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Abstract

The forward-looking nature of the options market makes it an ideal environment for
investigating the determinants and the information content of investors’ expectations
about the future. Therefore, this thesis explores the interrelations arising between
the macroeconomic and stock market environment, and the S&P 500 index options
market.

First, we examine how investors’ sentiment driven by macroeconomic fundamen-
tals and investors’ erroneous beliefs impact the risk-neutral skewness. Our findings
reveal that the macroeconomic fundamentals component of investor sentiment is
the main driving force of risk-neutral skewness throughout the whole sample period,
while the error in investors’ beliefs has limited explanatory power and only during
the earlier years examined. Moreover, we show that the fundamentals component
of investor sentiment affects differently the prices of call and put options. Second,
we extend the concept of risk-neutral skewness by creating measures of forward
skewness and gauge their predictive ability for a wide range of macroeconomic vari-
ables, asset prices, as well as systemic risk, crash risk, and uncertainty variables.
Overall, we document that forward skewness encapsulates important information
about future macroeconomic and financial market conditions for horizons up to one
year ahead over and above forward variance. Third, we propose a novel measure
of dispersion in expectations that is derived from the dispersion of options’ trading
volume across strike prices. We show that dispersion consistently forecasts negative
excess market returns, for horizons up to two years ahead, exhibiting a predictive
ability comparable to that of the variance risk premium and outperforming all other
variables considered.

This thesis contributes to the asset pricing and macro-finance literature by unrav-
elling the determinants of the pricing kernel, showing that the call and put options
markets are segmented and revealing that option prices and trading volume have
significant forecasting ability for many aspects of the macroeconomic and financial
environment. In that respect our findings are of particular interest not only to
academics but also to investors and policy makers.
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Chapter 1

Introduction

The classic work of Black and Scholes (1973), Merton (1973) and Black (1976) in
option pricing assumes that the underlying asset price follows a geometric Brownian
motion with constant volatility. This implies that the option value can be replicated
by a dynamic hedging strategy in the underlying asset and the risk-free rate and
hence options are redundant securities. Rubinstein (1994) shows that while index
option prices have been roughly consistent with the Black-Scholes-Merton assump-
tions before the crash of October 1987, this is not the case in the post-1987 crash
period. In particular, a typical post-crash plot of implied volatilities across strike
prices exhibits a convex and explicitly downward-sloping pattern, which constitutes
a strong violation of the Black-Scholes-Merton model.

To account for this anomaly, researchers typically either introduce additional
risk factors such as stochastic volatility and/or jumps in the underlying asset price
process (Bakshi et al., 1997, Bates, 2000, Chernov and Ghysels, 2000, Pan, 2002 and
Jones, 2003 among others) or examine the role of additional factors that may exert
impact on option prices (Pena et al., 1999, Amin et al., 2004, Bollen and Whaley,
2004, Buraschi and Jiltsov, 2006, Han, 2008, Garleanu et al., 2009, among others).
The common element in both approaches is the implication that options are not
redundant securities. In fact, Bakshi et al. (2000), Buraschi and Jackwerth (2001),
Coval and Shumway (2001), Bakshi and Kapadia (2003) and Jones (2006) strongly
reject the hypothesis that options can be considered redundant securities and pos-
tulate that their prices reflect exposure to additional priced factors. Buraschi and

Jiltsov (2006, p.2841) further assert that since options are not redundant securities,
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“...they provide an economic value that at least exceeds the cost of maintaining op-
tion exchanges”. The fact that options have been shown to be nonredundant assets
implies that the options market encapsulates important information that is distinct
from that found in the underlying asset market.

Another advantageous characteristic of option contracts is that they are by defi-
nition related to investors’ forward-looking beliefs and risk preferences. For example,
the risk-neutral distribution extracted from option prices is derived from the prod-
uct of the conditional distribution of future returns under the physical measure and
the conditional pricing kernel. Moreover, the trading volume and open interest of
options of different type, moneyness or maturity are affected by investors’ different
subjective expectations and can also be linked to informed trading (Easley et al.,
1998). Therefore, over the last ten years, a large body of literature has evolved that
uses option-related measures for forecasting purposes. For example, Bollerslev et
al. (2009), Bali and Hovakimian (2009), Cremers and Weinbaum (2010), Xing et al.
(2010), Bakshi et al. (2011) and Feunou et al. (2014) among others make use of the
information content of option prices, while Pan and Poteshman (2006), Fodor et al.
(2011), Byun and Kim (2013) and Chen et al. (2013) rely on the information embed-
ded in options’ trading volume and open interest. The main conclusion drawn from
the above literature is that both option prices and options’ trading activity exhibit
significant forecasting power for stock returns, treasury returns and macroeconomic
variables.

In a recent paper, Han (2008) challenges the main assumption of the traditional
option pricing models that option prices are settled as if the market consists of
a rational representative investor, by showing that option prices can be seen as
the weighted average of the expectations of both rational and irrational investors.
More specifically, he finds that investor sentiment, which is assumed to capture
investors’ erroneous beliefs, has a significantly positive impact on the S&P 500 in-
dex risk-neutral skewness. Since prior empirical evidence (Ait-Sahalia et al., 2001

and Rosenberg and Engle, 2002) indicates that the conditional physical probability
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density is approximately symmetric, this result implies that investors’ erroneous ex-
pectations are a strong determinant of the pricing kernel. Motivated by a stream
of papers that relate investor sentiment not only to irrationality but also to ratio-
nal updating of beliefs (Brown and Cliff, 2005, Lemmon and Portniaguina, 2006
among others), in Chapter 3 we define investor sentiment as investors’ overall atti-
tude towards future market returns and postulate that it comprises beliefs driven
both by factors related to fundamentals and by factors unrelated to fundamentals.
Therefore, we decompose aggregate investor sentiment into an economic fundamen-
tals component and an error in beliefs component. To this end, we employ both a
parsimonious set of variables that reflect the information embedded in eight major
macroeconomic categories and a set of latent factors that summarize the variations in
a large dataset of 131 macroeconomic variables. We examine the sentiment of three
different groups of investors - large speculators, investment advisors and individual
investors - as it is possible that different investor categories respond differently to
fundamentals and also trade differently in the options market. Furthermore, unlike
Han (2008) whose sample period ends at 1997:06, our sample period extends up to
2011:06, thus offering us the opportunity to examine whether the relationship be-
tween investor sentiment and the S&P 500 index risk-neutral skewness has changed
over time. The results presented in Chapter 3 provide clear evidence in favor of this
hypothesis. In particular, aggregate investor sentiment has a strong positive impact
on risk-neutral skewness during the first period considered (1990:01 - 1997:06) -
which largely coincides with Han’s (2008) period - but this relationship vanishes in
the second and most recent period (1997:07 - 2011:06). By performing the analysis
with the two sentiment components, we find that in the first period both compo-
nents contribute to the significantly positive effect on risk-neutral skewness, while
in the second period only the fundamentals component is significantly related to
skewness. Moreover, the documented in the second period relationship between the
fundamentals component and the risk-neutral skewness is more pronounced during

periods of worsened stock market conditions and implies that options traders’ beliefs
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are in line with large speculators’ expectations regarding a reversal of recent eco-
nomic conditions. Finally, we investigate the relationship between the two sentiment
components and skewness proxies created separately from call and put options. Our
results demonstrate that while the impact of the fundamentals component on puts
is in line with the effect on the overall skewness, its impact on calls has the exactly
opposite direction, hence supporting Constantinides et al.’s (2011) assertion that
the two markets are segmented.

As discussed above, the shape of the risk-neutral distribution reflects investors’
forward-looking beliefs and risk aversion. It is important to note, however, that this
forward-looking information spans a horizon equal to the maturity of the options
used for the risk-neutral distribution estimation. Therefore, on a given day it is
possible to construct a term structure of risk-neutral moments that will encompass
investors’ beliefs and attitudes towards risk for several horizons. This additional
information embedded in the term structure of the risk-neutral moments has been
recently used by Bakshi et al. (2011) for improving the forecasting power of risk-
neutral variance. In particular, they create measures of forward variance for one
up to four months ahead using options on the S&P 500 index and show that the
estimated forward variances can jointly improve the predictability of future real ac-
tivity, T-bill returns and stock market returns. In Chapter 4 we extend the concept
of forward variances by creating forward skewness coefficients. Our aim is to explic-
itly capture investors’ crash worries for one up to four months ahead and explore
their information content. This is of particular importance, since the forward vari-
ances estimated by Bakshi et al. (2011) are not robust to the inclusion of jumps in
the price process and therefore it is possible that they underestimate the true for-
ward variance. In contrast, our forward moments are based on a newly established
technique suggested by Neuberger (2012) and their main characteristic is that they
are unbiased estimates of the true forward moments even in the presence of jumps
in the price process as long as the asset price is a martingale. We investigate the

predictive power of the estimated forward skewness coefficients for various macroe-
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conomic variables, stock market returns as well as risk and uncertainty variables,
controlling for the effect of forward variances. We focus on the joint significance
of each forward moments group because our primary goal is to investigate whether
taking into consideration the term structure of each risk-neutral moment as a whole,
is valuable for forecasting purposes or not. The results suggest that indeed the infor-
mation embedded in the term structure of risk-neutral skewness provides significant
improvement in the forecastability of several variables. In particular, forward skew-
ness coefficients are jointly significant for the majority of real activity, money and
credit variables examined for horizons up to twelve months ahead, while they also
exhibit significant forecasting power for treasury yields for a short 1-month horizon.
Furthermore, they are also important for predicting future stock market returns,
systemic risk and equity uncertainty especially for a 4-month horizon that matches
the time period spanned by the estimated forward skewness coefficients.

In Chapter 5, we exploit the simple fact that trading in options of different strike
prices reflects different expectations about future returns, in order to create a novel
measure of dispersion in beliefs. More specifically, the proposed measure is derived
from the dispersion of the volume-weighted strike prices and captures the dispersion
in the beliefs of options traders. The empirical results show that the dispersion
in options traders’ beliefs forecasts negative excess market returns for horizons up
to two years ahead, exhibiting a predictive ability comparable to that of the well-
established variance risk premium and outperforming all other traditional predictors
considered both in-sample and out-of-sample. Moreover, trading strategies that are
based on the out-of-sample forecasting power of the dispersion in beliefs measure
at both the aggregate and the portfolio level provide a mean-variance investor with
significant utility gains compared to a buy-hold strategy. Furthermore, the informa-
tion embedded in dispersion is not subsumed by other option-implied measures that
proxy for variance and jump risk, or reflect investors’ hedging demand. We provide
two alternative explanations for the strong negative relationship between dispersion

in options traders’ beliefs and future market returns. If our measure proxies for the
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level of disagreement in the underlying asset market, then this result is in line with
the limits-to-arbitrage model of Miller (1977) who shows that in the presence of
short-sale constraints asset prices are settled according to the opinions of the most
optimistic investors since pessimistic investors have no means to express their views.
Therefore, higher disagreement leads to higher asset prices and lower subsequent re-
turns. Alternatively, if we consider a framework wherein the underlying asset market
participants are homogeneous and update their beliefs based - to some extent- on
the trading activity in the options market, then the dispersion in options trading
volume across strikes can be regarded as a proxy for the representative investor’s
ambiguity about the true return generating model. In such a case, the documented
negative relationship can be explained within the context of the recursive smooth
ambiguity model of Ju and Miao (2012) in case of an elasticity of intertemporal sub-
stitution that is lower than one. More specifically, in this setting higher ambiguity
increases the pricing kernel but also leads to an increased demand for the risky asset
since investors are willing to substitute current consumption with increased future
consumption. Therefore, the positive covariance between the pricing kernel and the
risky asset return decreases the equity premium.

In summary, this study sheds more light on the interrelationships arising be-
tween the options market and the macroeconomic and stock market environment.
The first empirical chapter (Chapter 3) contributes to the literature that explores
the determinants of the shape of the risk-neutral distribution by departing from the
rational expectations paradigm. In particular, it elaborates on the previously doc-
umented impact of investor sentiment on index option prices (Han, 2008, Lemmon
and Ni, 2011) by showing that in recent years the risk-neutral skewness and hence
the pricing kernel is affected by the sentiment component driven by fundamentals
and not by investors’ unjustified optimism or pessimism. This result first indicates
that incorporating investors’ irrationality into option pricing models is not likely
to improve the fit of observed option prices at least in mature markets such as the

S&P 500 index options market. Second, given the central role played by the pricing
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kernel in determining the price of all assets according to the consumption-based
model, the above result implies that the impact of investors’ erroneous beliefs in
other mature markets such as the US stock market is likely to be small as well.
In support of this conjecture, Sibley et al. (2013) find that the component of the
Baker and Wurgler (2006) sentiment index that is unrelated to fundamentals has
very limited explanatory power for the cross-section of stock returns. Moreover,
the finding that call and put options are oppositely affected by the fundamentals
sentiment component, provides further evidence in favor of the hypothesis that call
and put options markets are segmented.

The second empirical chapter (Chapter 4) contributes to the ongoing research
that extracts option-related variables for forecasting purposes by creating measures
of index forward skewness coefficients and exploring their predictive power for fu-
ture macroeconomic conditions, asset prices as well as variables related to risk and
uncertainty. The documented significant predictive power of the estimated forward
skewness coefficients for the majority of the variables examined, gives further sup-
port to the idea that the time dimension of the implied volatility surface provides
important information about the underlying asset dynamics and investors’ risk aver-
sion in addition to that provided by the moneyness dimension.

Finally, the third empirical chapter (Chapter 5) contributes to the literature
that explores the information content of options’ trading volume but also to the
literature that investigates the impact of dispersion in expectations on asset returns.
Therefore, we uncover a new dimension of predictability stemming from the trading
activity in the options market that has not been explored before. Second, we propose
a new dispersion in expectations measure which, compared to other proxies that stem
from analysts’ forecasts or portfolio holdings, exhibits several advantages. More
specifically, it captures all the beliefs that are expressed in a highly liquid options
market in the form of trading activity, refers directly to asset returns and not to
alternative economic indicators such as corporate earnings, can be estimated even

on a daily basis, and is designed to disentangle between different levels of both
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positive and negative expectations. Additionally, since the intraday data in options
trading activity are publicly and freely available, our measure can be easily used by
investors and regulators.

The remainder of this thesis is structured as follows. Chapter 2 reviews the lit-
erature on the various techniques for extracting nonparametrically the risk-neutral
distribution and the respective moments from observed option prices, while Ap-
pendix A discusses the parametric techniques. Chapters 3-5 present the main em-
pirical findings of the thesis. Each of these chapters is accompanied by an appendix
(Appendices B-D) that provides additional results and where appropriate comple-
mentary discussions in support of the arguments presented in the main body of the
thesis. Finally, Chapter 6 discusses some of the limitations of the thesis, proposes

some avenues for future research and concludes.



Chapter 2

Risk-Neutral Distributions and
their Moments

2.1 Introduction

Cox and Ross (1976) show that the price of any European option can be seen as its

discounted expected payoff under the risk-neutral measure:

C(X)=e" /Xwg (Sy) (S; — X) dS; (2.1)
P(X)= e_”/_ g (Sy) (X = Sy) dSy, (2.2)

where C' (X)) and P (X) denote the price of a European call and put option respec-
tively with strike price X and time to maturity ¢, r is the risk-free rate and g (S;)
stands for the risk-neutral density - RND for short - function of the underlying asset
price at time ¢.! Under the risk-neutral measure, the discounted expected payoff of
the option is a martingale, thus the risk-neutral measure is also called a martingale
measure.

The seminal models of Black and Scholes (1973), Merton (1973) and Black (1976)
rely on the assumption that the risk-neutral distribution of the underlying asset price
is lognormal. The empirical evidence across markets, however, shows that observed
option prices cannot be reconciled with this hypothesis. In particular, option prices

in equity (Shimko, 1993, Rubinstein, 1994), foreign exchange (Campa et al., 1998),

'We keep this notation consistent in the rest of this chapter. Moreover, all option pricing
formulas discussed refer to European options unless otherwise stated.
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commodities (Sherrick, Garcia and Tirupattur, 1996) and interest rate (Dutta and
Babbel, 2005) markets imply a risk-neutral distribution which is more negatively
skewed and more leptokurtic than the lognormal one.

Since the risk-neutral distribution is closely linked to the pricing kernel and the
physical distribution, its shape encapsulates important forward-looking information
about investors’ expectations and risk preferences. As a result, a large number of
studies have developed alternative methods for extracting RNDs and their respective
moments. Such methods can be divided into two main groups: The parametric
methods and the nonparametric ones. The advantage of the parametric methods is
that there are only a few parameters that have to be estimated. On the other hand,
since every parametric model has a specific structure, it is not always easy to account
sufficiently for the observed data. In other words, there is always a probability
that the model will be misspecified. In contrast to the parametric methods, the
nonparametric ones are very flexible but sometimes they can be quite data-intensive
and may lead to data overfitting.

Due to their high flexibility and their model-free nature nonparametric meth-
ods have emerged as the primary methods for extracting risk-neutral densities and
moments. In the subsequent empirical analysis we will use nonparametric methods
that extract directly the moments of the risk-neutral distribution. This is because
it is computationally easier and faster to extract directly the moments. However,
such methods share common characteristics with various methods that extract the
whole risk-neutral distribution. Therefore, the aim of this chapter is to provide an
overview of the main methods found in the literature for extracting nonparametri-
cally both risk-neutral distributions and risk-neutral moments directly. For the sake
of completeness, an overview of the main parametric methods for extracting RNDs

can be found in Appendix A.
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Chapter 2. Risk-Neutral Distributions and their Moments

2.2 Extracting Risk-Neutral Densities

The techniques for extracting RNDs nonparametrically can be further divided into
kernel methods, mazximum entropy methods, RND-fitting methods and implied
volatility curve-fitting methods. Most of the subsequently described methods rely
on Breeden and Litzenberger’s (1978) observation that the second derivative of the
call price with respect to its exercise price gives the RND function:

ndC(X)

g(St> =€ AX?2

|x=5, - (2.3)

2.2.1 Kernel methods

Kernel methods are conceptually similar to a nonlinear regression, in the sense
that they are used to fit a function given a set of observed data. Ait-Sahalia and
Lo (1998) suggest the usage of a kernel estimator in order to obtain an option
pricing function C (.) that matches the observed option prices and use Breeden and
Litzenberger’s (1978) double differentiation rule to subsequently extract the RND.
In particular, given a number of observed option prices {C;} and their characteristics
{Z; = [So,, Xi, ti, 1, dpi)'} - where d; is the dividend yield corresponding to call C;
and the rest of the letters are defined as before - they minimize the following mean

squared error formula:
n

. 2

CI(I.l)IEnG 2 C; — C(Z)], (2.4)
where G is the space of twice continuously differentiable functions. The conditional
expectation of C' given the information set Z is estimated using a nonparametric
kernel regression. For every specific value Z;,, this type of regression takes a weighted
average of all the C;s by assigning higher weights to observations with characteristics

Z; that are closer to Z;,. The option prices are assumed to depend on five variables,

therefore a five-dimensional kernel function K(Z) that integrates to one is selected.
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The Nadaraya-Watson kernel estimator has the generic form:

i K((Z=2)/h)

where h is the bandwidth. The higher the value of h, the smoother the function
becomes, whereas the closer it is to zero the more peaked it becomes. Ait-Sahalia
and Lo (1998) show that while the choice of kernel function does not play any
crucial role to the final result, the choice of the correct bandwidth is of great impor-
tance. Furthermore, they find that more accurate estimates are obtained when the
dimensions of the kernel function are reduced. Therefore, they also propose another
semiparametric methodology where the pricing function is the Black-Scholes one
but the volatility parameter depends on the futures price, the strike price and the

time to maturity. This idea is depicted as following:
C(Z) = Cp(Fo, X, t,ry:5(Fy, X, 1)). (2.6)

where C}(.) stands for the Black-Scholes pricing formula and Fy = Spe™ %), The
conditional expectation of o on Fy, X and ¢ is calculated by the following three

dimensional kernel estimator:

S ke () o (55 ke (15
S (P ) de (X525 e (55)

Since the foregoing methodology uses both cross-sectional and time-series option

o(Fy, X,t) =

(2.7)

prices, its main characteristic is that it is stable across time. On the other hand, there
may be some dates where the estimated risk-neutral distribution is not consistent
with the observed cross section of option prices.

Bondarenko (2003) incorporates the idea of a kernel function in his research
but in a different way. He states that the RND function can be described by the

convolution of a kernel function k£ and another positive function u. In general, the
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convolution of two integrable functions can be represented by:

S-nz/wé(x—@b)n(lﬂ)d@b- (2.8)

Thus, in this case kg, -u (S;) = ¢ (5;) . If there are n available calls in the market each
with a strike price X;,7 = 1,...,n and having in mind Breeden and Litzenberger’s
(1978) double differentiation rule, the RND can be calculated by solving numerically

the minimization problem:
i E CZ - D™ °g Xz , 2.9
min - ( qg ( )) ( )

where:

2900 = [ ([ s0ac) ae (210)

is the second integral of ¢g(X). For computational issues, however, Bondarenko

(2003) chooses to discretize the possible values that the underlying asset can take.

2.2.2 Maximum entropy methods

Given some constraints, the maximum entropy distribution is the one that maximizes
the information one misses when the value of a random variable is unknown and
therefore can be described as the least prejudiced. For a continuous distribution

p(z) the entropy formula that is maximised is:

S(g) = - / " 9(S)Ing (S,)dS, (2.11)

This idea can be used in the context of the RNDs in order to obtain the least
prejudiced RND given the observed option data.
More specifically, Buchen and Kelly (1996) maximize the above formula subject

to the constraints:

/0 T g(S)d(S) =1 (2.12)
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9(5:) =0 (2.13)
Eo[F,(S)] =D, = / " J(S)F (5) dS.. (2.14)

where D; is the observed option price and F; (S;) is the discounted payoff of the
option 7, for i = 1, ..., m where m is the number of observed option data. The final

formula to be maximized takes the form:

Ll = - / () g (S) S, + (1 + Ao) / " g(S)dS: +

+i>‘i /mg(st)]:z’ (S¢) dSi, (2.15)

where \;, ....\,, are the Langrange multipliers which are computed numerically. The

resulting RND becomes:

g(S) = - (l_il il (St)) (2.16)

S exp (i W (5;)) as,

It has to be mentioned that the above formulas are discretised by the authors and
the results are assumed to approximate the respective continuous distributions.
Buchen and Kelly (1996) suggest also another similar methodology which is based
on the “Principle of Minimum Cross-Entropy”. More specifically, if there is some
prior information about the probability distribution of the value of the underlying
asset at time ¢, which can be described by a PDF ¢ (S;) then the distribution g (S;)
can be estimated by minimizing the entropy distance between the two distributions.
This difference in the uncertainty implicit in each distribution is called “cross en-
tropy”. Hence given the same constraints and a prior distribution ¢ (S;) the cross

entropy formula that is minimized is:

©(9,q9) = /Ooog(St)langZ;dSt, (2.17)
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and the RND becomes:

4 (Se) exp (i A, <st>)
Jo"a(Si)exp (f:l AT (st)) is,

g(S) = (2.18)

This distribution is regarded again as the least prejudiced subject to the existing
constraints. When there is no prior information about the distribution g (S;), q (S;)
can be seen as a uniform distribution and in this case the resulting risk-neutral PDF
will be the maximum entropy distribution. Thus, the two methodologies coincide
when there is no prior information about the distribution of the random variable.
The minimum cross entropy methodology is also implemented by Stutzer (1996).
Stutzer takes a large number of t-period past returns® and creates a uniform prior
distribution with A = 1, .... H possible outcomes. He uses the following constraint as
an approximation of the martingale property that has to hold for the future returns

of the underlying asset:

H
1= 3 Ri;h)%q (h), (2.19)
where R (.) denotes the H past t-period returns that are used as a proxy for the
future return of the asset. Since the author uses a uniform prior distribution the
minimum cross entropy technique has no difference from the maximum entropy

method and the risk-neutral density function becomes (in discrete form):

oxp (1 252)

7= S exp (77 H51)

(2.20)

where v* is a Lagrange multiplier found by solving numerically the following convex

problem:
—h
v = argmﬂ}nZeXp {fy <% — 1)1 : (2.21)
h

2Where t is equal to the maturity of the option he is interested in.
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2.2.3 RND-fitting methods

This class of methods approximates the RND directly using appropriate optimization
criteria. In Rubinstein (1994), for example, the risk-neutral distribution is estimated

by applying the following least squares formula:

N 2
II}l%Il E (P] - Pj> , (2.22)
j

subject to:

> P=1and P; >0 for j=0,...,n,
J

(dtZPjSJ)
SP < 5 < S where S = ~—FH—~,
s
<Z Pj max[0,S; —Xl]>
C? < C; < C% where C; = ~

R fori=1,....,m,

where:

P; denotes the nodal implied risk-neutral probabilities.

P; denotes the prior distribution which is derived from a n-step standard binomial
tree and for a large enough n can be considered to be lognormal.

S; is the final nodal asset price j.

SP(S?) is the current observed bid (ask) price of the underlying asset.

C? (C#) is the current observed bid (ask) call option price with strike price X;.

d is the annualized payout return.

Ry is the annualized risk-free interest return.

t is the time to maturity of the option.

It is easy to observe that Rubinstein’s (1994) methodology provides as the re-
sulting RND the one closest to lognormal for which the present values of all the
options and underlying asset fall between their bid and ask prices. Therefore, if all
option prices calculated based on the lognormal distribution lie between the actual
bid and ask prices then P; = PJ/ for every j. Moreover, as the available set of option
prices increases, the resulting probability distribution will depend less on the prior

distribution. In the extreme case that m — oo, P; will become independent of PJ,
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Chapter 2. Risk-Neutral Distributions and their Moments

Based on Rubinstein’s (1994) technique, Jackwerth and Rubinstein (1996) pro-
pose another approach where the objective is to find the implied distribution with
the maximum smoothness. In this case there is no prior distribution. The objective

function is:

2P\ ?
min ) = ( ]) , (2.23)
P; ; 8X32

which becomes in discrete form:

I%IIIQ == Z (Cj_g - 4Cj_1 + 603 — 40j+1 + Cj+2)2 ) (224)
! j

subject to C; = C7" whenever X; = X, for j = 0,..n and 7« = 1,...,m, where C;
(Cr™) is the option value (observed mid-point price) at exercise price X; (observed
strike price X;). The first order condition for the cases where there is no available

option with strike price X; becomes in discrete form:

o0}

o = 205-— 160, +56C; — 1120)- + 140C; — 1120,
J

+560j+2 - 16Cj+3 + 20j+4

= 0. (2.25)

However, whenever there is an option with strike price equal to X, the model option
prices should coincide with the observed midpoint prices. Therefore, a penalty term

is added to function €2 and the new objective function becomes:
O =Q+a) (C-CP), (2.26)

and taking the first order condition for the cases where X; = X; becomes:

/

o0
50 = 2Cj-4—16C; 5+ 56C; 5 — 112C; s + (140 + 20) C; — 112C;,
J

+56C; 42 — 16C; 43 + 2C; 14

= 2aCT. (2.27)
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Jackwerth and Rubinstein (1996) solve the above system of equations by setting the
prices of call options with very high strike prices equal to zero and the prices of call
options with very low strike prices equal to their intrinsic values. This procedure
also ensures that the resulting risk-neutral probabilities, calculated by the butterfly
approximation of the Breeden and Litzenberger’s (1978) formula, sum up to one.
In case of negative risk-neutral probabilities, the authors increase the number of

options with predetermined prices until they find an optimum RND.

2.2.4 Implied volatility curve-fitting methods

The purpose of this group of methodologies is to fit the implied volatility smile
using some type of polynomial function. Then, they transform the fitted implied
volatility smile into option prices and use the double differentiation rule in order
to estimate the risk-neutral distribution either numerically or analytically. It has
to be mentioned that the usage of the Black-Scholes model for transforming the
option prices into implied volatilities and vice versa, does not imply the validity of
the model’s assumptions.

Shimko (1993) is the first to propose that instead of interpolating the observed
option prices, it is preferable to interpolate the observed Black-Scholes implied
volatilities. This way, the resulting option pricing function turns out to be smoother.
Therefore, Shimko (1993) assumes that the implied volatility function for an expi-

ration date ¢ with respect to the strike price has a quadratic form:

b'\(X) =ag+ CL1X + CL2X2. (228)

Given the implied volatilities for all the call options available in the market, the
coefficients ag, a1, as can be estimated by linear least squares. Then, he creates a
smoothed call option pricing formula which is a function of (X) and by differen-
tiating twice he finds the RND function. The analytic expression of the function
is:

9(S: = X) =n(dy) [dey — (a1 + 2a2X) (1 — dads,) — 2a2X], (2.29)

18



Chapter 2. Risk-Neutral Distributions and their Moments

where n (.) is the PDF for a standard normal distribution, d;, ds are defined as in

the case of the Black-Scholes formula, and:

1 1—d;
di, = — + ay + 2a: X
! Xov/t <Ut)(1 2X)

dgz = dlx — (CL1 -+ 2&2X) . (230)

Since this method provides probabilities only for the range of prices corresponding
to the option strike prices observed in the market, the author assumes that the tails
of the distribution are lognormal.

Malz (1997) modifies the above technique by expressing the volatility smile in

ac

terms of A = 5

(delta of the option) and uses a quadratic polynomial to approx-
imate the implied volatility function as well. Then, he transforms the volatility
smile from a function of delta to a function of strike price. By substituting this
implied volatility function to the Black-Scholes formula and differentiating numer-
ically twice, he finds the RND function. The advantage of Malz’s (1997) approach
compared to that of Shimko (1993) is that A can take values only from 0 to 1 and
these boundaries represent the whole probability distribution. Therefore, there is no
need for any assumptions regarding the tails of the distribution. Another advantage
of Malz’s (1997) technique is that the resulting distribution is more flexible in the
centre where in general the data are more reliable (Bliss and Panigirtzoglou 2002).

Campa et al. (1998) amend Shimko’s (1993) method by fitting a cubic spline
instead of a quadratic polynomial to the implied volatilities of the observed options.
In this case, the cubic polynomial that links two knots can be different for every
different couple of data points. One constraint is that at each point the first deriva-
tives of the two polynomial functions should be equal and differentiable. Moreover,
for the area before the first data point and after the last one, the first and last
polynomials are used for a length that equals that of the first and last data interval.
Beyond this extended range of available implied volatilities, the implied volatility
smile is assumed to be flat.

Bliss and Panigirtzoglou (2002) combine the two previously described methods
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and use a smoothing cubic spline to fit a volatility function with respect to the A of
the options.?** The main characteristic of the smoothing cubic spline is that it penal-
izes excess curvature by a smoothness parameter A. Moreover, outside the available

data range the spline becomes linear. The objective function that is minimized is:
N o0
. fei 2 " 2
ménZwi <H/; — 1V (A, @)) + A / f (z;0) dx, (2.31)
i=1 o

where © is the matrix of the parameters of the cubic spline, f(©) is the implied
volatility function, w; is a weight that corresponds to the option’s vega (v = g—g) and
v (A;, ©) is the fitted implied volatility at A; given the parameters ©. When the
implied volatility function with respect to A is estimated, a large number of equally
spaced points are selected and are transformed to option prices with respect to strike
prices. Finally, by approximating numerically the second derivative of these option
prices with respect to the respective strike prices, the risk-neutral density function
is obtained.

Jackwerth (2000) suggests another methodology that fits the observed implied
volatilites and minimizes the curvature of the volatility smile. The author first
discretizes the possible future values of the underlying asset with equal intervals of

0 and in a way that all the available strike prices in the market are covered. Then

the following objective function is minimized:

wi-ny (@) 03 (55) e

where J is the number of possible outcomes of the stock price, I is the number of
observed options in the market, o; is the implied volatility of every hypothetical

option j, o; is the implied volatility of the observed option i, o; is the model implied

3 According to Figlewski (2010), this methodology solves the problem of the discontinuous first
derivative of the risk-neutral distribution which is present when interpolating a cubic spline to the
volatility smile expressed in terms of strike prices.

4Similar smoothing spline techniques are also implemented by Aparicio and Hodges (1998) and
Anagnou-Basioudis et al. (2005). However, in these studies the volatility smile is plotted against
strike prices and not against option deltas.
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volatility for the observed option ¢, 0';-/ is the second derivative of implied volatility
with respect to strike price approximated by a;- = (0j41 — 20, +0-1) /6%, STD;
is the standard deviation of the implied volatility during the day for each option
1 and p is the trade-off parameter. The second part of the function minimizes the
error between the observed and the model implied volatilities while the first part
minimizes the curvature of the constructed volatility smile. As long as the implied
volatility function is estimated, the respective Black-Scholes prices are calculated

and the double differentiation rule provides the following formula for the RND:

e "in(d2;)
0(5,) = o S f [1 + 28Vtd1 0 } (2,33

A/t n(dl)[ ity (a;.)Q] ’

where:

n (.) is the standard normal density function,
In ( ;Od::z )
dlj = # -+ %Uj\/ga

d2j = dlj — O'j\/z,

d = 14 dividend yield,

S; is the asset price at time ¢ equal to the respective strike price X; and

a;- = is the first derivative of implied volatility with respect to strike price,
approximated by a;- = (0j11 — 0j_1) /20. A similar approach is also presented by

Jackwerth (2004). However, in this case the optimization function is:

rr;m(ﬁ)Z( ) %g ) (2.34)

Figlewksi (2010) also interpolates the implied volatilities plotted as a function
of strike prices but uses a different technique. He fits a 4th order spline assuming
only one knot for the at-the-money option and minimizing the weighted sum of
squared deviations between the curve and the market implied volatility midpoints.
The constructed weighting function assigns higher weights to the deviations that

fall outside the bid-ask spread. Moreover, the author chooses to discard from his
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dataset quotes of deep-out-of-the-money options and forms the RND tails according

to the GEV distribution.

2.3 Extracting Risk-Neutral Moments

It is evident from the previous section that there exists a plethora of alternative
methods for extracting RNDs, most of which differ substantially in terms of their
objectives, assumptions and constraints to be satisfied. However, while all studies
typically lead to RNDs that are skewed to the left and exhibit fat tails, there is no
agreement in the literature about which method delivers the most accurate results.
Furthermore, while it is possible to calculate the moments of an estimated RND, it
is easier and faster to compute the risk-neutral moments directly from the observed
option prices. Therefore, this section outlines the main techniques for estimating
risk-neutral moments given a set of available option prices.

The common characteristic of all the methods discussed in this section is that
the risk-neutral moments can be estimated from a portfolio of out-of-the-money
European call and put options with weights that depend on the current underlying
asset price and the respective strike prices. This is because they rely on the spanning
result of Bakshi and Madan (2000) and Carr and Madan (2001) who show that any
twice-continuously differentiable payoff function H(S;) of the terminal asset price

S; can be written as:

H(S,) = H(So) + (S, — So) H'(So) + / T HYX)(S, — X)X+

H"(X)(X — S,)*dX, (2.35)

o0

where S is the current asset price, (S; — X)™ = maz(0,5; — X) and (X — S;)" =
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max(0, X — S¢). The above equation can be rewritten as:

H(S,) = [H(Sy) — H'(So)So] + H'(So)S: + / T HIX)(S = X)rdX+
So

/ " HOXO(X - S)AX, (2.36)

o0

and implies that the payoff function H(S;) can be replicated by a H(Sy) — H'(Sp)So
positioning in zero-coupon bonds, a H'(.Sy) positioning in the asset and a H” (X )dX
positioning in out-of-the-money call and put options of all strikes. Intuitively, the
positions in the bond and the asset form a tangent to the payoff curve at the initial
asset price Sy, while the positions in the out-of-the-money options generate the
necessary curvature to match the payoff curve for the rest of the potential terminal
prices.

The main issue regarding the implementation of these methods is the require-
ment of a continuum of out-of-the-money calls and puts across strike prices, while
in reality options are traded only for a finite range of discrete strike prices. To over-
come this difficulty, researchers typically fit the implied volatility curve in a way
similar to what described in the previous section. More specifically, they first fit
the implied volatility curve using cubic splines inside the range of available data
and the respective implied volatility boundary values outside the range of available
data, then they create a large number of artificial option prices and finally they
estimate the integrals that appear in the formulas using the trapezoidal approxima-
tion (see for example Jiang and Tian, 2005, Chang et al., 2013 and Neumann and
Skiadopoulos, 2013).

Carr and Madan (1998), Demeterfi et al. (1999) and Britten-Jones and Neu-
berger (2000) show that under the assumption that the underlying asset price follows
a diffusion process, it is possible to estimate exactly the integrated variance of the

asset’s returns under the risk-neutral measure over a period [0, ¢] using a portfolio
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of out-of-the-money call and put options expiring at time ¢:

IV(0,t) = 2¢™ { /F oo %d}( + /0 or )(()2( )dX} : (2.37)

where C(X) and put P(X) denote call and put option prices respectively with time
to maturity ¢ and strike price X, and F{, stands for the asset’s current forward price.
The above formula is used by the Chicago Board Options Exchange (CBOE) for the
estimation of the well-known VIX index. Jiang and Tian (2005) and Carr and Wu
(2009) further assert that equation (2.37) can estimate the quadratic variation over
a period [0,¢] with a small approximation error in case the underlying asset price
follows a discontinuous process with jumps. However, Broadie and Jain (2008), Du
and Kapadia (2012), Rompolis and Tzavalis (2013) and Bondarenko (2014) show
that in the presence of negative jumps, this method consistently underestimates
the quadratic variation of log-returns and this underestimation is not negligible in
turbulent periods.

In light of this, Neuberger (2012) and Bondarenko (2014) propose an alternative
definition of variance. In particular, they suggest the function o* = 2 (e” — 1 — x),
to be used as variance instead of the commonly used o = (x)Z, where z is the
log-return of a martingale price. When the are no jumps in the underlying asset
process both variance definitions, o* and p, converge to the integrated variance
at the continuous-time limit and can be replicated exactly by equation (2.37). In
the presence of jumps, however, the two methods respond differently and only the
quadratic variation stemming from ¢* can be replicated exactly by equation (2.37).
Moreover, o* when sampled at a high frequency serves as an unbiased estimator of
the true conditional long-horizon variance, while this is not the case for p.

Similarly, Neuberger (2012) and Kozhan, Neuberger and Schneider (2013) pro-
pose the function * = 6 (ze® — 2e” + x +2), to be used as the third moment of
an asset’s log-return z, instead of the commonly used @ = (x)3 The reason is
that, unlike the traditional definition 1, the alternative definition ¢* when sampled

at a high frequency serves as an unbiased estimator of the true conditional long-
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horizon third moment. Based on their alternative specification, Neuberger (2012)
and Kozhan, Neuberger and Schneider (2013) show that it is possible to estimate
the third moment of an asset’s returns under the risk-neutral measure over a period
0,¢], and this estimate will be exact even in the presence of jumps in the underlying
asset price process, as long as the price is martingale. The respective formula takes

the form:

* X — FO PR -X
TM(0,t) = 6e" X)dX — X)dX 2.38
and by standardizing with the implied quadratic variation from equation (2.37), the

respective risk-neutral skewness coefficient becomes:

SC(0,t) =

0.4 (2.39)

TM(,t)
IV(O )
In a slightly different context, Bakshi, Panayotov and Skoulakis (2011) assume
that the underlying asset price follows a pure diffusion process and based on the
theoretical evidence presented in Carr and Lee (2009) construct exponential claims
on integrated variance of an asset’s returns under the risk-neutral measure for a
period [0, t]:
H(0,t) = e "EQ [e VO] (2.40)

The price of such an exponential claim is given by the following formula:

f coS (arctan (\[) + f In <§0>>

So \/S_OX 2

B So \/%cos <arctan \%)34— In (_>) P(X)dX. (2.41)

0 VSo X2

H(0,t) = e —

C(X)dX

=

Since their final goal is to provide forward variance estimates, Bakshi, Panayotov

and Skoulakis (2011) perform a small manipulation of equation (2.40) and get:
—InH(0,t) =rt —InE? [e-VOH] . (2.42)
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Therefore, their estimates are affected not only by the expectation of the integrated
variance under the risk-neutral measure but also by the level of the risk-free rate.
The effect of the presence of jumps in the underlying asset price process on the
quadratic variation estimates from this method has not been investigated so far.

