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Abstract 

 

Parts for industrial and domestic use have been formed by means of the metal spinning process as far 

back as the ancient Egyptians. Research into the field was initially concentrated on experimental and 

theoretical studies. The development of numerical methods alongside the increasing capabilities of 

modern computing brought about numerical investigations into the process. This thesis presents a 

three-dimensional numerical model developed using the finite element method. In addition, a 

formability parameter is proposed and a formability surface linking the round off radius, rotational 

speed and half cone angle of the mandrel is presented. This thesis also presents the first numerical 

parametric study into springback using a three-dimensional finite element model.  
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§1 Introduction 

There are many different processes which can be used to form metal parts for use in industry; some 

commonly used processes include stamping, bending and extrusion. In extrusion processes, a billet of 

metal which is positioned in a container is forced through an opening in one end of the container. The 

material is forced from the container by either applying a ram to the opposite side of the billet, known 

as forward extrusion. Alternatively, the orifice may be moved towards the opposite side of the 

container which is known as backward extrusion as illustrated in Figure 1.1. Backward extrusion has 

been found to give better results than forward extrusion (Valberg, 2010) because the action of moving 

the orifice in forward extrusion generates deformation of the orifice geometry. This in turn creates 

variations in the cross section of the extruded part. 

 

  

Figure 1.1: (a) Backward extrusion, (b) Forward extrusion 

(adapted from Valberg (2010)) 

 

The stamping process is often used to manufacture parts for the automobile industry. The process 

involves a sheet metal blank being rested on a die which bears the geometry of the final part. A punch, 

whose geometry is the same as the void in the die, is then applied vertically to the workpiece as 

illustrated in Figure 1.2. 
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Figure 1.2: Stamping process (adapted from Wick et al. (1984)) 

 

The bending process is used to create parts with straight sides as opposed to the stamping operation 

which can be used to form parts with multiple bends or curved sides. Similarly to the stamping 

process, the blank rests over a die which bears the intended geometry as illustrated in Figure 1.3. 

                                     

Figure 1.3: Bending process (adapted from Wick et al. (1984)) 

 

Both the bending and stamping processes have the advantage that they are quick processes; however, 

the expense of altering the design of the intended geometry is a key disadvantage to both processes as 

it requires re-tooling.  

Press

Frame

Workpiece

Die

Punch

Punch

Blank

Die



§1.       Introduction 

 

3 
 

1.1 Metal Spinning 

A further, lesser known metal forming process is metal spinning (Packham, 1976). In metal spinning a 

blank, usually a circular but occasionally square piece of metal is clamped between a mandrel, which 

bears the form of the intended part, and a tailstock as illustrated in Figure 1.4. The blank is then 

gradually deformed by means of a roller passing over the surface of the blank in either a single or 

multiple series of passes. This may or may not occur at a constant feed (mm/rev) which is evaluated 

from the ratio of roller velocity to mandrel rotational velocity. 

 

Figure 1.4: Configuration of the metal spinning process (Kleiner et al. (2002)) 

 

The modern day metal spinning process is very versatile, and can be used to produce parts ranging in 

diameter from 3 mm to 10 m and thicknesses ranging from 0.4 mm to 25 mm (Music et al. (2010)). 

Modern day metal spinning is used to produce parts such as nose cones for aeroplanes, components 

for MRI scanners and components of a military nature in addition to decorative items such as 

sculptures. Indeed, the feet of the Angel of the North were manufactured using the metal spinning 

process. Figures 1.5 and 1.6 show a range of components manufactured by means of the metal 

spinning process.  

In industry, stainless steel, copper and aluminium are commonly spun metals. Metal spinning has 

many advantages over other forming processes as there is no need for individual moulds to be cast for 

parts which differ minutely in dimensions. Furthermore, there is very little material wastage and high 
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dimensional accuracy can be achieved. An additional advantage of the metal spinning process is that 

it is a relatively quick manufacturing process requiring a lesser forming force which in turn reduces 

operating costs. The fact that tensile and yield strength are also improved also enables the possibility 

for substitution of cheaper materials (Wick et al. (1984)). All these factors render the metal spinning 

process industrially competitive.  

 

Figure 1.5: Smaller parts formed using the metal spinning process (Kleiner et al. (2005)) 

 

 

Figure 1.6: 2m diameter parts from Leifield USA (Bewlay, online) 
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1.2 Springback 

There are a number of ways in which a part may be rendered unsuitable for its intended purpose; one 

of these ways is springback. Springback manifests itself as a geometrical change as a result of the 

release of residual elastic effects; this may result in a part having a geometry outside a specified 

dimensional tolerance, therefore resulting in industrial wastage. Whilst springback cannot be 

eliminated, the ability to anticipate the amount of springback for a given set of parameters would help 

to reduce wastage in industry resulting in lower costs in terms of time and materials and consequently 

improving productivity. In some metal forming processes, for example three point v-bending, much 

research as to the influence of blank thickness, punch geometry and die geometry on the level of 

springback has been investigated. The metric used to quantify the amount of springback in three point 

v-bending is defined as the ratio of the angle made between a straight edge and the horizontal before 

and after springback and is referred to as the springback ratio (denoted as K in Figure 1.7). 

 

Figure 1.7: Springback ratio definition 

  

Figure 1.8 illustrates the relationship between the springback ratio and the ratio of the bend radius, R1, 

and the blank thickness, t, for a range of metals. 
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Figure 1.8: Springback ratio in v-bending (adapted from Oehler (1963) cited in Valberg (2010)). 

Figure 1.8 illustrates that for a given bend radius, increasing the blank thickness reduces the amount 

of springback observed for the three point v-bending process. Conversely, for a given blank thickness, 

springback may be reduced by decreasing the bend radius. 

In terms of three-dimensional processes, Yang (1986) investigated springback in the extrusion process 

for three cross-sectional profiles as illustrated in Figure 1.9. The metal (aluminium) used is extruded 

through an angle θL as it is formed.  

 

Figure 1.9: Oval, clover and troicoidal Cross sectional profiles from Yang (1986) 

θL 

θL 

θL 
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Their investigation found that springback was most pronounced for the clover shaped die, and that 

both dimensions A and B as marked in Table 1.1 were larger than the intended value. Furthermore, 

the angle of rotation, θL, differed from that which was intended. This would indicate that springback 

occurs in multiple directions simultaneously although Yang (1986) does not elaborate on this point. 

 

 

 

DESIGNED 

DIMENSION 

OF DIE 

 

 

 

 

 

 

A = 23.24mm 

B = 15.49mm 

ƟL = 45º 

 

 

 

 

 

 

A = 22.54mm 

B = 15.02mm 

ƟL = 45º 

      
 

A = 25.4mm 

B = 17.8mm 

ƟL = 45º 

MANUFACTURED 

DIMENSION 

OF DIE 

A = 22.91mm 

B = 15.36mm 

A = 22.24mm 

B = 15.12mm 

A = 26.36mm 

B = 17.97mm 

DIMENSION 

OF PRODUCT 

A = 23.04mm 

B = 15.60mm 

ƟL = 25º 

A = 22.43mm 

B = 15.38mm 

ƟL = 39º 

A = 28.51mm 

B = 18.22mm 

ƟL = 42º 

 

Table 1.1: Dimensional results for extrusion profiles examined by Yang (1986) 

 

For three dimensional axisymmetric problems such as stamping, springback has been investigated and 

been shown to be asymmetric. Figure 1.10 shows the experimental configuration used by Yu et al. 

(1984) to investigate a hemispherical stamping process.  

A 

B 
A B A B 
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Figure 1.10: Experimental set up used by Yu et al. (1984) 

 

Yu et al. (1984) found that the parts did not form uniformly as illustrated in Figure 1.11. In terms of 

springback, the metric used by Yu et al. (1984) is to define springback in terms of the radii of the part 

before and after springback. The authors do not state how this is measured; there is one plot presented 

which relates the average springback ratio to punch force (expressed as a multiple of the yield stress 

multiplied by the surface area of the plate). The plot shows that the springback ratio increases as the 

punch force increases up to a maximum at around three times the yield stress of the aluminium 

multiplied by the surface area of the plate, beyond which there is little difference.  

 

Figure 1.11: Part geometry after forming for a blank of radius 100mm (from Yu et al. (1984)) 
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Further metrics for measuring springback are discussed in the literature review. At the present time, 

there is no standard metric for measuring springback in the metal spinning process. 

 

1.3 Experimental Measurement Techniques within Metal Spinning 

The metal spinning process does not easily lend itself to the experimental measurement of strains. 

Experimental techniques in the literature include etching circles on the surface of the blank (Quigley 

and Monaghan (2000), Beni et al. (2010), Razavi et al. (2005), Shimizu (2010)), drilling and 

subsequently plugging holes in the blank (Avitzur and Yang (1960)). A technique of splitting a blank 

in half, etching a grid through the thickness and then soldering the blank back together before forming 

and then subsequently splitting the blank and examining the deformation to the grid was described by 

Kalpakcioglu (1961). Whilst these techniques may provide an insight as to the deformation a part may 

undergo during a spinning process, the extent to which the measurement technique has influenced the 

results has not been examined in detail. 

1.4 Structure of the thesis 

This thesis delivers a formability parameter for the conventional metal spinning process in addition to 

a metric for measuring springback. Furthermore, a three-dimensional parametric study into springback 

is conducted and examines the influence of the half cone angle of the mandrel, the rotational speed 

and the mandrel round-off radius on the springback generated. In addition, a two-dimensional finite 

element springback tool is developed in order to model the average springback obtained in the three-

dimensional case. All these are original contributions to the body of knowledge on metal spinning. 

This thesis has five further chapters consisting of a literature survey in Chapter Two reviewing the 

literature appropriate to this thesis. Following on from this, Chapter Three provides background 

details of the finite element method which is the primary research tool used in this project as it was 

not possible for experiments to be conducted. Chapter Four details the development of the three-

dimensional finite element model used to investigate a single pass conventional metal spinning 
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process. In addition, a formability parameter, formability surface linking the mandrel round-off 

radius, half cone angle and rotational speed are presented. Chapter Five consists of a parametric study 

into springback using the three-dimensional finite element model developed in Chapter Four. The 

thesis closes with conclusions and suggestions for future work. 
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§2 Literature Review 

2.0 Introduction 

The lower tooling and running costs associated with the metal spinning process, alongside the diverse 

range of geometries possible; make it a particularly attractive option for manufacturers of metal 

components. Research into the field has mostly taken the form of experimental and numerical 

investigations as the dynamic nature of the process does not lend itself easily to analytical modelling. 

Nevertheless, analytical models have been used to model the tool forces experienced throughout the 

forming process although the body of literature available in this field is relatively small in comparison 

with other metal forming processes. 

 

2.1 Geometry 

There are generally three types of geometry considered in the metal spinning literature as shown in 

Figures 2.1, 2.2 and 2.3 and they can be classified as cylindrical, conical and hemispherical 

geometries. 

 

                                                                    

Figure 2.1: Cylindrical 

geometry 

Figure 2.2: Conical geometry Figure 2.3: Hemispherical 

geometry 
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Throughout this thesis, the coordinate system illustrated in Figure 2.1 is adopted where the direction 

shown as 1 is referred to as the radial direction and direction 2 is the axial direction and the out of the 

page direction is referred to as the hoop or circumferential direction.  

 

2.2 Shear and Conventional Metal Spinning 

There are two types of metal spinning, namely shear and conventional metal spinning, which are used 

to form the parts shown in Figures 2.1 and 2.2. In conventional spinning, the aim of the process is that 

the finished part has the same thickness as the original blank. Therefore, in the conventional spinning 

process, the radial and hoop strains should be equal. Conversely, in shear spinning, the blank 

thickness is intentionally reduced. In ideal shear spinning, the diameter of the final part is the same as 

the diameter of the blank, resulting in an ideal thickness given by the ‘sine law’ equation (2.1). The 

‘sine law’ relates the blank thickness and half cone angle of the mandrel to the final thickness of the 

part as 

                                                                         sin0tt f                                                               (2.1) 

where t0 and tf are the initial and final thicknesses, respectively and α is the half cone angle of the 

geometry as illustrated in Figure 2.4. In ideal shear spinning, the thickness strain should be equal to 

the axial strains. 

Half cone angle (α)

Formed thickness (tf)

Original thickness (t0)

Original radius

 

Figure 2.4: Schematic of ideal shear spinning 
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2.3 Forces 

The forces studied in metal spinning originate from the reaction force between the roller and the 

workpiece, which is then resolved into three mutually perpendicular directions resulting in the radial 

force, axial force and hoop force consistent with the definitions of the radial, axial and hoop directions 

in Figures 2.1-2.3. Referring to the geometry of Figure 2.3, Wang et al. (1989) found that for a three 

pass conventional spinning process on a hemispherical mandrel using a 2mm thick aluminium blank 

of diameter 120mm and mandrel rotational speeds varying from 200rpm – 1120rpm; the relative 

ratios of the axial, radial and hoop forces (resolved to cylindrical notation) to be as 

                                                         1:10:20:: hoopradialaxial FFF  .                                              (2.2) 

which would appear to be similar to the findings of Essa and Hartley (2009) who found that the axial 

force was around double the radial force for a single pass process forming aluminium on the 

cylindrical geometry. However, Wang and Long (2011b) found the ratio of the forces to be of the 

order 35:17:1 for a three pass process forming mild steel on a cylindrical geometry. Xia et al. (2005) 

used aluminium to form cups on a cylindrical geometry and found that the axial force was greater than 

the radial force only for the early stages of the forming process, illustrated in Figure 2.5, after which, 

the reverse was true.  

For the conical geometry, Chen et al. (2005) who conducted an analytical and experimental study 

using a shear spinning process to form a 50
o
 aluminium cone found the force ratio (2.2) to be of the 

order of 4:3:1. This would appear to contradict the findings of Colding (1959) who conducted 

experiments on aluminium blanks of thicknesses between 6.45mm and 19.4mm and stated that the 

radial force was both larger than the axial force and between ten and thirty times larger than the hoop 

force. Combining the results of all these researchers, it can be seen that there is a consensus of opinion 

that the hoop force is the smallest of the force components. However, since El-Khabeery et al. (1991) 

suggest that the relationship between the axial and radial forces is dependent upon the angle the roller 

makes with the workpiece which makes the results of the aforementioned research difficult to 

compare since Chen et al. (2005) state that the angle of inclination of the roller they use is 60
o
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whereas Avitzur and Yang (1960) use an inclination angle of 90
o
, other authors do not provide details. 

Therefore, whilst it is possible to say that the relationship between the axial and radial forces would 

therefore appear to be dependent upon the material type, blank geometry, roller contact angle and 

mandrel rotational speed; however, without a parametric study it is difficult to make any further 

comparisons.  

 

Figure 2.5: Radial and Axial force components (adapted from Xia et al. (2005)). 

 

The power needed to form a part is related to the hoop force, since the hoop force does most of the 

work in forming a part (Sortais et al. (1963), Kalpakcioglu (1961), Colding (1959)). Therefore early 

work concentrated on predicting the hoop force in order to estimate the power required to drive the 

mandrel.  Consequently, researchers such as Avitzur and Yang (1960), Kalpakcioglu (1961), Zhan et 

al. (2007) and Sortais et al. (1963) (who all used conical geometries) and Hayama and Murota (1963) 

(who used the cylindrical geometry), conducted theoretical and experimental investigations focussed 

on trying to develop an understanding of the forces in metal spinning in order to predict the power 

required to manufacture a part. All these studies agree that the hoop force is the smallest of the force 

components.   
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There have been attempts to provide theoretical expressions for the hoop force in metal spinning. 

Many of these papers include the assumption that it is the hoop force which does most of the work in 

deforming the metal (Colding (1959), Kobayashi et al. (1961), Chen et al. (2005)). This is justified by 

considering that the energy required to deform the part is evaluated by multiplying each respective 

force component by the distance over which it acts. The distance over which the hoop force acts is far 

greater than the distance for either the radial or axial force components. When deriving experimental 

expressions for the hoop force, quantifying the exact contact area between the roller and the 

workpiece has proved a fundamental issue in finding representative expressions (Hayama and Murota 

(1963), Hayama (1974), Kobayashi et al. (1961), Sortais et al. (1963)). Hayama and Murota (1963) 

attribute the peaks observed in the radial force (for example as illustrated in Figure 2.5) to the 

respective (drawing and ironing) deformation modes they assume present in the spinning process. 

Essa and Hartley (2009) attribute the first peak to the maximum plastic deformation and the second 

peak to the material thickening towards the open end of the cup.  

 

2.4 Relationship between the force components and process parameters 

2.4.1 Clearance 

Sortais et al. (1963) defined the term under-spinning to mean that the clearance between the roller and 

the mandrel surface is greater than the thickness given by the ‘sine law’ (Equation 2.1). Conversely, 

they define over-spinning to mean a roller clearance less than the thickness predicted by the sine law. 

Hayama et al. (1965) found that under-spinning resulted in minimal changes in the three force 

components. However, Hayama et al. (1965) found that for over-spinning the radial and hoop force 

components decreased whilst the axial force component increased. Furthermore, they note that the 

clearance appears to influence the behaviour of the flange; where the part is under-spun, the authors 

report that the flange has a tendency to bend backwards towards the roller. When the part undergoes 

over-spinning, the authors report that the flange tends to lean forward and can lead to wrinkling. 

