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Abstract

Developing a plasma exhaust solution suitable for future high power tokamaks is
one of the major challenges facing the development of magnetic confinement fusion
as a terrestrial energy source. In order to improve our understanding of the relevant
physics, high quality experimental measurements of plasma dynamics in the scrape-
off-layer (SOL) and divertor plasma regions are required. This thesis is concerned
with the development of diagnostic instrumentation for measuring exhaust plasma
flow: an important phenomenon with implications for the control of exhaust particles
and heat as well as unwanted impurities.

Coherence imaging spectroscopy (CIS) is a relatively new diagnostic technique
which can be used to obtain time resolved 2D imaging of flows using the Doppler
shifts of visible ion emission lines. The technique makes use of an imaging polariza-
tion interferometer and is based on the concept of Fourier transform spectroscopy.
The principle advantages of this over other flow measurement techniques are the very
large amount of spatial information collected, and the simple relationship between
the measured quantities and spatially varying flows in the plasma.

This thesis presents the development of, and first results from, a CIS ion flow
diagnostic for the UK’s Mega Amp Spherical Tokamak (MAST). The diagnostic can
image flows of intrinsic C+, C2+ and He+ impurity ions over fields of view between
10◦ - 45◦, at frame rates between 50Hz - 1kHz and with flow resolution typically
around 1km/s (compared with measured flows of typically 5 - 30km/s). Spatial
resolution is better than 4.5 cm over a 1.4 x 1.4m area of the plasma cross-section.

After reviewing the principles and theory of the coherence imaging technique,
the design of a coherence imaging flow diagnostic for MAST is presented in detail.
Results of careful laboratory characterization and calibration of the instrument are
presented, and the instrument performance is compared to the design calculations.

The diagnostic was used successfully for flow measurements on MAST during
an experimental campaign in May - September 2013. On-plasma validation of the
instrument performance is presented, as well as examples of novel flow observations
made with the diagnostic. These include field-aligned flow structures associated
with high field side gas fuelling of the plasma, and the first measurements of spatial
flow structure in the divertor associated with the application of resonant magnetic
perturbations (RMPs). Possible future improvements to the instrument design and
extensions of the present work are suggested.
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Chapter 1

Introduction

In modern developed countries, communications, infrastructure, business, industry,

and people’s everyday lives are increasingly dependent on electrical power. As more

of the world’s population strive for increased living standards and economic pros-

perity, global electricity demands are increasing and are projected to more than

triple by the year 2050 [IAEA, 2013]. Electricity is also projected to account for an

increasing fraction of overall global energy demand.

Currently, the majority (67% as of 2011 [U.S. Energy Administration, 2014]) of

global electricity generation is based on burning fossil fuels. This is unsustainable,

especially in the face of rising demands, due to dwindling and unevenly distributed

fuel resources, and the environmental impact of both extracting these fuels and re-

leasing their combustion products into the atmosphere. So-called renewable energy

sources such as hydroelectric, wind and solar power show promise as more sustain-

able methods of power generation, however these are unlikely to meet total demands

by themselves due to their intermittency, relatively low power density and depen-

dence on local geography and climate. Nuclear fission offers another alternative,

and is attractive in terms of producing no atmospheric pollution, but has signifi-

cant drawbacks in its current form. These include production of long-lived highly

radioactive waste, and limited fuel resources using the current Uranium-based fuel

cycles.

If we wish to continue our modern reliance on, and development of, electronic

technology, we must find a new reliable, secure, sustainable and affordable method

of electrical power generation. It has long been suggested that controlled nuclear

fusion could provide such a power source, and research into this area has been

ongoing for more than 50 years. A fundamental challenge in this research is obtaining

detailed and accurate measurements of the behaviour of experimental fusion devices,

in order to advance our understanding towards the ultimate goal of commercially

2



1.1. Fusion Energy 3

available fusion power. This thesis is concerned with the development of diagnostic

instrumentation and techniques for this purpose.

1.1 Fusion Energy

Nuclear fusion is the process in which two atomic nuclei collide and become bound

together by the strong nuclear force, forming a single heavier nucleus. For nuclei

lighter than iron-56 this process is exothermic, liberating the difference in binding

energy between the initial and final nuclei. As an energy source fusion ‘fuel’ has

an extremely high energy density: as much energy could be released by fusing 1kg

of hydrogen isotopes to form helium as by burning around 45,000 tons of coal.

The fusion reaction of most interest as an energy source is the fusion of the heavy

hydrogen isotopes deuterium and tritium, resulting in an alpha particle (helium)

and a neutron while releasing 17.6MeV of energy:

2
1D + 3

1T → 4
2He (3.5Mev) + 1

0n (14.1Mev). (1.1.1)

Here the energies in brackets are the (kinetic) energies carried by the fusion prod-

ucts. The main reason for this choice of reaction is its particularly large cross-section

(probability of occurring) at the range of collision energies expected to be realisable

in man-made fusion devices. The necessary deuterium can be extracted from seawa-

ter, and so represents a readily available, practically limitless fuel source. Tritium,

however, undergoes beta decay with a half-life of 12.3 years and therefore does not

occur naturally in meaningful amounts. Instead it can be produced using reactions

of fast neutrons with lithium, and it is envisaged that a fusion power plant would be

self-sufficient in tritium by using lithium and the fusion-produced neutrons to breed

its own fuel. Unlike fission, the fusion reaction itself does not produce long-lived

highly radioactive waste, although some short-lived (50 - 100 years) waste will be

produced by the fast neutrons causing activation of reactor components in a D-T

fusion plant.

In order to fuse, the positively charged fuel nuclei must collide with enough

energy to have a significant chance of overcoming their electrostatic repulsion, in

order for the strong nuclear force to become dominant. The problem of generating

a controlled release of net energy from fusion is therefore to create a device which

uses less power to produce this situation than is released by the resulting fusion

reactions. The required kinetic energy of the fuel is several orders of magnitude

higher than its ionisation energy, hence the electrons are completely stripped from

the fuel atoms to form a plasma: a quasi-neutral gas of free electrons and ions.
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Many fusion devices based on both thermal and non-thermal plasmas have been

proposed and investigated both theoretically and experimentally [Bussard, 1991;

Laberge, 2007; Meade, 2010]. The two most promising and well developed schemes,

which have been the focus of most research since the 1950s, are based on confining a

thermal plasma at sufficient temperatures and densities for large numbers of fusion

reactions to occur. In inertial confinement fusion, a small pellet of solid deuterium

and tritium is compressed and heated using an intense X-Ray or optical radiation

field, produced by a high power laser system. The aim is to achieve sufficient density

and temperature that large energy production from fusion occurs before the fuel

disassembles due to its outward pressure (i.e. the fuel is only held in place by its own

inertia). In magnetic confinement fusion, a much lower density plasma is sustained

for longer periods of time, with the outwards pressure balanced by magnetic forces

to confine the plasma in an equilibrium configuration. The work in this thesis is

concerned with the latter class of device, and specifically with tokamaks.

1.2 Introduction to Tokamaks

The tokamak is currently the most well developed magnetic plasma confinement

device, using magnetic fields to confine a toroidal (doughnut shaped) plasma. Orig-

inally a Russian design, the name is a Russian acronym which translates roughly as

‘Toroidal chamber with magnetic coils’. Tokamak (toroidal) geometry is illustrated

in figure 1.1. The major radius of the torus is denoted R0 and the minor radius is

a. The toroidal direction is the long direction around the torus, and the poloidal

direction is the direction around the cross-section. The coordinate system which will

be used throughout this thesis is a cylindrical system with the origin at the centre

of the torus and the Z axis vertically up. A point in this system is described by its

major radius R, height Z and toroidal angle ϕ. Where it is convenient to refer to

the poloidal angle: the angle around the poloidal cross-section, this is denoted θ.

At least 210 tokamaks have been constructed since their invention in 19561, rang-

ing in size from a few centimetres major radius to around 3m. Almost all major

tokamak experiments use pure Deuterium plasmas rather than Deuterium-Tritium,

to research how to create the necessary plasma conditions for fusion without the

difficulty and expense of dealing with radioactive tritium, and limiting damage and

activation of machine components by fusion neutrons. The largest currently oper-

ating tokamak is the Joint European Torus (JET) at R0 = 2.96 m, a = 1.25 − 2.1

1www.tokamak.info
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Figure 1.1: Illustration of toroidal geometry and coordinates.

m, located at Culham Centre for Fusion Energy in the UK. JET is the only opera-

tional tokamak equipped to run Deuterium-Tritium plasmas. In 1997, it set the (still

current) world record for fusion power output using a Deuterium-Tritium plasma,

at 16MW of fusion power output while using 25MW of input power to heat the

plasma to the necessary temperature [Keilhacker et al., 1999]. This corresponds

to a fusion energy gain: the ratio of fusion power produced to the heating power

injected into the plasma, of Q = 0.64. The next major step in tokamak research

is to demonstrate Q ≥ 1, or ‘breakeven’. This is one of the main goals of ITER: a

tokamak approximately twice the size of JET currently under construction in south-

ern France, in a collaboration spanning 34 nations. ITER’s target is to demonstrate

Q ≥ 10 (generating around 500MW of fusion power), sustained for periods of 300 -

500 seconds, and Q ≥ 5 in steady state operation [Shimada et al., 2007]. Its other

important goal is to test, develop and demonstrate the technology necessary for a

power-producing reactor (ITER itself will not generate electricity). If ITER is suc-

cessful, the next step is then construction of a first demonstration power-producing

tokamak, currently known as DEMO.

The magnetic field configuration used to confine a tokamak plasma is illustrated

in figure 1.2, and consists of both toroidal and poloidal magnetic field components.

The toroidal field Bϕ is created by a set of planar current-carrying coils arranged

around the torus. It is strongest at the inboard side of the torus and scales as 1/R,

hence the inboard and outboard sides are often called the high field side and low field

side, respectively. The poloidal field Bθ is created by driving a toroidal current in the

plasma itself. This plasma current is driven by transformer action where the plasma

acts as the transformer secondary, the primary being a solenoid inserted through the



1.2. Introduction to Tokamaks 6

centre of the torus. The poloidal field is much smaller than the toroidal field, and

effectively adds a ‘twist’ to the toroidal field lines such that they take a helical path

around the device (an example field line is shown as a black line in figure 1.2). As

they spiral around the device the helical field lines trace out a set of nested, closed

toroidal surfaces known as flux surfaces, such that the magnetic field vector lies

within the surface at all points. The general principle of the plasma confinement

is that because charged particles are constrained to gyrate around magnetic field

lines due to the Lorentz force, but are free to move along them, plasma particles are

confined to stay on a given flux surface and have difficulty moving perpendicular

to the flux surfaces (i.e. perpendicular to the field lines) to escape the device.

Additional vertical and radial field components are used to control the position and

cross-section shape of the plasma.

JG05.537-7c

Poloidal3magnetic3field

Inner3poloidal3field3coils
(Primary3transformer3circuit)

Outer3poloidal3field3coils
(for3plasma3positioning3and3shaping)

Toroidal3field3coils

Toroidal3magnetic3field

Resulting3helical3magnetic3field

Plasma3electric3current
(secondary3transformer3circuit)

Figure 1.2: Illustration of magnetic field configuration and major components in a
tokamak. Courtesy of the EFDA-JET figure database.

Heating of the plasma to achieve fusion relevant temperatures is derived from a

variety of sources. The plasma current provides ohmic heating due to the finite resis-

tivity of the plasma, although as the plasma heats up its resistivity decreases, making

ohmic heating less effective. An almost ubiquitous non-ohmic heating method is to

inject beams of high energy (accelerated) neutral atoms into the plasma, which are

then ionised and give up their energy via Coulomb collisions. This is known as
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Neutral beam injection (NBI). High power radio frequency heating is also common,

in which microwaves resonant with the gyration of the ions or electrons around the

magnetic field lines are launched into the torus, directly accelerating the relevant

species which then thermalise through collisions. In devices producing significant

amounts of fusion power, heating will also occur from the fusion itself: the fusion

born energetic alpha particles are trapped by the magnetic field and give up their

energy to the plasma via collisions. The extreme of this situation is known as ‘ig-

nition’: this is the situation where all of the necessary heating comes from fusion

alpha particles, and no external heating energy is required to sustain the reaction. In

current medium to large scale tokamaks, typical temperatures at the plasma centre

are around 10 - 300 million K. Since such numbers are rather unwieldy, it is conven-

tional in plasma physics to quote the charactieristic thermal energy kBT in place of

temperature (for example, the above temperature range corresponds to around 1 -

26 keV). This convention will be used throughout the remainder of this thesis.

1.2.1 Plasma Exhaust & Divertors

In a real device some particles will always escape across the magnetic field lines and

leave the plasma, due to cross-field transport mechanisms such as particle collisions

and turbulence. While the associated loss of energy is undesirable since it cools

the plasma, some particle loss is always necessary to remove the ‘helium ash’ from

fusion and other unwanted impurities which could otherwise build up in the plasma.

This escaping ‘exhaust’ will impact the walls of the device and cause damage through

physical and chemical sputtering, and the resulting sputtered atoms will re-enter the

plasma as undesired impurities. The first attempts to mitigate this problem used so-

called limiters. A limiter is an object protruding into the edge of the plasma to limit

its radial extent. The plasma is then divided into two regions: the confined plasma

with closed magnetic field lines and flux surfaces, as already discussed, and the

Scrape-off layer (SOL), where the magnetic field lines do not circulate the device

indefinitely but intersect the surface of the limiter. The boundary between the

two is the Last closed flux surface (LCFS), or separatrix. This situation is shown

schematically in figure 1.3(a). Particles escaping across the LCFS into the scrape-

off-layer travel rapidly along the helical open field lines until they reach the limiter

surface, i.e. the plasma exhaust is ‘scraped off’ to the limiter before reaching the

chamber wall. Limiters have the advantages of limiting the plasma flux to the

chamber walls and being very simple to implement, but are not very effective at

screening impurities from the main plasma. The high particle flux to the limiter

still causes large amounts of sputtering, and the resulting impurities do not have to
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travel far to penetrate back across the LCFS, since the limiter is directly in contact

with the confined plasma region.

The situation can be dramatically improved by using a so-called divertor con-

figuration, which is employed by most modern tokamak experiments. A divertor is

created by using additional magnetic coils, above and/or below the plasma, to create

a ‘null’ in the poloidal magnetic field. This directs the SOL plasma towards spe-

cially designed target plates, situated further away from the confined plasma region.

This configuration and some of the terms used to describe the divertor geometry are

illustrated in figure 1.3(b).

1.2.2 Low & High Confinement modes

When the input plasma heating power rises above a certain threshold, tokamaks

(and indeed all toroidal confinement devices) exhibit a spontaneous transition to an

improved mode of plasma confinement known as ‘high confinement’ or H-Mode. This

was first observed on the ASDEX (Axially Symmetric Divertor EXperiment) toka-

mak at Max-Planck-Institut für Plasmaphysik, Garching, Germany in 1982 [Wagner

et al., 1982], and the pre-transition state was retroactively named ‘Low confinement’

or ‘L-Mode’. In H-Mode, cross-field particle and energy transport due to turbulence

near the edge of the plasma is greatly suppressed, resulting in a factor of around 2

improvement in confinement over L-Mode. Although the physics of the L-H transi-

tion itself are not yet well understood, the mechanism of the transport suppression

in H-Mode is known to be sheared poloidal flows breaking up the turbulent ed-

dies near the plasma edge, and thereby reducing the distance over which they can

transport heat and particles [Terry, 2000]. The transition from L-Mode to H-Mode

appears almost instantaneous, and has several experimental signatures including the

appearance of steep temperature and density gradients at the plasma edge, increase

in core plasma temperature and density, and reduction of visible Dα light emission

from the plasma edge and divertor. Figure 1.4 shows wide angle visible light images

of a tokamak plasma in (a) L-Mode and (b) H-mode. In L-Mode, the plasma edge

appears ‘fuzzy’ and filaments of escaping material are visible, while the H-Mode

image shows a very ‘sharp’ plasma edge with no such filaments.

An important feature of H-Mode operation is a quasi-periodic instability known

as the Edge-localised mode (ELM). An ELM is triggered when the pressure gra-

dient at the edge of the plasma, which increases due to the improved confinement,

rises above a threshold value for stability and triggers a rapid ejection of heat and

particles from the plasma edge. These travel rapidly along the SOL field lines to

the divertor, and cause very large transient heat and particle loads on the divertor
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Figure 1.3: Schematics showing plasma exhaust handling and related terminology in
limiter (top) and divertor (bottom) plasma configurations. Each schematic shows a
poloidal cut-through of the toroidal plasma. White arrows show the plasma exhaust
flow projected on to the plane of the figure.
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(a) L-Mode (b) H-Mode (c) ELM

1 m

Figure 1.4: Visible light images of a MAST plasma in L-Mode (left), H-Mode (mid-
dle) and during an ELM (right). The reduction in edge turbulence can clearly be
seen between L- and H-modes. The plasma ejected by the ELM in (c) can be seen
interacting with a poloidal field coil and the divertor.

plates. The ejection of material relaxes the pressure gradient which then starts to

rise again, repeating the process. Figure 1.4(c) shows a visible light image during

an ELM, which shows the violence of this process and intense interaction between

the plasma and the divertor and other in-vessel components, towards the bottom of

the image. Filaments of material can be seen illuminating the helical magnetic field

lines. Although ELMs do not have a large effect on the performance of the core

plasma, their damaging effects on plasma facing components such as the divertor

plates are expected to cause a significant practical challenge for future devices, and

controlling these instabilities is an area of active research [Lang et al., 2013].

1.3 SOL & divertor flow diagnostics

1.3.1 Motivation for measuring flows

In the recent European roadmap for the development of fusion energy, finding a re-

liable plasma exhaust solution is described as “probably the main challenge towards

the realisation of magnetic confinement fusion” [Romanelli et al., 2012]. While a

conventional divertor design is expected to be sufficient in ITER, for a power gen-

erating device the heat and particle loads on the divertor components may well be

too high to be compatible with current designs, materials and operation regimes.

Substantial effort is therefore being spent to develop alternative divertor concepts

and designs, including experiments on, and modifications to, a number of existing

tokamaks [Katramados et al., 2011; Mirnov, 2009; Piras et al., 2009; Soukhanovskii

et al., 2012]. An important aspect of this work is gaining a better understanding of

the physics of SOL and divertor plasmas, and developing predictive models which
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can be used to inform the design of future devices. Gaining this understanding, and

developing and benchmarking numerical models, must start with obtaining high

quality experimental data from current devices.

Plasma flows are a key aspect of SOL and divertor physics, and are currently

not completely understood or well reproduced by existing models. They play an

important role in heat, particle and impurity transport around the SOL, and there

is evidence that they have important implications for the core plasma such as affect-

ing toroidal rotation and the power threshold for H-Mode access [LaBombard et al.,

2004]. Interaction of the main ion flows with impurities, and the resulting impurity

flows, are critically important, since they are required to exhaust helium and other

impurities from the main plasma and to prevent these impurities travelling back to

the plasma once they have reached the divertor plates. They are also important for

understanding and controlling the erosion, transport and subsequent deposition of

material from the divertor target plates [Elder et al., 2005], which has important

implications for lifetimes of such components. Existing measurements have shown

that SOL and divertor flows are highly complex phenomena, with multiple sources

and sinks of particles at different plasma locations and flow components both depen-

dent and independent of the magnetic field configuration [Asakura, 2007; LaBom-

bard et al., 2004]. Highly detailed and wide-coverage measurements are therefore

required to aid understanding of these phenomena.

1.3.2 Flow diagnostics and Coherence Imaging Spectroscopy

The most commonly used diagnostics for measuring SOL and divertor flows are

Mach probes, (dispersive) Doppler spectroscopy, and high speed imaging of injected

‘tracer’ impurities (‘plume imaging’). The capabilities and limitations of these diag-

nostics are now briefly considered, and the coherence imaging technique introduced

in this context.

Mach Probes

Mach probes are a type of electrical probe inserted into the plasma to make in-situ

flow measurements of the bulk ions. The simplest examples consist of two probe pins

separated by an insulator, with both pins operating at ion saturation, i.e. negatively

biased (usually with respect to the vacuum vessel) such that all plasma electrons

are repelled but all incident ions are collected. Due to the geometry of the probe

head, the two pins collect ions incident from opposite directions, and if there is a

net plasma flow in the direction separating the pins, the ‘upstream’ pin will collect

a higher ion flux than the downstream one. The Mach number of the flow (i.e.
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the flow speed relative to the plasma sound speed) is determined from the ratio of

the currents from the two pins. In practise the theory describing the operation of

such probes, i.e. the interaction of the probe with the plasma, is very difficult, and

care must be taken when analysing the data since the same measured data can give

substantially different flow values depending on the probe theory applied [Chung,

2012].

Mach probe measurements have the advantages that the diagnostic hardware is

cheap and relatively straightforward, and they provide a direct measurement of the

bulk ion flow which is not possible with spectroscopy or imaging based techniques

(for hydrogenic plasmas). The probe head is mounted on a reciprocation, or spatial

scanning mechanism, which allows the probe to be quickly inserted and retracted

from the plasma (over times of ∼ 10s of milliseconds) along a 1D path (typically in

the direction across the magnetic field). This is necessary because the high temper-

ature plasma (at least several thousand Kelvin even in the ‘cold’ divertor plasma)

would quickly damage a probe in prolonged contact with the plasma and contami-

nate the plasma with material removed from the probe. This provides an inherent

upper limit to the timescales over which continuous measurements can be made.

On the other hand, due to the high sample rates (MHz) at which the probe signal

can be digitised, the evolution of fast transient events such as ELMs can be studied

[Asakura et al., 2008], and detailed radial profiles obtained during the reciprocation.

The measurement is also well localised in 3D space due to the well-known probe lo-

cation. However, most tokamaks are only equipped with one or at most a few such

probes, at fixed (strategically chosen) poloidal locations around the plasma. This

means the spatial coverage of these measurements, with respect to the plasma as a

whole, is very sparse. In order to build up a picture of the flow behaviour over large

scales in the SOL, results often need to be combined from multiple tokamaks, for

example see Asakura [2007]. Nevertheless, with well chosen probe locations these

measurements can still provide insight into course spatial patterns of flows, and time

evolution on fast timescales.

Plume imaging

To measure impurity ion flows and transport, impurities can be deliberately injected

into the edge of the plasma, where they are (partially) ionised and emit characteristic

spectral lines. The motion of the resulting plume of impurity emission is then

observed with high speed, narrow-band filtered cameras. The impurities are most

commonly injected by gas puffing, e.g. in Gangadhara and LaBombard [2004] and

McLean et al. [2005], but laser ablation [Timberlake, 1983] and electrical spark
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gaps [Leggate et al., 2013] can also be used. By virtue of their imaging nature, the

results can provide intuitive visual indication of, for example, the dominant impurity

flow direction, however complete quantitative interpretation of the images requires

detailed knowledge of the local plasma conditions and supporting modelling. This

is because the dynamics of the emission plume are determined by a range of factors

in addition to the flow, such as the exact details of the injection source design and

its interaction with the plasma, and the effect of the local plasma conditions on

the ionisation and emission behaviour of the injected impurities [Gangadhara and

LaBombard, 2004]. The spatial coverage of these measurements is inherently limited

to locations where impurity injection can be performed. Like probe measurements,

since this technique involves deliberately injecting impurities into the plasma it

necessarily perturbs the plasma being measured.

Doppler spectroscopy

Doppler spectroscopy can be used to measure impurity ion flows via the Doppler

shift of impurity emission lines. This is possible in the divertor and scrape-off-layer

because the plasma is cool enough for the impurities of interest to be only partially

ionised. These may be intrinsic impurities (those occurring ‘naturally’ in the de-

vice due to the choice of plasma-facing materials or unavoidable contamination), or

deliberately injected, e.g. by gas puffing. A typical Doppler spectroscopy system

consists of one or more collection lenses, usually outside the vacuum vessel viewing

the plasma through a diagnostic port, behind which are arranged a number of opti-

cal fibres on to which the impurity emission is imaged. The optical fibres carry the

collected impurity light to one or more spectrometers, where the light is dispersed

using an element such as a diffraction grating on to a CCD detector to measure the

spectrum. Emission line(s) appearing in each fibre’s spectrum can then be fit with

suitable line shape functions to find their central wavelengths, and by comparing

these with their known rest wavelengths the Doppler shift and therefore line-of-sight

ion flows can be determined.

Doppler spectroscopy of intrinsic impurity emission has the advantage over the

other techniques described here that it does not perturb the plasma being measured

in any way. However, the measurement is poorly localised, since the plasma repre-

sents a 3D extended emission source through which the collection optics must view.

Each spatial channel therefore obtains the emission integrated along its line-of-sight

through the plasma, with the plasma conditions varying along that line of sight.

This can make the measured spectra ambiguous and difficult to interpret, especially

in the presence of spatially changing spectral features such as Zeeman splitting. This



1.3. SOL & divertor flow diagnostics 14

in turn can lead to large uncertainties in derived flow measurements.

The number of sight-lines used for Doppler spectroscopy diagnostics varies greatly

from system to system. For example, the systems used in Isler et al. [1999] and Marr

et al. [2005] provide 12 and 6 lines of sight, respectively, while those in Gafert et al.

[1997] and Morgan [2011] are more sophisticated with totals of 150 and 128 sight

lines. However, common to all these configurations is that they only provide 1

dimension of spatial resolution, with the sight-lines arranged in one or more fans

through the plasma or viewing a small number of strategically chosen locations.

This is clearly not well suited for studying overall SOL and divertor flow behaviour

which is known to be 2 - 3 dimensional.

A new technique: Coherence Imaging Spectroscopy

Coherence imaging spectroscopy (CIS) is a relatively new technique which uses the

same principle as traditional Doppler spectroscopy: measurement of impurity ion

flows using the Doppler shift of their emission lines. However, instead of being a

frequency domain measurement of the spectrum, coherence imaging uses an imaging

interferometer to perform narrow-bandwidth Fourier transform spectroscopy. This

is explained in detail in Chapter 2 of this thesis, but the general idea is that low

order spectral information, including the Doppler shift, is encoded on to a 2D filtered

image of the plasma in the form of an interference fringe pattern.

Coherence Imaging Spectroscopy (CIS) has a number of key advantages over tra-

ditional Doppler spectroscopy. One of the most striking is that it captures at least an

order of magnitude more spatial information than even the highest (spatial) resolu-

tion traditional systems (for example, the MAST coherence imaging system has the

equivalent of over 6,000 sight-lines), and provides 2D spatial resolution. Combined

with its wide angle imaging capability, this means coherence imaging is uniquely

able to study the 2D flow behaviour in the SOL and divertor at scales ranging

from centimetres up to the size of the device, over a continuous 2D field of view.

This can also be achieved with simple and relatively cheap hardware compared with

complex multi-spectrometer systems with large numbers of optical fibres. A major

advantage of the large amount of spatial information is that it becomes possible to

tomographically invert the line-integrated measurements (subject to certain symme-

try assumptions) to obtain localised flow measurements and untangle the effect of

changing plasma conditions along the lines of sight. Additionally, coherence imaging

flow measurements are not affected by Zeeman splitting2, unlike dispersive Doppler

2See section 2.4.1
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spectroscopy systems.

One of the main disadvantages of CIS is that it is very sensitive to spectral con-

tamination from continuum or other line emission close to the line being measured.

Where these are present coherence imaging does not capture enough spectral in-

formation to separate the effect of the contamination from the measurement, and

traditional Doppler spectroscopy is more suitable in these situations. Calibration of

coherence imaging instruments is also particularly challenging. A full review of the

technique is given in Chapter 2.

1.4 The Mega Amp Spherical Tokamak (MAST)

MAST is a spherical tokamak operated by the UK Atomic Energy Authority, located

at the Culham Centre for Fusion Energy. Spherical tokamaks are tokamaks with

low aspect ratio A = R0/a < 2, and are of interest because they can stably confine

higher pressure plasmas for a given magnetic field strength than traditional ‘high

aspect ratio’ designs [Peng and Strickler, 1986; Sykes et al., 1997]. It is thought this

increased confinement efficiency may lead to more compact and cost effective designs

for fusion neutron sources and/or fusion power plants, and the goal of MAST is to

explore spherical tokamak physics towards these aims. MAST has what is considered

a ‘medium sized’ plasma cross-section in the context of conventional tokamaks, and

is one of the two largest spherical tokamaks in the world, the other being the National

Spherical Toris EXperiment (NTSX) at Princeston Plasma Physics Laboratory in

the US. The key engineering parameters of MAST are listed in table 1.1.

Major Radius 0.85 m
Minor Radius 0.6 m
Plasma Volume 8 m3

Plasma Current 400 - 900 kA
Toroidal Field 0.5 - 0.6 T
NBI Heating Power ≤ 5 MW
Pulse Duration 0.3 - 0.65 s

Table 1.1: Key engineering parameters of MAST.

A vertical cross-section through MAST is shown in figure 1.5. A cylindrical

stainless steel vacuum vessel 4.0 m in diameter and 4.4 m tall forms the basis of its

construction. Unlike almost all other tokamaks, there is no close-fitting wall around

the plasma, which occupies only around 15% of the internal volume of the vacuum

vessel. Combined with a large number of diagnostic access ports, this makes MAST
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uniquely well suited for optical measurements of the edge and exhaust plasma, since

wide angle, relatively unimpeded optical access to the entire plasma boundary can

be obtained. An example wide angle colour photograph of a MAST plasma and the

vacuum vessel interior, taken from a midplane diagnostic port, is shown in figure 1.6.

This is a composite image in which the dynamic range has been greatly compressed

to make both the plasma and vessel interior visible. Another unique feature of

MAST which can be seen in the photograph and figure 1.5 is that the poloidal field

coils used to shape and stabilise the plasma are inside the vacuum vessel.

Midplane
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divertor
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Midplane 
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Figure 1.5: Cross-section of MAST showing lower single null divertor (left) and
double null divertor (right) plasma shapes, diagnostic port locations and poloidal
field coils (labelled P2 - P6 in the upper right of the diagram). MAST vessel cross-
section courtesy of CCFE.

As can be seen in figure 1.5 MAST is up-down symmetric about the midplane,

and most commonly runs Double null divertor (DND) plasmas, which are up-down
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1.3 m

Figure 1.6: Composite colour photograph of a double null divertor MAST plasma
and the vacuum vessel interior. The large bright spot on the right of the centre
column is due to neutral deuterium gas injection used to fuel the plasma, from a
gas nozzle located on the centre column.
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symmetric and have divertors at both the top and bottom of the plasma. The

cross-sectional profile of such a plasma is shown on the right of figure 1.5. By

shifting the plasma vertical position MAST can also routinely run Lower single

null divertor (LSND) plasmas, which use only the lower divertor. The profile of

such a plasma is shown to the left in figure 1.5. The divertors themselves are a

so-called ‘open’ design, meaning they feature no physical structures designed to

help baffle impurities and neutral particles, originating at the divertor targets, from

diffusing back towards the main plasma. While this is not optimal from a divertor

performance standpoint, the open design gives excellent optical access to the divertor

plasma. The outer (low field side) divertor targets consist of a set of horizontal

graphite ribs attached to the top and bottom plates of the vacuum vessel, while the

inner (high field side) targets consist of specially armoured sections of the centre

column. For more information about the MAST machine see Cox and MAST Team

[1999] and Darke et al. [2005].

1.5 Thesis Outline

This thesis presents the development of, and first results from, a coherence imaging

spectroscopy diagnostic for measuring impurity ion flows in the SOL and divertor

of MAST. In chapter 2 the theory of the coherence imaging technique is reviewed,

along with the various existing implementations of this technique on other plasma

devices. Chapter 3 presents the design of the MAST coherence imaging diagnostic

in detail, including the development of simple numerical models used to inform the

design choices. Chapter 4 describes the data analysis techniques used to obtain both

line-of-sight average and tomographically inverted flow measurements from the raw

data, and includes numerical estimation of the noise levels and possible systematic

errors on the measurements. Chapter 5 presents results from offline characterisation

and calibration of both individual diagnostic components and the integrated system,

including benchmarking against the design calculations from chapter 3 where ap-

propriate. The procedures for calibrating the instrument for plasma measurements

are also described in this chapter. In chapter 6 the results of operating the diagnos-

tic on MAST are presented, including analysis of the diagnostic’s performance and

qualitative discussion of selected plasma observations. Chapter 7 summarises the

key findings of this thesis and makes suggestions for future extensions to the work.



