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Abstract

The research presented in this thesis focuses on the development of a technique to couple

beam and shell elements, with the purpose of creating one finite element (FE) model to capture

the global and local structural behaviour of an offshore wind turbine foundation design: the

Inward Battered Guide Structure (IBGS). The technique is proven to be computationally

efficient in that less storage capacity is required as there are fewer degrees of freedom (DOF)

than compared with an equivalent analysis that uses only hexahedral elements, for example.

Furthermore, the method is effective in providing reliable results in a shorter amount of time as

it mitigates the necessity of the Design Engineer to perform separate local and global analyses.

Although the beam-shell coupling is applied to the numerical analysis of the IBGS here, the

technique is applicable to any tubular structure.

Initially, the simple theories of bending and torsion are reviewed and the formulation

of the three-dimensional (3D) Euler-Bernoulli (EB) beam element is given. In addition, the

concepts of plate and shell theory are discussed with an emphasis on finding a reliable general

shell element. The formulation of the isoparametric degenerate continuum (IDC) shell and

the mixed interpolation of tensorial components shell element with nine nodes (MITC9) for

linear static analysis are given. It was found that the IDC shell was inadequate to solve simple

benchmark problems due to shear locking. It is shown that the MITC9 formulation does not

suffer from this problem. The thesis then proceeds to discuss various methods to impose multi-

point constraint (MPC) equations, including the transformation equations, penalty functions

and Lagrange multipliers, for the purpose of coupling different types of finite elements. The

MPC equations to couple EB beam and MITC9 shell elements are developed through a purely

geometric approach. The capability to couple these elements is successfully demonstrated in
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the numerical analysis of the IBGS.

Through the application of the beam-shell coupling, it is concluded that the twisted jacket

arrangement of the IBGS shows reduced stiffness and higher stresses under static loading. It is

found that an untwisted jacket arrangement of the IBGS is two-to-three times stiffer than the

twisted jacket arrangement for the case of linear static analysis. The analyses are undertaken

with firstly a FE model containing only EB beam elements and secondly a FE model that

employs the beam-shell coupling technique. The beam-shell coupling enables both the stress

distribution through the structural joints, modelled with shell elements, and the axial/bending

behaviour of the main structural members, modelled with beam elements, to be assessed in a

single analysis.
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Chapter 1

Introduction

High efficiency is paramount in computational structural analysis, a vital tool that aids

the work of the Design Engineer. Often, in commercial finite element (FE) software, it is

most economical to undertake separate local (part of a structure) and global (whole structure)

analyses. However, the aim here is to demonstrate how the coupling of FE of different

dimensions, in terms of different numbers of degree of freedom (DOF) per node, can be

employed to run one, efficient analysis of a structure and yet maintain the level of detail

required where necessary. More specifically, the unique contribution here is the coupling

between the three-dimensional (3D) Euler-Bernoulli (EB) element and the mixed interpolation

of tensorial components shell element with nine nodes (MITC9). Although the technique could

be applied to any tubular structure with slender members, the work presented in this thesis

focuses on investigating the structural behaviour of a particular foundation design for offshore

wind turbines: the Inward Battered Guide Structure (IBGS).

At present, a priority for the rapidly expanding offshore wind industry is to reduce CAPEX

costs from £140/MWh to £100/MWh∗ by 2020 [64 ], alongside developing larger turbines

that are located further offshore. The challenge is to reduce costs across the supply-chain by

standardising components, a central message from the Renewable UK Offshore Wind 2013

Conference in Manchester. Cost reduction is essential if the operational capacity of offshore

wind capacity is to increase from 3.3GW to 18GW in contribution to the UK Government’s

target of 15% energy from renewable sources by 2020 [29 , 57 ]. Around 30% of CAPEX costs

for offshore wind are attributed to the design, fabrication and installation of foundations [15 ] -

a term used loosely here to describe the structure supporting a wind turbine. In this regard, the

Carbon Trust organised a foundation design competition through its Offshore Wind Accelerator

project with a view to developing an economical foundation suitable for water depths 20-60m

at Round III sites around the UK [16 ]. Keystone Engineering’s IBGS or ’twisted-jacket’ was one

of four finalists from this competition, as shown by (ii) in Figure 1.1. According to Keystone

∗Levelised cost of energy, i.e. the lifetime cost of the project with respect to the amount of energy
generated. [64 ]

– 1 –



Chapter 1. Introduction

Figure 1.1: Finalists from the Carbon Trust’s foundation design competition: (i) suction
bucket monopile (ii) twisted jacket (iii) gravity structure and (iv) suction bucket tripod [63 ].

Engineering [48 ], the IBGS is around 20% cheaper than traditional jacket foundations and its

simple design provides greater efficiency in transportation. In addition, Keystone Engineering

have used this foundation to support oil and gas platforms in the Gulf of Mexico.

The steel IBGS would be installed by first driving the central pile into the sea bed (Figure

1.2 (i)) and then the jacket would be lowered and secured, probably with grouting, on the

central pile (Figure 1.2 (ii)). Each jacket leg acts as a sleeve to guide the three remaining piles

as they are driven into the sea bed (Figure 1.2 (iii)). Although the jacket itself is a standard

Figure 1.2: Installation sequence of the IBGS.

size, the foundation is readily adapted for different site conditions (water depth, soil properties

etc.) by varying the pile length. With this in mind, the IBGS has the potential to reduce

costs by becoming a standard part in the supply chain and so the development of an efficient

analysis capability to quickly assess the structural behaviour under different parameters at

various locations could be a useful, time-saving tool for the Design Engineer.

To date, the IBGS has been successfully installed as a demonstration project at Hornsea,

over 190km off the Yorkshire coastline by the SMart Wind consortium, with financial support

from DONG Energy, to support a meteorological mast [17 ], as seen in Figure 1.3. Its use as

– 2 –
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1.1. Background - The Finite Element Method

Figure 1.3: Demonstration of the IBGS at Hornsea [58 ].

a viable foundation solution for offshore wind will be dependent upon the economics of the

ease of fabrication, transportation and installation, in addition to the structural behaviour.

Nevertheless, the beam-shell coupling devised in this thesis is used to provide some indication

as to the structural advantages of the unusual design of the IBGS. This will be achieved by

modelling structural members with beam elements and structural joints with shell elements.

In this way, it is anticipated that both elements should capture the general bending behaviour

well and that, in addition, the shell elements should capture the localised stress variation at

each joint. In the following, a brief introduction to the finite element method (FEM) that

underpins the research is given, followed by the scope and structure of this thesis.

1.1 Background - The Finite Element Method

The finite element method (FEM) is a numerical analysis technique that has been widely

used for over fifty years to accurately model physical phenomena, expressed by partial differen-

tial equations, where analytical techniques are not possible. The name finite element originates

from work by Clough [20 ] to analyse shell-type structures at the beginning of the computer

era, following work by Turner et al. [66 ], in which triangular elements were used to model

the delta-wing for the aeronautics industry [21 ]. Previously, the method had been derived by

Courant [24 ] as a purely mathematical approach to solve problems by creating subregions of

triangles [45 ]. Today, the FEM is an integral part of engineering across various disciplines to

investigate problems including structural behaviour, geomechanics, fluid flow, heat transfer and

electromagnetics. In essence, the FEM involves subdividing a body into individual elements

that are interconnected at nodes and collectively form a mesh. On solving the assemblage of
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Chapter 1. Introduction

equations associated with each element to find the nodal variables, an approximation of the

physical phenomena in question is obtained.

In computational structural mechanics, the FEM is used to find nodal displacements,

{d}, as a result of the external loads, {fest}, that are imposed, given the material stiffness†,

[K]. One approach to obtain an expression for the stiffness matrix is to consider the Principle

of Virtual Work whereby a real force is applied to a system in static equilibrium and an

imaginary or virtual displacement, {δd̄}, is induced. More specifically, this concept is termed

the Principle of Virtual Displacements‡. In other words, for any virtual displacement relative

to the equilibrium condition, the external virtual work is equal to the internal virtual work.

External virtual work includes external surface tractions, {ft}, external point forces, {fp}, and
external body forces, {fb}, such as gravity, whereas internal virtual work can be described as

a change in the internal strain energy. Mathematically, this is expressed as

∫

V

{δ̄ǫ}T{σ}dV
︸ ︷︷ ︸

Internal strain energy

=

∫

V

{δ̄d}T{fb}dV
︸ ︷︷ ︸

External body forces

+

∫

S

{δ̄d}T{ft}dS
︸ ︷︷ ︸

External surface tractions

+

∫

V

{δ̄d}T{fp}dV
︸ ︷︷ ︸

External nodal forces

. (1.1)

Equation (1.1) is an expression of the work equilibrium in which the virtual displacements,

{δd̄}, cause virtual strains, {δǭ}. If it is assumed that all external forces are applied at nodes,

then the integral could be replaced with a summation symbol. In addition, in the case of a

non-linear analysis, the total change in internal strain energy would be with reference to the

initial stress and strain state of a structure [23 ], as discussed in Chapter 3.

The virtual strain, {ǭ}, can be written in terms of the virtual displacements, {δd̄}, as

{ǭ} = [B]{δd̄} , (1.2)

where [B] is the strain-displacement matrix comprised of the derivatives of the local geometric

interpolation functions with respect to the global coordinates. The engineering stress, {σ}, can
be rewritten using a constitutive material law and the real (engineering) strain, {ǫ} = [B]{d},
such that

{σ} = [D]{ǫ}
{σ} = [D][B]{d} ,

(1.3)

where [D] contains the material properties. On substituting (1.2) and (1.3) into (1.1) and

removing the displacements from the integrals, as these are nodal values and do not vary

†Note that in some texts [K] is called the flexibility matrix and on solving the system {d} = [K]−1{fext},
the term [K]−1 is named the stiffness matrix, though this distinction is not necessary here.

‡Alternatively, it can be assumed that real displacements are applied to the system to give virtual forces,
a concept termed the Principle of Virtual Forces.
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1.1. Background - The Finite Element Method

through the element, it is found that

{δ̄d}T
∫

V

[B]T [D][B]dV {d} = {δ̄d}T
∫

S

{ft}dS + {δ̄d}T
∫

V

{fp}dV + {δ̄d}T
∫

V

{fb}dV .

(1.4)

Notice that the virtual displacement terms, {δd̄}T , cancel to yield an expression of force

equilibrium, such that

∫

V

[B]T [D][B]dV

︸ ︷︷ ︸

Stiffness, [K]

{d} =

∫

S

{ft}dS +

∫

V

{fp}dV +

∫

V

{fb}dV
︸ ︷︷ ︸

External forces, {fext}

, (1.5)

or more simply,

[K]{d} = {fext} , (1.6)

where {d} are the unknown displacements in a structure for which the system is solved, such

that

{d} = [K]−1{fext} . (1.7)

Equation (1.5) shows the weak form of force equilibrium in that it applies in an average or

integral sense through the volume and is evaluated only at certain points inside the element.

Typically, a Gauss-Legendre quadrature is used to evaluate (1.5) at sampling or Gauss points,

where each point is associated with a weight.

Instead of using the Principle of Virtual Work, equation (1.5) could have been obtained

by deriving the strong form (which is continuous at all material points) by direct physical

argument from the concepts of three-dimensional stress and strain. By multiplying the resulting

expressions by a virtual displacement, integrating over the volume and rearranging through

integration by parts, the weak form written as (1.5) can be found [23 ]. It is noted that there

are other approaches in deriving the weak form of equilibrium, including the Rayleigh-Ritz

method, a variational method that relies on using a functional such as that of the Principle

of Minimum Potential Energy, or a weighted residual method such as the Galerkin method,

which offers a more general mathematical approach to solving differential equations by trial

solution [23 ].

A typical linear finite element analysis (FEA) is conducted in the following sequence.

1. Define the geometry, usually with the aid of computer aided design (CAD) software.

2. Discretise the continuum, namely the body to be analysed, using the chosen type

of FE. The mesh could be developed through the volume or over the surface only.

In 3D analysis using commercial software, hexahedral or tetrahedral elements are most

commonly used since these are well understood and considered robust. When choosing

the appropriate type of FE for the analysis, it is important to consider the following

points.
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Chapter 1. Introduction

• The element shape and geometric dimension, e.g. a 3D hexahedron.

• The number of DOF at each node, e.g. 3 displacements, u, v, w,

• The order of the element given by the number and arrangement of nodes, which

gives the order of the local geometric interpolation functions or shape functions

through an element. There are as many shape functions as there are nodes. For

example, an eight-noded (serendipity) hexahedron with one node at each corner

of the cube would be trilinear, whereas a twenty-noded (serendipity) hexahedron

with three nodes along each edge would be triquadratic. Lagrangian elements have

an extra node at the centre of each face and at the centre of each volume and

so would have additional shape functions, but of the same order as the equivalent

serendipity element.

There has been a wide range of methods developed for the discretisation process as

summarised by Owen [53 ]. To give an example, the method of paving or advancing

fronts starts from the surface of a volume and progressively subdivides the continuum

towards the middle, where some additional processing is required to tie elements formed

from different directions together. On forming the mesh, it may be necessary to perform

a quality check, for instance, by considering the element aspect ratio or by checking that

the volume scalar, det[J ], between the local and global coordinate systems is positive.

In addition, the mesh could be refined to produce a denser mesh by either h-, p- or r-

refinement methods. H-refinement involves element subdivision whilst maintaining mesh

conformity, namely node-node connections only, whereas p-refinement is concerned with

increasing the order of each element by increasing the number of nodes and/or DOF.

R-refinement is concerned with relocating nodes whilst maintaining the same number

and order of elements [23 ]. These adaptive methods would allow greater detail around a

complex piece of geometry for example. Equally, it would be possible to create a coarser

mesh and reduce the system size to be solved.

3. Select the displacement field through each FE, in terms of the order and type of

interpolation. If the interpolation functions for the geometry and the displacements

are of the same order then the FE is termed an isoparametric element. In addition,

the magnitude of the displacements to be calculated is taken into consideration. For

linear elastic analysis, infinitesimal strains (small displacements and small rotations) are

assumed, whereby the initial and final configurations are identical and so the Engineering

stress and strain quantities can be used.

4. Formulate the element stiffness matrices using (1.5), which incorporates the ma-

terial properties and strain-displacement matrix, and is evaluated at the Gauss points.

The number and location of the Gauss points in a Gauss-Legendre integration scheme

is given such that polynomials of order (2n − 1) are integrated exactly, where n is the
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number of Gauss points in any one direction.

5. Assemble the global stiffness matrix. Generally element stiffness matrices are defined

in a local coordinate system and so these must first be rotated into the global coordinate

system.

6. Solve the system to find the displacements at all nodes.

7. Postprocessing activities, which might include calculating the quantities of stress and

strain as well as perhaps refining the mesh around a region of high stress and repeating

the FEA from step 4.

The sequence described above assumes a static linear analysis. In a non-linear static

analysis, loads are applied in more than one load step and the system is solved iteratively at

each load step until convergence of the solution is reached within a prescribed tolerance. For

instance, the Newton-Raphson method can be used whereby the equilibrium to be achieved

between the internal and external forces at each load step, t, is defined as

{foobf t} = {f t
ext} − {f t

int} ≤ ‖{foobf}‖2
‖|{fext}‖2

. (1.8)

{foobf} is the residual out-of-balance force vector that should be within the ratio of the

normalised (L2 norm) of the external and out-of-balance force vectors at equilibrium. At each

load step, the system is solved iteratively, such that

[K]{δi+1} = {foobf, i} , (1.9)

where [K] is the global tangent stiffness matrix and i is the iteration number [28 ]. The

application of load over several steps yields the load-displacement path for a structure and

shows how a structure is expected to deform over time. In a non-linear analysis, the system

would diverge if all the load is applied in one step.

1.2 Thesis Scope & Structure

The purpose of this research is to develop a 3D rapid linear static analysis capability

through the coupling of shell and beam FE in order to model the structural behaviour of the

IBGS under a normal operational load case. The work that details the relevant FE formulations

and coupling technique required for this analysis is set out as follows.

Chapter 2: Finite Beam Elements reviews the simple theories of bending and torsion

and derives the EB beam bending equation. These concepts are used in the formulation of a

linear EB beam element that follows.

Chapter 3: Finite Shell Elements begins with a discussion on the similarities between

beam, plate and shell elements and then proceeds to discuss the formulation of general shell

elements. Two shell element formulations are given and their effectiveness in reproducing
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analytical solutions is demonstrated.

Chapter 4: Coupling of Finite Elements explores various techniques to impose multi-

point constraint (MPC) equations and reviews existing methods to couple different types of

FE. The MPC equations that allow the coupling between EB beam and MITC9 shell elements

are developed and verified.

Chapter 5: Numerical Analysis combines the algorithms from the preceding chapters

to provide a full static linear analysis of the IBGS. In this analysis, the angle of twist in the

jacket is varied in order to investigate the influence of the twisted arrangement on the stresses

at each structural joint as well as give an assessment of the overall structural behaviour of the

IBGS.

Chapter 6: Conclusion summarises the research presented in this thesis and recom-

mends how the work could be extended to (i) undertake additional numerical analysis of the

IBGS and (ii) further develop the concept of coupling between other types of FE, with sug-

gestions for alternative applications.

Throughout, simple benchmark problems are used to demonstrate the work presented.

All numerical algorithms were developed and run in MATLAB m-script [50 ] and are outlined

in this thesis where appropriate.
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Chapter 2

Beam Finite Elements

Beam elements∗ are used to model prismatic beams with a single, one-dimensional line.

In the following, a short discussion on different types of beam elements is given in Section

2.1. The simple theory of bending is reviewed in Section 2.2 and the Euler-Bernoulli (EB)

beam bending equation is derived in Sections 2.3. In addition, the simple theory of torsion is

reviewed in Section 2.4. These theories are central to the formulation of the EB beam element

given in Section 2.5. A comparison between beam and solid elements to accurately model

bending behaviour is demonstrated in Section 2.6. Throughout the chapter, the local and

global three-dimensional (3D) Cartesian coordinate systems in Figure 2.1 are used, where the

local x-axis is in the longitudinal direction of a beam element, measured from node 1. Note

that the unit vectors or bases that define the coordinate systems are denoted {ê} with the

appropriate axis shown as a subscript, thus the global bases would be {êx}, {êy} and {êz} for

instance. Where necessary, local variables such as nodal coordinates, strains and stresses are

distinguished from their global counterparts by a prime.

