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Abstract

The forward-looking nature of the options market makes it an ideal environment for
investigating the determinants and the information content of investors’ expectations
about the future. Therefore, this thesis explores the interrelations arising between
the macroeconomic and stock market environment, and the S&P 500 index options
market.

First, we examine how investors’ sentiment driven by macroeconomic fundamen-
tals and investors’ erroneous beliefs impact the risk-neutral skewness. Our findings
reveal that the macroeconomic fundamentals component of investor sentiment is
the main driving force of risk-neutral skewness throughout the whole sample period,
while the error in investors’ beliefs has limited explanatory power and only during
the earlier years examined. Moreover, we show that the fundamentals component
of investor sentiment affects differently the prices of call and put options. Second,
we extend the concept of risk-neutral skewness by creating measures of forward
skewness and gauge their predictive ability for a wide range of macroeconomic vari-
ables, asset prices, as well as systemic risk, crash risk, and uncertainty variables.
Overall, we document that forward skewness encapsulates important information
about future macroeconomic and financial market conditions for horizons up to one
year ahead over and above forward variance. Third, we propose a novel measure
of dispersion in expectations that is derived from the dispersion of options’ trading
volume across strike prices. We show that dispersion consistently forecasts negative
excess market returns, for horizons up to two years ahead, exhibiting a predictive
ability comparable to that of the variance risk premium and outperforming all other
variables considered.

This thesis contributes to the asset pricing and macro-finance literature by unrav-
elling the determinants of the pricing kernel, showing that the call and put options
markets are segmented and revealing that option prices and trading volume have
significant forecasting ability for many aspects of the macroeconomic and financial
environment. In that respect our findings are of particular interest not only to
academics but also to investors and policy makers.
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Chapter 1

Introduction

The classic work of Black and Scholes (1973), Merton (1973) and Black (1976) in

option pricing assumes that the underlying asset price follows a geometric Brownian

motion with constant volatility. This implies that the option value can be replicated

by a dynamic hedging strategy in the underlying asset and the risk-free rate and

hence options are redundant securities. Rubinstein (1994) shows that while index

option prices have been roughly consistent with the Black-Scholes-Merton assump-

tions before the crash of October 1987, this is not the case in the post-1987 crash

period. In particular, a typical post-crash plot of implied volatilities across strike

prices exhibits a convex and explicitly downward-sloping pattern, which constitutes

a strong violation of the Black-Scholes-Merton model.

To account for this anomaly, researchers typically either introduce additional

risk factors such as stochastic volatility and/or jumps in the underlying asset price

process (Bakshi et al., 1997, Bates, 2000, Chernov and Ghysels, 2000, Pan, 2002 and

Jones, 2003 among others) or examine the role of additional factors that may exert

impact on option prices (Peña et al., 1999, Amin et al., 2004, Bollen and Whaley,

2004, Buraschi and Jiltsov, 2006, Han, 2008, Gârleanu et al., 2009, among others).

The common element in both approaches is the implication that options are not

redundant securities. In fact, Bakshi et al. (2000), Buraschi and Jackwerth (2001),

Coval and Shumway (2001), Bakshi and Kapadia (2003) and Jones (2006) strongly

reject the hypothesis that options can be considered redundant securities and pos-

tulate that their prices reflect exposure to additional priced factors. Buraschi and

Jiltsov (2006, p.2841) further assert that since options are not redundant securities,

1



Chapter 1. Introduction

“...they provide an economic value that at least exceeds the cost of maintaining op-

tion exchanges”. The fact that options have been shown to be nonredundant assets

implies that the options market encapsulates important information that is distinct

from that found in the underlying asset market.

Another advantageous characteristic of option contracts is that they are by defi-

nition related to investors’ forward-looking beliefs and risk preferences. For example,

the risk-neutral distribution extracted from option prices is derived from the prod-

uct of the conditional distribution of future returns under the physical measure and

the conditional pricing kernel. Moreover, the trading volume and open interest of

options of different type, moneyness or maturity are affected by investors’ different

subjective expectations and can also be linked to informed trading (Easley et al.,

1998). Therefore, over the last ten years, a large body of literature has evolved that

uses option-related measures for forecasting purposes. For example, Bollerslev et

al. (2009), Bali and Hovakimian (2009), Cremers and Weinbaum (2010), Xing et al.

(2010), Bakshi et al. (2011) and Feunou et al. (2014) among others make use of the

information content of option prices, while Pan and Poteshman (2006), Fodor et al.

(2011), Byun and Kim (2013) and Chen et al. (2013) rely on the information embed-

ded in options’ trading volume and open interest. The main conclusion drawn from

the above literature is that both option prices and options’ trading activity exhibit

significant forecasting power for stock returns, treasury returns and macroeconomic

variables.

In a recent paper, Han (2008) challenges the main assumption of the traditional

option pricing models that option prices are settled as if the market consists of

a rational representative investor, by showing that option prices can be seen as

the weighted average of the expectations of both rational and irrational investors.

More specifically, he finds that investor sentiment, which is assumed to capture

investors’ erroneous beliefs, has a significantly positive impact on the S&P 500 in-

dex risk-neutral skewness. Since prior empirical evidence (Aı̈t-Sahalia et al., 2001

and Rosenberg and Engle, 2002) indicates that the conditional physical probability

2



Chapter 1. Introduction

density is approximately symmetric, this result implies that investors’ erroneous ex-

pectations are a strong determinant of the pricing kernel. Motivated by a stream

of papers that relate investor sentiment not only to irrationality but also to ratio-

nal updating of beliefs (Brown and Cliff, 2005, Lemmon and Portniaguina, 2006

among others), in Chapter 3 we define investor sentiment as investors’ overall atti-

tude towards future market returns and postulate that it comprises beliefs driven

both by factors related to fundamentals and by factors unrelated to fundamentals.

Therefore, we decompose aggregate investor sentiment into an economic fundamen-

tals component and an error in beliefs component. To this end, we employ both a

parsimonious set of variables that reflect the information embedded in eight major

macroeconomic categories and a set of latent factors that summarize the variations in

a large dataset of 131 macroeconomic variables. We examine the sentiment of three

different groups of investors - large speculators, investment advisors and individual

investors - as it is possible that different investor categories respond differently to

fundamentals and also trade differently in the options market. Furthermore, unlike

Han (2008) whose sample period ends at 1997:06, our sample period extends up to

2011:06, thus offering us the opportunity to examine whether the relationship be-

tween investor sentiment and the S&P 500 index risk-neutral skewness has changed

over time. The results presented in Chapter 3 provide clear evidence in favor of this

hypothesis. In particular, aggregate investor sentiment has a strong positive impact

on risk-neutral skewness during the first period considered (1990:01 - 1997:06) -

which largely coincides with Han’s (2008) period - but this relationship vanishes in

the second and most recent period (1997:07 - 2011:06). By performing the analysis

with the two sentiment components, we find that in the first period both compo-

nents contribute to the significantly positive effect on risk-neutral skewness, while

in the second period only the fundamentals component is significantly related to

skewness. Moreover, the documented in the second period relationship between the

fundamentals component and the risk-neutral skewness is more pronounced during

periods of worsened stock market conditions and implies that options traders’ beliefs

3



Chapter 1. Introduction

are in line with large speculators’ expectations regarding a reversal of recent eco-

nomic conditions. Finally, we investigate the relationship between the two sentiment

components and skewness proxies created separately from call and put options. Our

results demonstrate that while the impact of the fundamentals component on puts

is in line with the effect on the overall skewness, its impact on calls has the exactly

opposite direction, hence supporting Constantinides et al.’s (2011) assertion that

the two markets are segmented.

As discussed above, the shape of the risk-neutral distribution reflects investors’

forward-looking beliefs and risk aversion. It is important to note, however, that this

forward-looking information spans a horizon equal to the maturity of the options

used for the risk-neutral distribution estimation. Therefore, on a given day it is

possible to construct a term structure of risk-neutral moments that will encompass

investors’ beliefs and attitudes towards risk for several horizons. This additional

information embedded in the term structure of the risk-neutral moments has been

recently used by Bakshi et al. (2011) for improving the forecasting power of risk-

neutral variance. In particular, they create measures of forward variance for one

up to four months ahead using options on the S&P 500 index and show that the

estimated forward variances can jointly improve the predictability of future real ac-

tivity, T-bill returns and stock market returns. In Chapter 4 we extend the concept

of forward variances by creating forward skewness coefficients. Our aim is to explic-

itly capture investors’ crash worries for one up to four months ahead and explore

their information content. This is of particular importance, since the forward vari-

ances estimated by Bakshi et al. (2011) are not robust to the inclusion of jumps in

the price process and therefore it is possible that they underestimate the true for-

ward variance. In contrast, our forward moments are based on a newly established

technique suggested by Neuberger (2012) and their main characteristic is that they

are unbiased estimates of the true forward moments even in the presence of jumps

in the price process as long as the asset price is a martingale. We investigate the

predictive power of the estimated forward skewness coefficients for various macroe-

4



Chapter 1. Introduction

conomic variables, stock market returns as well as risk and uncertainty variables,

controlling for the effect of forward variances. We focus on the joint significance

of each forward moments group because our primary goal is to investigate whether

taking into consideration the term structure of each risk-neutral moment as a whole,

is valuable for forecasting purposes or not. The results suggest that indeed the infor-

mation embedded in the term structure of risk-neutral skewness provides significant

improvement in the forecastability of several variables. In particular, forward skew-

ness coefficients are jointly significant for the majority of real activity, money and

credit variables examined for horizons up to twelve months ahead, while they also

exhibit significant forecasting power for treasury yields for a short 1-month horizon.

Furthermore, they are also important for predicting future stock market returns,

systemic risk and equity uncertainty especially for a 4-month horizon that matches

the time period spanned by the estimated forward skewness coefficients.

In Chapter 5, we exploit the simple fact that trading in options of different strike

prices reflects different expectations about future returns, in order to create a novel

measure of dispersion in beliefs. More specifically, the proposed measure is derived

from the dispersion of the volume-weighted strike prices and captures the dispersion

in the beliefs of options traders. The empirical results show that the dispersion

in options traders’ beliefs forecasts negative excess market returns for horizons up

to two years ahead, exhibiting a predictive ability comparable to that of the well-

established variance risk premium and outperforming all other traditional predictors

considered both in-sample and out-of-sample. Moreover, trading strategies that are

based on the out-of-sample forecasting power of the dispersion in beliefs measure

at both the aggregate and the portfolio level provide a mean-variance investor with

significant utility gains compared to a buy-hold strategy. Furthermore, the informa-

tion embedded in dispersion is not subsumed by other option-implied measures that

proxy for variance and jump risk, or reflect investors’ hedging demand. We provide

two alternative explanations for the strong negative relationship between dispersion

in options traders’ beliefs and future market returns. If our measure proxies for the

5
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level of disagreement in the underlying asset market, then this result is in line with

the limits-to-arbitrage model of Miller (1977) who shows that in the presence of

short-sale constraints asset prices are settled according to the opinions of the most

optimistic investors since pessimistic investors have no means to express their views.

Therefore, higher disagreement leads to higher asset prices and lower subsequent re-

turns. Alternatively, if we consider a framework wherein the underlying asset market

participants are homogeneous and update their beliefs based - to some extent- on

the trading activity in the options market, then the dispersion in options trading

volume across strikes can be regarded as a proxy for the representative investor’s

ambiguity about the true return generating model. In such a case, the documented

negative relationship can be explained within the context of the recursive smooth

ambiguity model of Ju and Miao (2012) in case of an elasticity of intertemporal sub-

stitution that is lower than one. More specifically, in this setting higher ambiguity

increases the pricing kernel but also leads to an increased demand for the risky asset

since investors are willing to substitute current consumption with increased future

consumption. Therefore, the positive covariance between the pricing kernel and the

risky asset return decreases the equity premium.

In summary, this study sheds more light on the interrelationships arising be-

tween the options market and the macroeconomic and stock market environment.

The first empirical chapter (Chapter 3) contributes to the literature that explores

the determinants of the shape of the risk-neutral distribution by departing from the

rational expectations paradigm. In particular, it elaborates on the previously doc-

umented impact of investor sentiment on index option prices (Han, 2008, Lemmon

and Ni, 2011) by showing that in recent years the risk-neutral skewness and hence

the pricing kernel is affected by the sentiment component driven by fundamentals

and not by investors’ unjustified optimism or pessimism. This result first indicates

that incorporating investors’ irrationality into option pricing models is not likely

to improve the fit of observed option prices at least in mature markets such as the

S&P 500 index options market. Second, given the central role played by the pricing
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Chapter 1. Introduction

kernel in determining the price of all assets according to the consumption-based

model, the above result implies that the impact of investors’ erroneous beliefs in

other mature markets such as the US stock market is likely to be small as well.

In support of this conjecture, Sibley et al. (2013) find that the component of the

Baker and Wurgler (2006) sentiment index that is unrelated to fundamentals has

very limited explanatory power for the cross-section of stock returns. Moreover,

the finding that call and put options are oppositely affected by the fundamentals

sentiment component, provides further evidence in favor of the hypothesis that call

and put options markets are segmented.

The second empirical chapter (Chapter 4) contributes to the ongoing research

that extracts option-related variables for forecasting purposes by creating measures

of index forward skewness coefficients and exploring their predictive power for fu-

ture macroeconomic conditions, asset prices as well as variables related to risk and

uncertainty. The documented significant predictive power of the estimated forward

skewness coefficients for the majority of the variables examined, gives further sup-

port to the idea that the time dimension of the implied volatility surface provides

important information about the underlying asset dynamics and investors’ risk aver-

sion in addition to that provided by the moneyness dimension.

Finally, the third empirical chapter (Chapter 5) contributes to the literature

that explores the information content of options’ trading volume but also to the

literature that investigates the impact of dispersion in expectations on asset returns.

Therefore, we uncover a new dimension of predictability stemming from the trading

activity in the options market that has not been explored before. Second, we propose

a new dispersion in expectations measure which, compared to other proxies that stem

from analysts’ forecasts or portfolio holdings, exhibits several advantages. More

specifically, it captures all the beliefs that are expressed in a highly liquid options

market in the form of trading activity, refers directly to asset returns and not to

alternative economic indicators such as corporate earnings, can be estimated even

on a daily basis, and is designed to disentangle between different levels of both

7



Chapter 1. Introduction

positive and negative expectations. Additionally, since the intraday data in options

trading activity are publicly and freely available, our measure can be easily used by

investors and regulators.

The remainder of this thesis is structured as follows. Chapter 2 reviews the lit-

erature on the various techniques for extracting nonparametrically the risk-neutral

distribution and the respective moments from observed option prices, while Ap-

pendix A discusses the parametric techniques. Chapters 3-5 present the main em-

pirical findings of the thesis. Each of these chapters is accompanied by an appendix

(Appendices B-D) that provides additional results and where appropriate comple-

mentary discussions in support of the arguments presented in the main body of the

thesis. Finally, Chapter 6 discusses some of the limitations of the thesis, proposes

some avenues for future research and concludes.
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Chapter 2

Risk-Neutral Distributions and
their Moments

2.1 Introduction

Cox and Ross (1976) show that the price of any European option can be seen as its

discounted expected payoff under the risk-neutral measure:

C (X) = e−rt
∫ ∞
X

g (St) (St −X) dSt (2.1)

P (X) = e−rt
∫ X

−∞
g (St) (X − St) dSt, (2.2)

where C (X) and P (X) denote the price of a European call and put option respec-

tively with strike price X and time to maturity t, r is the risk-free rate and g (St)

stands for the risk-neutral density - RND for short - function of the underlying asset

price at time t.1 Under the risk-neutral measure, the discounted expected payoff of

the option is a martingale, thus the risk-neutral measure is also called a martingale

measure.

The seminal models of Black and Scholes (1973), Merton (1973) and Black (1976)

rely on the assumption that the risk-neutral distribution of the underlying asset price

is lognormal. The empirical evidence across markets, however, shows that observed

option prices cannot be reconciled with this hypothesis. In particular, option prices

in equity (Shimko, 1993, Rubinstein, 1994), foreign exchange (Campa et al., 1998),

1We keep this notation consistent in the rest of this chapter. Moreover, all option pricing
formulas discussed refer to European options unless otherwise stated.
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commodities (Sherrick, Garcia and Tirupattur, 1996) and interest rate (Dutta and

Babbel, 2005) markets imply a risk-neutral distribution which is more negatively

skewed and more leptokurtic than the lognormal one.

Since the risk-neutral distribution is closely linked to the pricing kernel and the

physical distribution, its shape encapsulates important forward-looking information

about investors’ expectations and risk preferences. As a result, a large number of

studies have developed alternative methods for extracting RNDs and their respective

moments. Such methods can be divided into two main groups: The parametric

methods and the nonparametric ones. The advantage of the parametric methods is

that there are only a few parameters that have to be estimated. On the other hand,

since every parametric model has a specific structure, it is not always easy to account

sufficiently for the observed data. In other words, there is always a probability

that the model will be misspecified. In contrast to the parametric methods, the

nonparametric ones are very flexible but sometimes they can be quite data-intensive

and may lead to data overfitting.

Due to their high flexibility and their model-free nature nonparametric meth-

ods have emerged as the primary methods for extracting risk-neutral densities and

moments. In the subsequent empirical analysis we will use nonparametric methods

that extract directly the moments of the risk-neutral distribution. This is because

it is computationally easier and faster to extract directly the moments. However,

such methods share common characteristics with various methods that extract the

whole risk-neutral distribution. Therefore, the aim of this chapter is to provide an

overview of the main methods found in the literature for extracting nonparametri-

cally both risk-neutral distributions and risk-neutral moments directly. For the sake

of completeness, an overview of the main parametric methods for extracting RNDs

can be found in Appendix A.
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2.2 Extracting Risk-Neutral Densities

The techniques for extracting RNDs nonparametrically can be further divided into

kernel methods, maximum entropy methods, RND-fitting methods and implied

volatility curve-fitting methods. Most of the subsequently described methods rely

on Breeden and Litzenberger’s (1978) observation that the second derivative of the

call price with respect to its exercise price gives the RND function:

g(St) = ert
d2C (X)

dX2
|X=St . (2.3)

2.2.1 Kernel methods

Kernel methods are conceptually similar to a nonlinear regression, in the sense

that they are used to fit a function given a set of observed data. Aı̈t-Sahalia and

Lo (1998) suggest the usage of a kernel estimator in order to obtain an option

pricing function Ĉ(.) that matches the observed option prices and use Breeden and

Litzenberger’s (1978) double differentiation rule to subsequently extract the RND.

In particular, given a number of observed option prices {Ci} and their characteristics

{Zi ≡ [S0i , Xi, ti, rt;i, dt;i]
′} - where di is the dividend yield corresponding to call Ci

and the rest of the letters are defined as before - they minimize the following mean

squared error formula:

min
C(.)∈G

n∑
i=1

[Ci − C (Zi)]
2 , (2.4)

where G is the space of twice continuously differentiable functions. The conditional

expectation of C given the information set Z is estimated using a nonparametric

kernel regression. For every specific value Zi0 , this type of regression takes a weighted

average of all the Cis by assigning higher weights to observations with characteristics

Zi that are closer to Zi0 . The option prices are assumed to depend on five variables,

therefore a five-dimensional kernel function K(Z) that integrates to one is selected.
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The Nadaraya-Watson kernel estimator has the generic form:

Ĉ(Z) = Ê [C | Z] =

∑n
i=1 K ((Z − Zi) /h)Ci∑n
i=1K ((Z − Zi) /h)

, (2.5)

where h is the bandwidth. The higher the value of h, the smoother the function

becomes, whereas the closer it is to zero the more peaked it becomes. Aı̈t-Sahalia

and Lo (1998) show that while the choice of kernel function does not play any

crucial role to the final result, the choice of the correct bandwidth is of great impor-

tance. Furthermore, they find that more accurate estimates are obtained when the

dimensions of the kernel function are reduced. Therefore, they also propose another

semiparametric methodology where the pricing function is the Black-Scholes one

but the volatility parameter depends on the futures price, the strike price and the

time to maturity. This idea is depicted as following:

Ĉ(Z) = Cf (F0, X, t, rt; σ̂(F0, X, t)). (2.6)

where Cf (.) stands for the Black-Scholes pricing formula and F0 = S0e
(rt−δt)t. The

conditional expectation of σ on F0, X and t is calculated by the following three

dimensional kernel estimator:

σ̂(F0, X, t) =

∑n
i=1 kF

(
F0−F0i

hF

)
kX

(
X−Xi
hX

)
kt

(
t−ti
ht

)
σi∑n

i=1 kF

(
F0−F0i

hF

)
kX

(
X−Xi
hX

)
kt

(
t−ti
ht

) . (2.7)

Since the foregoing methodology uses both cross-sectional and time-series option

prices, its main characteristic is that it is stable across time. On the other hand, there

may be some dates where the estimated risk-neutral distribution is not consistent

with the observed cross section of option prices.

Bondarenko (2003) incorporates the idea of a kernel function in his research

but in a different way. He states that the RND function can be described by the

convolution of a kernel function k and another positive function u. In general, the
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convolution of two integrable functions can be represented by:

ξ · η =

∫ ∞
−∞

ξ (χ− ψ) η (ψ) dψ. (2.8)

Thus, in this case kSt ·u (St) = g (St) . If there are n available calls in the market each

with a strike price Xi, i = 1, ..., n and having in mind Breeden and Litzenberger’s

(1978) double differentiation rule, the RND can be calculated by solving numerically

the minimization problem:

min
g

n∑
i=1

(
Ci −D−2ĝ (Xi)

)2
, (2.9)

where:

D−2g (X) =

∫ X

−∞

(∫ ϕ

−∞
g (ζ) dζ

)
dϕ, (2.10)

is the second integral of g (X) . For computational issues, however, Bondarenko

(2003) chooses to discretize the possible values that the underlying asset can take.

2.2.2 Maximum entropy methods

Given some constraints, the maximum entropy distribution is the one that maximizes

the information one misses when the value of a random variable is unknown and

therefore can be described as the least prejudiced. For a continuous distribution

p(x) the entropy formula that is maximised is:

= (g) = −
∫ ∞

0

g (St) ln g (St) dSt (2.11)

This idea can be used in the context of the RNDs in order to obtain the least

prejudiced RND given the observed option data.

More specifically, Buchen and Kelly (1996) maximize the above formula subject

to the constraints: ∫ ∞
0

g(St)d (St) = 1 (2.12)
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g(St) ≥ 0 (2.13)

E0 [Fi (St)] = Di =

∫ ∞
0

g(St)Fi (St) dSt, (2.14)

where Di is the observed option price and Fi (St) is the discounted payoff of the

option i, for i = 1, ...,m where m is the number of observed option data. The final

formula to be maximized takes the form:

L (g) = −
∫ ∞

0

g (St) ln g (St) dSt + (1 + λ0)

∫ ∞
0

g(St)dSt +

+
m∑
i=1

λi

∫ ∞
0

g(St)Fi (St) dSt, (2.15)

where λi, ....λm are the Langrange multipliers which are computed numerically. The

resulting RND becomes:

g (St) =

exp

(
m∑
i=1

λiFi (St)
)

∫∞
0

exp

(
m∑
i=1

λiFi (St)
)
dSt

. (2.16)

It has to be mentioned that the above formulas are discretised by the authors and

the results are assumed to approximate the respective continuous distributions.

Buchen and Kelly (1996) suggest also another similar methodology which is based

on the “Principle of Minimum Cross-Entropy”. More specifically, if there is some

prior information about the probability distribution of the value of the underlying

asset at time t, which can be described by a PDF q (St) then the distribution g (St)

can be estimated by minimizing the entropy distance between the two distributions.

This difference in the uncertainty implicit in each distribution is called “cross en-

tropy”. Hence given the same constraints and a prior distribution q (St) the cross

entropy formula that is minimized is:

℘ (g, q) =

∫ ∞
0

g (St) ln
g (St)

q (St)
dSt, (2.17)
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and the RND becomes:

g (St) =

q (St) exp

(
m∑
i=1

λiFi (St)
)

∫∞
0
q (St) exp

(
m∑
i=1

λiFi (St)
)
dSt

. (2.18)

This distribution is regarded again as the least prejudiced subject to the existing

constraints. When there is no prior information about the distribution g (St), q (St)

can be seen as a uniform distribution and in this case the resulting risk-neutral PDF

will be the maximum entropy distribution. Thus, the two methodologies coincide

when there is no prior information about the distribution of the random variable.

The minimum cross entropy methodology is also implemented by Stutzer (1996).

Stutzer takes a large number of t-period past returns2 and creates a uniform prior

distribution with h = 1, ....H possible outcomes. He uses the following constraint as

an approximation of the martingale property that has to hold for the future returns

of the underlying asset:

1 =
H∑
h=1

R (−h)

ert
g (h)

q (h)
q (h) , (2.19)

where R (.) denotes the H past t-period returns that are used as a proxy for the

future return of the asset. Since the author uses a uniform prior distribution the

minimum cross entropy technique has no difference from the maximum entropy

method and the risk-neutral density function becomes (in discrete form):

g (St) =
exp

(
γ∗R(−h)

ert

)
∑

h exp
(
γ∗R(−h)

ert

) , (2.20)

where γ∗ is a Lagrange multiplier found by solving numerically the following convex

problem:

γ∗ = arg min
γ

∑
h

exp

[
γ

(
R (−h)

ert
− 1

)]
. (2.21)

2Where t is equal to the maturity of the option he is interested in.
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2.2.3 RND-fitting methods

This class of methods approximates the RND directly using appropriate optimization

criteria. In Rubinstein (1994), for example, the risk-neutral distribution is estimated

by applying the following least squares formula:

min
Pj

∑
j

(
Pj − P

′

j

)2

, (2.22)

subject to:∑
j

Pj = 1 and Pj ≥ 0 for j = 0, ..., n,

Sb ≤ S ≤ Sa where S =

(
dt
∑
j
PjSj

)
Rtf

,

Cb
i ≤ Ci ≤ Ca

i where Ci =

(∑
j
Pj max[0,Sj−Xi]

)
Rtf

for i = 1, ...,m,

where:

Pj denotes the nodal implied risk-neutral probabilities.

P
′
j denotes the prior distribution which is derived from a n-step standard binomial

tree and for a large enough n can be considered to be lognormal.

Sj is the final nodal asset price j.

Sb (Sa) is the current observed bid (ask) price of the underlying asset.

Cb
i (Ca

i ) is the current observed bid (ask) call option price with strike price Xi.

d is the annualized payout return.

Rf is the annualized risk-free interest return.

t is the time to maturity of the option.

It is easy to observe that Rubinstein’s (1994) methodology provides as the re-

sulting RND the one closest to lognormal for which the present values of all the

options and underlying asset fall between their bid and ask prices. Therefore, if all

option prices calculated based on the lognormal distribution lie between the actual

bid and ask prices then Pj = P
′
j for every j. Moreover, as the available set of option

prices increases, the resulting probability distribution will depend less on the prior

distribution. In the extreme case that m→∞, Pj will become independent of P
′
j .
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Based on Rubinstein’s (1994) technique, Jackwerth and Rubinstein (1996) pro-

pose another approach where the objective is to find the implied distribution with

the maximum smoothness. In this case there is no prior distribution. The objective

function is:

min
Pj

Ω =
∑
j

(
∂2Pj
∂X2

j

)2

, (2.23)

which becomes in discrete form:

min
Cj

Ω =
∑
j

(Cj−2 − 4Cj−1 + 6Cj − 4Cj+1 + Cj+2)2 , (2.24)

subject to Cj = Cm
i whenever Xj = Xi for j = 0, ...n and i = 1, ...,m, where Cj

(Cm
i ) is the option value (observed mid-point price) at exercise price Xj (observed

strike price Xi). The first order condition for the cases where there is no available

option with strike price Xj becomes in discrete form:

∂Ω

∂Cj
= 2Cj−4 − 16Cj−3 + 56Cj−2 − 112Cj−1 + 140Cj − 112Cj+1

+56Cj+2 − 16Cj+3 + 2Cj+4

= 0. (2.25)

However, whenever there is an option with strike price equal to Xj, the model option

prices should coincide with the observed midpoint prices. Therefore, a penalty term

is added to function Ω and the new objective function becomes:

Ω
′
= Ω + a

∑
i

(Ci − Cm
i )2 , (2.26)

and taking the first order condition for the cases where Xj = Xi becomes:

∂Ω
′

∂Cj
= 2Cj−4 − 16Cj−3 + 56Cj−2 − 112Cj−1 + (140 + 2a)Cj − 112Cj+1

+56Cj+2 − 16Cj+3 + 2Cj+4

= 2aCm
i . (2.27)
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Jackwerth and Rubinstein (1996) solve the above system of equations by setting the

prices of call options with very high strike prices equal to zero and the prices of call

options with very low strike prices equal to their intrinsic values. This procedure

also ensures that the resulting risk-neutral probabilities, calculated by the butterfly

approximation of the Breeden and Litzenberger’s (1978) formula, sum up to one.

In case of negative risk-neutral probabilities, the authors increase the number of

options with predetermined prices until they find an optimum RND.

2.2.4 Implied volatility curve-fitting methods

The purpose of this group of methodologies is to fit the implied volatility smile

using some type of polynomial function. Then, they transform the fitted implied

volatility smile into option prices and use the double differentiation rule in order

to estimate the risk-neutral distribution either numerically or analytically. It has

to be mentioned that the usage of the Black-Scholes model for transforming the

option prices into implied volatilities and vice versa, does not imply the validity of

the model’s assumptions.

Shimko (1993) is the first to propose that instead of interpolating the observed

option prices, it is preferable to interpolate the observed Black-Scholes implied

volatilities. This way, the resulting option pricing function turns out to be smoother.

Therefore, Shimko (1993) assumes that the implied volatility function for an expi-

ration date t with respect to the strike price has a quadratic form:

σ̂(X) = a0 + a1X + a2X
2. (2.28)

Given the implied volatilities for all the call options available in the market, the

coefficients a0, a1, a2 can be estimated by linear least squares. Then, he creates a

smoothed call option pricing formula which is a function of σ̂(X) and by differen-

tiating twice he finds the RND function. The analytic expression of the function

is:

g(St = X) = n (d2) [d2x − (a1 + 2a2X) (1− d2d2x)− 2a2X] , (2.29)
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where n (.) is the PDF for a standard normal distribution, d1, d2 are defined as in

the case of the Black-Scholes formula, and:

d1x = − 1

Xσ
√
t

+

(
1− d1

σ
√
t

)
(a1 + 2a2X)

d2x = d1x − (a1 + 2a2X) . (2.30)

Since this method provides probabilities only for the range of prices corresponding

to the option strike prices observed in the market, the author assumes that the tails

of the distribution are lognormal.

Malz (1997) modifies the above technique by expressing the volatility smile in

terms of ∆ = ∂C
∂S

(delta of the option) and uses a quadratic polynomial to approx-

imate the implied volatility function as well. Then, he transforms the volatility

smile from a function of delta to a function of strike price. By substituting this

implied volatility function to the Black-Scholes formula and differentiating numer-

ically twice, he finds the RND function. The advantage of Malz’s (1997) approach

compared to that of Shimko (1993) is that ∆ can take values only from 0 to 1 and

these boundaries represent the whole probability distribution. Therefore, there is no

need for any assumptions regarding the tails of the distribution. Another advantage

of Malz’s (1997) technique is that the resulting distribution is more flexible in the

centre where in general the data are more reliable (Bliss and Panigirtzoglou 2002).

Campa et al. (1998) amend Shimko’s (1993) method by fitting a cubic spline

instead of a quadratic polynomial to the implied volatilities of the observed options.

In this case, the cubic polynomial that links two knots can be different for every

different couple of data points. One constraint is that at each point the first deriva-

tives of the two polynomial functions should be equal and differentiable. Moreover,

for the area before the first data point and after the last one, the first and last

polynomials are used for a length that equals that of the first and last data interval.

Beyond this extended range of available implied volatilities, the implied volatility

smile is assumed to be flat.

Bliss and Panigirtzoglou (2002) combine the two previously described methods
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and use a smoothing cubic spline to fit a volatility function with respect to the ∆ of

the options.3,4 The main characteristic of the smoothing cubic spline is that it penal-

izes excess curvature by a smoothness parameter λ. Moreover, outside the available

data range the spline becomes linear. The objective function that is minimized is:

min
Θ

N∑
i=1

wi

(
IVi − ÎVi (∆i,Θ)

)2

+ λ

∞∫
−∞

f
′′

(x; Θ)2 dx, (2.31)

where Θ is the matrix of the parameters of the cubic spline, f (Θ) is the implied

volatility function, wi is a weight that corresponds to the option’s vega (v = ∂C
∂σ

) and

ÎVi (∆i,Θ) is the fitted implied volatility at ∆i given the parameters Θ. When the

implied volatility function with respect to ∆ is estimated, a large number of equally

spaced points are selected and are transformed to option prices with respect to strike

prices. Finally, by approximating numerically the second derivative of these option

prices with respect to the respective strike prices, the risk-neutral density function

is obtained.

Jackwerth (2000) suggests another methodology that fits the observed implied

volatilites and minimizes the curvature of the volatility smile. The author first

discretizes the possible future values of the underlying asset with equal intervals of

δ and in a way that all the available strike prices in the market are covered. Then

the following objective function is minimized:

min
σj

(i− p)
J∑
j=0

(
σ
′′

j

)2

+ p
I∑
i=1

(
σi − σi
STDi

)2

, (2.32)

where J is the number of possible outcomes of the stock price, I is the number of

observed options in the market, σj is the implied volatility of every hypothetical

option j, σi is the implied volatility of the observed option i, σi is the model implied

3According to Figlewski (2010), this methodology solves the problem of the discontinuous first
derivative of the risk-neutral distribution which is present when interpolating a cubic spline to the
volatility smile expressed in terms of strike prices.

4Similar smoothing spline techniques are also implemented by Aparicio and Hodges (1998) and
Anagnou-Basioudis et al. (2005). However, in these studies the volatility smile is plotted against
strike prices and not against option deltas.
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volatility for the observed option i, σ
′′
j is the second derivative of implied volatility

with respect to strike price approximated by σ
′
j = (σj+1 − 2σj + σj−1) /δ2, STDi

is the standard deviation of the implied volatility during the day for each option

i and p is the trade-off parameter. The second part of the function minimizes the

error between the observed and the model implied volatilities while the first part

minimizes the curvature of the constructed volatility smile. As long as the implied

volatility function is estimated, the respective Black-Scholes prices are calculated

and the double differentiation rule provides the following formula for the RND:

g (Sj) = ert

 e−rtn(d2j)

Sjσj
√
t

[
1 + 2Sj

√
td1jσ

′
j

]
+

S0d
−t√tn (d1j)

[
σ
′′
j +

d1jd2j
σj

(
σ
′
j

)2
]
 , (2.33)

where:

n (.) is the standard normal density function,

d1j =

(
ln

(
S0d
−t

Sje
−rt

)
σj
√
t

)
+ 1

2
σj
√
t,

d2j = d1j − σj
√
t,

d = 1+ dividend yield,

Sj is the asset price at time t equal to the respective strike price Xj and

σ
′
j = is the first derivative of implied volatility with respect to strike price,

approximated by σ
′
j = (σj+1 − σj−1) /2δ. A similar approach is also presented by

Jackwerth (2004). However, in this case the optimization function is:

min
σj

(
δ4

2 (J + 1)

) J∑
j=0

(
σ
′′

j

)2

+
p

2I

I∑
i=1

(σi − σi)2 . (2.34)

Figlewksi (2010) also interpolates the implied volatilities plotted as a function

of strike prices but uses a different technique. He fits a 4th order spline assuming

only one knot for the at-the-money option and minimizing the weighted sum of

squared deviations between the curve and the market implied volatility midpoints.

The constructed weighting function assigns higher weights to the deviations that

fall outside the bid-ask spread. Moreover, the author chooses to discard from his
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dataset quotes of deep-out-of-the-money options and forms the RND tails according

to the GEV distribution.

2.3 Extracting Risk-Neutral Moments

It is evident from the previous section that there exists a plethora of alternative

methods for extracting RNDs, most of which differ substantially in terms of their

objectives, assumptions and constraints to be satisfied. However, while all studies

typically lead to RNDs that are skewed to the left and exhibit fat tails, there is no

agreement in the literature about which method delivers the most accurate results.

Furthermore, while it is possible to calculate the moments of an estimated RND, it

is easier and faster to compute the risk-neutral moments directly from the observed

option prices. Therefore, this section outlines the main techniques for estimating

risk-neutral moments given a set of available option prices.

The common characteristic of all the methods discussed in this section is that

the risk-neutral moments can be estimated from a portfolio of out-of-the-money

European call and put options with weights that depend on the current underlying

asset price and the respective strike prices. This is because they rely on the spanning

result of Bakshi and Madan (2000) and Carr and Madan (2001) who show that any

twice-continuously differentiable payoff function H(St) of the terminal asset price

St can be written as:

H(St) = H(S0) + (St − S0)H ′(S0) +

∫ ∞
S0

H ′′(X)(St −X)+dX+∫ S0

∞
H ′′(X)(X − St)+dX, (2.35)

where S0 is the current asset price, (St −X)+ = max(0, St −X) and (X − St)+ =
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max(0, X − St). The above equation can be rewritten as:

H(St) = [H(S0)−H ′(S0)S0] +H ′(S0)St +

∫ ∞
S0

H ′′(X)(St −X)+dX+∫ S0

∞
H ′′(X)(X − St)+dX, (2.36)

and implies that the payoff function H(St) can be replicated by a H(S0)−H ′(S0)S0

positioning in zero-coupon bonds, a H ′(S0) positioning in the asset and a H ′′(X)dX

positioning in out-of-the-money call and put options of all strikes. Intuitively, the

positions in the bond and the asset form a tangent to the payoff curve at the initial

asset price S0, while the positions in the out-of-the-money options generate the

necessary curvature to match the payoff curve for the rest of the potential terminal

prices.

The main issue regarding the implementation of these methods is the require-

ment of a continuum of out-of-the-money calls and puts across strike prices, while

in reality options are traded only for a finite range of discrete strike prices. To over-

come this difficulty, researchers typically fit the implied volatility curve in a way

similar to what described in the previous section. More specifically, they first fit

the implied volatility curve using cubic splines inside the range of available data

and the respective implied volatility boundary values outside the range of available

data, then they create a large number of artificial option prices and finally they

estimate the integrals that appear in the formulas using the trapezoidal approxima-

tion (see for example Jiang and Tian, 2005, Chang et al., 2013 and Neumann and

Skiadopoulos, 2013).

Carr and Madan (1998), Demeterfi et al. (1999) and Britten-Jones and Neu-

berger (2000) show that under the assumption that the underlying asset price follows

a diffusion process, it is possible to estimate exactly the integrated variance of the

asset’s returns under the risk-neutral measure over a period [0, t] using a portfolio
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of out-of-the-money call and put options expiring at time t:

IV (0, t) = 2ert
[∫ ∞

F0

C(X)

X2
dX +

∫ F0

0

P (X)

X2
dX

]
, (2.37)

where C(X) and put P (X) denote call and put option prices respectively with time

to maturity t and strike price X, and F0 stands for the asset’s current forward price.

The above formula is used by the Chicago Board Options Exchange (CBOE) for the

estimation of the well-known VIX index. Jiang and Tian (2005) and Carr and Wu

(2009) further assert that equation (2.37) can estimate the quadratic variation over

a period [0, t] with a small approximation error in case the underlying asset price

follows a discontinuous process with jumps. However, Broadie and Jain (2008), Du

and Kapadia (2012), Rompolis and Tzavalis (2013) and Bondarenko (2014) show

that in the presence of negative jumps, this method consistently underestimates

the quadratic variation of log-returns and this underestimation is not negligible in

turbulent periods.

In light of this, Neuberger (2012) and Bondarenko (2014) propose an alternative

definition of variance. In particular, they suggest the function %∗ = 2 (ex − 1− x),

to be used as variance instead of the commonly used % = (x)2, where x is the

log-return of a martingale price. When the are no jumps in the underlying asset

process both variance definitions, %∗ and %, converge to the integrated variance

at the continuous-time limit and can be replicated exactly by equation (2.37). In

the presence of jumps, however, the two methods respond differently and only the

quadratic variation stemming from %∗ can be replicated exactly by equation (2.37).

Moreover, %∗ when sampled at a high frequency serves as an unbiased estimator of

the true conditional long-horizon variance, while this is not the case for %.

Similarly, Neuberger (2012) and Kozhan, Neuberger and Schneider (2013) pro-

pose the function ψ∗ = 6 (xex − 2ex + x+ 2), to be used as the third moment of

an asset’s log-return x, instead of the commonly used ψ = (x)3. The reason is

that, unlike the traditional definition ψ, the alternative definition ψ∗ when sampled

at a high frequency serves as an unbiased estimator of the true conditional long-
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horizon third moment. Based on their alternative specification, Neuberger (2012)

and Kozhan, Neuberger and Schneider (2013) show that it is possible to estimate

the third moment of an asset’s returns under the risk-neutral measure over a period

[0, t], and this estimate will be exact even in the presence of jumps in the underlying

asset price process, as long as the price is martingale. The respective formula takes

the form:

TM(0, t) = 6ert
[∫ ∞

F0

X − F0

X2F0

C(X)dX −
∫ F0

0

F0 −X
X2F0

P (X)dX

]
, (2.38)

and by standardizing with the implied quadratic variation from equation (2.37), the

respective risk-neutral skewness coefficient becomes:

SC(0, t) =
TM(0, t)

IV (0, t)
3
2

. (2.39)

In a slightly different context, Bakshi, Panayotov and Skoulakis (2011) assume

that the underlying asset price follows a pure diffusion process and based on the

theoretical evidence presented in Carr and Lee (2009) construct exponential claims

on integrated variance of an asset’s returns under the risk-neutral measure for a

period [0, t]:

H(0, t) ≡ e−rtEQ [e−IV (0,t)
]
, (2.40)

The price of such an exponential claim is given by the following formula:

H(0, t) = e−rt −
∫ ∞
S0

8√
14

cos
(

arctan
(

1√
7

)
+
√

7
2

ln
(
X
S0

))
√
S0X

3
2

C(X)dX

−
∫ S0

0

8√
14

cos
(

arctan
(

1√
7

)
+
√

7
2

ln
(
X
S0

))
√
S0X

3
2

P (X)dX. (2.41)

Since their final goal is to provide forward variance estimates, Bakshi, Panayotov

and Skoulakis (2011) perform a small manipulation of equation (2.40) and get:

− lnH(0, t) = rt− lnEQ [e−IV (0,t)
]
. (2.42)
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Therefore, their estimates are affected not only by the expectation of the integrated

variance under the risk-neutral measure but also by the level of the risk-free rate.

