accurate comparison of the 

morphologically supposed functionality of the lithic assemblages is possible.  Table 

40, shown graphically in Figure 121, represents re-assessments of tool-diversity 

presented proportionally.  It is clear that, combined, bifaces and scrapers account for 

between 50 and 60% of both component tool assemblages, although scrapers are more 

numerical in component I whereas bifaces are in component II.  The only other 

notable similarity between the two components is the percentage of retouched flakes.  

Otherwise, the assemblages comprise quite different tool types. 
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"Tools" from Dry Creek Components 1 and 2
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Figure 121: Graph comparing "tools" from Dry Creek components I and II 

 

7.3.5.2.1.2 Non-tool component 

The debitage elements of the component I assemblage are described as flakes and 

fragments, whereas those from component II are labelled flakes and blades, 

suggesting a difference in composition, although other descriptions of component I do 

mention blades and blade-like flakes.  Out of the 28,529 flakes and blades in 

component II, 1772 are microblades.  The microblades are not regarded as formal 

tools as they lack retouch.  The microblades, along with burins and many of the 

bifacial knives found in this component are typical of the Denali as defined for 

Interior Alaska (Hoffecker 2001, 143).  The vast majority (90%) of these microblades 

are deemed to be incomplete (Powers and Hoffecker 1989, 276) although it is not 

clear what is meant by this; presumably that they are broken.  Component I also 

includes unretouched blades and blade-like flakes, but not microblades (Graf and 

Goebel 2009, 57).  Only four cores were found from component I, compared to 126 

from component II, a number that includes core fragments.  Component I cores 

include a bipolar flake core, unidirectional prismatic blade core fragment, a platform 

rejuvenation spall and unidentified core fragments (Graf and Goebel 2009, 57).  The 

types of core product found in component II are detailed in Table 40.  In addition to 

these cores, there are also burin / cores (n=8).  Notable differences in diagnostic tools 
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and debitage components have facilitated the distinction of the Nenana industry in 

component I and the Denali in component II.      

 

  Component 1 Component 2 

Projectile Points / Fragments 3 9 

Bifaces 5 35 

Heavy Bifaces 0 47 

Scrapers 16 21 

Anvil Stones 2 3 

Planes (quadrilateral unifaces) 2 0 

Miscellaneous Items 11 0 

Burins 0 29 

Core/burins 0 8 

Retouched Flakes 6 21 

Blade-like retouched flakes 0 18 

Hammerstones 0 3 

Total 45 194 

 

Table 40: Dry Creek table of lithics for Component I and II 

7.3.5.2.2 Raw Materials  

In 2007, Kelly Graf and Ted Goebel conducted a survey of raw materials found within 

the landscape surrounding Dry Creek, an area with a circumference of 2km.  The 

results of this study, in contrast to a similar survey conducted on the West Beringian 

site of Ushki 5, were published in 2009.  In particular, the investigators focussed on 

the distinction between the processes of material procurement and material selection, 

with the former a controlling influence on the latter (Graf and Goebel 2009).  

Microblades were compared to non-microblade technologies to observe differences in 

material preference.                    

 

Knappable materials locally available to the inhabitants of Dry Creek include 

cryptocrystalline silicates (CSS cherts and chalcedonies), dark grey degraded 

quartzite, which are common, and rhyolite, diabase (both Fine-Grained Volcanic 

materials or FGVs) and argillite, which are rare (Graf and Goebel 2009, 61).  These 

toolstones would have been available from the floodplain deposits of the nearby 

Nenana river and exposures from other older fluvial deposits in the area.  The 

overwhelming majority of the component I assemblage (95% in total) is made from 

degraded quartzite (63.1%) or various types of CCS (31.6%) (Ibid 2009, 62).  These 

materials are also dominant among the component II assemblage, although less so 

than in component I.  CSS accounts for 43.1% of the assemblage, being the most 
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dominant material, with degraded quartzite covering 34.8% of the assemblage (Ibid 

2009, 63).  The types of CSS used vary between the two assemblages however, with 

gray CSS and chalcedony the dominant types in Component II compared to brown 

CSS which predominates in component I.  FGVs, which are only minimally 

represented in component I, account for 17.5% of the component II assemblage, with 

rhyolite the dominant sub-type, while other materials such as obsidian comprise a 

minor portion (Ibid 2009).   

 

In terms of dominant materials, Graf and Goebel found that toolstone selection was 

not patterned according to formal or informal tool types in component I, while in 

component II, CCS was the preferred material for formal and informal unifacial tools, 

but more evenly selected along with degraded quartzite and FGVs for bifaces (Graf 

and Goebel 2009, 65–57).  Concerning microblades and burins, it was found that 

durable, high-quality materials, mostly CSS and both local and exotic (> 300km 

away) obsidian were favoured (Ibid 2009).  By contrast, obsidian was not used for 

blades and is absent altogether from component I.  Argillite, a fine-grained slate-like 

material also entirely absent from component I, was also used predominantly for 

microblade production in component II, although it is not a major constituent material 

overall for this artefact class (Ibid 2009, 63).                

 

Concluding their study, Graf and Goebel appeal to the notion that those responsible 

for the component I Nenana industry were less familiar with their broader landscape 

and early stage migrants to the region (Graf and Goebel 2009, 73–74).  The 

microblade utilising Denali occupants of component II are considered to have greater 

knowledge of the surrounding area, as evidenced by their use of exotic materials and 

clearer patterning of material selection according to artefact type (Ibid 2009).  

Coutouly believes that obsidian is a markedly preferable material for microblade 

manufacture, and that the lack of close-by sources in the Alaskan interior perhaps 

underwrote the development of the Campus core reduction technique, which he 

perceives to be a more reliable and conservative method (Coutouly 2012, 360–362).  

Regardless of whether this particular interpretation is true, it appears that the different 

technological modes exhibited between the two archaeological components were 

accompanied by, if not at least partially underwriting different raw material 

provisioning strategies.  Until similar analyses are conducted on other Alaskan sites, it 
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is impossible to know whether this is a general truth in the microblade / macroblade 

dichotomy typified by the traditional contrast of the Nenanan and Denali industries.           

 

7.3.5.3 Fauna 

Only a small quantity of faunal remains was recovered from the site, and 

unfortunately these were poorly preserved (Hoffecker et al. 1996).  The Dry Creek 

assemblages are nevertheless important, as prior to the discovery and assessment of 

the Broken Mammoth remains, they represented one of the only informative sources 

of faunal data from interior Alaska directly associable with datable Pleistocene 

archaeological materials; remains from other sites are mostly either too heavily 

calcined for analysis or non-existant.  Identification of taxa and the inference of other 

details such as estimations of age were possible thanks to fragments of tooth enamel.  

Remains from component I were identified as either Mountain sheep (Ovis dalli) or 

wapiti (Cervus canadensis), while those from component II were identified as steppe 

bison (Bison priscus) and Mountain sheep.   

 

Tentative estimations of MNI based upon these teeth accounted for two wapiti in 

component I, with one adult and one elderly adult, and five bison from component II, 

with three young and two adults (Hoffecker et al. 1996).  Five sheep, with one 

juvenile, one juvenile/adult and three adults were discerned from the combined 

materials of component I and II (Hoffecker et al. 1996).  In addition to these details, 

gastroliths (gizzard stones) have been assumed as evidence of ptarmigan at the site, 

and are suggested as having been deposited in summer, autumn or early winter 

(Hoffecker and Elias 2007, 194).  Gastroliths were also recovered from sterile 

deposits at the site, rendering their association with occupation episodes problematic 

(Hoffecker et al. 1996, 346).  The age range of the sheep from both levels and 

presence of bison in the vicinity of the site in Component II has also led to tentative 

support for the assumption of an autumn – early winter season of occupation (Graf 

and Bigelow 2011, 446).               

 

7.3.5.4 Spatial Analysis   

Across the 345m
2
 area uncovered through excavation, it was clear that artefacts 

clustered in fourteen different zones of concentration of varying size labelled A-N 
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(Figure 122).  Ten were associated with weathered faunal remains and all were 

associated with charcoal deposits; C or D were associated with bison teeth (Hoffecker 

and Elias 2007, 196).  Five concentrations, those highlighted (A, B, C, G and N) 

contained large numbers of microblades, microblade fragments and associated 

microblade production materials.  Biconvex knives were associated with debris 

clusters D and F, meaning these clusters also attributed to the Denali.  Bifacial 

projectile points were found in E, J and K (highlighted).  Clusters H, I, L and M all 

lack diagnostic artefact associations (Ibid 2007, 196).     

 

The interesting variability in the spatial patterning of artefacts at Dry Creek 

component II most likely reflects the different behaviours these toolkits were 

associated with.  This cautions against conflating the use of bifacial points and 

microblades as necessarily simultaneous based solely upon stratigraphic positioning.  

While the patterning may reflect different behaviours in time and space at the site 

from one group, a more extreme interpretation may also be advanced.  Hoffecker has 

suggested, based upon comparison with the larger palaeoindian points found at the 

Mesa site in NW Alaska and the supposed lack of an associated microblade 

component with this industry (Bever 2008), that these points and also some from 

Moose Creek that lack a clear chrono-stratigraphic affiliation with the Denali or 

Nenana (Hoffecker and Elias 2007, 198) in fact belong to the Mesa industry 

(Hoffecker 2011).  This suggests a geographical and chronological overlap in the two 

techno-complexes, as well as an ethnic distinction within these different facets of 

previously assumed Denali assemblages.  While this interpretation is perfectly valid, I 

feel that there is insufficient evidence to confidently make such a claim.  The artefacts 

in question comprise a very small portion of the overall assemblage.  An alternative 

more moderate interpretation remains that the spatial patterning of artefacts in Dry 

Creek component II reflects different activities that necessitated different toolkits, and 

perhaps reflect different temporal occupations. 
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Figure 122: Spatial Analysis of find clusters from excavated area for Dry Creek component II 
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Spatial analysis was also conducted upon the component I assemblage, and revealed 

three distinct artefact clusters.  These concentrations are fairly homogenous and 

appear to represent butchering and hide processing and tool production (Hoffecker et 

al. 1996).   Despite the clear difference in spatial patterning of toolkits and 

presumably behaviour, both component I and component II were judged to represent a 

hunting spike camp and processing station (Graf and Goebel 2009, 58).              

 

7.3.6 Panguingue Creek 

 

The site of Panguingue Creek was discovered in 1976 but not excavated on a larger 

scale until 1991 (Goebel and Bigelow 1996).  It is located on the north bank of its 

namesake creek, a tributary of the Nenana River, and is around 5km northwest of the 

town of Healy and downstream of Dry Creek (Figure 118).  The site occupies a 

position among the foothills on the same outwash terrace as Dry Creek about 490m 

above sea level and 200m above the present day river level (Ted Goebel and Bigelow 

1992).  Three archaeological components were identified at the site.   

 

7.3.6.1 Stratigraphy and Dating 

Following the most recent excavations, an area of around 100m
2
 was uncovered, and a 

stratigraphic depth of around 2m in total was uncovered (Hoffecker et al. 1993; 

Powers and Hoffecker 1989).  A truncated version of the sequence is presented here, 

as archaeological materials were only recovered from the upper 50cm of the 

stratigraphy (Figure 123).  For stratigraphic correlation of deposits from the lower 

extent of the section with other sequences in the Nenana valley, Figure 124 should be 

consulted.  As with other sites in the valley, archaeological components are associated 

with humic palaeosol horizons.  Four of these soils are present within the upper extent 

of the Panguingue Creek sequence.  Archaeological components are associated with 

the upper three palaeosols 2-4 (Figure 123).  Palaeosol 2 and component I mark the 

interface between a deposit of sandy silt, which contains palaeosol 1, and another 

thick (c. 30cm) homogenous deposit of silt which contains palaeosol 3 and component 

II.  The modern day soil cap of the sequence includes the most recent buried organic 

soil and associated archaeological component.  The associated dates for the three 

archaeological components at the site are presented in Table 41. 
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Figure 123: Panguingue Creek Stratigraphic Section 

 

 

  Uncalibrated Radiocarbon Years BP 

  
Lower Date 
Estimate 

Upper Date 
Estimate 

Mean Age 
Estimate 

Component 
III 4510 ± 95 5620 ± 65 5065 

Component 
II 7130 ± 180 8600 ± 200 7721 

Component 
I 8170 ± 120 10,180 ± 130 9395 

 

Table 41: Panguingue Creek Radiocarbon dates 
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Figure 124: Stratigraphic Comparison of early Nenana Valley sites 
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7.3.6.2 Lithics 

Although three archaeological components were delineated at Panguingue Creek, only 

component II, associated with palaeosol 3, yielded an artefact assemblage of greater 

than a hundred pieces.  Table 42 and Table 43 show the lithic inventory for these three 

components.  Exact figures for the quantity of microblades and unretouched flakes 

from component II were not provided (Goebel and Bigelow 1996), but both 

categories, and particularly the unretouched flakes, far outnumber the quantity of 

other lithic types from the assemblage (Table 42).  Only lithic remains are discussed 

in this section, as although a concentration of faunal remains was found in component 

II, identification of taxon was not possible due to the extent of which the assemblage 

was fragmented and calcined (Goebel and Bigelow 1996, 369). 

 

  Component I Component II Component III 

Unretouched Flakes 60 >5000 20 

Burin Spalls 0 10 0 

Microblades 0 >150 0 

Formal Tools 6 60 3 

Cores 1 9 0 

Total 67 >5229 23 

 

Table 42: Panguingue Creek table of lithics 

 

  Component I Component II Component III 

Transverse Scrapers 2 0 0 

"Tci Tho" Bifacial Side Scraper 1 2 0 

Lanceolate projectile points 2 5 0 

Ovate bifacial knives 0 2 0 

Side Scrapers 0 7 1 

End Scrapers 0 5 2 

Burins 0 5 0 

Retouched Flakes 0 16 0 

Choppers 0 2 0 

Hammerstones 0 2 0 

Anvil Stones 0 2 0 

 
Table 43: Panguingue Creek table of lithic tool types 

 

Table 43 compares the formally recognised tools from these assemblages.  Ultimately 

the disparity in assemblage size limits the interpretive value of comparing these 
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assemblages, but there are nevertheless some clear differences in their basic 

constitution.  Complete details for the specific categorisation of formal tools is not 

given for components I (5/6 tools accounted for) and II (48/60 tools accounted for), 

with no clear reason as to why.  Component II has been assigned to the Denali 

technocomplex (Goebel and Bigelow 1992; 1996).  The dates associated with this 

component, however, place it later than the Denali assemblage found at Dry Creek, as 

part of an early Holocene occupation rather than late Pleistocene (Ted Goebel and 

Bigelow 1996, 369).  This contention, along with differences noted between the non-

microblade elements of the assemblage in comparison to Dry Creek component II 

(Powers and Hoffecker 1989, 276) has left some researchers wary of its affiliation 

(e.g. Hoffecker 2001, 145), but the subsequent establishment of a late Denali , or at 

the very least a Holocene industry, sometimes much younger than Panguingue Creek 

component II, that in part resemble the Denali should allay cautions over this matter 

(Clark 2001; Yesner and Pearson 2002; Ackerman 2007; Wygal 2011).   

 

Component I was also assigned to the Denali technocomplex (Powers and Hoffecker 

1989; Ted Goebel and Bigelow 1992; 1996; Hoffecker 2001), based solely upon the 

date of the associated horizon, as the assemblage was seemingly too small to yield 

any diagnostic artefacts that could facilitate a more confident assignment.  This 

interpretation still stands with some researchers (Graf and Bigelow 2011, 440), but 

considering the lack of diagnostic artefacts, and the recent question of overlapping 

chronological ranges for early east Beringian technocomplexes, perhaps greater 

caution should be exercised.  Likewise, although the assemblage is prohibitively 

small, component III has been assigned to the Northern Archaic period primarily due 

to associated dates (Hoffecker 2001, 145).            

 

7.4 Summary 

Reconstructions of the earliest evidence of occupation in Alaska are inherently 

piecemeal in nature.  The sites included in the study provide examples of human 

activity in lowland and higher elevation foothill settings that cumulatively span an 

almost continuous stretch of time.  There are no sites from upland areas.  Although 

the sample size is small, it is clear from diagram (Appendix 38) that microblades were 

used more or less continuously throughout the early prehistoric record in Alaska, with 
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the only notable absence in the dataset occurring between 11750 – 10750 years ago.  

The significance of this gap is weakened by three caveats: 

 

 Microblades predate non-microblade occupations at Swan Point CZ4. 

 Sites dating to this period are from a relatively limited geographical 

distribution (Graf and Bigelow 2011, 444).   

 Using the presence or absence of microblades as the main criterion for 

techno-complex designation is problematic given the association of 

microblades with a wide range of other diagnostic tool types (Wygal 

2011, 235).  This is best exemplified by sites coded as ―unassigned‖, 

where either the presence of microblades or an otherwise lack of 

diagnostic tool-types precludes confirmation of assemblages being 

designated as Nenana.  This means that microblades may essentially just 

be missing from the record for this period rather than technologically 

absent.   

 

This final point is particularly problematic for attempts at interpreting meaningful 

chronological patterning among different assemblage types.  These difficulties have 

been reported in other recent studies (Potter 2011; Wygal 2011; Graf and Bigelow 

2011).  It is not entirely clear how changes in climate affected microblade use (Graf 

and Bigelow 2011, 441), but studies showing changes in microblade component 

frequency relative to overall site density suggest that fluctuations are primarily 

affected by biases in site visibility.  The best explanation for this pattern is that 

assemblage variability was primarily affected by habitat, with behaviour specific 

technologies associated with different locales in the landscape.  In addition to the idea 

that different behaviours were associated with different areas of the landscape, spatial 

analyses conducted at a number of sites suggest that specific activities associated with 

distinct tool-types can sometimes be identified at an intra-site level (Hoffecker et al. 

1996; Potter 2005; Krasinski and Yesner 2008; Goebel 2011).  Regarding microblade 

use, this is best exhibited in the study of Dry Creek Component II, where they are 

associated with distinct artefact clusters in different areas of the site.  It has been 

suggested that microblades were primarily used in lowland-adapted hunting strategies 

for targeting bison, moose and wapiti (Potter 2011), although this pattern is by no 
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means exclusive.  Although not an upland site, Dry Creek Component II is suggestive 

of bison being hunted with microblade technology at higher elevations.       

 

Similar to the confusing continuation of microblade technology throughout much of 

early Alaskan prehistory, faunal exploitation patterns do not seem to be markedly 

affected by time (Appendix 38).  This may relate to seasonal mobility patterns, again 

obscured by a lack of clear archaeological visibility, or alternatively may just suggest 

that many more warm-tolerant species (such as bison) survived in reasonable numbers 

throughout much of the Younger Dryas as indeed they also did on the mammoth 

steppe prior to the arrival of humans (Guthrie 2006).  It should be remembered, 

however, that faunal data for early Alaskan occupation is minimal from most sites.  

Although seasonal shifts in subsistence may have been important factors behind the 

patterning of tool-kits in the landscape, evidence is currently too restrictive to 

effectively demonstrate this (Graf and Bigelow 2011, 447).  It appears that the 

Younger Dryas may not have been as harsh as may often be assumed (Bigelow and 

Powers 2001), and perhaps even increased the diversity and numbers of key prey 

species.  The technological variability during this period (Graf and Bigelow 2011) is 

clearly evinced by ambiguity of archaeological occupations from this time (Appendix 

38).  It is not yet clear how population size was affected at this time.  Microblades and 

assemblages formally recognised as Denali continued in Alaska.  Dominant ungulates 

seem to have continued at this time as moisture increased and birch mosaic woodland 

began to expand once more with a diversifying array of sub-community species.  As a 

final consideration, there are many potentially fruitful areas of investigation that are 

yet to be adequately explored, including use-wear analysis and raw material 

procurement studies.  Work at Dry Creek suggests that microblade technology may 

have accompanied a shift in the exploitation of different working materials (Graf and 

Goebel 2009), but similar studies are necessary at other sites to further support this 

interpretation.   
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8 Discussion 
This section presents a synthesised review of the findings from the case-studies, 

explores their implication for understanding regional strategies of microlithic based 

hunting practices, and compares these findings along with exploring more general 

issues identified throughout the course of the investigation.   