Similarly, Slater and Joorabchian (1976) found that all three force components increased as an under-
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spinning regime was entered. This was attributed to the fact that the flange was bent to such an extent 

that it made contact with the roller (Slater (1979)). Similarly, Xia et al. (2005) considered the effect of 

using different clearances on the forming of aluminium cylindrical parts and found that the axial and 

radial forces decreased as the clearance increased; this was also observed for the shear spinning 

process by Chen et al. (2005). The thickness distribution of a formed part was reported as being more 

uniform for a smaller clearance by Essa and Hartley (2010). When modelling the metal spinning 

process via finite element simulations, Razavi et al. (2005) suggested that the value of clearance 

should be adjusted to account for any elastic behaviour of the roller. 

 

2.4.2 Roller Geometry and Angle 

There has been much discussion, although little consensus as to the significance of the roller nose 

radius or the nature of the interaction between the roller and the workpiece. Indeed, there exists an 

example in the published literature whereby the authors ignore the friction between the blank and the 

workpiece and only model part of the roller (thereby neglecting any rotational effects of the roller), 

(Sebastiani et al. (2006)). Furthermore, recent research (Music and Allwood (2011)) has suggested 

that the mandrel may be replaced by three rollers (in addition to the forming roller). In their review 

paper, Wong et al. (2003) state that the roller diameter has little effect on the product although they 

acknowledge that too small a roller nose radius will result in poor thickness uniformity. For the shear 

spinning process; Kim et al. (2003), Hayama et al. (1965) report an increase in axial and radial forces 

as the roller nose radius is increased. However, Avitzur and Yang (1960), Kim et al. (2003), Hayama 

et al. (1965) and Dröge (1954) [cited in Music et al. (2010)] report an inverse relationship between 

the roller nose radius and the hoop force. This is consistent with El-Khabeery et al. (1991) who found 

that increasing the roller nose radius resulted in an increase in thickness towards the base of the part in 

addition to closer conformity to the mandrel geometry. Wang et al. (1989) report that increasing the 

roller nose radius increases all components of the working force; this was also observed by El-

Khabeery et al. (1991). Both El-Khabeery et al. (1991), Kleiner et al. (2005) and Chen et al. (2001) 
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find that using a larger roller nose radius results in a smoother finish on the final part which is 

attributed to the increase in contact area between the roller and the blank. Hayama et al. (1966) report 

that using a larger roller nose radius reduces the likelihood of the part to wrinkle whilst Kleiner et al. 

(2005) state that for a larger roller nose radius (20mm), the clearance did not influence the surface 

quality. However, for a smaller roller nose radius (10mm), Kleiner et al. (2005) state that the surface 

quality is improved by using a larger clearance. Similarly, Wells (1968) states that a smaller nose 

radius results in poorer surface finish; furthermore, Wells (1968) also investigated the phenomenon of 

material build up around the roller for the cylindrical geometry. He found that build up could be 

controlled by altering the roller tilt angle in addition to decreasing the feed rate. Additionally, Wells 

(1968) found experimentally (for a shear metal spinning process) that some material also flows 

underneath the roller (referred to as backflow) which increases as the roller tilt angle is increased. The 

roller geometry was found to directly influence the nature of material build up in front of the roller to 

the extent that there was a critical value of build-up, beyond which material flaked off the part as 

illustrated in Figure 2.6 (Nagarajan et al. (1981)).  

 

Figure 2.6: Material flaking off a formed part from Nagarajan et al. (1981) 

 

Essa and Hartley (2009) conducted simulations using an ABAQUS/Explicit model containing 6000 

elements of a two-pass process using two rollers off different diameters. Their results showed that 

using the roller with the smaller nose radius for the conventional spinning process required a greater 

axial force. In addition, their simulation for the radial force in the single pass process produced a 
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relationship which demonstrated a general increase in radial force with roller displacement. These 

simulation results were in agreement with the experimental results of Xia et al. (2005). 

Hayama et al. (1970) found that the roller geometry was also influential in determining whether a part 

could be formed without wrinkling. They conducted experiments using two rollers, one of nose radius 

4mm and one of radius 15mm and report that wrinkle free forming can be achieved with higher feed 

rates for the smaller roller nose radius. Kobayashi et al. (1961) found that the hoop force component 

decreased as the roller diameter increased whilst Avitzur and Yang (1960) found the hoop force 

decreased as the roller radius decreased.  

 

2.4.3 Blank Thickness and Diameter 

Hayama (1974) and Kim et al. (2006) found that a positive linear relationship exists between all three 

force components and the blank thickness. However, both these studies were conducted at low feed 

rates and for a single half cone angle of 22.5
0
. Hayama et al. (1965) also found that increasing the 

blank diameter also resulted in an increase in the three force components, although this reached a 

terminal value for blanks of diameter 100mm for the hoop force. Dierig (1992) reports that an 

increase in blank diameter or sheet thickness resulted in an increase in the axial force. 

 

2.4.4 Half Cone angle 

Kim et al. (2006) conducted an extensive study into shear spinning and found that all three of the 

force components decreased as the half cone angle increased in what appeared to be a linear fashion, 

although there are only three data points plotted in each case which renders the nature of the 

relationship difficult to establish. This relationship was also observed by Kalpakcioglu (1961) and  

Avitzur and Yang (1960). Kobayashi (1963) proposed a wrinkling limit in terms of the ratio of blank 

to mandrel diameters and a function, δ, involving the half cone angle of the part and the ratio of the 

final part thickness to the blank thickness. The theory upon which Kobayashi (1963) proposes this 
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limit originates from work done by Senior (1956) regarding wrinkling in a different metal forming 

process. 

2.4.5 Feed rate 

Hayama and Murota (1963), Hayama (1974), Zhan et al. (2007), Essa and Hartley (2009) and Xia et 

al. (2005) found the radial and axial forces to increase with increasing feed rate; Avitzur and Yang 

(1960) and El-Khabeery et al. (1991) also found the hoop force to be linearly increasing in nature 

with feed rate which was attributed to a larger contact area between the roller and the workpiece. For 

a die-less spinning process, Liu (2007) found that the axial force increased as the feed rate increased. 

Kim et al. (2003) found that the hoop force increased quasi-linearly as the feed rate increased.  

 

2.4.6 Mandrel Speed 

Wang et al. (1989) found that the influence of the speed of rotation of the mandrel had little effect on 

the forces required to deform the blank. However, there was a general trend for the axial and radial 

forces to decrease as the mandrel speed increased. However, it should be noted that the geometry used 

in their investigation was the hemispherical mandrel. Hayama (1974) write that in general, using a 

higher mandrel rotational speed will result in a better quality finished part; this may be due to the fact 

that increasing the mandrel speed in isolation (i.e. without changing the roller velocity or other 

process parameters) results in a reduction in the feed rate which has been found to increase the quality 

of the spun part (Kleiner et al. (2005), Slater (1979), El-Khabeery et al. (1991), Chen et al. (2001)), 

possibly because more of the workpiece comes into direct contact with the roller. Hayama et al. 

(1965) report that the mandrel rotational speed has a negligible effect on the axial and radial forces 

whereas Joorabchian and Slater (1979) report that there exists an optimal mandrel rotational speed for 

which the hoop force is a minimum. For the conventional metal spinning process, Wang et al. (1989) 

report that the mandrel rotational speed did not have a significant effect on the tool forces. 
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In summary of the findings on the forces in the metal spinning process, it can be seen that the blank 

thickness, feed rate, cone angle and roller geometry effect the forces in metal spinning. It is also 

implied (although not explicitly investigated) that the mandrel geometry also affects the forces in 

metal spinning as the ratio of the force components have been found to vary with the mandrel 

geometry. However, in order to make more detailed comparisons, a parametric study needs to be 

undertaken.  

 

2.4.7 Roller Paths 

Kang et al. (1999), Liu et al. (2002) and Hayama et al. (1970) investigated the effect of using 

different types of roller path, namely concave, involute and linear as illustrated in Figure 2.7. Liu et 

al. (2002) studied the first path of a conventional spinning process used to form an aluminium cup 

using a 1mm thick blank of diameter 180mm. They found that the involute curve had the lowest stress 

and strain values for all components; whilst Kang et al. (1999) state that the first pass of a 

conventional metal spinning process is essentially a shear spinning process. Wang and Long (2011c) 

found that the highest tool forces were observed when a concave roller path was used and that the 

greatest reduction in wall thickness was observed for the concave path. They also found that thinning 

could be accentuated if the curvature of the concave path was increased. Wang et al. (2011b) found 

that where a part wrinkled, the wrinkling occurred in forward passes and reported that wrinkling 

rarely occurred in backwards passes. They also found that the axial force was the largest force and 

that larger forces were required to form the part with each successive pass. This was also seen in Essa 

and Hartley’s (2009) results which showed that the axial force was larger in the second pass than in 

the first pass, a phenomenon that was also observed by Wang and Long (2011c). 
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Toolpath

Concave Involute Linear

 

Figure 2.7: Roller path design 

 

2.5 Numerical Issues 

Modelling the metal spinning process using finite element models can be computationally very 

expensive. There are essentially two methods which can be employed to reduce the simulation times, 

namely increasing the processing capability or modelling the process in a way which requires less 

computational resources. Quigley and Monaghan (2002b) investigated solution times with respect to 

parallel processing. They found that there was an optimal number of processors (5) to reduce the 

solution time. For a single processor running on 8400 elements, the solution time per increment was 

around 900 seconds. Using five processors reduced the time to around 200 seconds but more 

processors did not improve this much further. The paper suggested that this was due to network issues 

becoming more significant when more machines were used, since the process was still dependent on a 

central machine to coordinate the whole process. The fact that the loading mechanism in the spinning 

process is asymmetric (Razavi et al. (2005)) poses a further challenge to building 2d models; 

however, Mori and Nonanka (2005) and Alberti et al. (1989) constructed 2d models in order to reduce 

simulation times. The model presented by Mori and Nonanka (2005) also assumed an annular forming 

process and proposed a build-up rate which was compared with experimental data. Alberti et al. 

(1989) assumed an annular forming process, generated by contact between the roller and the 

workpiece. Whilst a plot of the thickness distribution along the workpiece was presented and 
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demonstrated thickening towards the open end of the part, there was no comparison with experimental 

results.  

 

2.6 Review of Strain Distribution 

For the conventional spinning process, it is assumed that there is no strain in the thickness direction of 

the part. Therefore, theoretically the hoop strain and the axial strains will be equal to each other from 

the assumption of constant volume. In the case of shear spinning, the hoop strain is assumed to be 

zero and consequently, the thickness strain and the axial strains must be equal to each other. Quigley 

and Monaghan (2000) used this reasoning in order to derive an expression for the strain in the radial 

direction (although this is the axial direction in Figure 2.2) for a shear spinning process using a 

conical geometry. Furthermore, they then use a similar rationale to derive an expression for the hoop 

strain for constant thickness forming using a (theoretically) hemispherical geometry. Their models 

predicted larger strains for the shear forming process than for the conventional spinning process. They 

also carried out experiments for single and multiple pass processes. For the single pass process, the 

measured and predicted radial strains agreed well for approximately one third of the process, despite 

the fact that the experiments were performed on a hemispherical dome and the shear forming 

equations had been derived for the conical geometry. However, the hoop strain showed closer 

agreement with the predicted axial strains for the conventional spinning case. The fact that both the 

measured radial and hoop strains were tensile over this considered range implies that there is a 

reduction in thickness, this is also observed experimentally by Beni et al. (2010), Quigley and 

Monaghan (2000), Razavi et al. (2005) and in finite element simulations by Wang and Long (2011b). 

For the multiple pass process, the measured axial strain was largely positive, whilst the measured 

hoop strain was largely negative, although they did not oppose each other, which would imply that 

there is some thickness strain present. Furthermore, Quigley and Monaghan (2000) stated that their 

results showed that the first pass of a conventional spinning process is essentially a shear spinning 

operation and that multiple passes are required in order to preserve the thickness of the original blank. 
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This observation was also noted by Köhne (1984) and similarly Kang et al.(1999) stated that the first 

pass of a conventional process determines the final thickness of the part. 

For the spinning of cylindrical cups, it is generally found that ‘necking’ occurs around the corner 

region of the mandrel and that the formed cup becomes slightly thicker towards the free end of the 

completed part, Xia et al. (2005), Hamilton and Long (2008), Hayama and Murota (1963). Whilst the 

aforementioned studies only sample one path, Beni et al. (2010) considered the average thickness 

strain across three radial paths and also observed that the (hemispherical) part exhibited thickening 

towards the circumference of the part. Zhan et al. (2007) found that for feed rates greater than 

2mm/rev, the minimum wall thickness became greater than that predicted by the sine law. In addition, 

they found that for feed rates 0.5mm/r to 3mm/r, the maximum wall thickness was approximately the 

same as the initial blank thickness. These observations are somewhat in agreement with Xia et al. 

(2005) who conducted experiments for feed rates of 0.1, 0.5, 1.0, 1.5, 2.0 and 2.5 mm/rev. and 

reported that the strain increases with increasing feed rate. Inspection of the presented results shows 

that for cup depth between 30mm and 50mm, the lowest feed rate resulted in the smallest thickness 

strain, i.e. smallest deviation from the initial blank thickness. However, for cup depths less than 

approximately 3mm, Xia et al. (2005) found that the highest feed rate resulted in the smallest 

(absolute value) thickness strain. This would perhaps suggest that in order to produce a part with the 

same thickness as the initial blank, i.e. to minimise deviation from the original blank thickness, the 

feed rate should be varied throughout the process, dependent upon the part geometry. Essa and 

Hartley (2009) also noted that the thinning near the corner of the mandrel was less pronounced in a 

two pass process than for a single pass process and suggested that a uniform thickness could be 

achieved through a multi-pass process which is in agreement with the observations made by Quigley 

and Monaghan (2000).  
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2.7 Review of Stress Distribution 

The stress distribution is of particular interest to researchers who are concerned with the phenomena 

of failure in metal spinning. The widely accepted stress distribution is illustrated in Figure 2.8 where 

r denotes the radial stress (direction 2 in Figure 2.1) and 
.circ  represents the hoop stress. This 

distribution predicts tensile radial stresses and compressive hoop stresses as the roller moves away 

from the tailstock. For roller motion towards the tailstock, both the radial and hoop stresses are 

predicted as being compressive. 

 

Figure 2.8: Standard stress distribution in conventional spinning (from Music et al. 2010). 

 

If compressive hoop stresses generated exceed a critical value, wrinkling occurs in the flange. Xia et 

al. (2005) found that for thinner blanks and larger feed rates, wrinkling occurred whereas (Kobayashi, 

1963) found it necessary to increase the mandrel radius as the blank radius increased in order to 

prevent wrinkling. Zhan et al. (2006) found acute thinning to occur at the neck of the mandrel, 

however, the parts formed in their paper all presented with wrinkles. 

However, if tensile hoop stresses are generated and become too large, then radial cracks will emerge. 

If the radial stress becomes too large, then circumferential cracks may emerge. These failures are 

shown in Figure 2.9.  
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Figure 2.9: Failure modes of circumferential cracking and wrinkling (from Kleiner et al. 2002). 

 

In their study of the stress distribution in the spinning of cylindrical cups, Kleiner et al. (2002) found 

that in the early stages of the pass, the hoop stress was close to zero whilst the radial stress increased 

linearly up until the midpoint between the tailstock and the flange. After this midpoint was reached, 

compressive hoop stresses began to appear which the authors suggested were responsible for the 

generation of wrinkles in the flange. In addition, Sebastiani et al. (2007) suggest that the onset of 

wrinkling may even be triggered by the effects of rotating the blank. Whilst there are papers available 

which study instabilities in rotating discs (Advani 1967, Nowinski (1982)), they are not proposed 

within the context of the metal spinning process. However, it is interesting to note that Advani (1967) 

finds that there are two sets of waves which travel in opposite directions around the circumference of 

a spinning disk. This would appear to relate to the ‘toothed’ stress pattern observed close to the rim of 

the workpiece by Sebastiani et al. (2006) who suggested that the pattern may be a pre-state to the 

onset of wrinkling. This stress state was also observed by Wang et al. (2011b) in the stress 

distribution of a backwards pass of a multi-pass process; however, no link was established between 

the toothed pattern and wrinkling.  

It has been found by simulation that the deformation zone is not localised to the immediate vicinity of 

the roller as stresses have been observed to have been induced in regions which have not been 

subjected to contact with the roller (Wang et al. (2010), Finckenstein (1978), Zhan et al. (2006), 
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Wang and Long (2011b)). Music and Allwood (2011) found that the dominant pressures in forming a 

part are localised in three distinct regions; they proposed and built a machine to form parts using the 

spinning process built replacing the mandrel with two rollers. The authors report parts formed with 

this machine have perfectly flat top and bottom sections. 

The effect of the temperatures generated in the spinning process on the stress distribution has not been 

considered analytically and are not often discussed by researchers, although El-Khabeery et al. (1991) 

suggest that it may be an important factor in the region of contact between the roller and the 

workpiece. This assertion would appear to agree with Music et al. (2010) who report that in practice 

heat is applied to thick parts and high strength materials in order to reduce the forces required to form 

the material.  

 

2.8 Springback 

Springback is the dimensional change which takes place in the part once unloading has taken place. 

The ability to predict springback is of great industrial importance since springback may render a part 

unsuitable for its intended purpose. The study of springback within the context of the metal spinning 

process has been identified by Music et al. (2010) as an aspect of the metal spinning process which 

has not yet been subjected to investigation, hence the key motivation for the author’s research project.  

