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Abstract

This thesis presents the use of signatures within nonparametric predictive inference

(NPI) for the failure time of a coherent system with a single type of components,

given failure times of tested components that are exchangeable with those in the

system. NPI is based on few modelling assumptions and here leads to lower and

upper survival functions. We also illustrate comparison of reliability of two systems,

by directly considering the random failure times of the systems. This includes

explicit consideration of the difference between failure times of two systems. In

this method we assume that the signature is precisely known. In addition, we show

how bounds for these lower and upper survival functions can be derived based on

limited information about the system structure, which can reduce computational

effort substantially for specific inferential questions. It is illustrated how one can

base reliability inferences on a partially known signature, assuming that bounds for

the probabilities in the signature are available. As a further step in the development

of NPI, we present the use of survival signatures within NPI for the failure time of

a coherent system which consists of different types of components. It is assumed

that, for each type of component, additional components which are exchangeable

with those in the system have been tested and their failure times are available.

Throughout this thesis we assume that the system is coherent, we start with a

system consisting of a single type of components, then we extend for a system

consisting of different types of components.
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Chapter 1

Introduction

1.1 Overview

One of the basic problems in reliability theory is prediction of the failure time of

a system consisting of multiple components, each of which has a random failure

time. Assessing the reliability of a coherent system requires knowledge about the

structure function of the system as well as the probability distribution of component

failure times. System reliability can be studied at the structural level by building

a relationship between the system reliability and the reliability of its components.

Throughout this thesis, we restrict attention to coherent systems, a system is coher-

ent if each of its components is relevant and its structure function is monotonously

increasing [12].

The theory of system signatures [61] provides a powerful framework for reliability

assessment for systems consisting of exchangeable components. For a system with m

components, the signature is a vector containing the probabilities for the events that

the system fails at the moment of the j-th ordered component failure time, for all

j = 1, . . . , m. In this thesis, The use of signatures for system reliability is explored

in the generalized theory of uncertainty quantification where lower and upper proba-

bilities (also called ‘imprecise probability’ [65] or ‘interval probability’ [67]) are used

instead of precise probabilities. This thesis presents the use of signatures within

Nonparametric Predictive Inference (NPI), a statistical framework which uses few

modelling assumptions enabled by the use of lower and upper probabilities to quan-

1



1.2. System signatures 2

tify uncertainty. Mainly, we introduce NPI with the use of signatures to derive lower

and upper survival functions for the failure time of systems with exchangeable com-

ponents, given failure times of tested components that are exchangeable with those

in the system. In addition, comparison of reliability of two systems is presented by

directly considering the random failure times of the systems. However, deriving the

system signature is computationally complex. We present how limited information

about the signature can be used to derive bounds on such lower and upper survival

functions and related inferences.

The system survival signature [26] is a generalisation of the system signature

to systems with multiple component types. We also present the use of survival

signatures within NPI for the failure time of a coherent system, which can consist

of different types of components. It is assumed that, for each type of component,

additional components which are exchangeable with those in the system have been

tested and their failure times are available.

In this thesis the NPI method for the system survival function using the system

signature is presented in Chapters 2 and 3, and the NPI method for the system

survival function using the survival signature is presented in Chapter 4.

In Section 1.2 we briefly review the concept of system signature. Section 1.3

presents the main idea of NPI. Section 1.4 briefly presents NPI for order statistics

of m future real-valued observations given n observations, which will be used in

Chapters 2 and 3. Section 1.5 presents a brief overview of NPI for Bernoulli data,

which will be used in Chapter 4. Finally, a detailed outline of this thesis is given in

Section 1.6, with details of related publications.

1.2 System signatures

In recent decades, system signatures have proven to be a powerful tool for qualifying

structures of coherent systems consisting of exchangeable components, which can be

used to quantify aspects of reliability of systems such as their failure time distri-

bution [61]. Consider a system consisting of components which have exchangeable

random failure times [40]. It is convenient to call these ‘exchangeable components’,
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informally they can be said to be all ‘of the same type’. As an example, consider

batteries of the same brand; their failure times will not be identical, but not know-

ing the individual batteries’ failure times, the exchangeability assumption implies

that the information about the failure time of one specific battery is the same as

the information about the failure time of any other specific battery. It should be

emphasized that such failure times are not statistically independent, as for example

learning that one battery’s failure time is small will provide important information

about the random failure time of another battery. A standard situation where such

an exchangeability assumption is reasonable, and indeed implicit to many standard

statistical methods, is when the components (batteries) for which failure times are

observed had been chosen by simple random sampling from a batch of components,

with interest in predicting the failure times of one or more of the other components

from the same batch.

Birnbaum [14] presented the foundations for the study of system reliability via

the structure function. For a system with m components, let state vector x =

(x1, x2, . . . , xm) ∈ {0, 1}m, where for each i, xi = 1 if the ith component functions

and xi = 0 if not. The structure function φ : {0, 1}m → {0, 1} is a mapping such that

φ(x) = 1 if the system functions and φ(x) = 0 if the system does not function for

state vector x. The structure function for series and parallel systems is trivial. The

series structure functions only if every component is functioning, while the parallel

structure functions as long as at least one component is functioning. The structure

function for an m-component series system is given by

φ(x) =

m
∏

i=1

xi (1.1)

while for a parallel system it is given by

φ(x) = 1−

m
∏

i=1

(1− xi) (1.2)

A system is coherent if each of its components is relevant and its structure

function is monotonously increasing. Throughout this thesis we assume that the

system is coherent, which means that φ(x) is not decreasing in any of the components

of x, so system functioning cannot be improved by worse performance of one or more
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of its components. We assume that φ(0) = 0 and φ(1) = 1, so the system fails if all

its components fail and it functions if all its components function [12].

Let the random failure time of a system consisting of m components be TS and

let Tj:m be the j-th order statistic of the m random component failure times, for

j = 1, . . . , m, with T1:m ≤ T2:m ≤ . . . ≤ Tm:m. The system’s signature [61] is defined

to be the m-vector q with j-th component

qj = P (TS = Tj:m) (1.3)

so qj is the probability that the system failure occurs at the moment of the j-th

component failure. It is natural to assume that
∑m

j=1 qj = 1; this assumption implies

that the system functions if all components function, has failed if all components

have failed, and that system failure can only occur at times of component failures.

The essential feature of the calculation of a signature is counting of the orderings of

the m potential component failure times that correspond with system failure upon

the jth failure time among the m components.

The signature provides a qualitative description of the system structure that can

be used in reliability quantification [61]. For example, the survival function of the

system failure time can be derived by

P (TS > t) =

m
∑

j=1

qjP (Tj:m > t) (1.4)

and the expected value of TS can be derived by

E(TS) =

m
∑

j=1

qjE(Tj:m) (1.5)

The system signature was introduced by Samaniego in 1985 [60] and has become

a useful tool to compute the system reliability [16], and to compare different systems

when all components are exchangeable. A comprehensive discussion and an excel-

lent review of the results based on system signatures obtained since 1985 and their

applications in engineering reliability can be found in a book by Samaniego [61].

In recent years, many authors have discussed theory and applications of system

signatures, for example, signatures were used in [52] and [57] to study system com-

parison based on stochastic, hazard rate and likelihood ratio orderings. Boland [15]
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presented the signature in terms of the number of path sets in the system as well as

the number of ordered cut sets. Andronova et al. [5] applied signatures to a queueing

system with an unreliable server. However, signatures have thus far been mostly con-

sidered from a probability perspective, not related to statistical inference. The main

exception is the recent PhD thesis by Aslett [9], who presents a Bayesian approach

for inference on system reliability for several scenarios, with the system structure

taken into account through the signature. A particularly interesting feature of his

work is the possibility to learn about the system structure in case only system

level failure data are available, so without data on individual components. Such

inverse inference is useful for black-box systems and requires powerful simulation-

based computational methods, for which the Bayesian approach is very suitable. In

this thesis, nonparametric predictive inference is used, which provides a frequentist

statistics alternative to the Bayesian approach, suitable for inference about system

reliability based on failure data for individual components. Throughout the thesis,

the system structure is assumed to be known, the presented approach is not suitable

for the kind of inverse inferences mentioned above. Knowing the system structure,

however, does not necessarily imply that the system signature is readily available,

we therefore will also consider inference using only partially known signatures.

Computation of the system signature is a combinatorial exercise. However, this

does not mean that it is quite easy, it just means there is a well organized body

of knowledge and tools that can be applied to such problems. It is obvious that

there are 2 coherent systems of order 2 (series and parallel systems). Shaked and

Suarez-Llorens [62] proved that there are 5 different coherent systems consisting of

3 components and 20 different coherent systems consisting of 4 components. They

computed the signatures of these systems and used them to study some ordering

properties. Navarro and Rubio [56] provide an algorithm to compute the number of

coherent systems with a given number of components. They show that there are 180

different coherent systems with 5 components and also computed the signatures of

these systems and their expected lifetimes. According to Samaniego [61] the number

of coherent systems with m components grows exponentially, there are more than a

billion coherent systems with 30 components.
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One may be interested in comparing two systems which do not have the same

number of components. Samaniego [61] provides a formula to convert the smaller

system into an equivalent larger system with exactly the same failure time distribu-

tion as the smaller system. Let q = (q1, . . . , qm) be the signature of a coherent system

with m components which have independent and identically distributed (i.i.d.) fail-

ure times. Then the system with m + 1 components with i.i.d. failure times, with

the same distribution as for the smaller system, and with signature

q∗ =

(

m

m+ 1
q1,

1

m+ 1
q1 +

m− 1

m+ 1
q2,

2

m+ 1
q2 +

m− 2

m+ 1
q3, . . . ,

m− 1

m+ 1
qm−1 +

1

m+ 1
qm,

m

m+ 1
qm

)

(1.6)

has identical random system failure time as the system with m components and

signature q. Eryilmaz [44] presented an algorithm for computing the signature of

consecutive k-out-of-m:F systems, which fail if and only if k of components fail.

Such systems have received much attention in the reliability literature in recent

years, particularly also with focus on their signatures [45, 55].

Da et al. [48], show how signatures for subsystems can be combined to derive a

system’s signature in case of two subsystems in series or parallel configuration, which

we will use in Chapter 3. Suppose that the system consists of two subsystems A and

B with ma and mb components each. Let qa = (qa1 , ..., q
a
ma

) and qb = (qb1, ..., q
b
mb
) be

the signature vectors of subsystems A and B, respectively. The aim is to derive the

signature vector q of the overall system based on signatures qa and qb. First consider

a system which consists of subsystems A and B in parallel configuration. Then the

overall system has signature vector q with jth component qj given as follows [48].

Since the system is the parallel of two subsystems, it is clear that the system will

not fail at the first component failure, which leads to q1 = 0. For further component

failures, the signature can be derived for the following cases.

For 2 ≤ j ≤ ma:

qj =

(

ma +mb

ma

)−1
[

j−1
∑

i=1

(

j − 1

i

)

[(

qaj−i

i
∑

k=1

qb

)

(

ma +mb − j

mb − i

)

+

(

qbj−i

i
∑

k=1

qa

)

(

ma +mb − j

mb − i

)

]]

(1.7)
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For ma<j ≤ mb:

qj =

(

ma +mb

ma

)−1
[

j−1
∑

i=j−ma

(

qaj−i

i
∑

k=1

qb

)

(

j − 1

i

)(

ma +mb − j

mb − i

)

+
ma
∑

i=1

(

qbj−i

i
∑

k=1

qa

)

(

j − 1

i

)(

ma +mb − j

mb − i

)

]

(1.8)

For mb<j ≤ ma +mb:

qj =

(

ma +mb

ma

)−1
[

mb
∑

i=j−ma

(

qaj−i

i
∑

k=1

qb

)

(

j − 1

i

)(

ma +mb − j

mb − i

)

+
ma
∑

i=j−mb

(

qbj−i

i
∑

k=1

qa

)

(

j − 1

i

)(

ma +mb − j

mb − i

)

]

(1.9)

For a system consisting of subsystems A and B in series configuration, the sys-

tem’s signature vector q has jth component qj which can be derived as follows. Since

the system is the series of two subsystems, it is clear that qma+mb
= 0. The other

components of q can be derived for the following cases.

For 1 ≤ j ≤ ma:

qj =

(

ma +mb

ma

)−1
[

j−1
∑

i=0

(

j − 1

i

)

[(

qaj−i

mb
∑

k=i+1

qb

)

(

ma +mb − j

mb − i

)

+

(

qbj−i

ma
∑

k=i+1

qa

)

(

ma +mb − j

mb − i

)

]]

(1.10)

For ma<j ≤ mb:

qj =

(

ma +mb

ma

)−1
[

j−1
∑

i=j−ma

(

qaj−i

mb
∑

k=i+1

qb

)

(

j − 1

i

)(

ma +mb − j

mb − i

)

+
ma−1
∑

i=0

(

qbj−i

ma
∑

k=i+1

qa

)

(

j − 1

i

)(

ma +mb − j

mb − i

)

]

(1.11)

For mb<j ≤ ma +mb:

qj =

(

ma +mb

ma

)−1
[

mb−1
∑

i=j−ma

(

qaj−i

mb
∑

k=i+1

qb

)

(

j − 1

i

)(

ma +mb − j

mb − i

)

+

ma−1
∑

i=j−mb

(

qbj−i

ma
∑

k=i+1

qa

)

(

j − 1

i

)(

ma +mb − j

mb − i

)

]

(1.12)
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1.3 Nonparametric predictive inference (NPI)

Nonparametric predictive inference (NPI) is a statistical approach to learning from

data in the absence of prior knowledge, which requires only few modelling assump-

tions [21]. NPI gives a direct conditional probability for one or more future ob-

servable random quantities, conditional on observed values of related random quan-

tities [7, 20, 21]. NPI uses lower and upper probabilities, also known as imprecise

probabilities, to quantify uncertainty [8,30,65,67] and has strong consistency prop-

erties from frequentist statistics perspective [7,21]. NPI provides a solution to some

explicit goals formulated for objective (Bayesian) inference, which cannot be ob-

tained when using precise probabilities [20], and it never leads to results that are

in conflict with inferences based on empirical probabilities. Imprecise probabilities

provide many exciting opportunities for reliability quantification [31, 63, 64]. The

NPI method has already been used for system reliability [1, 23, 37, 53], but only

for systems with quite restricted structures. NPI has been developed for a vari-

ety of problems in operational research and statistics, including predictive analysis

for queueing problems [25], replacement problems [38], and decision making under

uncertain utilities [51].

NPI is based on Hill’s assumption A(n) [49] which gives direct probabilities [41]

for one or more real-valued future random quantities, based on observations of n

related random quantities. These probabilities are such that all orderings of the

future random quantities among the observed random quantities are equally likely;

for more details we refer to Coolen [21]. NPI is a framework of statistical theory

and methods that use A(n)-based lower and upper probabilities [30,31]. In classical

probability theory, a single probability P (E) ∈ [0, 1] is used to quantify uncer-

tainty about an event E. Lower and upper probabilities generalize the standard

theory of (‘single-valued’ or ‘precise’) probability and provide a powerful method for

uncertainty quantification [64]. A lower (upper) probability P (E) (P (E)) can be

interpreted as supremum buying (infimum selling) price for a gamble on the event

E, or as the maximum lower (minimum upper) bound for the probability of E. An

informal way to interpret lower and upper probabilities is as follows; a lower prob-
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ability for an event E reflects the evidence in available information in favour of the

event E, the corresponding upper probability for this event reflects the evidence in

available information against this event. These are logically linked by the conjugacy

property P (E) = 1− P (Ec), where Ec is the complementary event to E [30].

To introduce the assumption A(n), we first need to introduce some notation.

Suppose that T1, . . . , Tn, Tn+1 are positive, continuous and exchangeable random

quantities. Let the ordered observations of T1, . . . , Tn be denoted by t1 < t2 < . . . <

tn. For ease of notation, define t0 = 0 and tn+1 = ∞. These n observations partition

the non-negative real-line into n+1 intervals Ii = (ti−1, ti) for i = 1, . . . , n+1. The

assumption A(n) is that the future observation Tn+1, based on n observations, will

fall in the open interval Ii with probability 1/(n+ 1), for each i = 1, . . . , n+ 1,

P (Tn+1 ∈ (ti−1, ti)) =
1

n+ 1
(1.13)

These A(n)-based probabilities are specified for Tn+1, but also hold for any future

observation Tn+i, i ≥ 1, as long as one considers these future observations to be

exchangeable [40]. However, such future observations are not independent [49],

learning the value of one of them will change the probabilities for other future

observations. Hill [50] discusses A(n) in detail. A(n) does not assume anything else,

and can be considered to be a post-data assumption related to exchangeability.

Inferences based on A(n) are predictive and nonparametric, and can be considered

suitable if there is hardly any knowledge about the random quantity of interest,

other than the data, which consists of n observations, or if one does not want to

use such further information. A(n) is not sufficient to derive precise probabilities

for many events of interest, but it provides optimal bounds for probabilities for all

events of interest involving Tn+1.

It should be noted that, to avoid notational complexity, we assume throughout

this thesis that there are no tied observations. Any tied observations can be dealt

with by breaking ties by adding small values to one or more of the tied observations.

The method can be generalized to allow ties by breaking the ties in all possible ways

and obtaining the overall NPI lower and upper probabilities as the minimum and

maximum, respectively, of the lower and upper probabilities corresponding to each

way of breaking the ties [50].
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1.4 NPI for order statistics

For the scenario in Section 1.3, we are now interested in m ≥ 1 future observa-

tions, Tn+j for j = 1, . . . , m. We link the data and future observations via Hill’s

assumptions A(n), A(n+1),. . . , A(n+m−1), see [7,20,27] for more details. Arts et al. [6]

considered NPI for m future observations, and showed that, with Sj = #{Tl ∈

Ii, l = 1, . . . , m}, these assumptions lead to

P (
n+1
⋂

j=1

{Sj = sj}) =

(

n +m

n

)−1

(1.14)

for all (s1, . . . , sn+1) with sj non-negative integers and
∑n+1

j=1 sj = m. For any

event involving the m future observations, Equation 1.14 implies that the number

of orderings of the m future observations among the n data observations, for which

this event holds, can be simply counted as all such orderings have equal probability.

Generally in NPI a lower probability for the event of interest is derived by count-

ing all orderings for which this event has to hold, while the corresponding upper

probability is derived by counting all orderings for which this event can hold [7,20].

The order statistics of the m future observations T1, . . . , Tm are the ordered compo-

nent failure times, denoted by T1:m ≤ T2:m ≤ . . . ≤ Tm:m. The following probabilities

for Tj:m, for j = 1, . . . , m, are derived by counting the relevant orderings [27], and

hold for i = 1, . . . , n+ 1,

P (Tj:m ∈ Ii) =

(

i+ j − 2

i− 1

)(

n− i+ 1 +m− j

n− i+ 1

)(

n+m

n

)−1

(1.15)

NPI provides a precise probability for the event Tj:m ∈ Ii, as each of the
(

n+m

n

)

equally likely orderings of n test observations and m future observations has the

j-th ordered future observation in precisely one interval Ii. Therefore, we must have

i−1 test observations and j−1 future observations in any order before time Tj:m ∈ Ii,

which can occur in
(

i+j−2
i−1

)

different orderings, and n− (i− 1) test observations and

m − j future observations in any order after time Tj:m ∈ Ii, which can occur in
(

n−i+1+m−j

n−i+1

)

different orderings.

As an example, suppose that one is interested in the minimum T1:m of m fu-

ture observations. Formula 1.15 gives P (T1:m ∈ Ii) =
(

n−i+m

n−i+1

)(

n+m

n

)−1
, so e.g.
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P (T1:m ∈ I1) = m
n+m

. Clearly, the event T1:m ∈ I1 occurs if the smallest of all

n + m observations considered, so the n data observations and m future obser-

vations, is among the m future observations, which indeed occurs with probabil-

ity m
n+m

due to the assumed exchangeability. Another special case of interest is

P (T1:m ∈ In+1) =
(

n+m

n

)−1
, following from the fact that there is only one ordering

for which all n data observations occur before all m future observations.