Bakshi, Kapadia and Madan (2003) construct formulas for all the risk-neutral

St

50)' In particular they

moments of the continuously compounded log-return ln<
show that the risk-neutral variance, skewness and kurtosis of the asset’s return over
a period [0,%] can be calculated from the prices of out-of-the-money call and put

options expiring at time :
Var(0,t) = eV (0,t) — u(0,t)%, (2.43)

€W (0,t) — 31 (0,1) €V (0,1) + 21 (0, 1)°
[tV (0,4) - (0,)%] |

Skew(0,t) = (2.44)

eQ (0,) — 4 (0, ) €W (0,t) 4 6e™ 14 (0,4) V (0,8) — 3 (0, ¢)*

Kurt(0,t) = 5 :
[eV (0,8) = 1.(0,1)°]
(2.45)
where:
ert ert ert

and V (0,t), W (0,t) and @ (0,¢) are the prices of three contracts that represent the

second, third and fourth noncentral moment respectively of the asset’s log-return:

V(0,1) = /5 N 2<1+2(5%))0<X)dx+ /0 B 2(1+I2‘(570))P<X>dx, (2.47)

0
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2

[ —

W(0,t) = /006111(5&0)_3[111(5%)

0 e C(X)dX —
So.61n(52) + 3 [In(52)]”
- /O e P(X)dX, (2.48)

3

[ —

Q(0,t) = /SOO 12 [ln(%)] —4 [ln(s%)

- - C(X)dX +
+ /0 Y12 [n(R)] Xt4 ()] P(X)dX. (2.49)

Rompolis and Tzavalis (2013) extend the work of Bakshi, Kapadia and Madan (2003)
for moments of order higher than fourth. Unlike the risk-neutral moments estimated
from the previous techniques, the moments estimated from Bakshi, Kapadia and
Madan’s (2003) technique do not have theoretically equivalent realized measures
that can be constructed from high-frequency returns. However, Du and Kapadia
(2012) show that in the presence of jumps in the underlying asset price process,
the Bakshi, Kapadia and Madan (2003) risk-neutral variance captures much more
accurately the quadratic variation of the asset’s returns than the formula (2.37)

does.

2.4 Conclusion

In this chapter, we outline the main methods for extracting risk-neutral distributions
and moments nonparametrically from observed option prices. Such methods will
be subsequently used for the empirical analysis presented in this thesis. We first
describe the different techniques for extracting the whole distribution of the future
underlying asset price (or return). Such techniques can be further divided into
those that use a kernel estimator to estimate the option pricing function, those

that obtain the least prejudiced distribution, i.e. the one exhibiting the maximum
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entropy, those that fit directly the risk-neutral density and finally those that fit the
implied volatility curve.

Assuming that the risk-neutral distribution is accurately estimated, it is straight-
forward to calculate its moments. However, given the computational difficulties that
are embedded in most of the aforementioned methods and the fact that there is no
consensus in the literature regarding the method that provides the most accurate
results, it is easier and more reliable to estimate the risk-neutral moments directly
from the observed option prices. Therefore, in the second part of this chapter we
analyze the different approaches for estimating the risk-neutral variance, skewness

and kurtosis using option prices of a given maturity.
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Chapter 3

Investor Sentiments, Rational
Beliefs and Option Prices

3.1 Introduction

The smirk pattern, which characterizes the cross-sectional plot of index options’
implied volatilities, constitutes evidence of a pronounced negative skewness in the
risk-neutral distribution of the index returns. This phenomenon cannot be fully
captured even by sophisticated option pricing models that incorporate stochastic
volatility and jumps (see Bakshi et al., 1997, Bates, 2000 and Pan, 2002 among
others). Under the representative-investor paradigm, consumption-based asset pric-
ing theory accounts for the variation in risk-neutral skewness by describing the
determinants of the pricing kernel. In particular, it suggests that when investors
are pessimistic (optimistic) about future consumption their marginal utility is high
(low). Consequently, when investors are bearish (bullish) about the market, they
drive up (down) the prices of Arrow-Debreu securities that pay off when the index
level is low. This is equivalent to a more (less) negatively sloped pricing kernel,
and assuming that the conditional physical probability distribution is always ap-
proximately symmetric (Ait-Sahalia et al., 2001 and Rosenberg and Engle, 2002),
it implies a more (less) negative risk-neutral skewness. Shefrin (2008) postulates
that the pricing kernel can be decomposed into two parts: one that is driven by

investors’ erroneous beliefs and a second part that is driven by investors’ rational
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expectations about future consumption.! Recent literature attributes the negative
risk-neutral skewness to factors such as investor sentiment (Han, 2008, Lemmon and
Ni, 2011), limits to arbitrage (Bollen and Whaley, 2004), market momentum (Amin
et al., 2004), heterogeneous beliefs (Buraschi and Jiltsov, 2006) and market default
risk (Andreou, 2013).

In this chapter, we examine how investor sentiment related to economic funda-
mentals and investors’ erroneous beliefs impact the risk-neutral skewness of index
returns. Unlike Han (2008) who assumes that investor sentiment reflects only in-

2 a recent stream of papers acknowledges that in-

vestors’ unjustified expectations,
vestor sentiment is not purely driven by irrationality but also incorporates rational
updating of beliefs. For example, Brown and Cliff (2005, p. 417) note that “when
people say they are bullish on the market, this can be a rational reflection of pros-
perous times to come, an irrational hope for the future, or some combination of the
two”.? In light of this, we define investor sentiment as investors’ overall attitude
towards future market returns and argue that it captures their beliefs driven both by
changes in fundamentals and by factors unrelated to fundamentals. Therefore, for
the subsequent analysis we decompose aggregate investor sentiment into two compo-
nents: an economic fundamentals (EF) component, which corresponds to investors’
rational updating of beliefs regarding future market returns due to changes in eco-
nomic conditions,* and an error in beliefs (EB) component, which captures investors’
expectations that are not associated with the economic conditions (expressed in the
form of unjustified optimism or pessimism). In this respect, this study contributes
to the ongoing research on the impact of behavioral biases on index option prices

and the pricing kernel.

In order to extract risk-neutral skewness estimates from S&P 500 index options

Tt is important to note that Shefrin (2008) uses the word sentiment to describe only the error
in beliefs sentiment component.

2His assumption is reinforced by the fact that the main results of his study do not change after
controlling for four popular macroeconomic indicators.

3For similar discussions, see also Qiu and Welch (2004), Baker and Wurgler (2006), Lemmon
and Portniaguina (2006) and Sibley et al. (2013).

4The term economic conditions is used to describe the combination of both macroeconomic and
financial conditions.
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we use the well-established model-free approach of Bakshi, Kapadia and Madan
(2003). To capture investor sentiment we utilize three proxies which can be regarded
as reflecting the sentiment of three different classes of investors. More specifically,
we use the net position of non-commercial traders in S&P 500 futures to capture the
sentiment of large speculators, the bull-bear spread based on the surveys of Investors
Intelligence to proxy for the sentiment of investment advisors and a newly established
measure introduced by Ben-Rephael et al. (2012) that captures individual investor
sentiment through the net exchanges of the equity funds.

We estimate the economic fundamentals sentiment component by regressing each
sentiment proxy on a vector of eight major economic indicators that practically cover
all aspects of the macroeconomic and financial environment that could influence
investors’ expectations regarding future market returns. The fitted values from
the regressions are regarded as the component that is related to economic activity
and corresponds to investors’ rational updating of beliefs. The residuals from the
regressions are regarded as the error in beliefs component that is not associated with
the economic conditions and reflects investors” unjustified optimism or pessimism.
We check the robustness of our sentiment decomposition by using a set of common
latent factors that summarize the information embedded in a large panel of 131
macroeconomic variables. In particular, our alternative sentiment decompositions
are based a) on the estimated common factors and b) on the variables that are most
correlated with those factors. Both alternative sentiment decompositions provide
qualitatively similar results with those from the main decomposition.

Our sample period extends from 1990:01 to 2011:06. We conduct our empiri-
cal analysis over two sample periods, before and after 1997:06. This enables us to
compare our findings to those of Han (2008) whose sample period ends at 1997:06.
Therefore, we examine whether the results reported in Han (2008) continue to hold
in recent times. Furthermore, our subsample analysis is motivated by Garleanu et
al. (2009) who suggest the high likelihood of a structural change in the S&P 500

index options market in 1997 due to the introduction of new competing securities

31



Chapter 3. Investor Sentiments, Rational Beliefs and Option Prices

such as the S&P 500 E-mini futures and futures options on the Chicago Mercan-
tile Exchange (CME) and the Dow Jones options on the Chicago Board Options
Exchange (CBOE). The introduction of these alternative securities may have trig-
gered a shift of investors between markets, thus changing the characteristics of the
representative S&P 500 index options investor.

The empirical results show that in the first sample period (before 1997:06), there
exists a significantly positive relationship between all three sentiment proxies and
skewness. This means that a more bullish (bearish) investor sentiment leads to a less
(more) negative risk-neutral skewness. Hence, our results corroborate the findings
of Han (2008). However after 1997:06, we see that this pattern changes and none
of the three sentiment proxies exhibits any significant relationship with skewness.
Our findings indicate that the impact of aggregate sentiment on the risk-neutral
skewness is insignificant in the recent years.

To shed light on the nature of this change, we repeat our analysis for the EF
and EB components of sentiment. The results of the first period show that the pre-
viously reported relationship between aggregate investor sentiment and risk-neutral
skewness stems mainly from the EF component, but the EB component also exhibits
some explanatory power. However, the results for the second period provide a strik-
ing contrast. The EF component remains strongly significant, while the respective
EB component is consistently insignificant. The results suggest that aggregate sen-
timent, which is previously found to be insignificant, cannot always account for the
impact of investors’ rational and erroneous expectations on option prices as it con-
stitutes only a noisy aggregation of these two components. A further examination of
the EF component of sentiment shows that the risk-neutral skewness is influenced
by the expectations of large speculators regarding a reversal of recent economic
conditions.

We further examine the market conditions under which the documented in the
second period relation between the EF sentiment component and the risk-neutral

skewness is more pronounced. Our analysis suggests that this significant relation
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mainly stems from periods of worsened stock market conditions. Thus, on average
the S&P 500 index options traders react to bad news by forcing risk-neutral skewness
to become less negative but do not react to good news in a way that would make
risk-neutral skewness more negative. We validate this finding by examining whether
the significant relation for the EF component of each sentiment proxy is mainly
driven by periods of more bullish or bearish expectations depending on the way
each proxy responds to recent economic conditions.

Finally, motivated by Constantinides et al.’s (2011) assertion that the index
options market is segmented, in the sense that out-of-the-money puts are mainly
traded by hedgers while out-of-the-money calls are mainly traded by speculators,
we create different slope measures for calls and puts. The analysis (restricted in
the second period) suggests that the slope of the calls’ implied volatility smirk is
mainly driven by the expectations of investment advisors and individual investors
regarding a continuation of recent economic conditions, while the slope of the puts’
implied volatility smirk is mainly driven by the expectations of large speculators
regarding a reversal in the economy. In contrast, the EB component of all sentiment
proxies has no explanatory power either for the slope measures from call options
or for the slope measure from put options. The above evidence is consistent with
that of Constantinides et al. (2011) and implies that the demand for call and the
demand for put options originate from different sources.

Our findings provide useful insights regarding the role of investor sentiment on
asset prices. In particular, we document that investor sentiment has an impor-
tant component that represents investors’ rational updating of beliefs, the impact
of which cannot be ignored on asset prices. In fact, in the S&P 500 index options
market, the pricing kernel is mainly driven by its economic fundamentals compo-
nent and not by the errors in beliefs component. This finding is important as the
index options market provides us with valuable forward-looking information about
the pricing kernel. Moreover, in contrast to Han (2008), our results suggest that

incorporating investors’ irrationality into sophisticated option pricing models is no
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longer valuable.®

The remainder of the chapter is structured as follows. Section 3.2 presents in
detail the related literature. Section 3.3 describes the data and the construction of
the variables used in the study. Section 3.4 provides the empirical results. Finally,

Section 3.5 concludes.

3.2 Related Literature

This chapter is mainly related to the literature that examines the determinants of
the risk-neutral moments - or equivalently the shape of the implied volatility smirk
- extracted from index and individual stock options. Bollen and Whaley (2004)
investigate whether the net buying pressure for index and stock options affects the
shape of the implied volatility smirk. The underlying assumption is that limits
to arbitrage force market makers to charge a higher price for options when their
short positions become large. Their results indicate that the shape of the index
options’ implied volatility smirk is driven by the demand for index put options
consistent with the hypothesis that investors seek portfolio insurance. On the other
hand, stock options’ implied volatility smirk is affected by the demand for stock
call options. Garleanu et al. (2009) provide further time-series and cross-sectional
evidence showing that option expensiveness and hence the level and steepness of the
implied volatility smirk is positively linked to demand pressure.

Dennis and Mayhew (2002) investigate the systematic and firm-specific factors
that affect the risk neutral skewness implied by individual stock options. They
find that a larger (smaller) firm size, a higher (lower) stock beta, a lower (higher)
stock liquidity, a period of high (low) market volatility and a period of more (less)

negative market skewness are related to a more (less) negative individual stock risk-

5In fact, recent literature on general equilibrium and option pricing models attempts to account
for the implied volatility smirk anomaly by extending the traditional rational representative-agent
paradigm. For example, Liu et al. (2005) incorporate uncertainty aversion for rare events, while
Benzoni et al. (2011) and Du (2011) build a long-run risk and a habit formation model respectively,
with a jump component to the consumption growth process. Finally, Christoffersen et al. (2013)
construct a GARCH option pricing model with a pricing kernel that depends both on stock returns
and volatility.
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neutral skewness. Similar results are also obtained by Taylor et al. (2009). Duan
and Wei (2009) demonstrate that the shape of the individual stock options’ implied
volatility smirk is associated with the systematic risk proportion of the underlying
asset. In particular, systematic risk proportion has a positive effect on the level and
the steepness of the smirk. Furthermore, Bradshaw et al., (2010) find a positive
relation between firm opacity and the steepness of the implied volatility smirk.

Han (2008) and Lemmon and Ni (2011) examine the impact of investor sentiment
on S&P 500 index and individual stock option prices. Both studies find that a more
bullish investor sentiment is related to a less negatively skewed risk-neutral density
and a flatter implied volatility smirk, while a more bearish sentiment is associated
with a more negative risk-neutral skewness and a steeper implied volatility smirk.
Buraschi and Jiltsov (2006) create a heterogeneous-belief equilibrium model which
leads to negative risk neutral skewness. Moreover, they provide empirical evidence
that a higher heterogeneity of beliefs about expected returns increases the options’
trading volume and makes the slope of the S&P 500 implied volatility smirk steeper.
Friesen et al. (2012) draw the same conclusion by examining the implied volatility
smirk of individual stock options.

Restricting our attention to the index options markets, Amin et al. (2004)
examine the impact of stock market momentum on the S&P 100 index option prices
and find that negative market returns lead to a substantially steeper and more curved
smirk pattern in both call and put options’ implied volatility functions. David and
Veronesi (2014), show that the slope of the S&P 500 index implied volatility smirk
is positively related to investors’ perceived economic uncertainty, probability of a
recession and probability of deflation. Andreou (2013) investigates the impact of
market default risk on the S&P 500 index risk-neutral moments and shows that it
is positively related to variance and skewness and negatively related to kurtosis.

With respect to the determinants of index option prices outside the US, Nordén
and Xu (2012) indicate that an increase (decrease) in relative liquidity between out-

of-the-money put and at-the-money call options leads to a less (more) negatively
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sloped implied volatility smirk of the Swedish OMXS30 index. Pena et al. (1999)
show that the shape of the Spanish IBEX-35 index implied volatility smirk is mainly
influenced by the market’s transaction costs, proxied by the options’ bid-ask spread,
with higher (lower) transaction costs being associated with a more (less) curved
smirk. In a similar study, Chang et al. (2009) indicate that the slope of the implied
volatility smirk of the Hang Seng index is negatively related to the variance of the
underlying asset and the options’ bid-ask spread and also exhibits a “Monday effect”,
by being steeper on Mondays.%

This chapter is also related to a strand of the literature that examines the im-
pact of macroeconomic announcements and macroeconomy in general on the equity
market risk-neutral moments. Graham et al. (2003) investigate the impact of eleven
macroeconomic announcements on the equity market risk-neutral variance as cap-
tured by VIX and state that five of them have a significantly negative effect. In
a similar study, Nikkinen and Sahlstrém (2004) find that VIX decreases after the
Federal Open Market Committee (FOMC) meetings and after the release of the
employment report from the Bureau of Labor Statistics. Vahamaa and Aijo (2011)
further document that the effect of the FOMC meetings on VIX is stronger during
periods of expansive monetary policy. Beber and Brandt (2009) provide evidence
that the reduction in the risk-neutral variance of cyclical stocks after a non-farm
payroll announcement is more pronounced in periods of high macroeconomic un-
certainty. At an intraday level, Nofsinger and Prucyk (2003) find that the implied
volatility of S&P 100 index options increases for some hours after the release of
macroeconomic news, a phenomenon which is mostly attributed to bad news. In
the same vein, Bailey et al. (2014) show that during the recent financial crisis, VIX is
significantly increased five minutes before and after macroeconomic announcements.

Steeley (2004) examines the impact of news about inflation, unemployment, gov-
ernment borrowings, interest rates and money supply in UK on the risk-neutral mo-

ments of the FTSE 100 index. In most cases the effect is significant especially for

6For the determinants of the risk-neutral moments in the interest rate and commodities markets,
the reader can refer to Deuskar et al. (2008), Pan (2012) and Ruf (2012).
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skewness and kurtosis. In a similar study, Aijo (2008) investigates the impact of
both US and UK macroeconomic news on the shape of the risk-neutral distribution
implied by FTSE 100 index options. His conclusion is that good (bad) news have a
negative (positive) impact on implied volatility but a positive (negative) impact on
skewness and kurtosis. At an intraday level, Kim and Lee (2011) examine whether
six macroeconomic news announcements from South Korea and US influence the
risk-neutral moments of KOSPI 200 index. They find that after an announcement
risk-neutral volatility increases, kurtosis decreases while skewness increases after
good news and decreases after bad news. In contrast to Aijo (2008) they state that
changes in kurtosis do not depend on the quality of the news.”

Bekaert et al. (2013) investigate the effect of monetary policy actions on VIX.
They show that a lower (higher) real interest rate is related to a lower (higher) VIX,
an effect which mainly stems from the variance risk premium component. Mixon
(2002) explores the effect of several stock market and macroeconomic variables on the
at-the-money implied volatility of S&P 500 index options. S&P 500 index and Nikkei
index past returns exhibit the highest explanatory power, having a negative relation
with implied volatility. Secondarily, the short-term risk-free rate and the corporate
yield spread have a significantly negative and positive effect respectively but only
for a one-month horizon. Glatzer and Scheicher (2005) extract the DAX index RND
and investigate whether macroeconomic and financial conditions in Germany and US
influence the higher moments and the left tail of the distribution. Their results show
that only the USD/Euro exchange rate has a significant impact on all the higher
moments, whereas the US stock market momentum and variance mainly affect the
implied volatility and to a lesser extent the implied skewness. The effect of German
macroeconomy on the DAX RND shape is weak and limited only to the left tail of

the distribution.

"For studies examining the impact of macroeconomic news on the risk-neutral variance and
higher moments in the interest rate markets the reader can refer to Ederington and Lee (1996),
Sun and Sutcliffe (2003), Vahdmaa et al. (2005) and Beber and Brandt (2006). Kim and Kim’s
(2003) study focuses on the foreigh exchange markets.
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3.3 Data and Variables

3.3.1 Options data and risk-neutral skewness

We obtain daily S&P 500 index call and put options data from I'Volatility.com for
the period 1990:01 to 2011:06.% Following the standard practice, option prices are
calculated as the midpoint between the best bid and best ask price. Expiration time
is calculated assuming 360 calendar days per year. Each trading day is matched with
the respective dividend yield which is obtained from Bloomberg. Moreover, each
option contract is matched with the appropriate continuous risk-free rate that is
found after interpolating the one-, three-, six- and twelve-month Treasury Constant
Maturity rates downloaded from the FRED database of the Federal Reserve Bank
of St. Louis.

Standard filtering rules are applied to the dataset to eliminate measurement
errors and outliers that are mainly caused by thinly traded options (Ait-Sahalia and
Lo, 1998, Han, 2008, Neumann and Skiadopoulos, 2013). First, we discard options
that violate no-arbitrage boundaries. Second, we exclude observations with zero
bid prices and midpoint prices of less than 0.25 index point. Options with implied
volatility of more than 100% are also removed. Finally, we take into consideration
only options with a non-zero trading volume and maturity from 5 to 270 calendar
days.

Risk-neutral skewness is estimated using the model-free method of Bakshi, Ka-
padia and Madan (2003), and specifically the formulas (2.44) and (2.46)-(2.49) pre-
sented in the previous chapter. This method has been extensively used in the lit-
erature (Dennis and Mayhew, 2002, Han, 2008, and Duan and Wei, 2009, among
others) and is considered the standard approach for risk-neutral moments estima-
tion. In order to create a monthly time-series we estimate skewness on the last
trading day of each month. We consider only cross-sections that have at least two

calls with K/S > 1 and two puts with K/S < 1, where K is the strike price of the

8Unlike the following chapters, the sample period examined in this chapter ends at 2011:06 due
to the availability of the investor sentiment data.
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option and S is the index level.

The main issue regarding the implementation of the method is that it requires a
continuum of option prices while the available data is discrete. Therefore, following
Chang et al. (2013) and Neumann and Skiadopoulos (2013), for each cross-section
of options we interpolate implied volatilities into the range of available options data
using a smoothing cubic spline and extrapolate outside this range using the respec-
tive boundary values. Our final goal is to obtain a set of 1000 implied volatilities
that cover the moneyness range from 0.0001 to 3. The implied volatility data points
for moneyness < 1 are then converted into put prices and those for moneyness > 1
are converted into call prices. Finally, the trapezoidal approximation is used to
calculate the integrals in the Bakshi, Kapadia and Madan (2003) formulas. Follow-
ing this procedure, we calculate the risk-neutral skewness for the two time horizons
that are nearest to one month, and then linearly interpolate to find the risk-neutral
skewness for exactly one-month ahead.

Figure 3.1 (top left panel) plots the monthly time series of S&P 500 index risk-
neutral skewness from 1990:01 to 2011:06. We observe that the risk-neutral skewness
is negative throughout the sample period and fluctuates substantially from month
to month. It is notable that the level of the risk-neutral skewness increases during
the period of the recent financial crisis, a phenomenon that has also been discussed
by Birru and Figlewski (2011) and Coakley et al. (2013). As reported in Table 3.1,

its sample mean is -1.559 and its autocorrelation coefficient 0.547.

3.3.2 Sentiment measures

The first sentiment proxy is related to the trading activity of large speculators in
S&P 500 futures. The Commodity Futures Trading Commission (CFTC) requires
clearing members, futures commission merchants and foreign brokers to report daily
their futures and options positions if they are above a specified level. Based on
those data, the CFTC releases the Commitments of Traders report, which provides

a breakdown of each Tuesday’s open interest for markets in which there are 20 or
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more reported positions. Since October 1992 the report is released on Friday and
the data included refer to the previous Tuesday. Prior to that, it was released twice
a month in the middle and at the end of each month. Every individual trader is
classified by the CFTC as either “commercial” or “non-commercial”. Commercial
traders use futures for hedging purposes while non-commercial traders are large
speculators. Similar to Han (2008), we derive the sentiment of large speculators as
the net position (long contracts minus short contracts) of non-commercial traders
scaled by the total open interest in S&P 500 futures (Spec-Sent).

The second sentiment proxy comes from Investors Intelligence’s advisors’ senti-
ment index. In particular, Investors Intelligence performs a weekly survey of more
than 120 independent financial market newsletter writers. Each newsletter is cate-
gorized as bullish, bearish or correction, based on the expectations of future market
movements. The survey started as monthly in 1963, became fortnightly until June
1969 and since then has been weekly. It is published every Wednesday but the
historical data are matched with Friday dates since the majority of the newsletters
are written after the markets close each Friday. Following Brown and Cliff (2004,
2005) we use the bull-bear spread (percentage of bullish investors minus percent-
age of bearish investors) in order to capture the sentiment of investment advisors
(Adv-Sent).

The monthly time-series of the aforementioned sentiment proxies are created by
using the data closest to the end of each month. The two sentiment proxies are
shown by Han (2008) to be positively and strongly related to the S&P 500 index
risk-neutral skewness for the period 1988:01-1997:06.

The third sentiment measure considered in this study is the normalized aggre-
gate net exchanges of the equity funds introduced by Ben-Rephael et al. (2012). In
particular, the Investor Company Institute (ICI) provides monthly data of aggre-
gate mutual fund flows for bond funds, domestic equity funds, international equity
funds and mixed funds. The last three categories constitute the overall equity funds

category.” The sentiment proxy is calculated as the “exchanges in” minus the “ex-

9Ben-Rephael et al. (2012) include mixed funds in the equity funds category, because their
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changes out” of the equity funds, normalized by the fund assets at the beginning of
each month (Ind-Sent). Intuitively, higher sentiment leads investors to alter their
asset allocation from bonds to equities and vice versa. Ben-Rephael et al. (2012)
mention that the vast majority (more than 85%) of mutual fund assets are held
by households, hence this measure is regarded as an individual investor sentiment
Proxy.

Summary statistics for the sentiment measures can be found in Table 3.1. We
observe that the Adv-Sent is on average bullish with a mean value of 0.139, while the
Spec-Sent is on average slightly bearish with a mean value of -0.045. Moreover, both
the Adv-Sent and the Spec-Sent are quite persistent with autocorrelation coefficients
of 0.746 and 0.817 respectively. In contrast, the Ind-Sent has an almost zero mean
value and is much less persistent, with an autocorrelation coefficient of 0.219. Figure
3.1 plots the three proxies from 1990:01 to 2011:06. We see that Adv-Sent and
Spec-Sent tend to move together in the first period but this pattern reverses in
the second period. The Ind-Sent tends to follow the Adv-Sent across the whole
period and especially during the latest years. This is expected since investment
advisory services are mainly used by individual investors in order to form their
beliefs. Comparing the plots of the sentiment proxies with that of the risk-neutral
skewness, we observe that all sentiment proxies move similarly to the risk-neutral
skewness in the first period. This is not the case in the second period.

The aforementioned relations are also confirmed by the correlation coefficients
that are reported in Table 3.2. In the first period all sentiment proxies are positively
related to each other with the pair of Adv-Sent and Spec-Sent having the highest
correlation coefficient (0.51) and the pair of Spec-Sent and Ind-Sent having the
lowest correlation coefficient (0.22). Risk-neutral skewness appears to be positively
related to all sentiment proxies with the correlation coefficients ranging from 0.61
in the case of Adv-Sent to 0.37 in the case of Ind-Sent. This pattern changes in the

second period. More specifically, the Adv-Sent and the Ind-Sent remain positevely

normalized net exchanges are positively correlated with those of equity funds but negatively corre-
lated with those of bond funds. Moreover, the beta of mixed funds with equity funds is 0.93 while
their beta with bond funds is 0.02.
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correlated (0.57), but the Spec-Sent is negatively correlated with both the other
sentiment measures. Similarly, risk-neutral skewness is negatively correlated with
the Adv-Sent and the Ind-Sent (insignificantly in the case of the Ind-Sent), and
positively but weakly correlated with the Spec-Sent. The correlations presented in
Table 3.2 suggest that the relations among the sentiments of the three groups of
investors examined (large speculators, investment advisors and individual investors)
and the risk-neutral skewness have changed substantially after 1997:06. Therefore,
the correlation coefficients for the overall period provide mixed results, sometimes
driven by the first period (e.g. Adv-Sent and Spec-Sent) and sometimes driven by

the second period (e.g. Adv-Sent and Skewness).

3.3.3 Rational updating of beliefs estimation

Brown and Cliff (2005) and Baker and Wurgler (2006) acknowledge that investor
sentiment can be seen as the sum of two components: one reflecting investors’ ra-
tional expectations about future returns and a second reflecting investors’ irrational
beliefs. Both components can affect the shape of the risk-neutral density, through
their impact on the slope of the pricing kernel. Chen (1991) finds that a num-
ber of state variables such as the market dividend yield, the term spread and the
default spread contain valuable information about expected excess market return,
due to their correlation with current and future growth rates of economic activity.
Therefore, it is reasonable to assume that such variables also have an impact on
investor sentiment and reflect rational updating of investors’ beliefs. In this study,
we use a rich set of macroeconomic variables that practically cover all economic in-
dicators that can possibly affect investors’ beliefs about future market returns, and
decompose investor sentiment into two components: one that is related to economic
activity and corresponds to investors’ rational expectations regarding future market
returns, and a second component that is unrelated to economic activity and captures
investors’ unjustified optimism or pessimism.

Our initial macroeconomic dataset is comprised of monthly observations covering
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the period 1990:01 to 2011:06 for 131 macro variables.!® Similar datasets have been
previously used by Stock and Watson (2002, 2005), Ludvigson and Ng (2007, 2009,
2011) and Maio and Philip (2014a,b). The macroeconomic variables belong to eight
main categories, namely, output and income; employment; housing; consumption,
orders and inventories; money and credit; interest rates, exchange rates and spreads;
prices and the stock market.!! It can be seen that the dataset includes not only pure
macroeconomic variables but also financial variables. This is important since it is
reasonable to assume that investors’ rational beliefs about future market returns are

affected by both sources of information.

3.3.3.1 Main sentiment decomposition

For our main sentiment decomposition we consider eight major economic indicators,
one from each category, thus capturing all the different aspects of the macroeco-
nomic and financial environment that investors observe in order to form their ex-
pectations. We choose to use only one variable from each category, in order to have
a parsimonious representation. In particular the variables we select are industrial
production (IP: total), nonfarm payroll (Emp: total), housing starts (Starts: non-
farm), Purchasing Managers’ Index (PMI), money supply M2 (M2), term spread (10
yr-FF spread), Personal Consumption Expenditure deflator (PCE defl) and aggre-
gate stock market momentum (S&P 500). Most of the variables have been used in a
similar context by Brown and Cliff (2005), Baker and Wurgler (2006) and Lemmon
and Portniaguina (2006). In order to estimate the macroeconomic fundamentals
driving the sentiment measures, we estimate the following regression for each of the
sentiment proxies:

Sentyy = a + Bz + ey, (3.1)

0The original dataset consists of 132 variables. However, the variable representing the “Non-
borrowed reserves of depository institutions” is eliminated as it takes negative values in 2008. This
is a measurement error due to the fact that the total reserves should have been consistent with
the Federal Open Market Committee’s objective for the federal funds rate. Therefore, since the
borrowings of the Term Auction Facility were larger than the total reserves, the non-borrowed
reserves appeared to be negative.

1A detailed description of the dataset is provided in Table B.1 of Appendix B.
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where Sent;; is the sentiment proxy i at time ¢, and z,; is the vector of the macroe-
conomic variables. The fitted values from the regressions are regarded as the com-
ponent that is related to economic activity and corresponds to investors’ rational
updating of beliefs (EF component), while the residuals from the regressions are
regarded as the component that is not related to economic conditions (EB compo-
nent), i.e. investors’ unjustified optimism or pessimism. Note that including both
sentiment components into a model that explains risk-neutral skewness is econo-
metrically almost identical to including the aggregate sentiment together with the
macroeconomic variables. However, we prefer to follow the first approach since it is
more widely used in the literature and the results can be more easily interpreted.

Table 3.3 reports the results of regressing each sentiment proxy on the vector of
macroeconomic variables described above. Panel A reports the results for the first
period, 1990:01-1997:06, while Panel B reports the results for the second period,
1997:07-2011:06. We observe that in general the macroeconomic variables do not
have the same impact on the sentiment proxies in the two periods. Panel A shows
that in the first period all three sentiment proxies are mainly driven by the stock
market momentum. In particular, higher (lower) momentum leads to a more opti-
mistic (pessimistic) sentiment for all three groups of investors. Other variables such
as industrial production, nonfarm payroll, housing starts and term spread appear to
play some role, but their effect is not consistent across sentiment proxies. Panel B
shows that in the second period stock market momentum continues to be the main
determinant of Adv-Sent and Ind-Sent but has no significant effect on Spec-Sent.
Moreover, the sentiments of advisors and individual investors tend to be positively
related to current macroeconomic and financial conditions, while the opposite is true
for the sentiment of large speculators.

The above empirical evidence regarding the differential reaction of the Spec-
Sent versus the Adv-Sent and Ind-Sent to fundamentals in the most recent years
constitutes a novel finding and can account for the negative correlations between

Spec-Sent and the other two sentiment measures presented in Panel B of Table 3.2.
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Further support comes from the correlation coefficients between the EF components
of the three measures. While in the first period they are all positively correlated to
each other, with the pair of Adv-Sent and Ind-Sent having the highest correlation
coefficient (0.70) and the pair of Adv-Sent and Spec-Sent having the lowest cor-
relation coefficient (0.49), in the second period the EF component of Spec-Sent is
negatively correlated with the respective components of both Adv-Sent (-0.62) and
Ind-Sent (-0.34). In contrast, the EF components of Adv-Sent and Ind-Sent have a
remarkable positive correlation of 0.91. In essence, the decomposition results show
that investment advisors and individual investors consistently expect a continuation
of recent economic conditions across the whole time period examined. In contrast,
large speculators tend to expect a continuation of recent economic conditions dur-
ing the first period but a reversal of recent economic conditions during the second

period.

3.3.3.2 Alternative Sentiment Decompositions

While our main sentiment decomposition is based on a set of eight indicators that
represent eight major segments of the economy, it is possible that a broader range of
variables is needed in order to capture all the macroeconomic information that drives
investors’ expectations. Therefore, we also consider an alternative sentiment decom-
position that makes use of our entire dataset of the 131 macroeconomic variables.
This is of particular importance, since the key signalling variables that drive investor
sentiment are unobserved. In order to utilize our full macroeconomic dataset, we
create a set of latent common factors using the asymptotic principal component anal-
ysis (APCA) method of Connor and Korajczyk (1986). Details about the method
can be found in Appendix B. These factors capture the common information among
the 131 macroeconomic variables of our dataset. Using the second information crite-
rion of Bai and Ng (2002), we find that the first eight factors adequately summarize
the macroeconomic variations. Therefore, the alternative sentiment decomposition

relies on regressions of the aggregate sentiment proxies on the estimated common
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factors.

While these factors by construction are associated with all the macroeconomic
variables, some factors load heavily on particular groups of variables. Hence, it is
possible to characterize the factors by examining how they load on each macroe-
conomic variable. To this end, we regress each factor on each of the 131 variables
and plot the respective R?s (Figure B.1 in Appendix B). This way, each factor can
be associated with one or more groups of macroeconomic variables. The first factor
mostly loads on the variables of output, employment and orders, so it can be consid-
ered a “real activity” factor. The second factor loads heavily on price indices. The
third factor is mostly associated with interest rate spreads, while the fourth factor
is mostly correlated with inventories and consumption variables. The fifth factor
loads mainly on output and stock market variables. The sixth factor is mainly re-
lated to interest rates and exchange rates. Finally, the seventh factor loads mainly
on housing variables, while the eighth factor is mainly driven by money supply and
bank reserves.

Since the estimated common factors summarize the information embedded in all
131 variables that constitute our macroeconomic dataset, it is likely that they also
eclipse the idiosyncratic signal encapsulated in each variable. Another concern is
the potential for look-ahead bias, given the fact that the construction of the factors
requires the usage of data from the full sample period. Therefore, as a robustness
check, we consider a third alternative sentiment decomposition that uses a selection
of variables that are highly correlated with the common factors. In particular, for
each factor we consider the three variables with the highest R%s and choose from
those the one that is most important and widely used in the literature. The variables
we obtain following this approach are nonfarm payroll (Emp: total), Consumer Price
Index (CPI-U: all), term spread (10 yr-FF spread), inventories to sales ratio (M&T
invent /sales), aggregate stock market momentum (S&P 500), Baa corporate bond
yield (Baa bond), housing starts (Starts: nonfarm) and money supply M1 (M1).

It is apparent that the information embedded in the aforementioned explanatory
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variables is similar to the information embedded in the variables used in the main

sentiment decomposition, hence validating our initial selection.

3.3.4 Control variables

Similar to Han (2008), we include a series of control variables in the regression
analysis. First, we control for the autocorrelation in the risk-neutral series by adding
the lagged skewness value (LagRNS). The second control variable, is the ratio of the
open interest of out-of-the-money (OTM) puts to the open interest of near-the-
money (NTM) calls and puts, and represents relative demand pressure (RelDem)
(see Bollen and Whaley, 2004, Garleanu et al., 2009). More specifically, a higher
relative demand value implies that there is high expectation among investors about
a downturn in the market and therefore the demand for OTM puts for hedging
purposes increases. The next variable is the options’ trading volume (TrVIm), which
is considered a proxy for dispersion in investors’ beliefs (see Buraschi and Jiltsov,
2006). In particular, we take the natural logarithm of the detrended trading volume.
Further, we include the contemporaneous volatility of S&P 500 index (Vol) proxied
by the VIX index, as it is considered the main determinant of risk-neutral skewness
in stochastic volatility pricing models (e.g. Heston, 1993) and is also theoretically
linked to skewness by Bakshi, Kapadia and Madan (2003).

Summary statistics for the control variables can be found in Table 3.1. RelDem
has a mean value of 1,837 with a close to zero autocorrelation coefficient, while
TrVIm has a zero mean value due to the deterministic time trend adjustment and
an autocorrelation coefficient of 0.393. Vol has a mean value of 0.203 and it is quite
persistent with an autocorrelation coefficient of 0.861.

The correlation coefficients between the control variables and risk-neutral skew-
ness can be found in Table 3.2. RelDem and TrVIm are negatively related to risk-

neutral skewness in both periods (for both variables, however, the correlation is

12Han (2008) considers aggregate stock market momentum as an additional control variable in
his explanatory model. In our case, the information of momentum is embedded in the EF sentiment
component.
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insignificant in the first period) with coefficients ranging from -0.01 to -0.26. The
documented negative correlation for RelDem is in accordance with the limits to ar-
bitrage hypothesis of Bollen and Whaley (2004). Intuitively, a higher demand for
OTM puts in relation to NTM options drives the prices of those contracts up because
of the markets makers’ increased risk exposure and hedging costs. Furhermore, the
documented negative correlation for TrVIm is in accordance with the heterogeneous
agents model of Buraschi and Jiltsov (2006). Unlike the other two variables, Vol
is negatively correlated with risk-neutral skewness during the first period (-0.25)
but exhibits a positive correlation in the second period (0.24)."* The documented
negative correlation for Vol in the first period is in accordance with the theoretical
prediction of Bakshi, Kapadia and Madan (2003) in the presence of excess kurtosis
in the physical density. The documented positive correlation for Vol in the second
period is in line with stochastic volatility models, such as Heston (1993). The corre-
lation coefficients for the overall period show that only TrVIm exhibits a significant

(negative) correlation with risk-neutral skewness.

3.4 Empirical Analysis

This section explores in detail the linkages between the S&P 500 index risk-neutral
skewness and the sentiment of large speculators, investment advisors and individual
investors. It is possible for sentiment to influence risk-neutral skewness due to the
existence of limits to arbitrage in the options market. In particular, a bearish or
bullish sentiment creates demand for a specific class of options (e.g. OTM puts).
As market makers satisfy this demand they face more difficulty in hedging their

positions and therefore charge higher prices. From their point of view, investors

13Unlike our finding, Han (2008) documents a positive relation between volatility and risk-
neutral skewness for the period 1988:01-1997:06. However, the negative relation we find for the
period 1990:01-1997:06 is driven only by the observations of year 1990. If we remove this year
from our sample Vol exhibits a positive correlation of 0.19 with skewness. Since the correlation
between the two variables appears to be very sensitive to the sample period considered, we attribute
the difference in results between this study and Han (2008) to the difference in sample periods.
We confirm that the same relations between Vol and risk-neutral skewness hold if instead of our
skewness estimates we use the CBOE SKEW index available at http://www.cboe.com/micro/
skew/introduction.aspx.
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are willing to accept these higher prices due to their sentiment. Hence, we observe
changes in the shape of the risk-neutral distribution and implicitly in the pricing
kernel. In this section, we first examine the relation of the risk-neutral skewness with
the aggregate sentiment and then with the two distinct sentiment components, the
EF component and the EB component. Subsequently, we investigate whether the
documented relations between skewness and the EF component exhibit an asym-
metric pattern depending on whether stock market conditions improve or worsen
and whether the EF component becomes more optimistic or pessimistic. Finally,
we examine whether there is a differential impact of the two sentiment components
on slope measures of the implied volatility smirk created separately by call and put
options. We conduct our analysis over two periods - the first dating from 1990:01
to 1997:06 and the second from 1997:07 to 2011:06. This enables us to compare out
findings to those of Han (2008), whose sample period ends at 1997:06. Further, we
are also able to account for the possible structural change in the S&P 500 index
options market due to the introduction of the E-mini contracts and the Dow-Jones

options in 1997.

3.4.1 Risk-neutral skewness and aggregate sentiment

Table 3.4 shows the results of regressing S&P 500 index risk-neutral skewness on
the three sentiment measures used in the study. Panel A reports the results for the
period 1990:01-1997:06. Similar to Han (2008), all sentiment measures are both pos-
itive and statistically significant. This result implies that a more bearish (bullish)
sentiment of either large speculators, investment advisors or individual investors
leads to a more (less) negatively sloped pricing kernel and a more (less) negative
risk-neutral skewness. In other words, when investors are pessimistic (optimistic)
about future market returns, they are willing to pay more (less) to protect their
portfolios from possible downturns in the stock market. In economic terms, a one
standard deviation increase of Adv-Sent, Spec-Sent and Ind-Sent is followed by an

increase of approximately 0.19, 0.09 and 0.08 in the risk-neutral skewness. These

49



Chapter 3. Investor Sentiments, Rational Beliefs and Option Prices

values represent about 43%, 19% and 18% of skewness’ sample standard deviation
respectively. Han (2008) argues that such changes cannot be attributed to mea-
surement errors in option prices such as bid-ask bounce. The above results remain
statistically significant once the control variables are introduced into the analysis,
consistent with Han’s (2008) findings.