Chapter 2

The Coherence Imaging

Spectroscopy Technique

This chapter reviews the principles and theory of the Doppler CIS technique, as well

as previous implementations of of the technique on various plasma devices. The CIS

theory presented in this chapter was primarily developed at Australian National

University [Howard, 2002; Howard et al., 2001], except for the introduction of the

‘multiplet phase’ and ‘multiplet contrast’ in section 2.4.1, which to the best of the

author’s knowledge is original to this work.

2.1 Impurity line radiation

The Doppler CIS technique uses Doppler shifts of impurity ion emission lines to

measure the impurity flow. These emission lines exist in the SOL and divertor be-

cause the plasma temperature in these regions: typically a few 10s of eV or less, is

not hot enough to completely ionise the impurities, and thus their remaining elec-

trons can undergo radiative transitions and emit characteristic spectral lines. This is

illustrated in figure 2.1, which shows how the fractional abundance of different ion-

isation states of carbon varies with plasma electron temperature (assuming coronal

equilibrium: the low plasma density equilibrium situation where collisional process

dominate excitation while radiative processes dominate de-excitation; see Hutchin-

son [2005, pp. 225-227]). The fractional abundances of the C1+ and C2+ charge

states (C II and C III in spectroscopic notation) are largest at temperatures found

in the divertor and SOL, thus these ions are of particular interest in this work. In

reality the peak emission brightness from each species can occur at a slightly dif-

ferent plasma temperature than suggested by figure 2.1, due to the influence of the

local electron density on the emission brightness and also impurities being trans-

19
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ported through different temperature plasma regions faster than their populations

can reach equilibrium.
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Figure 2.1: Relative abundances of different ionisation states of carbon, as a function
of electron temperature, for coronal equilibrium. Figure courtesy of Dr. James
Harrison, CCFE; calculated using data from the ADAS system [Summers, 2004].

When considering any spectroscopic diagnostic technique, we must consider what

effects can determine the appearance of the spectra under examination. The relevant

phenomena for the impurity ion lines in this study are now briefly discussed.

2.1.1 Spectral Line Shapes

Important phenomena which can affect the appearance of emitted impurity lines

from plasmas include the Doppler effect, Zeeman splitting and Stark broadening.

Each of these will now be briefly discussed. Natural line broadening, due to the

finite lifetimes of ion excited states, is typically insignificant compared to these

other effects and will not be discussed here. Since the coherence imaging technique

operates by measuring an interferogram in the time domain, it will be convenient

to discuss spectral line shapes as functions of optical frequency, ν = c/λ where c

is the speed of light and λ the light wavelength. Line spectra will be represented

in the form I(ν) = I0g(ν), where I(ν) is the intensity spectrum, I0 =
∫
I(ν)dν is

the total intensity, and g(ν) is a normalised function representing the shape of the

spectrum. Furthermore, we will make use of a normalised frequency shift coordinate

ξ = (ν − ν0)/ν0, where ν0 is the rest-frame centre frequency of the spectral line.
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Doppler effect

For any emitting ion moving relative to the observer, the observed frequency ν

is related to the frequency in the emitter’s rest frame, ν ′, by the Doppler shift

ν = (1 − v · l̂/c)ν ′, where v is the emitter’s velocity in the observer’s rest frame,

c is the speed of light and l̂ is the line of sight direction from the observer to the

emitter. The Doppler shift can be expressed in terms of the normalised frequency

shift as ξ = −v · l̂/c. For an emitting plasma species with some velocity distribution

function f(v), an observer sees a broadened spectral line due to contributions from

emitters with different velocities. To obtain the observed line shape g(ξ), we sum

over all emitters whose velocity Doppler shifts their emission by an amount ξ:

g(ξ) =

∫
f(v)δ(ξ + v · l̂/c)dv. (2.1.1)

Consider an emitting plasma species in thermodynamic equilibrium, and expe-

riencing a bulk plasma flow with flow velocity vD in the lab frame. In a reference

frame drifting at the flow velocity, i.e. a frame where there is zero flow, denoted

here by primed quantities, we assume the ion velocity distribution is isotropic and

the speed distribution in any direction is given by a Maxwellian:

f ′(v′) = (πv2
th)−1/2 exp

(
− v

′2

v2
th

)
, (2.1.2)

where vth is a characteristic thermal speed given by vth =
√

2kBTi/mi, and Ti and

mi are the emitting species temperature and mass, respectively. The spectral line

shape which would be observed in the drifting frame is then given by:

g′(ξ′) =

(
π
v2

th

c2

)−1/2

exp

(
−ξ′2 c

2

v2
th

)
. (2.1.3)

This is the well known Gaussian profile of a Doppler broadened spectral line. To

obtain the line shape observed in the lab frame, we simply shift the frequency

coordinate according to the Doppler shift between the drifting and lab frames, ξ′ =

ξ + vD · l̂/c:

g(ξ) =

(
π
v2

th

c2

)−1/2

exp

−[ξ +
vD · l̂
c

]2
c2

v2
th

 . (2.1.4)

This representation of the Doppler line shape will be convenient when considering

Doppler coherence imaging measurements.
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Stark Broadening

Stark broadening [Hutchinson, 2005, p. 261] arises from perturbations of the emit-

ting ions’ energy levels due to the electrostatic fields of neighbouring charged par-

ticles, via the Stark effect. The total electrostatic ‘micro-field’ experienced by the

emitting ions varies both with position, and rapidly with time due to the fast mo-

tion of neighbouring electrons. The gross effect of the emitting ions experiencing a

range of different, rapidly changing micro-fields and therefore a range of energy level

perturbations is a broadening of emitted spectral lines, with a line shape resembling

a Lorentzian. Since Stark broadening is caused by the interaction of neighbouring

particles with the emitter, it is considered to be a type of pressure broadening.

The Full width at half maximum (FWHM) of Stark broadened spectral lines

scales as N
2/3
e , where Ne is the plasma electron density. Measurements of this effect

can therefore be used as a spectroscopic plasma density diagnostic, with the proper

choice of spectral line (for example see Koubiti et al. [2011]; Lischtschenko et al.

[2010]; Soukhanovskii et al. [2006]). Using this density scaling, data from Konjević

et al. [2002] and typical measurement conditions for the current work, the FWHM of

the Stark broadened line shape is expected to be around 40 - 100 times smaller than

the Doppler broadening FWHM for the lines used in this work. Stark broadening is

therefore not considered in the remainder of this thesis.

Zeeman Effect

In the presence of an external magnetic field, emission lines are observed to split

due to the splitting of atomic energy levels in the magnetic field. For atoms which

can be described by L-S coupling, the energy level splitting is given by [Sobelman,

1979, p. 189]:

∆EmJ
= µBgmJB, (2.1.5)

where ∆EmJ
is the energy shift for a level with total angular momentum projection

mJ , µB is the Bohr magneton, B is the magnetic field and the Landé g factor is

given by:

g = 1 +
J(J + 1)− L(L+ 1) + S(S + 1)

2J(J + 1)
(2.1.6)

Each level is split into 2j+1 levels corresponding to mJ = −J...J . For electric dipole

transitions, allowed transitions between the split states are those with ∆J = 0,±1

and ∆mJ = 0,±1. Transitions with ∆mJ = 0 are called “π” components, and

have linear polarisation parallel to B. Those with ∆mj = ±1 are “σ+” and “σ−”

components, and have left and right-hand circular polarisation about the direction

of B. The relative intensities of the different components are given in Sobelman
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[1979, (p. 193)] and reproduced in table 2.1. The observed relative intensities of

the π and σ components also depend on the angle θ between the direction of view

and B according to Iπ,obs = Iπ sin2(θ) and Iσ,obs = Iσ[1 + cos2(θ)]. This model for

Zeeman splitting is used in forward modelling calculations in chapters 3 and 4. The

expected magnitude of the splitting for some of the impurity lines in this work, in

the region of the X-Point on MAST, is similar to the Doppler broadening FWHM.

While this would complicate measurements of the Doppler broadening of these lines,

it will be shown that this does not significantly effect CIS flow measurements.

∆J Iπ I+
σ I−σ

0 m2
J

1
4
(J +mJ)(J + 1−mJ) 1

4
(J −mJ)(J + 1 +mJ)

−1 J2 −m2
J

1
4
(J +mJ)(J − 1+J) 1

4
(J −mJ)(J − 1−mJ)

+1 (J + 1)2 −m2 1
4
(J + 1−mJ)(J −m+ 2) 1

4
(J + 1 +mJ)(J +mJ + 2)

Table 2.1: Relative intensities of π and σ Zeeman split line components, Iπ, Iσ+ and
Iσ− , for transitions with different ∆J = Jupper − Jlower vales, from Sobelman [1979].

We now move on to present the theoretical basis for the coherence imaging

spectroscopy technique.

2.2 Fourier Transform Spectroscopy

The CIS technique is based on the principles of Fourier transform spectroscopy

(FTS). Unlike dispersive spectroscopy which directly records the spectrum in the

frequency domain, FTS uses a 2-beam interferometer to record the spectral infor-

mation in the time domain, which is then related to the desired frequency domain

spectrum via the Fourier transform. To illustrate the principle of FTS, consider a

polychromatic light source emitting with a complex electric field amplitude E(t),

whose spectrum we wish to measure. The light source is considered to be an en-

semble of uncorrelated monochromatic emitters of different frequencies, and the

resulting E field is a weak-sense stationary random process (i.e. its mean and vari-

ance are time independent, and its autocorrelation only depends on the time lag and

not absolute time). The light from this source traverses a 2-beam interferometer,

where the path difference between the two arms causes a delay τ between the two

beams arriving at the output. The complex amplitude at the output will then be

u(t) = 1
2
(E(t) + E(t+ τ)), and the corresponding detected intensity is given by:
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S(τ) = 〈u(t)u∗(t)〉 =
1

4
〈E(t)E∗(t) + E(t+ τ)E∗(t+ τ)

+E(t)E∗(t+ τ) + E(t+ τ)E∗(t)〉 ,
(2.2.7)

where pointy brackets 〈〉 indicate a time average and ∗ denotes the complex conju-

gate. The first two terms both equal the total intensity I0. The second two terms are

a quantity plus its own complex conjugate, thus equal to twice the real component.

The signal can thus be written:

S(τ) =
1

2
[I0 + Re(Γ(τ))] , (2.2.8)

where Γ(τ) = 〈E(t)E∗(t+ τ)〉 is the time-averaged autocorrelation of the electric

field for time lag τ , and is known as the self coherence of the light. It will be

convenient to deal with the normalised quantity known as the degree of coherence:

γ = Γ/I0, which is complex quantity characterised by a magnitude ζ where 0 ≤ |ζ| ≤
1 and a phase φ = arg(γ). We will see that these define an interferogram contrast

(fringe visibility) and fringe phase, respectively. The Wiener-Khinchin theorem

[Goodman, 2000, pp. 73-76] states that the Fourier transform of the autocorrelation

of a stationary process is given by the power spectral density of that process. In this

case, this means the degree of coherence is given by the inverse Fourier transform

of the light source’s spectral shape:

γ(τ) =

∫
g(ν) exp(2πiντ)dν. (2.2.9)

From this result and (2.2.8) we see that the interferogram S(τ) is given by the in-

verse Fourier cosine transform of the spectrum we wish to measure, and therefore

the spectrum can be obtained by applying the Fourier cosine transform to the mea-

sured interferogram. This can be understood intuitively by considering the source

as an ensemble of monochromatic emitters. For a monochromatic source, 2-beam

interference simply gives a set of cosine fringes, with the fringe frequency given by

the light wavelength. If we then have an ensemble of such sources at different wave-

lengths, the observed interferogram will simply be the sum of these individual fringe

patterns. The frequency content of the interferogram, i.e. its Fourier transform, is

therefore determined by the wavelengths present and their relative intensities, i.e.

the light spectrum. This is the basis of conventional FTS, in which S(τ) is mea-

sured over a range of τ values −τmax ≤ τ ≤ τmax, determined by the desired spectral

resolution by ∆ν = 1/τmax. The interferogram is sampled at intervals set by the

minimum wavelength in the spectrum, which determines the maximum frequency
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in the interferogram which must be at least Nyquist sampled.

Experimental techniques for measuring S(τ) can generally be classified by the

way τ is varied, as either temporal or spatial multiplexing techniques. In temporal

multiplexing techniques, the value of τ is changed in time, encoding the spectral

information in the time history of the detected signal. The simplest way of achieving

this is with a Michaelson interferometer, by equipping one arm of the interferometer

with a movable mirror to vary that arm’s path length. The mirror position is

then simply scanned in time to record S(τ) over the desired range of τ . Scanning

Michaelson systems can easily be used for 2D spectral imaging, by simply imaging

a scene on to a 2D detector via the interferometer [Lewis et al., 1995]. However, the

speed at which τ can be scanned is limited due to vibrations in the moving mirror

reducing the fringe contrast and hence Signal-to-noise ratio (SNR). These systems

also require very careful alignment and are highly sensitive to vibrations, ambient

temperature changes etc. Such instruments have been widely applied in space-based

astronomical and remote sensing applications [Persky, 1995], where variations of the

source spectrum are slow and long scanning times (1 - 10s) are therefore acceptable.

They have not been widely applied to fusion plasma diagnostics, since they typically

cannot meet the high time resolution requirements.

In spatial multiplexing techniques, τ is varied in space along a multi-element de-

tector, allowing the entire interferogram to be recorded simultaneously. Using a 2D

detector array these instruments can provide both spectral and 1D spatial informa-

tion with no scanning or moving parts, by using one detector dimension for spatial

information and the other for spectral information (the interferogram). They are

therefore much better suited for studying rapidly changing spectral sources where

long scanning times are unacceptable, at the cost of spatial information in 1 dimen-

sion. Where 2D spectral imaging is required and the spectral scene is not changing

too rapidly, e.g. in many remote sensing applications, push-broom scanning of the

field of view can be used to build up 2D images from a series of 1D profiles [Smith

et al., 1999]. A wide variety of spatial multiplexing FTS designs have been con-

ceived [Harlander et al., 2010; Okamoto et al., 1984; Padgett and Harvey, 1995;

Zhang et al., 2002], often featuring monolithic construction of the interferometer to

make these systems much more robust to vibration than time multiplexed systems

with moving interferometer parts, and in very compact space envelopes.

In all of these conventional FTS instruments, scanning in time of either the inter-

ferometer delay or field of view is required to obtain spectral images with 2D spatial

resolution, over timescales much longer than are acceptable for fusion diagnostics

applications. However, these scanning requirements can be reduced when we are
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only interested in recovering small amounts of spectral information from individual

spectral lines, as is the case for impurity Doppler spectroscopy. This is the basis of

the coherence imaging concept, and will now be discussed in more detail.

2.3 Narrow band spectra and fixed delay FTS

We now consider the application of FTS to quasi-monochromatic spectra, i.e. with

width ∆ν/ν0 � 1, and whose spectral shape g(ν) can be characterised by a small

number of parameters. This is the case when measuring isolated plasma emission

lines where the line shape is dominated by a small number of physical phenomena.

We start by expressing the spectral shape about its centre-of-mass frequency ν0 =∫
νg(ν)dν/

∫
g(ν)dν, such that g′(ν − ν0) = g(ν). Substituting this into (2.2.9), by

the translation property of the Fourier transform the degree of coherence is given

by:

γ(τ) = exp(2πiν0τ)γ′, (2.3.10)

where

γ′(τ) =

∫
g′(ν) exp(2πiντ)dν. (2.3.11)

Assuming for simplicity of argument that g′ is an even function, and therefore γ′ is

purely real, the interferometer signal is then:

S(τ) =
I0

2
[1 + ζ(τ) cos(2πν0τ)] . (2.3.12)

This represents a set of sinusoidal interference fringes oscillating within a slowly

varying contrast envelope. The fringe contrast, ζ = (Smax − Smin)/(Smax + Smin)

is simply given by ζ = |γ′| and is affected only by changes in the line profile g′,

while the fringe phase is affected only by changes in the centre wavelength ν0. By

measuring the interferogram intensity, contrast and phase at a known value of τ ,

which requires measurements of S(τ) over only a single interference fringe, we can

recover the line intensity, centre wavelength, and the value of γ′(τ) which carries

information about the line shape. This is illustrated in figure 2.2. In order to fully

characterise a line profile described by n parameters, we can repeat this process at

a small number ≥ n of suitable delay values, in order to sufficiently sample γ′(τ).

The need to vary the delay over only a single fringe (at one or more fixed values

of τ) instead of the wide range required for broadband FTS enables ‘fixed delay’

interferometer designs, and is the basis for coherence imaging. In temporal multi-

plexing schemes the very small scanning range can be covered much more quickly

than in traditional FTS, and static instruments without moving parts become fea-
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Figure 2.2: Illustration of fixed delay FTS: (a) Spectra of two Gaussian spectral lines
of equal brightness but different centre wavelength and broadening. (b) Interfero-
grams corresponding to equation (2.3.12) for these lines. The contrast for the red
line decays faster with τ since the broader spectrum has a shorter coherence time.
The fringe frequency of the two is slightly different due to the wavelength shift.
(c) Magnified region of (b) illustrating measurements of a single fringe at known τ .
The broadening and wavelength shift are obtained by the fixed delay measurement
without the need to measure the entire interferogram in (b).
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sible. For spatial multiplexing instruments, the number of detector pixels required

in the spectral direction is greatly reduced, which allows 2D spatial resolution in a

single exposure since the spectral information no longer occupies the whole of one

detector dimension. Several designs of fixed delay FTS instruments for coherence

imaging will be reviewed in section 2.5.

2.3.1 Delay Dispersion

In an ideal instrument the interferometer delay τ would be independent of optical

frequency, making equation (2.2.9) a straightforward Fourier transform. However

in the instruments used in coherence imaging, which include birefringent crystal

components in their designs, dispersion in the crystals means that in fact τ varies

with ν. This is included in our analysis by approximating τ(ν) as linear about the

centre wavelength ν0:

τ(ν) = τ0 + (ν − ν0)
∂τ

∂ν

∣∣∣∣
ν0

, (2.3.13)

where τ0 = τ(ν0). Changing the variable of integration in (2.2.9) to the normalised

frequency shift ξ, and using ν = ν0(1 + ξ) and τ = τ(ν), the degree of coherence is

given by:

γ =

∫
g(ξ) exp{2πiν0[1 + ξ] τ(ν0[1 + ξ])}dξ. (2.3.14)

Making the same substitution for ν in (2.3.13) we obtain τ(ν0[1+ξ]) = τ0 (1 + (κ− 1)ξ),

where κ is given by:

κ = 1 +
ν0

τ0

∂τ

∂ν

∣∣∣∣
ν0

. (2.3.15)

Substituting this into (2.3.14) gives the degree of coherence, including the effect of

delay dispersion, as:

γ(N) = exp(2πiN)

∫
g(ξ) exp(2πiκNξ) +O(ξ2)dξ, (2.3.16)

where N = ν0τ0 is the number of waves phase delay at frequency ν0, and terms

O(ξ2) will be neglected since we are considering quasi-monochromatic spectra. It

will be convenient to introduce the interferometer group delay N̂ = κN , and note

that the factor κ gives the ratio between the phase and group delays.
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2.4 Doppler Coherence Imaging Spectroscopy

We now consider how the measured interferogram phase and contrast relate to the

desired plasma parameters when measuring spectral lines whose shape is dominated

by the Doppler effect. In this case the line shape g′ can be characterised by a single

parameter: its width, and both the ion flow and temperature can be obtained from

measurements at a single fixed delay. Applying the result in equation (2.3.16) to

the Doppler line shape in equation (2.1.4), we obtain the degree of coherence:

γ = exp(2πiN) exp

(
−2πiN̂

v · l
c

)
exp

(
−(πN̂)2

(vth

c

)2
)
. (2.4.17)

The first exponential represents the phase due to the line centre wavelength in the

plasma rest frame, while the second represents an additional phase shift due to the

line-of-sight plasma flow (Doppler shift). The third exponential describes the fringe

contrast envelope and is a function of the emitting species temperature and mass

through the thermal velocity vth, introduced in section 2.1.1. To find the form of

the interferometer signal for this degree of coherence, we use equation (2.2.8) and

γ = Γ/I0 to give:

S =
I0

2
[1 + ζD cos(φ0 + φD)] . (2.4.18)

The Doppler fringe contrast ζD is given by:

ζD = exp(−Ti/TC), (2.4.19)

where Ti is the emitting ion species temperature and we have defined a characteristic

‘instrument temperature’ which is a calibration parameter depending on the ion mass

and group delay:

TC =
mic

2

2kB(πN̂)2
. (2.4.20)

This relationship can be used to obtain measurements of the emitting species tem-

perature from the measured fringe contrast. The interferogram phase is composed

of the rest frame centre phase φ0 = 2πN plus a ‘Doppler phase’ given by:

φD = −2πN̂
v · l̂
c
. (2.4.21)

We can therefore measure the component of the plasma flow along the instrument

line of sight by measuring the interferogram phase, subtracting the value of φ0 to

isolate φD and using equation (2.4.21). Like TC, φ0 is characteristic of a given

combination of spectral line and fixed delay, and is thus treated as a calibration
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parameter and called the ‘instrument phase’ φI.

These results for the Doppler phase and contrast are the basis for interpreting

Doppler coherence imaging measurements. We will now consider how other factors

can complicate this interpretation.

2.4.1 Multiplet Spectral Lines

So far we have considered only single isolated spectral lines when relating the mea-

sured interferogram properties to the desired plasma parameters. However, a number

of plasma lines of interest consist of multiple closely spaced line components, due

to fine structure and Zeeman splitting. In this case, the measured interferogram is

given by the sum of the interferograms of all the line components. We now consider

how this affects interpretation of the measured fringe phase and contrast.

For multiplet spectral lines we can consider the spectral shape as the convolution

of the Doppler spectral shape (2.1.3) with each of a set of Dirac delta functions

representing the locations of the line components. For a multiplet consisting of n

individual lines with rest frame centre positions ξ1..n and relative intensities I1..n,

normalised such that
n∑
i=1

Ii = 1, the overall line shape can be written:

g(ξ) = gD(ξ)⊗
n∑
i=1

Iiδ(ξ − ξi), (2.4.22)

where gD is given by equation (2.1.3). It follows from the convolution theorem that

the degree of coherence for this spectrum is given by γ = γDγM, where γD is our

previous result for Doppler coherence given by equation (2.4.17) and γM is given by:

γM =
n∑
i=1

Ii exp(2πiN̂ξi). (2.4.23)

Since the multiplet structure is not, in general, symmetric about ν0, γM contributes

both a contrast and phase to the interferogram. These modify our previous result

for the interferometer signal (equation (2.4.18)) as multiplicative and additive terms

respectively, giving:

S =
I0

2
[1 + ζMζD cos(φ0 + φM + φD)] , (2.4.24)

where the ‘multiplet contrast’ is given by ζM = |γM| and the ‘multiplet phase’ is

φM = arg(γM). The multiplet contrast generally goes through a series of maxima

and minima as a function of N̂ , since the sinusoidal interferograms of the individual

line components sum to create a beat pattern. This affects the optimal choice of N̂
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for an instrument, since it is desirable to operate in a maximum of this beat pattern

for the best SNR measurement of the interferogram.

From this analysis we see that if ζM and φM are well known, it is straightforward

to account for the effect of multiplet spectral lines in our interpretation of the mea-

sured signal. It is therefore important to ensure that the structure of the line to be

measured is well known such that γM can be calculated, or that there is a method

by which ζM and φM can be measured directly. It is also important that the line

structure does not change in time or space, since this will change the local values

of ζM, φM and φ0 (the latter through simply changing the line centre-of-mass ν0)

and result in inaccurate determination of the plasma parameters from the measured

signal. A notable example of a lineshape effect which can vary in space is Zeeman

splitting, particularly in a spherical tokamak where the magnetic field strength and

orientation are strong functions of position, and the resulting line structure can vary

over the field of view or even along individual sight lines. However, since Zeeman

splitting produces a symmetrical splitting about the line centre, its multiplet phase

is always zero and it does not change the line centre-of-mass, so time or spatially

varying Zeeman splitting does not affect flow measurements. This is an advantage

of the coherence imaging technique, since interpretation of line integrated spectra

in the presence of Zeeman splitting is a complication faced by dispersive measure-

ments. Note, however, that Zeeman splitting can still contribute a spatially varying

multiplet contrast, which should be considered in interpretation of the measured

fringe contrast.

2.4.2 Inhomogeneous Sources

The analysis so far has considered the case for an emitting ion population described

by a single value of ion flow and temperature, i.e. a homogeneous plasma. However,

in a tokamak plasma the species of interest will have spatially varying emissivity

e0(r), flow velocity v(r) and ion temperature Ti(r). Any optical system viewing the

3D plasma will collect light emitted at all points along its line of sight, resulting in

an observed spectral shape ğ(ξ) given by an emissivity weighted average along the

line of sight:

ğ(ξ) =
1

ĕ0

∫
L

e0(r)g(ξ, r)dl, (2.4.25)

where

ĕ0 =

∫
L

e0(r)dl. (2.4.26)
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This will no longer be a simple Doppler lineshape, but will be broadened and likely

asymmetrical due to the contributions of different spectral shapes along the line

of sight. To properly interpret measurements of inhomogeneous plasmas, we must

understand how the interferogram phase and contrast associated with this lineshape

relate to the spatially varying ion flow and temperature. Substituting (2.4.25) into

equation (2.2.9), we find the degree of coherence of the line integrated spectrum is

simply given by the weighted line-average of the local degree of coherence γ(r, N),

i.e.

γ̆(N) =
1

ĕ0

∫
L

e0(r)γ(r, N)dl, (2.4.27)

where γ(r, N) is the degree of coherence of the spectrum emitted at position r, and

N is the number of waves phase delay.

The line average and local degrees of coherence can be written in polar form,

described by their contrast and phase, as γ̆ = ζ̆ exp[iφ̆] and γ(r) = ζ(r) exp[iφ(r)],

respectively. We also consider the local phase value as being the line-average phase

plus a local perturbation: φ(r) = φ̆+ φ̃(r). Making these substitutions in (2.4.27),

we obtain:

ζ̆ =
1

ĕ0

∫
L

e0(r)ζ(r) exp[iφ̃(r)]dl. (2.4.28)

Taking the Maclaurin series of the complex exponential to third order, the real part

of this equation is:

ζ̆ ≈ 1

ĕ0

∫
L

e0(r)ζ(r)[1− φ̃(r)2/2]dl. (2.4.29)

For small φ̃ such that the φ̃2 term can be neglected, this shows the measured contrast

is simply the emissivity weighted line average of the local contrast ζ(r). Proceed-

ing similarly with the imaginary part of (2.4.28), and using the result for ζ̆ while

neglecting the φ̃2 term, we obtain a similar relationship for the phase:

φ̆ ≈ 1

ĕ0ζ̆

∫
L

e0(r)ζ(r)[φ(r)− φ̃3(r)/6]dl. (2.4.30)

We now have simple line integral relationships between the measured phase and

contrast and their local values, under the approximation of φ̃ � 1. We can now

substitute in the results from section 2.4 for the local Doppler phase and contrast,

to obtain the relationships between the measured Doppler contrast ζ̆D and phase φ̆D

and the local ion flow and temperature:
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ζ̆D ≈
1

ĕ0

∫
L

e0(r) exp(−Ti(r)/TC)dl (2.4.31)

φ̆D ≈ −
2πN̂

ĕ0ζ̆c

∫
L

e0(r) exp(−Ti(r)/TC)v(r) · dl, (2.4.32)

where TC is the instrument temperature defined in (2.4.20). Having these simple line

integral relationships enables tomographic inversion of the measured interferogram

properties to obtain local values of flow and temperature. However, note that the

contrast line integral (2.4.29) is weighted by the local emissivity, and the phase line

integral (2.4.30) is weighted by both the local emissivity and temperature (contrast).

Reconstruction of the temperature therefore requires weightings calculated by re-

constructing the emissivity, and reconstruction of the flow requires reconstructions

of the both the emissivity and temperature. This amplifies reconstruction errors and

can lead to very noisy results, since errors in the reconstruction of each parameter

are fed back into the next. If we are only interested in the plasma flow, this can be

alleviated by choosing the instrument delay such that Ti � TC, i.e. the expected

range of ion temperatures is small compared to the instrument temperature. The

local contrast is then very insensitive to ion temperature and we have ζ(r) ≈ ζ̆ ∀ r,

reducing (2.4.32) to:

φ̆D = −2πN̂

ĕ0 c

∫
L

e0(r)v · dl. (2.4.33)

It is then only necessary to reconstruct the emissivity before the flow. Tomographic

inversion of flow data based on this result is discussed in section 4.6.

2.5 Coherence Imaging Spectrometer Designs

We now review several designs of fixed delay interferometer which have been de-

veloped for coherence imaging, principally at the plasma research laboratory at

Australian National University, and deployed on various plasma devices. All of

these instruments are polarisation interferometers: rather than using beamsplitters

and physically separate optical paths for each arm, a single optical path is used

and orthogonal polarisation states act as the two interferometer beams. This design

is much less sensitive to misalignment, vibrations, and thermal expansion effects

than traditional interferometer designs due to the common optical path, and allows

compact, robust and easy to align instrument designs. In order to use orthogonally

polarised states as the interferometer beams, birefringent components are used to
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Axis vertical: 0°
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Axis vertical: 0°
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L

Figure 2.3: Illustration of a simple polarisation interferometer showing the ordinary
(black) and extraordinary (red) wave components. The orientation of the polarisers
and delay plate fast axis are shown by white arrows.

produce the interferometer delay.

2.5.1 Polarisation Interferometers

The simplest possible polarisation interferometer consists of two linear polarisers

with their polarisation axes either parallel or perpendicular to each other, between

which is placed a birefringent crystal plate (‘delay plate’) with its optic axis in the

plane perpendicular to the optical axis and rotated 45◦ relative to the polariser axes.

This configuration is shown in fig.2.3. The light to be measured is then collimated

through this setup. The linearly polarised light transmitted by the first polariser is

resolved into two equal amplitude, in-phase components in the delay plate, polarised

parallel and perpendicular to the crystal optic axis and called the extraordinary

and ordinary components, respectively. These two components experience different

refractive indices in the crystal, ne and no, causing a relative phase delay between

the two components of:

φ0 =
2πLB

λ0

, (2.5.34)

where B = ne − no is the birefringence of the crystal and L is its thickness. The

amount of light transmitted to the output by the second polariser depends on the

overall polarisation state of the light after emerging from the crystal, which depends

on the relative phase between the o and e components.

The action of this system can be analysed using Jones calculus [Hecht, 2002,

pp. 377-379], in which the light propagating through the system is described by a

2-element Jones vector, composed of the electric field complex amplitudes for x and

y oriented polarisation states:
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E =

(
Ex(t)

Ey(t)

)
. (2.5.35)

Each optical component affecting the polarisation is then represented by a 2x2 Jones

matrix, which multiplies the Jones vector. The Jones matrix of a linear polariser

is represented by diagonal coefficients h and v which denote the transmission for

horizontal (x) and vertical (y) polarisations. A delay plate is represented by diagonal

coefficients eiφ0 and 1. Elements rotated about the optical axis are treated by

multiplication of their Jones matrices by the usual 2D rotation matrices, which will

be denoted by Rθ where θ is the angle of rotation in degrees. We assume randomly

polarised input with
〈
E†xEx

〉
=
〈
E†yEy

〉
= I0/2. The Jones vector at the output of

our system is then given by:

Eout =

(
h2 0

0 v2

)
·R45 ·

(
eiφ0 0

0 1

)
·R−45 ·

(
h1 0

0 v1

)
·

(
Ex

Ey

)

=
1

2

(
Exh1h2(eiφ0 + 1) + Eyv1h2(eiφ0 − 1)

Exh1v2(eiφ0 − 1) + Eyv1v2(eiφ0 + 1)

)
,

(2.5.36)

and the intensity at the output, given by
〈
E†outEout

〉
, is:

Iout =
I0

4
(h2

1 + v2
1)(h2

2 + v2
2)[1 + ζP Re(γ(φ0))]. (2.5.37)

This is clearly a 2-beam interference pattern comparable to equation (2.2.8), with

the contrast factor |ζP | ≤ 1 given by:

ζP =
(h2

1 − v2
1)(h2

2 − v2
2)

(h2
1 + v2

1)(h2
2 + v2

2)
. (2.5.38)

This depends on the extinction ratio of the polarisers, which is the ratio of the

transmission of the selected and unwanted polarisation states. With the axes of

the input and output polarisers parallel, if each has infinite extinction ratio (i.e.

transmits only the desired h or v polarisation), ζP = 1. With the input and output

polarisers crossed, i.e. one vertical and one horizontal, ζP = −1, which corresponds

to a 180◦ phase shift of the interferogram. Note also that the overall intensity of

the interferogram is (at best) half of that in (2.2.8) - this is a disadvantage of the

polarisation interferometer approach since the first polariser rejects half the intensity

of the original randomly polarised source. In some cases this rejected light has been

put to use by using a polarising beamsplitter as the input polariser, and directing

the rejected light to other instruments [Michael et al., 2001].
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Figure 2.4: Schematic of an imaging polarisation interferometer. The interferograms
recorded at positions S1 and S2 on the detector give information about the spectra
emitted from points I1 and I2 in the object plane, respectively. Shaded areas indicate
the ray bundles from each point, showing how light from each point is collimated
and angularly multiplexed through the interferometer.