Figure 2.1: Global and local coordinate systems for beam elements.

∗The author notes that in some texts, such as in [4 ], a beam element describes only bending behaviour and
a bar/truss element describes longitudinal ’stretching,’ whereas a frame element is a structural element that
describes both bending and axial (longitudinal ’stretching’ and torsion’ effects. It is not necessary to make this
distinction in this work and so the term beam element is used to encompass both bending and axial effects,
unless stated otherwise.
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Chapter 2. Beam Finite Elements

2.1 Types of Beam Elements

In three-dimensions, a typical beam element has six degrees of freedom (DOF): three

translations, u, v, w, and three rotations, θxx, θyy, θzz, as shown in Figure 2.2. However,

Figure 2.2: DOF for a two-node 3D beam element.

depending on the problem in question, the formulation of a beam element can follow different

assumptions, based on theories from classical mechanics. For instance, Euler-Bernoulli (EB)’s

beam bending equation is valid for slender beams where the length is much greater than the

depth (typically L
d
> 10) and where it can be assumed that there are no transverse shear

deformations [11 , 44 ]. This means that cross-sections remain planar and perpendicular to the

neutral axis (NA)† during deformation. Nonetheless, in non-slender beams, this assumption

is no longer valid as transverse shear strains become significant since plane sections do not

remain perpendicular to the NA during deformation, thus inducing shear strains, γxz and γxy.

In this case, the theory by Timoshenko is followed in which a shear correction factor is included

in the element stiffness matrix [23 ] with the assumption that the shear strains remain constant

over the cross-section. The shear correction factor is dependent upon Poisson’s ratio, though

there are various ways in which the shear correction factor can be calculated [31 , 47 ]. For

example, one such method is to compare the actual shear strain with the average shear strain

[47 ]. In higher order Timoshenko elements, the shear strain might be defined as a parabolic

function over the beam depth, allowing the case of warping to be considered [36 , 55 ]. Warping

is a characteristic that is more common in thin-walled, open sections and occurs because plane

sections become non-planar during deformation. Cook et al. [23 ] suggested that another DOF

can be added to each node to describe the rate of twist, dθxx
dx

, in order to impose a restraint

to warping. The force associated with this DOF is called a bimoment, although it is generally

not used in commercial finite element software.

In this work, a linear beam element based on EB beam theory is considered to model

straight prismatic members. The theory that underpins this element is derived in the following

sections, using the sign convention in Figure 2.3.

†The NA is the axis along which the bending stress is equal to zero. For a symmetric and isotropic
cross-section, the NA is collinear with the centroid.
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2.2. Simple Theory of Bending

Figure 2.3: Axis orientation and positive sign convention for moments and shear forces.

2.2 Simple Theory of Bending

The simple or elementary theory of bending for a slender prismatic beam was developed

by Jacob Bernoulli and Leonhard Euler in the eighteenth century [38 ] and is described in most

introductory textbooks on solid mechanics, such as Benham et al. [11 ] and Gere and Goodno

[36 ]. The following derivation assumes that plane sections remain plane and perpendicular

to the NA during deformation when a pure bending moment is applied. No transverse shear

deformation occurs. The beam is assumed to be homogenous, isotropic and elastic, with a

symmetric cross-section about the local z′-z′ axis. After deformation (in the linear-elastic

region), the beam forms a circular arc as pure bending is assumed to occur about a single

point, as shown in Figure 2.4. The curvature is constant along the beam as the physical

properties and applied bending moment do not vary longitudinally. Figure 2.4 shows a positive

hogging moment for a deformed beam that is in tension at the top and in compression at the

bottom.

Figure 2.4: Pure bending applied to a slender beam.
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Chapter 2. Beam Finite Elements

The pure bending moment, as applied in Figure 2.4, gives a longitudinal strain defined

as.

ǫxx =
∆L

L

ǫxx =
A′B′ − AB

AB
.

Noting that AB = CD = C ′D′ = Rδθ, then

ǫxx =
(R + z)δθ − Rδθ

R δθ

ǫxx =
z

R
. (2.1)

During bending, the beam is assumed to deform according Hooke’s Law, where the elastic

modulus is

E =
σxx

ǫxx
=
σxx
z
R

. (2.2)

This can be rewritten as
E

R
=
σxx

z
. (2.3)

To link the longitudinal strain to the applied bending moment, the stress over a portion

of area ∆A in the cross-section of the beam is considered, as shown in Figure 2.5. The stress

Figure 2.5: Beam cross-section with an element of area ∆A.

over the area ∆A gives an internal force, such that

f int
xx = σxx∆A . (2.4)

Assuming static equilibrium, the sum of the tensile forces above the NA equal the sum of the

compressive forces below the NA. The internal moment acting on the element in Figure 2.5

is equal to product of the internal force and the lever arm, which is the distance z from the
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2.3. Euler-Bernoulli Beam Theory

NA, such that

M int
yy = σxx ∆Az . (2.5)

Since static equilibrium is assumed, the external moment applied to the beam is equal to

the sum of all the internal moments over the cross-section, thus

Myy =

∫

σxx z dA . (2.6)

By rearranging (2.3) and substituting for σxx in (2.6), it is seen that

Myy =
E

R

∫

z2 dA . (2.7)

Here it is noted that
∫
z2 dA is the second moment of area, Iyy, which describes the distribution

of cross-sectional area about the NA and is parallel to the local y’-axis. For hollow circular

and rectangular members respectively, the second moment of area is

Iyy, circular =
π

4
(R2

ext − R2
int) and Iyy, rectangular =

bd3

12
. (2.8)

On combining (2.3) and (2.7), the equation for the simple theory of bending‡ is obtained:

Myy

Iyy
=
σxx

z
=
E

R
. (2.9)

This relationship links the geometry, applied moment and stress of a slender beam.

2.3 Euler-Bernoulli Beam Theory

In order to relate the external moment applied to the curvature of the deformed beam,

and so derive the EB beam bending equation, first consider a small element of a beam of

length ∆x, as shown in Figure 2.4i. After bending, as shown in Figure 2.6 the arc length of

Figure 2.6: Deformed beam with radius of curvature R.

‡For bending about the local z′ axis, the simple theory of bending is Mzz

Izz
= σxx

y
= E

R
.
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Chapter 2. Beam Finite Elements

this element is given by

ds = Rdθ (2.10)

where dθ is the infinitesimal angle between the normals of the tangents at two points along

the deflected beam. The expression for the arc length of the element can be rearranged to

give the curvature, as
1

R
=
dθ

ds
. (2.11)

With the assumption of small angles, the arc length of the element, ds, is approximately equal

to the original element length, dx. In addition, tan θ is approximately equal to θ, where

θ ≈ tan θ =
dw

dx
. (2.12)

By substituting for ds and θ in equation (2.11), the curvature can be rewritten as

1

R
=

d

dx

(
dw

dx

)

=
d2w

dx2
. (2.13)

EB’s beam bending equation is obtained by substituting (2.13) into (2.9) and rearranging,

such that

Myy = EIyy
d2w

dx2
, (2.14)

where EIyy is termed the flexural stiffness. The slope of the deflection (or rotation) is found

by integrating the expression in (2.14) once. To find the vertical displacement of the beam,

equation (2.14) should be integrated twice, as demonstrated in the beam element formulation

in Section 2.5.

2.4 Simple Theory of Torsion

The beam element formulation given in Section 2.5 allows for axial effects and so it is

valuable to give a brief review of the simple theory of torsion here. Torsion is the twisting

moment or applied torque, T , to a member about its longitudinal axis, as shown in Figure 2.7.

Here, a thin-walled cylinder is considered where cross-sections remain plane and the radius

remains straight during twisting. On applying equal and opposite torques to each end and

assuming that the angle of twist, θxx remains uniform along the length of the member, the

arc length through which a point on the circumference of the tube moves is

ds = Rθxx . (2.15)

Along the length of the member, the arc length is equal to

ds = γL , (2.16)
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Figure 2.7: Torsion of a thin-walled cylinder.

where γ is the shear strain induced from the applied torque. Equating (2.15) and (2.16), the

shear strain is equal to

γ =
Rθxx

L
. (2.17)

The shear stress, τ , is given by

τ = Gγ = G
Rθxx

L
, (2.18)

where G is the shear modulus. For any element of area equal to

dA = 2πRdR , (2.19)

the internal tangential shear force is

fint = τdA = τ2πRdR . (2.20)

The applied torque is equal to the sum of the internal shear forces over the cross-section,

such that

T =

∫ R

0

Rfint =

∫ R

0

2πR2τdR . (2.21)

Substituting for shear stress using (2.18), then

T =
Gθxx

L
2π

∫ R

0

R3dR , (2.22)

where 2π
∫ R

0
R3dR is the torsion constant, J . For circular sections, the torsion constant is

equal to the polar second moment of area§, Ip. For hollow cylinders and thin-rectangular

§The polar second moment of area is a moment of area about an axis perpendicular (instead of parallel)
to the cross-section and can be defined in terms of polar coordinates for a circular section. Alternatively, the
polar second moment of area for a circular section is the sum of the second moment of areas in the y′- and
z′- directions
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Chapter 2. Beam Finite Elements

plates, the respective torsion constants are

Jcircular = Ip =
π

2
(R4

ext − R4
int) and Jrectangular ≈

bt3

3
. (2.23)

On combining (2.22) and (2.18), the simple theory of torsion is obtained:

T

J
=
Gθ

L
=
τ

R
. (2.24)

This expression relates the applied torque and section properties as well as the resulting angle

of twist and shear stress for a thin-walled circular member.

2.5 3D Euler-Bernoulli Beam Element Formulation

The 3D EB beam element is a linear finite element with a node at each end of the neutral

(x-x) axis. As shown in Figure 2.2, the two nodes each have six DOF, giving a twelve-by-

twelve element stiffness matrix, [Ke′

b ] [23 ]. By enforcing the boundary conditions shown in

Figure 2.8, the stiffness coefficient, [Ke′

b ], can be determined for each case in the form

{fext} = [Ke′

b ] {d} , (2.25)

where [Ke′

b ] is a matrix comprised of material and geometric properties, defined in the local

coordinate system.

Figure 2.8: Boundary conditions applied to a slender beam at node 2.

Figure 2.8 shows a beam of length L and cross-sectional area A. In case A, a displacement

is enforced at node 2 to simulate applying an axial force, fxx,2. Expressions can be written for
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2.5. 3D Euler-Bernoulli Beam Element Formulation

the stress and strain at each node and related through Young’s modulus.

E =
σxx

ǫxx
=

fxx
A

u2−u1

L

(2.26)

Rearranging and using u1 = 0, it is found that

fxx,2 =
EA

L
u2 , (2.27)

where the stiffness term EA
L

describes the resistance of the beam when subjected to an axial

force. For equilibrium,

fxx,1 = − EA

L
u2 . (2.28)

In case B in Figure 2.8, a fully fixed beam is subjected to a transverse unit displacement at

node 2 and is evaluated using the EB bending equation. Firstly, an expression is written for the

moments about node 2 and then substituted into equation (2.14). Secondly, this expression is

integrated twice, with respect to x, to obtain the relationships for the rotation and deflection

of the beam, as shown in (2.29).

Figure 2.9: Two-node beam element with an applied moment.

EIyy
d2w

dx2
= M

EIyy
d2w

dx2
=− fzz.1 x +Myy, 1

EIyy
dw

dx
=− fzz,1 x

2

2
+Myy, 1 x +A

EIyy w =− fzz,1 x
3

6
+
Myy, 1 x

2

2
+Ax+B

(2.29)

It is seen that the integration constants A and B are equal to zero when the following boundary

conditions are prescribed:

At x = 0 ,
dw

dx
= 0 and w = 0 . (2.30)
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Chapter 2. Beam Finite Elements

By changing (2.30) to enforce the boundary condition that w equals some positive vertical

displacement, δw2, at x = L, it is possible to simulate the application of a point load at node

2. Here, the reaction force at node 1 is obtained by rearranging (2.29)3.

fzz, 1 =
2Myy, 1

L
(2.31)

Substituting for w and fzz, 1 in equation (2.29)4 and simplifying, the moment at node 1 is

given as

Myy, 1 =
6EIyy
L2

δw2 . (2.32)

Rearranging equation (2.31) and substituting for Myy, 1 into , the reaction at node 1 is

fzz, 1 = − 12EIyy
L3

δw2 . (2.33)

By taking moments about node 1 and applying the same boundary conditions, it is found that

fzz, 2 =
12EIyy
L3

δw2 and Myy, 2 =
6EIyy
L2

δw2 . (2.34)

Similarly, case B can be repeated to find fyy andMzz at each node for the boundary condition

that w = δv2.

In Case C in Figure 2.8, a unit rotation is applied to the fully fixed beam at node 2 and is

enforced by changing the boundary condition in (2.30) such that dw
dx

= δθyy, 2, at x = L. This

simulates an applied moment, Myy, 2, for which the reaction force from (2.29)4 at node 1 is

fzz,1 =
3Myy, 2

L
. (2.35)

Substituting for dw
dx

and fzz, 1 in equation (2.29)3, the moment at node 1 is given as

Myy, 1 =
2EIyy
L

δθyy, 2 . (2.36)

Rearranging equation (2.35) and substituting for Myy,1 into (2.36), the reaction at node 1 is

fzz,1 = − 6EIyy
L2

δθyy, 2 . (2.37)

By taking moments about node 1, the moment and reaction at node 2 for case C are

fzz, 2 =
6EIyy
L2

δθyy, 2 and Myy, 2 =
4EIyy
L

δθyy, 2 . (2.38)

Similarly, case C can be repeated to find fyy andMzz at each node for the boundary condition
dw
dx

= δθzz, 2.
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Finally, case D in Figure 2.8 illustrates a torque applied to the beam with shear modulus,

G, and a torsion constant, J . By using the equation for the simple theory of torsion in (2.24),

then

Mxx,1 = − GJ

L
θxx, 2 (2.39)

where GJ
L

is the torsional stiffness of the beam. For equilibrium,

Mxx,2 =
GJ

L
θxx, 2 . (2.40)

On using the stiffness coefficients in the results found in cases A-D, and by noting that

the element stiffness matrix is symmetric (or by working through cases A-D for these boundary

conditions applied at node 1), the complete 3D beam element stiffness matrix can be written

in the form

{fext} = [Ke
b ]

−1 {d} . (2.41)

The twelve-by-twelve stiffness matrix is shown in Appendix A where the rows relate to forces/moments

and the columns relate to displacements.

In a finite element program, in order that the element stiffness matrix can be populated

with the terms in accordance with Figure 2.1 and the derivation above, the local orientation

of each beam element can be defined by finding the direction of one of the local axes, e.g.

calculate {êx′}. This is achieved either by finding the unit direction vector between the two

nodes or by using trigonometry. The other local axes can be then be found so that a local

orthogonal basis is formed. Once fully populated, the local element stiffness matrix must be

rotated to align with the global coordinate system using the dot product between the unit

vectors that define the local and global axes, such that

[Ke
b ] = [Tb]

T [Ke′

b ][Tb] where [Tb] =









[T ] [0] [0] [0]

[0] [T ] [0] [0]

[0] [0] [T ] [0]

[0] [0] [0] [T ]









(2.42)

in which [T ] =






{êx}.{êx′} {êx}.{êy′} {êx}.{êz′}
{êy}.{êx′} {êy}.{êy′} {êy}.{êz′}
{êz}.{êx′} {êz}.{êy′} {êz}.{êz′}




 .

With this in mind, the implementation of the EB beam element formulation is shown in

Algorithm 2.1, which is used in the example that follows. Once the global stiffness matrix

is obtained, the system can be solved to find the nodal displacements. Stress quantities can

then be calculated as required.
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Chapter 2. Beam Finite Elements

Algorithm 2.1 Euler-Bernoulli 3D beam element stiffness matrix formulation

INPUTS:

x, y, z Global nodal coordinates

{êx}, {êy}, {êz} Global coordinate base vectors

E Young’s modulus

G Shear modulus

A Cross-sectional area

Iyy, Izz Second moment of areas

J Torsion constant

1: Define the local orientation of beam element. {êx′}
2: Form the local beam element stiffness matrix. [Ke′

b ] Appendix A

3: Calculate the transformation matrix. [Tb] (2.42)

4: Transform the local element stiffness matrix into the global co-
ordinate system.

[Ke
b ] (2.42)

OUTPUTS:

[Ke
b ] Global beam element stiffness matrix

2.6 Example: Beam vs. Solid Elements for Bending

Consider the simple problem of a cantilever beam of rectangular cross-section with an end

point load applied at the free end. The solution according to EB beam theory, using values

in Table 2.2, is shown in Figure 2.10. In comparison with using one linear beam element,

100 eight-node (trilinear) solid elements, distributed uniformly in the longitudinal direction,

are required to obtain the same deflection within a tolerance of 0.1%, as illustrated in Table

2.3. Although there is negligible difference in the run times here, a larger system would show

a clear benefit in using beam elements over solid elements for bending since there are many

fewer unknown DOF in the system to be solved, which reduces the amount of computational

storage required.
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Beam Solid

P = 1 kN P = 1 kN

L = 1 m L = 1 m

b = 0.1 m b = 0.1 m

d = 0.1 m d = 0.1 m

E = 210 GPa E = 210 GPa

G = 80 GPa G = 80 GPa

ν = 0

ρ = 7800 kg/m3

g = 9.81 m/s2

8 Gauss points

Table 2.2: Input parameters for the
cantilever example to compare beam

and solid elements.

Figure 2.10: Numerical example of a cantilever
beam with an end point load modelled with (i) a
two-node beam element and (ii) with 100 solid

elements. The EB solution for the inputs in Table
2.2 is given.