The results in Panel B are intriguing and show that the previous pattern changes
substantially in the second period. In particular, all three sentiment proxies become
negative with Adv-Sent and Ind-Sent being also significant. However, both of them
turn insignificant once the control variables are included into the explanatory model.
Apparently, in the second period there is no considerable relationship between risk-
neutral skewness and the sentiment of the three investor groups examined. A pos-
sible explanation for the results in Panel B is that in the second period the market
makers are willing to provide liquidity to investors at lower prices than those that
the investors are willing to accept when their sentiment is either low or high. In the
same vein, Han (2008) asserts that the risk-neutral skewness and sentiment relation
is much weaker in periods of low limits to arbitrage. Another possible explanation,
however, which will be examined in the next section, is that the aggregate senti-
ment constitutes a noisy aggregation of the two sentiment components which can
separately affect the risk-neutral skewness.

Regarding the control variables, they are insignificant in the first period and
while mainly negative, they turn positive in a few cases. In the second period the
picture is clearer with RelDem and TrVIm being consistently negative and Vol being
consistently positive. Furthermore, the results for TrVIm and Vol are significant
in all but one case (Vol for the Adv-Sent). These relations are in line with the
correlations between the control variables and risk-neutral skewness described in
the previous section.

Summarizing the above mentioned empirical evidence, we find that aggregate
sentiment plays an important role in determining the level of the risk-neutral skew-

ness only in the period 1990:01-1997:06. More specifically, aggregate sentiment of
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all three groups of investors is positively related to risk-neutral skewness, implying
that a more bearish (bullish) investor sentiment leads to a more (less) negatively
sloped pricing kernel. In the second and most recent period 1997:07-2011:06 there is
no significant relation for any of the sentiment measures once we control for relative

demand pressure, heterogeneity in beliefs and contemporaneous volatility.

3.4.2 Risk-neutral skewness and sentiment components

Previous literature documents that the variation in the risk-neutral skewness is
mainly driven by changes in the slope of the pricing kernel due to the approximately
symmetric conditional physical probability distribution (Ait-Sahalia et al., 2001 and
Rosenberg and Engle, 2002). Shefrin (2008) asserts that the pricing kernel can
be decomposed into two components: one component that is driven by investors’
rational expectations about future consumption and a second component that stems
from investors’ erroneous beliefs. In accordance with Shefrin’s model, in Section 3.3.3
we decomposed investor sentiment into an economic fundamentals and an error in
beliefs components. In light of this, the main aim of this section is to examine which
part of sentiment drives the variation in the index risk-neutral skewness. In doing
so, we will gain useful insights about the way the economic fundamentals and error
in beliefs components affect index option prices and the pricing kernel.

If aggregate sentiment has a significant impact on risk-neutral skewness, this
can originate from the EF component, the EB component or a combination of both.
In that respect, the analysis of the first period will allow us to draw inferences
about the source of the positive relationship between risk-neutral skewness and
investor sentiment documented by Han (2008) and also confirmed in the previous
section. Han (2008) conjectures that this relation stems from investors’ erroneous
expectations and his assumption is reinforced by the fact that the main results of
his study do not change after controlling for four popular macroeconomic indicators.
Our empirical analysis seeks to scrutinize Han’s assumption by examining which of

the two sentiment components actually affects risk-neutral skewness and hence the
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pricing kernel.

If aggregate sentiment does not significantly affect risk-neutral skewness, as in
the second period, this does not necessarily mean that no component affects it. In
fact it is possible that one (or even both) of the two components has a significant
impact on skewness, which vanishes when we sum the two components into an
aggregate sentiment. In that respect, the analysis of the second period will allow us
to investigate whether either of the two separate sentiment components influences
risk-neutral skewness. We hypothesize that if the market matures with time, it is
more likely that the EF component will be significant. If no component turns out to
be significant, this finding will imply either that there are no limits to arbitrage in the
index options market or that the information embedded in sentiment is subsumed
by some of the control variables.

The results from regressing risk-neutral skewness on both parts of each sentiment
proxy following the main decomposition are reported in Table 3.5. Panel A shows
the results for the first period and Panel B the results for the second period. For each
sentiment proxy we report results before and after controlling for Vol, since stock
market volatility is known to depend on the macroeconomic conditions (Brandt
and Kang, 2004), which also drive the variation in the EF sentiment component.
Therefore, we examine how the EF component reacts to the inclusion of market
volatility in the analysis. In Panel A, we observe that the positive and significant
relation between sentiment and risk-neutral skewness documented in the previous
section mainly comes from the EF component. This finding combined with the
sentiment decomposition result provided in Section 3.3.3 implies that during the
first period risk-neutral skewness is driven by the similar expectations of all three
investor groups regarding a continuation of recent economic conditions. In the case
of Adv-Sent the EB component also appears significant, even when the control
variables are included into the model. In economic terms, however, a one standard
deviation increase of the Adv-Sent, Spec-Sent and Ind-Sent EF (EB) component is

associated with an increase in risk-neutral skewness corresponding to 37%, 17% and

52



Chapter 3. Investor Sentiments, Rational Beliefs and Option Prices

32% (16%, 10% and 9%) of its sample standard deviation respectively. Hence, both
in statistical and economic terms the impact of the EF component on skewness is
stronger than that of the EB component.

Panel B shows that the pattern is different in the second period. In particular, the
EF component of all three sentiment proxies remains strongly significant, while their
EB component is always insignificant even in the absence of any control variables.
Another intriguing result from Panel B is the negative sign of the coefficients of
the Adv-Sent and the Ind-Sent EF components in contrast to the positive sign of
the Spec-Sent EF component coefficient. These signs combined with the evidence
of Section 3.3.3 imply that in the second period risk-neutral skewness is driven
by the expectations of large speculators regarding a reversal of recent economic
conditions.!* In economic terms a one standard deviation increase of the Adv-Sent
and Ind-Sent (Spec-Sent) EF component is related to a decrease (increase) in risk-
neutral skewness by about 17% and 13% (15%) of its sample standard deviation
respectively.

The empirical evidence regarding the second period is in line with our hypothesis
that the S&P 500 index options market has become more mature with time, as option
prices are only driven by investors’ rational updating of beliefs due to changes in
fundamentals. Of course, the fact that the EF sentiment component is significant
implies that there are still limits to arbitrage that prevent market makers from
having flat supply curves. In a similar vein, Constantinides et al. (2009) find that
OTM calls have been systematically overpriced during 1997 - 2003, even when bid-
ask spreads and trading costs are taken into consideration.

Turning to the control variables, the results are qualitatively similar to the ones
presented in the previous section with the exception of Vol in the second period
which is now positively but insignificantly related to risk-neutral skewness. This
implies that the information embedded in Vol for skewness is subsumed by the EF

component of all three sentiment proxies. In essence, the explanatory power of stock

14Tis is because conventional wisdom dictates a positive relationship between risk-neutral skew-
ness and the sentiment of those trading in the options market.
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market volatility for risk-neutral skewness stems from the fact that they are both
related to macroeconomic fundamentals. In fact, the correlation of Vol with the EF
component of Adv-Sent, Spec-Sent and Ind-Sent is -0.61, 0.33 and -0.53 respectively.
Table 3.6 presents the results from regressing risk-neutral skewness on the senti-
ment components following the decomposition based on the common factors. It can
be seen that the results are qualitatively similar to those from Table 3.5, but the EF
component is slightly less significant in all cases, apart from the case of Spec-Sent
in the first period. Furthermore, the regression R2s in the second period are always
lower or equal to the respective R?s presented in Table 3.5. This empirical evidence
implies that at least in the second period, the idiosyncratic component of various
major economic indicators is important for explaining the risk-neutral skewness with
macroeconomic fundamentals. The results from regressing skewness on the senti-
ment components following the decomposition based on the alternative selection
of macroeconomic variables are qualitatively and quantitatively almost identical to
those presented in Table 3.5 and thus are presented in Table B.2 of Appendix B.
In summary, this section shows that the significant relationship between risk-
neutral skewness and aggregate sentiment in the first period stems mainly from the
EF sentiment component but the EB component exhibits also some explanatory
power. In the second period, the explanatory power of the EB component vanishes
and only the EF component has a significant impact on skewness. Moreover, the
relation indicates that index options traders’ beliefs are in line with the sentiment
of large speculators which on average reflects an expectation of reversal of recent
economic conditions. Finally, there is evidence that the EF sentiment component

captures additional information to that captured by stock market volatility.

3.4.3 Risk-neutral skewness and sentiment components in

different periods

The empirical evidence presented in the previous section establishes a strong link

between the EF sentiment component and the S&P 500 index risk-neutral skewness.
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It is possible, however, that traders in the index options market react differently to
worsened than to improved economic conditions. Therefore, the aim of this section
is to investigate whether the documented relation between the EF component and
risk-neutral skewness exhibits an asymmetric pattern depending on the recent eco-
nomic conditions and subsequently on whether the EF component becomes more
bullish or bearish. To this end, we repeat the analysis of Section 3.4.2 investigat-
ing separately months of improved and deteriorating stock market momentum and
months of increased and decreased EF sentiment component. In particular, we cre-
ate dummy variables based on whether the stock market momentum and the EF
component increase or decrease relative to the value of the previous month.'®> Sim-
ilar to Han (2008) these dummy variables are used as interaction terms for all the
regressors except for the lagged dependent variable. Due to the relatively low num-
ber of observations in the first period we conduct this analysis only for the second
period.

Table 3.7 presents the results. Panel A shows the results when the sample is split
based on past momentum and Panel B the results when the sample is split based
on the EF component. From Panel A we observe that the coefficients of the EF
component in cases of a decreased stock market momentum are always much higher
in absolute value than the respective coefficients in cases of an increased stock maket
momentum. Furthermore, for all three proxies the EF component is significant when
momentum decreases relative to its previous value but insignificant when momentum
increases relative to its previous value. Therefore, it is apparent that the strong
relation between risk-neutral skewness and the EF component documented in the
previous section is mainly driven by the periods of worsened stock market conditions
which lead to a less negative risk-neutral skewness since on average index options
traders anticipate a reversal.

The above empirical evidence combined with the observation that during the

second period the EF component of the Adv-Sent and the Ind-Sent tend to be

5For example, the increased (decreased) momentum dummy takes a value of one whenever
the one-month S&P 500 index return is higher (lower) than that of the previous month and zero
otherwise.
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positively related to recent economic conditions whilst the EF component of the
Spec-Sent tends to be negatively related to recent economic conditions, implies a
more pronounced relation when the EF component of the Adv-Sent and the Ind-
Sent becomes more bearish and the EF component of the Spec-Sent becomes more
bullish. This is exactly what we observe in Panel B of Table 3.7. The coefficients of
the Adv-Sent and Ind-Sent (Spec-Sent) EF component are much higher and much
more significant when there is a decrease (increase) in the EF component relative to
its previous value than when there is an increase (decrease) relative to its previous
value.

Turning to the control variables, it is interesting to note that RelDem and Vol
mainly affect risk-neutral skewness in periods of declined stock market conditions,
while the impact of TrVIm mostly comes from periods of improved stock market
conditions.

Overall, the empirical evidence of this section reveals that while after 1997:06
the S&P500 index risk-neutral skewness is driven by the reversal expectations em-
bedded in the sentiment of large speculators, this is more pronounced when recent
stock market conditions deteriorate. In particular, a decreased stock market mo-
mentum leads to a more bullish (bearish) Spec-Sent (Adv-Sent and Ind-Sent) and
a less negative risk-neutrals skewness. The opposite relation does not appear to be

significant.

3.4.4 Slope measures from calls and puts and sentiment

components

The empirical analysis of this section investigates whether the EF and EB sentiment
components have different impact on implied volatility slope measures created sepa-
rately from call and put options. Our motivation comes from Constantinides et al.’s
(2011) assertion that their results are consistent with an equilibrium in a segmented
index options market where OTM puts are mainly traded by hedgers for portfolio

insurance and OTM calls are mainly traded by optimistic investors for speculative
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purposes. In the same vein, Lemmon and Ni (2011) find that the positive-exposure
demand for index calls is more correlated with the positive-exposure demand for
stock options than with the positive-exposure demand for index puts. Recall from
the results of the Section 3.4.2 that in the second period S&P 500 index risk-neutral
skewness is mainly affected by large speculators’ reversal expectations. Since the
negative risk-neutral skewness is mainly driven by the high prices of OTM puts (Ru-
binstein, 1994, Jackwerth and Rubinstein, 1996), we expect to find that the same
relation holds for the skewness proxy extracted from put options as well. On the
contrary, if call and put options markets are indeed segmented, we hypothesize that
the same relation may not hold for the skewness proxy extracted from call options.

To investigate the possibility of a differential impact of the two sentiment com-
ponents on call and put options prices, we construct for each type of options two
measures of the slope of the respective implied volatility smirk. In particular, for
each cross-section of either calls or puts we interpolate implied volatilities into the
range of available options data using a smoothing cubic spline and extrapolate out-
side this range using the respective boundary values. Then for call options we
create the following slope measures capturing the difference in implied volatilities
between OTM and deep-out-of-the-money (DOTM) calls and at-the-money (ATM)
and DOTM calls:

CO,SZOPG = IVOTM_IVDOTM (32)

CA,SZOPG == IVATM_]VDOTM (33)

where I'Vporar, [Vora and IVry, are the implied volatilities of call options cor-
responding to K/S = 1.125, K/S = 1.075 and K/S = 1 respectively. Similarly
for puts we create the following slope measures capturing the difference in implied

volatilities between DOTM and OTM puts and DOTM and ATM puts:

PO,SZOpe = IVDOTM - ]VOTM (34)

PA,SZOPG = IVDOTM - ]VATM (35)
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where IVpora, IVory and IVary are the implied volatilities corresponding to
K/S = 0.875, K/S = 0.925 and K/S = 1 respectively. If for a given cross-section
two or more of the desired moneynesses are outside the range of available options
data, then this cross-section is discarded. We estimate the slope measures on the last
trading day of the month for the two time horizons that are nearest to one month
and interpolate to find the exact one-month ahead slope measures for calls and puts
markets. We investigate only the second part of our sample period as in the first part
the liquidity of high-moneyness calls is quite low and there are many days for which
we cannot estimate the slopes measures for call options. The summary statistics of
the above variables can be found in Table 3.1 Panel B. The slope measures from
puts have higher mean values than the respective slope measures from calls, showing
that the slope of the implied volatility function is steeper on its left side than on its
right side. Moreover, while the slope measures from puts are invariably positive, the
slope measures from calls turn occasionally negative implying the existence of an
implied volatility smile pattern. All the slope measures are moderately persistent
with autocorrelation coefficients ranging from 0.327 to 0.380.

Table 3.8 reports the results of regressing the slope measures from call and put
options on the two components of each sentiment proxy. Panel A reports the results
for the slope measures created only by call options, while Panel B shows the results
for the slope measures created only by put options. In both Panels A and B there is
a clear picture showing that the EB sentiment component is never significant, while
the EF component is most of the times strongly significant. This evidence further
supports our previous findings regarding the absence of any significant relation be-
tween investors’ erroneous beliefs and option prices in the second period. Moreover,
the EF component is significant in all cases for CO_Slope and PO _Slope but in two
out of six cases for C A_Slope and PA_Slope. This is an intuitive result as the prices
of away-from-the-money options mainly reveal investors’ expectations about future
returns while the prices of ATM options have the highest vegas and hence are also

related to investors’ expectations about future volatility (Ni et al., 2008).
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In Panel A, we observe that the EF sentiment coefficients for the Adv-Sent
and the Ind-Sent are negative while those for the Spec-Sent are positive. Since a
negative (positive) change in the slope measures from call options implies that the
slope becomes flatter (steeper), the above evidence suggests that the slope measures
from call options are mainly driven by the expectations of investment advisors and
individual investors regarding a continuation of recent economic conditions. The
coefficients of the TrVIm and the Vol are always positive and in the majority of the
cases strongly significant across sentiment proxies and slope measures, indicating
that higher trading volume and volatility are associated with a steeper calls’ slope.
The effect of RelDem is always insignificant due to the fact that by definition it
captures hedging demand pressure for OTM puts and therefore cannot account for
the variation in the implied volatility slope of call options.

In Panel B, we observe that the EF sentiment coefficients for the Adv-Sent and
the Ind-Sent are positive, while those for the Spec-Sent are all negative. Since
a negative (positive) change in the slope measures from put options implies that
the slope becomes flatter (steeper), we conclude that the slope measures from put
options are driven by the expectations of large speculators regarding a reversal in
the economy. As expected this relationship is similar to the one documented for
the risk-neutral skewness. The coefficients of the control variables are consistently
positive across sentiment proxies and slope measures (with the exception of Vol when
considering the effect of Ind-Sent on PA_Slope), with RelDem and TrVIm being
significant mostly for the PA_Slope. These results imply that a higher hedging
demand and higher volume are related to a steeper implied volatility slope of put
options.'6

Summarizing the above empirical evidence, our results support Constantinides
et al.’s (2011) statement that the index options market is segmented. In particular,

the call options traders’ beliefs are in line with the expectations of advisors and indi-

I6Tf we do not control for the sentiment components, the relation between Vol and the two
slopes measures from puts is negative, hence resembling the relation between Vol and risk-neutral
skewness. It is insignificant, however, due to the fact that the implied volatility slope measures
do not contain only information about skewness but also about the interaction of skewness with
volatility and kurtosis (Mixon, 2011).
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vidual investors regarding a continuation of recent economic conditions. In contrast,
the put options traders’ beliefs are in line with the expectations of large specula-
tors regarding a reversal of recent economic conditions. Again there is no evidence
that investors’ erroneous beliefs have any significant impact on options prices in the

second period.

3.5 Conclusion

In this study, we decompose the sentiment of three main groups of investors, i.e.
large speculators, investment advisors and individual investors, into two parts -
one part that is driven by economic fundamentals (EF) and represents investors’
rational updating of beliefs about future returns, and a second part that is unrelated
to fundamentals and represents errors in investors’ beliefs (EB). The main aim of
the study is to examine how the rational and the irrational components of investor
sentiment drive the variations in risk-neutral skewness and hence the pricing kernel.

We estimate the EF component using a parsimonious set of variables that re-
flect the information embedded in eight main macroeconomic categories. In this
way we take into consideration various aspects of the macroeconomic and financial
environment that can possibly drive investors’ beliefs about future market returns.
The predicted values from the regression of aggregate sentiment measures on these
macroeconomic variables constitute the estimated EF component, while the resid-
uals are regarded as the EB component unrelated to fundamentals. Alternative
sentiment decompositions based on common latent factors estimated using asymp-
totic principal component analysis provide qualitatively similar results.

We conduct our analysis for two time periods: the first from 1990:01 to 1997:06
and the second from 1997:07 to 2011:06. Similar to previous literature, we find
that aggregate investor sentiment affects S&P 500 index risk-neutral skewness only
in the first period. Our results show that this relation mainly stems from the EF
component but the EB component appears to play some role too. Contrarily, in the

second period (after 1997:06) the significant effect of the EB component vanishes,
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while the EF component remains strongly significant and implies that skewness is
driven by the sentiment of large speculators and reflects an anticipation of a reversal
of the economy. Moreover, the significant impact of the EF component on skewness
is more prominent in periods of worsened stock market conditions. We further
document that the EF component has opposite effects on implied volatility slope
measures created separately from calls and puts. Our results show that the slope
measures from calls are mainly driven by the expectations of investment advisors and
individual investors regarding a continuation of recent economic conditions, while the
slope measures from puts are mainly driven by the expectations of large speculators
regarding a reversal in the economy. This result provides strong evidence in favor
of Constantinides et al.’s (2011) assertion that the call and put options markets are
segmented.

The empirical evidence in this study has important implications for the asset
pricing literature as options encapsulate forward-looking information about the pric-
ing kernel. In particular, our results demonstrate that the pricing kernel is mainly
driven by investors’ rational updating of beliefs and most importantly that in the
second period investors’ erroneous beliefs play no role at all. Therefore, incorporat-
ing investors’ irrationality into sophisticated option pricing models does not appear
to be a necessary extension anymore, at least for mature options markets such as

S&P 500 index options market.
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Table 3.1: Summary statistics of variables

Mean StDev Min Max Auto
Panel A: Skewness and Explanatory Variables

RNS -1.559  0.447 -3.048 -0.483 0.547
Reldem 1.837 1476  0.594 17.629 -0.020
TrVim 0.000  0.598 -3.089 1.825 0.393
Vol 0.203  0.078 0.104 0.599 0.861

Adv-Sent 0.139 0.152 -0.264 0.423 0.746
Spec-Sent -0.045 0.057 -0.205 0.105 0.817
Ind-Sent  -0.006 0.175 -1.090 0.748 0.219
Panel B: Implied Volatility Slopes
CO_Slope 0.001  0.009 -0.021 0.042 0.327
CA Slope 0.033  0.021 -0.017 0.147 0.380
PO_Slope 0.045 0.011 0.014 0.067 0.337
PA Slope 0.104 0.022 0.055 0.164 0.352

This table reports summary statistics of the variables used in the empirical
analysis. The sample period for the variables in Panel A is 1990:01-2011:06
while the sample period for variables in Panel B is 1997:07-2011:06. RNS
is the S&P 500 index risk-neutral skewness estimated using the model-free
method of Bakshi, Kapadia and Madan (2003). RelDem is the relative de-
mand pressure as captured by the ratio of the open interest of OTM puts
to the open interest of NTM calls and puts. TrVlm is the heterogeneity
of beliefs, proxied by the detrended logarithm of options trading volume.
Vol is the index instantaneous volatility as proxied by VIX. Adv-Sent is the
bull-bear spread based on Investors Intelligence’s advisors sentiment index.
Spec-Sent is the net position of non-commercial traders on S&P 500 index
futures scaled by the total open interest. Ind-Sent is the normalized aggre-
gate net exchanges of the equity funds. CO_Slope and CA _Slope denote the
difference in implied volatility between OTM and DOTM calls and ATM
and DOTM calls respectively. PO_Slope and PA _Slope denote the difference
in implied volatility between DOTM and OTM puts and DOTM and ATM
puts respectively.
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Table 3.2: Correlation coefficients

Panel A: 1990:01 - 1997:06
Skewness RelDem TrVim Vol Adv-Sent Spec-Sent Ind-Sent
Skewness 1.00

[1.00]
RelDem -0.01 1.00
[0.92] [1.00]
TrVim -0.15 -0.13 1.00
[0.16] [0.23] [1.00]
Vol -0.25 -0.11 -0.04 1.00
[0.02] [0.28] [0.70]  [1.00]
Adv-Sent 0.61 -0.08 -0.25  -0.17 1.00
[0.00] [0.47] [0.02] [0.12] [1.00]
Spec-Sent 0.38 -0.04 -0.14  -0.31 0.51 1.00
[0.00] [0.72] [0.20]  [0.00] [0.00] [1.00]
Ind-Sent 0.37 0.08 -0.02  -0.53 0.35 0.22 1.00
[0.00] [0.45] [0.84]  [0.00] [0.00] [0.03] [1.00]

Panel B: 1997:07 - 2011:06
Skewness RelDem TrVIim Vol Adv-Sent Spec-Sent Ind-Sent
Skewness 1.00

[1.00]
RelDem -0.16 1.00
[0.04] [1.00]
TrVIim -0.26 0.11 1.00
[0.00] [0.14] [1.00]
Vol 0.24 -0.22 0.06 1.00
[0.00] [0.00] [0.45]  [1.00]
Adv-Sent -0.23 0.16 -0.19 -0.64 1.00
[0.00] [0.04] [0.01]  [0.00] [1.00]
Spec-Sent 0.08 0.11 0.04 0.02 -0.16 1.00
[0.30] [0.15] [0.58]  [0.83] [0.03] [1.00]
Ind-Sent -0.12 0.14 -0.21  -0.49 0.57 -0.15 1.00
[0.11] [0.07] [0.01]  [0.00] [0.00] [0.06] [1.00]

Panel C: 1990:01 - 2011:06
Skewness RelDem TrVim Vol Adv-Sent Spec-Sent Ind-Sent
Skewness 1.00

[1.00]
RelDem 0.02 1.00
[0.76] [1.00]
TrVIim -0.15 0.02 1.00
[0.02] [0.75] [1.00]
Vol 0.02 -0.20 -0.05 1.00
[0.73] [0.00] [0.42]  [1.00]
Adv-Sent -0.12 -0.11 -0.28 -0.25 1.00
[0.06] [0.08] [0.00]  [0.00] [1.00]
Spec-Sent -0.04 -0.14 -0.15 0.18 0.34 1.00
[0.49] [0.03] [0.02]  [0.00] [0.00] [1.00]
Ind-Sent 0.15 0.13 -0.05  -0.44 0.27 -0.06 1.00
[0.02] [0.03] [0.38]  [0.00] [0.00] [0.30] [1.00]

This table reports the correlation coefficients of the variables used in the empirical analysis.
The respective p-values are shown in brackets. Panel A reports the correlations for the period
1990:01 - 1997:06, Panel B reports the correlations for the period 1997:07 - 2011:06, while Panel
C reports the correlations for the period 1990:01 - 2011:06. RNS is the S&P 500 index risk-
neutral skewness estimated using the model-free method of Bakshi, Kapadia and Madan (2003).
RelDem is the relative demand pressure as captured by the ratio of the open interest of OTM
puts to the open interest of NTM calls and puts. TrVlm is the heterogeneity of beliefs, proxied
by the detrended logarithm of options trading volume. Vol is the index instantaneous volatility
as proxied by VIX. Adv-Sent is the bull-bear spread based on Investors Intelligence’s advisors
sentiment index. Spec-Sent is the net position of non-commercial traders on S&P 500 index
futures scaled by the total open interest. Ind-Sent is the normalized aggregate net exchanges of
the equity funds.
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Table 3.3: Sentiment decomposition

Panel A: 1990:01 - 1997:06 Panel B: 1997:07 - 2011:06
Adv-Sent Spec-Sent Ind-Sent | Adv-Sent Spec-Sent Ind-Sent
IP: total 8.512%** 0.803 1.619 1.022 -0.811%%* -0.096
(4.042) (0.682) (0.295) (0.664) (-2.610) (-0.091)
Emp: total -24.329%%* 9.116* 1.383 19.926** -4.919 2.839
(-3.346) (1.846) (0.081) (2.421) (-1.590) (0.431)
Starts: nonfarm  (.232** 0.059 -0.525 0.073 -0.055 0.127*
(2.458) (1.140) (-1.527) (1.034) (-1.330) (1.975)
PMI -0.006 -0.002 -0.003 0.002 -0.001 0.002
(-1.249) (-0.873) (-0.591) (0.620) (-0.509) (0.916)
M2 6.284 -0.577 -8.436 0.426 0.338 -0.621
(1.500) (-0.317) (-0.735) (0.348) (0.558) (-0.599)
10 yr-FF spread  0.034*** 0.003 0.077*** 0.013 -0.010** 0.002
(2.657) (0.460) (2.887) (1.572) (-2.245) (0.246)
PCE defl 7.202 1.484 -18.376 0.886 -1.165 -2.920
(1.304) (0.552) (-0.980) (0.390) (-1.028) (-1.421)
S&P 500 3.179%** 0.561%** 4.368%** 1.497%%* 0.038 1.805%**
(8.752) (3.210) (3.327) (8.386) (0.398) (6.451)
R? 0.486 0.096 0.289 0.470 0.196 0.512

This table reports the results of monthly regressions of each investor sentiment proxy on a series of
macroeconomic variables. A constant term is included in all the regressions but omitted for brevity.
Panel A reports the results for the period 1990:01 - 1997:06, while Panel B reports the results for the
period 1997:07 - 2011:06. Adv-Sent is the bull-bear spread based on Investors Intelligence’s advisors
sentiment index. Spec-Sent is the net position of non-commercial traders on S&P 500 index futures
scaled by the total open interest. Ind-Sent is the normalized aggregate net exchanges of the equity
funds. A description of the macroeconomic variables can be found in Table B.1 of Appendix B.
Newey-West t-statistics are reported in parentheses below the coefficients. *** ** and * denote
significance at 1%, 5% and 10% respectively.
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Table 3.4: Risk-neutral skewness and aggregate sentiment measures

Adv-Sent Spec-Sent Ind-Sent
Panel A: 1990:01 - 1997:06
LagRINS 0.227%%F  (0.213%*  0.369*** 0.357*** 0.446*** (.438***
(2.733) (2.448) (3.856) (3.535) (5.925) (5.538)

RelDem 0.004 -0.001 -0.005
(0.607) (-0.115) (-0.577)

TrVim 0.019 -0.017 -0.020
(0.272) (-0.278) (-0.362)

Vol -0.942 -0.813 0.065
(-1.402) (-0.991) (0.075)
Sent L274%FF  1278%FF 1 526%F  1.324%  0.456%FF  0.468%F*
(4.213)  (4208)  (2.033)  (1.939)  (3.202)  (2.650)

R? 0.383 0.377 0235 0217 028  0.265

Panel B: 1997:07 - 2011:06
LagRINS 0.486*** 0.423*** (0.513*** 0.433*** 0.506*** (.437***
(6.825) (5.556) (6.807) (5.264) (6.707) (5.266)

RelDem -0.041 -0.045 -0.040
(-0.999) (-1.090) (-0.965)
TrVim -0.120%+* -0.115%* -0.124%*
(-2.617) (-2.293) (-2.469)
Vol 0.463 0.774%% 0.607+*
(1.125) (2.910) (2.041)

Sent -0.385%F  -0.320  -0.025  0.225  -0.365*  -0.267
(-2.075)  (-1.126)  (-0.045)  (0.417)  (-1.720)  (-1.087)

R? 0.269 0.292 0257  0.288 0.265 0.291

This table reports the results of monthly regressions of S&P 500 index risk-
neutral skewness on the sentiment proxies used in the study and a set of control
variables. A constant term is included in all the regressions but omitted for
brevity. Panel A reports the results for the period 1990:01 - 1997:06, while Panel
B reports the results for the period 1997:07 - 2011:06. Risk-neutral skewness is
estimated using the model-free method of Bakshi, Kapadia and Madan (2003).
LagRNS is the lagged skewness value. RelDem is the relative demand pressure
as captured by the ratio of the open interest of OTM puts to the open interest
of NTM calls and puts. TrVIm is the heterogeneity of beliefs, proxied by the
detrended logarithm of options trading volume. Vol is the index instantaneous
volatility as proxied by VIX. Adv-Sent is the bull-bear spread based on Investors
Intelligence’s advisors sentiment index. Spec-Sent is the net position of non-
commercial traders on S&P 500 index futures scaled by the total open interest.
Ind-Sent is the normalized aggregate net exchanges of the equity funds. Newey-
West t-statistics are reported in parentheses below the coefficients. *** ** and
* denote significance at 1%, 5% and 10% respectively.
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Table 3.5: Risk-neutral skewness and EF, EB sentiment components

Adv-Sent Spec-Sent Ind-Sent
Panel A: 1990:01 - 1997:06
LagRNS  0.258%FF  (.267*FF  (0.246%%F  (.382%F*  (0.376%**  0.370%**  (0.422%%F  (.430%F*  (.443%**
(3.278) (3.430) (2.993) (4.021) (3.901) (3.725) (5.675) (5.781) (5.863)

RelDem 0.006 0.003 20.002  -0.003 0.004 0.005
(0.827)  (0.487) (-0.287)  (-0.409) (0.572)  (0.792)

TrVim 0.032 0.022 0.016  -0.020 0.023 0.030
(0.462)  (0.331) (-0.243)  (-0.306) (0.325)  (0.425)

Vol -0.835 -0.422 0.554
(-1.288) (-0.504) (0.697)

EF LOSIFF*  1.678%%F  1.640%%*  3.739%  3.792% 3448 0.980%FF  0.999%FF  1.069%**

(5.603)  (5.680)  (5.738)  (1.800)  (1.807)  (1.493)  (4.206)  (4.102)  (3.789)

EB 0.774%F%  0.802%F%  0.803%**  (.996 0.973 0.926 0.214 0.197 0.233
(2.642)  (2537)  (2.673)  (1.267)  (1.237)  (1.213)  (1.418)  (1.238)  (1.412)

R2 0.405 0.395 0.397 0.248 0.231 0.224 0.347 0.333 0.328

Panel B: 1997:07 - 2011:06
LagRINS  0.462%%*F  0.401%%*  0.401%%%  0.472%%%  (0.409%F*F  0.397*F*  (0.483*%F*  (.433%**  (.421%**
(6.262) (4.930) (4.959) (6.959) (5.284) (5.074) (6.237) (5.100) (4.975)

RelDem 0.039  -0.036 20.063  -0.051 -0.043  -0.036
(-0.948)  (-0.878) (-1.616)  (-1.294) (-1.028)  (-0.870)

TrVim -0.136%¥%  _0.135%%* S0.127%%F  L(0,133%%* -0.126%%  -0.127%*
(-2.845)  (-2.824) (-2.714)  (-2.810) (-2.542)  (-2.556)

Vol 0.262 0.463 0.515
(0.597) (1.482) (1.636)

EF 0.796%FF 0.936%FF 0.797FF  3.228%F  4.060%FF  3.530%F  -0.693%F -0.80TFFF  _0.559%
(-3.100)  (-3.453)  (-2.167)  (2.517)  (3.172)  (2470)  (-2.500)  (-2.884)  (-1.684)

EB 0023  -0153  -0.083  -0.935  -0.815  -0.669  -0.001  -0.119  -0.026
(-0.085)  (-0.561)  (-0.252)  (-1.359)  (-1.297)  (-1.007)  (-0.004)  (-0.402)  (-0.087)

R2 0.277 0.301 0.298 0.280 0.306 0.308 0.268 0.288 0.290

This table reports the results of monthly regressions of S&P 500 index risk-neutral skewness on the EF and EB
components of the sentiment proxies used in the study and a set of control variables. A constant term is included
in all the regressions but omitted for brevity. Panel A reports the results for the period 1990:01 - 1997:06, while
Panel B reports the results for the period 1997:07 - 2011:06. Risk-neutral skewness is estimated using the model-
free method of Bakshi, Kapadia and Madan (2003). LagRNS is the lagged skewness value. RelDem is the relative
demand pressure as captured by the ratio of the open interest of OTM puts to the open interest of NTM calls and
puts. TrVIm is the heterogeneity of beliefs, proxied by the detrended logarithm of options trading volume. Vol is the
index instantaneous volatility as proxied by VIX. Adv-Sent is the bull-bear spread based on Investors Intelligence’s
advisors sentiment index. Spec-Sent is the net position of non-commercial traders on S&P 500 index futures scaled
by the total open interest. Ind-Sent is the normalized aggregate net exchanges of the equity funds. EF and EB are
the two components of each sentiment proxy estimated as described in Section 3.3.3. Newey-West t-statistics are
reported in parentheses below the coefficients. *** ** and * denote significance at 1%, 5% and 10% respectively.
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Table 3.6: Risk-neutral skewness and EF, EB sentiment components using APCA

Adv-Sent Spec-Sent Ind-Sent
Panel A: 1990:01 - 1997:06

LagRNS  0.240%%F  0.261%%F  (0.240%%F  (0.350%** (.360***  (.355%**  (0.439%**  (0.446***  (0.454***
(2.968) (3.331) (2.892) (3.863) (3.822) (3.690) (5.586) (5.670) (5.839)

RelDem 0.006 0.003 -0.002 -0.003 0.000 0.000
(0.898) (0.534) (-0.229)  (-0.401) (-0.055)  (0.034)

TrVim 0.068 0.058 0.002 -0.003 0.016 0.020
(1.008) (0.871) (0.027) (-0.047) (0.229) (0.290)

Vol -0.899 -0.406 0.352
(-1.338) (-0.602) (0.411)
EF 1.686***  1.805%**  1.776%**  5.269%F* 5.284%**  5062*F*F*F  1.033*F*F  1.048%FFF  1.092%**
(4.999) (5.242) (5.383) (3.298) (3.294) (3.227) (3.306) (3.187) (2.964)

EB 0.770%* 0.738** 0.724%%* 0.616 0.610 0.538 0.300%*  0.295**  0.321*
(2.223) (2.220) (2.269) (0.839) (0.819) (0.735) (2.229) (2.080) (1.985)

R2 0.409 0.406 0411 0.295 0.278 0.271 0.326 0.311 0.304

Panel B: 1997:07 - 2011:06

LagRNS  0.468%**%  (0.408%**%  (0.409%*%*  0.472%** (.412%FF  0.402%**  0.502%** 0.451%** (.439%***
(6.126) (4.980) (5.052) (6.738) (5.210) (5.052) (6.174) (5.132) (5.098)

RelDem -0.041 -0.038 -0.065 -0.054 -0.049 -0.041
(-1.010)  (-0.943) (-1.646)  (-1.340) (-1.121)  (-0.975)
TrVIim -0.134%**  _0.132%** -0.121%%  -0.126%** -0.123%F  -0.123**
(-2.811)  (-2.760) (-2.582)  (-2.682) (-2.473)  (-2.459)

Vol 0.298 0.426 0.628**
(0.669) (1.237) (2.033)

EF S0.711FFF 0 0.833%FF  _0.652  3.638%FF  4.407FFF  3.774¥* -0.449 -0.564* -0.202
(-2.611) (-2.901) (-1.571) (2.840) (3.260) (2.382) (-1.557)  (-1.795)  (-0.505)

EB -0.155 -0.291 -0.219 -0.827 -0.664 -0.528 -0.307 -0.410 -0.296
(-0.557) (-1.066) (-0.691)  (-1.313) (-1.166)  (-0.850)  (-0.889) (-1.211)  (-0.888)

R? 0.271 0.294 0.291 0.280 0.305 0.305 0.261 0.282 0.286

This table reports the results of monthly regressions of S&P 500 index risk-neutral skewness on the EF and EB
components of the sentiment proxies used in the study and a set of control variables. A constant term is included in
all the regressions but omitted for brevity. Panel A reports the results for the period 1990:01 - 1997:06, while Panel
B reports the results for the period 1997:07 - 2011:06. Risk-neutral skewness is estimated using the model-free
method of Bakshi, Kapadia and Madan (2003). LagRNS is the lagged skewness value. RelDem is the relative
demand pressure as captured by the ratio of the open interest of OTM puts to the open interest of NTM calls
and puts. TrVIm is the heterogeneity of beliefs, proxied by the detrended logarithm of options trading volume.
Vol is the index instantaneous volatility as proxied by VIX. Adv-Sent is the bull-bear spread based on Investors
Intelligence’s advisors sentiment index. Spec-Sent is the net position of non-commercial traders on S&P 500 index
futures scaled by the total open interest. Ind-Sent is the normalized aggregate net exchanges of the equity funds.
EF and EB are the two components of each sentiment proxy estimated using APCA as described in Section 3.3.3.
Newey-West t-statistics are reported in parentheses below the coefficients. *** ** and * denote significance at 1%,
5% and 10% respectively.
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Table 3.7: Risk-neutral skewness and EF, EB sentiment components in different periods

Adv-Sent

Spec-Sent

Ind-Sent

Panel A: Momentum

Decrease Increase Decrease Increase Decrease Increase

RelDem  -0.067 0.012 ~0.007F* 0.027 20.096* 0.066
(-1.358)  (0.210)  (-2.103)  (0.502)  (-1.948)  (1.140)
TrVIim 20.094  -0.187FFF  _0.099  -0.198%%F  _0.071  -0.195%**
(-1.303)  (-3.513)  (-1.513)  (-3.698)  (-1.045)  (-3.196)
Vol 0.569 -0.314 1.004%* -0.168 0.717* 0.022
(1.073)  (-0.725)  (2.534)  (-0.471)  (1.850) (0.054)
EF S1.286%F*  _0.383  5.800%**  (.889 -0.934* -0.474
(-3.005)  (-0.833)  (3.803) (0.454)  (-1.968)  (-0.948)
EB -0.210 0.267 -1.105 -0.243 -0.154 0.530
(-0.466)  (0.493)  (-1.446)  (-0.193)  (-0.429)  (0.845)
R2 0.332 0.343 0.316

Panel B: EF Sentiment

Decrease Increase Decrease Increase Decrease Increase

RelDem  -0.005 0.103 -0.078 -0.050 -0.057 0.000
(-0.113)  (-1.118)  (-1.078)  (-1.175)  (-1.239)  (-0.003)
TrVIim 20.088  -0.185%FF  _0.115%F  _0.172%*  -0.065  -0.193%**
(-1.031)  (-3.479)  (-2.398)  (-2.083)  (-0.924)  (-3.103)
Vol 0.145 0.321 0.619 0.127 0.319 0.366
(0.291) (0.654) (1.577) (0.332) (0.709) (0.963)
EF S1.227FF% _0.420 3.664%  5.238%Fk 1 119%%  _0.492
(-2.796)  (-0.838)  (1.843) (2.720)  (-2.421)  (-0.757)
EB -0.054 0.151 -0.818 -1.027 -0.131 0.437
(-0.113)  (0.360)  (-0.707)  (-1.269)  (-0.348)  (0.610)
R? 0.291 0.297 0.289