8.1 Regional Trends Synthesised 

8.1.1 Cantabrian Spain 

The time period focussed upon for Cantabrian Spain spanned the end of the Last 

Glacial Maximum and through the fluctuating amelioration of the terminal 

Pleistocene.  At the beginning of this period, Cantabria was likely a glacial refugium, 

cut off from the Spanish interior by the Picos de Europa to the south, and possibly 

during extremely colder periods from the Aquitane basin in the south-west of France, 

by the Pyrenees.  Lawrence Straus believes that the relative containment of people 

within this region during the LGM resulted in a growth in population reflected by 

increased site density during this time (L. G. Straus 2000).  Population density 

seemingly did not increase substantially again until the mid-late Magdalenian (Ibid 

2005).  Difference in the morphological form of Solutrean points from either side of 

the Pyrenees suggests limited contact between these two areas at this time, or perhaps 

regionally distinct traditions of design.  It remains unclear as to how much this may 

have changed over time, and whether the inception of the Magdalenian techno-

complex in Cantabria reflects an in situ development or the influence of developments 

across the border (Straus 2013, 244; Straus et al. 2008; Aura et al. 2012).   

 

For this case study, the extensive stratigraphic chronology of La Riera served as a 

master sequence. El Miron, Rascano, La Fragua, Berniollo, Santa Catalina and 

Laminak II comprised the other sites considered.  This sample of sites includes a 

variety of investigative analyses, and ensures that materials from a variety of different 

locations within the Cantabrian landscape were assessed.  Collectively these sites span 

from the Solutrean through to the Azilian.  The Last Glacial Maximum, which 

terminates with the end of the Solutrean, is characterised as having been inhospitably 

harsh for much of the time, and the Cantabrian plain is widely understood to have 

served as a glacial refugium at this time.  Consequently, during this period the region 
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is normatively assumed to have undergone substantial technological and 

environmental change.      

 

Microlithic tools from the Solutrean, Magdalenian and Azilian of Cantabria 

overwhelmingly take the form of bladelets.  Geometric pieces from this region are 

more commonly associated with Asturian and Mesolithic traditions (L. G. Straus 

2008).  It has become common convention within Cantabrian research to focus 

primarily upon backed bladelets, pieces which exhibit evidence of retouch, as these 

pieces were clearly further modified from their basic form with some intention in 

mind.  Unretouched bladelets are generally consigned to classifications of debitage 

and afforded comparatively little attention.  Within the category of backed bladelets, a 

variety of sub-variants have been identified.  After some consideration, I argued that 

these variants are rarely found in sufficient quantities relative to their parent 

assemblages to be meaningfully discussed in terms of function.  Furthermore, many of 

the distinctions designed and used to segregate these sub-categories of bladelet may 

emphasise morphological variability over design functionality.  Backed bladelets 

occur throughout almost the entirety of the La Riera sequence, but do not occur in 

prolific quantities until the final Solutrean / Magdalenian (Appendix 1). 

 

The Magdalenian appears to represent a notable technological departure from the 

preceding Solutrean.  Although only present in certain deposits, Solutrean technology 

is most recognisably characterised by large foliate bifaces which likely served as 

armature tips or perhaps cutting implements.  In general, the common constituent tool 

types of Solutrean and Magdalenian assemblages contrast quite strongly with one 

another, and at La Riera this is also reflected by a clear shift in material selection 

towards more fine-grained rocks.  The Magdalenian is also typified as having a 

greater emphasis on bone point technology, many of which may have been hafted 

with bladelets.  Unretouched bladelets occur in consistently small amounts (less than 

15% of debitage assemblages) throughout the sequence.  Backed microlithic points 

(Azilian, Microgravette and Font Yves types) also occur in small quantities in the 

final Magdalenian and Azilian, predominantly in levels in which backed bladelets are 

less prominent (Figure 20).   

 



350 

 

Microwear analyses have been conducted upon samples from Upper Palaeolithic 

assemblages variously spanning the Magdalenian and Azilian from the sites of 

Rascano, Berniollo, Santa Catalina and Laminak II.  At Rascano, a sample of backed 

bladelets was found to have traces largely conforming to those expected from use as 

projectile armatures, with more rectangular pieces suggested as barbed elements and 

pointed pieces more likely as armature tips (Keeley 1988).  Analyses conducted at the 

other sites showed that larger backed bladelets bore traces conforming to those 

expected of butchery activities, but smaller pieces lacked any clear traces at all, 

leading the investigators to suggest that they may have been preferred as hunting 

armatures (Ibánez Estevez and González Urquijo 1996; 1998).  The sample from 

Berniollo, Santa Catalina and Laminak II also included a small number of backed 

microlithic points which were variously used (although not interchangeably) as 

projectile tips or cutting implements. From these results, an apparent preference for 

narrow and straighter microgravette types as armature tips and curved azilian points 

as cutting implements was inferred.          

 

Throughout much of the final Palaeolithic in Cantabria, the faunal economy appears 

to have been dominated by red deer and ibex.  In the mid-latter Magdalenian, faunal 

assemblages began to diversify with the appearance of more temperate deciduous 

species such as roe deer and wild boar.  Generally speaking however these species did 

not become more significant constituents until the Mesolithic.  Models of habitat 

variability suggest that site location within the landscape often suited the exploitation 

of ibex and other montane species, or red deer, or some mixture of the two (Arroyo 

2009b).  A seasonal round was probably constructed whereby different ecotones were 

exploited at different times, however attempts to elicit this archaeologically have 

proven problematic.  A common theme among the faunal assemblages considered 

here has been a preference for taking various species during the summer and early 

autumn months when infants are easily targeted.  At many sites there is often evidence 

of prey being taken at different times of the year however (e.g. Rascano), and 

juveniles may be over-represented archaeologically as it may be easier to transport 

more of the carcass back to the site.  Any seasonal patterning of land-use was likely 

far more nuanced and complex than the current resolution of archaeological data can 

show.  Red deer are relatively catholic in their habitat preference, which perhaps 

explains why they continued to figure prominently in subsistence strategies even as 
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more temperate species were exploited.  As conditions ameliorated into the Upper 

Magdalenian and Azilian, the preferred habitat of ibex and other montane species 

probably contracted (Arroyo and González Morales 2007).  Despite these gradual 

shifts in faunal economy, backed bladelets seem to have prevailed as a popular 

hunting technology throughout this time, perhaps because of the continued dominance 

of red deer and ibex.                                           

 

Few Upper Palaeolithic sites in Cantabria boast a sequence as extensive as that of La 

Riera.  The stratigraphic sequence at El Mirón rivals it in extent, but investigation at 

the site remains ongoing and as yet insufficiently detailed to permit attempt at 

correlation.  The relatively monotonous duality of red deer and ibex throughout much 

of the period means that archaeologists look to other species as indicators of climate 

change.  The increasing presence of woodland species such as roe deer and wild boar 

in the Magdalenian and Azilian presages the more temperate conditions of the 

Mesolithic, and the occasional appearance of reindeer and some species of 

particularly niche microfauna attest to sharp cold fluctuations.  Although the 

Solutrean is characterised as a period of extreme cold, it has become clear that both 

climate and environment were not homogenously monolithic during this time, and 

although conditions began to significantly ameliorate in the Upper Magdalenian, 

much of this period can also be typified as cold under the influence of the Older Dryas 

(Straus 2014, 9).  The amelioration of the Upper Magdalenian was itself swiftly 

curtailed by the Younger Dryas, which is effectively synonymous with the Azilian.  

 

Open habitat preferring species from the Solutrean Cantabrian plain, including horse 

and bison, appear to have diminished in economic importance over time as the dual 

economy of red deer and ibex became established.  This pattern, evidenced at La 

Riera, continued into the Magdalenian, when backed bladelets became a much more 

prominent feature of many site assemblages.  Conversely, the Azilian, which may 

have had a significant impact on the expansion of temperate species (e.g. at La 

Fragua) prior to the Mesolithic, remains in many instances difficult to confidently 

distinguish techno-culturally from the preceding Magdalenian (Straus 2011).  Backed 

bladelet armatures and microlithic points are most commonly assumed to have 

functioned as replaceable barbs on wood and bone spears and darts, contrasting with 

Solutrean spears which presumably relied upon one large armature tip.  This lighter 



352 

 

form of weaponry may have been accompanied by new delivery systems: the oldest 

atlatl in Western Europe has been recovered from Magdalenian deposits at El Mirón 

(González Morales and Straus 2009).  Although backed bladelets were known and 

made by Solutreans of Cantabria, their proliferation in the Magdalenian lacks a clear 

environmental correlate, and appears to be part of a broader series of socio-

technological changes that allow the distinction of a new cultural phase.  More 

nuanced fluctuations throughout the Magdalenian and Azilian are difficult to interpret, 

but it appears that they are most prevalent in assemblages at times of cold conditions, 

when the broader landscape would have been relatively open.    

 

A more significant unknown quantity that requires investigation is the many debitage 

bladelets, lacking in retouch, that have perhaps been too readily dismissed as lacking 

utility.  These pieces are found in large numbers throughout the Solutrean at La Riera 

and in Upper Palaeolithic contexts at many other sites, although they are rarely 

detailed due to a lack of interest.  In general, it is easy to depict a dichotomous 

relationship between the Solutrean as an industry recognised by foliate bifaces and the 

Magdalenian with backed bladelets (Straus 2002, 74), but it is clear that these 

technological practices did coexist alongside one another, and greater focus on 

individual sites may help explain how these pieces complimented one another, and 

why one practice went out of fashion while the other apparently became much more 

important.          

              

8.1.2 Southern Africa 

As already explained, the geometric backed pieces that characterise the Howieson‘s 

Poort are not strictly microlithic in nature according to many definitions that use 

restrictive metric criteria.  Many of these pieces are microlithic however, and I have 

argued, similarly to Ambrose (2002, 12), that the unique form they take and small size 

relative to typical MSA tools qualifies them as a unique tool-type in the sense that 

microliths are generally believed to be.  The Howieson‘s Poort represents a 

stratigraphically discrete phase that occurred during the late MSA throughout much of 

southern Africa.  It was preceded by the Still Bay, a phase characterised by large 

bifacial foliate points (not dissimilar in basic shape to those of the Solutrean), or other 

regional sub-facies of the MSA as at Klasies River which are typically characterised 
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by unifacial levallois points and unretouched irregular flake blades.  Both the 

Howieson‘s Poort and Still Bay have been the subject of considerable interest 

following the recognition of various archaeological traits perceived as indicative of a 

capacity for modern behaviour (Lombard 2012).  The unique type-fossils that 

characterise the Howieson‘s Poort and Still Bay contrast greatly with other MSA 

industries.  The three sites included for this case study cover the far-reaching 

geographical extent of these industries (Figure 32).  Although the spatial resolution of 

HP sites has improved greatly in the last two decades, it remains a remarkably 

disparate phenomenon spanning a huge geographical area.       

 

Of the utmost importance in clarifying the circumstances under which these distinct 

technological practices were adopted is the establishment of some consensus 

regarding their age.  It is only recently that systematic dating programmes have been 

able to provide a more coherent series of ages, with Jacobs and colleagues providing 

estimates that seemed to confirm the growing opinion that the Howieson‘s Poort 

pertained to a relatively discrete 5000 year period between 65 and 60kya (Jacobs et al. 

2008; Jacobs and Roberts 2008).  According to these results, the Howieson‘s Poort 

seems to have developed during the final millennia of OIS 4.  Some other researchers 

have contested these findings however.  The discovery of microliths in pre-HP MSA 

assemblages at Pinnacle Point (Brown et al. 2012) suggests that a re-examination of 

the definitions used may be necessary.  Most recently, claims that the Howieson‘s 

Poort spanned discontinuously from between approximately 100kya and 55kya at the 

site of Diepkloof (Tribolo et al. 2013; Porraz, Parkington, et al. 2013) poses 

significant challenges to conventional views of MSA chronology in southern Africa.      

 

Within the historical trajectory of the MSA in southern Africa, it remains a consensus 

view that the Still Bay preceded the Howieson‘s Poort, as has been shown both 

stratigraphically and chronometrically.  At present, there are only seven sites where 

both industries have been identified within the same sequence (Henshilwood and 

Dubreuil 2011).  Likewise, sites with well studied post-HP MSA sequences are also 

not common (Cochrane 2008, 158; Ambrose 2002, 12).  Despite being geographically 

removed from one another, the combination of Klasies River, Diepkloof Rockshelter 

and Sibudu provides a deep chrono-stratigraphic span for investigation.  Klasies 

River, as the most extensively investigated and widely known of these sites, was used 
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for the construction of the master diagram.  A significant portion of this section was 

devoted to a re-calculation of assemblage details after the identification of various 

inconsistencies within their tabulation in the original report.   

 

The majority of literature on the investigations conducted at these sites has focussed 

primarily upon the technological traditions of the Howieson‘s Poort, and in the case of 

Sibudu, particularly the geometric pieces that make the industry so distinct.  These 

most often take the form of lunate/crescent segments, trapezes, or variations upon 

these types.  The assessment provided in this thesis reflects this emphasis, but small 

cutting implements in the form of bladelets (Diepkloof) or flake-blades (following 

Singer and Wymer‘s account of the Klasies River material) were also found at these 

sites.  These pieces mostly lack retouch, and so are perhaps more comparable to the 

so-called ―debitage‖ bladelet blanks found throughout much of the sequence at La 

Riera.  At Diepkloof, these pieces are most strongly associated with the HP phase, 

whereas at Klasies River, they are found in large quantities throughout the site 

sequence, although with an apparent proliferation of smaller pieces (i.e. not blade 

length) during the later Howieson‘s Poort (Figure 58).  At Klasies, many pointed 

varieties are also documented.  Although research into these pieces has been limited, I 

believe that many of these may also qualify as potential candidates for microlithic 

armatures.              

 

It appears that the Howieson‘s Poort was generally associated with a shift in raw 

material selection, which in turn likely reflected a change in procurement strategies 

and perhaps the size and nature of intergroup networks (Ambrose and Lorenz 1990; 

Ambrose 2006).  Although new investigations have more successfully explored 

material provenance (Porraz et al. 2013; Delagnes et al. 2006), it remains a gap in our 

knowledge regarding many HP and MSA sites in general (Minichillo 2006).  At 

Klasies River, a generalised preference for more non-local and fine-grained materials 

in the Howieson‘s Poort actually reveals more nuanced trends in favour of specific 

types throughout time.  The selection of these materials is not restricted exclusively to 

geometric pieces, meaning that the assemblages contrast greatly with the MSA phases 

of the site where local quartzite overwhelmingly prevails.  The trend towards non-

local materials in the Howieson‘s Poort actually begins in the final MSA levels prior 
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to the formally recognised inception of the period and begins to shift towards local 

quartzite again during its latter stages (Lombard 2006b, 38).   

 

At Sibudu, it has been suggested that different materials among HP segments were 

preferred for different functions, noting a particular association between quartz pieces 

and hypotheses of functioning as arrowheads (Wadley and Mohapi 2008; Lombard 

2011).  The majority of segments are made from dolerite and hornfels however. 

Unlike at Klasies River, the preference for dolerite and hornfels abruptly changes in  

the immediate post-HP MSA to quartz and quartzite (Cochrane 2006).  Material 

selection at Diepkloof fluctuates throughout the Howieson‘s Poort, as may well be 

expected of an industry spanning some 40,000 years.  Broadly speaking, the most 

notable contrast between Howieson‘s Poort units with preceding Still Bay and MSA 

deposits is the higher proportion of silcrete and quartz, along with an otherwise 

greater diversity of material selection in general (Figure 98). 

 

The application of micro-residue and use-wear analyses to Howieson‘s Poort 

assemblages has had a significant impact upon interpretations of function, particularly 

regarding pieces from Sibudu, where analysts strongly believe that smaller quartz 

segments were specifically used as arrowheads.  Such an argument has strong 

implications both for previously held notions about the antiquity of bow and arrow 

projectile technology and the overall technological capacity of MSA humans and 

subsequent populations (Lombard and Haidle 2012).  Several researchers have 

expressed doubt and reticence in the acceptance of Lombard‘s interpretations, most 

notably Paola Villa (Villa and Roebroeks 2014).  While I believe that the results from 

Lombard and colleagues analyses suggests segments were hafted and likely used in 

weaponry, I also feel that current evidence for the use of the bow and arrow from 

MSA contexts is as yet too scant and contrived to be convincing.  Results from 

assessments of backed pieces at Klasies have revealed impact scars on a small 

proportion of the studied sample population (Wurz and Lombard 2007; Villa et al. 

2010), while at Diepkloof, analysis suggested that traces on 50% of the segments 

examined accorded with those expected of cutting implements, with similar results 

recorded on 20% of the examined blade and bladelet assemblage (Igreja and Porraz 

2013).  So far, these investigations have been limited to materials from the Early 

Howieson‘s Poort.                    
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The vast geographical extent across which the Howieson‘s Poort occurs renders 

generalised palaeoenvironmental reconstructions problematic, especially when 

compared to the smaller study areas of Interior Alaska and Cantabrian Spain.  Most 

estimates place the Howieson‘s Poort in the final stages of OIS 4 or early OIS 3 

(Tribolo et al. 2005; Jacobs et al. 2008; Villa et al. 2010), although the date of early 

HP assemblages at Diepkloof suggest an origin in OIS 5.  It is likely that the sub-

continent experienced great heterogeneity during each of these stages, due to the 

interplay of a variety of forcing mechanisms responsible for environmental change 

(Chase 2010).  Consequently, site-level indicators (primarily macro and microfauna 

and palaeobotanical data) of environment and climate represent a more appropriate 

and nuanced record for inference.  At Klasies River, the surrounding landscape started 

becoming more open towards the end of MSA II and progressed throughout the HP 

and into MSA III.  This accords with the idea that the shift in faunal representation at 

KR also began prior to the Howieson‘s Poort.  It seems that the vegetation 

communities of the surrounding landscape diversified over this time.  The site itself 

would have been further inland during this period; the general prevailing biome 

appears to have been one of Dune Fynbos with Kaffrarian Thicket developing towards 

the top of the sequence (Avery 1987).   

 

Sibudu, by contrast, appears to have been ideally located within a mosaic landscape, 

enabling inhabitants to exploit a variety of ecosystems at different times of 

occupation.  Although data regarding the Still Bay occupation of the site remains 

slim, preliminary estimates suggest a faunal composition similar to that of the 

Howieson‘s Poort.  During the HP, the site experienced warm, humid conditions, and 

was surrounded by evergreen forest and riverine vegetation, with deciduous woodland 

and open savannah landscapes both within relatively close proximity.  Details for the 

local environment immediately after the HP are sparse at present, but it appears that a 

gradual development towards cooler and more arid conditions began transitioning 

from predominantly evergreen taxa to deciduous woodland between 60 and 50kya 

(Wadley 2006, 220).  Finally, at Diepkloof, attempts at environmental reconstruction 

suggest a general trend of increasingly diverse vegetation communities (building upon 

afromontane and grassland with afrotemperate, riverine and fynbos taxa) throughout 

the MSA sequence. 
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Faunal reconstructions at both Diepkloof and Sibudu show that bovids, and 

particularly smaller sized bovids appear to have been a main prey species throughout 

the Howieson‘s Poort relative to other periods.  A clear preference for Blue Duiker at 

Sibudu (Clark and Plug 2008) has been explained as more likely reflecting the use of 

trapping technology rather than innovative hunting weaponry (Wadley 2010).  At 

Klasies River, the fauna contrasts greatly with this pattern, with a more diverse array 

of species present including species such as zebra, which are notably absent from the 

HP phases of Diepkloof, and large bovids such as Giant and Cape Buffalo.  This 

diversified faunal pattern seems to have continued into the MSA III and began 

towards the end of MSA II.  Ironically, although studies of the Klasies assemblage 

were pioneering at the time (Klein 1976; Binford 1984), the analyses of both the 

Sibudu and Diepkloof assemblages far surpass these in detail.  Facing the present 

limitations of a small and disparate dataset, it is not possible to elucidate a coherent 

trend between the appearance and disappearance of the Howieson‘s Poort with 

changes in faunal composition, although it does seem that generally the industry was 

associated with relatively diverse faunal assemblages, often with large numbers of 

small to medium sized bovids.  The contrast in composition between the Klasies 

assemblage with those of Sibudu and Diepkloof may relate to differences in species 

representation based upon MNI rather than NISP counts (Dusseldorp 2012).                