The probabilities 1.15 straightforwardly lead to the following NPI lower and

upper survival functions for Tj:m, these are the sharpest bounds for the probability

of the event Tj:m > t that can be justified without further assumptions. The NPI

lower survival function for Tj:m is

STj:m
(t) = P (Tj:m > t) =

n+1
∑

l=i+1

P (Tj:m ∈ Il) for t ∈ (ti−1, ti] (1.16)

and the corresponding NPI upper survival function is

STj:m
(t) = P (Tj:m > t) =

n+1
∑

l=i

P (Tj:m ∈ Il) for t ∈ [ti−1, ti) (1.17)

At an observed data value ti these NPI lower and upper survival functions are equal,

that is STj:m
(ti) = STj:m

(ti) , while STj:m
(0) = STj:m

(0) = 1. Beyond the largest data

observation, the NPI lower survival function is equal to zero but the NPI upper

survival function remains positive,

STj:m
(t) = 0 and STj:m

(t) = P (Tj:m ∈ In+1) =

m
∏

l=j

l

n+ l
> 0 for t > tn

This reflects that there is no evidence in favour of observations greater than tn

actually being able to occur, this is reflected by the lower survival function being

equal to zero; but the evidence against this is limited as there are only n observations

thus far, this is reflected by the upper survival function being a positive decreasing

function of n. In this thesis NPI for order statistics is used in Chapters 2 and 3. In

the next section we introduce NPI for Bernoulli random quantities, which is used in

Chapter 4.
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1.5 NPI for Bernoulli quantities

NPI for Bernoulli random quantities, as introduced by Coolen [19], is summarized

in this section. Suppose that there is a sequence of n + m exchangeable Bernoulli

trials, each with ‘success’ and ‘failure’ as possible outcomes, and data consisting

of s successes in n trials. Let Y n
1 denote the random number of successes in trials

1 to n, then a sufficient representation of the data for the inferences considered is

Y n
1 = s, due to the assumed exchangeability of all trials. Let Y n+m

n+1 denote the

random number of successes in trials n + 1 to n + m. Let Rt = {r1, . . . , rt}, with

1 ≤ t ≤ m + 1 and 0 ≤ r1 < r2 < . . . < rt ≤ m, and, for ease of notation, define
(

s+r0
s

)

= 0. Then the NPI upper probability for the event Y n+m
n+1 ∈ Rt, given data

Y n
1 = s, for s ∈ {0, . . . , n}, is

P (Y n+m
n+1 ∈ Rt|Y

n
1 = s) =

(

n+m

n

)−1 t
∑

j=1

[(

s+ rj
s

)

−

(

s+ rj−1

s

)](

n− s+m− rj
n− s

)

(1.18)

The corresponding NPI lower probability can be derived via the conjugacy property

P (Y n+m
n+1 ∈ Rt|Y

n
1 = s) = 1− P (Y n+m

n+1 ∈ Rc
t |Y

n
1 = s) (1.19)

where Rc
t = {0, 1, . . . , m}\Rt.

These NPI lower and upper probabilities are the maximum lower bound and

minimum upper bound, respectively, for the probability for the given event based

on the data, the assumption A(n) and the model presented by Coolen [19].

1.6 Outline of thesis

This thesis is organized such that each chapter addresses one main inference problem,

and is related to papers that have been published in academic journals. In Chapter

2 we introduce the use of signatures in the study of system reliability with lower

and upper probabilities. We present the comparison of the reliability of two systems

by directly considering the random failure times of the systems, including explicit

consideration of the difference between failure times of two systems. This chapter
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is closely related to the paper ”Nonparametric predictive inference for failure times

of systems with exchangeable components” which appeared in Journal of Risk and

Reliability in 2012 [24].

In Chapter 3 we present how bounds for lower and upper survival functions can

be derived based on limited information about the system signature and related

inferences. We present the comparison of the reliability of two systems considering

the random failure times of the systems using partially known signatures. This

chapter closely resembles the paper ”Nonparametric predictive inference for system

failure time based on bounds for the signature”, which appeared in Journal of Risk

and Reliability in 2013 [4].

In Chapter 4 we present the use of survival signatures for NPI for the failure

time of a coherent system, which can consist of different types of components. In

addition, we present how survival signatures of subsystems can be combined to de-

rive a system’s survival signature, and we present how limited information about the

survival signature can be used to derive bounds on such lower and upper survival

functions and related inferences. This chapter forms part of the paper ”Nonpara-

metric predictive inference for system reliability using the survival signature”, which

appeared in Journal of Risk and Reliability in 2014 [28]. We summarize our main

results with some concluding remarks in Chapter 5. All computations in this thesis

were performed using R.

Parts of this thesis have been presented at several conferences and short papers

have appeared in related conference proceedings. Chapter 2 has been presented at

The 19th Advances in Risk and Reliability Technology Symposium (Stratford-upon-

Avon, UK, April 2011) [2]. A part of Chapter 3 was presented at The Statistical

Models and Methods for Reliability and Survival Analysis and Their Validation

(Bordeaux, France, July 2012) [3]. In addition, results related to Chapter 4 were

presented (by Prof. Frank Coolen) at The 20th Advances in Risk and Reliability

Technology Symposium (Nothingham, UK, May 2013) [29].



Chapter 2

Failure time of a system consisting

of exchangeable components

2.1 Introduction

This chapter presents the use of signatures for nonparametric predictive inference

(NPI) [7, 20] about the failure time of a system consisting of exchangeable com-

ponents, given failure times of tested components. A useful feature of describing

system structures through signatures is the possibility to compare the reliability

of different systems based on stochastic ordering of their signatures, as long as the

components in these systems are all exchangeable [61]. This chapter also presents an

alternative way to compare the reliability of different systems by directly considering

the random system failure times.

We assume in this chapter that the signature is precisely known, in Chapter

3 we will consider the case of a partially known signature. Section 2.2 presents

the use of system signatures to derive NPI lower and upper survival functions for

a system. In Section 2.3 comparison of reliability of two systems is presented by

directly considering the random failure times of the systems. This includes explicit

consideration of the difference between failure times of two systems. Section 2.4

contains some concluding remarks.

14
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2.2 Predicting system failure time

This section presents the NPI lower and upper survival functions for systems with

exchangeable components, derived by generalizing Equation 1.4 to lower and upper

probabilities. In order to combine NPI with system signatures, it is important to

explain a key ingredient of theory of lower and upper probabilities, namely a set P of

precise probability distributions, each denoted by P ∈ P, which corresponds to the

assessed values and which is such that the lower probability of an event E is P (E) =

infP∈P P (E) and the corresponding upper probability is P (E) = supP∈P P (E). In

his theory of interval probability, Weichselberger [67] calls such a set a ‘structure’,

see [7] for more details and strong consistency properties of inferences based on such

a construction of lower and upper probabilities.

Generally, in NPI the assumption A(n) provides precise probabilities for some

events involving one or more future observations, and the corresponding structure

consists of all precise probabilities which assign those values to all those events.

So, the structure Pj for Tj:m, for j = 1, . . . , m, consists of all precise probability

distributions which assign P (Tj:m ∈ Ii), as given in Equation 1.15 in Section 1.4, to

interval Ii, for each i = 1, . . . , n + 1. As interest is in the system failure time TS,

let PS be the structure corresponding to NPI for TS. PS is derived directly from

the Pj, j = 1, . . . , m, by the logical relationship that exists based on Equation 1.4

for the precise probability distributions in the respective structures. This means

that for each probability distribution PS ∈ PS, there is a combination of probability

distributions in the structures Pj that, by Equation 1.4, leads to PS. Also the

reverse relation holds, namely that any combination of probability distributions in

the structures Pj lead, by application of Equation 1.4, to a probability distribution

PS which belongs to PS. The NPI lower and upper survival functions for TS are

derived by minimisation and maximisation, respectively, of the probabilities for

events TS > t over the structure PS. While in general this would be non-trivial

optimisation problems, NPI provides a simple solution as explained below.

As mentioned in Section 1.4, suppose that in a test of n components, exchange-

able with those in the system considered, the observed failure times were t1 < t2 <

. . . < tn. Consider reliability of a system with m components, so interest is in the m
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failure times of those components, say T1, . . . , Tm. The test data and T1, . . . , Tm are

linked via the assumptions A(n), A(n+1),. . . , A(n+m−1). The order statistics of the m

future observations T1, . . . , Tm are the ordered component failure times.

The NPI lower and upper survival functions for the failure time TS of a coherent

system consisting of m exchangeable components, with the system structure repre-

sented by signature q, can be derived by the following generalizations of Equation

1.4. The NPI lower survival function is

STS
(t) = P (TS > t) = inf

PS∈PS

PS(TS > t) = inf
PS∈PS

m
∑

j=1

qjPS(Tj:m > t)

=

m
∑

j=1

qj inf
Pj∈Pj

Pj(Tj:m > t) =

m
∑

j=1

qjP (Tj:m > t) (2.1)

The corresponding upper survival function is

STS
(t) = P (TS > t) = sup

PS∈PS

PS(TS > t) = sup
PS∈PS

m
∑

j=1

qjPS(Tj:m > t)

=

m
∑

j=1

qj sup
Pj∈Pj

Pj(Tj:m > t) =

m
∑

j=1

qjP (Tj:m > t) (2.2)

The crucial step in the derivations of (2.1) and (2.2) is the fourth equality. In general

theory of lower and upper probabilities [7, 20], we only have

inf
PS∈PS

m
∑

j=1

qjPS(Tj:m > t) ≥
m
∑

j=1

qj inf
Pj∈Pj

Pj(Tj:m > t) (2.3)

and

sup
PS∈PS

m
∑

j=1

qjPS(Tj:m > t) ≤

m
∑

j=1

qj sup
Pj∈Pj

Pj(Tj:m > t) (2.4)

so justification of the fourth equalities in (2.1) and (2.2) is required. The ar-

gument is given for the case of the NPI lower survival function, justification of the

NPI upper survival function follows the same steps. For the equality to hold in

(2.3), the probability distributions in Pj which minimise Pj(Tj:m > t) for all t must

be attained simultaneously for all j = 1, . . . , m. That this holds follows from the

derivation of (1.15), as given in [27] and discussed in Section 1.4, which is based on

the
(

n+m

n

)

equally likely orderings of the n data observations and m future obser-

vations. Each NPI lower survival function for a Tj:m, for all j = 1, . . . , m, can be
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derived by considering, for each of the equally likely orderings, the situation with

all future observations assigned to interval Ii = (ti−1, ti), by the specific ordering,

to actually be located immediately to the right of ti−1 (so to the left of ti−1 + ǫ

for any ǫ > 0) with all their probability mass for this interval. This construction

clearly corresponds to the NPI lower survival function for Tj:m, and can be used in

each interval to get all these NPI lower survival functions, so for all j = 1, . . . , m,

simultaneously.

Example 2.1

Figure 2.1 presents the signatures of six coherent systems with m = 4 exchangeable

components. Suppose that n = 4 components exchangeable with those in such a

system were tested, leading to ordered failure times t1 < t2 < t3 < t4, which create

the partition I1, . . . , I5 of the positive real-line. Table 2.1 presents the probabilities,

as given by Equation 1.15 and denoted by jPi = P (Tj:4 ∈ Ii) for j = 1, . . . , 4 and

i = 1, . . . , 5, together with the NPI lower and upper survival functions for Tj:4 as

given by Equations 1.16 and 1.17, respectively.

1 2 3 4

1

2

3

4

q A

Bq

Cq

Dq Eq q

 = (0,0,0,1)

= (1,0,0,0)

1

2

3

4

 = (0,1/3,2/3,0)

1

2

3

4

 = (1/4,1/4,1/2,0)

1

2

3

4

  = (0,2/3,1/3,0)

1

2 3 4

 = (0,1/2,1/4,1/4)F

Figure 2.1: Coherent systems with 4 exchangeable components

Table 2.2 presents the NPI lower and upper survival functions, STS
(t) and STS

(t),

for the system failure time TS, from Equations 2.1 and 2.2, for the systems presented

in Figure 2.1. We will also consider these systems in Chapter 4 to compare the results
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j = 1 j = 2 j = 3 j = 4

i 1Pi ST1:4
ST1:4 2Pi ST2:4

ST2:4 3Pi ST3:4
ST3:4 4Pi ST4:4

ST4:4

1 0.500 0.500 1 0.214 0.786 1 0.071 0.929 1 0.014 0.986 1

2 0.286 0.214 0.500 0.286 0.500 0.786 0.171 0.757 0.929 0.057 0.929 0.986

3 0.143 0.071 0.214 0.257 0.243 0.500 0.257 0.500 0.757 0.143 0.786 0.929

4 0.057 0.014 0.071 0.171 0.071 0.243 0.286 0.214 0.500 0.286 0.500 0.786

5 0.014 0 0.014 0.071 0 0.071 0.214 0 0.214 0.500 0 0.500

Table 2.1: jPi, STj:4
(t) and STj:4

(t) for t ∈ Ii, for n = 4 and m = 4

in Table 2.2 with the use of survival signature, as presented in that chapter. Table

2.2 illustrates that the upper survival function for the system failure time is always

equal to one in the first interval and the corresponding lower survival function is

less than one. Of course, these lower and upper survival functions decrease at each

observed failure time of a component in the test. The lower survival function is

zero after the largest observation while the upper survival functions always remains

positive. Tables 2.1 and 2.2 show that the upper survival function in interval Ii is

equal to the lower survival function in interval Ii−1. This is a property that generally

holds for the lower and upper survival functions in this chapter, and which follows

directly from Equations 1.16 and 1.17.

Figures 2.2 and 2.3 present the NPI lower and upper survival functions for the

six systems in Figure 2.1 based on n = 30 observations of component failure times,

simulated from the Weibull distribution with shape parameter 2 and scale parameter

1. The 30 ordered simulated component failure times are given in Table 2.3.

The signatures of systems C and F are not stochastically ordered (see Section

2.3), which leads to their NPI lower and upper survival functions crossing as is

illustrated in Figure 2.2, and the same applies for systems D and E, shown in Figure

2.3. These lower and upper survival functions clearly indicate the differences in the

system reliability for these six systems. However, one may wish to quantify the

differences in reliability more precisely, a new approach that can be used for this

will be presented in Section 2.3.
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q (1, 0, 0, 0) (0, 0, 0, 1) (0, 13 ,
2
3 , 0)

i STS
STS

STS
STS

STS
STS

1 0.50 1 0.99 1 0.88 1

2 0.21 0.50 0.93 0.99 0.67 0.88

3 0.07 0.21 0.79 0.93 0.41 0.67

4 0.01 0.07 0.50 0.79 0.17 0.41

5 0 0.01 0 0.50 0 0.17

q (14 ,
1
4 ,

1
2 , 0) (0, 23 ,

1
3 , 0) (0, 12 ,

1
4 ,

1
4)

i STS
STS

STS
STS

STS
STS

1 0.79 1 0.83 1 0.87 1

2 0.56 0.79 0.59 0.83 0.67 0.87

3 0.33 0.56 0.33 0.59 0.44 0.67

4 0.13 0.33 0.12 0.33 0.21 0.44

5 0 0.13 0 0.12 0 0.21

Table 2.2: STS
(t) and STS

(t) for t ∈ Ii

0.086 0.167 0.277 0.319 0.394 0.400 0.402 0.481 0.494 0.599

0.601 0.642 0.642 0.712 0.720 0.732 0.790 0.832 0.863 1.023

1.088 1.097 1.172 1.185 1.334 1.336 1.620 1.851 2.060 2.329

Table 2.3: 30 simulated component failure times for Ex. 2.1
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A  (1,0,0,0)
C  (0,1/3,2/3,0)
F  (0,1/2,1/4,1/4)

Figure 2.2: NPI lower and upper survival functions for system A, C and F (Ex. 2.1)

Example 2.2

To further illustrate the NPI lower and upper survival functions for systems pre-

sented in this chapter, consider linear and circular consecutive k-out-of-m:F sys-

tems, which fail if and only if k or more linearly or circularly ordered components

fail [44, 45, 55]. Table 2.4 gives n = 30 component failure times simulated from

a Weibull distribution with shape parameter 3 and scale parameter 1. Figure 2.4

presents the NPI lower and upper survival functions, based on these data, for both

a linear and circular consecutive 2-out-of-4:F system, for which the signatures are

also given in the figure. The circular system fails for all neighbouring pairs of failing

components for which the linear system fails, but in addition it also fails if only

the first and last ordered components fail. This results in the circular system being

less reliable than the linear system, as shown in Figure 2.4. Figure 2.5 presents

similar NPI lower and upper survival functions for the linear and circular consecu-

tive 3-out-of-6:F systems based on the same component failure data. These systems

are clearly more reliable early on than the 2-out-of-4 systems. For all these four
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Figure 2.3: NPI lower and upper survival functions for system B, D and E (Ex. 2.1)

0.223 0.265 0.372 0.419 0.564 0.630 0.675 0.685 0.709 0.727

0.747 0.798 0.807 0.824 0.850 0.887 0.914 0.921 0.981 0.987

0.994 1.008 1.073 1.115 1.167 1.182 1.275 1.397 1.400 1.425

Table 2.4: 30 simulated component failure times for (Ex. 2.2)

systems considered, the lower survival function is zero beyond the largest observed

component failure time, t = 1.425, reflecting that the data provide no evidence in

favour of survival beyond this time, yet the corresponding upper survival functions

are positive reflecting the fact that such survival cannot be deemed to be impos-

sible on the basis of the 30 observations only. Figure 2.6 and 2.7 present the NPI

lower and upper survival functions for linear consecutive 2-out-of-4 and 3-out-of-6

systems, and for circular consecutive 2-out-of-4 and 3-out-of-6, respectively.
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Figure 2.4: NPI lower and upper survival functions for the linear and circular con-

secutive 2-out-of-4:F systems (Ex. 2.2)

2.3 Comparing failure times of two systems

System signatures provide a straightforward way to compare the reliability of two

systems with m exchangeable components (so both systems having components of

the same single type) if the signatures are stochastically ordered [61]. Let the sig-

nature of system A be qa and of system B be qb, and let the failure times of these

systems be T a and T b, respectively. If
∑m

j=r q
a
j ≥

∑m

j=r q
b
j for all r = 1, . . . , m

then P (T a > t) ≥ P (T b > t) for all t > 0. Such a comparison is even possible if

the two systems do not have the same number of components, as one can always

increase the length of a system signature in a way that does not affect the corre-

sponding system’s failure time distribution [61], hence one can always make the two

systems’ signatures of the same length. For example, the signatures (1
4
, 1
4
, 1
2
, 0) and

(0, 1
5
, 3
5
, 1
5
, 0) do not have the same number of components. Using Equation 1.6 in

Section 1.2, we find that the 5-component system with signature ( 2
10
, 2
10
, 3
10
, 3
10
, 0)

is stochastically equivalent to the original system with signature (1
4
, 1
4
, 1
2
, 0) , and
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Figure 2.5: NPI lower and upper survival functions for the linear and circular con-

secutive 3-out-of-6:F systems (Ex. 2.2)

stochastically ordered with the signature (0, 1
5
, 3
5
, 1
5
, 0) . However, many systems’

structures do not have corresponding signatures which are stochastically ordered.

For example, the signatures (1
4
, 1
4
, 1
2
, 0) and (0, 2

3
, 1
3
, 0) in the example in Section 2.2

are not stochastically ordered.

This section presents a different way to compare the random failure times T a

and T b of two systems A and B within the NPI framework, namely by considering

the event that system B does not fail before system A, so T a ≤ T b. This has the

further advantage of being applicable to any two independent systems, so also to

systems that each only have a single type of components but with the components

of system A of a different type than those of system B. Subsection 2.3.1 presents

NPI lower and upper probabilities for the event T a ≤ T b for two systems that share

the same type of components, followed in Subsection 2.3.2 by such results for two

systems with different types of components. Subsection 2.3.3 generalizes this by

considering the event T a ≤ T b + δ for any real-valued constant δ, and how the NPI
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Figure 2.6: NPI lower and upper survival functions for the linear consecutive 2-out-

of-4:F and 3-out-of-6:F systems (Ex. 2.2)

lower and upper probabilities for this event behave as a function of δ. This enables

a more detailed insight into the actual difference between the random lifetimes of

the systems A and B.

2.3.1 Two systems with components of a single type

Consider two systems A and B with m components each and all their components

assumed to be exchangeable, so both systems share components of a single type.