For the realistic case of non-ideal polarisers with finite extinction ratios, |ζP | < 1

and the measured fringe contrast is reduced. In a real instrument, other imperfec-

tions e.g. in the lenses and birefringent components also cause further reduction of

the fringe contrast. This is analogous to the instrument broadening in a dispersive

spectrometer, since it causes apparent broadening of the spectrum due to imper-

fections in the optical system. Notice that because the CIS instrument operates in

the time rather than the frequency domain, the instrument broadening appears as

a multiplicative effect on the measured quantity rather than a convolution. The

total reduction in measured contrast due to instrumental effects is described by a

multiplicative factor ζI < 1, called the instrument contrast.

Imaging

In order to achieve 2D imaging with the type of polarisation interferometer discussed

so far, light from different object positions is angularly multiplexed through the

interferometer. The simplest configuration to achieve this consists of a lens one

focal length away from the source to be imaged, with the interferometer placed

behind it. The lens maps light from different points on the object to collimated

beams traversing the interferometer at different angles. A second lens is then placed

after the interferometer, and a 2D detector array one focal length behind that. The

second lens re-images the object on to the detector, resulting in an image where

each pixel gives the interferogram measurement for its corresponding point on the

object. This setup is illustrated in figure 2.4.

A complication in this type of system is that the refractive index experienced by
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Figure 2.5: Illustration of angles used to describe the incidence direction of light on
birefringent components.

the extraordinary ray in the delay plate depends on the angle of incidence. Therefore,

light traversing the delay plate at different angles, i.e. light from different spatial

points on the object, experiences slightly different phase delays. For light incident

on the delay plate at a small oblique angle, the phase delay can be approximated as

[Steel, 1983, p. 134],[Veiras et al., 2010]:

φ0(θ, ω) ≈ 2πLB

λ0

[
1− θ2

2no

(
cos2(ω)

no

− sin2(ω)

ne

)]
. (2.5.39)

In this expression the angle of incidence is described by θ, the angle between the

plate’s surface normal and the incident ray, and ω, the angle between the plane

of incidence and the plate’s optic axis. These coordinates are illustrated in figure

2.5. This angular dependence of the delay can be seen by observing the image at

the detector in a setup such as figure 2.4, under narrow band illumination of the

entire field of view. Instead of the flat, featureless image expected if the phase delay

was the same at all image points, the angular dependence of the delay creates an

unwanted parabolic fringe pattern, as shown in figure 2.6. Note that the spacing

of the fringes decreases towards the edges of the field of view, i.e. with increasing

incidence angle. For wide field of view instruments, this effect can lead to pixels near

the image edges spanning a significant fraction of a fringe, and any interferogram

measurement from such pixels will suffer from reduced fringe contrast and therefore

reduced measurement performance. This ultimately limits the usable field of view

of this simple instrument design. ‘Field widening’ techniques [Michael et al., 2001]

can be used to greatly reduce the delay variation with incidence angle and overcome

this limit, however these were not employed for the MAST instrument since instead

the incidence angle was kept small by the design of the imaging optics (described in

Chapter 3).
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Figure 2.6: Example photograph of the parabolic fringe pattern from a simple po-
larisation interferometer configuration, taken using a delay plate from the MAST
CIS system illuminated by HeNe laser light. The fringe pattern is caused by the
angular dependence of the phase delay in the birefringent plate.

The simple imaging polarisation interferometer described so far gives a measure-

ment of S(τ) over a 2D object, but only at a single value of τ for each image point:

to make a spectral measurement for coherence imaging the delay must be scanned

over at least 1 fringe. Several different instrument designs for achieving this are now

reviewed, and as with broadband FTS, are divided into spatial and temporal mul-

tiplexing techniques. For more complete information on polarisation interferometer

designs in general, see Françon and Mallick [1971].

2.5.2 Temporal Multiplexing Designs

The first coherence imaging instruments demonstrated on plasma devices used tem-

poral multiplexing techniques. The most straightforward temporal multiplexing de-

signs are based on using a delay plate made from a material which exhibits the linear

electro-optic (Pockels) effect. The birefringence of such a material can be altered by

application of an electric field, therefore by applying a time-varying voltage to the

delay plate (typically of order kV) via attached electrodes the delay can be scanned

in time over a small range without any need for mechanical scanning. Examples of

instruments using this principle are the MOSS camera on the H1-Heliac [Michael

et al., 2001], and a Doppler coherence imaging system used on the the WEGA stel-

larator [Chung et al., 2005]. The MOSS camera used a sinusoidal sweep of the delay

at frequencies of 10s of kHz, and a multi-anode Photomultiplier tube (PMT) as the
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detector. Although this combination enabled high time resolution, PMT arrays only

provide a limited number of detector elements, and the MOSS camera had only 16

spatial channels (the measurement was also only 1D in space due to restrictions of

the viewing configuration). The WEGA instrument instead used a 2D CCD camera

as the detector, allowing many more spatial channels at the cost of time resolution

of the recorded signal: the camera gave 164x164 pixels at approximately 75Hz. In

this case rather than being sinusoidally swept, the delay was stepped synchronously

with the CCD exposure, providing one complete spectral measurement for every 3

camera frames (A minimum of 3 samples of the interferogram are required to recover

the 3 unknowns: brightness, contrast and phase).

An alternative time multiplexing technique is based on using Ferroelectric liquid

crystal (FLC) waveplates rather than electro-optic modulation, which removes the

need for high voltage amplification and drive circuitry. The FLC plates act as

delay plates whose optical axis orientation can be controlled by applying an external

voltage. Half- and quarter-wave delay FLCs can be used together in addition to the

main fixed delay plate [Howard, 2010] to quadrature sample the interferogram. With

no applied voltage, the fast axes of the FLCs are oriented parallel to the main delay

plate, and together contribute an extra 3/4 wave delay to the interferometer. With

a small applied voltage (order 10V), their optical axes can be rotated through 45◦ to

be parallel with the input and/or output polarisers, in which case they act equally on

both polarisation components and do not contribute to the interferometer delay. By

switching the two FLCs between these two states in sequence and synchronised with

the camera, again a spectral measurement is obtained for every 3 camera frames.

An advantage of time multiplexed techniques is that each detector element

records its own independent spectral information for a corresponding point in space,

and therefore spatial information is recorded at the full resolution of the detector.

However, when using CCD or CMOS imaging sensors to provide high spatial reso-

lution, the time required to obtain a single spectral measurement (typically tens of

milliseconds), although much shorter than in conventional FTS, can be long com-

pared to the timescales of plasma phenomena which we may wish to study. This is

a problem because changes in the spectrum over the duration of the measurement

will produce erroneous results, and it limits the range of plasma phenomena which

can be studied. Furthermore, design of the control systems for these instruments is

complicated by the need to step the delay synchronously with the camera framing.
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2.5.3 Spatial Multiplexing Designs

As was mentioned in section 2.3, since only a few samples of the interferogram are

required for CIS measurements it is possible to design instruments where both the

spectral and 2D spatial information are recorded simultaneously on a 2D detector.

The time resolution is then only limited by the detector technology and the available

photon flux. The earliest spatial multiplexing designs, an example of which was

demonstrated on the H1 Heliac [Howard, 2006], produced 4 images at different

delays side-by-side on the detector with a design based on crossed Wollaston prisms

in addition to delay plates. The delay step between each image was 1/4 wave,

and the interferogram properties were then obtained from sums and differences of

the 4 images. In order to accurately interpret the data, the 4 images had to be

carefully registered and any distortion, vignetting etc which could affect the 4 images

differently had to be accounted for. The optical system was also relatively complex

and required careful alignment, and the spatial resolution was reduced in both image

directions by having to fit four images on a single detector.

More recent spatial multiplexing instruments, such as those used for imaging

Charge exchange recombination spectroscopy (CXRS) on the TEXTOR tokamak

[Howard et al., 2010b] and for flow imaging of the divertor plasma on the DIII-D

tokamak [Howard et al., 2011; Weber et al., 2012], have used a ‘spatial hetero-

dyne’ technique, which uses a simpler and more robust optical design. This is the

scheme selected for the present work on MAST. In spatial heterodyne instruments

the plasma image occupies the whole of the detector, while the delay is scanned by

many waves along one dimension of the image (typically by about 1 wave per 10

detector pixels). With the delay scanned in the vertical (y) image direction, and for

now ignoring angle of incidence effects of simplicity, the total instrument phase at

a point x, y in the image is given by:

φI = φ0 + φM + φS(y), (2.5.40)

where φ0 is the fixed delay as before and φS(y) is the additional phase delay due to

the spatial scanning. With φS a linear function of y, this results in a set of horizontal

fringes being superimposed on the plasma image, as shown in figure 2.7(a), which

shows a raw data image from the MAST system. Since each column of pixels now

contains a sinusoidal signal, Fourier or wavelet based processing techniques can be

used to find the phase of the signal, i.e. the fringe phase, at each pixel. By sub-

tracting the fringe phase from a suitable known wavelength calibration image, the

Doppler phase shifts φD(x, y) carrying the plasma flow information can be isolated.
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Figure 2.7: Illustration of the spatial heterodyne coherence imaging concept. (a)
Raw image from the MAST CIS diagnostic, viewing the main chamber SOL in C III
light. The image of the plasma can be seen with a set of horizontal fringes, which
carry the spectral information, superimposed. (b) Magnified section showing the
distortion of the horizontal fringe pattern due to Doppler shifts. The superimposed
red lines are lines of constant fringe phase and trace the shape of the fringes in the
plasma image shown (solid lines) compared to a calibration with no Doppler shift
(dashed lines). See text for further explanation.

These phase shifts can be seen on the image as distortions of the horizontal fringe

pattern, as shown in figure 2.7(b). This shows a close-up section of the raw image

across the high field side SOL, and has lines of constant fringe phase (specifically

φ mod 2π = 0) superimposed, which trace the shape of the fringes. The solid lines

show the phase from the plasma data image while the dotted lines show the cali-

bration; the fringes in the plasma image are seen to be distorted downwards inside

the SOL (left of the image) and upwards outside the SOL (right of the image) with

respect to the calibration, indicating flow in opposite directions in these two regions.

The horizontal fringe pattern can be thought of as a carrier signal which enables the

measurement, and is phase modulated by the Doppler phase and amplitude modu-

lated by the emissivity and contrast. The spatial resolution of this type of system

is anisotropic: in this example with horizontal fringes, each image column provides

independent spectral information, however within an image column, since multiple

pixels are required to obtain the 3 unknown local fringe properties (phase, contrast

and brightness), the spatial resolution is reduced. It is therefore desirable to orient

the fringes to be parallel with the steepest gradients expected in the plasma. Anal-

ysis of spatial heterodyne images, including the anisotropy of the spatial response,

is discussed in more detail in Chapter 4.

The optical design of the spatial heterodyne system adds only a single compo-
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Figure 2.8: Construction and operation of a Savart polariscope. a) Construction and
ray paths, showing the paths of the ordinary (black dashed line) and extraordinary
(dashed red line) rays in each birefringent plate. The direction of the optical axis in
each plate is shown by double-ended arrows. b) Mechanism of angle-dependent path
difference generation due to beam separation. In b) the direction of the displacement
d is in the plane of the page.

nent to the basic fixed delay polarisation interferometer from section 2.5.1: a Savart

polariscope added after the main delay plate. This is a type of polarising beamsplit-

ter [Françon and Mallick, 1971], consisting of two birefringent plates each cut with

their optical axis at 45 degrees to the plate faces. For light incident on one such

plate, the ordinary and extraordinary rays exit the crystal parallel to each other

but laterally separated. As well as the separation, a phase delay is added between

the two components due to the birefringence of the plate. In a Savart polariscope

two identical plates of this type are cemented together, with the projections of their

optic axes on the plate surfaces perpendicular to each other. This arrangement is

shown in fig. 2.8(a). The ordinary ray in the first plate becomes the extraordinary

ray in the second plate and vice versa, cancelling the phase delay due to the material

birefringence. The second plate adds a lateral separation between the two rays at

90 degrees to that from the first, thus the total displacement d is
√

2 times that of

a single plate, and is at 45 degrees to the vertical.

The Savart polariscope is inserted in the interferometer after the main delay

plate, with the principal section of the first plate parallel to the optical axis of the

main delay plate. This displaces the o and e components from the main delay plate

in the vertical direction. This displacement results in a physical path difference

∆ = d sin(θd) between the two beams, where θd is the incidence angle of the light

on the Savart polariscope in the plane of the beam displacement. This is illustrated

in fig. 2.8(b). Since different angles of incidence through the interferometer map to
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different image plane positions, this provides the required position-dependent delay

sweep in the image, along the direction of the Savart plate’s beam separation. The

scale of the fringes on the detector is set by the Savart polariscope thickness and the

focal length of the final imaging lens. Similarly to the operation of the delay plate

for off-axis incidence, the displacement of the two beams has some dependence on

the direction of the incident light, meaning the fringe pattern deviates from the ideal

case of straight horizontal fringes. The phase delay between the eo and oe beams at

the detector is in fact given by [Wu et al., 2007]:

φ(θ, ω) =
2πt

λ

[
n2

o − n2
e

n2
o + n2

e

[cos(ω) + sin(ω)] sin(θ)

+
1√
2

no

ne

n2
o − n2

e

(n2
o + n2

e)3/2
[cos2(ω)− sin2(ω)] sin2(θ)

]
,

(2.5.41)

where t is defined as illustrated in figure 2.8. The coordinates used to describe the

incidence direction are the same as for the delay plate, except that since the optic

axis is no longer in the plane of the crystal face, ω is the angle between the plane of

incidence and the projection of the optic axis of the front half of the polariscope on

to its front face. The combined angle of incidence effects for the Savart polariscope

and delay plate lead to a slightly varying fringe spacing across the image; this can

be seen in figure 2.7(a) where the fringes are more closely spaced on the right-hand

side of the image compared to the left.

2.6 Summary

In this chapter the principles, theory and existing implementations of the CIS tech-

nique have been reviewed. Impurity flows are measured using the Doppler shift of

emission lines from partially ionised impurities, which exist in the SOL and divertor

due to the relatively low plasma temperature. Various phenomena influencing the

spectral line shapes have been briefly reviewed.

The CIS technique uses a 2-beam imaging polarisation interferometer to measure

the spectral coherence of the impurity emission, at a particular value of time (or

equivalently, phase) delay. It was shown in section 2.3 that the measured signal

takes the form of a sinusoidal fringe pattern modulated by a slowly varying envelope.

Measurements of a single fringe at a known value of τ can provide three pieces of

information, given by the fringe brightness, phase and contrast. The relationship

between these measured parameters and the spatially varying plasma flows and

temperatures have been derived.
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Previous implementations of CIS instruments have been reviewed, including tem-

poral and spatial multiplexing systems. Temporal multiplexing systems potentially

offer better spatial resolution at the cost of time resolution and instrument complex-

ity, whereas spatial multiplexing instruments can offer better time resolution and

potentially simpler instrument design at the cost of spatial resolution in at least one

dimension. The spatial heterodyne technique was chosen for the MAST instrument,

and the principles and construction of this type of instrument presented.

In the next chapter, we go on to present the design of a CIS flow diagnostic for

MAST in detail.



Chapter 3

The MAST Coherence Imaging

Diagnostic

In this chapter, the design & specifications of a CIS flow diagnostic for MAST

are presented. We discuss the choice of spectral lines to be measured, as well as

the choices and component specifications of the detector, imaging lenses, filters

and interferometer components. The final design is a trade-off between optimising

flow measurement performance and optimising the instrument cost within the finite

available budget.

3.1 Candidate Spectral Lines

The most abundant impurity species naturally present in MAST plasmas are car-

bon and helium. This is because of the use of all-graphite Plasma-facing compo-

nents (PFCs), and of helium glow discharge wall conditioning between each plasma

shot. The brightest visible emission lines from these impurities, which were targeted

for Doppler coherence imaging, are the C III triplet at 464.9nm, C II multiplet

at 514.2nm, and He II multiplet at 468.6nm. The C II multiplet has 7 compo-

nents, while the He II line has 13 components very closely spaced within a range of

0.055nm. The wavelengths, transitions, transition probabilities Aki and statistical

weights gi and gk for each multiplet component, obtained from the NIST atomic

spectra database [Karmida et al., 2013], are given in tables 3.1, 3.2 and 3.3. To as-

sess the approximate range of Doppler shifts exhibited by these lines, and therefore

required to be measured by the CIS diagnostic, preliminary C II and C III divertor

flow measurements were performed using a high resolution multi-chord spectrom-

eter [Ham, 2012]. These measurements showed a range of line-average flows from

almost zero up to around 30km/s for C III near the X-Point, and which were highly

45
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C III (1s22s3p→ 2s22s3s)
λrest Aki
(nm) Transition (108 s−1) gk gi Irel, calc Irel, obs σI,fitting σI,observed

464.742 3P2 →3 S1 0.726 5 3 0.556 0.543 ±0.009 ±0.010
465.025 3P1 →3 S1 0.725 3 3 0.333 0.337 ±0.009 ±0.007
465.147 3P0 →3 S1 0.724 1 3 0.111 0.120 ±0.007 ±0.006

Table 3.1: Wavelengths, transitions, transition probabilities, statistical weights (up-
per level k, lower i), calculated and measured relative intensities and associated
errors for components of the C III 464.9nm spectral line. Fitting errors σI,fitting are
typical values for a single measurement, while observed variations σI,observed are sta-
tistical variations of the observations over a range of plasma shots and spectrometer
views. Transition data from Karmida et al. [2013]

dependent on position along the 1D fan of sight-lines used.

Since the Doppler CIS technique provides only 3 scalar parameters describing the

spectrum for each spatial point (the brightness, fringe contrast and fringe phase),

not enough information is obtained to distinguish any spectral contamination in

the instrument’s passband from the desired signal. Such contamination can include

both line emission from other species and broadband continuum light, e.g. from

Bremsstrahlung, and can lead to misinterpretation of the 3 measured quantities.

We must therefore ensure that the lines of interest can be isolated from the plasma

spectrum (using suitable bandpass filters) without significant contamination. Also

as we have seen in section 2.4.1, the multiplet structure of the lines must be well

characterised and constant in time and space for accurate interpretation of the

measurements. To assess whether these conditions are met for the candidate lines

on MAST, the visible spectrum near 465 - 468nm and 514nm was investigated using

high resolution dispersive spectrographs. Measurements were made with 4 different

plasma views: midplane, divertor floor, and wide and narrow angle lower X-point

views. The spectrometer views and representative spectra are shown in Figure 3.1.

Each spectrum has been normalised such that the peak intensity in the line of interest

has a value of 1, since we are concerned with the relative level of contaminating

features compared to the line of interest. The most notable contamination is of the

He II line at the divertor floor, which shows a significant background including very

crowded line structures. This is attributed to emission from atomic and molecular

processes in the cold divertor plasma at or close to the divertor strike point, which

is significant relative to the He II line because of the weakness of the line itself

(this background is also visible on the C III measurements only 3nm away, but that

line is sufficiently bright that the background is insignificant). This is expected to

greatly reduce the fringe contrast and distort the fringe phase, making accurate
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C II (2s2p(3P0)3p→ 2s2p(3P0)3s)
λrest Aki
(nm) Transition (108 s−1) gk gi Irel, calc Irel, obs σI,fitting σI,observed

513.295† 4P 3
2
→4 P 1

2
0.389 4 2 0.140

0.289 ±0.003 ±0.007
513.328† 4P 5

2
→4 P 3

2
0.280 6 4 0.151

513.726 4P 1
2
→4 P 1

2
0.155 2 2 0.029 0.026 ±0.003 ±0.003

513.917 4P 3
2
→4 P 3

2
0.124 4 4 0.045 0.042 ±0.003 ±0.004

514.350 4P 1
2
→4 P 3

2
0.773 2 4 0.139 0.142 ±0.003 ±0.006

514.517 4P 5
2
→4 P 5

2
0.649 6 6 0.349 0.344 ±0.003 ±0.015

515.109 4P 3
2
→4 P 5

2
0.416 4 6 0.149 0.157 ±0.003 ±0.004

Table 3.2: Wavelengths, transitions, transition probabilities, statistical weights (up-
per level k, lower i), calculated and measured relative intensities and associated
errors for components of the C II 514.2nm spectral line. Fitting errors σI,fitting are
typical values for a single measurement, while observed variations σI,observed are sta-
tistical variations of the observations over a range of plasma shots and spectrometer
views. †The two shortest wavelength components are combined in measured quanti-
ties since they are too closely spaced to be resolved experimentally. Transition data
from Karmida et al. [2013]

Doppler imaging of the He II line near the divertor strike points unfeasible. The

wide-angle X-point view also shows the same background structure, typically at a

lower level than at the divertor floor but highly variable in time. This time variation

is due to changes in the He II line brightness while the background stays relatively

constant. From the limited amount of data collected with this view it is difficult to

assess how large a problem this is generally, or precisely what part of the plasma is

affected. Both the divertor floor and wide angle X-point views also show a bright

neutral helium line at 471.3nm, however this is well enough separated from He II

not to be of concern. The midplane and narrow angle X-point views do not suffer

significant contamination of the He II line, and show a very clean spectrum suitable

for coherence imaging.

Due to limited availability of the spectrometers used, the C II line was only

measured at the narrow angle divertor view. This consistently shows a very clean

spectrum, with only a small molecular carbon emission feature at 516.5nm.

The C III measurements show a number of oxygen (O II) emission line compo-

nents very close to the CIII line, including one within the C III multiplet itself at

464.9nm. These are strongest at the divertor floor and wide-angle X-point views,

however even in the worst case the intensity in the 464.9nm O II line is < 5% of

that in the C III multiplet. The magnitude of the error on C III flow measurements

due to this contamination is expected to be comparable to the flow measurement

noise floor, and is discussed in more detail in section 4.5.
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Figure 3.1: Measured spectra of the He II 468.6nm, C II 514.2nm and C III 464.9nm
emission lines on MAST, at the midplane (blue lines), outer divertor target (pink
lines), and near the X-point with wide and narrow angle views (red and green
lines respectively). Spectra are normalised so that the peak of the line of interest
has an intensity value of 1. The bottom-right panel shows the spectrometer views
projected on to the poloidal cross-section of MAST, colour coded to correspond to
the plotted spectra. Narrow angle X-point data were collected by Chiel Ham and
James Harrison [Ham, 2012].
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He II (n = 4→ n = 3)
λrest (nm) Transition Aki (108 s−1) gk gi Irel, calc

468.537 4d 2D 3
2
→ 3p 2P 1

2
0.939 4 2 0.082

468.541 4p 2P 3
2
→ 3s 2S 1

2
0.491 4 2 0.043

468.552 4s 2S 1
2
→ 3p 2P 1

2
0.098 2 2 0.004

468.557 4p 2P 1
2
→ 3s 2S 1

2
0.491 2 2 0.021

468.570 4f 2F 5
2
→ 3d 2D 3

2
2.060 6 4 0.269

468.570 4d 2D 5
2
→ 3p 2P 3

2
1.127 6 4 0.147

468.576 4p 2P 3
2
→ 3d 2D 3

2
0.006 4 4 0.001

468.576 4d 2D 3
2
→ 3p 2P 3

2
0.188 4 4 0.016

468.580 4f 2F 7
2
→ 3d 2D 5

2
2.207 7 6 0.384

468.583 4f 2F 5
2
→ 3d 2D 5

2
0.147 6 6 0.019

468.588 4p 2P 3
2
→ 3d 2D 5

2
0.050 4 6 0.004

468.591 4s 2S 1
2
→ 3p 2P 3

2
0.196 2 4 0.009

468.592 4p 2P 1
2
→ 3d 2D 3

2
0.056 2 4 0.002

Table 3.3: Wavelengths, transitions, transition probabilities, statistical weights (up-
per level k, lower i), and calculated relative intensities for the He II 468.6nm line.
Transition data from Karmida et al. [2013]

For both carbon lines, Gaussian peak fitting to each multiplet component was

used to determine the relative component intensities. Here these are defined as

the fraction of the total light in the multiplet in each component. Data from all

of the spectrometer views and from multiple plasma shots were included, to assess

any variation of the component ratios. The resulting relative intensities are shown

in Tables 3.1 and 3.2. These are compared with the expected relative intensities

calculated by assuming the upper states are populated according to their statistical

weights, giving the ratio of two line components as [Chung, 2004, p. 23]:

I

I ′
=
Akigkλ

′

A′kig
′
kλ
. (3.1.1)

The measured and calculated relative intensities are found to be in very good agree-

ment, and variations observed over different spectrometer views and shots were very

small - in most cases very close to the typical fitting error. This is a good indica-

tion that the multiplet structure of these lines is as expected and can be considered

constant. This analysis was not carried out for the He II line since the very fine

multiplet structure was not resolved.

Overall the C III and C II lines on MAST are good candidates for Doppler

coherence imaging. The He II line at the midplane is also well suited, however in

the divertor care must be taken with this line, particularly at the strike points where
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accurate Doppler measurements are not expected to be possible due to background

contamination.

3.2 Design Overview

The MAST coherence imaging system is based on the spatial heterodyne scheme

described in Section 2.5.3. This allows snapshot imaging at high time resolution

whilst maintaining a very simple and robust optical design. A schematic of the

optical system is shown in Figure 3.2. The first optical element l1 is a commercial

camera zoom lens with focal length f1 adjustable between 17-70mm at f/2.8-4.5,

which produces a real demagnified image of the plasma. This intermediate image

is placed at the film/sensor plane of a second camera lens l2, with f2 = 105mm at

f/2.8, and with its focus set to infinity. This arrangement collimates the light through

the interferometer components, with light from different points in the field of view

traversing the interferometer at different angles. Using this two-lens configuration

rather than a single lens acts to reduce the beam angles through the interferometer

for a given field of view, allowing good control of field effects in the birefringent

crystals and interference filters even for wide fields. It also allows trivial adjustment

of focus and field of view using the normal focus and zoom controls of l1. The choice

of specifications for the lenses used is discussed in detail in section 3.4.

In the collimated region after l2 is a temperature stabilised enclosure housing

the interferometer components: a linear polariser followed by an Alpha barium

borate (BaB2O4) (α-BBO) delay plate to provide the interferometer fixed delay,

and a Savart polariscope to create the delay scan across the detector, followed a

second linear polariser with its axis parallel to the first. The delay plate and Savart

polariscope optic axes are parallel with each other and at 45◦ to the polariser axes.

A third camera lens l3 with f3 = 150mm at f/2.8 and with its focus set to infinity

forms the final image on the detector: a 1024x1024 pixel CMOS camera capable of

frame rates up to 3kHz. An interchangeable 50mm diameter band pass interference

filter is mounted on the front of the final lens, to isolate the emission line of interest

from the plasma spectrum. The optical system is mounted directly outside the

MAST vacuum vessel, and views the plasma through diagnostic ports at either the

lower divertor or midplane. The field of view of the instrument for the widest zoom

setting of f1 = 17mm is 39◦, and can be adjusted down to 9◦ at f1 = 70mm. At

a viewing distance of approximately 2.2m where most light is collected on MAST,

this corresponds to pixel scales in the plasma between 1.5mm (wide angle) - 0.4mm

(narrow angle), and spatial resolution perpendicular to the fringes of approximately
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20mm (wide angle) - 5mm (narrow angle).

In the following sections various aspects of the instrument specifications and

design are discussed in more detail.
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Figure 3.2: Schematic showing the layout of the MAST coherence imaging system.
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3.3 Detector

The detector used was a Photron APX-RS high speed video camera, on loan from

Rutherford Appleton Laboratories. This uses a proprietary CMOS image sensor

with 1024×1024 pixels and 17µm pixel size to record 10-bit monochrome images,

and is capable of a maximum frame rate of 3kHz when reading out the full detector.

Images are captured to a 2.6GB buffer onboard the camera, then transferred to

the controlling computer via firewire after recording has ended. This camera was

chosen primarily for its high frame rate capability, to take advantage of the high

light flux available from viewing the plasma directly. In the spectral region of

interest the camera has a quantum efficiency of approximately 45% according to the

manufacturer’s specifications. Since this camera had also been operated on MAST

previously for fast visible imaging, it was proven to operate under the magnetic field

and radiation conditions adjacent to the MAST machine and was already integrated

into the diagnostic triggering and data acquisition systems.

3.4 Imaging Optics

The specifications of the lenses & bandpass filters are discussed here together since

they are inter-dependent. This is because the filters must cleanly isolate the spectral

lines of interest over the entire image, meaning they must operate satisfactorily at

a range of incidence angles, defined by the specifications of the lenses. This must

be achieved while also utilising the full available area of the detector, maximising

throughput and minimising vignetting, and obtaining the required field of view

of > 35◦ in the plasma. The final choice of lens models and filter specifications

were found to provide a good compromise between these concerns, with the zoom

lens providing additional flexibility in the field of view. The lenses used were all

commercial still photography lenses designed for F-Mount Digital single lens reflex

(DSLR) cameras. These were chosen for their ability to cast a large image circle

sufficient to fill the image sensor of the Photron camera, which has a diagonal sensor

size similar to APS-C format DSLR cameras, and because of their optimisation for

high quality wide angle imaging. The Photron APX-RS camera also features an

F-Mount interface as standard, allowing trivial interfacing of the final lens with the

camera. The line selection filters were 3-cavity interference filters, the specifications

of which are discussed in section 3.4.2.

In the following sections specific performance considerations for the imaging

system are described in detail. First, the model forming the basis of the design and

performance calculations is described.
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3.4.1 Imaging optics model

Since the lenses used in the system are commercial photography products, their

detailed optical prescriptions were not readily available to produce a full physical

model of the imaging system. However the manufacturer of the lenses, Sigma Imag-

ing, was able to provide the locations of the entrance and exit pupils and nodal

points for various lenses under consideration, and from this it was possible to pro-

duce the estimates for the vignetting, throughput & filter performance discussed

in the following sections. The model essentially treats each camera lens separately

with a thick lens model moving front-to-back through the system. The geometry of

this model is illustrated in figure 3.3, which shows the plasma-facing lens and in-

termediate image region of the system with light from the edge of the field of view.

For each lens the distances of the entrance and exit pupils from the image plane, lent

and lex in Fig.3.3, were provided by the manufacturer. The image plane is a fixed

distance from the lens body given by the flange-to-focal distance for F-Mount lenses

of 46.5mm. The entrance pupil size rent is given by the focal ratio and focal length

of the lens, and the exit pupil size rex is determined from this and the pupil mag-

nification. The pupil magnification was calculated from the pupil and nodal point

locations [Jenkins and White, 1981], except for the 17-70mm lens where the nodal

point locations were not available. In this case, the value of pupil magnification was

estimated by visual inspection of the lens and noting that the exit pupil is just not

vignetted by the rear element of the lens for an on-axis source.

For each lens, illumination of the entrance pupil is determined either by the

results from the previous lens, or for l1 assumed to be uniform across the entire

pupil. Based on this 2D illumination pattern, a bundle of rays is launched from

the exit pupil through a perfect geometrical focus at the image plane (or perfectly

collimated in the case of the collimated region). The image height yi is determined

from the thin lens equation. The rays are checked for vignetting at each aperture in

the system and discounted accordingly, as shown in Fig.3.3 where vignetted rays are

shown in grey. The locations of the remaining rays reaching the entrance pupil of the

next lens then define the illumination pattern used to model that lens in the same

manner. The intensity lost due to vignetting in the complete system is calculated

by comparing the starting number of rays initialised at the entrance pupil of l1 with

the number which successfully reach the detector. The results from this model are

used in the filter performance and étendue calculations presented in sections 3.4.2

and 3.4.3.
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Figure 3.3: Illustration of the model geometry used to determine vignetting and
other optical parameters of the diagnostic, illustrating modelling of the light through
the intermediate image plane of the system. Rays shown in blue are accepted by
the second lens while rays shown in grey are vignetted.