 

As a technological phenomenon that seemingly spanned a vast geographical area, it is 

perhaps unreasonable to over-zealously seek unity and coherence in the archaeology 

of the Howieson‘s Poort.  The extensive chronology attributed to the Howieson‘s 

Poort at Diepkloof Rockshelter further undermines attempts to observe singular 

associations in faunal and environmental data.  The site‘s investigators acknowledge 

this by dividing the Howieson‘s Poort into sub-stages according to internal variation, 

but further data and sites with similar chrono-stratigraphic sequences are needed to 

confirm this trend.  If verified, many recent directions in Howieson‘s Poort research 

over the last two decades may require revision, and John Parkington‘s initial 

estimation of the phenomenon as far more disparate and lacking in cohesion (1990) 

may be closer to the truth than has previously been thought.  The specific question of 

why geometric forms appear at these sites remains unanswered.  It seems that they are 

generally associated with a shift in raw material selection, but their abrupt appearance 
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and disappearance both at Klasies and Sibudu do not match neatly with changes in 

fauna and environment.   

 

Greater research is required into other sub-stages of the MSA in order to understand 

the technological context from which the Howieson‘s Poort emerged, particularly as 

there are other pieces within these assemblages which I believe may equally have 

qualified as small armature tips.  The consensus view remains that the geometric 

forms of the Howieson‘s Poort primarily, but perhaps not exclusively, represent a 

development relating to designs of hunting weaponry.  As it stands, I am not yet ready 

to accept the hypothesis that some pieces related specifically to bow and arrow 

technology.  Attempts at understanding internal variation within the Howieson‘s Poort 

have been very limited, most likely due to the poor resolution of data available.  It has 

also been difficult to contrast the industry with preceding and following technological 

trends due to the lack of well excavated sites in which Still Bay, Howieson‘s Poort 

and post-HP MSA deposits occur.  Even though the backed pieces of the Howieson‘s 

Poort contrast greatly with the large bifaces characteristic of the Still Bay and more 

crude MSA assemblages of OIS3, this shift in technology has not been so clearly 

reflected in shifts in faunal or environmental data.  Although there is no way to know 

for certain which species were targeted specifically with this technology, MSA and 

particularly HP hunters appear to have been able to exploit a wide variety of species 

from a diverse array of habitats.          

 

8.1.3 Interior Alaska 

It is difficult to extricate any consideration of early Alaskan prehistory from the 

discourse of the earliest colonisation of the Americas.  The interior Alaska sites 

assessed in this thesis include some of the oldest sites in the region.  Antecedent dates 

from a handful of sites across the Americas may suggest that the earliest occupation 

of this region has, to date, eluded archaeologists.  Nevertheless, these sites are often 

considered implicitly if not explicitly within the framework of early colonisation.  The 

true extent to which these sites represent the earliest occupants of Alaska remains, at 

this stage, unverifiable.   

Within the narrative of interior Alaskan sites representing early colonisers of the 

Americas, the earliest expressions of technological variability are sometimes 
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explained using the concept of ―learning the landscape‖.  The Diuktai / Yubetsu core 

technique recorded at Swan Point CZ4 has been used to suggest a direct connection 

between the earliest known peoples of Alaska and those from across the Bering strait 

where all other instances of this technique are documented (Holmes 2011).  

Furthermore, it has been posited that it was from this method that the campus core 

reduction technique was developed, used in most subsequent instances of microblade 

technology found at interior sites (Coutouly 2012).  At Dry Creek, the microblade 

assemblage of component II is associated with durable, high-quality cryptocrystalline 

silicate, as well as exotic and rare materials such as argillite and obsidian, which do 

not occur at all in the preceding component I assemblage.  The synchronous 

appearance of microblades with these materials has been used to suggest a better 

knowledge of the broader landscape (Graf and Goebel 2009).  Such a theory conforms 

well with the idea that microblade technology produced with the campus-core 

technique reflected an appreciation and conservation of certain materials (Coutouly 

2012).  The presence of some obsidian in CZ4 of Broken Mammoth, albeit in very 

small quantities, shows that knowledge of these materials was not restricted to 

microblade using peoples.       

 

Although there is a wide consensus that microblades were hafted as insets for 

composite tools, most likely as hunting armatures (Yesner and Pearson 2002; Wygal 

2011), this supposition remains largely untested.  The only direct evidence of them 

hafted in this manner comes from the site of Trail Creek located on the Seward 

Peninsula (Larsen 1968 cited in Mason et al. 2001).  Traditionally, it has been 

generally assumed that the bow and arrow was not introduced in Alaska until after 

3500 BP (Hare et al. 2004), which coincides with a shift away from lithics towards 

copper armatures in the Late Taiga Period (Holmes 2008).  It has been argued by 

Robert Ackerman that slotted antler points found at Lime Hills Cave in south-western 

Alaska along with those found from Trail Creek served as arrow shafts for microblade 

insets (1996; 2007).  Although this proposition remains unverifiable until further 

evidence is recovered, if it is true it means that the bow and arrow was likely utilised 

by early microblade users in Alaska from 12,000 BP onwards (Maschner and Mason 

2013), although no such evidence has yet been recovered from interior sites.  
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Unlike the other two case-study regions, early prehistoric Alaska is, at present, the 

subject of considerable debate as to what meaningfully constitutes different 

chronological and geographical variations in material culture.  The typological and 

chronological bounds of different techno-complexes vary according to interpretation.  

The presence and absence of microlithic technology is at the centre of this debate, 

even though the importance stressed upon this dichotomy may be misguided.  It is not 

yet clear whether the cultural-framework of early Alaskan prehistory can be brought 

into better resolution within the strictures of the current cultural-historical tradition.  

The original interpretation of the Nenana as a non-microblade industry that precedes 

the Denali has only really remained tenable as a geographically discrete trend 

restricted to sites within the Nenana valley (Hoffecker 2001).  I am inclined to favour 

the belief extolled by Potter (2011) that current attempts to categorise sites strictly as 

Nenana or Denali ignores the true variability of these assemblages as they are 

presently understood.  Although reductionist, focussing on microblades as a particular 

technological type is perhaps more fruitful than attempting to adhere to increasingly 

unsatisfactory cultural descriptors (e.g. Graf and Bigelow 2011).  In 

acknowledgement of this predicament, in Appendix 38 the term Nenana refers to 

assemblages that are firmly non-microblade, and Denali (and Post-Denali) refer to 

assemblages in which microblades are present.   

 

Sites with multiple archaeological components are favourable for contrasting change 

over time at a particular location within the landscape, even as vegetation 

communities developed and diversified in the wake of the preceding steppe landscape 

of 14,000 RCYBP.  Out of all the sites considered for this investigation, Broken 

Mammoth and Dry Creek are perhaps best suited for such comparison.  Broken 

Mammoth is situated on a small knoll on the floodplain of Shaw Creek, while Dry 

Creek occupies a higher elevation among the Nenana Valley foothills.  There appears 

to be no substantial difference in the ungulate prey base of cultural zones 4 and 3 at 

Broken Mammoth in terms of composition that correlates with the appearance of 

microblades.  The most notable changes relate to the representation of avifauna and 

small rodents.  At Dry Creek, the contrast in fauna between non-microblade and 

microblade components is more stark but also derived from a significantly smaller 

database, highlighting the potential pitfalls of over-extrapolating limited sample sets.  

Nevertheless, as shown at the post-Younger Dryas Gerstle River component III where 
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wapiti are the dominant fauna associated with microblades, a variety of large 

ungulates have been found in microblade yielding contexts (Appendix 38).  If 

microblade based hunting weaponry were focussed specifically on a few species, it is 

not particularly apparent.  As discussed earlier however, we should perhaps be more 

cautious regarding claims that they were utilised in the pursuit of megafauna such as 

mammoth.  It has been suggested that microblades were predominantly used for 

hunting in lowland environments, but this pattern is far from binary (Potter 2011), and 

has not been made apparent in my own assessment, probably because of limitations of 

the sample population.             

 

Various investigators have sought to examine how the use of microblade technology 

changed relative to broad-scale climatic shifts (Mason et al. 2001; Wygal 2011).  

Microblades have been advocated over bifacial armatures in extreme cold 

environments as they generally have a lower propensity for fatal breakage (Elston and 

Brantingham 2002), yet it is clear from Appendix 38 that they were used both during 

conditions of extreme cold and much ameliorated climate.  Although the cold and arid 

Younger Dryas certainly temporarily impeded the development of dense birch forest 

across much of the landscape and likely altered the distribution and composition of 

flora and fauna within the landscape (Graf and Bigelow 2011), the database of well 

excavated sites from this time period and before is perhaps simply too small to permit 

meaningful inference regarding the human impact of these changes.  In any case, the 

main response of interior Alaskan peoples during this time seems to have been a 

proliferation in the diversity of tools used, with a variety of bifacial points and 

microblade assemblages from this period (Ibid 2011).  Thus it is difficult to observe 

any specific conditions that invoke a preference towards microblade technology.  

They were seemingly utilised in both sparsely vegetated and open environments as 

well as more wooded landscapes for seemingly a variety of mid-large sized ungulates 

or other prey.  

 

In the terminal Pleistocene and early Holocene, the early inhabitants of interior Alaska 

utilised microblade based hunting equipment.  Microblades may have served as barbs 

for spears and atlatl darts, but equally may have been hafted in arrow designs 

(Maschner and Mason 2013).  Recent discoveries have served to dismantle traditional 

chronological frameworks for the region, with it now seeming as though various 
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biface traditions were largely contemporaneous with microblade technology.  It is 

difficult to envisage two ethnically distinct groups coexisting within such an area with 

fundamentally different toolkits.  Rather, it seems more plausible that different sites 

within the landscape were used for different activities, and that any associations 

(positive or negative) between certain types more likely relate to the patterning of 

behaviour in this way.  This may also explain the continued use of microblades 

throughout the climatic fluctuations of the Younger Dryas and Milankovitch Thermal 

Optimum alongside other types of hunting weaponry.  It has been suggested that 

microblade technology may have served to conserve exotic materials (Graf and 

Goebel 2009), and it is likely that small armatures hafted in multi-element hunting 

tools would have fared better in extreme cold conditions than singular bifaces (Wygal 

2011), although it is clear that microblades were not restricted to use in these 

temperatures.      

 

It has been argued that because the Younger Dryas did not in itself appear to have 

stimulated the wholesale adoption or abandonment of a particular technological type, 

its effects were in fact not as severe as may often be imagined (Graf and Bigelow 

2011).  I would suggest that alternatively, early Alaskan peoples were familiar with a 

variety of prey, hunting technologies and survival strategies that, despite the 

fluctuation brought about at this time, they were sufficiently able to cope.  Several 

researchers have attempted to associate specific taxa with microblade technology 

(Mason et al. 2001; Potter 2011; Maschner and Mason 2013), but it seems that the 

situation was perhaps more complex.  The wide breadth of fauna documented in the 

earliest archaeological levels of Broken Mammoth, particularly the wildfowl, fish and 

smaller mammals and rodents, attest to a wide resource base (Yesner 2001), and 

perhaps suggests that the dominance of ungulate species in subsistence strategies may 

have been overrated.  Both Potter (2011) and Ackerman (2007) invoke Churchill 

(1993) in their attempts to explain selection preferences for microblade technology, 

suggesting that they suit encounter-based hunting strategies for various species such 

as bison and wapiti.  Although it is beyond the resolution of the available data to 

elaborate further on this interpretation, it perhaps best accounts for the multitude of 

complexities in the spacing, timing and association of early Alaskan microblade 

technology relative to other lithic technologies, species of fauna and climatic phases.          
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8.2 Microlithic Based Hunting  

8.2.1 Cantabrian Spain 

In Cantabrian Spain, hunting weaponry utilising inset backed bladelet armatures 

appear to have become a main technological focus in the Magdalenian, although these 

armatures, and likely the weapon systems that utilised them, co-existed alongside 

Solutrean spears.  These microlithic weapon systems are primarily associated with 

subsistence strategies focussed upon red deer and ibex which predominate throughout 

the terminal Pleistocene faunal assemblages of Cantabria.  Red deer may have been 

found throughout much of the Cantabrian coastal plain, while the latter was more 

likely restricted to higher elevations and generally more rocky terrain (Straus 1987).  

Backed bladelet based weapon designs were seemingly equally capable of dispatching 

both these species, despite the different strategies required of their habitats.  Although 

unretouched bladelets may have also served as armatures, little can be said about their 

role until they are subjected to further investigation.  Nevertheless, it is curious that 

the preference for retouch became so popular in the Magdalenian.  Retouching in this 

manner allows for greater influence over the final size and morphology of the piece, 

as well as the manufacture of variants including microlithic points.  Control over these 

attributes may have been important, as some use-wear studies suggest that size may 

have influenced the choice to use backed bladelets as hunting armatures or insets for 

butchery tools.  Generally, it is assumed that the backing of these pieces through 

retouch is what made them suitable for hafting.  Certainly, this and other forms of 

retouch would allow for greater control over the regularity of the final product, 

meaning a greater potential value for weapon-systems that benefit from a high degree 

of standardisation.  Reasons as to why bladelets lacking retouch or backing would be 

unsuitable, rather than simply less suitable, have not been satisfactorily explained.                

 

Throughout much of the Upper Palaeolithic, the Cantabrian plain would have been a 

predominantly open landscape, not to say that vegetation coverage was sparse, but 

rather that dense forest habitats were rarely able to develop and expand more 

extensively until the Upper Magdalenian and post-Younger-Dryas.  The dual ungulate 

economy of red deer and ibex that dominates many faunal assemblages from this 

period suggests that the hunting strategies of Cantabrian peoples were specifically 

geared towards these species.  It is clear that by the Magdalenian at least, hunters in 



364 

 

Cantabria had more sophisticated delivery systems in the form of the atlatl spear-

thrower.  Such delivery systems may also have been present in the Solutrean, as they 

are documented at French sites from this period (Straus 2002, 74), and would have 

been particularly effective used in conjunction with projectiles fitted with microlithic 

armatures.  The bow and arrow has also been mooted as a possible weapon system in 

use at this time (Ibid 2002), although this ultimately remains a matter of conjecture.   

 

Spear-throwers are generally believed to offer at least two advantages over 

conventional hand delivery, by increasing both the effective distance and velocity of 

the projectile.  The first advantage enables the hunter to approach his/her quarry from 

a greater distance, thus reducing the chance of the target scaring into flight.  The 

second advantage may have been particularly effective in compensating for the lack 

of a large and heavy cutting tip assumed of spears fitted with Solutrean points.  

Experimental reconstructions of these weapons stress that penetration upon impact is 

essential for laterally hafted barbs to effectively damage or lodge within the target 

(Pétillon et al. 2011).  The successful delivery of several of these projectiles in quick 

succession into the target prey of either red deer or ibex would likely bring the animal 

down relatively quickly.  Aside from the shock of the impact, laterally hafted barbs 

may increase damage and blood-loss, or debilitate movement once lodged within the 

target.  In the rockier climes of the ibex‘s preferred habitat, where pursuit may have 

been quite difficult, such a strategy might have been particularly effective.  At times 

when the ground was under snow, weaponry designed to maximise blood-letting 

would potentially facilitate tracking of the wounded individual.  The use of such a 

weapon system to this end would have been particularly effective in the targeting of 

juvenile animals with smaller body masses. 

 

Although chronologically there is overlap between bifacial Solutrean points and 

backed bladelet technology, Lawrence Straus, arguably the foremost expert on the 

Upper Palaeolithic of Cantabria, has noted in his own experience a tendency towards 

an inverse relationship between these two technological modes (Straus 2002, 74).  It 

seems fairly clear that whilst not mutually exclusive, they most likely represent two 

quite different types of weapon design.  A shift towards microlithic technology may 

have represented a more conservative option in terms of material costs, particularly 

considering the high breakage rates commonly suggested among Solutrean points.  
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While bladelets may have broken just as frequently if not more so, they are relatively 

easy to replace, and the failure of one hafted element is also offset against the utility 

of several others.  Less frequently discussed is the conservative potential bladelet 

technology offers for hafting materials.  By investing in more complex multi-

component weapon systems, it is possible to reduce stress upon the projectile shaft.  

Assuming the shaft can be recovered, the armatures may easily be replaced, extending 

the potential used life of the shaft.  This concern may also explain the popularity of 

bladelet technology in Cantabria at times when the landscape was notably cold and 

open, when wood as a raw material may have been more precious.  As a final 

consideration, the properties of a projectile may be quite variable according to shaft 

design and hafting arrangements without this necessarily being clearly reflected in the 

bladelets themselves, allowing such toolkits to adapt independently of the armatures 

that make them lethal.                            

 

8.2.2 Southern Africa 

The Howieson‘s Poort was preceded by the Still Bay or local variants of the MSA, 

and was followed by a return to regional MSA variant traditions.  The geometric 

pieces that characterise the industry and comprise the microlithic elements of interest 

appear and disappear quite suddenly.  These elements typically comprise backed 

lunate or crescent (segment) pieces, trapezes, and various derivative or otherwise 

modified forms. They are most widely believed to have functioned as armature insets 

for composite hunting weaponry, though this view has recently been challenged at 

Diepkloof Rockshelter (Igreja and Porraz 2013).  Generally, it seems that fine-grained 

materials such as hornfels and silcrete were preferred for the manufacture of these 

pieces, although quartz was also used, which is notoriously difficult to control when 

knapping (Wadley 2008, 123).  There may also have been more nuanced 

discrimination in the selection of particular materials for different types of armature 

and weapon design, as suggested by analyses at Sibudu (Wadley and Mohapi 2008) 

and possibly at Klasies River (see analysis).      

 

In addition to the geometric pieces most commonly discussed, it has also been 

suggested that bladelet manufacture became more sophisticated (utilising soft or 

indirect percussion techniques) during the Howieson‘s Poort (Porraz et al. 2013; Villa 
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et al. 2010; Wurz 1999).  Even if these pieces are indeed technologically distinct from 

other MSA traditions of manufacture, MSA assemblages from southern Africa in 

general are replete with pieces of varying regularity that may qualify as microlithic: 

small laminar bladelet-like pieces, some of them pointed (Singer and Wymer 1982).  

These pieces lack retouch and did not merit investment in non-local fine-grained 

materials.  They have been overlooked in favour of the more precocious and visually 

distinct types associated with the Still Bay and Howieson‘s Poort, but I believe that 

they merit investigation as a potential alternative form of MSA microlithic 

technology, which could re-contextualise the geometric pieces of the HP as a 

development rather than a totally new innovation.  In keeping with popular consensus 

and the prevailing subject of attention, the focus here remains upon geometric HP 

pieces.                

 

The question of delivery method has been keenly discussed thanks to the pioneering 

application of various investigative methods focussed upon questions of functional 

variability, particularly at Sibudu (Wadley and Mohapi 2008; Lombard 2008a; 2011; 

Lombard and Phillipson 2010).  After reviewing these arguments, I have come to the 

conclusion that evidence of bow and arrow technology remains inconclusive and 

requires further substantiation before it should be more widely accepted.  The 

possibility remains however, and considering the early date for the Howieson‘s Poort, 

potentially carries significant implications for consideration of subsequent uses of the 

bow and arrow elsewhere.  It is more agreeable that HP backed pieces would have 

been hafted in hand delivered (thrusting or thrown) spears, or perhaps atlatl darts, 

although evidence for the latter also remains highly circumstantial (Wadley and 

Mohapi 2008).  The HP segments would have facilitated a variety of different tip and 

armature designs in contrast to the preceding blade/bladelets and levallois points of 

the MSA and particularly the large bifaces of the Still Bay.  The distinct shapes of the 

pieces, with curved or trapezoidal edges may have facilitated novel and versatile 

possibilities of hafting arrangement.   