Using the results presented in Section 2.2, it is easily seen that a similar result holds

for the NPI lower and upper probabilities as for precise probabilities mentioned

above, namely if
∑m

j=r q
a
j ≥

∑m

j=r q
b
j for all r = 1, . . . , m then P (T a > t) ≥ P (T b >

t) and P (T a > t) ≥ P (T b > t) for all t > 0. If the signatures qa and qb are

not stochastically ordered, a different way to compare the systems’ failure times is

needed, and indeed it is natural to consider the event T a ≤ T b. This does not require

both systems to have the same number of components, so let system A consist of ma
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Figure 2.7: NPI lower and upper survival functions for the circular consecutive

2-out-of-4:F and 3-out-of-6:F systems (Ex. 2.2)

components and system B of mb components, where the failure times of all ma+mb

components are assumed to be exchangeable. Let the ordered random failure times

of the components in system A be T a
1:ma

≤ T a
2:ma

≤ . . . ≤ T a
ma:ma

and let the ordered

random failure times of the components in system B be T b
1:mb

≤ T b
2:mb

≤ . . . ≤ T b
mb:mb

.

Using the signature qa and qb of these systems, the following equality holds [61]

P (T a ≤ T b) =

ma
∑

i=1

mb
∑

j=1

qai q
b
jP (T a

i:ma
≤ T b

j:mb
) (2.5)

This equality can be used directly in NPI without depending on observed failure

times, due to the assumed exchangeability of the failure times of all ma+mb compo-

nents. The probabilities in the sum on the right-hand side of (2.5) are precise-valued

in NPI, so no use of lower and upper probabilities is required. These probabilities

are

P (T a
i:ma

≤ T b
j:mb

) =

(

ma +mb

ma

)−1
[

j−1
∑

l=0

(

i− 1 + l

i− 1

)(

ma − i+mb − l

ma − i

)

]

(2.6)
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This follows by a straightforward counting argument, using the fact that exchange-

ability of the ma + mb component lifetimes includes that their orderings are all

equally likely. This implies that the
(

ma+mb

ma

)

different orderings of the lifetimes of

the ma components in system A and the mb components in system B, neglecting

the specific role played by each component in the system (note that this is taken

into account by the signatures), are all equally likely. For the event T a
i:ma

≤ T b
j:mb

to occur, the number of components in system B failing before T a
i:ma

, so before the

failure time of the i-th failing component in system A, can be at most j − 1. For a

value of l ∈ {0, 1, . . . , j − 1}, the corresponding term in the sum in Equation (2.6)

counts all equally likely orderings of the component failure times with precisely l

such failure times for components in system B occurring before T a
i:ma

.

Table 2.5 presents the probabilities as given in Equations 2.5 and 2.6 for the

events T a ≤ T b for all combinations of two systems out of the six presented in

Figure 2.1. Consider, for example, the systems D and E in Figure 2.1, which have

signatures that are not stochastically ordered. Let their failure times be denoted

by TD and TE , respectively, then P (TD ≤ TE) = 0.519 as shown in Table 2.5,

which can be interpreted as indicating that these two systems are about equally

reliable, with system E slightly more reliable than system D. While for systems A

and B in Figure 2.1, which have signatures that are stochastically ordered, we have

P (TA ≤ TB) = 0.986, which clear shows that system B is far more reliable than

system A.

2.3.2 Two systems with different types of components

Let system A consist of ma exchangeable components, and system B of mb ex-

changeable components, with the components of the different systems being of dif-

ferent types and their random failure times assumed to be fully independent, which

means that any information about components of the type used in system A does

not contain any information about components of the type used in system B, and

vice versa. The ordered random failure times of the components in system A and of

those in system B are denoted as in Subsection 2.3.1. Suppose that na components

exchangeable with those in system A have been tested and had ordered failure times
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(a, b) P (T a ≤ T b) (a, b) P (T a ≤ T b)

(A,B) 0.986 (D,A) 0.214

(A,C) 0.881 (D,B) 0.871

(A,D) 0.786 (D,C) 0.595

(A,E) 0.833 (D,E) 0.519

(A,F ) 0.871 (D,F ) 0.607

(B,A) 0.014 (E,A) 0.167

(B,C) 0.167 (E,B) 0.881

(B,D) 0.129 (E,C) 0.586

(B,E) 0.119 (E,D) 0.481

(B,F ) 0.214 (E,F ) 0.595

(C,A) 0.119 (F,A) 0.129

(C,B) 0.833 (F,B) 0.786

(C,D) 0.405 (F,C) 0.481

(C,E) 0.414 (F,D) 0.393

(C,F ) 0.519 (F,E) 0.405

Table 2.5: Pairwise comparisons of six systems from Figure 2.1

ta1 < ta2 < . . . < tana
, and similarly that ordered observed failure times of nb tested

components, exchangeable with those in system B, are tb1 < tb2 < . . . < tbnb
. Using

the signatures qa and qb of these systems, a result similar to Equality 2.5 holds for

the NPI lower probability for the event T a ≤ T b, namely

P (T a ≤ T b) =
ma
∑

i=1

mb
∑

j=1

qai q
b
jP (T a

i:ma
≤ T b

j:mb
) (2.7)

where, as presented in [27]

P (T a
i:ma

≤ T b
j:mb

) =

na
∑

l=1

P a,i
l [P (T b

j:mb
≥ tal )] (2.8)

with P a,i
l = P (T a

i:ma
∈ (tal−1, t

a
l )). The summation in (2.8) does not include a term

for l = n + 1 because P (T b
j:mb

≥ ∞) = 0. Let vl ∈ {1, . . . , nb + 1} be such that

tbvl−1 < tal < tbvl , then

P (T b
j:mb

≥ tal ) =

nb+1
∑

v=vl+1

P (T b
j:mb

∈ (tbv−1, t
b
v)) (2.9)
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The justification of Equation 2.7 is similar to that of Equation 2.1 in Section 2.2,

effectively the NPI lower probabilities for the events T a
i:ma

≤ T b
j:mb

, for i = 1, . . . , ma

and j = 1, . . . , mb, can all be attained simultaneously for the same underlying

configuration of observed and future failure times for components of type A (all

future observations ‘at’ the right end-point of each interval) and the same underlying

configuration of observed and future failure times for components of type B (all

future observations ‘at’ the left end-point of each interval) [27]. The corresponding

NPI upper probability for the event T a ≤ T b is derived and justified similarly, and

is

P (T a ≤ T b) =

ma
∑

i=1

mb
∑

j=1

qai q
b
jP (T a

i:ma
≤ T b

j:mb
) (2.10)

where

P (T a
i:ma

≤ T b
j:mb

) =

na+1
∑

l=1

P a,i
l [P (T b

j:mb
≥ tal−1)] (2.11)

and

P (T b
j:mb

≥ tal ) =

nb+1
∑

v=vl

P (T b
j:mb

∈ (tbv−1, t
b
v)) (2.12)

Example 2.3

The pairwise comparison results presented in this section are illustrated using the

six systems from Example 2.1, each with four exchangeable components but with the

different systems considered having different types of components with independence

of failure times assumed. Table 2.6 presents the NPI lower and upper probabilities

for the events T a ≤ T b, as presented in Equations 2.7 and 2.10, for the failure times

T a and T b for all combinations of two systems out of the six presented in Figure 2.1.

For all these 30 events, it is assumed that na = 3 components exchangeable with

those in the system with failure time T a and nb = 2 components exchangeable with

those in the system with failure time T b have been tested and that the ordering

of the test data is ta1 < tb1 < ta2 < tb2 < ta3. Of course, the NPI lower and upper

probabilities in Table 2.6 show that system A is the least reliable and system B the

most reliable of these systems. Notice that the comparisons of systems A,B,C, F

with either system D or E (whose signatures are not stochastically ordered) give

very similar results, yet they all indicate that system E is slightly more reliable than



2.3. Comparing failure times of two systems 29

(a, b) P (T a ≤ T b) P (T a ≤ T b) (a, b) P (T a ≤ T b) P (T a ≤ T b)

(A,B) 0.724 0.983 (D,A) 0.110 0.657

(A,C) 0.514 0.950 (D,B) 0.444 0.923

(A,D) 0.438 0.937 (D,C) 0.294 0.810

(A,E) 0.457 0.941 (D,E) 0.257 0.781

(A,F ) 0.524 0.951 (D,F ) 0.304 0.816

(B,A) 0.017 0.276 (E,A) 0.097 0.650

(B,C) 0.059 0.543 (E,B) 0.423 0.924

(B,D) 0.049 0.476 (E,C) 0.272 0.810

(B,E) 0.050 0.486 (E,D) 0.229 0.770

(B,F ) 0.063 0.562 (E,F ) 0.283 0.815

(C,A) 0.076 0.577 (F,A) 0.077 0.556

(C,B) 0.350 0.903 (F,B) 0.343 0.890

(C,D) 0.185 0.717 (F,C) 0.219 0.743

(C,E) 0.190 0.728 (F,D) 0.184 0.696

(C,F ) 0.230 0.771 (F,E) 0.190 0.706

Table 2.6: Pairwise comparisons of six systems from Figure 2.1 (Ex. 2.3)

system D, the same conclusion as drawn in Subsection 2.3.1. This is an attractive

way to compare the random failure times of two systems, which takes both the

system structures and the information from the test data directly into account and

considers a natural event of interest. The NPI lower probability reflects the evidence

in favour of the event T a ≤ T b while the corresponding upper probability reflects

the evidence in favour of the complementary event T a > T b. The difference between

corresponding upper and lower probabilities, also called the ‘imprecision’, is due to

the limited information available and the relatively weak modelling assumptions. In

Table 2.6 the imprecision of most events is large, which is due to there being only

5 observations in total. If more test data are available, the imprecision typically

becomes smaller, it would decrease to 0 if the numbers of test data in both groups

go to infinity.

Table 2.7 presents the NPI lower and upper probabilities for the pairwise com-
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Data ordering P (TD ≤ TE) P (TD ≤ TE)

td1 < td2 < td3 < te1 < te2 0.548 1

td1 < td2 < te1 < td3 < te2 0.442 0.940

td1 < td2 < te1 < te2 < td3 0.371 0.869

td1 < te1 < td2 < td3 < te2 0.328 0.852

td1 < te1 < td2 < te2 < td3 0.257 0.781

te1 < td1 < td2 < td3 < te2 0.219 0.757

te1 < td1 < td2 < te2 < td3 0.149 0.686

td1 < te1 < te2 < td2 < td3 0.181 0.675

te1 < td1 < te2 < td2 < td3 0.072 0.580

te1 < te2 < td1 < td2 < td3 0 0.466

Table 2.7: Pairwise comparisons of systems D and E with nD = 3 and nE = 2

parison of systems D and E, considering the event TD ≤ TE with nD = 3 observed

failure times for components exchangeable with those in system D and nE = 2 ob-

served failure times for components exchangeable with those in system E, and all

possible orderings of these observed failure times. These lower and upper probabil-

ities vary of course for the different data orderings, and also the imprecision varies.

If the three tested components of type D all failed before the two components of

type E, the data do not contain any evidence against the possibility that compo-

nents of type D will always fail before components of type E, which is reflected in

P (TD ≤ TE) = 1 in this case. Similarly, the other extreme data ordering does not

provide any evidence in favour of the possibility that components of type D will

ever fail before components of type E, as reflected by P (TD ≤ TE) = 0 for the final

ordering in Table 2.7.

2.3.3 Difference between failure times of two systems

The method presented in Subsection 2.3.2 compares the random failure times of two

systems by considering the event that one fails before the other, but it does not

provide insight into the actual difference between these failure times. Therefore, the
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approach of Subsection 2.3.2, using the same setting of two systems with different

types of components, is now generalized by considering the event T a ≤ T b + δ, for

real-valued δ. Of course, the setting of Subsection 2.3.1 can be similarly generalized.

The following generalization of Equation 2.5,

P (T a ≤ T b + δ) =

ma
∑

i=1

mb
∑

j=1

qai q
b
jP (T a

i:ma
≤ T b

j:mb
+ δ)

is proven in the same way as Equation 2.5, and is intuitively logical because adding

the constant value δ to the random lifetime of a system can be thought of as adding

it to the lifetimes of all its components, doing so will not change the signature of

the system. This immediately carries through to the NPI lower probability for this

event, which is

P (T a ≤ T b + δ) =
ma
∑

i=1

mb
∑

j=1

qai q
b
jP (T a

i:ma
≤ T b

j:mb
+ δ) (2.13)

with the NPI lower probabilities in the sum on the right-hand side equal to

P (T a
i:ma

≤ T b
j:mb

+ δ) =

na
∑

l=1

P a,i
l [P (T b

j:mb
+ δ ≥ tal )] (2.14)

Let vl,δ ∈ {1, . . . , nb + 1} be such that tbvl,δ−1 < tal − δ < tbvl,δ , then

P (T b
j:mb

+ δ ≥ tal ) =

nb+1
∑

v=vl,δ+1

P (T b
j:mb

∈ (tbv−1, t
b
v)) (2.15)

The corresponding NPI upper probability for the event T a ≤ T b + δ is

P (T a ≤ T b + δ) =

ma
∑

i=1

mb
∑

j=1

qai q
b
jP (T a

i:ma
≤ T b

j:mb
+ δ) (2.16)

where

P (T a
i:ma

≤ T b
j:mb

+ δ) =
na+1
∑

l=1

P a,i
l [P (T b

j:mb
+ δ ≥ tal−1)] (2.17)

and

P (T b
j:mb

+ δ ≥ tal−1) =

nb+1
∑

v=vl,δ

P (T b
j:mb

∈ (tbv−1, t
b
v)) (2.18)

Compared to the NPI lower and upper probabilities presented in Subsection

2.3.2, which correspond to those for δ = 0 here, calculation of these NPI lower and

upper probabilities just follows from shifting themb test observations for components
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exchangeable to those in system B by adding δ, or alternatively by subtracting δ

from each observation tal . For changing values of δ, these NPI lower and upper

probabilities only change if δ is large enough to change the ordering of the tb1, . . . , t
b
nb

relative to the values ta1−δ, . . . , tana
−δ, such a change of the ordering can happen for

at most na×nb different values of δ. Therefore, P (T a ≤ T b+ δ) and P (T a ≤ T b+ δ)

can have at most na × nb + 1 different values (including the case δ = 0), and as

function of δ these lower and upper probabilities are step functions which change

value at the same na × nb points, making their computation straightforward unless

na × nb is very large.

Example 2.4

Systems D and E of Figure 2.1 have been of interest as their signatures are not

stochastically ordered. Assume now that they have different types of components,

and that nd = ne = 30 components exchangeable with those of each type in the

respective system have been tested, leading to the failure times in Table 2.8. These

ordered failure times for system D were simulated from a Weibull distribution with

shape parameter 3 and scale parameter 1, and for system E from a Weibull distri-

bution with shape parameter 2 and scale parameter 1.

System D System E

0.223 0.747 0.994 0.154 0.585 1.076

0.265 0.798 1.008 0.155 0.598 1.169

0.372 0.807 1.073 0.347 0.642 1.239

0.419 0.824 1.115 0.402 0.692 1.248

0.564 0.850 1.167 0.483 0.738 1.327

0.630 0.887 1.182 0.512 0.822 1.421

0.675 0.914 1.275 0.513 0.843 1.569

0.685 0.921 1.397 0.548 0.848 1.643

0.709 0.981 1.400 0.563 0.863 1.735

0.727 0.987 1.425 0.574 0.938 2.565

Table 2.8: Simulated ordered component failure times for Example 2.4
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Figure 2.8 presents the NPI lower and upper probabilities for the event T d ≤

T e + δ as function of δ. In the top-left figure, Figure 2.8.1, these functions are

given for the data in Table 2.8. For these data, these functions remain constant

for values of δ less than −2.342 or greater than 1.271, as in these cases the two

data sets are completely non-overlapping, which shows in the fact that the NPI

lower probability for this event is equal to zero for δ < −2.342 and the NPI upper

probability for this event is equal to one for δ > 1.271. Actually, the changes in

these NPI lower and upper probabilities at δ equal to −2.342 or 1.271 are very small

and not well visible in Figure 2.8.1. The same is true at other values of δ close to

these minimal and maximal ones at which the NPI lower and upper probabilities

change. At δ = −2.342, the NPI lower probability T d ≤ T e + δ increases from 0

to 0.00013 and the NPI upper probability increases from 0.03630 to 0.03656, while

at δ = 1.271 the lower probability increases from 0.98702 to 0.98717 and the upper

probability increases from 0.99996 to 1.

The three further figures included in Figure 2.8 show the effect of substantial

changes to the actual observations, that is changes that actually change the order of

the observations, and hence they show how the NPI lower and upper probabilities

for the event T d ≤ T e + δ adapt to changes in the component test data. First,

the largest observed failure time for system D, 1.425, is replaced by 3.425, which

makes it the largest observed value in both sets of data. The resulting NPI lower

and upper probabilities for the event T d ≤ T e + δ as functions of δ are presented

in Figure 2.8.2, but the effect on the figures is not well visible when compared to

the original situation in Figure 2.8.1. Figures 2.8.3 and 2.8.4 show the NPI lower

and upper probabilities with the largest 4 and 10, respectively, values for System

D, as given in Table 2.8, changed by adding 2 to the original data values, which

implies that these all become larger than the largest observation for System E. Now

the effect is clear in both figures, and of course substantially stronger in case 10

observations have been changed. Figure 2.9 presents the same functions of Figures

2.8.1 and 2.8.4, so for the original data and with 10 values changed, on a larger scale

to see the differences more clearly. While the differences for the larger values of δ

are obvious, this figure shows that there have also been some small changes for δ
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Figure 2.8: The difference of failure times of two systems (Ex 2.4)



2.4. Concluding remarks 35

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 2.9: Difference of failure times of two systems (Figures 2.8.1 and 2.8.4)

close to 0 and even for negative values of δ.

2.4 Concluding remarks

In this chapter we have introduced the use of signatures in the study of system

failure times with lower and upper probabilities. There are many related research

challenges, for example a slightly more challenging topic is simultaneous comparison

of more than two systems’ failure times. The NPI lower and upper probabilities for

pairwise comparisons, as presented in Section 2.3, cannot be combined directly into

such quantifications for multiple comparisons. For example, it may be of interest

to consider the event that a particular one of the systems considered is the most

reliable in the sense of its random failure time being the largest of all systems’ failure

times, so it is of interest to generalize the method presented in Section 2.3 to derive

NPI lower and upper probabilities for such events. This can be done in NPI along
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the lines of such multiple comparisons as presented in [32].

There are major research challenges to the general theory of signatures, solutions

to which may be of particular interest when working with lower and upper proba-

bilities. However, its generalization to systems with multiple types of components

is very complicated, if not impossible. In Chapter 4, we use the concept of ‘survival

signatures’ presented by Coolen and Coolen-Maturi [26], as a more powerful alter-

native to derive NPI lower and upper survival functions for a system consisting of

different types of components.



Chapter 3

System failure time based on

bounds for the signature

3.1 Introduction

In Chapter 2 we have presented the use of signatures for nonparametric predictive

inference (NPI) for system reliability [24]. In NPI for system reliability, lower and

upper survival functions are derived for the system’s failure time, these reflect the

limited knowledge about reliability of the components, using only the information

from component tests. However, deriving the system signature is computationally

complex. This chapter presents how limited information about the signature can

be used to derive bounds on such lower and upper survival functions and related

inferences.

Derivation of the signature is not straightforward, even for relatively basic sys-

tems. However, for specific inferences it may not be necessary to compute the exact

signature. If computation of signatures is stopped before the exact signature is

derived, one typically has bounds for the elements of the signature vector, so the

probabilities qj. We explore the use of such bounds in NPI, leading to lower and up-

per bounds for the NPI lower and upper survival functions. For specific inferences,

these bounds may already be conclusive, meaning that no further computation is

needed. The basic results for the use of such bounds in NPI are presented in Sec-

tion 3.2. Section 3.3 presents the explanation of the possible use of information on

37
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signatures for subsystems. In Section 3.4 comparison of reliability of two systems

is presented by directly considering the random failure times of the systems using

partially known signatures. Section 3.5 contains some Concluding remarks.

3.2 Partially known signatures

Computation of the system signature is a complex problem due to the fact that m!

orderings in which the m components can fail must be considered [15, 61]. Explicit

expressions for the signature of some specific system structures are available [44],

but general algorithms to compute signatures have not received much attention

in the literature, with the noticeable exception of a logical approach presented by

Boland [15] which uses the concept of minimal ordered cut sets, reducing the total

number of orderings that need to be counted by grouping together orderings which

share the same minimal ordered cut set. However, as any computational method

has to deal with the very large number of orderings, it is interesting to consider if

one really needs to know the exact signature for a specific inference on the system’s

reliability. It is likely that any method for computing the signature, if ended before

the exact signature has been derived, will provide bounds for the probabilities qj of

the signature. In this section the use of bounds on qj is explored in NPI. The method

presented can be applied throughout the process of computation of the signature

and can indicate when further computation is not required.