The effect of the presence of jumps in the underlying asset price process on the

quadratic variation estimates from this method has not been investigated so far.

Bakshi, Kapadia and Madan (2003) construct formulas for all the risk-neutral

moments of the continuously compounded log-return ln
(
St
S0

)
. In particular they

show that the risk-neutral variance, skewness and kurtosis of the asset’s return over

a period [0, t] can be calculated from the prices of out-of-the-money call and put

options expiring at time t:

V ar(0, t) = ertV (0, t)− µ(0, t)2, (2.43)

Skew(0, t) =
ertW (0, t)− 3µ (0, t) ertV (0, t) + 2µ (0, t)3[

ertV (0, t)− µ (0, t)2]3/2 , (2.44)

Kurt (0, t) =
ertQ (0, t)− 4µ (0, t) ertW (0, t) + 6ertµ (0, t)V (0, t)− 3µ (0, t)4[

ertV (0, t)− µ (0, t)2]2 ,

(2.45)

where:

µ (0, t) = ert − 1− ert

2
V (0, t)− ert

6
W (0, t)− ert

24
Q (0, t) , (2.46)

and V (0, t) , W (0, t) and Q (0, t) are the prices of three contracts that represent the

second, third and fourth noncentral moment respectively of the asset’s log-return:

V (0, t) =

∫ ∞
S0

2(1− ln(X
S0

))

X2
C(X)dX +

∫ S0

0

2(1 + ln(S0

X
))

X2
P (X)dX, (2.47)
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W (0, t) =

∫ ∞
S0

6 ln(X
S0

)− 3
[
ln(X

S0
)
]2

X2
C(X)dX −

−
∫ S0

0

6 ln(S0

X
) + 3

[
ln(S0

X
)
]2

X2
P (X)dX, (2.48)

Q (0, t) =

∫ ∞
S0

12
[
ln(X

S0
)
]2

− 4
[
ln(X

S0
)
]3

X2
C(X)dX +

+

∫ S0

0

12
[
ln(S0

X
)
]2

+ 4
[
ln(S0

X
)
]3

X2
P (X)dX. (2.49)

Rompolis and Tzavalis (2013) extend the work of Bakshi, Kapadia and Madan (2003)

for moments of order higher than fourth. Unlike the risk-neutral moments estimated

from the previous techniques, the moments estimated from Bakshi, Kapadia and

Madan’s (2003) technique do not have theoretically equivalent realized measures

that can be constructed from high-frequency returns. However, Du and Kapadia

(2012) show that in the presence of jumps in the underlying asset price process,

the Bakshi, Kapadia and Madan (2003) risk-neutral variance captures much more

accurately the quadratic variation of the asset’s returns than the formula (2.37)

does.

2.4 Conclusion

In this chapter, we outline the main methods for extracting risk-neutral distributions

and moments nonparametrically from observed option prices. Such methods will

be subsequently used for the empirical analysis presented in this thesis. We first

describe the different techniques for extracting the whole distribution of the future

underlying asset price (or return). Such techniques can be further divided into

those that use a kernel estimator to estimate the option pricing function, those

that obtain the least prejudiced distribution, i.e. the one exhibiting the maximum
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entropy, those that fit directly the risk-neutral density and finally those that fit the

implied volatility curve.

Assuming that the risk-neutral distribution is accurately estimated, it is straight-

forward to calculate its moments. However, given the computational difficulties that

are embedded in most of the aforementioned methods and the fact that there is no

consensus in the literature regarding the method that provides the most accurate

results, it is easier and more reliable to estimate the risk-neutral moments directly

from the observed option prices. Therefore, in the second part of this chapter we

analyze the different approaches for estimating the risk-neutral variance, skewness

and kurtosis using option prices of a given maturity.
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Chapter 3

Investor Sentiments, Rational
Beliefs and Option Prices

3.1 Introduction

The smirk pattern, which characterizes the cross-sectional plot of index options’

implied volatilities, constitutes evidence of a pronounced negative skewness in the

risk-neutral distribution of the index returns. This phenomenon cannot be fully

captured even by sophisticated option pricing models that incorporate stochastic

volatility and jumps (see Bakshi et al., 1997, Bates, 2000 and Pan, 2002 among

others). Under the representative-investor paradigm, consumption-based asset pric-

ing theory accounts for the variation in risk-neutral skewness by describing the

determinants of the pricing kernel. In particular, it suggests that when investors

are pessimistic (optimistic) about future consumption their marginal utility is high

(low). Consequently, when investors are bearish (bullish) about the market, they

drive up (down) the prices of Arrow-Debreu securities that pay off when the index

level is low. This is equivalent to a more (less) negatively sloped pricing kernel,

and assuming that the conditional physical probability distribution is always ap-

proximately symmetric (Aı̈t-Sahalia et al., 2001 and Rosenberg and Engle, 2002),

it implies a more (less) negative risk-neutral skewness. Shefrin (2008) postulates

that the pricing kernel can be decomposed into two parts: one that is driven by

investors’ erroneous beliefs and a second part that is driven by investors’ rational
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expectations about future consumption.1 Recent literature attributes the negative

risk-neutral skewness to factors such as investor sentiment (Han, 2008, Lemmon and

Ni, 2011), limits to arbitrage (Bollen and Whaley, 2004), market momentum (Amin

et al., 2004), heterogeneous beliefs (Buraschi and Jiltsov, 2006) and market default

risk (Andreou, 2013).

In this chapter, we examine how investor sentiment related to economic funda-

mentals and investors’ erroneous beliefs impact the risk-neutral skewness of index

returns. Unlike Han (2008) who assumes that investor sentiment reflects only in-

vestors’ unjustified expectations,2 a recent stream of papers acknowledges that in-

vestor sentiment is not purely driven by irrationality but also incorporates rational

updating of beliefs. For example, Brown and Cliff (2005, p. 417) note that “when

people say they are bullish on the market, this can be a rational reflection of pros-

perous times to come, an irrational hope for the future, or some combination of the

two”.3 In light of this, we define investor sentiment as investors’ overall attitude

towards future market returns and argue that it captures their beliefs driven both by

changes in fundamentals and by factors unrelated to fundamentals. Therefore, for

the subsequent analysis we decompose aggregate investor sentiment into two compo-

nents: an economic fundamentals (EF) component, which corresponds to investors’

rational updating of beliefs regarding future market returns due to changes in eco-

nomic conditions,4 and an error in beliefs (EB) component, which captures investors’

expectations that are not associated with the economic conditions (expressed in the

form of unjustified optimism or pessimism). In this respect, this study contributes

to the ongoing research on the impact of behavioral biases on index option prices

and the pricing kernel.

In order to extract risk-neutral skewness estimates from S&P 500 index options

1It is important to note that Shefrin (2008) uses the word sentiment to describe only the error
in beliefs sentiment component.

2His assumption is reinforced by the fact that the main results of his study do not change after
controlling for four popular macroeconomic indicators.

3For similar discussions, see also Qiu and Welch (2004), Baker and Wurgler (2006), Lemmon
and Portniaguina (2006) and Sibley et al. (2013).

4The term economic conditions is used to describe the combination of both macroeconomic and
financial conditions.
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we use the well-established model-free approach of Bakshi, Kapadia and Madan

(2003). To capture investor sentiment we utilize three proxies which can be regarded

as reflecting the sentiment of three different classes of investors. More specifically,

we use the net position of non-commercial traders in S&P 500 futures to capture the

sentiment of large speculators, the bull-bear spread based on the surveys of Investors

Intelligence to proxy for the sentiment of investment advisors and a newly established

measure introduced by Ben-Rephael et al. (2012) that captures individual investor

sentiment through the net exchanges of the equity funds.

We estimate the economic fundamentals sentiment component by regressing each

sentiment proxy on a vector of eight major economic indicators that practically cover

all aspects of the macroeconomic and financial environment that could influence

investors’ expectations regarding future market returns. The fitted values from

the regressions are regarded as the component that is related to economic activity

and corresponds to investors’ rational updating of beliefs. The residuals from the

regressions are regarded as the error in beliefs component that is not associated with

the economic conditions and reflects investors’ unjustified optimism or pessimism.

We check the robustness of our sentiment decomposition by using a set of common

latent factors that summarize the information embedded in a large panel of 131

macroeconomic variables. In particular, our alternative sentiment decompositions

are based a) on the estimated common factors and b) on the variables that are most

correlated with those factors. Both alternative sentiment decompositions provide

qualitatively similar results with those from the main decomposition.

Our sample period extends from 1990:01 to 2011:06. We conduct our empiri-

cal analysis over two sample periods, before and after 1997:06. This enables us to

compare our findings to those of Han (2008) whose sample period ends at 1997:06.

Therefore, we examine whether the results reported in Han (2008) continue to hold

in recent times. Furthermore, our subsample analysis is motivated by Gârleanu et

al. (2009) who suggest the high likelihood of a structural change in the S&P 500

index options market in 1997 due to the introduction of new competing securities
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such as the S&P 500 E-mini futures and futures options on the Chicago Mercan-

tile Exchange (CME) and the Dow Jones options on the Chicago Board Options

Exchange (CBOE). The introduction of these alternative securities may have trig-

gered a shift of investors between markets, thus changing the characteristics of the

representative S&P 500 index options investor.

The empirical results show that in the first sample period (before 1997:06), there

exists a significantly positive relationship between all three sentiment proxies and

skewness. This means that a more bullish (bearish) investor sentiment leads to a less

(more) negative risk-neutral skewness. Hence, our results corroborate the findings

of Han (2008). However after 1997:06, we see that this pattern changes and none

of the three sentiment proxies exhibits any significant relationship with skewness.

Our findings indicate that the impact of aggregate sentiment on the risk-neutral

skewness is insignificant in the recent years.

To shed light on the nature of this change, we repeat our analysis for the EF

and EB components of sentiment. The results of the first period show that the pre-

viously reported relationship between aggregate investor sentiment and risk-neutral

skewness stems mainly from the EF component, but the EB component also exhibits

some explanatory power. However, the results for the second period provide a strik-

ing contrast. The EF component remains strongly significant, while the respective

EB component is consistently insignificant. The results suggest that aggregate sen-

timent, which is previously found to be insignificant, cannot always account for the

impact of investors’ rational and erroneous expectations on option prices as it con-

stitutes only a noisy aggregation of these two components. A further examination of

the EF component of sentiment shows that the risk-neutral skewness is influenced

by the expectations of large speculators regarding a reversal of recent economic

conditions.

We further examine the market conditions under which the documented in the

second period relation between the EF sentiment component and the risk-neutral

skewness is more pronounced. Our analysis suggests that this significant relation
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mainly stems from periods of worsened stock market conditions. Thus, on average

the S&P 500 index options traders react to bad news by forcing risk-neutral skewness

to become less negative but do not react to good news in a way that would make

risk-neutral skewness more negative. We validate this finding by examining whether

the significant relation for the EF component of each sentiment proxy is mainly

driven by periods of more bullish or bearish expectations depending on the way

each proxy responds to recent economic conditions.

Finally, motivated by Constantinides et al.’s (2011) assertion that the index

options market is segmented, in the sense that out-of-the-money puts are mainly

traded by hedgers while out-of-the-money calls are mainly traded by speculators,

we create different slope measures for calls and puts. The analysis (restricted in

the second period) suggests that the slope of the calls’ implied volatility smirk is

mainly driven by the expectations of investment advisors and individual investors

regarding a continuation of recent economic conditions, while the slope of the puts’

implied volatility smirk is mainly driven by the expectations of large speculators

regarding a reversal in the economy. In contrast, the EB component of all sentiment

proxies has no explanatory power either for the slope measures from call options

or for the slope measure from put options. The above evidence is consistent with

that of Constantinides et al. (2011) and implies that the demand for call and the

demand for put options originate from different sources.

Our findings provide useful insights regarding the role of investor sentiment on

asset prices. In particular, we document that investor sentiment has an impor-

tant component that represents investors’ rational updating of beliefs, the impact

of which cannot be ignored on asset prices. In fact, in the S&P 500 index options

market, the pricing kernel is mainly driven by its economic fundamentals compo-

nent and not by the errors in beliefs component. This finding is important as the

index options market provides us with valuable forward-looking information about

the pricing kernel. Moreover, in contrast to Han (2008), our results suggest that

incorporating investors’ irrationality into sophisticated option pricing models is no
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longer valuable.5

The remainder of the chapter is structured as follows. Section 3.2 presents in

detail the related literature. Section 3.3 describes the data and the construction of

the variables used in the study. Section 3.4 provides the empirical results. Finally,

Section 3.5 concludes.

3.2 Related Literature

This chapter is mainly related to the literature that examines the determinants of

the risk-neutral moments - or equivalently the shape of the implied volatility smirk

- extracted from index and individual stock options. Bollen and Whaley (2004)

investigate whether the net buying pressure for index and stock options affects the

shape of the implied volatility smirk. The underlying assumption is that limits

to arbitrage force market makers to charge a higher price for options when their

short positions become large. Their results indicate that the shape of the index

options’ implied volatility smirk is driven by the demand for index put options

consistent with the hypothesis that investors seek portfolio insurance. On the other

hand, stock options’ implied volatility smirk is affected by the demand for stock

call options. Gârleanu et al. (2009) provide further time-series and cross-sectional

evidence showing that option expensiveness and hence the level and steepness of the

implied volatility smirk is positively linked to demand pressure.

Dennis and Mayhew (2002) investigate the systematic and firm-specific factors

that affect the risk neutral skewness implied by individual stock options. They

find that a larger (smaller) firm size, a higher (lower) stock beta, a lower (higher)

stock liquidity, a period of high (low) market volatility and a period of more (less)

negative market skewness are related to a more (less) negative individual stock risk-

5In fact, recent literature on general equilibrium and option pricing models attempts to account
for the implied volatility smirk anomaly by extending the traditional rational representative-agent
paradigm. For example, Liu et al. (2005) incorporate uncertainty aversion for rare events, while
Benzoni et al. (2011) and Du (2011) build a long-run risk and a habit formation model respectively,
with a jump component to the consumption growth process. Finally, Christoffersen et al. (2013)
construct a GARCH option pricing model with a pricing kernel that depends both on stock returns
and volatility.
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neutral skewness. Similar results are also obtained by Taylor et al. (2009). Duan

and Wei (2009) demonstrate that the shape of the individual stock options’ implied

volatility smirk is associated with the systematic risk proportion of the underlying

asset. In particular, systematic risk proportion has a positive effect on the level and

the steepness of the smirk. Furthermore, Bradshaw et al., (2010) find a positive

relation between firm opacity and the steepness of the implied volatility smirk.

Han (2008) and Lemmon and Ni (2011) examine the impact of investor sentiment

on S&P 500 index and individual stock option prices. Both studies find that a more

bullish investor sentiment is related to a less negatively skewed risk-neutral density

and a flatter implied volatility smirk, while a more bearish sentiment is associated

with a more negative risk-neutral skewness and a steeper implied volatility smirk.

Buraschi and Jiltsov (2006) create a heterogeneous-belief equilibrium model which

leads to negative risk neutral skewness. Moreover, they provide empirical evidence

that a higher heterogeneity of beliefs about expected returns increases the options’

trading volume and makes the slope of the S&P 500 implied volatility smirk steeper.

Friesen et al. (2012) draw the same conclusion by examining the implied volatility

smirk of individual stock options.

Restricting our attention to the index options markets, Amin et al. (2004)

examine the impact of stock market momentum on the S&P 100 index option prices

and find that negative market returns lead to a substantially steeper and more curved

smirk pattern in both call and put options’ implied volatility functions. David and

Veronesi (2014), show that the slope of the S&P 500 index implied volatility smirk

is positively related to investors’ perceived economic uncertainty, probability of a

recession and probability of deflation. Andreou (2013) investigates the impact of

market default risk on the S&P 500 index risk-neutral moments and shows that it

is positively related to variance and skewness and negatively related to kurtosis.

With respect to the determinants of index option prices outside the US, Nordén

and Xu (2012) indicate that an increase (decrease) in relative liquidity between out-

of-the-money put and at-the-money call options leads to a less (more) negatively
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sloped implied volatility smirk of the Swedish OMXS30 index. Peña et al. (1999)

show that the shape of the Spanish IBEX-35 index implied volatility smirk is mainly

influenced by the market’s transaction costs, proxied by the options’ bid-ask spread,

with higher (lower) transaction costs being associated with a more (less) curved

smirk. In a similar study, Chang et al. (2009) indicate that the slope of the implied

volatility smirk of the Hang Seng index is negatively related to the variance of the

underlying asset and the options’ bid-ask spread and also exhibits a “Monday effect”,

by being steeper on Mondays.6

This chapter is also related to a strand of the literature that examines the im-

pact of macroeconomic announcements and macroeconomy in general on the equity

market risk-neutral moments. Graham et al. (2003) investigate the impact of eleven

macroeconomic announcements on the equity market risk-neutral variance as cap-

tured by VIX and state that five of them have a significantly negative effect. In

a similar study, Nikkinen and Sahlström (2004) find that VIX decreases after the

Federal Open Market Committee (FOMC) meetings and after the release of the

employment report from the Bureau of Labor Statistics. Vähämaa and Äijö (2011)

further document that the effect of the FOMC meetings on VIX is stronger during

periods of expansive monetary policy. Beber and Brandt (2009) provide evidence

that the reduction in the risk-neutral variance of cyclical stocks after a non-farm

payroll announcement is more pronounced in periods of high macroeconomic un-

certainty. At an intraday level, Nofsinger and Prucyk (2003) find that the implied

volatility of S&P 100 index options increases for some hours after the release of

macroeconomic news, a phenomenon which is mostly attributed to bad news. In

the same vein, Bailey et al. (2014) show that during the recent financial crisis, VIX is

significantly increased five minutes before and after macroeconomic announcements.

Steeley (2004) examines the impact of news about inflation, unemployment, gov-

ernment borrowings, interest rates and money supply in UK on the risk-neutral mo-

ments of the FTSE 100 index. In most cases the effect is significant especially for

6For the determinants of the risk-neutral moments in the interest rate and commodities markets,
the reader can refer to Deuskar et al. (2008), Pan (2012) and Ruf (2012).
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skewness and kurtosis. In a similar study, Äijö (2008) investigates the impact of

both US and UK macroeconomic news on the shape of the risk-neutral distribution

implied by FTSE 100 index options. His conclusion is that good (bad) news have a

negative (positive) impact on implied volatility but a positive (negative) impact on

skewness and kurtosis. At an intraday level, Kim and Lee (2011) examine whether

six macroeconomic news announcements from South Korea and US influence the

risk-neutral moments of KOSPI 200 index. They find that after an announcement

risk-neutral volatility increases, kurtosis decreases while skewness increases after

good news and decreases after bad news. In contrast to Äijö (2008) they state that

changes in kurtosis do not depend on the quality of the news.7

Bekaert et al. (2013) investigate the effect of monetary policy actions on VIX.

They show that a lower (higher) real interest rate is related to a lower (higher) VIX,

an effect which mainly stems from the variance risk premium component. Mixon

(2002) explores the effect of several stock market and macroeconomic variables on the

at-the-money implied volatility of S&P 500 index options. S&P 500 index and Nikkei

index past returns exhibit the highest explanatory power, having a negative relation

with implied volatility. Secondarily, the short-term risk-free rate and the corporate

yield spread have a significantly negative and positive effect respectively but only

for a one-month horizon. Glatzer and Scheicher (2005) extract the DAX index RND

and investigate whether macroeconomic and financial conditions in Germany and US

influence the higher moments and the left tail of the distribution. Their results show

that only the USD/Euro exchange rate has a significant impact on all the higher

moments, whereas the US stock market momentum and variance mainly affect the

implied volatility and to a lesser extent the implied skewness. The effect of German

macroeconomy on the DAX RND shape is weak and limited only to the left tail of

the distribution.

7For studies examining the impact of macroeconomic news on the risk-neutral variance and
higher moments in the interest rate markets the reader can refer to Ederington and Lee (1996),
Sun and Sutcliffe (2003), Vähämaa et al. (2005) and Beber and Brandt (2006). Kim and Kim’s
(2003) study focuses on the foreigh exchange markets.
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3.3 Data and Variables

3.3.1 Options data and risk-neutral skewness

We obtain daily S&P 500 index call and put options data from IVolatility.com for

the period 1990:01 to 2011:06.8 Following the standard practice, option prices are

calculated as the midpoint between the best bid and best ask price. Expiration time

is calculated assuming 360 calendar days per year. Each trading day is matched with

the respective dividend yield which is obtained from Bloomberg. Moreover, each

option contract is matched with the appropriate continuous risk-free rate that is

found after interpolating the one-, three-, six- and twelve-month Treasury Constant

Maturity rates downloaded from the FRED database of the Federal Reserve Bank

of St. Louis.

Standard filtering rules are applied to the dataset to eliminate measurement

errors and outliers that are mainly caused by thinly traded options (Aı̈t-Sahalia and

Lo, 1998, Han, 2008, Neumann and Skiadopoulos, 2013). First, we discard options

that violate no-arbitrage boundaries. Second, we exclude observations with zero

bid prices and midpoint prices of less than 0.25 index point. Options with implied

volatility of more than 100% are also removed. Finally, we take into consideration

only options with a non-zero trading volume and maturity from 5 to 270 calendar

days.

Risk-neutral skewness is estimated using the model-free method of Bakshi, Ka-

padia and Madan (2003), and specifically the formulas (2.44) and (2.46)-(2.49) pre-

sented in the previous chapter. This method has been extensively used in the lit-

erature (Dennis and Mayhew, 2002, Han, 2008, and Duan and Wei, 2009, among

others) and is considered the standard approach for risk-neutral moments estima-

tion. In order to create a monthly time-series we estimate skewness on the last

trading day of each month. We consider only cross-sections that have at least two

calls with K/S > 1 and two puts with K/S < 1, where K is the strike price of the

8Unlike the following chapters, the sample period examined in this chapter ends at 2011:06 due
to the availability of the investor sentiment data.
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option and S is the index level.

The main issue regarding the implementation of the method is that it requires a

continuum of option prices while the available data is discrete. Therefore, following

Chang et al. (2013) and Neumann and Skiadopoulos (2013), for each cross-section

of options we interpolate implied volatilities into the range of available options data

using a smoothing cubic spline and extrapolate outside this range using the respec-

tive boundary values. Our final goal is to obtain a set of 1000 implied volatilities

that cover the moneyness range from 0.0001 to 3. The implied volatility data points

for moneyness < 1 are then converted into put prices and those for moneyness > 1

are converted into call prices. Finally, the trapezoidal approximation is used to

calculate the integrals in the Bakshi, Kapadia and Madan (2003) formulas. Follow-

ing this procedure, we calculate the risk-neutral skewness for the two time horizons

that are nearest to one month, and then linearly interpolate to find the risk-neutral

skewness for exactly one-month ahead.

Figure 3.1 (top left panel) plots the monthly time series of S&P 500 index risk-

neutral skewness from 1990:01 to 2011:06. We observe that the risk-neutral skewness

is negative throughout the sample period and fluctuates substantially from month

to month. It is notable that the level of the risk-neutral skewness increases during

the period of the recent financial crisis, a phenomenon that has also been discussed

by Birru and Figlewski (2011) and Coakley et al. (2013). As reported in Table 3.1,

its sample mean is -1.559 and its autocorrelation coefficient 0.547.

3.3.2 Sentiment measures

The first sentiment proxy is related to the trading activity of large speculators in

S&P 500 futures. The Commodity Futures Trading Commission (CFTC) requires

clearing members, futures commission merchants and foreign brokers to report daily

their futures and options positions if they are above a specified level. Based on

those data, the CFTC releases the Commitments of Traders report, which provides

a breakdown of each Tuesday’s open interest for markets in which there are 20 or
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more reported positions. Since October 1992 the report is released on Friday and

the data included refer to the previous Tuesday. Prior to that, it was released twice

a month in the middle and at the end of each month. Every individual trader is

classified by the CFTC as either “commercial” or “non-commercial”. Commercial

traders use futures for hedging purposes while non-commercial traders are large

speculators. Similar to Han (2008), we derive the sentiment of large speculators as

the net position (long contracts minus short contracts) of non-commercial traders

scaled by the total open interest in S&P 500 futures (Spec-Sent).

The second sentiment proxy comes from Investors Intelligence’s advisors’ senti-

ment index. In particular, Investors Intelligence performs a weekly survey of more

than 120 independent financial market newsletter writers. Each newsletter is cate-

gorized as bullish, bearish or correction, based on the expectations of future market

movements. The survey started as monthly in 1963, became fortnightly until June

1969 and since then has been weekly. It is published every Wednesday but the

historical data are matched with Friday dates since the majority of the newsletters

are written after the markets close each Friday. Following Brown and Cliff (2004,

2005) we use the bull-bear spread (percentage of bullish investors minus percent-

age of bearish investors) in order to capture the sentiment of investment advisors

(Adv-Sent).

The monthly time-series of the aforementioned sentiment proxies are created by

using the data closest to the end of each month. The two sentiment proxies are

shown by Han (2008) to be positively and strongly related to the S&P 500 index

risk-neutral skewness for the period 1988:01-1997:06.

The third sentiment measure considered in this study is the normalized aggre-

gate net exchanges of the equity funds introduced by Ben-Rephael et al. (2012). In

particular, the Investor Company Institute (ICI) provides monthly data of aggre-

gate mutual fund flows for bond funds, domestic equity funds, international equity

funds and mixed funds. The last three categories constitute the overall equity funds

category.9 The sentiment proxy is calculated as the “exchanges in” minus the “ex-

9Ben-Rephael et al. (2012) include mixed funds in the equity funds category, because their
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changes out” of the equity funds, normalized by the fund assets at the beginning of

each month (Ind-Sent). Intuitively, higher sentiment leads investors to alter their

asset allocation from bonds to equities and vice versa. Ben-Rephael et al. (2012)

mention that the vast majority (more than 85%) of mutual fund assets are held

by households, hence this measure is regarded as an individual investor sentiment

proxy.

Summary statistics for the sentiment measures can be found in Table 3.1. We

observe that the Adv-Sent is on average bullish with a mean value of 0.139, while the

Spec-Sent is on average slightly bearish with a mean value of -0.045. Moreover, both

the Adv-Sent and the Spec-Sent are quite persistent with autocorrelation coefficients

of 0.746 and 0.817 respectively. In contrast, the Ind-Sent has an almost zero mean

value and is much less persistent, with an autocorrelation coefficient of 0.219. Figure

3.1 plots the three proxies from 1990:01 to 2011:06. We see that Adv-Sent and

Spec-Sent tend to move together in the first period but this pattern reverses in

the second period. The Ind-Sent tends to follow the Adv-Sent across the whole

period and especially during the latest years. This is expected since investment

advisory services are mainly used by individual investors in order to form their

beliefs. Comparing the plots of the sentiment proxies with that of the risk-neutral

skewness, we observe that all sentiment proxies move similarly to the risk-neutral

skewness in the first period. This is not the case in the second period.

The aforementioned relations are also confirmed by the correlation coefficients

that are reported in Table 3.2. In the first period all sentiment proxies are positively

related to each other with the pair of Adv-Sent and Spec-Sent having the highest

correlation coefficient (0.51) and the pair of Spec-Sent and Ind-Sent having the

lowest correlation coefficient (0.22). Risk-neutral skewness appears to be positively

related to all sentiment proxies with the correlation coefficients ranging from 0.61

in the case of Adv-Sent to 0.37 in the case of Ind-Sent. This pattern changes in the

second period. More specifically, the Adv-Sent and the Ind-Sent remain positevely

normalized net exchanges are positively correlated with those of equity funds but negatively corre-
lated with those of bond funds. Moreover, the beta of mixed funds with equity funds is 0.93 while
their beta with bond funds is 0.02.
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correlated (0.57), but the Spec-Sent is negatively correlated with both the other

sentiment measures. Similarly, risk-neutral skewness is negatively correlated with

the Adv-Sent and the Ind-Sent (insignificantly in the case of the Ind-Sent), and

positively but weakly correlated with the Spec-Sent. The correlations presented in

Table 3.2 suggest that the relations among the sentiments of the three groups of

investors examined (large speculators, investment advisors and individual investors)

and the risk-neutral skewness have changed substantially after 1997:06. Therefore,

the correlation coefficients for the overall period provide mixed results, sometimes

driven by the first period (e.g. Adv-Sent and Spec-Sent) and sometimes driven by

the second period (e.g. Adv-Sent and Skewness).

3.3.3 Rational updating of beliefs estimation

Brown and Cliff (2005) and Baker and Wurgler (2006) acknowledge that investor

sentiment can be seen as the sum of two components: one reflecting investors’ ra-

tional expectations about future returns and a second reflecting investors’ irrational

beliefs. Both components can affect the shape of the risk-neutral density, through

their impact on the slope of the pricing kernel. Chen (1991) finds that a num-

ber of state variables such as the market dividend yield, the term spread and the

default spread contain valuable information about expected excess market return,

due to their correlation with current and future growth rates of economic activity.

Therefore, it is reasonable to assume that such variables also have an impact on

investor sentiment and reflect rational updating of investors’ beliefs. In this study,

we use a rich set of macroeconomic variables that practically cover all economic in-

dicators that can possibly affect investors’ beliefs about future market returns, and

decompose investor sentiment into two components: one that is related to economic

activity and corresponds to investors’ rational expectations regarding future market

returns, and a second component that is unrelated to economic activity and captures

investors’ unjustified optimism or pessimism.

Our initial macroeconomic dataset is comprised of monthly observations covering
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the period 1990:01 to 2011:06 for 131 macro variables.10 Similar datasets have been

previously used by Stock and Watson (2002, 2005), Ludvigson and Ng (2007, 2009,

2011) and Maio and Philip (2014a,b). The macroeconomic variables belong to eight

main categories, namely, output and income; employment; housing; consumption,

orders and inventories; money and credit; interest rates, exchange rates and spreads;

prices and the stock market.11 It can be seen that the dataset includes not only pure

macroeconomic variables but also financial variables. This is important since it is

reasonable to assume that investors’ rational beliefs about future market returns are

affected by both sources of information.

3.3.3.1 Main sentiment decomposition

For our main sentiment decomposition we consider eight major economic indicators,

one from each category, thus capturing all the different aspects of the macroeco-

nomic and financial environment that investors observe in order to form their ex-

pectations. We choose to use only one variable from each category, in order to have

a parsimonious representation. In particular the variables we select are industrial

production (IP: total), nonfarm payroll (Emp: total), housing starts (Starts: non-

farm), Purchasing Managers’ Index (PMI), money supply M2 (M2), term spread (10

yr-FF spread), Personal Consumption Expenditure deflator (PCE defl) and aggre-

gate stock market momentum (S&P 500). Most of the variables have been used in a

similar context by Brown and Cliff (2005), Baker and Wurgler (2006) and Lemmon

and Portniaguina (2006). In order to estimate the macroeconomic fundamentals

driving the sentiment measures, we estimate the following regression for each of the

sentiment proxies:

Sentit = a+ β
′
zt + eit, (3.1)

10The original dataset consists of 132 variables. However, the variable representing the “Non-
borrowed reserves of depository institutions” is eliminated as it takes negative values in 2008. This
is a measurement error due to the fact that the total reserves should have been consistent with
the Federal Open Market Committee’s objective for the federal funds rate. Therefore, since the
borrowings of the Term Auction Facility were larger than the total reserves, the non-borrowed
reserves appeared to be negative.

11A detailed description of the dataset is provided in Table B.1 of Appendix B.
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where Sentit is the sentiment proxy i at time t, and zt is the vector of the macroe-

conomic variables. The fitted values from the regressions are regarded as the com-

ponent that is related to economic activity and corresponds to investors’ rational

updating of beliefs (EF component), while the residuals from the regressions are

regarded as the component that is not related to economic conditions (EB compo-

nent), i.e. investors’ unjustified optimism or pessimism. Note that including both

sentiment components into a model that explains risk-neutral skewness is econo-

metrically almost identical to including the aggregate sentiment together with the

macroeconomic variables. However, we prefer to follow the first approach since it is

more widely used in the literature and the results can be more easily interpreted.

Table 3.3 reports the results of regressing each sentiment proxy on the vector of

macroeconomic variables described above. Panel A reports the results for the first

period, 1990:01-1997:06, while Panel B reports the results for the second period,

1997:07-2011:06. We observe that in general the macroeconomic variables do not

have the same impact on the sentiment proxies in the two periods. Panel A shows

that in the first period all three sentiment proxies are mainly driven by the stock

market momentum. In particular, higher (lower) momentum leads to a more opti-

mistic (pessimistic) sentiment for all three groups of investors. Other variables such

as industrial production, nonfarm payroll, housing starts and term spread appear to

play some role, but their effect is not consistent across sentiment proxies. Panel B

shows that in the second period stock market momentum continues to be the main

determinant of Adv-Sent and Ind-Sent but has no significant effect on Spec-Sent.

Moreover, the sentiments of advisors and individual investors tend to be positively

related to current macroeconomic and financial conditions, while the opposite is true

for the sentiment of large speculators.

The above empirical evidence regarding the differential reaction of the Spec-

Sent versus the Adv-Sent and Ind-Sent to fundamentals in the most recent years

constitutes a novel finding and can account for the negative correlations between

Spec-Sent and the other two sentiment measures presented in Panel B of Table 3.2.
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Further support comes from the correlation coefficients between the EF components

of the three measures. While in the first period they are all positively correlated to

each other, with the pair of Adv-Sent and Ind-Sent having the highest correlation

coefficient (0.70) and the pair of Adv-Sent and Spec-Sent having the lowest cor-

relation coefficient (0.49), in the second period the EF component of Spec-Sent is

negatively correlated with the respective components of both Adv-Sent (-0.62) and

Ind-Sent (-0.34). In contrast, the EF components of Adv-Sent and Ind-Sent have a

remarkable positive correlation of 0.91. In essence, the decomposition results show

that investment advisors and individual investors consistently expect a continuation

of recent economic conditions across the whole time period examined. In contrast,

large speculators tend to expect a continuation of recent economic conditions dur-

ing the first period but a reversal of recent economic conditions during the second

period.

3.3.3.2 Alternative Sentiment Decompositions

While our main sentiment decomposition is based on a set of eight indicators that

represent eight major segments of the economy, it is possible that a broader range of

variables is needed in order to capture all the macroeconomic information that drives

investors’ expectations. Therefore, we also consider an alternative sentiment decom-

position that makes use of our entire dataset of the 131 macroeconomic variables.

This is of particular importance, since the key signalling variables that drive investor

sentiment are unobserved. In order to utilize our full macroeconomic dataset, we

create a set of latent common factors using the asymptotic principal component anal-

ysis (APCA) method of Connor and Korajczyk (1986). Details about the method

can be found in Appendix B. These factors capture the common information among

the 131 macroeconomic variables of our dataset. Using the second information crite-

rion of Bai and Ng (2002), we find that the first eight factors adequately summarize

the macroeconomic variations. Therefore, the alternative sentiment decomposition

relies on regressions of the aggregate sentiment proxies on the estimated common
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factors.

While these factors by construction are associated with all the macroeconomic

variables, some factors load heavily on particular groups of variables. Hence, it is

possible to characterize the factors by examining how they load on each macroe-

conomic variable. To this end, we regress each factor on each of the 131 variables

and plot the respective R2s (Figure B.1 in Appendix B). This way, each factor can

be associated with one or more groups of macroeconomic variables. The first factor

mostly loads on the variables of output, employment and orders, so it can be consid-

ered a “real activity” factor. The second factor loads heavily on price indices. The

third factor is mostly associated with interest rate spreads, while the fourth factor

is mostly correlated with inventories and consumption variables. The fifth factor

loads mainly on output and stock market variables. The sixth factor is mainly re-

lated to interest rates and exchange rates. Finally, the seventh factor loads mainly

on housing variables, while the eighth factor is mainly driven by money supply and

bank reserves.

Since the estimated common factors summarize the information embedded in all

131 variables that constitute our macroeconomic dataset, it is likely that they also

eclipse the idiosyncratic signal encapsulated in each variable. Another concern is

the potential for look-ahead bias, given the fact that the construction of the factors

requires the usage of data from the full sample period. Therefore, as a robustness

check, we consider a third alternative sentiment decomposition that uses a selection

of variables that are highly correlated with the common factors. In particular, for

each factor we consider the three variables with the highest R2s and choose from

those the one that is most important and widely used in the literature. The variables

we obtain following this approach are nonfarm payroll (Emp: total), Consumer Price

Index (CPI-U: all), term spread (10 yr-FF spread), inventories to sales ratio (M&T

invent/sales), aggregate stock market momentum (S&P 500), Baa corporate bond

yield (Baa bond), housing starts (Starts: nonfarm) and money supply M1 (M1).

It is apparent that the information embedded in the aforementioned explanatory
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variables is similar to the information embedded in the variables used in the main

sentiment decomposition, hence validating our initial selection.

3.3.4 Control variables

Similar to Han (2008), we include a series of control variables in the regression

analysis. First, we control for the autocorrelation in the risk-neutral series by adding

the lagged skewness value (LagRNS). The second control variable, is the ratio of the

open interest of out-of-the-money (OTM) puts to the open interest of near-the-

money (NTM) calls and puts, and represents relative demand pressure (RelDem)

(see Bollen and Whaley, 2004, Gârleanu et al., 2009). More specifically, a higher

relative demand value implies that there is high expectation among investors about

a downturn in the market and therefore the demand for OTM puts for hedging

purposes increases. The next variable is the options’ trading volume (TrVlm), which

is considered a proxy for dispersion in investors’ beliefs (see Buraschi and Jiltsov,

2006). In particular, we take the natural logarithm of the detrended trading volume.

Further, we include the contemporaneous volatility of S&P 500 index (Vol) proxied

by the VIX index, as it is considered the main determinant of risk-neutral skewness

in stochastic volatility pricing models (e.g. Heston, 1993) and is also theoretically

linked to skewness by Bakshi, Kapadia and Madan (2003).12

Summary statistics for the control variables can be found in Table 3.1. RelDem

has a mean value of 1,837 with a close to zero autocorrelation coefficient, while

TrVlm has a zero mean value due to the deterministic time trend adjustment and

an autocorrelation coefficient of 0.393. Vol has a mean value of 0.203 and it is quite

persistent with an autocorrelation coefficient of 0.861.

The correlation coefficients between the control variables and risk-neutral skew-

ness can be found in Table 3.2. RelDem and TrVlm are negatively related to risk-

neutral skewness in both periods (for both variables, however, the correlation is

12Han (2008) considers aggregate stock market momentum as an additional control variable in
his explanatory model. In our case, the information of momentum is embedded in the EF sentiment
component.
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insignificant in the first period) with coefficients ranging from -0.01 to -0.26. The

documented negative correlation for RelDem is in accordance with the limits to ar-

bitrage hypothesis of Bollen and Whaley (2004). Intuitively, a higher demand for

OTM puts in relation to NTM options drives the prices of those contracts up because

of the markets makers’ increased risk exposure and hedging costs. Furhermore, the

documented negative correlation for TrVlm is in accordance with the heterogeneous

agents model of Buraschi and Jiltsov (2006). Unlike the other two variables, Vol

is negatively correlated with risk-neutral skewness during the first period (-0.25)

but exhibits a positive correlation in the second period (0.24).13 The documented

negative correlation for Vol in the first period is in accordance with the theoretical

prediction of Bakshi, Kapadia and Madan (2003) in the presence of excess kurtosis

in the physical density. The documented positive correlation for Vol in the second

period is in line with stochastic volatility models, such as Heston (1993). The corre-

lation coefficients for the overall period show that only TrVlm exhibits a significant

(negative) correlation with risk-neutral skewness.

3.4 Empirical Analysis

This section explores in detail the linkages between the S&P 500 index risk-neutral

skewness and the sentiment of large speculators, investment advisors and individual

investors. It is possible for sentiment to influence risk-neutral skewness due to the

existence of limits to arbitrage in the options market. In particular, a bearish or

bullish sentiment creates demand for a specific class of options (e.g. OTM puts).

As market makers satisfy this demand they face more difficulty in hedging their

positions and therefore charge higher prices. From their point of view, investors

13Unlike our finding, Han (2008) documents a positive relation between volatility and risk-
neutral skewness for the period 1988:01-1997:06. However, the negative relation we find for the
period 1990:01-1997:06 is driven only by the observations of year 1990. If we remove this year
from our sample Vol exhibits a positive correlation of 0.19 with skewness. Since the correlation
between the two variables appears to be very sensitive to the sample period considered, we attribute
the difference in results between this study and Han (2008) to the difference in sample periods.
We confirm that the same relations between Vol and risk-neutral skewness hold if instead of our
skewness estimates we use the CBOE SKEW index available at http://www.cboe.com/micro/

skew/introduction.aspx.

48

http://www.cboe.com/micro/skew/introduction.aspx
http://www.cboe.com/micro/skew/introduction.aspx


Chapter 3. Investor Sentiments, Rational Beliefs and Option Prices

are willing to accept these higher prices due to their sentiment. Hence, we observe

changes in the shape of the risk-neutral distribution and implicitly in the pricing

kernel. In this section, we first examine the relation of the risk-neutral skewness with

the aggregate sentiment and then with the two distinct sentiment components, the

EF component and the EB component. Subsequently, we investigate whether the

documented relations between skewness and the EF component exhibit an asym-

metric pattern depending on whether stock market conditions improve or worsen

and whether the EF component becomes more optimistic or pessimistic. Finally,

we examine whether there is a differential impact of the two sentiment components

on slope measures of the implied volatility smirk created separately by call and put

options. We conduct our analysis over two periods - the first dating from 1990:01

to 1997:06 and the second from 1997:07 to 2011:06. This enables us to compare out

findings to those of Han (2008), whose sample period ends at 1997:06. Further, we

are also able to account for the possible structural change in the S&P 500 index

options market due to the introduction of the E-mini contracts and the Dow-Jones

options in 1997.