Element type Beam Solid
Number of elements 1 100
Number of DOF 12 1212
Deflection (mm) -0.1905 -0.1903

Table 2.3: End deflection in mm of a cantilever modelled with beam and solid elements
respectively, subjected to an end point load.

2.7 Chapter 2 Summary

In the above, the simple theories of bending and torsion are discussed and the formulation

of a linear beam element that satisfies EB beam theory is given. It has been shown that a

single beam element is much more effective in capturing bending than hexahedral elements.

The linear beam element formulated is employed in Chapter 5 in the numerical analysis of the

Inward Battered Guide Structure (IBGS).
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Chapter 3

Shell Finite Elements

In effect, shells are simply a more complex type of plate element in that they are designed

to model curved surfaces such as containers, nuclear reactor vessels or domed roof structures.

In this chapter, the types of shell elements currently available are summarised, followed by a

detailed discussion on the formulation and implementation of two general quadrilateral shell

elements: the isoparametric degenerate continuum (IDC) shell element [27 ] and the mixed

interpolation of tensorial components shell element with nine nodes (MITC9) [14 ]. Small

strains as well as material and geometric linearity are assumed throughout and, although the

focus is on static linear analysis, some key points are given to show how the work could be

extended for geometrically non-linear static analysis. The global and local Cartesian coordinate

systems∗ referred to in this chapter are shown in Figure 3.1. There are three local coordinate

axes defined at the element mid-surface, including one for the element, (ξ, η, ζ), in the range

−1 to +1, one for the Gauss points, (ξGP , ηGP , ζGP ), and one for each node, (x′k, y
′
k, z

′
k). The

mid-surface is always defined by the ξ-η plane. Note that the unit vectors or bases that define

the coordinate systems are denoted {ê} with the appropriate axis shown as a subscript. Where

necessary, local variables such as nodal coordinates, strains and stresses are distinguished from

their global counterparts by a prime.

Throughout this chapter, the simple problem of a cantilever, with an end point load or

moment applied, is referred to as a benchmark problem in order to demonstrate the accuracy to

which the selected shell elements can reproduce known analytical solutions. Before progressing

with the discussion on shell elements, it is useful to highlight the link between beam and plate,

and plate and shell elements.

∗Often curvilinear coordinates are used for shell element formulations since shells are designed to model
curved surfaces. This approach is not adopted here in order that the coordinate systems remain consistent for
convenience in developing the beam-shell coupling in Chapter 4.
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Chapter 3. Shell Finite Elements

Figure 3.1: Global and local coordinate systems for shell elements.

3.1 Comparison of Beam, Plate and Shell Elements

A plate element is simply a beam element, but with bending occurring in two-directions

(and without axial forces or torsion). It is used to describe the deformation of a flat body when

subjected to bending whereas a shell element describes the deformation of a curved surface

subjected to both bending and membrane actions. In other words, to use the terminology

by Astley [4 ], a plate is analogous to a beam element in that only bending behaviour is

considered. Similarly, a shell element is analogous to a frame element in that a combination

of these actions is considered, as summarised in Figure 3.2. Geometrically, plate and shell

Figure 3.2: Comparison of finite element types.

elements have a thickness that is much smaller than the overall dimensions, where element

nodes are located on a neutral plane (in plates) or mid-surface (in shells), located at half of

the thickness. In essence, a beam is a 1D element as the nodes lie on a single axis whereas a

– 24 –

./Figures/Chapter_Shells/coordsystems2.eps
./Figures/Chapter_Shells/element_vendiagram.eps


3.1. Comparison of Beam, Plate and Shell Elements

plate is a 2D element as all the nodes lie on the same plane, as shown in Figure 3.3. However,

depending on the type of formulation, a shell element is often described as either a 21
2
D

element, as not all of the nodes lie in the same plane, or a 3D element, as thick shells are

similar in shape to a solid element. All three elements can be used to solve three-dimensional

Figure 3.3: Schematic of (i) beam, (ii) plate and (iii) shell elements.

problems more efficiently, especially where bending is dominant, than compared with 3D solid

elements, as shown in Sections 2.6 and 3.6. This is because a model with beams, plates and/or

shells, will typically have a smaller total number of degrees of freedom (DOF) compared with

a model that uses solid elements, thus less data storage is required and the computational

efficiency is improved.

Aside from the issue of computational efficiency, there is an additional reason why thin

solid elements are not appropriate for use in plate or shell problems. Unless the solid elements

used are sufficiently small, issues such as shear locking and ill-conditioning can arise due to

the very small thickness compared with the other dimensions. The problem of shear locking

occurs when an element is over-stiff in the thickness direction and so cannot reproduce accurate

solutions. By using thin solid elements, there would be two or more nodes along each edge

in the thickness direction, which would be very close together. Consequently, abnormally

large stiffness coefficients associated with strains in the thickness direction would be induced,

dominating the solution and generating spurious strain energy. Since these transverse shear

strain components cause a large variation in the magnitude of the stiffness coefficients, the

stiffness matrix suffers from ill-conditioning and can become near singular. As noted by Dvorkin

et al. [33 ], an example of shear locking is in an early degenerative shell element by Ahmad

et al. [2 ], a formulation that is in a sense based on a thin solid element, and is discussed in

Section 3.2 with regard to the development of general shell elements. Nevertheless, it is worth

noting that the problem of ill-conditioning can be a result of other factors, other than shear

locking, such as elements with a poor aspect ratio where one dimension is significantly smaller

than the others [23 , 69 ]. The problem of shear locking will be revisited in Section 3.4 with

regard to shell elements.

A typical plate element, in addition to the two bending moments, Mxx and Myy , has two

twisting moments,Mxy andMyx, which allow in-plane shear deformation. These moments give
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Chapter 3. Shell Finite Elements

a linear bending stress variation through the thickness of the element and are associated with

the curvature of the neutral plane during deformation, as described by the lateral displacement

(deflection) and rotation (slope) of the neutral plane at each node. In the case of pure bending,

no membrane components (parallel to the neutral plane) of the external force are applied [4 ].

Generally, the normal stress in the thickness direction, σzz, is considered to be zero when

compared with the in-plane normal stresses, σxx and σyy [23 ].

There are numerous formulations for plate (and shell) elements and so the reader is

directed to work by Hrabok and Hrudey [41 ], Kansara [46 ] and Yang et al. [68 ] for a more

extensive review of existing elements. A key reason for the significant number of plate elements

available arises from issues with compatibility between elements, as discussed below. Never-

theless, many plate elements rely on the assumptions associated with two classical theories

[4 , 23 , 69 ].

Firstly, the Kirchhoff, or thin-plate theory, was developed in 1850. It is comparable to

Euler-Bernoulli (EB) beam theory as it is assumed that a straight line perpendicular to the

neutral plane remains straight and normal during deformation, provided that deflections are

small. This allows transverse shear deformation to be neglected and also assumes that there

is no change in the plate thickness during deformation. With this is mind, the deformation

of a Kirchhoff plate element is described by the displacement of the neutral plane and the

rotation of the normal to the neutral plane, where the bending and twisting moments vary

linearly with depth. However, in order to completely satisfy inter-element continuity, the

lateral displacement and its derivatives must not only be unique to allow a smooth transition

between nodes on adjacent elements, but also be continuous along, above and below the

neutral plane. If not, physical discontinuities occur such as distortion in the deformed element

where the slope is not continuous along the element edge. Despite this, it is possible to

derive elements with partial compatibility that perform well, namely non-conforming Kirchhoff

elements [4 ]. Alternatively, the discrepancy in continuity can be avoided by either using

separate interpolations for the displacements and rotations, or including Lagrangian multipliers

to enforce continuity [69 ].

Secondly, the Mindlin-Reissner plate theory, developed in the mid-twentieth century, is

similar to the Timoshenko beam theory in that a straight line perpendicular to the neutral

plane remains straight but not normal during deformation. This introduces transverse shear

deformation in the x-z and y-z planes, which allows plates of greater thickness to be modelled.

As for the Timoshenko beam theory, as discussed in Chapter 2, a shear coefficient, κ, is included

in the element stiffness matrix, which is equal to 5
6
for rectangular cross-sections [23 , 31 ].

However, elements based on the Reissner-Mindlin theory typically exhibit shear-locking when

the thickness approaches zero [4 , 13 ]. In other words, as the thickness decreases, transverse

shear components become less important and the element should be analogous to a Kirchhoff

formulation. Instead, the element behaviour is over-stiff, as discussed in [23 ]. In this case, the
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Discrete-Kirchhoff plate element formulation is used, where Kirchhoff constraints are imposed

on the Mindlin-Reissner formulation at Gauss-points (GP), in order that shear deformation can

be neglected as the thickness approaches zero. In both Reissner-Mindlin and Discrete-Kirchhoff

elements, inter-element continuity is achieved.

In contrast to plate elements, shell elements incorporate both bending and membrane

actions as illustrated in Figure 3.2. Bending behaviour is caused by forces perpendicular to the

mid-surface or applied moments whereas membrane behaviour is caused by forces tangential to

the mid-surface. Typically, shell element formulations do not include a rotational DOF about

the local ζ-axis, which is often termed the drilling DOF. It is worth noting that if the shell

mid-surface is flat, not curved, then the shell element is essentially a plate element and a plane-

stress element superimposed together where the effects of bending and membrane actions are

assessed independently, as demonstrated in work by Kansara [46 ]. Such elements would use a

linear geometric interpolation scheme through the element and so would be termed flat shells

or facets. These elements can be used to model curved surfaces and an early example is the

triangular shell by Clough and Johnson [22 ]. However, in order to capture the curvature with

the same degree of accuracy, a greater number of facets would be required compared with

curved shell elements [69 ]. A curved shell element is described by a geometric interpolation

scheme of second order or higher, where the bending and membrane actions do interact, that

is they cannot be treated independently.

In similarity with the beam and plate elements, the formulation of shell elements can

be derived from multiple theories. For instance, the Kirchhoff-Love theory developed in the

late nineteenth century is analogous to the thin plate theory assumptions. This theory has

been refined by various researchers and has been extended to include shear deformation in

thick shells, which is often referred to as a Reissner-Mindlin shell [12 ]. However, often shell

elements are not necessarily based on shell theories directly in order to maintain generality. In

the next section, the two main approaches in developing general shell elements are discussed.

3.2 Types of General Shell Elements

A general shell element formulation should be suitable for the analysis of both thin and

thick plates/shells of arbitrary shape and be applicable to linear and non-linear systems. In

addition, the element behaviour must be reliable and its implementation computationally ef-

fective [14 ].

To formulate a general shell element, two approaches have been established. Firstly, shell

elements can be formulated through the superposition of plane stress and plate bending el-

ements. This approach is suited to the formulation of flat shells or facets, as mentioned in

Section 3.1. Secondly, shell elements can be formed through the use of degenerated isopara-

metric continuum elements, as illustrated in Figure 3.4. The latter approach provides the most

general shell element formulation as it is not dependent upon any shell theory. In addition,
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Figure 3.4: Schematic of degenerative shell elements: (i) solid element and (ii) shell.

inter-element continuity is satisfied since the displacements and rotations at the mid-surface

are independent, i.e. in contrast to elements derived from shell theories, the rotations are

not derived from the displacements [5 ]. The first degenerative shell element was formulated

by Ahmad et al. [2 ], whose work was extended by Ramm [56 ] and Bathe and Bolourchi [7 ]

for non-linear problems with the assumption of small deformation (small displacements and

rotations). These formulations have been further developed to allow for large deformations

(large displacements and rotations), as discussed in [5 , 25 , 27 , 34 , 49 ].

In the following section, the isoparametric degenerate continuum (IDC) shell element

formulation by de Borst et al. [27 ] is derived. In this work, shell elements of constant thickness

are assumed, although it is possible to vary the thickness through the element by defining

different thicknesses at each node.

3.3 IDC Shell Element Formulation

The isoparametric degenerate continuum (IDC) shell element detailed here was first de-

veloped by Ramm and Matzenmiller in 1986 and is described in work by Stander et al. [62 ]

and Crisfield [25 ]. The derivation of this element given in this section follows the formulation

arranged by de Borst et al. [27 ], a text which is an updated version of Crisfield’s book [25 ].

The IDC shell element is a displacement-based element with five DOF per node; k,

three global translations, uk, vk and wk, and two global rotations, δφk and δψk. The two

rotations describe the orientation of a normalised global vector, {V̂n, k}, that is (approximately)

perpendicular to the shell mid-surface at each node, as illustrated in Figure 3.5. The angle

φk is measured from the nodal x′-axis to {V̂n, k} whereas ψk is the angle between the nodal

y′-axis and the plane onto which {V̂n, k} is projected. The mid-surface normal at each node,

k, is defined by

{V̂n, kt} =







cosφt
k

sinφt
k cosψ

t
k

sin φt
k sinψ

t
k







, (3.1)

where t = 0 for the initial configuration. In non-linear analysis, the incremental changes in

the local rotations, δφk and δψk, would be used to update angles φt
k and ψt

k and redefine
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{V t+∆t
n, k }, using

φt+∆t
k = φt

k + δφk

ψt+∆t
k = ψt

k + δψk .
(3.2)

This step is not necessary for linear analysis since there are only the initial and final configu-

rations to consider.

To define the geometry of the IDC shell element, the following quantities are required for

each node, k, as shown in Figure 3.5:

• the global nodal coordinates, xk, yk, zk,

• the angles φk and ψk to define the mid-surface normal vector, {V̂ t
n, k}, and

• the shell thickness, tk, measured along the mid-surface normal.

Figure 3.5: Initial geometry for an eight-noded IDC shell element.

The global coordinates of any point within the element are given by







xt

yt

zt







=

8∑

k=1

Nk







xk

yk

zk







+ tk
ζ

2

8∑

k=1

Nk{V̂ t
n, k} , (3.3)

where Nk are the shape functions in terms of the in-plane local element coordinates ξ and

η. Similarly, since this is an isoparametric element, the incremental nodal displacements are

described as 





δuk

δvk

δwk







=
8∑

k=1

Nk







uk

vk

wk







+ tk
ζ

2

8∑

k=1

Nk{V̂ t
n, k} . (3.4)

In the two equations above, the first term interpolates the coordinates/displacements on the

mid-surface and the second term accounts for the thickness and rotation of the element.
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The Lagrangian shape functions, Nk, that provide interpolation of these quantities over the

mid-surface of an eight-noded element are

N1 =
1

4
(1− ξ)(1− η)(−ξ − η − 1)

N2 =
1

2
(1− ξ)(1− η2)

N3 =
1

4
(1− ξ)(1 + η)(−ξ + η − 1)

N4 =
1

2
(1− ξ2)(1 + η)

N5 =
1

4
(1 + ξ)(1 + η)(ξ + η − 1

N6 =
1

2
(1 + ξ)(1− η2)

N7 =
1

4
(1 + ξ)(1− η)(ξ − η − 1)

N8 =
1

2
(1− ξ2)(1− η) .

(3.5)

For non-linear analysis, the global nodal coordinates would be updated using the incremental

displacements, such that






xt+∆t

yt+∆t

zt+∆t







=







xt

yt

zt







+







δu

δv

δw







. (3.6)

To find the element stiffness matrix, [Ke], and the internal element force vector, {f e
int},

as required for finite element analysis (FEA), the expression for equilibrium is obtained from

the Principle of Virtual Work, as discussed in Section 1.1. As stated before, this equation

equates the stored strain energy (element stiffness) to the external work done due to a virtual

(or imaginary) incremental displacement, that is

∫

V 0

{δ̄γ}T{δτ}dV 0

︸ ︷︷ ︸

Incremental strain energy

+

∫

V 0

{δ̄γ}T{τ t}dV 0

︸ ︷︷ ︸

Current strain energy

=

∫

S0

{δ̄d}T{f 0
t }dS0 +

∫

V 0

{δ̄d}T{f 0
p}dV 0

︸ ︷︷ ︸

External forces

. (3.7)

Here, τ is the Second Piola-Kirchhoff stress tensor and γ is the Green-Lagrange strain tensor.

These are measures of true stress and strain, which are used to allow for a non-linear analysis

capability as they are defined with reference to the initial, undeformed configuration. The

Green-Lagrange strain is given by

[γ] =
1

2

[

[F ]T [F ]− [I]
]

, (3.8)

in which [F ] is the deformation gradient and is calculated from the derivatives of the displace-
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ments with respect to the global coordinates (where X denotes x0 for the initial configuration),

such that

[F ] = [I] +






δu
δX

δu
δY

δu
δZ

δv
δX

δv
δY

δv
δZ

δw
δX

δw
δY

δw
δZ




 =






δu
δξ

δu
δη

δu
δζ

δv
δξ

δv
δη

δv
δζ

δw
δξ

δw
δη

δw
δζ




 [J ]−T , where [J ]−T =






dX
dξ

dX
dη

dX
dζ

dY
dξ

dY
dη

dY
dζ

dZ
dξ

dZ
dη

dZ
dζ




 .

(3.9)

The matrix [J ] gives the derivatives of the global coordinates with respect to the local

element coordinates and is termed the Jacobian. It is worth noting that with the assumption

of small strains, where the displacement gradient [F ] ≈ [1], the Second Piola-Kirchhoff stress

and Green-Lagrange strain converge to the Engineering stress and strain quantities, though

for completeness, the former measures are used here.