There is presently no uniformly accepted metric for evaluating springback for the metal spinning 

process.  Within the context of bending, springback can be quantified by measuring the change in 

bend angle as illustrated in Figure 2.10, this metric has the advantage that it is a non-destructive 

technique.  
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Figure 2.10: Springback measure in bending process (adapted from Ozgur Tekaslan et al. (2006)). 

 

Alternatively, Gnaeupol-Herold et al. (2005) suggest that the springback in deep drawn cups may be 

measured by cutting the formed part into a series of rings as illustrated in Figure 2.11. The springback 

may then be measured by splitting each ring and measuring the angle between the endpoints of each 

ring. 

 

Figure 2.11: Technique for measuring springback in deep-drawn cups (adapted from Gnaeupol-

Herold et al. (2005)). 

Whilst there is no agreed metric for measuring springback in the metal spinning process, Essa and 

Hartley (2010) defined springback as the maximum deviation from the mandrel diameter. They state 

that the feed rate affects the springback but that the roller nose radius does not. Bai et al. (2008) found 

that once the process is completed and the release of residual stresses has occurred due to unloading; 

the stress distribution becomes more homogeneous.  Bai et al. (2008) consider springback to be a 

process of self-balance and suggest that springback takes place throughout the forming process as the 

roller moves over the workpiece. Once the rollers and the mandrel were removed from the workpiece, 

the authors observed positive springback of 1.8
0
 increase in the half cone angle and a more uniform 

stress distribution. Zhang et al. (2012) acknowledged that springback occurs both during the forming 

Position after springback 

Position before springback 
θ-δθ 
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process and then additionally after unloading. They defined springback in terms of an ‘unfitability’ 

(sic) degree which is the distance between the inside of the spun part and the mandrel surface; their 

results demonstrated that springback did not occur uniformly around the part. Furthermore, Zhang et 

al. (2012) reported a maximum value of unfitability degree in the order of 13mm before unloading 

and 8mm after unloading. This would indicate that the in-process springback has more of an influence 

on the final geometry than the springback which can be attributed to unloading the part from the 

mandrel. In terms of mitigating the amount of springback generated, Kang et al. (1999) stated that 

springback would be greater for a die-less spinning process (possibly due to the absence of a mandrel 

to restrict the motion of the metal) whilst Ma et al. (2010) found that the hardening exponent was the 

most influential factor on the amount of springback generated.  

 

2.9 Conclusions 

The reviewed literature has revealed that at the present time, there is agreement amongst researchers 

that (in isolation) increasing the feed ratio, blank thickness or blank diameter results in an increase in 

all three force components. Also that increasing the spindle speed has little effect on the axial and 

radial forces.  The effect of roller design is not yet fully understood, although it is thought that a larger 

roller diameter or increase in spindle speed (Hayama et al. (1965), El-Khabeery et al. (1991)) results 

in a better quality finish on the product. In addition, researchers have concluded that it is not possible 

to determine the contact area between the roller and the workpiece which has hindered attempts to 

represent the force components analytically. It is also reported that increasing the feed rate will 

increase the thickness strain for cylindrical geometries and that using thinner blanks with higher feed 

rates is more likely to result in the wrinkling of the workpiece. Xia et al. (2005) suggest that 

investigation as to the influence of the mandrel round off radius may be necessary.  
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2.10 Scope of this research 

Springback has been identified by Music et al. (2010) as one of the areas still in need of investigation 

by researchers in the field of metal spinning. The effects of process parameters such as feed rate, 

blank thickness, mandrel rotational speed and half cone angle on the amount of springback observed 

are also not known. To date, there is no literature which directly compares the shear and conventional 

metal spinning processes.  

The aims of this PhD are to examine the behaviour of springback using a three-dimensional model 

and then to investigate whether an equivalent two-dimensional modelling tool can be produced to 

demonstrate representative springback behaviour. Whilst it is anticipated that the two-dimensional 

model may not accurately reproduce other features of the spinning process, such as a prediction of 

wrinkling failure, the criterion for success is the investigation of process parameters and their 

influence on springback using the three-dimensional model and subsequently the development of a 

two-dimensional model which will accurately reproduce springback results generated in the three-

dimensional model. 
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§3. Methodology     

3.1 Introduction 

As was discussed in the literature review, the difficulty in predicting the contact surface area between 

the blank and the roller precludes directly obtaining an analytical solution to the stress distribution 

induced by means of the metal spinning process. Therefore, it is necessary to examine alternative 

computational means of solving the problem.  

One method of solving problems which are presented in the form of partial differential equations is 

the boundary element method. This method requires that (only) the boundary of the solution domain 

be discretised, this process involves the use of ‘boundary functions’, the governing equation is then 

solved on the boundary. Once the boundary solution is known, the solution over the remainder of the 

solution domain is interpolated via the ‘fundamental solutions’. In two dimensional problems, the 

boundary is represented by straight lines or curves; for three dimensional problems, planar triangles or 

higher order polygons approximate the boundary and in axisymmetric problems, the boundary is 

approximated using truncated cones (Kirkup, 2007). 

The finite element method is the numerical method of choice for researchers in the field of metal 

spinning, which was evident in the literature review. The finite element method is a powerful 

numerical technique employed in situations where the problem to be solved is far too complex to be 

solved analytically. The finite element method discretises the solution domain into a number of 

smaller domains called elements, which collectively form a mesh. Throughout each element, 

individual parameters such as displacement are then interpolated using an isoparametric formulation 

which is discussed in section 3.7. The local element stiffness matrices are calculated and then 

assembled into global set of equations which are then solved. The finite element method is used in a 

wide variety of situations including fluid mechanics, solid mechanics and problems involving heat 

transfer.  
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This chapter is split into two sections; the first section contains generic background information, 

including a derivation of the finite element equations for dynamic analyses, a review of the methods 

used to solve these equations and a brief review of plasticity and the material model used in this 

thesis. The second section in this chapter contains information relevant to this thesis problem. 

 

3.2 Derivation of the Finite Element Equations 

The finite element method procedure consists of solving the governing equations for the 

displacements then recovering the strains and hence the stresses. Consider the control volume shown 

in Figure 3.1, making use of Newton’s second law and conducting a force balance across the volume 

(in the x-direction) produces the relation (3.1). 

σ yy

σ yx

σ yz

σ xy

σ xx

σ xz

σ zy

σ zx

σ zz

σ zy

σ zx

σ zz

σ yy

σ yx

σ yz

σ xy

σ xx

σ xz

x

y

z

dx

dy

dz

 

Figure 3.1: Control Volume Showing Internal Stresses 
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(3.1) 
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where  is the density of the material under consideration and u represents the acceleration of the 

body as the second derivative of displacement with respect to time. The term 
xf  represents the 

external body forces per unit volume, 
bf , experienced by the volume in addition to the resistive force 

per unit volume, 
df , experienced by the volume (damping term) and may therefore be written as: 

dbx fff                                                                        (3.2) 

Where viscous damping is implemented, i.e.: 

ufd
                                                                               (3.3) 

This relationship has been experimentally verified (Pippard, 1978) and is the damping term used by 

ABAQUS. In this thesis, the constant of proportionality (which is dependent upon the mass of the 

material) is denoted by the symbol , so that it is possible to write: 

ufd
                                                                             (3.4) 

Algebraic simplification of expression (3.1), followed by division through the entire expression and 

then implementing the definition of the partial derivative leads to: 

                                              xx

zxxyxx uf
xxx


















                                                 (3.5) 

Similar equations may be developed for the y and z directions. The principle of virtual work is often 

used to derive finite element equations and this is the method implemented here. Therefore the next 

step taken in deriving the finite element equations is to multiply the governing equation (3.5) by an 

arbitrary virtual displacement and to integrate over the volume of the element to obtain the weak form 

of the finite element equations. The weak form satisfies the equations in an average sense, hence (3.5) 

is rewritten as:  

                  














V
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V
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x

V V
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x
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x dVudVfdV
x

dV
x

dV
x










                  (3.6) 
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The Green-Gauss theorem states that: 

   dSndV
SV

                                                       (3.7) 

In order to apply the Green-Gauss theorem, it is useful to introduce the surface boundary condition: 

                                                    zxzyxyxxxx nnnt                                                           (3.8) 

where 
xt may be thought of as the traction (in the x-direction) experienced at a point on the surface of 

the volume; 
xn , yn and zn  are components of the normal vector to the surface in the x, y and z 

directions, respectively. Applying the Green-Gauss theorem (3.7) to equation (3.6) and introducing 

the surface boundary condition (3.8) results in: 
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                 (3.9) 

Similar expressions may also be obtained for the y and z directions: 

condition (3.8) results in: 
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            (3.10) 
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              (3.11) 

Summing equations (3.9), (3.10) and (3.11) allows the weak form of the governing equations to be 

written in matrix form as:  

                                  
V

TT

V

T

V

T

S

dVdVudVfdSt                                   (3.12) 

where: 
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                                                             (3.13)
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                                                          (3.14) 

 

Equation (3.12) is to be solved over the whole solution domain in order to recover the displacements, 

from which the strains, and subsequently the associated stresses may be recovered. The finite element 

method procedure discretises the solution domain into sub-domains or ‘elements’ which make use of 

isoparametric formulation, i.e.  that displacements across an element are interpolated using the same 

shape functions which define the geometry of the element. The number of shape functions for an 

element is equal to the number of nodes, n, in that element; each shape function obeys: 






0

1
iN                                                 i=1,...,n                                   (3.15) 

 

at node i 

at all other nodes 
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The shape functions used vary depending on the number of nodes in an element and the degree of 

interpolation required. The shape functions used in this thesis and more detail regarding isoparametric 

formulation will be given in the second part of the chapter. The global displacement vector u  (which 

has dimensions 3nx1 in 3D analyses) has the assumed form: 

aNu                                                                             (3.16) 

where a
 
holds the nodal displacements. It is now possible to use this isoparametric relationship to 

rewrite the governing equations given in (3.12). Returning to equations (3.12), recall that   is an 

arbitrary vector of virtual displacements, it follows from (3.16) that  may be written as: 

                                        CN                                                                           (3.17) 

 

where  C  is an arbitrary matrix. Using relation (3.17), it is then possible to write 

 

CB                                                                             (3.18) 

 

where 

 NB 
 
                                                                           (3.19)  

 

Furthermore, the strain relation is introduced as: 

 

  aBu                                                                  (3.20) 

 

and the relationship between stress and strain is determined to be: 

 

   00  DaBDD                                                    (3.21) 
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Where   contains the strains, 0  contains the (known) initial strains and D  is the constitutive matrix 

containing the relationship between the stress and strain vectors. 

The precise nature of D  depends upon the material model used and may vary throughout the analysis 

in nonlinear elastoplasticity modelling and the construction of appropriate constitutive models to 

represent experimentally observed behaviour is “extremely complex” as pointed out by Zienkiewicz 

and Taylor (2005). In nonlinear elastoplasticity modelling, the nature of D accounts for the fact that 

strains can be considered as the sum of elastic strains and plastic strains (equation (3.64), repeated 

here for convenience).  

pe
                                                                     (3.64) 

where the superscripts e and p respectively denote the elastic and plastic components of the total 

strain. In nonlinear elastoplasticity modelling, the stresses and strains are assumed to have a rate 

relationship which may be written as 

  D                                                                        (3.22) 

Where the rate form of equation (5.52) is adopted, namely 

pe
                                                                      (3.23) 

 

In this relationship, the plastic strain is characterised by a flow rule of the form 

h
p

                                                                           (3.24) 

where h represents the direction of plastic flow and is given by 






g
h                                                                        (3.25) 
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where g is known as the plastic potential (Lubliner, 2008), in associated flow rules, the quantity g is 

taken to be the same as the yield surface f as the plastic flow is associated with the yield surface; in 

non-associated flow models, g is not the same as f. The quantity  is a plastic consistency parameter 

which controls the magnitude of the plastic strains (Coombs, 2011). It is readily seen that the Karush-

Kuhn-Tucker conditions of optimisation theory are satisfied, since  

0f                                                                      (3.26) 

0                                                                       (3.27) 

0f                                                                        (3.28) 

In nonlinear elastoplasticity, equation (3.23) is substituted into (3.22) to give 

 pe
D                                                                  (3.29) 

whereupon the plastic flow rule is then incorporated and hence 

 hD
e

                                                                 (3.30) 

The precise nature of   depends on the inclusion of internal material parameters in the material 

model, these internal material parameters provide detail of the material deformation history. Where 

these material parameters – represented by  have been included, the condition for hardening 

elastoplasticity is (Coombs (2011)) 








TT
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f 

























                                                    (3.31) 

and the internal variable rate is related to the plastic consistency parameter via the relation 

 H                                                                 (3.32) 

where H defines the instantaneous evolution of the material parameters (Coombs (2011)). It is then 

possible to substitute (3.30) and (3.32) into (3.31) in order to obtain a relation for   which is then 
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substituted back into (3.30) to give the instantaneous change in rate of stress with strain relationship 

as  
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                                       (3.33) 

For a detailed description of these substitutions, the reader is referred to Coombs (2011). 

Returning to the derivation of the finite element equations, substitution of relations (3.17) and (3.21) 

  

 

      
V V V

TTTT

b

TT

S

TT
dVDaBDCBdVaNCNdVaNfCNdStCN 0       (3.34) 

 

where the force term has been split into the two components previously mentioned in (3.2). Since the 

matrix C  is arbitrary, it may legitimately be chosen to be the identity matrix. This then allows (3.34) 

to be rewritten in the recognisable form found in many textbooks: 

 

           HaKaRaM                                                                                 (3.35) 

where 

dVNNM
V

T

                                                                                (3.36) 

           dVNNR
V

T

                                                                            (3.37) 

            dVBDBK
V

T

                                                                            (3.38) 
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dVfNdStNdVDBH
V

b

T

S

T

V

T

  0                                       (3.39) 

Equation (3.13) represents the equations solved in dynamic analyses, the matrix M  is referred to as 

the mass matrix, the matrix R  as the damping matrix and the matrix K  is referred to as the stiffness 

matrix. In static analyses; the first two terms in equation (3.35) are omitted. Having established the 

governing equations for the analyses, this section of the thesis continues by looking at the solution 

methods used in solving these equations. ABAQUS uses two methods to solve the finite element 

equations, the implicit solution method and the explicit solution method. 

 

3.3 Explicit Solution Method 

The ABAQUS/Explicit package uses the central difference method to approximate differential terms. 

The central difference operators are (Bathe, 1982): 

t

aa
a tttt

t



 

2
                                                                   (3.40) 

Similarly; 

t

aa
a tttt

t



 

2


                                                                   (3.41) 

 
 

tttttt aaa
t

a  


 2
1

2
                                                      (3.42) 

By eliminating 
tta 
from (3.40) and (3.42), then halving the time step, relation (3.43) is obtained. 

 
 

ttttt a
t

ataa 
2

2


                                                            (3.43) 

Relation (3.43) is used in order to initialise the solution procedure.  

The governing equation (3.35) is rewritten as: 



§3 Methodology 

40 
 

  residual
FFHaKaRHaM 

int                                        (3.44) 

Therefore, the acceleration can be found by solving: 

residual
FMa

`1
                                                                (3.45) 

The solution procedure assumes that the initial displacements and velocities are known at time t=0; 

therefore the initial acceleration, 
0a  is calculated from equation (3.45) using equations (3.20) and 

(3.21): 

  00

1

0 aKaRHMa 
                                                       (3.46) 

Once the initial acceleration has been evaluated, the values of 0a , 0a  and 0a  are substituted into 

(3.43) to find ta  . Equation (3.40) is used (replacing t with 
2

t
  ) to find

2

ta 


 , following which,  

2

ta   is found using equation (3.41) and is then substituted back into equation (3.40) to find
ta
.  Then 

equation (3.41) with the initial velocity, 0a  is used with a half time step alongside the assumption that 

the acceleration is constant across the whole time step (i.e. that 0
2

aa t   ) to calculate ta 
 . Equation 

(3.46) is then used to calculate ta 
 and the procedure is repeated until the total simulation time has 

been reached.  

The key advantage of the central difference method is that the solution can essentially be obtained at 

element level, thereby requiring comparatively little storage; consequently very large systems may be 

solved effectively (Bathe, 1982).  The solution process implies that another advantage of using the 

central difference method for explicit integration is that the cost of the analysis increases linearly with 

problem size (ABAQUS, 2010). However, the disadvantage of this method is that it is only 

conditionally stable and in order to obtain a valid solution the time step must satisfy: 



n

cr

T
tt                                                                   (3.47) 
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where  Tn is the smallest period of the assembly with n degrees of freedom (Bathe, 1982), i.e. the 

largest time taken for a stress wave to propagate across an element (Bathe, online lectures), which is 

naturally dependent upon the length of the longest element in the mesh and the material properties 

used in the simulation. This implies that for an optimal time step to be chosen, the mesh should be 

uniform (Bathe, online lectures), however the disadvantage of this is that the finer the mesh, the 

greater the number of equations there are to be solved at each time increment. Whilst it is possible to 

calculate an estimate of the lower bound of Tn (Bathe, 1982), these details are beyond the scope of this 

thesis since these calculations are performed by the ABAQUS software and the interested reader is 

referred to (Bathe, 1982) for further details. However, it should be noted that the value of the critical 

time increment may change throughout the solution.  

 

3.4 Implicit Solution Method 

ABAQUS/Standard uses the Newmark implicit solution method to solve the finite element equations. 