3.4.2 Filter Performance

The bandpass filters used for spectral line selection were 3-cavity interference filters.

These are constructed from stacks of dielectric layers of different refractive indices,

to form back-to-back optical cavities in which interference between multiple reflec-

tions creates a narrow band pass profile. Triple cavity designs such as those used

here create a filter profile with a flat top and steep edges. The main performance

concern when using such filters in an imaging system is that the peak transmission

wavelength is blue-shifted for light incident on the filter at an oblique angle. The

shifted bandpass centre λθ for an incidence angle θ (measured from the normal to

the filter surface) is related to the value at normal incidence λ0 by [Baillard et al.,

2006]:

λθ = λ0

√
1− sin2 θ

n∗2
, (3.4.2)

where n∗ is the effective refractive index of the filter. There are three main negative

effects the filter shift can have for our application: 1) Vignetting of the image as

the band pass is shifted away from the line of interest towards the image edges, 2)

Induced changes in the line shape or multiplet component ratios across the image due

to the slopes of the filter profile being shifted across the multiplet, and 3) Admission

of unwanted spectral features in parts of the image as the band pass shifts. The

combination of filter centre wavelength, bandwidth, band pass shape, n∗ and range

of incidence angles determines the size of these effects. Of these, the band pass

shape and n∗ were essentially fixed by the type of filters used, while the rest were

free parameters in the design (the range of incidence angles being set by the choice
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of lenses).
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Figure 3.4: Estimated filter transmission profiles for a CIII filter, at the image centre
and edges, with the filter placed in the converging (top) and collimated (bottom)
regions. The structure of the C III multiplet is shown in red.

Two possible filter locations were considered for the system: near the intermedi-

ate image plane in the converging beam region between l1 and l2, or in the collimated

region between l2 and l3 along with the interferometer components. To assess the

performance of each option, filter transmission curves were estimated for both cases,

starting from a theoretical transmission curve for normal incidence provided by the

filter manufacturer, Andover Corp. The calculations were performed for points at

the centre and extreme edge of the field of view to assess the uniformity over the

image. In the collimated region, profiles for the image edge were estimated as a shift

of the provided normal incidence profile by an amount given by equation (3.4.2),

using

θedge = tan−1

(
d

2f3

)
(3.4.3)

at the image edge where d is the diagonal sensor size. This neglects broadening of

the band pass shape which occurs for oblique incidence, however for the small beam
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angles used here this is not expected to be a significant effect. For the converging

beam region, the model described in section 3.4.1 was used to estimate the range

of ray directions passing through the filter at the image centre and edge, and the

total bandpass shape was calculated by summing over the shifted profiles for each

ray. The resulting filter profiles for C III and f3 = 150mm are shown in figure

3.4. For the converging beam case at the centre of the field of view, the range

of ray angles causes the flat top of the pass band to become significantly rounded

and the edges to become very shallow compared to the collimated case. Note that

the different C III multiplet components experience different transmission, which

changes significantly between the centre and edge of the field of view. The resulting

apparent line structure change between different image points would be difficult to

accurately account for in the data analysis. The rounding effect of the band shape

is less pronounced at the edge of the field of view, due to a reduction of the range

of ray angles through the filter because of vignetting. Due to the large variation in

the profile shape over the image and the rounding of the filter profile, this option

was deemed unsuitable and the filter was placed in the collimated region. As can

be seen in figure 3.4, for this configuration the entire C III multiplet can be kept in

the flat top of the filter over the whole field of view. Having the filter attached to

the final lens is also advantageous since it acts to reject ambient light, and makes

access for interchanging the filter much easier.

The filters for the MAST system were ‘semi-custom’ components, meaning the

centre wavelength and FWHM could be freely specified. To determine the optimum

values, the filter performance was assessed over a 2D parameter space defined by

the filter centre and FWHM. The criteria for acceptable performance were chosen

to be: (1) Transmission of the line of interest at the field of view edge must be

> 80% of that at the image centre, (2) Distortions of the fringe phase between the

image centre and edge, due to changing ratios of multiplet components or spectral

contamination, must be equivalent to a flow of < 1km/s and (3) Admission of

significant nearby spectral lines must be < 2% across the image. Fulfilment of

these criteria was assessed by taking transmission profiles for the image centre and

edge, calculated as above, and multiplying these by a (non Doppler shifted) model

spectrum based on the results in section 3.1. The intensity and fringe phase for the

resulting spectra were then calculated at the image centre and edge and assessed

against the performance criteria. This was performed over the 2D filter parameter

space using shifts and width scaling of the theoretical transmission profile. The

final filter specifications were fixed by positioning a 2D box representing the filter

manufacturing tolerances in the parameter space, such that the area inside the box
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Figure 3.5: Contour plots illustrating the bandpass filter specifications in a param-
eter space defined by centre wavelength and Full width at half maximum (FWHM).
Unshaded regions of the parameter space give acceptable filter performance, and the
final filter specifications are shown as blue rectangles.

satisfied the performance criteria. These calculations also contributed to the lens

choices, since the chosen lens combination was required to give a usable area of

the parameter space large enough to encompass the filter manufacturing tolerances.

Plots of the filter parameter spaces for each spectral line with f3 = 150mm are shown

in figure 3.5, where the white regions represent areas of acceptable performance and

the boxes represent the manufacturing tolerances of the final filter specifications

(+0.5/−0nm in centre wavelength and ± 0.5nm in FWHM) . It was not possible in

all cases to completely avoid regions of poor performance, because the filter FWHM

could only be specified in 0.5nm increments. Details of the specifications for each

filter are included in Appendix A.
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3.4.3 Collecting Power & Vignetting

It is clearly desirable to maximise the light collecting power of the optical system, in

order to allow the shortest possible exposure times and therefore maximum frame

rates and to maximise the image SNR. It is also desirable to achieve uniform per-

formance across the entire image, i.e. to minimise vignetting.

The light collecting ability of any optical system can be quantified using the

étendue, or geometrical extent, of the collected light, which is a measure of the

spatial and angular extent of the light which can be collected by the system. It

is given numerically by E = AΩ, where A is the area of the light source and Ω is

the solid angle subtended by the optical system’s entrance pupil, as viewed from

the source. The product of the source radiance and étendue give an upper limit

for the amount of power transferred from the source to the detector by the system.

Étendue is a conserved quantity both for light propagating in free space and in ideal

reflection and refraction, and so is conserved throughout a lossless optical system.

In order to estimate the per-pixel throughput of the MAST coherence imaging

system over the whole field of view, first the étendue of the light collected by l1 in

isolation was calculated. This is given by El1 = ApixΩl1 , where Apix is the area of one

detector pixel projected into the plasma, and Ωl1 is the solid angle subtended by a

circular aperture the size of l1’s entrance pupil as seen from the plasma. The fraction

of this light reaching the detector, FT , was then estimated using the model described

in section 3.4.1. The overall per-pixel effective étendue is then given by Eeff = El1FT .

This was calculated for the various combinations of lenses under consideration, for

image locations from the detector centre to the far corners, and the final selection of

lenses was made based on a trade-off between effective étendue at the image centre,

minimising vignetting, and meeting the filter performance criteria discussed in the

precious section. The results of the effective étendue calculation for the final system

design are shown in figure 3.6, for the extreme zoom settings of l1. Excluding the

image corners, the illumination at the edge of the detector is between 55 - 60% of

that at the centre. The difference between the widest and narrowest zoom settings

is also relatively small, with the effective étendue at f1 = 70mm approximately 80%

or more of that for f1 = 17mm over the whole image. Note that this estimated

collecting power does not take into account the losses due to the polarisers used in

the interferometer or losses due to reflections etc. These results are tested against

experiment in chapter 5.
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Figure 3.6: Estimated per-pixel effective étendue across the detector for the widest
and narrowest zoom settings.

3.5 Interferometer Components

The interferometer components consist of two linear polarisers, a delay plate to pro-

duce the fixed interferometer delay and a Savart polariscope to scan the delay across

the image, laid out as in figure 3.2. The delay and Savart plates used are made from

α-BBO, chosen for its combination of large birefringence (ne − no ≈ −0.12) and

the low sensitivity of its refractive indices to temperature (small thermo-optic coef-

ficients). The latter property is important to maximise the calibration stability of

the instrument with respect to changes in ambient temperature: thermal expansion

and changes in refractive index with temperature result in a change of the instru-

ment phase φ0, and hence of the absolute flow calibration. In order to minimise this

effect, the α-BBO components were mounted (along with the polarisers) in a tem-

perature controlled enclosure. The design of the enclosure and mounting system is

one developed at Australian National University specifically for this purpose, based

on a modified filter temperature controller from Andover Crop. The enclosure and

mounts for the MAST system were purchased from Australian National University.

The polarisers and α-BBO plates are mounted in custom mounts with a series of

notches at 22.5◦ around their outer edge; these then slide on to two guide rails inside

the enclosure to maintain the correct orientation of the components. This system

allows easy swapping of interferometer components and/or reorientation of the com-

ponents in 22.5◦ increments. A photograph showing the interior of the enclosure and

optic mounts is shown in figure 3.7. The temperature regulation accuracy quoted

by the manufacturer of the filter oven is ±0.25◦C.
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Figure 3.7: Photographs showing (left) the interferometer components in their cus-
tom mounts and (right) an end-on view of the temperature stabilised cell in which
the components are mounted, with the end cap removed. One of the two white
plastic guide rails which hold the orientation of the optics can be seen.

3.5.1 Choice of Fixed Delay (Delay Plate Thickness)

The interferometer group delay N̂ is chosen to achieve good sensitivity of the in-

strument to flows, while keeping the temperature sensitivity low to ensure validity

of the line integral (2.4.33) used for tomography. The most important concern for

achieving good flow sensitivity when measuring multiplet lines is maximising the

fringe contrast, which goes through numerous maxima and minima with increas-

ing N̂ . From the results in Chapter 2, the expected contrast for multiplet spectral

lines dominated by Doppler broadening is given by ζ(N̂ , Ti) = ζM(N̂) exp[Ti/TC(N̂)],

where ζM(N̂) = |γM| is the multiplet contrast defined by equation (2.4.23), Ti is the

ion temperature and TC is the characteristic instrument temperature.

The expected contrast for each of the candidate lines on MAST was calculated

as a function of group delay and ion temperature using this expression, with the

multiplet contrast calculated from the results in section 3.1. Zeeman splitting was

also included in the calculations of ζM using the model in section 2.1.1, for a mag-

netic field of 0.5T and viewing angle tangential to the magnetic field, however this

was found not to have a significant effect on the choice of delays for optimum con-

trast. The thickness of delay plate corresponding to a given group delay is given

by L = N̂λ0/κ0B0, where subscript 0 signifies quantities evaluated at the centre-

of-mass wavelength of the line of interest. The values for birefringence B0 and the

dispersion correction κ0 in α-BBO were calculated using the Sellmeier equations
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[Kato, 1986]:

no(λ) =

(
2.7359 +

0.01878

λ2 − 0.01822
− 0.01354λ2

)1/2

(3.5.4)

ne(λ) =

(
2.3753 +

0.01224

λ2 − 0.01667
− 0.01516λ2

)1/2

, (3.5.5)

in which λ is measured in microns. The results are shown in figure 3.8. The beat

pattern due to the multiplet structures of the C III and C II lines is seen to dominate

for these lines, and is particularly complex for the C II line due to the large number

of components and wide spacing.

To maximise flexibility of the system and allow optimisation for the different

species, three interchangeable delay plates of different thickness were purchased,

indicated in Fig.3.8 by dashed vertical lines. The first of these at 4.6mm thick cor-

responds to N̂ ≈ 1400 waves at 465nm, and was optimised for the contrast of the

C III interferogram. Note that the contrast changes very slowly with temperature

for this delay value, which ensures the validity of the simplified tomography prob-

lem in equation (2.4.33). The second plate was 6.5mm thick and optimised for a

narrow contrast peak in C II at approximately N̂ ≈ 1700 waves, again with very

low temperature sensitivity. This is also expected to produce good results for C

III: although the fringe contrast for this delay is lower than the 4.6mm plate, the

increased phase sensitivity to flows at the larger delay counteracts this effect and

the overall flow sensitivity is expected to be at least as good. The third delay plate

at 9.8mm is not expected to be optimal for flow measurements, and was chosen

to investigate temperature measurements and the effect of the larger temperature

sensitivity on the flow results. It also targets the high contrast peak for the C II line

at N̂ ≈ 2500 waves. The temperature sensitivity of this delay is particularly large

for He II.

3.5.2 Choice of fringe period (Savart polariscope thickness)

As discussed briefly in Section 2.5.3, the nature of the spatial heterodyne measure-

ment scheme leads to reduced spatial resolution in the direction perpendicular to

the superimposed fringes. In fact, as will be seen in Chapter 4, the spatial resolution

in this direction is related to the spatial period of the fringes (i.e. the number of

pixels per fringe), and smaller fringe periods are desirable to obtain high quality

images in the presence of sharp image details. However, smaller fringe periods also

result in a reduced instrument contrast, lowering the SNR of the fringes, due to 1)

Reduced performance of the final imaging lens at higher spatial frequencies, and 2)
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Figure 3.8: Calculated fringe contrast for the candidate spectral lines on MAST, as
a function of delay plate thickness (group delay) and ion temperature. Black dotted
lines indicate the chosen delay plate thicknesses.
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Each detector pixel spanning, and therefore averaging over, an increasing fraction

of a fringe. Choice of fringe period is therefore a compromise between spatial reso-

lution and noise handling. Previous Doppler coherence imaging systems have used

periods of approximately 10 pixels [Howard et al., 2011], which on the MAST sys-

tem gives a spatial resolution of a few centimetres for the widest angle views. From

equation (2.5.41), taking only first order terms and ω = 45◦, the overall thickness

of the Savart polariscope required to obtain a given fringe spacing at the centre of

the detector is:

Lsp =
√

2f3

(
λ0

dp

)(
n2
o + n2

e

n2
o − n2

e

)
, (3.5.6)

where d is the desired fringe period in pixels and p is the pixel size. For the MAST

system and a 10 pixel fringe spacing, this gives a thickness of 7.7mm. Such a

component was not available, however 4mm and 2.2mm parts were used together

to obtain a fringe period of approximately 12 pixels at 465nm. Due to the longer

wavelength, the fringe spacing is increased by approximately 10% for the C II line

relative to C III and He II.

3.6 Mechanical Design & Plasma Views

The diagnostic was designed to be compatible with pre-existing camera mounting

locations on MAST. These use sections of Newport X48 optical rail, commonly

cantilevered from the MAST vacuum vessel, from which cameras are supported

using standard rail carriers. The coherence imaging system was therefore designed

as a single unit which could be supported from an X48 optical rail. The completed

diagnostic occupies a compact space envelope of 84cm × 23cm × 22cm (L×W×H),

and has a total mass of 11.9kg. The optics and camera are mounted on a 10mm

thick custom anodised aluminium base plate. The system is then supported from

the X48 rail with two brackets attached to the base plate, one near the rear of the

base plate using two rail carriers and a smaller one near the front with a single rail

carrier. Photographs of the instrument mounted for testing in the lab and at the

lower divertor view on MAST are shown in figure 3.9.

To describe the viewing locations of diagnostic systems on MAST, the vacuum

vessel is divided toroidally into 12 segments (‘sectors’), each with upper, lower and

equatorial ports for diagnostic and electrical feedthrough access. The primary goal

of the diagnostic was to investigate divertor flows, and as such the primary plasma

view was a wide angle view of the lower divertor covering both strike points and

divertor legs up to the X-Point. This used a window in the lower port on sector 7,
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Figure 3.9: Photographs showing the completed MAST coherence imaging diagnos-
tic. Left: set up in the lab, indicating the optical components and with a 30cm ruler
for scale. Right: Mounted at the MAST divertor.



3.7. Summary 66

denoted HL07, usually occupied by a filtered divertor camera (DivCam). The view

of the X-point in DND plasmas was somewhat limited in this view by the P3 and P4

poloidal field coils which obstructed the view at the top of the image. This was less

problematic for LSND plasmas since the X-point is typically lower in the vacuum

vessel in this configuration.

In order to perform measurements of the main chamber SOL including diagnos-

tic performance and calibration assessments, three views of the main plasma from

equatorial ports were also available. These included one from sector 7 viewing small

major radii R either side of the centre column (‘HM07 radial’), one from the same

port viewing large enough R to capture the both the inboard and outboard edges

of the plasma (‘HM07 tangential’), and one viewing small R from sector 2 (HM02).

The availability of these ports during the campaign and the viewing angles available

were determined by interactions with other diagnostic systems.

The different plasma views described above are illustrated in Figure 3.10. For

each view the extent of the field of view, and the extent of the ‘tangency plane’

(projected on the plasma poloidal cross-section), are shown. The tangency plane

is a curved surface normal to the camera lines of sight, where the lines of sight

are tangent to the toroidal direction. Images from the diagnostic are dominated

by light emitted close to this surface, hence its extent in the poloidal cross-section

defines the parts of the plasma for which useful data is obtained. Note that while

the tangency plane extends on both sides of the centre column for some views, its

extent in the poloidal cross-section is always shown as single-sided in Fig. 3.10. The

irregular shapes of the tangency plane outlines are due to viewing obstructions by

in-vessel components not shown in these simplified diagrams. The focus distance

of the diagnostic is set to coincide with the tangency plane, which on MAST is

typically 2.1m from the diagnostic.

3.7 Summary

In this chapter design and specifications of the MAST CIS flow diagnostic have

been presented. The best candidate spectral lines for CIS on MAST are the C

III 465nm triplet, C II 514nm multiplet and He II 468nm multiplet, due to their

high brightness. High resolution spectral measurements of these lines have been

performed and they have found to be suitable in terms of line structure and lack

of contamination. A simplified model of the imaging system was developed and

used to choose the optimal combination of lenses and filters for the instrument.

The main interferometer delay is provided by 3 interchangeable α-BBO delay plates
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Figure 3.10: Illustration of the CIS plasma views used on MAST, showing (left) side
views of the field of view, (centre) top views of the field of view (thick black lines
show the tangency plane location), and (right) the extent of the tangency plane
projected on the poloidal cross-section.
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(used one at a time) of 4.6mm, 6.5mm and 9.8mm thickness, chosen to optimise flow

measurements based on calculations of the fringe contrast. The spatial heterodyne

fringe pattern is produced by two Savart plates together producing a fringe spacing

of 12 pixels. A table summarising all of the component specifications is given in

Appendix A. Four different plasma viewing configurations are available for CIS

measurements: three for the main SOL and one for the lower divertor, as shown in

figure 3.10.

The next chapter presents the data analysis techniques for extracting flow in-

formation from the raw diagnostic images, some of which were used to analyse the

results in this chapter. Some of the results from this chapter will also be used in

forward modelling of the diagnostic to estimate flow measurement errors.



Chapter 4

Data Analysis & Measurement

Uncertainties

This chapter describes the techniques used to extract the spectral information of in-

terest from MAST CIS data, and presents numerical investigations of related aspects

of the instrument performance. Both of these areas require the use of simulated data

containing features similar to those expected in the real measurements. The method

for generating such simulated data is therefore presented first.

4.1 Generation of Simulated Data

4.1.1 Line-integrated spectra

For the testing of tomographic inversion techniques it is desirable to have synthetic

line-integrated data corresponding to known profiles of local plasma conditions. Us-

ing realistic plasma profiles means that such images should have similar features to

those seen in the real data, making them suitable for testing all stages of the anal-

ysis chain. To this end, simulated line-integrated spectra were generated based on

MAST simulation results from the OSM-EIRENE code package [Lisgo et al., 2005].

This is not a predictive code but an interpretive model constrained by experimental

data. It uses an onion skin model (OSM) for the deuterium plasma and the Monte-

Carlo neutral hydrogen code EIRENE for neutrals. The particular simulation used

here is for MAST shot 25028 at t = 0.31s; this was an L-Mode LSND plasma with

1MW of NBI heating, performed to investigate divertor detachment on MAST [Har-

rison, 2010]. The simulation results were provided by Dr James Harrison at CCFE.

While they do not include impurities, which are what we actually measure with

the CIS diagnostic, the general structure in the 2D profiles should be sufficiently

69
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similar to what appears in real data for the development and testing purposes here.

The simulation outputs of interest were ion temperature, parallel flow speed and Dα

emissivity, used in place of impurity emissivity. The vector magnetic field was ob-

tained from the EFIT magnetic equilibrium reconstruction code for the same shot

and time. Both the plasma parameters and magnetic field profiles were specified

in 2D in the poloidal (R,Z) plane and assumed to be toroidally symmetric. Line

of sight vectors for the simulated diagnostic were generated using a simple pinhole

camera model, with the design values for the field of view and positioning of the

camera. Since the main application of the diagnostic was in the divertor, the simu-

lated diagnostic view considered here corresponds to the wide-angle lower divertor

view from port HL07.

Calculation of the line integrated spectra proceeded by iterating over each line-

of-sight (i.e. each virtual detector pixel), and for each one stepping along the line

of sight away from the camera. The lines of sight were considered to be narrow

pencil beams, i.e. the finite depth of field and pixel size of the real system were

not taken into account. At each step along the sight-line, the current position

in the R,Z plane was calculated, and the local plasma parameters were obtained

by interpolating the input plasma and B field data to that R,Z location. The

positions and intensities of the spectral line components emitted at that plasma

position were determined from the line multiplet structure, Zeeman splitting model

described in 2.1.1 and line-of-sight Doppler shift, determined by the parallel flow

velocity and the angle between the local magnetic field and the sight-line. Note that

the flow is assumed to be entirely parallel to the magnetic field for the purposes

of generating the simulated spectra. Gaussian line profiles, with widths given by

Doppler broadening for the local ion temperature, were then used to represent each

line component. These local spectra along the line of sight were all calculated at

the same sampling points in wavelength, and the final line integrated spectrum was

computed by integrating the intensity at each wavelength along the line of sight.

An example line integrated spectrum for C III is shown as the blue line in Fig. 4.1,

along with the spectrum which would be emitted from a homogeneous source with

the same average flow, temperature and magnetic field for comparison (grey line).

The line-integrated profile is highly distorted, and visibly consists of a double peak

at each line component: this is due to contributions from distinct brightly emitting

plasma regions with different flow speeds. While this example is an extreme case of

distortion of the line shape, the same principle applies to all sight-lines and illustrates

why line-of-sight spectroscopic measurements can be very difficult to interpret when

only limited spatial coverage of the plasma is available.
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Figure 4.1: Example synthetic line integrated spectrum for C III in the MAST
divertor (blue line). The dotted grey line shows the spectrum for a single point with
the average conditions along the line-of-sight, for comparison.

After repeating this procedure for all simulated sight-lines, the result is a set

of simulated line-integrated spectra for the light arriving at each virtual detector

pixel. In order to use these results for data analysis development, they must then

be converted into simulated data images.

4.1.2 Image generation from simulated spectra

Simulated data images were created pixel-by-pixel from the calculated line-integrated

spectra. For each pixel, the position on the detector was mapped to incidence angles

through the interferometer components (θ, ω) according to θ = arctan(
√
x2 + y2/f3)

and ω = arctan(x/y), where x, y are the pixel’s position on the detector in the same

units as f3. For each wavelength sample in the spectrum, the detected spectral

intensity at that wavelength was calculated according to:

S(λ) =
I(λ)

2
(1 + ζI cos(φDelay(θ, ω, λ) + φSavart(θ, ω, λ)), (4.1.1)

where φDelay and φSavart are given by equations (2.5.39) and (2.5.41) respectively

and I(λ) is the line integrated spectral intensity from the plasma. Filter effects can

be included by multiplying I(λ) by the filter transmission profile, based on data

from the manufacturer and the θ-dependent band pass shift from equation (3.4.2).

The instrument contrast ζI is an input parameter accounting for the real instrument

contrast, since realistic contrast reducing effects in the optics were not included in

these simulations. The total intensity in the pixel is then given by
∫
S(λ)dλ. Once
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this has been performed for all pixels the complete image is scaled to the desired

brightness, typically similar to that seen in the real plasma data. Read noise and

shot noise can be included by adding Gaussian and Poisson distributed random

numbers, respectively, at levels consistent with the real detector as measured in

Section 5.1. An example simulated C III image is shown in figure 4.2(a). As with

the real data, to demodulate these simultaed images a suitable calibration reference

is required, i.e. a flat field image with no Doppler shift. This was generated in the

same way as the simulated data image, using the un-shifted spectrum of the line of

interest for every pixel rather than the simulated line-integrated spectra.

Interferogram Property Images

For testing of interferogram demodulation, the image brightness, fringe contrast and

fringe phase which would be recovered by an ideal demodulation algorithm must be

known. These are not provided by the above simulated images, since the detected

intensity at each pixel is calculated directly without calculating the fringe phase and

contrast. Phase and contrast images were instead calculated from the line-integrated

spectra by numerical evaluation of equation (2.2.9), to find the degree of coherence

γ of the spectra and thereby the phase φ = arg(γ) and contrast ζ = |γ|. The

brightness image was obtained by simply integrating the spectra over wavelength.

The desired Doppler phase was isolated from the calculated phase φ by subtracting

the phase calculated in the same way for the un-shifted spectrum. Brightness, phase

and contrast images for the OSM plasma simulation with N̂ = 1404 waves are shown

in figure 4.2. Data analysis code was tested by extracting the fringe properties from

the image in fig. 4.2(a) and comparing the results with the data in fig. 4.2(b),(c)

and (d).

The interferogram demodulation technique is now presented, including results of

tests carried out using simulated data generated as described here.

4.2 Interferogram Demodulation Technique

As formulated in Chapter 2, the recorded detector signal down a column of pixels

(perpendicular to the horizontal fringes) is of the form:

S(y) =
I0(y)

2
[1 + ζ(y) cos(φI(y) + φD(y))], (4.2.2)

where φI(y) is the instrument phase defined in equation (2.5.40), ζ(y) is the fringe

contrast including instrumental, multiplet structure and Doppler broadening effects,
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Figure 4.2: Examples of simulated data images based on OSM-EIRENE simulations
for shot 25028: (a) Simulated camera image, (b) Brightness image, (c) Doppler
phase image, (d) Fringe contrast image.

and the brightness I0(y) and Doppler phase φD(y) contain the information of most

interest for flow measurements. Extraction of the brightness, contrast and phase

from the interferogram amounts to demodulation of a phase and amplitude modu-

lated carrier signal with a varying background level.

For convenience and consistency, the following descriptions all assume horizontal

fringes. In some MAST experiments, the fringe pattern was rotated on the detector

(for example see section 6.2.4). In these cases, both the calibration and data images

were rotated such that the fringes were horizontal before applying the same data

processing. Tests with simulated data images indicate this rotation does not have a

significant effect on the accuracy of demodulation.

4.2.1 Removal of neutron effects from real images

During plasma discharges using NBI auxiliary heating, D-D fusion reactions between

energetic beam ions, and between beam ions and the background plasma, produce
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yields of 2.45MeV neutrons of typically around 1013/s [Stammers and Loughlin,

2006]. The interaction of such neutrons with the un-shielded detector produces

bright spots and streaks in the images when NBI heating is operational. An example

of a data frame from MAST showing this can be seen in in Fig. 4.3(a). These

features must be removed before demodulation of the images to prevent them from

producing artefacts in the processed images. The following algorithm was applied

row-wise to the images to achieve this:

1. A 3-point median filter is applied to remove single hot and cold pixels, caused

both by neutrons and hot and cold pixels on the detector.

2. The intensity gradient along the row is estimated with a 3-point central dif-

ference.

3. Peak finding is used on the resulting gradient to detect positive and negative

spikes larger than an empirically set threshold value. A pair of positive and

negative peaks indicate the edges of a bright feature to be removed. The

threshold value was usually set to twice the standard deviation of the gradient

array.

4. Where a positive gradient peak is followed by a negative peak within a cer-

tain threshold distance (empirically set and representing the maximum size of

feature to be removed), the pixel values between the two peak locations are

linearly interpolated from the pixel values either side of the feature. The size

threshold is usually set to 4 pixels.

This process was applied to all images from MAST before interferogram de-

modulation. Fig 4.3 shows a section of a data image before and after this process is

applied, showing the reduction in bright artefacts in the image. This filtered image is

then subject to the interferogram demodulation, which proceeds column-by-column

across the image.

4.2.2 Intensity extraction

The first parameter to be extracted from the images is the brightness image I0,

by removing the sinusoidal carrier fringe pattern from the image. Since the fringe

pattern oscillates around a mean value of I0/2, in principle this can be achieved using

boxcar averaging down each image column with an averaging period of exactly 1

fringe. In practise, however, the fringe period is not an integer number of pixels

and therefore this approach leaves residual small amplitude fringes in the images.
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a) Before Filtering b) After Filtering

Figure 4.3: Section of a data frame from the HM02 midplane view before and after
filtering to remove radiation effects, showing an in-vessel poloidal field coil and part
of the centre column / high field side scrape-off-layer plasma. The left image (a) is
directly from the camera, while (b) has had the filtering applied. Exposure time as
16.7ms and the NBI heating power was 3.3MW.

Another approach is to filter out the carrier fringe frequency in the Fourier domain.

While this approach produces much better results for smooth intensity variations, it

suffers from large ringing artefacts around sharp changes in brightness in the image.

To alleviate this, the two fringe removal techniques were used together: Fourier

domain filtering of the carrier frequency was applied first, then boxcar averaging

was applied to reduce the remaining ringing artefacts at sharp image features. An

example of the results for a single image column is shown in Fig. 4.4, which shows a

simulated input data column (based on column 750 in the images in figure 4.2), the

corresponding recovered I0, and the ideal I0 response. The intensity is well recovered

except at sharp edges and peaks, which show smoothing consistent with a top-hat

kernel with a width of 1 fringe. For the example in figure 4.4, the RMS fractional

difference between the ideal and recovered profiles is 5.3% overall, and just 1.2%

when excluding the four sharp features around pixels 60, 140, 240 and 670. Some

small residual ringing artefacts are also seen at the sharp edges. As can be seen

from figure 4.2, these sharp image features arise at the edges of in-vessel machine

components such as poloidal field coils. Ultimately the smoothing of these sharp

features is due to limitations in extracting spatial information at smaller scales than

the fringe period, from a fringe pattern with unknown brightness, amplitude and

phase, and could be improved by using a smaller fringe period. Sudden large jumps

in fringe phase (which can also occur at the edges of viewing obstructions) can also

cause artefacts in the recovered intensity. The effect of errors in the brightness

extraction on flow image demodulation will be discussed in the next section.
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Figure 4.4: Extraction of intensity profile from a simulated image column. Input
I0 for the data generation (black line), the simulated data column (green line) and
recovered intensity profile I0 (red line) are shown. The recovered profile resembles
a smoothed version of the input profile with a smoothing period of 1 fringe.