Nevertheless, since small strains are assumed, a linear relation exists between the Green-

Lagrange strain and the Piola-Kirchhoff stress for each increment of stored strain energy, such

that

{δτ} = [D′] {δγ} , (3.10)

with the Green-Lagrange strain vector comprising of

{γ} =
{

γxx γyy γxy γyz γxz

}T

. (3.11)

Note that there is no γzz term as the drilling DOF is considered negligible. The local material

stiffness matrix, [D′] is equal to

[D′] =











1 ν 0 0 0

ν 1 0 0 0

0 0 1
2
(1− ν) 0 0

0 0 0 1
2
κ(1− ν) 0

0 0 0 0 1
2
κ(1− ν)











, (3.12)

and contains Young’s modulus, E; Poison’s ratio, ν; and a shear correction factor, κ. In this

work, the material relations remains linear and so non-linear components refer to geometric

non-linearity. With this in mind, the Green-Lagrange strain tensor can be decomposed into

linear and non-linear components, such that

{δγ} = {δγL}+ {δγNL} . (3.13)

After substituting for {δτ} in (3.7), (3.13) allows the linearisation of (3.7), which is
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rearranged to yield

∫

V 0

{δ̄γL}T [D]{δγL}dV 0 +

∫

V 0

{ ¯δγNL}T{τ t}dV 0

=

∫

S0

{δ̄d}T{f 0
t }dS0 +

∫

V 0

{δ̄d}T{f 0
p}dV 0 −

∫

V 0

{ ¯δγL}T{τ t}dV 0 .

(3.14)

This equation describes how the sum of the linear and non-linear stiffness components through

the element volume are equal to the difference between the external surface traction and point

loads, and the internal body forces. Here,¯denotes the virtual quantities.

The linear strain component in the first integral on the left-hand side of (3.14) can be

rewritten as

{δγL} = [BL]{δd} , (3.15)

where {δd} is a vector containing the displacemtns/rotations at each node and [BL] is the

linear strain-displacement matrix. In the {IDC} shell element, the vector {δd} is arranged

such that all the translations in the model are followed by all the rotations. It follows that the

strain-displacement matrix is also partitioned in this manner, thus [BL] =
[

[BL, t], [BL, r]
]

.

[BL, t] is calculated from the product of the deformation gradient, [F ], and the derivatives of

the shape functions with respect to the local element coordinates are as follows

[BL, t] =












F11
δNk

δξ
F21

δNk

δξ
F31

δNk

δξ

F12
δNk

δη
F22

δNk

δη
F32

δNk

δη

F11
δNk

δη
+ F12

δNk

δξ
F21

δNk

δη
+ F22

δNk

δξ
F31

δNk

δη
+ F32

δNk

δξ

F12
δNk

δζ
+ F13

δNk

δη
F22

δNk

δζ
+ F23

δNk

δη
F32

δNk

δζ
+ F33

δNk

δη

F13
δNk

δξ
+ F11

δNk

δζ
F23

δNk

δξ
+ F21

δNk

δζ
F33

δNk

δξ
+ F31

δNk

δζ












. (3.16)

In the above, the rows correspond to the strain components in (3.11) and the columns cor-

respond to the translations at each node, namely uk, vk and wk. The second part of the

strain-displacement matrix, [BL, r], is calculated by the product of [BL, t] and the derivatives

of the mid-surface normal, with respect to the angles φk and ψk, multiplied by the local coor-

dinate ζ . The derivatives for the mid-surface normal at each node, multiplied by the thickness

– 32 –



3.3. IDC Shell Element Formulation

at each node and are arranged in the matrix Ṽ , where

[V ] =

















− t1 sin φ1 0 · · · 0 0

t1 cos φ1 cos ψ1 − t1 sin φ1 sin psi1 · · · 0 0

t1 cos φ1 sin ψ1 t1 sin φ1 cos ψ1 · · · 0 0
...

...
. . .

...
...

0 0 · · · − tk sin φk 0

0 0 · · · tk cos φk cos ψk − tk sin φk sin psik

0 0 · · · tk cos φk sin ψk tk sin φk cos ψk

















.

(3.17)

On combining the separate parts together, the complete linear strain-displacement matrix is

[BL] =
[

[BL, t] ,
ζ

2
[BL, r][V ]

]

. (3.18)

By substituting equations (3.18) into (3.15) and substituting for {γL} in the first integral

in (3.14), the linear element stiffness matrix is given by

[Ke
L] =

∫

V 0

[BL]
T [D′][BL]dV

0 . (3.19)

As [BL] contains terms with respect to the global coordinates, the pre- and post- multiplication

of the local material stiffness matrix, [D′], ensures it is rotated into the global coordinate

system.

Likewise, the non-linear strain component in the second integral on the left-hand side of

equation (3.14) can be written as

{δγNL} = [BNL]{δd} , (3.20)

where [BNL] is the geometrically non-linear strain-displacement matrix. As above, [BNL] is

partitioned into [BNL, t] and [BNL, r] according to the displacements and rotations respectively,

where [BNL] is given by

[BNL] =
[

[BNL, t] ,
ζ

2
[BNL, r][V ]

]

. (3.21)
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The matrix [V ] is defined above and [BNL, t] is

[BNL, t] =






















δNk

δξ
0 0

δNk

δη
0 0

δNk

δζ
0 0

0 δNk

δξ
0

0 δNk

δη
0

0 δNk

δζ
0

0 0 δNk

δξ

0 0 δNk

δη

0 0 δNk

δζ






















. (3.22)

It is seen that [BNL] has nine rows to be consistent with using the matrix form of the Second

Piola-Kirchhoff stress tensor, [S], as opposed to the vector form with six rows, {τ}, thus

[S] =





















τxx τxy τxz 0 0 0 0 0 0

τyx τyy τyz 0 0 0 0 0 0

τzx τzy 0 0 0 0 0 0 0

0 0 0 τxx τxy τxz 0 0 0

0 0 0 τyx τyy τyz 0 0 0

0 0 0 τzx τzy 0 0 0 0

0 0 0 0 0 0 τxx τxy τxz

0 0 0 0 0 0 τyx τyy τyz

0 0 0 0 0 0 τzx τzy 0





















. (3.23)

The term τzz is equal to zero since shells are generally assumed to have no significant stress in

the thickness direction. [S] is found by using (3.10) to find {τ} and rewriting in tensor form.

By substituting for {γNL} into (3.14) and replacing {τ} with [S] to ensure compatibility in

matrix multiplication, the non-linear element stiffness matrix is given by

[Ke
NL] =

∫

V 0

[BNL]
T [S][BNL]dV

0 . (3.24)

The complete element stiffness matrix is found by summing the linear and non-linear contri-

butions at each GP, as will be shown in (3.27) and (3.29).

The local internal element force vector is given by the last integral on the right-hand side

of equation (3.14). In this case, the vector form of the Second Piola-Kirchhoff stress is used,

where

{τ} =
{

τxx τyy τxy τyz τxz

}T

. (3.25)
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By substituting for {γL} in (3.14) and noting that {δ̄d}T cancels out, the internal element

force vector is obtained as

{f e
int} =

∫

V 0

[BL]
T{τ}dV 0 . (3.26)

The integrals for the element stiffness matrix and the internal element force vector are

evaluated at the Gauss-points (GP) within each element, where each integral is multiplied

by a weight associated with the contribution of the particular GP within the element. In

addition, since the integrals are bounded between −1 and +1, owing to the definition of the

local element coordinate system, then a scalar is required to adjust the integral to the global

volume. This is achieved by multiplying by the determinant of the Jacobian matrix, det[J ].

The expressions for the global stiffness matrix and the global internal force vector evaluated

at each GP can be rewritten as follows.

[KGP ] = [BL]
T [D′][BL] wGP det[J ] + [BNL]

T [S][BNL] wGP det[J ] (3.27)

{fGP
int } = [BL]

T {τ} wGP det[J ] (3.28)

The summation of these expressions over all the GP gives the full global element stiffness

matrix and global internal element force vector, such that

[Ke] =

nGP∑

GP=1

[KGP ] and (3.29)

{f e
int} =

nGP∑

GP=1

{fGP
int } . (3.30)

The implementation of the IDC shell element is shown in the next section.

3.4 Example: Implementation of the IDC Shell

Algorithm 3.1 shows the formulation of an IDC shell element, which can be incorporated

as a function into a finite element (FE) code. With the calculation of the linear and non-linear

components of the strain-displacement matrix, Algorithm 3.1 can be used in either a linear

or a geometrically non-linear FEA program, as required. For linear analysis, superscript t = 0

and matrix [BNL] = [0].
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Algorithm 3.1 IDC shell element stiffness matrix formulation.

INPUTS:
xtk, y

t
k, z

t
k Global nodal coordinates

φt
k, ψ

t
k Global angles to define the mid-surface normal

uk, vk, wk, δφk, δψk Nodal displacements (initially zero)
E Young’s modulus
ν Poisson’s ratio
κ Shear correction factor
nGP Number of Gauss-point (GP)

ξGP , ηGP , ζGP Local Gauss-points (GP) coordinates
wGP GP weights

1: Form the material stiffness matrix. [D] (3.12)
2: for GP = 1, 2, 2, ..., nGP

3: Calculate the shape functions. Nk (3.5)
4: for shell node = 1, 2, 3, ..., k
5: For non-linear analysis, update the nodal coordi-

nates and global angles that define the mid-surface
normal.

(3.6), (3.2)

6: Calculate the mid-surface normal. {V̂ t
n, k} (3.1)

7: Find the derivatives of the mid-surface normals. [Vk] (3.17)
8: end
9: for shell node = 1, 2, 3, ..., k
10: Calculate the Jacobian matrix. [J ] (3.9)

11: Calculate the derivatives of the displacements. d{u,v,w}T

d{ξ,η,ζ}T
(3.9)

12: end
13: Calculate the deformation gradient. [F ] (3.9)
14: Calculate the Green-Lagrange strain tensor. {γ} (3.10)
15: Calculate the Second Piola-Kirchhoff stress. [S], {τ} (3.23), (3.25)
16: Form the matrix of the derivatives of the mid-surface

normals.
[V ] (3.17)

17: Form the linear strain-displacement matrix. [BL] (3.18)
18: Form the non-linear strain-displacement matrix. [BNL] (3.21)
19: Find the determinant of the Jacobian matrix. det[J ]
20: Calculate the global stiffness matrix at this GP. [KGP ] (3.27)
21: Calculate the global internal force vector at this GP. {fGP

int } (3.28)
22: end
23: Sum the stiffness and internal force contributions at each

Gauss point to obtain the global element stiffness matrix
and global element internal force vector.

[Ke],
{f e

int}
(3.29), (3.30)

OUTPUTS:
[Ke

s ] Global shell element stiffness matrix.
{f e

int, s} Global shell internal element force vector.
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The implementation of the IDC element with four and eight nodes is demonstrated

through modelling a cantilever beam, which is fixed at one end and with a distributed end

moment of 1kNm applied to the free end, as shown in Figure 3.6. The inputs in Table 3.2 are

used and the boundary conditions (BC) comprise of fixing all the DOF at the root. Second

Figure 3.6: Cantilever example of the IDC shell, with a distributed end moment applied to
the free end of (i) a four-noded and (ii) an eight-noded element.

Length L 1 m
Breadth b 0.1 m
Thickness t 0.1 m
Young’s modulus E 1 GPa
Poisson’s ratio ν 0
Shear correction factor κ 1

Table 3.2: Input parameters for the IDC shell element cantilever example.

and third order integration schemes are used for the four and eight noded elements respec-

tively, where the element stiffness matrix and internal force vector are evaluated at each of

eight or twenty-seven GP. For the quadratic eight-noded element, the third order integration

scheme should provide an exact solution for a second order displacement field. This is reflected

in the results in Table 3.3 for when an end moment of 1kNm is applied, which agrees with

EB beam theory. However, by applying a distributed end point load of 1kN to this cantilever

End Moment End Point Load

Analytical Solution w = − ML2

2EIyy
= − 60 w = − PL3

3EIyy
= − 40

4 nodes, 8 Gauss points w = − 60 w = − 200×10−3

8 nodes, 27 Gauss points w = − 62 w = − 200×10−3

Table 3.3: Deflection in mm of the IDC shell cantilever example modelled with a four- and
eight-noded element respectively, compared with analytical solutions.

with the same input parameters, it is seen in Table 3.3 that the element is over-stiff since the

displacement is significantly smaller than expected. There is no improvement in the result if
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Chapter 3. Shell Finite Elements

either more than one element is used in the longitudinal direction, or if the order of integration

is reduced from three to two for the eight-noded element. The latter implies that there is a

significant problem with shear locking in this element.

In the section that follows, a formulation from the family of mixed interpolation of tensorial

components (MITC) shell elements, developed through research led by Bathe at MIT, is

derived. Although the formulation is more involved, these elements are considered to be more

robust as they provide an effective approach to mitigate shear locking.

3.5 MITC9 Shell Element Formulation

The acronym MITC first appears in 1986 [8 ] to describe a general shell element formu-

lation, which builds upon the work of a four node degenerate solid shell element in [32 ]. The

distinctive characteristic in this family of elements is the mixed formulation approach whereby

separate interpolation functions are used for the in-plane and transverse shear strain compo-

nents in order to avoid the problem of shear locking [9 ]. In addition, the problem of membrane

locking, which becomes apparent in curved geometries, is also avoided. These interpolations

are then linked to the usual displacement variables at tying points. Subsequently, the MITC

elements could be described as partially isoparametric since the transverse shear strains do not

share the same interpolation function as for the in-plane displacements and/or the geometry.

Over the last few decades, these elements have been refined, for example by improving the

tying of strains and displacement interpolation functions in doubly curved shell problems to

provide greater accuracy of the transverse shear components [10 ]. Although these shells have

been derived with four, eight, nine and sixteen nodes, the focus here is on the nine-noded

MITC element. In this section, the formulation of the MITC9 shell element is given for linear

analysis, with the reference to papers by Huang and Hinton [42 ] and Bucalem and Bathe [14 ].

The geometry is defined in a similar fashion to the IDC shell element. For convenience,

the initial normalised direction vector at each node on the shell mid-surface is again defined

by

{V̂ 0
n, k} =







cosφ0

sin φ0 cosψ0

sinφ0 sinψ0







. (3.31)

This definition is for the initial configuration only, though the mid-surface normal can be

updated in non-linear analysis using (3.34) below. Nonetheless, it is worth noting that an

alternative way in which to define the mid-surface normal is to input the nodal coordinates of

a solid element (instead of the nodal coordinates on the shell mid-surface) and calculate the

vector between the corresponding nodes on the lower and upper surfaces. In this way, by not

normalising the vector, the thickness, tk is accounted for and can be removed from (3.35).

In linear analysis, it is assumed that the mid-surface normals remain straight and (ap-

proximately) perpendicular during deformation and that transverse shear terms are zero. Since
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only in-plane shear terms are considered, no tying points are required and so the formulation

that follows is purely isoparametric. There are two additional normalised vectors, {V̂ t
1, k} and

{V̂ t
2, k}, defined at each node, as shown in Figure 3.7, such that

{V̂ t
1, k} =

{V̂ t
n, k} × {êy}

‖{V̂ t
n, k} × {êy}‖2

(3.32)

{V̂ t
2, k} =

{V̂ t
n, k} × {V̂ t

1, k}
‖{V̂ t

n, k} × {V̂ t
1, k}‖2

. (3.33)

Figure 3.7: MITC9 geometry.

For the case where {V̂ t
n, k} is collinear with {êy}, then {V̂ t

1, k} is defined as {êx}. All

three vectors at each node are initially orthogonal. It is the use of these additional vectors at

each node that in part distinguish this formulation from that of the IDC shell. In the MITC9

element, the local rotational DOF, β1, k and β2, 2, are defined in a clockwise sense around the

vectors {V̂ t
1, k} and {V̂ t

2, k} respectively and can be used to express the mid-surface normal in

non-linear analysis as

{V̂ t+∆t
n, k } = {V̂ t

n, k}+ {δV̂n, k} where {δV̂n, k} =
{

− {V̂ t
2, k}β1, k + {V̂ t

1, k}β2, k
}

. (3.34)

The geometry and incremental displacements are given by







xt

yt

zt







=

9∑

k=1

Nk







xk

yk

zk







+ tk
ζ

2

9∑

k=1

Nk{V̂ t
n, k} (3.35)







δuk

δvk

δwk







=

9∑

k=1

Nk







uk

vk

wk







+ tk
ζ

2

9∑

k=1

Nk{V̂ t
n, k} , (3.36)
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where the geometry could be updated in non-linear analysis as shown in (3.6). In the above, Nk

are the Lagrangian shape functions that are used to interpolate the geometry and displacements

over the shell mid-surface. For a nine-noded element, these shape functions are given by

N1 =
1

4
ξ(ξ − 1)η(η − 1)

N2 = −1

2
ξ(ξ − 1)(η + 1)(η − 1)

N3 =
1

4
ξ(ξ − 1)η(η + 1)

N4 = −1

2
(ξ + 1)(ξ − 1)η(η + 1)

N5 =
1

4
ξ(ξ + 1)η(η + 1)

N6 = −1

2
ξ(ξ + 1)(η + 1)(η − 1)

N7 =
1

4
ξ(ξ + 1)η(η − 1)

N8 = −1

2
(ξ + 1)(ξ − 1)η(η − 1)

N9 = (ξ + 1)(ξ − 1)(η + 1)(η − 1) .

(3.37)

The advantage of using a nine-noded element is that the middle node provides a more uni-

form spacing of nodes over the mid-surface, yielding an improved distribution of displacements

and stress through the element. On the other hand, the extra node requires an additional five

DOF to be solved in each element.