3.4.1 Risk-neutral skewness and aggregate sentiment

Table 3.4 shows the results of regressing S&P 500 index risk-neutral skewness on

the three sentiment measures used in the study. Panel A reports the results for the

period 1990:01-1997:06. Similar to Han (2008), all sentiment measures are both pos-

itive and statistically significant. This result implies that a more bearish (bullish)

sentiment of either large speculators, investment advisors or individual investors

leads to a more (less) negatively sloped pricing kernel and a more (less) negative

risk-neutral skewness. In other words, when investors are pessimistic (optimistic)

about future market returns, they are willing to pay more (less) to protect their

portfolios from possible downturns in the stock market. In economic terms, a one

standard deviation increase of Adv-Sent, Spec-Sent and Ind-Sent is followed by an

increase of approximately 0.19, 0.09 and 0.08 in the risk-neutral skewness. These

49



Chapter 3. Investor Sentiments, Rational Beliefs and Option Prices

values represent about 43%, 19% and 18% of skewness’ sample standard deviation

respectively. Han (2008) argues that such changes cannot be attributed to mea-

surement errors in option prices such as bid-ask bounce. The above results remain

statistically significant once the control variables are introduced into the analysis,

consistent with Han’s (2008) findings.

The results in Panel B are intriguing and show that the previous pattern changes

substantially in the second period. In particular, all three sentiment proxies become

negative with Adv-Sent and Ind-Sent being also significant. However, both of them

turn insignificant once the control variables are included into the explanatory model.

Apparently, in the second period there is no considerable relationship between risk-

neutral skewness and the sentiment of the three investor groups examined. A pos-

sible explanation for the results in Panel B is that in the second period the market

makers are willing to provide liquidity to investors at lower prices than those that

the investors are willing to accept when their sentiment is either low or high. In the

same vein, Han (2008) asserts that the risk-neutral skewness and sentiment relation

is much weaker in periods of low limits to arbitrage. Another possible explanation,

however, which will be examined in the next section, is that the aggregate senti-

ment constitutes a noisy aggregation of the two sentiment components which can

separately affect the risk-neutral skewness.

Regarding the control variables, they are insignificant in the first period and

while mainly negative, they turn positive in a few cases. In the second period the

picture is clearer with RelDem and TrVlm being consistently negative and Vol being

consistently positive. Furthermore, the results for TrVlm and Vol are significant

in all but one case (Vol for the Adv-Sent). These relations are in line with the

correlations between the control variables and risk-neutral skewness described in

the previous section.

Summarizing the above mentioned empirical evidence, we find that aggregate

sentiment plays an important role in determining the level of the risk-neutral skew-

ness only in the period 1990:01-1997:06. More specifically, aggregate sentiment of
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all three groups of investors is positively related to risk-neutral skewness, implying

that a more bearish (bullish) investor sentiment leads to a more (less) negatively

sloped pricing kernel. In the second and most recent period 1997:07-2011:06 there is

no significant relation for any of the sentiment measures once we control for relative

demand pressure, heterogeneity in beliefs and contemporaneous volatility.

3.4.2 Risk-neutral skewness and sentiment components

Previous literature documents that the variation in the risk-neutral skewness is

mainly driven by changes in the slope of the pricing kernel due to the approximately

symmetric conditional physical probability distribution (Aı̈t-Sahalia et al., 2001 and

Rosenberg and Engle, 2002). Shefrin (2008) asserts that the pricing kernel can

be decomposed into two components: one component that is driven by investors’

rational expectations about future consumption and a second component that stems

from investors’ erroneous beliefs. In accordance with Shefrin’s model, in Section 3.3.3

we decomposed investor sentiment into an economic fundamentals and an error in

beliefs components. In light of this, the main aim of this section is to examine which

part of sentiment drives the variation in the index risk-neutral skewness. In doing

so, we will gain useful insights about the way the economic fundamentals and error

in beliefs components affect index option prices and the pricing kernel.

If aggregate sentiment has a significant impact on risk-neutral skewness, this

can originate from the EF component, the EB component or a combination of both.

In that respect, the analysis of the first period will allow us to draw inferences

about the source of the positive relationship between risk-neutral skewness and

investor sentiment documented by Han (2008) and also confirmed in the previous

section. Han (2008) conjectures that this relation stems from investors’ erroneous

expectations and his assumption is reinforced by the fact that the main results of

his study do not change after controlling for four popular macroeconomic indicators.

Our empirical analysis seeks to scrutinize Han’s assumption by examining which of

the two sentiment components actually affects risk-neutral skewness and hence the
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pricing kernel.

If aggregate sentiment does not significantly affect risk-neutral skewness, as in

the second period, this does not necessarily mean that no component affects it. In

fact it is possible that one (or even both) of the two components has a significant

impact on skewness, which vanishes when we sum the two components into an

aggregate sentiment. In that respect, the analysis of the second period will allow us

to investigate whether either of the two separate sentiment components influences

risk-neutral skewness. We hypothesize that if the market matures with time, it is

more likely that the EF component will be significant. If no component turns out to

be significant, this finding will imply either that there are no limits to arbitrage in the

index options market or that the information embedded in sentiment is subsumed

by some of the control variables.

The results from regressing risk-neutral skewness on both parts of each sentiment

proxy following the main decomposition are reported in Table 3.5. Panel A shows

the results for the first period and Panel B the results for the second period. For each

sentiment proxy we report results before and after controlling for Vol, since stock

market volatility is known to depend on the macroeconomic conditions (Brandt

and Kang, 2004), which also drive the variation in the EF sentiment component.

Therefore, we examine how the EF component reacts to the inclusion of market

volatility in the analysis. In Panel A, we observe that the positive and significant

relation between sentiment and risk-neutral skewness documented in the previous

section mainly comes from the EF component. This finding combined with the

sentiment decomposition result provided in Section 3.3.3 implies that during the

first period risk-neutral skewness is driven by the similar expectations of all three

investor groups regarding a continuation of recent economic conditions. In the case

of Adv-Sent the EB component also appears significant, even when the control

variables are included into the model. In economic terms, however, a one standard

deviation increase of the Adv-Sent, Spec-Sent and Ind-Sent EF (EB) component is

associated with an increase in risk-neutral skewness corresponding to 37%, 17% and
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32% (16%, 10% and 9%) of its sample standard deviation respectively. Hence, both

in statistical and economic terms the impact of the EF component on skewness is

stronger than that of the EB component.

Panel B shows that the pattern is different in the second period. In particular, the

EF component of all three sentiment proxies remains strongly significant, while their

EB component is always insignificant even in the absence of any control variables.

Another intriguing result from Panel B is the negative sign of the coefficients of

the Adv-Sent and the Ind-Sent EF components in contrast to the positive sign of

the Spec-Sent EF component coefficient. These signs combined with the evidence

of Section 3.3.3 imply that in the second period risk-neutral skewness is driven

by the expectations of large speculators regarding a reversal of recent economic

conditions.14 In economic terms a one standard deviation increase of the Adv-Sent

and Ind-Sent (Spec-Sent) EF component is related to a decrease (increase) in risk-

neutral skewness by about 17% and 13% (15%) of its sample standard deviation

respectively.

The empirical evidence regarding the second period is in line with our hypothesis

that the S&P 500 index options market has become more mature with time, as option

prices are only driven by investors’ rational updating of beliefs due to changes in

fundamentals. Of course, the fact that the EF sentiment component is significant

implies that there are still limits to arbitrage that prevent market makers from

having flat supply curves. In a similar vein, Constantinides et al. (2009) find that

OTM calls have been systematically overpriced during 1997 - 2003, even when bid-

ask spreads and trading costs are taken into consideration.

Turning to the control variables, the results are qualitatively similar to the ones

presented in the previous section with the exception of Vol in the second period

which is now positively but insignificantly related to risk-neutral skewness. This

implies that the information embedded in Vol for skewness is subsumed by the EF

component of all three sentiment proxies. In essence, the explanatory power of stock

14This is because conventional wisdom dictates a positive relationship between risk-neutral skew-
ness and the sentiment of those trading in the options market.
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market volatility for risk-neutral skewness stems from the fact that they are both

related to macroeconomic fundamentals. In fact, the correlation of Vol with the EF

component of Adv-Sent, Spec-Sent and Ind-Sent is -0.61, 0.33 and -0.53 respectively.

Table 3.6 presents the results from regressing risk-neutral skewness on the senti-

ment components following the decomposition based on the common factors. It can

be seen that the results are qualitatively similar to those from Table 3.5, but the EF

component is slightly less significant in all cases, apart from the case of Spec-Sent

in the first period. Furthermore, the regression R2s in the second period are always

lower or equal to the respective R2s presented in Table 3.5. This empirical evidence

implies that at least in the second period, the idiosyncratic component of various

major economic indicators is important for explaining the risk-neutral skewness with

macroeconomic fundamentals. The results from regressing skewness on the senti-

ment components following the decomposition based on the alternative selection

of macroeconomic variables are qualitatively and quantitatively almost identical to

those presented in Table 3.5 and thus are presented in Table B.2 of Appendix B.

In summary, this section shows that the significant relationship between risk-

neutral skewness and aggregate sentiment in the first period stems mainly from the

EF sentiment component but the EB component exhibits also some explanatory

power. In the second period, the explanatory power of the EB component vanishes

and only the EF component has a significant impact on skewness. Moreover, the

relation indicates that index options traders’ beliefs are in line with the sentiment

of large speculators which on average reflects an expectation of reversal of recent

economic conditions. Finally, there is evidence that the EF sentiment component

captures additional information to that captured by stock market volatility.

3.4.3 Risk-neutral skewness and sentiment components in

different periods

The empirical evidence presented in the previous section establishes a strong link

between the EF sentiment component and the S&P 500 index risk-neutral skewness.

54



Chapter 3. Investor Sentiments, Rational Beliefs and Option Prices

It is possible, however, that traders in the index options market react differently to

worsened than to improved economic conditions. Therefore, the aim of this section

is to investigate whether the documented relation between the EF component and

risk-neutral skewness exhibits an asymmetric pattern depending on the recent eco-

nomic conditions and subsequently on whether the EF component becomes more

bullish or bearish. To this end, we repeat the analysis of Section 3.4.2 investigat-

ing separately months of improved and deteriorating stock market momentum and

months of increased and decreased EF sentiment component. In particular, we cre-

ate dummy variables based on whether the stock market momentum and the EF

component increase or decrease relative to the value of the previous month.15 Sim-

ilar to Han (2008) these dummy variables are used as interaction terms for all the

regressors except for the lagged dependent variable. Due to the relatively low num-

ber of observations in the first period we conduct this analysis only for the second

period.

Table 3.7 presents the results. Panel A shows the results when the sample is split

based on past momentum and Panel B the results when the sample is split based

on the EF component. From Panel A we observe that the coefficients of the EF

component in cases of a decreased stock market momentum are always much higher

in absolute value than the respective coefficients in cases of an increased stock maket

momentum. Furthermore, for all three proxies the EF component is significant when

momentum decreases relative to its previous value but insignificant when momentum

increases relative to its previous value. Therefore, it is apparent that the strong

relation between risk-neutral skewness and the EF component documented in the

previous section is mainly driven by the periods of worsened stock market conditions

which lead to a less negative risk-neutral skewness since on average index options

traders anticipate a reversal.

The above empirical evidence combined with the observation that during the

second period the EF component of the Adv-Sent and the Ind-Sent tend to be

15For example, the increased (decreased) momentum dummy takes a value of one whenever
the one-month S&P 500 index return is higher (lower) than that of the previous month and zero
otherwise.
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positively related to recent economic conditions whilst the EF component of the

Spec-Sent tends to be negatively related to recent economic conditions, implies a

more pronounced relation when the EF component of the Adv-Sent and the Ind-

Sent becomes more bearish and the EF component of the Spec-Sent becomes more

bullish. This is exactly what we observe in Panel B of Table 3.7. The coefficients of

the Adv-Sent and Ind-Sent (Spec-Sent) EF component are much higher and much

more significant when there is a decrease (increase) in the EF component relative to

its previous value than when there is an increase (decrease) relative to its previous

value.

Turning to the control variables, it is interesting to note that RelDem and Vol

mainly affect risk-neutral skewness in periods of declined stock market conditions,

while the impact of TrVlm mostly comes from periods of improved stock market

conditions.

Overall, the empirical evidence of this section reveals that while after 1997:06

the S&P500 index risk-neutral skewness is driven by the reversal expectations em-

bedded in the sentiment of large speculators, this is more pronounced when recent

stock market conditions deteriorate. In particular, a decreased stock market mo-

mentum leads to a more bullish (bearish) Spec-Sent (Adv-Sent and Ind-Sent) and

a less negative risk-neutrals skewness. The opposite relation does not appear to be

significant.

3.4.4 Slope measures from calls and puts and sentiment

components

The empirical analysis of this section investigates whether the EF and EB sentiment

components have different impact on implied volatility slope measures created sepa-

rately from call and put options. Our motivation comes from Constantinides et al.’s

(2011) assertion that their results are consistent with an equilibrium in a segmented

index options market where OTM puts are mainly traded by hedgers for portfolio

insurance and OTM calls are mainly traded by optimistic investors for speculative
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purposes. In the same vein, Lemmon and Ni (2011) find that the positive-exposure

demand for index calls is more correlated with the positive-exposure demand for

stock options than with the positive-exposure demand for index puts. Recall from

the results of the Section 3.4.2 that in the second period S&P 500 index risk-neutral

skewness is mainly affected by large speculators’ reversal expectations. Since the

negative risk-neutral skewness is mainly driven by the high prices of OTM puts (Ru-

binstein, 1994, Jackwerth and Rubinstein, 1996), we expect to find that the same

relation holds for the skewness proxy extracted from put options as well. On the

contrary, if call and put options markets are indeed segmented, we hypothesize that

the same relation may not hold for the skewness proxy extracted from call options.

To investigate the possibility of a differential impact of the two sentiment com-

ponents on call and put options prices, we construct for each type of options two

measures of the slope of the respective implied volatility smirk. In particular, for

each cross-section of either calls or puts we interpolate implied volatilities into the

range of available options data using a smoothing cubic spline and extrapolate out-

side this range using the respective boundary values. Then for call options we

create the following slope measures capturing the difference in implied volatilities

between OTM and deep-out-of-the-money (DOTM) calls and at-the-money (ATM)

and DOTM calls:

CO Slope = IVOTM − IVDOTM (3.2)

CA Slope = IVATM − IVDOTM (3.3)

where IVDOTM , IVOTM and IVATM are the implied volatilities of call options cor-

responding to K/S = 1.125, K/S = 1.075 and K/S = 1 respectively. Similarly

for puts we create the following slope measures capturing the difference in implied

volatilities between DOTM and OTM puts and DOTM and ATM puts:

PO Slope = IVDOTM − IVOTM (3.4)

PA Slope = IVDOTM − IVATM (3.5)
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where IVDOTM , IVOTM and IVATM are the implied volatilities corresponding to

K/S = 0.875, K/S = 0.925 and K/S = 1 respectively. If for a given cross-section

two or more of the desired moneynesses are outside the range of available options

data, then this cross-section is discarded. We estimate the slope measures on the last

trading day of the month for the two time horizons that are nearest to one month

and interpolate to find the exact one-month ahead slope measures for calls and puts

markets. We investigate only the second part of our sample period as in the first part

the liquidity of high-moneyness calls is quite low and there are many days for which

we cannot estimate the slopes measures for call options. The summary statistics of

the above variables can be found in Table 3.1 Panel B. The slope measures from

puts have higher mean values than the respective slope measures from calls, showing

that the slope of the implied volatility function is steeper on its left side than on its

right side. Moreover, while the slope measures from puts are invariably positive, the

slope measures from calls turn occasionally negative implying the existence of an

implied volatility smile pattern. All the slope measures are moderately persistent

with autocorrelation coefficients ranging from 0.327 to 0.380.

Table 3.8 reports the results of regressing the slope measures from call and put

options on the two components of each sentiment proxy. Panel A reports the results

for the slope measures created only by call options, while Panel B shows the results

for the slope measures created only by put options. In both Panels A and B there is

a clear picture showing that the EB sentiment component is never significant, while

the EF component is most of the times strongly significant. This evidence further

supports our previous findings regarding the absence of any significant relation be-

tween investors’ erroneous beliefs and option prices in the second period. Moreover,

the EF component is significant in all cases for CO Slope and PO Slope but in two

out of six cases for CA Slope and PA Slope. This is an intuitive result as the prices

of away-from-the-money options mainly reveal investors’ expectations about future

returns while the prices of ATM options have the highest vegas and hence are also

related to investors’ expectations about future volatility (Ni et al., 2008).
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In Panel A, we observe that the EF sentiment coefficients for the Adv-Sent

and the Ind-Sent are negative while those for the Spec-Sent are positive. Since a

negative (positive) change in the slope measures from call options implies that the

slope becomes flatter (steeper), the above evidence suggests that the slope measures

from call options are mainly driven by the expectations of investment advisors and

individual investors regarding a continuation of recent economic conditions. The

coefficients of the TrVlm and the Vol are always positive and in the majority of the

cases strongly significant across sentiment proxies and slope measures, indicating

that higher trading volume and volatility are associated with a steeper calls’ slope.

The effect of RelDem is always insignificant due to the fact that by definition it

captures hedging demand pressure for OTM puts and therefore cannot account for

the variation in the implied volatility slope of call options.

In Panel B, we observe that the EF sentiment coefficients for the Adv-Sent and

the Ind-Sent are positive, while those for the Spec-Sent are all negative. Since

a negative (positive) change in the slope measures from put options implies that

the slope becomes flatter (steeper), we conclude that the slope measures from put

options are driven by the expectations of large speculators regarding a reversal in

the economy. As expected this relationship is similar to the one documented for

the risk-neutral skewness. The coefficients of the control variables are consistently

positive across sentiment proxies and slope measures (with the exception of Vol when

considering the effect of Ind-Sent on PA Slope), with RelDem and TrVlm being

significant mostly for the PA Slope. These results imply that a higher hedging

demand and higher volume are related to a steeper implied volatility slope of put

options.16

Summarizing the above empirical evidence, our results support Constantinides

et al.’s (2011) statement that the index options market is segmented. In particular,

the call options traders’ beliefs are in line with the expectations of advisors and indi-

16If we do not control for the sentiment components, the relation between Vol and the two
slopes measures from puts is negative, hence resembling the relation between Vol and risk-neutral
skewness. It is insignificant, however, due to the fact that the implied volatility slope measures
do not contain only information about skewness but also about the interaction of skewness with
volatility and kurtosis (Mixon, 2011).
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vidual investors regarding a continuation of recent economic conditions. In contrast,

the put options traders’ beliefs are in line with the expectations of large specula-

tors regarding a reversal of recent economic conditions. Again there is no evidence

that investors’ erroneous beliefs have any significant impact on options prices in the

second period.

3.5 Conclusion

In this study, we decompose the sentiment of three main groups of investors, i.e.

large speculators, investment advisors and individual investors, into two parts -

one part that is driven by economic fundamentals (EF) and represents investors’

rational updating of beliefs about future returns, and a second part that is unrelated

to fundamentals and represents errors in investors’ beliefs (EB). The main aim of

the study is to examine how the rational and the irrational components of investor

sentiment drive the variations in risk-neutral skewness and hence the pricing kernel.

We estimate the EF component using a parsimonious set of variables that re-

flect the information embedded in eight main macroeconomic categories. In this

way we take into consideration various aspects of the macroeconomic and financial

environment that can possibly drive investors’ beliefs about future market returns.

The predicted values from the regression of aggregate sentiment measures on these

macroeconomic variables constitute the estimated EF component, while the resid-

uals are regarded as the EB component unrelated to fundamentals. Alternative

sentiment decompositions based on common latent factors estimated using asymp-

totic principal component analysis provide qualitatively similar results.

We conduct our analysis for two time periods: the first from 1990:01 to 1997:06

and the second from 1997:07 to 2011:06. Similar to previous literature, we find

that aggregate investor sentiment affects S&P 500 index risk-neutral skewness only

in the first period. Our results show that this relation mainly stems from the EF

component but the EB component appears to play some role too. Contrarily, in the

second period (after 1997:06) the significant effect of the EB component vanishes,
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while the EF component remains strongly significant and implies that skewness is

driven by the sentiment of large speculators and reflects an anticipation of a reversal

of the economy. Moreover, the significant impact of the EF component on skewness

is more prominent in periods of worsened stock market conditions. We further

document that the EF component has opposite effects on implied volatility slope

measures created separately from calls and puts. Our results show that the slope

measures from calls are mainly driven by the expectations of investment advisors and

individual investors regarding a continuation of recent economic conditions, while the

slope measures from puts are mainly driven by the expectations of large speculators

regarding a reversal in the economy. This result provides strong evidence in favor

of Constantinides et al.’s (2011) assertion that the call and put options markets are

segmented.

The empirical evidence in this study has important implications for the asset

pricing literature as options encapsulate forward-looking information about the pric-

ing kernel. In particular, our results demonstrate that the pricing kernel is mainly

driven by investors’ rational updating of beliefs and most importantly that in the

second period investors’ erroneous beliefs play no role at all. Therefore, incorporat-

ing investors’ irrationality into sophisticated option pricing models does not appear

to be a necessary extension anymore, at least for mature options markets such as

S&P 500 index options market.
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Table 3.1: Summary statistics of variables

Mean StDev Min Max Auto
Panel A: Skewness and Explanatory Variables

RNS -1.559 0.447 -3.048 -0.483 0.547
Reldem 1.837 1.476 0.594 17.629 -0.020
TrVlm 0.000 0.598 -3.089 1.825 0.393
Vol 0.203 0.078 0.104 0.599 0.861
Adv-Sent 0.139 0.152 -0.264 0.423 0.746
Spec-Sent -0.045 0.057 -0.205 0.105 0.817
Ind-Sent -0.006 0.175 -1.090 0.748 0.219

Panel B: Implied Volatility Slopes
CO Slope 0.001 0.009 -0.021 0.042 0.327
CA Slope 0.033 0.021 -0.017 0.147 0.380
PO Slope 0.045 0.011 0.014 0.067 0.337
PA Slope 0.104 0.022 0.055 0.164 0.352

This table reports summary statistics of the variables used in the empirical
analysis. The sample period for the variables in Panel A is 1990:01-2011:06
while the sample period for variables in Panel B is 1997:07-2011:06. RNS
is the S&P 500 index risk-neutral skewness estimated using the model-free
method of Bakshi, Kapadia and Madan (2003). RelDem is the relative de-
mand pressure as captured by the ratio of the open interest of OTM puts
to the open interest of NTM calls and puts. TrVlm is the heterogeneity
of beliefs, proxied by the detrended logarithm of options trading volume.
Vol is the index instantaneous volatility as proxied by VIX. Adv-Sent is the
bull-bear spread based on Investors Intelligence’s advisors sentiment index.
Spec-Sent is the net position of non-commercial traders on S&P 500 index
futures scaled by the total open interest. Ind-Sent is the normalized aggre-
gate net exchanges of the equity funds. CO Slope and CA Slope denote the
difference in implied volatility between OTM and DOTM calls and ATM
and DOTM calls respectively. PO Slope and PA Slope denote the difference
in implied volatility between DOTM and OTM puts and DOTM and ATM
puts respectively.
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Table 3.2: Correlation coefficients

Panel A: 1990:01 - 1997:06
Skewness RelDem TrVlm Vol Adv-Sent Spec-Sent Ind-Sent

Skewness 1.00
[1.00]

RelDem -0.01 1.00
[0.92] [1.00]

TrVlm -0.15 -0.13 1.00
[0.16] [0.23] [1.00]

Vol -0.25 -0.11 -0.04 1.00
[0.02] [0.28] [0.70] [1.00]

Adv-Sent 0.61 -0.08 -0.25 -0.17 1.00
[0.00] [0.47] [0.02] [0.12] [1.00]

Spec-Sent 0.38 -0.04 -0.14 -0.31 0.51 1.00
[0.00] [0.72] [0.20] [0.00] [0.00] [1.00]

Ind-Sent 0.37 0.08 -0.02 -0.53 0.35 0.22 1.00
[0.00] [0.45] [0.84] [0.00] [0.00] [0.03] [1.00]

Panel B: 1997:07 - 2011:06
Skewness RelDem TrVlm Vol Adv-Sent Spec-Sent Ind-Sent

Skewness 1.00
[1.00]

RelDem -0.16 1.00
[0.04] [1.00]

TrVlm -0.26 0.11 1.00
[0.00] [0.14] [1.00]

Vol 0.24 -0.22 0.06 1.00
[0.00] [0.00] [0.45] [1.00]

Adv-Sent -0.23 0.16 -0.19 -0.64 1.00
[0.00] [0.04] [0.01] [0.00] [1.00]

Spec-Sent 0.08 0.11 0.04 0.02 -0.16 1.00
[0.30] [0.15] [0.58] [0.83] [0.03] [1.00]

Ind-Sent -0.12 0.14 -0.21 -0.49 0.57 -0.15 1.00
[0.11] [0.07] [0.01] [0.00] [0.00] [0.06] [1.00]

Panel C: 1990:01 - 2011:06
Skewness RelDem TrVlm Vol Adv-Sent Spec-Sent Ind-Sent

Skewness 1.00
[1.00]

RelDem 0.02 1.00
[0.76] [1.00]

TrVlm -0.15 0.02 1.00
[0.02] [0.75] [1.00]

Vol 0.02 -0.20 -0.05 1.00
[0.73] [0.00] [0.42] [1.00]

Adv-Sent -0.12 -0.11 -0.28 -0.25 1.00
[0.06] [0.08] [0.00] [0.00] [1.00]

Spec-Sent -0.04 -0.14 -0.15 0.18 0.34 1.00
[0.49] [0.03] [0.02] [0.00] [0.00] [1.00]

Ind-Sent 0.15 0.13 -0.05 -0.44 0.27 -0.06 1.00
[0.02] [0.03] [0.38] [0.00] [0.00] [0.30] [1.00]

This table reports the correlation coefficients of the variables used in the empirical analysis.
The respective p-values are shown in brackets. Panel A reports the correlations for the period
1990:01 - 1997:06, Panel B reports the correlations for the period 1997:07 - 2011:06, while Panel
C reports the correlations for the period 1990:01 - 2011:06. RNS is the S&P 500 index risk-
neutral skewness estimated using the model-free method of Bakshi, Kapadia and Madan (2003).
RelDem is the relative demand pressure as captured by the ratio of the open interest of OTM
puts to the open interest of NTM calls and puts. TrVlm is the heterogeneity of beliefs, proxied
by the detrended logarithm of options trading volume. Vol is the index instantaneous volatility
as proxied by VIX. Adv-Sent is the bull-bear spread based on Investors Intelligence’s advisors
sentiment index. Spec-Sent is the net position of non-commercial traders on S&P 500 index
futures scaled by the total open interest. Ind-Sent is the normalized aggregate net exchanges of
the equity funds.
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Table 3.3: Sentiment decomposition

Panel A: 1990:01 - 1997:06 Panel B: 1997:07 - 2011:06
Adv-Sent Spec-Sent Ind-Sent Adv-Sent Spec-Sent Ind-Sent

IP: total 8.512*** 0.803 1.619 1.022 -0.811*** -0.096
(4.042) (0.682) (0.295) (0.664) (-2.610) (-0.091)

Emp: total -24.329*** 9.116* 1.383 19.926** -4.919 2.839
(-3.346) (1.846) (0.081) (2.421) (-1.590) (0.431)

Starts: nonfarm 0.232** 0.059 -0.525 0.073 -0.055 0.127*
(2.458) (1.140) (-1.527) (1.034) (-1.330) (1.975)

PMI -0.006 -0.002 -0.003 0.002 -0.001 0.002
(-1.249) (-0.873) (-0.591) (0.620) (-0.509) (0.916)

M2 6.284 -0.577 -8.436 0.426 0.338 -0.621
(1.500) (-0.317) (-0.735) (0.348) (0.558) (-0.599)

10 yr-FF spread 0.034*** 0.003 0.077*** 0.013 -0.010** 0.002
(2.657) (0.460) (2.887) (1.572) (-2.245) (0.246)

PCE defl 7.202 1.484 -18.376 0.886 -1.165 -2.920
(1.304) (0.552) (-0.980) (0.390) (-1.028) (-1.421)

S&P 500 3.179*** 0.561*** 4.368*** 1.497*** 0.038 1.805***
(8.752) (3.210) (3.327) (8.386) (0.398) (6.451)

R̃2 0.486 0.096 0.289 0.470 0.196 0.512

This table reports the results of monthly regressions of each investor sentiment proxy on a series of
macroeconomic variables. A constant term is included in all the regressions but omitted for brevity.
Panel A reports the results for the period 1990:01 - 1997:06, while Panel B reports the results for the
period 1997:07 - 2011:06. Adv-Sent is the bull-bear spread based on Investors Intelligence’s advisors
sentiment index. Spec-Sent is the net position of non-commercial traders on S&P 500 index futures
scaled by the total open interest. Ind-Sent is the normalized aggregate net exchanges of the equity
funds. A description of the macroeconomic variables can be found in Table B.1 of Appendix B.
Newey-West t-statistics are reported in parentheses below the coefficients. ***, ** and * denote
significance at 1%, 5% and 10% respectively.
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Table 3.4: Risk-neutral skewness and aggregate sentiment measures

Adv-Sent Spec-Sent Ind-Sent
Panel A: 1990:01 - 1997:06

LagRNS 0.227*** 0.213** 0.369*** 0.357*** 0.446*** 0.438***
(2.733) (2.448) (3.856) (3.535) (5.925) (5.538)

RelDem 0.004 -0.001 -0.005
(0.607) (-0.115) (-0.577)

TrVlm 0.019 -0.017 -0.020
(0.272) (-0.278) (-0.362)

Vol -0.942 -0.813 0.065
(-1.402) (-0.991) (0.075)

Sent 1.274*** 1.278*** 1.526** 1.324* 0.456*** 0.468***
(4.213) (4.208) (2.033) (1.939) (3.202) (2.650)

R̃2 0.383 0.377 0.235 0.217 0.289 0.265
Panel B: 1997:07 - 2011:06

LagRNS 0.486*** 0.423*** 0.513*** 0.433*** 0.506*** 0.437***
(6.825) (5.556) (6.807) (5.264) (6.707) (5.266)

RelDem -0.041 -0.045 -0.040
(-0.999) (-1.090) (-0.965)

TrVlm -0.129*** -0.115** -0.124**
(-2.617) (-2.293) (-2.469)

Vol 0.463 0.774*** 0.607**
(1.125) (2.910) (2.041)

Sent -0.385** -0.329 -0.025 0.225 -0.365* -0.267
(-2.075) (-1.126) (-0.045) (0.417) (-1.720) (-1.087)

R̃2 0.269 0.292 0.257 0.288 0.265 0.291

This table reports the results of monthly regressions of S&P 500 index risk-
neutral skewness on the sentiment proxies used in the study and a set of control
variables. A constant term is included in all the regressions but omitted for
brevity. Panel A reports the results for the period 1990:01 - 1997:06, while Panel
B reports the results for the period 1997:07 - 2011:06. Risk-neutral skewness is
estimated using the model-free method of Bakshi, Kapadia and Madan (2003).
LagRNS is the lagged skewness value. RelDem is the relative demand pressure
as captured by the ratio of the open interest of OTM puts to the open interest
of NTM calls and puts. TrVlm is the heterogeneity of beliefs, proxied by the
detrended logarithm of options trading volume. Vol is the index instantaneous
volatility as proxied by VIX. Adv-Sent is the bull-bear spread based on Investors
Intelligence’s advisors sentiment index. Spec-Sent is the net position of non-
commercial traders on S&P 500 index futures scaled by the total open interest.
Ind-Sent is the normalized aggregate net exchanges of the equity funds. Newey-
West t-statistics are reported in parentheses below the coefficients. ***, ** and
* denote significance at 1%, 5% and 10% respectively.
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Table 3.5: Risk-neutral skewness and EF, EB sentiment components

Adv-Sent Spec-Sent Ind-Sent
Panel A: 1990:01 - 1997:06

LagRNS 0.258*** 0.267*** 0.246*** 0.382*** 0.376*** 0.370*** 0.422*** 0.430*** 0.443***
(3.278) (3.430) (2.993) (4.021) (3.901) (3.725) (5.675) (5.781) (5.863)

RelDem 0.006 0.003 -0.002 -0.003 0.004 0.005
(0.827) (0.487) (-0.287) (-0.409) (0.572) (0.792)

TrVlm 0.032 0.022 -0.016 -0.020 0.023 0.030
(0.462) (0.331) (-0.243) (-0.306) (0.325) (0.425)

Vol -0.835 -0.422 0.554
(-1.288) (-0.504) (0.697)

EF 1.651*** 1.678*** 1.640*** 3.739* 3.792* 3.448 0.980*** 0.999*** 1.069***
(5.603) (5.680) (5.738) (1.800) (1.807) (1.493) (4.206) (4.102) (3.789)

EB 0.774*** 0.802** 0.803*** 0.996 0.973 0.926 0.214 0.197 0.233
(2.642) (2.537) (2.673) (1.267) (1.237) (1.213) (1.418) (1.238) (1.412)

R̃2 0.405 0.395 0.397 0.248 0.231 0.224 0.347 0.333 0.328
Panel B: 1997:07 - 2011:06

LagRNS 0.462*** 0.401*** 0.401*** 0.472*** 0.409*** 0.397*** 0.483*** 0.433*** 0.421***
(6.262) (4.930) (4.959) (6.959) (5.284) (5.074) (6.237) (5.100) (4.975)

RelDem -0.039 -0.036 -0.063 -0.051 -0.043 -0.036
(-0.948) (-0.878) (-1.616) (-1.294) (-1.028) (-0.870)

TrVlm -0.136*** -0.135*** -0.127*** -0.133*** -0.126** -0.127**
(-2.845) (-2.824) (-2.714) (-2.810) (-2.542) (-2.556)

Vol 0.262 0.463 0.515
(0.597) (1.482) (1.636)

EF -0.796*** -0.936*** -0.797** 3.228** 4.060*** 3.530** -0.693** -0.807*** -0.559*
(-3.100) (-3.453) (-2.167) (2.517) (3.172) (2.470) (-2.500) (-2.884) (-1.684)

EB -0.023 -0.153 -0.083 -0.935 -0.815 -0.669 -0.001 -0.119 -0.026
(-0.085) (-0.561) (-0.252) (-1.359) (-1.297) (-1.007) (-0.004) (-0.402) (-0.087)

R̃2 0.277 0.301 0.298 0.280 0.306 0.308 0.268 0.288 0.290

This table reports the results of monthly regressions of S&P 500 index risk-neutral skewness on the EF and EB
components of the sentiment proxies used in the study and a set of control variables. A constant term is included
in all the regressions but omitted for brevity. Panel A reports the results for the period 1990:01 - 1997:06, while
Panel B reports the results for the period 1997:07 - 2011:06. Risk-neutral skewness is estimated using the model-
free method of Bakshi, Kapadia and Madan (2003). LagRNS is the lagged skewness value. RelDem is the relative
demand pressure as captured by the ratio of the open interest of OTM puts to the open interest of NTM calls and
puts. TrVlm is the heterogeneity of beliefs, proxied by the detrended logarithm of options trading volume. Vol is the
index instantaneous volatility as proxied by VIX. Adv-Sent is the bull-bear spread based on Investors Intelligence’s
advisors sentiment index. Spec-Sent is the net position of non-commercial traders on S&P 500 index futures scaled
by the total open interest. Ind-Sent is the normalized aggregate net exchanges of the equity funds. EF and EB are
the two components of each sentiment proxy estimated as described in Section 3.3.3. Newey-West t-statistics are
reported in parentheses below the coefficients. ***, ** and * denote significance at 1%, 5% and 10% respectively.
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Table 3.6: Risk-neutral skewness and EF, EB sentiment components using APCA

Adv-Sent Spec-Sent Ind-Sent
Panel A: 1990:01 - 1997:06

LagRNS 0.240*** 0.261*** 0.240*** 0.359*** 0.360*** 0.355*** 0.439*** 0.446*** 0.454***
(2.968) (3.331) (2.892) (3.863) (3.822) (3.690) (5.586) (5.670) (5.839)

RelDem 0.006 0.003 -0.002 -0.003 0.000 0.000
(0.898) (0.534) (-0.229) (-0.401) (-0.055) (0.034)

TrVlm 0.068 0.058 0.002 -0.003 0.016 0.020
(1.008) (0.871) (0.027) (-0.047) (0.229) (0.290)

Vol -0.899 -0.406 0.352
(-1.338) (-0.602) (0.411)

EF 1.686*** 1.805*** 1.776*** 5.269*** 5.284*** 5.062*** 1.033*** 1.048*** 1.092***
(4.999) (5.242) (5.383) (3.298) (3.294) (3.227) (3.306) (3.187) (2.964)

EB 0.770** 0.738** 0.724** 0.616 0.610 0.538 0.300** 0.295** 0.321*
(2.223) (2.220) (2.269) (0.839) (0.819) (0.735) (2.229) (2.080) (1.985)

R̃2 0.409 0.406 0.411 0.295 0.278 0.271 0.326 0.311 0.304
Panel B: 1997:07 - 2011:06

LagRNS 0.468*** 0.408*** 0.409*** 0.472*** 0.412*** 0.402*** 0.502*** 0.451*** 0.439***
(6.126) (4.980) (5.052) (6.738) (5.210) (5.052) (6.174) (5.132) (5.098)

RelDem -0.041 -0.038 -0.065 -0.054 -0.049 -0.041
(-1.010) (-0.943) (-1.646) (-1.340) (-1.121) (-0.975)

TrVlm -0.134*** -0.132*** -0.121** -0.126*** -0.123** -0.123**
(-2.811) (-2.760) (-2.582) (-2.682) (-2.473) (-2.459)

Vol 0.298 0.426 0.628**
(0.669) (1.237) (2.033)

EF -0.711*** -0.833*** -0.652 3.638*** 4.407*** 3.774** -0.449 -0.564* -0.202
(-2.611) (-2.901) (-1.571) (2.840) (3.260) (2.382) (-1.557) (-1.795) (-0.505)

EB -0.155 -0.291 -0.219 -0.827 -0.664 -0.528 -0.307 -0.410 -0.296
(-0.557) (-1.066) (-0.691) (-1.313) (-1.166) (-0.850) (-0.889) (-1.211) (-0.888)

R̃2 0.271 0.294 0.291 0.280 0.305 0.305 0.261 0.282 0.286

This table reports the results of monthly regressions of S&P 500 index risk-neutral skewness on the EF and EB
components of the sentiment proxies used in the study and a set of control variables. A constant term is included in
all the regressions but omitted for brevity. Panel A reports the results for the period 1990:01 - 1997:06, while Panel
B reports the results for the period 1997:07 - 2011:06. Risk-neutral skewness is estimated using the model-free
method of Bakshi, Kapadia and Madan (2003). LagRNS is the lagged skewness value. RelDem is the relative
demand pressure as captured by the ratio of the open interest of OTM puts to the open interest of NTM calls
and puts. TrVlm is the heterogeneity of beliefs, proxied by the detrended logarithm of options trading volume.
Vol is the index instantaneous volatility as proxied by VIX. Adv-Sent is the bull-bear spread based on Investors
Intelligence’s advisors sentiment index. Spec-Sent is the net position of non-commercial traders on S&P 500 index
futures scaled by the total open interest. Ind-Sent is the normalized aggregate net exchanges of the equity funds.
EF and EB are the two components of each sentiment proxy estimated using APCA as described in Section 3.3.3.
Newey-West t-statistics are reported in parentheses below the coefficients. ***, ** and * denote significance at 1%,
5% and 10% respectively.
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Table 3.7: Risk-neutral skewness and EF, EB sentiment components in different periods

Adv-Sent Spec-Sent Ind-Sent
Panel A: Momentum

Decrease Increase Decrease Increase Decrease Increase
RelDem -0.067 0.012 -0.097** 0.027 -0.096* 0.066

(-1.358) (0.210) (-2.103) (0.502) (-1.948) (1.140)
TrVlm -0.094 -0.187*** -0.099 -0.198*** -0.071 -0.195***

(-1.303) (-3.513) (-1.513) (-3.698) (-1.045) (-3.196)
Vol 0.569 -0.314 1.004** -0.168 0.717* 0.022

(1.073) (-0.725) (2.534) (-0.471) (1.850) (0.054)
EF -1.286*** -0.383 5.890*** 0.889 -0.934* -0.474

(-3.005) (-0.833) (3.803) (0.454) (-1.968) (-0.948)
EB -0.210 0.267 -1.105 -0.243 -0.154 0.530

(-0.466) (0.493) (-1.446) (-0.193) (-0.429) (0.845)

R̃2 0.332 0.343 0.316
Panel B: EF Sentiment

Decrease Increase Decrease Increase Decrease Increase
RelDem -0.005 -0.103 -0.078 -0.050 -0.057 0.000

(-0.113) (-1.118) (-1.078) (-1.175) (-1.239) (-0.003)
TrVlm -0.088 -0.185*** -0.115** -0.172** -0.065 -0.193***

(-1.031) (-3.479) (-2.398) (-2.083) (-0.924) (-3.103)
Vol 0.145 0.321 0.619 0.127 0.319 0.366

(0.291) (0.654) (1.577) (0.332) (0.709) (0.963)
EF -1.227*** -0.420 3.664* 5.238*** -1.119** -0.492

(-2.796) (-0.838) (1.843) (2.720) (-2.421) (-0.757)
EB -0.054 0.151 -0.818 -1.027 -0.131 0.437

(-0.113) (0.360) (-0.707) (-1.269) (-0.348) (0.610)