This table reports the results of monthly regressions of S&P 500 index risk-neutral skewness on
the EF and EB components of the sentiment proxies used in the study and a set of control vari-
ables. A constant term and a lagged dependent variable are included in all the regressions but
omitted for brevity. The sample period is 1997:07 - 2011:06. Panel A reports the results when
the sample is split into periods of increased and decreased momentum, while Panel B reports
the when the sample is split into periods of increased and decreased EF sentiment components.
Risk-neutral skewness is estimated using the model-free method of Bakshi, Kapadia and Madan
(2003). RelDem is the relative demand pressure as captured by the ratio of the open interest of
OTM puts to the open interest of NTM calls and puts. TrVIm is the heterogeneity of beliefs,
proxied by the detrended logarithm of options trading volume. Vol is the index instantaneous
volatility as proxied by VIX. Adv-Sent is the bull-bear spread based on Investors Intelligence’s
advisors sentiment index. Spec-Sent is the net position of non-commercial traders on S&P
500 index futures scaled by the total open interest. Ind-Sent is the normalized aggregate net
exchanges of the equity funds. EF and EB are the two components of each sentiment proxy
estimated as described in Section 3.3.3. Newey-West t-statistics are reported in parentheses
below the coefficients. *** ** and * denote significance at 1%, 5% and 10% respectively.
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Table 3.8: Implied volatility slope measures from calls and puts and EF, EB sentiment components

Adv-Sent Spec-Sent Ind-Sent
Panel A: Calls
CO_Slope CA _Slope CO_Slope CA_Slope CO_Slope CA_Slope

LagSlope  0.026 0.135 0.019 0.143 0.053 0.160
(0.280) (0.983) (0.236) (1.089) (0.566) (1.198)
RelDem 0.000 -0.001 -0.001 -0.001 0.000 -0.001
(-0.522) (-0.741) (-1.121) (-1.068) (-0.457) (-0.665)
TrVim 0.001 0.009%** 0.001 0.009%** 0.002 0.010%%*
(1.335) (3.134) (1.513) (3.573) (1.529) (3.336)
Vol 0.042%%%  0.076%%%  0.057FFF  0.099%FF  0.055FFF (.10
(3.163) (2.629) (4.717) (3.694) (3.852) (3.265)
EF 0.028%FF  0.039%F  0.076%* 0.095 -0.016** -0.019
(-3.063) (-2.105) (2.334) (1.253) (-2.019) (-1.132)
EB -0.007 -0.023 0.006 -0.027 0.010 0.029
(-0.998) (-1.628) (0.348) (-0.720) (1.403) (1.466)
R? 0.384 0.364 0.365 0.352 0.363 0.359

Panel B: Puts
PO _Slope PA Slope PO_Slope PA Slope PO_Slope PA _Slope
LagSlope  0.291%** 0.298%*** 0.256%** 0.267+** 0.320%** 0.326%**

(3.350) (3.609) (2.963) (3.319) (3.441) (3.808)
RelDem 0.001 0.003 0.002 0.004%* 0.001 0.003
(0.870) (1.591) (1.414) (2.214) (0.902) (1.559)
TrVim 0.001 0.007% 0.002 0.008%¥* 0.002 0.007%%*
(1.261) (3.075) (1.636) (3.565) (1.410) (3.116)
Vol 0.014 0.006 0.010 0.006 0.007 -0.003
(1.174) (0.192) (1.148) (0.300) (0.796) (-0.124)
EF 0.023%%* 0.033 S0.134%FFL0.244%FF  (,016% 0.020
(2.866) (1.569) (-3.419) (-3.306) (2.274) (1.049)
EB 0.004 0.000 0.013 0.028 0.011 0.024
(0.478) (0.026) (0.729) (0.818) (1.426) (1.325)
R? 0.118 0.153 0.156 0.192 0.111 0.151

This table reports the results of monthly regressions of the slope of the implied volatility smirk
created solely by calls (Panel A) or puts (Panel B) on the EF and EB components of the senti-
ment proxies used in the study and a set of control variables. A constant term is included in all
the regressions but omitted for brevity. The sample period is 1997:07 - 2011:06. CO_Slope and
CA Slope denote the difference in implied volatility between OTM and DOTM calls and ATM
and DOTM calls respectively. PO_Slope and PA _Slope denote the difference in implied volatility
between DOTM and OTM puts and DOTM and ATM puts respectively. LagSlope is the lagged
value of the respective slope variable. RelDem is the relative demand pressure as captured by the
ratio of the open interest of OTM puts to the open interest of NTM calls and puts. TrVIm is
the heterogeneity of beliefs, proxied by the detrended logarithm of options trading volume. Vol is
the index instantaneous volatility as proxied by VIX. Adv-Sent is the bull-bear spread based on
Investors Intelligence’s advisors sentiment index. Spec-Sent is the net position of non-commercial
traders on S&P 500 index futures scaled by the total open interest. Ind-Sent is the normalized
aggregate net exchanges of the equity funds. EF and EB are the two components of each sentiment
proxy estimated as described in Section 3.3.3. Newey-West t-statistics are reported in parentheses
below the coefficients. *** ** and * denote significance at 1%, 5% and 10% respectively.
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Figure 3.1: Time series of risk-neutral skewness and sentiment measures
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This figure plots the monthly time series of the risk-neutral skewness and the three sentiment
proxies. The top left panel plots the S&P 500 index risk-neutral skewness, as estimated using the
model-free method of Bakshi, Kapadia and Madan (2003). The top right panel plots the bull-bear
spread based on the Investors Intelligence’s advisors sentiment index (Adv-Sent). The bottom left
panel plots the net position of non-commercial traders on S&P 500 index futures scaled by the total
open interest (Spec-Sent). The bottom right panel plots the normalized aggregate net exchanges
of the equity funds (Ind-Sent). The sample period is 1990:01-2011:06.
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Chapter 4

Forward Skewness and its
Information Content

4.1 Introduction

The forward-looking nature of the risk-neutral probability distribution has made
the usage of option-implied moments and surrogate measures extremely popular for
forecasting purposes among researchers. The majority of studies extract information
from the shape of the implied volatility curve either using short maturity options
since they tend to be the most liquid, or by weighting options from all available ma-
turities based on their trading volume or open interest. The information embedded
in the time dimension of the implied volatility surface, however, is usually ignored.
To this end, a new strand of the literature explores the additional predictive ability
that can be offered from the term structure of option-implied moments. In partic-
ular, Bakshi, Panayotov and Skoulakis (2011) (BPS henceforth) create measures of
forward 1-month stock market variance and find that they are particularly successful
in predicting future real activity as well as stock market and treasury bill returns.
Luo and Zhang (2012) extend these results for stock market returns by investigating
the forecasting ability of forward 3-month variances. Moreover, Mueller et al. (2013)
show that both the level and the slope of the implied volatility term structure in
the treasury yield market exhibit significant forecasting power for future economic
activity. Finally, Feunou et al. (2014) find that two factors can summarize the

information embedded in the term structure of second and higher order risk-neutral
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cumulants and can forecast future stock market and treasury bond returns.

In this study, we create measures of stock market forward skewness and ex-
plore its predictive ability over and above forward variance. We depart from the
existing literature in two major aspects. First, unlike BPS whose method relies on
the assumption that the underlying asset price follows a pure diffusion process, our
method is robust to the presence of jumps. In particular, our alternative measures
of variance and skewness suggested by Neuberger (2012) can be replicated exactly
by a positioning in a series of out-of-the-money (OTM) options, so long as the asset
price follows a martingale process. This is of particular importance, since recent lit-
erature in the context of variance swap markets (see for example Du and Kapadia,
2012), suggests that the standard variance of log-returns can be severely underesti-
mated by the widely used implied variance formula of Britten-Jones and Neuberger
(2000) in the presence of jumps in the price process. Second, unlike Feunou et al.
(2014) we use option prices to extract skewness coefficients and not third central
moments. This is important, since the skewness coefficient represents the third cen-
tral moment standardized by the second central moment and therefore isolates the
tail component of the distribution. In contrast, the simple third central moment is
usually highly correlated with the second central moment (variance) and hence can-

not offer additional predictive power.!

Using this standardized skewness measure,
we explicitly capture investors’ fears about large negative jumps and explore their
information content.

At the heart of the forward variance and skewness coefficient estimation lies
the aggregation property suggested by Neuberger (2012). The aggregation property
specifies that a quantity measured over a time interval [0,¢] has a high-frequency,
realized counterpart that serves as its unbiased estimate. Moreover, it has an implied
counterpart that serves as its unbiased estimate under the risk-neutral measure

and in the absence of any risk premia. Those relations only require that prices

are martingales and hold even with discrete sampling. Neuberger (2012) proposes

IThe correlation between 1-month implied variance and 1-month implied third moment is close
to -0.95 in our sample.
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alternative definitions of variance and skewness that satisfy the aggregation property
and can also be replicated by a portfolio of OTM options. Intuitively, this means
that for any time interval 0 < u <t Neuberger’s (2012) variance and skewness over
0, t] are equal to the sum of the respective variance and skewness measures over the
periods [0, u] and [u,t]. Hence, it is possible to extract at time 0 forward moments
under the risk-neutral measure for the period [u, t] using the respective risk-neutral
moments spanning the periods [0,¢] and [0,u]. In contrast, the standard variance
and skewness definitions used by Bakshi, Kapadia and Madan (2003) do not satisfy
the aggregation property and therefore the respective implied moments cannot be
used for accurate forward moments estimation. Given the above, in this chapter we
use Neuberger’s (2012) method and S&P 500 index option prices to create a term
structure of implied variance and third moment for horizons of one to four months
ahead. Then, we make use of the aggregation property and extract the respective
forward 1-month variances and skewness coefficients. This is the first study that
creates forward stock market skewness coefficients and examines their information
content over and above that of forward variances. More specifically, we investigate
their predictive power for a wide range of macroeconomic variables, for stock market
returns and for measures of systemic risk, crash risk and uncertainty.

The main aim of the study is to examine whether taking into consideration the
information embedded in the term structure of each risk-neutral moment? as a whole,
is important for forecasting purposes or not. Therefore, our inferences are mainly
based on Wald tests of joint significance of the parameters showing whether the pre-
dictive ability of a model rises when an additional set of variables is considered. Due
to overlapping observations, statistical inference mainly relies on the Newey-West
(1987) covariance matrix estimator but results based on the Hodrick (1992) covari-
ance matrix estimator are also provided for robustness purposes. In the majority
of the cases the results are qualitatively very similar with the two approaches. We

examine the predictive power of the estimated forward moments for the macroecon-

2The terms “risk-neutral moment”and “implied moment” are used interchangeably in this chap-
ter.
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omy by considering two main categories of variables. The first category is related
to real activity, while the second category is related to money, credit and treasury
yields. For a short-horizon predictability of one month ahead, we find that forward
skewness coefficients have additional predictive power over forward variances for six
(four) out of ten real activity variables examined when Newey-West (Hodrick) stan-
dard errors are used. This effect is persistent across horizons up to twelve months
ahead. Moreover, the increase in adjusted R? across horizons, when the group of
forward skewness coefficients is included into the predictive model, follows a clearly
upward-trending pattern for the majority of the variables. Moving to the second cat-
egory of variables, the results show that for the 1-month forecasting horizon forward
skewness coefficients exhibit statistically significant forecasting ability for five (four)
out of nine variables when Newey-West (Hodrick) standard errors are used, three of
which are treasury yields. When we increase the forecasting horizon the empirical
evidence is somehow mixed, since the predictability of forward skewness coefficients
for treasury yields vanishes in the case of Newey-West standard errors, but remains
intact for the longest horizon in the case of Hodrick standard errors. Moreover,
in the case of Newey-West (Hodrick) standard errors forward skewness coefficients
are jointly significant for only three (seven) out of nine variables. Nonetheless,
the change in adjusted R? across horizons when the augmented predictive model is
considered again provides an upward-sloping pattern for all but the treasury yield
variables.

The empirical evidence regarding future stock market excess returns is also im-
portant. Our results based on Newey-West standard errors indicate that forward
skewness coefficients encompass important information about future market returns
over and above that provided by forward variances. In particular, forward skewness
coefficients are jointly significant for 3-, 6- and 9-month ahead forecasting horizons.
Furthermore, a plot of the change in adjusted R? across horizons when augmenting
the predictive model with forward skewness coefficients has a hump-shaped pattern

taking its maximum value at the 4-month horizon. It needs to be mentioned, how-
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ever, that the joint significance of forward skewness coefficients is to a large extent
lost when Hodrick standard errors are considered.

Next, we consider the forecasting ability of the estimated forward moments for
systemic risk, tail (crash) risk, equity uncertainty and economic policy uncertainty.
Systemic risk reflects the aggregate risk exposure of all financial institutions, while
tail risk refers to the risk of extremely negative aggregate stock returns. Equity un-
certainty and economic policy uncertainty refer to uncertainty about the stock mar-
ket and uncertainty about the fiscal, monetary and regulatory policy respectively.
In this context, uncertainty refers to a mixture of investors’ perceived risk and am-
biguity about the future stock market returns and government policies. Since we
do not deal with overlapping observations in these cases, statistical inference is only
based on the Newey-West (1987) covariance matrix estimator. Forward skewness
coefficients are found to significantly increase the predictive power of a model fore-
casting systemic risk for one up to six months ahead, with the effect being stronger
for the 4- and 5-month horizons. The results for tail risk show that the group of
forward skewness coefficients is significant mainly for the 2- and 3-month horizons
but its explanatory power is less prominent than in the case of the systemic risk.
Regarding the two uncertainty measures, forward skewness coefficients can signifi-
cantly improve the predictive power of a model forecasting equity uncertainty three
to six months ahead, exhibiting the highest significance at the 3-month horizon. In
contrast, they have limited forecasting power for economic policy uncertainty where
they are relevant only for a short 1-month ahead horizon. Furthermore, we observe
that the plots of the change in adjusted R? across horizons for systemic risk and
equity uncertainty have a hump-shaped pattern with its peak at four months, very
similar to the one observed in the case of stock market returns.

The contributions of this study regarding the information embedded in option
prices are twofold. First, we create forward variances using a technique that ac-
curately accounts for the presence of jumps in the price process and evaluate their

information content. Using our alternative method and considering an extended
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sample period, we corroborate to a large extent the results presented by BPS. In
particular, we also find that forward variances can predict real activity and stock
market returns, while our evidence regarding their predictability for treasury yields
is in line with the BPS evidence about a significant relationship with future treasury
bill returns.® Second, we explicitly model investors’ fears about negative realizations
in the stock market by creating forward skewness coefficients. We find that their
predictive power for a large set of macroeconomic variables is highly significant and
becomes stronger for most of the predicted variables once longer forecasting horizons
are considered. Moreover, forward skewness coefficients exhibit significant forecast-
ing abilty for stock market returns, systemic risk and equity market uncertainty
especially for a horizon of four months ahead that matches the time period spanned
by the estimated forward skewness.

The remainder of the chapter is structured as follows. Section 4.2 provides
an overview of the related literature. Section 4.3 describes the theory behind the
forward moments estimation, while Section 4.4 analyzes the data and the variables
used in the study. Section 4.5 provides the empirical results and finally Section 4.6

concludes.

4.2 Related Literature

This chapter is similar in spirit to the studies of BPS, Luo and Zhang (2012),
Mueller et al. (2013) and Feunou et al. (2014) who make use of the term structure
of the second and third risk-neutral central moments in the equity and treasury
markets for forecasting purposes. This is the first study, however, that investigates
the information content of the term structure of the equity market risk-neutral
skewness coefficients. Therefore, unlike Feunou et al. (2014) who consider the term

structure of the risk-neutral third central moments,* we show that the term structure

3Some discrepancies between our results and the BPS results can be attributed to the different
method employed and the different sample period examined, since by following the method of BPS
and restricting our analysis to their sample period we can replicate their results almost exactly.

4As described in the previous section the risk-neutral third central moment is highly related to
the risk neutral second central moment (variance) and therefore cannot adequately account for the
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of the risk-neutral skewness coefficients encapsulates important information that is
not embedded in the term structure of the risk-neutral variances.

Since forward skewness coefficients are found to exhibit significant forecasting
power for future market returns, this chapter further contributes to a broader strand
of the literature which investigates the information content of option prices for fu-
ture equity returns and crashes at an aggregate level. More specifically, a recent
stream of papers focuses on the variance risk premium, i.e. the difference between
expected variance under the risk-neutral measure and expected variance under the
physical measure. Bollerslev et al. (2009) are the first to use this measure for pre-
dictive purposes and show that the S&P 500 index variance risk premium is strongly
positively related to future market returns especially at a quarterly horizon. Similar
empirical evidence is also reported by Drechsler and Yaron (2011) and Bollerslev et
al. (2012). Mueller et al. (2011) and Zhou (2012) elaborate to the predictability of
the S&P 500 index variance risk premium by showing that it has a strong positive
impact on future bond returns and credit spreads.

Moreover, several recent studies investigate market return predictability using
alternative measures extracted from the prices of S&P 500 index options. In partic-
ular, Du and Kapadia (2012) illustrate theoretically that the difference between the
Bakshi, Kapadia and Madan (2003) implied variance and the squared VIX captures
the jump component of the quadratic variation and find that their implied jump
index is positively related to future market returns. Karoui (2012) suggests a novel
approach for estimating an option-implied equity premium and provides evidence
that his measure significantly predicts stock market returns. Vilkov and Xiao (2013)
create a tail loss measure from put option prices and show that it is associated with
a positive market risk premium. Driessen et al. (2013) construct an implied corre-
lation index and show that it is a strong predictor of future market returns, even
when controlling for the variance risk premium. Atilgan et al. (2014) find that there
is a positive relation between the slope of the implied volatility smirk and subse-

quent market returns. Golez (2014) estimates an option-implied dividend growth

tail of the distribution.
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rate that is a strong predictor of future dividend growth and creates an amended
dividend-price ratio for predicting future market returns.

As far as the predictability of jumps is concerned, Doran et al. (2007) provide
evidence about the forecasting power of the slope of the S&P 100 index implied
volatility smirk for future underlying asset jumps. In particular, they show that
the slope of the puts’ volatility smirk is significantly related to the probability of a
negative jump, while the slope of the calls’ volatility smirk is significantly related to
the probability of a positive jump. Vilkov and Xiao (2013) show that their tail loss
measure exhibits some forecasting power for future market crashes.

Finally, since forward skewness coefficients are shown to be important for pre-
dicting a number of macroeconomic variables, this study also complements a strand
of the literature which - in the majority of the cases - shows that option-implied
measures can be successfully used for forecasting future macroeconomic conditions.
Lynch and Panigirtzoglou (2008) use futures options on the S&P 500 index, FTSE
100 index, eurodollar and short sterling to extract the respective risk-neutral mo-
ments but find limited evidence in favor of the hypothesis that there is significant
predictability for macroeconomic variables such as industrial production and in-
vestment growth in the US and the UK. In contrast, Bekaert and Hoerova (2013)
show that VIX forecasts negative growth in industrial production, an effect that
stems from the conditional variance component and not the variance risk premium
component. Moreover, Bekaert et al. (2013) find out that VIX is negatively re-
lated to future real interest rate for horizons longer than a year ahead, an effect
which is attributed to both the variance risk premium and the conditional variance
component. Similarly, David and Veronesi (2014) report that the S&P 500 index
at-the-money implied volatility has a negative effect on the future short-term inter-
est rate, while the opposite is true for the steepness of the S&P 500 index implied
volatility smirk. In a slightly different context, Sarantopoulou-Chiourea and Ski-
adopoulos (2014) show that a relative risk aversion coefficient extracted from S&P

500 index risk-neutral moments is positively related to future real activity.
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4.3 Forward Moments and the Aggregation Prop-
erty

BPS rely on the theoretical foundations of Carr and Lee (2009) in order to price
exponential claims on quadratic variation under the assumption of no jumps in the
underlying asset price process. Under this assumption, the quadratic variation over
an interval [0,t] is equal to the integrated variance over [0,¢]. BPS demonstrate
that the exponential claims on integrated variance of log-returns can be replicated
by a positioning in a series of OTM options.® Therefore, they construct measures of
forward integrated variance the same way discount bond prices are used to provide
forward treasury yields.

The main disadvantage of this method lies in the assumption that the under-
lying asset price follows a pure diffusion process. In particular, recent studies that
investigate the impact of jumps in the context of the variance swaps (Broadie and
Jain, 2008, Du and Kapadia, 2012, Rompolis and Tzavalis, 2013 and Bondarenko,
2014), find that the risk-neutral variance of Carr and Madan (1998), Demeterfi et al.
(1999) and Britten-Jones and Neuberger (2000) can lead to substantial underestima-
tion of the quadratic variation of log-returns in the presence of large negative jumps.
For example, Du and Kapadia (2012) show that when jumps constitute 70% of the
quadratic variation, then the approximation error in terms of annualized volatility is
an economically significant 1%. Therefore, since the Carr and Lee (2009) theory of
claims on exponential quadratic variation only holds for pure diffusion processes, it
is reasonable to assume that a similar bias can arise in the case of the BPS quadratic
variation estimates as well.

In this study, we employ the newly established concept of the aggregation property
(Neuberger, 2012) in order to create our measures of forward moments. This has two
main advantages. First, our alternative variance measure can always be replicated

eractly by equation (2.37) as long as the underlying asset price follows a martingale

See equation (2.41). In fact, the prices of those exponential claims are also affected by the
level of the risk-free rate.
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process. Therefore, in contrast to the variance measure estimated by BPS, it is
robust to the presence of jumps in the price process. Second and most important,
it allows us to create forward measures of the third (standardized) moment of the
asset returns as well. This way, we explicitly model investors’ future crash worries
and explore their information content.

Neuberger (2012) postulates that any real-valued function g of an adapted pro-

cess X has the aggregation property if for any 0 < u <,
Ey [g(Xi — Xo)] = Eo lg (Xe — Xu)] + Eo [g (Xu — Xo)] - (4.1)

Assuming that the forward asset price F' is a martingale, Neuberger (2012) and
Kozhan, Neuberger and Schneider (2013) define log and entropy variance respec-

tively as:

F, F,
Gy, = Ey {Fz —1-In (ﬁ)] , (4.2)

F, (K F,
G¢, = E [2 (F; In (Fé) —~ Fé + 1)} : (4.3)

The functions inside the brackets have the aggregation property and converge to the
second moment of returns. Intuitively, under the Black and Scholes (1973) assump-
tions, log variance is the implied variance of a log contract, i.e. a contract that pays
In (F}), while entropy variance is the implied variance of an entropy contract, i.e. a
contract that pays F; In (F;).® Moreover, under the risk-neutral measure Gy, can be
replicated exactly by equation (2.37). Therefore, following Neuberger (2012) and
Bondarenko (2014), we adopt the proposed alternative definition of variance shown
in equation (4.2) and estimate expected quadratic variation under the risk-neutral
measure by employing equation (2.37). In this case, we regard GK . as the implied
variance of stock returns, i.e. Gy, = IVp,.

Similarly, skewness is alternatively defined by Neuberger (2012) and Kozhan,

6In this case the term entropy is used due the similarity of the payoff of the contract with
entropy as used in thermodynamics and information theory.
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Neuberger and Schneider (2013) as:

Gy, = Ey [6 (% In (%) - 2% +In (%) - 2)} : (4.4)
where the function inside the brackets has the aggregation property and converges to
the third moment of returns. Gj, can be written as the difference between the two
previously described variance measures and under the risk neutral measure can be
replicated by equation (2.38). Thus, Gg’ , is regarded as the implied third moment of
stock returns, i.e. Ga . = T'My;. Both implied variance and skewness are unbiased

estimates of the true variance and skewness in the absence of any risk premia. From

equation (4.1) we can write for any 0 < u < t:
IVou =1Vou + Eo [Gy,], (4.5)

TMos =TMo, + Eo [G5,] - (4.6)

Rearranging equations (4.5)-(4.6) we get:
FVous = Eo (G| = IVou — Vo, (4.7)

FSous = Eo [Gy,] = TMoy — T My, (4.8)

where F'Vj.,, and F'Sp.,,; are the time 0 forward variance and third moment respec-
tively for the period w to ¢ implied by the prices of OTM options at time 0.
In the subsequent analysis we are interested in the forward skewness coefficient.

Therefore, we estimate:”

FSCpyy = —0mt (4.10)

"The forward skewness coefficient is subject to a small convexity bias due to Jensen’s inequality.
In particular,

Eo {(G}ft)%} > (Eo [GXJ)% = (FVosus)? (4.9)
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4.4 Data and Variables

4.4.1 Options data and forward moments estimation

We obtain daily S&P 500 index call and put options data from I'Volatility.com for
the period 1996:01 to 2012:12. Following the standard practice, option prices are
calculated as the midpoint between the best bid and best ask price. Expiration time
is calculated assuming 360 calendar days per year. Each trading day is matched
with the respective dividend yield which is obtained from Bloomberg. Moreover,
each option contract is matched with the appropriate continuous risk-free rate that
is found after interpolating the 1-, 3-, 6- and 12-month Treasury Constant Maturity
rates downloaded from the FRED database of the Federal Reserve Bank of St. Louis.

A series of filtering rules are applied to the dataset to eliminate measurement
errors and outliers mainly caused by thinly traded options (see for example Ait-
Sahalia and Lo, 1998, Han, 2008 and Chang et al., 2013). First, we discard options
that do not satisfy standard no-arbitrage conditions. Second, we exclude observa-
tions with zero bid prices and midpoint prices that are less than $3/8. Third we
filter out options with zero or higher than 1 implied volatility. Finally, we take into
consideration only options with non-zero trading volume and maturity between 7
and 270 calendar days.

We use equations (2.37) and (2.38) to estimate implied variance and skewness for
constant maturities of 30-, 60-, 90- and 120-days ahead at the end of each month.®
Since interpolation across the time dimension is needed for this exercise, we make
sure that we consider only days with a sufficient number of available maturities. A
maturity is regarded as available if it has a cross-section with at least two OTM puts
and two OTM call options. Therefore, we require that there are at least four available
maturities that cover the next two months and either the third or fourth month (or

both) following the current month. Moreover, we do not take into consideration

8We do not estimate implied moments for maturities longer than 120 days since the availability
of long maturity options is not high enough to provide accurate estimates of long-maturity implied
moments.
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days that do not have available at least one maturity shorter than or equal to 30
days and at least one maturity longer than or equal to 120 days.’

In order to create costant maturity implied moments, we follow the interpola-
tion technique of Kostakis et al. (2011) and Neumann and Skiadopoulos (2013). In
particular for each cross-section of options, we interpolate across implied volatilites
in the delta space to obtain a grid of 1000 data points with deltas ranging from
0.01 to 0.99. Inside the available delta range we interpolate using a cubic smoothing
spline with smoothing parameter 0.99 while outside the available delta range, we
extrapolate using the respective boundary values. The interpolation across the time
dimension for a given day proceeds as follows: First, from all the available inter-
polated implied volatility curves of a given day we keep the data points with delta
values of 0.1, 0.2,...,0.9. Using a cubic smoothing spline, we then interpolate across
the time dimension for the given constant maturities. Second, we create constant
maturity implied volatility curves by fitting a cubic spline to the available nine im-
plied volatilities. Third, the delta grid of the constant maturity implied volatility
curve is converted to strike prices and the respective implied volatilities are trans-
formed to option prices. Finally, equations (2.37) and (2.38) are discretized and
estimated using the trapezoidal approximation.

Once we have the estimates of constant maturity implied moments for 30-, 60-,
90- and 120-days ahead, we use equations (4.7) and (4.8) to create vectors of forward

1-month moments. In particular we create:

/
fv, = [Fvo(l) FVO(2) FVO(B) FVO(4)]

= [FVo030 FVos060 FVoie090 FVow0.120] (4.11)

/
fs, = [Fsg” FS? FS® psiY

= [FSoo030 FSo3060 FSo0:6090 FSo.90,120] - (4.12)

9n fact, our sample is restricted to the 1996:01-2012:12 period because of the relatively limited
availability of option maturities in the pro-1996 period.
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Then using equation (4.10) we create a vector of forward 1-month skewness coeffi-

cients:

fsco FSOW psc? psc® qu§4>]

= [FSCop30 F'SCo30,60 F'SCo090 FSCO;QO,HO], . (4.13)

Table 4.1 reports the descriptive statistics for the estimated forward variances
and skewness coefficients. All forward variances exhibit very similar statistics and
their autocorrelations range from 0.775 to 0.834. In contrast, forward skewness co-
efficients become more negative and volatile as the horizon increases. Moreover,
forward skewness coefficients are much less persistent with autocorrelation coeffi-
cients ranging from 0.300 to 0.548. Table 4.2 provides the correlation coefficients
for the forward moments. Forward variances are all positively and highly correlated
with correlation coefficients ranging from 85% to 94%. The respective correlations
between forward skewness coefficients range from 37% to 63%. It is apparent that
while each forward variance has an idiosyncratic component depending on the month
it refers to, all of them share a strong common component. On the contrary, the
idiosyncratic information embedded in each forward skewness coefficient is more
pronounced. This can be also confirmed by looking at Figure 4.1 which plots the
forward moments across time. Forward variances tend to move in lockstep, taking
their highest values during the recent financial crisis. Forward skewness coefficients
exhibit similar patterns but the idiosyncratic variation of each variable is evident.
The correlations between forward variances and skewness coefficients are low and
consistently negative apart from the case of FV® and FSC® whose correlation is

positive but very close to zero (2%).

4.4.2 Forecasted and control variables

The predictive power of the estimated forward moments will be investigated in re-

spect to three main aspects of the economy, a) macroeconomic environment, b) stock

84



Chapter 4. Forward Skewness and its Information Content

market and ¢) risk and uncertainty. The macroeconomic variables can be further cat-
egorized into two main groups, real activity variables and money, credit and treasury
yield variables. The real activity variables consist of personal income (Pers income),
industrial production (Ind prod), capacity utilization (Cap util), unemployment
level (Unempl), nonfarm payroll (Payroll), housing starts (House starts), housing
authorized (Build perm), manufacturing and trade inventories (M&T invent), real
personal consumption expenditures (Consumption), and retail sales (Retail sales).
These variables reflect the main aspects of real activity in an economy, as they
capture the total productivity, the labour market, the housing sector and the total
sales and consumption. The credit and treasury yield variables consist of money
supply M1 (M1), real money supply M2 (M2 (real)), total reserves of depository
institutions (Reserves tot), commercial and industrial loans (C&I loans), consumer
price index (CPI), 3-month T-bill rate (3-m t-bill), 6-month T-bill rate (6-m t-bill),
1 year T-bond rate (1-yr t-bond) and 5 years T-bond rate (5-yr t-bond). These
variables illustrate the key aspects of an economy’s credit capacity as well as the
closely related money stock and inflation levels. For the purposes of the predictive
analysis, we construct monthly logarithmic growth rates for all the variables apart
from Cap util, Unempl and the four interest rates for which we estimate monthly
changes, since they are expressed in percentage terms. A detailed description of the
macroeconomic dataset can be found in Table C.1 of Appendix C.

The stock market is represented by the excess return of the value-weighted index
from the Chicago Center for Research in Security Prices (CRSP). We define excess
market return as the difference between the monthly log-return of the CRSP value-
weighted index and the 1-month Treasury bill rate obtained from Kenneth French’s
website. !0

The risk variables we consider, reflect financial systemic risk and tail (or crash)
risk. Systemic risk refers to the aggregate risk taken by financial institutions. Such
type of risk is of particular importance since a failure of a financial institution dur-

ing periods of high systemic risk can cause severe instability to the overall economy

Ohttp://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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(see for example Allen et al., 2012 and Brownlees and Engle, 2012). Systemic risk
is proxied by the Catfin measure suggested by Allen et al. (2012) which aggregates
the estimates of three different VaR methodologies for the monthly returns of all the
available financial firms. The data on systemic risk can be found on Turan Bali’s
website.!t Tail risk refers to the risk of extremely negative realizations in the aggre-
gate stock market. This type of risk is important not only due to investors’ natural
aversion to extreme negative returns but also because increased crash risk is typ-
ically related to adverse macroeconomic shocks (Kelly and Jiang, 2014). Monthly
market tail risk is constructed by applying Hill’s (1975) power law estimator to the
daily returns of all the available stocks in a given month, as proposed by Kelly
and Jiang (2014). Finally, we also examine two forms of uncertainty namely eq-
uity uncertainty and economic policy uncertainty. Equity uncertainty refers to the
uncertainty that is present in the stock market, while economic policy uncertainty
refers to uncertainty about fiscal, monetary and regulatory policy. In this context
uncertainty stands for a mixture of both risk and ambiguity, i.e. it encapsulates
events with unknown outcomes whose probability measures are assumed to be both
known (risk) and unknown (ambiguity). Baker et al. (2013) and Bloom (2014) show
empirically that increased uncertainty is related to decreased concurrent and sub-
sequent real activity. The respective data are obtained from Baker et al.’s (2013)

webpage. 2

The economic policy uncertainty index consists of three components
related to news coverage, federal tax code provisions set to expire in future years
and economic forecaster disagreement. The equity uncertainty index is only based
on news coverage. Due to their tight link with the macroeconomic conditions, the
above risk and uncertainty variables have become extremely popular especially after
the recent financial crisis.

As control variables, we use the yield term spread (TERM), the dividend-to-price
ratio (d-p) and the earnings-to-price ratio (e-p). TERM is the difference between

the 10-year bond yield and the 1-year bond yield, d-p is the difference between the

Uhttp://faculty.msb.edu/tgb27/workingpapers.html
2http://www.policyuncertainty.com
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log aggregate annual dividends and the log level of the S&P 500 index and e-p is the
difference between the log aggregate annual earnings and the log level of the S&P 500
index. Data on monthly prices, dividends, and earnings are obtained from Robert
Shiller’s website.’® All interest rate data are obtained from the FRED database of

the Federal Reserve Bank of St. Louis.

4.5 The Information Content of Forward Skew-
ness

The main purpose of this section is to investigate the predictive ability of forward
skewness coefficients for the previously described macroeconomic variables, stock re-
turns, risk and uncertainty variables. Throughout the empirical analysis, we proceed
by first examining the forecasting power of our alternative forward variance mea-
sures when combined only with relevant control variables. Then, we augment the
predictive model with the forward skewness coefficients and evaluate the increase
in its explanatory power. As in Cochrane and Piazzesi (2005), Ang and Bekaert
(2007) and BPS, we mainly rely on Wald tests of joint significance for the four
forward variances and the four forward skewness coefficients. A Wald test of that
type is identical to a J-test of overidentifying restrictions and shows whether the
increase in R? due to the inclusion of the additional group of variables is significant
or not (see the discussions in Cochrane and Piazzesi, 2005 and Cochrane, 2005).
We present the p-values for those Wald tests together with the adjusted R? for the

simple and the augmented model.

4.5.1 Forecasting macroeconomy

We examine the forecasting power of the forward moments for the macroeconomic

variables for horizons of one up to twelve months ahead. In particular, for each

Bhttp://www.econ.yale.edu/~shiller/data.htm
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macroeconomic variable we run regressions of the form:
/
Yist+h = Qi;p + IBi;th + Eisth,ho (4.14)

where y;1p = (1—;) [Yist+1 + Yitso + ... + Yixgn) is the annualized h-month growth
or change in variable ¢ and z; is the vector of predictive variables for each of the
two models considered. The regression analysis covers the period 1996:01-2012:12
and for each forecasting horizon we lose h observations. Under the null of no pre-
dictability the overlapping nature of the data imposes an M A (h — 1) structure to
the error term e, process. To overcome this problem we base our statistical in-
ference on both Newey and West (1987) and Hodrick (1992) standard errors with
lag length equal to the forecasting horizon. In general, the Hodrick (1992) standard
errors tend to be more conservative, especially in long horizons when the null of
no predictability is true (Ang and Bekaert, 2007) but have lower statistical power
when the null is false (Bollerslev, Marrone, Xu and Zhou, 2012). Following BPS,
we include TERM as a control variable in all the regressions. The beta coefficients
reported in the subsequent tables have been scaled and can be interpreted as the
annualized percentage growth (or change in percentage terms for Cap util, Unempl
and the interest rates) in the forecasted variables from a one standard deviation

change in each regressor.

4.5.1.1 Real activity

Table 4.3 presents the results for the 1-month growth (or change) in the real activity
variables when Newey-West standard errors are employed. First, it is apparent that
the results for the forward variances hardly change when the predictive model is aug-
mented with the forward skewness coefficients. This is reasonable as we have already
seen that the correlations between the two groups of forward moments are rather low.
An increased (decreased) FV() is related to a subsequent decline (improvement) in
real activity with the relationship being statistically significant mainly for House

starts, Build perm and Retail sales. From the rest of the forward variances, FV )
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is negatively and significantly related to Ind prod and FV® exhibits a positive
and significant relationship with Ind prod and Cap util. While individual forward
variances are not particularly significant across real activity variables, we have to
keep in mind that due to the high cross-correlations among forward variances, it
is difficult to estimate the respective regression coefficients with a small confidence
interval.* From the forward skewness coefficients, a less (more) negative value of
FSCW or FSCW is associated with a decline (improvement) in real activity, while
a less (more) negative value of FSC® is associated with improved (declined) real
activity. These relationships are stronger for Ind prod, Unempl, Payroll and M&'T
invent. Additionally, FSC® is also significant for Build perm and FSC® has a
significant effect on Cap util, Consumption and Retail sales. The results for TERM
are mixed, since while it is negatively and significantly related to Pers income, Pay-
roll, M&T invent and Consumption, it is positively and significantly related to Cap
util. With respect to economic sensitivity, forward variances have in general a higher
impact on real activity variables than forward skewness coefficients. However, the
impact of skewness is far from negligible in several cases. For example, a one stan-
dard deviation increase in FSC™® causes an annualized monthly drop of 1.831% in
Retail sales.

Turning to the Wald tests of joint significance, forward variances are strongly
jointly significant for all the real activity variables apart from Consumption and
Retail sales. Most importantly, the results for the augmented model show that
the forward skewness coefficients are also jointly significant at the 1% level for Ind
prod, Unempl, Payroll and M&T invent and at the 10% level for Cap util and Retail
sales. These results imply that for six out of ten real activity variables the increase in
explanatory power when considering the augmented model is statistically significant.

Finally, the adjusted R? increases in the case of the augmented model for eight out

140Orthogonalizing FV®) | FV®) and FV® with respect to FV) | provides a strong individual
significance for FV (1) across almost all the variables. These results are not presented here, since
our main focus is on joint significance of forward variances and not on individual significance of
each variance. The results of joint significance remain unaltered, whether we use the original
forward variances or the orthogonalized ones.
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of ten variables.

The results for the 1-month growth (or change) in the real activity variables when
Hodrick standard errors are used, are reported in Table 4.4. Individual coefficient
results are similar to those reported in Table 4.3, although relatively weaker in
principle. Moreover, the joint significance of forward variances is much weaker across
variables. The joint significance of forward skewness coefficients, however, is very
similar to that presented in Table 4.3 even though it is lost in two marginal cases
(Cap util and Retail sales).

Table 4.5 reports the results for the 6-month horizon (Panel A) and 12-month
horizon (Panel B) predictive regressions when Newey-West standard errors are con-
sidered. To save space, only the augmented model has been reported and the individ-
ual coefficients for the forward variances and TERM have been omitted. However,
the full set of results can be found in Tables C.2-C.3 of Appendix C. In principle,
FV® and FV® remain significant at 6- and 12-month horizons with an effect sim-
ilar to the one discussed above. Moreover, TERM clearly indicates improved real
activity for the 12-month horizon as in Chen (1991) and Estrella and Hardouvelis
(1991). Regarding the forward skewness coefficients, similarly to the case of the
I-month predictability FSCM and FSC® are consistently related to a decreased
real activity across horizons and F.SC®) is consistently related to an improved real
activity across horizons. Furthermore, the effect of the forward skewness coefficients
appears to be stronger in almost all the cases as horizon increases from one to six
months ahead and remains at similar levels when the horizon increases to twelve
months.

The joint significance of the forward variances is improved as the forecasting
horizon becomes longer. At the 12-month horizon, forward variances are jointly
significant for all the real activity variables and for eight of them the significance is
at the 1% level. Forward skewness coeflicients continue to be jointly significant for
Ind prod, Payroll and M&T invent at both 6- and 12-month horizons, while they

remain jointly significant for Unempl at the 6-month horizon. Moreover, forward
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skewness coefficients become jointly significant for Pers income and Consumption
at both long horizons examined. Finally, it is remarkable that for both horizons the
adjusted R? of the augmented model is always higher than the respective adjusted
R? of the simple model.