 

Characterising the fauna targeted by hunters of the Howieson‘s Poort has proved 

difficult. It is difficult to confidently associate these weapon systems with specific 

taxa, and a diverse array of taxa is present even when representation favours an 

emphasis on particular fauna.  Only at Klasies River, which lacks a confirmed Still 
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Bay phase, is there a significant shift in faunal data.  At Sibudu and Diepkloof, the 

Howieson‘s Poort appears to have accompanied an increased emphasis on bovids, and 

particularly smaller species, although not as exclusively at Diepkloof.  At Klasies, the 

assemblage appears much more diverse, but this may reflect the difference in 

quantification, using MNI rather than NISP.  It has been suggested that the high NISP 

counts for smaller bovids and other small taxa at Sibudu may reflect differences in 

carcass transportation to sites (Dusseldorp 2012, 74).    Although the preference for 

smaller bovids is less emphasised in the post-HP at Sibudu and Diepkloof, bovids 

remain in general an important focus of subsistence.  Clearly, Howieson‘s Poort 

hunters, and indeed hunters of the MSA in general, were adept at taking a wide 

variety of game, both large and dangerous prey and much smaller non-ungulate 

species not considered in this study but nevertheless a potentially important source of 

prey (McCall and Thomas 2012, 74).       

 

The surrounding habitat of Sibudu was characterised by cool and wet evergreen forest 

during the Howieson‘s Poort.  It appears that these conditions did not change 

significantly in the immediate post-HP MSA.  Likewise, floral and faunal data from 

Diepkloof suggests a continuum of gradual habitat change throughout much of the 

MSA rather than rapid contrasting states accompanied by drastic fluctuations in 

climate (Porraz et al. 2013, 3545).  The forested environment of Sibudu contrasts with 

the open landscape of Klasies River and grasslands around Diepkloof.  The diverse 

array of species at all of these sites likely reflects the fact that each one occupied a 

location well suited to exploit different habitats.  The sudden appearance of 

Howieson‘s Poort technology does not seem to neatly correlate with sharp 

adjustments in environment or faunal exploitation.  The hunting weaponry that 

utilised these geometric pieces may have been quite versatile having been utilised in a 

variety of habitats.                             

 

The geometric pieces that characterise the Howieson‘s Poort are perhaps just the most 

consistently visible component of a much broader development that became adopted 

throughout much of southern Africa.  These armatures most likely facilitated a variety 

of new weapon designs, and potentially reflect the development of new delivery 

methods, although evidence for this is contentious.  The assumed maintainability and 
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flexibility of design facilitated by these pieces allowed for weapon systems that could 

likely target a range of small to medium game if not also larger targets.     

 

8.2.3 Interior Alaska 

 

Microblades appear throughout much of the early Alaskan archaeological record.  

They are temporarily absent at a regional level, as shown in the Nenana Valley 

(Hoffecker 2001), but are arguably too ubiquitous to be an effective discriminatory 

criterion in the distinction of more nuanced variation among different technological 

traditions and archaeological cultures.  In interior Alaska, it is increasingly difficult to 

confidently identify chronologically extant technological traditions according to the 

presence or absence of microblade assemblages.  Compounding this problem is the 

fact that many Alaskan point types, both bifacial and unifacial, were likely small 

enough to use as dart tips, and some may even be considered microlithic at least in 

size.  Confusion over different technological traditions may be alleviated by the 

refinement of chronological control and the discovery of new datasets.  At present, 

however, the archaeological record seems to contradict the view that different ethnic 

groups replaced one another with different technological traditions.  The main 

alternative hypothesis is that different bifacial projectile tips and microblades reflect 

different technological adaptations towards different tactical requirements or cultural 

traditions.  

 

Microblades are most commonly assumed to have served as tips or inset barbs for 

hunting weaponry including spears and, in predominantly coastal settings, harpoons 

(Yesner and Pearson 2002, 150; Wygal 2011).  Traditionally, the bow and arrow was 

not assumed to have become utilised until later in the Holocene (Hare et al. 2004), but 

recent discoveries have raised the possibility that early Alaskan peoples may have 

been familiar with this technology (Maschner and Mason 2013; Ackerman 2007; 

1996).  Certainly, if arguments similar to those invoked by proponents of bow and 

arrow technology in the MSA (Lombard and Haidle 2012) are to be believed, then 

other suppositions regarding the technological capabilities of early Alaskans e.g. the 

use of nets for fishing and hunting (Yesner and Pearson 2002, 151) make the bow and 

arrow a distinct possibility.  As with the MSA, however, I feel that evidence is as yet 
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insufficient to convincingly demonstrate that this was indeed the case.  Early Alaskan 

microblade hunting weaponry likely comprised projectiles delivered by hand as 

thrusting spears (Potter 2011) or as darts from an atlatl, with direct evidence of the 

latter in use from southwest Yukon dating to at least as far back as 8360 ± 60 RCYBP 

(Hare et al. 2004).     

 

Microblades have been championed as a specifically cold-adapted hunting 

technology; a response to the vulnerability of larger pieces to breakage in extremely 

low temperatures (Ackerman 2007, 168), and also as a strategy for conserving 

valuable lithic materials when regular access could not be guaranteed (Yesner and 

Pearson 2002, 151).  Although these advantages would have been undoubtedly 

valuable attributes, they do not explain their continued use.  Certainly, it seems that 

microblade technology was successful, or rather versatile enough to endure various 

periods of climatic fluctuation over which the landscapes in which they were used 

changed quite substantially.  Although the Younger Dryas may not have been as 

severe as is sometimes presumed (Hoffecker and Elias 2003, 39; Graf and Bigelow 

2011) microblade technology was in use prior to, during and after this period.  Over 

the course of this time, the landscape of the Alaskan interior went from a mostly open 

herb tundra steppe with sparse vegetation, when surrounding mountain ranges were 

still glaciated, to a range of more ecologically diverse biomes, with more fully 

developed forest communities in many areas following the post-Y.D. climatic 

optimum.  Some researchers maintain a 700-900 year absence of microblade 

technology immediately prior to the Y.D. (e.g. Graf and Bigelow 2011, 448), but this 

requires dismissal of the microblade assemblages from Broken Mammoth CZ4 and 

Swan Point CZ3 from a period which has incredibly few archaeological sites.   

 

At some time during the earliest stages of this occupation, both mammoth and horse 

became regionally extinct.  Bison, elk/wapiti, moose and mountain/Dall sheep appear 

to have constituted the main ungulate base for subsistence throughout the ensuing 

millennia.  Faunal assemblages are sparse from the earliest Alaskan record, and so 

documenting change across time has largely proved beyond capability.  Caribou may 

have been particularly favoured during the Y.D. (Mason et al. 2001), although there is 

as yet little evidence of this having been the case (Graf and Bigelow 2011).  Analysis 

of taxa from cultural zones 3 and 4 of Broken Mammoth, which boast excellent 
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organic preservation, suggest that the subsistence base may have been substantially 

complemented by a variety of smaller species including fish and wildfowl on at least a 

seasonal if not full year basis (Yesner 2001).   

 

At present, it seems that variability in the archaeological record of different 

technological systems at least partly reflects differential use of the landscape.  Ben 

Potter has suggested that microblades were preferred for thrusting spears, targeting 

bison, moose and wapiti in lowland settings (Potter 2011) using disadvantage 

strategies (after Churchill 1993).  The association of fauna, habitat and technology is 

not exclusive however, and it seems that microblades were used in a variety of 

topographic settings.  Microblades may have been hafted in a variety of different 

weapon-systems.  Their co-occurrence at some sites with a variety of other bifacial 

technologies (e.g. Dry Creek component II) may reflect that they served as part of or 

alongside various other hunting tool-kits.  This would fit with ethnographically 

documented technological variability among arctic based hunter-gatherers (Oswalt 

1973; 1976).  Even in the scenario posed by Potter, in which mid-large, potentially 

dangerous (particularly at close proximity) game were targeted, it would probably 

require several spears to be delivered before the animal was sufficiently slowed to 

administer a more fatal wound, perhaps with another weapon.  Such spears may have 

required a non-microblade tip armature to facilitate greater initial impact penetration.        

 

Considering the flexibility commonly assumed of microblade based weapon systems, 

it may be that these various biface types were catered towards more specific niches.  

If technology varied across the landscape according to the exploitation of different 

resources, then it may be expected that seasonal rhythms were also factored into 

consideration.  Unfortunately, the current resolution of faunal data prohibits the 

effective reconstruction of a seasonal round.  Nevertheless, microblade hunting 

weaponry was suitably effective or adaptable in the wake of the Younger Dryas, 

unlike some biface variants (e.g. chindadn points).  While it may have been preferred 

for particular taxa, it perhaps additionally offered greater versatility in the face of 

unexpected encounters, and greater flexibility for changes in strategy and weapon 

design necessitated by the variable conditions of hunting game within different 

environments.  As in Cantabria, microblade tool-kits may have been particularly 
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preferable in conditions when shaft materials may have been sparse, or when 

increased blood-letting for tracking in the snow were advantageous.         

 

8.3 Comparative Trends 

 

The above synthesis and interpretation of trends identified within the datasets 

reviewed in this thesis highlights a remarkable degree of variability in the 

archaeological correlates of microlithic technology.  After scrutinising internal 

archaeological variability within different instances of microlithic technology from 

prehistory, albeit through using select data samples, consideration may now turn to 

the possibility of broader universalisms.  Although counterintuitive to the aim of the 

project, to more critically explore reductionist interpretations of microlith based 

hunting technology, Table 44 shows a generalised summary of other data examined in 

this investigation.  With regards to non-technological data (i.e. characterisations of 

faunal and habitat reconstruction), it is difficult to satisfactorily convey more subtly 

nuanced trends. Table 45 complements these trends by surmising the extent to which 

the appearance and disappearance of these elements coordinated with substantial 

changes in material selection, ungulate economy and environmental conditions.  The 

number of sites studied does not refer to any universalism in the support of trends, 

simply that these results were born from consideration of multiple assemblages. 
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Number 

of study 

sites 

Confirmed Projectile 

Delivery Mechanism 

Raw Material 

Selection 
Dominant Ungulate Economy 

Associated 

Habitat 

Cantabrian Backed 

Bladelets 
7 Atlatl Fine grained 

Narrow economy, medium 

sized game focus 
Varied 

Howieson's Poort 

Geometric Pieces 
3 ? 

Fine grained, 

non-local 

Diverse economy, greater 

small-medium sized game 

focus 

Varied 

Interior Alaskan 

Microblades 
6 Atlatl / Bow 

Fine grained, 

non-local 

Varied economy, medium-

large sized game focus 
Varied 

 

Table 44: Comparison of Generalised Trends between Case Study Areas 
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Number 

of study 

sites 

Raw Material 

Selection 

Prevailing 

Fauna 

Significant Environmental 

Change 

Cantabrian Backed Bladelets 7 Yes No No 

Howieson's Poort Geometric 

Pieces 
3 Yes Yes No 

Interior Alaskan Microblades 6 Yes No No 

 

Table 45:  Correlation of Trends with Proliferation of Microlithic Technology 
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The appearance or proliferation of particular microlithic types in each of the cases 

included in this study are in fact just the most numerically distinct components of 

broader synchronous shifts in technology.  The Magdalenian, Howieson‘s Poort and, 

for lack of a better handle, the Denali, are all primarily characterised by particular 

microlithic forms in association with a variety of changes in other lithic and non-lithic 

technological systems.  Of these case-studies, only the Howieson‘s Poort sequences 

show the disappearance of this technological mode.  In central Alaska, microblade use 

continued to varying degrees for a number of millennia after the period of focus, and 

in Cantabrian Spain, backed bladelets gave way in dominance to backed geometric 

forms in the Mesolithic.   

 

8.3.1 Delivery Mechanisms 

With the exception of extremely rare discoveries of equipment used to deliver 

projectiles (e.g. González Morales and Straus 2009) or circumstantial evidence of a 

compelling nature (e.g. Edwards 2007; Binneman 1994), it has remained an 

immensely frustrating challenge to archaeologists concerned with subsistence 

practices that it remains so difficult to differentiate between different methods and 

techniques (Cattelain 1997).  Despite hopes that various use-wear assessments and 

particularly microwear analyses might be able to highlight diagnostic differences, 

there are still no testable criteria to confidently distinguish between hand-delivery, 

spear-throwing and bow and arrow delivery mechanisms.  The ability to differentiate 

different weapon systems would understandably permit greater discussion over the 

sorts of hunting tactics that may have been preferred (Churchill 1993; Ellis 1997).  

 

A further problem in the investigation of microlithic armatures has been the question 

of how they were hafted, whether as weapon tips or as laterally hafted cutting insets 

or barbs.  Investigations into the patterning of archaeological residue traces (Lombard 

2008a) and experimental reconstructions of micro-striations (Crombé et al. 2001; 

Ibánez Estevez and González Urquijo 1996) have enabled more enlightened 

discussion, but these methods have not been widely implemented and their reliability 

remains questionable.  Consequently, questions of delivery mechanism and the 

specific function of different microlithic pieces remains dominated by discussions of 

morphological form relative to supposed weapon-designs.  The bow and arrow 
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remains a possible weapon-system in all three of the case-studies considered, but by 

far the greatest efforts to argue its presence has been among MSA archaeologists, 

where this argument is inextricably bound to research agendas concerned with 

demonstrating the behavioural capacity of peoples at this time (Lombard and Haidle 

2012; Lombard 2012).  The spear-thrower, as a somewhat less sophisticated 

technological ensemble is perhaps a less contentious possibility for MSA hunters, 

although equally lacking in unequivocal evidence.  It has been shown that there is 

much greater evidence to support the use of this technology in both Cantabrian Spain 

and Interior Alaska.   

 

8.3.2 Raw Materials 

In cases where it has been possible to contrast raw material composition, it is clear 

that the adoption of microlithic technology is underwritten by change in selection 

towards more fine-grained types.  While microlithic technology may have been a 

primary consideration in the selection of these materials, they are by no means the 

only assemblage components to be affected by it.  At Klasies River, material selection 

preferences established during the Howieson‘s Poort appear to have begun prior to, 

and continued to some degree after, the technological mode itself.  The pattern is 

more marked at Klasies River, as completely novel materials were utilised during this 

time.  At Diepkloof and Sibudu the materials preferred in the HP were present in 

earlier and later assemblages, just in varying frequency.  A similar pattern is apparent 

in Cantabrian Spain, where flint types were known and used prior to the proliferation 

of backed bladelets in the Magdalenian.  Central Alaska is the least well-known area, 

with only materials from Dry Creek having been subjected to thorough assessment.  

At this site it seems that fine grained materials were obtained from sometimes distant 

(300 km) sources.   

 

The attributes of material are emphasised rather than the distance from which it was 

procured, under the assumption that the mechanical properties were important for 

technological consideration.  For the production of microliths, finer grained materials 

offer more regular and predictable fracture patterns, facilitating greater control over 

crude standardisation in the process of batch production.  Microlithisation may 

represent a means of maximising material utility, while conserving material costs 
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through economic manufacturing processes.  While it can be said that there is a 

preference for fine-grained materials in assemblages characterised by microlithic 

technology, this does not always translate into substantial transport differences.  

Nevertheless, shifts in material preference are often interpreted as indicative of a 

change in group range, mobility, and/or network size.  The tendency for microliths to 

numerically dominate in assemblages where they occur can inflate material 

representation in generalised assemblage characterisations.  In this study, this is best 

evidenced in the discussion of raw material quantification at La Riera, where selection 

clearly correlates with peaks in backed bladelet representation.  As already mentioned, 

changes in raw material selection and preference cannot always be equated with 

changes in territorial mobility and range, but the idea of microlithic technology 

facilitating flexibility in (not exclusively hunting) tool-kit design seems to fit well 

with suppositions of extended range and the encountering of potentially unknown 

habitats and prey.  To make such suppositions, however, a clear understanding of 

material provenance is necessary (Minichillo 2006; Ambrose 2006). 

 

8.3.3 Ungulate Economy 

Microlithic pieces are most widely assumed to have functioned as weapon armatures 

in each of the contexts examined in this study (Straus 2002; Ambrose 2002; Yesner 

and Pearson 2002).  Technologically, microlithisation is often thought to have been a 

response to the requirement of greater reliability in tool design (e.g. Bleed 2002).  

Different weapon systems are associated with the exploitation of specific prey types 

through the adoption of varying tactics (Churchill 1993).  Consequently, it may be 

expected that the adoption of microlithic technology corresponds with changes in 

faunal economy.  For the purposes of this thesis, only ungulate and other medium-

large species have been considered as sources of prey.  It is clear that the subsistence 

base of these groups was not limited to these taxa (Altuna 1986; Cuenca-Bescós et al. 

2012; Clark and Plug 2008; Steele and Klein 2013; Yesner 2001), but it is not an 

unreasonable assumption to suggest that, at least for much of the year, prey of a more 

substantial size likely constituted a main food source.   

 

In Cantabrian Spain, the ubiquitous dual economy of red deer and ibex was already 

established prior to the proliferation of backed bladelets in the Magdalenian.  The 
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presence of backed bladelets in the Solutrean suggests that they were more heavily 

invested in rather than a new innovation. This emphasis may have been accompanied 

by a shift in focus to different hunting strategies, but continued to target the 

aforementioned species.  It has been argued that the exploitation of smaller temperate 

species was driven by the overexploitation of traditional sources of prey (Cuenca-

Bescós et al. 2012).  The faunal economy associated with the Howieson‘s Poort 

appears to vary across sites and is generally quite diverse.  Poor resolution of data has 

inhibited comparison of Still Bay, HP and post-HP assemblages.  The most notable 

corresponding change is a more specific focus upon bovids (and particularly smaller 

bovids) at Sibudu (Clark and Plug 2008) and Diepkloof (Steele and Klein 2013), 

although these changes may relate to the broader sweep of developments (such as the 

innovation of trapping equipment) associated with the HP rather than the geometric 

backed pieces specifically.  By the same token, the continued presence of species such 

as Giant and Cape Buffalo in some assemblages indicate that hunters were still more 

than capable of successfully targeting large and potentially dangerous prey.  From the 

limited data available from early central Alaskan assemblages, it seems that 

microblade armatures were important throughout the late Pleistocene and early 

Holocene to varying degrees (Wygal 2011), and may have been associated with a 

variety of fauna.  As an alternative possibility to Potter‘s hypothesis of an association 

between microblade technology and larger lowland ungulates such as bison and wapiti 

(2011), I have tentatively suggested that they may have represented a highly flexible 

and generalised component of a broader variety of contemporary weapon-systems in 

which various lithic points and other less archaeologically visible hunting equipment 

constituted more niche specific adaptations.  Ultimately it has proved difficult to 

effectively reconstruct faunal economy and observe any clear-cut associations with 

different technological systems.       

        

In addition to assemblage composition, there are also questions regarding the 

association of different hunting tool-kits with the targeting of a particular prey 

demographic, which often relates to seasonal patterning of subsistence activities.  

Finding sufficient quality of data upon which to base these reconstructions is often 

difficult, and estimations are often inhibited by the extent to which we can account for 

the full composition of a site‘s faunal economy (Binford 1984; Altuna 1986c) and 
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understand the extent to which these estimates are impacted by specific butchery 

practices and various taphonomic processes (Clark 2011).   

 

It is a truism to claim that hunter-gather behaviour was heavily influenced by seasonal 

variation in subsistence, and although the use of trapping technology in the 

Howieson‘s Poort supports the emphasis of this factor (McCall and Thomas 2012), it 

has not been possible to contrast behaviour from different periods of the MSA.  

Recent research suggests a preference for juveniles of certain species in the 

Howieson‘s Poort of Sibudu, but this has been linked to resource stress rather than 

seasonal abundance (Clark 2011, 284).  In Cantabrian Spain, juvenile mortality 

profiles at La Riera suggest a change at the end of the Solutrean from generalised 

year-round occupation to a more heavily summer oriented use of the cave (Figure 23), 

with a similar pattern documented at La Fragua (Arroyo and González Morales 2007).  