R̃2 0.291 0.297 0.289

This table reports the results of monthly regressions of S&P 500 index risk-neutral skewness on
the EF and EB components of the sentiment proxies used in the study and a set of control vari-
ables. A constant term and a lagged dependent variable are included in all the regressions but
omitted for brevity. The sample period is 1997:07 - 2011:06. Panel A reports the results when
the sample is split into periods of increased and decreased momentum, while Panel B reports
the when the sample is split into periods of increased and decreased EF sentiment components.
Risk-neutral skewness is estimated using the model-free method of Bakshi, Kapadia and Madan
(2003). RelDem is the relative demand pressure as captured by the ratio of the open interest of
OTM puts to the open interest of NTM calls and puts. TrVlm is the heterogeneity of beliefs,
proxied by the detrended logarithm of options trading volume. Vol is the index instantaneous
volatility as proxied by VIX. Adv-Sent is the bull-bear spread based on Investors Intelligence’s
advisors sentiment index. Spec-Sent is the net position of non-commercial traders on S&P
500 index futures scaled by the total open interest. Ind-Sent is the normalized aggregate net
exchanges of the equity funds. EF and EB are the two components of each sentiment proxy
estimated as described in Section 3.3.3. Newey-West t-statistics are reported in parentheses
below the coefficients. ***, ** and * denote significance at 1%, 5% and 10% respectively.
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Table 3.8: Implied volatility slope measures from calls and puts and EF, EB sentiment components

Adv-Sent Spec-Sent Ind-Sent
Panel A: Calls

CO Slope CA Slope CO Slope CA Slope CO Slope CA Slope
LagSlope 0.026 0.135 0.019 0.143 0.053 0.160

(0.280) (0.983) (0.236) (1.089) (0.566) (1.198)
RelDem 0.000 -0.001 -0.001 -0.001 0.000 -0.001

(-0.522) (-0.741) (-1.121) (-1.068) (-0.457) (-0.665)
TrVlm 0.001 0.009*** 0.001 0.009*** 0.002 0.010***

(1.335) (3.134) (1.513) (3.573) (1.529) (3.336)
Vol 0.042*** 0.076*** 0.057*** 0.099*** 0.055*** 0.102***

(3.163) (2.629) (4.717) (3.694) (3.852) (3.265)
EF -0.028*** -0.039** 0.076** 0.095 -0.016** -0.019

(-3.063) (-2.105) (2.334) (1.253) (-2.019) (-1.132)
EB -0.007 -0.023 0.006 -0.027 0.010 0.029

(-0.998) (-1.628) (0.348) (-0.720) (1.403) (1.466)

R̃2 0.384 0.364 0.365 0.352 0.363 0.359
Panel B: Puts

PO Slope PA Slope PO Slope PA Slope PO Slope PA Slope
LagSlope 0.291*** 0.298*** 0.256*** 0.267*** 0.320*** 0.326***

(3.350) (3.609) (2.963) (3.319) (3.441) (3.808)
RelDem 0.001 0.003 0.002 0.004** 0.001 0.003

(0.870) (1.591) (1.414) (2.214) (0.902) (1.559)
TrVlm 0.001 0.007*** 0.002 0.008*** 0.002 0.007***

(1.261) (3.075) (1.636) (3.565) (1.410) (3.116)
Vol 0.014 0.006 0.010 0.006 0.007 -0.003

(1.174) (0.192) (1.148) (0.300) (0.796) (-0.124)
EF 0.023*** 0.033 -0.134*** -0.244*** 0.016** 0.020

(2.866) (1.569) (-3.419) (-3.306) (2.274) (1.049)
EB 0.004 0.000 0.013 0.028 0.011 0.024

(0.478) (0.026) (0.729) (0.818) (1.426) (1.325)

R̃2 0.118 0.153 0.156 0.192 0.111 0.151

This table reports the results of monthly regressions of the slope of the implied volatility smirk
created solely by calls (Panel A) or puts (Panel B) on the EF and EB components of the senti-
ment proxies used in the study and a set of control variables. A constant term is included in all
the regressions but omitted for brevity. The sample period is 1997:07 - 2011:06. CO Slope and
CA Slope denote the difference in implied volatility between OTM and DOTM calls and ATM
and DOTM calls respectively. PO Slope and PA Slope denote the difference in implied volatility
between DOTM and OTM puts and DOTM and ATM puts respectively. LagSlope is the lagged
value of the respective slope variable. RelDem is the relative demand pressure as captured by the
ratio of the open interest of OTM puts to the open interest of NTM calls and puts. TrVlm is
the heterogeneity of beliefs, proxied by the detrended logarithm of options trading volume. Vol is
the index instantaneous volatility as proxied by VIX. Adv-Sent is the bull-bear spread based on
Investors Intelligence’s advisors sentiment index. Spec-Sent is the net position of non-commercial
traders on S&P 500 index futures scaled by the total open interest. Ind-Sent is the normalized
aggregate net exchanges of the equity funds. EF and EB are the two components of each sentiment
proxy estimated as described in Section 3.3.3. Newey-West t-statistics are reported in parentheses
below the coefficients. ***, ** and * denote significance at 1%, 5% and 10% respectively.
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Figure 3.1: Time series of risk-neutral skewness and sentiment measures

This figure plots the monthly time series of the risk-neutral skewness and the three sentiment

proxies. The top left panel plots the S&P 500 index risk-neutral skewness, as estimated using the

model-free method of Bakshi, Kapadia and Madan (2003). The top right panel plots the bull-bear

spread based on the Investors Intelligence’s advisors sentiment index (Adv-Sent). The bottom left

panel plots the net position of non-commercial traders on S&P 500 index futures scaled by the total

open interest (Spec-Sent). The bottom right panel plots the normalized aggregate net exchanges

of the equity funds (Ind-Sent). The sample period is 1990:01-2011:06.
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Chapter 4

Forward Skewness and its
Information Content

4.1 Introduction

The forward-looking nature of the risk-neutral probability distribution has made

the usage of option-implied moments and surrogate measures extremely popular for

forecasting purposes among researchers. The majority of studies extract information

from the shape of the implied volatility curve either using short maturity options

since they tend to be the most liquid, or by weighting options from all available ma-

turities based on their trading volume or open interest. The information embedded

in the time dimension of the implied volatility surface, however, is usually ignored.

To this end, a new strand of the literature explores the additional predictive ability

that can be offered from the term structure of option-implied moments. In partic-

ular, Bakshi, Panayotov and Skoulakis (2011) (BPS henceforth) create measures of

forward 1-month stock market variance and find that they are particularly successful

in predicting future real activity as well as stock market and treasury bill returns.

Luo and Zhang (2012) extend these results for stock market returns by investigating

the forecasting ability of forward 3-month variances. Moreover, Mueller et al. (2013)

show that both the level and the slope of the implied volatility term structure in

the treasury yield market exhibit significant forecasting power for future economic

activity. Finally, Feunou et al. (2014) find that two factors can summarize the

information embedded in the term structure of second and higher order risk-neutral
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cumulants and can forecast future stock market and treasury bond returns.

In this study, we create measures of stock market forward skewness and ex-

plore its predictive ability over and above forward variance. We depart from the

existing literature in two major aspects. First, unlike BPS whose method relies on

the assumption that the underlying asset price follows a pure diffusion process, our

method is robust to the presence of jumps. In particular, our alternative measures

of variance and skewness suggested by Neuberger (2012) can be replicated exactly

by a positioning in a series of out-of-the-money (OTM) options, so long as the asset

price follows a martingale process. This is of particular importance, since recent lit-

erature in the context of variance swap markets (see for example Du and Kapadia,

2012), suggests that the standard variance of log-returns can be severely underesti-

mated by the widely used implied variance formula of Britten-Jones and Neuberger

(2000) in the presence of jumps in the price process. Second, unlike Feunou et al.

(2014) we use option prices to extract skewness coefficients and not third central

moments. This is important, since the skewness coefficient represents the third cen-

tral moment standardized by the second central moment and therefore isolates the

tail component of the distribution. In contrast, the simple third central moment is

usually highly correlated with the second central moment (variance) and hence can-

not offer additional predictive power.1 Using this standardized skewness measure,

we explicitly capture investors’ fears about large negative jumps and explore their

information content.

At the heart of the forward variance and skewness coefficient estimation lies

the aggregation property suggested by Neuberger (2012). The aggregation property

specifies that a quantity measured over a time interval [0, t] has a high-frequency,

realized counterpart that serves as its unbiased estimate. Moreover, it has an implied

counterpart that serves as its unbiased estimate under the risk-neutral measure

and in the absence of any risk premia. Those relations only require that prices

are martingales and hold even with discrete sampling. Neuberger (2012) proposes

1The correlation between 1-month implied variance and 1-month implied third moment is close
to -0.95 in our sample.
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alternative definitions of variance and skewness that satisfy the aggregation property

and can also be replicated by a portfolio of OTM options. Intuitively, this means

that for any time interval 0 ≤ u ≤ t Neuberger’s (2012) variance and skewness over

[0, t] are equal to the sum of the respective variance and skewness measures over the

periods [0, u] and [u, t]. Hence, it is possible to extract at time 0 forward moments

under the risk-neutral measure for the period [u, t] using the respective risk-neutral

moments spanning the periods [0, t] and [0, u]. In contrast, the standard variance

and skewness definitions used by Bakshi, Kapadia and Madan (2003) do not satisfy

the aggregation property and therefore the respective implied moments cannot be

used for accurate forward moments estimation. Given the above, in this chapter we

use Neuberger’s (2012) method and S&P 500 index option prices to create a term

structure of implied variance and third moment for horizons of one to four months

ahead. Then, we make use of the aggregation property and extract the respective

forward 1-month variances and skewness coefficients. This is the first study that

creates forward stock market skewness coefficients and examines their information

content over and above that of forward variances. More specifically, we investigate

their predictive power for a wide range of macroeconomic variables, for stock market

returns and for measures of systemic risk, crash risk and uncertainty.

The main aim of the study is to examine whether taking into consideration the

information embedded in the term structure of each risk-neutral moment2 as a whole,

is important for forecasting purposes or not. Therefore, our inferences are mainly

based on Wald tests of joint significance of the parameters showing whether the pre-

dictive ability of a model rises when an additional set of variables is considered. Due

to overlapping observations, statistical inference mainly relies on the Newey-West

(1987) covariance matrix estimator but results based on the Hodrick (1992) covari-

ance matrix estimator are also provided for robustness purposes. In the majority

of the cases the results are qualitatively very similar with the two approaches. We

examine the predictive power of the estimated forward moments for the macroecon-

2The terms “risk-neutral moment”and “implied moment”are used interchangeably in this chap-
ter.
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omy by considering two main categories of variables. The first category is related

to real activity, while the second category is related to money, credit and treasury

yields. For a short-horizon predictability of one month ahead, we find that forward

skewness coefficients have additional predictive power over forward variances for six

(four) out of ten real activity variables examined when Newey-West (Hodrick) stan-

dard errors are used. This effect is persistent across horizons up to twelve months

ahead. Moreover, the increase in adjusted R2 across horizons, when the group of

forward skewness coefficients is included into the predictive model, follows a clearly

upward-trending pattern for the majority of the variables. Moving to the second cat-

egory of variables, the results show that for the 1-month forecasting horizon forward

skewness coefficients exhibit statistically significant forecasting ability for five (four)

out of nine variables when Newey-West (Hodrick) standard errors are used, three of

which are treasury yields. When we increase the forecasting horizon the empirical

evidence is somehow mixed, since the predictability of forward skewness coefficients

for treasury yields vanishes in the case of Newey-West standard errors, but remains

intact for the longest horizon in the case of Hodrick standard errors. Moreover,

in the case of Newey-West (Hodrick) standard errors forward skewness coefficients

are jointly significant for only three (seven) out of nine variables. Nonetheless,

the change in adjusted R2 across horizons when the augmented predictive model is

considered again provides an upward-sloping pattern for all but the treasury yield

variables.

The empirical evidence regarding future stock market excess returns is also im-

portant. Our results based on Newey-West standard errors indicate that forward

skewness coefficients encompass important information about future market returns

over and above that provided by forward variances. In particular, forward skewness

coefficients are jointly significant for 3-, 6- and 9-month ahead forecasting horizons.

Furthermore, a plot of the change in adjusted R2 across horizons when augmenting

the predictive model with forward skewness coefficients has a hump-shaped pattern

taking its maximum value at the 4-month horizon. It needs to be mentioned, how-
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ever, that the joint significance of forward skewness coefficients is to a large extent

lost when Hodrick standard errors are considered.

Next, we consider the forecasting ability of the estimated forward moments for

systemic risk, tail (crash) risk, equity uncertainty and economic policy uncertainty.

Systemic risk reflects the aggregate risk exposure of all financial institutions, while

tail risk refers to the risk of extremely negative aggregate stock returns. Equity un-

certainty and economic policy uncertainty refer to uncertainty about the stock mar-

ket and uncertainty about the fiscal, monetary and regulatory policy respectively.

In this context, uncertainty refers to a mixture of investors’ perceived risk and am-

biguity about the future stock market returns and government policies. Since we

do not deal with overlapping observations in these cases, statistical inference is only

based on the Newey-West (1987) covariance matrix estimator. Forward skewness

coefficients are found to significantly increase the predictive power of a model fore-

casting systemic risk for one up to six months ahead, with the effect being stronger

for the 4- and 5-month horizons. The results for tail risk show that the group of

forward skewness coefficients is significant mainly for the 2- and 3-month horizons

but its explanatory power is less prominent than in the case of the systemic risk.

Regarding the two uncertainty measures, forward skewness coefficients can signifi-

cantly improve the predictive power of a model forecasting equity uncertainty three

to six months ahead, exhibiting the highest significance at the 3-month horizon. In

contrast, they have limited forecasting power for economic policy uncertainty where

they are relevant only for a short 1-month ahead horizon. Furthermore, we observe

that the plots of the change in adjusted R2 across horizons for systemic risk and

equity uncertainty have a hump-shaped pattern with its peak at four months, very

similar to the one observed in the case of stock market returns.

The contributions of this study regarding the information embedded in option

prices are twofold. First, we create forward variances using a technique that ac-

curately accounts for the presence of jumps in the price process and evaluate their

information content. Using our alternative method and considering an extended
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sample period, we corroborate to a large extent the results presented by BPS. In

particular, we also find that forward variances can predict real activity and stock

market returns, while our evidence regarding their predictability for treasury yields

is in line with the BPS evidence about a significant relationship with future treasury

bill returns.3 Second, we explicitly model investors’ fears about negative realizations

in the stock market by creating forward skewness coefficients. We find that their

predictive power for a large set of macroeconomic variables is highly significant and

becomes stronger for most of the predicted variables once longer forecasting horizons

are considered. Moreover, forward skewness coefficients exhibit significant forecast-

ing abilty for stock market returns, systemic risk and equity market uncertainty

especially for a horizon of four months ahead that matches the time period spanned

by the estimated forward skewness.

The remainder of the chapter is structured as follows. Section 4.2 provides

an overview of the related literature. Section 4.3 describes the theory behind the

forward moments estimation, while Section 4.4 analyzes the data and the variables

used in the study. Section 4.5 provides the empirical results and finally Section 4.6

concludes.

4.2 Related Literature

This chapter is similar in spirit to the studies of BPS, Luo and Zhang (2012),

Mueller et al. (2013) and Feunou et al. (2014) who make use of the term structure

of the second and third risk-neutral central moments in the equity and treasury

markets for forecasting purposes. This is the first study, however, that investigates

the information content of the term structure of the equity market risk-neutral

skewness coefficients. Therefore, unlike Feunou et al. (2014) who consider the term

structure of the risk-neutral third central moments,4 we show that the term structure

3Some discrepancies between our results and the BPS results can be attributed to the different
method employed and the different sample period examined, since by following the method of BPS
and restricting our analysis to their sample period we can replicate their results almost exactly.

4As described in the previous section the risk-neutral third central moment is highly related to
the risk neutral second central moment (variance) and therefore cannot adequately account for the
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of the risk-neutral skewness coefficients encapsulates important information that is

not embedded in the term structure of the risk-neutral variances.

Since forward skewness coefficients are found to exhibit significant forecasting

power for future market returns, this chapter further contributes to a broader strand

of the literature which investigates the information content of option prices for fu-

ture equity returns and crashes at an aggregate level. More specifically, a recent

stream of papers focuses on the variance risk premium, i.e. the difference between

expected variance under the risk-neutral measure and expected variance under the

physical measure. Bollerslev et al. (2009) are the first to use this measure for pre-

dictive purposes and show that the S&P 500 index variance risk premium is strongly

positively related to future market returns especially at a quarterly horizon. Similar

empirical evidence is also reported by Drechsler and Yaron (2011) and Bollerslev et

al. (2012). Mueller et al. (2011) and Zhou (2012) elaborate to the predictability of

the S&P 500 index variance risk premium by showing that it has a strong positive

impact on future bond returns and credit spreads.

Moreover, several recent studies investigate market return predictability using

alternative measures extracted from the prices of S&P 500 index options. In partic-

ular, Du and Kapadia (2012) illustrate theoretically that the difference between the

Bakshi, Kapadia and Madan (2003) implied variance and the squared VIX captures

the jump component of the quadratic variation and find that their implied jump

index is positively related to future market returns. Karoui (2012) suggests a novel

approach for estimating an option-implied equity premium and provides evidence

that his measure significantly predicts stock market returns. Vilkov and Xiao (2013)

create a tail loss measure from put option prices and show that it is associated with

a positive market risk premium. Driessen et al. (2013) construct an implied corre-

lation index and show that it is a strong predictor of future market returns, even

when controlling for the variance risk premium. Atilgan et al. (2014) find that there

is a positive relation between the slope of the implied volatility smirk and subse-

quent market returns. Golez (2014) estimates an option-implied dividend growth

tail of the distribution.
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rate that is a strong predictor of future dividend growth and creates an amended

dividend-price ratio for predicting future market returns.

As far as the predictability of jumps is concerned, Doran et al. (2007) provide

evidence about the forecasting power of the slope of the S&P 100 index implied

volatility smirk for future underlying asset jumps. In particular, they show that

the slope of the puts’ volatility smirk is significantly related to the probability of a

negative jump, while the slope of the calls’ volatility smirk is significantly related to

the probability of a positive jump. Vilkov and Xiao (2013) show that their tail loss

measure exhibits some forecasting power for future market crashes.

Finally, since forward skewness coefficients are shown to be important for pre-

dicting a number of macroeconomic variables, this study also complements a strand

of the literature which - in the majority of the cases - shows that option-implied

measures can be successfully used for forecasting future macroeconomic conditions.

Lynch and Panigirtzoglou (2008) use futures options on the S&P 500 index, FTSE

100 index, eurodollar and short sterling to extract the respective risk-neutral mo-

ments but find limited evidence in favor of the hypothesis that there is significant

predictability for macroeconomic variables such as industrial production and in-

vestment growth in the US and the UK. In contrast, Bekaert and Hoerova (2013)

show that VIX forecasts negative growth in industrial production, an effect that

stems from the conditional variance component and not the variance risk premium

component. Moreover, Bekaert et al. (2013) find out that VIX is negatively re-

lated to future real interest rate for horizons longer than a year ahead, an effect

which is attributed to both the variance risk premium and the conditional variance

component. Similarly, David and Veronesi (2014) report that the S&P 500 index

at-the-money implied volatility has a negative effect on the future short-term inter-

est rate, while the opposite is true for the steepness of the S&P 500 index implied

volatility smirk. In a slightly different context, Sarantopoulou-Chiourea and Ski-

adopoulos (2014) show that a relative risk aversion coefficient extracted from S&P

500 index risk-neutral moments is positively related to future real activity.
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4.3 Forward Moments and the Aggregation Prop-

erty

BPS rely on the theoretical foundations of Carr and Lee (2009) in order to price

exponential claims on quadratic variation under the assumption of no jumps in the

underlying asset price process. Under this assumption, the quadratic variation over

an interval [0, t] is equal to the integrated variance over [0, t]. BPS demonstrate

that the exponential claims on integrated variance of log-returns can be replicated

by a positioning in a series of OTM options.5 Therefore, they construct measures of

forward integrated variance the same way discount bond prices are used to provide

forward treasury yields.

The main disadvantage of this method lies in the assumption that the under-

lying asset price follows a pure diffusion process. In particular, recent studies that

investigate the impact of jumps in the context of the variance swaps (Broadie and

Jain, 2008, Du and Kapadia, 2012, Rompolis and Tzavalis, 2013 and Bondarenko,

2014), find that the risk-neutral variance of Carr and Madan (1998), Demeterfi et al.

(1999) and Britten-Jones and Neuberger (2000) can lead to substantial underestima-

tion of the quadratic variation of log-returns in the presence of large negative jumps.

For example, Du and Kapadia (2012) show that when jumps constitute 70% of the

quadratic variation, then the approximation error in terms of annualized volatility is

an economically significant 1%. Therefore, since the Carr and Lee (2009) theory of

claims on exponential quadratic variation only holds for pure diffusion processes, it

is reasonable to assume that a similar bias can arise in the case of the BPS quadratic

variation estimates as well.

In this study, we employ the newly established concept of the aggregation property

(Neuberger, 2012) in order to create our measures of forward moments. This has two

main advantages. First, our alternative variance measure can always be replicated

exactly by equation (2.37) as long as the underlying asset price follows a martingale

5See equation (2.41). In fact, the prices of those exponential claims are also affected by the
level of the risk-free rate.
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process. Therefore, in contrast to the variance measure estimated by BPS, it is

robust to the presence of jumps in the price process. Second and most important,

it allows us to create forward measures of the third (standardized) moment of the

asset returns as well. This way, we explicitly model investors’ future crash worries

and explore their information content.

Neuberger (2012) postulates that any real-valued function g of an adapted pro-

cess X has the aggregation property if for any 0 ≤ u ≤ t,

E0 [g (Xt −X0)] = E0 [g (Xt −Xu)] + E0 [g (Xu −X0)] . (4.1)

Assuming that the forward asset price F is a martingale, Neuberger (2012) and

Kozhan, Neuberger and Schneider (2013) define log and entropy variance respec-

tively as:

GV
0,t = E0

[
Ft
F0

− 1− ln

(
Ft
F0

)]
, (4.2)

GE
0,t = E0

[
2

(
Ft
F0

ln

(
Ft
F0

)
− Ft
F0

+ 1

)]
. (4.3)

The functions inside the brackets have the aggregation property and converge to the

second moment of returns. Intuitively, under the Black and Scholes (1973) assump-

tions, log variance is the implied variance of a log contract, i.e. a contract that pays

ln (Ft), while entropy variance is the implied variance of an entropy contract, i.e. a

contract that pays Ft ln (Ft).
6 Moreover, under the risk-neutral measure GV

0,t can be

replicated exactly by equation (2.37). Therefore, following Neuberger (2012) and

Bondarenko (2014), we adopt the proposed alternative definition of variance shown

in equation (4.2) and estimate expected quadratic variation under the risk-neutral

measure by employing equation (2.37). In this case, we regard GV
0,t as the implied

variance of stock returns, i.e. GV
0,t = IV0,t.

Similarly, skewness is alternatively defined by Neuberger (2012) and Kozhan,

6In this case the term entropy is used due the similarity of the payoff of the contract with
entropy as used in thermodynamics and information theory.
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Neuberger and Schneider (2013) as:

GS
0,t = E0

[
6

(
Ft
F0

ln

(
Ft
F0

)
− 2

Ft
F0

+ ln

(
Ft
F0

)
+ 2

)]
, (4.4)

where the function inside the brackets has the aggregation property and converges to

the third moment of returns. GS
0,t can be written as the difference between the two

previously described variance measures and under the risk neutral measure can be

replicated by equation (2.38). Thus, GS
0,t is regarded as the implied third moment of

stock returns, i.e. GS
0,t = TM0,t. Both implied variance and skewness are unbiased

estimates of the true variance and skewness in the absence of any risk premia. From

equation (4.1) we can write for any 0 ≤ u ≤ t:

IV0,t = IV0,u + E0

[
GV
u,t

]
, (4.5)

TM0,t = TM0,u + E0

[
GS
u,t

]
. (4.6)

Rearranging equations (4.5)-(4.6) we get:

FV0;u,t ≡ E0

[
GV
u,t

]
= IV0,t − IV0,u, (4.7)

FS0;u,t ≡ E0

[
GS
u,t

]
= TM0,t − TM0,u. (4.8)

where FV0;u,t and FS0;u,t are the time 0 forward variance and third moment respec-

tively for the period u to t implied by the prices of OTM options at time 0.

In the subsequent analysis we are interested in the forward skewness coefficient.

Therefore, we estimate:7

FSC0;u,t =
FS0;u,t

(FV0;u,t)
3
2

. (4.10)

7The forward skewness coefficient is subject to a small convexity bias due to Jensen’s inequality.
In particular,

E0

[(
GV

u,t

) 3
2

]
≥
(
E0

[
GV

u,t

]) 3
2 = (FV0;u,t)

3
2 . (4.9)
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4.4 Data and Variables

4.4.1 Options data and forward moments estimation

We obtain daily S&P 500 index call and put options data from IVolatility.com for

the period 1996:01 to 2012:12. Following the standard practice, option prices are

calculated as the midpoint between the best bid and best ask price. Expiration time

is calculated assuming 360 calendar days per year. Each trading day is matched

with the respective dividend yield which is obtained from Bloomberg. Moreover,

each option contract is matched with the appropriate continuous risk-free rate that

is found after interpolating the 1-, 3-, 6- and 12-month Treasury Constant Maturity

rates downloaded from the FRED database of the Federal Reserve Bank of St. Louis.

A series of filtering rules are applied to the dataset to eliminate measurement

errors and outliers mainly caused by thinly traded options (see for example Aı̈t-

Sahalia and Lo, 1998, Han, 2008 and Chang et al., 2013). First, we discard options

that do not satisfy standard no-arbitrage conditions. Second, we exclude observa-

tions with zero bid prices and midpoint prices that are less than $3/8. Third we

filter out options with zero or higher than 1 implied volatility. Finally, we take into

consideration only options with non-zero trading volume and maturity between 7

and 270 calendar days.

We use equations (2.37) and (2.38) to estimate implied variance and skewness for

constant maturities of 30-, 60-, 90- and 120-days ahead at the end of each month.8

Since interpolation across the time dimension is needed for this exercise, we make

sure that we consider only days with a sufficient number of available maturities. A

maturity is regarded as available if it has a cross-section with at least two OTM puts

and two OTM call options. Therefore, we require that there are at least four available

maturities that cover the next two months and either the third or fourth month (or

both) following the current month. Moreover, we do not take into consideration

8We do not estimate implied moments for maturities longer than 120 days since the availability
of long maturity options is not high enough to provide accurate estimates of long-maturity implied
moments.
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days that do not have available at least one maturity shorter than or equal to 30

days and at least one maturity longer than or equal to 120 days.9

In order to create costant maturity implied moments, we follow the interpola-

tion technique of Kostakis et al. (2011) and Neumann and Skiadopoulos (2013). In

particular for each cross-section of options, we interpolate across implied volatilites

in the delta space to obtain a grid of 1000 data points with deltas ranging from

0.01 to 0.99. Inside the available delta range we interpolate using a cubic smoothing

spline with smoothing parameter 0.99 while outside the available delta range, we

extrapolate using the respective boundary values. The interpolation across the time

dimension for a given day proceeds as follows: First, from all the available inter-

polated implied volatility curves of a given day we keep the data points with delta

values of 0.1, 0.2,...,0.9. Using a cubic smoothing spline, we then interpolate across

the time dimension for the given constant maturities. Second, we create constant

maturity implied volatility curves by fitting a cubic spline to the available nine im-

plied volatilities. Third, the delta grid of the constant maturity implied volatility

curve is converted to strike prices and the respective implied volatilities are trans-

formed to option prices. Finally, equations (2.37) and (2.38) are discretized and

estimated using the trapezoidal approximation.

Once we have the estimates of constant maturity implied moments for 30-, 60-,

90- and 120-days ahead, we use equations (4.7) and (4.8) to create vectors of forward

1-month moments. In particular we create:

fv0 ≡
[
FV

(1)
0 FV

(2)
0 FV

(3)
0 FV

(4)
0

]′
≡ [FV0;0,30 FV0;30,60 FV0;60,90 FV0;90,120]′ , (4.11)

fs0 ≡
[
FS

(1)
0 FS

(2)
0 FS

(3)
0 FS

(4)
0

]′
≡ [FS0;0,30 FS0;30,60 FS0;60,90 FS0;90,120]′ . (4.12)

9In fact, our sample is restricted to the 1996:01-2012:12 period because of the relatively limited
availability of option maturities in the pro-1996 period.
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Then using equation (4.10) we create a vector of forward 1-month skewness coeffi-

cients:

fsc0 ≡
[
FSC

(1)
0 FSC

(2)
0 FSC

(3)
0 FSC

(4)
0

]′
≡ [FSC0;0,30 FSC0;30,60 FSC0;60,90 FSC0;90,120]′ . (4.13)

Table 4.1 reports the descriptive statistics for the estimated forward variances

and skewness coefficients. All forward variances exhibit very similar statistics and

their autocorrelations range from 0.775 to 0.834. In contrast, forward skewness co-

efficients become more negative and volatile as the horizon increases. Moreover,

forward skewness coefficients are much less persistent with autocorrelation coeffi-

cients ranging from 0.300 to 0.548. Table 4.2 provides the correlation coefficients

for the forward moments. Forward variances are all positively and highly correlated

with correlation coefficients ranging from 85% to 94%. The respective correlations

between forward skewness coefficients range from 37% to 63%. It is apparent that

while each forward variance has an idiosyncratic component depending on the month

it refers to, all of them share a strong common component. On the contrary, the

idiosyncratic information embedded in each forward skewness coefficient is more

pronounced. This can be also confirmed by looking at Figure 4.1 which plots the

forward moments across time. Forward variances tend to move in lockstep, taking

their highest values during the recent financial crisis. Forward skewness coefficients

exhibit similar patterns but the idiosyncratic variation of each variable is evident.

The correlations between forward variances and skewness coefficients are low and

consistently negative apart from the case of FV (1) and FSC(1) whose correlation is

positive but very close to zero (2%).

4.4.2 Forecasted and control variables

The predictive power of the estimated forward moments will be investigated in re-

spect to three main aspects of the economy, a) macroeconomic environment, b) stock
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market and c) risk and uncertainty. The macroeconomic variables can be further cat-

egorized into two main groups, real activity variables and money, credit and treasury

yield variables. The real activity variables consist of personal income (Pers income),

industrial production (Ind prod), capacity utilization (Cap util), unemployment

level (Unempl), nonfarm payroll (Payroll), housing starts (House starts), housing

authorized (Build perm), manufacturing and trade inventories (M&T invent), real

personal consumption expenditures (Consumption), and retail sales (Retail sales).

These variables reflect the main aspects of real activity in an economy, as they

capture the total productivity, the labour market, the housing sector and the total

sales and consumption. The credit and treasury yield variables consist of money

supply M1 (M1), real money supply M2 (M2 (real)), total reserves of depository

institutions (Reserves tot), commercial and industrial loans (C&I loans), consumer

price index (CPI), 3-month T-bill rate (3-m t-bill), 6-month T-bill rate (6-m t-bill),

1 year T-bond rate (1-yr t-bond) and 5 years T-bond rate (5-yr t-bond). These

variables illustrate the key aspects of an economy’s credit capacity as well as the

closely related money stock and inflation levels. For the purposes of the predictive

analysis, we construct monthly logarithmic growth rates for all the variables apart

from Cap util, Unempl and the four interest rates for which we estimate monthly

changes, since they are expressed in percentage terms. A detailed description of the

macroeconomic dataset can be found in Table C.1 of Appendix C.

The stock market is represented by the excess return of the value-weighted index

from the Chicago Center for Research in Security Prices (CRSP). We define excess

market return as the difference between the monthly log-return of the CRSP value-

weighted index and the 1-month Treasury bill rate obtained from Kenneth French’s

website.10

The risk variables we consider, reflect financial systemic risk and tail (or crash)

risk. Systemic risk refers to the aggregate risk taken by financial institutions. Such

type of risk is of particular importance since a failure of a financial institution dur-

ing periods of high systemic risk can cause severe instability to the overall economy

10http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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(see for example Allen et al., 2012 and Brownlees and Engle, 2012). Systemic risk

is proxied by the Catfin measure suggested by Allen et al. (2012) which aggregates

the estimates of three different VaR methodologies for the monthly returns of all the

available financial firms. The data on systemic risk can be found on Turan Bali’s

website.11 Tail risk refers to the risk of extremely negative realizations in the aggre-

gate stock market. This type of risk is important not only due to investors’ natural

aversion to extreme negative returns but also because increased crash risk is typ-

ically related to adverse macroeconomic shocks (Kelly and Jiang, 2014). Monthly

market tail risk is constructed by applying Hill’s (1975) power law estimator to the

daily returns of all the available stocks in a given month, as proposed by Kelly

and Jiang (2014). Finally, we also examine two forms of uncertainty namely eq-

uity uncertainty and economic policy uncertainty. Equity uncertainty refers to the

uncertainty that is present in the stock market, while economic policy uncertainty

refers to uncertainty about fiscal, monetary and regulatory policy. In this context

uncertainty stands for a mixture of both risk and ambiguity, i.e. it encapsulates

events with unknown outcomes whose probability measures are assumed to be both

known (risk) and unknown (ambiguity). Baker et al. (2013) and Bloom (2014) show

empirically that increased uncertainty is related to decreased concurrent and sub-

sequent real activity. The respective data are obtained from Baker et al.’s (2013)

webpage.12 The economic policy uncertainty index consists of three components

related to news coverage, federal tax code provisions set to expire in future years

and economic forecaster disagreement. The equity uncertainty index is only based

on news coverage. Due to their tight link with the macroeconomic conditions, the

above risk and uncertainty variables have become extremely popular especially after

the recent financial crisis.

As control variables, we use the yield term spread (TERM), the dividend-to-price

ratio (d-p) and the earnings-to-price ratio (e-p). TERM is the difference between

the 10-year bond yield and the 1-year bond yield, d-p is the difference between the

11http://faculty.msb.edu/tgb27/workingpapers.html
12http://www.policyuncertainty.com

86

http://faculty.msb.edu/tgb27/workingpapers.html
http://www.policyuncertainty.com


Chapter 4. Forward Skewness and its Information Content

log aggregate annual dividends and the log level of the S&P 500 index and e-p is the

difference between the log aggregate annual earnings and the log level of the S&P 500

index. Data on monthly prices, dividends, and earnings are obtained from Robert

Shiller’s website.13 All interest rate data are obtained from the FRED database of

the Federal Reserve Bank of St. Louis.

4.5 The Information Content of Forward Skew-

ness

The main purpose of this section is to investigate the predictive ability of forward

skewness coefficients for the previously described macroeconomic variables, stock re-

turns, risk and uncertainty variables. Throughout the empirical analysis, we proceed

by first examining the forecasting power of our alternative forward variance mea-

sures when combined only with relevant control variables. Then, we augment the

predictive model with the forward skewness coefficients and evaluate the increase

in its explanatory power. As in Cochrane and Piazzesi (2005), Ang and Bekaert

(2007) and BPS, we mainly rely on Wald tests of joint significance for the four

forward variances and the four forward skewness coefficients. A Wald test of that

type is identical to a J-test of overidentifying restrictions and shows whether the

increase in R2 due to the inclusion of the additional group of variables is significant

or not (see the discussions in Cochrane and Piazzesi, 2005 and Cochrane, 2005).

We present the p-values for those Wald tests together with the adjusted R2 for the

simple and the augmented model.

4.5.1 Forecasting macroeconomy

We examine the forecasting power of the forward moments for the macroeconomic

variables for horizons of one up to twelve months ahead. In particular, for each

13http://www.econ.yale.edu/~shiller/data.htm
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macroeconomic variable we run regressions of the form:

yi;t+h = αi;h + β
′

i;hzt + εi;t+h,h, (4.14)

where yi;t+h =
(

12
h

)
[yi;t+1 + yi;t+2 + ...+ yi;t+h] is the annualized h-month growth

or change in variable i and zt is the vector of predictive variables for each of the

two models considered. The regression analysis covers the period 1996:01-2012:12

and for each forecasting horizon we lose h observations. Under the null of no pre-

dictability the overlapping nature of the data imposes an MA (h− 1) structure to

the error term εt+h,h process. To overcome this problem we base our statistical in-

ference on both Newey and West (1987) and Hodrick (1992) standard errors with

lag length equal to the forecasting horizon. In general, the Hodrick (1992) standard

errors tend to be more conservative, especially in long horizons when the null of

no predictability is true (Ang and Bekaert, 2007) but have lower statistical power

when the null is false (Bollerslev, Marrone, Xu and Zhou, 2012). Following BPS,

we include TERM as a control variable in all the regressions. The beta coefficients

reported in the subsequent tables have been scaled and can be interpreted as the

annualized percentage growth (or change in percentage terms for Cap util, Unempl

and the interest rates) in the forecasted variables from a one standard deviation

change in each regressor.

4.5.1.1 Real activity

Table 4.3 presents the results for the 1-month growth (or change) in the real activity

variables when Newey-West standard errors are employed. First, it is apparent that

the results for the forward variances hardly change when the predictive model is aug-

mented with the forward skewness coefficients. This is reasonable as we have already

seen that the correlations between the two groups of forward moments are rather low.

An increased (decreased) FV (1) is related to a subsequent decline (improvement) in

real activity with the relationship being statistically significant mainly for House

starts, Build perm and Retail sales. From the rest of the forward variances, FV (3)
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is negatively and significantly related to Ind prod and FV (4) exhibits a positive

and significant relationship with Ind prod and Cap util. While individual forward

variances are not particularly significant across real activity variables, we have to

keep in mind that due to the high cross-correlations among forward variances, it

is difficult to estimate the respective regression coefficients with a small confidence

interval.14 From the forward skewness coefficients, a less (more) negative value of

FSC(1) or FSC(4) is associated with a decline (improvement) in real activity, while

a less (more) negative value of FSC(3) is associated with improved (declined) real

activity. These relationships are stronger for Ind prod, Unempl, Payroll and M&T

invent. Additionally, FSC(3) is also significant for Build perm and FSC(4) has a

significant effect on Cap util, Consumption and Retail sales. The results for TERM

are mixed, since while it is negatively and significantly related to Pers income, Pay-

roll, M&T invent and Consumption, it is positively and significantly related to Cap

util. With respect to economic sensitivity, forward variances have in general a higher

impact on real activity variables than forward skewness coefficients. However, the

impact of skewness is far from negligible in several cases. For example, a one stan-

dard deviation increase in FSC(4) causes an annualized monthly drop of 1.831% in

Retail sales.

Turning to the Wald tests of joint significance, forward variances are strongly

jointly significant for all the real activity variables apart from Consumption and

Retail sales. Most importantly, the results for the augmented model show that

the forward skewness coefficients are also jointly significant at the 1% level for Ind

prod, Unempl, Payroll and M&T invent and at the 10% level for Cap util and Retail

sales. These results imply that for six out of ten real activity variables the increase in

explanatory power when considering the augmented model is statistically significant.

Finally, the adjusted R2 increases in the case of the augmented model for eight out

14Orthogonalizing FV (2), FV (3) and FV (4) with respect to FV (1), provides a strong individual
significance for FV (1) across almost all the variables. These results are not presented here, since
our main focus is on joint significance of forward variances and not on individual significance of
each variance. The results of joint significance remain unaltered, whether we use the original
forward variances or the orthogonalized ones.
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of ten variables.

The results for the 1-month growth (or change) in the real activity variables when

Hodrick standard errors are used, are reported in Table 4.4. Individual coefficient

results are similar to those reported in Table 4.3, although relatively weaker in

principle. Moreover, the joint significance of forward variances is much weaker across

variables. The joint significance of forward skewness coefficients, however, is very

similar to that presented in Table 4.3 even though it is lost in two marginal cases

(Cap util and Retail sales).

Table 4.5 reports the results for the 6-month horizon (Panel A) and 12-month

horizon (Panel B) predictive regressions when Newey-West standard errors are con-

sidered. To save space, only the augmented model has been reported and the individ-

ual coefficients for the forward variances and TERM have been omitted. However,

the full set of results can be found in Tables C.2-C.3 of Appendix C. In principle,

FV (1) and FV (4) remain significant at 6- and 12-month horizons with an effect sim-

ilar to the one discussed above. Moreover, TERM clearly indicates improved real

activity for the 12-month horizon as in Chen (1991) and Estrella and Hardouvelis

(1991). Regarding the forward skewness coefficients, similarly to the case of the

1-month predictability FSC(1) and FSC(4) are consistently related to a decreased

real activity across horizons and FSC(3) is consistently related to an improved real

activity across horizons. Furthermore, the effect of the forward skewness coefficients

appears to be stronger in almost all the cases as horizon increases from one to six

months ahead and remains at similar levels when the horizon increases to twelve

months.

The joint significance of the forward variances is improved as the forecasting

horizon becomes longer. At the 12-month horizon, forward variances are jointly

significant for all the real activity variables and for eight of them the significance is

at the 1% level. Forward skewness coefficients continue to be jointly significant for

Ind prod, Payroll and M&T invent at both 6- and 12-month horizons, while they

remain jointly significant for Unempl at the 6-month horizon. Moreover, forward
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skewness coefficients become jointly significant for Pers income and Consumption

at both long horizons examined. Finally, it is remarkable that for both horizons the

adjusted R2 of the augmented model is always higher than the respective adjusted

R2 of the simple model.