Table 4.6 provides the results for the 6-month horizon (Panel A) and 12-month
horizon (Panel B) predictive regressions in the case of Hodrick standard errors. Asin
Table 4.5 only the augmented model has been reported and the individual coefficients
for the forward variances and TERM have been omitted. However, the full set of
results can be found in Tables C.6-C.7 of Appendix C. The individual coefficient
results are qualitative very similar to those reported in Table 4.5. With respect to
the Wald tests for forward variances, the main difference occurs for the two housing
variables and Retail sales since the joint significance is lost. With respect to the
Wald tests for forward skewness coefficients, the results are qualitatively similar and
overall slightly stronger when Hodrick standard errors are utilized.

Figure 4.2 provides a clear picture of the importance of the forward skewness
coefficients for predicting real activity especially at long horizons. In particular, for
each variable it plots the change in adjusted R? when considering the augmented
instead of the simple model across different forecasting horizons. Apart from the case
of Cap util and Unempl all the other graphs show a clear upward sloping pattern,
which implies that taking into consideration forward skewness coefficients becomes
even more important as forecasting horizon increases up to twelve months ahead.

Overall, forward skewness coeflicients appear to have significant predictive power
over and above forward variances for the majority of the real activity variables con-
sidered and especially for Ind prod, Unempl, Payroll, M&T invent and Consumption.
Moreover, in most of the cases the effect is stronger when long-horizon predictability

is examined.
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4.5.1.2 Money, credit and treasury yields

Table 4.7 presents the results for the 1-month growth (or change) in the money, credit
and treasury yield variables when Newey-West standard errors are employed. The
results for forward variances are very similar for both the simple and the augmented
model. FV() exhibits the strongest statistical significance with a higher (lower)
value being related to increased (decreased) M2 (real), lower (higher) CPI and lower
(higher) interest rates. FV(? is positively and significantly related to 1-yr t-bond
and positively but weakly related to 5-yr t-bond. With regard to forward skewness
coefficients, F'SC®) exhibits a consistent pattern, being positively and significantly
associated with all treasury yields and negatively and significantly associated with
the money supply variables. Moreover, F.SC® has a significant negative relationship
with C&I loans, while FSC® has a significant positive impact on 5-yr t-bond.
TERM is significantly related, positively and negatively respectively, only to M1
and C&I loans. With respect to economic sensitivity, as in the previous section,
forward variances have, on average, a higher effect on the forecasted variables than
forward skewness coefficients. However, the economic impact of forward skewness
coefficients is not negligible either. For example, a one standard deviation increase
in FSC® is followed by an annualized monthly increase of about 40 basis points in
the treasury yields.

The results of the Wald tests show that forward variances are jointly strongly
significant for M2 (real), Reserves tot, CPI and all the treasury yield variables.
Forward skewness coefficients are jointly significant for M2 (real), C&I loans and
three out of four treasury yields (6-m t-bill, 1-yr t-bond and 5-yr t-bond). These
results show that the increase in explanatory power stemming from the addition of
forward skewness coefficients into the predictive model is significant for five out of
nine variables. Furthermore, the augmented model is accompanied by an increase
in the adjusted R? for six out of nine variables.

Table 4.8 shows the the results for the 1-month growth (or change) in the money,

credit and treasury yield variables when Hodrick standard errors are employed.
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Although slightly less significant in general, individual coefficient results are similar
to those reported in Table 4.7. Forward variances lose their joint significance in four
out of seven cases. Forward skewness coefficients, however, remain jointly significant
for all variables but M2 (real).

Table 4.9 reports the results for 6-month (Panel A) and 12-month horizon (Panel
B) predictive regressions in the case of Newey-West standard errors. As in the
previous section, only the augmented model has been reported and the individual
coefficients for the forward variances and TERM have been omitted but can be
found in Tables C.4-C.5 of Appendix C. For those variables the pattern is similar
to the 1-month horizon, apart from the fact that FV®) becomes also significant for
M2 (real), CPI and 5-yr t-bond with an effect opposite to that of V(). Moreover,
at the longest 12-month horizon, TERM exhibits some explanatory power for future
treasury yield changes, a finding which is in the spirit of Fama (1990). However,
this positive impact is significant only at the 10% level. With regard to forward
skewness coefficients, FSC) has a strong negative effect on C&I loans at both
the 6- and 12-month horizons, while F.SC® is significantly related, positively and
negatively respectively, to the money supply variables and CPI at the 12-month
horizon. FSC®) continues to have a significantly negative impact on M1 but its
impact on the treasury yields diminishes as the horizon increases. Finally, FSC®
is negatively related to C&I loans and CPI, with the effect becoming stronger across
horizons.

The Wald tests indicate that an increase in the forecasting horizon eliminates
the significant effect of forward variances on the treasury yields but strengthens
their joint effect on all the other variables. Similarly, forward skewness coefficients
are not jointly significant for treasury yields when 6- and 12-month horizons are
considered. At the 12-month horizon, however, they are strongly jointly significant
for M2 (real), C&I loans and CPI. Furthermore, the adjusted R? of the augmented
model is higher than the adjusted R? of the simple model for six out of nine variables

when considering the 6-month horizon and for eight out of nine variables when

93



Chapter 4. Forward Skewness and its Information Content

considering the 12-month horizon. However, in the case of the treasury yields the
existing increases are only marginal.

The results for the 6-month horizon (Panel A) and 12-month horizon (Panel B)
predictive regressions in the case of Hodrick standard errors are shown in Table
4.10. Similarly to Table 4.9 only the augmented model has been reported and
the individual coefficients for the forward variances and TERM have been omitted.
However, the full set of results can be found in Tables C.8-C.9 of Appendix C. The
results of joint significance for forward variances are generally weaker for the money
and creadit variables but stronger for the treasury yield variables than those reported
in Table 4.9. The results of joint significance for forward skewness coefficients are
similar to those presented in Table 4.9, with the main difference being that at the 12-
month horizon forward skewness coefficients appear to be significant for 3-m t-bill,
6-m t-bill and 1-yr t-bond.

The above results are also depicted in Figure 4.3 which plots the change in
adjusted R? across different forecasting horizons when adding the forward skewness
coefficients into the predictive models. C&I loans and CPI exhibit an explicit upward
sloping pattern similar to that found for most of the real activity variables. M1, M2
(real) and Reserves tot provide less steep but still upward trending patterns. The
treasury yields, on the other hand, provide patterns that are flat and close to zero,
with only a slight increase for horizons up to two months ahead.

In summary, forward skewness coefficients appear to have significant predictive
power over and above forward variances mainly for M2 (real), C&I loans and CPI,
with the effect being in general stronger for long horizons. They are also important

for explaining treasury yield movements but mainly for a short 1-month horizon.

4.5.2 Forecasting stock market

Having established that taking into consideration forward skewness coefficients is
important for forecasting macroeconomic variables, we now turn our attention to

the stock market. In particular, for horizons of one up to twelve months ahead we
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run regressions of the following form:

Teéipp = Qp + IB;LZt + Et4hh; (4-15)

where re; ., = (%) [reis1 + reiro + ... + Teryy] is the annualized h-month excess
return of the CRSP value-weighted index and z; is the vector of predictive variables
for each of the two models considered. The regression analysis covers the period
1996:01-2012:12 and for each forecasting horizon we lose h observations. Under the
null of no predictability the overlapping nature of the data imposes an M A (h — 1)
structure to the error term e,44 process. To tackle this problem we base our
statistical inference on both Newey and West (1987) and Hodrick (1992) standard
errors with lag length equal to the forecasting horizon. In general, the Hodrick (1992)
standard errors tend to be more conservative, especially in long horizons when the
null of no predictability is true (Ang and Bekaert, 2007) but have lower statistical
power when the null is false (Bollerslev, Marrone, Xu and Zhou, 2012). Motivated
by prior literature (see for example, Fama and French, 1988, Campbell and Shiller,
1988a,b, Lamont, 1998 and Goyal and Welch, 2008, among others) we include d-
p and e-p as control variables.!® The beta coefficients reported in the subsequent
tables have been scaled and can be interpreted as the percentage annualized excess
market returns caused by a one standard deviation change in each regressor.

Table 4.11 reports the results for 1-, 3-, 6-, 9- and 12-month forecasting horizons
when Newey-West standard errors are used. From the forward variances group,
FV is negatively related to future stock market returns but the effect is signif-
icant only when we consider the augmented model for horizons between six and
twelve months ahead. FV® exhibits also some forecasting power for future mar-
ket returns but only at a short 1-month horizon. Recall, however, that due to the
high cross-correlations among forward variances, it is difficult to find strong individ-
ual significance for these variables. Therefore, our conclusions are mainly based on

the Wald tests of joint significance. From the forward skewness coefficients group,

I5Note that for our sample period the correlation between d-p and e-p is -0.05.
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FSC®) is consistently positively and significantly related to future market returns,
with the effect being stronger at the 6- and 9-month horizons. Moreover, F'SC
exhibits a negative and significant relationship with future market returns at the
3-month horizon. Recall from Section 4.5.1.1 that F.SC®) is positively related to
real activity while FSC® is negatively related to real activity. Therefore, there is
a consistent pattern for these two forward skewness coefficients with F'SC®) being
related to increased economic activity and higher stock market returns and FSC™
being related to reduced economic activity and lower stock market returns. Re-
garding the control variables, d-p is positively related to future market returns and
in line with the literature its effect becomes stronger as the forecasting horizon in-
creases. In contrast, e-p does not exhibit any significant relationship with future
market returns during our sample period. In economic terms, a one standard de-
viation increase in F.SC® results in an annualized excess market return ranging
from 3.373% to 8.244% depending on the forecasting horizon considered. With the
exception of the 12-month horizon, similar figures are also observed for FSC®,

Moving to the Wald tests of joint significance, forward variances are jointly
significant at the 5% level when the forecasting horizon is six months ahead and
at the 10% level when the forecasting horizon is nine months ahead. In contrast,
forward skewness coefficients are jointly significant at the 10% level for the 3-month
horizon and at the 5% level for both the 6- and the 9-month horizons. Therefore, we
find that forward skewness coefficients significantly forecast future market returns
over and above forward variances and their effect is stronger than that of forward
variances. Furthermore, the adjusted R? of the augmented model is higher than the
adjusted R? of the simple model for all but the 1-month horizon. Looking at the
change in adjusted R? across horizons depicted in Figure 4.4, we observe a hump-
shaped pattern. In particular, the increase in adjusted R? is upward trending for
short horizons, taking its maximum value at the 4-month horizon and then gradually
declining for longer horizons.

The respective results for stock market return predictability, when Hodrick stan-

96



Chapter 4. Forward Skewness and its Information Content

dard errors are used, are presented in Table 4.12. In this case, none of the forward
variance individual coefficients appears to be significant, while the individual re-
sults for forward skewness coefficients are qualitatively similar - and in some cases
stronger - to those presented in Table 4.11. Turning to the Wald tests, forward
variances are jointly insignificant at all horizons, while forward skewness coefficients
remain significant at 10% level only at the 6-month horizon.

Collectively, the empirical results presented in this section indicate that forward
skewness coefficients encapsulate important information about future stock market
returns that is not embedded in forward variances. Moreover, their effect is stronger
for horizons between three and nine months ahead. It should be noted, however,
that the joint impact of forward skewness coefficients appears to be limited when

the alternative Hodrick standard errors are employed.

4.5.3 Forecasting risk and uncertainty

As a final step in this analysis, we examine the predictive power of the forward
moments for systemic risk, tail risk, equity and economic policy uncertainty. In
particular, we run the following regressions for horizons of one up to six months

ahead:

Gkst+h = Qph + ,B;f;hzt + Ekst+h, (4.16)

where g1, denotes the value of variable k, h months ahead and z, is the vector of
predictive variables for each of the two models considered. The vector of explanatory
variables includes always the time ¢ value of the dependent variable k as an additional
control variable. The regression analysis covers the period 1996:01 - 2012:12 and
for each forecasting horizon we lose h observations. In order to control for possible
autocorrelation in the error term we use the Newey and West (1987) covariance
matrix estimator with lag length equal to the forecasting horizon for the individual
and joint significance tests. However, since we do not have overlapping observations
in this case, we do not perform an additional analysis using the Hodrick (1992)

covariance matrix estimator. We further choose to include TERM as a control
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variable as it is considered to be a business cycle indicator (Chen, 1991, Estrella and
Hardouvelis, 1991). All the variables have been standardized prior to the regression
analysis, so regression coefficients represent the change in the dependent variable in
terms of its standard deviation caused by a change of a one standard deviation in

each regressor.

4.5.3.1 Systemic and tail risk

Table 4.13 reports the results from predicting systemic risk for 1- up to 6-month
horizons. The results for forward variances are similar for both the simple and
the augmented model. In particular, FV®) is negatively and significantly related
to future systemic risk for 5- and 6-month horizons, while FV® is positively and
significantly related to future systemic risk for 1- up to 3-month horizons. Turning to
the forward skewness coefficients, F.SC® and FSC®) are negatively associated with
systemic risk, while FSC® and FSC® are positively associated with systemic risk.
FSC® has the strongest effect especially for 4- and 5- month forecasting horizons,
but all forward skewness coefficients exhibit some significant predictive power for
at least two horizons. In economic terms, a one standard deviation increase in
FSC® forecasts a 0.346 standard deviation increase in systemic risk four months
ahead. TERM does not appear to have any significant predictive ability for future
systemic risk. The Wald tests show that forward variances are jointly significant
mainly for the 5- and 6-month horizons and marginally for the 1-month horizon
in the case of the augmented model. In contrast, forward skewness coefficients are
jointly significant across all horizons and have the strongest effect for the 4- and
5-month horizons. It is also worth noting that the adjusted R? of the augmented
model at the 4-month horizon is 5.7% higher than that of the simple model. The
top left panel of Figure 4.5 shows clearly that the increase in adjusted R? when
considering the augmented model rises for horizons of one to four months ahead and
then gradually declines.

The results for tail risk, presented in Table 4.14, are somewhat different. For
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both the simple and the augmented model, FV® is positively related to future
tail risk, while FV ) is negatively related to future tail risk. Moreover, the effects
are significant only for the 2- and 5-month horizons. With respect to the forward
skewness coefficients, FSC®) forecasts increased tail risk especially for horizons
between three and five months ahead, while FSC® forecasts decreased tail risk
especially for the 3-month horizon. These relationships are opposite to the ones
found for systemic risk, which is expected as in our sample the two measures exhibit
a correlation of -0.56.1° In economic terms, the effect of forward skewness coefficients
for tail risk is lower than that reported for systemic risk. For example, a one standard
deviation increase in F.SC® forecasts only a 0.189 standard deviation increase in
tail risk four months ahead. As in the case of systemic risk, TERM does not exhibit
any significant relation with tail risk. Turning to joint significance, forward variances
are jointly significant at the 5% level for the 2-month horizon and at the 10% level
for the 5-month horizon. Forward skewness coefficients exhibit a similar significance
for the 2- and 5-month horizons but are also significant at the 5% level for the
3-month horizon. At this horizon, there is also an increase in adjusted R? of 1.9
percentage points when considering the augmented model. Therefore, in the case
of tail risk, forward skewness coefficients can increase the explanatory power of the
simple model mainly for horizons of two and three months ahead but the effect is
not particularly strong. This can also be seen in the top right panel of Figure 4.5,
which shows an initial small increase in the adjusted R? that disappears after the
third month.

In summary, the results show that forward skewness coefficients are particularly
important for predicting future systemic risk especially for horizons between three
and six months ahead, but provide only limited forecasting ability for future tail

risk.

16This is due to the different methods for estimating the two types of risk. Specifically, systemic
risk is based on the shape of the left tail of the distribution of returns, while tail risk is based
on the shape of the left tail beyond a specified threshold level which depends on the variance of
the distribution. Intuitively, the difference between the two methods is similar to the difference
between VaR and CVaR estimation.
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4.5.3.2 Equity and economic policy uncertainty

Table 4.15 shows the results from predicting equity uncertainty for 1- up to 6-month
horizons. The pattern regarding the predictive power of forward variances is similar
for both the simple and the augmented model. In particular, FV(1) is positively and
significantly related to 1-month ahead equity uncertainty, while FV®) is negatively
and significantly related to equity uncertainty for one, three, four and five months
ahead. With respect to forward skewness coefficients, F.SC® forecasts increased
future equity uncertainty in 4- and 5- month horizon predictive regressions, while
FSC® forecasts increased future equity uncertainty in 3-month horizon regressions.
In economic terms, a one standard deviation increase in FSC® forecasts a 0.188
standard deviation increase in equity uncertainty four months ahead. TERM does
not appear to have any significant predictive ability for future equity uncertainty.
The results for the Wald tests of joint significance show that forward variances
are jointly significant only at the 5-month horizon. This is remarkable as equity
market uncertainty has been closely linked to VIX in the literature (see for example
Baker et al., 2013).!" In contrast, forward skewness coefficients are significant at
the 5% level for the 3-month horizon and at the 10% level for the 4-, 5- and 6-
month horizon. Therefore, while equity uncertainty is contemporaneously related
to implied variance, its future values are explained better by investors’ perceptions
about future skewness. As in the case of systemic risk, the increase in adjusted R?
is highest for the 4-month horizon (5.9 percentage points). This is also depicted in
the bottom left panel of Figure 4.5, which shows that similarly to systemic risk, the
increase in adjusted R? when considering the augmented model for forecasting equity
uncertainty rises for horizons of one to four months ahead and then progressively
declines.

The empirical evidence regarding economic policy uncertainty predictability is
presented in Table 4.16 and provides a completely different picture. Similarly to the

equity uncertainty, the results of forward variances hardly change once we include

17In our sample period, equity uncertainty has a contemporaneous correlation of 0.59 with FV (1),
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forward skewness coefficients into the predictive model. However, F'V(? is now the
strongest predictor of future economic policy uncertainty, exhibiting a significantly
negative effect for 4- to 6-month ahead horizons. Moreover, FV®) and FV@ are
now positively related to future economic policy uncertainty, with the effect being
significant for the 1- and 6-month horizon in the case of FV®) and the 5-month
horizon in the case of FV®). Turning to the forward skewness coefficients, the only
significant relationships come from the 1-month horizon predictive regressions. In
particular, F'SC® predicts increased economic policy uncertainty, with the effect
being significant only at the 10% level, while F.SC® predicts decreased economic
policy uncertainty, with the effect being significant at the 1% level. Moreover, in
economic terms the predictability of forward skewness coefficients for 1-month ahead
economic policy uncertainty is relatively weak, as a one standard deviation increase
in FSC® forecasts a 0.121 standard deviation decrease in economic policy uncer-
tainty. In contrast to forward skewness coefficients, TERM has a consistently strong
positive impact on future economic policy uncertainty for all horizons considered.
The results for the Wald tests of joint significance provide little evidence to sup-
port the hypothesis that forward moments can predict economic policy uncertainty.
In particular forward variances are only jointly significant at the 6-month horizon,
while forward skewness coefficients are only jointly significant at the 1-month hori-
zon. Moreover, the increase in adjusted R? when considering the augmented model
to forecast 1-month ahead economic policy uncertainty is relatively low (0.4 per-
centage points). The limited forecasting power of forward skewness coefficients for
economic policy uncertainty is also depicted in the bottom right panel of Figure 4.5,
where the change in adjusted R? associated with the augmented model is flat across
horizons and always close to zero.

In summary, the results show that forward skewness coefficients are quite impor-
tant for predicting future equity uncertainty especially for horizons between three
and six months ahead, but exhibit weak forecasting power for economic policy un-

certainty and only for the 1-month horizon.
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Finally, recall from Section 4.5.2 that the graph of the increase in adjusted R?
when considering the augmented model for explaining future stock market returns
has a hump-shaped pattern with a peak at the 4-month horizon. In this section,
we observe a very similar pattern for systemic risk and equity market uncertainty.
Moreover, both graphs have their peak at the 4-month horizon as well. Therefore, we
conclude that forward skewness coefficients are important for explaining future stock
market returns, systemic risk and equity uncertainty for a horizon that matches the
time period spanned by forward skewness. After the fourth month that corresponds
to the fourth forward skewness coefficient, the predictive power of the augmented

model gradually drops.

4.6 Conclusion

This study investigates the information content of forward skewness inferred from
portfolios of options on the S&P 500 index. In particular, we construct forward
1-month skewness coefficients for one to four months ahead and examine their pre-
dictive power over and above the respective forward variances. In contrast to previ-
ous studies, our method is robust to the presence of jumps in the underlying asset
process and therefore our variance estimates are valid under very general specifi-
cations for the price process. Moreover, this approach allows us to create forward
standardized skewness measures instead of relying on the term structure of the third
central moment of returns.

The predictive power of the estimated forward moments is tested on a wide range
of macroeconomic variables, future stock market returns as well as risk and uncer-
tainty measures. The results show that forward skewness coefficients offer additional
predictive power when included into a model containing forward variances for the
majority of real activity, money, credit and treasury yield variables. Furthermore,
the increase in explanatory power as measured by the change in adjusted R? follows
an upward-sloping pattern for almost all the variables considered, apart from the

treasury yields. In respect to stock market returns and the risk and uncertainty
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variables, forward skewness coefficients significantly improve the predictability of
market returns, systemic risk and equity market uncertainty mostly for horizons
between 3 and 6 months. The corresponding graphs of increase in adjusted R? after
the inclusion of forward skewness into the predictive model all have a consistent
hump-shaped pattern with its peak at the 4 month horizon.

Collectively, the analysis in this chapter shows that forward skewness coeffi-
cients encapsulate important information over and above the information contained
inforward variances about future macroeconomic conditions at both short and long

horizons and about future financial market conditions mainly at short horizons.
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Table 4.1: Summary statistics of forward moments

Mean StDev Min Max Auto
) 0.004 0.004 0.001 0.028 0.775
FV®  0.004 0.003 0.001 0.024 0.794
FV®  0.005 0.003 0.001 0.024 0.834
FV@®  0.005 0.003 0.001 0.018 0.799
FSC® -1.059 0.227 -1.631 -0.367 0.533
FSC® 2048 0.397 -3.611 -0.758 0.548
(
(

8) 2593  0.667 -4.562 2.248 0.388
FSC® 3188 0.697 -6.226 -0.574 0.300

This table reports the summary statistics of the forward variances and
forward skewness coefficients constructed using the method of Neuberger
(2012) and Kozhan, Neuberger and Schneider (2013). The sample period
is 1996:01-2012:12. FVW_ FVA FVG) and FV® denote the forward 1-
month variances for one, two, three and four months ahead, while FSC™),
FSC® FSC®) and FSC® denote the respective skewness coefficients.
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Table 4.2: Correlation coefficients

FVDO FV® FVE FV@W FSCOH FSCP FSCB® FSCW

Fv®) 1.00

FV(® 0.94 1.00

FV®) 0.90 0.93 1.00
(

FV® 0.85 0.92 091  1.00
FSC® | 0.02 -0.02 -0.03 -0.04 1.00
FSC® | -0.10 -0.08 -0.10 -0.11 0.63 1.00
3| -.0.03 -0.08 -0.12 -0.12  0.40 0.45 1.00
FSC® | -0.02 -0.07 -0.07 -0.10  0.37 0.50 0.40 1.00

This table reports the correlation coefficients of the forward variances and for-
ward skewness coefficients constructed using the method of Neuberger (2012) and
Kozhan, Neuberger and Schneider (2013). The sample period is 1996:01-2012:12.
FVWO_ FV® FVG and FV® denote the forward 1-month variances for one, two,
three and four months ahead, while F.SCW, FSC® | FSC® and FSC® denote
the respective skewness coefficients.
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Chapter 4. Forward Skewness and its Information Content

Table 4.5: Predicting real activity for 6- and 12-month horizon - Newey-West covariance matrix

FSC® FSC® FsC®  FSCW | Adj. R* Adj. R?| Joint FV  Joint FSC

Panel A: h=6

Pers income -0.398 0.074  0.639***  -0.753** 0.314 0.276

(-1.046)  (0.214)  (2.649)  (-2.357) 0.000 0.054
Ind prod -1.676%*¥*  0.567 0.978%* -0.833 0.219 0.155

(-3.802)  (1.090)  (2.434)  (-1.350) 0.000 0.000
Cap util -0.714* 0.114 0.210 -0.599 0.305 0.270

(-1.910)  (0.301)  (0.846)  (-1.371) 0.000 0.404
Unempl 0.240** -0.060 -0.174%  0.344%** 0.358 0.268

(2.232)  (-0.602) (-1.744)  (3.305) 0.000 0.019
Payroll -0.537*FF 0147 0.344%FF  _(0.482%F* 0.431 0.332

(-3.713)  (0.913)  (2.736)  (-3.043) 0.000 0.001
House starts 1.587 -0.612 5.930%* -4.680 0.089 0.061

(0.634)  (-0.278) (2215)  (-1.322) 0.073 0.166
Build perm 0.652 -0.054  6.825%*F*F  _6.809* 0.131 0.076

(0.267)  (-0.020) (2.895)  (-1.779) 0.026 0.022
M&T invent  -1.013***  0.171 0.517*%  -0.899*** 0.338 0.236

(-3.068)  (0.528)  (1.800)  (-3.088) 0.000 0.000
Consumption -0.426**  0.265  0.555%**  _0.373 0.124 0.069

(-1.985)  (1.281)  (3.015)  (-1.446) 0.167 0.002
Retail sales -1.027* 0.213 1.043** -1.505* 0.121 0.048

(-1.878)  (0.514) (2.211)  (-1.781) 0.158 0.206

Panel B: h=12

Pers income -0.261 -0.235 0.766** -0.554 0.244 0.193

(10.763)  (-0.660) (2.573)  (-1.589) 0.000 0.084
Ind prod -1.158***  0.071 1.147** -0.574 0.117 0.063

(-3.464)  (0.117)  (2.013)  (-1.142) 0.000 0.001
Cap util -0.224 -0.443 0.380 -0.337 0.279 0.257

(10.855)  (-1.283)  (1.045)  (-0.985) 0.000 0.482
Unempl 0.203* 0.012 -0.193* 0.254** 0.243 0.169

(1.961)  (0.103) (-1.703)  (2.233) 0.000 0.149
Payroll -0.487*¥%  0.060 0.427%*%  -0.428%* 0.279 0.181

(-2.905)  (0.294)  (2.505)  (-2.394) 0.000 0.009
House starts 0.598 0.379 6.532%* -3.490* 0.192 0.128

(0.361)  (0.175)  (2.378)  (-1.892) 0.071 0.065
Build perm -0.658 0.585 6.375%* -3.127 0.204 0.151

(0.363)  (0.271)  (2.377)  (-1.631) 0.097 0.153
M&T invent  -0.964***  0.095 0.649**  -0.730** 0.304 0.203

(-2.821)  (0.238) (2.326)  (-2.118) 0.000 0.020
Consumption -0.424** 0.270  0.641*** -0.228 0.118 0.036

(-2.230)  (1.193)  (2.739)  (-1.058) 0.007 0.004
Retail sales -0.562 -0.315 1.144%* -0.808* 0.086 0.031

(-1.224)  (-0.641) (1.784)  (-1.827) 0.004 0.291

This table reports the results of predictive regressions of 6- and 12-month growth (or change) in real activity
variables. Details about the variables can be found in Table C.1 of Appendix C. The sample period is 1996:01-
2012:12. The predictive model considered is augmented with forward skewness coefficients. Individual coefficient
results regarding the constant term, term spread and forward variances have been omitted for brevity. Adj. R?
and Adj. R? denote the adjusted R? with and without forward skewness coefficients respectively. Significance
tests are based on the covariance matrix suggested by Newey and West (1987) with lag length equal to the fore-
casting horizon. Individual coefficient t-statistics can be found in parentheses. *** ** and * denote significance
at 1%, 5% and 10% level respectively. P-values of Wald tests of joint significance for forward variances and
forward skewness coefficients are reported at the last two columns.
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Table 4.6: Predicting real activity for 6- and 12-month horizon - Hodrick covariance matrix

FSCc® FSC® FSC® FSCc® ‘ Adj. R? Adj. R? | Joint FV Joint FSC

Panel A: h=6

Pers income -0.398 0.074  0.639***  -0.753** 0.314 0.276

(-1.553)  (0.375)  (2.754)  (-2.588) 0.026 0.017
Ind prod -1.676%F*  0.567F  0.978%F* -0.833* 0.219 0.155

(-4.597)  (1.798)  (3.169)  (-1.739) 0.023 0.000
Cap util -0.714** 0.114 0.210 -0.599%* 0.305 0.270

(-2.319)  (0.463)  (0.900)  (-1.701) 0.006 0.115
Unempl 0.240** -0.060  -0.174**  0.344%%* 0.358 0.268

(2.547)  (-0.759)  (-1.985)  (3.335) 0.018 0.002
Payroll -0.537FFF 0,147 0.344%FF  -(0.482%** 0.431 0.332

(-5.503)  (1.819)  (3.767)  (-4.605) 0.006 0.000
House starts 1.587 -0.612 5.930* -4.680 0.089 0.061

(0.393)  (-0.167)  (1.866)  (-1.192) 0.633 0.402
Build perm 0.652 -0.054 6.825%* -6.809** 0.131 0.076

(0.225)  (-0.018)  (2.456)  (-2.208) 0.277 0.059
M&T invent -1.013***  0.171 0.517**  -0.899*** 0.338 0.236

(-4.164)  (0.920)  (2.369)  (-3.917) 0.019 0.000
Consumption  -0.426* 0.265  0.555%**  _(.373** 0.124 0.069

(-1.719)  (1.640)  (3.562)  (-2.025) 0.540 0.001
Retalil sales -1.027 0.213 1.043** -1.505** 0.121 0.048

(-1.448)  (0.430)  (2.411)  (-2.357) 0.337 0.073

12-month

Pers income -0.261 -0.235 0.766%**  -0.554%* 0.244 0.193

(-L118) (-1.107)  (3.725)  (-2.260) 0.005 0.003
Ind prod -1.158%%%* 0.071 1.147%F** -0.574* 0.117 0.063

(-3.546)  (0.227)  (3.100)  (-1.953) 0.054 0.001
Cap util -0.224 -0.443* 0.380 -0.337 0.279 0.257

(-0.835) (-1.894) (1.363)  (-1.584) 0.048 0.104
Unempl 0.203%** 0.012  -0.193***  (.254%** 0.243 0.169

(2.658)  (0.165) (-2.635)  (3.644) 0.002 0.001
Payroll -0.487%** 0.060 0.427F%*  _0.428%** 0.279 0.181

(-6.117)  (0.784)  (4.929)  (-4.679) 0.000 0.000
House starts 0.598 0.379 6.532%* -3.490 0.192 0.128

(0.186)  (0.122)  (2.377)  (-1.202) 0.612 0.151
Build perm -0.658 0.585 6.375%** -3.127* 0.204 0.151

(-0.300)  (0.301)  (2.844)  (-1.816) 0.359 0.026
M&T invent  -0.964%** 0.095 0.649*%**  _0.730%** 0.304 0.203

(-4.676)  (0.625)  (4.004)  (-3.622) 0.001 0.000
Consumption  -0.424* 0.270%  0.641%** -0.228%* 0.118 0.036

(-1.842)  (1.870)  (4.646)  (-1.713) 0.075 0.000
Retail sales -0.562 -0.315 1.144** -0.808** 0.086 0.031

(10.862)  (-0.742)  (2.435)  (-2.052) 0.488 0.141

This table reports the results of predictive regressions of 6- and 12-month growth (or change) in real activity
variables. Details about the variables can be found in Table C.1 of Appendix C. The sample period is 1996:01-
2012:12. The predictive model considered is augmented with forward skewness coefficients. Individual coefficient
results regarding the constant term, term spread and forward variances have been omitted for brevity. Adj. R?
and Adj. R? denote the adjusted R? with and without forward skewness coefficients respectively. Significance
tests are based on the covariance matrix suggested by Hodrick (1992) with lag length equal to the forecasting
horizon. Individual coefficient t-statistics can be found in parentheses. *** ** and * denote significance at 1%,
5% and 10% level respectively. P-values of Wald tests of joint significance for forward variances and forward
skewness coefficients are reported at the last two columns.
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Table 4.9: Predicting money, credit and yield variables for 6- and 12-month horizon - Newey-West covariance
matrix

Fsc® FSCc® FSC®  FsSCc® ‘ Adj. R?* Adj. R? | Joint FV Joint FSC

Panel A: h=6

M1 0.266 -0.283 -0.739* -0.326 0.331 0.323

(0.313) (-0.437)  (-1.759)  (-0.473) 0.028 0.171
M2 (real) -0.319 0.164 -0.119 0.205 0.067 0.077

(-0.640) (0.450) (-0.616) (0.580) 0.000 0.859
Reserves tot 10.938 -0.121 -9.856 16.644 0.045 0.018

(1.307) (-0.020)  (-1.284) (1.054) 0.077 0.683
C&I loans -3.490%** -0.789 -0.556  -2.352%*%* 0.413 0.243

(-2.672) (-0.897)  (-0.560)  (-2.629) 0.000 0.000
CPI -0.021 -0.041 0.064 -0.310 0.113 0.101

(-0.111)  (-0.194)  (0.407)  (-1.602) 0.026 0.515
3-m t-bill -0.175 0.019 0.164** -0.132 0.060 0.061

(-1.099) (0.128) (2.066) (-1.176) 0.081 0.280
6-m t-bill -0.181 -0.002 0.164** -0.138 0.087 0.083

(-1.173)  (-0.016)  (2.347)  (-1.258) 0.018 0.184
1-yr t-bond -0.156 -0.023 0.150** -0.145 0.081 0.079

(-1.021) (-0.142) (2.071) (-1.300) 0.011 0.293
5-yr t-bond 0.106 -0.114 0.129 -0.122 0.051 0.056

(0.678)  (-0.645)  (1.409)  (-1.221) 0.002 0.420

Panel B: h=12

M1 -0.156 0.765%  -1.055** -0.588 0.369 0.339

(-0.257) (1.720) (-1.996)  (-1.026) 0.020 0.139
M2 (real) -0.471 0.783***  _-0.198 -0.048 0.066 0.034

(-1.441) (3.410) (-0.934)  (-0.171) 0.000 0.012
Reserves tot 3.284 8.651 -15.066 7.187 0.035 0.010

(0.546) (1.041) (-1.409) (0.932) 0.007 0.724
C&I loans -3.485%** -1.068 0.370  -2.977FF* 0.482 0.260

(-2.757) (-0.895) (0.331) (-4.101) 0.000 0.000
CPI 0.077 -0.405%**  0.135 -0.237** 0.222 0.095

(0.645) (-3.154) (1.142) (-2.264) 0.000 0.004
3-m t-bill -0.095 -0.076 0.193* -0.119 0.142 0.138

(-0.536) (-0.418) (1.875) (-1.141) 0.355 0.371
6-m t-bill -0.092 -0.080 0.190** -0.134 0.161 0.154

(-0.525) (-0.456) (1.976) (-1.256) 0.206 0.313
1-yr t-bond -0.058 -0.081 0.169%* -0.140 0.152 0.147

(-0.330) (-0.486) (1.728) (-1.274) 0.155 0.392
5-yr t-bond 0.097 -0.075 0.049 -0.041 0.033 0.045

(0.670) (-0.705) (0.558) (-0.431) 0.134 0.824

This table reports the results of predictive regressions of 6- and 12-month growth (or change) in money, credit
and yield variables. Details about the variables can be found in Table C.1 of Appendix C. The sample period is
1996:01-2012:12. The predictive model considered is augmented with forward skewness coefficients. Individual
coefficient results regarding the constant term, term spread and forward variances have been omitted for brevity.
Adj. R? and Adj. R? denote the adjusted R? with and without forward skewness coefficients respectively.
Significance tests are based on the covariance matrix suggested by Newey and West (1987) with lag length equal
to the forecasting horizon. Individual coefficient t-statistics can be found in parentheses. *** ** and * denote
significance at 1%, 5% and 10% level respectively. P-values of Wald tests of joint significance for forward variances
and forward skewness coefficients are reported at the last two columns.
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Table 4.10: Predicting money, credit and yield variables for 6- and 12-month horizon - Hodrick covariance matrix

FSC®  FSC® FsC®  FSCW | Adj. R* Adj. R? | Joint FV Joint FSC

Panel A: h=6

M1 0.266 -0.283 -0.739* -0.326 0.331 0.323

(0.346)  (-0.589)  (-1.811)  (-0.549) 0.734 0.118
M2 (real) -0.319 0.164 -0.119 0.205 0.067 0.077

(-0.834)  (0.740)  (-0.557)  (0.800) 0.027 0.646
Reserves tot  10.938* -0.121 -9.856* 16.644 0.045 0.018

(1.807)  (-0.044)  (-1.831)  (1.530) 0.175 0.165
C&I loans -3.490*** -0.789 -0.556 -2.352% %% 0.413 0.243

(-3.441) (-0.978) (-0.740) (-3.048) 0.003 0.000
CPI -0.021 -0.041 0.064 -0.310% 0.113 0.101

(-0.135)  (-0.313)  (0.420)  (-1.843) 0.161 0.238
3-m t-bill -0.175 0.019 0.164* -0.132 0.060 0.061

(-1.535) (0.171) (1.850) (-1.587) 0.001 0.225
6-m t-bill -0.181 -0.002 0.164** -0.138* 0.087 0.083

(-1.609)  (-0.025)  (2.081)  (-1.806) 0.002 0.148
1-yr t-bond -0.156 -0.023 0.150* -0.145* 0.081 0.079

(-1.280)  (-0.206)  (L.747)  (-1.712) 0.009 0.232
5-yr t-bond 0.106 -0.114 0.129 -0.122 0.051 0.056

(0.634)  (-0.831)  (1.241)  (-0.938) 0.092 0.452

12-month

M1 -0.156 0.765* -1.055%* -0.588 0.369 0.339

(-0.288)  (1.907)  (-2489)  (-1.252) 0.182 0.002
M2 (real) -0.471* 0.783%** -0.198 -0.048 0.066 0.034

(-1.760)  (4.025)  (-0.902)  (-0.242) 0.179 0.002
Reserves tot 3.284 8.651%*  -15.066** 7.187 0.035 0.010

(0.967) (1.997) (-2.032) (1.522) 0.111 0.271
C&I loans -3.485***%  _1.068* 0.370 -2.97TH** 0.482 0.260

(-4.172)  (-1.750)  (0.590)  (-4.697) 0.000 0.000
CPI 0.077 -0.405*** 0.135 -0.237%* 0.222 0.095

(0.629) (-3.312) (0.851) (-2.221) 0.006 0.005
3-m t-bill -0.095 -0.076 0.193**%  -0.119%** 0.142 0.138

(-0.874)  (-0.776)  (2.287)  (-2.734) 0.000 0.036
6-m t-bill -0.092 -0.080 0.190%*  -0.134%** 0.161 0.154

(-0.860)  (-0.843)  (2.434)  (-3.125) 0.000 0.017
1-yr t-bond -0.058 -0.081 0.169%*  -0.140%** 0.152 0.147

(-0.498)  (-0.791)  (1.983)  (-2.998) 0.000 0.029
5-yr t-bond 0.097 -0.075 0.049 -0.041 0.033 0.045

(0.675)  (-0.657)  (0.502)  (-0.457) 0.013 0.852

This table reports the results of predictive regressions of 6- and 12-month growth (or change) in money, credit and
yield variables. Details about the variables can be found in Table C.1 of Appendix C. The sample period is 1996:01-
2012:12. The predictive model considered is augmented with forward skewness coefficients. Individual coefficient
results regarding the constant term, term spread and forward variances have been omitted for brevity. Adj. R?
and Adj. R? denote the adjusted R? with and without forward skewness coefficients respectively. Significance tests
are based on the covariance matrix suggested by Hodrick (1992) with lag length equal to the forecasting horizon.
Individual coefficient t-statistics can be found in parentheses. *** ** and * denote significance at 1%, 5% and
10% level respectively. P-values of Wald tests of joint significance for forward variances and forward skewness
coefficients are reported at the last two columns.
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Figure 4.1: Forward variances and skewness coefficients
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This figure plots the monthly time series of the forward S&P 500 index moments for the period
1996:01-2012:12. The left panels show forward variances while the right panels show forward
skewness coefficients.
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Figure 4.2: Changes in adjusted R? across forecasting horizon for real activity vari-
ables
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This figure plots the change in adjusted R? across horizons when forward skewness coefficients are
included into the predictive model of real activity variables. Details about the variables can be
found in Table C.1 of Appendix C.
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Figure 4.3: Changes in adjusted R? across forecasting horizon for money, credit and
treasury yield variables
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This figure plots the change in adjusted R? across horizons when forward skewness coefficients are
included into the predictive model of money, credit and treasury yield variables. Details about the
variables can be found in Table C.1 of Appendix C.
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Figure 4.4: Changes in adjusted R? across forecasting horizon for excess stock market
returns
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This figure plots the change in adjusted R? across horizons when forward skewness coefficients are

included into the predictive model of stock market excess returns.
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Figure 4.5: Changes in adjusted R? across forecasting horizon for risk and uncer-

tainty variables
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This figure plots the change in adjusted R? across horizons when forward skewness coefficients

are included into the predictive model of systemic risk, tail risk, equity uncertainty and economic
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Chapter 5

Dispersion in Options Traders’
Expectations and Return

Predictability

5.1 Introduction

A growing body of studies has shown that various measures of dispersion in expec-
tations can provide significant stock return predictability at both an individual and
an aggregate level. There are two main strands in this literature. A first stream of
papers assumes a heterogeneous investors framework and uses dispersion to proxy
for the level of disagreement among market participants (e.g. Diether, Malloy and
Scherbina, 2002; Yu, 2011; Jiang and Sun, 2014). Disagreement can affect asset
returns either due to the existence of trading frictions in the market or by inducing
investors to engage into risk-sharing acts that affect asset prices in equilibrium. A
second strand of the literature assumes a homogeneous investors framework and uses
dispersion to proxy for the level of ambiguity in the market (e.g. Anderson, Ghysels
and Juergens, 2009; Drechsler, 2013). Ambiguity can affect asset returns due to the
fact that naturally investors exhibit aversion to events with unknown probability
distributions.