Remains from Magdalenian deposits at montane site Rascano confuse matters, 

however, by suggesting year-round occupation at times (Figure 26).  Finally, 

regarding Interior Alaskan sites, changes in faunal composition over time at Broken 

Mammoth (Figure 113) and Dry Creek (Hoffecker et al. 1996) have been suggested as 

potentially indicative of varying seasonal occupation.  Realistically, there is 

insufficient data to test this hypothesis at other sites and further examine how these 

changes related to different technological practices.                        

 

8.3.4 Habitat Diversity         

A common perspective regarding microlithic technology among prehistorians of the 

Upper Palaeolithic and Mesolithic of Eurasia has been that they were primarily an 

adaptation to forest environments (Burdukiewicz 2005).  This adaptation implicitly 

pertains to the idea that they were used as armatures for bow and arrow weaponry, 

regarded by many as the ideal tool-kit for small-medium game in densely forested 

environments (Rozoy 1989; Bergman 1993).  The chronological and geographical 

range over which various forms of microlithic technology occur, an issue emphasised 

in the design of this investigation, seems likely to undermine any broader 

extrapolations of microliths in this manner.  In each of the case studies addressed 

here, archaeological occurrences of microlithic technology seem suited to exploit a 

variety of habitats.  The extent to which prehistorians are able to effectively 
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reconstruct palaeoenvironments has, and will likely always be, a subject of 

considerable debate.  From the sites considered here however, it seems that microliths 

were utilised in a variety of landscapes, and in both forested and open environments.  

If any loose association could be drawn from the narrow sample of assemblages 

examined in this study, it is that microlithic technology was evidently suitable for the 

exploitation of open and often cold landscapes.   

 

Descriptors such as open and closed landscapes, cold and warm, dry and wet climates 

are clearly only very general and relative binary terms.  Actual habitat reconstruction 

offers greater insight into the sort of habitat conditions hunters really operated in.  Yet 

even at this poor resolution, there is seemingly considerable potential for variability.  

Microlithic technology in the Howieson‘s Poort has been found at sites that occupied 

open fynbos and grassland environments as well as relatively dense forest.  In 

Cantabrian Spain, backed bladelets are found at sites from both the coastal plain and 

from higher elevations with more mountainous terrain.  In central Alaska, microblades 

were used at times when the landscape was very sparsely covered, but also in more 

densely wooded ecosystems.  From a larger study sample, it has been argued that 

microblades were primarily associated with taxa more commonly associated with 

lowland habitat preferences, although this pattern is not exclusive (Potter 2011).   

 

It is clear that even when limited to a crude resolution, the habitats of different 

locations within the landscape do change over time.  If the use of microliths is 

primarily influenced by specific prey types and the effectiveness of their utility is not 

substantially altered by more minor variation in habitat, then archaeologists should be 

wary of hoping to observe narrow and restrictive correlations between the technology 

and associated habitats.  Reflecting upon the results of this study shows that 

microlithic tool-kits were serviceable in a variety of environmental contexts. This 

does not mean that they were not designed with particular scenarios of use in mind, 

but rather at the resolution considered here it has been difficult to elicit clear trends.  It 

appears that the potential flexibility in tool-kit design facilitated by microlithisation 

allowed for utility that was not strictly dictated by habitat conditions.  These patterns 

also serve to remind of the many complexities involved in attempting to define 

restrictive associations and correlations between specific technological adaptations 

and environments.    
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8.4 General Issues 

As well as the above regional comparison of the archaeological trends identified in the 

analysis section, engaging with different research discourses in the course of this 

investigation has raised a number of other issues that deserve consideration.  The need 

to discuss these issues was recognised after experiencing the varying ways in which 

they posed problems for the different research traditions consulted in this 

investigation.  These issues interrelate with one another in varying ways that require 

consideration.      

 

8.4.1 Defining and Quantifying Microlithic Assemblages 

The question of what constitutes a microlithic assemblage is one that has rarely 

necessitated extensive critical discussion.  This is largely due to the broad acceptance 

of regional typological orders used to categorise various assemblages by type-fossils 

and the ability to discount stratigraphic mixing between deposits.  When these two 

issues are not agreed upon, quantification may be referred to as a measure of 

significance.  For example, in discussions of the Post-Howieson‘s Poort, geometric 

backed pieces similar to those found in the Howieson‘s Poort are occasionally noted, 

but because of the minor quantities in which they are found, even when they are not 

explained through processes of stratigraphic mixing they do not affect the overall 

characterisation of the assemblage they are found in.  The regionally varying nature of 

site formation processes prevents generalised consideration of how microliths should 

be quantified, although the issue has been discussed in specific cases where 

disagreement has been raised (Crombé et al. 2009; Vanmontfort 2009).   

 

As it is rare to find assemblages that entirely comprise microlithic pieces, it is more 

helpful to characterise assemblages as being part of a microlithic tradition, a 

chronologically and geographically discrete archaeological pattern in which 

microlithic technology is often (but not exclusively) emphasised as an important 

technological mode.  The importance of the technology is assumed through the 

relative frequency of the microliths.  It is expected that tool frequency may vary from 

assemblage to assemblage according to varying site function.  Consequently, there 

may be Cantabrian assemblages in which backed bladelets are absent or comprise 

only a very small proportion, yet through either the association of other 
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archaeologically distinct materials or through proxy of dating and geographic 

proximity, the assemblage may nevertheless be considered Magdalenian or Azilian.  

The Solutrean of Cantabria, by contrast, often contains assemblages of backed 

bladelets, but rarely in the same quantities.  Although Solutrean bifacial points 

themselves are rarely recovered in large numbers, they are nevertheless emphasised as 

the most unique and defining technological tradition from this period.  While it would 

be wrong to dismiss the backed bladelets recovered from many Solutrean 

assemblages, the phase is not characterised as microlithic or as having a strong 

emphasis on microlithic technology.   

 

The situation is more clear-cut in the MSA of Southern Africa thanks largely due to 

the lack of sites with a continuous stratigraphic sequence throughout the Still Bay and 

Howieson‘s Poort, though at Diepkloof there are levels designated as Howieson‘s 

Poort with Still Bay bifaces and vice versa (Figure 99, Figure 100).  In Interior 

Alaska, confusion over the chronological and technological distinction of different 

assemblage types has rendered the question of how assemblages are defined as 

microlithic more problematic.  Inventories for many sites are unavailable and various 

revisions of interpretation have been necessary following the expansion of work at 

various sites.  For example, Kelly Graf and Nancy Bigelow dismiss the microblades 

from Broken Mammoth CZ3 as there is as yet no evidence of their manufacture from 

the same assemblage (Graf and Bigelow 2011).  I have disagreed with this position in 

my thesis, and in each case-study have accepted microlithic technology wherever 

instances of it have been documented and cases of stratigraphic mixing have been 

dismissed.  I suspect one of the reasons the establishment of a clear chrono-cultural 

system in Interior Alaska has proved so problematic is because of the difficulties in 

disentangling microblades, a clear technological strategy in their own right, from the 

more typical modes by which assemblages are characterised based on the presence or 

absence of retouched forms.  As discussed further below, the qualification of what can 

be considered a microlith varies greatly according to these criteria, and represents one 

of the biggest disparities in prehistoric research.   

 

A final problem regarding the definition of microlithic assemblages is the question of 

how to meaningfully interpret fluctuations in quantity over time.  Such assessments 

can only be given with a firm understanding of the changing habitat and function of 



382 

 

the site over time.  Unfortunately, such level of understanding is rarely permitted by 

the archaeological record.  Although, as stated earlier, I have tried to at least note 

instances where microliths have been recorded, my own investigations have 

necessarily reflected the emphases of the scholars whose work I have depended upon.  

Consequently, although by no means a linear association, the tendency throughout 

this thesis has been to focus on the general proliferation and diminishment of 

microlithic forms rather than more curious appearances.  Likewise, the investigation 

has focussed upon the forms traditionally regarded as of importance, despite 

advocating reconsideration of pieces (most notably unretouched bladelets from the 

MSA and Upper Palaeolithic of Cantabria) that are generally more marginalised.       

 

8.4.2 Microliths and Bifaces 

An interesting feature of each of the case-studies examined in this thesis is the 

relationship between microlithic and bifacial point technology.  Assemblages 

characterised by microlithic types are all preceded by or overlap with assemblages 

characterised by bifacial technology.  These pieces are often substantially larger, 

although a variety of smaller forms are also typical in both Interior Alaska and the 

Solutrean of Cantabria.  As with microlithic pieces, bifacial points are most 

commonly assumed to have served for weaponry, probably for hunting, but may also 

have functioned in other capacities (Greaves 1997).  These points, and especially the 

larger variants, are commonly assumed to have been singularly hafted on spears 

delivered by hand as thrusting spears, or thrown as projectiles.  In central Alaska, it is 

likely that a number of them also tipped darts (Hare et al. 2004).  It is difficult to 

compare bifacial and microlithic technology because it is hypothesised that only a 

single point would be utilised in a projectile in comparison to any number of 

microlithic pieces. While there are many hunting weapon-systems that may have 

utilised neither of these pieces, it is nevertheless interesting that there appears to be a 

precedent of the former preceding, co-existing with, and giving way to the latter.  The 

association of these pieces with different weapon-designs and/or preferences in 

material selection means that they are often interpreted as reflective of markedly 

contrasting hunting strategies (Churchill 1993) and technological characteristics 

regarding reliability and maintainability (Straus 1993; Straus 2005; McCall 2006; 
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McCall and Thomas 2012; Dusseldorp 2012; Graf and Goebel 2009; Goebel 2011; 

Potter 2011).               

 

8.4.3 Spatial Patterning and Technological Variability 

A range of geographic areas is covered through the different study areas assessed in 

this thesis.  Archaeologists commonly seek to understand how groups utilise different 

areas within the landscape for different activities.  It is also recognised that 

archaeological residues and materials may cluster in zones according to differential 

use of space within the delineated site.  Both the archaeological record of Cantabrian 

Spain and MSA of Southern Africa predominantly comprise cave and rockshelter 

sites.  It is possible that a substantial amount of behavioural variability may be 

unquantifiable due to the loss of open landscape sites from the archaeological record.  

In Southern Africa, the large geographical area across which the Howieson‘s Poort 

occurred limits the effectiveness of attempts to characterise different systems of 

landscape use.  Nevertheless, even from the three sites included here, it is clear that 

hunters exploited a variety of ecosystems.  In Cantabrian Spain, researchers have 

sought to discuss landscape mobility (Arroyo and González Morales 2007; Arroyo 

2009b; Arroyo 2009c; Cuenca-Bescós et al. 2012; Stanford and Bradley 2012; Straus 

2014) whilst acknowledging the complications posed by archaeological variability 

and a lack of open air sites.  Site function may be a key explanatory factor in the 

presence or absence of certain tool types and faunal assemblage patterns.   

 

Similarly, in Interior Alaska, differential exploitation of the landscape has been 

discussed (Mason et al. 2001; Potter 2011), although limitations of the available data 

compounded by confusion over the distinction of different archaeological 

assemblages has rendered these discussions more speculative.  While researchers 

continue to seek a pattern of technological variation across different site locations, 

research in the Alaskan interior has served to highlight the importance of intra-site 

spatial variability.  Our understanding of several early Alaskan sites, including Dry 

Creek (Powers and Hoffecker 1989), Broken Mammoth (Krasinski and Yesner 2008), 

Gerstle River (Potter 2005) and Swan Point (Holmes 2011), has been significantly 

improved by expanding excavation areas and attempting to observe discrete 

associations of different materials.  Through expanding sample sizes in this manner, 
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microblades have been discovered in previously designated non-microblade 

components, both Swan Point CZ3 (Holmes 2008) and Broken Mammoth CZ3 

(Krasinski and Yesner 2008).  The caves and rockshelters of Cantabria and the 

Southern African MSA naturally restrict the extent of preservation afforded to the 

sites they contain, and excavation is often spatially restricted through concerns of 

safety or logistics.  Consequently, it is generally more difficult to ascertain the extent 

to which an archaeological dataset can be considered representative of the broader 

site, and when excavations are confined to deep trenches of a small excavation area, 

questions of spatially patterned behaviours cannot be effectively investigated.              

 

8.4.4 The Importance of Retouch  

 

It is often assumed that microlithic armatures require backing in order to facilitate 

hafting.  The backing of pieces is achieved through processes of retouch.  Although 

not mutually exclusive, in many microlithic assemblages backing accounts for the 

majority of retouch.  Consequently, in assemblages where the two are juxtaposed, it is 

easy to dichotomise retouched and backed pieces as functional, and unretouched 

pieces without backing are regarded as manufacturing blanks, spares or simply 

debitage.  While it is reasonable to equate evidence of retouch and backing with the 

intention of use, I would caution against being uncritically dismissive of pieces 

lacking these traits.  It is clear from the evidence of microblade technology in Alaska 

that backing retouch need not necessarily be a requisite of hafting.  Furthermore, use-

wear investigations have overwhelmingly focussed upon pieces that exhibit retouch in 

assemblages containing both retouched and unretouched elements.  Analysis 

conducted on an assemblage of unretouched flakes has demonstrated that pieces may 

have sometimes been utilised, even if only opportunistically (Odell and Cowan 1986).  

I believe that the unretouched debitage bladelets that co-occur alongside backed-

bladelets throughout the record of Upper Palaeolithic Cantabria, and smaller flake-

blade / bladelet types of the MSA in Southern Africa, merit further investigation 

regarding the question of their use-potential.  I see at present no substantial reason to 

preclude the possibility that these pieces may also have been hafted and utilised in 

some capacity.     

 



385 

 

8.4.5 Reliability and Maintainability 

It is rare for archaeologists to find definitive proof of technology in action.  With 

regards to hunting technology, this would constitute an embedded armature or 

similarly direct association of the sort unlikely to be deposited let alone preserved at 

most archaeological sites.  This makes discussing specific hunting techniques in 

relation to specific prey behaviours difficult.  As discussed in the introduction, it has 

seemed more profitable to conceptualise technological variability and its use through 

hypothesised scenarios of reliability, maintainability and, relative to these concepts, 

flexibility (Bleed 1986).  In Bleed‘s initial argument (1986), he stresses that concepts 

of reliability and maintainability are not binary opposites, but rather the extremes of a 

spectrum.   

 

Archaeologically, these concepts are most frequently used when discussed relative to 

costs associated through hypothesised risk (Bamforth and Bleed 1997).  As most 

current hunter-gatherer groups survive in what would be considered at least relatively 

marginal environments where risks of a various nature may be high, it should perhaps 

be anticipated that certain aspects of their toolkits are designed with a strong emphasis 

upon reliability or maintainability.  Furthermore, it has also become clear that it is 

difficult to assess the extent to which a toolkit may be considered reliable or 

maintainable without an appreciation of the broader technological systems of which it 

is a part.  The success and advantages intended from some weapon designs are 

dependent upon strategised use in conjunction with other tools.  Examples of this are 

perhaps most effectively demonstrated by Oswalt‘s description of the various designs 

that may be utilised in singular modes of arctic maritime subsistance (Oswalt 1976).   

 

In ethnographic studies, observations relating to technology, use behaviours and 

outcomes, allows the formulation of interplay models such as Churchill‘s (1993).  In 

archaeology, use behaviours are hypothesised and outcomes are inferred.  It may be 

expected that substantial differences in technology may result in equally contrasting 

qualities of reliability and maintainability.  The tendency towards this view further 

fuels the apparent dichotomy between large bifacial points and microlithic armatures 

that is so often identified.  These concepts may also be discussed on more nuanced 

patterns of archaeological variability however, when the resolution of data permits it, 

as has been shown by Jelmer Eerkens‘ interpretation of less standardisation over time 
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in the design of microliths during the British Mesolithic (1998).  A lack of clarity over 

the particular component elements, specific designs of function, or overall weapon-

system fitness may lead to varying interpretations of reliability or maintainability.  

This is exemplified by contradicting stances regarding the intended quality of 

Howieson‘s Poort backed segments as maintainable (Dusseldorp 2012, 4) or reliable 

(McCall and Thomas 2012, 25).  I disagree with McCall and Thomas‘s interpretation 

of Dusseldorp‘s work as inherently misunderstanding these concepts, but rather 

believe that disagreement stems from emphasising different aspects of the 

technological system under discussion.  When toolkits are characterised as 

maintainable or reliable, the sense in which they are deemed as such needs to be made 

explicitly clear.  The microlithic armature itself, even if not immediately readily 

replaceable, may represent a relatively maintainable design feature for a weapon that 

is overall characterised as reliable.     

 

Often, our ability to understand archaeological variability is too limited to allow the 

effective delineation of relationships between different results and technological 

inputs (or ―contents‖, as advocated by Bleed (1997)), even when changes in 

technology appear to be considerable as in the dichotomy between large bifacial 

points and microliths.  La Riera provides an excellent example of this.  The dual 

economy of red deer and ibex may have encouraged the design of highly reliable 

weaponry for specialised niche exploitation.  The proliferation of backed bladelets 

does not however appear to correlate with any obvious change in faunal economy.  

Indeed, for much of the later Solutrean it appears neither large bifacial points nor 

backed bladelets were common.  Although I feel unable to effectively characterise the 

microlithic weapon systems assessed in this thesis as reliable or maintainable, I do 

believe that, following this investigation, I am able to tentatively offer a few remarks 

regarding general qualities inherent within microlithic armatures.  These are presented 

alongside other final thoughts and reflections in the conclusion.    

 

8.5 Overview 

8.5.1 Summary 

This section serves to draw together the regionally specific reviews of data detailed in 

the analysis section and reflect upon the significance of the contrasting variability that 
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they document.  It is shown that microliths served as part of an effective technological 

strategy for the exploitation of a variety of species from a range of environmental 

settings.  This variability is documented both at an inter-regional level and at times 

intra-regionally.  Advantageous qualities of microlithic technology were exploited to 

various effect in a range of scenarios.  In addition to the results of the main study, a 

number of other trends and issues identified throughout the course of research are also 

discussed, along with their significance for our understanding of microlithic hunting 

assemblages.                

 

8.5.2 Areas for Future Consideration 

This investigation has focussed primarily upon the cross-examination of three broad 

categories of data: technological (quantity, use-wear and material selection), ungulate 

fauna (species composition, mortality data), and habitat environment (vegetation 

proxies, general climatic data, and faunal indicators).  Various other modes of inquiry 

not fully explored in this thesis may offer further insight if pursued in further future 

investigation.  These include more in-depth exploration of different technological 

modes of production, the scheduling of different technological practices, the 

behaviour of specific types of prey, and consideration of the impact of demographic 

reconstructions (Kuhn and Elston 2002, 3), stylistic concerns and the role that 

culturally specific aesthetics may have on aspects of weapon and armature design 

(Wiessner 1984; Gendel 1982; 1984; Blankholm 1990).  By exploring these issues, it 

may be possible to elicit further trends or variability in cross-regional comparisons of 

microlithic technology, and better improve our understanding of both how these 

armatures functioned and why they were chosen and developed at different stages 

throughout the past. 
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9 Conclusion 
 

In the analysis portion of this thesis, I sought to review investigations into a variety of 

contemporary sites from different regions to observe whether broad changes in faunal 

assemblage and palaeoenvironmental data correspond to developments in the use of 

microlithic technology as hunting weaponry armatures.  The desire to do this was 

born out of curiosity regarding the extent to which generalisations may be made about 

microlithic technology and the sorts of archaeologically visible correlates that make 

them a desirable technological strategy.  A second aim of the investigation has been to 

reflect upon the potential value of comparative analysis; the patterns and ideas that 

arise from comparing different regionally specific research discourses.  In addressing 

both these aims in this manner, I am able to evaluate our ability to relate specific 

archaeological patterns of change through time to macroscale concepts.  To my 

knowledge, this is the first attempt to assess microlithic based hunting strategies from 

such a broad scope in this manner.  