4.2.3 Flow (phase) extraction

To obtain the column signal in a form suitable for phase and contrast demodula-

tion, the extracted intensity is first factored out of the signal according to S ′(y) =

[2S(y)/I0(y)]−1. Using equation (4.2.2) we see that S ′(y) = ζ(y) cos[φI(y)+φD(y)],

i.e. it is a sinusoidal signal with zero mean, phase modulated by the Doppler phase

φD and amplitude modulated by the fringe contrast. Phase and contrast extraction

are then performed via the analytic signal representation of S ′(y). The analytic

signal was first introduced in Gabor [1946]. The general concept is that due to

the Hermitian symmetry (i.e. f(−x) = −f(x)∗) of the Fourier transform of a

real-valued signal, the negative frequency components of such a transform can be

discarded without losing any information about the original signal. The inverse

Fourier transform then yields a complex representation of the original signal which

makes certain properties, particularly the instantaneous phase and amplitude, more

accessible. The analytic representation of the discrete signal S ′ can be generated

easily by taking the Discrete Fourier transform (DFT) of the image column to obtain

S̃ ′[f ] and setting:

S̃ ′[f ] =


S̃ ′[f ] : f = 0

2S̃ ′[f ] : f > 0

0 : f < 0



4.2. Interferogram Demodulation Technique 77

before performing the inverse transform [Lawrence Marple Jr., 1999]. The resulting

analytic signal will be denoted Sa. The real part of Sa is equal to the original input

signal, while the complex part is equal to its Hilbert transform [Gabor, 1946]. Since

the effect of the Hilbert transform is a 90◦ phase shift of all frequency components,

the real and imaginary parts of Sa are in phase quadrature and can be used to recover

the instantaneous phase and contrast according to (φI(y)+φD(y)) = arg(Sa(y)) and

ζ(y) = |Sa(y)|.
Features in the brightness image with high spatial frequencies, which are not

accurately recovered by the intensity extraction as noted in the previous section,

cannot be accurately removed from the data when calculating S ′ and cause ringing

artefacts in the demodulated phase. High spatial frequency components of image

noise also appear strongly in the resulting phase images. This is illustrated in fig-

ure 4.5(b), which shows the φD image demodulated from noisy test data using the

scheme described so far, alongside the ideal result in 4.5(a). The main features of

concern in the demodulated image are the high level of noise on the image, and the

ringing artefacts at the edges of the poloidal field coil structures. These undesir-
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Figure 4.5: Illustration of the effect of windowing when calculating the analytic sig-
nal and of apodisation of the column signal at sharp edges. (a) Ideal phase response
for simulated noisy divertor data, (b) Demodulated phase without windowing or
apodisation, (c) Demodulated phase with windowing and apodisation.

able effects are reduced (at the cost of fine detail in the image) by a combination

of two techniques. The first is windowing in Fourier space when calculating the

analytic signal. Using a window function centred at the carrier fringes’ spatial fre-

quency, high spatial frequency contents of the recovered Doppler phase, including

the ringing artefacts and some of the image noise, are attenuated. This operation is

illustrated in Figure 4.6, which shows the magnitude of the DFT of S ′ and a mul-

tiplicative window function which is applied before the inverse transform to yield

Sa. Indicated on the figure are fc, the spatial frequency of the carrier fringes, and
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W , the total width of the window function. Choice of the particular window func-
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Figure 4.6: Application of a window function in Fourier space when calculating
the Analytic signal using the DFT of S ′. The carrier fringe frequency fc and total
window width W are indicated.

tion and width is a compromise between removing high spatial frequency artefacts

and noise while preserving desired high spatial frequency information (i.e. fine de-

tails) in the signal. By visual inspection of Doppler phase images extratced from

simulated test data, and comparison between the demodulated and ideal images, a

Blackman-Harris window (as shown in figure 4.6) with width W = fc was found

to produce good robustness against noise and artefacts while preserving features of

interest in the simulated data. The second technique, used to reduce the size of

the ringing artefacts, is to apodise the column signal S ′ around locations of sudden

changes in I0, before calculating the analytic signal. This removes the sharp jumps

in the signal which give rise to the ringing. To do this, the gradient of I0 down the

image column is estimated with a 3-point central difference, and locations where the

gradient has a numerical value greater than an empirically chosen fraction of I0 are

considered sharp edges. This fraction is usually set to 5%. Inverted Hann windows

are then applied (in real space) to the column signal centred at these locations. This

process is illustrated in figure 4.7, which illustrates the process of demodulating the

phase from a single image column. Using both the windowing and apodisation, the

demodulated Doppler phase from noisy test data is shown in figure 4.5(c).

The output of the phase demodulation for a given input image is the instanta-

neous phase at each pixel, in the interval [−π, π]. An example section of a simulated

(noiseless) image and corresponding demodulated phase are shown in figure 4.8. For
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Figure 4.8: Illustration of fringe phase demodulation results for a small section of a
noiseless simulated image: (a) Input image and (b) demodulated fringe phase.

calibration images taken in the lab to be used as an instrument phase reference, this

phase image is unwrapped to reveal the shape of the instrument phase across the

field of view, as will be described in section 5.3.2. For plasma data, the calibrated

instrument phase φI is subtracted directly from the demodulation output and the

result is wrapped into the interval [−π, π], to isolate the Doppler phase φD. Note

that this limits the largest (line-average) flows which can be measured, without fur-

ther processing to detect phase wrapping in the φD images, to v̄max = (c/2N̂) (where

c is the speed of light and N̂ is the instrument group delay). For the MAST system

v̄max ≈ 100km/s, around a factor of 3 larger than any observed flow speeds in the

SOL and divertor.

As was derived in section 2.4.2, the measured Doppler phase is related to an

emissivity weighted line average of the line-of-sight ion flow. This line-average flow

is obtained straightforwardly from the demodulated φD according to:

v̄ =
cφD

2πN̂
, (4.2.3)

and from equation 2.4.33 this is related to the local plasma flow by:

v̄ =
1

ĕ0

∫
L

e0(r)v · dl. (4.2.4)

While v̄ is not necessarily suitable for quantitative interpretation of the measure-

ments directly, these images can already provide qualitative insight into flow patterns

and dynamics. Before going on to discuss tomographic inversion of v̄ images to ob-



4.3. Image Noise Propagation 81

tain poloidal v|| profiles, issues of noise and measurement errors in the line-integrated

values are addressed.

4.3 Image Noise Propagation

To properly interpret flow images it is desirable to characterise the amount and

appearance of noise on the images. Due to the Fourier domain windowing applied

during the phase demodulation process, noise in the demodulated phase images takes

on a smoothed appearance perpendicular to the fringe direction. Since each image

column is demodulated independently there is no such smoothing in the horizontal

direction, and the noise appears elongated in the vertical direction. An example is

shown in Fig. 4.9(a), which shows the demodulated Doppler phase from a noisy test

image with φD = 0 everywhere. The elongated structure of the noise can clearly be

seen in the image, and horizontal and vertical cuts through the image are shown in

Fig. 4.9(b) which clearly illustrates the anisotropy.
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Figure 4.9: Illustration of spatially anisotropic noise on demodulated phase images.
Left: demodulated phase image from a zero phase simulated image including noise.
Right: Horizontal and vertical profiles through the image.

The amount of φD noise from a given raw image is determined by the SNR

of the fringes, and therefore for given detector parameters is a function of both

image brightness and fringe contrast. This dependence was investigated numerically

using simulated images. First a fringe pattern with no noise was produced and

demodulated to be used as a phase reference image. Then, the same image was

generated at different brightness and contrast values, with shot noise and camera

noise added according to the detector characterisation results in section 5.1. The

difference between the phase extracted from the noiseless image and each noisy
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image was then purely due to the image noise. The standard deviation of the

resulting phase noise, as a function of I0 and ζ, is shown in Fig. 4.10. The standard
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Figure 4.10: Standard deviation of demodulated phase noise as a function of bright-
ness and fringe contrast. Noise level is given in terms of both phase and flow equiv-
alent for N̂ = 1385 waves.

deviation is given both in terms of phase and the equivalent line-average flow v̄

for N̂ = 1385 waves, corresponding to C III with the 4.6mm delay plate, to give

an indication of the size of the effect on measurements. As expected, the flow

noise decreases with increasing signal and increasing fringe contrast. The operating

point of the instrument within this I0, ζ parameter space is determined by the

instrument contrast (imperfections in the optical system), spectral line structure,

ion temperature, plasma emissivity and the integration time of the camera (related

to the desired time resolution). The typical I0 and ζ operating range for the MAST

instrument is shown as the dashed box on the figure, which shows a noise level of

≤ 1.1km/s. The results in figure 4.10 can be used as a look-up-table when analysing

data images to estimate the noise in a given portion of the image from the local

intensity and contrast.

4.4 Spatial Response

Due to the 1D fringe pattern used to encode the spectral information, the spatial

resolution of the diagnostic is highly anisotropic. In the direction perpendicular to

the fringes (vertical direction), the spatial response is dominated by the effect of
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the fringes and demodulation, which essentially apply a smoothing in this direction.

Parallel to the fringes (horizontal direction) there is no such effect, and the spatial

response is only limited by the imaging performance and finite depth of field of the

imaging system.

The effect of the fringes and demodulation scheme design on the spatial response

of the measurements can be described by a convolution of the ‘true’ flow and emissiv-

ity images with suitable filter kernels, essentially describing ‘effective Point-spread

functions (PSFs)’ for emissivity and flow imaging. However, unlike the PSF in a

conventional imaging system these are not related to optical effects in the imag-

ing system, but purely describe the effects of the spatial heterodyne measurement

scheme. Since a 1D fringe pattern is used for the modulation, the corresponding

effective PSFs are delta functions in the horizontal direction (parallel to the fringes)

and extended in the vertical direction (perpendicular to the fringes). They are also

not the same for brightness and flow imaging, since different procedures are used to

extract these two quantities from the raw images.

To establish the form of the effective PSFs for I0 and v̄, synthetic data columns

using both simulated divertor data and artificial phantoms were used. Taking I0

as an example, image columns with varying I0 but constant phase and contrast

(to avoid artefacts in the extracted intensity due to rapid changes in these other

parameters), were demodulated. The resulting recovered I0 profiles were fit by the

ideal I0 profile convolved with the effective PSF to be determined, with the width

of the PSF being the free parameter in the fitting. Different shapes of PSF were

tested to minimise the fitting residuals. A similar procedure was used for the flow

imaging, varying φD down the image column and keeping I0 constant.

For I0 imaging, the PSF best describing the response was a top-hat function with

a width of 1 fringe period. On the MAST system this is ≈ 12, pixels, or 1.2cm at the

focal plane in the plasma for the wide angle views. For flow imaging, the best fit was

achieved for a Gaussian PSF with a FWHM of 2.7 fringe periods, giving 32 pixels

or 4.4 cm in the plasma for wide-angle MAST measurements. The Nyquist-limited

resolution in the orthogonal spatial direction (i.e. along the fringes) is around 3 mm

for the same viewing configuration.

4.5 Spectral Contamination

Measurements of the MAST spectral lines in section 3.1 revealed a number of con-

taminating features within the filter pass bands. Using simulated spectra including

these features it is possible to assess their potential impact on flow measurements.
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The effect due to each contaminating feature depends mainly on the feature’s centre

wavelength and brightness. For each ion line of interest, all contaminating features

visible in the spectral measurements from Chapter 3 were fit with Gaussian func-

tions in data from multiple shots and times. This gave distributions of observed

intensity of these features relative to the line of interest. To explore the effect on

the instrument phase spectra were generated consisting of the line of interest at its

rest wavelength, plus the known contaminating features each with relative intensity

chosen from a normal distribution with a mean and standard deviation given by the

fitted relative intensities for that feature. Random Doppler shifts of the contami-

nating lines corresponding to flows of up to ±30km/s (i.e. the maximum divertor

impurity flow speeds measured on MAST) relative to the species of interest were

also added, however the results were found to be much more sensitive to the con-

tamination intensity than to these shifts. The spectra were multiplied by the band

pass filter profiles so that exclusion of the contaminants by the filters was accounted

for.

The fringe phase associated with the simulated contaminated spectrum, relative

to the uncontaminated line, was then calculated for each delay plate, and converted

to an apparent flow value. This was repeated 5000 times to give a distribution of

apparent (false) flow caused by the spectral contamination. The mean of this distri-

bution gives an indication of the mean error caused by the contamination, while the

standard deviation indicates the spread of the distribution of errors caused if the

contaminating features change brightness (and position) relative to the line we are

trying to measure. A small standatd deviation would indicate an almost fixed sys-

tematic error, while a large standard deviation signifies that the error could change

a lot from frame-to-frame, location-to-location or shot-to-shot. The amount of in-

tensity variation of the contaminant lines used in this calculation is likely slightly

over-estimated, since fitting errors were not accounted for (hence the final flow errors

are likely to be a slight over-estimate). Despite this, this method is useful to deter-

mine whether contamination errors are likely to be significant compared to typical

measured values. Continuum background contamination was not included since the

observed background level was negligible compared to the line brightness, except for

He II near the divertor targets.

Of the 3 targeted spectral lines, C III is the most affected by contamination from

nearby lines, specifically at 463.9nm, 464.2nm, 464.9nm, 465.9nm, and 466.2nm.

The positions and relative intensities of all except the 465.9nm line are consistent

with the O II 3s22p23p → 2s22p23s multiplet, meaning these lines are expected

to shift and change intensity together. The 465.9nm line may be a C IV charge
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exchange feature [Zaniol et al., 2001]. Calculated as described above, the mean

contamination errors were -1.0km/s, 1.0km/s and -0.6km/s for the 3 delay plates,

indicating that for the 4.6mm crystal the contamination tends to cause an apparent

blue-shift, while with the 6.5mm crystal it causes an apparent red-shift of a simi-

lar magnitude. The standard deviations were 1.2 km/s, 0.9km/s and 0.7km/s for

measurements with the 4.6mm, 6.5mm and 9.8mm delay plates respectively. These

errors and their variability are an order of magnitude smaller than typical H-Mode

C III flows measured with the instrument, and are therefore not considered to pose

a serious problem for such measurements, however their potential presence could

become significant in some L-Mode cases where measured C III flow speeds can be

as small as a few km/s.

He II is also affected by the same O II multiplet as contaminates the C III

line, and to a lesser extent the bright He I line at 471.3nm and an unidentified

feature at 466.5nm. The narrow bandwidth of the He II filter and distance of

these features from the He II line greatly reduces their effect. The distribution

of calculated apparent flow for He II with these features had mean and standard

deviation ≈ 0.1km/s for all delay plates (complete results are given in table 4.1),

consistently below the measurement noise limit and not significant. Note that while

this result holds for the midplane and some divertor data, it does not take into

account the situation seen in divertor floor measurements in section 3.1, where the

He II line can be very weak and swamped by very complex, very high relative

brightness contamination (in these cases the contamination is sufficient to make the

data useless.)

The results for C II give mean and standard deviations of ≤ 0.5km/s for the

thicker two delay plates, and approaching 1km/s for the 4.6mm plate. Since the

4.6mm plate is poorly optimised for C II contrast and therefore not used, contami-

nation errors are not a concern for the C II line.

Overall, based on the observations of spectral contamination on MAST and these

numerical calculations, the errors due to spectral contamination are expected to be

small or negligible for most measurements. These results are summarised in table

4.1.

4.6 Tomographic Inversion

While the line-integrated emissivity and line-average flow obtained from the in-

strument can provide substantial qualitative insight into flow behaviour, they are

not suited for direct quantitative comparison with theoretical or modelling results,
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Spectral Estimated error from contamination (km/s)
Line LDelay = 4.6mm LDelay = 6.5mm LDelay = 9.8mm
C III -1.0 ± 1.2 1.0 ± 0.9 -0.6 ± 0.7
C II 0.7 ± 0.9 -0.5 ± 0.4 0.3 ± 0.3
He II -0.1 ± 0.1 0.1 ± 0.1 0.0 ± 0.1

Table 4.1: Summary of estimated flow measurement errors due to spectral contami-
nation, for each spectral line and delay plate combination. The results are presented
in the format mean ± standard deviation of the distribution of simulated errors, as
described in the text.

which instead give spatially localised values. There are two possible approaches

for enabling such comparisons. The first is to start from the output of a plasma

model which produces 2-3D profiles of the impurity emissivity and flow which we

would like to compare with the measurements. In the manner described in section

4.1, these model plasma profiles can be used to produce simulated line-integrated

data, which can then be directly compared with the measurements. The second

approach is to start from the line-integrated measurements, and using tomographic

inversion techniques infer the local emissivity and flow profiles which can then be

directly compared to the model outputs. The latter approach is now discussed in

more detail.

Tomographic reconstruction of 2D-3D profiles from line-integrated measurements

is a common problem in remote sensing measurements, both in fusion diagnostics

[Boswell et al., 2001; Odstrčil et al., 2014; Tal et al., 2013] and other fields such as

geophysics [Patella and Patella, 2009] and atmospheric science [Flores and Gradi-

narsky, 2000; Tucker, 1998]. As such, several well established techniques exist for

accomplishing this. Furthermore, inversion of CIS results to obtain poloidal flow and

emissivity profiles for comparison with modelling has previously been demonstrated

for C III flows on DIII-D [Howard et al., 2010a; Weber et al., 2012]. The techniques

used in the present work take a similar approach.

4.6.1 The Tomography Problem

The technique used in this work for tomographic reconstruction belongs to the class

of so-called ‘pixel based’ techniques. The emissivity and flow are first assumed to be

toroidally symmetric, and therefore can be completely described by a 2D profile in

the poloidal (R,Z) cross-section of the tokamak. The poloidal cross-section is then

discretised into a regular grid with n spatial pixels (grid cells), each having its own

value of local emissivity and flow which we wish to determine, and the whole grid
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representing the 2D profile we wish to recover. A model of the diagnostic response

is then used to calculate the effect of each grid cell’s emissivity and flow on each of

the n line-integrated measurements provided by the diagnostic (n being the number

of pixels in the line-integrated images), resulting in two systems of linear equations:

one for emissivity and one for flow, relating the m line-of-sight measurements and

the emissivity and flow in the n grid cells. Such systems can be written compactly in

matrix form as y = Ax+ b, where y is an m-element column vector containing the

measurements, x is an n-element vector containing the profile we wish to recover, b is

a vector representing the measurement errors and A is an m-by-n matrix, which will

be referred to as the response matrix, describing the diagnostic response. Solving

for x amounts to a large least squares fitting problem.

The first step in setting up the problem is generating the reconstruction grid

in the (R,Z) plane. For the present work, the grid was chosen such that its ex-

tent completely contained all the diagnostic lines of sight. If some lines of sight are

allowed to extend outside the reconstruction grid, their response cannot be fully

described by the response matrix which can lead to artefacts in the reconstructions.

A typical reconstruction grid for the MAST divertor is shown in Figure 4.11, along

with the projections of several of pixels’ typical sight-lines on to the poloidal cross-

section (blue lines). Square grid cells of typically 1cm - 1.5cm on each side were

used, and were found to produce good quality inversions with reasonable computa-

tional requirements for the inversion. We now consider construction of the response

matricies for emissivity and flow, given the reconstruction grid and instrument sight

lines (calibration of the sight lines is discussed in section 5.2.3). Note that not all

grid cells shown in figure 4.11 are well constrained or necessarily included in the

inversions, as will be discussed later.

4.6.2 Response Matrix Generation

The response matrix describes the relationship between the n inversion grid cells

and m line integrated measurements given by the demodulated brightness and v̄

images. We wish to construct response matrices for both emissivity and flow recon-

structions, which will be denoted E and V respectively. The measurements were

typically binned 4x4 (to 256x256 pixels) before inversion, to reduce the size of the

required response matrix and therefore the computational requirements of the in-

version process. Due to the spatial resolution of the instrument discussed in section

4.4, no spatial resolution is lost in the direction perpendicular to the fringes due

to this binning, although spatial resolution is lost in the direction parallel to the

fringes.
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Figure 4.11: Poloidal cross-section of the MAST divertor showing a typical recon-
struction grid for emissivity and flow tomography. The grey grid is the reconstruc-
tion grid, and the blue curved lines are camera sight-lines from a particular image
column projectsed on to the grid. The blue shaded area represents the approximate
shape of the divertor plasma from which emission is expected to be observed.
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In calculating the system response the finite depth-of-field of the imaging system

is ignored, and each line of sight is assumed to collect light from a narrow ‘pencil’

beam through the plasma, with the collection power constant along the line-of-

sight. This is a reasonable approximation for inversions of the MAST CIS images,

because 1) After the 4x4 binning of the images, the binned pixel size is larger

than the expected blur radius for out-of-focus areas of the plasma, and 2) Due

to the tangential view of the plasma, the pixels contributing most information to

the inversion are dominated by light emitted close to the in-focus object plane.

Given this pencil beam model, and without concern for absolute calibration, the ith

brightness measurement is given by:

Si ∝
n∑
j=1

e0,jLij, (4.6.5)

where e0,j is the plasma emissivity in the jth inversion grid cell and Lij is the length

of the ith sight-line which falls within that grid cell. This equation constitutes

one row of the response matrix, which is given by E ij = Lij if all detector pixels

have the same effective collecting power (or equivalently if the data images are

flat field corrected before inversion). The response matrix is calculated by finely

discretising each sight-line j into line segments along its length and calculating the

R,Z coordinates of each segment’s centre point, to determine which reconstruction

cell the segment falls within. The length Lij is then given by Lij =
∑

k lk, where the

sum is over all sight-line segments k which fall within the jth grid cell and lk is the

length of the kth line segment. Since a simplified vacuum vessel geometry is used in

the sight-line calculation, some sight-lines which are unobstructed in the sight-line

model are in fact blocked by in-vessel components in the real measurements. To

account for this, image masks are created manually which indicate which sight-lines

are affected by this. These sight-lines are then excluded from the fitting process,

i.e. they are not included as rows in the response matrix. In addition some grid

cells do not encounter any diagnostic sight-lines and are completely unconstrained

(e.g. some grid cells fall within machine components or within vessel walls). While

these are not explicitly excluded from the matrix generation or fitting, they are

represented by a row of zeros in the response matrix and are not involved in the

inversion. The brightness response matrix is only a function of the viewing geometry,

and therefore needs to be recalculated only when the viewing geometry is changed.

For flow reconstruction the instrument response is more complex, as we see from

equation (4.2.4) that the line-integrated flow measurement depends on both the

magnitude and direction of the local flow, in addition to the local emissivity. With
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a single camera, insufficient information is available to recover both the magnitude

and 3D direction of the flow. Instead, we assume that the impurity flow is primarily

parallel to the magnetic field due to the confining effect of the field, i.e. v ≈ v||B̂,

where v|| is the parallel flow speed and B̂ is a unit vector in the direction of the local

magnetic field. Since the magnetic field on MAST is routinely reconstructed from

magnetic probe measurements using the EFIT code, this can provide a constraint

for the flow direction and we only have to solve for the scalar quantity v||. This is

the same approach as used in Howard et al. [2010a]. The response matrix elements

can then be calculated as:

V ij =
eo,j∑n

j′=1 E ij′e0,j′

∑
k

B̂k · lk, (4.6.6)

where again the sum over k is over each sight-line segment falling within the jth

reconstruction grid cell, lk is the vector line segment along the line of sight, and

B̂k is a unit vector in the direction of the magnetic field at the centre point of

lk. Note that the emissivity e0 and magnetic field direction B̂k are time-varying

properties of the plasma; this means that individual flow response matrices must

be generated for each image we wish to invert. The values of e0 are obtained from

inversion of the emissivity, and therefore any reconstruction errors in the emissivity

cause inaccurate calculation of the flow response matrix leading to further errors

in the flow inversion. Furthermore, not all measurement sight-lines from the line-

integrated image contain useful flow information. Specifically, sight-lines where no

light is detected cannot carry any spectral information, and must be excluded from

the fitting (along with sight-lines with sufficiently low SNR that the flow information

is dominated by noise). Therefore only sight-lines which show brightness above a

threshold value are included when generating the response matrix.

4.6.3 Inversion Algorithm

The response matrices for the inversions are large, sparse matrices, with typically

around 109 elements of which < 1% are non-zero. This sparsity occurs because any

given line-of-sight only passes through a small fraction of the inversion grid cells.

The system is also overdetermined, i.e. the number of measurements is larger than

the number of unknowns in the profile. The inversion problem is therefore to solve

a noisy (i.e. inconsistent), overdetermined, sparse system, and several numerical

methods exist to achieve this [Censor, 1983; Paige and Saunders, 1982]. The tech-

nique used in this work belongs to the group of algebraic reconstruction techniques,

which find the solution for x in y = Ax+ b iteratively by minimising the residuals
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y−Ax. These techniques have the advantage that a-priori constraints such as non-

negativity or smoothness of the profiles can be easily imposed at each iteration. The

particular algorithm used in this work is closely based on the Simultaneous algebraic

reconstruction technique (SART), first proposed in Andersen and Kak [1984]. After

x is initialised as x0
j = exp(−1)∀j, each iteration of the algorithm updates each grid

cell according to:

xk+1
j = xkj + λ

∑m
i=1 aij(yi −

∑n
j=1 aijx

k
j )

|
∑m

i=1 aij|
, (4.6.7)

where λ is an empirically chosen relaxation parameter. In this update step xj is cor-

rected with a weighted sum of the fitting errors from all the measurements yi which

are influenced by xj. The sum is weighted according to the dependence of each yi on

xj. In other words, the error in fitting every measurement to which xj contributes is

considered simultaneously and used to correct xj’s’ value. By considering the fitting

error in all measurements at once in this way, each iteration is robust to noise in

individual measurements. The denominator normalises the update by the sum down

the jth column of the response matrix, i.e. by the total contribution of xj to the

recovered profile. Such ‘column normalised’ techniques are known to reduce recon-

struction artefacts relative to row action algebraic reconstruction techniques [Willis,

2000]. Additionally for emissivity reconstructions, non-negativity of the emissivity

is enforced by setting any grid cells for which xkj < 0 to zero at each iteration. Al-

though this is the only constraint usually used for the reconstructions in this work,

in principle it is possible to apply further constraints such as smoothness of the

reconstructed image by using a relaxation image λ rather than a single parameter

for all grid cells. Iterations are stopped when the fractional change in the Euclidean

norm of the error y −Ax is less than 10−4 between successive iterations.

4.6.4 Reconstruction performance

The reconstruction process was tested using the simulated data from section 4.1.

First, the ‘ideal’ line-integrated brightness and phase images in figure 4.2(b) and

(c) were inverted to establish the performance of the inversions with idealised input

data. This also tests the validity of the flow line integral in equation (4.2.4), since

this relationship was not assumed in the generation of the data. The results are

shown in fig. 4.12(b), with the original input profiles in (a). The emissivity profile

appears generally well reconstructed, but is somewhat noisy in the Private flux

region (PFR) and outside the outer divertor leg. Artefacts following the paths of

sight-lines can be seen in the PFR adjacent to the sloping section of divertor coil
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Figure 4.12: Testing of tomographic inversion of emissivity and flow. (a) Top: OSM-
EIRENE profiles used to generate test data. (b) middle: Profiles reconstructed from
simulated phase & brightness images in figure 4.2(b) and (c). (c) Bottom: Profiles
reconstructed from demodulated, noisy test data, as in figure 4.2(a).
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armour and leading out from the outboard strike point. These are very similar

to artefacts seen in tomographic inversions of camera data from the same plasma

view on MAST in independent work [Lisgo et al., 2009], suggesting these features are

related to the viewing geometry. The flow profile is also generally well reconstructed,

however significant differences from the ideal profiles are seen in the private flux

region. These may be partially caused by the errors in the emissivity inversion in

this region. Deviations from the ideal profile are mainly in grid cells with very

low emissivity, and which therefore contribute little flow information to the line-

integral measurements and are poorly constrained in the inversion. This behaviour

is expected, since naturally flow information can only be obtained from parts of the

plasma where light is being emitted.

The reconstruction was also tested as part of the complete data analysis chain:

the brightness and phase were demodulated from the noisy simulated data in figure

4.2(a), and then inverted. The overall appearance of the emissivity reconstruction

is not much different from the ideal data inversion, however the artefacts seen in

that case appear more pronounced. The flow inversion appears significantly worse

than the ideal data case, both in recovery of spatial features and the presence of

noise and artefacts. Again as expected this is particularly the case for parts of the

profile where the emissivity is low, both due to the poor constraint of these grid

cells as previously stated, and the low SNR of the corresponding measurements

when noise is included in the simulated data. When viewing inversions of real data,

for this reason the flow inversion is only considered where the emissivity profile lies

above a threshold value. Some artefacts in the image coincide with those seen in the

emissivity reconstruction, indicating the effect of the emissivity reconstruction on

the flow. The effects of the anisotropic fringe phase noise can be clearly seen in the

inverted profile. Apart from the artefacts mentioned for the ideal data inversions,

‘blobs’ of positive and negative flow appear near the poloidal field coil in the top

right of the image (R ≈ 0.8 − 1m, Z ≈ −1.2m). These are due to residual ringing

artefacts at the coil edges from the phase demodulation.

The agreement between the ideal and reconstructed flow profiles is illustrated

in figure 4.13, which shows horizontal slices through the flow profiles above and

below the X-Point. Both the idealised data inversions (green lines) and full analysis

chain tests (red lines) generally show good quantitative agreement with the input

profiles, however the noisy data inversion does show loss of fine spatial detail (e.g.

in fig. 4.13(b), R = 0.4−0.55m) and spurious flow artefacts (these slices also do not

illustrate the ringing artefacts previously mentioned). The flow noise level in parts

of the profiles away from any artefacts is not significantly amplified over the noise
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level on the line integrated measurements. Future possibilities for improving the

quality of reconstructions from noisy data include applying smoothness constraints

to the flow reconstruction, and accounting for the anisotropic spatial resolution when

building the response matrix. These tests also do not account for possible errors

from uncertainty in the viewing geometry calibration, errors in EFIT, the presence

of reflections in real images or the presence of cross-field or non-axisymmetric flows.
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Figure 4.13: Horizontal slices of the v|| profiles shown in figure 4.12 at Z = −1.15m
(top) and Z = −1.31m, showing ideal and inverted profiles.

4.7 Summary

This chapter has presented the data analysis methods used with MAST CIS data,

including numerical experiments investigating sources of measurement error. This

was achieved using simulated line-integrated data based on plasma profiles from

OEM-EIRENE simulations of MAST.

The data analysis process begins by removal of bright spots and streaks in the
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images due to D-D fusion neutrons in NBI heated discharges, before the underlying

brightness image is extracted using frequency domain filtering and boxcar smoothing

perpendicular to the fringes. The extracted brightness is then factored out, and the

flow information (fringe phase) is extracted using the analytic signal representation

of the resulting signal. Windowing in Fourier space and apodisation of the input

data around sharp jumps in brightness are used to reduce artefacts due to sharp

spatial features and image noise, at the cost of smoothing the spatial response to

flows.

Pixel-based tomographic inversion using the SART algorithm has been imple-

mented in MATLAB and tested with simulated divertor data, including integrated

testing with the interferogram demodulation. The results show good quantitative

agreement between the plasma profiles used to generate the test data and the re-

covered profiles from the simulated measurements. However, for noisy data the flow

inversion shows some ringing artefacts at sharp image edges, and larger errors for

parts of the plasma profile with low emissivity. These must be kept in mind when

applying the techniques to real data, and inverted flow profiles can only be obtained

from parts of the plasma which are emitting sufficiently brightly.

In the next chapter, we go on to present experimental characterisation of the

MAST CIS diagnostic and its constituent components.



Chapter 5

Instrument Characterisation &

Calibration

This chapter presents the characterisation of various individual components of the

MAST CIS diagnostic and of the integrated system, and also describes the methods

developed for calibration of the instrument for plasma measurements.

5.1 Detector Characteristics

5.1.1 Linearity

Accurate recording of the interference fringe pattern, absolute intensity measure-

ments, and accurate tomographic inversion of both emissivity and flows all require

the detector’s response to the incoming light flux to be well known, and ideally lin-

ear. To test the linearity of the camera, images were recorded with the instrument

viewing an absolutely calibrated integrating sphere and white light source without

a band pass filter. The camera exposure settings remained constant while the in-

tegrating sphere luminance was changed between images, by opening and closing a

slit between the sphere and the light source. The mean signal in a 100x100 pixel

area at the centre of the image (after dark signal subtraction) was measured as a

function of sphere luminance, and is shown in Fig. 5.1. This is not well fit by a

straight line through the origin (reduced χ2 = 54) as would be expected for a linear

detector response, but is much better approximated by a cubic polynomial (reduced

χ2 = 1.5). This cubic fit indicates an integral non-linearity of approximately 4%.

In order to correct for this when analysing subsequent data from the camera, a lin-

earising look-up-table was created based on the difference between the linear and

cubic fits at each Analog-to-Digital Unit (ADU) value. This correction was tested

96
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using a second set of images where the exposure time was varied while keeping the

integrating sphere luminance constant. When performing a linear fit of camera sig-

nal vs exposure time on this data, the linearity correction resulted in a reduction of

the reduced χ2 value from 44 to 2.5. In the remainder of this work, unless otherwise

stated this linearisation has been applied to all data from the camera.
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Figure 5.1: Linearity testing of the detector: measured camera signal in integrating
sphere flat field images as a function of the integrating sphere luminance, and the
best linear and cubic polynomial fits to the data. Error bars are too small to be
visible on this scale.