In this chapter, we explore the information content of the dispersion in options
traders’ expectations for future market excess returns. In particular, since an option
constitutes a direct bet on the future price of the underlying asset, the trades in

options of different strike prices can be interpreted as the outcomes of different ex-
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Chapter 5. Dispersion in Options Traders’ Expectations and Return Predictability

pected returns. Motivated by the above simple observation we model the dispersion
in options traders’ expectations via the dispersion in the volume-weighted strike
prices of equity index option contracts.

Compared to prior studies that develop dispersion in beliefs measures based on
analysts’ forecasts or mutual fund and individual investor portfolio holdings,! the
dispersion in options traders’ expectations exhibits several advantageous character-
istics. First, it stems from all the trades that take place in a highly liquid options
market, thus capturing all the expectations that are considered probable enough
to trigger a trade.? In contrast, analysts’ forecasts constitute only a limited set of
opinions,® and have been found to be affected by agency issues between firms and
investment banks and to be prone to analysts’ behavioral biases (Dechow, Hutton
and Sloan, 2000; Daniel, Hirshleifer and Teoh, 2002; Cen, Hilary and Wei, 2013).
Second, it is directly related to expected returns, while analysts’ predictions refer
to alternative economic indicators such as corporate earnings and hence supplemen-
tary modeling assumptions are needed to derive expectations about returns. Third,
unlike dispersion measures constructed from analysts’ forecasts or mutual fund hold-
ings data, it can be estimated even on a higher frequency than monthly or quarterly,
thus providing a much more realistic picture of the evolution of dispersion in ex-
pectations across time. Moreover, the Chicago Board Options Exchange (CBOE)
provides freely on its website the intraday trading activity of option contracts, thus
making it easy for investors to use the dispersion in options traders’ beliefs mea-
sure for investment decisions. Fourth, it can equally accommodate optimistic and
pessimistic beliefs since it is hardly influenced by the short-sale constraints that are

present in the equity market and affect both individual and institutional investor

' Diether, Malloy and Scherbina, 2002; Park, 2005; Anderson, Ghysels and Juergens, 2005, 2009;
Yu, 2011 and Buraschi, Trojani and Vedolin, 2014 among others utilize the dispersion in analysts’
forecasts, while Chen, Hong and Stein, 2002; Goetzmann and Massa, 2005 and Jiang and Sun,
2014 create dispersion measures from mutual fund and individual investor portfolio holdings.

2The available range of strike prices for index options is determined by the underlying index
fluctuations and the customer requests. CBOE Rule 24.9.04 specifies that typically strike prices
for index options should be within 30% of the current index value, but even more extreme strike
prices are permitted provided there is demonstrated customer demand.

3For example, the average number of forecasters in Anderson, Ghysels and Juergens (2009) is
36.
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portfolio holdings.* Finally, it can explicitly distinguish between different levels of
positive and negative expectations, while this is not straightforward in the case of
dispersion measures derived from investors’ positions in the equity market.

Our results establish a significant and robust negative relationship between the
dispersion in options traders’ beliefs and future market returns. This result allows
for a dual interpretation: If the dispersion in options trading volume across strikes
proxies for the level of disagreement in the underlying asset market, then this finding
is in line with the models of Miller (1977) and Scheinkman and Xiong (2003), who
show that in the presence of short-sale constraints asset prices reflect only the views
of the most optimistic investors since pessimistic investors sit out of the market.
Therefore, higher disagreement is accompanied by higher asset prices and lower
subsequent returns. In the context of the aggregate market, the above limits-to-
arbitrage explanation can be supported by the empirical findings of D’Avolio (2002)
and Lamont and Stein (2004) who show that only a very limited fraction of the total
stocks is actually sold short.

Alternatively, if we consider a framework wherein the underlying asset market
participants have homogeneous beliefs and update their views by observing - to
some extent - the trading activity in the options market,® then the dispersion in
options trading volume across strikes can be regarded as a proxy for the represen-
tative investor’s ambiguity about the true return generating model. In this respect,
the range of strike prices with traded options can be interpreted as the set of all
alternative models considered plausible, while the proportion of trading volume at-
tributed to each strike price can be regarded as the probability attached to each
model. This framework is intuitive since expected market returns are driven by
aggregate macroeconomic factors that are easily observable and therefore the like-
lihood that different expectations - and hence trades - are induced by information

asymmetry is rather low. In such a case, the documented negative relation is in line

4Almazan, Brown, Carlson and Chapman (2004) provide evidence showing that approximately
only 3% of all mutual funds implement short-selling.

5In fact, option-implied sentiment indicators such as the put-call trading volume ratio are widely
used by investors for investment allocation decisions.
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with the recursive smooth ambiguity model of Hayashi and Miao (2011) and Ju and
Miao (2012) in case of a preference for consumption smoothing over time, i.e. an
elasticity of intertemporal substitution (EIS) lower than one. In particular, in this
setting higher ambiguity increases the pricing kernel but also increases the demand
for the risky asset since investors are willing to substitute current consumption with
increased future consumption. This positive covariance between the pricing kernel
and the risky asset return leads to a decreased equity premium.

The empirical results show that at the 1-month horizon, the suggested measure of
dispersion in expectations is a strong predictor of future excess market returns under
various model specifications (univariate and multivariate). Moreover, it outperforms
in terms of predictive power all other predictors examined in prior literature apart
from the variance risk premium (VRP), which explains a higher proportion of the
variation in future returns. In addition, it offers additional predictability when com-
bined with VRP in the same forecasting model, thus showing that the two variables
have different information content and can be used complementarily for predicting
future market returns.® The results from long-horizon regression analysis show that
our dispersion in beliefs measure remains significant at all horizons and for horizons
of 12 and 24 months ahead exhibits an adjusted R? higher than 10% outperforming
the majority of the alternative predictors. This result is remarkable because unlike
the other successful at long horizons predictors, the dispersion measure exhibits a
relatively low persistence (about 0.50) hence alleviating potential concerns regarding
spurious predictability:.

The results of out-of-sample predictive analysis reveal that the dispersion of
options traders’ beliefs has significantly higher forecasting power than the historical

mean and it outperforms all other predictive variables apart from VRP. Following

6Compared to the VRP, which has emerged as the primary option-implied return predictor, the
dispersion in options traders’ expectations is conceptually different. First, it is not extracted from
option prices and therefore it is not derived from the risk-neutral distribution. Second, while the
level of trading volume could potentially have an effect on option prices and subsequently on VRP
in accordance with the limits to arbitrage hypothesis (Bollen and Whaley, 2004), high trading
volume is not necessarily associated with high dispersion across different moneyness categories.
Therefore, the market forces that influence VRP do not have an apparent effect on the dispersion
in options trading volume across strike prices. In fact, the empirical analysis suggests that the
correlation between the two measures is close to zero.
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Campbell and Thompson (2008), imposing a constraint of positive forecasted equity
premia leads to further improvement of the out-of-sample predictability of dispersion
in beliefs for the excess market return.

The results are also economically significant since an active trading strategy
based on the out-of-sample predictive power of the proposed dispersion in expecta-
tions measure offers increased utility to a mean-variance investor that would other-
wise follow a passive buy-hold strategy. Moreover, in terms of economic significance
dispersion in expectations outperforms almost all alternative predictors and when
combined with the VRP it improves the performance of the trading strategy. There-
fore, it is confirmed again that the dispersion of options traders’ opinions and the
VRP act as complementary variables and their joint use for investment decisions can
prove very beneficial to an active investor. The performance of rotation strategies
that rely on the out-of-sample predictive power of the dispersion in beliefs measure
for several equity portfolio excess returns reveal that its information content is eco-
nomically important not only for the aggregate market but also for the majority of
the portfolios sorted on different stock characteristics.

Finally, we compare the dispersion in options trading volume across strike prices
with other popular option-implied variables in order to alleviate potential concerns
about the information embedded in our measure. More specifically, the alternative
option-implied variables include the slope of the implied volatility smirk, the risk-
neutral variance, skewness and kurtosis, and the out-of-the-money (OTM) puts to
the at-the-money (ATM) calls open interest ratio proxying for investors’ hedging
pressure. Higher dispersion in options traders’ beliefs is associated with higher
variance, more negative skewness, higher kurtosis, more negatively sloped volatility
smirk, and less hedging pressure. However, the highest correlation coefficient, which
is the one between our dispersion in expectations variable and risk-neutral variance,
is only 0.29 revealing that the suggested measure does not proxy for any type of
variance or tail risk and is not driven by the well-known hedging demand for OTM

puts. Bivariate and multivariate regression analysis confirms that in the presence of
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the alternative option-implied measures, the dispersion in options trading volume
across strikes remains highly significant in forecasting subsequent market returns at
all horizons.

The remainder of the chapter is structured as follows. Section 5.2 describes
the data and the construction of the main variables used in the study. Section
5.3 provides the empirical evidence from in-sample regression analysis. Section 5.4
discusses the results from out-of-sample regression analysis. Section 5.5 presents the
economic significance of the out-of-sample empirical evidence. Section 5.6 presents
the comparison between the dispersion in options trading volume and other option-

related variables. Finally, Section 5.7 concludes.

5.2 Variables Construction and Data

This section first describes the construction of our dispersion in expectations mea-
sure, then discusses the alternative predictors used in the study and finally provides

some summary statistics.

5.2.1 Dispersion in options traders’ beliefs

We construct a measure of dispersion in options traders’ expectations by using
trading volume information across strike prices. Since a trade on an option contract
is a direct bet on the future asset price, the strike price at which the option is traded
reveals a specific expectation about the asset return. For example, a trade on a high
strike price option is indicative of an optimistic view about the future asset return,
while a trade on a low strike price option is indicative of a pessimistic view about
the future asset return. Motivated by this observation, we model the dispersion of
expected market returns through the dispersion in the volume-weighted strike prices
of option contracts on the Standard and Poors (S&P) 500 index. More specifically,

we construct the following two measures that proxy for the dispersion of the expected
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returns distribution:
K

Xj — ijXj

=1

K
DISP = w;

j=1

(5.1)

K K 2
DISP* = | w; <Xj ~ ijxj> , (5.2)
j=1 j=1

where w; is the proportion of the total trading volume attributed to the jth strike
price X;. DISP corresponds to the mean absolute deviation of the (volume-weighted)
strike prices, while DISP* corresponds to the respective standard deviation. The
two measures have the same information content but DISP* is always higher or
equal to DISP due to Jensen’s inequality.

To construct the above variables, we use S&P 500 index call and put options’
volume data. Our sample period is 1996:01 to 2012:12 and for each month we
estimate DISP and DISP* using options on the last trading day of the month with
moneyness below 0.975 or above 1.025 and maturities between 10 and 360 calendar

" We discard near-the-money options since they are possibly traded as part

days.
of straddles and strangles and therefore reflect investors’ expectations about future
market volatility and not returns (Ni, Pan and Poteshman, 2008). However, keeping
such options in our sample provides results of very similar statistical significance
with slightly lower coefficients of determination for long horizons. We consider
options with maturities up to one year ahead since we want to capture investors’
expectations regarding both short-term and long-term market returns. Consistent
with this intuition, unreported results show that using a DISP (or DISP*) measure
created solely by short-maturity options exhibits similar predictability for short
horizons but has limited power for long horizons.

The dispersion in options traders’ expectations can have two interpretations.
First, it can be considered a proxy of the disagreement among participants in the

underlying asset market similarly to Park (2005) and Yu (2011). Such a disagree-

ment can have an impact on future asset returns either due to the existence of

TOur sample is restricted to the 1996:01 - 2012:12 period because in the pre-1996 period the
relatively low liquidity of options is accompanied by very little variation in DISP and DISP*.
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short-sale constraints (Miller, 1977; Scheinkman and Xiong, 2003) or due to risk-
sharing effects that impact asset prices in equilibrium (Basak, 2000, 2005; Buraschi
and Jiltsov, 2006). Second, it can be regarded as a measure of ambiguity, simi-
larly to Anderson, Ghysels and Juergens (2009) and Drechsler (2013). In particular,
considering a framework wherein participants in the underlying asset market have
homogeneous beliefs which are driven at least partly by the trading activity in the
options market, the dispersion in options traders’ expectations can serve as proxy
for the set of alternative return generating models that a representative investor is
exposed to. In this case, a high (low) dispersion in options traders’ opinions implies
that it is highly likely that the participants in the underlying asset market exhibit
high (low) ambiguity about the true return generating model. Since investors on
average exhibit ambiguity aversion, i.e. they are averse to events with unknown
probability distributions of all possible outcomes (Ellsberg, 1961), it is apparent
that market discount rates should reflect investors’ aversion not only to risk but
also to ambiguity (Epstein and Wang, 1994; Chen and Epstein, 2002; Ju and Miao,
2012; Drechsler, 2013).

5.2.2 Other variables

We compare the predictive ability of the proposed dispersion in expectations mea-
sures with a set of variables that have been found in the literature to predict stock
market returns. The main alternative predictor is the variance risk premium (VRP)
which was introduced by Bollerslev, Tauchen and Zhou (2009) and has been the key
variable in a series of recent studies that examine its predictive power for stock mar-
ket returns (Drechsler and Yaron, 2011; Bollerslev, Marrone, Xu and Zhou, 2012;
Zhou, 2012) or the cross-section of stock returns (Bali and Hovakimian, 2009 and
Han and Zhou, 2011). VRP is defined as the difference between the expected 1-
month ahead stock return variance under the risk neutral measure and the expected

1-month ahead variance under the physical measure.® When investors are more

8Following Bollerslev, Tauchen and Zhou (2009), we use the past 1-month realized variance as
the expected 1-month ahead variance under the physical measure. Our results remain robust to
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averse to future variance risk, they are willing to pay more in order to hedge against
variance and therefore increase the VRP. Monthly VRP data are obtained from Hao
Zhou’s website.” Unlike VRP, the dispersion in options traders’ expectations does
not depend on the risk-neutral distribution extracted from option prices. Moreover,
while an increased level of trading volume could be potentially associated with high
buying pressure that would increase risk-neutral variance due to limits to arbitrage
(Bollen and Whaley, 2004), there exists no obvious link between the dispersion in
trading volume across strike prices and the resulting risk-neutral variance.

The rest of the predictor variables include the tail risk (TAIL, Kelly and Jiang,
2014), the aggregate dividend-price ratio (d-p, Fama and French, 1988 and Camp-
bell and Shiller, 1988a,b), the market dividend-payout ratio (d-e, Campbell and
Shiller, 1988a and Lamont, 1998), the yield gap (YG, Maio, 2013), the yield term
spread (TERM, Campbell, 1987 and Fama and French, 1989), the default spread
(DEF, Keim and Stambaugh, 1986 and Fama and French, 1989), the relative short-
term risk free rate (RREL, Campbell, 1991) and the realized stock market vari-
ance (SVAR, Guo, 2006).1° TAIL captures the probability of extreme negative
market returns and is constructed by applying the Hill’s (1975) estimator to the
whole NYSE/AMEX/NASDAQ cross-section (share codes 10 and 11) of daily re-
turns within a given month. d-p is the difference between the log aggregate annual
dividends and the log level of the S&P 500 index, while d-e is the difference between
the log aggregate annual dividends and the log aggregate annual earnings. YG
is the difference between the aggregate earnings-price ratio and the 10-year bond
yield, both in levels. TERM is the difference between the 10-year bond yield and the
1-year bond yield, while DEF is the difference between BAA and AAA corporate
bonds yields from Moody’s. Finally, RREL is the difference between the 3-month
t-bill rate and its moving average over the preceding twelve months and SVAR is

the monthly variance of the S&P 500 index. Data on monthly prices, dividends,

the choice of the VRP proxy.

https://sites.google.com/site/haozhouspersonalhomepage

10We have also considered as alternative predictors the consumption-wealth ratio of Lettau and
Ludvigson (2001) and the stock market illiquidity of Amihud (2002). The respective results are
reported in Tables D.1 - D.3 of Appendix D.
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and earnings are obtained from Robert Shiller’s website.!! All interest rate data are
obtained from the FRED database of the Federal Reserve Bank of St. Louis. SVAR
is downloaded from Amit Goyal’s website.?

As a proxy for stock market returns we use the value-weighted index from the
Chicago Center for Research in Security Prices (CRSP). In order to create a series
of monthly excess stock market returns we subtract from the monthly log-return the
(log of) the 1-month Treasury bill rate obtained from Kenneth French’s website.!?
Longer horizons continuously compounded excess market returns are created by

taking cumulative sums of monthly excess market returns.

5.2.3 Summary statistics

Figure 5.1 plots DISP along with VIX, a popular investor fear indicator captur-
ing market forward-looking variance risk.'* Both series are standardized for easier
comparison. While the two series exhibit some common variation (the correlation
coefficient is 29%) they tend to peak at different times. For example, unlike VIX,
DISP is increasing but not very high during the 1997 Asian crisis and the 1998 Rus-
sian crisis, showing that there was no much divergence of opinions about the state
of the economy during those periods. On the contrary, it exhibits several spikes
during the period of the dot-com bubble showing that there were concerns about
the very high stock market prices driven by the technology sector. In particular,
DISP peaks in 2000:03 when NASDAQ) reaches its all-time record high and the U.S.
Federal Reserve increases the fed funds rate for a second time within two months,
in 2000:09 when NASDAQ slightly recovers before it finally bursts, and finally in
2001:01 when the fed funds rate is decreased twice within one month just before the
recession period begins. DISP also peaks in 2001:09 due to the 9/11 terrorist attack,

in 2005:01 possibly due to the first concerns expressed by Robert Shiller regarding

Uhttp://www.econ.yale.edu/~shiller/data.htm
2http://www.hec.unil.ch/agoyal
13http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
14The respective graph for DISP* is very similar and thus omitted.
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the existence of a bubble in the US housing market!® and in 2007:11 just before the
beginning of the recent recession period. After the collapse of Lehman Brothers in
2008:09 it increases but not as extremely as VIX showing that given the apparently
high risk in the market, there was no extreme dispersion in options traders’ expecta-
tions. Finally, DISP substantially increases during the latest period of the European
sovereign debt crisis and takes its all-time high value in 2012:03 after the Eurogroup
agreement regarding the second bailout package for Greece, following the concerns
about the success of the Private Sector Involvement (PSI) program.

Table 5.1 Panel A reports descriptive statistics about the dispersion in options
traders’ expectations measures and the alternative predictive variables, while Panel
B presents the respective correlation coefficients. Both dispersion in expectations
measures exhibit very similar statistics with slightly positive skewness and excess
kurtosis. Unlike the majority of the alternative predictors, they are only moder-
ately persistent with autocorrelation coefficients of 0.488 and 0.505 for DISP and
DISP* accordingly. This mitigates the problem of potentially spurious regression
results caused by highly persistent regressors (see Valkanov, 2003; Torous, Valkanov,
and Yan, 2004; Boudoukh, Richardson, and Whitelaw, 2008). VRP has also a low
autocorrelation coefficient of 0.210 and exhibits negative skewness and very large
kurtosis. DISP and DISP* are very highly correlated (0.96) and close to uncorre-
lated with VRP (-0.03 and -0.07 for DISP and DISP* respectively) showing that
the dispersion in options traders’ beliefs contains different information from VRP.
Finally, dispersion in beliefs is negatively correlated with TAIL and to a lesser ex-
tent with d-p and RREL, while being weakly positively correlated with YG, TERM,
DEF, and SVAR. The respective correlations with d-e are very close to zero. Over-
all, both measures of dispersion in options traders’ beliefs are not highly correlated

with any of the alternative predictors, the biggest correlation occurring with TAIL.

15Tn anticipation of the publication of the second edition of Robert Shiller’s “Irrational Exuber-
ance”, on January 25" 2005 CNN Money publishes a feature on the possibility of a housing bubble
in the US market, accompanied by an interview of Robert Shiller expressing his concerns.
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5.3 In-Sample Predictability

In order to gauge the predictive power of our proposed dispersion in expectations
measures, we run multiple-horizon regressions of excess stock market returns of the
following form:

Te€iyhh = Qp + B;th + Et4h,h; (5-3)

where regypp = (%) [rerr1 + rérpo + ... + reppy] is the annualized h-month excess
return of the CRSP value-weighted index and z; is the vector of predictors. The re-
gression analysis covers the period 1996:01-2012:12 and for each forecasting horizon
we lose h observations. Under the null of no predictability the overlapping nature
of the data imposes an M A (h — 1) structure to the error term &5 process. To
overcome this problem we base our statistical inference on both Newey and West
(1987) and Hodrick (1992) standard errors with lag length equal to the forecasting
horizon. In general, the Hodrick (1992) standard errors tend to be more conserva-
tive, especially in long horizons when the null of no predictability is true (Ang and
Bekaert, 2007) but have lower statistical power when the null is false (Bollerslev,
Marrone, Xu and Zhou, 2012). The beta coefficients reported in the subsequent

tables have been scaled and can be interpreted as the percentage annualized excess

market returns caused by a one standard deviation increase in each regressor.

5.3.1 One-month ahead predictability

Table 5.2, Panel A provides the results for 1-month ahead univariate predictive
regressions. The results show that the two dispersion in options traders’ expectations
measures are strong predictors of stock market excess returns as the null hypothesis
of no predictability is rejected at 5% level based on both Newey-West and Hodrick
standard errors. The slope estimates are negative and economically significant in
both cases: a one standard deviation increase in DISP predicts a negative annualized
market excess return of 9.68%, while a one standard deviation increase in DISP*

leads to a negative annualized market excess return of 9.20%. The adjusted R2,
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denoted by EQ, is 2.23% and 1.97% for DISP and DISP* respectively. Turning
to the rest of the predictor variables, VRP has a positive slope (16.09), which is
significant at the 1% and 5% levels based on Newey-West and Hodrick standard
errors, respectively. The corresponding forecasting ratio is relatively large (7.04%).
None of the other variables is statistically significant at the 5% level (there is only
marginal significance for both RREL and SVAR), a finding which is in line with
Goyal and Welch’s (2008) conclusion that most of the traditional predictors have
performed poorly over the last decades. Moreover, the R2s of most of the alternative
predictors are either negative or below 1% similar to Goyal and Welch (2008) and
Campbell and Thompson (2008). Again, the exceptions are RREL and SVAR, which
still deliver lower explanatory ratios than DISP.

Next, we assess the robustness of the significant results for DISP and DISP*
to the presence of other predictive variables by conducting bivariate regressions.
Panel B of Table 5.2 reports the results. The significance of both DISP and DISP*
remains intact in all cases, showing that the information content of the dispersion
in options traders’ beliefs is distinct from that of other variables that have been
used in the literature. It is also interesting to note, that the combination of DISP
(DISP*) with VRP renders both variables strongly significant and increases R2
to 9.10% (8.51%), showing that the dispersion in options traders’ beliefs and the
variance risk premium are complementary measures and capture different features of
investors’ attitude. Since our dispersion in expectations measures and VRP appear
to be the only successful predictors during our sample period, as a final robustness
exercise we run trivariate predictive regressions considering combinations of DISP
(or DISP*), VRP, and each of the other variables. Results in Panel C of Table 5.2
show that the dispersion in options trading volume across strike prices and VRP
continue to be significant at either 1% or 5% level in almost all the cases. Moreover,
now YG becomes also strongly significant with a positive predictive slope, in line
with Maio (2013).

Overall, the results in Table 5.2 suggest that in our sample period only the dis-

137



Chapter 5. Dispersion in Options Traders’ Expectations and Return Predictability

persion in options trading volume across strikes and VRP are consistently successful
in predicting excess market returns, and this predictive power is enhanced when they
are combined in the same model.

The negative sign of the predictive slopes for DISP and DISP* shows that higher
dispersion in options traders’ expectations leads to lower future market excess re-
turns. This can be interpreted in two ways. If the dispersion in options trading
volume across strikes proxies for the level of disagreement in the equity market, the
negative sign is in line with the models of Miller (1977) and Scheinkman and Xiong
(2003). In particular, in the presence of short-sale constraints, the price of the as-
set is determined by the valuations of the most optimistic investors as pessimistic
investors have no means to express their negative views and sit out of the market.
Therefore, higher disagreement is associated with higher prices and subsequent lower
returns. The above limits-to-arbitrage argument appears empirically well-founded
as D’Avolio (2002) reports that only 7% of the total short-sale capacity is actually
used and Lamont and Stein (2004) show that during the period 1995-2002 the ratio
of the market value of shares sold short to the total value of shares outstanding was
always below 4%.

If the dispersion in options trading volume across strikes is regarded as a proxy for
the ambiguity of a representative equity market investor, then the negative sign can
be explained in the context of the recursive smooth ambiguity model of Klibanoff,
Marinacci and Mukerji (2005, 2009), Hayashi and Miao (2011) and Ju and Miao
(2012) assuming an EIS lower than one. More specifically, in Ju and Miao’s (2012)
setting periods of high ambiguity are associated with an increased pricing kernel
since investors are concerned about the probability of the true expected growth rate
of the economy being lower than the one considered. If EIS is higher than one,
ambiguity will lower the demand for the risky asset thus leading to a lower price
and current period return. The negative covariance between the pricing kernel and
the risky asset return will increase the equity premium. By contrast, if EIS is lower

than one, ambiguity will increase the demand for hedging purposes thus leading
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to a higher price and current period return. The positive covariance between the
pricing kernel and the risky asset return will therefore decrease the equity premium.
The proper level of the representative investor’s EIS constitutes one of the most
long-lasting debates in the macro-finance literature (see Beeler and Campbell, 2012

and Bansal, Kiku and Yaron, 2012, for recent discussions on the topic).

5.3.2 Long-horizon predictability

Table 5.3 provides the results for 3-, 6-, 12- and 24-month ahead univariate predictive
regressions. Both DISP and DISP* consistently forecast negative excess market
returns and are significant at either 1% or 5% level in all cases apart from the
6-month horizon with Hodrick standard errors when both DISP and DISP* are
significant at 10% level. The slope estimates continue to be economically significant
as a one standard deviation increase in DISP (DISP*) predicts a negative annualized
market excess return in the range of 5.19%-7.39% (5.10%-7.10%). In terms of fit, R2
stays between 3% and 4% for 3- and 6- month horizons but increases substantially for
longer horizons and exceeds 10% and 12% for 12- and 24-month horizons respectively.
This last result is of particular importance given the relatively low persistence of the
proposed dispersion in beliefs variables. The only variables that exhibit higher R? at
the 24-month horizon are d-p, d-e, and TERM all of which have an autocorrelation
coefficient higher than 0.98. Therefore, we conclude that DISP and DISP* can
successfully capture divergence of opinions about both short and long horizon market
returns.

Turning to the alternative predictors, VRP remains strongly significant for 3- and
6- month horizons with large §2S, yet its predictive power becomes less significant
for longer horizons as in Bollerslev, Tauchen and Zhou (2009), Drechsler and Yaron
(2011) and Bollerslev, Marrone, Xu and Zhou (2012). From the rest of the variables
d-p, d-e, TERM, DEF, and SVAR become significant as the horizon increases with
almost monotonically increasing Rs. Moreover, their Newey-West t-statistics are

always considerably higher than the Hodrick t-statistics implying that in many of
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these cases the significance may have arisen spuriously due to the high persistence
of the predictive variables (Ang and Bekaert, 2007).

Since the results in Table 5.3 suggest that only DISP, DISP*, and VRP exhibit a
strong and consistent predictive pattern across all horizons, we proceed by examining
trivariate 3-, 6-, 12- and 24-month ahead regressions considering combinations of
DISP (or DISP*), VRP, and each of the other variables. The results reported in
Table 5.4 suggest that the significance of DISP and DISP* follows the same pattern
as in the univariate regressions. In particular, Panels A and B show that DISP
and DISP* are significant in all the cases for the 3-month horizon and in all but
one case (when dispersion in expectations and VRP are combined with RREL) for
the 6-month horizon. The predictive slopes remain economically significant ranging
from -3.46 to -10.10. In all the models considered, VRP continues to be strongly
significant. Panels C and D show that for 12- and 24-month horizons both DISP
and DISP* are again strongly significant in almost all the cases with economically
significant slopes ranging from -3.15 to -8.56. As in the univariate analysis, the
significance of VRP for 12- and 24-month horizons is weaker.

In summary, the empirical evidence regarding long-horizon predictability con-
firms that the dispersion in options traders’ beliefs embeds important information
about future excess market returns that is not included in any of the other vari-
ables considered. Moreover, a combination of the dispersion in beliefs and VRP can

provide significant long-horizon predictive power for market returns.

5.4 Out-of-Sample Predictability

The results of the previous section provide convincing evidence that the dispersion
in options traders’ beliefs can significantly predict future excess stock market returns
in-sample (IS). In this section, we evaluate the out-of-sample (OS) performance of
our dispersion in beliefs measures following Lettau and Ludvigson (2001), Goyal
and Welch (2003, 2008), Guo (2006), and Campbell and Thompson (2008) among

others. The purpose of this exercise is to assess the usefulness of the dispersion in
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options trading volume across strike prices for an investor who has access only to
real time data when making her forecasts and also to gauge regression parameter
instability over time. Following the literature we mainly rely on OS regressions
of 1-month horizon but for robustness purposes we also report results for 3- and 6-
month horizons, keeping in mind the relatively low statistical power of OS regression
analysis compared to IS analysis (Inoue and Kilian, 2004).

As in Goyal and Welch (2008), Campbell and Thompson (2008), Rapach, Strauss
and Zhou (2010), and Ferreira and Santa-Clara (2011) we estimate the model in
equation (5.3) recursively using the first s = sq...7" — h observations and based on
the estimated parameters we form our OS forecasts for the expected excess market

return using the concurrent values of the predictor variables:
7/'\€s+h,h = a37h + ,B;,hzs. (54)

The initial estimation period is from 1996:01-1999:12 and the first prediction is made
for 2000:01. This way we create a series of Tpg OS forecasts that is compared to a
series of recursively estimated historical averages, which correspond to OS forecasts
of a restricted model with only a constant as a regressor. We employ four measures to
assess the OS predictability performance of our dispersion in expectations measures.

The first measure is the OS R? denoted by R%¢ which takes the form:

MSEy

R2 =1--2"U

(5.5)
where MSEy = ﬁ ZtT:_Sh (recrnn — 7‘\et+h7h)2 is the mean square error of the unre-
stricted model and M SER = ﬁ Zz:sh (rewrnn — fét+h7h)2 is the mean square error
of the restricted model with re;, ) being the recursively estimated historical av-
erage. R%g takes positive values whenever the unrestricted model outperforms the

restricted model in terms of predictive power (i.e. MSEy < MSER).

141



Chapter 5. Dispersion in Options Traders’ Expectations and Return Predictability

The second measure of OS performance is the F-test from McCracken (2007):

MSERr — MSEy
MSEy ’

MSE — F = (Tps — h+ 1) (5.6)

which tests whether M SEy; is statistically significantly lower than M .S FER.

The third OS performance test is the encompassing test of Clark and McCracken

(2001):
ENC — NEW = M
Tos
i [(ressnn — Terinn)” — (revrnn — Ternn) (Ferenn — Teernn)]

MSE, , (5.7)

which examines whether the restricted model encompasses the unrestricted model,
meaning that the unrestricted model does not improve the forecasting ability of the
restricted model. Statistical inference for the M SE — F and the ENC — N EW tests
relies on the critical values derived by McCracken (2007) and Clark and McCracken
(2001) using Monte Carlo simulations.

The final measure of OS forecasting performance is the constrained OS R? de-
noted by R%_,¢ suggested by Campbell and Thompson (2008). This measure is the
same with R3¢ apart from the fact that it sets the OS forecasts of the unrestricted
model equal to zero whenever they take negative values. Therefore, an investor’s real
time equity premium prediction becomes in accordance with standard asset pricing
theory.

Table 5.5 presents the results for 1-, 3- and 6-month horizon OS predictability.
In the case of 1-month horizon, DISP and DISP* exhibit positive R%4s of 1.70% and
1.55% respectively. For both measures, the M SE — F' test rejects at 5% level the null
hypothesis that the mean square error of the unrestricted model is equal to the mean
square error of the restricted model while the ENC — NEW test rejects at 5% level
the null hypothesis that the restricted model encompasses the unrestricted model.
When we impose the restriction of positive expected equity premium the results are

improved for both dispersion in beliefs measures, with RZ_,¢ becoming 2.16% for
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DISP and 2.44% for DISP*. Turning to the rest of the predictors, only VRP provides
a positive R3¢ of 7.96%. Moreover, the MSE — F and ENC — NEW tests strongly
reject the respective null hypotheses at 5% level. Since univariate analysis suggests
that only the dispersion in options trading volume across strikes and VRP have
significant OS forecasting performance, we proceed by combining the two dispersion
in options traders’ beliefs measures with VRP. The results show that the bivariate
models increase the R%g, which becomes 9.06% in the regression including DISP
and VRP and 8.56% in the case of DISP* and VRP confirming that the information
content of the dispersion in options traders’ expectations is different from that of
VRP. Moreover, the MSE — F and ENC — NEW tests reject the respective null
hypotheses even more decisively.

The results for the 3-month horizon are similar to those for the 1-month horizon
but stronger for both dispersion in beliefs measures and the VRP. This is in line
with the IS regression results presented in the previous section. In particular, DISP
(DISP*) has an R3¢ of 3.37% (3.04%) while VRP has an R%g of 12.47%. The
MSE — F and the ENC — NEW tests prodive even stronger evidence against the
respective null hypotheses. As in the 1-month horizon analysis, apart from DISP,
DISP* and VRP, none of the other predictors exhibit positive R%gs. Furthermore,
the bivariate model of the dispersion in options traders’ expectations with VRP is
even more successful in OS return predictability. The results for the 6-month horizon
are in the same vein with the evidence from the other horizons. In particular, the
R% ¢s of DISP and DISP* remain positive while the M SE—F and the ENC—NEW
tests still reject the respective null hypotheses at 5% level. Moreover, except for
VRP none of the other alternative predictors provide a positive R%g, while the
combination of DISP (or DISP*) with VRP offers even stronger OS predictability.

Overall, the empirical evidence regarding OS return predictability suggests that
only the dispersion in options traders’ expectations and VRP are successful predic-
tors at short horizons and that their predictive power is enhanced when they are

combined in one bivariate model.
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5.5 Economic Significance

In this section, we evaluate the economic significance of the information embedded in
the dispersion in options traders’ beliefs. In particular, following Goyal and Santa-
Clara (2003), Campbell and Thompson (2008), Ferreira and Santa-Clara (2011),
Rapach, Strauss, Tu and Zhou (2011) and Maio (2013, 2014) we create market-
timing and portfolio rotation strategies that rely on the OS forecasting power of the
suggested dispersion in expectations measures and the alternative predictors and

evaluate their performance.

5.5.1 Market-timing strategy

We assess the economic significance of the dispersion in options traders’ beliefs
predictability by creating an active trading strategy that is based on its OS predictive
power for 1-month ahead stock market excess returns. In particular, we follow the
procedure described in the previous section and estimate a series of OS excess market
return forecasts.'® Then we consider two scenarios: one where short-sales are not
allowed and one where short-sales are allowed. More specifically, in the first scenario

we have:

a = 1 if Fep >0

a = 0 if Fey <0, (5.8)

where a represents the portfolio weight attributed to the stock market index. In the

second scenario we have:

a = 15 if Ferq >0

a = —05 if Ferq <O0. (5.9)

16Tn this section, the term return refers to arithmetic return and not to logarithmic return.
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The realized return from the active trading strategy can be represented by:

Ry = aRppr + (1 —a) Rygp, (5.10)

where R,,;+1 denotes the arithmetic market return and Ry;, denotes the return of
the riskless asset. Therefore, following this procedure we create a series of realized
portfolio returns based on the OS forecasting power of each forecasting variable and
we compare the results with those from a buy-hold strategy. This strategy invests
only in the market in case of the first scenario and allocates 150% to the market
and -50% to the risk-free asset in case of the second scenario.

For each trading strategy, we estimate the mean portfolio return, the standard
deviation, and its Sharpe ratio. Moreover, since the Sharpe ratio weights equally
the mean and volatility of the portfolio returns, we follow Campbell and Thompson
(2008), Ferreira and Santa-Clara (2011), and Maio (2014) and additionally create a
certainty equivalent return in excess of the buy-hold strategy (ACER), assuming a
mean-variance investor with risk aversion coefficient equal to three. ACER repre-
sents the change in investor’s utility resulting from her choice to follow the active
instead of the passive trading strategy.!” As an additional performance measure
we also estimate the maximum drawdown (MDD), which represents the maximum
loss than an investor can incur if she enters the strategy at any-time during its im-
plementation period. All measures apart from the MDD are in annualized terms.
Finally, we also report the percentage of months that each active strategy goes long
the stock market index.

The performance results from the strategies are presented in Table 5.6. When
short sales are not allowed, the strategy associated with DISP exhibits a mean return

of 5.46% while the one associated with DISP* has a relatively low mean return of

17" ACER is more formally defined as:
ACER=F (Rp,t+1) —F (Rp,t+1) + % [VCLT (Rp7t+1) —Var (Rp,t—i-l)} ) (511)

where v is the risk aversion coefficient, Ry ;11 is the portfolio return of the market-timing strategy
and Ry, ;41 is the portfolio return of the buy-hold strategy.
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2.62%. Both strategies, however, exhibit remarkably low volatilities of 9.41% and
9.59% for DISP and DISP* respectively. This leads to annualized Sharpe ratios of
0.58 and 0.27 accordingly, both of which outperform the Sharpe ratio of the buy-hold
strategy (0.23). Furthermore, the ACER of the strategy based on DISP is 4.46%
per year and that of the strategy based on DISP* is 1.58%, thus showing that the
utility provided by the active strategies related to the dispersion in options traders’
beliefs is higher than the utility of the buy-hold strategy. In terms of ACER, DISP
is only outperformed by VRP, while DISP* is also outperformed by d-e and DEF.
This is because the dispersion in options traders’ beliefs (and especially DISP*)
goes long the risky asset in about only half of the periods thereby avoiding a lot
of negative market return realizations, but also ignoring a few large positive spikes.
In contrast, both d-e and DEF, despite their poor OS performance at the 1-month
horizon, tend to invest much more in the market (in 82.69% and 77.56% of the
months respectively), but also go long the riskless rate during the turbulent periods
after the dot-com bubble and the Lehman Brothers collapse. Not surprisingly, the
strategies based on DISP, DISP*, VRP, d-e and, DEF strategies also exhibit very low
MDDs, with the one related to DISP having the lowest cumulative loss (-14.09%).
The most successful variable in terms of ACER (4.80%) is VRP. However, when
we combine d-e and DEF in bivariate models with VRP the performance of the
respective trading strategies deteriorates in comparison to the trading strategy based
solely on VRP. The ACER in the bivariate model with d-e becomes 4.61%), while the
ACER when we include DEF is only 1.87%. In contrast, when we combine either
DISP or DISP* in bivariate models with VRP the performance of the respective
trading strategies improves substantially in comparison to the strategy based solely
on VRP. In particular, the ACER of the strategy related to the combination of DISP
and VRP is 9.37%, while in the case of DISP* and VRP we obtain 7.97%. These
results show that unlike d-e and DEF, the information content of the dispersion
in options traders’ expectations is significantly beneficial in economic terms for an

investor who already uses the VRP in her investment decisions.
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The pattern in the performance of the different trading strategies is very similar
when short-sales are allowed, with the main difference being that extreme realiza-
tions (highly positive and highly negative market returns) have now a larger impact
on the portfolio returns. The strategy associated with DISP strongly outperforms
the passive strategy in terms of both Sharpe ratio and ACER, while the strategy
associated with DISP* underperforms the buy-hold strategy in terms of Sharpe ratio
but clearly outperforms it in terms of ACER. As in the first scenario, the ACER
of the strategy based on DISP (8.93%) is only outperformed by the strategy associ-
ated with VRP (9.63%), while the ACER of the strategy based on DISP* (3.15%) is
also outperformed by the strategies associated with d-e and DEF (8.83% and 4.66%
respectively). However, when the trading strategies rely on bivariate models with
VRP as the common variable, the strategies based on combinations of VRP and
either d-e or DEF offer a lower ACER than those based only on VRP (9.24% and
3.74% accordingly), while the opposite is true for combinations of VRP with either
DISP or DISP* (18.90% and 16.05% accordingly).