The standard Newmark method presented here follows that presented by Bathe (1982). Equation 

(3.43) is modified as follows:  

    







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2

12
                                         (3.48) 

where β is a constant. Furthermore, introducing another constant, γ, it is possible to write:  

    tttttt aataa    1                                                      (3.49) 

The parameters β and γ are chosen to obtain stability and accuracy of the integration (Bathe, 1982). 

Equation (3.48) is rearranged in order to obtain tta 
 in terms of tta  : 
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                                                   (3.50) 

Expression (3.50) is then substituted into (3.49) to give: 
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The only unknown terms in relations (3.50) and (3.51) is tta  ; relations (3.50) and (3.51) are 

substituted into equation (3.35) at time tt   and then the system is solved for tta  using an 

iterative procedure such as the Newton-Raphson process. Once tta  has been obtained, relations 

(3.48) and (3.49) are used to evaluate tta 
 and tta 

 . The key advantage of the implicit solution 

method over the explicit solution method is that the implicit solution method is unconditionally stable 

for β=0.25 and γ=0.5, therefore there is no restriction on the time step used. However, because the 

stiffness matrix K needs to be formed at every increment, a large amount of storage capacity is 

required. 

 

3.5 Mass Scaling 

Using the explicit solution method can involve very long simulation times at great cost for the reasons 

already stated in section 3.2. ABAQUS offers mass scaling as a method of reducing the time taken to 

run a simulation. Since the metal spinning process involves a high degree of nonlinear deformation, a 

typical run-time for the forming of a cone using a single pass is over 37 hours, mass scaling has been 

employed in this thesis. The critical time step was stated as (3.47), however, in a static analysis, the 

critical time step for the central difference method may be determined to be 

E
Lt

e

crit


                                                                         (3.52) 

Where L
e
 is the element length, ρ is the material density and E is the Young’s modulus. From 

equation (3.52), it is seen that artificially increasing the material density, equivalent to ‘scaling the 

mass’ by a factor of j
2
. This results in an increase in the stable time increment by a factor of j, thereby 

reducing the overall solution time by factor j. Whilst mass scaling can be very beneficial in terms of 
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reducing the computational costs of a simulation, the effects of mass scaling on the inertial effects in 

the simulation can lead to erroneous results if excessive mass scaling is used (ABAQUS, 2010).  In 

order to control the effects of mass scaling, it is recommended (ABAQUS, 2010) that the ratio of 

kinetic energy to internal energy does not exceed ten per cent. 

3.6 Hourglassing and Locking 

In the previous section, it was demonstrated that the internal energy output is used to monitor the 

effects of mass scaling; in addition to this, the internal energy is also used to monitor another potential 

concern, namely hourglassing. Hourglassing and another phenomenon called locking may cause a 

simulation to abort or produce erroneous results. There are three types of locking, namely volumetric 

locking, which occurs in fully integrated elements, where the quadrature is sufficient to provide the 

exact integrals in the expression for the stiffness matrix terms, if the element is undistorted. Another 

form of locking is shear locking, which occurs in fully integrated elements subjected to bending; and 

membrane locking which occurs in shell elements. Locking results in elements becoming overly stiff 

owing to a densely populated stiffness matrix which is a direct result of fully integrated elements. In 

order to greatly reduce the risk of locking, it is recommended (Zienkiewicz and Taylor, 1989) to 

employ elements which make use of reduced integration. The disadvantage of using reduced 

integration in elements is that such elements are susceptible to ‘hourglassing’. Hourglassing is a 

phenomenon which occurs due to spurious deformation modes as shown in Figure 3.2. The mode of 

deformation is such that a zero strain energy mode is perceived at an integration point at the centre of 

the  

                                                          

Figure 3.2: Deformation of a single element 
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element since no change in dimension is detected at right angles to the point as indicated by the 

arrowed lines in Figure 3.2. Since no strain energy is attributed to the element, the element becomes 

too ‘soft’; in order to correct for this phenomenon, artificial strain energy is added to the system. To 

ensure that the amount of strain energy added to the system is sufficient to control potential 

hourglassing whilst not adversely influencing the results of the simulation, Simula (ABAQUS, 2010), 

the developers of the commercial software ABAQUS, recommend that in order to avoid hourglassing, 

the ratio of the artificial strain energy to internal energy should not exceed ten per cent.  

 

3.7 Material Modelling 

It has already been demonstrated in section 3.4 that the material properties influence the calculation of 

an appropriate time step for use in the explicit dynamic solution. This section includes a brief 

introduction to plasticity and the material model used in this thesis. 

 

3.7.1 Principal Stress Space 

 

The components of the Cauchy stress may be written in matrix form as: 

 


















zzzyzx

yzyyyx

xzxyxx







                                                         (3.53) 

where it may be demonstrated that this stress matrix is symmetric (Lubliner, 2008). For each point in 

a body, the coordinate axes x, y, z may be oriented such that the shear stresses vanish and only the 

stresses
xx , yy  and zz remain; these stresses are known as the principal stresses. In terms of the 

principal stress tensor: 
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 

















'

3

'

2

'

1

'

00

00

00







                                                   (3.54) 

 

The relationship between the general stress state (3.54) and the principal stress state may be written 

as: 

     TTT
'                                                     (3.55) 

where the matrix  T  is a rotational transformation matrix  

 

3.7.2 von Mises Yield Criterion 

It is possible for a specimen of material to exhibit plastic deformation even though each of the 

principal stresses is has a value lower than the yield stress. Therefore, it is necessary to postulate a 

yielding criterion in order to accommodate this phenomenon. Two of the most popular yielding 

criteria are the von Mises yield criterion and the Tresca yield criterion. In order to discuss the von 

Mises yield criterion, it is first necessary to consider the deviatoric stress tensor. The Cauchy stress 

tensor (3.53) may be written in terms of two components known as the volumetric stress tensor 

(sometimes referred to as the hydrostatic stress tensor or the pressure tensor) which is the stress 

associated with a change in volume of the domain under consideration; and the deviatoric stress tensor 

which is associated with shearing deformation. 

The deviatoric stress tensor, [s] is: 

     I
I

s
3

1                                                                (3.56) 

where  trI 1    and  I
I

3

1  is known as the mean stress. 
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The principal axes of  s are the same as for   and the principal invariants of the deviatoric stress 

are defined as:  

01  zzyyxx sssJ                                                   (3.57)
 
 

        2

13

2

32

2

21

2

2
2

1

2

1
  strJ                         (3.58) 

where 3,2,1ii             
are the principal stresses and to specify a unique orientation: 

'

3

'

2

'

1  
                                                         

(3.59) 

The third principal invariant of the hydrostatic stress tensor is: 

 3
3

3

1
strJ 

                                                       (3.60)
 

In terms of the principal stresses, the von Mises yield criterion is defined as: 

       2
1

2

13

2

32

2

212
2

1
3   JY                   (3.61) 

In terms of the Cauchy stress tensor, the von Mises yield criterion is defined as: 

         2
1

222222

2 6
2

1
3 zxyzxyxxzzzzyyyyxxY J      (3.62) 

where in both cases, Y is the yield stress of the material in tensile stress. This yield criterion presents 

a yield surface consisting of a cylinder of radius 
3

2
Y centred on an axis corresponding to

zzyyxx   , which is known as the hydrostatic axis and is shown in Figure 3.3 as the “space 

diagonal”.  
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Figure 3.3: von Mises Yield Surface (Owen and Hinton (1980)) 

 

Values of Cauchy stress which when substituted into (3.62) yield a value less than the von Mises yield 

criterion correspond to points inside the yield surface, whereas values of deviatoric stress equal to the 

von Mises yield criterion (equation 3.62) lie on the yield surface. Also shown in Figure 3.3 is the 

Tresca yield criterion which states that the material yields when the maximum shear stress on all 

planes reaches the yield stress in shear of the material (Lubliner 2008) and is written as: 

      
2

,,max 133221
Y

                                      (3.63) 

It is seen in Figure 3.3, that the Tresca yield criterion is a more conservative model for plastic 

behaviour. The work presented in this thesis uses the von Mises yield criterion throughout. 

 

3.7.3 Plastic strains 

One of the fundamental concepts of Plasticity theory states that the strain experienced by a material 

may be decomposed into elastic and plastic strain components, i.e. that it is possible to write: 

     pe                                                                            (3.64) 
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where the superscripts e and p respectively denote the elastic and plastic components of the total 

strain. In the elastic range, the relationship between the stress and strain may be assumed to be linear; 

and the ratio of stress to strain may be taken to equal to the Young’s Modulus of the material. Once 

the material has yielded, the stress state is on the yield surface and the aforementioned assumptions 

are no longer valid, and strain hardening (where the material appears stronger as a result of plastic 

deformation) occurs. In order to explore this notion further, it is necessary to first consider the 

uniaxial case as illustrated in Figure 3.4.   

 

Figure 3.4: Sample 1-D stress-strain graph 

 

Beyond the yield stress, the deformation which occurs is referred to as elasto-plastic (Lubliner, 2008); 

furthermore, if the material is unloaded beyond the yield stress, the stress-strain relationship follows a 

path parallel to the initial loading. This is shown by the dashed line in Figure 3.6, the strain which is 

not recovered is the plastic component of the total strain and the strain which is recovered is referred 

to as the elastic strain. If the material were to be reloaded, the loading path would follow the dashed 

line, up to the ‘new yield stress’,
new

Y . In the uniaxial case, the elasto-plastic stress-strain relationship 

may be modelled using the Ludwick’s Law (Dixit and Dixit, 2008): 

h

pY K                                                                      (3.65) 

σY
new 
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where h is known as the strain hardening exponent which can be used to model uniaxial tensile test 

data, as will be shown in the latter part of this chapter; K is referred to as a strength coefficient. In 

terms of multiaxial models, there are two ways in which strain hardening is accommodated using the 

three dimensional yield surface, namely kinematic hardening and isotropic hardening. Isotropic 

hardening accommodates the increase in yield stress, 
'

Y by means of expanding the yield surface (i.e. 

the hydrostatic axis remains in its original position whilst its radius increases). This phenomenon is 

illustrated in Figure 3.5. 

 

Figure 3.5: Isotropic hardening (Owen and Hinton (1980)) 

 

Alternatively, the Kinematic hardening model assumes that the dimensions of the yield surface remain 

the same and that 
'

Y  is accommodated by translation of the hydrostatic axis, as shown in Figure 3.6.  

 

Figure 3.6: Kinematic hardening (Owen and Hinton (1980)) 

 

Consideration of the two models yields to the conclusion that during unloading, the elastic range is 

greater for the isotropic hardening model than for the kinematic hardening model. 
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3.7.4 Material model used in this thesis 

The material model for mild steel adopted in this thesis adopts the format of (3.65) and is fitted to 

experimental tensile-test data obtained byWang (2012), the relationship (in MPa) transpires to be: 

 

            σ = 197 + 434ε
0.572

                                                    (3.65a) 

 

Furthermore, the material is assumed to be isotropic and the von Mises yield criterion is applied. The 

Young’s Modulus of the material (represented by the gradient of the line in Figure 3.4 between the 

origin and σY) is taken to be 197 GPa and the density of the material is taken to be 7850 kgm
-3

; the 

Poisson’s ratio is taken to be 0.3. Both the experimental data and the curve fit are shown in Figure 3.7. 

 

Figure 3.7: Comparison of experimental data and Material Model 
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§PART 2: SPECIFICS. 

3.8 Isoparametric Formulation 

As was mentioned in section 3.1, the governing equations are solved over the whole domain using 

elements which use isoparametric formulation. The elements used employ an isoparametric 

formulation using shape functions to interpolate the displacements; the same shape functions are used 

to interpolate any scalar parameter such as temperature. This section establishes the B and N

matrices required for substitution into expressions (3.36)-(3.39) in order to calculate the mass, 

stiffness and damping matrices for a domain discretised using eight noded hexahedral elements. The 

concept assumes that each element is mapped to an idealised element as shown in Figure 3.8 

1
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Figure 3.8: Mapping of an 8 noded hexahedral element. 

 

The idealised element operates a coordinate system   ,,  with its origin at the centre of the 

element with  1,1,,  . The element in Figure 3.8 has eight nodes and therefore eight shape 

(interpolation) functions are required for interpolation in this element. Each shape function is equal to 

unity at its corresponding node and is zero at all other nodes as stated in (3.15). The shape functions 

used in the three dimensional analyses in this thesis are: 
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                                          (3.66) – (3.73) 

 

The coordinates of any point within an element are given by: 



















8

1

8

1

8

1

i
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i
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i

ii

zNz

yNy

xNx

                                                                 (3.74-3.76) 

Where the 
iN are the shape functions for the eight noded hexahedral element given by equations 

(3.66)-(3.73) and xi, yi and zi are the coordinates of each node. Recall, the aim is to evaluate the 

matrices:  

dVNNM
V

T

                                                            (3.36) 

           dVNNR
V

T

                                                          (3.37) 

            dVBDBK
V

T

                                                         (3.38) 

 NB 
 
                                                                           (3.19)  
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for the idealised element. In order to calculate  B
 
 it is necessary to establish a shape function matrix 

of dimension d x dn where d is the number of spatial dimensions and n is the number of nodes in the 

element, therefore, in the case of an eight noded hexahedral element, N  has dimensions  3 x 24 and is 

written: 



















87654321

87654321

87654321

0000000000000000

0000000000000000

0000000000000000

NNNNNNNN

NNNNNNNN

NNNNNNNN

N

(3.77) 

The B matrix for an eight noded hexahedral element is obtained by substituting (3.77) into (3.19): 
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(3.78) 

where ,x denotes differentiation with respect to x. The shape functions are defined in terms of the local 

coordinate system, it is necessary to employ the function of a function rule of differentiation to enable 

the construction of the Jacobian transformation matrix. Hence 
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Expressions (3.79) – (3.81) may be written in matrix form as: 
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                                                                (3.82) 

where the Jacobian matrix is given by: 
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Substitution of the interpolation relations (3.74 – 3.76) into the Jacobian matrix (3.83) leads to (3.84): 
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By rewriting (3.82) in the form: 
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the mass, stiffness and damping matrices are written as: 

             

   
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                                 (3.88) 

The integrals (3.86)-(3.88) are evaluated using Gauss integration which is a method which is applied 

to an integral over the interval  1,1 . In one dimension, the n-point Gauss integration approximates 

the integral 




1

1

)( dxxgI as: 

)()()()( 2211

1

1

nn xgwxgwxgwdxxgI  


                                    (3.89) 

where the 
iw  are referred to as ‘weights’ and are known for all values from 1 to n, the 

ix  are referred 

to as Gauss points. For further details on the derivation of and tabulated values of the Gauss point 

locations and their corresponding weights, the reader is referred to (Logan 2011). By default, 

ABAQUS uses five Gauss points when executing numerical integration via Gaussian quadrature. 

 

3.9 Continuum Shell Element SC8R 

The previous section was concerned with the shape functions of an eight noded element as this is the 

element type used in the three dimensional simulations in this thesis. This section outlines why the 

continuum element SC8R which is an eight noded reduced integration (i.e. that the order of 

integration is of one order lower order than the shape functions) element and uses the shape functions 

described in section was selected for use in this study. Firstly, since the results of the three 
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dimensional dynamic analysis generated in ABAQUS/Explicit are to be read into ABAQUS/Standard 

(which uses the implicit solution method) for the springback analysis, it is necessary to select an 

element which is available in both libraries. Reduced integration elements were chosen for the three 

dimensional models in as they are less susceptible to exhibiting locking, hence lower order integration 

is used to calculate the element stiffness matrix, however, the terms in the mass matrix are still 

calculated by implementing full integration. Shell elements are designed for use in situations where 

one dimension (e.g. thickness) is significantly smaller than the other dimensions; rather than use a 

reference surface to discretize a body as is the case with conventional shell elements; continuum shell 

elements discretize an entire three dimensional body directly. Continuum shell elements are suitable 

for use in large strain nonlinear analyses since they allow for large rotations and deformation. 

Furthermore, these elements allow for two sided contact and changes in the thickness, irrespective of 

how thick the element is in comparison to other element dimensions. Therefore, the three dimensional 

eight noded hexahedral continuum shell element with reduced integration (SC8R) was selected for use 

in the three dimensional dynamic and springback analyses. This element was used extensively by 

Wang (2012) to model wrinkling in the conventional metal spinning of cylindrical parts, its selection 

was verified by experimentation. 

The equivalent two dimensional axisymmetric element is the CAX4D element. For this element, the 

corresponding shape functions are given by relations (3.90)-(3.93). 
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with corresponding B matrix given by (3.94). 
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Now that the isoparametric details of the elements have been discussed, this chapter continues by 

discussing the choice of mesh used in this study. 

 

3.10 Mesh Selection 

An important consideration is the choice of mesh employed can also have an effect on the validity and 

solution time of a model.  Sebastiani et al. (2006) investigated the suitability of various meshes for 

modelling the metal spinning process as shown in Figure 3.9. 

 

Figure 3.9: Different meshing strategies (Sebastiani et al. 2006) 

Mesh A uses an irregular element distribution to mesh the entire blank, whereas meshes B, C and D 

neglect the central section of the blank which is clamped by the tailstock. Mesh B uses a regular 
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element distribution, Mesh C uses a row of triangular elements around the rim of the tailstock and 

Mesh D uses a concentric mesh.  