Table 4.6 provides the results for the 6-month horizon (Panel A) and 12-month

horizon (Panel B) predictive regressions in the case of Hodrick standard errors. As in

Table 4.5 only the augmented model has been reported and the individual coefficients

for the forward variances and TERM have been omitted. However, the full set of

results can be found in Tables C.6-C.7 of Appendix C. The individual coefficient

results are qualitative very similar to those reported in Table 4.5. With respect to

the Wald tests for forward variances, the main difference occurs for the two housing

variables and Retail sales since the joint significance is lost. With respect to the

Wald tests for forward skewness coefficients, the results are qualitatively similar and

overall slightly stronger when Hodrick standard errors are utilized.

Figure 4.2 provides a clear picture of the importance of the forward skewness

coefficients for predicting real activity especially at long horizons. In particular, for

each variable it plots the change in adjusted R2 when considering the augmented

instead of the simple model across different forecasting horizons. Apart from the case

of Cap util and Unempl all the other graphs show a clear upward sloping pattern,

which implies that taking into consideration forward skewness coefficients becomes

even more important as forecasting horizon increases up to twelve months ahead.

Overall, forward skewness coefficients appear to have significant predictive power

over and above forward variances for the majority of the real activity variables con-

sidered and especially for Ind prod, Unempl, Payroll, M&T invent and Consumption.

Moreover, in most of the cases the effect is stronger when long-horizon predictability

is examined.
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4.5.1.2 Money, credit and treasury yields

Table 4.7 presents the results for the 1-month growth (or change) in the money, credit

and treasury yield variables when Newey-West standard errors are employed. The

results for forward variances are very similar for both the simple and the augmented

model. FV (1) exhibits the strongest statistical significance with a higher (lower)

value being related to increased (decreased) M2 (real), lower (higher) CPI and lower

(higher) interest rates. FV (2) is positively and significantly related to 1-yr t-bond

and positively but weakly related to 5-yr t-bond. With regard to forward skewness

coefficients, FSC(3) exhibits a consistent pattern, being positively and significantly

associated with all treasury yields and negatively and significantly associated with

the money supply variables. Moreover, FSC(2) has a significant negative relationship

with C&I loans, while FSC(4) has a significant positive impact on 5-yr t-bond.

TERM is significantly related, positively and negatively respectively, only to M1

and C&I loans. With respect to economic sensitivity, as in the previous section,

forward variances have, on average, a higher effect on the forecasted variables than

forward skewness coefficients. However, the economic impact of forward skewness

coefficients is not negligible either. For example, a one standard deviation increase

in FSC(3) is followed by an annualized monthly increase of about 40 basis points in

the treasury yields.

The results of the Wald tests show that forward variances are jointly strongly

significant for M2 (real), Reserves tot, CPI and all the treasury yield variables.

Forward skewness coefficients are jointly significant for M2 (real), C&I loans and

three out of four treasury yields (6-m t-bill, 1-yr t-bond and 5-yr t-bond). These

results show that the increase in explanatory power stemming from the addition of

forward skewness coefficients into the predictive model is significant for five out of

nine variables. Furthermore, the augmented model is accompanied by an increase

in the adjusted R2 for six out of nine variables.

Table 4.8 shows the the results for the 1-month growth (or change) in the money,

credit and treasury yield variables when Hodrick standard errors are employed.
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Although slightly less significant in general, individual coefficient results are similar

to those reported in Table 4.7. Forward variances lose their joint significance in four

out of seven cases. Forward skewness coefficients, however, remain jointly significant

for all variables but M2 (real).

Table 4.9 reports the results for 6-month (Panel A) and 12-month horizon (Panel

B) predictive regressions in the case of Newey-West standard errors. As in the

previous section, only the augmented model has been reported and the individual

coefficients for the forward variances and TERM have been omitted but can be

found in Tables C.4-C.5 of Appendix C. For those variables the pattern is similar

to the 1-month horizon, apart from the fact that FV (3) becomes also significant for

M2 (real), CPI and 5-yr t-bond with an effect opposite to that of FV (1). Moreover,

at the longest 12-month horizon, TERM exhibits some explanatory power for future

treasury yield changes, a finding which is in the spirit of Fama (1990). However,

this positive impact is significant only at the 10% level. With regard to forward

skewness coefficients, FSC(1) has a strong negative effect on C&I loans at both

the 6- and 12-month horizons, while FSC(2) is significantly related, positively and

negatively respectively, to the money supply variables and CPI at the 12-month

horizon. FSC(3) continues to have a significantly negative impact on M1 but its

impact on the treasury yields diminishes as the horizon increases. Finally, FSC(4)

is negatively related to C&I loans and CPI, with the effect becoming stronger across

horizons.

The Wald tests indicate that an increase in the forecasting horizon eliminates

the significant effect of forward variances on the treasury yields but strengthens

their joint effect on all the other variables. Similarly, forward skewness coefficients

are not jointly significant for treasury yields when 6- and 12-month horizons are

considered. At the 12-month horizon, however, they are strongly jointly significant

for M2 (real), C&I loans and CPI. Furthermore, the adjusted R2 of the augmented

model is higher than the adjusted R2 of the simple model for six out of nine variables

when considering the 6-month horizon and for eight out of nine variables when
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considering the 12-month horizon. However, in the case of the treasury yields the

existing increases are only marginal.

The results for the 6-month horizon (Panel A) and 12-month horizon (Panel B)

predictive regressions in the case of Hodrick standard errors are shown in Table

4.10. Similarly to Table 4.9 only the augmented model has been reported and

the individual coefficients for the forward variances and TERM have been omitted.

However, the full set of results can be found in Tables C.8-C.9 of Appendix C. The

results of joint significance for forward variances are generally weaker for the money

and creadit variables but stronger for the treasury yield variables than those reported

in Table 4.9. The results of joint significance for forward skewness coefficients are

similar to those presented in Table 4.9, with the main difference being that at the 12-

month horizon forward skewness coefficients appear to be significant for 3-m t-bill,

6-m t-bill and 1-yr t-bond.

The above results are also depicted in Figure 4.3 which plots the change in

adjusted R2 across different forecasting horizons when adding the forward skewness

coefficients into the predictive models. C&I loans and CPI exhibit an explicit upward

sloping pattern similar to that found for most of the real activity variables. M1, M2

(real) and Reserves tot provide less steep but still upward trending patterns. The

treasury yields, on the other hand, provide patterns that are flat and close to zero,

with only a slight increase for horizons up to two months ahead.

In summary, forward skewness coefficients appear to have significant predictive

power over and above forward variances mainly for M2 (real), C&I loans and CPI,

with the effect being in general stronger for long horizons. They are also important

for explaining treasury yield movements but mainly for a short 1-month horizon.

4.5.2 Forecasting stock market

Having established that taking into consideration forward skewness coefficients is

important for forecasting macroeconomic variables, we now turn our attention to

the stock market. In particular, for horizons of one up to twelve months ahead we
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run regressions of the following form:

ret+h = αh + β
′

hzt + εt+h,h, (4.15)

where ret+h =
(

12
h

)
[ret+1 + ret+2 + ...+ ret+h] is the annualized h-month excess

return of the CRSP value-weighted index and zt is the vector of predictive variables

for each of the two models considered. The regression analysis covers the period

1996:01-2012:12 and for each forecasting horizon we lose h observations. Under the

null of no predictability the overlapping nature of the data imposes an MA (h− 1)

structure to the error term εt+h,h process. To tackle this problem we base our

statistical inference on both Newey and West (1987) and Hodrick (1992) standard

errors with lag length equal to the forecasting horizon. In general, the Hodrick (1992)

standard errors tend to be more conservative, especially in long horizons when the

null of no predictability is true (Ang and Bekaert, 2007) but have lower statistical

power when the null is false (Bollerslev, Marrone, Xu and Zhou, 2012). Motivated

by prior literature (see for example, Fama and French, 1988, Campbell and Shiller,

1988a,b, Lamont, 1998 and Goyal and Welch, 2008, among others) we include d-

p and e-p as control variables.15 The beta coefficients reported in the subsequent

tables have been scaled and can be interpreted as the percentage annualized excess

market returns caused by a one standard deviation change in each regressor.

Table 4.11 reports the results for 1-, 3-, 6-, 9- and 12-month forecasting horizons

when Newey-West standard errors are used. From the forward variances group,

FV (1) is negatively related to future stock market returns but the effect is signif-

icant only when we consider the augmented model for horizons between six and

twelve months ahead. FV (4) exhibits also some forecasting power for future mar-

ket returns but only at a short 1-month horizon. Recall, however, that due to the

high cross-correlations among forward variances, it is difficult to find strong individ-

ual significance for these variables. Therefore, our conclusions are mainly based on

the Wald tests of joint significance. From the forward skewness coefficients group,

15Note that for our sample period the correlation between d-p and e-p is -0.05.
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FSC(3) is consistently positively and significantly related to future market returns,

with the effect being stronger at the 6- and 9-month horizons. Moreover, FSC(4)

exhibits a negative and significant relationship with future market returns at the

3-month horizon. Recall from Section 4.5.1.1 that FSC(3) is positively related to

real activity while FSC(4) is negatively related to real activity. Therefore, there is

a consistent pattern for these two forward skewness coefficients with FSC(3) being

related to increased economic activity and higher stock market returns and FSC(4)

being related to reduced economic activity and lower stock market returns. Re-

garding the control variables, d-p is positively related to future market returns and

in line with the literature its effect becomes stronger as the forecasting horizon in-

creases. In contrast, e-p does not exhibit any significant relationship with future

market returns during our sample period. In economic terms, a one standard de-

viation increase in FSC(3) results in an annualized excess market return ranging

from 3.373% to 8.244% depending on the forecasting horizon considered. With the

exception of the 12-month horizon, similar figures are also observed for FSC(4).

Moving to the Wald tests of joint significance, forward variances are jointly

significant at the 5% level when the forecasting horizon is six months ahead and

at the 10% level when the forecasting horizon is nine months ahead. In contrast,

forward skewness coefficients are jointly significant at the 10% level for the 3-month

horizon and at the 5% level for both the 6- and the 9-month horizons. Therefore, we

find that forward skewness coefficients significantly forecast future market returns

over and above forward variances and their effect is stronger than that of forward

variances. Furthermore, the adjusted R2 of the augmented model is higher than the

adjusted R2 of the simple model for all but the 1-month horizon. Looking at the

change in adjusted R2 across horizons depicted in Figure 4.4, we observe a hump-

shaped pattern. In particular, the increase in adjusted R2 is upward trending for

short horizons, taking its maximum value at the 4-month horizon and then gradually

declining for longer horizons.

The respective results for stock market return predictability, when Hodrick stan-
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dard errors are used, are presented in Table 4.12. In this case, none of the forward

variance individual coefficients appears to be significant, while the individual re-

sults for forward skewness coefficients are qualitatively similar - and in some cases

stronger - to those presented in Table 4.11. Turning to the Wald tests, forward

variances are jointly insignificant at all horizons, while forward skewness coefficients

remain significant at 10% level only at the 6-month horizon.

Collectively, the empirical results presented in this section indicate that forward

skewness coefficients encapsulate important information about future stock market

returns that is not embedded in forward variances. Moreover, their effect is stronger

for horizons between three and nine months ahead. It should be noted, however,

that the joint impact of forward skewness coefficients appears to be limited when

the alternative Hodrick standard errors are employed.

4.5.3 Forecasting risk and uncertainty

As a final step in this analysis, we examine the predictive power of the forward

moments for systemic risk, tail risk, equity and economic policy uncertainty. In

particular, we run the following regressions for horizons of one up to six months

ahead:

gk;t+h = αk;h + β
′

k;hzt + εk;t+h, (4.16)

where gk;t+h denotes the value of variable k, h months ahead and zt is the vector of

predictive variables for each of the two models considered. The vector of explanatory

variables includes always the time t value of the dependent variable k as an additional

control variable. The regression analysis covers the period 1996:01 - 2012:12 and

for each forecasting horizon we lose h observations. In order to control for possible

autocorrelation in the error term we use the Newey and West (1987) covariance

matrix estimator with lag length equal to the forecasting horizon for the individual

and joint significance tests. However, since we do not have overlapping observations

in this case, we do not perform an additional analysis using the Hodrick (1992)

covariance matrix estimator. We further choose to include TERM as a control
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variable as it is considered to be a business cycle indicator (Chen, 1991, Estrella and

Hardouvelis, 1991). All the variables have been standardized prior to the regression

analysis, so regression coefficients represent the change in the dependent variable in

terms of its standard deviation caused by a change of a one standard deviation in

each regressor.

4.5.3.1 Systemic and tail risk

Table 4.13 reports the results from predicting systemic risk for 1- up to 6-month

horizons. The results for forward variances are similar for both the simple and

the augmented model. In particular, FV (1) is negatively and significantly related

to future systemic risk for 5- and 6-month horizons, while FV (4) is positively and

significantly related to future systemic risk for 1- up to 3-month horizons. Turning to

the forward skewness coefficients, FSC(1) and FSC(3) are negatively associated with

systemic risk, while FSC(2) and FSC(4) are positively associated with systemic risk.

FSC(2) has the strongest effect especially for 4- and 5- month forecasting horizons,

but all forward skewness coefficients exhibit some significant predictive power for

at least two horizons. In economic terms, a one standard deviation increase in

FSC(2) forecasts a 0.346 standard deviation increase in systemic risk four months

ahead. TERM does not appear to have any significant predictive ability for future

systemic risk. The Wald tests show that forward variances are jointly significant

mainly for the 5- and 6-month horizons and marginally for the 1-month horizon

in the case of the augmented model. In contrast, forward skewness coefficients are

jointly significant across all horizons and have the strongest effect for the 4- and

5-month horizons. It is also worth noting that the adjusted R2 of the augmented

model at the 4-month horizon is 5.7% higher than that of the simple model. The

top left panel of Figure 4.5 shows clearly that the increase in adjusted R2 when

considering the augmented model rises for horizons of one to four months ahead and

then gradually declines.

The results for tail risk, presented in Table 4.14, are somewhat different. For
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both the simple and the augmented model, FV (2) is positively related to future

tail risk, while FV (4) is negatively related to future tail risk. Moreover, the effects

are significant only for the 2- and 5-month horizons. With respect to the forward

skewness coefficients, FSC(3) forecasts increased tail risk especially for horizons

between three and five months ahead, while FSC(4) forecasts decreased tail risk

especially for the 3-month horizon. These relationships are opposite to the ones

found for systemic risk, which is expected as in our sample the two measures exhibit

a correlation of -0.56.16 In economic terms, the effect of forward skewness coefficients

for tail risk is lower than that reported for systemic risk. For example, a one standard

deviation increase in FSC(3) forecasts only a 0.189 standard deviation increase in

tail risk four months ahead. As in the case of systemic risk, TERM does not exhibit

any significant relation with tail risk. Turning to joint significance, forward variances

are jointly significant at the 5% level for the 2-month horizon and at the 10% level

for the 5-month horizon. Forward skewness coefficients exhibit a similar significance

for the 2- and 5-month horizons but are also significant at the 5% level for the

3-month horizon. At this horizon, there is also an increase in adjusted R2 of 1.9

percentage points when considering the augmented model. Therefore, in the case

of tail risk, forward skewness coefficients can increase the explanatory power of the

simple model mainly for horizons of two and three months ahead but the effect is

not particularly strong. This can also be seen in the top right panel of Figure 4.5,

which shows an initial small increase in the adjusted R2 that disappears after the

third month.

In summary, the results show that forward skewness coefficients are particularly

important for predicting future systemic risk especially for horizons between three

and six months ahead, but provide only limited forecasting ability for future tail

risk.

16This is due to the different methods for estimating the two types of risk. Specifically, systemic
risk is based on the shape of the left tail of the distribution of returns, while tail risk is based
on the shape of the left tail beyond a specified threshold level which depends on the variance of
the distribution. Intuitively, the difference between the two methods is similar to the difference
between VaR and CVaR estimation.
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4.5.3.2 Equity and economic policy uncertainty

Table 4.15 shows the results from predicting equity uncertainty for 1- up to 6-month

horizons. The pattern regarding the predictive power of forward variances is similar

for both the simple and the augmented model. In particular, FV (1) is positively and

significantly related to 1-month ahead equity uncertainty, while FV (3) is negatively

and significantly related to equity uncertainty for one, three, four and five months

ahead. With respect to forward skewness coefficients, FSC(2) forecasts increased

future equity uncertainty in 4- and 5- month horizon predictive regressions, while

FSC(3) forecasts increased future equity uncertainty in 3-month horizon regressions.

In economic terms, a one standard deviation increase in FSC(2) forecasts a 0.188

standard deviation increase in equity uncertainty four months ahead. TERM does

not appear to have any significant predictive ability for future equity uncertainty.

The results for the Wald tests of joint significance show that forward variances

are jointly significant only at the 5-month horizon. This is remarkable as equity

market uncertainty has been closely linked to VIX in the literature (see for example

Baker et al., 2013).17 In contrast, forward skewness coefficients are significant at

the 5% level for the 3-month horizon and at the 10% level for the 4-, 5- and 6-

month horizon. Therefore, while equity uncertainty is contemporaneously related

to implied variance, its future values are explained better by investors’ perceptions

about future skewness. As in the case of systemic risk, the increase in adjusted R2

is highest for the 4-month horizon (5.9 percentage points). This is also depicted in

the bottom left panel of Figure 4.5, which shows that similarly to systemic risk, the

increase in adjusted R2 when considering the augmented model for forecasting equity

uncertainty rises for horizons of one to four months ahead and then progressively

declines.

The empirical evidence regarding economic policy uncertainty predictability is

presented in Table 4.16 and provides a completely different picture. Similarly to the

equity uncertainty, the results of forward variances hardly change once we include

17In our sample period, equity uncertainty has a contemporaneous correlation of 0.59 with FV (1).
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forward skewness coefficients into the predictive model. However, FV (2) is now the

strongest predictor of future economic policy uncertainty, exhibiting a significantly

negative effect for 4- to 6-month ahead horizons. Moreover, FV (3) and FV (4) are

now positively related to future economic policy uncertainty, with the effect being

significant for the 1- and 6-month horizon in the case of FV (3) and the 5-month

horizon in the case of FV (4). Turning to the forward skewness coefficients, the only

significant relationships come from the 1-month horizon predictive regressions. In

particular, FSC(1) predicts increased economic policy uncertainty, with the effect

being significant only at the 10% level, while FSC(2) predicts decreased economic

policy uncertainty, with the effect being significant at the 1% level. Moreover, in

economic terms the predictability of forward skewness coefficients for 1-month ahead

economic policy uncertainty is relatively weak, as a one standard deviation increase

in FSC(2) forecasts a 0.121 standard deviation decrease in economic policy uncer-

tainty. In contrast to forward skewness coefficients, TERM has a consistently strong

positive impact on future economic policy uncertainty for all horizons considered.

The results for the Wald tests of joint significance provide little evidence to sup-

port the hypothesis that forward moments can predict economic policy uncertainty.

In particular forward variances are only jointly significant at the 6-month horizon,

while forward skewness coefficients are only jointly significant at the 1-month hori-

zon. Moreover, the increase in adjusted R2 when considering the augmented model

to forecast 1-month ahead economic policy uncertainty is relatively low (0.4 per-

centage points). The limited forecasting power of forward skewness coefficients for

economic policy uncertainty is also depicted in the bottom right panel of Figure 4.5,

where the change in adjusted R2 associated with the augmented model is flat across

horizons and always close to zero.

In summary, the results show that forward skewness coefficients are quite impor-

tant for predicting future equity uncertainty especially for horizons between three

and six months ahead, but exhibit weak forecasting power for economic policy un-

certainty and only for the 1-month horizon.
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Finally, recall from Section 4.5.2 that the graph of the increase in adjusted R2

when considering the augmented model for explaining future stock market returns

has a hump-shaped pattern with a peak at the 4-month horizon. In this section,

we observe a very similar pattern for systemic risk and equity market uncertainty.

Moreover, both graphs have their peak at the 4-month horizon as well. Therefore, we

conclude that forward skewness coefficients are important for explaining future stock

market returns, systemic risk and equity uncertainty for a horizon that matches the

time period spanned by forward skewness. After the fourth month that corresponds

to the fourth forward skewness coefficient, the predictive power of the augmented

model gradually drops.

4.6 Conclusion

This study investigates the information content of forward skewness inferred from

portfolios of options on the S&P 500 index. In particular, we construct forward

1-month skewness coefficients for one to four months ahead and examine their pre-

dictive power over and above the respective forward variances. In contrast to previ-

ous studies, our method is robust to the presence of jumps in the underlying asset

process and therefore our variance estimates are valid under very general specifi-

cations for the price process. Moreover, this approach allows us to create forward

standardized skewness measures instead of relying on the term structure of the third

central moment of returns.

The predictive power of the estimated forward moments is tested on a wide range

of macroeconomic variables, future stock market returns as well as risk and uncer-

tainty measures. The results show that forward skewness coefficients offer additional

predictive power when included into a model containing forward variances for the

majority of real activity, money, credit and treasury yield variables. Furthermore,

the increase in explanatory power as measured by the change in adjusted R2 follows

an upward-sloping pattern for almost all the variables considered, apart from the

treasury yields. In respect to stock market returns and the risk and uncertainty
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variables, forward skewness coefficients significantly improve the predictability of

market returns, systemic risk and equity market uncertainty mostly for horizons

between 3 and 6 months. The corresponding graphs of increase in adjusted R2 after

the inclusion of forward skewness into the predictive model all have a consistent

hump-shaped pattern with its peak at the 4 month horizon.

Collectively, the analysis in this chapter shows that forward skewness coeffi-

cients encapsulate important information over and above the information contained

inforward variances about future macroeconomic conditions at both short and long

horizons and about future financial market conditions mainly at short horizons.
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Table 4.1: Summary statistics of forward moments

Mean StDev Min Max Auto

FV(1) 0.004 0.004 0.001 0.028 0.775
FV(2) 0.004 0.003 0.001 0.024 0.794
FV(3) 0.005 0.003 0.001 0.024 0.834
FV(4) 0.005 0.003 0.001 0.018 0.799
FSC(1) -1.059 0.227 -1.631 -0.367 0.533
FSC(2) -2.048 0.397 -3.611 -0.758 0.548
FSC(3) -2.593 0.667 -4.562 2.248 0.388
FSC(4) -3.188 0.697 -6.226 -0.574 0.300

This table reports the summary statistics of the forward variances and
forward skewness coefficients constructed using the method of Neuberger
(2012) and Kozhan, Neuberger and Schneider (2013). The sample period
is 1996:01-2012:12. FV (1), FV (2), FV (3) and FV (4) denote the forward 1-
month variances for one, two, three and four months ahead, while FSC(1),
FSC(2), FSC(3) and FSC(4) denote the respective skewness coefficients.
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Table 4.2: Correlation coefficients

FV(1) FV(2) FV(3) FV(4) FSC(1) FSC(2) FSC(3) FSC(4)

FV(1) 1.00
FV(2) 0.94 1.00
FV(3) 0.90 0.93 1.00
FV(4) 0.85 0.92 0.91 1.00
FSC(1) 0.02 -0.02 -0.03 -0.04 1.00
FSC(2) -0.10 -0.08 -0.10 -0.11 0.63 1.00
FSC(3) -0.03 -0.08 -0.12 -0.12 0.40 0.45 1.00
FSC(4) -0.02 -0.07 -0.07 -0.10 0.37 0.50 0.40 1.00

This table reports the correlation coefficients of the forward variances and for-
ward skewness coefficients constructed using the method of Neuberger (2012) and
Kozhan, Neuberger and Schneider (2013). The sample period is 1996:01-2012:12.
FV (1), FV (2), FV (3) and FV (4) denote the forward 1-month variances for one, two,
three and four months ahead, while FSC(1), FSC(2), FSC(3) and FSC(4) denote
the respective skewness coefficients.
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Chapter 4. Forward Skewness and its Information Content

Table 4.5: Predicting real activity for 6- and 12-month horizon - Newey-West covariance matrix

FSC(1) FSC(2) FSC(3) FSC(4) Adj. R2 Adj. R̄2 Joint FV Joint FSC
Panel A: h=6

Pers income -0.398 0.074 0.639*** -0.753** 0.314 0.276
(-1.046) (0.214) (2.649) (-2.357) 0.000 0.054

Ind prod -1.676*** 0.567 0.978** -0.833 0.219 0.155
(-3.802) (1.090) (2.434) (-1.350) 0.000 0.000

Cap util -0.714* 0.114 0.210 -0.599 0.305 0.270
(-1.910) (0.301) (0.846) (-1.371) 0.000 0.404

Unempl 0.240** -0.060 -0.174* 0.344*** 0.358 0.268
(2.232) (-0.602) (-1.744) (3.305) 0.000 0.019

Payroll -0.537*** 0.147 0.344*** -0.482*** 0.431 0.332
(-3.713) (0.913) (2.736) (-3.043) 0.000 0.001

House starts 1.587 -0.612 5.930** -4.680 0.089 0.061
(0.634) (-0.278) (2.215) (-1.322) 0.073 0.166

Build perm 0.652 -0.054 6.825*** -6.809* 0.131 0.076
(0.267) (-0.020) (2.895) (-1.779) 0.026 0.022

M&T invent -1.013*** 0.171 0.517* -0.899*** 0.338 0.236
(-3.068) (0.528) (1.800) (-3.088) 0.000 0.000

Consumption -0.426** 0.265 0.555*** -0.373 0.124 0.069
(-1.985) (1.281) (3.015) (-1.446) 0.167 0.002

Retail sales -1.027* 0.213 1.043** -1.505* 0.121 0.048
(-1.878) (0.514) (2.211) (-1.781) 0.158 0.206

Panel B: h=12
Pers income -0.261 -0.235 0.766** -0.554 0.244 0.193

(-0.763) (-0.660) (2.573) (-1.589) 0.000 0.084
Ind prod -1.158*** 0.071 1.147** -0.574 0.117 0.063

(-3.464) (0.117) (2.013) (-1.142) 0.000 0.001
Cap util -0.224 -0.443 0.380 -0.337 0.279 0.257

(-0.855) (-1.283) (1.045) (-0.985) 0.000 0.482
Unempl 0.203* 0.012 -0.193* 0.254** 0.243 0.169

(1.961) (0.103) (-1.703) (2.233) 0.000 0.149
Payroll -0.487*** 0.060 0.427** -0.428** 0.279 0.181

(-2.905) (0.294) (2.505) (-2.394) 0.000 0.009
House starts 0.598 0.379 6.532** -3.490* 0.192 0.128

(0.361) (0.175) (2.378) (-1.892) 0.071 0.065
Build perm -0.658 0.585 6.375** -3.127 0.204 0.151

(-0.363) (0.271) (2.377) (-1.631) 0.097 0.153
M&T invent -0.964*** 0.095 0.649** -0.730** 0.304 0.203

(-2.821) (0.238) (2.326) (-2.118) 0.000 0.020
Consumption -0.424** 0.270 0.641*** -0.228 0.118 0.036

(-2.230) (1.193) (2.739) (-1.058) 0.007 0.004
Retail sales -0.562 -0.315 1.144* -0.808* 0.086 0.031

(-1.224) (-0.641) (1.784) (-1.827) 0.004 0.291

This table reports the results of predictive regressions of 6- and 12-month growth (or change) in real activity
variables. Details about the variables can be found in Table C.1 of Appendix C. The sample period is 1996:01-
2012:12. The predictive model considered is augmented with forward skewness coefficients. Individual coefficient
results regarding the constant term, term spread and forward variances have been omitted for brevity. Adj. R2

and Adj. R̄2 denote the adjusted R2 with and without forward skewness coefficients respectively. Significance
tests are based on the covariance matrix suggested by Newey and West (1987) with lag length equal to the fore-
casting horizon. Individual coefficient t-statistics can be found in parentheses. ***, ** and * denote significance
at 1%, 5% and 10% level respectively. P-values of Wald tests of joint significance for forward variances and
forward skewness coefficients are reported at the last two columns.
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Chapter 4. Forward Skewness and its Information Content

Table 4.6: Predicting real activity for 6- and 12-month horizon - Hodrick covariance matrix

FSC(1) FSC(2) FSC(3) FSC(4) Adj. R2 Adj. R̄2 Joint FV Joint FSC
Panel A: h=6

Pers income -0.398 0.074 0.639*** -0.753** 0.314 0.276
(-1.553) (0.375) (2.754) (-2.588) 0.026 0.017

Ind prod -1.676*** 0.567* 0.978*** -0.833* 0.219 0.155
(-4.597) (1.798) (3.169) (-1.739) 0.023 0.000

Cap util -0.714** 0.114 0.210 -0.599* 0.305 0.270
(-2.319) (0.463) (0.900) (-1.701) 0.006 0.115

Unempl 0.240** -0.060 -0.174** 0.344*** 0.358 0.268
(2.547) (-0.759) (-1.985) (3.335) 0.018 0.002

Payroll -0.537*** 0.147* 0.344*** -0.482*** 0.431 0.332
(-5.503) (1.819) (3.767) (-4.605) 0.006 0.000

House starts 1.587 -0.612 5.930* -4.680 0.089 0.061
(0.393) (-0.167) (1.866) (-1.192) 0.633 0.402

Build perm 0.652 -0.054 6.825** -6.809** 0.131 0.076
(0.225) (-0.018) (2.456) (-2.208) 0.277 0.059

M&T invent -1.013*** 0.171 0.517** -0.899*** 0.338 0.236
(-4.164) (0.920) (2.369) (-3.917) 0.019 0.000

Consumption -0.426* 0.265 0.555*** -0.373** 0.124 0.069
(-1.719) (1.640) (3.562) (-2.025) 0.540 0.001

Retail sales -1.027 0.213 1.043** -1.505** 0.121 0.048
(-1.448) (0.430) (2.411) (-2.357) 0.337 0.073

12-month
Pers income -0.261 -0.235 0.766*** -0.554** 0.244 0.193

(-1.118) (-1.107) (3.725) (-2.260) 0.005 0.003
Ind prod -1.158*** 0.071 1.147*** -0.574* 0.117 0.063

(-3.546) (0.227) (3.100) (-1.953) 0.054 0.001
Cap util -0.224 -0.443* 0.380 -0.337 0.279 0.257

(-0.835) (-1.894) (1.363) (-1.584) 0.048 0.104
Unempl 0.203*** 0.012 -0.193*** 0.254*** 0.243 0.169

(2.658) (0.165) (-2.635) (3.644) 0.002 0.001
Payroll -0.487*** 0.060 0.427*** -0.428*** 0.279 0.181

(-6.117) (0.784) (4.929) (-4.679) 0.000 0.000
House starts 0.598 0.379 6.532** -3.490 0.192 0.128

(0.186) (0.122) (2.377) (-1.202) 0.612 0.151
Build perm -0.658 0.585 6.375*** -3.127* 0.204 0.151

(-0.300) (0.301) (2.844) (-1.816) 0.359 0.026
M&T invent -0.964*** 0.095 0.649*** -0.730*** 0.304 0.203

(-4.676) (0.625) (4.004) (-3.622) 0.001 0.000
Consumption -0.424* 0.270* 0.641*** -0.228* 0.118 0.036

(-1.842) (1.870) (4.646) (-1.713) 0.075 0.000
Retail sales -0.562 -0.315 1.144** -0.808** 0.086 0.031

(-0.862) (-0.742) (2.435) (-2.052) 0.488 0.141

This table reports the results of predictive regressions of 6- and 12-month growth (or change) in real activity
variables. Details about the variables can be found in Table C.1 of Appendix C. The sample period is 1996:01-
2012:12. The predictive model considered is augmented with forward skewness coefficients. Individual coefficient
results regarding the constant term, term spread and forward variances have been omitted for brevity. Adj. R2

and Adj. R̄2 denote the adjusted R2 with and without forward skewness coefficients respectively. Significance
tests are based on the covariance matrix suggested by Hodrick (1992) with lag length equal to the forecasting
horizon. Individual coefficient t-statistics can be found in parentheses. ***, ** and * denote significance at 1%,
5% and 10% level respectively. P-values of Wald tests of joint significance for forward variances and forward
skewness coefficients are reported at the last two columns.
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Table 4.9: Predicting money, credit and yield variables for 6- and 12-month horizon - Newey-West covariance
matrix

FSC(1) FSC(2) FSC(3) FSC(4) Adj. R2 Adj. R̄2 Joint FV Joint FSC
Panel A: h=6

M1 0.266 -0.283 -0.739* -0.326 0.331 0.323
(0.313) (-0.437) (-1.759) (-0.473) 0.028 0.171

M2 (real) -0.319 0.164 -0.119 0.205 0.067 0.077
(-0.640) (0.450) (-0.616) (0.580) 0.000 0.859

Reserves tot 10.938 -0.121 -9.856 16.644 0.045 0.018
(1.307) (-0.020) (-1.284) (1.054) 0.077 0.683

C&I loans -3.490*** -0.789 -0.556 -2.352*** 0.413 0.243
(-2.672) (-0.897) (-0.560) (-2.629) 0.000 0.000

CPI -0.021 -0.041 0.064 -0.310 0.113 0.101
(-0.111) (-0.194) (0.407) (-1.602) 0.026 0.515

3-m t-bill -0.175 0.019 0.164** -0.132 0.060 0.061
(-1.099) (0.128) (2.066) (-1.176) 0.081 0.280

6-m t-bill -0.181 -0.002 0.164** -0.138 0.087 0.083
(-1.173) (-0.016) (2.347) (-1.258) 0.018 0.184

1-yr t-bond -0.156 -0.023 0.150** -0.145 0.081 0.079
(-1.021) (-0.142) (2.071) (-1.300) 0.011 0.293

5-yr t-bond 0.106 -0.114 0.129 -0.122 0.051 0.056
(0.678) (-0.645) (1.409) (-1.221) 0.002 0.420

Panel B: h=12
M1 -0.156 0.765* -1.055** -0.588 0.369 0.339

(-0.257) (1.720) (-1.996) (-1.026) 0.020 0.139
M2 (real) -0.471 0.783*** -0.198 -0.048 0.066 0.034

(-1.441) (3.410) (-0.934) (-0.171) 0.000 0.012
Reserves tot 3.284 8.651 -15.066 7.187 0.035 0.010

(0.546) (1.041) (-1.409) (0.932) 0.007 0.724
C&I loans -3.485*** -1.068 0.370 -2.977*** 0.482 0.260

(-2.757) (-0.895) (0.331) (-4.101) 0.000 0.000
CPI 0.077 -0.405*** 0.135 -0.237** 0.222 0.095

(0.645) (-3.154) (1.142) (-2.264) 0.000 0.004
3-m t-bill -0.095 -0.076 0.193* -0.119 0.142 0.138

(-0.536) (-0.418) (1.875) (-1.141) 0.355 0.371
6-m t-bill -0.092 -0.080 0.190** -0.134 0.161 0.154

(-0.525) (-0.456) (1.976) (-1.256) 0.206 0.313
1-yr t-bond -0.058 -0.081 0.169* -0.140 0.152 0.147

(-0.330) (-0.486) (1.728) (-1.274) 0.155 0.392
5-yr t-bond 0.097 -0.075 0.049 -0.041 0.033 0.045

(0.670) (-0.705) (0.558) (-0.431) 0.134 0.824

This table reports the results of predictive regressions of 6- and 12-month growth (or change) in money, credit
and yield variables. Details about the variables can be found in Table C.1 of Appendix C. The sample period is
1996:01-2012:12. The predictive model considered is augmented with forward skewness coefficients. Individual
coefficient results regarding the constant term, term spread and forward variances have been omitted for brevity.
Adj. R2 and Adj. R̄2 denote the adjusted R2 with and without forward skewness coefficients respectively.
Significance tests are based on the covariance matrix suggested by Newey and West (1987) with lag length equal
to the forecasting horizon. Individual coefficient t-statistics can be found in parentheses. ***, ** and * denote
significance at 1%, 5% and 10% level respectively. P-values of Wald tests of joint significance for forward variances
and forward skewness coefficients are reported at the last two columns.
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Table 4.10: Predicting money, credit and yield variables for 6- and 12-month horizon - Hodrick covariance matrix

FSC(1) FSC(2) FSC(3) FSC(4) Adj. R2 Adj. R̄2 Joint FV Joint FSC
Panel A: h=6

M1 0.266 -0.283 -0.739* -0.326 0.331 0.323
(0.346) (-0.589) (-1.811) (-0.549) 0.734 0.118

M2 (real) -0.319 0.164 -0.119 0.205 0.067 0.077
(-0.834) (0.740) (-0.557) (0.800) 0.027 0.646

Reserves tot 10.938* -0.121 -9.856* 16.644 0.045 0.018
(1.807) (-0.044) (-1.831) (1.530) 0.175 0.165

C&I loans -3.490*** -0.789 -0.556 -2.352*** 0.413 0.243
(-3.441) (-0.978) (-0.740) (-3.048) 0.003 0.000

CPI -0.021 -0.041 0.064 -0.310* 0.113 0.101
(-0.135) (-0.313) (0.420) (-1.843) 0.161 0.238

3-m t-bill -0.175 0.019 0.164* -0.132 0.060 0.061
(-1.535) (0.171) (1.850) (-1.587) 0.001 0.225

6-m t-bill -0.181 -0.002 0.164** -0.138* 0.087 0.083
(-1.609) (-0.025) (2.081) (-1.806) 0.002 0.148

1-yr t-bond -0.156 -0.023 0.150* -0.145* 0.081 0.079
(-1.280) (-0.206) (1.747) (-1.712) 0.009 0.232

5-yr t-bond 0.106 -0.114 0.129 -0.122 0.051 0.056
(0.634) (-0.831) (1.241) (-0.938) 0.092 0.452

12-month
M1 -0.156 0.765* -1.055** -0.588 0.369 0.339

(-0.288) (1.907) (-2.489) (-1.252) 0.182 0.002
M2 (real) -0.471* 0.783*** -0.198 -0.048 0.066 0.034

(-1.760) (4.025) (-0.902) (-0.242) 0.179 0.002
Reserves tot 3.284 8.651** -15.066** 7.187 0.035 0.010

(0.967) (1.997) (-2.032) (1.522) 0.111 0.271
C&I loans -3.485*** -1.068* 0.370 -2.977*** 0.482 0.260

(-4.172) (-1.750) (0.590) (-4.697) 0.000 0.000
CPI 0.077 -0.405*** 0.135 -0.237** 0.222 0.095

(0.629) (-3.312) (0.851) (-2.221) 0.006 0.005
3-m t-bill -0.095 -0.076 0.193** -0.119*** 0.142 0.138

(-0.874) (-0.776) (2.287) (-2.734) 0.000 0.036
6-m t-bill -0.092 -0.080 0.190** -0.134*** 0.161 0.154

(-0.860) (-0.843) (2.434) (-3.125) 0.000 0.017
1-yr t-bond -0.058 -0.081 0.169** -0.140*** 0.152 0.147

(-0.498) (-0.791) (1.983) (-2.998) 0.000 0.029
5-yr t-bond 0.097 -0.075 0.049 -0.041 0.033 0.045

(0.675) (-0.657) (0.502) (-0.457) 0.013 0.852

This table reports the results of predictive regressions of 6- and 12-month growth (or change) in money, credit and
yield variables. Details about the variables can be found in Table C.1 of Appendix C. The sample period is 1996:01-
2012:12. The predictive model considered is augmented with forward skewness coefficients. Individual coefficient
results regarding the constant term, term spread and forward variances have been omitted for brevity. Adj. R2

and Adj. R̄2 denote the adjusted R2 with and without forward skewness coefficients respectively. Significance tests
are based on the covariance matrix suggested by Hodrick (1992) with lag length equal to the forecasting horizon.
Individual coefficient t-statistics can be found in parentheses. ***, ** and * denote significance at 1%, 5% and
10% level respectively. P-values of Wald tests of joint significance for forward variances and forward skewness
coefficients are reported at the last two columns.
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Chapter 4. Forward Skewness and its Information Content

Figure 4.1: Forward variances and skewness coefficients

This figure plots the monthly time series of the forward S&P 500 index moments for the period

1996:01-2012:12. The left panels show forward variances while the right panels show forward

skewness coefficients.
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Figure 4.2: Changes in adjusted R2 across forecasting horizon for real activity vari-
ables

This figure plots the change in adjusted R2 across horizons when forward skewness coefficients are

included into the predictive model of real activity variables. Details about the variables can be

found in Table C.1 of Appendix C.
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Figure 4.3: Changes in adjusted R2 across forecasting horizon for money, credit and
treasury yield variables

This figure plots the change in adjusted R2 across horizons when forward skewness coefficients are

included into the predictive model of money, credit and treasury yield variables. Details about the

variables can be found in Table C.1 of Appendix C.
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Figure 4.4: Changes in adjustedR2 across forecasting horizon for excess stock market
returns

This figure plots the change in adjusted R2 across horizons when forward skewness coefficients are

included into the predictive model of stock market excess returns.
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Figure 4.5: Changes in adjusted R2 across forecasting horizon for risk and uncer-
tainty variables

This figure plots the change in adjusted R2 across horizons when forward skewness coefficients

are included into the predictive model of systemic risk, tail risk, equity uncertainty and economic

policy uncertainty.
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Chapter 5

Dispersion in Options Traders’
Expectations and Return
Predictability

5.1 Introduction

A growing body of studies has shown that various measures of dispersion in expec-

tations can provide significant stock return predictability at both an individual and

an aggregate level. There are two main strands in this literature. A first stream of

papers assumes a heterogeneous investors framework and uses dispersion to proxy

for the level of disagreement among market participants (e.g. Diether, Malloy and

Scherbina, 2002; Yu, 2011; Jiang and Sun, 2014). Disagreement can affect asset

returns either due to the existence of trading frictions in the market or by inducing

investors to engage into risk-sharing acts that affect asset prices in equilibrium. A

second strand of the literature assumes a homogeneous investors framework and uses

dispersion to proxy for the level of ambiguity in the market (e.g. Anderson, Ghysels

and Juergens, 2009; Drechsler, 2013). Ambiguity can affect asset returns due to the

fact that naturally investors exhibit aversion to events with unknown probability

distributions.