As before, assuming material linearity, the Lagrange strain, {γ}, and the Second Piola-

Kirchhoff stress, {τ}, are related by the local constitutive matrix, [D′],

[D′] =














1 ν 0 0 0

ν 1 0 0 0

0 0 0 0 0

0 0 1
2
(1− ν) 0 0

0 0 0 1
2
κ(1− ν) 0

0 0 0 0 1
2
κ(1− ν)














. (3.38)

Here, a row of zeros for the component in the ζ-ζ direction is included for consistency in

matrix operations. To allow for the curved geometry, [D′] must be calculated at each GP and

transformed to the global coordinate system, using the dot products between the local GP
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coordinate basis and the global coordinate basis, thus

[D] = [Ts]
T [D′][Ts] , (3.39)

where [Ts] =














l1 l1 m1m1 n1 n1 l1m1 m1 n1 n1 l1

l2 l2 m2m2 n2 n2 l2m2 m2 n2 n2 l2

l3 l3 m3m3 n3 n3 l3m3 m3 n3 n3 l3

2 l1 l2 2m1m2 2n1 n2 l1m2 + l2m1 m1 n2 +m2 n1 n1 l2 + n2 l1

2 l2 l3 2m2m3 2n2 n3 l2m3 + l3m2 m2 n3 +m3 n2 n2 l3 + n3 l2

2 l3 l1 2m3m1 2n3 n1 l3m1 + l1m3 m3 n1 +m1 n3 n3 l1 + n1 l3














l1 = {êx}.{êξGP
} m1 = {êy}.{êξGP

} n1 = {êz}.{êξGP
}

l2 = {êx}.{êηGP
} m2 = {êy}.{êηGP

} n2 = {êz}.{êηGP
}

l3 = {êx}.{êζGP
} m3 = {ey}.{êζGP

} n3 = {eêz}.{êζGP
}

The local orthogonal GP basis vectors can be found using the Jacobian matrix,

[J ] =






dξGP

dx

dηGP

dx

dζGP

dx
dξGP

dy

dηGP

dy

dζGP

dy
dξGP

dz

dηGP

dz

dζGP

dz




 =






{J1}
{J2}
{J3}




 to give

{eζGP
} = {J3}

{eξGP
} = {J1} × {eζGP

}
{eηGP

} = {eξGP
} × {eζGP

}
. (3.40)

By following the principle of virtual work used in the IDC shell formulation in (3.7), and

through separating the linear and non-linear strain components as in (3.14), it is possible to

arrive at the linear strain-displacement matrix, [BL]. Note that only the first integral in (3.14)

and equation (3.15) are used as the non-linear components are approached slightly differently

and are beyond the scope of this work. In MITC elements, the displacement vector, {d},
is formatted such that all the DOF associated with each node are defined together, and so

there is no partitioning of [B] with reference to the translations and rotations. The linear

strain-displacement matrix is

[BL] =














dN
dx

0 0 g1, x g3, x g2, x g3, x

0 dN
dy

0 g1, y g3, y g2, y g3, y

0 0 dN
dz

g1, z g3, z g2, z g3, z
dN
dx

dN
dy

0 g1, x g3, y + g1, yg3, x g2, x g3, y + g2, yg3, x

0 dN
dy

dN
dz

g1, y g3, z + g1, zg3, y g2, y g3, z + g2, zg3, y
dN
dx

0 dN
dz

g1, x g3, z + g1, zg3, x g2, x g3, z + g2, zg3, x














, (3.41)
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where

{g1} = − 1

2
tk{V2, k} ,

{g2} =
1

2
tk{V1, k} , and

{g3} = ζ
(

dN
d(x,y,z)

)

+
(

J−1
ζ N

)

.

(3.42)

The term {J−1
ζ } is the last column of the inverse of the Jacobian matrix in (3.40). The global

element stiffness matrix can be calculated as

[Ke] = [Ts]
T

[
nGP∑

GP=1

[BL]
T [D][BL] wGP det[J ]

]

[Ts] . (3.43)

The global internal element force vector is calculated by

{f e
int} = [Ts]

nGP∑

GP=1

[BL]
T{σ} wGP det[J ] , (3.44)

where {σ} is the Cauchy or true stress for a linear analysis, given by

{σ} = [D][BL]{d} (3.45)

To extend the above formulation to a geometrically non-linear analysis and allow for large

deformations, the reader is directed to [9 ] where either a Total or Updated Lagrangian approach

can be followed. In the Total Lagrangian formulation, all variables (at t +∆t) are referred

to the original configuration (at t = 0) whereas in the Updated Lagrangian formulation,

all variables (at t+∆t) are referred to the previous load step (at t). As an example, the

expressions (3.7) and (3.14) above that describes the Principal of Virtual Work are written in

a Total Lagrangian form. Both approaches can account for large displacements, large rotations

and large strains. For a more in depth and mathematical review of shell geometry and the

MITC elements, the reader is directed to [19 ].

3.6 Example: Implementation of the MITC9 Shell

Algorithm 3.2 shows the formulation of a linear MITC family shell element, which can be

incorporated as a function into a FE code.
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Algorithm 3.2 MITC linear shell element stiffness matrix formulation.

INPUTS:
xk, yk, zk Global nodal coordinates

{êx}, {êy}, {êz} Global coordinate base vectors
φk, ψk Global angles to define the mid-surface normal

uk, vk, wk, β1, k, β2, k Nodal displacements (initially zero)
E Young’s modulus
ν Poisson’s ratio
κ Shear correction factor
nGP Number of Gauss-points (GP)

ξGP , ηGP , ζGP Local Gauss-point (GP) coordinates
{êξGP

}, {êηGP
}, {êζGP

} Local GP coordinate base vectors
wGP Gauss-point (GP) weights

1: Calculate the mid-surface normal at each node. {V̂n, k} (3.31)
2: for shell node = 1, 2, 3, ..., k

3: Calculate node vector 1. {V̂1, k} (3.32)

4: Calculate node vector 2. {V̂2, k} (3.33)
5: Pre-calculate terms for [BL]. {g1}, {g2} (3.42)
6: end
7: Form the local material stiffness matrix. [D′] (3.38)
8: for GP = 1, 2, 2, ..., nGP

9: Define GP. ξGP , ηGP , ζGP

10: Calculate the shape functions at this GP. Nk (3.5)
11: Calculate the shape function derivatives. dN

dξ
, dN

dη

12: Form the Jacobian matrix. [J ] (3.40)
13: Calculate the determinant of the Jacobian. detJ
14: Calculate the base vectors at this GP. {êξGP

}, {êηGP
}, {êζGP

} (3.40)
15: Form the transformation matrix by taking

the dot product between local element and
global base vectors.

[Ts] (3.39)

16: Transform the material stiffness matrix to
the global coordinate system.

[D] (3.39)

17: Form the strain-displacement matrix. [BL] (3.41)
18: Evaluate the global element stiffness matrix. [Ke] (3.43)
19: Calculate the Cauchy stress. {σ} (3.45)
20: Evaluate the global internal element force

vector.
{f e

int} (3.44)

21: end

OUTPUTS:
[Ke

s ] Global shell element stiffness matrix
{f e

int, s} Global shell element internal force vector
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By using Algorithm 3.2, the implementation of the MITC9 shell element is demonstrated

through modelling a cantilever beam, which is fixed at one end with a distributed end moment,

end point load, and end torque applied independently to the free end, as illustrated in Figure

3.8. The inputs in Table 3.5 and a third-order Gaussian integration (namely 27 Gauss points)

are used, along with the BC stated in Table 3.6.

Figure 3.8: Cantilever example for the MITC9 shell with a distributed (i) end moment, (ii)
end point load and (iii) end torque applied at the free end.

Length L 1 m
Breadth b 1 m
Thickness t 0.1 m
Young’s modulus E 1 GPa
Shear modulus G 0.5GPa
Poisson’s ratio ν 0
Shear correction factor κ 5

6

Table 3.5: Input parameters for the MITC9 shell element cantilever example.

The results shown in Table 3.6 demonstrate that this shell element can successfully repli-

cate simple analytical problems to a good degree of accuracy.
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3.7. Summary

End Point Load,

fzz =1kN

End Moment,

Myy =1kNm

End Torque

Mxx =1kNm

BC Fix all DOF at the root. Fix all DOF at the

root.

Fix u, v, w and θxx at

the root and θyy at the

middle node at the

root.

Analytical w = − ML2

2EIyy
w = − PL3

3EIyy
N/A.

Solution w = − 6.0× 10−3 mm w = − 4.0× 10−3 mm N/A.

θyy = − ML
EIyy

θyy = − PL2

2EIyy
θxx = TL

JG

θyy = − 12.0× 10−6 rad θyy = − 6.0× 10−3 rad θxx = 6.0× 10−3 rad

MITC9 w = − 6.0× 10−3 mm w = − 4.0× 10−3 mm N/A.

β2 = −12.0× 10−6 rad β2 = − 6.0× 10−3 rad β1 = 6.0× 10−3 rad

Table 3.6: Solutions for the cantilever example for the MITC9 shell element, compared with
analytical solutions.

3.7 Chapter 3 Summary

The derivation and implementation of two shell elements have been shown in this chapter.

It was discovered that the IDC shell element was prone to shear locking and could not produce

accurate solutions for a cantilever with an end point load, though the result was satisfactory

for an end moment. Nevertheless, the MITC9 shell element was found to provide a close

approximation when an end moment, end point load and end torque are applied independently

and so will be employed in the work that follows.

– 45 –



– 46 –



Chapter 4

Coupling of Finite Elements

In this chapter, the way in which beam and shell elements can be joined together (or

coupled) is detailed. In order to connect beam and shell elements together, the constraint that

the degrees of freedom (DOF) at the coupling interface must be equivalent is imposed. The

chapter begins with a discussion on the various methods of imposing constraints with reference

to simple examples where appropriate. In Section 4.3, constraint relations are developed that

allow the coupling of the Euler-Bernoulli (EB) beam element and the mixed interpolation of

tensorial components shell element with nine nodes (MITC9), as formulated in Chapters 2 and

3 respectively. Throughout, the local and global coordinate systems shown in Figure 4.1 are

used, where a prime denotes local variables. Please refer to Figures 2.1 and 3.7 for details of

element node numbering.

Figure 4.1: Global and local coordinate systems for coupling.

4.1 Coupling Techniques

There are two ways to couple finite elements (FE) of different dimensions (i.e. different

DOF per node) in order to ensure compatibility between element types. The first is to employ
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transition elements and the second is to develop constraint equations that are applied to DOF

at the coupling interface between a beam and a shell element. Transition elements require

node-to-node coupling and so a specific formulation must be developed for each element

combination. According to Ho et al. [39 ], much of the work in this area has been focused

on shell-solid transitions, with limited work concerning beam-shell or beam-solid transitions.

Often transition elements are prone to locking and although reduced integration has been used

to try to avoid this problem, it has been found that hourglass modes (element inversion) can

be induced [39 ]. Since the motivation here is to achieve high computational efficiency, then

increasing the number of elements in the model is undesirable, hence the remainder of the

discussion on coupling methods focuses on how to develop and impose constraint equations.

Typically, constraints are applied in addition to the expressions inherent in the FE model.

In general, a single-point constraint prescribes a value to one DOF whereas a multi-point

constraint (MPC) enforces a relationship between two or more DOF. These MPC relationships

are often described as explicit constraints and are used either to join separate parts of a

mesh or elements together, or to introduce an additional relationship into the FE model to

describe a specific physical phenomena [23 ]. In displacement based FE formulations, linear

MPC equations, [C], prescribe the known differences in displacements, {Q}, between nodes

either side of the constraint (or coupling) interface and can be written in the form

[C]{d} − {Q} = {0} , (4.1)

where {d} contains all the translational/rotational DOF in the system [23 ]. In order to achieve

FE coupling, there is no change in the displacements at the coupling interface since they are

directly equivalent and so the vector {Q} in (4.1) is zero. The following discussion compares

three ways in which MPC equations can be imposed in FE codes.

4.2 Techniques for Imposing Constraint Equations

Transformation equations, penalty functions and Lagrange multipliers are the three main

methods that are used to impose MPC equations. The advantages and disadvantages of these

methods are explored here using a simple cantilever beam as an example.

4.2.1 Transformation Equations

Transformation equations eliminate the constrained DOF from the system, thus providing

a reduced system in which there are fewer equations to be solved. Ho et al. [39 ] describes

this method as a congruent transformation since the output is an equivalent system that has

not been rotated or transformed in the usual sense. In essence, the stiffness attributed to the

nodes condensed out (or removed) is added to the node retained at the coupling interface.

This will become clear later in equation (4.5).
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An algorithm by Curiskis and Valliappan [26 ] reduces the global stiffness matrix using row

and column operations and is a more generalised algorithm compared to work in [35 ] as it is not

necessary to prescribe values in the vector {Q} in (4.1). To limit the size of these row/column

operations, Abel and Shephard [1 ] partitioned the system into unconstrained (retained) and

constrained (condensed out) components; an approach that is developed by Shephard [60 ]

to apply a transformation operation to each element as part of the direct assembly of the

global stiffness matrix. This work was implemented by Chang and Lin [18 ] with provision for

improved data management of the constrained DOF. The work in [1 ] and [60 ] is adapted

below, with reference to Cook et al. [23 ].

First, (4.1) is partitioned to correspond to all the DOF retained in the model (subscript

r) followed by the DOF to be condensed out (subscript c) at the coupling interface, such that

[

Cr Cc

]
{

dr

dc

}

−
{

Qr

Qc

}

= {0} . (4.2)

The dimensions of [Cc] and the number of rows in [Cr] are determined by the number of MPC

equations, where there is one expression for each DOF to be condensed out. Typically, [Cr]

has more columns than rows as there are more DOF retained compared with the number of

MPC equations. Equation (4.2) can then be solved for the DOF to be condensed out, {dc},
to give {

dr

dc

}

=

[

[I]

− [Cc]
−1 [Cr]

]

{dr}+
{

{0}
[Cc]

−1 {Q}

}

, (4.3)

where the first row correctly implies that the DOF to be retained remain unchanged. This

equation can be written more simply as

{d} = [T ]{dr}+ {Q0} , (4.4)

in which {Q0} is the congruent force vector that contains prescribed values, {Q}. [T ] is the
congruent transformation matrix that is used to reduce both the stiffness matrix, [K], and

the external force vector, {fext}, such that

[Kr] = [T ]T [K][T ] (4.5)

{f r
ext} = [T ]T ({fext} − [K]{Q0}) , (4.6)

where the superscript r denotes the reduced system. The system is then solved in the usual

manner.

To demonstrate this method, it is helpful to look at a simple problem. Consider the

cantilever beam in Figure 4.2, which is fully fixed at the left-hand end and modelled with two

2D Euler-Bernoulli beam elements. A unit point load is applied at the right-hand end. In this
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Figure 4.2: Coupling beams between nodes 2 and 3.

example, the aim is to couple node 3 to node 2, thereby eliminating node 3. After applying

the boundary conditions, the partitioned vector {d} containing the corresponding DOF can be

written as

{d}T = {dr dc}T = {4 5 6 10 11 12
... 7 8 9}T .

The partitioned [C] matrix containing the MPC equations corresponding to these DOF is

[C] = [Cr Cc] =







1 0 0 0 0 0
... − 1 0 0

0 1 0 0 0 0
... 0 − 1 0

0 0 1 0 0 0
... 0 0 − 1







In this case, it can be seen that [Cc] is a negative identity matrix. By substituting {d} and [C]

into equation (4.4) using (4.3), the congruent transformation matrix, [T ], and the congruent

force vector, {Q0}, are calculated. Through carrying out the operations in equations (4.5)

and (4.6), the system to be solved in this example reduces from [9× 9] to [6 × 6], excluding

boundary conditions. Although the system size is reduced, there is no change to the equilibrium

of the problem and so pre- and post- multiplying by [T ] gives additional stiffness at node 2 to

account for the elimination of node 3.

Through implementing a similar example using 3D EB beam elements in MATLAB m-

script [50 ], it was found that it is easier to apply all the constraints to the global stiffness

matrix in one operation, as opposed to one DOF at a time, which avoids problems with relating

the final solutions to the correct DOF. Algorithm 4.1 summarises this approach in applying a

constraint after the global stiffness matrix assembly and before the system is solved.

While the transformation equation method is known to be numerically stable [60 ], it has

the disadvantage of costly matrix operations that would compromise efficiency in a system

where a large number of constraints is necessary. These matrix operations also remove the

symmetry and increase the bandwidth in the global stiffness matrix [39 ], which increases the

storage capacity required. Additional processing is also required at the end of the program to

recover the values corresponding to the condensed DOF. An alternative way to impose MPC

equations is by using penalty functions, as described below.
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Algorithm 4.1 Imposing constraints using transformation equations.

INPUTS:

[K] Global stiffness matrix.

{fext} Global external force vector.

1: Define DOF at nodes to be condensed out. {dc} (4.2)

2: Define all DOF to remain. {dr} (4.2)

3: for condensed out node = 1, 2, 3, ... , nkc

4: Create partitioned constraint matrix. [Cc Cr] (4.2)

5: end

6: Calculate the congruent transformation matrix. [T ] (4.3)

7: Calculate the congruent force vector. [Q0] (4.3)

8: Calculate the global reduced stiffness matrix. [Kr] (4.5)

9: Calculate the global reduced external force vector. {f r
ext} (4.6)

OUTPUTS:

[Kr] Reduced global stiffness matrix.

{f r
ext} Reduced global external force vector.

4.2.2 Penalty Functions

Penalty functions impose constraints by adding the term 1
2
{t}T [a]{t} to the potential

energy function [23 ]

Πp =
1

2
{d}T [K]{d} − {d}T{fext} −

1

2
{t}T [a]{t} . (4.7)

The diagonal matrix [a] contains penalty numbers, selected by the Analyst, which approximate

how severely the constraint is imposed and the vector {t} describes the degree to which the

linear MPC equations are satisfied, that is

{t} = [C]{d} − {Q} . (4.8)

As before, the matrix [C], containing the constraint relations, is partitioned as [Cr Cc] and

the vector {d} is partitioned as {dr dc}T . By taking the minimum {∂Πp

∂d
} = {0}, equation

(4.7) becomes
(

[K] + [C]T [a][C]
)

{d} = {fext}+ [C]T [a]{Q} , (4.9)

where [C]T [a][C] is a penalty matrix.

The left-hand side of equation (4.9) shows that additional stiffness is added to the global

stiffness matrix, which can cause two problems [23 ]. Firstly, the topology of the global stiffness

matrix is modified, which presents an additional challenge in the efficient management of
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storing data relating to the correct DOF. Secondly, and perhaps more importantly, a large

addition in stiffness can result in ill-conditioning of the global stiffness matrix, an effect that

can lead to a near singular stiffness matrix and also an incorrect solution if the system can be

solved. According to Cook et al. [23 ], ill-conditioning can occur when [a] increases, yielding a

significant increase in the stiffness at the constraint, where the surrounding region is flexible in

comparison. Consequently, the constrained region deforms as a rigid body and this deformation

then incorrectly dominates the corresponding strain components. These issues render the

penalty functions method unsuitable for the work in this thesis.