5.1.2 Conversion Gain & Camera Noise

To evaluate the absolute light sensitivity of the instrument and to assess the relative

contribution of different noise sources in the raw images (i.e. camera noise vs pho-

ton shot noise), it is necessary to know the conversion gain K of the camera. This

relates the number of photoelectrons collected by a pixel, Se, to the camera’s digital

output SADU, according to SADU = Se/K. This can be measured using the statistical

properties of photon shot noise, using the well known mean-variance method. This

method is based on the fact that photoelectron counting noise has a poisson distribu-

tion, which for large numbers of photoelectrons is well approximated by a Gaussian

distribution with variance equal to its mean, i.e. σ2
Se

= S̄e. Using the definition of

K above, this can be written in terms of the digital output as σ2
SADU

= S̄ADU/K.

The gain can therefore be determined by measuring signal variance as a function of

mean signal level, which should give a straight line plot with a gradient of 1/K. To

perform this measurement for the Photron APX-RS camera, a series of images were

taken with a variable DC white light source (ThorLabs OSL1-EC fibre illuminator)

illuminating a flashed opal diffuser which was viewed by the CIS system with no

band pass filter present. A video sequence of 800 frames was captured while slowly
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increasing the illumination level, and analysis was performed on a 96x96 pixel re-

gion of the images where the illumination was most uniform. Images were processed

pair-wise through the sequence: for each pair of consecutive frames S1 and S2, S̄ADU

was obtained from the mean pixel value in the region of interest including pixels in

both images in the pair. A difference image ∆SADU = S2−S1 was then created, and

the signal variance corresponding to S̄ADU calculated as σ2
ADU = Var(∆SADU)/2,

where Var(∆SADU) was determined from fitting of the histogram of ∆SADU. This

pair-wise processing reduces the effect of any fixed pattern noise and small irregu-

larities in illumination from the measurements. The resulting mean-variance plot is

shown in Fig. 5.2, where grey points represent the data without any camera linearity

correction and blue points have had the linearising look-up-table applied.

Figure 5.2: Measured mean-variance plot for the detector. Grey points have not
been corrected for nonlinearity, blue points have had the linearising look-up-table
applied. The solid red line indicates the best linear fit to the blue points for mean
values below 700 ADU.

Without the linearisation applied, substantial variation of the gain (i.e. differen-

tial nonlinearity) is observed, particularly towards the high end of the signal range.

With the linearising look-up-table from the previous section applied this effect is

largely removed, and the data below S̄ADU = 700 ADU can be fit with a straight

line to give the conversion gain. The best fit to the data in Fig 5.2 gives a value

of K = (23.3± 0.2) e−/ADU. The y intercept of the best fit line gives an estimate

of the total noise associated with the camera under no illumination, i.e. including

read noise, dark current noise & other electronics noise, of σcam = (1.59 ± 0.01)

ADU. This is in good agreement with camera noise measurements for the same

exposure settings using dark frames from a different data set, which gave a value

of σ = (1.609± 0.008) ADU. Using the measured conversion gain, this is a camera

noise level of σcam = (37.0±0.4) e− at 20ms exposure time. While this is large com-
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pared to high performance CCD detectors, it is not unusual for this class of high

speed CMOS detector. At this level camera noise is the dominant noise source below

about 59 ADU, beyond which shot noise starts to dominate. This camera noise level

was used in all subsequent calculations involving image noise; whilst the noise is ex-

posure dependent due to the contribution of dark current noise, the 20ms exposure

value provides a ‘worst case’ measurement and hence a conservative estimate of the

noise performance of the instrument.

5.1.3 Offset Level Drift

During various experiments the camera was observed to exhibit a drifting signal

offset with changes in ambient temperature. This is attributed to sensitivity of both

the dark current level and camera electronics in the un-cooled camera to changes

in temperature, and the fact that dark level calibration is performed as a one-off

procedure prior to taking data. Changes in temperature after the calibration there-

fore result in a drift of recorded pixel values. To investigate the sensitivity of this

effect, dark frames with the camera’s dark level subtraction disabled were captured

every 5 minutes over a 37 hour period while the ambient temperature was recorded

with a data logger. The resulting time histories of temperature and recorded dark

signal are shown in Figure 5.3, which clearly shows the offset level tracking ambient

temperature variations. From this data, the temperature sensitivity of the offset was

estimated to be approximately 1.8 ADU/◦C. Furthermore, after the camera was first

powered on an increase in the dark level by up to 22ADU was observed over the

first 2.5 hours of camera operation as the camera heated up. This effect does not

pose a significant problem for plasma measurements, since dark level recalibration

is usually performed between each plasma shot. However, it can cause a problem

for calibration measurements, as discussed in more detail in section 5.3.3.
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5.2 Imaging Optics Characterisation

5.2.1 Band Pass Filters

The delivered band pass filters were all within the Centre wavelength (CWL) and

FWHM specifications defined in section 3.4.2. The manufacturer provided detailed

measurements of the filter transmission profiles for normal incidence for each filter,

which are shown along with the target ion line profiles in figure 5.4. By multiplying

these transmission curves with synthetic spectral line profiles, the fractional trans-

mission of the plasma lines through each filter (at the image centre) is expected to

be 72%, 67% and 55% for the C III, C II and He II lines respectively. By repeat-

ing the calculations used in section 3.4.2 to define the filter specifications and using

these measured profiles, all 3 delivered filters were found to meet the desired require-

ments for vignetting, apparent flow changes within the field of view and rejection of

spectral contamination.
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Figure 5.4: Transmission profiles of the delivered filters for each spectral line, with
the line structures plotted for reference.
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In figure 5.4 it is apparent that the C II line is far off-centre in the filter profile

and has some components in the long wavelength wing of the filter. This is due

to both the design to reject the parasitic feature at 516.5nm, and the fact that the

delivered filter is at at the very short wavelength end of the specified tolerances.

The possible effect on flow measurements was estimated by multiplying synthetic C

II line shapes, with a range of Doppler shifts, by the filter transmission profile and

calculating the fringe phase associated with the resulting spectrum. The effect was

found to be negligibly small (< 0.5% flow error), showing a surprising robustness to

the position of the spectral line within the filter passband.

An unexpected phenomenon observed when the filters were first inserted into the

diagnostic was the appearance of structure in flat field images not present without

the filters. The form of this structure for each filter is shown in figure 5.5, where the

effects of vignetting have been removed to isolate only the patterns introduced with

the filters. These patterns are not radially symmetric about the image centre as

would be expected for an angle of incidence dependent effect in the filters, but show

somewhat square shapes (despite the absence of any square apertures or optical

components besides the detector). The cause of this effect is not clear from the

current data; more detailed measurements of the spatial and angular dependence

of the filter transmission would be desirable to attempt to understand it. There

is no evidence that this has a significant effect on the fringe phase i.e. Doppler

shift measurements, since no similar spatial structure is seen in either calibration

or plasma fringe phase measurements. The patterning in the intensity images is

accounted for in plasma data by using flat field images with the filters in place, such

as those in fig. 5.5, to perform flat field correction of the raw data images.

5.2.2 Light Sensitivity & Signal Calibration

The overall light sensitivity of the instrument was tested against the design values

by taking images of an absolutely calibrated integrating sphere and light source

combination through each of the 3 band pass filters. The expected output signal

SDN for each case, as a function of distance from the detector centre, d, was estimated

as:

SDN(d) = ηE(d)Tp
1

K

λ0

hc

∫
L(λ)Tf (λ)dλ. (5.2.1)

Here η = 0.45 is the detector quantum efficiency from the camera specifications,

E(d) is the design estimate of the effective étendue from section 3.4.3, Tp = 0.28 is a

factor accounting for losses due to the polarisers (from the polariser specifications),
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Figure 5.5: Intensity structure introduced into flat field images when the band pass
filters are inserted into the system. Each image has been divided by a flat field
image with no filter in order to remove the effects of vignetting; only variations
associated with the presence of the filters are shown. The horizontal/vertical field
of view corresponds to incidence angles through the filter of ±3.3◦.

K is the camera conversion gain from section 5.1.2, hc/λ0 is the photon energy

at the centre of the filter pass band, L(λ) is the known spectral radiance of the

integrating sphere and Tf (λ) is the filter transmission profile. The measured profiles

from the integrating sphere images with each filter were then compared with these

estimates. The results are shown in Fig. 5.6 (left), where for clarity of display the

profiles have been normalised such that all the predicted profiles are equal to 1 near

the image centre. Figure 5.6 (right) shows the ratios of the predicted and measured

signals for each filter. The measured signal levels are in reasonable agreement with

the predicted profiles given the simplicity of the calculations, with the C II and He

II results within approximately 20% over the entire field. Due to the anomalous

structure in the images associated with the filters, discussed in the previous section,

there are significant departures from the predicted shape of the profile compared

to the calculations. These are highlighted in figure 5.6 (right) were the minima

and maxima and of these structures are clearly visible, and particularly affect the

throughput of the C III filter close to the image centre.

Known radiance integrating sphere images such as those used in this section

can also be used to calibrate the plasma data to determine the absolute impurity

emissivity, although this was not performed routinely for the MAST measurements

which are primarily concerned with the flows.
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Figure 5.6: Measured intensity profiles across the detector for a calibrated integrat-
ing sphere with f1 = 17mm. Left: profiles for each filter compared with design
prediction. Right: ratio of measured signal to design prediction.

5.2.3 Pixel Line of Sight Calibration

Proper interpretation of plasma data requires accurate knowledge of the mapping

between image pixel coordinates and physical locations in the tokamak. Specifically,

for tomographic inversion it is necessary to know, for each pixel in the image, the

pixel’s line-of-sight vector in 3D space. This is achieved by applying a pinhole

camera model to the imaging system, the parameters of which are measured as

part of the diagnostic calibration. This type of calibration is common in machine

vision and photogrammetry applications, for example see Zhang [1999], Heikkila

and Silvén [1997] and references therein. The camera model parameters are divided

into two groups: intrinsic and extrinsic camera parameters. The former describe

the properties of the optical system e.g. focal length and distortion, while the

latter describe the position and orientation of the instrument with respect to the

tokamak. The following sections discuss the camera model and how the parameters

were calibrated.

Intrinsic Parameters

To describe the imaging properties of the optical system we use a pinhole camera

model including distortion. This is formulated in a Cartesian coordinate system

with the camera pinhole at the origin and the z axis pointing in the camera’s di-

rection of view; this coordinate system will henceforth be referred to as the camera

frame or camera coordinate system. Consider the projection of a point in space P ,

with coordinates X, Y, Z in the camera coordinate system, on to the image. The

normalised perspective projection for an ideal pinhole camera is simply given by:
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(
xn

yn

)
=

(
X/Z

Y/Z

)
. (5.2.2)

The effects of distortion in the real optical system are included using the Brown-

Conrady distortion model [Brown, 1966; Conrady, 1919], which describes radial (i.e.

barrel or pincushion) and tangential (wedge-prism like, due to decentring or tilting

of optical components) distortion. The normalised projection including distortion

then becomes:

(
xd

yd

)
=
[
1 + k1r

2 + k2r
4
](xn

yn

)
+

(
2p1xnyn + p2(r2 + 2x2

n)

p1(r2 + 2y2) + 2p2xy

)
, (5.2.3)

where r2 = x2
n+y2

n, and kn and pn are radial and tangential distortion coefficients, re-

spectively. The polynomial in r2 in the first term describes the radial distortion while

the second term represents tangential distortion. Finally, this normalised projection

is related to the pixel coordinates xp, yp of the projected point by multiplication

with the ‘camera matrix’:xpyp
1

 =

fx 0 cx

0 fy cy

0 0 1


xdyd

1

 . (5.2.4)

Here fx and fy are the effective focal length of the imaging system measured in

units of detector pixels in the horizontal and vertical directions, and are expected

to be equal for square pixels and non-anamorphic optics. cx and cy are the pixel

coordinates of the centre of the perspective projection on the sensor, expected to be

close to the detector centre.

The parameters fx, fy, cx, cy, kn and pn together constitute the intrinsic camera

parameters, and can be measured by capturing multiple images of a planar checker-

board pattern, of known scale, held in a range of positions in front of the camera.

The grid corner positions are extracted from each image, and the positions of the

grid pattern in 3D space in each image, and the intrinsic parameters, are solved

for simultaneously. The solving procedure minimises the error when the resulting

grid locations in the camera frame are projected on to the images using the camera

model. For the MAST system this procedure was performed using the MATLAB

camera calibration toolbox: a collection of freely available MATLAB code designed
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Parameter Value
fx (1598± 17) px
fy (1602± 17) px
cx (564± 22) px
cy (532± 22) px
kn k1 = −0.172± 0.03, k2 = 0.4± 0.2
pn p1 = (3.3± 31)× 10−4, p2 = (3.6± 2.8)× 10−3

Table 5.1: Typical calibrated intrinsic camera parameters for the MAST CIS diag-
nostic.

for calibration of machine vision systems based on the model described here1. Typ-

ical calibration parameters at the widest field of view (f1 = 17mm) are shown in

table 5.1. The calibrated focal length is equal in x and y as expected and is equiva-

lent to (27.2± 0.3) mm. The centre of the image projection is somewhat offset from

the detector centre, particularly in the x direction, however the pn values indicate

there is very little discernible tangential distortion present.

Extrinsic Parameters

To obtain the camera lines of sight through the tokamak, the relationship between

the camera and laboratory coordinate systems must be known. The conventional

Cartesian laboratory coordinate system on MAST has the origin at the centre of the

tokamak at the vertical midplane, with positive z vertically up and the positive x

axis between machine sectors 12 and 1 (see figure 3.10). The position of the camera

pinhole (i.e. the camera coordinate system’s origin) in this system is denoted by

xcam, ycam, zcam. The orientation of the camera coordinate system with respect to

the lab coordinate system is described by yaw, pitch and roll angles α, β and γ,

respectively. The transformation between coordinates in the camera frame X, Y, Z

and the lab frame X ′, Y ′Z ′ is then given by:X
′

Y ′

Z ′

 = Rx(γ)Ry(β)Rz(α)

XY
Z

+

xcam

ycam

zcam

 , (5.2.5)

where Rx,y,z(θ) are the 3D rotation matrices for anti-clockwise rotation about their

respective axes by an angle θ. This relationship and the pinhole camera model

together completely specify the mapping between image pixel locations and physical

space in the lab frame.

1Code and documentation available from: www.vision.caltech.edu/bouguetj/calib_doc

(accessed 8th May 2013).
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The extrinsic parameters xcam, ycam, zcam, α, β, γ of the MAST system were mea-

sured using images of the tokamak interior taken with the instrument mounted in

position and the band pass filter removed, and with the vacuum vessel interior illumi-

nated with a high power flash-lamp. This was usually carried out during engineering

breaks when the diagnostic was moved or re-mounted. In some cases references im-

ages could be obtained from plasma data, using frames where the vessel is brightly

illuminated by plasma disruptions or the initial plasma breakdown. The extrinsic

parameters were determined using an IDL utility developed by Dr. James Harrison

at CCFE. Features visible in the calibration image e.g. in-vessel structural compo-

nents or wall tile gaps were matched with the corresponding points on a 3D CAD

model of MAST. Given the intrinsic camera parameters as an input, the extrinsic

parameters are then solved for by minimising the error when the CAD model ref-

erence points are projected on to the image. Typical projection errors after this

minimisation were between 2 - 5 pixels. While it is possible to solve for both the

intrinsic and extrinsic parameters simultaneously using this feature matching tech-

nique, calibrating the intrinsic parameters separately reduces the required number of

reference points in the vacuum vessel images needed to obtain a good result (since

fewer variables have to be determined). This is particularly useful for situations

where there are few suitable reference points in the vessel images. An example of a

vessel image used for calibration of the lower divertor view is shown in Figure 5.7,

with outlines of the major components projected on to the image using the fitted

parameters. The application of the view registration to tomographic inversion is

discussed further in Chapter 4.

5.3 Interferometer Calibration

For accurate flow measurements, careful calibration of the interferometer compo-

nents is required. The quantities of interest are the interferometer group delay N̂ ,

the instrument phase φI(x, y) and the instrument contrast ζI. The group delay is

the constant of proportionality relating plasma flow and measured Doppler phase φD

according to equation (2.4.21), and the instrument phase represents the un-shifted

fringe image against which φD is measured. The combination of these two quanti-

ties constitutes a complete wavelength calibration of the instrument, necessary for

absolute Doppler shift measurements. The instrument contrast ζI is analogous to

the instrumental broadening of a dispersive spectrometer: it increases the apparent

spectral width of the line being measured due to imperfections in the optical system.

Although line width measurements to obtain ion temperatures are not the focus of
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Figure 5.7: Flashlamp illuminated image of the MAST lower divertor (HL07 view)
used for calibration of the camera extrinsic parameters. Red lines show outlines of
the major components projected on to the image using the fitted camera parameters.

the present work, it is desirable to have a calibration for ζI since it can provide addi-

tional insight into the operation and performance of the instrument. The following

sections consider the calibration of N̂ , φI and ζI in more detail.

5.3.1 Group Delay

The interferometer group delay N̂ is determined by the delay plate thickness, its

birefringence and the dispersion of the birefringence. In order to calibrate the group

delay produced by each of the three delay plates, the response of the fringe phase to

small, well known changes in wavelength was measured. This also allows calibration

of the direction of the fringe shift (sign of the phase shift) relative to the sign of the

wavelength change (red-shift or blue-shift direction). A frequency doubled, tunable

diode laser (Toptica DL-SHG) was used as the adjustable wavelength light source

for the measurements, with the laser frequency monitored with a Fizaeu wavemeter

with an absolute accuracy of ∆ν ∼ 200MHz and resolution ∼10MHz. Light from

an optical fibre coupled to this laser was incident on a flashed opal diffuser placed

in front of the CIS diagnostic, with a spot size sufficient to illuminate a central

512×512 pixel region of the detector. Images were captured at a series of discrete

wavelength steps each equivalent to a Doppler shift of a few km/s with respect to

the previous. An example of one of the raw images showing the spatial heterodyne

fringe pattern and uniform illumination is shown in figure 5.8. Using the image at
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the shortest wavelength as the ‘zero Doppler shift’ reference, fringe phase shifts were

extracted from the images as described in Chapter 4. The mean of the extracted

phase shift values over the 512x512 pixel image was taken as the fringe phase shift

∆φ for each wavelength. Measurements were repeated for each of the three delay

plates. Written in terms of wavelength changes ∆λ about a wavelength λ0, the

change in fringe phase ∆φ is expected to be given by ∆φ = 2πN̂(∆λ/λ0). The fixed

delay for each plate was therefore determined by fitting straight lines to plots of ∆φ

as a function of ∆λ/λ0, giving a gradient of 2πN̂ . The phase measurement results

and best fit lines are shown in Figure 5.9.

Figure 5.8: Example 512x512 pixel raw image used for group delay calibration,
showing the spatial heterodyne fringe pattern. The noisy appearance of the image
is mainly due to laser speckle.

In order to use these measured group delay values to calibrate plasma data, they

must be extrapolated to the correct wavelengths for the MAST ion lines from the

calibration wavelength λ0 = 460.85nm. Using the expression for the phase delay of

a birefringent plate in equation (2.5.34) and the definition of group delay, the delays

at two different wavelengths are related by:

N̂(λ2) =
λ1

λ2

B(λ2)

B(λ1)

κ(λ2)

κ(λ1)
N̂(λ1), (5.3.6)

where the birefringence B(λ) and dispersion correction κ(λ) are calculated from

the Sellmeier equations (3.5.5). The group delays for each emission line calculated

using this relationship are shown in table 5.2, along with the design values from

the previous chapter. These measurement-based values were used to calibrate the
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Figure 5.9: Measured fringe phase shift as a function of input wavelength change
(laser tuning) for each delay plate. Solid lines are linear fits to the experimental
data points, with the corresponding values of N̂ given.

Delay plate N̂ , C III (464.89nm) N̂ , C II (514.24nm) N̂ , He II (468.57nm)
Design Calib. Design Calib. Design Calib.

4.6mm 1389 1391± 10 1204 1207± 9 1373 1376± 10
6.5mm 1962 1997± 22 1701 1731± 19 1940 1974± 21
9.8mm 2958 3102± 16 2565 2690± 13 2924 3067± 15

Table 5.2: Calibrated group delay (in waves) for each delay plate when operating
for each MAST ion line, compared with the design values.

MAST plasma data.

The calibrated group delay for the 4.6mm crystal matches extremely well with

the design specifications, while the thicker plates deviate by around 1.8% and 4.9%

for the 6.5mm and 9.8mm plates respectively. The discrepancy in the 9.8mm plate

operating in C II is enough that the delay for this plate misses the narrow high

contrast region of 2500 - 2600 waves which it was intended to target. This is expected

to result in a fringe contrast less than 65% of the design value. While this reduces the

usefulness of this crystal for experimental contrast measurements in C II, it does not

effect the baseline flow measurement scenarios or possible contrast measurements in

the other species (which use the other two plates). It was found that the varied

discrepancies between the design and measured delays for each of the 3 crystals

was partly due to the plate thicknesses. The 9.8mm plate was in fact found to

have the most accurate delivered thickness at 9.79mm, with the other two crystals

measuring 6.35mm and 4.48mm thick. Using these measured thicknesses to calculate

the expected group delays, it was found that the Sellmeier equations used in this
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work under-estimate the group delay by 2.8%, 4.3% and 4.9% for the nominally

9.8mm, 6.5mm and 4.6mm crystals respectively.

5.3.2 Instrument Phase

Accurate calibration of the instrument phase, i.e. the un-shifted fringe pattern, is

a challenging aspect of the coherence imaging technique. Ideally laboratory sources

of each of the target ion lines, at their rest wavelengths, would be used to obtain

instrument phase images which could be directly compared to the plasma image

phase. However, in practise such sources of these lines are not available. Previous

work studying carbon lines on DIII-D used the flash of light when the plasma is

initiated to produce a reference phase image [Howard et al., 2011], assuming that

the net motion of the plasma at this time is close to zero. This gives a calibration

image with the correct spectral line characteristics and offers per-shot monitoring

of any variation of φI . However, this was not possible on MAST since no bright

flash of impurity light is reliably observed at the start of the shot. Instead, a hybrid

technique is used where an initial phase image is obtained offline at a different

wavelength, and then adjusted for use with the plasma data using information from

the plasma light itself. For the purposes of this calibration the instrument phase is

considered to consist of two parts: a ‘phase shape’ image which is a function of image

position φshape(x, y), and a ‘phase offset’ φoffs. The phase shape gives the form of

the carrier fringe pattern, i.e. the shear of the instrument phase across the detector,

while the phase offset is a spatially constant offset specifying the absolute zero flow

point of the flow measurement. The total instrument phase is then φI = φshape+φoffs.

This form is adopted in order to split the instrument phase into a part which can

be calibrated infrequently and offline: φshape, and a part adjusted frequently using

information from the plasma: φoffs. The offline part of the phase calibration was

performed whenever the crystal plate configuration or zoom / focus settings of the

instrument were changed. The methods for calibrating φshape and φoffs are now

presented in detail.

Phase Shape Calibration

Initial phase shape images were obtained using a cadmium spectral lamp. Cd I has

well isolated lines in the wings of both the He II and C II filters, at 467.815nm and

508.58nm respectively. The filter transmission at these wavelengths is 11% for the

He II filter and 4% for the C II filter. Calibration images were obtained offline with

the diagnostic in the lab, where a Cd spectral lamp was used to illuminate a small

(∼15cm) integrating sphere into which the diagnostic was pointed to take images.
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Since the camera was limited to a maximum integration time of 20ms, the raw

images from this setup had a very poor SNR (< 6). To improve this, stacks of 2048

images taken in succession with 20ms exposure were used to form each calibration

fringe image. Once such a fringe image was obtained, it was demodulated to obtain

a wrapped fringe phase image as described in section 4.2.3. To obtain the phase

shape φshape, this phase image is unwrapped and the phase at the image centre is set

to zero. An example fringe pattern image and the corresponding unwrapped phase

shape are shown in figure 5.10; the phase shape image is clearly dominated by the

up-down phase shear from the Savart polariscope which forms the horizontal fringe

pattern. Phase shape images obtained in this way still showed considerable high

spatial frequency noise due to noise on the fringe pattern images, although this is

not clearly visible in figure 5.10 due to the colour scale. To reduce the effects of

this noise, the phase shape images were fit with a 2D, 3rd order polynomial in pixel

coordinates (x, y), and the fitted polynomials then used to model φshape.
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Figure 5.10: Illustration of phase shape calibration using the Cd I 467.8nm line.
Left: calibration image produced from a stack of 2048 20ms exposures, showing the
calibration fringe pattern. Right: demodulated and unwrapped phase shape for this
image.

Phase shape images obtained with the Cd lamp setup must be corrected for

the difference in wavelength between the calibration lamp lines and plasma ion

lines before they can be used with plasma data. A theoretical form for the phase

shape at a given wavelength can be obtained from equations (2.5.39) and (2.5.41).

Approximating sin(θ) ≈ θ and neglecting terms in θ2 (these approximations are

justified since θ < 5◦ for the entire field of view in the MAST system), the phase

shape is approximately:

φshape(θ, ω) ≈ 2πθt

λ

(
n2
o − n2

e

n2
o + n2

e

[cos(ω) + sin(ω)]

)
, (5.3.7)
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where t is the Savart polariscope thickness and for horizontal fringes θ and ω are

related to the image plane position via θ ≈
√
x2 + y2/f3 and ω = arctan(y/x)+3π/4.

From this expression, the phase shapes at two different wavelengths are related by:

φshape(x, y, λ2) ≈

[
λ1

λ2

n2
o + n2

e

n2
o − n2

e

∣∣∣∣
λ1

n2
o − n2

e

n2
o + n2

e

∣∣∣∣
λ2

]
φshape(x, y, λ1). (5.3.8)

This correction was applied to the Cd lamp phase shape images to obtain the

phase images used for plasma data. The accuracy of the correction was tested using

φshape images recorded for the Cd I 467.8nm and 508.6nm lines. The phase shape

at 467.8nm was extrapolated to 508.6nm using equation (5.3.8), and compared with

φshape measurements at 508.6nm. The difference between φshape at the different

wavelengths, before and after the wavelength correction are shown in figure 5.11. It

is seen that the correction procedure accurately removes the dominant vertical shear

in the phase difference over most of the image, although with some residuals at the

top and bottom image edges. The phase difference after correction is ≤0.38 rad

over the entire image (and much less near the image centre), corresponding to an

error in the correction of ≤1.5%. For the much smaller wavelength differences over

which the correction is used for the actual diagnostic calibration, this corresponds

to a correction error of ≤ 0.03 rad or ≤ 1 km/s in the flow calibration
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Figure 5.11: Difference between phase shape images for Cd I 467.8nm and 508.6nm
spectral lines, without (left) and with (right) correction for the difference in wave-
length between the two lines using equation (5.3.8).

Phase Offset

With reference to the notation of chapter 2, the phase offset is expected to be given

by φoffs = (φ0 + φM + φdrift) mod 2π. In principle φ0 + φM could be obtained from
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the Cd lamp measurements if the delay plate characteristics, calibration wavelength

and multiplet structure of the plasma lines were known sufficiently accurately, while

φdrift represents time-dependent calibration drifts which can occur in the real instru-

ment e.g. due to changes in ambient temperature. For the MAST system the time

variation of φdrift was sufficiently large that one-off calibration of φoffs was insuffi-

cient, and required monitoring during plasma operations (see section 5.3.5). This

was possible without additional in-situ calibration hardware, because the wide angle

views on MAST allow φoffs to be obtained from the plasma data itself. The technique

is based on the fact that flows in the radial direction in the plasma, perpendicular

to the magnetic field, are expected to be very slow compared to the flows parallel

to the field which are being measured, due to the confining effect of the magnetic

field. Therefore for any line-of-sight viewing the plasma radially, φD ≈ 0 is expected

to be observed. The most commonly used plasma views for CIS on MAST all in-

cluded such radial sight lines. Letting the image coordinates of such a sight line

be denoted (xref , yref), the phase offset can be obtained from the measured fringe

phase image φ(x, y) according to φoffs = φ(xref , yref) − φshape(xref , yref). In practise

for every image this was calculated for all sight lines viewing the plasma close to

radially, and the mean value of φoffs from these sight-lines was used. This is then

sufficient to completely constrain the absolute flow calibration over the entire field

of view. This technique is advantageous because it allows the calibration to be mon-

itored on a shot-to-shot and even frame-to-frame basis, however it is only applicable

when suitable reference sight lines (typically ones which view the plasma radially)

are available in the images.

Temperature Dependence

The interferometer delay varies with the temperature of the birefringent components,

due to differential changes of the ordinary and extraordinary refractive indices and

thermal expansion of the crystal plates. In general both the phase shape and phase

offset are subject to this effect, although the phase offset change is much larger due

to the effect of the thick delay plate. For small changes in temperature, such as

those encountered during operation with the temperature-stabilised cell, the change

in phase shape can be neglected and the temperature effect considered as a phase

offset change due to the main delay plate. Under a small change in temperature

∆T , thermal expansion will cause the plate thickness to increase by an amount

∆L = Lα∆T , where α is the linear thermal expansion coefficient of the crystal

material perpendicular to the optical axis. The sensitivity of the refractive indices to

temperature is given by the thermo-optic coefficients dno

dT
and dne

dT
. The corresponding
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rate of change of birefringence is given by dB
dT

= dne

dT
− dno

dT
. Substituting L = L0 +∆L

and B = B0 + ∆T dB
dT

in equation (2.5.34), the expected phase delay change due to

a small temperature change is given by:

∆φ0

∆T
≈ φ0

(
α +

1

B0

dB

dT

)
. (5.3.9)

Since we are ultimately interested in the apparent flow due to a temperature

change, note that a shift in φ0 corresponds to an apparent flow of ∆v = c∆φ0/(2πN̂).

Using this we can write down an estimate for the flow calibration’s sensitivity to

temperature, which depends on the material properties and is independent of the

interferometer delay:

∆vcalib

∆T
≈ c

κ

(
α +

1

B

dB

dT

)
. (5.3.10)

This has a weak wavelength dependence, due to the dispersion of B and κ. Using

measurements in the literature for α-BBO [Eimerl et al., 1987] of α = 4× 10−6/K,
dno

dT
= −1.66 × 10−5/K, dne

dT
= −9.3 × 10−6/K and the Sellmeier equations (3.5.5),

the calculated calibration sensitivity is plotted as a solid black line in figure 5.12.

This is remarkably large at > 13km/s/◦C throughout the visible range, emphasising

the need for temperature stabilisation of the interferometer optics.

In order to measure the temperature sensitivity of the calibration experimentally,

fringe images were recorded while the temperature of the interferometer optics was

adjusted using the temperature controlled cell. Multiple wavelengths were sampled

by using a 633nm HeNe laser and two lines from a zinc spectral lamp (468.2nm and

509.4nm), where available. The mean phase change over the entire image between

a reference frame and each temperature step was plotted as a function of plate tem-

perature, and a straight line fit used to obtain the temperature sensitivity ∆φ
∆T

. This

was converted to flow calibration sensitivity according to ∆vcalib
∆T

= (c∆φ
∆T

)/(2πN̂),

where N̂ was determined from table 5.2 and equation (5.3.8). The results are shown

in figure 5.12.

The observed temperature sensitivity is lower than predicted by equation (5.3.10)

for all wavelengths and delay plates by between 14% - 28%. This is most likely due

to insufficient accuracy of the thermo-optic coefficients used for the calculation,

to which the result is very sensitive. The thermo-optic coefficients used do not

have explicitly stated uncertainties, and are an average of measurements at different

wavelengths. Errors in the coefficients of between 3 - 4% would be sufficient to

explain the discrepancy found here. The experimentally measured sensitivity is also

in good agreement with similar measurements carried out at Australian National
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Figure 5.12: Dependence of calibration offset (in terms of flow speed) on interferom-
eter component temperature over the visible spectrum. The black line is calculated
from equation 5.3.10 while the points are measured.

University [Howard, J. private communication, 2012].

5.3.3 Instrument Contrast

It was found that the instrument contrast ζI could not be reliably calibrated using

the Cd lamp setup described previously for the instrument phase calibration. This

is shown by the fact that the measured contrast in the plasma data was higher than

the calibrated ζI in some shots, which should not be possible for an accurate cali-

bration since ζI by definition is the highest contrast achievable by the instrument.