In this chapter, we explore the information content of the dispersion in options

traders’ expectations for future market excess returns. In particular, since an option

constitutes a direct bet on the future price of the underlying asset, the trades in

options of different strike prices can be interpreted as the outcomes of different ex-
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pected returns. Motivated by the above simple observation we model the dispersion

in options traders’ expectations via the dispersion in the volume-weighted strike

prices of equity index option contracts.

Compared to prior studies that develop dispersion in beliefs measures based on

analysts’ forecasts or mutual fund and individual investor portfolio holdings,1 the

dispersion in options traders’ expectations exhibits several advantageous character-

istics. First, it stems from all the trades that take place in a highly liquid options

market, thus capturing all the expectations that are considered probable enough

to trigger a trade.2 In contrast, analysts’ forecasts constitute only a limited set of

opinions,3 and have been found to be affected by agency issues between firms and

investment banks and to be prone to analysts’ behavioral biases (Dechow, Hutton

and Sloan, 2000; Daniel, Hirshleifer and Teoh, 2002; Cen, Hilary and Wei, 2013).

Second, it is directly related to expected returns, while analysts’ predictions refer

to alternative economic indicators such as corporate earnings and hence supplemen-

tary modeling assumptions are needed to derive expectations about returns. Third,

unlike dispersion measures constructed from analysts’ forecasts or mutual fund hold-

ings data, it can be estimated even on a higher frequency than monthly or quarterly,

thus providing a much more realistic picture of the evolution of dispersion in ex-

pectations across time. Moreover, the Chicago Board Options Exchange (CBOE)

provides freely on its website the intraday trading activity of option contracts, thus

making it easy for investors to use the dispersion in options traders’ beliefs mea-

sure for investment decisions. Fourth, it can equally accommodate optimistic and

pessimistic beliefs since it is hardly influenced by the short-sale constraints that are

present in the equity market and affect both individual and institutional investor

1Diether, Malloy and Scherbina, 2002; Park, 2005; Anderson, Ghysels and Juergens, 2005, 2009;
Yu, 2011 and Buraschi, Trojani and Vedolin, 2014 among others utilize the dispersion in analysts’
forecasts, while Chen, Hong and Stein, 2002; Goetzmann and Massa, 2005 and Jiang and Sun,
2014 create dispersion measures from mutual fund and individual investor portfolio holdings.

2The available range of strike prices for index options is determined by the underlying index
fluctuations and the customer requests. CBOE Rule 24.9.04 specifies that typically strike prices
for index options should be within 30% of the current index value, but even more extreme strike
prices are permitted provided there is demonstrated customer demand.

3For example, the average number of forecasters in Anderson, Ghysels and Juergens (2009) is
36.
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portfolio holdings.4 Finally, it can explicitly distinguish between different levels of

positive and negative expectations, while this is not straightforward in the case of

dispersion measures derived from investors’ positions in the equity market.

Our results establish a significant and robust negative relationship between the

dispersion in options traders’ beliefs and future market returns. This result allows

for a dual interpretation: If the dispersion in options trading volume across strikes

proxies for the level of disagreement in the underlying asset market, then this finding

is in line with the models of Miller (1977) and Scheinkman and Xiong (2003), who

show that in the presence of short-sale constraints asset prices reflect only the views

of the most optimistic investors since pessimistic investors sit out of the market.

Therefore, higher disagreement is accompanied by higher asset prices and lower

subsequent returns. In the context of the aggregate market, the above limits-to-

arbitrage explanation can be supported by the empirical findings of D’Avolio (2002)

and Lamont and Stein (2004) who show that only a very limited fraction of the total

stocks is actually sold short.

Alternatively, if we consider a framework wherein the underlying asset market

participants have homogeneous beliefs and update their views by observing - to

some extent - the trading activity in the options market,5 then the dispersion in

options trading volume across strikes can be regarded as a proxy for the represen-

tative investor’s ambiguity about the true return generating model. In this respect,

the range of strike prices with traded options can be interpreted as the set of all

alternative models considered plausible, while the proportion of trading volume at-

tributed to each strike price can be regarded as the probability attached to each

model. This framework is intuitive since expected market returns are driven by

aggregate macroeconomic factors that are easily observable and therefore the like-

lihood that different expectations - and hence trades - are induced by information

asymmetry is rather low. In such a case, the documented negative relation is in line

4Almazan, Brown, Carlson and Chapman (2004) provide evidence showing that approximately
only 3% of all mutual funds implement short-selling.

5In fact, option-implied sentiment indicators such as the put-call trading volume ratio are widely
used by investors for investment allocation decisions.
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with the recursive smooth ambiguity model of Hayashi and Miao (2011) and Ju and

Miao (2012) in case of a preference for consumption smoothing over time, i.e. an

elasticity of intertemporal substitution (EIS) lower than one. In particular, in this

setting higher ambiguity increases the pricing kernel but also increases the demand

for the risky asset since investors are willing to substitute current consumption with

increased future consumption. This positive covariance between the pricing kernel

and the risky asset return leads to a decreased equity premium.

The empirical results show that at the 1-month horizon, the suggested measure of

dispersion in expectations is a strong predictor of future excess market returns under

various model specifications (univariate and multivariate). Moreover, it outperforms

in terms of predictive power all other predictors examined in prior literature apart

from the variance risk premium (VRP), which explains a higher proportion of the

variation in future returns. In addition, it offers additional predictability when com-

bined with VRP in the same forecasting model, thus showing that the two variables

have different information content and can be used complementarily for predicting

future market returns.6 The results from long-horizon regression analysis show that

our dispersion in beliefs measure remains significant at all horizons and for horizons

of 12 and 24 months ahead exhibits an adjusted R2 higher than 10% outperforming

the majority of the alternative predictors. This result is remarkable because unlike

the other successful at long horizons predictors, the dispersion measure exhibits a

relatively low persistence (about 0.50) hence alleviating potential concerns regarding

spurious predictability.

The results of out-of-sample predictive analysis reveal that the dispersion of

options traders’ beliefs has significantly higher forecasting power than the historical

mean and it outperforms all other predictive variables apart from VRP. Following

6Compared to the VRP, which has emerged as the primary option-implied return predictor, the
dispersion in options traders’ expectations is conceptually different. First, it is not extracted from
option prices and therefore it is not derived from the risk-neutral distribution. Second, while the
level of trading volume could potentially have an effect on option prices and subsequently on VRP
in accordance with the limits to arbitrage hypothesis (Bollen and Whaley, 2004), high trading
volume is not necessarily associated with high dispersion across different moneyness categories.
Therefore, the market forces that influence VRP do not have an apparent effect on the dispersion
in options trading volume across strike prices. In fact, the empirical analysis suggests that the
correlation between the two measures is close to zero.
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Campbell and Thompson (2008), imposing a constraint of positive forecasted equity

premia leads to further improvement of the out-of-sample predictability of dispersion

in beliefs for the excess market return.

The results are also economically significant since an active trading strategy

based on the out-of-sample predictive power of the proposed dispersion in expecta-

tions measure offers increased utility to a mean-variance investor that would other-

wise follow a passive buy-hold strategy. Moreover, in terms of economic significance

dispersion in expectations outperforms almost all alternative predictors and when

combined with the VRP it improves the performance of the trading strategy. There-

fore, it is confirmed again that the dispersion of options traders’ opinions and the

VRP act as complementary variables and their joint use for investment decisions can

prove very beneficial to an active investor. The performance of rotation strategies

that rely on the out-of-sample predictive power of the dispersion in beliefs measure

for several equity portfolio excess returns reveal that its information content is eco-

nomically important not only for the aggregate market but also for the majority of

the portfolios sorted on different stock characteristics.

Finally, we compare the dispersion in options trading volume across strike prices

with other popular option-implied variables in order to alleviate potential concerns

about the information embedded in our measure. More specifically, the alternative

option-implied variables include the slope of the implied volatility smirk, the risk-

neutral variance, skewness and kurtosis, and the out-of-the-money (OTM) puts to

the at-the-money (ATM) calls open interest ratio proxying for investors’ hedging

pressure. Higher dispersion in options traders’ beliefs is associated with higher

variance, more negative skewness, higher kurtosis, more negatively sloped volatility

smirk, and less hedging pressure. However, the highest correlation coefficient, which

is the one between our dispersion in expectations variable and risk-neutral variance,

is only 0.29 revealing that the suggested measure does not proxy for any type of

variance or tail risk and is not driven by the well-known hedging demand for OTM

puts. Bivariate and multivariate regression analysis confirms that in the presence of
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the alternative option-implied measures, the dispersion in options trading volume

across strikes remains highly significant in forecasting subsequent market returns at

all horizons.

The remainder of the chapter is structured as follows. Section 5.2 describes

the data and the construction of the main variables used in the study. Section

5.3 provides the empirical evidence from in-sample regression analysis. Section 5.4

discusses the results from out-of-sample regression analysis. Section 5.5 presents the

economic significance of the out-of-sample empirical evidence. Section 5.6 presents

the comparison between the dispersion in options trading volume and other option-

related variables. Finally, Section 5.7 concludes.

5.2 Variables Construction and Data

This section first describes the construction of our dispersion in expectations mea-

sure, then discusses the alternative predictors used in the study and finally provides

some summary statistics.

5.2.1 Dispersion in options traders’ beliefs

We construct a measure of dispersion in options traders’ expectations by using

trading volume information across strike prices. Since a trade on an option contract

is a direct bet on the future asset price, the strike price at which the option is traded

reveals a specific expectation about the asset return. For example, a trade on a high

strike price option is indicative of an optimistic view about the future asset return,

while a trade on a low strike price option is indicative of a pessimistic view about

the future asset return. Motivated by this observation, we model the dispersion of

expected market returns through the dispersion in the volume-weighted strike prices

of option contracts on the Standard and Poors (S&P) 500 index. More specifically,

we construct the following two measures that proxy for the dispersion of the expected
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returns distribution:

DISP =
K∑
j=1

wj

∣∣∣∣∣Xj −
K∑
j=1

wjXj

∣∣∣∣∣ , (5.1)

DISP ∗ =

√√√√ K∑
j=1

wj

(
Xj −

K∑
j=1

wjXj

)2

, (5.2)

where wj is the proportion of the total trading volume attributed to the jth strike

priceXj. DISP corresponds to the mean absolute deviation of the (volume-weighted)

strike prices, while DISP* corresponds to the respective standard deviation. The

two measures have the same information content but DISP* is always higher or

equal to DISP due to Jensen’s inequality.

To construct the above variables, we use S&P 500 index call and put options’

volume data. Our sample period is 1996:01 to 2012:12 and for each month we

estimate DISP and DISP* using options on the last trading day of the month with

moneyness below 0.975 or above 1.025 and maturities between 10 and 360 calendar

days.7 We discard near-the-money options since they are possibly traded as part

of straddles and strangles and therefore reflect investors’ expectations about future

market volatility and not returns (Ni, Pan and Poteshman, 2008). However, keeping

such options in our sample provides results of very similar statistical significance

with slightly lower coefficients of determination for long horizons. We consider

options with maturities up to one year ahead since we want to capture investors’

expectations regarding both short-term and long-term market returns. Consistent

with this intuition, unreported results show that using a DISP (or DISP*) measure

created solely by short-maturity options exhibits similar predictability for short

horizons but has limited power for long horizons.

The dispersion in options traders’ expectations can have two interpretations.

First, it can be considered a proxy of the disagreement among participants in the

underlying asset market similarly to Park (2005) and Yu (2011). Such a disagree-

ment can have an impact on future asset returns either due to the existence of

7Our sample is restricted to the 1996:01 - 2012:12 period because in the pre-1996 period the
relatively low liquidity of options is accompanied by very little variation in DISP and DISP*.
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short-sale constraints (Miller, 1977; Scheinkman and Xiong, 2003) or due to risk-

sharing effects that impact asset prices in equilibrium (Basak, 2000, 2005; Buraschi

and Jiltsov, 2006). Second, it can be regarded as a measure of ambiguity, simi-

larly to Anderson, Ghysels and Juergens (2009) and Drechsler (2013). In particular,

considering a framework wherein participants in the underlying asset market have

homogeneous beliefs which are driven at least partly by the trading activity in the

options market, the dispersion in options traders’ expectations can serve as proxy

for the set of alternative return generating models that a representative investor is

exposed to. In this case, a high (low) dispersion in options traders’ opinions implies

that it is highly likely that the participants in the underlying asset market exhibit

high (low) ambiguity about the true return generating model. Since investors on

average exhibit ambiguity aversion, i.e. they are averse to events with unknown

probability distributions of all possible outcomes (Ellsberg, 1961), it is apparent

that market discount rates should reflect investors’ aversion not only to risk but

also to ambiguity (Epstein and Wang, 1994; Chen and Epstein, 2002; Ju and Miao,

2012; Drechsler, 2013).

5.2.2 Other variables

We compare the predictive ability of the proposed dispersion in expectations mea-

sures with a set of variables that have been found in the literature to predict stock

market returns. The main alternative predictor is the variance risk premium (VRP)

which was introduced by Bollerslev, Tauchen and Zhou (2009) and has been the key

variable in a series of recent studies that examine its predictive power for stock mar-

ket returns (Drechsler and Yaron, 2011; Bollerslev, Marrone, Xu and Zhou, 2012;

Zhou, 2012) or the cross-section of stock returns (Bali and Hovakimian, 2009 and

Han and Zhou, 2011). VRP is defined as the difference between the expected 1-

month ahead stock return variance under the risk neutral measure and the expected

1-month ahead variance under the physical measure.8 When investors are more

8Following Bollerslev, Tauchen and Zhou (2009), we use the past 1-month realized variance as
the expected 1-month ahead variance under the physical measure. Our results remain robust to
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averse to future variance risk, they are willing to pay more in order to hedge against

variance and therefore increase the VRP. Monthly VRP data are obtained from Hao

Zhou’s website.9 Unlike VRP, the dispersion in options traders’ expectations does

not depend on the risk-neutral distribution extracted from option prices. Moreover,

while an increased level of trading volume could be potentially associated with high

buying pressure that would increase risk-neutral variance due to limits to arbitrage

(Bollen and Whaley, 2004), there exists no obvious link between the dispersion in

trading volume across strike prices and the resulting risk-neutral variance.

The rest of the predictor variables include the tail risk (TAIL, Kelly and Jiang,

2014), the aggregate dividend-price ratio (d-p, Fama and French, 1988 and Camp-

bell and Shiller, 1988a,b), the market dividend-payout ratio (d-e, Campbell and

Shiller, 1988a and Lamont, 1998), the yield gap (YG, Maio, 2013), the yield term

spread (TERM, Campbell, 1987 and Fama and French, 1989), the default spread

(DEF, Keim and Stambaugh, 1986 and Fama and French, 1989), the relative short-

term risk free rate (RREL, Campbell, 1991) and the realized stock market vari-

ance (SVAR, Guo, 2006).10 TAIL captures the probability of extreme negative

market returns and is constructed by applying the Hill’s (1975) estimator to the

whole NYSE/AMEX/NASDAQ cross-section (share codes 10 and 11) of daily re-

turns within a given month. d-p is the difference between the log aggregate annual

dividends and the log level of the S&P 500 index, while d-e is the difference between

the log aggregate annual dividends and the log aggregate annual earnings. YG

is the difference between the aggregate earnings-price ratio and the 10-year bond

yield, both in levels. TERM is the difference between the 10-year bond yield and the

1-year bond yield, while DEF is the difference between BAA and AAA corporate

bonds yields from Moody’s. Finally, RREL is the difference between the 3-month

t-bill rate and its moving average over the preceding twelve months and SVAR is

the monthly variance of the S&P 500 index. Data on monthly prices, dividends,

the choice of the VRP proxy.
9https://sites.google.com/site/haozhouspersonalhomepage

10We have also considered as alternative predictors the consumption-wealth ratio of Lettau and
Ludvigson (2001) and the stock market illiquidity of Amihud (2002). The respective results are
reported in Tables D.1 - D.3 of Appendix D.
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and earnings are obtained from Robert Shiller’s website.11 All interest rate data are

obtained from the FRED database of the Federal Reserve Bank of St. Louis. SVAR

is downloaded from Amit Goyal’s website.12

As a proxy for stock market returns we use the value-weighted index from the

Chicago Center for Research in Security Prices (CRSP). In order to create a series

of monthly excess stock market returns we subtract from the monthly log-return the

(log of) the 1-month Treasury bill rate obtained from Kenneth French’s website.13

Longer horizons continuously compounded excess market returns are created by

taking cumulative sums of monthly excess market returns.

5.2.3 Summary statistics

Figure 5.1 plots DISP along with VIX, a popular investor fear indicator captur-

ing market forward-looking variance risk.14 Both series are standardized for easier

comparison. While the two series exhibit some common variation (the correlation

coefficient is 29%) they tend to peak at different times. For example, unlike VIX,

DISP is increasing but not very high during the 1997 Asian crisis and the 1998 Rus-

sian crisis, showing that there was no much divergence of opinions about the state

of the economy during those periods. On the contrary, it exhibits several spikes

during the period of the dot-com bubble showing that there were concerns about

the very high stock market prices driven by the technology sector. In particular,

DISP peaks in 2000:03 when NASDAQ reaches its all-time record high and the U.S.

Federal Reserve increases the fed funds rate for a second time within two months,

in 2000:09 when NASDAQ slightly recovers before it finally bursts, and finally in

2001:01 when the fed funds rate is decreased twice within one month just before the

recession period begins. DISP also peaks in 2001:09 due to the 9/11 terrorist attack,

in 2005:01 possibly due to the first concerns expressed by Robert Shiller regarding

11http://www.econ.yale.edu/~shiller/data.htm
12http://www.hec.unil.ch/agoyal
13http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
14The respective graph for DISP* is very similar and thus omitted.
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the existence of a bubble in the US housing market15 and in 2007:11 just before the

beginning of the recent recession period. After the collapse of Lehman Brothers in

2008:09 it increases but not as extremely as VIX showing that given the apparently

high risk in the market, there was no extreme dispersion in options traders’ expecta-

tions. Finally, DISP substantially increases during the latest period of the European

sovereign debt crisis and takes its all-time high value in 2012:03 after the Eurogroup

agreement regarding the second bailout package for Greece, following the concerns

about the success of the Private Sector Involvement (PSI) program.

Table 5.1 Panel A reports descriptive statistics about the dispersion in options

traders’ expectations measures and the alternative predictive variables, while Panel

B presents the respective correlation coefficients. Both dispersion in expectations

measures exhibit very similar statistics with slightly positive skewness and excess

kurtosis. Unlike the majority of the alternative predictors, they are only moder-

ately persistent with autocorrelation coefficients of 0.488 and 0.505 for DISP and

DISP* accordingly. This mitigates the problem of potentially spurious regression

results caused by highly persistent regressors (see Valkanov, 2003; Torous, Valkanov,

and Yan, 2004; Boudoukh, Richardson, and Whitelaw, 2008). VRP has also a low

autocorrelation coefficient of 0.210 and exhibits negative skewness and very large

kurtosis. DISP and DISP* are very highly correlated (0.96) and close to uncorre-

lated with VRP (-0.03 and -0.07 for DISP and DISP* respectively) showing that

the dispersion in options traders’ beliefs contains different information from VRP.

Finally, dispersion in beliefs is negatively correlated with TAIL and to a lesser ex-

tent with d-p and RREL, while being weakly positively correlated with YG, TERM,

DEF, and SVAR. The respective correlations with d-e are very close to zero. Over-

all, both measures of dispersion in options traders’ beliefs are not highly correlated

with any of the alternative predictors, the biggest correlation occurring with TAIL.

15In anticipation of the publication of the second edition of Robert Shiller’s “Irrational Exuber-
ance”, on January 25th 2005 CNN Money publishes a feature on the possibility of a housing bubble
in the US market, accompanied by an interview of Robert Shiller expressing his concerns.
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5.3 In-Sample Predictability

In order to gauge the predictive power of our proposed dispersion in expectations

measures, we run multiple-horizon regressions of excess stock market returns of the

following form:

ret+h,h = αh + β
′

hzt + εt+h,h, (5.3)

where ret+h,h =
(

12
h

)
[ret+1 + ret+2 + ...+ ret+h] is the annualized h-month excess

return of the CRSP value-weighted index and zt is the vector of predictors. The re-

gression analysis covers the period 1996:01-2012:12 and for each forecasting horizon

we lose h observations. Under the null of no predictability the overlapping nature

of the data imposes an MA (h− 1) structure to the error term εt+h,h process. To

overcome this problem we base our statistical inference on both Newey and West

(1987) and Hodrick (1992) standard errors with lag length equal to the forecasting

horizon. In general, the Hodrick (1992) standard errors tend to be more conserva-

tive, especially in long horizons when the null of no predictability is true (Ang and

Bekaert, 2007) but have lower statistical power when the null is false (Bollerslev,

Marrone, Xu and Zhou, 2012). The beta coefficients reported in the subsequent

tables have been scaled and can be interpreted as the percentage annualized excess

market returns caused by a one standard deviation increase in each regressor.

5.3.1 One-month ahead predictability

Table 5.2, Panel A provides the results for 1-month ahead univariate predictive

regressions. The results show that the two dispersion in options traders’ expectations

measures are strong predictors of stock market excess returns as the null hypothesis

of no predictability is rejected at 5% level based on both Newey-West and Hodrick

standard errors. The slope estimates are negative and economically significant in

both cases: a one standard deviation increase in DISP predicts a negative annualized

market excess return of 9.68%, while a one standard deviation increase in DISP*

leads to a negative annualized market excess return of 9.20%. The adjusted R2,
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denoted by R̃2, is 2.23% and 1.97% for DISP and DISP* respectively. Turning

to the rest of the predictor variables, VRP has a positive slope (16.09), which is

significant at the 1% and 5% levels based on Newey-West and Hodrick standard

errors, respectively. The corresponding forecasting ratio is relatively large (7.04%).

None of the other variables is statistically significant at the 5% level (there is only

marginal significance for both RREL and SVAR), a finding which is in line with

Goyal and Welch’s (2008) conclusion that most of the traditional predictors have

performed poorly over the last decades. Moreover, the R̃2s of most of the alternative

predictors are either negative or below 1% similar to Goyal and Welch (2008) and

Campbell and Thompson (2008). Again, the exceptions are RREL and SVAR, which

still deliver lower explanatory ratios than DISP.

Next, we assess the robustness of the significant results for DISP and DISP*

to the presence of other predictive variables by conducting bivariate regressions.

Panel B of Table 5.2 reports the results. The significance of both DISP and DISP*

remains intact in all cases, showing that the information content of the dispersion

in options traders’ beliefs is distinct from that of other variables that have been

used in the literature. It is also interesting to note, that the combination of DISP

(DISP*) with VRP renders both variables strongly significant and increases R̃2

to 9.10% (8.51%), showing that the dispersion in options traders’ beliefs and the

variance risk premium are complementary measures and capture different features of

investors’ attitude. Since our dispersion in expectations measures and VRP appear

to be the only successful predictors during our sample period, as a final robustness

exercise we run trivariate predictive regressions considering combinations of DISP

(or DISP*), VRP, and each of the other variables. Results in Panel C of Table 5.2

show that the dispersion in options trading volume across strike prices and VRP

continue to be significant at either 1% or 5% level in almost all the cases. Moreover,

now YG becomes also strongly significant with a positive predictive slope, in line

with Maio (2013).

Overall, the results in Table 5.2 suggest that in our sample period only the dis-
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persion in options trading volume across strikes and VRP are consistently successful

in predicting excess market returns, and this predictive power is enhanced when they

are combined in the same model.

The negative sign of the predictive slopes for DISP and DISP* shows that higher

dispersion in options traders’ expectations leads to lower future market excess re-

turns. This can be interpreted in two ways. If the dispersion in options trading

volume across strikes proxies for the level of disagreement in the equity market, the

negative sign is in line with the models of Miller (1977) and Scheinkman and Xiong

(2003). In particular, in the presence of short-sale constraints, the price of the as-

set is determined by the valuations of the most optimistic investors as pessimistic

investors have no means to express their negative views and sit out of the market.

Therefore, higher disagreement is associated with higher prices and subsequent lower

returns. The above limits-to-arbitrage argument appears empirically well-founded

as D’Avolio (2002) reports that only 7% of the total short-sale capacity is actually

used and Lamont and Stein (2004) show that during the period 1995-2002 the ratio

of the market value of shares sold short to the total value of shares outstanding was

always below 4%.

If the dispersion in options trading volume across strikes is regarded as a proxy for

the ambiguity of a representative equity market investor, then the negative sign can

be explained in the context of the recursive smooth ambiguity model of Klibanoff,

Marinacci and Mukerji (2005, 2009), Hayashi and Miao (2011) and Ju and Miao

(2012) assuming an EIS lower than one. More specifically, in Ju and Miao’s (2012)

setting periods of high ambiguity are associated with an increased pricing kernel

since investors are concerned about the probability of the true expected growth rate

of the economy being lower than the one considered. If EIS is higher than one,

ambiguity will lower the demand for the risky asset thus leading to a lower price

and current period return. The negative covariance between the pricing kernel and

the risky asset return will increase the equity premium. By contrast, if EIS is lower

than one, ambiguity will increase the demand for hedging purposes thus leading
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to a higher price and current period return. The positive covariance between the

pricing kernel and the risky asset return will therefore decrease the equity premium.

The proper level of the representative investor’s EIS constitutes one of the most

long-lasting debates in the macro-finance literature (see Beeler and Campbell, 2012

and Bansal, Kiku and Yaron, 2012, for recent discussions on the topic).

5.3.2 Long-horizon predictability

Table 5.3 provides the results for 3-, 6-, 12- and 24-month ahead univariate predictive

regressions. Both DISP and DISP* consistently forecast negative excess market

returns and are significant at either 1% or 5% level in all cases apart from the

6-month horizon with Hodrick standard errors when both DISP and DISP* are

significant at 10% level. The slope estimates continue to be economically significant

as a one standard deviation increase in DISP (DISP*) predicts a negative annualized

market excess return in the range of 5.19%-7.39% (5.10%-7.10%). In terms of fit, R̃2

stays between 3% and 4% for 3- and 6- month horizons but increases substantially for

longer horizons and exceeds 10% and 12% for 12- and 24-month horizons respectively.

This last result is of particular importance given the relatively low persistence of the

proposed dispersion in beliefs variables. The only variables that exhibit higher R̃2 at

the 24-month horizon are d-p, d-e, and TERM all of which have an autocorrelation

coefficient higher than 0.98. Therefore, we conclude that DISP and DISP* can

successfully capture divergence of opinions about both short and long horizon market

returns.

Turning to the alternative predictors, VRP remains strongly significant for 3- and

6- month horizons with large R̃2s, yet its predictive power becomes less significant

for longer horizons as in Bollerslev, Tauchen and Zhou (2009), Drechsler and Yaron

(2011) and Bollerslev, Marrone, Xu and Zhou (2012). From the rest of the variables

d-p, d-e, TERM, DEF, and SVAR become significant as the horizon increases with

almost monotonically increasing R̃2s. Moreover, their Newey-West t-statistics are

always considerably higher than the Hodrick t-statistics implying that in many of
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these cases the significance may have arisen spuriously due to the high persistence

of the predictive variables (Ang and Bekaert, 2007).

Since the results in Table 5.3 suggest that only DISP, DISP*, and VRP exhibit a

strong and consistent predictive pattern across all horizons, we proceed by examining

trivariate 3-, 6-, 12- and 24-month ahead regressions considering combinations of

DISP (or DISP*), VRP, and each of the other variables. The results reported in

Table 5.4 suggest that the significance of DISP and DISP* follows the same pattern

as in the univariate regressions. In particular, Panels A and B show that DISP

and DISP* are significant in all the cases for the 3-month horizon and in all but

one case (when dispersion in expectations and VRP are combined with RREL) for

the 6-month horizon. The predictive slopes remain economically significant ranging

from -3.46 to -10.10. In all the models considered, VRP continues to be strongly

significant. Panels C and D show that for 12- and 24-month horizons both DISP

and DISP* are again strongly significant in almost all the cases with economically

significant slopes ranging from -3.15 to -8.56. As in the univariate analysis, the

significance of VRP for 12- and 24-month horizons is weaker.

In summary, the empirical evidence regarding long-horizon predictability con-

firms that the dispersion in options traders’ beliefs embeds important information

about future excess market returns that is not included in any of the other vari-

ables considered. Moreover, a combination of the dispersion in beliefs and VRP can

provide significant long-horizon predictive power for market returns.

5.4 Out-of-Sample Predictability

The results of the previous section provide convincing evidence that the dispersion

in options traders’ beliefs can significantly predict future excess stock market returns

in-sample (IS). In this section, we evaluate the out-of-sample (OS) performance of

our dispersion in beliefs measures following Lettau and Ludvigson (2001), Goyal

and Welch (2003, 2008), Guo (2006), and Campbell and Thompson (2008) among

others. The purpose of this exercise is to assess the usefulness of the dispersion in
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options trading volume across strike prices for an investor who has access only to

real time data when making her forecasts and also to gauge regression parameter

instability over time. Following the literature we mainly rely on OS regressions

of 1-month horizon but for robustness purposes we also report results for 3- and 6-

month horizons, keeping in mind the relatively low statistical power of OS regression

analysis compared to IS analysis (Inoue and Kilian, 2004).

As in Goyal and Welch (2008), Campbell and Thompson (2008), Rapach, Strauss

and Zhou (2010), and Ferreira and Santa-Clara (2011) we estimate the model in

equation (5.3) recursively using the first s = s0...T − h observations and based on

the estimated parameters we form our OS forecasts for the expected excess market

return using the concurrent values of the predictor variables:

r̂es+h,h = α̂s,h + β̂
′

s,hzs. (5.4)

The initial estimation period is from 1996:01-1999:12 and the first prediction is made

for 2000:01. This way we create a series of TOS OS forecasts that is compared to a

series of recursively estimated historical averages, which correspond to OS forecasts

of a restricted model with only a constant as a regressor. We employ four measures to

assess the OS predictability performance of our dispersion in expectations measures.

The first measure is the OS R2 denoted by R2
OS which takes the form:

R2
OS = 1− MSEU

MSER
, (5.5)

where MSEU = 1
TOS

∑T−h
t=s (ret+h,h − r̂et+h,h)2 is the mean square error of the unre-

stricted model and MSER = 1
TOS

∑T−h
t=s (ret+h,h − r̃et+h,h)2 is the mean square error

of the restricted model with r̃et+h,h being the recursively estimated historical av-

erage. R2
OS takes positive values whenever the unrestricted model outperforms the

restricted model in terms of predictive power (i.e. MSEU < MSER).
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The second measure of OS performance is the F-test from McCracken (2007):

MSE − F = (TOS − h+ 1)
MSER −MSEU

MSEU
, (5.6)

which tests whether MSEU is statistically significantly lower than MSER.

The third OS performance test is the encompassing test of Clark and McCracken

(2001):

ENC −NEW =
(TOS − h+ 1)

TOS∑T−h
t=s

[
(ret+h,h − r̂et+h,h)2 − (ret+h,h − r̂et+h,h) (ret+h,h − r̃et+h,h)

]
MSEU

, (5.7)

which examines whether the restricted model encompasses the unrestricted model,

meaning that the unrestricted model does not improve the forecasting ability of the

restricted model. Statistical inference for the MSE−F and the ENC−NEW tests

relies on the critical values derived by McCracken (2007) and Clark and McCracken

(2001) using Monte Carlo simulations.

The final measure of OS forecasting performance is the constrained OS R2 de-

noted by R2
C−OS suggested by Campbell and Thompson (2008). This measure is the

same with R2
OS apart from the fact that it sets the OS forecasts of the unrestricted

model equal to zero whenever they take negative values. Therefore, an investor’s real

time equity premium prediction becomes in accordance with standard asset pricing

theory.

Table 5.5 presents the results for 1-, 3- and 6-month horizon OS predictability.

In the case of 1-month horizon, DISP and DISP* exhibit positive R2
OSs of 1.70% and

1.55% respectively. For both measures, the MSE−F test rejects at 5% level the null

hypothesis that the mean square error of the unrestricted model is equal to the mean

square error of the restricted model while the ENC−NEW test rejects at 5% level

the null hypothesis that the restricted model encompasses the unrestricted model.

When we impose the restriction of positive expected equity premium the results are

improved for both dispersion in beliefs measures, with R2
C−OS becoming 2.16% for
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DISP and 2.44% for DISP*. Turning to the rest of the predictors, only VRP provides

a positive R2
OS of 7.96%. Moreover, the MSE−F and ENC−NEW tests strongly

reject the respective null hypotheses at 5% level. Since univariate analysis suggests

that only the dispersion in options trading volume across strikes and VRP have

significant OS forecasting performance, we proceed by combining the two dispersion

in options traders’ beliefs measures with VRP. The results show that the bivariate

models increase the R2
OS, which becomes 9.06% in the regression including DISP

and VRP and 8.56% in the case of DISP* and VRP confirming that the information

content of the dispersion in options traders’ expectations is different from that of

VRP. Moreover, the MSE − F and ENC − NEW tests reject the respective null

hypotheses even more decisively.

The results for the 3-month horizon are similar to those for the 1-month horizon

but stronger for both dispersion in beliefs measures and the VRP. This is in line

with the IS regression results presented in the previous section. In particular, DISP

(DISP*) has an R2
OS of 3.37% (3.04%) while VRP has an R2

OS of 12.47%. The

MSE − F and the ENC −NEW tests prodive even stronger evidence against the

respective null hypotheses. As in the 1-month horizon analysis, apart from DISP,

DISP* and VRP, none of the other predictors exhibit positive R2
OSs. Furthermore,

the bivariate model of the dispersion in options traders’ expectations with VRP is

even more successful in OS return predictability. The results for the 6-month horizon

are in the same vein with the evidence from the other horizons. In particular, the

R2
OSs of DISP and DISP* remain positive while the MSE−F and the ENC−NEW

tests still reject the respective null hypotheses at 5% level. Moreover, except for

VRP none of the other alternative predictors provide a positive R2
OS, while the

combination of DISP (or DISP*) with VRP offers even stronger OS predictability.

Overall, the empirical evidence regarding OS return predictability suggests that

only the dispersion in options traders’ expectations and VRP are successful predic-

tors at short horizons and that their predictive power is enhanced when they are

combined in one bivariate model.
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5.5 Economic Significance

In this section, we evaluate the economic significance of the information embedded in

the dispersion in options traders’ beliefs. In particular, following Goyal and Santa-

Clara (2003), Campbell and Thompson (2008), Ferreira and Santa-Clara (2011),

Rapach, Strauss, Tu and Zhou (2011) and Maio (2013, 2014) we create market-

timing and portfolio rotation strategies that rely on the OS forecasting power of the

suggested dispersion in expectations measures and the alternative predictors and

evaluate their performance.

5.5.1 Market-timing strategy

We assess the economic significance of the dispersion in options traders’ beliefs

predictability by creating an active trading strategy that is based on its OS predictive

power for 1-month ahead stock market excess returns. In particular, we follow the

procedure described in the previous section and estimate a series of OS excess market

return forecasts.16 Then we consider two scenarios: one where short-sales are not

allowed and one where short-sales are allowed. More specifically, in the first scenario

we have:

a = 1 if r̂et+1 ≥ 0

a = 0 if r̂et+1 < 0, (5.8)

where a represents the portfolio weight attributed to the stock market index. In the

second scenario we have:

a = 1.5 if r̂et+1 ≥ 0

a = −0.5 if r̂et+1 < 0. (5.9)

16In this section, the term return refers to arithmetic return and not to logarithmic return.
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The realized return from the active trading strategy can be represented by:

Rp,t+1 = aRm,t+1 + (1− a)Rf,t+1, (5.10)

where Rm,t+1 denotes the arithmetic market return and Rf,t+1 denotes the return of

the riskless asset. Therefore, following this procedure we create a series of realized

portfolio returns based on the OS forecasting power of each forecasting variable and

we compare the results with those from a buy-hold strategy. This strategy invests

only in the market in case of the first scenario and allocates 150% to the market

and -50% to the risk-free asset in case of the second scenario.

For each trading strategy, we estimate the mean portfolio return, the standard

deviation, and its Sharpe ratio. Moreover, since the Sharpe ratio weights equally

the mean and volatility of the portfolio returns, we follow Campbell and Thompson

(2008), Ferreira and Santa-Clara (2011), and Maio (2014) and additionally create a

certainty equivalent return in excess of the buy-hold strategy (∆CER), assuming a

mean-variance investor with risk aversion coefficient equal to three. ∆CER repre-

sents the change in investor’s utility resulting from her choice to follow the active

instead of the passive trading strategy.17 As an additional performance measure

we also estimate the maximum drawdown (MDD), which represents the maximum

loss than an investor can incur if she enters the strategy at any-time during its im-

plementation period. All measures apart from the MDD are in annualized terms.

Finally, we also report the percentage of months that each active strategy goes long

the stock market index.

The performance results from the strategies are presented in Table 5.6. When

short sales are not allowed, the strategy associated with DISP exhibits a mean return

of 5.46% while the one associated with DISP* has a relatively low mean return of

17∆CER is more formally defined as:

∆CER = E (Rp,t+1)− E
(
R̄p,t+1

)
+
γ

2

[
V ar

(
R̄p,t+1

)
− V ar (Rp,t+1)

]
, (5.11)

where γ is the risk aversion coefficient, Rp,t+1 is the portfolio return of the market-timing strategy
and R̄p,t+1 is the portfolio return of the buy-hold strategy.
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2.62%. Both strategies, however, exhibit remarkably low volatilities of 9.41% and

9.59% for DISP and DISP* respectively. This leads to annualized Sharpe ratios of

0.58 and 0.27 accordingly, both of which outperform the Sharpe ratio of the buy-hold

strategy (0.23). Furthermore, the ∆CER of the strategy based on DISP is 4.46%

per year and that of the strategy based on DISP* is 1.58%, thus showing that the

utility provided by the active strategies related to the dispersion in options traders’

beliefs is higher than the utility of the buy-hold strategy. In terms of ∆CER, DISP

is only outperformed by VRP, while DISP* is also outperformed by d-e and DEF.

This is because the dispersion in options traders’ beliefs (and especially DISP*)

goes long the risky asset in about only half of the periods thereby avoiding a lot

of negative market return realizations, but also ignoring a few large positive spikes.

In contrast, both d-e and DEF, despite their poor OS performance at the 1-month

horizon, tend to invest much more in the market (in 82.69% and 77.56% of the

months respectively), but also go long the riskless rate during the turbulent periods

after the dot-com bubble and the Lehman Brothers collapse. Not surprisingly, the

strategies based on DISP, DISP*, VRP, d-e and, DEF strategies also exhibit very low

MDDs, with the one related to DISP having the lowest cumulative loss (-14.09%).

The most successful variable in terms of ∆CER (4.80%) is VRP. However, when

we combine d-e and DEF in bivariate models with VRP the performance of the

respective trading strategies deteriorates in comparison to the trading strategy based

solely on VRP. The ∆CER in the bivariate model with d-e becomes 4.61%, while the

∆CER when we include DEF is only 1.87%. In contrast, when we combine either

DISP or DISP* in bivariate models with VRP the performance of the respective

trading strategies improves substantially in comparison to the strategy based solely

on VRP. In particular, the ∆CER of the strategy related to the combination of DISP

and VRP is 9.37%, while in the case of DISP* and VRP we obtain 7.97%. These

results show that unlike d-e and DEF, the information content of the dispersion

in options traders’ expectations is significantly beneficial in economic terms for an

investor who already uses the VRP in her investment decisions.
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The pattern in the performance of the different trading strategies is very similar

when short-sales are allowed, with the main difference being that extreme realiza-

tions (highly positive and highly negative market returns) have now a larger impact

on the portfolio returns. The strategy associated with DISP strongly outperforms

the passive strategy in terms of both Sharpe ratio and ∆CER, while the strategy

associated with DISP* underperforms the buy-hold strategy in terms of Sharpe ratio

but clearly outperforms it in terms of ∆CER. As in the first scenario, the ∆CER

of the strategy based on DISP (8.93%) is only outperformed by the strategy associ-

ated with VRP (9.63%), while the ∆CER of the strategy based on DISP* (3.15%) is

also outperformed by the strategies associated with d-e and DEF (8.83% and 4.66%

respectively). However, when the trading strategies rely on bivariate models with

VRP as the common variable, the strategies based on combinations of VRP and

either d-e or DEF offer a lower ∆CER than those based only on VRP (9.24% and

3.74% accordingly), while the opposite is true for combinations of VRP with either

DISP or DISP* (18.90% and 16.05% accordingly).

In summary, the empirical evidence associated with a market-timing strategy

shows that the OS forecasting ability of the dispersion in options’ traders beliefs

for future market returns is economically significant, especially for an investor who

already considers the information from VRP for her investment decisions.

5.5.2 Portfolio rotation strategies

We further explore the economic importance of the information embedded in the

dispersion in options traders’ expectations by creating rotation strategies based on

its OS predictive power for the 1-month ahead excess returns of portfolios sorted on

different stock characteristics. We first create a series of OS excess portfolio return

forecasts similar to the previous section. Next, if the highest fitted excess return

is positive or equal to zero we allocate 150% to the two portfolios with the highest

excess forecasted returns, whilst if the highest fitted excess return is negative we

allocate 150% to the risk-free rate. The rotation strategies always go short 50%
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the two portfolios with the lowest forecasted excess returns. In essence, an investor

following such a rotation strategy short sells the two portfolios that are expected to

perform worst and invests either in the two portfolios that are expected to perform

best or in the risk-free rate in case none of the portfolios is expected to have a

positive excess return in the following month. Therefore, the realized return of the

portfolio rotation strategy can be represented by:

Rp,t+1 =


0.75RH1,t+1 + 0.75RH2,t+1 − 0.25RL1,t+1 − 0.25RL2,t+1, if r̂eH1,t+1 ≥ 0

1.5Rf,t+1 − 0.25RL1,t+1 − 0.25RL2,t+1, if r̂eH1,t+1 < 0,

(5.12)

where RH1,t+1 and RH2,t+1 (RL1,t+1 and RL2,t+1) stand for the realized arithmetic re-

turns of the portfolios with the highest and second highest (lowest and second lowest)

fitted excess return and r̂eH1,t+1 stands for the highest fitted excess portfolio return.