The authors report that mesh D was the only employable mesh as mesh A resulted in “local stress 

peaks due to an inhomogeneous mass distribution in the rotating blank”. Whilst the authors do not go 

into further detail on this point, it is likely that anomalies were observed since from Figure 3.9 it can 

be seen that the aspect ratio of some individual elements appear to violate the requirement that the 

aspect ratio of individual elements should not exceed 2 (ABAQUS, 2010). Violation of this condition 

leads to hourglassing. Mesh B was unusable because the aspect ratio of the outer elements exceeded 

the 2:1 ratio; this is not acceptable since they state that the aspect ratio should be as close to 1:1 as 

possible in order to produce more accurate results. Although mesh C gave more desirable results than 

either meshes A or B, an inhomogeneous mass distribution was still present in the forming zone. 

Again, Sebastiani et al. (2006) does not explore the source of this fault. The notion of optimising 

mesh design in spinning simulations by creating sub-domains was investigated by Quigley and 

Monaghan (2002a). They found that the quickest solution times were obtained for meshes which 

minimised both the boundary length and the number of shared boundaries, mesh C would also be 

considered less favourable in the light of this finding. Of Mesh D, Sebastiani et al. (2006) report that 

this mesh effectively divides the solution domain into three sub-domains and was found to be free of 

the aforementioned defects. Consequently, Sebastiani et al. (2006) selected this mesh for their study. 

Since the present study required the entire blank to be meshed (rather than neglecting the area under 

the tailstock) it was not possible to implement the mesh design of Sebastiani et al. (2006). The mesh 

selection process for the current study is presented here; for each mesh design information has been 

gathered about the kinetic to internal and strain energy to internal energy ratios in addition to the run 

time of the job. According to this information, each mesh has been allocated ‘points’, where 1 is the 

best mesh and 7 is the worst. The points have been added over the areas of interest and the mesh with 

the overall lowest number of points, i.e. the optimal mesh is selected. The selection procedure is 

detailed in Tables 3.1 and 3.2 and the graphs of the kinetic energy to internal energy and artificial 
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strain energy to internal energy are given in Figures 3.10 and 3.11. The results show that mesh 6 is the 

optimal mesh. 

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

0.50 1.00 1.50 2.00 2.50 3.00

St
ra

in
 e

n
e

rg
y 

/i
n

te
rn

a
l e

n
e

rg
y

time (s)

1

2

3

4

5

6

7

 

Figure 3.10: Ratio of strain energy to internal energy 
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Figure 3.11: Ratio of kinetic energy to Internal energy  
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Name KE/IE SE/IE Run Time Points Nodes D.O.F Mesh 

Mesh1 5 2 

47 hrs 

(5) 
12 8076 24228 

 

Mesh2 7 7 

23.5 hrs 

(1) 
15 6194 18582 

 

Mesh3 2 5 

68.5 

(6) 
13 13112 39336 

 

Mesh4 3 1 

44hrs 55 

(4) 
8 8288 24864 

 

Table 3.1: Mesh selection process 
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Name KE/EI SE/IE Run Time Points Nodes D.O.F Mesh 

Mesh5 4      3 

37hrs 40 

(3) 
10 8392 25176 

 

Mesh6 1 4 
26hrs 11 

(2) 
7 6884 20652 

 

Mesh7 6 6 

c 93 hrs 

(7) 
19 10842 32526 

 

Table 3.2: Mesh selection process 

In this section the governing equations for the finite element method were derived and the 

isoparametric formulation of the elements used in this thesis was also presented. The solution methods 

used to solve these equations alongside potential sources of error such as hourglassing and locking 

were presented. Furthermore; the choice of mesh used in the current study was also justified. The 

thesis progresses by developing the three-dimensional model. 
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§4 Three Dimensional Modelling 

This chapter details the development of a single pass, three-dimensional numerical model for the 

conventional metal spinning of cones using the mild steel material definition using Ludwick’s law which 

was presented in the previous chapter. The Ludwick law was chosen since it includes work hardening, 

provides an explicit relation for stress as a function of strain and is readily adapted for mild steel or 

aluminium. The chapter also includes details as to the selection of the roller clearance in the absence of 

experimental data. Model validation is proposed by comparison with Wang (2012) and by comparison 

with experimental data published by Kobayashi (1963). Following this, a formability parameter 

connecting the rotational speed, half cone angle, radius and round off radius of the mandrel with the blank 

radius is proposed for the single pass conventional metal spinning of conical parts from mild steel. The 

second half of the chapter presents a theoretical expression for the hoop force in the conventional metal 

spinning process. The variation of this theoretical hoop force with respect to the formability parameter 

proposed in the first half of the chapter is investigated. In addition, the variation of process parameters 

such as the mandrel half cone angle and mandrel rotational speed is investigated.  

 

4.1 Development of the Three Dimensional Model 

As was mentioned in the methodology, the commercial software package, ABAQUS, was used to 

simulate this process. It is at this stage that the first of the modelling assumptions is implemented; namely 

that any elastic behaviour occurring in the roller, mandrel and tailstock is taken to be negligible. 

Therefore, the aforementioned parts are all modelled as analytical rigid bodies, each with its own 

reference point which is used to control the part. The blank is modelled as a solid disc which is meshed 

with SC8R continuum shell elements (discussed in the previous chapter). The model simulates the 

forming of a frustum of mild steel using a single pass conventional metal spinning process for cone angles 

of 60
o
, 50

o
, 40

o
 and 30

o
. The initial configuration of the model is shown in Figure 4.1. 
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Figure 4.1: Initial setup of the process 

 
The roller forms the part by tracing a single pass parallel to the straight surface of the mandrel. The 

clearance is defined as the distance between the surface of the mandrel and the dotted line which lies 

tangential to the roller and parallel to the mandrel surface as illustrated in Figure 4.1. Whilst conventional 

metal spinning aims to maintain the blank thickness, in practice the clearances used to form parts in this 

way are less than the blank thickness (Xia et al. 2005).  Although, it is accepted that for the geometry 

shown in Figure 4.1, there are two forms of metal spinning, namely shear and conventional metal 

spinning, no clear method of partitioning the two forms has been presented (Music et al (2010), Wang et 

al. (2010). The only quantitative guideline as to whether a process is categorized as either shear or 

conventional spinning is given by the ‘sine law’ (Wong et al. (2003)) (as reviewed in Chapter 2). Table 

4.1 provides the calculations of the final wall thickness using this rule. 
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Cone angle Ideal thickness (mm) to 3 s.f. 

30 1.00 

40 1.29 

50 1.53 

60 1.73 

Table 4.1: Thicknesses calculated using the sine law 

 

The thicknesses in Table 4.1 represent thicknesses predicted by the sine law for the shear spinning 

process and therefore may be considered as a lower limit on the clearance for the simulations which 

implies that the range of conventional metal spinning lies in the range 1.73mm< c < 2mm for a cone of 

half angle 60
0
. In order to establish a limit between the two forms of spinning, the forming process was 

carried out on a 60
0
 cone using clearances of 1.7mm, 1.8mm, 1.9mm and 2.0mm. This range was chosen 

in order to capture the transition between shear spinning (as shown in Table 4.1) and conventional 

spinning for a 60
0
 cone.  Figure 4.2 shows the force history obtained from the roller for these clearances; 

it can be seen that using a clearance of 2mm (equal to the blank thickness) results in troughs in the history 

output and an overall reduction in the force suggesting that the blank forms in a way which involves a 

periodic reduction in contact between the roller and the blank. Conversely, in the range of shear metal 

spinning (clearance 1.7mm), these troughs disappear and the forming force required is much higher. This 

is consistent with the additional deformation associated with a reduction in thickness. The presence of 

troughs in the output from the simulation run with a clearance of 1.9mm suggests that 1.9mm is also an 

inappropriate value for the clearance, whereas the results for a clearance of 1.8mm indicate that this is an 

appropriate clearance since it is both outside the range of the shear forming limits as predicted by the 

‘sine law’ and has a force history free from the troughs observed in the simulations for 1.9mm and 2.0mm 

clearances. Consequently, a clearance of 1.8mm was selected for the current study since it lies outside the 

range of shear spinning for all the cone angles tested in this study.  
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Figure 4.2: Circumferential Force history for different clearances 

 

The model consists of four analysis steps carried out using ABAQUS/Explicit; the details of each step are 

given below, followed by a table of boundary conditions and a table of interactions. 

 

Initial Step 

This step is an inherent part of the software and as such is present in all models, there is no time 

associated with this step and so only actions to fix locations and interaction properties may be 

implemented in this step; this step is not classified as an analysis step. In the current model, the initial step 

is used to constrain all six degrees of freedom of the tailstock and the mandrel. In addition, the frictional 

conditions between the blank and mandrel, blank and tailstock and blank and roller are applied in this 

step. The coefficient of friction was set to 0.2 between the blank and the mandrel, to 0.02 between the 
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blank and the roller and 0.5 between the tailstock and the blank. These values were chosen as they are the 

values used by Wang et al. (2011) in his model of the conventional metal spinning process, his values 

were successfully verified against experiments (Wang et al., 2011). 

 

Step 1: Apply Tailstock Force, duration 0.001(s) 

As the name of this step suggests, this step is used to apply a force at the tailstock reference point towards 

the mandrel in order to clamp the blank between the mandrel and the tailstock. This force is propagated 

throughout the whole simulation.  

 

Step 2: Rotate Parts, duration 0.2(s) 

During this step, the boundary conditions applied to the tailstock and mandrel in the initial step are 

modified so that the two parts rotate with the same angular velocity. The parts are gradually brought from 

rest to a specified angular velocity. Whilst there is no rotation condition applied directly to the blank, the 

blank also rotates in this step owing to the frictional conditions applied between it and the mandrel and 

the tailstock in addition to the ‘clamping’ force applied to the tailstock. 

 

Step 3: Form, duration 3(s) 

During this step, the blank is forced onto the mandrel by the roller which traces a single linear pass of the 

mandrel. Whilst in practice the conventional metal spinning process is most often a multi-pass process, it 

is possible to carry out the conventional metal spinning process using a single pass (Music et al., 2010). 

This study simulates a single pass process using a linear path in order to enable additional verification of 

the model against experimental data for the forming of cones, published by Kobayashi (1963). 
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 Step 4: Return, duration 0.2(s) 

This is a relatively short step in which the mandrel is brought back to rest in a step which mirrors the step 

‘rotate parts’. Table 4.2 details the boundary conditions used in the model. 

Boundary 

Condition 

Initial Apply 

force 

Rotate parts Form Return 

Fix 

mandrel 

u1=u2=u3=0 propagated inactive inactive inactive 

Fix 

tailstock 

u1=u2=u3=0 u1=u2=0 inactive inactive inactive 

Rotate 

mandrel 

  V1=v2=v3=0 

vR1=vR3=0 

vR2 =mandrel velocity 

(rad/s) 

propagated v1=v2=v3=0 

vR1=vR2=vR3=0 

Rotate 

tailstock 

  V1=v2=v3=0 

vR1=vR3=0 

vR2 =mandrel velocity 

(rad/s) 

propagated v1=v2=v3=0 

vR1=vR2=vR3=0 

Roll v1=v2=v3=0 

vR1=vR2=vR3=0 

propagated propagated v1=v2=0 

vR1=vR2=0 

v3=0.015ms
-1

 

propagated 

Table 4.2: Boundary conditions used in the model 

 

The boundary conditions on the roller are applied to a local cylindrical coordinate system which is active 

on the roller. In this system, the local ‘3’ direction lies parallel to the roller path as illustrated in Figure 

4.1 , direction ‘2’ is in the circumferential direction and ‘1’ is the radial direction; ‘u’ represents 

displacement degrees of freedom whilst ‘v’ represents velocity degrees of freedom. 

 

VALIDATION OF THE MODEL. 

Since it was not possible to perform experimental studies throughout this research project, a different 

approach was needed in order to validate the model. It has already been mentioned that Wang (2012) 

successfully verified their finite element model against experimental evidence and that this was the 

reasoning behind the choice of coefficient of friction between the mandrel and the blank, the blank and 

the tailstock and the roller and the blank. Furthermore, the roller geometry was also chosen to match that 

of Wang (2012) for the same reason.  
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The next stage of the verification process was to verify the mesh. In their study, for the area of the mesh 

that would undergo contact with the roller, Wang (2012) used a (regular) mesh composed of SC8R 

elements with one element through the thickness of the blank, to simulate the conventional metal spinning 

process with multiple passes. This mesh neglected the area of the blank under the tailstock; their approach 

was validated by comparison with experimental results. Since the current study uses the same elements to 

also model the conventional metal spinning process and uses a mesh of similar aspect ratio to the optimal 

density discussed by Wang (2012), it is logical to conclude that the mesh in the current study would also 

be validated. Additionally, the mesh used in this study was directly verified against the analytical solution 

for the stresses generated in a thin spinning disc. Figures 4.3 and 4.4 show the results for the radial and 

hoop stresses generated from spinning the blank at 600rpm; comparisons with the theoretical expressions 

for stresses generated in a spinning disc are shown in Figure 4.5. Since the stresses generated in the model 

match the theoretical stresses and Table 3.1(b) shows that the ratios of kinetic energy to internal energy 

and artificial strain energy are well within the recommended limits. Therefore the mesh may be 

considered to be verified.    

 

       

Figure 4.3: Radial stress in a spinning disc 
 

Figure 4.4: Hoop stress in a spinning disc 
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Figure 4.5: Comparison of theoretical and outputted stresses 

 

The final stage of verification is to verify the model as a whole; this is done by comparison with the 

experimental work carried out by Kobayashi (1963), who proposed a formability limit in terms of the 

ratio of the blank and mandrel radii and cosec α, where α is the half cone angle of the mandrel as 

illustrated in Figure 4.1. This limit is reproduced in Figure 4.6. Kobayashi (1963) conducted experiments 

using 1.25mm thick aluminium, a mandrel of half cone angle 35
0
, rotational speed of 40 rpm and a roller 

velocity of 0.111ins/rev. The experiments were carried out using blanks of diameter, 2.75 inches, 3 

inches, 3.5 inches and 4.5 inches and it was also implied that the parts are formed using a single pass.  
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Figure 4.6: Kobayashi’s formability limit (1963) 

 

In Figure 4.6, the quantity δ may be viewed as a ratio of the final part thickness to the thickness predicted 

by the sine law and is defined in terms of the initial blank thickness, t0; the final part thickness, tf and the 

half cone angle of the mandrel, α, as: 




sin0t

t f
                                                                         (4.1) 

For a blank radius of 140mm and a mandrel radius of 110mm, Kobayashi’s (1963) limit predicts that a 

part could be formed on a mandrel with a half cone angle of 35
0
, although a part formed on a 30 degree 

cone would wrinkle. In order to verify the current model, two simulations were performed using the three-

dimensional model developed for aluminium of thickness 1.25mm. As Kobayashi (1963) conducted his 

experiments using aluminium; the stated value of Young’s modulus was taken to be 70GPa and the 

Poisson’s ratio as 0.35. Furthermore, the Ludwick Law, described in equation (3.65), was used to define 

the material model for Aluminium, with hardening exponent of 0.17, strength coefficient of 780MPa and 

a yield stress of 10MPa; the density of the Aluminium was taken to be 2700kgm
-3

 (Gope, 2012). 
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The 35 degree part formed without wrinkles, whereas the 30 degree part wrinkled early in the process as 

shown in Figures 4.7 and 4.8. Therefore the three dimensional model has been validated against 

experimental data presented by Kobayashi (1963). 

   

                          

Figure 4.7: 30 degree cone wrinkling 
 

Figure 4.8: 35 degree cone forming without 

wrinkles 

 
 

However, Kobayashi’s (1963) relation implies that if a blank of radius rb formed on a mandrel of radius rc 

wrinkles, a blank of radius prb, (where p is any (positive) real number) formed on a mandrel of radius prc 

will also wrinkle. In order to test this, p was selected to be 0.8. Recall that for the configurations shown in 

Figures 4.7 and 4.8, the blank radius used was 140mm and the mandrel radius used was 110mm. Using a 

blank radius of 112mm and a mandrel radius of 88mm (the values obtained by choosing p=0.8), thereby 

preserving Kobayashi’s (1963) ratio, and re-running the forming process for a 35 degree cone, the part 

was found to wrinkle, contrary to Kobayashi’s (1963) prediction. This suggests that a subtle adjustment to 

Kobayashi’s (1963) ratio is required. The following section proposes the introduction of a formability 

parameter to account for this discrepancy in Kobayashi’s (1963) formability limit. 
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4.2 Proposal of Formability parameter, D. 

The previous section demonstrated that preserving Kobayashi’s (1963) ratio is not sufficient to guarantee 

that a part will form without wrinkling, although the ratios of the mandrel and blank radii were preserved 

the respective volumes are not. Therefore, the deformable volume may be a key parameter in determining 

a formability limit. Given an initial configuration of blank radius rb and mandrel radius rc, the initial 

flange  has a length of rb-rc (hereafter referred to as the ‘deformable radius’). Preserving the ratio of rc /rb 

and considering a second configuration using a blank radius of prb and a mandrel radius of prc, it is 

readily seen that the deformable radius becomes  

prb-prc=p(rb-rc)                                                                           (4.2) 

As the deformable radius, D, changes, the volume being deformed during the process also changes, which 

implies that different stresses would be generated in each part. This highlights the fact that the choice of 

geometry is non-trivial. Two cases with identical deformable radii are illustrated in Figures 4.9 and 4.10. 