There are two main possible reasons for this. The first is a difference in illumination

of the interferometer pupil between the calibration and plasma light, which can lead

to a difference in measured contrast because of inhomogeneity in the birefringent

components (see section 5.3.4). However, using the integrating sphere configuration

with the instrument in its on-machine configuration is expected to minimise this

difference. The second reason is related to the detector. Due to the need to stack

many frames to increase the SNR on the calibration images, accumulation of read

noise (which can only cause positive fluctuations in pixel values after dark subtrac-

tion, since the data is truncated at zero ADU) artificially lowers the contrast in the

calibration images. In order to avoid this effect, the on-camera dark signal subtrac-

tion was disabled and stacks of 2048 dark frames (with the calibration lamp off)

were subtracted from stacks of 2048 frames with the lamp on to obtain calibration

images. While this removed the effect of read noise on the contrast, due to the
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very low signal level any small changes in background or offset signal could cause a

significant change in apparent contrast. For example, with a peak signal level in an

individual calibration frame of 15 ADU as typically seen in the Cd lamp calibrations,

a background level increase of 1 ADU between the dark and signal frames would re-

sult in a 10% drop of the apparent contrast. Such changes can occur due to drifts in

the camera offset level in the time taken to capture both the dark and signal images

(∼20 minutes), particularly if the camera has not been allowed to warm up for at

least 3 hours before performing the calibration. Furthermore, since the calibration

signal level varies across the image due to vignetting and the structure from the

filters, the size of this apparent contrast change varies in the image and can intro-

duce artificial structure into the calibration. Because of these issues, calibration of

ζI could not be performed sufficiently accurately for quantitative use. Mean values

of ζI over the field of view ranged from 0.28 - 0.6 in different calibrations.

Despite the lack of a quantitatively useful calibration of ζI, some consistently

observed qualitative properties of the contrast do provide insight into the properties

of the instrument. An example contrast calibration image is shown in figure 5.13.

Note that the contrast in the centre of the field of view is almost a factor of two

lower than that at the image edges. This is the opposite of what would be expected

if ζI was dominated by the performance of the imaging lenses: the contrast would

be expected to fall off towards the image edges due to increasing abberations typ-

ically seen towards the field of view edges in camera lenses. This result therefore

indicates that another effect is dominating the instrument contrast. This appears

to be inhomogeneity in the birefringent components, and is discussed in more detail

in the next section.

5.3.4 Crystal Uniformity

The uniformity of the interferometer components over their aperture, both in terms

of surface quality and refractive index uniformity within the crystal, plays an im-

portant role in the instrument performance and calibration. Ideally, light passing

through any part of the crystal aperture at a given angle should experience an iden-

tical phase delay. In reality, thickness variations and refractive index inhomogeneity

within the crystal mean that light passing through different parts of the aperture

experiences different delays. This has two important effects, the first of which is

lowering of the instrument contrast. This occurs because the light arriving at a

given point in the image plane has passed through a range of locations in the crystal

aperture, and therefore experienced a range of phase delay. The larger the range of

phase delay, the lower the fringe contrast at that point in the image. The second
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Figure 5.13: Example of a contrast calibration image using the Cd lamp calibration
configuration. The contrast is observed to increase significantly towards the image
edges.

effect is to make the interferogram calibration highly sensitive to the pupil illumina-

tion. If incoming calibration light does not fill the crystal aperture in the same way

as the plasma light, it will sample a different range of delays and therefore could

give a different instrument phase and contrast.

In order to measure the non-uniformity of the delay produced by the birefringent

components, an experiment was carried out to record the fringe patterns created

when only illuminating small sub-apertures of the interferometer. A small square

aperture was placed in front of the Cd calibration lamp and imaged on to the

interferometer components, which were mounted in the temperature controlled cell

but removed from the rest of the diagnostic. This illuminated a small square area of

the polarisers and crystals of around 2mm x 2mm (the full crystal aperture is circular

with 28mm diameter). The temperature controlled cell was mounted on a 2D linear

translation stage setup, such that the illuminated area could be scanned over the

components’ clear aperture. A camera with its lens focused at infinity was placed

after the cell to record the fringe pattern, using the same fringe scale at the detector

as in the complete diagnostic. The illuminated area was then raster scanned over the

aperture of the interferometer components using the translation stages, recording the

fringe pattern at each location. These images were demodulated to determine the

difference in fringe phase between the different positions in the aperture. Since the

illumination used had a constant spectrum for all points, these measured differences

in fringe phase correspond to the variations in the interferometer phase delay across
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the aperture. Measurements were performed for the baseline crystal configuration

consisting of the 6.5mm delay plate, 4mm and 2.2mm Savart polariscopes, and for

each of these components separately (always including the polarisers before and

after the crystals in order to produce the fringe pattern). Since at least one Savart

polariscope is required to produce the fringe pattern which enables the measurement,

the delay plate only measurement was obtained using the delay plate and 4mm

Savart polariscope together, before subtracting the polariscope measurements. The

resulting delay profiles across the crystal apertures are shown in figure 5.14.

Figure 5.14: Measured variations in phase delay across the interferometer aperture,
for each component in the baseline interferometer configuration and for the complete
system (consisting of one delay plate and two Savart polariscopes).

For the full baseline crystal configuration, the range of the delay variation is ap-

proximately 0.7 waves over the aperture. The largest contribution to this is from the

2.2mm Savart polariscope, which displays the largest non-uniformity and the most

complex spatial structure, attributed to particularly large manufacturing imperfec-

tions in this component (despite all the crystals being provided by one supplier).

In terms of the instrument calibration this amount of phase variation is very large

(0.7 waves fringe phase change would be equivalent to a flow measurement of order

100km/s), thus this illustrates the need to ensure the crystal aperture is correctly
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illuminated (i.e. not under-filled) when carrying out calibrations. These results and

the known properties of the instrument’s lens configuration also provide a qualita-

tive explanation for the observed instrument contrast structure seen in figure 5.13,

i.e. the lower contrast near the image centre than at the edges. This occurs because

at the centre of the field of view, the entire crystal aperture is illuminated, hence

this light samples the full range of phase delay and the fringe contrast is lowest.

Towards the image edges, vignetting due to the imaging lens configuration means

a smaller area of the crystals is illuminated, thus the light samples a smaller range

of delay and the fringe contrast is higher. This effect appears to be dominant in

determining the fringe contrast.

The measurements were repeated with the temperature controlled cell set to dif-

ferent temperature values, and the non-uniformity was found to show a weak tem-

perature dependence, with the RMS phase variation across the aperture increasing

from 0.97 rad at Tcrystals = 33.3◦C to 1.07 rad at 36.9◦C (without significant change

to the spatial structure of the variations). The instrument contrast is therefore

expected to decrease slightly with increasing temperature of the crystals, due to

increased non-uniformity at higher temperatures. Such an effect is indeed observed,

as will be seen in the next section.

5.3.5 Calibration Stability Tests

In order to test the overall stability of the interferogram calibration to ambient

conditions, images of a diffuser illuminated by a HeNe laser were recorded every 5

minutes for 48 hours in the lab. For the first 24 hours the temperature stabilised

cell was turned off to observe the stability without active temperature stabilisation;

for the second 24 hours the active temperature stabilisation was enabled. Measure-

ments of the ambient temperature and interferometer optics temperature were also

obtained using thermocouples. Time histories of the ambient temperature, crystal

plate temperature, fringe phase and fringe contrast are shown in figure 5.15. Phase

and temperature measurements are the mean from a central 100x100 pixel region of

the image.

The ambient temperature shows similar levels of fluctuation with a range of 4

- 5◦C over both the stabilisation off and on periods. The plate temperature shows

fluctuations of the same magnitude with the temperature control off, however the

response to faster temperature changes is smoothed out due to the (passive) thermal

insulation of the cell. With the temperature stabilisation enabled, the plate tem-

perature varies with a range of 0.4◦C, consistent with the controller specifications.

With the temperature control off, the fringe phase varies with a range of 2.2 ra-
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5.4. Summary 121

dians, equivalent to a flow calibration shift of almost 80km/s. With the temperature

control on this is reduced to 0.3 rad or 12km/s in flow, somewhat larger than the

5km/s range expected from the stand-alone temperature sensitivity measurements.

This could be due to effects other than changes in the crystals themselves, such as

thermal expansion in the mechanical structure of the system causing the crystals to

shift slightly relative to the detector. The amount of fringe movement on the de-

tector for a phase range of 0.3 rad at 633nm is 0.74 pixels, of which approximately

0.17 rad is expected due to changes in the crystals.

The fringe contrast shows approximately the same amount of variation with the

temperature control on as off. This indicates that the contrast calibration drift is

dominated by changes in the camera offset level, which will be the same in the

stabilisation on and off cases. The range of contrast variations in both cases is ap-

proximately 16 percentage points. Since this effect is primarily due to camera offset

drifts, it is not expected to be observed during plasma operations since offset level

calibration is performed per-shot, whereas it was performed only once for these sta-

bility measurements. It is also observed that the contrast is consistently lower with

the temperature control on than off. This is due to increased delay inhomogeneity

in the crystals when their temperature is raised from ambient to a higher stabilised

temperature, and this behaviour is consistent with the measurements in section

5.3.4. It is therefore desirable to operate the temperature controller at the lowest

temperature where good stabilisation can be achieved, in order to avoid lowering

the fringe contrast and therefore SNR unnecessarily.

Overall the stability measurements show considerable variation in the calibration

parameters, at a level at which calibration monitoring during plasma operations is

required. In order to improve the stability, it would be desirable to more carefully

account for thermal expansion effects in the mechanical design of any future instru-

ment, and to investigate methods of better stabilising the thermal effects in the

plates.

5.4 Summary

In this chapter, various aspects of the behaviour and performance of the MAST CIS

diagnostic hardware have been investigated experimentally. The detector response

and noise level have been measured, and in the next chapter will be shown to result

in flow measurement noise of around 1km/s under typical measurement conditions

on MAST. Difficulties with accurate contrast calibration due to dark level drift of

the camera preclude ion temperature measurements with the MAST instrument.
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The line selection band pass filters were found to meet the requirements set

out in chapter 3, and are not expected to cause any significant flow measurement

errors. The absolute light sensitivity and vignetting of the assembled diagnostic

were measured and were within approximately 20% of the design calculations.

The interferometer group delay has been calibrated and found to agree well

with the design specifications for two of the three delay plates, although the 9.8mm

plate produces a delay around 5% larger than the specifications. This makes the

9.8mm plate less useful for C II measurements but does not affect the baseline flow

measurement configuration. Errors on the group delay calibration are ≤ 1.1% and

are not expected to be a significant source of measurement error. Measurements

of the fringe contrast show the contrast to be highest at the edges of the field

of view, which is qualitatively explained by non-uniformities in the interferometer

components. Measurements of the calibration stability in the lab confirmed the need

for active temperature stabilisation of the birefringent interferometer optics, and the

need for monitoring of the calibration during plasma operations. The procedures for

calibration of the instrument have been presented, including a hybrid scheme using

online and offline measurements to calibrate the instrument phase.



Chapter 6

Coherence Imaging Measurements

on MAST

The MAST CIS diagnostic was successfully operated throughout MAST’s 2013 ex-

perimental campaign, making flow measurements in both dedicated experiments

and parasitically during other discharges. Due to the limitations preventing accu-

rate contrast calibration for line width measurements, discussed in chapter 5, only

flow measurements were obtained. All four available plasma views (see figure 3.10)

were exploited during the campaign. This chapter discusses the on-plasma perfor-

mance of the instrument, and provides some examples of the complex flow patterns

observed.

6.1 Instrument Performance

6.1.1 Signal level, noise & measurement uncertainties

Exposure times used for the collection of plasma data were typically 1 - 4ms for C

III, 4 - 16ms for C II and 8 - 20ms for He II. The observed signal level and required

exposure time varied strongly depending on the plasma configuration. Significantly

longer exposure times were required when using the HM02 plasma view, since the

vacuum port window did not have a shutter installed to protect it from deposition

during glow discharge cleaning of the vacuum vessel (unlike the other windows used),

and exhibited around 5 times lower transmission compared to the sector 7 windows.

Due to the shorter exposure times required and therefore high frame rates possible,

C III measurements were typically favoured and are of the most interest for studying

flow dynamics.

The noise on measured v̄ images due to image noise in the raw data was estimated

123



6.1. Instrument Performance 124

using the results from section 4.3. An example for C III divertor measurements in a

LSND plasma, using 2 ms exposure time, is given in figure 6.1, which shows the raw

camera image (left) and the estimated noise on the flow measurement (right). The

profiles of the divertor legs are clearly visible in both images. In the brightest regions

of the image the estimated flow noise is as small as 0.2 - 0.5km/s (the magnitude of

the measured C III flows in these areas are around 2.5 - 15 km/s in this example),

rising to a few km/s in dimly emitting regions. Noise estimates such as this were

validated by taking 1D slices through the measured v̄ images, and subtracting a

smoothed version of the profile to estimate the actual noise level on the image. The

standard deviation of the measured noise level was found to be typically within 20%

of the predicted standard deviation, indicating that images of the type shown in fig.

6.1(b) provide a reasonable estimate of the noise level on flow images.

In brightly illuminated image areas with estimated noise levels well below 1km/s,

image noise is not likely to dominate measurement error, and spectral contamination

(discussed in section 4.5) and errors in instrument phase calibration (discussed here

and in section 5.3.2) are around the same magnitude. An important aspect of the

phase calibration error to consider is the determination of φoffs from radial sight-lines;

these sight-lines often show low signal levels since they integrate straight through

a thin shell of emission in the SOL. Typically φoffs was obtained by averaging over

at least several thousand image pixels viewing the centre column at R < 5 cm and

symmetrical about the radial direction (i.e. close-to-radial sight lines). By looking

at fluctuations in the time history of φoffs during a shot (having eliminated other

influences such as mechanical vibrations; see section 6.1.2), the typical random error

on φoffs was estimated to have σ < 0.6 km/s.

6.1.2 Calibration Stability

Phase Offset

As was discussed in section 5.3.2, the flow calibration offset φoffs is subject to drifts

due to ambient temperature changes and mechanical disturbance of the instrument,

and is monitored using radial sight-lines as a zero flow reference. During plasma

operations, offset shifts were monitored over two different timescales. The first

were intra-shot, i.e. frame-to-frame changes, due to mechanical vibration of the

instrument during the discharge. When the system was first installed on MAST

it was supported on a rail cantilevered from the tokamak vacuum vessel. During

plasma shots, movement and vibrations of the vacuum vessel were transmitted to the

instrument and caused movement of the interferometer components relative to the



6.1. Instrument Performance 125

D
etected0Signal0(A

D
U

)

E
stim

ated0m
easurem

ent0noise0(km
/s)

X0pixel0 X0pixel0

Y
0P

ix
el

(a) (b)

200 400 600 800 1000

200

400

600

800

1000 0

100

200

300

400

500

200 400 600 800 1000

200

400

600

800

1000 0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 6.1: Signal level and flow noise images for LSND plasma shot 28841 during
H-Mode, using the C III filter and 2 ms exposure time. (a) Raw image from the
camera and (b) estimated noise on the flow measurement, estimated from the results
in section 4.3.

detector, making the entire fringe pattern move across the detector. This appears

in the data as large oscillations in the measured flow (with peak-to-peak amplitudes

of up to 40km/s) with a frequency of around 100Hz. The dominant cause was

identified as vibration of the temperature control cell and its mount, which was

secured at one end from the main base plate. This motion is illustrated in figure

6.2. The problem was mitigated by mounting the instrument from the floor next to

Camera l3 l2 l1
Pol.
Optics

Figure 6.2: Side view of a CAD model of the instrument, illustrating the mechanical
vibrations causing frame-to-frame calibration oscillations. Motion is indicated by red
arrows.

the tokamak rather than the vacuum vessel, and by adding an additional support for

the temperature cell at the end not supported by the primary mount. Floor mounts

could only be implemented for the HL07 divertor and HM02 midplane views, due

to space restrictions and clashes with other structures & diagnostics. Fig 6.3 shows

the flow measured on the φoffs reference chords, relative to its mean over the data

shown, during two similar plasma shots on the HL07 divertor view: one before and

one after the modifications to alleviate the vibration problem. The peak-to-peak
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amplitude of the oscillations with no mitigation corresponds to a fringe motion of

up to 1.4 pixels on the detector, or an angular motion of the crystals of up to 0.01◦,

and is reduced to 0.15 pixels or 0.001◦ after the modifications. The sensitivity of

the system to such small changes in the angular alignment of the crystals is due to

the use of small beam angles through the collimated region, driven by minimising

filter blue-shift effects. Larger oscillations were observed on data using the HM07

midplane views, with peak-to-peak amplitudes as high as 40km/s.

In data from the views where floor mounts could not be implemented (and to

remove small remaining oscillations seen in some of the data even after the modifi-

cations), subtraction of the oscillating φoffs usually provided satisfactory correction

for the vibrations across the whole field of view, since the motion of the polarisation

optics was essentially constrained to 1 axis and relatively small amplitude, making

the fringe pattern move systematically up and down on the detector.
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Figure 6.3: Effect of mechanical vibrations on flow measurements before subtraction
of φoffs, during two comparable LSND plasma discharges viewed from the HL07
divertor port. The mean flow has been subtracted to show only the vibration effect.

Variations of the calibration offset on longer timescales, i.e. between different

shots over the course of days and weeks, were monitored using the mean offset within

each shot. Variation over a one week period, in km/s, is shown in figure 6.4. On

any given day, the offset drifted by between around 2km/s - 15km/s. The range of

all values shown in figure 6.4 is around 16km/s.

Both the inter- and intra- shot variations in calibration offset demonstrate the

need for the calibration monitoring of the MAST instrument, and potential improve-

ments in future diagnostic design. Namely, it would be desirable to improve both

the thermal stabilisation (using an improved temperature controller, and/or passive
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Figure 6.4: Calibration offset variations over a 1 week period. Inset shows the offsets
over a single day.

thermal stabilisation using multiple plate materials) and mechanical design in order

to try to stabilise the calibration. In addition, an in-situ calibration system not

relying on plasma light is highly desirable to maintain accurate calibration of the

diagnostic independent of the plasma view.

Phase Shape

As described in section 5.3.2, calibration of the instrument phase shape φshape for

a given run of measurements was performed offline in the lab before the diagnostic

was installed on the tokamak. This calibration method relies on the phase shape

not being significantly affected by thermal drifts or mechanical disturbance during

the installation of the instrument or subsequent plasma operations. To test this,

phase shape calibrations were performed in the lab before and after a 7 day period

of operation on the wide angle divertor view, and compared after subtracting the

mean offset over the image. Discrepancies between the two calibrations were found

to be up to 3 km/s, and showed the form of a gradient across the image perpendicular

to the fringes. As such the largest deviations were at the image corners, and in the

central part of the image where most of the spatial flow information is obtained the

discrepancies were up to around 1km/s. This shows that the phase shape does in

fact suffer changes during installation and operation of the diagnostic, and in-situ,

preferably per-shot calibration over the whole image frame would be desirable for

accurate calibration of future instruments. Since the spatial structure of the changes

is a gradient across the entire image, this does not significantly effect observations

of more complex spatial structure in the flows or flow structure at fine spatial scales.
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6.1.3 Comparison with dispersive Doppler spectroscopy

In order to validate flow measurements from the CIS system against other diag-

nostics, measurements of toroidal He II flow at the low field side midplane were

performed simultaneously using CIS and dispersive Doppler spectroscopy. The dis-

persive system used was part of the ECELESTE edge Doppler spectroscopy di-

agnostic [Morgan, 2011]: a 1m Czerny-Turner spectrograph with a 1680 line/mm

grating and 300µm entrance slit, with 60 lines of sight viewing the plasma tangen-

tially between 1.36 ≤ R ≤ 1.46m at the midplane. Using the HM07 tangential view,

equivalent sight-lines (i.e also viewing the plasma tangentially at the midplane, at

the same radius but different toroidal location) were obtained with the CIS instru-

ment. Doppler shift measurements of the He II line were then made in a series

of shots based on an L-Mode DND discharge, where the plasma vertical position

was scanned vertically between shots. The goal was to attempt to modify the flows

between shots by changing the primary X-point from upper to lower, i.e. changing

which divertor the near SOL field lines connect with.

Unfortunately these plasmas exhibited sawtooth crashes (periodic reorganisation

of the confined plasma where the hot core is ejected, due to an internal kink insta-

bility) at a frequency close to the frame rate of the CIS measurements, and which

appeared clearly in the ECELESTE measurements which used a much shorter in-

tegration time (2ms compared to 20ms for the CIS). The measurements from both

diagnostics were averaged over extended lengths of time (40 - 100ms) in order to

ensure these variations were averaged over in the same way (or as closely as possi-

ble) for both instruments. Another difficulty with these measurements was that the

radial zero flow calibration chord usually used for ECELESTE was not available,

and the CIS view was not wide enough to capture both the outboard plasma edge

and fully radial chords for a phase offset reference. With these restrictions, it is only

possible to compare the measured difference in flow between consecutive shots with

the plasma shifted up and down with any confidence. In order to do this, the mean

offset between the flow measurements from the two instruments was found for one

of the plasma shots (#28910), and the same offset applied to the other shot. The

results are shown in figure 6.5.

Both instruments show little variation in flow as a function of major radius, and

a difference of approximately 4km/s between the two shots. This provides only a

basic comparison between the two instruments, and using plasma shots with a larger

difference between the two shots, more clear spatial structure in the flows and no

Magnetohydrodynamic (MHD) activity would be desirable to provide a better test.

Data are shown over the radial range where bright He II emission was observed.
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The measured shot-to-shot flow difference is similar between ECELESTE and the

CIS instrument, and when averaged in space over 1.36m ≤ R ≤ 1.43 m, is around

1.1km/s larger in the CIS data compared to ECELESTE. Although this discrepancy

between the two instruments is fractionally large at around 25%, the absolute value

is around the magnitude of expected measurement errors on the CIS measurements,

and could also include contributions due to small differences in the sight-line geome-

try (including differences in contamination such as reflections) and time integration

between the two instruments. An improved experiment using more suitable plasma

discharges, and preferably with the two instruments sharing common sight-lines and

integration time, would be desirable for a more informative comparison.
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6.2 Plasma Observations

6.2.1 Limited Plasmas

At the start of a MAST plasma discharge, the plasma is initially formed in a limiter

configuration with the centre column armour acting as the limiter, before connecting

to the divertor(s) at later times. During this early limited phase, CIS measurements

show a distinctive flow pattern qualitatively consistent with what might be expected

for impurities following the main ion flow. Examples of such measurements, in

all three species using the HM07 radial view, are shown in figure 6.6. The line

integrated brightness and line average flow v̄ are shown together in each image:
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the image brightness (luminance) represents the line integrated brightness while

the colour represents the flow. The positive flow direction is defined as flow away

from the camera i.e. redshift of the emission line, and negative flow is towards the

camera. Representing the flow and brightness images together in this way helps to

give spatial context to the flow information and make the images easier to interpret.

The full cross-section of the small limited plasma is clearly visible in figure 6.6,

with the centre column visible slightly to the right of the image centre. Due to the

viewing configuration, the measured flow is predominantly the toroidal projection of

the total flow. The flows appear symmetric about the centre column, as expected for

a toroidally symmetric plasma, thereby giving confidence in the instrument phase

calibration. The dark, apparently high positive flow feature on the right hand edge

of the image towards the top is due to vignetting from a viewing obstruction just in

front of the diagnostic. The fringes in the raw data were oriented horizontally, i.e.

the best spatial resolution is in the horizontal direction.

First concentrating on the carbon measurements, plasma closest to the centre

column shows oppositely directed toroidal flow projections in the top and bottom

halves of the plasma: anti-clockwise around the torus (viewed from above) above the

vertical midplane and clockwise below the midplane. Assuming this measured flow

is predominantly the toroidal component of flow along the magnetic field lines, these

flow directions correspond to flow along the field lines towards the high field side

midplane in both the upper and lower parts of the plasma. The interpretation of this

flow pattern is that the carbon is being dragged along by frictional forces with strong

background plasma flow towards the particle sink at the limiter surface (the centre

column) on the open field lines in the SOL. In addition to the up-down flow reversal,

in the C III image the lower half of the plasma also shows clear radial structure, with

a layer rotating anti-clockwise inside (in terms of minor radius) the clockwise layer

adjacent to the limiter surface. This appears to indicate a co-current (with respect

to the plasma current) toroidal rotation of C III impurities in the confined plasma,

with the change in flow sign in the lower half of the plasma essentially providing a

visualisation of the separatrix location. This is visible in the C III image since the

relatively low temperature of the plasma early in the shot means C III emission is

visible both just inside and outside the separatrix. The co-current rotating layer is

not seen in the C II image, since C II emits at lower temperatures and is limited to

the SOL. In He II only the co-current rotation is seen (no clear up-down direction

reversal exists), since He II emits at higher temperatures than C III and is seen

almost entirely inside the separatrix at this time.

A feature not consistent with this description is the negative flow region to the



6.2. Plasma Observations 131

wakcCcIIIcwL28751,ctc=c25msk

Y
cp

ix
el

cn
o.

200

400

600

800

1000
wbkcCcIIcwL28798,ctc=c17msk

200

400

600

800

1000
wckcHecIIcwL28744,ctc=c50msk

Xcpixelcno.

Y
cp

ix
el

cn
o.

Y
cp

ix
el

cn
o.

200 400 600 800 1000

200

400

600

800

1000

L
in

ec
av

er
ag

ec
flo

w
cw

km
/s

k

-15

-10

-5

0

5

10

15

Figure 6.6: Measured flow patterns in limited plasmas at early times during MAST
discharges. (a) C III, (b) C II and (c) He II data.
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right of the centre column around y = 300 pixels in the C III image. Since no

similar positive flow feature is seen on the left of the centre column, this cannot

be explained by any toroidally symmetric feature of the plasma. This may be an

instrumental effect related to reflections from the P5 poloidal field coil which can

be seen behind the plasma close to this location, or due to the nearby viewing

obstruction mentioned earlier.

6.2.2 SOL flow response to high field side gas fuelling

Novel flow structures have also been observed with CIS during gas puff fuelling

of MAST plasmas from the high field side midplane. This is the first time that

impurity flows at a gas fuelling location have been observed with an instrument

able to provide the level of spatial information given by the CIS technique. MAST

has two gas nozzles on the centre column for such fuelling: one on the vertical

midplane and one around 100mm below the midplane, approximately opposite each

other toroidally (only one of these is used at once). Novel flow patterns have been

observed when two conditions are satisfied: 1) the use of either of the HFS midplane

gas values for fuelling and 2) The plasma-wall gap (distance from the centre column

to the separatrix, determined from EFIT) at the high field side midplane is . 2.5cm.

An example of the time evolution of C III flows in a discharge when these condi-

tions are met, measured from the HM07 midplane view, is shown in Fig 6.7(a)-(e).

For these measurements the fringes in the raw images were oriented horizontally,

i.e. the direction of highest spatial resolution is horizontal. Image (a) is before the

start of the high field side fuelling; the plasma is limited on the centre column and

shows a flow pattern similar to that discussed in the previous section. Gas puffing

starts after t = 94ms, around the same time that the plasma edge starts to lift

away from the centre column. At the same time, poloidally narrow ‘stripes’ in both

the flow and brightness profile start to become visible (image (b)). Between 0.127

- 0.143s (images (b) and (c)), a fast (∼ 15km/s) counter-current toroidal flow is

seen to develop in the upper half of the plasma, and clear ‘stripes’ of oppositely

directed flow, i.e. neighbouring plasma regions rotating in opposite directions past

each other, are seen in the lower half (image (c)). In the upper half although the fast

toroidal rotation dominates, superimposed on this are poloidally localised increases

and decreases in the line-of-sight flow speed following the same spatial pattern as

the stripes in the bottom part of the plasma. This flow pattern persists with very

little change between about 0.143 - 0.160s.

The white line in image (c) is an equilibrium magnetic field line on the LCFS,

as reconstructed by EFIT, projected on to the image. This shows that the observed
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flow pattern is very well aligned to the magnetic field lines at the separatrix. The

measured flows are therefore interpreted as the toroidal projection of parallel flows

along the field lines, with the stripe pattern showing oppositely directed flows along

neighbouring field lines. Looking closely at figure 6.7(c) there is also fine radial

structure in the flows in the lower half of the plasma, with narrow radial layers

flowing in different speeds or opposite directions. These ‘barber-pole’ flow patterns

have been observed in 45 different plasma shots throughout the MAST campaign

including a variety of plasma configurations, and HFS midplane gas fuelling and

a small plasma-wall gap appear to be sufficient and necessary conditions for their

observation. These patterns can be seen very weakly in some C II and He II data,

but only clearly in C III; it is not clear whether this is due to different localisation of

the emission or if the flows of different species are behaving differently. This is the

first time flow patterns such as these have been observed in a tokamak plasma, and

the phenomenon is worthy of further investigation in the future. The appearance

of the images and conditions for the observation of these patterns suggest they may

be related to the large, localised particle source provided by the gas puffing, and

the magnetic topology at this time in the shot along with interaction of the plasma

with the centre column.

As the plasma-wall gap increases, the pattern becomes less prominent: in image

(d) at 177ms, only a single reversed flow stripe is clearly visible at around the same

poloidal location as the gas injection. The lower half of the plasma appears to have

very little toroidal rotation relative to the top, although it is in the same direction.

In image (e) at 293ms, the entire inner edge of the plasma is clearly rotating in the

same direction (counter-current), although the upper part of the plasma still shows

faster rotation than the lower.

6.2.3 Divertor flows of multiple impurity species

Using a series of repeated plasma discharges, divertor flow data for each of the

three measurable ion species has been obtained for comparable plasma conditions.

The ability to study multiple impurity species in the same plasma has two main

potential advantages: 1) Obtaining information from a larger spatial region than

possible with a single impurity, due to different spatial localisation of emission from

each species, and 2) In plasma regions where information is obtained in multiple

species, it may be possible to use the data to investigate the influences of different

driving mechanisms of the impurity flow e.g. electric field vs thermal or frictional

forces, due to the different charge/mass ratios of the different ions. An illustration

of the spatial localisation is shown in figure 6.8, where each colour represents the
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Figure 6.7: Typical time evolution, from (a) to (e), of C III flows in the high field
side SOL in a DND plasma using high field side midplane fuelling. The exposure
time was 10ms except for in (a), where it was 1ms. The white line superimposed on
(c) is an equilibrium magnetic field line on the separatrix, calculated from EFIT and
superimposed on the image using the camera projection model from section 5.2.3.
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emission from a different impurity line in H-Mode. Each has been normalised to its

maximum brightness, so the image does not provide a comparison of the relative

brightness of the three lines but only the differences in spatial distribution. He II

(red in fig. 6.8), emitting in the hottest temperature range of the three species, is

brightest in a very narrow region around the LCFS in the divertor legs and around

the LCFS above the X-point. C III (blue in fig. 6.8) can be seen localised further

from the LCFS both on the outboard side and in the PFR, while C II emission, at

the lowest temperatures, extends further out again on the outboard side and further

into the PFR.

X-Point

Outer 
Target

Inner 
Target

Figure 6.8: Distribution of emission from the C III (blue), C II (green) and He
II (red) spectral lines in the MAST divertor during H-Mode, obtained with the
CIS diagnostic in repeated LSND plasma discharges. Different localisation of the
emission is clearly seen for each line, primarily due to the different temperatures at
which the lines are brightest.

The discharge used for the multi-species divertor measurements was a LSND

plasma with plasma current Ip = 600 kA and 1.2MW of NBI heating power. Plots of

the plasma current, heating power, line-integrated density and midplane Dα bright-

ness for the repeated shots used here are shown in figure 6.9. These are mostly very

well matched, except for 29625 which has a delayed L-H transition and is signifi-

cantly under-dense in the H-Mode phase, after delayed onset of the heating beam.

This shot was used for comparisons in the L-Mode phase which is better matched,

and 29628 was used for the H-Mode phase (but is over-dense in the L-Mode phase).

A LSND plasma was used rather than DND for two reasons: the signal level in the

divertor was found to be much larger in LSND plasmas, thus allowing higher frame

rates, and the position of the X-point is lower in the vacuum vessel so the region
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near the X-point is more accessible to the diagnostic. This particular discharge was

chosen since it had periods of L-Mode (t < 0.33 s), quiescent ELM-free H-Mode

(approx. 0.33 < t < 0.38s) and low frequency ELMing H-Mode (0.38s onwards)

which allowed comparison in all 3 operational regimes. In the ELMy phase the

inter-ELM spacing was large enough to accommodate the integration times for C II

and C III, however good inter-ELM He II data was not obtained. The fringe pattern

was rotated on the detector for these measurements such that the fringes were ro-

tated anti-clockwise from the horizontal by 22.5◦, in order to reduce demodulation

artefacts on the high field side divertor leg.