Assume that bounds q
j
and qj, for j = 1, . . . , m, for the elements of signature

q = (q1, . . . , qm) have been derived, with 0 ≤ q
j
≤ qj ≤ qj ≤ 1. Assume that

∑m

j=1 qj ≤ 1 and
∑m

j=1 qj ≥ 1, so at least one signature (with elements summing to

one) exists between these bounds. We also assume that, for all j = 1, . . . , m

q
j
≥ 1−

m
∑

l=1
l 6=j

ql and qj ≤ 1−
m
∑

l=1
l 6=j

q
l

(3.1)

If these inequalities are not satisfied then q
j
can be increased or qj decreased, to

the value which gives equality in the corresponding inequality without any change

to the set of signatures q whose elements are all within these bounds.

Suppose that we want to derive the NPI lower and upper survival functions
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(2.1) and (2.2) based on the observed failure times of n tested components, which

are exchangeable with those in the system. If the exact system signature is not

known, but bounds q
j
and qj are available for each probability qj , then these can

be used to derive lower and upper bounds for these NPI lower and upper survival

functions, which are the tightest possible bounds corresponding to these bounds for

the elements of the signature. Because STj:m
(t) and STj:m

(t) are increasing functions

of j, for all t > 0, it is clear that we can derive two signatures with all their elements

within the bounds and such that one of them provides the maximum lower bound

for both STS
(t) and STS

(t), and the other provides the minimum upper bound for

both STS
(t) and STS

(t), for all t > 0. This corresponds to the link between the

stochastic ordering of random failure times of systems and the stochastic ordering

of their signatures [61]. We call the signature within these bounds that provides

the maximum lower bound for the NPI lower and upper survival functions, the

‘pessimistic signature’ and we denote it by qp. Similarly, we call the signature

within these bounds that provides the minimum upper bound for the NPI lower

and upper survival functions, the ‘optimistic signature’, denoted by qo. These terms

follow the logical interpretation of ‘pessimistic’ and ‘optimistic’ in terms of survival

of the system and the lack of knowledge of the actual NPI lower and upper survival

functions as the exact signature is not known.

To apply this in practice, define rj = q
j
for j = 1, . . . , m, then calculate

∑m

j=1 rj :

• If
m
∑

j=1

rj > 1 then q = (q1, . . . , qm) is not a lower bound for the signature.

• If
m
∑

j=1

rj = 1 then we already know the whole signature.

• If
m
∑

j=1

rj < 1 then, for the pessimistic signature, we put the probability mass

that is flexible according to the given bounds q
j
and qj as far to the left as

possible, so to elements with lower values of j, hence making earlier system

failure more likely. The optimistic signature puts this probability mass as far

to the right as possible, so to elements with higher values of j, hence making

later system failure more likely.

Algorithms to derive qp and qo are easy to implement. To determine the pessimistic
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signature vector qp of the system based on [q
j
, qj ] for j = 1, . . . , m, we use the

following algorithm.

1. Set rj = q
j
for j = 1, . . . , m

2. Determine how much probability mass has not yet been assigned, we define

this by

f = 1−
m
∑

j=1

rj (3.2)

Now we assign this probability mass f in the most pessimistic way, staying

within the bounds [q
j
, qj ]. We initiate the following step by setting j = 1.

3. If qj − q
j
<f , then set rj = qj and go to step 4.

If qj − q
j
≥ f , then set rj = q

j
+ f and stop the algorithm;

4. Set f = 1 −
∑m

j=1 rj and assign the extra probability mass to the next com-

ponent, by setting j to j + 1 and repeating step 3.

5. This process is repeated until the total probability mass f has been assigned.

It is easy to see that the process will terminate.

For jp ∈ [1, . . . , m], the components qpj of the pessimistic signature vector qp based

on [q
j
, qj ] are given by

qpj =



















qj (j = 1, . . . , jp − 1)

1−
∑jp−1

j=1 qj −
∑m

j=jp+1 qj (j = jp)

q
j

(j = jp + 1, . . . , m)

For the optimistic signature vector qo of the system based on [q
j
, qj] for j =

1, . . . , m, we can put the probability mass as far to the right as possible. To do this

we use the following algorithm

1. Set rj = q
j
for j = 1, . . . , m
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2. Determine how much probability mass has not yet been assigned, we define

this by f ;

f = 1−
m
∑

j=1

rj (3.3)

Now we assign this probability mass f in the most optimistic way, staying

within the bounds [q
j
, qj ]. We initiate the following step by setting j = m.

3. If qj − q
j
<f , then set rj = qj and go to step 4.

If qj − q
j
≥ f , then set rj = q

j
+ f and stop the algorithm;

4. Set f = 1 −
∑m

j=1 rj and assign the extra probability mass to the next com-

ponent by setting j to j1, and repeating step 3.

5. This process is repeated until eventually the total probability mass f has been

assigned. It is easy to see that the process will terminate.

For jo ∈ [1, . . . , m], the components qoj of the optimistic signature vector qo based

on [q
j
, qj ] are given by

qoj =



















qj (j = 1, . . . , jo − 1)

1−
∑jo−1

j=1 q
j
−
∑m

j=jo+1 qj (j = jo)

q
j

(j = m, . . . , jo + 1)

These algorithms to derive qp and qo are easy to implement. The assumptions

(3.1) ensure that the jp, jo are unique and qpjp ∈ [q
jp
, qjp] and qojo ∈ [q

jo
, qjo].

The lower and upper bounds for the NPI lower and upper survival functions for

TS follow immediately, in line with the results from Equations 2.1 and 2.2 in Section

2.2 and using the pessimistic and optimistic signatures qp and q0. The lower and

upper bounds for the NPI lower survival function for Ts are

Sp
TS
(t) =

m
∑

j=1

qpjP (Tj:m > t) (3.4)

So
TS
(t) =

m
∑

j=1

qojP (Tj:m > t) (3.5)
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and the lower and upper bounds for the NPI upper survival function for TS are

S
p

TS
(t) =

m
∑

j=1

qpjP (Tj:m > t) (3.6)

S
o

TS
(t) =

m
∑

j=1

qojP (Tj:m > t) (3.7)

In this notation, p and o again indicate pessimistic and optimistic bounds, respec-

tively. These are the sharpest possible bounds for the NPI lower and upper survival

functions for TS corresponding to the bounds q
j
and qj for qj , for j = 1, . . . , m. Due

to the construction of these bounds, it is clear that they can actually be attained.

If the real signature q is only known up to such bounds for its individual ele-

ments, it follows that the NPI lower and upper survival functions for TS are between

their respective bounds as given by Equations 3.4 to 3.7, and nothing more can be

deduced without additional assumptions or indeed without further computation of

the signature. Further computation which falls short of deriving the exact signature

will lead to new bounds for the NPI lower and upper survival functions which are

within the corresponding earlier bounds. This may be useful for deciding if further

computation is required for a specific inferential problem. For example, if one is

interested in the system’s reliability at time t∗ and requires a minimum probability

of p∗ for the system to function at time t∗, then Sp
TS
(t∗) ≥ p∗ would imply that the

reliability requirement is certainly met without need for further computation of the

signature. Similarly, if S
o

TS
(t∗) ≤ p∗ then the reliability requirement is certainly not

met. In the other situations one cannot draw a firm conclusion about whether or

not the reliability requirement is met and one may want to continue computation

of the system signature.

Even with the exact signature it is possible that no firm conclusion can be drawn,

namely if STS
(t∗) < p∗ < STS

(t∗). In such a case one would either require more test

data or use additional information, insights or assumptions in order to reach a

conclusion. We consider it an advantage of the use of lower and upper probabilities

that such situations can occur, as they reflect the limits to the amount of information

in test results. The use of these lower and upper bounds at different levels of

computation of the system signature, so with increasingly accurate bounds, will
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be illustrated in Example 3.1. In all examples throughout this chapter, we will

concentrate on the optimal lower bound for the NPI lower survival function and the

optimal upper bound for the NPI upper survival function, which are likely to be of

most relevance for inferences.

As a special case of the above presented method, suppose that we have computed

exactly the values of q1, . . . , ql for a value l < m, but we have not performed any

computations for further elements of q. Then define the following two signatures,

with q(l+1,m) = 1−
∑l

j=1 qj =
∑m

j=l+1 qj, the optimistic signature is

qol = (q1, . . . , ql, 0, . . . , 0, q(l+1,m)) (3.8)

and the pessimistic signature is

qpl = (q1, . . . , ql, q(l+1;m), 0, . . . , 0) (3.9)

It is clear that, compared to any signature with known q1, . . . , ql but further ele-

ments unknown, these two signatures above are indeed ‘optimistic’ and ‘pessimistic’,

respectively, with regard to system survival (this follows from the stochastic order-

ings). Using these optimistic and pessimistic signatures, we can derive bounds for

the system’s NPI lower and upper survival functions as presented in Equations 3.4

to 3.7.

Example 3.1

For the system in Figure 3.1, computing the signature involves determining for all

of the 7! = 5040 orderings of the failure times of the 7 components, at which of

these ordered times the system fails. Of course, all 6! = 720 orderings with failure of

Component 1 occurring first lead to immediate failure, from which we can conclude

the lower bound q
1
= 0.143. It is easy to see that no other component’s failure will

lead to immediate system failure if it is the first to fail, hence also the upper bound

q1 = 0.143. In addition, it is easy to see that the system cannot function with at most

two functioning components, this leads to the upper bounds q6 = q7 = 0. This in-

formation, using conditions (3.1) but without further computation, can be reflected

by q = (0.143, 0, 0, 0, 0, 0, 0) and q = (0.143, 0.857, 0.857, 0.857, 0.857, 0, 0). The cor-
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Figure 3.1: A system with 7 components (Exs. 3.1, 3.2 and 3.4)

responding pessimistic and optimistic signatures are qp = (0.143, 0.857, 0, 0, 0, 0, 0)

and qo = (0.143, 0, 0, 0, 0.857, 0, 0). Computation of signatures by counting orderings

typically leads to information in the form of lower bounds q
j
for individual elements

of the signature. To illustrate the method presented in Section 3.2 further, Table

3.1 provides, in addition to the first case just mentioned, three more combinations

of lower and upper bounds for this system’s signature as occurred at different stages

of its computation, with increasing amount of information in Cases 1 to 4. For

each case the pessimistic and optimistic signatures qp and qo, respectively, are also

presented in this table.

Test component failure times were simulated for this example, with n = 100

observations taken from the Weibull distribution with shape parameter 3 and scale

parameter 1. The corresponding lower bounds for the NPI lower survival function,

Sp
TS
(t) as given in Equation 3.4, and the upper bounds for the NPI upper survival

function, S
o

TS
(t) as given in Equation 3.7, are presented in the plots in Figure 3.2,

where each plot also presents the NPI lower and upper survival functions based

on the exact signature, which is q = (1/5040) × (720, 1200, 1392, 1440, 288, 0, 0) =

(0.143, 0.238, 0.276, 0.286, 0.057, 0, 0). These plots illustrate the use of the bounds

as presented in this chapter, and also show that the lower bound of the NPI lower

survival function moves up if more details about the signature become known, in

which case the upper bound for the NPI upper survival function moves down.

As possible use of these bounds in order to determine when no further computa-

tion for the signature is needed, suppose a reliability requirement that the system’s

failure time should exceed 0.5 with probability at least 0.8. With the bounds for

the signature in Case 1, the upper bound for the NPI upper survival function at 0.5

is greater than 0.8 and the corresponding lower bound for the NPI lower survival
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Case 1 q (0.143, 0, 0, 0, 0, 0, 0)

q (0.143, 0.857, 0.857, 0.857, 0.857, 0, 0)

qp (0.143, 0.857, 0, 0, 0, 0, 0)

qo (0.143, 0, 0, 0, 0.857, 0, 0)

Case 2 q (0.143, 0.143, 0, 0, 0, 0, 0)

q (0.143, 0.857, 0.714, 0.714, 0.714, 0, 0 )

qp (0.143, 0.857, 0, 0, 0, 0, 0)

qo (0.143, 0.143, 0, 0, 0.714, 0, 0)

Case 3 q (0.143, 0.143, 0.076, 0, 0, 0, 0)

q (0.143, 0.781, 0.714, 0.638, 0.638, 0, 0)

qp (0.143, 0.781, 0.076, 0, 0, 0, 0)

qo (0.143, 0.143, 0.076, 0, 0.638, 0, 0)

Case 4 q (0.143, 0.143, 0.152, 0.157, 0, 0, 0)

q (0.143, 0.548, 0.557, 0.562, 0.405, 0, 0)

qp (0.143, 0.548, 0.152, 0.157, 0, 0, 0)

qo (0.143, 0.143, 0.152, 0.157, 0.405, 0, 0)

Table 3.1: Bounds, pessimistic and optimistic signatures (Ex. 3.1)

function is less than 0.8, but for the bounds in Case 2, based on some additional

computations, the upper bound for the NPI upper survival function at 0.5 is less

than 0.8, so it is clear that the reliability requirement cannot be met and hence that

no further computation of the signature is needed. Similarly, if one only requires

that the system’s failure time should exceed 0.5 with probability at least 0.3 then

one needs no more computation once the bounds in Case 4 have been derived, as

the corresponding lower bound for the NPI lower survival function at 0.5 exceeds

0.3, hence this reliability requirement is certainly met.



3.2. Partially known signatures 46

0.0 0.5 1.0 1.5 2.0

0
.
0

0
.
2

0
.
4

0
.
6

0
.
8

1
.
0

t

Case 1

0.0 0.5 1.0 1.5 2.0

0
.
0

0
.
2

0
.
4

0
.
6

0
.
8

1
.
0

t

Case 2

0.0 0.5 1.0 1.5 2.0

0
.
0

0
.
2

0
.
4

0
.
6

0
.
8

1
.
0

t

Case 3

0.0 0.5 1.0 1.5 2.0

0
.
0

0
.
2

0
.
4

0
.
6

0
.
8

1
.
0

t

Case 4

Figure 3.2: NPI lower and upper survival functions (Ex. 3.1)
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Example 3.2

In this example, three data sets, each consisting of n=100 observations of component

failure times, are simulated from the Weibull distribution with shape parameter 3

and scale parameter 1. The data sets are presented by boxplots in Figure 3.3. We

focus again on the system consisting of 7 components presented in Figure 3.1, and

assume that we have the signatures qp = (0.143, 0.548, 0.152, 0.157, 0, 0, 0) and qo

= (0.143, 0.143, 0.152, 0.157, 0.405, 0, 0). Figure 3.4 presents the lower bound for

the NPI lower survival function and the upper bound for the NPI upper survival

function using these three different data sets in order to see how much these different

data sets affect these bounds for the NPI lower and upper survival functions. The

first 3 plots show that, of course, there are some differences due to the different data

sets. In the top left of Figure 3.4, the functions are given for data set 1 in Figure

3.3. Figure 3.4.1 for data set 1 shows relatively early drop in the lower bound for

the NPI lower survival function and the upper bound for the NPI upper survival

function due to the fact that data set 1 has relatively more small data values than

data sets 2 and 3. Also, it is clear in Figure 3.4.2 that the lower bound for the NPI

lower survival function and the upper bound for the NPI upper survival function

drop a bit at a very low value of t due to the first value in data set 2, which is much

smaller than all values in data sets 1 and 3. Figure 3.4.4 presents the same functions

of Figures 3.4.1, 3.4.2 and 3.4.3 in order to see the differences more clearly.

3.3 Computation using bounds for the signatures

of two subsystems

For the NPI approach, bounds for the signatures of two subsystems in parallel or

series configuration can be used to derive bounds for the full system’s signature,

using the same algorithms as presented by Gaofeng et al. [48] and discussed in

Section 1.2. The reason for this is the assumption that the system is coherent,

which implies that a decrease (increase) in reliability of a component can never lead

to increased (decreased) reliability of the system, therefore a decrease (increase) in

reliability of a subsystem can never lead to increased (decreased) reliability of the
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Figure 3.3: different data sets (Ex. 3.2)

system. The pessimistic signatures for the two subsystems can be combined to give

the pessimistic signature for the full system, and combining the optimistic signatures

for the two subsystems leads to the optimistic signature for the full system. Example

3.3 illustrates this approach.

Example 3.3

Figure 3.5 shows a coherent system consisting of 17 exchangeable components, which

consists of two subsystems in parallel configuration. Subsystem A is the same sys-

tem, consisting of 7 components (number 1-7), as considered in Example 3.1. Sub-

system B consists of 10 components (number 8-17). While the exact signature

for this full system can be obtained by using the given signature for Subsystem A

together with repeated use of the algorithm presented by Gaofeng et al. [48] for

Subsystem B and for the combination of the two subsystems, we assume, in order

to illustrate the use of the bounds on signatures presented in this chapter, that the

signatures of subsystems A and B have only been derived partially, with the bounds
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Figure 3.4: NPI lower and upper survival functions (Ex. 3.2)
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Figure 3.5: Two subsystems in parallel (Ex. 3.3)

and corresponding pessimistic and optimistic signatures as presented in Table 3.2.

The pessimistic signature for the full 17-component system is derived by appli-

cation of the algorithm of Gaofeng et al. [48], as presented in Section 1.2, with the

use of the pessimistic signatures qa,p and qb,p, which leads to

qp = (0, 0.015, 0.050, 0.099, 0.161, 0.158, 0.136, 0.109,

0.084, 0.064, 0.048, 0.035, 0.023, 0.013, 0.005, 0, 0)

Applying the same algorithm with the optimistic signatures qa,o and qb,o leads to

qo = (0, 0.015, 0.031, 0.040, 0.046, 0.051, 0.061, 0.078,

0.106, 0.128, 0.164, 0.128, 0.084, 0.047, 0.021, 0, 0)

In Figure 3.6, the left plot presents the lower bound for the NPI lower survival

function and the upper bound for the NPI upper survival function, both for the

failure time of the full system and based on n = 10 failure times of tested compo-

nents which are exchangeable with those in the system (simulated from the Weibull

distribution with shape parameter 2 and scale parameter 1).