          

D rc

         

nrcD

 

Figure 4.9: Case 1             Figure 4.10: Case 2 

 

 

It is instructive to rewrite the blank radius in terms of the deformable radius and the mandrel radius; 

consequently, for case 1 
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                                                                               Drr cb                                                                  (4.3) 

Assuming that the blank has initial thickness, t, then the volume of material to be deformed is written as 

 

                                                                      22

1 cc rDrtV                                                          (4.4) 

 

For case 2; let us assume that the mandrel radius is written as nrc, where n is a real number greater than 1, 

in which case, the volume of material to be deformed may be written as: 

 

                                                               222

2 cc rnDnrtV                                                           (4.5) 

 

Calculating the ratio of the volumes involved in case 1 and case 2 yields the following result 
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2                                                                   (4.6) 

 

proving that the deformable volume in case 2 is larger than case 1.  

 

4.2.1 Implications for the circumferential stress 

This section aims to establish a theoretical reasoning as to why the forming limit determined by 

Kobayashi (1963) cannot simply be applied in terms of a ratio of the blank radius and the mandrel radius. 

Since buckling is believed to be initiated by changes in the circumferential stress (Sebastiani et al. 2007), 

this section proceeds by focusing on the circumferential stress in the two cases. It is necessary to calculate 

the circumferences in the two cases 
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                                                                        DrC c  21
                                                               (4.7) 

                                                                        DnrC c  22
                                                            (4.8) 

Hence, the area of material on the circumference in each case is given by 

 

                                                                    
 DrtA c  21                                                                  (4.9)

 

 

                                                                    
 DnrtA c  22                                                              (4.10) 

 

To date, proposed theoretical expressions for the circumferential force do not take both the mandrel radius 

and the blank radius into account, however Hayama et al. (1965) noted that increasing the blank radius 

(up to a maximum of 100mm) increases the circumferential force. Combining expressions (4.9) and 

(4.10) with the observations of Hayama et al. (1965), leads to the conclusion that when the deformable 

radius D is obtained with a larger mandrel radius, the stress at the circumference is lower than when the 

deformable radius is obtained with a smaller mandrel radius. This would indicate that increasing the 

mandrel radius decreases the likelihood of a part to wrinkle. 

In order to examine this phenomenon in terms of Kobayashi’s (1963) forming parameter, δ, it is necessary 

to write the ratio of mandrel radius to blank radius in terms of the deformable radius and the mandrel 

radius, thereby establishing for which case δ has the greater value. Defining a0 as the mandrel radius and 

b0 as the blank radius, for case 1 (Figure 4.9), this ratio may be written as 
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and for case 2 (Figure 4.10), the ratio is 
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In order to place (4.11) and (4.12) into context of Kobayashi’s (1963) forming parameter, δ, it is 

necessary to determine which term (either 4.11 or 4.12) has the greater value. 

Comparing the first term on the right hand side of (4.12) with the term on the right hand side of (4.11) it 

is noted that since n>1,  

                                                                     
Dr

r

Dnr

r

c

c

c

c





                                                             (4.13) 

 

Attention is now concentrated on the second term on the right hand side of (4.12). In order to make this 

term easier to interpret, some algebraic manipulation of (4.11) is required. This begins by calculating the 

difference between the terms in relation (4.13). 
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Therefore, through rearrangement of equation (4.14), it is possible to write: 
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Hence, it is possible to rewrite (4.11) as 
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Determining for which case Kobayashi’s (1963) parameter has the greater value is reduced to a 

comparison of the second terms on the right hand side of equations (4.12) and (4.16). Writing 
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it is clear that  
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Therefore, since the ratio of mandrel ratio to blank ratio is larger for case 2 than case 1, it may be seen 

from inspection of Figure 4.6 that this also implies that Kobayashi’s (1963) ratio is larger for case 2 

(larger blank radius) than for case1 which may be quantified by stating that for a given deformable radius, 

D, Kobayashi’s (1963) ratio increases as the mandrel radius is increased and consequently, the chance of 

the part wrinkling is reduced. Recently, Zhang et al. (2012) presented a paper in which a quarter sized 

(scaled) model was used to simulate the metal spinning process. They compared the results of this model 

for ‘spinning force’ and thickness for the forming process. The results showed discrepancies between the 

two models with the peak value of the forming force for the ‘real’ model reported to be around 3.0x10
6
N, 

twenty times bigger than the similarity model (reporting a peak value of around 1.5x10
5
N), rather than the 

value anticipated by applying a scaling factor of 4 to the force output (Zhang et al. 2012). The results for 

the thickness distribution were also inconsistent with the assumption that a model can be scaled. This 

evidence appears to support the notion of D as a formability parameter. It is possible to transform 

Kobayashi’s data into the graph shown in Figure 4.11 by assuming that the blank radius may be written as 

the sum of the mandrel radius and the deformable radius. As Kobayashi (1963) conducted his experiments 

using aluminium; the information illustrated in Figure 4.11 can only be used as a guide for the spinning 

process using aluminium. In the next section, an empirical equation for formability (using aluminium) is 

proposed. 
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Figure 4.11: Transformation of Kobayashi’s data for conventional spinning 

 

4.2.2 An Equation for Formability 

Using the graph generated by transcribing Kobayashi’s original data as described in the previous section, 

it is possible to postulate an equation of formability by using the Buckingham Pi method (Langhaar 

(1951)). It was assumed that the formability of a part depends upon material properties such as the yield 

stress, density, Young’s Modulus and Poisson’s ratio of the material; size of the flange which is 

characterised by the deformable radius, the half cone angle and rotational speed of the mandrel.  The 

formability of the part is also known to depend upon the thickness of the blank, (Kleiner (2002)) and this 

is also taken into account. Hence it is possible to say that an expression to describe the formability limit 

of a part may be written as 

  ,,,,,,, Ym tDEgr                                                                  (4.19) 

where ω is the rotational velocity of the mandrel (rpm) which needs to be converted to revolutions per 

second in order to maintain dimensional consistency of the final expression. The Buckingham Pi method 

states that the number of dimensionless independent parameters (known as Pi groups) which can be 

formed from the parameters stated in (4.19) is equal to the number of variables minus the number of SI 

units. In this case, the number of variables is nine and the number of base units is three, consequently, six 

groups may be formed from these variables. The Buckingham Pi method (Langhaar (1951)) states that if 



§4.       Three Dimensional Modelling 

 

78 
 

one of the existing variables is already dimensionless, then it must form one of the Pi groups on its own; 

furthermore, no one group may be a multiple of another. Consequently, it is possible to define the six Pi 

groups as 

 1                                                                                         (4.20) 
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Therefore, (4.19) may be written in terms of the Pi groups as 
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Since Kobayashi (1963) only performed experiments on aluminium, it is not possible to ascertain the 

influence of the material parameters on the data presented in Figure 4.11. Therefore, these material 

parameters are treated as constants in deriving the equation of formability. Consequently the pi groups 

involving the half cone angle and the deformable radius become the focus for determining the (empirical) 

equation of formability. Inspection of the transformed data shown in Figure 4.11 implies that as D 

increases, the minimum mandrel radius needed to form the part also increases, although by how much is 
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dependent upon the half cone angle of the part being formed. In forming the empirical equation, 

similarities between the curves shown in Figure 4.11 and the curve defined by 

                              90ln  
D

rm                                                              (4.27) 

indicated that (4.27) would form a part of the empirical relation. However, the gradient of (4.27) proved 

to be too steep when compared with the data extracted from Kobayashi’s (1963) data. It was found that 

dividing function (4.27) by 
2
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 provided a better trend when compared to Kobayashi’s (1963) data. 

Thereafter, a process of trial and error incorporating the remaining pi groups into relation (4.27) 

established relation (4.28). 
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where A = 5×10
-7

 

Figure 4.12 shows (4.28) plotted for a variety of deformable radii alongside Kobayashi’s (1963) 

transformed data. The close agreement between (4.28) and the transformed data shows that the 

deformable radius is a key parameter in determining the formability of a blank. In order to ascertain the 

statistical significance of this expression, a Chi squared test was carried out; the results of which are 

displayed in Table 4.3.   
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Figure 4.12: Kobayashi’s (1963) formability limit transformed  

 

The values shown in Table 4.3, combined with inspection of Figure 4.12 demonstrate a good fit of 

equation (4.28) to the data extracted from Kobayashi’s (1963) relation for the range investigated, with the 

better fit being obtained for smaller deformable radii. 

Flange length (mm) Root Mean Square Error 

300 0.0504 

200 0.0336 

100 0.0121 

80 0.0134 

50 0.00841 

30 0.00504 

20 0.00336 

Table 4.3: Root Mean Square Error calculations (to 3 s.f.) for the data shown in Figure 4.12 

 

This section has demonstrated that the new forming parameter, D, the deformable radius has a significant 

influence on the formability of a part. It is also apparent from the literature review and the current work 

that it is an oversimplification to try and determine a formability limit in terms of only two parameters. 
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Therefore, the next section proposes a formability surface and empirical relation for this formability 

surface. 

 

4.3 A Formability Surface for Conventional Spinning of Cones 

In order to establish patterns in relation to the formability of a part, more than 60 simulations were run 

using the three-dimensional model developed in this chapter. The parameters chosen to establish the 

formability surface were the round-off radius of the mandrel, the rotational velocity of the mandrel and 

the half cone angle of the mandrel. These parameters were chosen since they could be tested without 

altering the solution time of the model. The simulations used blanks made of mild steel with the material 

description given in the previous chapter. The thickness of each blank was 2mm and the radius of each 

blank was 140mm. Once the simulations had run and been classified as either wrinkled or not wrinkled, 

the results were plotted in three dimensional space using gnuplot and an empirical relation linking the test 

variables was formed. Figures 4.13 and 4.14 show the results of this study and the proposed empirical 

relation which transpired to be 
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                                                           (4.29) 

where ω is the mandrel rotational speed (rpm), ρM is the mandrel round off radius (mm) and α is the half 

cone angle of the mandrel (degrees). 
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Figure 4.13: Formability surface 

 

Figure 4.14: Formability surface 

 

The empirical relation (4.29), which is only intended as a guide, was obtained by examining the results 

for the formability of the smallest round off radius tested, then similarly, examining the results for the 

formability for the smallest half cone angle tested. These examinations demonstrated that in both cases 

the trend of an inverse square relationship appeared to be evident. Thereafter, a surface was constructed to 

Mandrel rotational speed ω (rpm) 

Round off radius ρ (mm) 

Half cone angle α (degrees) 

Round off radius α (mm) 

Mandrel rotational speed ω (rpm) 

Half cone angle ρ (degrees) 
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capture this behaviour and was modified to incorporate the data points obtained through the analyses 

carried out in ABAQUS.      

The surface described by (4.29) and plotted in Figures 4.13 and 4.14 demonstrates a non-linear 

relationship linking the formability of the part and the variables investigated. In agreement with 

Kobayashi’s (1963) experimental work; the surface shows that the likelihood of a part to form without 

wrinkling decreases with the half cone angle of the part being formed. In addition, the formability of the 

part with respect to mandrel rotational speed has also been demonstrated (Hayama et al. 1966). The 

surface also shows that the previously un-investigated parameter (round off radius) does influence the 

formability of the part and that a part formed using a larger round off radius is more likely to form 

without wrinkling than an equivalent part formed with a smaller round off radius. The effect of altering 

the round off radius on the deformable radius is illustrated in Figure 4.15. By considering the blank radius 

as the sum of the mandrel radius, deformable radius and round off radius and noting that the simulations 

carried out for this chapter were perfomed using a constant value for the mandrel and blank radii; it is 

seen that the formability of the part is sensitive to the deformable radius. Indeed, decreasing the 

deformable radius increases the chance that the part will form without wrinkling.  

ρ1

ρ2

 

Figure 4.15: Effect of altering mandrel round off radius on deformable radius, D 

 

This was tested further by performing four simulations on half cone angles of 40
o
 using blanks of radius 

140mm. Two simulations were performed with mandrel rotational velocities of 600rpm and mandrel 

D1 

D2 
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round off radius of 15mm. The deformable radius was altered by performing one of these cases with a 

mandrel radius of 110mm and the other with a mandrel radius of 115mm. The remaining two simulations 

were performed with a mandrel rotational velocity of 200rpm and round off radius of 10mm and the 

deformable radius was altered by performing one simulation with a mandrel radius of 110mm and the 

other with a mandrel radius of 123mm. In both cases the simulations with the mandrel radius of 110mm 

exhibited wrinkling whereas the parts formed with a larger mandrel radius (and therefore a smaller value 

of D) formed without wrinkling. This demonstrates that D has been confirmed as a formability parameter. 

The transformed data from Kobayashi (1963) illustrated in Figure 4.12 shows that as the deformable 

radius is increased for a fixed half cone angle; a larger mandrel radius is required in order to prevent the 

part from wrinkling. Examination of the results shown in Figures 4.13 and 4.14 shows that as the mandrel 

round off radius is reduced (resulting in an increase in the deformable radius); the part is more likely to 

wrinkle. This evidence supports the proposition of D as a formability parameter. 

This concludes the first part of the chapter; a three-dimensional finite element model has been built to 

simulate the single pass conventional metal spinning of conical parts. Furthermore, a formability 

parameter has been proposed and a formability surface has been constructed in terms of the half cone 

angle, rotational speed and round off radius of the mandrel. The second half of the chapter continues by 

deriving a theoretical expression for the hoop force whose variation with respect to the formability 

parameter proposed in the first half of the chapter is investigated. The theoretical expression is derived by 

consideration of the deformation energy; therefore, it is first necessary to establish an expression for the 

hoop strain. 
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Reference Max theoretical 

force (N) to 3 s.f. 

Max force 

simulation 
A30M25R600 44.0 931 

A40M25R600 19.6 496 

A50M25R600 7.88 1050 

A60M25R600 2.65 903 

A30M25R400 99.1 940 

A40M25R400 44.1 933 

A50M25R400 17.7 974 

A60M25R400 

A40 

5.97 1190 

A30M25R200 396. ------------ 

A40M25R200 176. 536 

A50M25R200 70.8 1300 

A60M25R200 23.8 960 

A30M20R600 44.0 1160 

A40M20R600 

 

 

 

19.6 501 

A50M20R600 7.88 743 

A60M20R600 2.65 1040 

A30M20R400 99.1 450 

A40M20R400 44.1 1180 

A50M20R400 17.7 1409 

A60M20R400 5.97 1260 

A30M20R200 396. ------------ 

A40M20R200 176. 1400 

A50M20R200 70.8 1090 

A60M20R200 23.8 943 

 

 

Reference 
Max theoretical 

force (N) to 3 s.f. 

Max 

Simulation 

force 

force 

simulation 

A30M15R600 44.0 ------------- 

A40M15R600 19.6 ------------- 

A50M15R600 7.88 1120 

A60M15R600 2.65 1330 

A30M15R400 99.1 1110 

A40M15R400 44.1 1120 

A50M15R400 17.7 1300 

A60M15R400 

A40 

5.97 1390 

A30M15R200 396. ------------ 

A40M15R200 176. ------------ 

A50M15R200 70.8 ------------- 

A60M15R200 23.8 1080 

A30M10R600 44.0 591 

A40M10R600 

 

 

19.6 1140 

A50M10R600 7.88 587 

A60M10R600 2.65 1190 

A30M10R400 99.1 760 

A40M10R400 44.1 1480 

A50M10R400 17.7 1060 

A60M10R400 5.97 1200 

A30M10R200 396. ------------- 

A40M10R200 176. ------------- 

A50M10R200 70.8 1210 

A60M10R200 23.8 1200 

 

 

Table 4.4: Table of peak forces (to 3 s.f.) obtained from theoretical and numerical methods 
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4.4 Conclusions 

In this chapter, a three-dimensional finite element model was built to simulate single pass 

conventional metal spinning of conical parts. A formability parameter, D, and an empirical relation 

for a formability surface (valid for mild steel with a blank radius of 140mm, and a mandrel radius of 

110mm) were proposed and investigated. Both the formability parameter and the formability surface 

are original contributions to the body of knowledge of metal spinning. The empirical surface revealed 

that a part was found less likely to form without wrinkling taking place as the mandrel speed 

increased; similarly, decreasing the mandrel round off radius and mandrel half cone angle also 

reduced the likelihood of the part forming without wrinkling. Furthermore, the issues experienced by 

Zhang et al. (2012) in scaling parameters were explained in the derivation of the formability 

parameter, D.  

In addition theoretical expression for the hoop force was derived from geometric considerations and 

taking into account the strain hardening properties of the material being formed. The trends observed 

that the hoop force increases as the blank thickness increases and as the half cone angle of the 

mandrel decreases are consistent with existing research. Furthermore, the theoretical expression was 

compared to the output from the finite element model developed in this chapter and was found to need 

scaling by expression (4.72) in order to account for the surface area in contact with the roller as the 

part is formed. The fact that the trend observed in the theoretical expression are similar to the trends 

observed in the numerical output indicates that the nature of the hoop force is largely influenced by 

the geometry of the part.  
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§5 3D Springback 

The previous chapter involved determining a formability surface in terms of the mandrel half cone 

angle, rotational speed and mandrel round off radius. Music et al. (2010) identified springback as a 

largely unstudied area within the context of metal spinning; despite the fact that it is an area of 

importance for industry since the springback experienced by a part may be large enough to render a 

part unsuitable for its intended purpose. Therefore, the simulations from the previous chapter that 

produced parts that were wrinkle free were used to study springback. At the present time, there is no 

agreed metric with which to measure springback within the context of metal spinning. In this chapter, 

the v-bending problem has been modelled in order to establish the suitability of ABAQUS for 

investigating springback. Following this, a study of springback in the three-dimensional parts formed 

using the three-dimensional model developed in the previous chapter is carried out. Of the parts 

formed in the previous chapter, only those that were wrinkle-free were considered for the springback 

study (unlike the results of Zhan et al. (2008) which were presented for wrinkled parts). The influence 

of the mandrel rotational speed (ω), the mandrel round off radius (ρ) and the half cone angle of the 

mandrel (α) in addition to the contact area between the roller and the workpiece on the observed 

springback are discussed in Sections 5.3, 5.4 and 5.5.  