For the purposes of the rotation strategies, we use decile portfolios sorted on size

(Size), book-market ratio (B/M), momentum (Mom), industry (Industry), long-

term reversal (LT Reversal) and short-term reversal (ST Reversal). Moreover, we

consider a rotation strategy that uses all 60 portfolios simultaneously (Pooled). Data

on portfolio returns are obtained from Kenneth French’s website. The performance

of the rotation strategies is compared to a simple buy-hold strategy that invests

150% in the market and shorts 50% in the risk-free asset. As in the case of the

market-timing strategy, for each rotation strategy we estimate the mean return,

standard deviation, Sharpe ratio, certainty equivalent return in excess of the buy-

hold strategy (∆CER) and maximum drawdown (MDD). Finally, we also report the

percentage of months that each rotation strategy goes long the two highest fitted

excess return portfolios.

The performance results of the rotation strategies associated with DISP and

DISP* are shown in Table 5.7, Panel A. In terms of Sharpe ratio, DISP and DISP*

outperform the buy-hold strategy in the case of Size, LT Reversal, ST Reversal and

Pooled portfolios while DISP also outperforms the buy-hold strategy in the case

of Mom portfolios. The corresponding Sharpe ratio values vary between 0.27 and
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0.54 compared to a ratio of 0.19 associated with the passive strategy. Moreover, in

all but one case (B/M portfolios for DISP*) the ∆CER values are positive, ranging

from 0.54% to 9.54%, showing that the rotation strategies based on the dispersion in

options traders’ beliefs increase the utility of an investor who would otherwise follow

a passive trading strategy. Finally, the MDDs of the rotation strategies are lower

(in absolute value) than the respective buy-hold strategy MDD in all cases, with

values varying between -63.31% and -27.02% compared to a value of -67.86% for the

passive strategy. Panel B of Table 5.7 presents the results of the rotation strategies

associated with the alternative predictors in the case of Pooled portfolios. In terms

of Sharpe ratio only VRP and TERM outperform the 0.19 buy-hold strategy Sharpe

ratio, exhibiting ratios of 0.64 and 0.27 respectively. In terms of ∆CER, apart from

VRP, which offers a large positive ∆CER of 10.74%, none of the other predictors

offers additional utility to a mean-variance investor.

Overall, the empirical results of portfolio rotation strategies show that in the

majority of the cases the OS forecasting ability of the dispersion in options traders’

beliefs for various portfolio excess returns is economically significant. When consid-

ering all portfolio categories simultaneously only our dispersion in beliefs measures

and VRP yield economically significant results.

5.6 Comparison with Option-Implied Measures

The empirical evidence presented in the previous sections suggests that the disper-

sion in options trading volume across strike prices has significant IS and OS predic-

tive power for future market excess returns and its information content is distinct

from and complementary to that of VRP. However, one might still argue that our

dispersion in expectations measures are driven by the well documented “volatility

smirk” anomaly (Rubinstein, 1994, Jackwerth and Rubinstein, 1996), the hedging

demand for OTM puts (Bollen and Whaley, 2004, Gârleanu, Pedersen and Potesh-

man, 2009), or that they just proxy for common variance risk captured by VIX. To

alleviate such concerns, in this section we compare the dispersion in options traders’
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beliefs and its predictive power with a set of popular option-implied variables. The

first variable is the slope of the implied volatility curve measured as the difference

between the (volume-weighted) implied volatility of OTM puts and that of ATM

calls (Slope; Xing, Zhang and Zhao, 2010, Atilgan, Bali and Demirtas, 2014). The

second variable is the ratio of open interest of OTM puts to the open interest of

ATM calls which proxies for hedging pressure in the S&P 500 index options market

(HP; Han, 2008). The last three variables are the second, third, and fourth risk-

neutral moments (VIX, Skewness and Kurtosis; Ang, Hodrick, Xing and Zhang,

2006, Chang, Christoffersen and Jacobs, 2013).18

Panel A of Table 5.8 reports the correlation coefficients between the two proposed

dispersion in beliefs measures and the other option-implied variables. While DISP

(DISP*) displays some common variation with all the other variables, the maximum

(absolute value) correlation is 0.29 (0.25) showing that the information embedded

in the dispersion in options traders’ expectations is unique and is not subsumed by

any other option-implied measure studied in the literature. In general, higher DISP

and DISP* values are related to higher implied volatility, more negative skewness,

higher kurtosis, and a more negatively sloped implied volatility curve. Moreover,

DISP and DISP* are negatively correlated with HP showing that in periods of high

demand for portfolio insurance there is less divergence of opinions about expected

returns since the majority of the traders anticipate negative jumps.

Panel B of Table 5.8 shows the results of 1-month ahead bivariate predictive

regressions with DISP or DISP* as the main variables. In all the models considered,

both DISP and DISP* remain significant at either 5% or 1% level based on both

Newey-West and Hodrick standard errors. Moreover, none of the other option-

related measures exhibits significant predictive ability at the 1-month horizon. Panel

C of Table 5.8 considers the case of multivariate regressions with all the option-

implied variables being included into the predictive regression. The results show

18Risk-neutral moments are calculated using the model-free method of Bakshi, Kapadia and
Madan (2003). The estimated implied volatility has a correlation of 99.7% with VIX and thus for
better comparability with other studies we proceed by keeping VIX as our proxy for risk-neutral
volatility.
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that DISP and DISP* are strongly significant while again all the other variables

remain highly insignificant.

The multivariate analysis is extended in Table 5.9 for horizons of 3, 6, 12, and

24 months ahead. The results reveal that both DISP and DISP* exhibit significant

forecasting power for all horizons examined at either 5% or 1% level irrespectively

of which standard errors are considered. Turning to the rest of the predictors, only

VIX appears to be consistently and strongly significant, predicting positive excess

market returns for all horizons longer than a quarter ahead. In the case of the

24-month horizon, Slope becomes significant at the 5% level, while Skewness and

Kurtosis appear significant at the 5% level only when statistical inference is based

on Newey-West standard errors.

Overall, the results of this section suggest that the dispersion in options trading

volume across strikes is not highly related to other well-established option-implied

variables that proxy for hedging demand, crash risk, or variance risk and its predic-

tive power for excess market returns remains intact in the presence of such measures.

5.7 Conclusion

In this chapter, we develop a measure of dispersion in options traders’ expectations

about future stock returns by utilizing dispersion in trading volume information

across various strike prices. A high dispersion implies that there is little consensus

in the options market about the future underlying asset return, whereas a low dis-

persion suggests that options traders’ beliefs are similar. Our dispersion in beliefs

measure relies on the expectations about future returns represented by the trading

activity in highly liquid options markets, is associated directly with asset prices (and

not with a related indicator such as corporate earnings), can be estimated even on a

higher frequency than monthly or quarterly, and is by construction able to capture

different levels of both optimistic and pessimistic views.

We provide empirical evidence for a strong and robust negative relation between

the dispersion in S&P 500 index options trading volume across strike prices and
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subsequent market returns. Moreover, the relatively low autocorrelation coefficient

of our measure alleviates the common concern of potentially spurious regression

results stemming from a highly persistent predictive variable. In-sample analysis

shows that at the 1-month horizon, the dispersion in options traders’ expectations

compares favorably to the well-established variance risk premium (VRP) and clearly

outperforms all other alternative predictors examined. At longer horizons, it re-

mains significant and exhibits a high adjusted R2, outperformed only by highly

persistent variables. Most importantly, the forecasting power of the dispersion in

options traders’ expectations remains intact at all horizons when VRP and other

predictors are added into the predictive model. It is therefore evident that its in-

formation content is different from that of VRP and the two variables can be used

complementarily for forecasting purposes.

The results of out-of-sample analysis reveal that the dispersion in options traders’

beliefs has significantly higher predictive power than the simple historical average

and its forecasting ability can be enhanced by imposing a restriction of positive

forecasted equity premia. Apart from VRP, none of the other alternative predic-

tors examined can improve the simple historical average model. The out-of-sample

forecasting power of the dispersion in options traders’ beliefs is also economically

significant, as indicated by the additional utility offered to an investor who follows

an active trading strategy associated with its predictive ability. Unlike other vari-

ables, the suggested dispersion in beliefs measure also improves the performance

of a market-timing strategy based solely on VRP, when it is added into the pre-

dictive model. Furthermore, the results of portfolio rotation strategies reveal that

it exhibits economically significant out-of-sample forecasting power for the excess

returns of portfolios sorted on several stock characteristics.

We also investigate the relationship of the dispersion in options traders’ expec-

tations with other popular option-implied variables and show that it does not proxy

for any of them. More specifically, dispersion in options traders’ expectations is

associated with higher implied volatility, more negative skewness, higher kurtosis,
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a more negatively sloped implied volatility curve, and less hedging pressure. How-

ever, its correlation with these variables lies between 2% and 29% showing that the

information content of the proposed dispersion in beliefs measure is largely distinct.

Most importantly, a regression analysis confirms that dispersion in options traders’

expectations remains highly significant at all horizons when combined with the other

option-related variables.

The documented significant and negative relationship between the dispersion in

options trading volume across strike prices and subsequent market returns allows

for a dual interpretation: It is possible that the divergence of options traders’ beliefs

proxies for the disagreement among investors in the equity market. In such a case,

a higher disagreement leads to a higher current price and lower subsequent returns

due to the existence of short-sale constraints that prevent pessimistic investors from

taking negative positions. Alternatively, it is possible that the dispersion of options

traders’ expectations proxies for the level of ambiguity of a representative equity

market participant whose expectations are affected by the trading activity in the

options market. In such a case, the negative relationship implies that when am-

biguity is high, the representative investor increases her hedging demand for the

risky asset and lowers her expected return due to her preference for consumption

smoothing.
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Table 5.3: Univariate long-horizon predictability

h=3 h=6 h=12 h=24

R̃2 (%) R̃2 (%) R̃2 (%) R̃2 (%)
DISP -7.39 3.61 -5.47 3.54 -6.67 10.89 -5.19 12.72

(-2.59)** (-2.25)** (-2.90)*** (-2.35)**
[-2.33]** [-1.83]* [-2.38]** [-2.02]**

DISP* -7.10 3.30 -5.10 3.00 -6.65 10.80 -5.20 12.74
(-2.65)*** (-2.24)** (-3.03)*** (-2.49)**
[-2.31]** [-1.81]* [-2.40]** [-2.11]**

VRP 13.05 12.32 8.34 8.90 3.94 3.46 2.90 3.58
(5.25)*** (3.96)*** (2.40)** (2.29)**
[3.62]*** [3.33]*** [2.06]** [1.77]*

TAIL -1.21 -0.39 -1.48 -0.22 2.22 0.74 3.58 5.75
(-0.38) (-0.49) (0.74) (1.25)
[-0.32] [-0.43] [0.77] [1.32]

d-p 6.70 2.88 7.67 7.44 8.23 16.84 8.32 33.56
(1.28) (1.84)* (2.72)*** (4.46)***
[1.25] [1.50] [1.76]* [1.96]*

d-e 3.42 0.38 4.38 2.09 4.28 4.17 6.10 17.79
(0.73) (1.23) (2.26)** (3.25)***
[0.67] [0.99] [1.17] [2.18]**

YG 3.79 0.58 2.96 0.67 2.28 0.81 0.77 -0.27
(1.13) (0.96) (0.77) (0.22)
[0.95] [0.76] [0.61] [0.23]

TERM 1.01 -0.43 1.82 -0.06 4.03 3.64 7.55 27.54
(0.28) (0.54) (1.38) (3.27)***
[0.26] [0.46] [1.05] [2.35]**

DEF -0.27 -0.50 2.07 0.07 3.30 2.27 4.22 8.22
(-0.04) (0.45) (1.23) (2.00)**
[-0.05] [0.38] [0.78] [1.27]

RREL 7.63 3.89 7.65 7.39 6.53 10.41 -0.58 -0.40
(1.95)* (1.94)* (1.59) (-0.33)
[1.82]* [1.71]* [1.42] [-0.18]

SVAR -4.88 1.29 0.49 -0.48 2.37 0.92 2.48 2.48
(-1.21) (0.20) (2.05)** (2.64)***
[-0.93] [0.10] [0.77] [1.19]

This table reports the results of 3-, 6-, 12- and 24-month ahead univariate predictive regressions
for the excess return on the CRSP value-weighted index. The sample period is 1996:01-2012:12.
The forecasting variables are the two dispersion in options traders’ expectations measures (DISP,
DISP*), variance risk premium (VRP), tail risk (TAIL), dividend-price ratio (d-p), dividend payout
ratio (d-e), yield gap (YG), yield term spread (TERM), default spread (DEF), relative short-term
risk-free rate (RREL) and realized stock market variance (SVAR). Reported coefficients indicate
the percentage annualized excess return resulting from a one standard deviation increase in each
predictor variable. Newey and West (1987) and Hodrick (1992) t-statistics with lag length equal to
the forecasting horizon are reported in parentheses and square brackets respectively. ***, ** and *
denote significance in 1%, 5% and 10% level.
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Chapter 5. Dispersion in Options Traders’ Expectations and Return Predictability

Table 5.6: Market-timing strategy

Mean (%) St. Dev. (%) Sharpe ∆CER (%) MDD (%) Long (%)
Panel A: No Short Sales

Buy & Hold 3.88 16.75 0.23 -51.44
DISP 5.46 9.41 0.58 4.46 -14.09 55.77
DISP* 2.62 9.59 0.27 1.58 -24.06 52.56
VRP 6.93 12.81 0.54 4.80 -32.24 55.77
TAIL 2.50 13.26 0.19 0.20 -46.24 83.97
d-p 3.99 16.44 0.24 0.27 -51.44 96.79
d-e 6.39 12.44 0.51 4.40 -27.70 82.69
YG 3.39 15.23 0.22 0.25 -51.44 89.10
TERM 1.63 14.31 0.11 -1.11 -47.30 84.62
DEF 4.43 12.75 0.35 2.33 -33.35 77.56
RREL 3.53 14.38 0.25 0.76 -52.82 88.46
SVAR 3.99 15.03 0.27 0.94 -44.87 91.03
DISP & VRP 10.98 11.38 0.96 9.37 -19.95 56.41
DISP* & VRP 9.57 11.34 0.84 7.97 -19.95 51.92
VRP & d-e 6.17 11.23 0.55 4.61 -25.48 69.87
VRP & DEF 3.34 10.98 0.30 1.87 -31.20 50.64

Panel B: Short Sales
Buy & Hold 4.76 25.15 0.19 -67.86
DISP 7.91 15.74 0.50 8.93 -29.02 55.77
DISP* 2.25 15.98 0.14 3.15 -48.50 52.56
VRP 10.85 19.93 0.54 9.63 -41.02 55.77
TAIL 2.00 20.57 0.10 0.39 -64.12 83.97
d-p 4.98 24.73 0.20 0.54 -69.24 96.79
d-e 9.78 19.47 0.50 8.83 -40.59 82.69
YG 3.79 23.14 0.16 0.50 -73.00 89.10
TERM 0.27 21.93 0.01 -2.21 -68.21 84.62
DEF 5.87 19.92 0.29 4.66 -48.66 77.56
RREL 4.06 22.02 0.18 1.52 -72.65 88.46
SVAR 4.99 22.87 0.22 1.88 -62.26 91.03
DISP & VRP 18.97 17.89 1.06 18.90 -22.74 56.41
DISP* & VRP 16.14 17.93 0.90 16.05 -22.74 51.92
VRP & d-e 9.34 17.95 0.52 9.24 -35.94 69.87
VRP & DEF 3.69 17.68 0.21 3.74 -50.54 50.64

This table reports the results of market-timing strategies based on the 1-month ahead out-of-sample
predictability for the excess return on the CRSP value-weighted index. The total sample period is
1996:01-2012:12 and the forecasting period begins in 2000:01. Panel A shows the results when short
sales are not allowed and Panel B when short sales are allowed. The forecasting variables are the two
dispersion in options traders’ expectations measures (DISP, DISP*), variance risk premium (VRP), tail
risk (TAIL), dividend-price ratio (d-p), dividend payout ratio (d-e), yield gap (YG), yield term spread
(TERM), default spread (DEF), relative short-term risk-free rate (RREL) and realized stock market
variance (SVAR). Buy & Hold refers to a passive strategy that goes long the market portfolio. Mean
denotes the average return, St. Dev. denotes the standard deviation of returns, Sharpe stands for the
Sharpe ratio, ∆CER is the certainty equivalent return in excess of the buy-hold strategy, MDD stands
for the maximum drawdown and Long is the percentage of months that the strategy goes long the market
index. All measures of performance apart from MDD are in annualized terms.
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Chapter 5. Dispersion in Options Traders’ Expectations and Return Predictability

Table 5.7: Portfolio rotation strategies

Mean (%) St. Dev. (%) Sharpe ∆CER (%) MDD (%) Long (%)
Panel A: Portfolio Strategies for DISP and DISP*

Buy & Hold 4.76 25.15 0.19 -67.86

DISP
Size 10.02 20.56 0.49 8.41 -39.47 76.92
B/M 2.00 17.97 0.11 1.90 -51.42 87.18
Mom 5.31 20.02 0.27 4.03 -43.06 86.54
Industry 3.53 22.70 0.16 0.54 -62.41 100.00
LT Reversal 8.51 21.72 0.39 6.17 -43.69 92.95
ST Reversal 8.62 18.07 0.48 8.46 -45.72 84.62
Pooled 8.11 24.93 0.33 3.52 -51.61 100.00

DISP*
Size 8.90 20.62 0.43 7.26 -34.01 75.64
B/M -0.58 17.36 -0.03 -0.36 -50.25 86.54
Mom 3.45 19.76 0.17 2.33 -40.77 83.97
Industry 3.24 21.98 0.15 0.73 -63.31 100.00
LT Reversal 6.73 22.24 0.30 4.04 -46.64 93.59
ST Reversal 9.47 17.64 0.54 9.54 -27.02 82.69
Pooled 8.12 23.82 0.34 4.34 -43.69 100.00

Panel B: Pooled Portfolio Strategies for Alternative Predictors
VRP 18.51 28.87 0.64 10.74 -57.34 100.00
TAIL 1.54 25.81 0.06 -3.72 -73.21 100.00
d-p 3.38 33.60 0.10 -8.83 -76.54 100.00
d-e 5.50 30.43 0.18 -3.65 -75.11 96.79
YG 4.22 29.39 0.14 -4.00 -72.34 100.00
TERM 8.07 29.57 0.27 -0.31 -64.15 100.00
DEF 2.57 28.56 0.09 -4.93 -76.33 96.15
RREL -3.08 27.85 -0.11 -9.98 -82.69 100.00
SVAR 4.09 29.22 0.14 -3.99 -68.04 96.15

This table reports the results of portfolio rotation strategies based on the 1-month ahead out-of-
sample predictability for the excess stock portfolio returns. The total sample period is 1996:01-
2012:12 and the forecasting period begins in 2000:01. The forecasting variables are the two dispersion
in options traders’ expectations measures (DISP, DISP*), variance risk premium (VRP), tail risk
(TAIL), dividend-price ratio (d-p), dividend payout ratio (d-e), yield gap (YG), yield term spread
(TERM), default spread (DEF), relative short-term risk-free rate (RREL) and realized stock market
variance (SVAR). Buy & Hold refers to a passive strategy that goes long the market portfolio. Mean
denotes the average return, St. Dev. denotes the standard deviation of returns, Sharpe stands for
the Sharpe ratio, ∆CER is the certainty equivalent return in excess of the buy-hold strategy, MDD
stands for the maximum drawdown and Long is the percentage of months that the strategy goes
long the two winner portfolios. All measures of performance apart from MDD are in annualized
terms. The rotation strategies use decile portfolios sorted on size (Size), book-market ratio (B/M),
momentum (Mom), industry (Industry), long-term reversal (LT Reversal) and short-term reversal
(ST Reversal). Pooled refers to a rotation strategy that uses all 60 portfolios. Panel A shows the
results of the rotation strategies based on the forecasting performance of the dispersion in options’
traders expectations, while Panel B shows the results of the rotation strategies using all 60 portfolios
based on the forecasting performance of the alternative predictors.
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Table 5.8: Comparison with other option-implied measures - 1-month horizon

Panel A: Correlation Coefficients
Slope HP VIX Skewness Kurtosis

DISP 0.18 -0.24 0.29 -0.02 0.05
DISP* 0.19 -0.25 0.23 -0.09 0.12

Panel B: Bivariate Regressions
Slope HP VIX Skewness Kurtosis

DISP -9.95 -9.80 -10.89 -9.67 -9.68
(-2.39)** (-2.27)** (-2.73)*** (-2.35)** (-2.34)**
[-2.44]** [-2.37]** [-2.78]*** [-2.43]** [-2.42]**

Z 1.53 -0.51 4.14 0.72 0.00
(0.34) (-0.12) (0.64) (0.17) (0.00)
[0.33] [-0.12] [0.70] [0.18] [0.00]

R̃2 (%) 1.81 1.75 2.20 1.76 1.75

DISP* -9.48 -9.33 -9.97 -9.20 -9.28
(-2.30)** (-2.17)** (-2.59)** (-2.24)** (-2.24)**
[-2.34]** [-2.26]** [-2.63]*** [-2.30]** [-2.29]**

Z 1.52 -0.52 3.30 0.07 0.64
(0.33) (-0.12) (0.52) (0.02) (0.16)
[0.33] [-0.12] [0.56] [0.02] [0.17]

R̃2 (%) 1.55 1.49 1.78 1.48 1.49

Panel C: Multivariate Regressions

DISP Slope HP VIX Skewness Kurtosis R̃2 (%)
-11.51 3.07 0.25 3.90 9.75 8.54 0.52

(-2.65)*** (0.50) (0.06) (0.55) (0.86) (0.87)
[-2.72]*** [0.50] [0.06] [0.59] [0.84] [0.90]

DISP* Slope HP VIX Skewness Kurtosis R̃2 (%)
-10.59 2.48 0.15 3.27 8.26 8.00 0.05

(-2.41)** (0.41) (0.03) (0.47) (0.73) (0.82)
[-2.49]** [0.41] [0.03] [0.50] [0.72] [0.85]

This table reports the results of 1-month ahead predictive regressions for the excess return on
the CRSP value-weighted index. The sample period is 1996:01-2012:12. Panel A reports the
correlation coefficients, Panel B the results of bivariate regressions and Panel C the results of
multivariate regressions. The forecasting variables are the two dispersion in options traders’
expectations measures (DISP, DISP*), slope of the implied volatility curve (Slope), hedging
pressure (HP), implied volatility (VIX), risk-neutral skewness (Skewness) and risk-neutral
kurtosis (Kurtosis). Reported coefficients indicate the percentage annualized excess return
resulting from a one standard deviation increase in each predictor variable. Newey and West
(1987) and Hodrick (1992) t-statistics with lag length equal to the forecasting horizon are
reported in parentheses and square brackets respectively. ***, ** and * denote significance
in 1%, 5% and 10% level.
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Table 5.9: Comparison with other option-implied measures - long horizons

DISP Slope HP VIX Skewness Kurtosis R̃2 (%)
h=3 -8.66 2.29 3.40 6.06 -5.93 -4.16 6.89

(-3.09)*** (0.66) (1.36) (1.04) (-0.67) (-0.45)
[-2.58]** [0.56] [1.20] [1.15] [-0.71] [-0.56]

h=6 -7.63 1.64 2.59 7.95 -0.34 2.87 11.48
(-3.00)*** (0.71) (1.34) (2.89)*** (-0.06) (0.44)
[-2.53]** [0.54] [1.09] [1.77]* [-0.06] [0.53]

h=12 -8.68 1.33 2.06 7.07 2.86 5.67 23.11
(-4.01)*** (1.11) (1.56) (3.29)*** (0.52) (0.86)
[-3.14]*** [0.67] [1.06] [2.36]** [0.58] [1.21]

h=24 -7.65 3.23 0.82 6.08 9.73 8.34 33.23
(-4.35)*** (2.54)** (0.49) (2.82)*** (2.57)** (2.38)**
[-3.06]*** [2.42]** [0.53] [2.47]** [1.63] [1.46]

DISP* Slope HP VIX Skewness Kurtosis R̃2 (%)
h=3 -8.01 1.87 3.32 5.60 -7.03 -4.55 6.25

(-2.88)*** (0.55) (1.31) (0.97) (-0.79) (-0.49)
[-2.43]** [0.46] [1.16] [1.07] [-0.84] [-0.61]

h=6 -6.88 1.24 2.56 7.50 -1.33 2.47 10.29
(-2.73)*** (0.54) (1.26) (2.75)*** (-0.22) (0.38)
[-2.43]** [0.42] [1.06] [1.67]* [-0.22] [0.46]

h=12 -8.33 0.93 1.84 6.70 1.79 5.34 22.19
(-3.98)*** (0.77) (1.35) (3.22)*** (0.32) (0.81)
[-3.05]*** [0.48] [0.95] [2.24]** [0.36] [1.14]

h=24 -7.20 2.94 0.67 5.70 8.94 8.01 30.93
(-4.43)*** (2.52)** (0.39) (2.75)*** (2.28)** (2.25)**
[-3.06]*** [2.33]** [0.43] [2.32]** [1.51] [1.40]

This table reports the results of 3-, 6-, 12- and 24-month ahead multivariate predictive re-
gressions for the excess return on the CRSP value-weighted index. The sample period is
1996:01-2012:12. The forecasting variables are the two dispersion in options traders’ expec-
tations measures (DISP, DISP*), slope of the implied volatility curve (Slope), hedging pres-
sure (HP), implied volatility (VIX), risk-neutral skewness (Skewness) and risk-neutral kurtosis
(Kurtosis). Reported coefficients indicate the percentage annualized excess return resulting
from a one standard deviation increase in each predictor variable. Newey and West (1987)
and Hodrick (1992) t-statistics with lag length equal to the forecasting horizon are reported
in parentheses and square brackets respectively. ***, ** and * denote significance in 1%, 5%
and 10% level.
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Figure 5.1: Dispersion in options traders’ expectations vs VIX

This figure plots the monthly time series of DISP versus VIX for the period 1996:01-2012:12. Both

variables have been standardized to have zero mean and variance one.
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Conclusion

6.1 Limitations and Future Research

This thesis is related to a large literature that investigates the properties of the

options market and its relationship with the rest of the economy. A common char-

acteristic of this strand of the literature is that the conclusions drawn are subject to

the limited availability of options data. In particular, unlike equity, fixed income or

macroeconomic data which are largely available for the last fifty years, options data

are typically available only for half of that period. In our case, the available options

data begin in 1990 and therefore our analysis cannot be extended beyond that year.

Furthermore, some of the option-related measures require a high amount of traded

options across both the moneyness and the time-to-maturity dimension in order to

be constructed accurately. Thus, the relatively low liquidity of the S&P 500 index

options market in the early nineties has restricted some parts of the analysis to the

post-1996 period. It is important to note, however, that even our truncated dataset

spans a quite large period of seventeen years (1996-2012) encompassing both bull

and bear markets and two major crises.

Despite the thorough analysis conducted in the previous chapters and the re-

spective appendices, additional investigation may shed more light to the empirical

findings of the thesis. Such a supplementary analysis can examine further the robust-

ness of our results as well as provide a deeper understanding of the main conclusions

drawn. In that respect, some of the issues discussed below can serve as ideas for

future research.
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Chapter 3 documents a significant relationship between the economic fundamen-

tals sentiment component and the S&P 500 index risk-neutral skewness. The direc-

tion of this relationship is consistent across all three sentiment proxies in the first

period. However, in the second period the way the sentiment proxy associated with

large speculators responds to the macroeconomic conditions changes completely and

hence the relationship of its economic fundamentals component with skewness be-

comes opposite to the relationship documented for the respective components of the

other two sentiment proxies. Understanding the causes of the changing behavior of

this particular sentiment proxy is beyond the scope of the thesis but constitutes an

interesting research question that can be examined in subsequent projects. Further-

more, while our conclusions are based on a mature options market with a popular

equity index as its underlying asset, it would be intriguing to investigate whether

we draw the same conclusions if we examine less developed index options markets

or options markets on different underlying assets such as treasuries or currencies.

In Chapter 4, we show that forward skewness coefficients are jointly important

for predicting future macroeconomic and financial conditions. One concern that

can arise from our analysis is that the high cross-correlations between the forward

moments reduces our ability to provide a meaningful interpretation of the individual

regression coefficients. In principle this is true but we need to underline that the aim

of this chapter is to examine whether it is valuable to take into consideration the

information embedded in the whole term structure of the risk-neutral skewness or

not and hence it focuses on the joint significance of the combined forward skewness

coefficients. In fact all variables of each forward moments group share a strong

common component that is related to the cross-section of options across moneyness.

It is possible to isolate this common component by orthogonalizing the forward

moments of two, three and four months ahead to the respective forward moment of

one month ahead. Such an exercise changes the regression coefficients of all forward

moments and the standard error of the one month ahead forward moments. However,

the rest of the individual and joint significance results remain unaltered. Therefore,
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the results presented in this thesis are those with the original forward moments

and the reported regression coefficients show the effect of each forward moment

controlling for the effect of the rest of the variables. Furthermore, given that that

the empirical results of Chapter 4 are based on in-sample regressions, it would be

particularly interesting to extend the analysis to an out-of-sample setting and also

investigate whether the joint predictive power of forward skewness coefficients for

future market returns is economically significant.

Finally, Chapter 5 implicitly assumes that all option trades reflect investors’ ex-

pectations about future market returns. To this end, we remove from the analysis

near-the-money options that can be more easily related to investors’ beliefs about fu-

ture volatility. It is possible, however, that still some portion of the trading activity

is driven by some sort of “clientele effect”. While we cannot rule out this possibility,

it is important to note that there is no evidence in the literature relating empirically

the trading activity in the options market with motives other than investors’ ex-

pectations about the future distribution of the underlying asset returns. As further

analysis, it would be interesting to elaborate more on the effect of the dispersion in

options traders’ expectations measure by investigating whether it depends on the

underlying economic conditions. Furthermore, while our analysis is focused on the

relationship between the suggested dispersion measure and future market returns,

it would be interesting to complete the empirical evidence by investigating also the

relationship between dispersion and contemporaneous returns.

6.2 Summary and Implications

Overall, this thesis is mainly related to two strands of the options markets liter-

ature. First it contributes to the literature that investigates the determinants of

the shape the risk-neutral distribution. Second, it contributes to the literature that

explores the information content of option prices and options’ trading volume or

open interest. Furthermore, it has implications about the consumption-based asset

pricing literature in general, while many of the results can be considered useful for
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regulators and investors as well.

More specifically, Chapter 3 provides evidence that in recent years option prices

are mainly settled according to investors’ expectations stemming from the economic

conditions and not to investors’ errors in beliefs. This is a remarkable result for the

asset pricing literature as it implies that the pricing kernel, which incorporates in-

vestors’ risk preferences and can be considered the unifying link for all asset markets,

is not driven by any sort of irrational beliefs. Second, it is important for the option

pricing literature as it demonstrates that modelling investors’ irrationality is not

likely to improve the performance of the existing option pricing models. Moreover,

the result that the economic fundamentals sentiment component has an opposite

impact on calls and puts gives further credence to the notion that call and put

options markets are segmented.

Chapter 4 suggests the usage of measures of forward skewness coefficients for

predicting future macroeconomic and stock market conditions as well as systemic

risk and equity uncertainty. In that respect, the reported results are of interest not

only to academics but also to regulators and investors. In particular, the information

embedded in the time-to-maturity dimension of option prices can be used to provide

signals about required policy actions to be taken such as a looser monetary policy

or a more relaxed regulation towards banks’ capital requirements. Moreover, it can

be used in the context of a market-timing strategy together with more traditional

predictors of future market returns such as market valuation ratios.

Finally, Chapter 5 proposes a novel, easy-to-implement, yet theoretically founded

measure of dispersion in expectations and shows that it is a strong predictor of fu-

ture market returns both in-sample and out-of-sample. The above result has two

main implications. First, it reveals a new dimension of the information embedded

in the trading activity in the options market. It is also shown empirically that the

predictability of dispersion in options traders’ beliefs can be remarkably beneficial

for investment strategies. Second, it provides a new measure of dispersion in expec-

tations that exhibits several advantageous characteristics compared to previously
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proposed measures.
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Söderlind, P. and L. Svensson. 1997. New techniques to extract market expectations

from financial instruments. Journal of Monetary Economics 40, 383–429.
Steeley, J. M. 2004. Stock price distributions and news: evidence from index options.

Review of Quantitative Finance and Accounting 23, 229–250.
Stock, J. H. and M. W. Watson. 2002. Macroeconomic forecasting using diffusion

indexes. Journal of Business and Economic Statistics 20, 147–162.
Stock, J. H. and M. W. Watson. 2005. Implications of dynamic factor models for

VAR analysis. Working Paper, NBER.
Stutzer, M. 1996. A simple nonparametric approach to derivative security valuation.

Journal of Finance 51, 1633–1652.
Sun, P. and C. Sutcliffe. 2003. Scheduled announcements and volatility patterns:

the effects of monetary policy committee announcements on LIBOR and short
sterling futures and options. Journal of Futures Markets 23, 773–797.

Taylor, S. J., P. K. Yadav, and Y. Zhang. 2009. Cross-sectional analysis of risk-
neutral skewness. Journal of Derivatives 16, 38–52.

Torous, W., R. Valkanov, and S. Yan. 2004. On predicting stock returns with nearly
integrated explanatory variables. Journal of Business 77, 937–966.
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Appendix A

Appendix to Chapter 2

A.1 Parametric methods for Extracting Risk-Neutral

Densities

The risk-neutral density (RND) can be extracted by integrating the stochastic pro-
cess governing the underlying asset price dynamics, assuming that this is known.
Making use of this argument, Bates (1991) and Malz (1996) fit different stochas-
tic processes in the observed option prices, estimate the necessary parameters and
finally obtain the respective RNDs. In contrast to this approach, several alterna-
tive techniques extract the RND directly from the observed option prices, remaining
silent about the stochastic process followed by the underlying asset price. As pointed
out by Melick and Thomas (1997), such techniques cannot provide any information
about the evolution of the asset price throughout the life of the option, but have
the advantage that they are more flexible in capturing the shape of the implied
distribution. This is important since a given RND can be consistent with several
stochastic processes, while a given stochastic process can only be associated with
one RND.

Therefore, the aim of this appendix is to provide an overview of the parametric
methods that can be used in order to extract risk-neutral densities from option
prices. The parametric techniques can be further divided into three subgroups: the
expansion methods, the generalized distribution methods and the mixture methods.

A.1.1 Expansion methods

Expansion techniques add correction terms to a reference probability distribution
which is usually either the normal or the lognormal one. As pointed out by Jackwerth
(1999) the idea is similar to that of the Taylor series expansion for the approximation
of an analytic function.

Many researchers make use of the Gram-Charlier series - sometimes they refer
to it as Edgeworth series - in order to approximate the risk-neutral density of the
underlying asset. Jarrow and Rudd (1982) state that the RND function g(St) of the
asset price can be approximated by a lognormal distribution f(St) as follows:

g(St) = f(St) +
κ2(g)− κ2(f)

2!

d2f(St)

dS2
t

− κ3(g)− κ3(f)

3!

d3f(St)

dS3
t

+

+
(κ4(g)− κ4(f)) + 3 (κ2(g)− κ2(f))2

4!

d4f(St)

dS4
t

, (A.1)
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assuming that κ1 (g) = κ1 (f) = S0e
rt, where κi (.) is the ith cumulant of the re-

spective probability distribution. Jarrow and Rudd (1982) show that the pricing
formula for a call option with strike price X becomes:

Cg (X) = Cf (X) + e−rt
κ2(g)− κ2(f)

2!
f(X)− e−rtκ3(g)− κ3(f)

3!

df(X)

dSt
+

+e−rt
(κ4(g)− κ4(f)) + 3 (κ2(g)− κ2(f))2

4!

d2f(X)

dS2
t

, (A.2)

where Cf (X) corresponds to the call price given by the Black-Scholes formula.
Corrado and Su (1997) simplify the formula by assuming that κ2 (g) = κ2 (f) . In

this case, for a lognormal distribution f(St) it is true that κ2 (g) = κ2
1 (f) (eσ

2t− 1),
with σ being the volatility parameter. Therefore, the call option pricing formula
becomes:

Cg (X) = Cf (X) + λ1Q3 + λ2Q4, (A.3)

where:

λ1 = γ1(g)− γ1(f)

λ2 = γ2(g)− γ2(f)

Q3 = −(S0e
rt)3
(
eσ

2t − 1
)3/2 e−rt

3!

df(X)

dSt

Q4 = (S0e
rt)4
(
eσ

2t − 1
)2 e−rt

4!

df 2(X)

dS2
t

γ1(g) =
κ3 (g)

κ
3/2
2 (g)

γ2(g) =
κ4 (g)

κ2
2(g)

γ1(f) = 3q + q3

γ2(f) = 16q2 + 15q4 + 6q6 + q8, (A.4)

and
(
eσ

2t − 1
)

is defined as q2.

Corrado and Su (1996) use the normal distribution as the reference probability
distribution and therefore apply an A-Type Gram-Charlier series to approximate the
risk-neutral distribution of the log-price of the underying asset. More specifically,
they show that after standardizing for a zero mean and unit variance, the RND can
be expressed as the sum of the normal density plus correction terms adjusting for
skewness and kurtosis:

g(z) = n(z)

[
1− µ3

3!
H3(z) +

µ4 − 3

4!
H4(z)

]
=

= n(z)

[
1− µ3

3!

(
z3 − 3z

)
+
µ4 − 3

4!

(
z4 − 6z2 + 3

)]
, (A.5)

where n(z) is the standard normal density function, µi is the ith central moment of
g(z) and Hi(z) is the ith Hermite polynomial of the standardized value of ln(St).

1

1The Hermite polynomial can be defined by the relation: H (z)n (z) = (−1)
n dnn(z)

dzn . However,
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Now the call option pricing formula becomes:

Cg (X) = Cf + µ3Q3 + (µ4 − 3)Q4, (A.6)

where:

Q3 =
1

3!
S0σ
√
t
[(

2σ
√
t− d

)
n (d) + σ2tN (d)

]
(A.7)

Q4 =
1

4!
S0σ
√
t
[(
d2 − 1− 3σ

√
t
(
d− σ

√
t
))

n(d) + σ3t3/2(d)
]
, (A.8)

d is defined as in the Black-Scholes formula and n (.), N (.) are the probability den-
sity function (PDF) and the cumulative distribution function (CDF) of the normal
distribution accordingly.2 The A-Type Gram-Charlier expansion for approximating
the RND of the underlying asset is also used by Longstaff (1995). Jondeau and
Rockinger (2001) improve the method by creating an algorithm that guarantees
positive probabilities over the whole distribution.

Abken et al. (1996) provide a similar expansion technique based on Madan and
Milne’s (1994) suggestion that any contigent claim can be seen as an element of
a seperable Hilbert space. The Hilbert space is assumed to be a one-dimensional
Gaussian reference space and its basis can be formed with Hermite polynomials.
Therefore, each polynomial Hi(z) can be seen as a risk coefficient and the risk-
neutral density can be estimated as a linear combination of those risk elements.
The authors define πi = βie

−rt as the implicit price of polynomial risk Hi(z). The
RND function takes the form:

g(z) = n(z)

[
1 +

β3√
3!
H3(z) +

β4√
4!
H4(z)

]
, (A.9)

if we assume that π0 = e−rt, π1 = π2 = 0. Hi(z) denotes again the Hermite
polynomial and the term

√
i! normalizes each polynomial to unit variance.

Rubinstein (1998) assumes that the log-returns of the asset follow a binomial dis-
tribution b(x) and applies an Edgeworth expansion to approximate the risk-neutral
density function. Therefore, if it is assumed that the distribution is standardized to
zero mean and unit variance, the RND function becomes:

g(z) = b(z)

[
1 + µ3

3!
(z3 − 3z) + µ4−3

4!
(z4 − 6z2 + 3) +

+
µ23
6!

(z6 − 15z4 + 45z2 − 15)

]
, (A.10)

where z is the standardized log-return of the underlying asset and µi is the ith central
moment of g(z).

Finally, Rompolis and Tzavalis (2008) suggest a methodology which belongs to
the class of Gram-Charlier series but does not rely on any reference distribution.
As a result, it can be considered nonparametric and it is much more flexible than
the simple A-Type Gram-Charlier expansion. The authors apply a C-Type Gram-
Charlier expansion in order to approximate the RND function of the log-returns (x)

Corrado and Su (1996) ignore the term (−1)
n

in their definition.
2The original equations presented in Corrado and Su (1996) contain two typos. The equations

presented here are corrected as suggested by Brown and Robinson (2002).
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of the underlying asset:

g (x) = Q exp

[
∞∑
i=1

1

i
δiHi (z)

]
, (A.11)

where Q =
{∫

exp
[∑∞

i=1
1
i
δiHi (z)

]
dx
}−1

, z denotes the standardized value of x
and δi is the ith order series coefficient of the expansion. The expansion is trun-
cated up to an optimal order (m) which can be found with an information crite-
rion like Akaike’s (AIC) or Schwarz (SC). The estimation of the coefficients δi for
i = 1, 2, ...,m needs estimates of the noncentral moments of x which can be obtained
following the methodologies suggested by Bakshi, Kapadia and Madan (2003) for
i = 1, 2, 3, 4 and Rompolis and Tzavalis (2013) for i > 4. A great advantage of the
methodology proposed by Rompolis and Tzavalis (2008) is that the exponential form
of the RND function guarantees that there will not exist any negative probabilities.

A.1.2 Generalized distribution methods

Generalized distributions include more parameters than the typical two representing
the mean and the variance. As a result, they can offer more flexibility and can
be useful for extracting risk-neutral distributions from option prices. Moreover,
common distributions like the lognormal can be seen as special cases of a generalized
one.