In summary, the empirical evidence associated with a market-timing strategy
shows that the OS forecasting ability of the dispersion in options’ traders beliefs
for future market returns is economically significant, especially for an investor who

already considers the information from VRP for her investment decisions.

5.5.2 Portfolio rotation strategies

We further explore the economic importance of the information embedded in the
dispersion in options traders’ expectations by creating rotation strategies based on
its OS predictive power for the 1-month ahead excess returns of portfolios sorted on
different stock characteristics. We first create a series of OS excess portfolio return
forecasts similar to the previous section. Next, if the highest fitted excess return
is positive or equal to zero we allocate 150% to the two portfolios with the highest
excess forecasted returns, whilst if the highest fitted excess return is negative we

allocate 150% to the risk-free rate. The rotation strategies always go short 50%
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the two portfolios with the lowest forecasted excess returns. In essence, an investor
following such a rotation strategy short sells the two portfolios that are expected to
perform worst and invests either in the two portfolios that are expected to perform
best or in the risk-free rate in case none of the portfolios is expected to have a
positive excess return in the following month. Therefore, the realized return of the

portfolio rotation strategy can be represented by:

. 0.75Rp1 441 + 0.75Rp244+1 — 0.25R 11 441 — 0.25R 19441, if Temige1 >0
P+l =

15Rsi41 —0.25Rp1 411 — 0.25R 10441, if Temi <0,
(5.12)

where Ry 1 and Rpoyq1 (Rpier1 and Rpsq1) stand for the realized arithmetic re-
turns of the portfolios with the highest and second highest (lowest and second lowest)
fitted excess return and 7eg ¢41 stands for the highest fitted excess portfolio return.

For the purposes of the rotation strategies, we use decile portfolios sorted on size
(Size), book-market ratio (B/M), momentum (Mom), industry (Industry), long-
term reversal (LT Reversal) and short-term reversal (ST Reversal). Moreover, we
consider a rotation strategy that uses all 60 portfolios simultaneously (Pooled). Data
on portfolio returns are obtained from Kenneth French’s website. The performance
of the rotation strategies is compared to a simple buy-hold strategy that invests
150% in the market and shorts 50% in the risk-free asset. As in the case of the
market-timing strategy, for each rotation strategy we estimate the mean return,
standard deviation, Sharpe ratio, certainty equivalent return in excess of the buy-
hold strategy (ACER) and maximum drawdown (MDD). Finally, we also report the
percentage of months that each rotation strategy goes long the two highest fitted
excess return portfolios.

The performance results of the rotation strategies associated with DISP and
DISP* are shown in Table 5.7, Panel A. In terms of Sharpe ratio, DISP and DISP*
outperform the buy-hold strategy in the case of Size, LT Reversal, ST Reversal and
Pooled portfolios while DISP also outperforms the buy-hold strategy in the case

of Mom portfolios. The corresponding Sharpe ratio values vary between 0.27 and
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0.54 compared to a ratio of 0.19 associated with the passive strategy. Moreover, in
all but one case (B/M portfolios for DISP*) the ACER values are positive, ranging
from 0.54% to 9.54%, showing that the rotation strategies based on the dispersion in
options traders’ beliefs increase the utility of an investor who would otherwise follow
a passive trading strategy. Finally, the MDDs of the rotation strategies are lower
(in absolute value) than the respective buy-hold strategy MDD in all cases, with
values varying between -63.31% and -27.02% compared to a value of -67.86% for the
passive strategy. Panel B of Table 5.7 presents the results of the rotation strategies
associated with the alternative predictors in the case of Pooled portfolios. In terms
of Sharpe ratio only VRP and TERM outperform the 0.19 buy-hold strategy Sharpe
ratio, exhibiting ratios of 0.64 and 0.27 respectively. In terms of ACER, apart from
VRP, which offers a large positive ACER of 10.74%, none of the other predictors
offers additional utility to a mean-variance investor.

Overall, the empirical results of portfolio rotation strategies show that in the
majority of the cases the OS forecasting ability of the dispersion in options traders’
beliefs for various portfolio excess returns is economically significant. When consid-
ering all portfolio categories simultaneously only our dispersion in beliefs measures

and VRP yield economically significant results.

5.6 Comparison with Option-Implied Measures

The empirical evidence presented in the previous sections suggests that the disper-
sion in options trading volume across strike prices has significant IS and OS predic-
tive power for future market excess returns and its information content is distinct
from and complementary to that of VRP. However, one might still argue that our
dispersion in expectations measures are driven by the well documented “volatility
smirk” anomaly (Rubinstein, 1994, Jackwerth and Rubinstein, 1996), the hedging
demand for OTM puts (Bollen and Whaley, 2004, Garleanu, Pedersen and Potesh-
man, 2009), or that they just proxy for common variance risk captured by VIX. To

alleviate such concerns, in this section we compare the dispersion in options traders’
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beliefs and its predictive power with a set of popular option-implied variables. The
first variable is the slope of the implied volatility curve measured as the difference
between the (volume-weighted) implied volatility of OTM puts and that of ATM
calls (Slope; Xing, Zhang and Zhao, 2010, Atilgan, Bali and Demirtas, 2014). The
second variable is the ratio of open interest of OTM puts to the open interest of
ATM calls which proxies for hedging pressure in the S&P 500 index options market
(HP; Han, 2008). The last three variables are the second, third, and fourth risk-
neutral moments (VIX, Skewness and Kurtosis; Ang, Hodrick, Xing and Zhang,
2006, Chang, Christoffersen and Jacobs, 2013).1®

Panel A of Table 5.8 reports the correlation coefficients between the two proposed
dispersion in beliefs measures and the other option-implied variables. While DISP
(DISP*) displays some common variation with all the other variables, the maximum
(absolute value) correlation is 0.29 (0.25) showing that the information embedded
in the dispersion in options traders’ expectations is unique and is not subsumed by
any other option-implied measure studied in the literature. In general, higher DISP
and DISP* values are related to higher implied volatility, more negative skewness,
higher kurtosis, and a more negatively sloped implied volatility curve. Moreover,
DISP and DISP* are negatively correlated with HP showing that in periods of high
demand for portfolio insurance there is less divergence of opinions about expected
returns since the majority of the traders anticipate negative jumps.

Panel B of Table 5.8 shows the results of 1-month ahead bivariate predictive
regressions with DISP or DISP* as the main variables. In all the models considered,
both DISP and DISP* remain significant at either 5% or 1% level based on both
Newey-West and Hodrick standard errors. Moreover, none of the other option-
related measures exhibits significant predictive ability at the 1-month horizon. Panel
C of Table 5.8 considers the case of multivariate regressions with all the option-

implied variables being included into the predictive regression. The results show

18Risk-neutral moments are calculated using the model-free method of Bakshi, Kapadia and
Madan (2003). The estimated implied volatility has a correlation of 99.7% with VIX and thus for
better comparability with other studies we proceed by keeping VIX as our proxy for risk-neutral
volatility.
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that DISP and DISP* are strongly significant while again all the other variables
remain highly insignificant.

The multivariate analysis is extended in Table 5.9 for horizons of 3, 6, 12, and
24 months ahead. The results reveal that both DISP and DISP* exhibit significant
forecasting power for all horizons examined at either 5% or 1% level irrespectively
of which standard errors are considered. Turning to the rest of the predictors, only
VIX appears to be consistently and strongly significant, predicting positive excess
market returns for all horizons longer than a quarter ahead. In the case of the
24-month horizon, Slope becomes significant at the 5% level, while Skewness and
Kurtosis appear significant at the 5% level only when statistical inference is based
on Newey-West standard errors.

Overall, the results of this section suggest that the dispersion in options trading
volume across strikes is not highly related to other well-established option-implied
variables that proxy for hedging demand, crash risk, or variance risk and its predic-

tive power for excess market returns remains intact in the presence of such measures.

5.7 Conclusion

In this chapter, we develop a measure of dispersion in options traders’ expectations
about future stock returns by utilizing dispersion in trading volume information
across various strike prices. A high dispersion implies that there is little consensus
in the options market about the future underlying asset return, whereas a low dis-
persion suggests that options traders’ beliefs are similar. Our dispersion in beliefs
measure relies on the expectations about future returns represented by the trading
activity in highly liquid options markets, is associated directly with asset prices (and
not with a related indicator such as corporate earnings), can be estimated even on a
higher frequency than monthly or quarterly, and is by construction able to capture
different levels of both optimistic and pessimistic views.

We provide empirical evidence for a strong and robust negative relation between

the dispersion in S&P 500 index options trading volume across strike prices and
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subsequent market returns. Moreover, the relatively low autocorrelation coefficient
of our measure alleviates the common concern of potentially spurious regression
results stemming from a highly persistent predictive variable. In-sample analysis
shows that at the 1-month horizon, the dispersion in options traders’ expectations
compares favorably to the well-established variance risk premium (VRP) and clearly
outperforms all other alternative predictors examined. At longer horizons, it re-
mains significant and exhibits a high adjusted R?, outperformed only by highly
persistent variables. Most importantly, the forecasting power of the dispersion in
options traders’ expectations remains intact at all horizons when VRP and other
predictors are added into the predictive model. It is therefore evident that its in-
formation content is different from that of VRP and the two variables can be used
complementarily for forecasting purposes.

The results of out-of-sample analysis reveal that the dispersion in options traders’
beliefs has significantly higher predictive power than the simple historical average
and its forecasting ability can be enhanced by imposing a restriction of positive
forecasted equity premia. Apart from VRP, none of the other alternative predic-
tors examined can improve the simple historical average model. The out-of-sample
forecasting power of the dispersion in options traders’ beliefs is also economically
significant, as indicated by the additional utility offered to an investor who follows
an active trading strategy associated with its predictive ability. Unlike other vari-
ables, the suggested dispersion in beliefs measure also improves the performance
of a market-timing strategy based solely on VRP, when it is added into the pre-
dictive model. Furthermore, the results of portfolio rotation strategies reveal that
it exhibits economically significant out-of-sample forecasting power for the excess
returns of portfolios sorted on several stock characteristics.

We also investigate the relationship of the dispersion in options traders’ expec-
tations with other popular option-implied variables and show that it does not proxy
for any of them. More specifically, dispersion in options traders’ expectations is

associated with higher implied volatility, more negative skewness, higher kurtosis,
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a more negatively sloped implied volatility curve, and less hedging pressure. How-
ever, its correlation with these variables lies between 2% and 29% showing that the
information content of the proposed dispersion in beliefs measure is largely distinct.
Most importantly, a regression analysis confirms that dispersion in options traders’
expectations remains highly significant at all horizons when combined with the other
option-related variables.

The documented significant and negative relationship between the dispersion in
options trading volume across strike prices and subsequent market returns allows
for a dual interpretation: It is possible that the divergence of options traders’ beliefs
proxies for the disagreement among investors in the equity market. In such a case,
a higher disagreement leads to a higher current price and lower subsequent returns
due to the existence of short-sale constraints that prevent pessimistic investors from
taking negative positions. Alternatively, it is possible that the dispersion of options
traders’ expectations proxies for the level of ambiguity of a representative equity
market participant whose expectations are affected by the trading activity in the
options market. In such a case, the negative relationship implies that when am-
biguity is high, the representative investor increases her hedging demand for the
risky asset and lowers her expected return due to her preference for consumption

smoothing.
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Chapter 5. Dispersion in Options Traders’ Expectations and Return Predictability

Table 5.3: Univariate long-horizon predictability

h=3 h=6 h=12 h=24
R? (%) R? (%) R? (%) R? (%)
DISP -7.39 3.61 -5.47 3.54 -6.67 10.89 -5.19 12.72
(-2.59)%* (-2.25) % (-2.90)#** (-2.35) %
[-2.33]%* [-1.83]* [-2.38]** [-2.02]%*
DISP*  -7.10 3.30 -5.10 3.00 -6.65 10.80 -5.20 12.74
(-2.65) %% (-2.24)%* (-3.03) %% (-2.49)**
[-2.31]** [-1.81]* [-2.40]** [-2.11]**
VRP 13.05 12.32 8.34 8.90 3.94 3.46 2.90 3.58
(5.25)%** (3.96)%** (2.40)% (2.29)%*
[3.62)%+* [3.33) %+ [2.06]** [1.77)*
TAIL -1.21 -0.39 -1.48 0.22 2.22 0.74 3.58 5.75
(-0.38) (-0.49) (0.74) (1.25)
[-0.32] [-0.43] [0.77) [1.32]
d-p 6.70 2.88 7.67 7.44 8.23 16.84 8.32 33.56
(1.28) (1.84)* (2.72) %% (4.46)
[1.25] [1.50] [1.76]* [1.96]*
d-e 3.42 0.38 438 2.09 428 417 6.10 17.79
(0.73) (1.23) (2.26)** (3.25) %%
[0.67) 0.99] [1.17) [2.18]**
YG 3.79 0.58 2.96 0.67 2.28 0.81 0.77 -0.27
(1.13) (0.96) (0.77) (0.22)
[0.95] [0.76] [0.61] [0.23]
TERM 101 -0.43 1.82 -0.06 4.03 3.64 7.55 27.54
(0.28) (0.54) (1.38) (3.27)%**
[0.26] [0.46] [1.05] [2.35)%*
DEF -0.27 -0.50 2.07 0.07 3.30 2.27 422 8.22
(-0.04) (0.45) (1.23) (2.00)%*
[-0.05] [0.38] [0.78] 1.27]
RREL 7.63 3.89 7.65 7.39 6.53 10.41 -0.58 -0.40
(1.95)* (1.94)* (1.59) (-0.33)
[1.82]* [1.71)* [1.42] [-0.18]
SVAR  -488 1.29 0.49 -0.48 2.37 0.92 2.48 2.48
(-1.21) (0.20) (2.05)% (2.64)%**
-0.93] [0.10] 0.77] [1.19]

This table reports the results of 3-, 6-, 12- and 24-month ahead univariate predictive regressions
for the excess return on the CRSP value-weighted index. The sample period is 1996:01-2012:12.
The forecasting variables are the two dispersion in options traders’ expectations measures (DISP,
DISP*), variance risk premium (VRP), tail risk (TAIL), dividend-price ratio (d-p), dividend payout
ratio (d-e), yield gap (YG), yield term spread (TERM), default spread (DEF), relative short-term
risk-free rate (RREL) and realized stock market variance (SVAR). Reported coefficients indicate
the percentage annualized excess return resulting from a one standard deviation increase in each
predictor variable. Newey and West (1987) and Hodrick (1992) t-statistics with lag length equal to
the forecasting horizon are reported in parentheses and square brackets respectively. *** ** and *
denote significance in 1%, 5% and 10% level.
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Table 5.6: Market-timing strategy

Mean (%) St. Dev. (%) Sharpe ACER (%) MDD (%) Long (%)
Panel A: No Short Sales

Buy & Hold 3.88 16.75 0.23 -51.44

DISP 5.46 9.41 0.58 4.46 -14.09 55.77
DISP* 2.62 9.59 0.27 1.58 -24.06 52.56
VRP 6.93 12.81 0.54 4.80 -32.24 55.77
TAIL 2.50 13.26 0.19 0.20 -46.24 83.97
d-p 3.99 16.44 0.24 0.27 -51.44 96.79
d-e 6.39 12.44 0.51 4.40 -27.70 82.69
YG 3.39 15.23 0.22 0.25 -51.44 89.10
TERM 1.63 14.31 0.11 -1.11 -47.30 84.62
DEF 4.43 12.75 0.35 2.33 -33.35 77.56
RREL 3.53 14.38 0.25 0.76 -52.82 88.46
SVAR 3.99 15.03 0.27 0.94 -44.87 91.03
DISP & VRP 10.98 11.38 0.96 9.37 -19.95 56.41
DISP* & VRP 9.57 11.34 0.84 7.97 -19.95 51.92
VRP & d-e 6.17 11.23 0.55 4.61 -25.48 69.87
VRP & DEF 3.34 10.98 0.30 1.87 -31.20 50.64

Panel B: Short Sales

Buy & Hold 4.76 25.15 0.19 -67.86

DISP 7.91 15.74 0.50 8.93 -29.02 55.77
DISP* 2.25 15.98 0.14 3.15 -48.50 52.56
VRP 10.85 19.93 0.54 9.63 -41.02 55.77
TAIL 2.00 20.57 0.10 0.39 -64.12 83.97
d-p 4.98 24.73 0.20 0.54 -69.24 96.79
d-e 9.78 19.47 0.50 8.83 -40.59 82.69
YG 3.79 23.14 0.16 0.50 -73.00 89.10
TERM 0.27 21.93 0.01 -2.21 -68.21 84.62
DEF 5.87 19.92 0.29 4.66 -48.66 77.56
RREL 4.06 22.02 0.18 1.52 -72.65 88.46
SVAR 4.99 22.87 0.22 1.88 -62.26 91.03
DISP & VRP 18.97 17.89 1.06 18.90 -22.74 56.41
DISP* & VRP 16.14 17.93 0.90 16.05 -22.74 51.92
VRP & d-e 9.34 17.95 0.52 9.24 -35.94 69.87
VRP & DEF 3.69 17.68 0.21 3.74 -50.54 50.64

This table reports the results of market-timing strategies based on the 1-month ahead out-of-sample
predictability for the excess return on the CRSP value-weighted index. The total sample period is
1996:01-2012:12 and the forecasting period begins in 2000:01. Panel A shows the results when short
sales are not allowed and Panel B when short sales are allowed. The forecasting variables are the two
dispersion in options traders’ expectations measures (DISP, DISP*), variance risk premium (VRP), tail
risk (TAIL), dividend-price ratio (d-p), dividend payout ratio (d-e), yield gap (YG), yield term spread
(TERM), default spread (DEF), relative short-term risk-free rate (RREL) and realized stock market
variance (SVAR). Buy & Hold refers to a passive strategy that goes long the market portfolio. Mean
denotes the average return, St. Dev. denotes the standard deviation of returns, Sharpe stands for the
Sharpe ratio, ACER is the certainty equivalent return in excess of the buy-hold strategy, MDD stands
for the maximum drawdown and Long is the percentage of months that the strategy goes long the market
index. All measures of performance apart from MDD are in annualized terms.
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Table 5.7: Portfolio rotation strategies

Mean (%) St. Dev. (%) Sharpe ACER (%) MDD (%) Long (%)
Panel A: Portfolio Strategies for DISP and DISP*

Buy & Hold 4.76 25.15 0.19 -67.86
DISP
Size 10.02 20.56 0.49 8.41 -39.47 76.92
B/M 2.00 17.97 0.11 1.90 -51.42 87.18
Mom 5.31 20.02 0.27 4.03 -43.06 86.54
Industry 3.53 22.70 0.16 0.54 -62.41 100.00
LT Reversal 8.51 21.72 0.39 6.17 -43.69 92.95
ST Reversal 8.62 18.07 0.48 8.46 -45.72 84.62
Pooled 8.11 24.93 0.33 3.52 -51.61 100.00
DISP*
Size 8.90 20.62 0.43 7.26 -34.01 75.64
B/M -0.58 17.36 -0.03 -0.36 -50.25 86.54
Mom 3.45 19.76 0.17 2.33 -40.77 83.97
Industry 3.24 21.98 0.15 0.73 -63.31 100.00
LT Reversal 6.73 22.24 0.30 4.04 -46.64 93.59
ST Reversal 9.47 17.64 0.54 9.54 -27.02 82.69
Pooled 8.12 23.82 0.34 4.34 -43.69 100.00
Panel B: Pooled Portfolio Strategies for Alternative Predictors
VRP 18.51 28.87 0.64 10.74 -57.34 100.00
TAIL 1.54 25.81 0.06 -3.72 -73.21 100.00
d-p 3.38 33.60 0.10 -8.83 -76.54 100.00
d-e 5.50 30.43 0.18 -3.65 -75.11 96.79
YG 4.22 29.39 0.14 -4.00 -72.34 100.00
TERM 8.07 29.57 0.27 -0.31 -64.15 100.00
DEF 2.57 28.56 0.09 -4.93 -76.33 96.15
RREL -3.08 27.85 -0.11 -9.98 -82.69 100.00
SVAR 4.09 29.22 0.14 -3.99 -68.04 96.15

This table reports the results of portfolio rotation strategies based on the 1-month ahead out-of-
sample predictability for the excess stock portfolio returns. The total sample period is 1996:01-
2012:12 and the forecasting period begins in 2000:01. The forecasting variables are the two dispersion
in options traders’ expectations measures (DISP, DISP*), variance risk premium (VRP), tail risk
(TAIL), dividend-price ratio (d-p), dividend payout ratio (d-e), yield gap (YG), yield term spread
(TERM), default spread (DEF), relative short-term risk-free rate (RREL) and realized stock market
variance (SVAR). Buy & Hold refers to a passive strategy that goes long the market portfolio. Mean
denotes the average return, St. Dev. denotes the standard deviation of returns, Sharpe stands for
the Sharpe ratio, ACER is the certainty equivalent return in excess of the buy-hold strategy, MDD
stands for the maximum drawdown and Long is the percentage of months that the strategy goes
long the two winner portfolios. All measures of performance apart from MDD are in annualized
terms. The rotation strategies use decile portfolios sorted on size (Size), book-market ratio (B/M),
momentum (Mom), industry (Industry), long-term reversal (LT Reversal) and short-term reversal
(ST Reversal). Pooled refers to a rotation strategy that uses all 60 portfolios. Panel A shows the
results of the rotation strategies based on the forecasting performance of the dispersion in options’
traders expectations, while Panel B shows the results of the rotation strategies using all 60 portfolios
based on the forecasting performance of the alternative predictors.
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Table 5.8: Comparison with other option-implied measures - 1-month horizon

Panel A: Correlation Coefficients

Slope HP VIX Skewness Kurtosis
DISP 0.18 -0.24 0.29 -0.02 0.05
DISP* 0.19 -0.25 0.23 -0.09 0.12

Panel B: Bivariate Regressions
Slope HP VIX Skewness Kurtosis
DISP -9.95 -9.80 -10.89 -9.67 -9.68
(-2.39)%*  (-2.27)%FF  (-2.73)FFF  (-2.35)*FF  (-2.34)**
[-2.44]%%  [-2.37)%F  [-2.78]FFF  [-2.43]FF [-2.42]**

Z 1.53 -0.51 4.14 0.72 0.00
(0.34) (-0.12) (0.64) (0.17) (0.00)
[0.33] [-0.12] [0.70] 0.18] [0.00]
R? (%) 1.81 1.75 2.20 1.76 1.75
DISP* -9.48 -9.33 -9.97 -9.20 -9.28

(-2.30)%F  (-2.17)%F  (-2.59)FF  (-2.24)%F  (-2.24)%*
[-2.34%F  [-2.26]%F  [-2.63]FF  [-2.30]%F  [-2.20]**

Z 1.52 -0.52 3.30 0.07 0.64
(0.33)  (0.12)  (0.52) (0.02) (0.16)
B 033 [-0.12] [0.56] 10.02] 0.17]
R? (%) 1.55 1.49 1.78 1.48 1.49
Panel C: Multivariate Regressions
DISP Slope HP VIX Skewness Kurtosis R? (%)
-11.51 3.07 0.25 3.90 9.75 8.54 0.52
(-2.65)%*  (0.50)  (0.06) (0.55) (0.86) (0.87)
L2727 [0.50] [0.06] 10.59] [0.84] 10.90]
DISP* Slope HP VIX Skewness Kurtosis R2? (%)
-10.59 2.48 0.15 3.27 8.26 8.00 0.05
(-241)%  (041)  (0.03) (0.47) (0.73) (0.82)
L2491 [0.41] [0.03] 10.50] [0.72] [0.85]

This table reports the results of 1-month ahead predictive regressions for the excess return on
the CRSP value-weighted index. The sample period is 1996:01-2012:12. Panel A reports the
correlation coefficients, Panel B the results of bivariate regressions and Panel C the results of
multivariate regressions. The forecasting variables are the two dispersion in options traders’
expectations measures (DISP, DISP*), slope of the implied volatility curve (Slope), hedging
pressure (HP), implied volatility (VIX), risk-neutral skewness (Skewness) and risk-neutral
kurtosis (Kurtosis). Reported coefficients indicate the percentage annualized excess return
resulting from a one standard deviation increase in each predictor variable. Newey and West
(1987) and Hodrick (1992) t-statistics with lag length equal to the forecasting horizon are
reported in parentheses and square brackets respectively. *** ** and * denote significance
in 1%, 5% and 10% level.
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Table 5.9: Comparison with other option-implied measures - long horizons

DISP Slope HP VIX Skewness Kurtosis R? (%)

h=3 -8.66 229 340 6.06 -5.93 416 6.89
(-3.09)%%*  (0.66)  (1.36)  (1.04) (-0.67) (-0.45)
[2.58)%F  [0.56]  [1.20]  [1.15] -0.71] [-0.56]

h=6 -7.63 164 259 7.95 -0.34 2.87 11.48
(-3.00)¥%F  (0.71)  (1.34) (2.80)¥**  (-0.06) (0.44)
2.53]%F  [0.54]  [1.09]  [L.77]* [-0.06] [0.53]

h=12  -8.68 133 2.06 7.07 2.86 5.67 23.11
(-4.01)¥F  (1.11)  (1.56) (3.20)¥**  (0.52) (0.86)
[3.14]¥%%  [0.67]  [1.06]  [2.36]** [0.58] [1.21]

h=24  -7.65 323 0.82 6.08 9.73 8.34 33.23
(-4.35)¥FF (254)%F  (0.49) (2.82)¥FF  (257)¥F  (2.38)%*
[-3.06]¥F*  [2.42]%%  [0.53]  [2.47]** [1.63] [1.46]

DISP* Slope HP VIX Skewness Kurtosis R? (%)

h=3 -8.01 187 332 5.60 -7.03 “4.55 6.25
(-2.83)¥**  (0.55) (1.31)  (0.97) (-0.79) (-0.49)
[-2.43]%%  [0.46]  [1.16]  [1.07] [-0.84] [-0.61]

h=6 -6.88 124 256 7.50 -1.33 2.47 10.29
(-2.73)¥FF (0.54)  (1.26) (2.75)¥%F  (-0.22) (0.38)
[2.43]%%  [0.42]  [1.06]  [1.67]* [-0.22] [0.46]

h=12  -8.33 093  1.84 6.70 1.79 5.34 22.19
(-3.98)¥%  (0.77)  (1.35) (3.22)¥**  (0.32) (0.81)
[3.05]¥+*  [0.48]  [0.95]  [2.24]** [0.36] [1.14]

h=24  -7.20 294 067  5.70 8.94 8.01 30.93
(-4.43)¥FF (252)%F  (0.39) (2.75)¥FF  (2.28)%F  (2.25)%*
[3.06]¥*  [2.33]%%  [0.43]  [2.32]** [1.51] [1.40]

This table reports the results of 3-, 6-, 12- and 24-month ahead multivariate predictive re-
gressions for the excess return on the CRSP value-weighted index. The sample period is
1996:01-2012:12. The forecasting variables are the two dispersion in options traders’ expec-
tations measures (DISP, DISP*), slope of the implied volatility curve (Slope), hedging pres-
sure (HP), implied volatility (VIX), risk-neutral skewness (Skewness) and risk-neutral kurtosis
(Kurtosis). Reported coefficients indicate the percentage annualized excess return resulting
from a one standard deviation increase in each predictor variable. Newey and West (1987)
and Hodrick (1992) t-statistics with lag length equal to the forecasting horizon are reported
in parentheses and square brackets respectively. *** ** and * denote significance in 1%, 5%
and 10% level.
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Figure 5.1: Dispersion in options traders’ expectations vs VIX
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This figure plots the monthly time series of DISP versus VIX for the period 1996:01-2012:12. Both
variables have been standardized to have zero mean and variance one.
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Chapter 6

Conclusion

6.1 Limitations and Future Research

This thesis is related to a large literature that investigates the properties of the
options market and its relationship with the rest of the economy. A common char-
acteristic of this strand of the literature is that the conclusions drawn are subject to
the limited availability of options data. In particular, unlike equity, fixed income or
macroeconomic data which are largely available for the last fifty years, options data
are typically available only for half of that period. In our case, the available options
data begin in 1990 and therefore our analysis cannot be extended beyond that year.
Furthermore, some of the option-related measures require a high amount of traded
options across both the moneyness and the time-to-maturity dimension in order to
be constructed accurately. Thus, the relatively low liquidity of the S&P 500 index
options market in the early nineties has restricted some parts of the analysis to the
post-1996 period. It is important to note, however, that even our truncated dataset
spans a quite large period of seventeen years (1996-2012) encompassing both bull
and bear markets and two major crises.

Despite the thorough analysis conducted in the previous chapters and the re-
spective appendices, additional investigation may shed more light to the empirical
findings of the thesis. Such a supplementary analysis can examine further the robust-
ness of our results as well as provide a deeper understanding of the main conclusions
drawn. In that respect, some of the issues discussed below can serve as ideas for

future research.
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Chapter 3 documents a significant relationship between the economic fundamen-
tals sentiment component and the S&P 500 index risk-neutral skewness. The direc-
tion of this relationship is consistent across all three sentiment proxies in the first
period. However, in the second period the way the sentiment proxy associated with
large speculators responds to the macroeconomic conditions changes completely and
hence the relationship of its economic fundamentals component with skewness be-
comes opposite to the relationship documented for the respective components of the
other two sentiment proxies. Understanding the causes of the changing behavior of
this particular sentiment proxy is beyond the scope of the thesis but constitutes an
interesting research question that can be examined in subsequent projects. Further-
more, while our conclusions are based on a mature options market with a popular
equity index as its underlying asset, it would be intriguing to investigate whether
we draw the same conclusions if we examine less developed index options markets
or options markets on different underlying assets such as treasuries or currencies.

In Chapter 4, we show that forward skewness coefficients are jointly important
for predicting future macroeconomic and financial conditions. One concern that
can arise from our analysis is that the high cross-correlations between the forward
moments reduces our ability to provide a meaningful interpretation of the individual
regression coefficients. In principle this is true but we need to underline that the aim
of this chapter is to examine whether it is valuable to take into consideration the
information embedded in the whole term structure of the risk-neutral skewness or
not and hence it focuses on the joint significance of the combined forward skewness
coefficients. In fact all variables of each forward moments group share a strong
common component that is related to the cross-section of options across moneyness.
It is possible to isolate this common component by orthogonalizing the forward
moments of two, three and four months ahead to the respective forward moment of
one month ahead. Such an exercise changes the regression coefficients of all forward
moments and the standard error of the one month ahead forward moments. However,

the rest of the individual and joint significance results remain unaltered. Therefore,
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the results presented in this thesis are those with the original forward moments
and the reported regression coefficients show the effect of each forward moment
controlling for the effect of the rest of the variables. Furthermore, given that that
the empirical results of Chapter 4 are based on in-sample regressions, it would be
particularly interesting to extend the analysis to an out-of-sample setting and also
investigate whether the joint predictive power of forward skewness coefficients for
future market returns is economically significant.

Finally, Chapter 5 implicitly assumes that all option trades reflect investors’ ex-
pectations about future market returns. To this end, we remove from the analysis
near-the-money options that can be more easily related to investors’ beliefs about fu-
ture volatility. It is possible, however, that still some portion of the trading activity
is driven by some sort of “clientele effect”. While we cannot rule out this possibility,
it is important to note that there is no evidence in the literature relating empirically
the trading activity in the options market with motives other than investors’ ex-
pectations about the future distribution of the underlying asset returns. As further
analysis, it would be interesting to elaborate more on the effect of the dispersion in
options traders’ expectations measure by investigating whether it depends on the
underlying economic conditions. Furthermore, while our analysis is focused on the
relationship between the suggested dispersion measure and future market returns,
it would be interesting to complete the empirical evidence by investigating also the

relationship between dispersion and contemporaneous returns.

6.2 Summary and Implications

Overall, this thesis is mainly related to two strands of the options markets liter-
ature. First it contributes to the literature that investigates the determinants of
the shape the risk-neutral distribution. Second, it contributes to the literature that
explores the information content of option prices and options’ trading volume or
open interest. Furthermore, it has implications about the consumption-based asset

pricing literature in general, while many of the results can be considered useful for
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regulators and investors as well.

More specifically, Chapter 3 provides evidence that in recent years option prices
are mainly settled according to investors’ expectations stemming from the economic
conditions and not to investors’ errors in beliefs. This is a remarkable result for the
asset pricing literature as it implies that the pricing kernel, which incorporates in-
vestors’ risk preferences and can be considered the unifying link for all asset markets,
is not driven by any sort of irrational beliefs. Second, it is important for the option
pricing literature as it demonstrates that modelling investors’ irrationality is not
likely to improve the performance of the existing option pricing models. Moreover,
the result that the economic fundamentals sentiment component has an opposite
impact on calls and puts gives further credence to the notion that call and put
options markets are segmented.

Chapter 4 suggests the usage of measures of forward skewness coefficients for
predicting future macroeconomic and stock market conditions as well as systemic
risk and equity uncertainty. In that respect, the reported results are of interest not
only to academics but also to regulators and investors. In particular, the information
embedded in the time-to-maturity dimension of option prices can be used to provide
signals about required policy actions to be taken such as a looser monetary policy
or a more relaxed regulation towards banks’ capital requirements. Moreover, it can
be used in the context of a market-timing strategy together with more traditional
predictors of future market returns such as market valuation ratios.

Finally, Chapter 5 proposes a novel, easy-to-implement, yet theoretically founded
measure of dispersion in expectations and shows that it is a strong predictor of fu-
ture market returns both in-sample and out-of-sample. The above result has two
main implications. First, it reveals a new dimension of the information embedded
in the trading activity in the options market. It is also shown empirically that the
predictability of dispersion in options traders’ beliefs can be remarkably beneficial
for investment strategies. Second, it provides a new measure of dispersion in expec-

tations that exhibits several advantageous characteristics compared to previously
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proposed measures.
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Appendix A

Appendix to Chapter 2

A.1 Parametric methods for Extracting Risk-Neutral
Densities

The risk-neutral density (RND) can be extracted by integrating the stochastic pro-
cess governing the underlying asset price dynamics, assuming that this is known.
Making use of this argument, Bates (1991) and Malz (1996) fit different stochas-
tic processes in the observed option prices, estimate the necessary parameters and
finally obtain the respective RNDs. In contrast to this approach, several alterna-
tive techniques extract the RND directly from the observed option prices, remaining
silent about the stochastic process followed by the underlying asset price. As pointed
out by Melick and Thomas (1997), such techniques cannot provide any information
about the evolution of the asset price throughout the life of the option, but have
the advantage that they are more flexible in capturing the shape of the implied
distribution. This is important since a given RND can be consistent with several
stochastic processes, while a given stochastic process can only be associated with
one RND.

Therefore, the aim of this appendix is to provide an overview of the parametric
methods that can be used in order to extract risk-neutral densities from option
prices. The parametric techniques can be further divided into three subgroups: the
expansion methods, the generalized distribution methods and the muixture methods.

A.1.1 Expansion methods

Expansion techniques add correction terms to a reference probability distribution
which is usually either the normal or the lognormal one. As pointed out by Jackwerth
(1999) the idea is similar to that of the Taylor series expansion for the approximation
of an analytic function.

Many researchers make use of the Gram-Charlier series - sometimes they refer
to it as Edgeworth series - in order to approximate the risk-neutral density of the
underlying asset. Jarrow and Rudd (1982) state that the RND function ¢(S;) of the
asset price can be approximated by a lognormal distribution f(.S;) as follows:

s = fiso+ 2O TG wlZ I EIG)
(s4(9) — ma()) + 3 (o) — () A ()
+ p e (A1)
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assuming that &1 (g) = r1 (f) = Spe™, where k; (.) is the i cumulant of the re-
spective probability distribution. Jarrow and Rudd (1982) show that the pricing
formula for a call option with strike price X becomes:

- Ka(g) — Ka(f) ot k3(g) — rs(f) df (X)

Cy(X) = Cp(x) ety S
i (Ralg) = Ka(f)) + 3 (ralg) — ka(f))* 2 F(X)
+e m 57 (A.2)

where C (X) corresponds to the call price given by the Black-Scholes formula.

Corrado and Su (1997) simplify the formula by assuming that k5 (9) = k2 (f) . In
this case, for a lognormal distribution f(S;) it is true that ry (g) = 2 (f) (€7t — 1),
with o being the volatility parameter. Therefore, the call option pricing formula
becomes:

Cy (X) = Cp (X) + MQs + A2Q4, (A.3)
where:
A= nlg) =)
Ao = 72(9) —72(f)
2 3/2 e df (X
Qs = —(Soe)? (e” b 1) 63! ];(St)
5 —rt d 2 X
Q4 — (Soert)4 (eo' t 1>2 64' fdétQ )
ks (9)
=T
_ ka(g)
72(9) - li%(g)
n(f) = 3¢+¢°
w(f) = 16¢° +15¢* +64° + ¢°, (A.4)
and (e"Qt - 1) is defined as ¢°.

Corrado and Su (1996) use the normal distribution as the reference probability
distribution and therefore apply an A-Type Gram-Charlier series to approximate the
risk-neutral distribution of the log-price of the underying asset. More specifically,
they show that after standardizing for a zero mean and unit variance, the RND can
be expressed as the sum of the normal density plus correction terms adjusting for
skewness and kurtosis:

o) = nle) 1= B+ P )| -

3! 41
= n(z) {1 — % (2* —32) + u447 5 (z* =627+ 3)} , (A.5)

where n(z) is the standard normal density function, y; is the i** central moment of
g(z) and H,(z) is the 7" Hermite polynomial of the standardized value of In(S;).!

n d"n(z)

!The Hermite polynomial can be defined by the relation: H (z)n(z) = (—1)" S552.

However,
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Now the call option pricing formula becomes:

Cy (X) = Cp + p13Q3 + (pta — 3) Qu, (A.6)

where:
Qs = %SOU\/E [(20\/% — d) n(d) + o*tN (d)} (A.7)
Qi = SoVE[(® 1= 30VE (d—0VE))nid) + 0% )] (AS)

d is defined as in the Black-Scholes formula and n (.), N (.) are the probability den-
sity function (PDF) and the cumulative distribution function (CDF) of the normal
distribution accordingly.? The A-Type Gram-Charlier expansion for approximating
the RND of the underlying asset is also used by Longstaff (1995). Jondeau and
Rockinger (2001) improve the method by creating an algorithm that guarantees
positive probabilities over the whole distribution.

Abken et al. (1996) provide a similar expansion technique based on Madan and
Milne’s (1994) suggestion that any contigent claim can be seen as an element of
a seperable Hilbert space. The Hilbert space is assumed to be a one-dimensional
Gaussian reference space and its basis can be formed with Hermite polynomials.
Therefore, each polynomial H;(z) can be seen as a risk coefficient and the risk-
neutral density can be estimated as a linear combination of those risk elements.
The authors define m; = ;e as the implicit price of polynomial risk H;(z). The
RND function takes the form:

o [1+ Lo+ o
9(z) =n(z) 1+\/§H3( )+\/IH4<) , (A.9)

if we assume that my = e, m = m = 0. H;(z) denotes again the Hermite
polynomial and the termv/i! normalizes each polynomial to unit variance.

Rubinstein (1998) assumes that the log-returns of the asset follow a binomial dis-
tribution b(z) and applies an Edgeworth expansion to approximate the risk-neutral
density function. Therefore, if it is assumed that the distribution is standardized to
zero mean and unit variance, the RND function becomes:

B3 (3 pa=3 (A4 _ R.2
sy =p) | TEG I E TR T
+5% (27 — 152" +452° — 15)
where z is the standardized log-return of the underlying asset and p; is the ¥ central
moment of g(z).

Finally, Rompolis and Tzavalis (2008) suggest a methodology which belongs to
the class of Gram-Charlier series but does not rely on any reference distribution.
As a result, it can be considered nonparametric and it is much more flexible than
the simple A-Type Gram-Charlier expansion. The authors apply a C-Type Gram-
Charlier expansion in order to approximate the RND function of the log-returns (z)

Corrado and Su (1996) ignore the term (—1)" in their definition.
2The original equations presented in Corrado and Su (1996) contain two typos. The equations
presented here are corrected as suggested by Brown and Robinson (2002).
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of the underlying asset:

g(r) = Qexp [Z %@Hi (Z)] , (A.11)

where () = {f exp {Zf; %&HZ (z)] dx}fl, z denotes the standardized value of x
and §; is the i"® order series coefficient of the expansion. The expansion is trun-
cated up to an optimal order (m) which can be found with an information crite-
rion like Akaike’s (AIC) or Schwarz (SC). The estimation of the coefficients §; for
1 =1,2,...,m needs estimates of the noncentral moments of x which can be obtained
following the methodologies suggested by Bakshi, Kapadia and Madan (2003) for
i =1,2,3,4 and Rompolis and Tzavalis (2013) for i > 4. A great advantage of the
methodology proposed by Rompolis and Tzavalis (2008) is that the exponential form

of the RND function guarantees that there will not exist any negative probabilities.