 

5.1 V-bending problem 

 The aim of this test problem is to establish whether or not ABAQUS can be used to calculate 

springback via consideration of the problem of springback in three point V-bending of sheet metal. 

This test was chosen as it has been well studied and consequently, there is data available for 

comparison. The output of the model is verified by comparison with data presented in Lange (1985), 

which is reproduced here where appropriate via the digitalizing software, ‘engauge’ (online, 2010). 

This includes comparisons of results for the monotonic force versus bend angle relationship during 

the bending process, stress and strain distributions of sheet cross-section, bending curvature variations 

after bending and springback. The blank is meshed with the CPE4R element, which is a four node 
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first order reduced integration quadrilateral plane strain element available in both ABAQUS/Standard 

and ABAQUS/Explicit student edition. 

The modelling assumptions made in this solution were   

1. The material is isotropic; 

2. A line segment originally in the x-y plane remains in the x-y plane; 

3. The sheet has a sufficiently large dimension in the z-direction (illustrated in Figure 5.1) so as 

to justify the assumption of a plane strain problem; 

4. Only half of the problem needs to be modelled due to the symmetry; 

5. There is no friction between the punch and the blank top; 

6. There is kinematic friction between the blank bottom and the die surface; 

7. Apart from gravity and resistance due to friction, the blank can move freely 

 

Figure 5.1 shows a representative geometrical model of the problem for use in the analysis. 

                                                       

Figure 5.1: Diagram of the initial 2D configuration of the problem 

 

Assumption 1 is easily incorporated into the model with the material definition of the section, where it 

is also possible to define elastic and plastic behaviour. The process was modelled using two materials, 

the first is ‘real data’ which is data from actual tensile tests on mild steel conducted by Metal Spinners 

Group Ltd. and is the same material definition used for the three-dimensional model. The second 
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material used was ‘aluminium’ whose properties were taken from Matweb (online, accessed 2010) 

and was modelled as elastic-perfectly plastic. The material definition was the same as that which was 

used to test Kobayashi’s (1963) data; the yield stress for aluminium was 10MPa, the Young’s 

modulus was taken to be 70GPa, the Poisson’s ratio was taken to be 0.35 and the density was taken to 

be 2700 kgm
-3

. These two materials were chosen since Lange (1985) presents springback data for 

mild steel and aluminium which were used for comparison with the output of the numerical model. 

The punch and die are modelled as 2D analytical rigid objects and the blank is modelled as a 

deformable 2D part.  

After the forming stage is completed in ABAQUS/Explicit (recommended for simulations involving 

dynamic contact), the resulting stress state of the part is then read into ABAQUS/Standard for the 

springback simulation.  

In the initial step, displacement components are set to be zero at the reference point of the die 

shoulder (shown in Figure 5.1); this condition is propagated throughout the analysis. At the punch 

reference point (also shown in Figure 5.1), all degrees of displacement are also set to zero in the initial 

step, this condition is modified in the forming step to allow the punch to be displaced 14mm vertically 

downwards. In addition, a set is defined at the left hand edge of the blank. This edge is subjected to an 

symmetry boundary condition where all degrees of displacement (with the exception of the vertical 

degree of displacement) are set to zero throughout the analysis. The coefficient of friction was taken 

to be 0.1 in order to compare with data shown in Lange (1985).  

The mesh for the blank was generated using, plane strain element CPE4R, which is the only plane 

strain element available in the student addition of ABAQUS. This element is a four node, first order 

plane strain reduced integration element with hourglass control which is recommended for 

simulations involving large mesh distortions since they eliminate shear locking and hour-glassing can 

be avoided if multiple elements are used through the thickness (Simula, 2010). A further restriction is 

that the student edition is restricted to one thousand nodes. Mesh refinement was enabled so that the 
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mesh was finer nearer the symmetry line of the problem in order to attempt to capture the deformation 

as accurately as was as reasonably practicable. 

The bend angle is defined as the angle of inclination between the blank and the horizontal and was 

calculated using (5.1). 

                                                                                                              (5.1) 

where  is the bend angle in degrees and ,  are the coordinates of two points on the 

top surface of the blank shown in yellow in Figure 5.2. These points were chosen because they remain 

along a straight line. 

 

Figure 5.2: Coordinates used to calculate the bend angle 

 

 The force versus bend angle relationship shown in Figure 5.3 compares well with the trends shown in 

Lange (1985). Unfortunately, it is not possible to compare completely with the results presented in the 

text since neither Lange (1985) or the original papers referenced therein (in German) give sufficient 

material properties for an FEA simulation. 
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Figure 5.3: Reaction Force versus Bend angle relationship 

 

The data from Lange (1985) is stated as AISI 1050 mild steel although no further details are given. 

Therefore, for this study, the material properties used to model the mild steel are the same as those 

used in the previous chapter. For bend angles greater than around 13
o
, the data from Lange (1985) 

gives very similar results to those obtained using the real data in ABAQUS/Explicit. The difference at 

smaller bend angles is likely to be attributed to any differences in the yield stress between the material 

used in Lange’s (1985) experiments and the property definitions used in the numerical model. 

Once the forming stage has been completed in ABAQUS/Explicit, the resulting stress state is then 

read into ABAQUS/Standard for the springback analysis. Figures 5.4, and 5.5 show the initial and 

final positions of the formed part for the materials defined as ‘real data’ and ‘aluminium’, 

respectively. In each case, the green plot represents the final position of the blank after springback. 

Since the observed springback for aluminium was very small, the displacement has been enlarged by 

a factor of 10.  
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Figure 5.4: Springback – ‘real data’ Figure 5.5: Springback, exaggerated for 

‘aluminium’ 

 

Results for springback using different materials are shown in Table 5.1. In this table, frame zero 

corresponds to the state before springback and frame one corresponds to the position of the part after 

springback.  

The springback ratio, K, is defined in Lange (1985) to be the ratio of the bend angle after springback 

to the bend angle before springback (i.e. a springback ratio of 1 corresponds to no springback). 

Frame Material X1 

 

(3 s.f.) 

Y1 

 

(3 s.f.) 

X2 

 

(3 s.f.) 

Y2 

 

(3 s.f.) 

Angle 

(degees) 

(3 s.f.) 

Difference 

(degrees) 

(3 s.f.) 

K,  

(Springback 

ratio) (3s.f.) 

0 Real data 3.30e-3 9.69e-3 8.36e-3 14.4e-3 43.1 

 

  

1 Real data 3.63e-3 9.35e-3 8.83e-3 13.9e-3 41.4 

 

1.68 

 

0.961 

 

0 Aluminium 3.42e-3 9.66e-3 8.72e-3 14.1e-3 39.97 

 

  

1 Aluminium 3.44e-3 9.63e-3 8.76e-3 14.1e-3 39.8 0.141 

 

0.996 

Table 5.1: Results for springback using different materials 
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The springback ratio was calculated to be 0.982 for ‘real data’ and 0.996 for aluminium, which is in 

good agreement with Lange (1985) since the data presented in Lange (1985) shows that for “structural 

steel” the springback ratio was 0.97 and for aluminium, the springback ratio was 0.99. 

Lange (1985) presents stress plots through the thickness of the material, which is shown in Figure 5.6. 

The material properties were not given. 

 

Figure 5.6: Principal stress components presented by Lange (1985). 

Lange (1985) stated that theoretically, the stress component should level out at the yield stress of the 

material. It can be seen that the experimental results correlate well with the theory, although the zero 

stress state does not correspond exactly to the centre of the sheet, but slightly towards the compressive 

surface (the surface that would have been in contact with the punch). 

The through thickness radial (principal) stress distribution (along the line of symmetry of the sheet) 

before and after springback are also in good agreement with Lange (1985); these are shown in Figures 

5.7, 5.8 and 5.9 using the ‘real data’ and ‘aluminium’ material definitions, respectively. In each of the 

plots, a distance of zero corresponds to the top surface of the blank (the side of the blank which was in 

contact with the punch).  
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Figure 5.7: Stress plot for ‘real data’. 

 

 

Figure 5.8: Stress distribution for aluminium 
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Figure 5.9: Through thickness stress distribution for elastic-perfectly plastic model of mild steel 

  

It can be seen that Figures 5.7, 5.8 and 5.9 also follow the trend of the experimentally measured 

stresses of Figure 5.6. Both the Figures demonstrate that the stress before springback reaches a 

maximum at the defined yield stress of the material. For the case of ‘real data’, the stress peak mid- 

way through the sheet are greater than illustrated by Lange (1985); this was attributed to the material 

model used. Therefore, the simulation was repeated using an elastic-perfectly plastic model for the 

mild steel (preserving the values of the yield stress and Poisson’s ratio). The results show a better 

agreement for the peak occurring part way through the material thickness although the stresses at the 

outer surfaces were larger than shown for Lange (1985); this is due to the thickness of the sheet used 

in the numerical model.  

The final comparison to be made is for the strain distributions along the line of symmetry of the blank 

through the sheet thickness. Figure 5.10 shows the radial strain (component 11) and thickness strain 

(component 22) distributions after springback for the real data. 
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Figure 5.10: Strain distribution ‘real data’ after springback 

                      

The fact that the magnitude of the radial strain distribution is approximately three times the magnitude 

of the thickness strain distribution is in agreement with the Poisson’s ratio (which has a value of 0.3 

implying that the ratio of the strain in the radial direction to the strain in the thickness direction should 

be 0.3).  

In conclusion, it is reasonable to state that a successful FEA solution has been found to the problem of 

springback in 3-point V bending of sheet metal. This statement is based on the agreement of the force-

bending angle relationship, the cross-sectional stress distributions before and after springback and 

comparisons between observed springback and results available in the literature (Lange (1985)). It has 

also highlighted the importance of defining the correct material properties if direct comparisons are to 

be made between FEA results and actual experimental data. Therefore, it is appropriate to continue to 

use ABAQUS/Standard to measure the springback in this study.  
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5.2 Defining Springback 

Zhan et al. (2008) attempted to quantify the springback in the forming of a 40
0
 cone. The authors 

stated a single value for the final cone angle of the formed part and did not present any calculations as 

to how to this value was obtained. Neither do they provide any indication as to whether the 

springback is uniformly distributed around the part. As described in the previous section, the 

springback ratio is a measure of springback defined for bending problems where it is not possible to 

exceed the intended angle, hence the value of the springback ratio is always less than or equal to 1. In 

the spinning process, deformation occurs around the round off radius of the mandrel, as illustrated in 

Figure 5.11. Consequently it is possible to get half cone angles which are either greater than or less 

than the intended half cone angle. The springback ratio is traditionally calculated by considering the 

angle change during the unloading process. However, for the metal spinning process, it is also 

important to note that deviation of the cone angle also occurs as a direct result of the forming process 

itself, this is referred to as ‘in-process springback’ and in this research is calculated in the same way 

as the springback due to unloading. In order to calculate the value of the springback, two 

circumferential paths which pass through the points  
basebase zr ,  and  

circcirc zr ,  illustrated in Figure 

5.11, were defined. The half cone angle was calculated for each pair of points and hence this provides 

an average value of the half cone angle of the part. The inner surface of the part was chosen for the 

springback calculation so as not to allow the thickness strain to influence the calculations.  

 

Figure 5.11: Geometry of the part after the forming process 

α

(rbase,zbase)

(rcirc,zcirc)
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The half cone angle (in degrees) of the part at the end of the forming stage is calculated as: 




























basecirc

basecirc
f

rr

zz
arctan

180


                                                         (5.2) 

where 

αf                 is cone angle (in degrees) of the part at the end of the forming stage (including the in-

process springback) 

zcirc, zbase  are the z coordinates of the circumferential and base points illustrated in Figure 5.11 at the 

end of the forming process, respectively 

rcirc, rbase  are the r coordinates of the circumferential and base points illustrated in Figure 5.11 at the 

end of the forming process, respectively 

In a similar fashion, the cone angle of the part after unloading, αsb, is calculated from equation (5.2) 

where the coordinates  
circcirc zr ,  and  

basebase zr ,  are replaced with  
sbcircsbcirc zr __ ,  and 

 
sbbasesbbase zr __ ,  where: 

zcirc_sb, zbase_sb  are the z coordinates of the circumferential and base points illustrated in Figure 5.11 

after springback, respectively 

rcirc_sb, rbase_sb  are the r coordinates of the circumferential and base points illustrated in Figure 5.11 

after springback, respectively 

The springback angle is defined as the deviation in half cone angle of the part after unloading has 

taken place, and is calculated as: 

fsb                                                             (5.3) 

where   is the springback angle. 
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Although it is not explicitly known whether or not springback occurs uniformly around the 

circumference of the part, it is known that the part does not initially form uniformly around the 

circumference of the part. Therefore, it is reasonable to assume that springback is likely to be non-

uniform in the conventional metal spinning process. The springback angle was calculated for every 

pair of nodes (with equal circumferential coordinates) as illustrated in Figure 5.11 and plots 

generated. The final roller contact point is represented by a triangle on each plot. In the following 

sections, the unloading springback ratio (defined as the ratio of the half cone angle of the part after 

unloading to the half cone angle of the part after the forming stage which is analogous to the 

definition of the springback ratio in the v-bending study) will be calculated to quantify the angle 

change during the unloading process. For the in-process springback; the springback ratio is defined as 

the ratio of the half cone angle of the part to the intended half cone angle of the part (the half cone 

angle of the mandrel).  

 

5.3 Springback variation with respect to cone angle and round off radius  

In bending problems, such as the test problem used at the beginning of this chapter; springback is 

attributed to the notion that through the thickness of the blank there is a layer which does not undergo 

plastic deformation therefore remains elastic (Valberg (2010)). This is logical since the material on 

the outer surface of the bend is under tension, whilst the material on the inner surface of the bend is 

subjected to compression. This theory is valid for the assumption of plane strain, which is not a valid 

assumption in metal spinning. In order to see how far this rationale may be extended to the study of 

springback in metal spinning, plots were generated for in process springback, unloading springback 

and the total springback for three investigated mandrel speeds. These plots are shown in Figures 5.12-

5.17, the value of the springback ratio plotted in each case has been obtained by averaging the 

springback calculated at every node around the circumference of the part. 
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Figure 5.12: In process springback for 600rpm 

 

 

Figure 5.13: In process springback for 400rpm 
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Figure 5.14: In process springback for 200rpm 

 

Figures 5.12-5.14 show that as the half cone angle increases, the mandrel round off radius becomes 

less influential in the generation of in process springback; that is to say that as the half cone angle 

increases, less in process springback is observed and the value of the springback ratio converges 

towards a common value (close to unity). This represents the fact that the part is subjected to less 

deformation as the half cone angle increases.   

The clearest trend for the plots 5.12-5.14 is illustrated in Figure 5.14; which shows the in-process 

springback for mandrel rotational speed 200rpm. This plot clearly shows that at 200rpm, the in-

process springback is greater for a greater round off radius, this can be attributed to the fact that a 

larger round off radius induces less plastic strain than a smaller round off radius. This observation 

appears to be somewhat analogous to the experimental springback ratio data available for the v-

bending process (Valberg, (2010); Lange (1985)) that shows that the observed springback increases as 

the ratio of bend radius to thickness increases. In the published literature, there has been a debate as to 

the mechanics of the metal spinning process and whether it most closely resembles a bending process, 

deep drawing or a combination of a number of different processes. The plots shown in Figures 5.12-

5.14 would imply that if the mechanics of the metal spinning process is a combination of other 

forming processes, then as the mandrel rotational velocity is decreased, the bending behaviour 

becomes more evident since the springback plots shown in Figure 5.14 begin to resemble the v-
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bending data presented by Lange (1985). Conversely, as the mandrel rotational speed is increased, the 

springback plots begin to deviate from the pattern shown in Figure 5.14 (analogous to the data 

presented by Lange (1985)). It is also interesting to note that as the mandrel rotational speed is 

increased, the springback ratio decreases with the exception of half cone angle 60
o
. This would 

indicate that for smaller half cone angles, the springback ratio is sensitive to the mandrel rotational 

speed.  