In addition to these two problems, since the values of the penalty numbers, [a], must

be selected by the Analyst to represent the severity to which the constraints are imposed,

this method only provides an approximate way of imposing constraints [39 ]. A further way in

which MPC can be imposed is through using Lagrange multipliers, as described below.

4.2.3 Lagrange Multipliers

Lagrange multipliers enable the maximum or minimum of a function whose variables have

certain prescribed constraints to be determined. The MPC equations in the form of (4.1) are

added to the potential energy function and are pre-multiplied by a row vector, {λ}T [23 ]. This

constraint term in (4.10) is effectively zero and so the potential energy of the system remains

unchanged [23 ].

Πp =
1

2
{d}T [K]{d} − {d}T{fext}+ {λ}T

(

[C]{d} − {Q}
)

(4.10)

This approach is similar to the penalty method in that there is an additional term in the

potential energy expression. However, the use of Lagrange multipliers allows the constraints

to be imposed in an exact, rather than an approximate manner. Furthermore, the method can

alter the bandwidth in the global stiffness matrix [39 ].

From equation (4.10), by setting ∂Πp

∂d
and ∂Πp

∂λ
to zero, the following system of equations

is obtained: [

[K] [C]T

[C] [0]

]{

{d}
{λ}

}

=

{

{fext}
{Q}

}

. (4.11)

There are different ways of partitioning [C] and {d} [54 ], though here, as before, [C] and {d}
are partitioned by separating the DOF to be retained and constrained. Note that the stiffness

matrix, [K], should be also arranged in this order for consistency. The additional unknown

terms, {λ}, are the Lagrange multipliers, which can be described as the force applied across

the constraint interface. For convenience, (4.11) can be written as

[Kc]{dc} = {f c
ext} , (4.12)

where superscript c denotes constrained. Equation (4.12) can then be solved in the usual
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manner to obtain the nodal displacements/rotations and the Lagrange multipliers. Algorithm

4.2 shows how to implement this method, after the assembly of the global stiffness matrix.

Algorithm 4.2 Imposing constraints using Lagrange multipliers.

INPUTS:

[K] Global stiffness matrix.

{fext} Global external force vector.

1: Define DOF at nodes to be constrained. [Dc] (4.2)

2: Define all DOF to remain. [Dr] (4.2)

3: for condensed out node = 1, 2, 3, ... , nkc

4: Create partitioned constraint matrix. [Cr Cc] (4.2)

5: end

6: Calculate the constrained global stiffness matrix. [Kc] (4.11)

7: Calculate the constrained global external force vector. {f c
ext} (4.11)

OUTPUTS:

[Kc] Constrained global stiffness matrix.

{f c
ext} Constrained global external force vector.

Since the number of equations to be solved always increases with this method, it is

preferable to avoid using this technique, especially for imposing large numbers of constraints.

In this regard, the transformation equations method has the clear benefit of always reducing

the system of equations to be solved. If there are few constraints to be imposed, then [Cc] used

in the transformations equations method is small and so quick to invert, thus concern about

the effects of large matrix operations is negligible since the overall system size is reduced. For

this reason, the transformation equations is the chosen technique in this thesis.

4.3 Development of Constraint Equations for Beam-Shell

Coupling

Linear MPC equations, generally in the form of equation (4.1), relate the translational/

rotational DOF on the MITC9 shell element to the translational/rotational DOF on a EB

beam element, as shown in Figure 4.3. In constructing MPC expressions, it is essential to

ensure not only that the DOF are compatible between elements of different dimensions but

also that there is consistency in the kinematic assumptions associated with the element types

at the coupling interface. Whilst there is some literature devoted to the coupling of solid and

beam elements including work by Monaghan [52 ], and also to couple solid and shell elements

such as in work by Jialin et al. [43 ], there is very little literature that explores the coupling of

shell and beam elements.
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Figure 4.3: DOF on a beam and shell element at the coupling interface.

In order to couple 3D-beam and isoparametric shell elements, Shim et al. [61 ] obtained

MPC equations for elastostatic problems through considering the stress equilibrium across the

constraint by equating the work done on each side of the constraint interface. The technique

was adopted from work by McCune et al. [51 ] to couple beam and solid elements to plate

elements. As detailed in [52 ], by evaluating the response from the individual load cases (axial,

moments, shear, torque) in terms of the stress present at the constraint, compatible MPC ex-

pressions were derived to link the corresponding DOF on either side of the constraint interface.

The axial and bending stress contributions were found directly via analytical solutions whereas

the shear and torsion stress contributions were determined numerically through analysing a

graded 2D mesh at the constraint interface, created from the shell mid-surface normals. Mon-

aghan [52 ] demonstrated that the analysis of a 2D mesh representing the coupling interface

provided a more general approach, with greater accuracy, than by considering the problem

using thin wall theories since the latter does not capture boundary layer effects or regions of

discontinuity near the edges of thin shells. These MPC equations could be applied also to the

coupling of beam elements to plane stress/stain and plate elements, instead of shell elements.

More recently, Ho et al. [40 ] developed more general MPC equations that could be applied

to either beam-shell, beam-solid or shell-solid element interfaces in explicit finite element

analysis (FEA). The technique takes advantage of the capability to manipulate terms at the

time integration step and so does not employ any of the more classical approaches described

in Section 4.2 to impose the constraints. The position of each node on each element type

at the constraint interface is defined with a direction vector, which remains coplanar to this

interface during deformation to enforce the assumption that the constraint interface behaves as

a rigid body. At each time step, the new direction vector is calculated and compared with the

previous direction vector through a central difference formula to determine the new position

of the direction vector. The technique was extended subsequently for non-linear dynamic

problems [39 ], in which it is also shown that coupling techniques in commercial software

insufficiently capture structural behavior across the coupling interface.

In this thesis, MPC equations that provide coupling between 3D EB beam and MITC9

shell elements are developed through a purely geometric derivation. This approach was chosen
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for its simplicity and suitability for the assumption of small strains, which is valid for small

translations/rotations only and thus allows the trigonometric small angle approximation to

be used where appropriate. The coupling interface is assumed to behave as a rigid plate, as

shown in Figure 4.4. This is consistent with the kinematic assumptions for both EB beam and

MITC9 shell elements, in which plane sections in beams remain plane and normal and shell

mid-surface normals remain straight and perpendicular during deformation. In other words,

there is no warping or cross-sectional shear in the member (which may not be cylindrical in

shape as in Figure 4.4).

Figure 4.4: Coupling interface between beam and shell elements.

To develop the MPC expressions, the individual translations and rotations on the beam

are expressed in terms of the shell DOF and are collated in the form of a [5 × 6] constraint

matrix, [C̃], such that

{

u v w β1 β2

}T

︸ ︷︷ ︸

Shell DOF

=
[

C̃

] {

u v w θx θy θz

}T

︸ ︷︷ ︸

Beam DOF

. (4.13)

To help determine the influence of the beam DOF on the shell DOF, a direction vector, {Vd},
is defined from the beam node to each shell node in the original configuration (or previous

time step in non-linear analysis) and is coplanar with the coupling interface, as shown in Figure

4.4. This concept stems from work by Ho et al. [40 ]. The change in the components of this

vector, when the beam node translates or rotates, are used to form some of the constraint

relationships in [C̃].

To determine the relationships that constitute [C̃], firstly it is noted that the translations

on the beam are directly equivalent to those on the shell. Secondly, to complete the expressions

associated with the translational DOF on the shell, the effect of the beam rotations on these

DOF are considered, as shown in Figure 4.5, where each beam rotation gives a possible shell
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displacement in two directions. These incremental displacements at the shell node due to the

Figure 4.5: Shell translations caused by beam rotations about the (i) x-, (ii) y- and (iii) z-
axes.

beam rotations can be described using trigonometric functions. Thus the translational DOF

on the shell can be fully expressed as

δus = ub + r sin θbyy sinα + r sin θbzz cosα

δvs = vb + r θbxx sinα + (r cosα− rcosθbzz cosα)

δws = wb + r θbxx cosα + (r sinα− r cos θbyy sinα) ,

(4.14)

where α is the geometric initial position of a shell node on the perimeter of the cross-section,

measured anti-clockwise from local beam y-axis. Using small angle approximations, (4.14) is
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reduced to

δus = ub + r θbyy sinα + r θbzz cosα

δvs = vb + r θbxx sinα

δws = wb + r θbxx cosα .

(4.15)

However, the use of trigonometric functions in (4.15) can lead to programming problems since

trigonometric functions are sinusoidal and so developing an appropriate conditional statement

to obtain the correct plus / minus sign for these terms is difficult. A more robust and general

approach is to write the trigonometric functions in terms of a component of the direction

vector, {Vd}, and so (4.15) is rewritten to give

δus = ub + Vd, z θ
b
y − Vd, y θ

b
z

δvs = vb − Vd, z θ
b
x + Vd, x θ

b
z

δws = wb + Vd, y θ
b
x − Vd, x θ

b
y ,

(4.16)

where {Vd} is given by

{Vd} =







xs

ys

zs







T

−







xb

yb

zb







T

. (4.17)

In essence, the above allows the original position of each shell node, given by {Vd}, to be

rotated through an angle θ to the new position.

Thirdly, to describe the rotational shell DOF in terms of the beam DOF, it is noted that

the translational DOF on the beam have no effect on the rotational DOF on the shell. Finally,

to relate the rotational DOF on the beam to those on the shell, a transformation from three to

two rotational DOF is required. In the MITC9 shell formulation, two global unit vectors, { ˆV1, k}
and { ˆV2, k}, are calculated at each node, around which the shell rotations, β1, k and β2, k, are

defined. These two vectors provide the necessary transformation between the rotational DOF

on the beam and shell elements.

Through collating the relationships described, the complete constraint matrix is







u

v

w

β1

β2







T

=











1 0 0 0 Vd, z − Vd, y

0 1 0 − Vd, z 0 Vd, x

0 0 1 Vd, y − Vd, x 0

0 0 0 V̂1, x V̂1, y V̂1, z

0 0 0 V̂2, x V̂2, y V̂2, z

















u

v

w

θx

θy

θz







T

. (4.18)

Hereˆ denotes a unit vector. {Vd} is not a unit vector as it takes the distance between the
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nodes (or lever arm) into account.

The following section demonstrates how [C̃] is incorporated into [Cr] for a simple cantilever

problem to achieve the correct coupling between the beam and shell elements.

4.4 Example: Beam-Shell Coupling

To validate [C̃], a simple cantilever problem was used, in which a flat plate fixed at the

one end and subjected to an end point load at node 11, as shown in Figure 4.6. The boundary

conditions are given in Table 4.5.

Figure 4.6: Rectangular cantilever example for beam-shell
coupling.

L 1 m

b 1 m

d 0.1 m

E 1 GPa

G 0.5 GPa

ν 0

k 5
6

Table 4.3: Input parameters
for the rectangular cantilever

problem.

In order to impose the coupling between nodes 8 and 10, the transformation equations

method was implemented, as described in Section 4.2. Recall that this approach reduces the

number of equations to be solved through eliminating the DOF on one side of the coupling

interface and so creating a smaller but equivalent system using the appropriate constraint

relations. The main feature in this approach is the formation of the congruent transformation

matrix, [T ],

[T ] =

[

[I]

− [Cc]
−1[Cr]

]

,

which is employed to produce the reduced stiffness matrix [Kr] and external force vector

{f r
ext}. [C̃] provides the constraint relations to achieve the beam-shell coupling. At node 7,

this is

[C̃]7 =











1 0 0 0 0 0.5

0 1 0 0 0 0

0 0 1 − 0.5 0 0

0 0 0 1 0 0

0 0 0 0 1 0











.

[C̃] is inserted into [Cr] in the columns corresponding to the beam DOF retained and in the

rows corresponding to the shell DOF to be condensed out. For this problem, [Cc] is a negative
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identity matrix equal to the size of the number of shell nodes to be condensed out and so the

format of [T ] is as shown in Figure 4.7.

Figure 4.7: Non zero terms in the congruent transformation matrix for the rectangular
cantilever in Figure 4.6.

The algorithm used to achieve the beam-shell coupling is shown in Algorithm 4.3. The

inputs include the global stiffness matrix and the global external force vector, as well as a

matrix, [CCI ], which contains the node numbers at the coupling interface to be retained and

condensed out respectively, such that

[CCI ] =

[

kb
︸︷︷︸

retained

ks1 . . . , ksn
︸ ︷︷ ︸

condensed out

]

, (4.19)

where each row corresponds to a separate coupling interface. On obtaining the reduced global

stiffness matrix and reduced external force vector, the system can be solved for the free DOF

in the usual manner. Afterwards, the displacements at the nodes condensed out during the

coupling process can be obtained by using the inverse of [C̃] in (4.18). In addition, the

reactions at the fixed DOF can also be calculated.
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Algorithm 4.3 Coupling EB beam and MITC9 shell elements.

INPUTS:

[K] Global stiffness matrix.

{fext} Global external force vector.

[CCI ] Coupling interface(s) matrix.

1: Define DOF at nodes to be condensed out. [dc] (4.2)

2: Define all DOF to remain. [dr] (4.2)

3: Redefine the boundary conditions and free DOF to account for the
shell DOF that are condensed out.

4: for coupling interface = 1, 2, 3, ... , nCI

5: for shell node = 1, 2, 3, ... , nk

6: Calculate the direction vector. {Vd} (4.17)

7: Calculate the constraint matrix. [C̃] (4.18)

8: Insert [C̃] into [Cr].

9: end

10: end

11: Form [Cc].

12: Calculate the congruent transformation matrix [T ] (4.3)

13: Calculate the congruent force vector [Q0] (4.3)

14: Calculate the reduced global stiffness matrix [Kr] (4.5)

15: Calculate the reduced global internal force vector {f r
int} (4.6)

OUTPUTS:

[Kr] Reduced global stiffness matrix.

{f r
ext} Reduced global external force vector.

Through employing Algorithm 4.3, the solution obtained for the cantilever problem in

Figure 4.6 agrees with EB beam theory, as shown in Table 4.5, with an appropriate, symmetric

distribution of displacements through the cantilever, as shown in Figure 4.8.

In addition, an end moment and torque were also applied independently to node 11, giving

a fairly close approximation to the analytical solution as shown in Table 4.5. It is interesting

to note for the torsion problem that by not constraining θyy at nodes 7 and 9, and thus solving

for these DOF, the exact analytical solution for θxx is obtained (though this is not shown in

Table 4.5.
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Figure 4.8: Graph of vertical displacement for the rectangular cantilever in Figure 4.6.

End Point Load,
fzz =1kN

End Moment,
Myy =1kNm

End Torque
Mxx =1kNm

BC Fix u, v, w, θxx, θyy at
nodes 1, 2, 3.

Fix u, v, w, θxx, θyy at
nodes 1, 2, 3.

Fix u, w, w, θxx at
nodes 1, 2, 3 and θyy

at node 2.

Analytical w = − PL3

3EIyy
w = − ML2

2EIyy
N/A.

w = − 4.0× 10−3 mm w = − 6.0× 10−3 mm N/A.

θyy = − PL2

2EIyy
θyy = − ML

EIyy
θxx = TL

JG

θyy = − 6.0× 10−3 rad θyy = 12.0× 10−6 rad θxx = 6.0× 10−3 rad

Numerical w = − 39.3× mm w = − 60.0× mm N/A.

β2 = 0.06 rad β2 = 0.12 rad β1 = 0.03 rad

Table 4.5: Solutions for the rectangular cantilever with beam-shell coupling, as shown in
Figure 4.6.

Furthermore, a similar problem was tested in which the cantilever is a thin-walled cylin-

drical member, as shown in Figure 4.9.
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Chapter 4. Coupling of Finite Elements

Figure 4.9: Cylindrical cantilever example meshed
with 12 shell and 1 beam elements.

L 1 m

R 0.5 m

t 0.01 m

E 1 GPa

G 0.5 GPa

ν 0

k 5
6

Table 4.6: Input parameters for the
cylindrical cantilever problem.

By applying an end point load, end moment and a torque to the end beam node, using the

parameters in Table 4.6, there is close agreement with EB beam theory, as shown in Table 4.7.

The 40% displacement error produced when applying an end point load arises from the fact

that the quadratic shell and linear beam elements are used here to model a cubic displacement

field.

End Point Load,
fzz =1kN

End Moment,
Myy =1kNm

End Torque
Mxx =1kNm

BC Fix all DOF at the root. Fix all DOF at the root. Fix u, v, w, θxx at the
root and θyy at the
root where y =0 and

z = 0.

Analytical w = − PL3

3EIyy
w = − ML2

2EIyy
N/A.

w = − 0.15× 10−3 mm w = − 0.13× 10−3 mm N/A.

θyy = − PL2

2EIyy
θyy = − ML

EIyy
θxx = TL

JG

θyy = 0.13× 10−3 rad θyy = 0.26× 10−3 rad θxx = 0.26× 10−3 rad

Numerical w = − 0.09× 10−3 mm w = − 0.13× 10−3 mm N/A.

β2 = 0.13× 10−3 rad β2 = 0.26× 10−3 rad β1 = 0.26× 10−3 rad

Table 4.7: Solutions for the cylindrical cantilever with beam-shell coupling, as shown in
Figure 4.9.

4.5 Chapter 4 Summary

Through this chapter, methods to enforce MPC equations have been discussed, followed

by the development of MPC relationships, [C̃], to couple EB beam and MITC9 shell elements.