 

As established at the outset of this investigation, microlithic technology is 

documented in a variety of forms throughout prehistory.  These assemblages have 

been understood through regionally specific research frameworks, contextualised 

within local histories of technological development.  Considering the broad 

chronological and geographical range across which this technology has been 

documented, I aimed to compare and contrast a broad cross-section of these regional 

traditions, to identify whether there are any key developments associated with shifts 

towards or away from microlithic technology.   As a starting premise for the thesis, 

case-studies were chosen where there is reasonable consensus among the scholars 

who work in these areas that a primary function of the microliths was as armatures for 

hunting weaponry.  Each case-study also happens to represent unique periods of 

history in which microlithic technology seems to have been involved in the success of 

the populations utilising them.   

 

In Cantabrian Spain, backed bladelet technology seems to have been an important 

adaption to an LGM refugium landscape that may have imposed various constraints 

upon materials and resources.  In Southern Africa, the Howieson‘s Poort was, by 
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many estimates, a chronologically discrete if geographically widespread expression of 

microlithisation most distinctly characterised by backed geometric pieces.  This 

technology contrasts strongly with the Still Bay and MSA industries that preceded it, 

and along with a variety of accompanying archaeological traits, has garnered 

considerable interest as an early example of complex technological adaptation.  The 

interior Alaskan sites that comprise the third case-study area show that microblade 

technology was important for the first colonists of the Americas, and continued to be 

of importance throughout the changing landscapes of the Younger Dryas and into the 

Holocene.   

 

9.1 Preliminary Remarks 

Before addressing the main conclusions, there are two other aspects of this research 

that deserve brief reflection.  The first is my critique of the ability of use-wear and 

particularly microwear investigations to address key questions regarding the function 

of microliths in relation to hunting strategies.  It is clear from the analysis chapter that 

the impact of these investigations has been great and that these studies have helped 

substantially to further interpretation and debate.  The application of these analytical 

procedures should be welcomed.  The purpose of my critique was to express concern 

for uncritical acceptance of the results that these analyses often generate.  Such 

methods offer great potential when regarded critically and integrated sufficiently with 

other modes of investigation.  I do believe that unfortunately a great deal of hunting 

armatures, and particularly pieces considered expendable or replaceable are not 

preserved in the archaeological record because of their loss during the act of hunting.  

It is such utilized hunting elements that would have the greatest potential for use-wear 

analysis.      

 

The second aspect of research that merits review is the re-tabulation of data from 

Klasies River.  One of the reasons I sought to review site data in the manner that I did 

was driven by a desire to understand the justifications of the original investigators in 

their own assessments and quantification of data.  I believed an awareness of these 

considerations, along with other issues relating to site formation and stratigraphic 

integrity, would help facilitate a better understanding of how various datasets could be 

related to one another.  As a matter of course, it was not uncommon to find occasional 
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minor errors in the presentation of raw data, however notable inconsistencies were 

encountered in assessing the Klasies River Mouth report.  After attempting to identify 

the source of the error and redress the discrepancy, I was able to determine that the 

impact of this re-tabulation of data did not substantially impact the basic trends upon 

which the original and subsequent investigators have based their interpretations.  

Nevertheless, I hope that this matter of clarification may be useful for future 

researchers, as there has seemingly been no prior acknowledgement of this issue (e.g. 

Villa et al. 2010). 

 

9.2 Regional Trends and Variability 

While not overall a primary aim of this investigation, the course of research has 

nevertheless allowed for remarks to be made about microlithic technology in each of 

these particular case-studies. 

 

In Cantabrian Spain, backed bladelets became a numerically dominant feature of 

many assemblages in the Magdalenian, although they are also documented in various 

Solutrean deposits.  Bladelet blanks, lacking in retouch, are found in large quantities 

throughout the Upper Palaeolithic.  It has been confirmed that from at least the 

Magdalenian if not prior, inhabitants of the region were using spear-throwing weapon 

systems.  The main ungulate economy at this time comprised red deer and ibex, 

although it appears that the proliferation of backed bladelets has little impact on 

overall faunal assemblage variability.  Although not an exclusive trend, it seems that 

backed bladelet technology was particularly popular at times when conditions were 

cold and the landscape relatively open.  It is not clear how landscape variability 

influenced the use of bladelet based weapon systems.  The shift in focus towards 

retouched bladelets is accompanied by a more general shift in technological forms, 

and a higher preference for fine-grained materials in contrast to the preceding 

Solutrean.   

  

In the Southern African MSA, backed geometric forms (most commonly crescent 

segments and trapezes) became a defining feature of the Howieson‘s Poort.  Although 

it is widely accepted that this period was preceded by the Still Bay, an industry best 

known for large bifacial tools, sequences with continuous deposition from earlier 
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periods through to the Howieson‘s Poort are unfortunately rare, leaving a degree of 

uncertainty over the nature of the phenomenon‘s origin.  A variety of unretouched 

laminar forms, small enough to be considered bladelets, are found throughout these 

and other MSA assemblages.  It is as yet unclear how sophisticated the weapon 

systems in which Howieson‘s Poort geometric pieces were utilised actually were.  

The composition of faunal assemblages vary, with bovids and particularly smaller 

species favoured at some sites.  Broadly speaking, however, species composition 

remains relatively diverse.  Equally, it appears that this technological system was 

utilised across a variety of habitats.  There is generally a greater emphasis in the 

Howieson‘s Poort on fine-grained materials for geometric pieces, although materials 

such as quartz may have also had desirable properties.  These preferred materials may 

have at times been sourced over relatively substantial distances. 

 

Current wisdom suggests that microblade technology was important for the earliest 

occupants of Interior Alaska.  These microblades are unretouched, unlike the pieces 

that form the main focus of research in Cantabria and Southern Africa.  Evidence of 

advanced delivery systems from these early occupations is lacking, although it is 

believed that early inhabitants likely utilised atlatls if not more sophisticated weapons.   

Although conspicuously absent from some assemblages, microblades were used 

intermittently throughout much if not all of early Alaskan prehistory, as various 

vegetation communities re-established and diversified.  No strict associations of prey 

and tool-type have yet been identified among these assemblages.  While it seems that 

microblade weapon-systems may have been utilised for a variety of species, it has 

been suggested elsewhere that they may have been preferentially used in the 

exploitation of larger ungulates (particularly bison) in lowland settings (Potter 2011).  

Raw material selection for microblade technology seems to have favoured fine-

grained materials including obsidian, which was likely sourced from a substantial 

distance (Cook 1995), although confirmation of this preference for selection requires 

further research.                   

 

9.3 Cross-Regional Assessment 

From comparing the assessment of these specific case studies, it is possible to make 

several statements regarding generalised patterns of microlithic hunting use.  Habitat 
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reconstructions based upon palaeoenvironmental data collected from sites yielding 

microlithic assemblages show that this technology was likely utilised in a variety of 

settings.  These include open steppe tundra, shrublands and grasslands, forested 

biomes, lowland river plains, rocky foothills and perhaps even in mountainous terrain.  

Indeed, many of the sites included for assessment may be considered ecotonal in 

nature.  If it is assumed that particular weaponry designs are suited to different 

hunting strategies catered to different environmental contexts (Oswalt 1976; Churchill 

1993; Bleed 1997), then the presence of microlithic pieces at sites where a variety of 

ecological niches were exploited suggests that the tool-kits they were intended for 

were themselves adaptable for a variety of scenarios and strategies.   

 

Likewise, the association of microlithic assemblages with a variety of faunal types 

may be seen to imply a degree of flexibility.  Moreover, it is clear from the results of 

this study that microlithic based hunting weaponry was a preferred technological 

adaptation at times when subsistence bases comprised both narrow and relatively 

diverse faunal economies.  Again, this defies the idea that microlithic technology 

represents a specific adaptive trend with regards to diversity of subsistence economy.  

It also further enforces the idea that the various weapon systems that microlithic 

technology facilitated were capable of being designed or used to effectively target a 

variety of prey.  Underlying all these interpretations, however, is the inescapable 

problem of rarely being able to directly associate specific lithic technologies with 

particular prey.  For the purposes of this investigation, ungulates and other medium-

large terrestrial species have been considered the main focus of microlithic based 

subsistence, although various other fauna (terrestrial and non-terrestrial) may have 

constituted economically important resources on at least a seasonal basis.           

 

As has been shown throughout the investigation, extrapolating the true significance of 

fluctuations in the proportional representation of a particular lithic type within 

assemblages over time is problematic for various reasons.  Nevertheless, it seems 

reasonable to assume that microliths were a main technological focus in assemblages 

where they comprise a major component, and were at least part of the technological 

repertoire of assemblages where they comprise a less dominant portion.  Many of the 

microlithic assemblages examined in this thesis have demonstrated a preference for 

fine-grained materials.  Although in some cases these materials were transported over 
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substantial distances, they were also preferentially sought when procured from more 

local sources.  It is likely that their fracturing properties afforded greater control, 

making them ideal for the manufacture and standardisation of shape and form, with 

the added bonus of maximising material utility in cases where it was considered 

valuable.  Fine grained materials may also be more brittle and therefore perhaps more 

likely to fracture upon or after impact, a property demonstrated in various 

experimental reconstructions (Pargeter 2007; Chesnaux 2008; Crombé et al. 2001) 

and potentially a desired outcome of their use (Ellis 1997).                      

 

It is clear from surmising the above conclusions that microlithic technology 

represented a suitably versatile option for effective hunting strategies catered for a 

variety of scenarios.  From the selection of sites used for this study, it would seem that 

the appropriation of this technology, or particular variant forms of it (i.e. the 

retouched pieces from the Howieson‘s Poort and Cantabrian Upper Palaeolithic) was 

not always related to archaeologically visible changes in ungulate faunal economy or 

shifting environmental conditions.  It is possible that changes relating to the selection 

of this technology were simply too nuanced to be clearly visible with the restrictive 

archaeological resolution from periods of this antiquity, but it is also likely that the 

flexibility of design facilitated by microlithic armatures along with the various 

strategies that could be developed around these weapon systems facilitated a flexible 

hunting technology.  In cases where shifts in subsistence economy does change in a 

way that appears approximately synchronous with the increased importance of 

particular microlithic forms, it may relate more closely to broader cultural and 

technological developments of which microliths merely comprise a particularly 

visible component.  

 

9.4 The Microlith as a Global Phenomenon    

It is widely assumed, and reasonably so, that most microlithic forms by virtue of their 

size required and were therefore designed with the intention of being hafted for 

effective utility.  It is also widely assumed, although less so, that microlithic pieces 

were most commonly utilised as hunting armatures.  Since David Clarke roundly 

challenged this notion (1976), various researchers have continued to question the 

complacency with which it is accepted (Finlayson and Mithen 1997; Kuhn and Elston 
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2002, 3; Torrence 2002, 181; Igreja and Porraz 2013).  While it is clear that this 

normative position could benefit from greater scrutiny, it remains popular in many 

cases thanks to various fortuitous finds attesting to the use of microliths in this 

capacity (e.g. Noe-Nygaard 1974; Ackerman 1996; Hare et al. 2004; Edwards 2007; 

Larsson and Sjöström 2011; Leduc 2014), and further support from various use-wear 

investigations, as demonstrated throughout the examples used in this investigation. 

     

The ubiquity of microlithic technology throughout the prehistoric archaeological 

record being such that it is, it should perhaps be unsurprising that a cross-examination 

of geographically and chronologically distinct periods and research traditions favours 

interpretations of versatility.  For the purposes of this thesis, microliths are regarded 

as small (refraining from a metric definition in acknowledgement of the relativity of 

this term) cutting implements created to a basic template i.e. excluding 

opportunistically utilised flakes.  Although similar forms and modes appear across 

wide expanses of time and space, this is largely a result of the limitations of 

technological equifinality.  While the advantages of microlithic technology may have 

been commonly appreciated by different people, their cultural meaning and value 

must be treated as a regionally specific phenomenon.   

 

The qualities of a particular tool-type can only be assessed with specific stresses and 

risks in mind (Nelson 1991, 66) and relative to other technological options known to 

have been available (Bamforth and Bleed 1997; Elston and Brantingham 2002).  As 

microliths are most commonly assumed to have functioned as insets in composite 

weaponry, there remains a great deal of variability both in design and use strategy that 

is difficult to estimate due to the limited nature of the archaeological data available.  

A microlith may be hafted in a number of different arrangements and configurations 

to function as a cutting edge or tip in a variety of weapon-systems or toolkits.  A 

variety of microlithic designs, potentially intended for different contingencies, might 

have been equipped contemporaneously.  Further still, these designs may have been 

utilised alongside various other non-microlithic food-getting toolkits, to reduce the 

dependence or stress upon these particular weapon systems.  Consequently, 

statements regarding the advantages of microlithic technology may not necessarily be 

amplified in the toolkits in which they were used.  Without effective reconstruction of 

the toolkits for which they were intended or the broader technological systems of 
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which they were a part, a substantial amount of potential variability remains 

unaccountable.  Although this seems pessimistic, it is in itself a revealing statement, 

and although firm evidence may be lacking archaeologically, the design and use of 

various weapon-systems may at least be hypothesised with the aid of ethnographic 

data. 

9.5 General Characteristics 

As a global phenomenon, microlithic technology may be conceptualised as highly 

versatile due to the wide variety of circumstances in which it appears to have been 

selected.  This apparent versatility, in the sense defined by Margaret Nelson as 

meaning that a variety of needs may be met through the maintenance of a generalised 

form (Nelson 1991, 70), in part results from the hugely generalised definition of 

microlithic technology.  While the versatility of this technology may have been an 

appeal to various different groups, it must be assumed that culturally specific ideas 

regarding their use-potential existed, rather than that they represented a universal 

armature / tool for all occasions.  The tool-kits they were utilised for represent the 

broader system of which they were a constituent technology, and it is at this level that 

their effectiveness in hunting should be considered.  Too often, these concepts are 

conflated, and assumptions are made regarding microlithic technology and the sorts of 

tool-kits they were utilised within.  This is reasonably understandable: it is difficult to 

imagine a microlithic armature having the sheer stopping power of a large biface 

tipped spear for example.     

 

The versatility of the microlith in its basic form, as considered within the broader 

cultural and technological operating parameters of specific groups, allows for 

potential flexibility in weapon design through modularity, wherein the toolkit for 

which the microliths are utilised may be adapted in design for varying requirements.  

This explains the desire for archaeologists to reconstruct specific weapon-systems 

(e.g. Cattelain 1997; Lombard and Haidle 2012; González Morales and Straus 2009; 

Ackerman 2007), as understanding the context of the system within which microliths 

were co-opted facilitates more developed understanding of the overall significance in 

these shifts in modes of lithic production (Rozoy 1990; Bergman 1993; Maschner and 

Mason 2013).   
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Trends towards microlithisation may be interpreted as a selection of expedience in 

armature manufacture.  Batch production results in a stockpile of pieces that could be 

relatively regular in size and form, and may also be both conservative in material 

costs and cheap in terms of energy and time in their production.  This may equally 

facilitate weapon-designs considered to be maintainable or expedient, or offset costs 

incurred elsewhere in the design or scheduling of more reliable weapon systems.  

Technological designs that incorporate multiple hafted elements are often 

characterised as reliable due to the idea that multiple armatures mitigate the cost of 

failure in any specific one.  While overall the weapon design may be considered a 

significant investment in terms of the time, energy or material costs involved in 

creation and/or curation, it may be compensated somewhat through replaceable and 

maintainable component elements.  Thus microlithic technology may simultaneously 

reflect complex and considered implementation of multiple qualities in the overall 

design of a weapon.        

 

9.6 Final Conclusion 

Microliths come in a variety of morphological forms, and the importance of retouch in 

defining these pieces, at least as functionally significant, varies according to different 

traditions of research (Kuhn and Elston 2002, 2) with little critical justification.  

Furthermore, there are numerous different methods of manufacture that may result in 

what in essence is the same final product in all appearances (Chen 2007).  Microlithic 

technology is generally assumed to be indicative of complex, multi-component, 

composite tool-designs.  The versatility of a small haftable cutting-edge allows them 

to vary in functional significance according to the needs and demands of specific 

regional groups using them.  This allows them to be utilised effectively as 

components of toolkits designed for various scenarios.  While general qualities may 

be assessed at this macroscale resolution, their fitness as part of a context specific 

technological strategy, or relative to the merits of other alternative or contemporary 

adaptations, remains locally and historically contingent.  Cross comparison of datasets 

and interpretive theories offers fertile potential for further developing an appreciation 

of the reasons behind the selection of microlithic technology in response to particular 

circumstances.  By the same token however, sweeping statements regarding the 

advantages or motivations behind the selection of microlithic technology cannot be 
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made without archaeological substantiation.  The strengths and weaknesses of 

microlithic armatures must be approached from a consideration of the specific toolkits 

they were designed for and the scenarios for which these were intended.                          
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NISP of species at Rascano

Levels 5 4b 4a 3 2 1 Total
Equus ferus 5 3 1 4 7 3 23

Capra pyrenaica 1313 1319 673 510 557 577 4980
Rupicapra rupicapra 2 7 6 16

Bos / Bison 2 1 1 6
Cervus elaphus 113 173 63 26 67 82 530

Sus scrofa 2 4 6
Total Ungulados 1433 1495 738 543 640 672 5561



NISP (%) of species at Rascano

Levels 5 4b 4a 3 2 1
Equus ferus 0.3 0.2 0.1 0.7 1.1 0.4

Capra pyrenaica 91.7 88.2 91.3 93.9 87 85.9
Rupicapra rupicapra 0.4 1.1 0.9

Bos / Bison 0.1 0.1 0.2
Cervus elaphus 7.9 11.6 8.5 4.8 10.5 12.2

Sus scrofa 0.3 0.6



MNI of species at Rascano

Levels 5 4b 4a 3 2 1 Total
Equus ferus 2 1 1 1 1 1 7

Capra pyrenaica 34 36 23 20 15 26 161
Rupicapra rupicapra 1 1 3 6

Bos / Bison 1 1 1 5
Cervus elaphus 4 8 4 4 4 9 36

Sus scrofa 1 1 2
Total Ungulados 41 45 29 27 22 40 217



Appendix 5 Klasies River MSA III Lithics Retotaled

Level Cores Core Prep + Rejuv flakes* Flake-Blades Pointed Flake-Blades Broken Blade Segments Worked Flakes Worked Points Flakes
Non-local flakes including 

flake-blades and 
segments

Crescents* Total               (+8 
Crescents)

1
2
3 4 4

 1 - 3 7 23 4 15 20 8 156 11 244
4 2 23 1 6 7 4 47 1 91
5 5 35 4 22 8 3 141 2 220
6 24 16 280 10 229 51 8 2221 95 2934
7 10 9 92 5 356 16 6 1478 23 1995
8 3 11 0 105 18 137
9 9 23 1 5 1 219 75 333

 7 - 9 26 12 90 3 3 4 452 21 611

Total 90 37 577 28 628 110 34 4819 246 8 6577

1 1 7 3 11 11
2 1 2 3 3
3 2 8 1 5 3 16 1 36 36
4 14 2 3 2 20 41 41
5 2 19 4 6 4 2 2 39 39
6 5 2 60 8 56 12 5 291 10 449 449

 7 - 9 13 6 94 3 100 2 7 452 22 699 699

Total 22 8 196 16 164 26 17 789 40 0 1278 1278

1968 Excavation (1982: Table 7.1) 5108 1968 Excavation 5299
Initial Cutting (1982: Table 7.2) 1278 Initial Cutting 1278
Total 6386 Total 6577

Total As 
Recorded in 

Singer & 
Wymer Table 

7.2

1968 Total (Initial Cutting 
Subtracted From 
Combined Total)

820640301784

In
iti

al
 C

ut
tin

g

188446415

* No crescents are detailed for 
individual levels of the combined 
1968 and Initial Cutting, as their 
exact provenance is unknown.