The right plot in Figure 3.6 is included for comparison with the following sit-

uation: Suppose that one would apply the NPI method presented in this chapter

directly to each subsystem individually, using the bounds given in Table 3.2, but ne-

glecting the fact that all components in both subsystems are exchangeable. Making
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A qa (0.143, 0.143, 0.152, 0.157, 0.100, 0, 0)

qa (0.143, 0.448, 0.457, 0.462, 0.405, 0, 0)

qa,p (0.143, 0.448, 0.152, 0.157, 0.100, 0, 0)

qa,o (0.143, 0.143, 0.152, 0.157, 0.405, 0, 0)

B qb (0.200, 0.222, 0.072, 0.100, 0.046, 0.013, 0, 0, 0, 0)

qb (0.200, 0.222, 0.419, 0.447, 0.393, 0.360, 0, 0, 0, 0)

qb,p (0.200, 0.222, 0.419, 0.100, 0.046, 0.013, 0, 0, 0, 0)

qb,o (0.200, 0.222, 0.072, 0.100, 0.046, 0.360, 0, 0, 0, 0)

Table 3.2: Bounds, pessimistic and optimistic signatures for subsystems A and B

(Ex. 3.3)

this mistake, one could continue by calculating bounds for the full system’s survival

function following the standard way for simple parallel systems (effectively using

‘1 − (1 − Sa)(1 − Sb)’, with self-explanatory notation). The resulting lower and

upper survival functions are greater than (or equal to) the correctly derived bounds

for the NPI lower and upper survival function, because for the correct method the

dependence of the components in both systems is taken into account. An intu-

itive explanation is as follows: The parallel system will only fail if both subsystems

fail, and if one subsystem is known to fail this contains some information that sug-

gests that the components are not very reliable, which as a consequence increases

the (lower and upper) probability that the second subsystem also fails (when com-

pared to the situation with the wrongly assumed independence between the two

subsystems). This example shows the importance of taking the dependence of the

exchangeable components, due to the limited information about their reliability from

the test results, carefully into account, as is done by the NPI approach with the use

of (bounds of) signatures.
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Figure 3.6: Bounds on NPI lower and upper survival functions (Left); similar but

resulting from wrongly assumed independence of subsystems (Right) (Ex. 3.3)

3.4 Comparing failure times of two systems

In addition to the survival time of a system consisting of exchangeable components,

other inferences can be considered. In Section 2.3.3 we considered the comparison

of the failure times of two coherent systems, each consisting of exchangeable compo-

nents. It is assumed that the failure times of the components in the different systems

are fully independent, so any information about components’ failure times of one

system does not affect (lower and upper) probabilities involving only failure times

of components of the other system. Due to the monotonicity of this comparison

with regard to the systems’ signatures, such a comparison with exactly known sig-

natures, following the results from Equations 2.13 and 2.16) in Section 2.3.3, can be

generalized to partially known signatures. If the exact signatures are not available

but instead bounds qa and qa for qa and qb and qb for qb have been derived, which

are assumed to satisfy conditions (3.1), then the optimal lower bound for the NPI

lower probability for the event T a ≤ T b+ δ is derived using the optimistic signature
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qa,o for System A and the pessimistic signature qb,p for System B, leading to

P l(T a ≤ T b + δ) =
ma
∑

i=1

mb
∑

j=1

qa,oi qb,pj P (T a
i:ma

≤ T b
j:mb

+ δ) (3.10)

The optimal upper bound for the NPI upper probability for T a ≤ T b+δ is derived

using the pessimistic signature qa,p for System A and the optimistic signature qb,o

for System B, leading to

P
u
(T a ≤ T b + δ) =

ma
∑

i=1

mb
∑

j=1

qa,pi qb,oj P (T a
i:ma

≤ T b
j:mb

+ δ) (3.11)

These bounds follow from the monotonicity of these NPI lower and upper proba-

bilities with regard to the signatures. The lower bound for the NPI lower probability

for this event corresponds to maximum optimism about the lifetime of System A

and maximum pessimism about the lifetime of System B, which is fully in line with

intuition, and of course the other way around for the upper bound for the NPI upper

probability. The upper bound for the NPI lower probability and the lower bound for

the NPI upper probability are of course derived by taking the alternative optimistic

or pessimistic signatures, but these are less likely to be of interest.

Example 3.4

Consider the systems of Figures 3.7 and 3.1, called System A and System B, respec-

tively. Assume that each system consists of exchangeable components but these are

different for the two systems, and we assume independence of the failure times of

components in the different systems. Assume that bounds qa and qa are available

for the signature of System A and bounds qb and qb for the signature of System B,

as given in Table 3.3, which also presents the pessimistic and optimistic signatures

corresponding to these bounds. Assume further that na = nb = 30 components

exchangeable with those of each type in the respective systems have been tested,

leading to the failure times in Table 3.4. The optimal lower bound for the NPI

lower probability and the optimal upper bound for the NPI upper probability for

the event T a
S ≤ T b

S + δ are presented in Figure 3.8 as functions of δ. This figure

also gives the NPI lower and upper probabilities for this event corresponding to the

exact signatures, which for System B was given in Example 3.1 and for System A
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1

2

3

4

5 6

Figure 3.7: System A

System A qa (0, 0.133, 0.267, 0.044, 0, 0)

qa (0, 0.133, 0.267, 0.600, 0.556, 0)

qa,p (0, 0.133, 0.267, 0.600, 0, 0)

qa,o (0, 0.133, 0.267, 0.044, 0.556, 0)

System B qb (0.143, 0.143, 0.152, 0.157, 0.100, 0, 0)

qb (0.143, 0.448, 0.457, 0.452, 0.405, 0, 0)

qb,p (0.143, 0.448, 0.152, 0.157, 0.100, 0, 0)

qb,o (0.143, 0.143, 0.152, 0.157, 0.405, 0, 0)

Table 3.3: Bounds, pessimistic and optimistic signatures (Ex. 3.4)

is equal to qa = (1/720) × (0, 96, 192, 336, 96, 0) = (0, 0.133, 0.267, 0.467, 0.133, 0).

Figure 3.8 gives a good impression of the actual difference between the failure times

of these two systems, where it should be remarked that the bounds based on the

partial information are still relatively wide compared to the NPI lower and upper

probabilities based on the exact signatures, as the vertical distances between the

functions at specific values of δ must be considered.
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System A System B

0.223 0.747 0.994 0.154 0.585 1.076

0.265 0.798 1.008 0.155 0.598 1.169

0.372 0.807 1.073 0.347 0.642 1.239

0.419 0.824 1.115 0.402 0.692 1.248

0.564 0.850 1.167 0.483 0.738 1.327

0.630 0.887 1.182 0.512 0.822 1.421

0.675 0.914 1.275 0.513 0.843 1.569

0.685 0.921 1.397 0.548 0.848 1.643

0.709 0.981 1.400 0.563 0.863 1.735

0.727 0.987 1.425 0.574 0.938 2.565

Table 3.4: Component failure times (Ex. 3.4)

−2 −1 0 1 2

0.
0

0.
2
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0
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Figure 3.8: (Bounds on) NPI lower and upper probabilities for TA
S < TB

S + δ (Ex.

3.4)
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3.5 Concluding remarks

While the concept of system signature and its use for reliability quantification has

received increasing attention in the literature in recent years, the computation of the

signature has received relatively little attention and is complex for most systems. In

this chapter, it is illustrated how one can base reliability inferences on a partially

known signature, assuming that bounds for the probabilities in the signature are

available. Such bounds may typically result from computations that are based on

counting all the orderings, where any further computations lead to sharpening of the

bounds. The method introduced by Da et al. [48] to derive a system signature from

the signatures of subsystems, if these are in either series or parallel configuration,

which was presented in Section 1.2, can also be used with partially known signatures,

as illustrated in this chapter. An interesting topic for further research is whether

such results can also be derived for subsystems that are in different configurations.

The bounds on signatures considered in this chapter could be interpreted as

imprecise probabilities [30, 31]. For the inferences considered in this chapter, the

bounds corresponded to logical and well-identifiable signatures within the bounds,

called the optimistic and pessimistic signatures. Of course, one may be interested

in other inferential problems for which this nice monotonicity with regard to the

signature does not hold, for example if one would be interested in a system failing

in its second year of operation then the bounds would be less easy to derive. One

could still apply the ideas presented in this chapter, but deriving the bounds for the

inferences that correspond to the bounds for the signature would be formulated as

constrained optimisation problems that may require numerical solution methods.

As indicated in the examples, the lower bound for the NPI lower survival func-

tion and the upper bound for the NPI upper survival function are most likely to be

of main interest. However, the two other bounds presented can also be useful, par-

ticularly as the lower and upper bounds for the NPI lower survival function provide

a clear indication of the accuracy with which, at any specific stage of computation,

the real NPI lower survival function can be approximated (and similar of course for

the NPI upper survival function). This may also be useful to provide an indication

of the value of additional calculations to derive the signature.
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An interesting further question is whether it is possible to learn about the system

signature from failure observations. Aslett [9] has made interesting contributions to

Bayesian learning of the system signature when only data for the whole system are

available. This is important for ‘black-box’ systems, where it is not possible to

construct the signature on the basis of available information. In such cases, system

failure data can enable learning about some aspects of the system signature and

hence of the actual structure of the system.



Chapter 4

Failure time of a system with

multiple types of components

4.1 Introduction

In Chapters 2 and 3 we have presented the use of system signatures to derive non-

parametric predictive inference (NPI) based lower and upper survival functions for

the failure time of a system, with attention restricted to systems consisting of a sin-

gle type of components. In this chapter, these results are generalized by presenting

NPI for the failure time of a coherent system which can consist of different types of

components. It is assumed that, for each type of component, additional components

which are exchangeable with those in the system have been tested and their failure

times are available. As in Chapters 2 and 3, we present NPI-based lower and up-

per survival functions. In those chapters signatures were used for quantification of

reliability of coherent systems consisting of components with exchangeable failure

times, which can be regarded informally as components of ‘a single type’. However,

the restriction to systems with a single type of components prevents its application

to most practical systems.

Coolen and Coolen-Maturi [26] recently introduced an alternative concept, called

the survival signature, which is closely related to the signature and has similar char-

acteristics. However, the survival signature can be used for systems consisting of

multiple types of components. In Section 4.2 we briefly review the main idea of

58
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the concept of survival signature. Section 4.3 presents the use of survival signa-

tures to derive NPI lower and upper survival functions for a system with a single

type of component, in order to relate this method to the earlier chapters. Section

4.4 presents the use of survival signatures to derive NPI lower and upper survival

functions for a system with multiple types of components. In Section 4.5 we present

formulas for computing the survival signature of systems by using the survival signa-

tures of subsystems, which appear either in series or in parallel configuration in the

system. Section 4.6 presents how limited information about the survival signature

can be used to derive bounds on such lower and upper survival functions. Section

4.7 contains some concluding remarks.

4.2 The survival signature

The signature was introduced to assist reliability analyses for systems consisting of

one type of components, as discussed in Section 1.2. and used in Chapters 2 and

3. The signature is used to model the structure of a system, separating this from

random failure times of the components. Coolen and Coolen-Maturi [26] introduced

the following alternative to the signature which can achieve a similar task, and which

is related to the signature. However, their concept, called the ’survival signature’ is

easily generalized to systems with multiple types of components.

As mentioned in Chapter 1, for a system with m components, let state vector

x = (x1, x2, . . . , xm) ∈ {0, 1}m, with xi = 1 if the ith component functions and xi = 0

if not. The labelling of the components is arbitrary but must be fixed to define x.

The structure function φ : {0, 1}m → {0, 1}, defined for all possible x, takes the

value 1 if the system functions and 0 if the system does not function for state vector

x. Throughout this thesis it is assumed that the system is coherent [12]. We further

assume that φ(0) = 0 and φ(1) = 1, so the system fails if all its components fail and it

functions if all its components function. For a system consisting only of components

with exchangeable, the survival signature, denoted by Φ(l), for l = 1, . . . , m, is

defined as the probability that the system functions given that precisely l of its

components function [26]. For coherent systems, Φ(l) is an increasing function of
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l, and we assume that Φ(0) = 0 and Φ(m) = 1. There are
(

m

l

)

state vectors x

with precisely l components xi = 1, so with
∑m

i=1 xi = l; we denote the set of

these state vectors by Sl. These state vectors are equally likely to occur due to the

exchangeability assumption for the components’ failure times, hence

Φ(l) =

(

m

l

)−1
∑

x∈Sl

φ(x) (4.1)

Coolen and Coolen-Maturi [26] called Φ(l) the survival signature because, by its

definition, it is closely related to survival of the system. Let C(t) ∈ {0, 1, . . . , m}

denote the number of components in the system that function at time t > 0. The

probability for the event that the system functions at time t > 0 can be derived by

P (TS > t) =

m
∑

l=0

Φ(l)P (C(t) = l) (4.2)

It is clear from Equation 4.2 that the system structure is taken into account

through the survival signature Φ(l), which models how the system’s functioning

depends on the functioning of its components, while the term P (C(t) = l) takes the

random failure times of the components into account. Separating these two essential

parts in order to determine the survival function for the system failure time is similar

to the use of system signatures as discussed in Section 1.2, and used in the previous

chapters. The survival signature and the system signature are closely related, it is

easily seen that the following equality holds [26]

Φ(l) =
m
∑

j=m−l+1

qj (4.3)

Equation 4.3 is logical as the right-hand side gives the probability that the system

failure occurs at the moment of the (m− l+1)-th ordered component failure time or

later. This is exactly the moment at which the number of functioning components

in the system decreases from l to l − 1, hence the system would have functioned

with l components functioning.

Generalizing the signature to multiple types of components is very complicated

while keeping it separate from the component lifetime distributions, as this would

always require computation of probabilities for orderings of order statistics from
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different probability distributions, corresponding to the different types of compo-

nents, as discussed by Coolen and Coolen-Maturi [26]. However, they show that

the survival signature can easily be generalized for systems with multiple types of

components. Consider a system with K ≥ 2 types of components, with mk compo-

nents of type k ∈ {1, 2, . . . , K} and
∑K

k=1mk = m. Assume that the random failure

times of components of the same type are exchangeable, while full independence

is assumed for the random failure times of components of different types. Due to

the arbitrary ordering of the components in the state vector, components of the

same type can be grouped together, leading to a state vector that can be written as

x = ( underlinex1, x2, . . . , xK) with xk = (xk
1, x

k
2, . . . , x

k
mk

) the sub-vector represent-

ing the states of the components of type k. Let the ordered random failure times of

the mk components of type k be denoted by T k
jk:mk

. The survival signature for such

a system is denoted by Φ(l1, l2, . . . , lK), for lk = 0, 1, . . . , mk, and is defined to be

the probability that the system functions given that precisely lk of its components

of type k function, for each k ∈ {1, 2, . . . , K} [26].

There are
(

mk

lk

)

state vectors xk with precisely lk of its mk components of type

k functioning, so with
∑mk

i=1 x
k
i = lk; we denote the set of these state vectors for

components of type k by Sk
l . Let Sl1,...,lK denote the set of all state vectors for the

whole system for which
∑mk

i=1 x
k
i = lk, for k = 1, 2, . . . , K. Due to the assumption

that the failure times of the mk components of type k are iid, so also exchangeable,

all the state vectors xk ∈ Sk
l are equally likely to occur, hence

Φ(l1, . . . , lK) =

[

K
∏

k=1

(

mk

lk

)−1
]

×
∑

x∈Sl1,...,lK

φ(x) (4.4)

Let Ck(t) ∈ {0, 1, . . . , mk} denote the number of components of type k in the

system that function at time t > 0. The probability that the system functions at

time t > 0 is

P (TS > t) =

m1
∑

l1=0

· · ·

mK
∑

lK=0

[

Φ(l1, . . . , lK)
K
∏

k=1

P (Ck(t) = lk)

]

(4.5)

Calculation of (4.5) is quite straightforward if Φ(l1, . . . , lK) is known. The survival

signature Φ(l1, . . . , lK) must be derived for all
∏K

k=1(mk + 1) different (l1, . . . , lK),

but this information must be extracted from the system anyhow and is only required
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to be calculated once for any system, similar to the (survival) signature for systems

with a single type of component. The advantage of Equation 4.5 is that the infor-

mation about the system structure is again separated from the information about

the components’ failure times, and the inclusion of the failure time distributions is

straightforward due to the assumed independence of failure times of components of

different types.

4.3 Single type of component

This section presents the NPI lower and upper survival functions for the failure time

TS of a system consisting of a single type of component, derived by generalizing

Equation 4.2 to lower and upper probabilities. We also relate this method to the

NPI method presented in Section 2.2 for the system survival function using the

signature, for systems with a single type of components.

The NPI lower and upper survival functions for the failure time TS of a coherent

system consisting of m exchangeable components, with the system structure repre-

sented by survival signature Φ(l), can be derived by the following generalizations of

Equation 4.2. We now present NPI lower and upper survival functions for the fail-

ure time TS of a system consisting of a single type of component, using the system

signature combined with NPI for Bernoulli data [19]. This enables the NPI method

to be applied to, in principle, all systems, so this methodology widely generalizes

the earlier results on NPI for system reliability as presented in chapters 2 and 3.

NPI is used for learning about the components in the system, from data consisting

of failure times for components that are exchangeable with those in the system. We

assume therefore that such data are available, for example resulting from testing or

previous use of components. Let n denote the number of components for which test

failure data are available, and let s(t) denote the number of components which still

function at time t.

The NPI lower survival function is derived as follows. Remember that C(t)

denotes the number of components in the system which function at time t, where it

is assumed that failure ends the functioning of a component and it is not repaired or
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replaced. Under the assumptions for the NPI approach [19], we derive the following

lower bound for the survival function

P (TS > t) ≥
m
∑

l=0

Φ(l)D(C(t) = l)

where

D(C(t) = l) = P (C(t) ≤ l)− P (C(t) ≤ l − 1)

=

(

n +m

n

)−1(
s(t)− 1 + l

s(t)− 1

)(

n− s(t) +m− l

n− s(t)

)

In this expression, P denotes the NPI upper probability for Bernoulli data [19].

The function D ensures that maximum possible probability, corresponding to NPI

for Bernoulli data [19], is assigned to the event C(t) = 0, soD(C(t) = 0) = P (C(t) =

0). Then, D(C(t) = 1) is defined by putting the maximum possible remaining

probability mass, from the total probability mass available for the event C(t) ≤ 1, to

the event C(t) = 1. This is achieved by D(C(t) = 1) = P (C(t) ≤ 1)−P (C(t) = 0).

This argument is continued, by assigning for increasing l the maximum possible

remaining probability mass D(C(t) = l). As the survival signature is increasing in

l for coherent systems, as assumed in this chapter, and the resulting D is a precise

probability distribution, the right-hand side of the inequality above is indeed a lower

bound and it is the maximum possible lower bound. As such, it is the NPI lower

probability for the event TS > t, giving the NPI lower survival function for the

system failure time (for t > 0)

STS
(t) = P (TS > t) =

m
∑

l=0

Φ(l)D(C(t) = l) (4.6)

The corresponding NPI upper survival function for TS is similarly derived, using

the upper bound

P (TS > t) ≤

m
∑

l=0

Φ(l)D(C(t) = l)

where

D(C(t) = l) = P (C(t) ≤ l)− P (C(t) ≤ l − 1)

=

(

n +m

n

)−1(
s(t) + l

s(t)

)(

n− s(t) +m− l − 1

n− s(t)

)



4.3. Single type of component 64

In this expression, P denotes the NPI lower probability for Bernoulli data [19]. This

construction ensures that minimum possible weight is given to small values of C(t),

resulting in the NPI upper survival function for the system failure time (for t > 0)

STS
(t) = P (TS > t) =

m
∑

l=0

Φ(l)D(C(t) = l) (4.7)

For systems with a single type of components, NPI theory for the system survival

time using the signature was presented in Chapter 2. This used NPI for future order

statistics of real-valued observations [27]. It is not trivial that this leads to the

same inferences as the method using the survival signature and NPI for Bernoulli

quantities [19] as presented in this section. However, the resulting inferences for such

systems, from these two different NPI approaches, are identical. The proof that these

two approaches lead to the same NPI lower survival function is as follows,

P (TS > t) =
m
∑

l=0

Φ(l)D(C(t) = l)

=

m
∑

l=0

(

m
∑

j=m−l+1

qj)D(C(t) = l)

=

m+1
∑

j=1

qj[

m
∑

l=m−j+1

D(C(t) = l)]

where

m
∑

l=m−j+1

D(C(t) = l) =
m
∑

l=m−j+1

[

P (C(t) ≤ l)− P (C(t) ≤ l − 1)
]

= P (C(t) ≤ m)− P (C(t) ≤ m− j)

= 1− P (C(t) ≤ m− j)

= P (C(t) > m− j)

= P (C(t) ≥ m− j + 1)

= P (Tj:m > t)

so

P (TS > t) =
m+1
∑

j=1

qjP (Tj:m > t)
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which is the NPI lower survival function as specified in Section 2.2. The proof for

the corresponding NPI upper survival function follows the same steps.

Example 4.1

The six systems with m = 4 exchangeable components in Figure 4.1 were used to

illustrate the use of the signature to derive NPI lower and upper survival functions

in Section 2.2. We now use these systems to illustrate the survival signature method

presented in this section. Figure 4.1 also gives the survival signature of each of these

systems. Suppose that n = 4 components exchangeable with those in such a system

were tested, leading to ordered failure times t1 < t2 < t3 < t4, which create the

partition I1, . . . , I5 of the positive real-line.