The most widely used generalized distribution is the Generalized Beta distribu-
tion of the second kind (GB2). The GB2 distribution, introduced by Bookstaber
and McDonald (1987), is highly flexible since it has four parameters and encom-
passes many other distributions used in the literature as special or limiting cases
(e.g. Weibull, Burr III and XII, Generalized Gamma). In the context of options
markets, it is used by Aparicio and Hodges (1998), Anagnou-Basioudis et al. (2005)
and Rebonato (2004) among others. It can be written as:

g (St) =
|a|Sap−1

t

bapB (p, q)
[
1 +

(
St
b

)a]p+q , (A.12)

where B (p, q) denotes the beta function defined as follows:

B (p, q) =

∫ 1

0

tp−1 (1− t)q−1 dt, (A.13)

and α, b, p and q are the parameters of the distribution. Parameter b is a scale
parameter whereas the other parameters determine the shape of the distribution.
Specifically, parameter a affects the kurtosis, the interaction of a and q determines
the number of existing higher moments and the interaction of parameters p and
q drives the skewness. Rebonato (2004) also derives closed form solutions for the
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option prices. The resulting call option pricing formula is:3

CGB2(X) = e−rt


X( b

X )
aq
F 2
1 [q−1/a,p+q;1+q−1/a;−( b

X )
a
]

(q−1/a)B(p,q)

−X( b
X )

aq
F 2
1 [q,p+q;1+q;−( b

X )
a
]

qB(p,q)

 , (A.14)

where F 2
1 [., .; .; .] denotes the hypergeometric function defined as:

F 2
1 [k1, k2; l1;m] =

∞∑
n=0

(k1)n (k2)n
(l1)n

mn

n!

(k)n = k (k + 1) (k + 2) ... (k + n− 1) and (k)0 = 1, (A.15)

with the series terminating when either k1 or k2 is a non-positive integer.
Sherrick, Garcia and Tirupattur (1996) use a Burr III distribution to approxi-

mate the RND. Burr III is a special case of the GB2 for q = 1. The density function
in this case can be described by:

g (St) =
apSap−1

t ba

(ba + Sat )p+1 , (A.16)

where a > 0, b > 0 and p > 0 are the parameters of the distribution.4 Follow-
ing a similar approach, Sherrick, Irwin and Forster (1992, 1996) use the Burr XII
distribution to model the RND as:

g (St) =
aqSa−1

t baq

(ba + Sat )q+1 , (A.17)

where a > 0, b > 0 and q > 0 are again the parameters of the distribution. Burr
XII is another special case of the GB2 for p = 1. While the aforementioned three
studies use American options, none of them explains how the possibility of an early
exercise is incorporated into the RND estimations.

Fabozzi et al. (2009) propose the Generalized Gamma distribution (GG) for
modelling the implied distribution. GG can be seen as a limiting case of the GB2
when b = βq1/a and q →∞. The respective RND function is:

g (St) =
1

Γ (p)

(
β

a

)(
St
a

)βp−1

exp

(
−
(
St
a

)β)
, (A.18)

where a > 0, β > 0 and p > 0 are the parameters and Γ (p) is the gamma function
defined as:

Γ (p) =

∞∫
0

tp−1e−tdt. (A.19)

3The discounting term does not appear in the original formula derived by Rebonato (2004) as
he assumes that there are no interest rates in the economy.

4Sherrick, Garcia and Tirupattur (1996) as well as other researchers use futures options to
extract the risk-neutral density function. However, since this chapter does not investigate the
empirical applications of each study but only the theoretical contributions, the notation for the
risk-neutral density function remains g (St) even if the underlying asset under investigation in the
original study is the futures price.
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Using the GG density function, they derive the following option pricing formula for
a call:

CGG (X) = e−rt

 a
Γ(p+ 1

β )
Γ(p)

−X − aΓ(p+ 1
β )

Γ(p)
I
[
p+ 1

β
,
(
X
a

)β]
+

+XI
[
p,
(
X
a

)β]
 , (A.20)

where I (., .) is the incomplete gamma function:

I (p, t) =
1

Γ (p)

∫ t

0

up−1e−udu. (A.21)

A special case of the GG distribution for p = 1 is the Weibull distribution.
Savickas (2002) suggests that the RND of the underlying asset can be described by
the formula:

g (St) = kβSβ−1
t e−kS

β
t , (A.22)

where k > 0 and β > 0 are the distribution parameters and k = a−β from the GG
distribution. Savickas (2002) shows that despite the fact that the Weibull distri-
bution has only two parameters similarly to the lognormal distribution, it strongly
outperforms the lognormal in terms of pricing ability. The reason is that, unlike the
lognormal distribution, it is possible for the Weibull distribution to exhibit negative
skewness. When the risk-neutral distribution is assumed to be of Weibull form, the
call option pricing formula becomes (Fabozzi et al., 2009):5

CW (X) = e−rt
1

βk1/β

[
Γ

(
1

β

)
− I

(
1

β
, kXβ

)]
, (A.23)

where Γ (.) and I (.) denote again the gamma and the incomplete gamma function
respectively.

Dutta and Babbel (2005) use the g-and-h distribution to capture the implied
distribution of the asset price. In this case, the RND function can be expressed as:

g (z) = a+ b (egz − 1)
exp (hz2/2)

g
, (A.24)

where z is the standard normal variable and a, b, g, h are the parameters which refer
to location, scale, skewness and kurtosis respectively. The respective call option
pricing formula takes the following form:

Cg−h (X) = e−rt


(a−X) [1−N (X)]− b

g(
√

1−h)[
1−N

(
X
√

1− h
)]

+ b

g(
√

1−h)
eg

2/2(1−h)[
1−N

(√
1− h

)
X − g/

(√
1− h

)]
 , (A.25)

where N (.) is the CDF of the normal distribution.
Corrado (2001) suggests the usage of the Generalized Lamda distribution (GL)

for modelling the risk-neutral distribution of an asset. Since the GL distribution is
defined by its percentile function, Corrado (2001) first transforms the formula of the

5A similar formula is also derived by Dutta and Babbel (2005). However, Fabozzi et al. (2009)
claim that there is a mistake in the formula derivation.
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call option’s expected payoff as follows:∫ ∞
X

(St −X) dg (St) =

∫ 1

g(X)

(St (g)−X) dg. (A.26)

By setting the mean equal to S0e
rt and the variance to (S0e

rt)
2
(
eσ

2t − 1
)

, the call

price is estimated by:
CGL (X) = S0G1 − e−rtXG2 (A.27)

where:

G1 = 1− g (X) +

√
eσ2t − 1

λ2 (λ3, λ4)

(
g(X)−g(X)λ3+1

λ3+1
+

+
1−g(X)−(1−g(X)λ4+1)

λ4+1

)
G2 = 1− g (X)

λ2 (λ3, λ4) = sign (λ3)
√
b− a2

a =
1

λ3 + 1
− 1

λ4 + 1

b =
1

2λ3 + 1
− 1

2λ4 + 1
− 2B (λ3 + 1, λ4 + 1) . (A.28)

Therefore, the three parameters to be estimated are σ, λ3 and λ4, where λ3 and λ4

affect the shape of the distribution and B (., .) stands again for the beta function.
Finally, Markose and Alentorn (2011) propose the Generalized Extreme Value

(GEV) distribution for capturing the risk neutral distribution of an asset’s returns.
The authors model the returns in terms of losses (Lt) and derive the RND function
of the asset’s price at maturity as:

g (St) =
1

S0σ

[
1 + ξ

(Lt − µ)

σ

]−1(−1/ξ)

exp

{
−
[
1 + ξ

(Lt − µ)

σ

]−1/ξ
}
, (A.29)

where µ, σ and ξ are the parameters that determine the location, scale and shape of
the distribution respectively. The corresponding call option pricing formula is:

CGEV (X) = e−rt

{
S0

(
(1− µ+ σ/ξ) e−H

−1/ξ−
σ
ξ
I
(
1− ξ,H−1/ξ

) )
−Xe−H−1/ξ

}
, (A.30)

where:

H = 1 +
ξ

σ

(
1− X

S0

− µ
)
. (A.31)

and I (., .) is the incomplete gamma function.

A.1.3 Mixture methods

Mixture methods incorporate the idea of capturing the RND by the weighted av-
erage of two or more distributions. Ritchey (1990) first points out that the well
documented leptokurtic stock return distributions can be explained if it is assumed
that returns follow a nonstationary normal distribution, i.e. that they are normally
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distributed for short time periods but the distributional parameters change over
time. In this case, a mixture of normal distributions can approximate such a non-
stationary process. Then, Ritchey (1990) derives an option pricing model which is
composed by a weighted sum of Black-Scholes prices.

Melick and Thomas (1997) assume that the RND of the underlying asset at the
maturity of the option can be described by a mixture of three lognormal distribu-
tions:

g(St) = π1f1(St) + π2f2(St) + π3f3(St), (A.32)

where f(St) stands for the lognormal distribution. The reason they mix three distri-
butions is because they examine a period where the market was anticipating three
possible outcomes. Since Melick and Thomas (1997) use American style options they
cannot derive a closed form solution for the option prices and surpass this problem
by using upper and lower boundaries:

Cu = E0 [max (0, St −X)]

C l = max
{
E0 [St]−X, e−rtE0 [max (0, St −X)]

}
, (A.33)

Therefore, for the price of a call option they derive the following formula:

CM(X) = wjC
u(X, θ) + (1− wj)C l(X, θ), (A.34)

where θ denotes the nine main parameters (πi, µi, σi for i = 1, 2, 3) to be estimated,
and wj - with j = 1 when the call option is in-the-money and j = 2 when the call
option is out-of-the-money - is the weight that expresses the relative position of the
option price in respect to the bounds (Cu, C l).

Bahra (1997) argues that Melick and Thomas’ (1997) methodology may be im-
possible to be implemented in cases where few options are traded in the market
due to the large number of parameters that have to be estimated. As a result, he
proposes a similar approach which assumes that the RND of the terminal price is a
mixture of two lognormal distributions. Given that in his research he examines only
European options, the pricing formula of a call option takes the form:

CM(X) = e−rt
∫ ∞
X

[πf1(St) + (1− π)f2(St)] (St −X)dSt. (A.35)

Hence, Bahra’s method requires the estimation of only five parameters (µ1, σ1, µ2,
σ2, π). The same technique is also used by Gemmill and Saflekos (2000). A variant
of the aforementioned methodologies is suggested by Söderlind and Svensson (1997)
and Söderlind (2000) where the joint distribution of the logarithm of the asset price
and the discount factor corresponding to the lifetime of the option can be modeled
as a mixture of bivariate normal densities.
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B.1 Macroeconomic Dataset

Table B.1: Macroeconomic variables
This table lists the name of each macroeconomic variable along with its mnemonic label,
brief description of the series and the transformation applied to ensure stationarity. In the
transf column, 1 denotes using levels, 2 denotes taking first-differences, 3 denotes taking
second-differences, 4 denotes taking logs, 5 denotes taking log-differences and 6 denotes
taking second-log-differences. All the series are from Global Insights Basic Economics
database unless specified as TCB (The Conference Board) or AC (Author calculation).
The sample period is 1990:01 to 2011:06.

Series
no.

Name MnemonicDescription transf

Output and Income
1 PI ypr Personal Income (AR, Bil. Chain 2000 $) 5
2 PI less transfers a0m051 Personal Income less Transfer Payments (AR, Bil. Chain 2000

$)
5

3 IP: total ips10 Industrial Production Index - Total Index 5
4 IP:products ips11 Industrial Production Index - Products, Total 5
5 IP:final prod ips299 Industrial Production Index - Final Products 5
6 IP:consgds ips12 Industrial Production Index - Consumer Goods 5
7 IP: cons dble ips13 Industrial Production Index - Durable Consumer 5
8 IP: cons nondble ips18 Industrial Production Index - Nondurable Consumer 5
9 IP: bus eqpt ips25 Industrial Production Index - Business Equipment 5
10 IP: matls ips32 Industrial Production Index - Materials 5
11 IP: dble matls ips34 Industrial Production Index - Durable Goods 5
12 IP: nondble

matls
ips38 Industrial Production Index - Nondurable Goods 5

13 IP: mfg ips43 Industrial Production Index - Manufacturing 5
14 IP: res util ips307 Industrial Production Index - Residential Utilities 5
15 IP: fuels ips306 Industrial Production Index - Fuels 5
16 NAPM prodn pmp Napm Production Index (Percent) 1
17 Cap util utl11 Capacity Utilization (SIC-Mfg) 2
Employment
18 Help wanted

indx
lhel Index of Help-Wanted Advertising In Newspapers

(1967=100;Sa)
2

19 Help
wanted/unemp

lhelx Help-Wanted Ads:No. Unemployed Clf 2

20 Emp CPS total lhem Civilian Labor Force: Employed, Total (Thous.,Sa) 5
21 Emp CPS nonag lhnag Civilian Labor Force: Employed, Nonagric.Industries

(Thous.,Sa)
5

22 U: all lhur Unemployment Rate: All Workers, 16 Years 2
23 U: mean dura-

tion
lhu680 Unemploy.By Duration: Average(Mean)Duration In Weeks

(Sa)
2

24 U ¡ 5 wks lhu5 Unemploy.By Duration: Persons Unempl.Less Than 5 Wks
(Thous.,Sa)

5

25 U 5-14 wks lhu14 Unemploy.By Duration: Persons Unempl.5 To 14 Wks
(Thous.,Sa)

5

26 U 15+ wks lhu15 Unemploy.By Duration: Persons Unempl.15 Wks +
(Thous.,Sa)

5
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Series
no.

Name MnemonicDescription transf

27 U 15-26 wks lhu26 Unemploy.By Duration: Persons Unempl.15 To 26 Wks
(Thous.,Sa)

5

28 U 27+ wks lhu27 Unemploy.By Duration: Persons Unempl.27 Wks +
(Thous,Sa)

5

29 UI claims luinc Average Weekly Initial Claims, Unemploy. Insurance (Thous.
Sa)

5

30 Emp: total ces002 Employees On Nonfarm Payrolls: Total Private 5
31 Emp: gds prod ces003 Employees On Nonfarm Payrolls - Goods-Producing 5
32 Emp: mining ces006 Employees On Nonfarm Payrolls - Mining 5
33 Emp: const ces011 Employees On Nonfarm Payrolls - Construction 5
34 Emp: mfg ces015 Employees On Nonfarm Payrolls - Manufacturing 5
35 Emp: dble gds ces017 Employees On Nonfarm Payrolls - Durable Goods 5
36 Emp: nondbles ces033 Employees On Nonfarm Payrolls - Nondurable Goods 5
37 Emp: services ces046 Employees On Nonfarm Payrolls - Service-Providing 5
38 Emp: TTU ces048 Employees On Nonfarm Payrolls - Trade, Transportation, &

Utilities
5

39 Emp: wholesale ces049 Employees On Nonfarm Payrolls - Wholesale Trade. 5
40 Emp: retail ces053 Employees On Nonfarm Payrolls - Retail Trade 5
41 Emp: FIRE ces088 Employees On Nonfarm Payrolls - Financial Activities 5
42 Emp: Govt ces140 Employees On Nonfarm Payrolls - Government 5
43 Agg wkly hours Index of Aggregate Weekly Hours 2
44 Avg hrs ces151 Avg Weekly Hrs of Prod or Nonsup Workers On Private Non-

farm Payrolls - Goods-Producing
2

45 Overtime: mfg ces155 Avg Weekly Hrs of Prod or Nonsup Workers On Private Non-
farm Payrolls - Mfg Overtime Hours

2

46 Avg hrs: mfg a0m001 Average Weekly Hours, Mfg. (Hours) 2
47 NAPM empl pmemp Napm Employment Index (Percent) 1
48 AHE: goods ces275 Avg Hourly Earnings of Prod or Nonsup Workers On Private

Nonfarm Payrolls - Goods-Producing
6

49 AHE: const ces277 Avg Hourly Earnings of Prod or Nonsup Workers On Private
Nonfarm Payrolls - Construction

6

50 AHE: mfg ces278 Avg Hourly Earnings of Prod or Nonsup Workers On Private
Nonfarm Payrolls - Manufacturing

6

Housing
51 Starts: nonfarm hsfr Housing Starts:Nonfarm(1947-58);Total Farm &

Nonfarm(1959-)(Thous.,Saar)
5

52 Starts: NE hsne Housing Starts:Northeast (Thous.U.)S.A. 5
53 Starts: MW hsmw Housing Starts:Midwest(Thous.U.)S.A. 5
54 Starts: South hssou Housing Starts:South (Thous.U.)S.A. 5
55 Starts: West hswst Housing Starts:West (Thous.U.)S.A. 5
56 BP: total hsbr Housing Authorized: Total New Priv Housing Units

(Thous.,Saar)
5

57 BP: NE hsbne Houses Authorized By Build. Per-
mits:Northeast(Thou.U.)S.A

5

58 BP: MW hsbmw Houses Authorized By Build. Permits:Midwest(Thou.U.)S.A. 5
59 BP: South hsbsou Houses Authorized By Build. Permits:South(Thou.U.)S.A. 5
60 BP: West hsbwst Houses Authorized By Build. Permits:West(Thou.U.)S.A. 5
Consumption, Orders and Inventories
61 PMI pmi Purchasing Managers’ Index (Sa) 1
62 NAPM new or-

drs
pmno Napm New Orders Index (Percent) 1

63 NAPM vendor
del

pmdel Napm Vendor Deliveries Index (Percent) 1

64 NAPM Invent pmnv Napm Inventories Index (Percent) 1
65 Orders: cons gds a1m008 Mfrs’ New Orders, Consumer Goods & Materials (Mil. Chain

1982 $) (TCB)
5

66 Orders: dble gds a0m007 Mfrs’ New Orders, Durable Goods Industries (Bil. Chain 2000
$) (TCB)

5

67 Orders: cap gds a0m027 Mfrs’ New Orders, Nondefense Capital Goods (Mil. Chain
1996 $) (TCB)

5

68 Unf orders: dble a1m092 Mfrs’ Unfilled Orders, Durable Goods Indus. (Bil. Chain 2000
$) (TCB)

5

69 M&T invent a0m070 Manufacturing & Trade Inventories (Bil. Chain 2005 $)
(TCB)

5

70 M&T in-
vent/sales

a0m077 Ratio, Mfg. & Trade Inventories To Sales (Based On Chain
2005 $) (TCB)

2

71 Real Consump-
tion

cons-r Real Personal Consumption Expenditures (AC) (Bil. $) pi031
/ gmdc

5

72 M&Tsales mtq Manufacturing & Trade Sales (Mil. Chain 1996 $) 5
73 Retail sales a0m059 Sales Of Retail Stores (Mil. Chain 2000 $) (TCB) 5
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Series
no.

Name MnemonicDescription transf

74 Consumer ex-
pect

hhsntn U. Of Mich. Index Of Consumer Expectations(Bcd-83) 2

Money and Credit
75 M1 fm1 Money Stock: M1(Curr,Trav.Cks,Dem Dep,Other Ck’able

Dep)(Bil. $,Sa)
6

76 M2 fm2 Money Stock:M2(M1+O’nite Rps,Euro$,G/P&B/D &
Mmmfs&Sav&Sm Time Dep)(Bil. $,Sa)

6

77 Currency fmscu Money Stock: Currency held by the public (Bil $,Sa) 6
78 M2 (real) fm2-r Money Supply: Real M2, fm2 / gmdc (AC) 5
79 MB fmfba Monetary Base, Adj For Reserve Requirement Changes(Mil.

$,Sa)
6

80 Reserves tot fmrra Depository Inst Reserves:Total, Adj For Reserve Req
Chgs(Mil. $,Sa)

6

81 C&I loans fclnbw Commercial & Industrial Loans Outstanding + NonFin
Comm. Paper (Mil. $, SA) (Bci)

6

82 C&I loans fclbmc Wkly Rp Lg Com’l Banks:Net Change Com’l & Indus
Loans(Bil$,Saar)

1

83 Cons credit ccinrv Consumer Credit Outstanding - Nonrevolving(G19) 6
84 Inst cred/PI crdpi Ratio, Consumer Installment Credit To Personal Income

(Pct.) (TCB)
2

Interest Rates, Exchange Rates and Spreads
85 Fed Funds fyff Interest Rate: Federal Funds (Effective) (% Per Annum,Nsa) 2
86 Comm paper cpf3m 3-Month AA Financial Commercial Paper Rate (FRED) 2
87 3 mo T-bill fygm3 Interest Rate: U.S.Treasury Bills,Sec Mkt,3-Mo.(% Per

Ann,Nsa)
2

88 6 mo T-bill fygm6 Interest Rate: U.S.Treasury Bills,Sec Mkt,6-Mo.(% Per
Ann,Nsa)

2

89 1 yr T-bond fygt1 Interest Rate: U.S.Treasury Const Maturities,1-Yr.(% Per
Ann,Nsa)

2

90 5 yr T-bond fygt5 Interest Rate: U.S.Treasury Const Maturities,5-Yr.(% Per
Ann,Nsa)

2

91 10 yr T-bond fygt10 Interest Rate: U.S.Treasury Const Maturities,10-Yr.(% Per
Ann,Nsa)

2

92 Aaa bond fyaaac Bond Yield: Moody’s Aaa Corporate (% Per Annum) 2
93 Baa bond fybaac Bond Yield: Moody’s Baa Corporate (% Per Annum) 2
94 CP-FF spread scp90F cp90-fyff (AC) 1
95 3 mo-FF spread sfygm3 fygm3-fyff (AC) 1
96 6 mo-FF spread sfygm6 fygm6-fyff (AC) 1
97 1 yr-FF spread sfygt1 fygt1-fyff (AC) 1
98 5 yr-FF spread sfygt5 fygt5-fyff (AC) 1
99 10 yr-FF spread sfygt10 fygt10-fyff (AC) 1
100 Aaa-FF spread sfyaaac fyaaac-fyff (AC) 1
101 Baa-FF spread sfybaac fybaac-fyff (AC) 1
102 Eff ex rate: US exrus United States;Effective Exchange Rate (Merm)(Index No.) 5
103 Ex rate: Switz exrsw Foreign Exchange Rate: Switzerland (Swiss Franc Per U.S.$) 5
104 Ex rate: Japan exrjan Foreign Exchange Rate: Japan (Yen Per U.S.$) 5
105 Ex rate: UK exruk Foreign Exchange Rate: United Kingdom (Cents Per Pound) 5
106 EX rate:

Canada
exrcan Foreign Exchange Rate: Canada (Canadian $Per U.S.$) 5

Prices
107 PPI: fin gds pwfsa Producer Price Index: Finished Goods (82=100,Sa) 6
108 PPI: cons gds pwfcsa Producer Price Index: Finished Consumer Goods (82=100,Sa) 6
109 PPI: int materi-

als
pwimsa Producer Price Index: Intermed Mat.Supplies & Compo-

nents(82=100,Sa)
6

110 PPI: crude mate-
rials

pwcmsa Producer Price Index: Crude Materials (82=100,Sa) 6

111 Spot market
price

psccom Spot market price index: bls & crb: all commodi-
ties(1967=100)

6

112 PPI: nonferrous
materials

pw102 Producer Price Index: Nonferrous Materials (1982=100, Nsa) 6

113 NAPM com
price

pmcp Napm Commodity Prices Index (Percent) 1

114 CPI-U: all punew Cpi-U: All Items (82-84=100,Sa) 6
115 CPI-U: apparel pu83 Cpi-U: Apparel & Upkeep (82-84=100,Sa) 6
116 CPI-U:transp pu84 Cpi-U: Transportation (82-84=100,Sa) 6
117 CPI-U: medical pu85 Cpi-U: Medical Care (82-84=100,Sa) 6
118 CPI-U: comm. puc Cpi-U: Commodities (82-84=100,Sa) 6
119 CPI-U:dbles pucd Cpi-U: Durables (82-84=100,Sa) 6
120 CPI-U:services pus Cpi-U: Services (82-84=100,Sa) 6
121 CPI-U:exfood puxf Cpi-U: All Items Less Food (82-84=100,Sa) 6
122 CPI-U:exshelter puxhs Cpi-U: All Items Less Shelter (82-84=100,Sa) 6

192



Appendix B. Appendix to Chapter 3

Series
no.

Name MnemonicDescription transf

123 CPI-U:exmed puxm Cpi-U: All Items Less Midical Care (82-84=100,Sa) 6
124 PCEdefl gmdc Pce, Impl Pr Defl:Pce (2005=100, Sa) (BEA) 6
125 PCEdefl: dlbes gmdcd Pce, Impl Pr Defl:Pce; Durables (2005=100, Sa) (BEA) 6
126 PCEdefl: nond-

ble
gmdcn Pce, Impl Pr Defl:Pce; Nondurables (2005=100, Sa) (BEA) 6

127 PCEdefl: service gmdcs Pce, Impl Pr Defl:Pce; Services (2005=100, Sa) (BEA) 6
Stock Market
128 S&P 500 fspcom S&P’s Common Stock Price Index: Composite (1941-43=10) 5
129 S&P: indust fspin S&P’s Common Stock Price Index: & Industrials (1941-

43=10)
5

130 S&P div yield fsdxp S&P’s Composite Common Stock: Dividend Yield (% Per An-
num)

2

131 S&P PE ratio fspxe S&P’s Composite Common Stock: & Price-Earnings Ratio
(%,Nsa)

5
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B.2 Estimation of Common Factors

Before proceeding to the common factors estimation, all the data are transformed
appropriately in order to become stationary and are standardized. The procedure
we follow for the estimation of the pervasive macroeconomic factors is the asymp-
totic principal component analysis (APCA) introduced by Connor and Korajczyk
(1986) and widely used for summarizing latent information from large macroeco-
nomic panels. Let N be the number of observed variables, T the number of time
series observations and K the number of latent common factors. For i = 1, ..., N ,
t = 1, ..., T, and assuming a static factor model with approximate structure, a vari-
able xit can be written as:

xit = λi1f1t + λi2f2t + ...+ λiKfKt + eit, (B.1)

where xit is the variable i at time t, λik is the factor loading of variable i corre-
sponding to the kth factor, fkt is the value of the kth factor at time t and eit is the
idiosyncratic error of variable i at time t. The T ×K factor matrix F̂ is calculated
as
√
T multiplied by the eigenvectors corresponding to the first K eigenvalues of the

T × T matrix XX ′. The normalization F ′F/T = I gives the solution for the factor

loadings matrix as Λ̂′ = F̂ ′X/T . The number of significant factors r is specified
using the second information criterion proposed by Bai and Ng (2002) as it has
been found to be the most stable. In our case, eight factors are found to explain
sufficiently the macroeconomic variations.
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Figure B.1: R2s of common factors

This figure depicts the R2s from simple univariate regressions of the eight common factors against

each of the 131 macroeconomic variables. The variables’ categories are output and income (series 1

to 17); employment (18-50); housing (51-60); consumption, orders and inventories (61-74); money

and credit (75-84); interest rates, exchange rates and spreads (85-106); prices (107-127) and stock

market (128-131). The sample is from 1990:01 to 2011:06.
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B.3 Results with Alternative Macroeconomic Vari-

ables

Table B.2: Risk-neutral skewness and EF, EB sentiment components using alternative macroeconomic variables

Adv-Sent Spec-Sent Ind-Sent
Panel A: 1990:01 - 1997:06

LagRNS 0.249*** 0.261*** 0.242*** 0.376*** 0.369*** 0.366*** 0.434*** 0.436*** 0.445***
(3.163) (3.325) (2.924) (3.849) (3.696) (3.595) (5.914) (5.817) (5.795)

RelDem 0.008 0.005 -0.002 -0.003 0.003 0.004
(1.198) (0.866) (-0.270) (-0.352) (0.424) (0.575)

TrVlm 0.040 0.031 -0.017 -0.019 0.004 0.008
(0.577) (0.449) (-0.268) (-0.300) (0.055) (0.115)

Vol -0.766 -0.248 0.373
(-1.160) (-0.289) (0.458)

EF 1.734*** 1.785*** 1.739*** 4.013** 4.062** 3.820* 0.870*** 0.876*** 0.918***
(4.984) (5.204) (5.122) (2.031) (2.057) (1.681) (3.909) (3.866) (3.431)

EB 0.817*** 0.836*** 0.844*** 0.974 0.953 0.932 0.243 0.235 0.261
(2.886) (2.822) (2.987) (1.267) (1.252) (1.254) (1.591) (1.457) (1.537)

R̃2 0.409 0.400 0.401 0.253 0.236 0.227 0.327 0.311 0.304
Panel B: 1997:07 - 2011:06

LagRNS 0.465*** 0.402*** 0.401*** 0.482*** 0.415*** 0.402*** 0.485*** 0.433*** 0.420***
(6.300) (4.938) (4.947) (7.133) (5.484) (5.220) (6.289) (5.126) (4.972)

RelDem -0.038 -0.035 -0.066 -0.053 -0.043 -0.035
(-0.939) (-0.859) (-1.637) (-1.300) (-1.034) (-0.859)

TrVlm -0.140*** -0.138*** -0.132*** -0.137*** -0.127** -0.128**
(-2.903) (-2.879) (-2.770) (-2.856) (-2.538) (-2.558)

Vol 0.285 0.492 0.533*
(0.663) (1.580) (1.714)

EF -0.788*** -0.955*** -0.811** 2.842** 3.901*** 3.334** -0.670** -0.796*** -0.559*
(-3.166) (-3.587) (-2.289) (2.167) (3.050) (2.362) (-2.514) (-2.906) (-1.733)

EB -0.017 -0.131 -0.048 -0.805 -0.729 -0.579 -0.007 -0.113 0.001
(-0.062) (-0.489) (-0.146) (-1.167) (-1.147) (-0.874) (-0.023) (-0.414) (0.002)

R̃2 0.277 0.302 0.299 0.274 0.302 0.304 0.267 0.288 0.290

This table reports the results of monthly regressions of S&P 500 index risk-neutral skewness on the EF and EB
components of the sentiment proxies used in the study and a set of control variables. A constant term is included in
all the regressions but omitted for brevity. Panel A reports the results for the period 1990:1 - 1997:6, while Panel B
reports the results for the period 1997:07 - 2011:06. Risk-neutral skewness is estimated using the model-free method
of Bakshi, Kapadia and Madan (2003). LagRNS is the lagged skewness value. RelDem is the relative demand
pressure as captured by the ratio of the open interest of OTM puts to the open interest of NTM calls and puts.
TrVlm is the heterogeneity of beliefs, proxied by the detrended logarithm of options trading volume. Vol is the
index instantaneous volatility as proxied by VIX. Adv-Sent is the bull-bear spread based on Investors Intelligence’s
advisors sentiment index. Spec-Sent is the net position of non-commercial traders on S&P 500 index futures scaled
by the total open interest. Ind-Sent is the normalized aggregate net exchanges of the equity funds. EF and EB are
the two components of each sentiment proxy estimated as described in Section 3.3.3. Newey-West t-statistics are
reported in parentheses below the coefficients. ***, ** and * denote significance at 1%, 5% and 10% respectively.
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Appendix to Chapter 4

C.1 Macroeconomic Variables

Table C.1: Description of macroeconomic variables

Name Description Source
Real Activity

Pers income Personal Income Account, Overall, US BEA
Total (Current Prices, AR, SA, Billions $)

Ind prod Industrial Production, Overall, US FED
Total (Volume, SA, 2007=100)

Cap util Capacity Utilization, Total index (SA, %) US FED
Unempl Unemployment Rate, Total (SA,%) US BLS
Payroll Employment, Overall, US BLS

Nonfarm payroll, total (SA, Thousands)
House starts Housing Starts, Total (AR, SA, Thousands) US CB
Build perm Building Permits, Total (AR, SA, Thousands) US CB
M&T invent Manufacturing and Trade Inventories TCB

(SA, Billions $, 2009=100)
Consumption Personal Consumption Expenditure, US BEA

Overall, Total (AR, SA, Billions $, 2009=100)
Retail sales Retail Sales, Total excluding food services US CB

(Current Prices, SA, Millions $)
Money, Credit and Treasury Yields

M1 Money supply M1 (Current Prices, SA, Billions $) US FED
M2 (real) Money supply M2 (Current Prices, SA, Billions $) US FED

/ Price Index, Personal Consumption Expenditure, US BEA
Overall, Total (SA, Index, 2009=100)

Reserves tot Reserves Depository Institutions,
Total reserves (Current Prices, SA, Millions $) US FED

C&I loans Commercial and Industrial Loans
Outstanding (Current Prices, SA, Millions $) TCB

CPI Consumer Prices, All items (SA, Index, 1982-1984=100) US BLS
3-m t-bill Interest Rate: US Treasury Bills, US FED

Secondary Market, 3-Month (% Per Annum, NSA)
6-m t-bill Interest Rate: US Treasury Bills, US FED

Secondary Market, 6-Month (% Per Annum, NSA)
1-yr t-bond Interest Rate: US Treasury Constant Maturities, US FED

1-Year (% Per Annum, NSA)
5-yr t-bond Interest Rate: US Treasury Constant Maturities, US FED

5-Year (% Per Annum, NSA)

This table lists the name, a brief description and the source of each macroeconomic variable. Panel A lists
the real activity variables while Panel B the money, credit and treasury yield variables. The data sources
are the US Bureau of Economic Analysis (US BEA), the US Federal Reserve (US FED), the US Bureau of
Labor Statistics (US BLS), the US Census Bureau (US CB) and the Conference Board (TCB).
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C.2 Detailed Results with Newey and West (1987)

Covariance Matrix
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C.3 Detailed Results with Hodrick (1992) Covari-

ance Matrix
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Appendix C. Appendix to Chapter 4
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Appendix D

Appendix to Chapter 5

D.1 Additional Results

In this section we provide some additional results using the consumption-wealth
ratio of Lettau and Ludvigson (2001) and the stock market illiquidity of Amihud
(2002). Consumption-wealth ratio data are obtained from Sydney Ludvigson’s web-
site1 and a monthly time-series is created from the most recent quarterly observa-
tions. Stock market illiquidity is created by averaging the illiquidity measures of
all the NYSE/AMEX stocks within a given month. Both variables are insignificant
across all horizons in univariate regressions and have very limited impact on the
significance of our dispersion in expectations measures when added in the predictive
model.

1http://www.econ.nyu.edu/user/ludvigsons/
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Appendix D. Appendix to Chapter 5

Table D.1: 1-month horizon predictability - additional variables

Panel A: Univariate Panel B: Bivariate

R̃2 (%) DISP Z R̃2 (%) DISP* Z R̃2 (%)
DISP -9.68 2.23

(-2.36)**
[-2.44]**

DISP* -9.20 1.97
(-2.29)**
[-2.35]**

VRP 16.09 7.04 -9.27 15.85 9.10 -8.14 15.53 8.51
(4.66)*** (-2.47)** (4.34)*** (-2.24)** (4.28)***
[2.49]** [-2.35]** [2.46]** [-2.11]** [2.41]**

CAY 3.07 -0.22 -9.70 -0.05 1.75 -9.38 -0.47 1.49
(0.79) (-2.23)** (-0.01) (-2.15)** (-0.11)
[0.81] [-2.33]** [-0.01] [-2.23]** [-0.12]

ILLIQ 2.52 -0.31 -9.54 0.75 1.76 -9.11 0.42 1.48
(0.63) (-2.27)** (0.18) (-2.18)** (0.10)
[0.64] [-2.34]** [0.19] [-2.24]** [0.10]

Panel C: Trivariate

DISP VRP Z R̃2 (%) DISP* VRP Z R̃2 (%)
CAY -10.29 16.40 -3.21 8.90 -9.38 16.06 -3.37 8.33

(-2.58)** (4.32)*** (-0.80) (-2.37)** (4.28)*** (-0.81)
(-2.44)** (2.46)** (-0.75) [-2.23]** [2.42]** [-0.77]

ILLIQ -9.64 16.18 -2.00 8.75 -8.61 15.86 -2.15 8.17
(-2.50)** (4.26)*** (-0.49) (-2.29)** (4.22)*** (-0.52)
[-2.36]** [2.43]** [-0.47] [-2.13]** [2.39]** [-0.50]

This table reports the results of 1-month ahead predictive regressions for the excess return on the CRSP value-
weighted index. The sample period is 1996:01-2012:12. Panel A reports the results of univariate regressions,
Panel B the results of bivariate regressions and Panel C the results of trivariate regressions. The forecasting
variables are the two dispersion in options traders’ expectations measures (DISP, DISP*), variance risk premium
(VRP), consumption-wealth ratio (CAY) and stock market illiquidity (ILLIQ). Reported coefficients indicate the
percentage annualized excess return resulting from a one standard deviation increase in each predictor variable.
Newey and West (1987) and Hodrick (1992) t-statistics with lag length equal to the forecasting horizon are reported
in parentheses and square brackets respectively. ***, ** and * denote significance in 1%, 5% and 10% level.
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Appendix D. Appendix to Chapter 5

Table D.2: Univariate long-horizon predictability - additional variables

h=3 h=6 h=12 h=24

R̃2 (%) R̃2 (%) R̃2 (%) R̃2 (%)
DISP -7.39 3.61 -5.47 3.54 -6.67 10.89 -5.19 12.72

(-2.59)** (-2.25)** (-2.90)*** (-2.35)**
[-2.33]** [-1.83]* [-2.38]** [-2.02]**

DISP* -7.10 3.30 -5.10 3.00 -6.65 10.80 -5.20 12.74
(-2.65)*** (-2.24)** (-3.03)*** (-2.49)**
[-2.31]** [-1.81]* [-2.40]** [-2.11]**

VRP 13.05 12.32 8.34 8.90 3.94 3.46 2.90 3.58
(5.25)*** (3.96)*** (2.40)** (2.29)**
[3.62]*** [3.33]*** [2.06]** [1.77]*

CAY 3.41 0.37 3.17 0.85 3.24 2.17 3.52 5.56
(1.01) (0.96) (0.91) (1.11)
[0.90] [0.83] [0.84] [0.93]

ILLIQ 2.57 -0.01 1.46 -0.22 0.95 -0.29 0.07 -0.56
(0.70) (0.41) (0.25) (0.02)
[0.65] [0.37] [0.24] [0.02]

This table reports the results of 3-, 6-, 12- and 24-month ahead univariate predictive regressions
for the excess return on the CRSP value-weighted index. The sample period is 1996:01-2012:12.
The forecasting variables are the two dispersion in options traders’ expectations measures (DISP,
DISP*), variance risk premium (VRP), consumption-wealth ratio (CAY) and stock market illiquidity
(ILLIQ). Reported coefficients indicate the percentage annualized excess return resulting from a one
standard deviation increase in each predictor variable. Newey and West (1987) and Hodrick (1992)
t-statistics with lag length equal to the forecasting horizon are reported in parentheses and square
brackets respectively. ***, ** and * denote significance in 1%, 5% and 10% level.
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Table D.3: Trivariate long-horizon predictability - additional variables

DISP VRP Z R̃2 (%) DISP* VRP Z R̃2 (%)
Panel A: 3-month horizon

CAY -7.47 13.08 -1.33 15.33 -6.76 12.84 -1.43 14.50
(-3.15)*** (4.43)*** (-0.41) (-2.94)*** (4.43)*** (-0.42)
[-2.27]** [3.60]*** [-0.34] [-2.09]** [3.55]*** [-0.35]

ILLIQ -7.21 13.01 -0.93 15.27 -6.46 12.77 -1.04 14.45
(-3.15)*** (4.46)*** (-0.28) (-2.95)*** (4.46)*** (-0.30)
[-2.24]** [3.58]*** [-0.23] [-2.06]** [3.53]*** [-0.25]

Panel B: 6-month horizon
CAY -5.25 8.20 0.04 11.74 -4.53 8.03 0.05 10.78

(-2.19)** (3.24)*** (0.01) (-1.88)* (3.25)*** (0.02)
[-1.69]* [3.32]*** [0.01] [-1.54] [3.28]*** [0.01]

ILLIQ -5.42 8.35 -0.89 11.84 -4.75 8.18 -0.95 10.89
(-2.44)** (3.27)*** (-0.27) (-2.17)** (3.26)*** (-0.27)
[-1.77]* [3.41]*** [-0.22] [-1.64] [3.37]*** [-0.23]

Panel C: 12-month horizon
CAY -6.41 3.71 0.63 13.81 -6.30 3.48 0.33 13.09

(-2.51)** (1.96)* (0.19) (-2.46)** (1.87)* (0.09)
[-2.24]** [2.09]** [0.16] [-2.23]** [1.98]** [0.08]

ILLIQ -6.68 3.92 -0.60 13.81 -6.55 3.65 -0.81 13.23
(-2.90)*** (2.02)** (-0.19) (-2.90)*** (1.91)* (-0.25)
[-2.35]** [2.19]** [-0.15] [-2.34]** [2.07]** [-0.20]

Panel D: 24-month horizon
CAY -4.61 2.45 1.77 16.88 -4.48 2.26 1.65 16.07

(-1.63) (1.75)* (0.53) (-1.55) (1.65)* (0.47)
[-1.69]* [2.02]** [0.46] [-1.66]* [1.84]* [0.42]

ILLIQ -5.19 2.89 -0.90 15.87 -5.11 2.67 -0.99 15.35
(-2.24)** (1.91)* (-0.27) (-2.23)** (1.78)* (-0.29)
[-1.98]** [2.32]** [-0.23] [-2.02]** [2.16]** [-0.25]

This table reports the results of 3- (Panel A), 6- (Panel B), 12- (Panel C) and 24-month (Panel
D) ahead trivariate predictive regressions for the excess return on the CRSP value-weighted index.
The sample period is 1996:01-2012:12. The forecasting variables are the two dispersion in options
traders’ expectations measures (DISP, DISP*), variance risk premium (VRP), consumption-wealth
ratio (CAY) and stock market illiquidity (ILLIQ). Reported coefficients indicate the percentage an-
nualized excess return resulting from a one standard deviation increase in each predictor variable.
Newey and West (1987) and Hodrick (1992) t-statistics with lag length equal to the forecasting hori-
zon are reported in parentheses and square brackets respectively. ***, ** and * denote significance
in 1%, 5% and 10% level.
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