This coupling matrix is simple to construct through considering the movement of vectors
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between the nodes to be coupled. The coupling matrix was implemented successfully using

the transformation equations method to obtain or closely approximate analytical solutions for

a cantilever beam. This method involved condensing out the DOF on one side of the coupling

interface, through employing the congruent transformation matrix and congruent force vector

in matrix operations, thereby reducing the size of the system to solve. In the next chapter, the

[C̃] matrix will be employed to couple beam and shell elements to provide an efficient analysis

program for the Inward Battered Guide Structure (IBGS).
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Chapter 5

Numerical Analysis of the IBGS

To demonstrate the finite element techniques discussed in the preceding chapters, the

linear static analysis of the Inward Battered Guide Structure (IBGS) was undertaken in MAT-

LAB m-script [50 ]. Through varying the angle of twist in the tripod arrangement of the jacket

and applying loads at the base of the turbine tower, the structural behaviour of the IBGS is

assessed under normal operating conditions for a wind turbine. Firstly, an assessment of the

structural behaviour is undertaken in Section 5.1 where only beam elements are used. Sec-

ondly, the coupling of beam and shell elements is employed in Section 5.2 to provide greater

detail about the structural behaviour of the IBGS by examining the stress distribution through

each structural joint. Throughout the chapter, the coordinate system in Figure 4.1 and the

notation in Figure 5.1 are used, along with the parameters in Table 5.1. The structure was

assumed to be fully fixed (in terms of both translation and rotation) at the seabed and so the

sediment-pile interaction was not considered.

Figure 5.1: Notation and orientation of loads applied to the IBGS.
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Chapter 5. Numerical Analysis of the IBGS

Elastic modulus E 210 GPa
Shear modulus G 80 GPa
Jacket height Hj 30 m
Pile height Hp 20 m
Foundation height HIBGS 50 m
Tower height Ht 100 m
Radius-wall thickness ratio tw

1
20

Central column & pile radius 0.75 m
Jacket-leg & outer pile radius 0.65 m
Top-radial member radius 0.60 m
Top-radial member length Lt 5 m
Inclined bracing radius 0.50 m
Angle of inclined bracing θIB 45◦

Bottom-radial member radius 0.50 m

Table 5.1: Input parameters for the numerical analysis of the IBGS.

5.1 Beam Analysis

5.1.1 Analysis Aims & Set-up

To provide an initial assessment of the general structural behaviour of the IBGS, each

structural member is represented by one linear beam element with element nodes located at

the structural joints, as shown in Figure 5.2. In addition, the piles and turbine tower were also

Figure 5.2: (i) Discretisation of the IBGS using linear beam elements [16 ] and (ii) the node
numbering system used.

modelled, as illustrated in Figure 5.3. The aim is to use this finite element (FE) model to

(i) evaluate any structural benefit of the twisted-tripod arrangement and (ii) investigate the
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5.1. Beam Analysis

Figure 5.3: Node and member names used for the IBGS.

stiffness contribution from the inclined bracing. This was achieved by applying forces/moments

to the top central node (node 1 in Figure 5.2) and comparing the stresses in each member, as

well as the translations at the nacelle height, where the angle of twist in the jacket is either

0◦ or 60◦. Algorithm B.1 in Appendix B provides an overview of how the analysis was set-up

with a view to using as few input parameters as possible to define the geometry of the IBGS,

in order to provide flexibility in modifying the jacket for different geometries or water depths.

5.1.2 Results & Discussion

Unit loads were applied independently at node 1 to the IBGS in each of the directions

shown in Figure 5.1, where the angle of twist in the jacket is 0◦ and 60◦ respectively. By

comparing the combined axial and bending stresses in the jacket-legs for each load in Table

5.2, it was found that the highest stresses were caused by forces applied in the x-y plane. It

was also apparent that the twisted jacket is twice as stiff as the untwisted jacket when a yaw

moment, Mzz, and vertical load, fzz, are applied independently. These observations are not

restricted to the jacket-legs, as shown in Tables C.1 and C.2 in Appendix B.

However, in order to gain a more realistic understanding of the structural behaviour of the

IBGS in normal operating conditions, ultimate loads selected from an UpWind project report

[59 ] were applied, as shown in Figure 5.4. This load case corresponds to the normal power

production of a 5MW wind turbine in extreme wind turbulence. Figure 5.4 indicates that

the pitching moment, Myy, is the most important load to consider when designing a support

structure for a wind turbine. On applying this pitching moment, Myy, independently at node

1, it is evident in Figure 5.5 that the axial forces in the jacket-legs and piles are generally
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Jacket Twist Jacket-leg fxx fyy fzz Mxx Myy Mzz

0◦
A 66 15 - 2 - 1 - 1 - 8
B - 32 - 55 - 2 1 1 - 8
C - 32 58 - 2 - 1 1 8

60◦
A 38 - 49 - 1 2 - 1 - 4
B - 61 - 22 - 1 1 2 - 4
C 29 59 - 1 - 2 - 2 - 4

Table 5.2: Combined axial and bending stresses in MPa for the jacket-legs when unit loads
are applied independently at node 1.

Figure 5.4: Normal operating load case for a typical 5MW wind turbine [59 ], applied to the
IBGS at node 1.

higher for the untwisted jacket, though the top-radial members carry up to ten-times more

axial force in the twisted jacket. Nevertheless, Figure 5.6 highlights that the maximum Myy

bending moments in the jacket-legs and piles of the twisted jacket are generally double those in

the untwisted jacket. In the untwisted jacket, the bending moments are predominantly around

the z′- axis whereas in the twisted jacket, the bending moments are about both the z′ and y′

axes. Together, Figures 5.5 and 5.6 demonstrate that introducing an angle of twist into the

jacket structure relies on the bending characteristics of a structural member for load transfer

to a greater extent than for the untwisted jacket, where load is transferred predominantly by

tensile/compresssive axial forces.

Nevertheless, on applying the total load case in Figure 5.4 as a whole, it can be seen

in Table 5.3 that the higher combined axial and bending stresses are in the twisted jacket.

Typically, the untwisted jacket is around two-to-three times as stiff as the twisted jacket. It

is also clear from Table 5.3 that the top radial members contribute the largest proportion of

stress to the structure. If a typical yield strength for steel of 250MPa is assumed, then the
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Figure 5.5: Axial forces in kN for the top-radial members, jacket-legs and piles when a
pitching moment, Myy = 20MNm, is applied to the IBGS at node 1 for (i) the untwisted

jacket and (ii) the twisted jacket.

Figure 5.6: Bending moment diagrams in kNm for the top-radial members, jacket-legs and
piles when a pitching moment, Myy = 20MNm, is applied to the IBGS at node 1 for (i) the

untwisted jacket and (ii) the twisted jacket.

top-radial member A would deform plastically under the jacket arrangements used. Although

not modelled here, a platform would exist at the top of the jacket, which would help to transfer

load away from the base of the tower to the jacket-legs - a concept that is addressed in Section

5.2. Through comparing the untwisted and twisted jacket arrangement, it is evident that the

inclined bracing, bottom radial members and piles in the twisted jacket contain around one-
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Chapter 5. Numerical Analysis of the IBGS

Member Jacket Twist = 0◦ Jacket Twist = 60◦

Total
Combined

Stress

% of Total Total
Combined

Stress

% of Total

Top Radial A - 342
59

361
55Top Radial B 130 153

Top Radial C - 75 - 141

Inclined Bracing A 3
7

19
13Inclined Bracing B - 59 - 96

Inclined Bracing C - 9 - 34

Bottom Radial A - 12
8

- 43
12Bottom Radial B 68 90

Bottom Radial C 1 0

Jacket-leg A - 55
8

- 15
8Jacket-leg B - 8 31

Jacket-leg C - 5 - 52

Upper Central - 87
12

- 12
1Lower Central 8 5

Central Pile - 17 5

Pile A - 31
5

- 61
12Pile B - 2 - 21

Pile C 23 - 58

Table 5.3: Total combined axial and bending stresses in MPa for the IBGS for the load case
in Figure 5.4.

and-a-half times the amount of stress as those in the untwisted jacket. This suggests that

the angle of twist in the jacket alters the load transfer path such that these members transfer

load away from the central column members.

In order to try to understand the effect of the stiffness contribution from the inclined

bracing in transferring the load away from the central columns, analyses using the load case in

Figure 5.4 were undertaken for the following four cases: (i) without the inclined bracing, (ii)

with the inclined bracing, (iii) with additional bracing option A and (iv) with additional bracing

option B, as shown in Figure 5.7. On comparing the total combined stress in the jacket-legs

for cases (i) and (ii), it is evident from Table 5.4 that the inclined bracing provides around

three times as much stiffness in the untwisted jacket. Nevertheless, although the stresses are

higher overall in the jacket legs of the twisted jacket, the inclined bracing does provide some

additional stiffness and so reduces the stresses by up to one-third.

To investigate options (iii) and (iv), two bracing arrangements were considered, as shown

in Figure 5.7. Option A connects the base of the jacket to the top-central node and option
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Jacket-leg Jacket Twist = 0◦ Jacket Twist = 60◦

With Bracing Without
Bracing

With Bracing Without
Bracing

A - 55 - 12 - 15 - 29
B - 8 - 27 31 38
C - 5 2 - 52 - 72

Table 5.4: Total combined axial and bending stresses in MPa in the jacket-legs for the IBGS
with and without the inclined bracing for the load case in Figure 5.4.

B connects the top of one jacket-leg to the base of the next jacket-leg in an anti-clockwise

direction. A clear benefit is seen with option B in the top-radial members of the twisted jacket,

as shown in Table 5.5, where the total combined stresses are reduced and are somewhat more

symmetrically distributed around the jacket top, providing greater stability. A more complete

table that summarises the total combined axial and bending stresses in each member for each

of the three bracing cases can be found in Table C.3 in Appendix B.

Figure 5.7: Bracing options for the IBGS: (i) no bracing, (ii) inclined bracing, (iii) additional
bracing option A and (iv) additional bracing option B.

To gain a further understanding of the rigidity that the IBGS provides as a support

structure for a wind turbine, the translation at the nacelle height at the top of a 100m tower

was investigated by applying the load case in Figure 5.4 and varying the pile height. Here,

the pile height is the distance between the bottom of the jacket and the seabed, as shown in

Figure 5.1. The L2-norm of the displacements at the nacelle height are shown in Figure 5.8,

which indicates that the untwisted jacket is two-to-three times as rigid as the twisted jacket

for varying pile heights.

To summarise, three main observations can be made from the beam analysis. Firstly, the

higher stresses are seen in the twisted jacket arrangement. Secondly, additional bracing could
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Top-radial Jacket Twist = 0◦ Jacket Twist = 60◦

Member With
Original
Bracing

Extra
Bracing -
Option A

Extra
Bracing -
Option B

With
Original
Bracing

Extra
Bracing -
Option A

Extra
Bracing -
Option B

A - 342 - 375 - 372 361 365 - 206
B 130 166 130 153 91 54
C - 75 - 69 - 78 - 141 - 163 299

Table 5.5: Total combined axial and bending stresses in MPa in the top-radial members for
the IBGS with additional bracing for the load case in Figure 5.4.

Figure 5.8: L2-norm of the displacements in mm at the nacelle height at various pile depths
for the operational load case in Figure 5.4.

be used to reduce the high stresses in the top part of the jacket. Thirdly, the untwisted jacket

is two-to-three times as stiff as the twisted jacket and is more favourable in restricting the

tower displacement at the nacelle height. In the following section, the structural behaviour of

the IBGS is assessed further by considering the stresses through each structural joint.

5.2 Coupled Analysis

5.2.1 Analysis Aims & Set-up

To obtain a greater understanding of the structural behaviour of the IBGS, the structural

joints are modelled using the mixed interpolation of tensorial components shell element with

nine nodes (MITC9) described in Section 3.5, coupled to the beam elements formulated in
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Section 2.5 through employing the constraint equations devised in Chapter 4. This will be

achieved by examining the stress distribution through each joint, as well as the displacement at

the nacelle height, for the jacket twist angles 0◦, 15◦, 30◦, 45◦ and 60◦. The input parameters

in 5.1 and the load case in Figure 5.4 were used.

Algorithm B.2 in Appendix B shows how the coupled analysis was set-up. Note that

although the analysis is linear in form, a Newton-Raphson algorithm was used. This aided the

debugging process when writing the code since the analysis should converge in one iteration

for a linear analysis. In addition, the normalised out-of-balance force vector, defined in Chapter

1, should be zero.

The shell mesh for each structural joint was developed using TrelisTM (based on CUBITTM)

[65 ] and Gmsh [37 ]. These meshes formed the input file for Algorithm B.2, along with the

geometry and beam element topology. The origin of each shell mesh for the structural joints

was defined by the nodal coordinates used in the beam analysis. Nodes located at the inter-

face between shell and beam elements were identified to ensure the correct transfer of nodal

variables between the different element types, as described in Algorithm 3.2. Typically around

5900 nodes were eliminated from the system with a total number of degree of freedom (DOF)

in the region of 650,000.

At the intersection of tubular members modelled by the shell meshes, the shell mid-surface

normal was calculated as an average of the mid-surface normals on each tube at a particular

node. It was found that the thickness along the average mid-surface normal should be scaled

appropriately to avoid local thinning in this region, causing high stresses, such that

tintersection =
ttubeA

{Vn, average}T .{Vn, tubeA}
. (5.1)

5.2.2 Results & Discussion

Initially, it was found that the coupled FE model created very high stresses in the top-

middle joint. Consequently, the alternative coupling arrangement in Figure 5.9(ii) was em-

ployed where the bottom of the turbine tower is coupled to the top of the central column as

well as the three jacket-legs.
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Figure 5.9: Nodes at the beam-shell coupling interface in the IBGS, where coupling between
the tower base and the top of the jacket legs is employed.

In effect, this additional coupling provides extra stiffness that would be provided by the access

platform at the base of the wind turbine. On running the analysis with the new coupling

arrangement, it was found that the stresses were three-to-six times lower. The maximum

Gauss-point (GP) stresses in each structural joint for the new coupling arrangement are shown

in Table 5.6 for jacket twist angles: 0◦, 15◦, 30◦, 45◦ and 60◦, where the load case in Figure

5.4 is used and the tower-jacket-leg coupling is employed.

Table 5.6 shows that the maximum GP stresses generally increase as the angle of jacket-

twist increases, suggesting that the jacket with 0◦ twist is on average 30% stiffer than the jacket

with 60◦ twist. The highest stresses are in the top-middle joint at the base of the turbine tower
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5.2. Coupled Analysis

Structural Joint Corresponding node Angle of Jacket Twist (◦)

in Beam Analysis 0 15 30 45 60

Top-middle 1 267 273 315 391 459
Top-side A 2 102 63 74 86 93
Top-side B 3 151 126 115 116 125
Top-side C 4 132 186 229 261 295
Middle 5 266 214 229 286 362

Bottom-middle 6 148 151 184 213 235
Bottom-side A 7 236 205 230 176 262
Bottom-side B 8 177 132 195 160 234
Bottom-side C 9 153 123 168 202 216

Table 5.6: Comparison of maximum Gauss-point stresses in MPa in each structural joint for
the IBGS with varying jacket-twist angles when the loads in Figure 5.4 are applied.

and the second highest stresses are in the middle joint where the inclined bracing connects to

the central column. Figures 5.10, 5.11, 5.12 and 5.13 show the Von Mises stress distribution

through the structural joints for jacket twists 0◦ and 60◦, in which the orientation of the

jacket-legs is the same as in Figure 5.9. The Von Mises stress (or equivalent tensile stress)

was calculated at the nodes by interpolating the Cauchy stress at the Gauss points on the

shell mid-surface to the nodes using the shape functions. The nodal Cauchy stress, [σ], and

deviatoric stress, [σdev], tensors were used to calculate the Von Mises stress, σv, at each node

as

σv =
√

tr([σdev][σdev]) where [σdev] = [σ]− σxx + σyy + σzz

3
[I] . (5.2)

In Figure 5.12, it can be seen that the largest distribution of stresses are in the top middle-

joint in the twisted jacket, around the intersection with the top-radial member A, where

some of the Von Mises stresses are close to or exceed a typical yield strength for steel of

250MPa. The stresses on the outer top joints are also higher in Figure 5.12 than in Figure

5.10, which demonstrates that the twisted arrangement allows more stress to be transferred

to each jacket-leg. This effect in transferring load in the twisted jacket to the jacket legs/piles

is seen by comparing the stresses through the bottom joints, as shown in Figures 5.11 and

5.13 respectively.
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ZYZ
Von Mises stress (MPa)

X
Y

X

Von Mises stress (MPa)

4002000 4002000

Figure 5.10: Stresses in MPa at the top of the jacket with 0◦ twist.
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Von Mises stress (MPa)Von Mises stress (MPa)

4002000 4002000

Figure 5.11: Stresses in MPa at the bottom of the jacket with 0◦ twist.
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ZYZ
X

Y
Von Mises stress (MPa)

X4002000

Von Mises stress (MPa)

4002000

Figure 5.12: Stresses in MPa at the top of the jacket with 60◦ twist.
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Figure 5.13: Stresses in MPa at the bottom of the jacket with 60◦ twist.
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Chapter 5. Numerical Analysis of the IBGS

When employing the beam-shell coupling, it is also possible to obtain stress values along

the main part of each structural member using beam elements, as shown in Table 5.7. Com-

pared with the results from the beam analysis in Table 5.3, it can be seen that the jacket-legs

and central column members, rather than the top-radial members provide the largest contri-

bution to the stiffness of the IBGS structure. This illustrates that using only beam elements

can give a distortion in the stress results which can be rectified through adopting the coupling

approach. Nevertheless, the total combined axial and bending stresses in the beam elements

shown in Table 5.7 again indicate that the untwisted jacket is generally around twice as stiff

as the twisted jacket.

Member Jacket Twist = 0◦ Jacket Twist = 60◦

Total
Combined

Stress

% of Total Total
Combined

Stress

% of Total

Top-radial A - 5
7

- 8
7Top-radial B - 5 - 15

Top-radial C - 9 - 9

Inclined A 15
15

20
16Inclined B - 15 - 25

Inclined C - 14 - 44

Bottom-radial A - 10
9

- 12
7Bottom-radial B 8 17

Bottom-radial C 8 11

Leg A - 27
26

- 41
28Leg B - 23 43

Leg C - 26 - 56

Upper central - 41
29

- 71
26Lower central - 14 - 21

Central pile - 29 - 42

Pile A - 18
15

- 11
17Pile B - 17 - 45

Pile C - 9 - 32

Table 5.7: Total combined axial and bending stresses in MPa for beam elements in the
coupled analysis when the load case in Figure 5.4 is applied.