= (0,0,0,0,1)

 = (0,1,1,1,1)

 = (0,0,1/2,3/4,1)   = (0,0,1/3,1,1)  = (0,1/4,1/2,1,1)

 = (0,0,2/3,1,1)

D E F

B

C

A

Figure 4.1: Coherent systems with 4 exchangeable components

Table 4.1 presents the NPI lower and upper survival functions STS
(t) and STS

(t)

for the system failure time TS, including the survival signature and the system

signatures, as discussed in Section 2.2 for each of the systems presented in Figure

4.1. The main purpose of presenting this example is to show that we can achieve the

same results either using signature or survival signature. These results in Table 4.1

illustrate that NPI lower and upper survival functions using the survival signature

are identical to those using the signature, as presented in Section 2.2.
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q (1, 0, 0, 0) (0, 0, 0, 1) (0, 1
3
, 2
3
, 0)

Φ (0, 0, 0, 0, 1) (0, 1, 1, 1, 1) (0, 0, 2
3
, 1, 1)

t ∈ STS
(t) STS

(t) STS
(t) STS

(t) STS
(t) STS

(t)

(0, t1) 0.50 1 0.99 1 0.88 1

(t1, t2) 0.21 0.50 0.93 0.99 0.67 0.88

(t2, t3) 0.07 0.21 0.79 0.93 0.41 0.67

(t3, t4) 0.01 0.07 0.50 0.79 0.17 0.41

(t4,∞) 0 0.01 0 0.50 0 0.17

q (1
4
, 1
4
, 1
2
, 0) (0, 2

3
, 1
3
, 0) (0, 1

2
, 1
4
, 1
4
)

Φ (0, 0, 1
2
, 3
4
, 1) (0, 0, 1

3
, 1, 1) (0, 1

4
, 1
2
, 1, 1)

t ∈ STS
(t) STS

(t) STS
(t) STS

(t) STS
(t) STS

(t)

(0, t1) 0.79 1 0.83 1 0.87 1

(t1, t2) 0.56 0.79 0.59 0.83 0.67 0.87

(t2, t3) 0.33 0.56 0.33 0.59 0.44 0.67

(t3, t4) 0.13 0.33 0.12 0.33 0.21 0.44

(t4,∞) 0 0.13 0 0.12 0 0.21

Table 4.1: STS
(t) and STS

(t) for systems in figures 2.1 and 4.1

In the following section, the NPI method for the system survival function using

the survival signature will be extended to the general case with K ≥ 1 types of

components, the main ideas are the same as for this case with K = 1.

4.4 Multiple types of components

This section presents the NPI lower and upper survival functions for the failure

time TS of a system consisting of multiple types of components, using the system

signature combined with NPI for Bernoulli data [19]. This enables the NPI method

to be applied to, in principle, all systems, so this methodology widely generalizes

the earlier results on NPI for system reliability. The failure times of components

of different types are assumed to be independent. NPI is used for learning about



4.4. Multiple types of components 67

the components of a specific type in the system, from data consisting of failure

times for components that are exchangeable with these. We assume therefore that

such data are available, for example resulting from testing or previous use of such

components. Assume that these are K ≥ 1 different types of components in the

system. For k ∈ {1, . . . , K}, let nk denote the number of components of type k

for which test failure data are available, and let sk(t) denote the number of these

components which still function at time t.

The NPI lower survival function is derived as follows. Remember that Ck(t)

denotes the number of components of type k in the system which function at time

t, where it is assumed that failure ends the functioning of a component and it is not

repaired or replaced. Under the assumptions for the NPI approach [19], we derive

the following lower bound for the survival function

P (TS > t) ≥

m1
∑

l1=0

· · ·

mK
∑

lK=0

Φ(l1, · · · , lK)

K
∏

k=1

D(Ck(t) = lk) (4.8)

where

D(Ck(t) = lk) = P (Ck(t) ≤ lk)− P (Ck(t) ≤ lk − 1)

=

(

nk +mk

nk

)−1(
sk(t)− 1 + lk
sk(t)− 1

)(

nk − sk(t) +mk − lk
nk − sk(t)

)

In this expression, P denotes the NPI upper probability for Bernoulli data [19]. For

each component type k, the function D ensures that maximum possible probability,

corresponding to NPI for Bernoulli data [19], is assigned to the event Ck(t) = 0,

so D(Ck(t) = 0) = P (Ck(t) = 0). Then, D(Ck(t) = 1) is defined by putting

the maximum possible remaining probability mass, from the total probability mass

available for the event Ck(t) ≤ 1, to the event Ck(t) = 1. This is achieved by

D(Ck(t) = 1) = P (Ck(t) ≤ 1) − P (Ck(t) = 0). This argument is continued,

by assigning for increasing lk the maximum possible remaining probability mass

D(Ck(t) = lk). As the survival signature is increasing in lk for coherent systems, as

assumed in this chapter, and the resulting D is a precise probability distribution,

the right-hand side of inequality 4.8 is indeed a lower bound and it is the maximum

possible lower bound. As such, it is the NPI lower probability for the event TS > t,

giving the NPI lower survival function for the system failure time (for t > 0)
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STS
(t) = P (TS > t) =

m1
∑

l1=0

· · ·

mK
∑

lK=0

Φ(l1, · · · , lK)

K
∏

k=1

D(Ck(t) = lk) (4.9)

The corresponding NPI upper survival function for TS is similarly derived, using

the upper bound

P (TS > t) ≤

m1
∑

l1=0

· · ·

mK
∑

lK=0

Φ(l1, · · · , lK)
K
∏

k=1

D(Ck(t) = lk)

where

D(Ck(t) = lk) = P (Ck(t) ≤ lk)− P (Ck(t) ≤ lk − 1)

=

(

nk +mk

nk

)−1(
sk(t) + lk
sk(t)

)(

nk − sk(t) +mk − lk − 1

nk − sk(t)

)

In this expression, P denotes the NPI lower probability for Bernoulli data [19]. This

construction ensures that minimum possible weight is given to small values of Ck(t),

resulting in the NPI upper survival function for the system failure time (for t > 0)

STS
(t) = P (TS > t) =

m1
∑

l1=0

· · ·

mK
∑

lK=0

Φ(l1, · · · , lK)
K
∏

k=1

D(Ck(t) = lk) (4.10)

Next, we illustrate these NPI lower and upper survival functions in three ex-

amples. In Example 4.2, we focus on a system with K = 2 types of components,

with m1 = m2 = 3 components of each type and using two different orderings of

the observed failure times. In Example 4.3, we consider a system with K = 2 types

of components, with m1 = m2 = 5 components of each type. In Example 4.4, we

consider a system with 3 types of components.

Example 4.2

We consider the use of the survival signature for the system with K = 2 types

of components, Type 1 and 2 as presented in Figure 4.2. With m1 = m2 = 3

components of each Type, the survival signature Φ(l1, l2) must be specified for all

l1, l2 ∈ {0, 1, 2, 3}; this is given in Table 4.2, it is easily verified by checking all

possible combinations of the specific components of each type which function or

not.
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1

1

2

2

2

1

Figure 4.2: System with 2 types of components

To illustrate its derivation, let us consider Φ(1, 2) and Φ(2, 2) in detail. The

state vector is x = (x1
1, x

1
2, x

1
3, x

2
1, x

2
2, x

2
3), where we order the three components of

Type 1 from left to right in Figure 4.2, and similar for the three components of Type

2. To calculate Φ(1, 2), we consider all such vectors x with x1
1 + x1

2 + x1
3 = 1 and

x2
1 + x2

2 + x2
3 = 2, so precisely 1 component of Type 1 and 2 components of Type

2 function. There are 9 such vectors, for only one of these, namely (1, 0, 0, 1, 0, 1),

the system functions so, Φ(1, 2) = 1/9. To calculate Φ(2, 2) we need to check all 9

vectors x with x1
1+x1

2+x1
3 = 2 and x2

1+x2
2+x2

3 = 2. For 4 of these vectors the system

functions, namely (1, 1, 0, 1, 0, 1), (1, 1, 0, 0, 1, 1), (1, 0, 1, 1, 1, 0) and (1, 0, 1, 1, 0, 1),

so Φ(2, 2) = 4/9.

Suppose that n1 = 2 components exchangeable with those of Type 1 and n2 = 2

components exchangeable with those of Type 2 were tested. Suppose that ordered

failure times as shown in Table 4.3 and Table 4.4 are observed. These tables present

NPI lower and upper survival functions STS
(t) and STS

(t) for the system failure time

TS, for the system presented in Figure 4.2 and with the given orderings of the data.

In the first interval in Table 4.3 we have not yet seen a single failure in the test

data, so the NPI upper probability that the system will function is equal to one. In

the second interval, one failure of Type 2 has occurred before, but we do not have

any evidence from the data against the possibility that a component of Type 1 will

certainly function at times in this interval, so the upper probability remains one.

In the fourth interval, both Type 2 failures have occurred but only one of Type 1

component has failed before. In this interval, to consider the lower survival function

the system is effectively reduced to a series system consisting of three components

of Type 1, with one ‘success’ and one ‘failure’ as data, denoted by (2, 1). As such a
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l1

l2
0 1 2 3

0 0 0 0 0

1 0 0 1/9 3/9

2 0 0 4/9 6/9

3 1 1 1 1

Table 4.2: Survival signature Φ(l1, l2) of the system in Figure 4.2

series system only functions if all three components function, the NPI lower survival

function within this fourth interval is equal to STS
(t) = 1

3
× 2

4
× 3

5
= 0.100, which

follows by sequential reasoning, using that, based on n observations consisting of

s successes and n − s failures, denoted as data (n, s), the NPI lower probability

for the next observation to be a success is equal to s/(n + 1) [19]. The NPI lower

probability for the first component to function, given test data (2, 1), is equal to

1/3. Then the second component is considered, conditional on the first component

functioning, which combines with the test data to two out of three components

observed (or assumed) to be functioning, so combined data (3, 2), hence this second

component will also function with NPI lower probability 2/4. Similarly, the NPI

lower probability for the third component to function, conditional on functioning of

the first two components in the system, so with combined data (4, 3), is equal to 3/5.

In the last interval, we are beyond the failure times of all the tested components, so

we no longer have evidence in favour of the system to function, which is reflected by

STS
(t) = 0, but the system might of course still function, as represented by STS

(t)

= 0.148.

Table 4.4 also presents the NPI lower and upper survival functions STS
(t) and

STS
(t) for the system failure time TS, for the same system presented in Figure 4.2

but with the different data ordering t11 < t21 < t12 < t22. We have STS
(t) = 0.667 in

the second interval, where one failure of type 1 has occurred in the test data. In the

fourth interval, both tested components of type 1 have failed, leading to STS
(t) = 0.

Both of these values are directly related to the required functioning of the left-most

component in Figure 4.2.
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t21 < t11 < t22 < t12

t ∈ STS
(t) STS

(t)

(0, t21) 0.553 1

(t21, t
1
1) 0.458 1

(t11, t
2
2) 0.148 0.553

(t22, t
1
2) 0.100 0.458

(t12,∞) 0 0.148

Table 4.3: STS
(t) and STS

(t) for the system in Figure 4.2

t11 < t21 < t12 < t22

t ∈ STS
(t) STS

(t)

(0, t11) 0.553 1

(t11, t
2
1) 0.230 0.667

(t21, t
1
2) 0.148 0.553

(t12, t
2
2) 0 0.230

(t22,∞) 0 0.148

Table 4.4: STS
(t) and STS

(t) for the system in Figure 4.2

Example 4.3

We consider the use of the survival signature for the system with K = 2 types of

components in Figure 4.3. With m1 = m2 = 5 components of each type, the survival

signature Φ(l1, l2) must be specified for all l1, l2 ∈ {0, 1, 2, 3, 4, 5}; this is given in

Table 4.5. For example, to calculate Φ(3, 2) we need to check all 100 vectors x with

x1
1 + x1

2 + x1
3 + x1

4 + x1
5 = 3 and x2

1 + x2
2 + x2

3 + x2
4 + x2

5 = 2. For four of these vec-

tors the system functions, namely (1, 1, 1, 0, 0, 0, 0, 1, 0, 1), (1, 1, 1, 0, 0, 0, 0, 0, 1, 1),

(1, 1, 0, 1, 0, 0, 1, 0, 0, 1) and (1, 1, 0, 0, 1, 0, 1, 0, 0, 1), so Φ(3, 2) = 4/100.

Suppose that n1 = 2 components exchangeable with those of type 1 and n2 = 2

components exchangeable with those of type 2 were tested, leading to failure times

with ordering t21 < t11 < t22 < t12. Table 4.6 presents the NPI lower and upper survival
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1

2 1

2
1

1

2

2

1 2

Figure 4.3: System with 2 types of components

l1

l2
0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 0 0 0 0

2 0 0 0 4/100 14/100 30/100

3 0 0 4/100 18/100 36/100 60/100

4 0 0 14/100 18/100 56/100 80/100

5 0 0 30/100 60/100 80/100 1

Table 4.5: Survival signature Φ(l1, l2) of the system in Figure 4.3

t21 < t11 < t22 < t12

t ∈ STS
(t) STS

(t)

(0, t21) 0.355 1

(t21, t
1
1) 0.134 0.633

(t11, t
2
2) 0.046 0.355

(t22, t
1
2) 0 0.134

(t12,∞) 0 0.046

Table 4.6: STS
(t) and STS

(t) for the system in Figure 4.3
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functions STS
(t) and STS

(t) for the system failure time TS for this system and based

on this ordering of the test observations. In the second interval one failure of Type

2 has already occurred, which is reflected by STS
(t) = 0.633. In the fourth interval,

both failures of Type 2 have occurred, which is reflected by STS
(t) = 0, due to the

right-most component in Figure 4.3.

Example 4.4

We consider the use of the survival signature for the system with K = 3 types of

components presented in Figure 4.4. With m1 = m2 = m3 = 2 components of each

type, the survival signature Φ(l1, l2, l3) must be specified for all l1, l2, l3 ∈ {0, 1, 2};

this is given in Table 4.7. Clearly, if no component of Type 1 functions, the system

will not function no matter how many components of the other types function, due

to the left-most component in Figure 4.4. To calculate Φ(1, 1, 2), for example, we

need to check all 4 vectors x with x1
1+x1

2 = 1, x2
1+x2

2 = 1 and x3
1+x3

2 = 2. For only

one of these vectors the system functions, namely (1, 0, 1, 0, 1, 1), so Φ(1, 1, 2) = 1/4.

1

1

2

2

3

3

Figure 4.4: System with 3 types of components

Computation of the survival signature is complicated for systems of realistic size.

In Section 4.5 we present results that can simplify computation in specific situations.

It may not be needed to compute a system’s survival signature exactly for a specific

inference, as bounds resulting from partial computations may be sufficient, similar

to the use of bounds for signatures as presented in Chapter 3. As the survival

signature of a coherent system is non-decreasing in all its components, the use of

such bounds is pretty straightforward; we present this in Section 4.6.
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l1 l2 l3 Φ(l1, l2, l3) l1 l2 l3 Φ(l1, l2, l3) l1 l2 l3 Φ(l1, l2, l3)

0 0 0 0 1 0 0 0 2 0 0 0

0 0 1 0 1 0 1 0 2 0 1 1/2

0 0 2 0 1 0 2 0 2 0 2 1

0 1 0 0 1 1 0 0 2 1 0 0

0 1 1 0 1 1 1 0 2 1 1 1

0 1 2 0 1 1 2 1/4 2 1 2 1

0 2 0 0 1 2 0 0 2 2 0 0

0 2 1 0 1 2 1 2/4 2 2 1 1

0 2 2 0 1 2 2 1/2 2 2 2 1

Table 4.7: Survival signature of system in Figure 4.4

4.5 Combining survival signatures of subsystems

Computation of the survival signature is complicated for systems of realistic size.

As discussed in Section 1.2 and used in Section 3.3, Da et al. [48] showed how the

system signature can be derived from the signatures of two subsystems, if the system

consists of these two subsystems in either series or parallel configuration. Repeated

application of their method enables quite straightforward computation of the sig-

nature of a system consisting of any number of subsystems, if the overall system’s

structure can be created through a sequence of series or parallel configurations.

In this section we present a similar method for the survival signature of a system

consisting of two subsystems in either series or parallel configuration. By repeated

use this enables the survival signatures for quite a substantial range of systems to be

computed relatively easily. Suppose that a system consists of R = 2 subsystems for

which the survival signatures are known. Let the system consist of K ≥ 1 types of

components, with mk components of type k, for k = 1, . . . , K, of which mr
k ≥ 0 are

in subsystem r, for r = 1, 2. Let subsystem r consist in total of mr components, so

mr =
∑K

k=1m
r
k. We denote the survival signature for subsystem r by Φr(l11, . . . , l

r
K),

for lrk = 0, 1, . . . , mr
k. For ease of notation, we define Φ

r(l11, . . . , l
r
K) = 0 if lrk > mr

k for

one or more k ∈ {1, . . . , K}. Before presenting the general results for any number
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R of subsystems and K of component types in Section 4.5.4, the case of a system

consisting of R = 2 subsystems, with each subsystem consisting of the same single

type of components is considered in detail in Section 4.5.1, followed in Section 4.5.2

by the case of a system with R = 2 subsystems and K = 2 types of components.

Section 4.5.3, we consider the case of a system with R = 2 subsystems and more

than two types of components.

4.5.1 2 subsystems with the same single type of components

Consider a system with m components of a single type, consisting of two subsystems

in series configuration, where subsystem r (r = 1, 2) consists of mr components of

the same type, so m = m1 +m2. The system survival signature, denoted by Φs to

emphasize the series structure, can be derived by

Φs(l) =

(

m

l

)−1
[

l
∑

l1=0

(

m1

l1

)(

m2

l − l1

)

Φ1(l1)Φ2(l − l1)

]

(4.11)

The combinatorial terms in Equation 4.11 follow from the hypergeometric distri-

bution giving the probability for the event that l1 of the l functioning components

are in subsystem 1 and the other l − l1 functioning components are in subsystem

2. For a system consisting of two subsystems in parallel configuration the survival

signature, denoted by Φp, can similarly be derived by

Φp(l) =

(

m

l

)−1
[

l
∑

l1=0

(

m1

l1

)(

m2

l − l1

)

(

1− (1− Φ1(l1))(1− Φ2(l − l1))
)

]

(4.12)

4.5.2 2 subsystems with 2 component types

Consider again a system with R = 2 subsystems but now with K = 2 types of

components. If the two subsystems are in series configuration, then the survival

signature of the system can be derived, for 0 ≤ lk ≤ mk, k=1,2, by

Φs(l1, l2) =

l1
∑

l1
1
=0

l2
∑

l1
2
=0

[

Φ1(l11, l
1
2)Φ

2(l1 − l11, l2 − l12)×

2
∏

k=1

(

m1
k

l1k

)(

m2
k

lk − l1k

)(

mk

lk

)−1]

(4.13)
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Similarly, if the two subsystems are in parallel configuration, then the survival

signature of the system can be derived, for 0 ≤ lk ≤ mk, k=1,2, by

Φp(l1, l2) =
l1
∑

l1
1
=0

l2
∑

l1
2
=0

[

{1− (1− Φ1(l11, l
1
2))(1− Φ2(l1 − l11, l2 − l12))} ×

2
∏

k=1

(

m1
k

l1k

)(

m2
k

lk − l1k

)(

mk

lk

)−1]

(4.14)

These results follow from straightforward combinatorial arguments similar to the

justification of Equation 4.11, together with assumed independenet of components

of different types.

Example 4.5

We calculate the survival signature for the two systems in Figure 4.5, which both

have K = 2 types of components. The survival signature of each subsystem is equal

and presented in Table 4.8. Equation 4.13 leads to the survival signature for the left

system in Figure 4.5, with the subsystems in series structure, as presented in Table

4.9. Equation 4.14 leads to the survival signature for the right system in Figure 4.5,

with the subsystems in parallel structure, as presented in Table 4.10.

1

2 2 2 2

2 2

2 2

1

1

1

Figure 4.5: Two systems with 2 types of components

To illustrate its derivation, let us consider Φs(1, 2) and Φp(0, 2) in detail. To

calculate Φs(1, 2) in Table 4.13, precisely 1 component of type 1 and 2 compo-

nents of type 2 function. There are 12 such vectors, for only two of these, namely

(1, 0, 1, 1, 0, 0) and (0, 1, 0, 01, 1), the system functions so, Φs(1, 2) = 2/12. To cal-
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l1 l2 Φ(l1, l2)

0 0 0

0 1 0

0 2 1

1 0 1

1 1 1

1 2 1

Table 4.8: Survival signature of each subsystem in Figure 4.5

l1

l2
0 1 2 3 4

0 0 0 0 0 1

1 0 0 1/6 1/2 1

2 1 1 1 1 1

Table 4.9: Survival signature Φs(l1, l2) of left system in Figure 4.5

l1

l2
0 1 2 3 4

0 0 0 1/3 1 1

1 1 1 1 1 1

2 1 1 1 1 1

Table 4.10: Survival signature Φp(l1, l2) of right system in Figure 4.5
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culate Φp(0, 2) in Table 4.14, we need to check 6 vectors, for two of these vectors

the system functions, namely (0, 0, 1, 1, 0, 0) and (0, 0, 0, 01, 1), so Φp(0, 2) = 2/6.