A.1.2 Generalized distribution methods

Generalized distributions include more parameters than the typical two representing
the mean and the variance. As a result, they can offer more flexibility and can
be useful for extracting risk-neutral distributions from option prices. Moreover,
common distributions like the lognormal can be seen as special cases of a generalized
one.

The most widely used generalized distribution is the Generalized Beta distribu-
tion of the second kind (GB2). The GB2 distribution, introduced by Bookstaber
and McDonald (1987), is highly flexible since it has four parameters and encom-
passes many other distributions used in the literature as special or limiting cases
(e.g. Weibull, Burr III and XII, Generalized Gamma). In the context of options
markets, it is used by Aparicio and Hodges (1998), Anagnou-Basioudis et al. (2005)
and Rebonato (2004) among others. It can be written as:

9(S:) = o 57 — (A.12)
B (p.g) [1+ ()]
where B (p, q) denotes the beta function defined as follows:
1
B(p.q) = /0 (1 — )" dt, (A.13)

and «, b, p and ¢ are the parameters of the distribution. Parameter b is a scale
parameter whereas the other parameters determine the shape of the distribution.
Specifically, parameter a affects the kurtosis, the interaction of a and ¢ determines
the number of existing higher moments and the interaction of parameters p and
q drives the skewness. Rebonato (2004) also derives closed form solutions for the
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option prices. The resulting call option pricing formula is:?

X(§)"FEla—Vaptai+a—1/a—($)"]

_ -t —1/a)B(p,q)
CG’BQ(X) = € X<%>a£1qF,12K]7p+qﬁiq;_(%)a] s (A14)
N 9B(p.q)
where F? ., .;.;.] denotes the hypergeometric function defined as:

F? ki, ko ly;m] = Z %F
n=0 n .

k), =k(k+1)(k+2)...(k+n—1) and (k), =1, (A.15)

with the series terminating when either &y or ks is a non-positive integer.

Sherrick, Garcia and Tirupattur (1996) use a Burr III distribution to approxi-
mate the RND. Burr III is a special case of the GB2 for ¢ = 1. The density function
in this case can be described by:

apS;* ~1pa
Sy) = —m———, A.16
9(8) = G e (A.16)
where @ > 0, b > 0 and p > 0 are the parameters of the distribution.* Follow-

ing a similar approach, Sherrick, Irwin and Forster (1992, 1996) use the Burr XII
distribution to model the RND as:

aqS*1pa
g (St) - (ba _{_tSa)qul’ (Al?)
t

where @ > 0, b > 0 and ¢ > 0 are again the parameters of the distribution. Burr
XII is another special case of the GB2 for p = 1. While the aforementioned three
studies use American options, none of them explains how the possibility of an early
exercise is incorporated into the RND estimations.

Fabozzi et al. (2009) propose the Generalized Gamma distribution (GG) for
modelling the implied distribution. GG can be seen as a limiting case of the GB2
when b = 8¢'/* and ¢ — co. The respective RND function is:

ey () (&) ()

where a > 0, f > 0 and p > 0 are the parameters and I" (p) is the gamma function
defined as:

I'(p) = / tr~te~tdt. (A.19)

3The discounting term does not appear in the original formula derived by Rebonato (2004) as
he assumes that there are no interest rates in the economy.

4Sherrick, Garcia and Tirupattur (1996) as well as other researchers use futures options to
extract the risk-neutral density function. However, since this chapter does not investigate the
empirical applications of each study but only the theoretical contributions, the notation for the
risk-neutral density function remains g (S;) even if the underlying asset under investigation in the
original study is the futures price.
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Using the GG density function, they derive the following option pricing formula for
a call:

L(p+3) L(p+3) [ 1 (X 5}
a—t — X —a—=21 p+ 2. (=) | +
Coa (X)=e" ) ) f (%) : (A.20)
+X1 b, (2)7]
where I (.,.) is the incomplete gamma function:
I L
I(p,t :—/ uP" e du. A21
(#:2) I'(p) Jo ( )

A special case of the GG distribution for p = 1 is the Weibull distribution.
Savickas (2002) suggests that the RND of the underlying asset can be described by

the formula: ,
g(S)) = kpSI e st (A.22)

where k£ > 0 and 3 > 0 are the distribution parameters and k£ = ¢ from the GG
distribution. Savickas (2002) shows that despite the fact that the Weibull distri-
bution has only two parameters similarly to the lognormal distribution, it strongly
outperforms the lognormal in terms of pricing ability. The reason is that, unlike the
lognormal distribution, it is possible for the Weibull distribution to exhibit negative
skewness. When the risk-neutral distribution is assumed to be of Weibull form, the
call option pricing formula becomes (Fabozzi et al., 2009):°

Cw (X) = e‘”ﬁ {r (%) —1 (%kXﬁﬂ : (A.23)

where T'(.) and I (.) denote again the gamma and the incomplete gamma function
respectively.
Dutta and Babbel (2005) use the g-and-h distribution to capture the implied
distribution of the asset price. In this case, the RND function can be expressed as:
exp (hz?/2
g(z)=a+0b(e” —1) M, (A.24)
Y
where z is the standard normal variable and a, b, g, h are the parameters which refer
to location, scale, skewness and kurtosis respectively. The respective call option
pricing formula takes the following form:

B IR b P
Con(X)=e [1- N (XV1-h)] +g(m)e , (A.25)

1N (VI=H) X g/ (VI=)]

where N (.) is the CDF of the normal distribution.

Corrado (2001) suggests the usage of the Generalized Lamda distribution (GL)
for modelling the risk-neutral distribution of an asset. Since the GL distribution is
defined by its percentile function, Corrado (2001) first transforms the formula of the

°A similar formula is also derived by Dutta and Babbel (2005). However, Fabozzi et al. (2009)
claim that there is a mistake in the formula derivation.
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call option’s expected payoff as follows:

00 1
| s=xas)= [ (5100 - X (.20
X 9(X)

By setting the mean equal to Spe’ and the variance to (Spe™)? (e"Qt - 1), the call
price is estimated by:

CGL (X) = S()Gl — eirtXGg (A27)

where:

G1 = 11— g (X) + m +1_9(X)_E\1191(X)>\4H)

o Az+1
ﬁgat_l( 2O )

A2 (Ag; A1) = sign (A3) Vb — a?

B I
“ - As+1 A +1
1 1
b = 2B(A3+ 1,0+ 1). (A.28)

A3 +1 22 +1

Therefore, the three parameters to be estimated are o, A3 and A4, where A3 and \4
affect the shape of the distribution and B (.,.) stands again for the beta function.

Finally, Markose and Alentorn (2011) propose the Generalized Extreme Value
(GEV) distribution for capturing the risk neutral distribution of an asset’s returns.
The authors model the returns in terms of losses (L;) and derive the RND function
of the asset’s price at maturity as:

R S e

where 1, 0 and £ are the parameters that determine the location, scale and shape of
the distribution respectively. The corresponding call option pricing formula is:

. —H-Y¢ )
Capv (X) =e¢" {So ( (1 g’l;(j; (i/g);[—l/ﬁ) ) — Xe /5} : (A.30)
% :

where:

4.8 X
H_1+5<1—S—0— ) (A.31)

and I (.,.) is the incomplete gamma function.

A.1.3 Mixture methods

Mixture methods incorporate the idea of capturing the RND by the weighted av-
erage of two or more distributions. Ritchey (1990) first points out that the well
documented leptokurtic stock return distributions can be explained if it is assumed
that returns follow a nonstationary normal distribution, i.e. that they are normally
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distributed for short time periods but the distributional parameters change over
time. In this case, a mixture of normal distributions can approximate such a non-
stationary process. Then, Ritchey (1990) derives an option pricing model which is
composed by a weighted sum of Black-Scholes prices.

Melick and Thomas (1997) assume that the RND of the underlying asset at the
maturity of the option can be described by a mixture of three lognormal distribu-
tions:

g(Sy) = w1 [1(Se) + w2 fa(Se) + 73 f3(Sh), (A.32)

where f(S;) stands for the lognormal distribution. The reason they mix three distri-
butions is because they examine a period where the market was anticipating three
possible outcomes. Since Melick and Thomas (1997) use American style options they
cannot derive a closed form solution for the option prices and surpass this problem
by using upper and lower boundaries:

C" = Ey[max(0,S; — X)]
C' = max{Ey[S] — X, e " Ey[max (0, 5; — X)]}, (A.33)

Therefore, for the price of a call option they derive the following formula:
Cu(X) = w;C*(X,0) + (1 — w;)CHX, ), (A.34)

where 6 denotes the nine main parameters (m;, i, o; for i = 1,2,3) to be estimated,
and w; - with j = 1 when the call option is in-the-money and j = 2 when the call
option is out-of-the-money - is the weight that expresses the relative position of the
option price in respect to the bounds (C*, CY).

Bahra (1997) argues that Melick and Thomas’ (1997) methodology may be im-
possible to be implemented in cases where few options are traded in the market
due to the large number of parameters that have to be estimated. As a result, he
proposes a similar approach which assumes that the RND of the terminal price is a
mixture of two lognormal distributions. Given that in his research he examines only
European options, the pricing formula of a call option takes the form:

Crr(X) = et / TS + (1= 1) £ (8] (S — X)dS,. (A.35)

X

Hence, Bahra’s method requires the estimation of only five parameters (1, o1, o,
o9, m). The same technique is also used by Gemmill and Saflekos (2000). A variant
of the aforementioned methodologies is suggested by Séderlind and Svensson (1997)
and Soderlind (2000) where the joint distribution of the logarithm of the asset price
and the discount factor corresponding to the lifetime of the option can be modeled
as a mixture of bivariate normal densities.
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B.1 Macroeconomic Dataset

Table B.1: Macroeconomic variables
This table lists the name of each macroeconomic variable along with its mnemonic label,
brief description of the series and the transformation applied to ensure stationarity. In the
transf column, 1 denotes using levels, 2 denotes taking first-differences, 3 denotes taking
second-differences, 4 denotes taking logs, 5 denotes taking log-differences and 6 denotes
taking second-log-differences.
database unless specified as TCB (The Conference Board) or AC (Author calculation).
The sample period is 1990:01 to 2011:06.

All the series are from Global Insights Basic Economics

Name Mnemonic Description transf
Series
no.
Output and Income
1 PI ypr Personal Income (AR, Bil. Chain 2000 $) 5
2 PI less transfers a0mO051 Personal Income less Transfer Payments (AR, Bil. Chain 2000 5
$)
3 IP: total ips10 Industrial Production Index - Total Index 5
4 IP:products ipsll Industrial Production Index - Products, Total 5
5 IP:final prod ips299 Industrial Production Index - Final Products 5
6 IP:consgds ipsl2 Industrial Production Index - Consumer Goods 5
7 IP: cons dble ipsl3 Industrial Production Index - Durable Consumer 5
8 IP: cons nondble  ipsl8 Industrial Production Index - Nondurable Consumer 5
9 IP: bus eqpt ips25 Industrial Production Index - Business Equipment 5
10 IP: matls ips32 Industrial Production Index - Materials 5
11 IP: dble matls ips34 Industrial Production Index - Durable Goods 5
12 IP: nondble  ips38 Industrial Production Index - Nondurable Goods 5
matls
13 IP: mfg ips43 Industrial Production Index - Manufacturing 5
14 IP: res util ips307 Industrial Production Index - Residential Utilities 5
15 IP: fuels ips306 Industrial Production Index - Fuels 5
16 NAPM prodn pmp Napm Production Index (Percent) 1
17 Cap util utlll Capacity Utilization (SIC-Mfg) 2
Employment
18 Help wanted  lhel Index of Help-Wanted Advertising In Newspapers 2
indx (1967=100;Sa)
19 Help lhelx Help-Wanted Ads:No. Unemployed CIf 2
wanted /unemp
20 Emp CPS total lhem Civilian Labor Force: Employed, Total (Thous.,Sa) 5
21 Emp CPS nonag  lhnag Civilian Labor Force: Employed, Nonagric.Industries 5
(Thous.,Sa)
22 U: all lhur Unemployment Rate: All Workers, 16 Years 2
23 U: mean dura- 1hu680 Unemploy.By Duration: Average(Mean)Duration In Weeks 2
tion (Sa)
24 U5 wks lhub Unemploy.By Duration: Persons Unempl.Less Than 5 Wks 5
(Thous.,Sa)
25 U 5-14 wks lhul4 Unemploy.By Duration: Persons Unempl.5 To 14 Wks 5
(Thous.,Sa)
26 U 15+ wks lhulb Unemploy.By Duration: Persons Unempl.15 Wks + 5

(Thous.,Sa)
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Series Name Mnemonic Description transf
no.
27 U 15-26 wks lhu26 Unemploy.By Duration: Persons Unempl.15 To 26 Wks 5
(Thous.,Sa)
28 U 27+ wks lhu27 Unemploy.By Duration: Persons Unempl.27 Wks + 5
(Thous,Sa)
29 UI claims luinc Average Weekly Initial Claims, Unemploy. Insurance (Thous. 5
Sa)
30 Emp: total ces002 Employees On Nonfarm Payrolls: Total Private 5
31 Emp: gds prod ces003 Employees On Nonfarm Payrolls - Goods-Producing 5
32 Emp: mining ces006 Employees On Nonfarm Payrolls - Mining 5
33 Emp: const ces011 Employees On Nonfarm Payrolls - Construction 5
34 Emp: mfg ces015 Employees On Nonfarm Payrolls - Manufacturing 5
35 Emp: dble gds ces017 Employees On Nonfarm Payrolls - Durable Goods 5
36 Emp: nondbles ces033 Employees On Nonfarm Payrolls - Nondurable Goods 5
37 Emp: services ces046 Employees On Nonfarm Payrolls - Service-Providing 5
38 Emp: TTU ces048 Employees On Nonfarm Payrolls - Trade, Transportation, & 5
Utilities
39 Emp: wholesale ces049 Employees On Nonfarm Payrolls - Wholesale Trade. 5
40 Emp: retail ces053 Employees On Nonfarm Payrolls - Retail Trade 5
41 Emp: FIRE ces088 Employees On Nonfarm Payrolls - Financial Activities 5
42 Emp: Govt ces140 Employees On Nonfarm Payrolls - Government 5
43 Agg wkly hours Index of Aggregate Weekly Hours 2
44 Avg hrs cesl51 Avg Weekly Hrs of Prod or Nonsup Workers On Private Non- 2
farm Payrolls - Goods-Producing
45 Overtime: mfg cesl55 Avg Weekly Hrs of Prod or Nonsup Workers On Private Non- 2
farm Payrolls - Mfg Overtime Hours
46 Avg hrs: mfg a0mO001 Average Weekly Hours, Mfg. (Hours) 2
47 NAPM empl pmemp Napm Employment Index (Percent) 1
48 AHE: goods ces275 Avg Hourly Earnings of Prod or Nonsup Workers On Private 6
Nonfarm Payrolls - Goods-Producing
49 AHE: const ces277 Avg Hourly Earnings of Prod or Nonsup Workers On Private 6
Nonfarm Payrolls - Construction
50 AHE: mfg ces278 Avg Hourly Earnings of Prod or Nonsup Workers On Private 6
Nonfarm Payrolls - Manufacturing
Housing
51 Starts: nonfarm hsfr Housing Starts:Nonfarm(1947-58);Total Farm & 5
Nonfarm(1959-)(Thous.,Saar)
52 Starts: NE hsne Housing Starts:Northeast (Thous.U.)S.A. 5
53 Starts: MW hsmw Housing Starts:Midwest(Thous.U.)S.A. 5
54 Starts: South hssou Housing Starts:South (Thous.U.)S.A. 5
55 Starts: West hswst Housing Starts:West (Thous.U.)S.A. 5
56 BP: total hsbr Housing Authorized: = Total New Priv Housing Units 5
(Thous.,Saar)
57 BP: NE hsbne Houses Authorized By Build. Per- 5
mits:Northeast(Thou.U.)S.A
58 BP: MW hsbmw Houses Authorized By Build. Permits:Midwest(Thou.U.)S.A. 5
59 BP: South hsbsou Houses Authorized By Build. Permits:South(Thou.U.)S.A. 5
60 BP: West hsbwst Houses Authorized By Build. Permits:West(Thou.U.)S.A. 5
Consumption, Orders and Inventories
61 PMI pmi Purchasing Managers’ Index (Sa) 1
62 NAPM new or- pmno Napm New Orders Index (Percent) 1
drs
63 NAPM vendor pmdel Napm Vendor Deliveries Index (Percent) 1
del
64 NAPM Invent pmnv Napm Inventories Index (Percent) 1
65 Orders: cons gds  alm008 Mfrs’ New Orders, Consumer Goods & Materials (Mil. Chain 5
1982 $) (TCB)
66 Orders: dble gds  aOm007 Mfrs’ New Orders, Durable Goods Industries (Bil. Chain 2000 5
$) (TCB)
67 Orders: cap gds a0m027 Mirs’ New Orders, Nondefense Capital Goods (Mil. Chain 5
1996 $) (TCB)
68 Unf orders: dble  alm092 Mfrs’ Unfilled Orders, Durable Goods Indus. (Bil. Chain 2000 5
$) (TCB)
69 M&T invent a0m070 Manufacturing & Trade Inventories (Bil. Chain 2005 $) 5
(TCB)
70 M&T in-  a0mO077 Ratio, Mfg. & Trade Inventories To Sales (Based On Chain 2
vent /sales 2005 $) (TCB)
71 Real Consump- cons-r Real Personal Consumption Expenditures (AC) (Bil. $) pi031 5
tion / gmdc
72 M&Tsales mtq Manufacturing & Trade Sales (Mil. Chain 1996 $) 5
73 Retail sales a0m059 Sales Of Retail Stores (Mil. Chain 2000 $) (TCB) 5
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Series Name Mnemonic Description transf
no.
74 Consumer  ex-  hhsntn U. Of Mich. Index Of Consumer Expectations(Bcd-83) 2
pect
Money and Credit
75 M1 fm1 Money Stock: M1(Curr,Trav.Cks,Dem Dep,Other Ck’able 6
Dep)(Bil. $,Sa)
76 M2 fm2 Money  Stock:M2(M1+4O’nite  Rps,Euro$,G/P&B/D & 6
Mmmfs&Sav&Sm Time Dep)(Bil. $,Sa)
" Currency fmscu Money Stock: Currency held by the public (Bil $,Sa) 6
78 M2 (real) fm2-r Money Supply: Real M2, fm2 / gmdc (AC) 5
79 MB fmfba Monetary Base, Adj For Reserve Requirement Changes(Mil. 6
$,5a)
80 Reserves tot fmrra Depository Inst Reserves:Total, Adj For Reserve Req 6
Chgs(Mil. $,Sa)
81 C&I loans fclnbw Commercial & Industrial Loans Outstanding + NonFin 6
Comm. Paper (Mil. $, SA) (Bci)
82 C&I loans fclbme Wkly Rp Lg Com’l Banks:Net Change Com’l & Indus 1
Loans(Bil$,Saar)
83 Cons credit ccinrv Consumer Credit Outstanding - Nonrevolving(G19) 6
84 Inst cred/PI crdpi Ratio, Consumer Installment Credit To Personal Income 2
(Pct.) (TCB)
Interest Rates, Exchange Rates and Spreads
85 Fed Funds fyff Interest Rate: Federal Funds (Effective) (% Per Annum,Nsa) 2
86 Comm paper cpf3m 3-Month AA Financial Commercial Paper Rate (FRED) 2
87 3 mo T-bill fygm3 Interest Rate: U.S.Treasury Bills,Sec Mkt,3-Mo.(% Per 2
Ann,Nsa)
88 6 mo T-bill fygm6 Interest Rate: U.S.Treasury Bills,Sec Mkt,6-Mo.(% Per 2
Ann,Nsa)
89 1 yr T-bond fygtl Interest Rate: U.S.Treasury Const Maturities,1-Yr.(% Per 2
Ann,Nsa)
90 5 yr T-bond fygth Interest Rate: U.S.Treasury Const Maturities,5-Yr.(% Per 2
Ann,Nsa)
91 10 yr T-bond fygt10 Interest Rate: U.S.Treasury Const Maturities,10-Yr.(% Per 2
Ann,Nsa)
92 Aaa bond fyaaac Bond Yield: Moody’s Aaa Corporate (% Per Annum) 2
93 Baa bond fybaac Bond Yield: Moody’s Baa Corporate (% Per Annum) 2
94 CP-FF spread scp90F cp90-fyff (AC) 1
95 3 mo-FF spread sfygm3 fygm3-fyff (AC) 1
96 6 mo-FF spread sfygm6 fygm6-fyff (AC) 1
97 1 yr-FF spread sfygtl fygtl-fyff (AC) 1
98 5 yr-FF spread sfygth fygts-fyff (AC) 1
99 10 yr-FF spread sfygt10 fygt10-fyff (AC) 1
100 Aaa-FF spread sfyaaac fyaaac-fyff (AC) 1
101 Baa-FF spread sfybaac fybaac-fyff (AC) 1
102 Eff ex rate: US exrus United States;Effective Exchange Rate (Merm)(Index No.) 5
103 Ex rate: Switz exrsw Foreign Exchange Rate: Switzerland (Swiss Franc Per U.S.$) 5
104 Ex rate: Japan exrjan Foreign Exchange Rate: Japan (Yen Per U.S.$) 5
105 Ex rate: UK exruk Foreign Exchange Rate: United Kingdom (Cents Per Pound) 5
106 EX rate:  exrcan Foreign Exchange Rate: Canada (Canadian $Per U.S.9) 5
Canada
Prices
107 PPI: fin gds pwisa Producer Price Index: Finished Goods (82=100,Sa) 6
108 PPI: cons gds pwicsa Producer Price Index: Finished Consumer Goods (82=100,Sa) 6
109 PPI: int materi- pwimsa Producer Price Index: Intermed Mat.Supplies & Compo- 6
als nents(82=100,5a)
110 PPI: crude mate- pwcmsa Producer Price Index: Crude Materials (82=100,Sa) 6
rials
111 Spot market  psccom Spot market price index: bls & crb: all commodi- 6
price ties(1967=100)
112 PPI: nonferrous pwl102 Producer Price Index: Nonferrous Materials (1982=100, Nsa) 6
materials
113 NAPM com  pmcp Napm Commodity Prices Index (Percent) 1
price
114 CPI-U: all punew Cpi-U: All Ttems (82-84=100,5a) 6
115 CPI-U: apparel pu83 Cpi-U: Apparel & Upkeep (82-84=100,Sa) 6
116 CPI-U:transp pud4 Cpi-U: Transportation (82-84=100,Sa) 6
117 CPI-U: medical pu85 Cpi-U: Medical Care (82-84=100,Sa) 6
118 CPI-U: comm. puc Cpi-U: Commodities (82-84=100,Sa) 6
119 CPI-U:dbles pucd Cpi-U: Durables (82-84=100,Sa) 6
120 CPI-U:services pus Cpi-U: Services (82-84=100,Sa) 6
121 CPI-U:exfood puxf Cpi-U: All Items Less Food (82-84=100,Sa) 6
122 CPI-U:exshelter puxhs Cpi-U: All Items Less Shelter (82-84=100,Sa) 6
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Series Name Mnemonic Description transf

no.

123 CPI-U:exmed puxm Cpi-U: All Items Less Midical Care (82-84=100,Sa) 6

124 PCEdefl gmdc Pce, Impl Pr Defl:Pce (2005=100, Sa) (BEA) 6

125 PCEdefl: dlbes gmdcd Pce, Impl Pr Defl:Pce; Durables (2005=100, Sa) (BEA) 6

126 PCEdefl: nond- gmdcn Pce, Impl Pr Defl:Pce; Nondurables (2005=100, Sa) (BEA) 6

ble

127 PCEdefl: service  gmdcs Pce, Impl Pr Defl:Pce; Services (2005=100, Sa) (BEA) 6

Stock Market

128 S&P 500 fspcom S&P’s Common Stock Price Index: Composite (1941-43=10) 5

129 S&P: indust fspin S&P’s Common Stock Price Index: & Industrials (1941- 5
43=10)

130 S&P div yield fsdxp S&P’s Composite Common Stock: Dividend Yield (% Per An- 2
num)

131 S&P PE ratio fspxe S&P’s Composite Common Stock: & Price-Earnings Ratio 5
(%,Nsa)
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B.2 Estimation of Common Factors

Before proceeding to the common factors estimation, all the data are transformed
appropriately in order to become stationary and are standardized. The procedure
we follow for the estimation of the pervasive macroeconomic factors is the asymp-
totic principal component analysis (APCA) introduced by Connor and Korajczyk
(1986) and widely used for summarizing latent information from large macroeco-
nomic panels. Let N be the number of observed variables, T" the number of time
series observations and K the number of latent common factors. For i = 1,..., N,
t=1,...,T, and assuming a static factor model with approximate structure, a vari-
able z;; can be written as:

Tit = Nirfie + Niofor + oo+ Nk free + €, (B.1)

where x;; is the variable ¢ at time ¢, \;; is the factor loading of variable ¢ corre-
sponding to the k™ factor, fi: is the value of the k' factor at time t and e;; is the
idiosyncratic error of variable ¢ at time ¢t. The 7" x K factor matrix F' is calculated
as /T multiplied by the eigenvectors corresponding to the first K eigenvalues of the
T x T matrix X X’'. The normalization F'F/T = I gives the solution for the factor
loadings matrix as N =FX /T. The number of significant factors r is specified
using the second information criterion proposed by Bai and Ng (2002) as it has
been found to be the most stable. In our case, eight factors are found to explain
sufficiently the macroeconomic variations.
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Figure B.1: R2s of common factors
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This figure depicts the R?s from simple univariate regressions of the eight common factors against
each of the 131 macroeconomic variables. The variables’ categories are output and income (series 1
to 17); employment (18-50); housing (51-60); consumption, orders and inventories (61-74); money
and credit (75-84); interest rates, exchange rates and spreads (85-106); prices (107-127) and stock
market (128-131). The sample is from 1990:01 to 2011:06.
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B.3 Results with Alternative Macroeconomic Vari-

ables

Table B.2: Risk-neutral skewness and EF, EB sentiment components using alternative macroeconomic variables

Adv-Sent Spec-Sent Ind-Sent
Panel A: 1990:01 - 1997:06

LagRNS  0.249%%F  0.261***  0.242%%*  0.376%** 0.369***  0.366™**  0.434*%*F*  (0.436%** (0.445%**
(3.163) (3.325) (2.924) (3.849) (3.696) (3.595) (5.914) (5.817) (5.795)

RelDem 0.008 0.005 -0.002 -0.003 0.003 0.004
(1.198) (0.866) (-0.270) (-0.352) (0.424) (0.575)

TrVim 0.040 0.031 -0.017 -0.019 0.004 0.008
(0.577) (0.449) (-0.268) (-0.300) (0.055) (0.115)

Vol -0.766 -0.248 0.373
(-1.160) (-0.289) (0.458)
EF 1.734%%%  1.785%**  1.739%**  4.013*%F  4.062*%* 3.820%  0.870%F* (0.876%F* (.918%***
(4.984) (5.204) (5.122) (2.031) (2.057) (1.681) (3.909) (3.866) (3.431)

EB 0.817***  (0.836***  (.844*** 0.974 0.953 0.932 0.243 0.235 0.261
(2.886) (2.822) (2.987) (1.267) (1.252) (1.254) (1.591) (1.457) (1.537)

R? 0.409 0.400 0.401 0.253 0.236 0.227 0.327 0.311 0.304

Panel B: 1997:07 - 2011:06

LagRNS  0.465%%*%  0.402%**  0.401%%*  0.482%*%*  0.415%**  0.402%FF  0.485%**  (0.433***  (.420%**
(6.300) (4.938) (4.947) (7.133) (5.484) (5.220) (6.289) (5.126) (4.972)

RelDem -0.038 -0.035 -0.066 -0.053 -0.043 -0.035
(-0.939) (-0.859) (-1.637) (-1.300) (-1.034)  (-0.859)
TrVim -0.140%**  _0.138%** -0.132%*FF 0. 137%** -0.127%F  -0.128%*
(-2.903) (-2.879) (-2.770) (-2.856) (-2.538)  (-2.558)

Vol 0.285 0.492 0.533*
(0.663) (1.580) (1.714)

EF -0.788%FF  _(0.955%FF  _(.811%FF  2.842%*  3.901*FFF  3.334%*  _0.670%* -0.796***  -0.559%
(-3.166) (-3.587) (-2.289) (2.167) (3.050) (2.362) (-2.514)  (-2.906)  (-1.733)

EB -0.017 -0.131 -0.048 -0.805 -0.729 -0.579 -0.007 -0.113 0.001
(-0.062) (-0.489) (-0.146)  (-1.167)  (-1.147) (-0.874)  (-0.023)  (-0.414) (0.002)

R2? 0.277 0.302 0.299 0.274 0.302 0.304 0.267 0.288 0.290

This table reports the results of monthly regressions of S&P 500 index risk-neutral skewness on the EF and EB
components of the sentiment proxies used in the study and a set of control variables. A constant term is included in
all the regressions but omitted for brevity. Panel A reports the results for the period 1990:1 - 1997:6, while Panel B
reports the results for the period 1997:07 - 2011:06. Risk-neutral skewness is estimated using the model-free method
of Bakshi, Kapadia and Madan (2003). LagRNS is the lagged skewness value. RelDem is the relative demand
pressure as captured by the ratio of the open interest of OTM puts to the open interest of NTM calls and puts.
TrVIm is the heterogeneity of beliefs, proxied by the detrended logarithm of options trading volume. Vol is the
index instantaneous volatility as proxied by VIX. Adv-Sent is the bull-bear spread based on Investors Intelligence’s
advisors sentiment index. Spec-Sent is the net position of non-commercial traders on S&P 500 index futures scaled
by the total open interest. Ind-Sent is the normalized aggregate net exchanges of the equity funds. EF and EB are
the two components of each sentiment proxy estimated as described in Section 3.3.3. Newey-West t-statistics are
reported in parentheses below the coefficients. *** ** and * denote significance at 1%, 5% and 10% respectively.
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Appendix to Chapter 4

C.1 Macroeconomic Variables

Table C.1: Description of macroeconomic variables

Name Description Source
Real Activity

Pers income  Personal Income Account, Overall, US BEA
Total (Current Prices, AR, SA, Billions $)

Ind prod Industrial Production, Overall, US FED
Total (Volume, SA, 2007=100)

Cap util Capacity Utilization, Total index (SA, %) US FED

Unempl Unemployment Rate, Total (SA,%) US BLS

Payroll Employment, Overall, US BLS
Nonfarm payroll, total (SA, Thousands)

House starts  Housing Starts, Total (AR, SA, Thousands) US CB

Build perm Building Permits, Total (AR, SA, Thousands) US CB

M&T invent  Manufacturing and Trade Inventories TCB
(SA, Billions $, 2009=100)

Consumption Personal Consumption Expenditure, US BEA
Overall, Total (AR, SA, Billions $, 2009=100)

Retalil sales Retail Sales, Total excluding food services US CB

(Current Prices, SA, Millions $)
Money, Credit and Treasury Yields

M1 Money supply M1 (Current Prices, SA, Billions $) US FED
M2 (real) Money supply M2 (Current Prices, SA, Billions §) US FED
/ Price Index, Personal Consumption Expenditure, US BEA

Overall, Total (SA, Index, 2009=100)
Reserves tot  Reserves Depository Institutions,

Total reserves (Current Prices, SA, Millions §$) US FED
C&I loans Commercial and Industrial Loans
Outstanding (Current Prices, SA, Millions $) TCB
CPI Consumer Prices, All items (SA, Index, 1982-1984=100) US BLS
3-m t-bill Interest Rate: US Treasury Bills, US FED
Secondary Market, 3-Month (% Per Annum, NSA)
6-m t-bill Interest Rate: US Treasury Bills, US FED
Secondary Market, 6-Month (% Per Annum, NSA)
1-yr t-bond Interest Rate: US Treasury Constant Maturities, US FED
1-Year (% Per Annum, NSA)
5-yr t-bond Interest Rate: US Treasury Constant Maturities, US FED

5-Year (% Per Annum, NSA)

This table lists the name, a brief description and the source of each macroeconomic variable. Panel A lists
the real activity variables while Panel B the money, credit and treasury yield variables. The data sources
are the US Bureau of Economic Analysis (US BEA), the US Federal Reserve (US FED), the US Bureau of
Labor Statistics (US BLS), the US Census Bureau (US CB) and the Conference Board (TCB).
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C.3 Detailed Results with Hodrick (1992) Covari-
ance Matrix
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Appendix D

Appendix to Chapter 5

D.1 Additional Results

In this section we provide some additional results using the consumption-wealth
ratio of Lettau and Ludvigson (2001) and the stock market illiquidity of Amihud
(2002). Consumption-wealth ratio data are obtained from Sydney Ludvigson’s web-
site! and a monthly time-series is created from the most recent quarterly observa-
tions. Stock market illiquidity is created by averaging the illiquidity measures of
all the NYSE/AMEX stocks within a given month. Both variables are insignificant
across all horizons in univariate regressions and have very limited impact on the
significance of our dispersion in expectations measures when added in the predictive
model.

'http://www.econ.nyu.edu/user/ludvigsons/
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Appendix D. Appendix to Chapter 5

Table D.1: 1-month horizon predictability - additional variables

Panel A: Univariate

Panel B: Bivariate

R? (%) DISP Z R? (%) DISP* Z R? (%)
DISP -9.68 2.23
(-2.36)**
[-2.44)**
DISP* -9.20 1.97
(-2.20)%*
[-2.35]**
VRP 16.09 7.04 -9.27 15.85 9.10 -8.14 15.53 8.51
(4.66)*** (-2.47)%F  (4.34)%F* (-2.24)%%  (4.28)%**
[2.49]%* [-2.35]*F  [2.46]** [[2.11)%F  [2.41)%F
CAY 3.07 -0.22 -9.70 -0.05 1.75 -9.38 -0.47 1.49
(0.79) (-2.23)**  (-0.01) (-2.15)** (-0.11)
[0.81] [-2.33]** [-0.01] [-2.23])** [-0.12]
ILLI 2.52 -0.31 -9.54 0.75 1.76 -9.11 0.42 1.48
Q
(0.63) (-2.27)¥*  (0.18) (-2.18)¥*  (0.10)
[0.64] [2.34]%%  [0.19] [-2.24]%%  [0.10]
Panel C: Trivariate
DISP VRP Z R? (%) DISP* VRP Z R? (%)
CAY -10.29 16.40 -3.21 8.90 -9.38 16.06 -3.37 8.33
(-2.58)*%*F  (4.32)%** (-0.80) (-2.37)%F  (4.28)***  (-0.81)
(-2.44)** (2.46)** (-0.75) [-2.23]*F  [2.42]** [-0.77]
ILLIQ -9.64 16.18 -2.00 8.75 -8.61 15.86 -2.15 8.17
(-2.50)%*  (4.26)*** (-0.49) (-2.29)%F  (4.22)*  (-0.52)
[-2.36]** [2.43]** [-0.47] [-2.13]**F  [2.39]** [-0.50]

This table reports the results of 1-month ahead predictive regressions for the excess return on the CRSP value-
weighted index. The sample period is 1996:01-2012:12. Panel A reports the results of univariate regressions,
Panel B the results of bivariate regressions and Panel C the results of trivariate regressions. The forecasting
variables are the two dispersion in options traders’ expectations measures (DISP, DISP*), variance risk premium
(VRP), consumption-wealth ratio (CAY) and stock market illiquidity (ILLIQ). Reported coefficients indicate the
percentage annualized excess return resulting from a one standard deviation increase in each predictor variable.
Newey and West (1987) and Hodrick (1992) t-statistics with lag length equal to the forecasting horizon are reported
in parentheses and square brackets respectively. *** ** and * denote significance in 1%, 5% and 10% level.
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Table D.2: Univariate long-horizon predictability - additional variables

h=3 h=6 h=12 h=24
R? (%) R? (%) R? (%)
DISP -7.39 3.61 -5.47 3.54 -6.67 -5.19 12.72
(-2.59)%* (-2.25)%* (-2.90) %+ (-2.35)%*
[-2.33)%* [-1.83]* [-2.38] % [-2.02)%*
DISP*  -7.10 3.30 -5.10 3.00 -6.65 -5.20 12.74
(-2.65) %% (-2.24)%* (-3.03)%x (-2.49)**
[-2.31]%* [-1.81]* [-2.40]** [-2.11]**
VRP 13.05 12.32 8.34 8.90 3.94 2.90 3.58
(5.25)%** (3.96)%** (2.40)%* (2.29)%*
[3.62]%** [3.33] % [2.06]* [1.77]*
CAY 3.41 0.37 3.17 0.85 3.24 3.52 5.56
(1.01) (0.96) (0.91) (1.11)
[0.90] [0.83] [0.84] 0.93]
ILLIQ 2.57 -0.01 1.46 -0.22 0.95 0.07 -0.56
(0.70) (0.41) (0.25) (0.02)
[0.65] [0.37) [0.24] [0.02]

This table reports the results of 3-; 6-, 12- and 24-month ahead univariate predictive regressions
for the excess return on the CRSP value-weighted index. The sample period is 1996:01-2012:12.
The forecasting variables are the two dispersion in options traders’ expectations measures (DISP,
DISP*), variance risk premium (VRP), consumption-wealth ratio (CAY) and stock market illiquidity
(ILLIQ). Reported coefficients indicate the percentage annualized excess return resulting from a one
standard deviation increase in each predictor variable. Newey and West (1987) and Hodrick (1992)
t-statistics with lag length equal to the forecasting horizon are reported in parentheses and square
brackets respectively. *** ** and * denote significance in 1%, 5% and 10% level.
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Table D.3: Trivariate long-horizon predictability - additional variables

DISP VRP Z R? (%) DISP* VRP Z R? (%)
Panel A: 3-month horizon
CAY -7.47 13.08 -1.33 15.33 -6.76 12.84 -1.43 14.50
(-3.15)***  (4.43)***  (-0.41) (-2.94)***  (4.43)***  (-0.42)
[-2.27]¥*  [3.60]***  [-0.34] [-2.09]*¥*  [3.55]***  [-0.35]
ILLIQ -7.21 13.01 -0.93 15.27 -6.46 12.77 -1.04 14.45
(-3.15)***  (4.46)*** (-0.28) (-2.95)***  (4.46)***  (-0.30)
[-2.24]*%  [3.58]**F* [-0.23] [-2.06)**  [3.53]*** [-0.25]
Panel B: 6-month horizon
CAY -5.25 8.20 0.04 11.74 -4.53 8.03 0.05 10.78
(-2.19)**  (3.24)FF  (0.01) (-1.88)*%  (3.25)***  (0.02)
[-1.69)* [3.32]***  [0.01] [-1.54] [3.28]***  [0.01]
ILLIQ -5.42 8.35 -0.89 11.84 -4.75 8.18 -0.95 10.89
(-2.44)**  (3.27)%**  (-0.27) (-2.17)**  (3.26)***  (-0.27)
[-1.77]* [3.41]F*F*  [-0.22] [-1.64] [3.37]***  [-0.23]
Panel C: 12-month horizon
CAY -6.41 3.71 0.63 13.81 -6.30 3.48 0.33 13.09
(-2.51)** (1.96)* (0.19) (-2.46)** (1.87)* (0.09)
[-2.24]** [2.09]** [0.16] [-2.23]** [1.98]** [0.08]
ILLIQ -6.68 3.92 -0.60 13.81 -6.55 3.65 -0.81 13.23
(-2.90)***  (2.02)** (-0.19) (-2.90)***  (1.91)*  (-0.25)
[-2.35]** [2.19]*F  [-0.15] [-2.34]** [2.07]*F  [-0.20]
Panel D: 24-month horizon
CAY -4.61 2.45 1.77 16.88 -4.48 2.26 1.65 16.07
(-1.63) (1.75)* (0.53) (-1.55) (1.65)* (0.47)
[-1.69]* [2.02]** [0.46] [-1.66]* [1.84]* [0.42]
ILLIQ -5.19 2.89 -0.90 15.87 -5.11 2.67 -0.99 15.35
(-2.24)** (r.on*  (-0.27) (-2.23)** (1.78)*  (-0.29)
[-1.98]** [2.32]*F  [-0.23] [-2.02]** [2.16]**  [-0.25]

This table reports the results of 3- (Panel A), 6- (Panel B), 12- (Panel C) and 24-month (Panel
D) ahead trivariate predictive regressions for the excess return on the CRSP value-weighted index.
The sample period is 1996:01-2012:12. The forecasting variables are the two dispersion in options
traders’ expectations measures (DISP, DISP*), variance risk premium (VRP), consumption-wealth
ratio (CAY) and stock market illiquidity (ILLIQ). Reported coefficients indicate the percentage an-
nualized excess return resulting from a one standard deviation increase in each predictor variable.
Newey and West (1987) and Hodrick (1992) t-statistics with lag length equal to the forecasting hori-
zon are reported in parentheses and square brackets respectively. *** ** and * denote significance
in 1%, 5% and 10% level.
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