In order to test the extent to which the unloading springback can be compared to the bending process, 

similar plots were generated and are shown in Figures 5.15-5.17.  Again, the clearest trend was 

observed for the simulations carried out at 200rpm. In all the cases listed in Table 5.2, the in process 

springback caused a greater deviation from the desired cone angle than the springback due to 

unloading. Furthermore, since Figures 5.15-5.17 show no clear trend with respect to mandrel round 

off radius, it appears that the mandrel round off radius has much less impact upon the unloading 

springback than on the in-process springback. Upon inspection of the resulting cone angles after 

forming and after unloading, it was noted that for a greater mandrel rotational speed, the springback 

due to unloading actually brought the average cone angle closer to the desired value. Consequently, it 

can be stated that the majority of the total springback generated may be attributed to in-process 

springback.  Table 5.2 shows the half cone angles of the parts after forming and unloading and the 

corresponding springback ratios to 3 significant figures. 
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Simulation Angle after 

forming 

Angle after 

unloading 

unloading 

springback ratio 

In-process 

springback ratio 

Total springback 

ratio 

A30M25R600 32.2 32.2 0.999 1.07 1.07 
A40M25R600 39.9 39.9 1.00 0.999 0.999 
A50M25R600 49.0 49.1 1.00 0.981 0.982 
A60M25R600 58.5 58.5 0.999 0.975 0.975 
A30M25R400 31.4 31.4 1.00 1.04 1.04 
A40M25R400 40.6 40.6 0.999 1.01 1.01 
A50M25R400 51.8 51.7 0.999 1.03 1.03 

A60M25R400 59.0 59.0 1.00 0.984 0.984 
A40M25R200 43.4 43.4 1.00 1.08 1.08 
A50M25R200 51.0 51.0 0.999 1.02 1.02 

A60M25R200 60.1 60.1 0.999 1.00 1.00 
A30M20R600 29.1 29.1 0.999 0.972 0.971 
A40M20R600 39.0 39.0 1.00 0.975 0.976 
A50M20R600 48.9 49.0 1.00 0.979 0.980 
A60M20R600 58.2 58.2 1.00 0.970 0.970 
A30M20R400 29.4 29.4 0.998 0.981 0.980 

A40M20R400 39.9 39.9 1.00 0.997 0.998 
A50M20R400 49.7 49.7 0.999 0.994 0.994 
A60M20R400 58.8 58.8 0.999 0.981 0.980 
A40M20R200 41.8 41.8 0.999 1.04 1.04 
A50M20R200 49.8 49.8 0.999 0.997 0.997 
A60M20R200 59.7 59.7 0.999 0.995 0.995 

A30M15R600 28.9 28.9 1.00 0.963 0.964 
A40M15R600 38.1 38.1 0.999 0.954 0.953 
A50M15R600 48.1 48.1 0.999 0.963 0.963 
A60M15R600 57.9 57.9 0.999 0.965 0.965 
A30M15R400 29.3 29.4 1.00 0.979 0.980 
A40M15R400 39.3 39.2 0.999 0.982 0.982 
A50M15R400 48.6 48.6 0.998 0.973 0.972 
A60M15R400 58.5 58.5 0.999 0.976 0.975 
A60M15R200 59.5 59.5 0.999 0.992 0.992 
A30M10R600 28.6 28.6 1.00 0.955 0.955 
A40M10R600 38.4 38.4 1.00 0.961 0.961 
A50M10R600 47.7 47.8 1.00 0.955 0.956 
A60M10R600 58.1 58.1 1.00 0.968 0.969 
A30M10R400 28.8 28.8 1.00 0.960 0.960 
A40M10R400 38.6 38.6 0.999 0.965 0.965 
A50M10R400 48.5 48.5 0.999 0.971 0.970 
A60M10R400 59.6 59.6 0.999 0.993 0.993 
A40M10R200 41.0 41.0 1.00 1.02 1.02 

A50M10R200 49.8 49.8 1.00 0.996 0.996 
A60M10R200 59.6 59.6 0.999 0.993 0.993 

Table 5.2: Cone angles after forming and unloading and the respective springback ratios to 3 s.f.  
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Figure 5.15: Unloading springback for 600rpm 

 

 

Figure 5.16: Unloading springback for 400rpm 
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Figure 5.17: Unloading springback for 200rpm 

 

Since springback may be seen as the redistribution and release of residual stresses, plots of the 

unloading springback were generated to examine the behaviour of unloading springback around the 

circumference of the part. These plots reveal that as the round off radius is decreased, a clover like 

pattern can be observed to emerge; this is illustrated in Figures 5.18, 5.19, 5.20, and 5.21. This pattern 

appears to be dependent primarily upon the mandrel round off radius. In each of the Figures 5.18 – 

5.28 the solid circle represents a zero change in half cone angle, the innermost circle represents a half 

cone angle change of -0.05
o
 and the outermost circle represents a change of 0.05

o
 in the half cone 

angle of the part. 
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Figure 5.18: Unloading springback for 

A30M25R400 

Figure 5.19: Unloading springback for 

A30M20R400 

 

    

Figure 5.20: Unloading springback for 

A30M15R400 

Figure 5.21: Unloading springback for 

A30M10R400 

 

In order to uncover a reason for the clover-like patterns; plots were generated for the thickness strain 

and displacement around the circumference of the part. Figure 5.22 shows the springback plot 

obtained for simulation A30M10R600; Figure 5.23 shows the corresponding circumferential plots for 

the thickness strain.  
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Figure 5.22: Springback plot for A30M10R600 Figure 5.23: Thickness strain around the 

circumference of A30M10R600 

 

The outer concentric circle represents a thickness strain of 0.3, the solid concentric circle represents a 

thickness strain of 0.25 and the inner concentric circle represents a thickness strain of 0.2. A similar 

plot was generated for the thickness strain for the circumferential path close to the mandrel round off 

radius (which was used to calculate the springback ratio) and for the hoop strain around the 

circumference; neither plot revealed any correlation to the springback plots. Consequently, there 

appears to be no link between the thickness strain and the unloading springback plots generated. A 

further line of investigation was to examine the possibility of a relationship between the final contact 

point between the roller and the resulting springback. The green triangle which appears on the plots in 

this Chapter represents the final contact point of the roller with the part. Examination of all the 

unloading springback plots revealed that in 18 cases, the roller endpoint did occur at a ‘trough’, for 

example in Figure 5.21. In 21 cases, the roller endpoint did not occur at the same point as a ‘trough’. 

Of these 21 cases, 6 plots did not have troughs present, for example Figure 5.19. Therefore, from this 

data, it is not possible to establish a link between the roller endpoint and the springback pattern; in 

fact, the springback pattern appears to be independent of the roller endpoint.  
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5.4 Springback variation with respect to mandrel velocity 

Examining the plots with respect to mandrel rotational velocity to establish any relationship between 

the mandrel rotational velocity and the in process springback pattern, revealed that in general little 

change was observed to occur as illustrated by Figures 5.24-5.26. Figures 5.27-5.28 show that the 

mandrel rotational speed also has minimal impact on the springback pattern where the cardioid pattern 

has fully developed. 

             

Figure 5.24: Unloading springback for 

A60M20R600 

Figure 5.25: Unloading springback for 

A60M20R400 

 

Figure 5.26: Unloading springback for 

A60M20R200 

Figure 5.27: Unloading springback for 

A30M10R600 
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Figure 5.28: Unloading springback for A30M10R400 

 

The lack of variation in the unloading springback pattern with respect to mandrel rotational speed 

implies that the nature of the unloading springback pattern is dependent upon geometrical 

considerations such as the mandrel round off radius and the half cone angle of the part being formed.  

However, whilst the plots 5.24-5.28 show little variation in the fundamental pattern produced on the 

plots for the unloading springback; Figure 5.29 shows that the magnitude of the springback ratio for 

the total deviation from the cone angle generally (as a result of both the in process and unloading 

springback) reduces as the mandrel rotational speed increases. Furthermore, Figure 5.29 demonstrates 

that with the exception of the parts with a 40
o
 half cone angle, of the rotational speeds tested, 200rpm 

appears to be the optimal speed when considering the total springback as the in process springback 

dominates the unloading springback. In order to investigate this further, the data was re-plotted in 

terms of the feed rate.  
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Figure 5.29: Variation of total springback ratio with mandrel rotational speed 

 

The definitions of the simulations used for Figure 5.29 are the same as the definitions as used in Table 

4.4. In each case, the number which follows the letter A is the half cone angle of the mandrel used in 

the simulation, the number which follows the letter M represents the mandrel round-off radius and the 

number which follows the letter R is the rotational speed of the mandrel throughout the simulation. 

 

Figure 5.30 is the data from Figure 5.29 re-plotted in terms of the Feed rate, F, calculated from  




sin60
v

F       (5.4) 

where v is the roller velocity, ω is the mandrel rotational speed and α is the half cone angle of the 

mandrel. This formula is derived by considering the distance moved along the inclined surface of the 

mandrel. The blue line on Figure 5.30 represents no deviation in the half cone angle of the formed 
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part from the intended half cone angle. Figure 5.30 demonstrates that the springback ratio decreases 

with increasing feed rate; that is to say that as the feed rate is increased the final cone angle of the 

formed part becomes smaller. This is likely to be due to the fact that as the feed rate is increased, the 

material around the mandrel round off radius does not undergo as much plastic deformation as the 

material further away from the mandrel. 

 

Figure 5.30: Variation of total springback ratio with respect to Feed rate 
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In Chapter 4, the variable M was defined in order to characterise the contact area between the roller 

and the workpiece; (4.72) is repeated here for convenience:   
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1200000𝛼
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as the rotational speed of the mandrel increases, it is important to attach a physical interpretation to M. 

It can clearly be seen that as ω increases, the value of M also increases. To examine the behaviour of 

the terms involving α, it is useful to compare M with the inequality 

 



 6.05.0

ee
                                             for α>1                (5.5) 

 

Since one application of l’Hôpital’s rule demonstrates that the function 


 5.0

e
 becomes increasingly 

large as α increases, it may be stated that 


 6.0

e
also becomes increasingly large as α increases. Hence, 

since the contact area between the roller and the workpiece increases as the half cone angle of the part 

increases and as the mandrel rotational speed increases; a larger value of M may be physically 

interpreted to mean a greater contact area between the roller and the workpiece.  

The dependence of the springback ratio on M was examined for each springback simulation 

performed; the results are shown in Figure 5.31. 
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Figure 5.31: Variation of springback ratio (total deviation from half cone angle) with respect to M, 

defined in (4.72) 

 

Wick et al. (1984) state that the feed rate is known to have an impact on the contact area between the 

roller and the workpiece. Comparison of Figures 5.30 and 5.31 would appear to support this claim, 

with a larger feed rate resulting in a lower springback ratio. 

Figure 5.31 demonstrates that for values of M greater than 100, the springback ratio is less than unity. 

Furthermore, it may be noted that springback ratios greater than 1 were only observed when M took 

values less than 100. This may be explained by the fact that to obtain a smaller value of M, either the 

half cone of the mandrel or the mandrel rotational speed (or both) needs to be reduced. Maintaining 

the mandrel half cone angle but decreasing the mandrel rotational speed is analogous to decreasing the 

feed rate. Similarly, maintaining the mandrel rotational speed and decreasing the half cone angle of 

the mandrel is also analogous to decreasing the feed rate as defined by equation (5.4). 
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5.6 Conclusions of the chapter 

 Since it is not possible to eliminate springback, it is important to investigate what can be done to 

mitigate springback. In this chapter, it was seen that as the feed rate increased, the springback ratio 

decreased with an optimal feed rate lying around 150-160mm/rev. For all investigated cases where the 

feed rate was calculated to be 400mm/rev or higher, the springback ratio was less than or equal to 

0.98 as demonstrated in Figure 5.30. This implies that for forming processes carried out at higher feed 

rates; a springback ratio less than unity should be compensated for by attempting to form a slightly 

larger cone so that the springback acts in a sense that results in the intended cone angle of the part 

being obtained. For example, at a feed rate of 480mm/rev a mandrel with half cone angle of 60o 

produces a cone with springback ratio of 0.98, corresponding to a final half cone angle of 

approximately 54o. The same springback ratio applied to a mandrel of half cone angle 61.2o would 

produce a cone with half cone angle of 60o.  

Investigating the influence of mandrel rotational speed on the springback ratio revealed that as the 

mandrel rotational speed increased the springback ratio decreased and that with the exception of the 

25mm mandrel round off radius, 200rpm was the optimal mandrel rotational speed of the speeds 

tested, shown in Figure 5.29. Furthermore, Figure 5.29 also demonstrated that in general, the total 

springback ratio was smaller for smaller mandrel round off radii; this was attributed to the fact that 

less plastic deformation occurs around the mandrel round off radius when a larger mandrel round off 

radius is used. Examining Figure 5.29, it is seen that if a part is to be spun at 400rpm or greater, then 

springback can be somewhat mitigated by using a mandrel with a larger round off radius. Similarly, if 

a half cone angle and mandrel round off radius have been specified although a free choice of mandrel 

rotational speed is offered, in order to attain a springback ratio as close to 1 as possible a mandrel 

rotational speed of 200rpm should  be selected (with the exception of a 40o half cone angle).     
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In this chapter, the plots for the unloading springback revealed that a clover pattern emerged as the 

mandrel round-off radius decreased. Although it was shown that the springback does not occur 

uniformly around the circumference of the part, there was no link found between the thickness strain 

and these patterns, however these clover patterns were shown to be dependent upon the mandrel 

round off radius becoming more pronounced as the mandrel round off radius is decreased. This is 

analogous to stating that for more uniform unloading springback, a mandrel round off radius of 20mm 

or 25mm should be used. 
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§6 Conclusions and suggestions for Future Work 

The introduction and literature review detailed the metal spinning process and the research relevant to 

this project which has been carried out to date. In reviewing the literature, a number of gaps in the 

literature were identified, namely that investigations into springback in the conventional metal 

spinning process (Music et al. (2010)) and the influence of the mandrel round off radius on process 

parameters (Xia et al. (2005)) were necessary. This thesis has made a contribution to the body of 

knowledge in addressing these concerns.  

In Chapter Four, a three-dimensional finite element model was developed to model a single pass 

conventional metal spinning process; multiple runs were conducted and a formability surface 

connecting the mandrel rotational speed, half cone angle and round-off radius was presented. Such a 

surface has not previously been presented in the literature for the conventional metal spinning of 

cones using mild steel blanks and a single pass process. The surface illustrated that decreasing the 

mandrel half cone angle needed to be accompanied by an increase in mandrel rotational speed or an 

increase in mandrel round-off radius in order for wrinkle free spinning to take place. Furthermore, a 

formability parameter, D, defined as the radial difference between the blank diameter and the mandrel 

diameter was proposed. This parameter explained the discrepancies experienced by Zhang et al. 

(2012) by applying scaling methods in their research. A further contribution made in Chapter Four 

was the derivation of a theoretical expression for the hoop force for a single pass conventional metal 

spinning process; the comparison between the theoretical force and the output from the finite element 

model highlighted the influence of the contact area between the roller and the blank on the hoop force. 

An empirical parameter which quantified the contact area in terms of the rotational speed, round-off 

radius and half cone angle of the mandrel was found. When M was used to scale the theoretical hoop 

force, the results compared well with the numerical output; this highlights the importance of the 

contact area between the roller and the workpiece in conventional metal spinning. 
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The work in this chapter could be extended by performing a similar parametric study to include the 

formability parameter, D, roller velocity and roller clearance and coupling the results with those 

already obtained. This would enable a more detailed description of the contact area parameter (M). 

In chapter 5, a parametric study on three-dimensional springback was carried out; both the in-process 

and unloading springback was investigated and the in-process springback was found to be the more 

dominant form. The results showed that springback does not occur uniformly around the part and 

furthermore, a clover-like cardioid pattern was observed to appear in the plots of the unloading 

springback as mandrel rotational velocity increases. The deviation from the intended cone angle was 

found to increase as the feed rate increased, in particular, as the feed rate increased the springback 

ratio decreased resulting in a half cone angle of the part which was smaller than the intended half cone 

angle. Examining the plot of total springback against the mandrel rotational velocity, it was evident 

that with the exception of the 40
o
 cone, reducing the mandrel rotational speed reduced the deviation 

from the intended half cone angle of the part. Furthermore, it was observed that the springback ratio in 

the overall deviation from the intended cone angle decreased as the contact area decreased; this 

implies that the springback may be compensated for by altering the half cone angle of the part 

depending upon the area coefficient. It also implies that the release of residual stresses is dependent 

upon the contact area during the forming process. This is in part supported by the work done by Zhan 

et al. (2008) who found that the springback increases as the clearance decreases since the contact area 

between the roller and the workpiece is likely to decrease as the clearance decreases. 

The work in this chapter could be extended by investigating the variation of springback with respect 

to the formability parameter, D in addition to the roller velocity. Another important line of enquiry 

would be to investigate the origins of the clover-like pattern which emerges in the plots of the 

unloading springback. It is the author’s speculation that this pattern represents the most efficient way 

of redistributing the residual stresses and that this may be linked with the contact area between the 

roller and the workpiece. This may potentially be supported by the investigation into the extrusion 

process conducted by Yang (1986) referenced in the introduction since it is noticeable that the clover 
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cross-sectional profile (the cross-sectional profile with the largest contact area between die and 

workpiece) produced the lowest springback. 

It has become apparent that a thorough investigation involving the contact area between the roller and 

the workpiece needs to be undertaken and a contact parameter to be better defined. Indeed, the contact 

area has been shown to be interdependent upon the mandrel rotational velocity and half cone angle. It 

is likely that the contact area is dependent upon more parameters, indeed El-Khabeery (1991) 

speculated about a thermal gradient in the contact zone which could potentially be responsible for 

influencing the elasticity of the material depending upon the roller nose radius and the feed rate or the 

roller. This would indicate that thermal effects should be included in future research. 
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Appendix A: Derivation of the volume of a frustum 

Consider a cone of perpendicular height Hand base radius R. The cone is cut, parallel to the base at 

radial distance r as illustrated. 

 

 

 

 

 

 

 

 

 

it can be seen that h+h2 = H. The volume of a cone is given by HR
2

3


 and hence, the volume of the 

frustum may be seen as the difference in volume of two cones and is written as 
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