4.5.3 2 subsystems with K > 2 component types

We now gerenalize the situation of the previous section to consider more than two

types of components, while still restricting attention to two subsystems. So consider

a system with K > 2 types of components and two subsystems. If the two subsys-

tems are in series configuration, then the survival signature of the system can be

derived, for lk ∈ {0, 1, . . . , mk}, k = 1, . . . , K, by

Φs(l1, . . . , lK) =

l1
∑

l1
1
=0

. . .

lK
∑

l1
K
=0

[

Φ1(l11, . . . , l
1
K)Φ

2(l1 − l11, . . . , lK − l1K)×

K
∏

k=1

(

m1
k

l1k

)(

m2
k

lk − l1k

)(

mk

lk

)−1]

(4.15)

Similarly, if the two subsystems are in parallel configuration, then the survival sig-

nature of the system can be derived, for lk ∈ {0, 1, . . . , mk}, k = 1, . . . , K, by

Φp(l1, . . . , lK) =
l1
∑

l1
1
=0

. . .

lK
∑

l1
K
=0

[

{1− (1− Φ1(l11, . . . , l
1
K))(1− Φ2(l1 − l11, . . . , lK − l1K))} ×

K
∏

k=1

(

m1
k

l1k

)(

m2
k

lk − l1k

)(

mk

lk

)−1]

(4.16)

These results follow from similar combinatorial arguments as Equation 4.11, together

with assumed independence of components of different types.

4.5.4 R > 2 subsystems with K ≥ 2 component types

For a system consisting of R > 2 subsystems with K ≥ 2 component types, using

Equations (4.15) and (4.16), one can start by combining the survival signature of

pairs of subsystems. This combination can be applied repeatedly to derive the

system’s survival signature for quite complicated systems, as long as they can be

built up by a sequence of pairwise combinations of subsystems, either in series or
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parallel configuration, similarly as discussed in Section 1.2 and used in sections 3.3

and 4.5 [48]. This is illustrated in the following two examples.

Example 4.6

We consider computation of the survival signature for the system with K = 3 types

of components as presented in Figure 4.6, withm1 = 1 andm2 = m3 = 4 components

of each type. The system consists of three subsystems in series configuration.

1

2 3

22

3

2

3 3

=1 =2 =3r r r

Figure 4.6: System with 3 types of components

The survival signatures for the subsystems are easily derived and given in Tables

4.11, 4.12 and 4.13. The survival signature for this full system can be obtained using

Equation 4.15 to first combine subsystems 1 and 2, resulting in the combined survival

signature as shown in Table 4.14. Then, using the result in Table 4.14 together

with the survival signature for subsystem 3, these can be combined by Equation

4.15, leading to the overall system’s survival sugnature, which is given in Table

4.15, where apart from Φ(0, 0, 0)=0 all not presnted Φs(l1, l2, l3) with l1 ∈ {0, 1},

l2 ∈ {0, 1, 2, 3, 4} and l1, l2 ∈ {0, 1, 2, 3, 4} are equal to 1. Let us briefly explain some

of the values in Table 4.15. Consider Φ(0, 1, 4) and Φ(0, 2, 2) in detail. For Φ(0, 1, 4)

the component of Type 1 does not function while precisely 1 component of Type

2 and 4 components of Type 3 function. There are 4 such vectors, for only one of

these, namely (0, 1, 0, 0, 0, 1, 1, 1, 1), the system functions, so indeed Φ(0, 1, 4) = 1/4.

For Φ(0, 2, 2) we need to check
(

4
2

) (

4
2

)

= 36 vectors, the system functions for only

one of these, namely (0, 1, 0, 0, 1, 1, 1, 0, 0), so indeed Φ(0, 2, 2) = 1/36.

To illustrate the use of this system’s survival signature, suppose that n1 = 2

components exchangeable with those of Type 1 were tested, n2 = 2 components

exchangeable with those of Type 2 and also n3 = 2 components exchangeable with
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l1 l2 l3 Φ(l1, l2, l3)

0 0 0 0

1 0 0 1

0 1 0 1

1 1 0 1

Table 4.11: Survival signature for subsystem 1

l1 l2 l3 Φ(l1, l2, l3)

0 0 0 0

0 0 1 0

0 0 2 1

0 1 0 0

0 1 1 1/2

0 1 2 1

0 2 0 1

0 2 1 1

0 2 2 1

Table 4.12: Survival signature for subsystem 2

l1 l2 l3 Φ(l1, l2, l3)

0 0 0 0

0 0 1 0

0 0 2 1

0 1 0 1

0 1 1 1

0 1 2 1

Table 4.13: Survival signature for subsystem 3
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l1 l2 l3 Φ(l1, l2, l3) l1 l2 l3 Φ(l1, l2, l3)

0 0 0 0 1 0 0 0

0 0 1 0 1 0 1 0

0 0 2 0 1 0 2 1

0 1 0 0 1 1 0 0

0 1 1 0 1 1 1 1/3

0 1 2 1/3 1 1 2 1

0 2 0 0 1 2 0 1/3

0 2 1 1/3 1 2 1 4/6

0 2 2 2/3 1 2 2 1

0 3 0 1 1 3 0 1

0 3 1 1 1 3 1 1

0 3 2 1 1 3 2 1

Table 4.14: Survival signature for combined subsystem 1, 2

those of Type 3. Suppose that the failure times of these tested components were

ordered as t11 < t21 < t12 < t31 < t22 < t32. Table 4.16 presents the NPI lower and upper

survival functions STS
(t) and STS

(t) for the system failure time TS, for the system

presented in Figure 4.6, with these ordered test data.
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l1 l2 l3 Φ(l1, l2, l3) l1 l2 l3 Φ(l1, l2, l3) l1 l2 l3 Φ(l1, l2, l3)

0 0 0 0 0 3 2 7/24 1 1 4 1

0 0 1 0 0 3 3 8/16 1 2 0 0

0 0 2 0 0 3 4 3/4 1 2 1 2/24

0 0 3 0 0 4 0 1 1 2 2 8/36

0 0 4 0 1 4 1 1 1 2 3 1/2

0 1 0 0 1 4 2 1 1 2 4 1

0 1 1 0 1 4 3 1 1 3 0 1/4

0 1 2 0 1 4 4 1 1 3 1 6/16

0 1 3 0 1 0 0 0 1 3 2 13/24

0 1 4 1/4 1 0 1 0 1 3 3 12/16

0 2 0 0 1 0 2 0 1 3 4 1

0 2 1 0 1 0 3 0 1 4 0 1

0 2 2 1/36 1 0 4 1 1 4 1 1

0 2 3 1/6 1 1 0 0 1 4 2 1

0 2 4 1/2 1 1 1 0 1 4 3 1

0 3 0 0 1 1 2 1/24 1 4 4 1

0 3 1 2/16 1 1 3 4/16

Table 4.15: Survival signature of system in Figure 4.6

t11 < t21 < t12 < t31 < t22 < t32

t ∈ STS
(t) STS

(t)

(0, t11) 0.639 1

(t11, t
2
1) 0.574 1

(t21, t
1
2) 0.291 0.889

(t12, t
3
1) 0.193 0.778

(t31, t
2
2) 0.111 0.574

(t22, t
3
2) 0 0.291

(t32,∞) 0 0.147

Table 4.16: STS
(t) and STS

(t) for the system in Figure 4.6
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Example 4.7

Consider the system presented in Figure 4.7. This system is made up of the same

three subsystems as the system considered in the previous example, but now in a dif-

ferent configuration. Using the results in Table 4.14 together with the survival signa-

ture for subsystem 3 as given in Table 4.13, we use Equation 4.16 to derive the overall

system’s survival sugnature, which is given in Table 4.17. Let us briefly explain some

of the values in Table 4.17. Consider Φ(0, 2, 0) and Φ(1, 0, 2) in detail. For Φ(0, 2, 0)

precisely 2 of the 4 components of Type 2 function, so we need to check 6 such vec-

tors. For only three of these, namely (0, 1, 0, 0, 1, 0, 0, 0, 0), (0, 0, 1, 0, 1, 0, 0, 0, 0) and

(0, 0, 0, 1, 1, 0, 0, 0, 0), the system functions, so Φ(0, 2, 0) = 3/6 . For Φ(1, 0, 2), we

also need to check 6 vectors, for two of these vectors the system functions, namely

(1, 0, 0, 0, 0, 1, 1, 0, 0) and (1, 0, 0, 0, 0, 0, 0, 1, 1), so Φ(1, 0, 2) = 2/6.

1

2 3

22

3

33

2

Figure 4.7: System with 3 types of components

To illustrate the use of this system’s survival signature, suppose again that n1 = 2

components exchangeable with those of Type 1 were tested, n2 = 2 components

exchangeable with those of Type 2 and also n3 = 2 components exchangeable with

those of Type 3. Suppose that the failure times of these tested components were

ordered as t11 < t21 < t12 < t31 < t22 < t32. Table 4.18 presents the NPI lower and upper

survival functions STS
(t) and STS

(t) for the system failure time TS, for the system

presented in Figure 4.7, with these ordered test data. Table 4.18 shows that no

component of Type 3 has failed up to the fourth interval, so the NPI upper survival

function is equal to 1 as in this system all components of Type 3 functioning is
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l1 l2 l3 Φ(l1, l2, l3) l1 l2 l3 Φ(l1, l2, l3)

0 0 0 0 1 0 0 0

0 0 1 0 1 0 1 0

0 0 2 1/6 1 0 2 2/6

0 0 3 1/2 1 0 3 1

0 0 4 1 1 0 4 1

0 1 0 1/4 1 1 0 1/4

0 1 1 1/4 1 1 1 6/16

0 1 2 10/24 1 1 2 16/24

0 1 3 12/16 1 1 3 1

0 1 4 1 1 1 4 1

0 2 0 3/6 1 2 0 4/6

0 2 1 14/24 1 2 1 18/24

0 2 2 27/36 1 2 2 32/36

0 2 3 22/24 1 2 3 1

Table 4.17: Survival signature of system in Figure 4.7

sufficient for the system to function. In the last interval, we are beyond the failure

times of all the tested components, so we no longer have evidence in favour of the

system to function, which is reflected by STS
(t) = 0, but the system might of course

still function, as represented by STS
(t) = 0.525.

Furthermore, Table 4.19 also presents the NPI lower and upper survival functions

STS
(t) and STS

(t) for the system failure time TS, for the same system presented in

Figure 4.7 but with differently ordered failure times. In the first interval, we have

not yet seen a single failure in the test data, so the NPI upper probability that the

system will function is equal to one. In the second interval, one failure of Type

3 has occurred before, but we do not have any evidence from the data against the

possibility that a component of Type 1 and Type 2 will certainly function at times in

this interval, so the upper probability remains one. In the third interval one failure

of Type 2 and one failure of Type 3 have occurred, but due to insufficiency of only

having a component of Type 1 function, the NPI upper survival function leads to
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t11 < t21 < t12 < t31 < t22 < t32

t ∈ STS
(t) STS

(t)

(0, t11) 0.920 1

(t11, t
2
1) 0.905 1

(t21, t
1
2) 0.748 1

(t12, t
3
1) 0.712 1

(t31, t
2
2) 0.494 0.905

(t22, t
3
2) 0.167 0.748

(t32,∞) 0 0.525

Table 4.18: STS
(t) and STS

(t) of system in Figure 4.7

be less than one, which in this case is 0.936.

t31 < t21 < t32 < t11 < t22 < t12

t ∈ STS
(t) STS

(t)

(0, t31) 0.920 1

(t31, t
2
1) 0.830 1

(t21, t
3
2) 0.556 0.936

(t32, t
1
1) 0.389 0.847

(t11, t
2
2) 0.378 0.830

(t22, t
1
2) 0 0.556

(t12,∞) 0 0.525

Table 4.19: STS
(t) and STS

(t) of system in Figure 4.7

4.6 Bounds on survival signatures

In Chapter 3 we considered the use of bounds for the signature, for example as

may result if its computation is stopped before the exact signature is derived. In

this section we follow the same approach for the survival signature. The survival

signature is in general difficult to compute exactly if the system consists of a large
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number of components, but any algorithm will provide bounds if the computation

stops early. However, based on partial information, e.g. following from checking only

a subset of all combinations of functioning and not functioning components, one can

derive bounds for quantities of interest. If such bounds suffice for a specific inferential

question, then of course one would not need to compute the survival signature

further. This is a straightforward idea, which was also presented In Chapter 3 for

system signatures. Given the monotonicity of the survival signature in each of its

components for coherent systems, working with bounds for it is straightforward as

long as the inference of interest is monotone as function of the survival signature.

If interest is in (NPI lower and upper) probabilities for the event that the system

functions at time t, as considered in this chapter, then indeed it is straigthforward to

use the information about the survival signature, consisting of bounds for its values.

Before presenting the general results for any number K of component types, the

case of a system consisting of K = 2 types of components is considered.

4.6.1 Bounds on survival signatures with 2 component types

Consider a system consisting of 2 types of components. Its survival signature Φ(l1, l2)

is an increasing function of (l1, l2), we assume that Φ(0, 0) =0 and Φ(m1, m2) = 1.

Let V be the set

V = {(v1, v2) | 0 ≤ vk ≤ mk, ∀k ∈ {1, 2}}

and let Vc be a subset of V consisting of all points in V at which either the survival

signature has been computed or bounds for it have been calculated. We show how

to derive optimal lower and upper bounds for the survival signature, denoted by

Φl(l1, l2) and Φu(l1, l2) respectively, based on such limited information about the

survival signature. We call Φl(v1, v2) the lower survival signature, and Φu(v1, v2)

the upper survival signature. These are the maximum lower bound and minimum

upper bound, respectively, for the survival signature Φ(v1, v2) based on the available

calculations. The upper survival signature is

Φu(l1, l2) = min {Φ(v1, v2)|(v1, v2) ∈ Vu
c (l1, l2)} (4.17)
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with

Vu
c (l1, l2) = {(v1, v2) ∈ Vc : v1 ≥ l1, v2 ≥ l2}

First, suppose that Φ(v1, v2) is precisely known for all (v1, v2) ∈ Vc. All points

(v1, v2) ∈ Vu
c give us upper bounds for Φ(l1, l2), because

Φ(l1, l2) ≤ Φ(v1, v2) ∀(v1, v2) ∈ Vu
c (l1, l2)

More generally, based on lower bounds Φl(v1, v2) and upper bounds Φu(v1, v2) for

all (v1, v2) ∈ Vu
c (l1, l2), the upper survival signature at (l1, l2) is

Φu(l1, l2) = min {Φu(v1, v2)|(v1, v2) ∈ Vu
c (l1, l2)} (4.18)

The corresponding lower survival signature can be determined similarly. First,

if Φ(v1, v2) is precisely known for all (v1, v2) ∈ Vc, then we take the subset V l
c of Vc,

V l
c(l1, l2) = {(v1, v2) ∈ Vc : v1 ≤ l1, v2 ≤ l2}

All points (v1, v2) ∈ V l
c give lower bounds for Φ(l1, l2), because

Φ(l1, l2) ≥ Φ(v1, v2) ∀(v1, v2) ∈ V l
c(l1, l2)

So, we can define

Φl(l1, l2) = max
{

Φ(v1, v2)|(v1, v2) ∈ V l
c(l1, l2)

}

(4.19)

If lower bounds Φl(v1, v2) and upper bounds Φu(v1, v2) are known for all (v1, v2) ∈

V l
c(l1, l2), then the lower survival signature at (l1, l2) is

Φl(l1, l2) = max
{

Φl(v1, v2)|(v1, v2) ∈ V l
c(l1, l2)

}

(4.20)

The corresponding optimal lower and upper bounds for the NPI lower survival

function for TS follow from Equation 4.9, and by the monotonicity of the survival

signature these are easily seen to be

Sl
TS
(t) = P l(TS > t) =

m1
∑

l1=0

m2
∑

lK=0

Φl(l1, l2)

2
∏

k=1

D(Ck(t) = lk) (4.21)

Su
TS
(t) = P u(TS > t) =

m1
∑

l1=0

m2
∑

lK=0

Φu(l1, l2)

2
∏

k=1

D(Ck(t) = lk) (4.22)
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Similarly, the corresponding optimal lower and upper bounds for the NPI upper

survival function for TS follow from Equation 4.10,

S
l

TS
(t) = P

l
(TS > t) =

m1
∑

l1=0

m2
∑

lK=0

Φl(l1, l2)
2
∏

k=1

D(Ck(t) = lk) (4.23)

S
u

TS
(t) = P

u
(TS > t) =

m1
∑

l1=0

m2
∑

lK=0

Φu(l1, l2)

2
∏

k=1

D(Ck(t) = lk) (4.24)

In the following subsection, the above arguments will be extended to the general

case with K component types, the main ideas are the same as for this case with K

= 2.

4.6.2 Bounds on survival signatures with K ≥ 2 component

types

We now consider a system with K ≥ 2 types of components, with mk components

of type k for each k = 1, . . . , K, so m = m1 + · · ·+mK components in total. Let V

be the set

V = {(v1, . . . , vK) | 0 ≤ vk ≤ mk, ∀k ∈ {1, . . . , K}}

and let Vc be a subset of V consisting of all points in V at which either the sur-

vival signature has been computed or bounds for it have been calculated. We show

how to derive optimal lower and upper bounds for the survival signature, denoted

by Φl(l1, . . . , lK) and Φu(l1, . . . , lK) respectively, based on such limited information

about the survival signature. We call Φl(v1, . . . , vK) the lower survival signature, and

Φu(v1, . . . , vK) the upper survival signature. These are the maximum lower bound

and minimum upper bound, respectively, for the survival signature Φ(v1, . . . , vK)

based on the available calculations. So, in this case we define

Φu(l1, . . . , lK) = min {Φ(v1, . . . , vK)|(v1, . . . , vK) ∈ Vu
c (l1, . . . , lK)} (4.25)

First, suppose that Φ(v1, . . . , vK) is precisely known for all (v1, . . . , vK) ∈ Vc. We

take the subset

Vu
c (l1, . . . , lK) = {(v1, . . . , vK) ∈ V : vk ≥ lk, ∀k ∈ {1, . . . , K}}
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All points (v1, . . . , vK) ∈ Vu
c give upper bounds for Φ(l1, . . . , lK), because

Φ(l1, . . . , lK) ≤ Φ(v1, . . . , vK) ∀(v1, . . . , vK) ∈ Vu
c (l1, . . . , lK)

If only lower bounds Φl(v1, . . . , vK) and upper bounds Φu(v1, . . . , vK) are known for

all (v1, . . . , vK) ∈ Vu
c (l1, . . . , lK), then the upper survival signature at (l1, . . . , lK) is

Φu(l1, . . . , lK) = min {Φu(v1, . . . , vK)|(v1, . . . , vK) ∈ Vu
c (l1, . . . , lK)} (4.26)

The corresponding lower survival signature can be determined similarly. First,

if Φ(v1, . . . , vK) is precisely known for all (v1, . . . , vK) ∈ Vc, then we take the subset

V l
c(l1, . . . , lK) = {(v1, . . . , vK) ∈ V : vk ≤ lk, ∀k ∈ {1, . . . , K}}

All points (v1, . . . , vK) ∈ V l
c give lower bounds for Φ(l1, . . . , lK), because

Φ(l1, . . . , lK) ≥ Φ(v1, . . . , vK) ∀(v1, . . . , vK) ∈ V l
c(l1, . . . , lK)

So, we define

Φl(l1, . . . , lk) = max
{

Φ(v1, . . . , vK)|(v1, . . . , vK) ∈ V l
c(l1, . . . , lk)

}

(4.27)

Similarly, if only bounds Φl(v1, . . . , vK) and upper bounds Φu(v1, . . . , vK) are known

for all (v1, . . . , vK) ∈ V l
c(l1, . . . , lK) then, the lower survival signature at (l1, . . . , lK)

is

Φl(l1, . . . , lk) = max
{

Φl(v1, . . . , vK)|(v1, . . . , vK) ∈ V l
c(l1, . . . , lk)

}

(4.28)

The corresponding optimal lower and upper bounds for the NPI lower survival

function for TS follow from Equation 4.9,

Sl
TS
(t) = P l(TS > t) =

m1
∑

l1=0

· · ·

mK
∑

lK=0

Φl(l1, · · · , lK)

K
∏

k=1

D(Ck(t) = lk) (4.29)

Su
TS
(t) = P u(TS > t) =

m1
∑

l1=0

· · ·

mK
∑

lK=0

Φu(l1, · · · , lK)
K
∏

k=1

D(Ck(t) = lk) (4.30)

Similarly, the corresponding optimal lower and upper bounds for the NPI upper

survival function for TS follow from Equation 4.10,

S
l

TS
(t) = P

l
(TS > t) =

m1
∑

l1=0

· · ·

mK
∑

lK=0

Φl(l1, · · · , lK)
K
∏

k=1

D(Ck(t) = lk) (4.31)

S
u

TS
(t) = P

u
(TS > t) =

m1
∑

l1=0

· · ·

mK
∑

lK=0

Φu(l1, · · · , lK)

K
∏

k=1

D(Ck(t) = lk) (4.32)
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We present two examples to illustrate such bounds to obtain optimal lower and

upper bounds for the NPI lower and upper survival functions.