Brightness and line-integrated flow images for each species, in the L-Mode and

ELM-free H-Mode phases of the shot, are shown in figure 6.10. Each is integrated

over 16ms from around the same time during the shot, with the exact times chosen

so as to best match the density between shots. The white areas at the divertor

targets for He II indicate regions with unusually low fringe contrast, indicating

spectral contamination of the He II line as discussed in section 3.1, and therefore

unusable data. The horizontal stripes at the inner target for C II are artefacts

remaining due to the sharp emission feature at the strike point and rotated fringe

pattern. For all three species, opposite signs of flow are observed near the inboard

and outboard divertor targets: positive (away from the camera) at the inboard side

and negative (towards the camera) at the outboard side. Considering the direction of

the magnetic field lines, this is consistent with flow of all three impurity species along

the field lines towards the divertor target plates, i.e. with the background plasma.

This observation is consistent with C III CIS measurements in the DIII-D divertor

[Howard et al., 2010a]. Between the L-mode and H-mode phases, C III and He II

measurements show a clear increase in flow speed towards the targets by a factor of

∼1.5 - 2 and ∼2-3, respectively, while C II shows no significant change. Considering

the spatial localisation of the emission, this may suggest an increase in flow towards

the divertor which is greatest near the LCFS and weakens out into the far SOL

and PFR. However, this interpretation does not take into account any change in

localisation of the emission between L and H mode, nor the fact that the impurity

flows may be behaving independently from both the background plasma and, to

some extent, each other. It is, however, consistent with recent high speed imaging

observations that the dynamics of the PFR plasma are not strongly dependent on

the confinement regime. Tomographic inversion of the multi-species data would

allow clearer interpretation, by providing unambiguous information about the spatial

localisation of the recorded flow information for different species and confinement

modes. This will be discussed in section 6.2.5.
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Figure 6.10: Line-average brightness and flow images for C II (top), C III (middle)
and He II (bottom) in repeated LSND plasma shots, in L-Mode (left) and ELM-free
H-Mode (right) phases of the discharge.



6.2. Plasma Observations 139

6.2.4 Resonant Magnetic Perturbations

Mitigation of the high transient particle and heat loads to divertor surfaces from

ELMs is an area of much current interest and concern, due its potential impact on di-

vertor operating lifetimes on future high power devices. One of the leading methods

for achieving this is the application of Resonant magnetic perturbations (RMPs).

These are small perturbations to the equilibrium magnetic field which are resonant,

in the sense of having the same helicity as, field lines on a particular flux surface in

the plasma edge, and are applied by a set of coils outside the plasma. This causes

ergodisation of the magnetic field around the resonant flux surface and destruction

of the usual closed flux surface geometry, changing the confinement characteristics.

The idea behind this technique is to reduce the edge pressure gradient below the

value which would trigger an ELM, replacing the undesirable large bursts of outward

transport with a steady state, lower level of transport along the ergodised field lines.

Complete suppression of ELMs has been demonstrated using this technique on DIII-

D [Evans et al., 2004a], whilst ELM mitigation (increase in the ELM frequency with

a corresponding reduction in the peak heat flux per ELM) has been demonstrated

on JET [Liang et al., 2007], ASDEX-Upgade [Suttrop et al., 2011] and MAST [Kirk

et al., 2011]. This ELM mitigation is more difficult to explain than the complete

suppression on DIII-D with the above picture, and all of the effects of RMPs on

tokamak plasmas are not yet well understood.

A recent experimental observation is the appearance of ‘lobe’ structures in the

divertor in the presence of applied RMPs, near the X-Point and caused by the modi-

fication of the magnetic topology. These structures were first predicted theoretically

[Evans et al., 2004b], before being directly observed with visible imaging on MAST

[Kirk et al., 2012] and extreme UV / Soft X-Ray imaging on DIII-D [Shafer et al.,

2012]. A photograph of such lobes on MAST (viewed in C III light) is shown in fig-

ure 6.11; these are very fine spatial structures with individual lobes having widths

as small as 3 - 4 mm [Harrison et al., 2014]. Three dimensional fluid modelling

with the EMC3-EIRENE code package has predicted the appearance of novel he-

lical SOL flow patterns associated with RMPs on multiple machines (for example

see Lunt et al. [2012]), due to the modified connection length to the divertor targets

along the perturbed field lines. In the vicinity of the lobes these are predicted to take

the form of strongly counter-flowing channels following a similar spatial structure to

the visible lobes. Due to the spatially complex and 3D nature of these structures,

the capabilities of the coherence imaging diagnostic are uniquely suited for seeking

experimental evidence of this phenomenon. Measurements of spatial flow patterns

near the X-Point associated with RMPs have not previously been attempted.
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(a) No RMP (b) n = 6 RMP

X-Point

Outer 
divertor leg

Inner 
divertor leg

5 cm

Figure 6.11: C III emission in the region of the X-point (a) without applied RMPs
and (b) with applied RMPs. With the RMPs on, lobe structures protruding from
the plasma edge are clearly visible. The scale bar in (b) shows the scale at the
tangency plane.

To attempt to best resolve the fine spatial structure associated with the X-point

lobes, the zoom capability of the CIS instrument was used to obtain a narrowed

field of view of around 14 degrees (f1 ≈ 50mm) around the lower X-Point, from

the usual HL07 divertor viewing port. This gives a FWHM of the spatial response

to flows of around 1.6cm perpendicular to the fringes, and the fringe pattern was

rotated such that the maximum spatial resolution was approximately aligned across

the lobes. The main disadvantage of this viewing configuration was that there were

no radial sight-lines in the view for phase offset calibration. The flow measurements

referred to in this section are therefore not absolutely calibrated, and should only be

compared within any given plasma shot. RMPs flow data were only obtained for C

III, since the longer exposure times required for the other species were longer than

the inter-ELM time with the RMPs on.

Brightness and v̄ images for the X-point region in a LSND plasma in H-Mode,

with and without an applied n = 4 RMP, are shown in figure 6.12. Modification of

the flows can be clearly seen in the image with the applied RMP compared to the

image without, and considerable spatial structure in the flow is seen in the vicinity

of the lobes. The peak-to-peak amplitude of this flow structure is up to ∼ 8 km/s

near the separatrix. While clear modification of the flows by the RMPs is observed,

the distinct spatial structure seen in the simulations is not clear from the recorded

images. This could be due to a number of effects, including line integration and

viewing geometry effects due to the 3D lobe and flow structures; the C III ions ex-
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Figure 6.12: Line integrated brightness and flow images with (right) and without
(left) an applied n = 4 RMP in an H-Mode LSND plasma. The calibration offset is
unknown for these measurements, hence the flow speeds are only correct to within
a constant offset. The bright rectangular feature close to the X-point is reflected
light from a structural component supporting the P4 coil. Reflections from the P3
coil can also be seen through the plasma.

periencing different flow to the background plasma; and the localisation of the C III

emission. Comparison with EMC3-EIRENE results for the relevant MAST divertor

conditions is required to assess how the data compare to modelling predictions, and

would be a very valuable avenue for future work. Due to the inherently 3D na-

ture of the lobe structures, tomographic inversion is not applicable to these results

and the forward modelling approach must be used instead. Extending the existing

forward modelling code for use with non-axisymmetric plasma and magnetic field

information would be required in order to do this.

6.2.5 Tomographically Inverted Data

Data from several shots have been tomographically inverted to obtain 2D profiles of

C III parallel flow and emissivity in the divertor, covering the region from just above

the lower X-point to the divertor targets, using the methods described in section

4.6. Inverted profiles based on the C III data presented in section 6.2.3 are shown

in figure 6.13, for the L-Mode, ELM-free H-Mode and ELMy H-Mode discharge

phases (the ELMy H-Mode data is from the period between ELMs). Here the sign

convention for the flow is that positive parallel flows have a toroidal component

in the same direction as the plasma current. Each profile was generated from a
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Figure 6.13: Tomographically inverted emissivity (left) and C III parallel flow (right)
profiles for periods of different operation modes in shot #29541: L-Mode (top),
ELM-Free H-Mode (centre) and ELMy H-mode (bottom).
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single 1ms exposure. The general features of these images are the same as shown in

the line-integrated data: parallel flow towards both divertor targets and increased

flow speeds going from L-Mode → ELM-free H-Mode → ELMy H-Mode. Note

the stripe pattern of positive and negative flows at the high field side in the L-

Mode reconstruction (at Z ≥ −1.3m): this is an artefact which was propagated

through the inversion from the line integrated images, and is a known behaviour of

the FFT demodulation in the presence of reflections from the poloidal field coils.

There is also a rectangular artefact due to reflections from a supporting bracket of

these coils (at R ∼ 0.65m, Z ∼ −1.3m), particularly noticeable on the ELMy H-

Mode inversion. Reconstruction artefacts such as these, and those due to response

matrix errors caused by line-of-sight calibration errors and some sight-lines being

poorly constrained by the data, appear to be the dominant source of error in the

inverted profiles (the effect of noise in the line-integrated data on the inversions was

investigated numerically with a Monte-Carlo technique and found to be typically

� 1km/s). These types of reconstruction artefacts can typically be readily identified

since they correspond to known artefacts in the input line integrated data, and/or

appear as static features in the images which do not respond to changing plasma

behaviour.

In conjunction with suitable 2D SOL modelling, these profiles and similar inver-

sions for C II and He II could in principle be used to investigate the physics of the

flow differences seen between the different species. In practise, however, the C II

and He II images are less amenable to inversion, and profiles for these impurities

could not be reliably produced with sufficient quality using the inversion method

described in the previous chapter. One of the main difficulties with these inversions

is the geometry of the outboard divertor PFCs on MAST, consisting of a set of

toroidally discrete tiles separated by relatively large gaps. For C II and He II the

emission is peaked close to the target plates, which leads to a toroidally periodic,

rather than toroidally symmetric emission pattern in the images. This can be seen in

figure 6.10, where the C II and He II measurements show a much stronger toroidally

periodic pattern than C III. Since toroidal symmetry is assumed in the formulation

of the tomography problem, this causes artefacts in the inversions. In future it may

be possible to implement an inversion geometry with toroidal periodicity matched

to that of the target plates, in order to reduce this effect.

6.2.6 Summary

The MAST CIS flow diagnostic was operated successfully throughout the experi-

mental campaign in May - September 2013. Using integration times between 1 -
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16ms, data was obtained for all three impurity species and flow image noise levels

were as low as < 1km/s. The phase calibration offset was successfully monitored

using radial sight-lines, on both inter- and intra-shot timescales. This revealed ini-

tial problems with vibrations causing frame-to-frame changes in the flow calibration

offset, however this problem was alleviated by re-designing the mounting scheme

for the instrument. In future, a more robust mechanical design taking into account

the vibration environment could improve this aspect of the calibration stability. On

longer timescales, variation of the calibration offset from shot-to-shot were up to

16km/s over the course of a week. Since these slower drifts are likely to be domi-

nated by thermal effects, improved thermal stabilisation is required to reduce this

effect. Using phase shape calibrations performed before and after a week long period

of operation, the phase shape calibration was found to be stable to within 3km/s

over the whole frame. Although this has not caused significant problems with the

present measurements, an in-situ calibration procedure is desirable to monitor the

phase shape calibration more accurately. Comparisons between CIS and dispersive

Doppler spectroscopy measurements using the ECELESTE diagnostic show reason-

able agreement in the flow differences between different discharges, however the

absolute calibration of the instrument could not be properly benchmarked due to

absolute calibration difficulties with both instruments on these observations.

In plasma measurements on MAST, the CIS diagnostic demonstrated strong

capabilities in revealing spatially complex flow patterns which would be very difficult

to diagnose and interpret using traditional dispersive systems. In limited plasmas,

impurity flows consistent with flow towards the limiter in the SOL and co-current

rotation of the confined plasma were observed. Strong responses of flows to high

field side gas puff fuelling were also observed for the first time, most notably in

the form of field-aligned, counter-rotating patterns around the centre column under

certain conditions. In the divertor, data was obtained for multiple impurity species

in different plasma conditions, suggesting a sudden increase in flow towards the

divertor targets in H-Mode which is greatest at the strike point and less prominent

in the far SOL and PFR. The CIS diagnostic was also used to perform the first

measurements of divertor flow perturbations due to the application of RMPs for

ELM control. Tomographically inverted data was successfully obtained for C III in

a variety of shots, however toroidally periodic emission profiles from C II and He

II prevented the same high quality of inversion for these species. Interpretation of

the physics behind these more complex plasma observations is still ongoing, and in

general will require comparisons with sophisticated modelling using codes such as

EDGE2D, SOLPS and EMC3.



Chapter 7

Conclusions & Further Work

This thesis has presented the development of, and first results from, a Doppler

coherence imaging spectroscopy (CIS) diagnostic for measuring impurity ion flows

in the Scrape-off layer (SOL) and divertor of the Mega-Amp Spherical Tokamak

(MAST). Coherence imaging spectroscopy is a technique based on narrow-band

Fourier transform spectroscopy which allows low order spectral information, such as

Doppler shifts and line widths, to be captured with 2D spatial resolution over wide,

continuous fields of view using an imaging interferometer. The primary advantages

of this technique over other flow diagnostics (Mach probes, impurity plume imaging,

multi-chord Doppler spectroscopy) are the very large amount of spatial information

obtained, and the simple relationship between the measured interferogram properties

and spatially varying impurity ion flows.

In chapter 2, the principles and theory of the coherence imaging technique were

reviewed. Impurity flows are measured using the Doppler shift of emission lines from

partially ionised impurities in the cool SOL and divertor plasma. By interfering the

light in a given spectral line with a phase delayed version of itself, the complex degree

of coherence of the emission is measured. As was illustrated in figure 2.2, measure-

ments of the interferogram properties (brightness, fringe phase, fringe contrast) at a

single value of interferometer time delay are sufficient to recover low order spectral

information about the emission line. It was shown that the measured fringe phase is

related to the average impurity ion flow along the diagnostic’s line of sight, weighted

by the local impurity emissivity. This straightforward relationship combined with

the large amount of spatial information captured enables tomographic inversion of

the data, to obtain localised measurements of flows. However, for multiplet spectral

lines the measured phase will be affected by any changes in the component line ra-

tios, or by spectral contamination by continuum or nearby line emission. This effect

cannot be separated from a real Doppler shift, hence carefully chosen narrow-band

145
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filters must be used to select for the spectral line of interest, and minimise any

contamination.

Existing implementations of CIS diagnostics were also reviewed in chapter 2, all

based on the polarisation interferometer concept but using different methods to per-

form the necessary small scan of the interferometer delay τ (e.g. time multiplexing

and spatial multiplexing methods). The spatial heterodyne concept (described in

section 2.5.3 and briefly illustrated in figure 2.7) was chosen for the MAST system,

due to the simple ‘static’ instrument design and the fact that the time resolution is

limited only by the detector framing rate.

7.1 Instrument Design

Chapter 3 presented in detail the design of a coherence imaging diagnostic for MAST.

Preliminary spectral measurements revealed the best candidate spectral lines were

the C III 465nm triplet, C II 514nm multiplet and He II 468nm multiplet. High

resolution spectral measurements (see fig. 3.1) revealed some contamination of the

C III line by nearby O II line emission, however numerical modelling suggested the

effect on flow measurements would be around 1km/s, compared with the range of

∼ 5 − 30 km/s usually measured for this species. The He II line showed unaccept-

able contamination near the divertor targets, making measurements in this region

impractical for this spectral line.

The instrument design was based on the use of commercial camera lenses (sup-

plied by Sigma imaging), a high speed CMOS camera (Photron APX-RS) and cus-

tom birefringent optics (supplied by Australian National University) in an imaging

polarisation interferometer. The choice of lenses and spectral line selection filters

were made based on simplified numerical modelling of the imaging system, based on

limited optical data provided by the lens manufacturer. The choices made were a

compromise between maximising collecting power, minimising vignetting, and con-

trolling the blue-shift of the filter pass-bands for light at the edge of the field of view

passing obliquely through the filter. Three different birefringent ‘delay plates’ were

specified, to obtain three different interferometer phase delay values optimised for

different measurements. The choice of these delay plates was based on calculations

of the expected fringe contrast for the different multiplet lines (fig. 3.8), in order

to maximise the fringe contrast. A summary of the component specifications of the

diagnostic is given in Appendix A.
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7.2 Data Analysis Methods

In Chapter 4 procedures were developed to extract brightness and flow measurements

from the raw CIS data. As an input to this development to provide realistic test

data, forward modelling code was developed to generate simulated diagnostic images

(e.g. figure 4.2) from the output of OSM plasma simulations [Harrison, 2010; Lisgo

et al., 2005] for MAST. Images created using this code were used throughout the

data analysis testing and development, and could potentially also be employed to

compare plasma modelling results to the experimental data.

The analysis of MAST CIS data begins by removal of bright spots and streaks

in the images due to D-D fusion neutrons in NBI heated discharges, before the

underlying brightness image is extracted using frequency domain filtering and boxcar

smoothing perpendicular to the fringes. The brightness extraction was found to

reproduce input test images to within ∼ 5%. The extracted brightness is then

factored out of the raw image, and the flow information (fringe phase) is extracted

using the analytic signal representation [Gabor, 1946; Lawrence Marple Jr., 1999] of

the resulting signal. Windowing in Fourier space and apodisation of the input data

around sharp jumps in brightness are used to reduce artefacts due to sharp spatial

features and image noise, at the cost of smoothing the spatial response to flows.

Pixel-based tomographic inversion using the SART algorithm [Andersen and

Kak, 1984] was implemented in MATLAB and tested with simulated divertor data,

including integrated testing with the interferogram demodulation. The results show

good quantitative agreement between the plasma profiles used to generate the test

data and the recovered profiles from the simulated measurements. However, for noisy

data the flow inversion shows some ringing artefacts at sharp image edges, and larger

errors for parts of the plasma profile with low emissivity. These must be kept in

mind when applying the techniques to real data, and inverted flow profiles can only

be obtained from parts of the plasma which are emitting sufficiently brightly. The

inversion testing also did not include sources of error which can become important in

the real data, such as line of sight registration errors and artefacts due to reflections

in the line integrated images.

7.3 Instrument testing & calibration

Detailed characterisation of both the individual diagnostic components and the in-

tegrated system were performed, and the results were presented in Chapter 5. From

measurements with a calibrated integrating sphere, the Photron APX-RS camera

was found to exhibit integral nonlinearity of around 4%, which was corrected for
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using a look-up-table based on these measurements. The conversion gain of the

camera was measured to be (23.3 ± 0.2)e−/ADU using mean-variance curves, and

the read noise was estimated from dark frames as (37 ±0.4)e−. The dark signal was

found to drift with ambient temperature by around 1.8ADU/◦C, which was sufficient

to prevent accurate calibration of the interferometer’s characteristic contrast, and

therefore to prevent ion temperature measurements using the CIS instrument. The

line selection band pass filters were also found to produce some unexpected structure

in flat field images (see fig. 5.5), which cannot be fully accounted for without more

detailed measurements of the spatial and angular dependence of the filter transmis-

sion. The absolute light sensitivity and vignetting of the assembled diagnostic were

measured and were within approximately 20% of the design calculations.

The interferometer group delay, which sets the proportionality between Doppler

shift and measured interferometer fringe phase, was calibrated by measuring the

rate of fringe phase change with wavelength tuning of a tuneable laser source. This

is the first time this type of calibration has been performed for a coherence imaging

instrument. The calibrated group delay values were found to agree very well with

the design calculations for the thinner two delay plates, however differed by about

5% for the thickest. This did not have any impact on the baseline flow measurement

configurations. Measurements of the interferometer’s intrinsic contrast showed the

contrast was highest at the edges of the field of view, contrary to what might be

näıvely expected. Measurements of non-uniformities in the interferometer optics

provided a qualitative explanation for this behaviour. Measurements of the calibra-

tion stability in the lab confirmed the need for active temperature stabilisation of

the birefringent interferometer optics, and the need for monitoring of the calibration

during plasma operations.

To calibrate the system for measurements on MAST, procedures were devel-

oped based on using a combination of a spectral calibration lamp and light from

the plasma itself, and were presented in section 5.3.2. Calibration of the diagnostic

sight-lines through the plasma was performed with a two-stage calibration process,

separating the calibration of the imaging properties of the instrument and its posi-

tion and orientation on the tokamak, with both stages based on existing calibration

codes.

7.4 CIS flow measurements on MAST

The CIS diagnostic was operated successfully throughout the May - September 2013

experimental campaign on MAST, and these results were presented in Chapter 6.
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Using integration times between 1 - 16ms, data was obtained for all 3 impurity

species and flow image noise levels were as low as < 1km/s (typical measured flow

amplitudes were ∼ 5−30 km/s). The phase calibration offset was successfully moni-

tored using radial sight-lines, on both inter- and intra-shot timescales. This revealed

initial problems with vibrations causing frame-to-frame changes in the flow calibra-

tion offset, however this problem was alleviated by re-designing the mounting scheme

for the instrument. In future, a more robust mechanical design taking into account

the vibration environment could improve this aspect of the calibration stability. On

longer timescales, variation of the calibration offset from shot-to-shot were up to

16km/s over the course of a week. Since these slower drifts are likely dominated

by thermal effects, improved thermal stabilisation would be required to reduce this

effect. Using phase shape calibrations performed before and after a week long period

of operation, the phase shape calibration was found to be stable to within 3km/s

over the whole frame. Although this has not caused significant problems with the

present measurements, an in-situ calibration procedure is desirable to monitor the

phase shape calibration more accurately. Comparisons between CIS and dispersive

Doppler spectroscopy measurements using the ECELESTE diagnostic showed rea-

sonable agreement in the flow difference between different discharges, however the

absolute calibration of the instrument could not be properly benchmarked due to

absolute calibration difficulties with both instruments during these measurements.

In plasma measurements on MAST, the CIS diagnostic demonstrated strong ca-

pabilities to reveal spatially complex flow patterns, which would be very difficult

to diagnose and interpret using traditional dispersive systems. In limited plasmas,

impurity flows consistent with flow towards the limiter in the SOL and co-current

rotation of the confined plasma were observed. Strong responses of flows to high field

side gas puff fuelling were also observed, most notably in the form of field-aligned,

counter-rotating patterns around the centre column under certain conditions (figure

6.7). In the divertor, data were obtained for multiple impurity species in different

plasma conditions, suggesting a sudden increase in flow towards the divertor tar-

gets in H-Mode which is greatest at the strike point and less prominent in the far

SOL and PFR (figure 6.10). The CIS diagnostic was also used to perform the first

measurements of divertor flow spatial structures associated with the application of

RMPs for ELM control (fig. 6.12). Tomographically inverted data was successfully

obtained for C III in a variety of shots, however toroidally periodic emission profiles

from C II and He II prevented the same high quality of inversion for these species.

Further work is also required to properly quantify the errors on the tomographi-

cally inverted data. Interpretation of the physics behind the more complex plasma
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observations in this thesis is ongoing, and in part will require comparisons with

sophisticated numerical modelling, e.g. using codes such as EDGE2D, SOLPS and

EMC3.

7.5 Further Work

The results presented in this thesis suggest a number of avenues for future contin-

uation of this work. First, several possible improvements to the instrument design

have been identified which would benefit a future iteration of the diagnostic. Prob-

ably most important amongst these is improvement of the calibration stability and

procedures. This would remove the need to frequently move the diagnostic to the

lab for recalibration, and allow absolutely calibrated flow measurements when using

any plasma view, which is not possible with the current system. This would involve

3 areas of work: 1) Improvement to the mechanical design of the instrument to be

more robust against temperature changes and vibration; 2) Better thermal stabili-

sation, or athermalisation, of the birefringent optics, and 3) implementation of an

in-situ calibration source and integrating sphere, with appropriate coupling of the

calibration light into the instrument. With regard to (2) and (3), recent work on

Doppler coherence imaging systems on the DIII-D tokamak has started to address

these issues [Allen, S. private communication, 2014] with techniques which could be

applicable to MAST.

One of the chief problems with data quality from the MAST instrument was

the presence of artefacts due to sharp image features which are not well handled by

the FFT based demodulation. From the results of modelling performed in chapter

5, these could be essentially eliminated if the brightness image could be obtained

without the spatial smoothing due to removal of the interference fringes. This could

be achieved with a dual-detector system design: using a polarising beamsplitter

instead of the first polariser in the interferometer to direct light which is currently

rejected to a second detector, without any interferometer optics. By using the

resulting ‘full resolution’ image in the analysis of the interferogram, substantially

better flow image quality could be obtained for scenes with sharp intensity features.

An alternative use for the extra channel would be to construct a dual wavelength

system for measurements of two spectral lines simultaneously, with essentially no

loss of light in either channel compared to a single channel system.

With the installation of the novel ‘Super-X’ divertor [Katramados et al., 2011;

Valanju et al., 2009] as part of the current upgrade to MAST, over the coming

few years there will be great interest in diagnosing low temperature, dense divertor
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plasmas. The coherence imaging technique has the potential to be a very powerful

tool for this task, particularly in novel divertor geometries such as Super-X, and

the scope of coherence imaging on MAST-Upgrade could be broadened to include

plasma properties other than flows. For example, electron density imaging using

stark broadening of deuterium lines has been demonstrated using coherence imaging

on a linear plasma device[Lischtschenko et al., 2010], however has not yet been

implemented on a tokamak. Another interesting area wh

In addition to continued development of the diagnostic itself, large amounts of

flow imaging data were obtained during this work but analysis and interpretation

of this data, in the context of SOL and divertor physics, was largely outside of

the project’s scope. Continued analysis and interpretation of the flow data, by

comparison with suitable 2-3D modelling and analytical calculations where available,

would be a natural extension of this work. Due to the large amounts of data, it would

be interesting to develop methods to analyse the data set as a whole and see if any

general trends in flow behaviour can be identified.



Appendix A

Component Specifications & Data

Table A.1 summarises the specifications of the MAST CIS diagnostic components.

Opto-mechanical and supporting components, some of which were custom manufac-

tured for the MAST system, have not been included.
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Component Manufacturer/Supplier Description
Camera Photron FASTCAM APX-RS Model 250K

1024x1024 px, 10bpp (Custom CMOS)
Pixel size: 17µm square
Frame rate (full frame): ≤ 3kHz
Quantum Efficiency: ∼ 40%, 400− 700 nm
On-board frame storage: 2.5GiB (2048 full frames)

C III filter2 λ =(464.7 +0.5/-0)nm, ∆FWHM = (3.0± 0.5)nm, N∗ = 1.45
C II filter2 Andover / LOT Oriel λ =(512.3 +0.5/-0)nm, ∆FWHM = (5.0 +0.5/-0)nm, N∗ = 2.05
He II filter2 λ =(468.65 +0.4/-1)nm, ∆FWHM = (2.0± 0.5)nm, N∗ = 1.45
Lens l1

Sigma Imaging
Sigma 17-70mm f/2.8-4.5 DC Macro, F-Mount

Lens l2 Sigma 105mm f/2.8 EX DG, F-Mount
Lens l3 Sigma 150mm f/2.8 EX DG, F-Mount
α-BBO Delay Plate � = 30 mm, AR coated 400 - 700nm, L = 4.6 mm
α-BBO Delay Plate � = 30 mm, AR coated 400 - 700nm, L = 6.5mm
α-BBO Delay Plate CLaser Photonics / ANU1 � = 30 mm, AR coated 400 - 700nm, L = 9.8 mm
α-BBO Savart Polariscope � = 30 mm, AR coated 400 - 700nm, L = 2.2mm
α-BBO Savart Polariscope � = 30 mm, AR coated 400 - 700nm, L = 4.0mm
Polarisers Newport / ANU1 Newport model 20LP-VIS,

� = 30.5 mm, Extinction ratio = 25000 : 1
Temperature Controller Andover Corp Andover Model 101FRDC00-CTRL

Regulation range 30◦C - 60◦C
Regularion accuracy ±0.2◦C

Temperature Cell Andover Corp / ANU1 Andover Model 101FRDC00-50
�inside = 50 mm, �outside = 90 mm

Table A.1: Summary of component specifications for the MAST CIS diagnostic. 1Components were modified at Australian National
University, i.e. were re-mounted in custm optical mounts or modified to accept the custom mounts. 2All filters were from the Andover
/ LOT Oriel ‘Semi-custom’ filter range, and had � = 50mm and were mounted in M52 threaded rings. Tolerances quoted on the
filter parameters are the manufacturing tolerances of the ordered filters.
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drew, G. Arnoux, Y. Baranov, M. Bécoulet, M. Beurskens, T. Biewer, M. Bigi,

K. Crombe, E. De La Luna, P. de Vries, W. Fundamenski, S. Gerasimov,

C. Giroud, M. Gryaznevich, N. Hawkes, S. Hotchin, D. Howell, S. Jachmich,

V. Kiptily, L. Moreira, V. Parail, S. Pinches, E. Rachlew, and O. Zimmermann

2007. Active Control of Type-I Edge-Localized Modes with n=1 Perturbation

Fields in the JET Tokamak. Physical Review Letters, 98(26):265004.

Lischtschenko, O., K. Bystrov, G. De Temmerman, J. Howard, R. J. E. Jaspers, and

R. König

2010. Density measurements using coherence imaging spectroscopy based on Stark

broadening. Review of scientific instruments, 81(10):10E521.

Lisgo, S., P. Börner, G. Counsell, J. Dowling, a. Kirk, R. Scannell, M. OMullane,

and D. Reiter

2009. Interpretation of spatially resolved helium line ratios on MAST. Journal of

Nuclear Materials, 390-391:1078–1080.

Lisgo, S., P. Stangeby, J. Elder, J. Boedo, B. Bray, N. Brooks, M. Fenstermacher,

M. Groth, D. Reiter, D. Rudakov, J. Watkins, W. West, and D. Whyte

2005. Re-construction of detached divertor plasma conditions in DIII-D using

spectroscopic and probe data. Journal of Nuclear Materials, 337-339:256–260.

Lunt, T., Y. Feng, M. Bernert, a. Herrmann, P. de Marné, R. McDermott, H. Müller,
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scientific instruments, 84(12):123508.

Terry, P.

2000. Suppression of turbulence and transport by sheared flow. Reviews of Modern

Physics, 72(1).



BIBLIOGRAPHY 164

Timberlake, J.

1983. Photography of impurity injection into PLT plasmas. Journal of Vacuum

Science & Technology A: Vacuum, Surfaces, and Films, 1(2):841.

Tucker, A. J.

1998. Computerized Ionospheric Tomography. Johns Hopkins APL Technical

Digest, 19(1):66–71.

U.S. Energy Administration

2014. International Energy Statistics.

Valanju, P. M., M. Kotschenreuther, S. M. Mahajan, and J. Canik

2009. Super-X divertors and high power density fusion devices. Physics of Plas-

mas, 16(5):056110.

Veiras, F. E., L. I. Perez, and M. T. Garea

2010. Phase shift formulas in uniaxial media: an application to waveplates. Ap-

plied optics, 49(15):2769–77.

Wagner, F., G. Becker, and K. Behringer

1982. Regime of improved confinement and high beta in neutral-beam-heated

divertor discharges of the ASDEX tokamak. Physical Review Letters, 49(19):1408–

1412.

Weber, T. R., S. L. Allen, and J. Howard

2012. C-III flow measurements with a coherence imaging spectrometer. Review

of Scientific Instruments, 83(10):10E102.

Willis, M.

2000. Algebraic Reconstruction Algorithms for Remote Sensing Image Enhance-

ment. Msc, Brigham Young University.

Wu, L., C. Zhang, and B. Zhao

2007. Analysis of the lateral displacement and optical path difference in wide-field-

of-view polarization interference imaging spectrometer. Optics Communications,

273(1):67–73.

Zaniol, B., R. C. Isler, N. H. Brooks, W. P. West, and R. E. Olson

2001. Measurements of C V flows from thermal charge-exchange excitation in

divertor plasmas. Physics of Plasmas, 8(10):4386.



BIBLIOGRAPHY 165

Zhang, C., B. Xiangli, and B. Zhao

2002. A static polarization imaging spectrometer based on a Savart polariscope.

Optics communications, 203(1-2):21–26.

Zhang, Z.

1999. Flexible camera calibration by viewing a plane from unknown orientations.

The Proceedings of the Seventh IEEE International Conference on Computer Vi-

sion, 1999., 1:666 – 673.