29

5299

5108

MSA III Totals As According To Singer & Wymer 1982 MSA III Revised Totals

19
68

 +
 In

iti
al

 C
ut

tin
g

68

1968 Total As Recorded in 
Singer & Wymer Table 7.1 8206403068

4641238129

186



Level Cores Core Prep + 
Rejuv flakes* Flake-Blades Pointed Flake-Blades Broken Blade 

Segments
Worked 
Flakes

Worked 
Points Flakes

Non-local flakes 
including flake-blades 

and segments
Crescents Handaxes* Total                           

10 85 15 296 3 553 41 390 2198 197 3778
11 54 21 332 1 502 22 6264 2180 183 9559
12 50 7 266 432 26 3929 2831 144 7685
13 67 1 25 47 5 1178 1169 33 2525
14 136 0 42 3 50 7 1302 4722 29 6291
15 23 2 31 45 10 440 907 19 1477
16 56 26 259 594 54 2506 2279 46 5820
17 130 85 731 3 1433 108 1 11370 5738 166 19765
18 49 17 214 550 44 4786 1909 87 7656
19 62 32 368 5 847 27 7877 873 113 10204
20 142 18 522 6 825 88 5 12324 2495 194 16619
21 21 6 109 202 31 1613 67 34 2083

Total 875 230 3195 21 6080 463 6 53979 27368 1245 0 93462

 10 - 12 60 85 7 56 7 7 778 75 11 1086 1086
 13 - 16 70 58 4 36 5 657 338 12 1180 1180
 17 - 21 57 15 372 501 31 8219 552 59 9806 9806

Total 187 15 515 11 593 43 7 9654 965 82 0 12072 12072

1968 Excavation (1982: Table 7.1) 93277 1968 Excavation 93462
Initial Cutting (1982: Table 7.2) 12072 Initial Cutting 12072
Total 105349 Total 105534

Total As 
Recorded 

in Singer & 
Wymer 

Table 7.2

 1
96

8 
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xc
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n

Appendix 6 Klasies River Howieson's Poort Lithics Retotaled

5880 93277112452737021 53979

HP Revised Totals* The exact provenance of the 
handaxe (Singer & Wymer, 1982: 

83) is unknown.

3195230887

HP Totals As According To Singer & Wymer 1982

6463

Initial 
Cutting

1968 Total As Recorded 
in Singer & Wymer 

Table 7.1



Appendix 7 Klasies River Crescents and allied forms Retotaled 

Level 10 11 12 13 14 15 16 17 18 19 20 21 Sub-total
Local Qtzite 170 161 117 22 11 7 4 59 48 87 87 31 804
Fine Silcrete 9 3 6 1 1 9 27 68 20 5 88 237

Coarse Silcrete 13 3 4 1 7 1 3 10 17 11 2 72
Indurated shale 3 4 1 3 3 1 13 22 3 1 1 55

Qtz inc. qtz crystal 1 9 15 4 7 2 11 2 3 8 62
Chalcedony 1 3 1 1 1 2 4 13

Chert 1 1 2
Total of Non-Local Rocks 27 22 27 11 18 12 42 107 39 26 107 3 441

Total of all rocks 197 183 144 33 29 19 46 166 87 113 194 34 1245

Numbers highlighted in red have been reduced by 10 in order to match figures with the actual artefact count
Crescents and Allied Forms (KR1A)

Crescents: completely blunted 64 55 48 21 14 1 4 23 20 43 92 9 394
Crescents: partially blunted 19 29 12 1 1 15 10 12 19 7 125

Trapezes 1 7 16 21 3 24 9 1 82
Triangles 3 2 1 1 7

Obliquely blunted points: forming angle 15 1 1 2 2 19 5 3 16 4 68
Obliquely blunted points: forming arc 24 45 43 4 5 7 5 25 14 10 18 2 202

Broken indeterminate 69 44 31 5 7 2 19 63 30 19 39 6 334
Unfinished or aberrant forms 3 2 2 1 3 4 15
Notched and snapped rejects 2 5 8 1 2 18

Total 197 183 144 33 29 19 46 166 87 113 194 34 1245

Raw Material Selection in Crescents & Allied Forms (KR1A)



Level Cores Core Prep + Rejuv 
flakes* Flake-Blades Pointed Flake-Blades Broken Blade 

Segments Worked Flakes Worked Points Flakes Non-local flakes including 
flake-blades Crescents* Handaxes Obliquely Blunted 

Point

Total **            
(+12 

Crescents)              
22 43 10 130 14 152 9 783 71 1212
23  -  - 40 2 29 8 1 391 38 509

23-24 73 23 346 13 296 29 24 3088 16 3908
24  -  - 92 9 121 14 14 1415 4 1669
25 20 15 99 55 70 9 3 1714 4 1989
26 31 2 33 29 14 6 1 494 2 612
27 71 50 356 66 147 12 1 3762 9 4474
28  -  - 405 89 102 7 1 2093 2 2699

28-29 116 83 155 79 60 0 1 2404 8 2906
29  - 93 64 52 5 1 926 6 1147
30 2 2 138 25 136 8 2 831 7 1151
31 3 1 46 12 38 3 829 5 937
32  -  - 135 58 49 0 932 48 1222

32-33 51 104 95 82 59 14  - 1636 24 2065
33  -  - 25 13 31 2 1  - 13 85
34 52 26 294 45 122 10 4 1764 9 2326
35 1 1  -  - 0 16 1 19
36 71 19 760 123 389 53 19 1998 51 1 1 3485

Total 534 336 3242 778 1867 189 73 25076 318 12 1 32427

22 19 4 109 7 111 8 625 59 7 949 292
23 - 24 23 3 361 13 296 25 26 3088 16 1 3852 3854

25 6 3 48 34 26 3 1257 2 1379 1380
26 15 1 25 29 9 6 1 458 2 546 546
27 20 10 57 66 14 3 1420 2 1592 1593

28 - 29 40 14 155 79 60 1 2425 8 2782 2783
30 1 6 2 4 70 2 85 85
31 2 1 2 74 79 79

32 - 33 14 42 95 82 59 14 1603 27 1936 1936
34 25 13 294 45 122 10 3 1754 9 2275 2276

Total 163 90 1152 358 703 69 31 12774 127 8 0 15475 14824

1968 Excavation (1982: Table 7.1) 17084 1968 Excavation 16952
Initial Cutting (1982: Table 7.2) 14824 Initial Cutting 15475
Total 31908 Total 32427

295

4202090246

752090

* No crescents are detailed for 
individual level totals for the 
combined 1968 and Initial 

Cutting, as their exact 
provenance is uncertain. 

421201164

1164
1968 Total As Recorded 
in Singer & Wymer Table 

7.1
246

** A thick backed asymmetrical crescent, 
possibly a thick-backed scraper or aberrant 

worked point was also recorded with 
unknown provenance.

1968 Total (Initial Cutting 
Subtracted From 
Combined Total)

371

MSA II Totals Singer & Wymer 1982 MSA II Revised Totals

1419112302

42

16952

12

Total As 
Recorded 

in Singer & 
Wymer 

Table 7.2

Appendix 8 Klasies River MSA II Lithics Retotaled
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Level Cores Core Prep + Rejuv 
flakes* Flake-Blades Pointed Flake-Blades Broken Blade 

Segments
Worked 
Flakes

Worked 
Points Flakes Non-local flakes including 

flake-blades Crescents* Handaxes Total             (+12 
Crescents)              

22 43 10 130 14 152 9 783 71 1212
23  -  - 40 2 29 8 1 391 38 509

23-24 73 23 361 13 296 29 24 3088 16 3923
24  -  - 92 9 121 14 14 1415 4 1669
25 20 15 99 55 70 9 3 1714 4 1989
26 31 2 58 29 14 6 1 494 2 637
27 71 50 326 66 147 12 1 3762 9 4444
28  -  - 405 89 102 7 1 2093 2 2699

28-29 116 83 155 79 60 0 1 2404 8 2906
29  - 93 64 52 5 1 926 6 1147
30 2 2 138 25 136 8 2 831 7 1151
31 3 1 46 12 38 3 829 5 937
32  -  - 135 58 49 0 932 48 1222

32-33 51 104 95 82 59 14  - 1636 24 2065
33  -  - 25 13 31 2 1  - 13 85

Total 410 290 2198 610 1356 126 50 21298 257 12 0 26607

22 19 4 109 7 111 8 625 59 7 949 292
23 - 24 23 3 361 13 296 25 26 3088 16 1 3852 3854

25 6 3 48 34 26 3 1257 2 1379 1380
26 15 1 25 29 9 6 1 458 2 546 546
27 20 10 57 66 14 3 1420 2 1592 1593

28 - 29 40 14 155 79 60 1 2425 8 2782 2783
30 1 6 2 4 70 2 85 85
31 2 1 2 74 79 79

32 - 33 14 42 95 82 59 14 1603 27 1936 1936

Total 138 77 858 313 581 59 28 11020 118 8 0 13200 12548

1968 Excavation (1982: Table 7.1) 17084 1968 Excavation 13397
Initial Cutting (1982: Table 7.1) 14824 Initial Cutting 13200
Total 31908 Total 26597

75 1164 17084

13407

* No crescents are detailed for 
individual level totals for the 
combined 1968 and Initial 

Cutting, as their exact 
provenance is uncertain. 

MSA II Totals As According To Singer & Wymer 1982 MSA II Revised Totals

1968 Total As Recorded 
in Singer & Wymer Table 

7.1
191295 246 2090 121 42 12853

10278

6 1

4 0297 775 67 22

Appendix 9 Klasies River MSA II Lithics Retotaled (Levels 1-33)

Total As 
Recorded 

in Singer & 
Wymer 

Table 7.212
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68
 +
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1968 Total (Initial Cutting 
Subtracted From 
Combined Total)

262 213 1340 139



Appendix 10 Klasies River Initial Cutting Lithics Retotaled. Categories amalgamated in Singer & Wymer's table 7.1 are colour coordinated.

Initial Cutting Table 7.2
Layers As 
Published Cores

Core Prep 
+ Rejuv. Flakes Flake Blades

Pointed Flake 
Blades Bulbous Mid Segments Nonbulbous Total Worked Points Denticulates Scrapers Gravers? Borers Unspecialised Crescents Trapezes Cores Flakes Crescents

Worked 
Flakes Cores Flakes Crescents

Worked 
Flakes

Red 
Ochre

1 7 1 3
2 1 2
3 2 16 8 1 3 1 2 2 1
4 20 14 2 2 2 2 1
5 2 2 19 4 3 3 6 1 3 2
6 5 2 291 60 8 32 12 12 56 5 1 2 9 2 8

 7 - 9 13 6 452 94 3 36 28 36 100 7 1 1 9 13 1
Total 22 8 789 196 16 73 40 51 164 17 5 6 0 0 15 0 0 0 16 0 0 0 24 0 0 1

Table 7.1 Total 22 8 789 391 13 164 16 40

 10 - 12 37 778 85 7 27 16 13 56 7 7 9 12 50 1 11 25 1
13 - 16 18 657 58 4 16 11 9 36 1 8 32 245 1 20 93 3 4
17 - 21 23 15 8219 372 218 197 86 501 1 15 31 12 7 140 27 412 16 15
Total 187 15 9654 515 11 261 224 108 593 7 0 2 0 0 22 48 12 51 435 2 0 58 530 20 19 0

Table 7.1 Total 187 15 9654 515 11 593 0 82 965

22 7 4 625 109 7 53 40 18 111 1 3 3 5 11 43 1 1 16 2 1
23 - 24 23 3 3088 361 13 128 116 52 296 26 8 3 1 13 1 5 11 1

25 6 3 1257 48 34 12 8 6 26 1 1 1 1 1 1
26 15 1 458 25 29 5 4 9 1 2 4 1 1
27 20 10 1420 57 66 11 3 14 1 2 1 1 1

28 - 29 40 14 2425 155 79 24 31 5 60 1 5 3
30 1 70 6 2 3 1 4 2
31 74 2 1 2 2

32 - 33 14 42 1603 95 82 42 11 6 59 3 2 9 27
34 24 13 1754 294 45 77 28 17 122 3 10 4 1 5 1

Total 163 90 12774 1152 358 357 242 104 703 31 14 11 2 1 40 6 0 11 60 0 1 2 67 2 0 5
Table 7.1 Total 150 90 12708 1057 358 703 31 6 (should be 8) 127

MSA III 1278
HP 12072

MSA II 15475

Actual Total Table 7.2 Table 7.1
MSA III 1278 1278 1469

HP 12072 12072 12065
MSA II 15475 14824 15298

Total 28825 28174 28832

Worked Flakes Total: 43

26

43

68 (actual total is 69)

Other Non-Local Rock

HP

MSA II

MSA III

Flake Blade Segments Quartz



Level Cores, Core Prep, Rejuv 
Flakes Local Rock

Cores, Core Prep, Rejuv 
Flakes Nonlocal Flake Blades Segments Pointed Flake 

Blades
Flakes (Raw Mat 
Undifferentiated)

Crescents, Trapezes and 
Allied Forms Worked Flakes Fine Silcrete Coarse Silcrete Indurated Shale Qtz, other crystal 

and rock Sub-Total Fine Silcrete Coarse Silcrete Indurated Shale Qtz, other crystal and rock Sub-Total Total

10 59 41 296 553 3 2550 197 41 11 12 4 2 5 4 3778
11 56 19 332 502 1 8398 183 22 32 10 2 2 9559
12 39 18 266 432 6735 144 26 4 13 6 2 7685
13 17 51 25 47 2341 33 5 4 2 2525
14 15 121 42 50 3 5968 29 7 20 20 7 8 1 6291
15 6 19 31 45 1139 19 10 114 3 41 50 1477
16 34 48 259 594 4343 46 54 192 2 72 6 148 18 4 5820
17 118 97 731 1433 3 16251 166 109 336 2 58 4 455 1 1 19765
18 42 24 214 550 6501 87 44 36 23 111 24 7656
19 72 22 368 847 5 8613 113 27 20 35 9 24 48 1 10204
20 70 90 522 825 6 14548 194 93 122 3 4 130 4 8 16619
21 24 3 109 202 1667 34 31 7 6 2083

Actual Total 552 553 3195 6080 21 79054 1245 469 887 130 192 35 1244 925 92 18 14 1049 93462
Total (Singer & Wymer 

chapter 6) 554 563 3195 5880 21 79054 1245 469 889 130 192 35 1246 1049 93276

Flake Blades (Non Local) Segments (Non Local)
Appendix 11 Klasies River HP Lithic Assemblages From 1968 Excavations at KR1A



Appendix 12 Klasies River Singer & Wymer’s Table 7.1 (1982, 110).  
 

 



Appendix 13 Klasies River Singer & Wymer’s Table 7.2 (1982, 111).  
 

 
 



KRM SHELTER 1A

U-Series TL OSL Luminescence 0% 5% 10% 15% 20% Mean% 1st 2nd 3rd 0% 5% 10% 15% 20% Mean% 1st 2nd 3rd Total
1
2
3
4  -  -  - 4 1 n=1 4 1 1 25
5 T. ORYX (3)  -  - 5 1 n=3 5 4 5 31
6 S. CAFFER (4) -  - 6 3 n=94 6 10 65 38
7 7 2 n=41 7 5 73 29
8 8 3 n=4 8  - 

57.9 ± 2.3 ca. 50 9 9 2 n=7 9 1  - 
 7 - 9  7 - 9 5 n=90  7 - 9 3  - 

10 10 16 n=197 C B 12 n=142 10 3 173 31
OIS 3 11 11 16 n=183 19 n-217 B 11 1 122 24

12 12 15 n=144 n=198 21 12 102 24
13 13 18 n-33 D 9 n=17 D 13 12 26

65 14 14 9 n=29 C/E D 8 n=26 B/C 14 3 13 26
60-55 15 15 6 n=19 A E 4 n=13 B D A 15 19 42

16 16 3 n=46 D A 9 n=132 16 211 36
17 17 5 n=166 A D 9 n=330 17 3 637 44
18 18 8 n=87 B C 8 n=98 C 18 167 30

OIS 4 19 19 7 n=113 11 n=174 C B 19 5 268 32
64.1 ± 2.6 20 20 9 n=194 A/B ER 12 n=258 B 20 6 215 26

21 21 8 n=34 A LQ 10 n=41 C 21 66 33
72.1 ± 3.4 70-80 ROCKFALL 22 - -   -  22 4 n=9 22 14 7 17

23 23 1 n=7 23 2 7 24
24 24 1 n=15 24 9 45 37

OIS 5a 25 T. STREPSICEROS (2)  -  - 25 2 n=9 25 55 6 14
27  -  -  - 27 3 n=87 27 66 29 22
28 28 2 n=64 28 89 16 16
29 29 1 n=12 29 64 9 17

77-82 30  -  -  - 30 2 n=21 30 25 38 29
31  -  -  - 31 1 n=6 31 12 10 28

OIS 5b 32 32 2 n=27 32 58 4 8
33 33 2 n=2 33 13 6 19
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Crescent and Allied Form Lithic Materials from HP 
Level 10, KRM 1%

7%

5%

86%

2%
1%

Quartzite

Fine Silcrete

Coarse Silcrete

Hornfels
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Chalcedony

Chert

 
 
 
 
 
 
 
 
 
 
 

Flake-Blade Lithic Materials from HP Level 10, KRM 
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Crescent and Allied Form Lithic Materials from HP 
Level 11, KRM 
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Flake-Blade Lithic Materials from HP Level 11, KRM 
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Crescent and Allied Form Lithic Materials from HP 
Level 12, KRM 
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Flake-Blade Lithic Materials from HP Level 12, KRM 
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Crescent and Allied Form Lithic Materials from HP 
Level 13, KRM 
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Flake-Blade Lithic Materials from HP Level 13, KRM 
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Crescent and Allied Form Lithic Materials from HP 
Level 14, KRM 
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Flake-Blade Lithic Materials from HP Level 14, KRM 
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Crescent and Allied Form Lithic Materials from HP 
Level 15, KRM 
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Crescent and Allied Form Lithic Materials from HP 
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Crescent and Allied Form Lithic Materials from HP 
Level 17, KRM 
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Crescent and Allied Form Lithic Materials from HP 
Level 18, KRM 
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Crescent and Allied Form Lithic Materials from HP 
Level 19, KRM 
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Crescent and Allied Form Lithic Materials from HP 
Level 20, KRM 
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Crescent and Allied Form Lithic Materials from HP 
Level 21, KRM 
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Appendix 27. Klasies River Spearman's Rank for fine silcrete pieces and trapezes

Fine silcrete trapezes d d squared
0% 12 3% 6.5 5.5 30.25
2% 11 0% 10.5 0.5 0.25
3% 9.5 0% 10.5 -1 1
3% 9.5 0% 10.5 -1 1
4% 7.5 0% 10.5 -3 9
4% 7.5 21% 3 4.5 20.25
5% 6 1% 8 -2 4

23% 5 3% 6.5 -1.5 2.25
44% 4 13% 4 0 0
45% 3 5% 5 -2 4
47% 2 24% 2 0 0
59% 1 35% 1 0 0

Total 72

0.748251748 Accepted at 10 degrees freedom under 5% and near 1%



Appendix 28. Klasies River Spearman's Rank for quartz and completely blunted crescents

Qtz Completely Blunted Crescents (d) d squared
21 0% 11.5 9% 12 -0.5 0
20 0% 11.5 26% 9 2.5 6
19 1% 10 32% 7 3 9
18 2% 9 23% 10 -1 1
17 3% 8 38% 4.5 3.5 12
16 4% 7 47% 3 4 16
15 5% 6 30% 8 -2 4
14 7% 5 14% 11 -6 36
13 10% 4 33% 6 -2 4
12 11% 3 38% 4.5 -1.5 2
11 12% 2 64% 1 1 1
10 24% 1 48% 2 -1 1

Total 93

0.6748252 Accepted under 5% at 10 deg freedom



Appendix 29. Klasies River Spearman's rank for hornfels and trapezes

hornfels trapezes (d) difference d squared
0% 12 5% 5 7 49
1% 10.5 0% 10.5 0 0
1% 10.5 21% 3 7.5 56.25
2% 8.5 0% 10.5 -2 4
2% 8.5 1% 8 0.5 0.25
3% 6.5 3% 6.5 0 0
3% 6.5 3% 6.5 0 0
5% 5 24% 2 3 9
9% 4 0% 10.5 -6.5 42.25