Example 4.8

Consider again the system in Figure 4.2, with survival signature given in Table 4.2.

As it is assumed that Φ(0, 0, 0) =0 and Φ(m1, m2, m3) = 1, we assume in order to

illustrate the use of bounds on the survival signature, as presented in this section,

that the survival signature has been derived partially for some values, with the

bounds for three cases as presented in Tables 4.20, 4.21 and 4.22.

l1

l2
0 1 2 3

0 0 0 0 0

1 0 0 [0,6/9] [0,6/9]

2 0 0 [0,6/9] 6/9

3 1 1 1 1

Table 4.20: Lower and upper survival functions for Case 1 Fig 4.2

l1

l2
0 1 2 3

0 0 0 0 0

1 0 0 1/9 [1/9,1]

2 0 0 [1/9,1] [1/9,1]

3 1 1 1 1

Table 4.21: Lower and upper survival functions for Case 2 Fig 4.2

Suppose that n1 = 2 components exchangeable with those of Type 1 were tested,

and n2 = 2 observed failure times for components exchangeable with those of type

2 were tested, leading to ordered failure times t21 < t11 < t22 < t12. Table 4.23 presents

the NPI lower and upper survival functions STS
(t) and STS

(t) for the system failure

time TS, for this system and for these three cases.
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l1

l2
0 1 2 3

0 0 0 0 0

1 0 0 1/9 [1/9,6/9]

2 0 0 [1/9,6/9] 6/9

3 1 1 1 1

Table 4.22: Lower and upper survival functions for Case 3 Fig 4.2

The lower bounds for the NPI lower survival function Sl
TS
(t), as given in Equation

4.21 and the upper bounds for the NPI lower survival function S
u

TS
(t), as given in

Equation 4.24 are presented in Table 4.23 for three cases. This table illustrates the

use of the bounds as presented in this section. It shows that the imprecision between

the upper bound of the NPI upper survival function and the lower bound of the NPI

lower survival function decreases if more details about the survival function become

known.

Case 1 Case 2 Case 3

t ∈ Sl
TS
(t) S

u

TS
(t) Sl

TS
(t) S

u

TS
(t) Sl

TS
(t) S

u

TS
(t)

(0, t21) 0.480 1 0.439 1 0.506 1

(t21, t
1
1) 0.420 1 0.417 1 0.433 1

(t11, t
2
2) 0.113 0.633 0.117 0.697 0.128 0.600

(t22, t
1
2) 0 0.500 0 0.514 0 0.478

(t12,∞) 0 0.200 0 0.197 0 0.167

Table 4.23: Sl
TS
(t) and S

u

TS
(t) of system in Figure 4.2

Example 4.9

Consider again the system in Figure 4.7, with the survival signature given in Table

4.17. It is assumed that Φ(0, 0, 0) =0 and Φ(m1, m2, m3) = 1. It may be easy to

find some (l1, l2, l3) for which Φ(l1, l2, l3) = 0 or Φ(l1, l2, l3) = 1.
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Table 4.24 provides bounds for the survival signature, together with the exact

survival signature, for four cases, representing four possible subsequent stages of its

direct computation (so not using the method presented in Section 4.5). The bounds

are denoted as intervals, entries which are either 0 or 1 for all stages and where this

follows by monotonicity from other entries in the table have been deleted. Case 1

only involved an initial assessment for rather trivial values of (l1, l2, l3) for which

the system either functions or not with certainty. Without further calculations,

the survival signature is only known to be in [0, 1] at all other (l1, l2, l3). Case 2

shows the effect of calculating Φ(0, 0, 3) = 1/2, Case 3 of the additional calculations

Φ(0, 1, 0) = Φ(0, 1, 1) = 1/4, these are all pretty trivial to derive. For Case 4 we

calculated, by going through all relevant combinations, the precise values of the

survival signature at 6 further points (l1, l2, l3), as shown in Table 4.24. Most of

these precise values affect some bounds at other points due to the monotinicity of

the survival signature, but not all. However, all these calculations affect the related

bounds for the inferences. It is also possible to calculate the survival signature

only partially at a point (l1, l2, l3), leading to bounds at that point which also affect

bounds at other points.

To illustrate the effect of such increased knowledge of the system’s survival signa-

ture, we present its application in the NPI method using simulated failure times as

given in Table 4.25, which for Type k were simulated from the Weibull distribution

with shape parameter k and scale parameter 1.

The corresponding lower bounds for the NPI lower survival function, Sl
TS
(t) as

given in Equation 4.29, and the upper bounds for the NPI upper survival function,

S
u

TS
(t) as given in Equation 4.31, are presented in the plots in Figure 4.8 for the

four cases, where in each plot also the NPI lower and upper survival functions are

presented based on the exact survival signature, as given in Table 4.17. These plots

illustrate the use of the bounds as presented in this section. Figure 4.9 presents the

same functions of Figures 4.8.1 and 4.8.2, so for Cases 1 and 2, but on a larger scale

in order to see the differences more clearly. Due to the monotonicities involved,

additional calculations for the survival signatures lead to sharper bounds for the

NPI lower and upper survival functions, with the effect of the rather straightforward
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Case 1 Case 2

l1 l2 l3 Φ(l1, l2, l3) l1 l2 l3 Φ(l1, l2, l3) l1 l2 l3 Φ(l1, l2, l3) l1 l2 l3 Φ(l1, l2, l3)

0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0

0 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0

0 0 2 [0,1] 1 0 2 [0,1] 0 0 2 [0,1/2] 1 0 2 [0,1]

0 0 3 [0,1] 1 0 3 1 0 0 3 1/2 1 0 3 1

0 0 4 1 1 0 4 1 0 0 4 1 1 0 4 1

0 1 0 [0,1] 1 1 0 [0,1] 0 1 0 [0,1] 1 1 0 [0,1]

0 1 1 [0,1] 1 1 1 [0,1] 0 1 1 [0,1] 1 1 1 [0,1]

0 1 2 [0,1] 1 1 2 [0,1] 0 1 2 [0,1] 1 1 2 [0,1]

0 1 3 [0,1] 1 1 3 1 0 1 3 [1/2,1] 1 1 3 1

0 1 4 1 1 1 4 1 0 1 4 1 1 1 4 1

0 2 0 [0,1] 1 2 0 [0,1] 0 2 0 [0,1] 1 2 0 [0,1]

0 2 1 [0,1] 1 2 1 [0,1] 0 2 1 [0,1] 1 2 1 [0,1]

0 2 2 [0,1] 1 2 2 [0,1] 0 2 2 [0,1] 1 2 2 [0,1]

0 2 3 [0,1] 1 2 3 1 0 2 3 [1/2,1] 1 2 3 1

Case 3 Case 4

l1 l2 l3 Φ(l1, l2, l3) l1 l2 l3 Φ(l1, l2, l3) l1 l2 l3 Φ(l1, l2, l3) l1 l2 l3 Φ(l1, l2, l3)

0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0

0 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0

0 0 2 [0,1/2] 1 0 2 [0,1/2] 0 0 2 1/6 1 0 2 2/6

0 0 3 1/2 1 0 3 1 0 0 3 1/2 1 0 3 1

0 0 4 1 1 0 4 1 0 0 4 1 1 0 4 1

0 1 0 1/4 1 1 0 [1/4,1] 0 1 0 1/4 1 1 0 1/4

0 1 1 1/4 1 1 1 [1/4,1] 0 1 1 1/4 1 1 1 [1/4,32/36]

0 1 2 [1/4,1] 1 1 2 [1/4,1] 0 1 2 [1/4,32/36] 1 1 2 [1/4,32/36]

0 1 3 [1/2,1] 1 1 3 1 0 1 3 [1/2,1] 1 1 3 1

0 1 4 1 1 1 4 1 0 1 4 1 1 1 4 1

0 2 0 [1/4,1] 1 2 0 [1/4,1] 0 2 0 3/6 1 2 0 4/6

0 2 1 [1/4,1] 1 2 1 [1/4,1] 0 2 1 [1/2,1] 1 2 1 [4/6,32/36]

0 2 2 [1/4,1] 1 2 2 [1/4,1] 0 2 2 [1/2,32/36] 1 2 2 32/36

0 2 3 [1/2,1] 1 2 3 1 0 2 3 [1/2,1] 1 2 3 1

Table 4.24: Survival signature of system in Figure 4.7
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Type 1 Type 2 Type 3

0.004 0.629 0.290 1.006 0.321 0.876

0.112 0.752 0.412 1.029 0.348 0.877

0.177 0.839 0.531 1.057 0.375 0.920

0.196 0.974 0.579 1.113 0.613 0.955

0.223 1.234 0.603 1.127 0.650 0.973

0.239 1.311 0.617 1.146 0.689 1.064

0.260 1.325 0.677 1.252 0.743 1.102

0.356 1.436 0.883 1.350 0.747 1.110

0.486 3.097 0.901 1.586 0.788 1.129

0.490 4.150 0.942 1.885 0.856 1.150

Table 4.25: Component failure times

calculations in Cases 2 and 3 already quite substantial. The additional calculations

in Case 4 lead to bounds that are already mostly close to the actual NPI lower and

upper survival functions.

The NPI upper survival function is equal to one for t ≤ 0.321, because no

component of type 3 has failed yet at such times. The NPI lower survival function is

equal to 0.99991 for t ≤ 0.004, the NPI lower survival function is less than one even

before a failure from any type of component occurs. While there are some small

changes in the NPI upper and lower survival functions at t = 3.097 and t = 4.150,

these values in order to see the figures more clearly are not included. Depending

on the inference of interest, these bounds may already be sufficient to derive the

conclusion, in which case further calculation of the survival signature would not be

required.
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Figure 4.8: NPI lower and upper survival functions
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Figure 4.9: NPI lower and upper survival functions

4.7 Concluding remarks

Computation of the survival signature of a system is difficult unless the number of

components is small or the system has a relatively straightforward structure. For

systems with only one type of components, the signature has been derived for some

specific system structures [44–46, 61]. Deriving the survival signature for specific

system structures in the case of multiple component types is an interesting topic

for research. Recently, Aslett [10] has created a function in the statistical software

R to compute the survival signature, given a graphical presentation of the system

structure. This can, in principle, be used for systems of any size, but for real-world

systems with more than about 20 components computation time rapidly becomes

an issue. It may be possible to implement the results in Sections 4.4 and 4.5 in

this R function. It is also interesting to investigate if it is possible to benefit from

established methods to quantify system reliability, for example fault trees, Bayesian

networks or binary decision diagrams, to derive the corresponding survival signature.
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While the emphasis in this chapter has been on system reliability, the closely

related topic of reliability of networks is of great practical importance, for example in

energy provision. In such networks there are typically many components of multiple

types, with often quite large numbers of components of a specific type for which

the assumption of exchangeable failure times may be reasonable. Developing the

survival signature approach for network reliability is therefore also an important

research challenge, which includes computational challenges and could lead to results

with great practical impact.

There are many further research challenges related to theory and application of

survival signatures. For example, one could consider the use of right-censored obser-

vations, which is likely to be possible with an adaptation of NPI for Bernoulli data

in line with the corresponding NPI theory for real-valued data with right-censored

observations [33], which is related to the well-known Kaplan-Meier estimator for

such data. It will also be of interest to consider possible system failure due to mul-

tiple failure modes [59], where the NPI approach provides interesting opportunities

to consider unobserved or even unknown competing risks [34,54]. Topics of optimal

system design in order to provide suitable levels of redundancy [1,17,23,37,53], possi-

bly taking costs into account, also pose interesting questions for which the use of the

survival signature might provide new solutions. In the NPI framework some of such

issues have been considered, but only for systems with relatively limited structures,

for which the combinatorial aspects in computations already became quite com-

plex [1]. The theory presented in this chapter provides a framework in which these,

and many other, problems can be studied for a wide variety of system structures.

It will also be of interest to consider the use of the survival signature if failure data

at the system level are available, possibly together with some component level data.

As mentioned in Chapter 3, Bayesian inference for this situation where the system

signature is used was recently presented by Aslett [9], who also considered inferring

the signature from failure data, which may be relevant for black-box systems. It

will be interesting to develop similar methods for survival signatures, particularly

because it widens applicability of such learning methods to systems with multiple

types of components.



Chapter 5

Concluding Remarks

5.1 Conclusions

This thesis reports the first work in which signatures are combined with theory of

lower and upper probabilities. Nonparametric Predictive Inference (NPI) combined

with signatures in the study of system reliability was presented. The NPI approach

to system reliability provides a useful method for statistical inference on system relia-

bility on the basis of limited information resulting from component testing. Chapter

2 presented the use of signatures to derive lower and upper survival functions for

the failure time of systems with exchangeable components, given failure times of

tested components that are exchangeable with those in the system. The imprecision

in these inferences reflects the limited amount of data available.

Computing the system signature is not straightforward for larger systems, but

any algorithm will provide bounds if stopped early. Chapter 3 is a sequel to Chapter

2, showing how limited information about the signature can be used to derive bounds

on these lower and upper survival functions and related inferences. We call the

signature within these bounds, which provides the maximum lower bound for the

NPI lower and upper survival functions, the pessimistic signature, and the signature

which provides the minimum upper bound for the NPI lower and upper survival

functions the optimistic signature.

Chapter 4 presents a further step in the development of NPI for reliability of

systems with multiple types of components, by considering system reliability evalu-
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ation using the survival signature, which was recently introduced as an alternative

to the system signature. The method of calculating survival signatures is developed

further, and the NPI method for system reliability using this concept is proposed.

New formulas have been derived and illustrated for the calculation of the survival

signature for a system consisting of series and parallel subsystems. Also, new for-

mulas have been derived and illustrated for the NPI approach to system reliability

using survival signatures. The method is identical to the NPI method for the system

signature for a system with a single type of components, as presented in Chapter

3, but the extension to systems with multiple types of components is crucial for

application to real-world systems and networks.

5.2 Links to alternative methods

We briefly comment on some related topics, namely the possible alternatives to

use (imprecise) Bayesian methods or bootstrap methods. Aslett [9] shows how the

signature can be used for reliability quantification for systems and networks from a

Bayesian perspective. Aslett et al. [11] present Bayesian inference using the survival

signature. They consider the situation where test data are available on each type of

component in a system or network, which is used to infer reliability of the system.

Using the survival signature, the uncertainty in the reliability of multiple types of

components can be propagated to uncertainty in the lifetime of an entire system

comprising those types of components. Computations for the Bayesian approach

may require the use of simulation-based methods, which may be harder to implement

than the NPI approach. The Bayesian approach as presented in [9, 11] can be

generalized to an imprecise Bayesian approach by taking a class of priors, this is an

interesting topic for further research.

Following Walley [65], many of the imprecise probability-based contributions to

statistics follow a generalized Bayesian approach, with models typically closely re-

lated to the usual Bayesian statistical methods, using a standard precise parametric

sampling model but with a set of prior distributions instead of a single prior. The

use of models from the exponential family is popular in conjunction with classes
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of conjugate priors. In these models, updating to take new information into ac-

count is effectively done by updating all elements of the set of prior distributions as

in Bayesian statistics with precise prior distributions, leading to a set of posterior

distributions which forms the basis for inferences.

Williamson [68] presents a detailed overview of objective Bayesianism, under

classical probability. He proposes an empirical norm and a logical norm for objective

inference, and shows that these are not both satisfied for Bayesian methods. NPI

enables both Williamson’s norms to be satisfied as shown by Coolen [20], but with

slightly reformulated norms to fit with theory of imprecise probability. The NPI-

based lower and upper probabilities can be said to be sensible in the sense that

the empirical probabilities are always in the intervals created by the corresponding

NPI lower and upper probabilities, and that the length of such intervals decreases

as a function of n, leading to precise probabilities for n → ∞. NPI can be seen as

an objective inference method, so strongly based on available data with only few

further assumptions, precise Bayesian methods cannot achieve this. However, the

latter are useful if one wants to take further information, e.g. expert knowledge, into

account, in which case NPI should not be used.

The bootstrap method was introduced by Efron [42]. It is a resampling technique

for estimating the distribution of statistics based on independent observations and it

has been developed to work for many statistical inferences. Chernick [18] discussed

the key ideas and applications of bootstrap, illustrated by applications to regression

models, time series, confidence intervals and hypothesis tests. Davison and Hinkley

[39] and Efron and Tibshirani [43] have developed bootstrap methods further for

a range of applications. Good [47] provided a brief review of bootstrap methods

together with computer code in order to put this method into practice.

Recently, Bin Himd [13] presented an alternative to the classical bootstrap

method, within the NPI framework. This method is called Nonparametric Predic-

tive Inference Bootstrap (NPI-B). In the classical bootstrap method [42], a bootstrap

sample t∗ = (t∗1, t
∗
2, . . . , t

∗
n) is obtained by random sampling, n times, with replace-

ment from the original sample t1, t2, . . . , tn. In NPI-B, the n + 1 intervals created

by the n observations are used. One value is drawn from within these intervals and
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added to the data set. Now the next value is sampled similarly, but using the n+1

data values. So each sampled data value is added to the data set to sample the

next one. This is applied until n new bootstrap values have been sampled, these (so

without the original data) from an NPI-B sample. The crucial difference from the

classical bootstrap method is that an NPI-B sample does not consist of the obser-

vations from the original sample but of points from the whole possible data range,

because the sampling in NPI-B is from the intervals in between the data values and

also outside the data range [13]. The way of sampling observations of NPI-B, with

values sampled from the intervals between the data points and new values dependent

on each other, leads to greater variation in the NPI-B samples than in the bootstrap

samples, and to accurate predictive inference [13]. NPI-B is fully in agreement with

NPI for future order statistics [13], so variation in bootstrap samples is already re-

flected in the approach presented in this thesis, hence comparison with bootstrap

methods is not very useful. Only if the data set is so large that our method leads to

computational problem, use of NPI-B instead may need to be explored. However, it

is more likely that computational challenges are with regard to deriving the survival

signature, this would affect any inference method the same way.

5.3 Research challenges

Challenging topics for future research include generalization of the approach pre-

sented in Chapter 2 for test data including right-censored observations, as often

occur for failure time data [33]. This first requires development of NPI for future

order statistics with such data, which is a challenge indeed as Equation 1.14 cannot

be applied in such a setting and simple counting arguments may need to be replaced

by complex optimisation methods. Once the approach has been extended to include

right-censored data, multiple comparisons are also of interest and can follow the

same approach as presented in [35, 36].

Signatures can also be used for reliability quantification for systems for which

only failure or non-failure upon request for functioning is of interest, so without ex-

plicit focus on failure time. Applying this to systems with exchangeable components
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will be relatively straightforward and will generalize the results in [22].

As presented in Chapter 4, the survival signature is a suitable generalization

of the signature to systems with multiple types of components. One may wish

to decide on optimal testing in order to demonstrate a required level of system

reliability, possibly taking costs and time required for testing, and corresponding

constraints, into account [58]. It will also be of interest to consider possible system

failure due to competing risks, where the NPI approach provides interesting new

opportunities to consider unobserved or even unknown failure modes [34, 54]. Of

course, the main challenges will result from the application of the new theory to

large-scale real-world systems, which we expect to be more feasible with the new

results presented in Chapter 4.

The Bayesian method with the system signature, presented by Aslett [9], offers

the possibility to use data including failure times for the system, so not only for

individual components. This is practical interest if only system failure data are

available. It is not straightforward to develop the NPI approach for such data, this

provides an interesting challenge for future research.
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