10% 3 0% 10.5 -7.5 56.25
13% 2 13% 4 -2 4
28% 1 35% 1 0 0

Total 221

0.2272727 rejected at 10 degrees of freedom



Appendix 30. Klasies River Spearman's Rank for local quartzite pieces and completely blunted crescents

(d) difference d squared
21 9% 12 9% 12 0 0
20 34% 11 23% 11 0 0
19 37% 10 38% 9 1 1
18 38% 9 52% 3 6 36
17 45% 8 57% 2 6 36
16 55% 7 34% 10 -3 9
15 67% 6 67% 1 5 25
14 77% 5 49% 4 1 1
13 81% 4 42% 7.5 -3.5 12.25
12 86% 3 42% 7.5 -4.5 20.25
11 88% 2 46% 6 -4 16
10 91% 1 47% 5 -4 16

Total 172.5

0.3968531 Reject significant correlation.

Crescents (blunts)Quartzite



Appendix 31. Sibudu Complete Fauna Data

NISP NISP % MNI NISP NISP % MNI NISP NISP % MNI
Equus quagga
Plains Zebra

Equus capensis 
extinct Cape Horse

Equus sp 16 3 2 2 0.6 1 - - -
Potamochoerus larvatus

Bushpig
cf. Potamochoerus larvatus - - - - - - 4 0.2 -

Phacochoerus africanus
Common warthog

Suid 7 1.3 1 9 2.3 3 16 0.7 2
cf. Giraffa camelopardalis

giraffe
Pelorovis antiquus

Giant Buffalo
cf. Pelorovis antiquus 12 2.2 1 - - - - - -

Syncerus caffer
African Buffalo

cf. Syncerus caffer 9 1.7 - 1 0.3 1 - - -
Tragelaphus strepsiceros

Kudu
cf. Tragelaphus strepsiceros 3 0.6 - - - - - - -

Tragelaphus scriptus
Bushbuck

cf. Tragelaphus scriptus 1 0.2 1 1 0.3 0 - - -
Tragelaphus oryx

Eland
cf. Tragelaphus oryx - - - 2 0.6 0 - - -

Tragelaphus sp. 1 0.2 1 - - - - - -
Megalotragus priscus

Giant Hartebeest
cf. Megalotragus priscus 2 0.4 1 - - - - - -
Connochaetes taurinus

Blue wildebeest
cf. Connochaetes taurinus 5 0.9 - 2 0.6 0 - - -

Alcelaphus buselaphus
Red hartebeest

cf. Alcelaphus buselaphus 1 0.2 1 - - - - - -
Damaliscus pygargus

Blesbok
Alcelaphine large 14 2.6 2 - - - 3 0.1 1

Hippotragus equinus
Roan antelope

Hippotragus/Tragelaphus oryx 1 0.2 1 - - - 4 0.2 1
Philantoba monticola

Blue duiker
Cephalophus natalensis 

Red duiker
cf. Cephalophus natalensis - - - - - - 1 0 -

Sylvicapra grimmia 
Common duiker

Cephalophus/Sylvicapra - - - - - - 5 0.2 1
Redunca fulvorufula
Mountain reedbuck

Redunca sp. 2 0.4 2 - - - 1 <0.1 1
Kobus ellipsiprymnus

Waterbuck
cf. Kobus ellipsiprymnus 1 0.2 1 - - - - - -

Pelea capreolus
Grey rhebok

cf. Pelea capreolus - - - - - - 2 0.1 -
Pelea/Redunca 1 0.2 1 - - - - - -

Raphicerus campestris
Steenbock

cf. Raphicerus campestris - - - - - - 2 0.1 -
Raphicerus/Oreotragus - - - - - - 2 0.1 1
Aepyceros melampus

Impala
cf. Aepyceros melampus 1 0.2 1 - - - - - -
Oreotragus oreotragus

Klipspringer
cf. Oreotragus oreotragus - - - 2 0.6 - - - -

Bov I 19 3.5 2 35 10.9 1 300 12.5 9
Bov I/II 2 0.4 1 8 2.5 1 6 0.2 1
Bov II 96 17.7 3 118 36.6 3 461 19.1 5

Bov II/III 1 0.2 1 9 2.8 1 4 0.2 1
Bov III 216 39.9 4 61 18.9 2 221 9.2 4

Bov III/IV 7 1.3 1 8 2.5 1 4 0.2 1
Bov IV 24 4.4 3 19 5.9 1 19 0.8 2

Bov IV/V 1 0.2 1 1 0.3 1 1 <0.1 1
Bov V 3 0.6 1 - - - - - -

Grand Total 526 97.6 52 312 96.1 27 2134 88.6 72
Total Including Other Species 542 100 60 322 100 31 2408 100 122

1 2 3 4 5Size Class:

-0.6 1 - -2 0.4 1 2

3

- - - 1 0.3 1 4 0.2 1

0.1 2

- - - - - - 21 0.9

- - -

- - - - - - 3

1 0.2 1 - - -

2

1 0.2 1 - - - - - -

0.1 1

- - - - - - 2 0.1

810 33.6 17

- - - - - 3

2 0.4 1 11 3.4 2

-

- - - - - - 5 0.2 2

- -

1 0.2 1 - - - - -

3 0.1 2

2 0.4 1 - - - -

5 0.9 1 1 0.3 1

1

- - - - - - 4 0.2 1

0.2 2

2 0.4 1 1 0.3 1 3 0.1

- - -

- - - 2 0.6 1 5

10 1.8 2 - - -

-

14 2.6 2 - - - 12 0.5 2

- -

5 0.9 1 - - - - -

- - -

2 0.4 1 1 0.3 1 -

4 0.7 1 1 0.3 1

-

1 0.2 1 13 4 1 201 8.3 4

0.1 1

3 0.6 1 1 0.3 1 - -

Post HP MSA 1 Post HP MSA 2 HP

25 4.6 2 - - - 2



Appendix 32. Diepkloof Lithics by Technology Type

Post HP MSA-Jack Still Bay Pre-SB MSA-Mike
PHP Claude LHP Eric LHP Frans IHP Fiona IHP Jeff MSA Jack EHP Kate EHP Kerry SB Larry PreSB Lynn MSA Mike

Flakes 65.5 50.8 51.6 47.5 46.7 68.1 60.4 45.2 43.5 68.5 65.4
Triangular Flakes 3.2 0.7 0.7 0.4 0.4 1.7 0.4 0.3 0.9 5.2 17.2
Blades 19.3 25.3 29.9 30 32.1 22.5 22.6 22.5 8.4 12.6 13
Bladelets 7.6 18.1 11.1 15.9 19 5.2 11.2 18.8 3.1 2 1.1
Cores 4.4 5.1 6.7 6.2 1.8 2.5 3.4 4.2 0.7 1.5 3.3
Shaping Flakes 0 0 0 0 0 0 1.7 8 38.2 9.3 0
Bifacial Pieces 0 0 0 0 0 0 0.3 1 5.3 0.9 0
Subtotal 1216 1827 757 1103 2250 717 724 946 1381 460 1549
Raw Material Subtotal 1289 1946 839 1263 2645 892 888 1048 1285 496 1742
Difference 73 119 82 160 395 175 164 102 -91 36 193

* Red values indicate those that do not correspond to the number of fragments and manuports excluded

Late HP Interm. HP Early HP 
% Tool Types (Excluding Fragments & Manuports)



Appendix 33. Diepkloof Lithics by Raw Material Type

Post HP MSA-Jack Still Bay Pre-SB MSA-Mike
PHP Claude LHP Eric LHP Frans IHP Fiona IHP Jeff MSA Jack EHP Kate EHP Kerry SB Larry PreSB Lynn MSA Mike

Quartzite 19.5 7.8 12.3 10.3 20 45.4 34.6 25.3 68.9 64.5 86.3
Quartz 19.9 40.6 22.5 19 10.7 32.9 29.7 11.7 7 11.9 7.6
YB Silcrete 12.1 6.1 1.9 4.9 19.1 2.1 2.2 5.5 7.6 5.8 2
Silcrete 43.5 39.1 48.8 60.7 47.1 10.3 28.2 53.6 14.7 15.4 1.9
Hornfels 4 4.3 10.8 3.1 2.5 8.3 4.4 3.2 1.7 2.2 2
Others 1 2.1 3.7 2 0.6 1 0.9 0.7 0.1 0.2 0.2
Number of Pieces 1289 1946 839 1263 2645 892 888 1048 1285 496 1742

Late HP Interm. HP Early HP 
% Pieces > 20mm



Appendix 34. Diepkloof Raw Material Classification

Coarse-grained 
Quartzite Coarse Quartzite

Quartz Quartz
Fine-grained Quartzite Fine Quartzite

Medium to coarse-
grained yellowish-

brown Silcrete
Y.B. Silcrete

Fine to medium-grained 
Silcrete Fine Silcrete

Hornfels Hornfels
Others (inc. Chert) Others

Local

Sub-Local

Exotic



Appendix 35. Diepkloof NISP Data

Post-HP Late HP Intermediate HP MSA-Jack Early HP Still Bay Pre-SB Lynn MSA-Mike Total

Equus capensis Cape zebra 10 5 1 0 0 6 1 1
24

Equus spp. Equids 26 8 3 1 0 7 1 1
47

Rhinocerotidae gen. et sp. Indet Rhinoceros(es) 7 9 10 1 2 8 1 1
39

Hippopotamus amphibious Hippopotamus 1 3 1 1 2 10 0 0
18

Taurotragus oryx Eland 4 5 3 0 4 6 0 3
25

Hippotragus leucophaeus Blue antelope 3 1 2 1 1 1 1 1
11

Connochaetegnou and/or 
Alcelaphus buselaphus

Black wildebeest and/or 
Cape hartebeest 6 4 2 0 0 0 0 0

12

Pelea capreolus Vaalribbok 0 3 1 0 0 0 0 0
4

Redunca arundinum Southern reedbuck 3 4 1 0 3 0 0 0
11

Oreotragus oreotragus Klipspringer 3 5 4 0 1 0 0 0
13

Raphicerus campestris Steenbock 1 2 1 0 2 0 0 0
6

Raphicerus melanotis Grysbock 0 0 1 0 0 0 0 0
1

Raphicerus sp(p.) Grysbock/steenbock 13 14 20 5 11 7 2 0
72

Antidorcas sp. Springbok 1 0 0 0 0 0 0 0
1

Pelorovis antiquus Long-horned buffalo 3 1 0 0 1 0 0 0
5

Small bovids 100 319 339 31 108 43 11 13
964

Small-medium bovids 53 110 39 4 9 2 2 2
221

Large-medium bovids 88 112 50 11 24 15 2 1
303

Large bovids 34 61 27 11 27 11 2 5
178

Total 356 666 505 66 195 116 23 28
1955

NISP



Appendix 36. Diepkloof MNI Data

Post-HP Late HP Intermediate HP MSA-Jack Early HP Still Bay Pre-SB Lynn MSA-Mike Total

Equus capensis Cape zebra 2 1 1 0 0 1 1 1 7

Equus zebra / E. quagga Mountain zebra and/or 
quagga 0 0 0 0 0 0 0 0 0

Equus spp. Equids 2 1 1 1 0 1 1 1 8

Rhinocerotidae gen. et sp. Indet Rhinoceros(es) 1 1 1 1 0 1 1 1 7

Hippopotamus amphibious Hippopotamus 1 1 1 1 1 1 0 0 6

Taurotragus oryx Eland 1 1 1 0 2 1 0 1 7

Hippotragus leucophaeus Blue antelope 1 1 1 1 1 1 1 1 8

Connochaetegnou and/or 
Alcelaphus buselaphus

Black wildebeest and/or 
Cape hartebeest 2 1 1 0 0 0 0 0 4

Pelea capreolus Vaalribbok 0 0 1 1 0 0 0 0 2

Redunca arundinum Southern reedbuck 1 1 1 0 1 0 0 0 4

Oreotragus oreotragus Klipspringer 1 1 1 0 1 0 0 0 4

Raphicerus campestris Steenbock 1 2 1 0 1 0 0 0 5

Raphicerus melanotis Grysbock 0 0 1 0 0 0 0 0 1

Raphicerus sp(p.) Grysbock/steenbock 2 3 3 2 3 2 1 0 16

Antidorcas sp. Springbok 0 1 0 0 0 0 0 0 1

Ovis aries Sheep 0 0 0 0 0 0 0 0 0

Pelorovis antiquus Long-horned buffalo 1 1 0 0 1 0 0 0 3

Small bovids 3 7 9 2 4 2 1 2 30

Small-medium bovids 2 3 2 1 1 1 1 1 12

Large-medium bovids 3 3 2 1 1 1 1 1 13

Large bovids 2 2 1 1 2 1 1 1 11
Total 26 31 29 12 19 13 9 10 149

MNI



Appendix 37. Diepkloof %NISP Data

Post-HP Late HP Intermediate HP MSA-Jack Early HP Still Bay Pre-SB Lynn MSA-Mike Total

Equus capensis Cape zebra 3 1 0 0 0 5 4 4 17

Equus spp. Equids 7 1 1 2 0 6 4 4 25

Rhinocerotidae gen. et sp. Indet Rhinoceros(es) 2 1 2 2 1 7 4 4 23

Hippopotamus amphibious Hippopotamus 0 0 0 2 1 9 0 0 12

Taurotragus oryx Eland 1 1 1 0 2 5 0 11 20

Hippotragus leucophaeus Blue antelope 1 0 0 2 1 1 4 4 12

Connochaetegnou and/or 
Alcelaphus buselaphus

Black wildebeest and/or 
Cape hartebeest 2 1 0 0 0 0 0 0 3

Pelea capreolus Vaalribbok 0 0 0 0 0 0 0 0 1

Redunca arundinum Southern reedbuck 1 1 0 0 2 0 0 0 3

Oreotragus oreotragus Klipspringer 1 1 1 0 1 0 0 0 3

Raphicerus campestris Steenbock 0 0 0 0 1 0 0 0 2

Raphicerus melanotis Grysbock 0 0 0 0 0 0 0 0 0

Raphicerus sp(p.) Grysbock/steenbock 4 2 4 8 6 6 9 0 38

Antidorcas sp. Springbok 0 0 0 0 0 0 0 0 0

Pelorovis antiquus Long-horned buffalo 1 0 0 0 1 0 0 0 2

Small bovids 28 48 67 47 55 37 48 46 377

Small-medium bovids 15 17 8 6 5 2 9 7 67

Large-medium bovids 25 17 10 17 12 13 9 4 106

Large bovids 10 9 5 17 14 9 9 18 91

Total 100 100 100 100 100 100 100 100

% NISP



Broken M. Swan P. Gerstle R. Q. Chugwater Dry Creek Panguingue
Swan Point 326m² excv. 60m² excv. 182m² excv. 400m² excv. 347m² excv. 100m² excv.

Prevailing 
Vegetation Tools / Assemblage Tools / Tools / Tools /

1st 2nd 1st 2nd 1st 2nd Microblades / Microblades Microblades Microblades Microblades
"Alder" 7,000 7,000

7,250 7,250

7,500 7,500

7,750 7,750

8,000 8,000

"Spruce" 8,250 8,250

8,500 8,500

8,750 8,750

9,000 9,000

9,250 9,250

"Poplar" 9,500 C II 474  /  102 9,500

9,750 9,750

10,000 10,000

10,250 10,250

10,500 10,500

10,750 10,750

11,000 11,000

11,250 11,250

11,500 11,500

11,750 11,750

12,000 12,000

12,250 12,250

12,500 12,500

Nenana ValleyTanana Valley

Microblades

20  /  22

194  /  1772

211  /  8

Climatic 
Phase

P
ost Y

D
 H

olocene

800

36

Y

41  /  44

35  /  N

?  /  Y

C
hugw

ater

Unquantified C14 yr 
BP

Broken Mammoth Gerstle River Quarry Dry Creek

MNI

C II

6  /  N

60  /  150

D
ry C

reek

P
anguingue C

reek

CII

C II

Radiocarbon 
Years BP

355  /  N

4355  /  428

CZ2              

A
llerød

Elk / Wapiti    
(44)

Bison       
(21)

CZ3

CZ4         

CZ3    

CZ4

C I 

CII
Drier and 

cooler 
Artemisia

Bison  (33)

Bison (5) 
Autumn / 

Early Winter

NISP NISP

Younger D
ryas

G
erstle R

iver Q
uarry

B
roken M

am
m

oth

S
w

an P
oint

CZ2

C IV

Bison    (133) 
Autumn / 

Early Winter

Elk / Wapiti   
(87)   Autumn 
/ Early Winter

Return to moist 
conditions

Caribou, Moose and Bison 
(Unquantified)

Moose

Wapiti  (73) 
AutumnC III

Cultural Affiliation UnassignedNenanaDenaliPost-Denali

Dominant Ungulate Fauna

Birch Shrub 
land resumes 

expansion with 
new sub-
dominant 
species 

emerging

39  /  N
Wapiti (2) 
Autumn / 

Early Winter

Mountain 
Sheep (< 5) 

Autumn / 
Early Winter

C I

Moose / 
Horse

Mountain 
Sheep (< 5) 

Autumn / 
Early Winter

Elk / Bison

Meadowland 
Sedges 

Graminoids 
and Willow

Increased 
Moisture 

Betula Shrub 
Tundra



Appendix 39. Broken Mammoth Non-Ungulate Fauna NISP 
Cultural Zone 3 CZ3 % subtotal Cultural Zone 4 CZ4 % subtotal

Bear Ursus sp 1 5 1 4
Wolf Canis sp 1 5 1 4

Arctic Fox Aloxpex lagopus 13 62 18 69
River Otter Lutra canadensis 6 29 6 23

21 26
Hare Lepus sp 33 75 44 25

Hoary marmot Marmota flavescens 8 18 5 3
Collared pika Ochotoma collaris 3 7 3 2

44 173
108 225

Arctic Ground Squirrel Spermophilus parryi 298 305
Arctic Shrew Sorex arcticus 9 11

Microtine Rodents 165 151
203 111

Tundra Swan Cygnus columbianus 41 525
Canada Goose Branta canadensis 2 22

White-fronted Goose Anser albifrons 12 54
Snow Goose Chen hypoborea 5 35

Mallard Anas platyrhynchos 6 24
Pintail Anas actua 2 36

Gadwall Anas strepera 4 4
Widgeon Anas americana 2 2

Green-winged teal Anas caroliensis 6 22
Willow ptarmigan Lagopus lagopus 23 77

103 801
117 363

Fish 28 28
1067 976

Species

Carnivores

Subtotal

Small 
Mammals Subtotal

Unidentified

Cycloid/salmonid fish
Unidentified Fragments

Rodents

Unidentified Mammals

Birds

Subtotal
Unidentified



Species Cultural Zone 3 CZ3 % subtotal Cultural Zone 4 CZ4 % subtotal
Super Bison Bison priscus 133 55 21 24
Elk/Wapiti Cervus canadensis 87 36 44 51
Caribou Rangifer tarandus 6 2 6 7
Moose Alces alces 4 2 4 5

Mountain Sheep Ovis dalli 11 5 11 13
Ungulate Fauna subtotal 241 86

Unidentified large/medium fauna* 639 329

* Not exclusively ungulate fauna

Appendix 40. Broken Mammoth Ungulate NISP



Appendix 41. Dry Creek Original Lithics Tabulation after Hoffecker et al. (1996)

Retouched Pieces Component 1 Component 2
Flakes and Fragments 3474 28,529

Projectile Points / Point bases 3 9
Bifacial Points 2
Bifacial Knives 3
Endscrapers 9

Endscraper / Burins 1
Double Endscrapers 1
Transverse Scrapers 3

Side Scrapers 2
Anvil Stones 2 3

Planes (quadrilateral unifaces) 2
Miscellaneous Items 11

Burins 29
Core/burins 8

Bifaces 44
Heavy Bifaces 47

Scrapers 21
Retouched Flakes 6 21

Blade-like retouched flakes 18
Hammerstones 3

Total (excluding flakes & fragments) 45 194