The L2-norm of the translation of the tower at the nacelle height shows that the untwisted

jacket is up to five times as stiff as the twisted jacket, as shown in Figure 5.14. Here, the

pile height is maintained at 20m and only the jacket-twist angle is varied. The apparent

improvement in structural stiffness in the untwisted jacket, compared with the same pile depth

in Figure 5.8, could be attributed to the fact that the use of shell elements at the structural
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joints provides a better representation of the load transfer over these local regions.

Figure 5.14: L2-norm of the displacements in mm at the nacelle height at various jacket
twists for the load case in Figure 5.4.

5.3 Chapter 5 Summary

Overall, the analyses evaluated here indicate that there is no significant structural benefit

in designing a jacket foundation with an angle of twist due to the reduced stiffness and higher

stresses in a twisted jacket. Indeed, there would be a small cost-saving associated with using

an untwisted jacket since the amount of steel required would be 1% less. In general, the

analyses of the IBGS have highlighted that (i) the untwisted jacket is around two-to-three

times as stiff as the twisted jacket, as demonstrated by the displacements of the wind turbine

tower at the nacelle height, and that (ii) the stresses in the members and joints are higher

for the twisted jacket. These results also demonstrated that the alternative load transfer

path offered by the twisted jacket is not advantageous in achieving a stiff support structure.

However, it must be noted that these analyses only consider a static loading case and do not

allow for the dynamic loading conditions, such as how the wind pressure varies for example.

The limitations of this work and suggestions for extending this research are discussed further

in Chapter 6. Nevertheless, this chapter has demonstrated the successful implementation of

beam-shell coupling to analyse the global and local behaviour of a tubular structure in a single

analysis tool.
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Chapter 6

Conclusion

The research in this thesis demonstrates the development of an efficient analysis capability

that can be used to evaluate the global and local structural behaviour of the Inward Battered

Guide Structure (IBGS) through firstly using beam elements and secondly using beam-shell

coupling. The Beam Analysis in Section 5.1 employed linear Euler-Bernoulli (EB) beam ele-

ments as discussed in Chapter 2. These were effective in providing an overall assessment of

the structural stiffness of the IBGS, using a load case corresponding to the normal operating

conditions of a wind turbine. Although it was apparent that the untwisted jacket was stiffer

than the twisted jacket, the results were somewhat distorted by high stresses at some nodes

as linear beam elements do not account for localised regions of high stress. This limitation

was overcome by employing the beam-shell coupling devised in Chapter 4, an approach that

allowed the evaluation of local stress distributions at each structural joint within a global finite

element analysis (FEA) of the IBGS in Section 5.2. Overall, it was found that the twisted-

jacket arrangement in the IBGS showed reduced stiffness and higher stresses compared with

the untwisted arrangement, as demonstrated by the larger displacements at the nacelle height

and the higher stress values in the structural members and joints. There are, however, several

other areas that could be incorporated into this finite element (FE) model to improve the as-

sessment of the structural behaviour of the IBGS, as discussed in Section 6.1.1. Nonetheless,

the application of the beam-shell coupling is not limited to the IBGS structure as it can be

applied to any tubular structure, by providing a new input file containing the mesh (nodal

coordinates, element topology and nodes for coupling), load case and boundary conditions for

the structure in question.

The new method developed here to couple EB beam elements and MITC9 shell elements

focuses on using vectors to correctly transfer translations and rotations between nodes with

six and five DOF respectively. Equation (4.18) shows the constraint equations in the form

of [C̃] that allow this transfer, assuming that the coupling interface behaves as a rigid plate.

These constraint equations are imposed using the transformation equations method discussed

in Section 4.2.1 by eliminating the degree of freedom (DOF) on one side of the coupling
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interface and so producing a reduced but equivalent system to solve. The stiffness contribution

from the eliminated DOF is added to the DOF on the other side of the coupling interface using

the constraint equations. For the system used in Section 5.2, the number of DOF was in the

order of 650,000 with around 4,000 DOF condensed out during the coupling process. Here,

the processing time to impose the constraint equations was 3 seconds and the solving time

was around 15 seconds on average, (using MATLAB [50 ] on a Windows 64-bit machine). It

is worth noting that if a much larger system is to be analysed than is considered here, in

which computational storage within the MATLAB [50 ] environment becomes a problem, then

an alternative solver, such as Cholesky decomposition with forward/backward substitution or

incomplete factorisation as a preconditioner to an iterative solver, could be used instead of the

backslash operator. Nevertheless, the simplicity of the constraint equations and the reduced

requirement in terms of computational storage capacity that the coupling method provides

gives a good basis for undertaking global and local analyses efficiently in a single FE model

using different types of FE. This approach could be extended to provide coupling between

other element types, as discussed in Section 6.1.2.

6.1 Further Work

6.1.1 Additional Numerical Analysis of the IBGS

The numerical analyses undertaken in Chapter 5.2 provided a good assessment of the

structural behaviour of the IBGS under normal operating conditions for a wind turbine. How-

ever, there are a several areas that were not considered that could be incorporated into the

coupled FE model to give a more extensive assessment of the structural behaviour of the IBGS.

Firstly, the analysis could allow for geometric non-linearity in order to allow for large

deformations. In the FEA code used here, there exists the capability to undertake non-linear

analysis since the script is based on the Newton-Raphson method whereby the solution is

iterative to reach the convergence of {f} = [K]{d}, within a specified tolerance of the out-

of-balance force vector, as described in Section 1.1. In a full Newton-Raphson method, the

stiffness matrix, [K], would be updated at each iteration. If necessary, the external loads could

be applied in separate load steps in order to give a deformation path for the structure. To adapt

the work used in this thesis for geometric non-linear analysis, the EB beam elements would have

to be substituted for an alternative element, which is likely to be based on the Timoshenko

beam theory. Nevertheless, the mixed interpolation of tensorial components shell element

with nine nodes (MITC9) shell element is designed to provide the capability for non-linear

analysis by updating the shell normal, {V t+∆t
n, k }, at each time integration step and formulating

a non-linear stiffness matrix. This matrix should be incorporated into to the MITC function

in Algorithm 3.2 in order that the sum of the linear and non-linear stiffness matrices gives the

overall stiffness matrix, as described in Bathe and Dvorkin [8 ]. In addition, the assumption
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for the constraint equations that the coupling interface behaves as a rigid plate should be

reviewed for non-linear analysis since the kinematic assumptions, where plane sections remain

plane and normal to the longitudinal axis of a beam element and shell mid-surface normals

remain straight and perpendicular during deformation, would be not valid.

Secondly, and perhaps more importantly, the analysis could consider transient response

at start-up and shut-down as well as from wind and wave loading. Dynamic analysis is crucial

for a support structure of a wind turbine and could provide an additional insight as to whether

the untwisted or twisted jacket is more structurally efficient. In Chapter 5, it was evident that

the twisted jacket gives a different load transfer path compared with the untwisted jacket,

which could provide a clearer structural benefit under a dynamic loading regime. Nevertheless,

it is essential that the natural frequency of the IBGS is not close to the 1p (rotor speed) or

3p (blade pass and tower shadow) excitation frequencies of a wind turbine [30 , 67 ]. These

can be checked in solving an eigenvalue problem to find the natural vibration frequencies and

associated mode shapes in the IBGS. For the dynamic analysis, in addition to the global static

stiffness matrix, global mass and damping matrices would be assembled from local element

mass and damping matrices. This analysis was not undertaken here since the focus of the

research was developing and demonstrating the coupling of different types finite elements in

a rapid analysis capability.

Thirdly, it would be interesting to compare the coupled analysis capability developed here

with an equivalent analysis, using all hexahedral or all shell elements, in commercial software

such as ADINA [6 ] or ANSYS [3 ]. Although each part of the work in this thesis has been

verified against benchmark problems, it would be worthwhile to further demonstrate that

the coupled analysis capability produces results of acceptable accuracy more efficiently than

existing commercial FEA software.

Fourthly, the effects of soil-pile interaction and scouring could be incorporated into the

FE model.

Finally, the welds around the structural joints in the IBGS could be modelled using solid

elements since these are well suited to capturing the three-dimensional (3D) stress field to

a good degree of accuracy. This would require the coupling between solid and MITC9 shell

elements, as described in the next section. A twenty-noded hexahedron should be used, as

opposed to the frequently used eight-noded hexahedron to avoid the problem of shear locking

Cook et al. [23 ] and be consistent with the quadratic form of the MITC9 displacement field.

The additional elements would provide greater detail about local stress distributions at the

structural joints without a significant increase to the number of DOF, thus retaining the rapid,

global and local analysis capability in a single model.

In addition to the suggestions above regarding the structural behaviour of the IBGS as

discussed, further analyses could be undertaken to assess the structural integrity of the IBGS

through fatigue analysis. It is important to comprehend that an assessment of the structural
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stiffness does not provide the full story, especially when a structure is not easily accessible

(as in offshore wind turbines). Hence, fatigue analysis could be undertaken to provide an

indication of the potential failures or damage that might occur, in order that the structural

design can be developed to try to mitigate these as far as possible. In this way, it is anticipated

that fatigue analysis should be conducted separately from the FEA program in Algorithm B.2

since it is concerned with the longevity of the structure, rather than its response to normal or

extreme loading regimes. Nevertheless, the same FE mesh could be used, provided that the

structural joints and welds are modelled appropriately.

6.1.2 Extension of FE Coupling

The constraint equations developed in this thesis to provide coupling between beam and

shell elements were devised through considering the movement of vectors between the nodes

to be coupled. This idea could be extended to form constraint equations for the coupling of

shell and solid elements where three translations and two rotations can be related to three

translations. Since the three translations on a shell element would directly correspond to the

three translations on a solid element, then only the conversion of the two rotations on the

shell to the three translations on the solid element needs to be considered carefully. The global

unit vectors, {V̂1, k} and {V̂2, k}, defined at each shell node, could be used to relate the two

rotations on the shell to the three translations on the solid element, thus the coupling matrix

for solid-shell coupling in a linear static analysis might be:







u

v

w







T

︸ ︷︷ ︸

Solid element DOF

=






1 0 0 − V̂1,x V̂2,x

0 1 0 − V̂1,y V̂2,y

0 0 1 − V̂1,z V̂2,z












u

v

w

β1

β2







T

︸ ︷︷ ︸

Shell element DOF

. (6.1)

Similarly, the coupling approach in this thesis could be developed to join beam and solid

elements. As before, only the conversion of the three rotations on the beam to the three

translations on the solid element needs to be considered carefully, as the translations on a

beam element directly correspond to those on a solid element. To relate the beam rotations to

the solid translations, the direction vector, {Vd}, similar to (4.17), could be defined between

the nodes to be coupled. In this way, the matrix for beam-solid coupling in a linear static
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analysis might be:







u

v

w







T

︸ ︷︷ ︸

Solid element DOF

=






1 0 0 0 Vd,z − Vd,y

0 1 0 − Vd,z 0 Vd,x

0 0 1 Vd,y − Vd,x 0












u

v

w

θx

θy

θz







T

︸ ︷︷ ︸

Beam element DOF

. (6.2)

By incorporating these coupling matrices∗ into a function similar to Algorithm 4.3 within

a FEA code, a more flexible rapid analysis capability would be provided whereby different

parts of a structure could be modelled using the most appropriate element type in a single

model. All the constraint equations could be imposed by using the transformation equations

method described in Section 4.2.1 as incorporated into Algorithm 4.3, where a distinction

between which nodes should undergo which type of coupling should be dictated in the input

file. Please note that the matrices above are tentative and are subject to verification through

benchmark problems.

As mentioned above, solid-shell coupling could be employed to model local structural

details on tubular structures such as welds. Nonetheless, beam-solid coupling might be more

suitable in a structure composed of non-tubular members and could be employed in the same

manner as for the IBGS, in that beam elements could be used to model the main member

length and solid elements could be used to model the structural joints where I or H (or similar)

sections intersect. For example, an application might be found in the petrochemical industry

for the design of piperacks in chemical plants and oil refineries. Here, the Structural Engineer

is often required to design a piperack and pipe supports before the final pipe and anchor loads

are calculated and so the Structural Engineer must make a global design allowance for the

these forces. Local design checks would be performed later retrospectively to ensure that the

design satisfies the finalised loadings. A parameter driven rapid FEA tool, similar to the one

shown in Algorithm B.2 for the analysis of the IBGS, could be developed to aid the Structural

Engineer in this task.

∗Equations (6.1) and (6.2) are tentative and are subject to verification.
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Appendix A

3D Euler-Bernoulli Beam Element

Stiffness Matrix

The local 3D Euler-Bernoulli beam element stiffness matrix, [Ke
b ], as derived in Chapter

2 is shown on the next page.

– 91 –



A
p
p
en
d
ix

A
.
3D

E
u
ler-B

ern
ou
lli

B
eam

E
lem

en
t
S
tiff

n
ess

M
atrix







fxx,1

fyy,1

fzz,1

Mxx,1

Myy,1

Mzz,1

fxx,2

fyy,2

fzz,2

Mxx,2

Myy,2

Mzz,2







=





























EA
L

0 0 0 0 0 − EA
L

0 0 0 0 0

0 12EIzz
L3 0 0 0 6EIzz

L2 0 − 12EIzz
L3 0 0 0 6EIzz

L2

0 0 12EIyy
L3 0 − 6EIyy

L2 0 0 0 − 12EIyy
L3 0 − 6EIyy

L2 0

0 0 0 GJ
L

0 0 0 0 0 − GJ
L

0 0

0 0 − 6EIyy
L2 0 4EIyy

L
0 0 0 6EIyy

L2 0 2EIyy
L

0

0 6EIzz
L2 0 0 0 4EIzz

L
0 − 6EIzz

L2 0 0 0 2EIzz
L

− EA
L

0 0 0 0 0 EA
L

0 0 0 0 0

0 − 12EIzz
L3 0 0 0 − 6EIzz

L2 0 12EIzz
L3 0 0 0 − 6EIzz

L2

0 0 − 12EIyy
L3 0 6EIyy

L2 0 0 0 12EIyy
L3 0 6EIyy

L2 0

0 0 0 − GJ
L

0 0 0 0 0 GJ
L

0 0

0 0 − 6EIyy
L2 0 2EIyy

L
0 0 0 6EIyy

L2 0 4EIyy
L

0

0 6EIzz
L2 0 0 0 2EIzz

L
0 − 6EIzz

L2 0 0 0 4EIzz
L



































u1

v1

w1

θxx,1

θyy,1

θzz,1

u2

v2

w2

θxx,2

θyy,2

θzz,2







–
92

–



Appendix B

Numerical Analysis Algorithms

The algorithms on the following pages show the set-up and procedure for the numerical

analyses undertaken in Chapter 5.
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Algorithm B.1 Beam linear analysis

INPUTS:

θJT Jacket twist angle

Hj Jacket height

Hp Pile height

Lt Top-radial member length

θIB Angle of inclined bracing

Ht Tower height

tw Radius-wall thickness ratio

Rext External radii for all members

E Young’s Modulus

G Shear Modulus

Boundary conditios

{fext} External loads

SETUP:

1: Define bottom-radial member length. Lb Lb = 1.5× Lt

2: Define height of lower central column. Hlc Hlc = Lb tan θib
3: Calculate the nodal coordinates. x, y, z

4: Define the element topology and store the external
radius for each member in the same matrix.

5: Assign boundary conditions and external loads to the
appropriate degree of freedom (DOF).

ANALYSIS:

1: Calculate member properties (A, Iyy, Iyy, J) and
store in the element topology matrix.

2: Formulate the global beam element stiffness matrix. [Ke
b ] Algorithm 2.1

3: Assemble global structure stiffness matrix. [K]

3: Formulate the global force vector. {fext}
4: Solve for the displacements. {d} (1.7)

5: Calculate the maximum combined axial and bending
stress.

{σb}

OUTPUTS:

{d} Nodal displacements.

{σb} Maximum combined axial and bending stress.
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Algorithm B.2 Coupled linear analysis, using the Newton-Raphson method.

INPUTS:

θJT Jacket twist angle

Hj Jacket height

Hp Pile height

Lt Top-radial member length

θib Angle of inclined bracing

Ht Tower height

tw Radius-wall thickness ratio

Rext External radii for all structural members

E Young’s Modulus

G Shear Modulus

Boundary conditios

{fext} External loads

xs, ys, zs Shell nodal coordinates

Shell element topology

SETUP:

1: Define bottom-radial member length. Lb Lb = 1.5× Lt

2: Define height of lower central column. Hlc Hlc = Lb tan θib
3: Calculate the beam nodal coordinates. x, y, z

4: Combine beam and shell nodal coordinates into one
matrix.

5: Define the beam element topology, calculate member
properties (A, Iyy, Iyy, J) and store in the beam
element topology matrix.

6: Rotate each shell mesh to allign with the correct
structural joint loacation using the beam nodal co-
ordinates as the origin for each joint.

7: Calculate the angles that define the shell mid-surface
normal at each node.
Note: Calculating angles φ and ψ provides an effi-
cient way to store data for {Vn, k}. To determine φ
and ψ, {Vn} can be calculated by using the nor-
malised vector between the nodal coordinate and
the corresponding point on the central axis of the
structural member. At the intersection of structural
members, the average normal is calculated and the
thickness at these nodes should be scaled to avoid
local thinning, using (5.1).

φk, ψk φ = tan−1

(√
V 2
n, y+V 2

n, z

Vn, x

)

ψ = tan−1
(

Vn, z

Vn, y

)

8: Combine beam and shell element topologies into one
matrix.

9: Identify nodes at the coupling interfaces. [CCI ]

10: Assign boundary conditions and external loads.
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Algorithm B.2 continued.

ANALYSIS:

1: for load step = 0, 1

2: while the normalised out-of-balance force vector
is greater than the specified tolerance and the
number of iterations for solving this load step is
less than the maximum.

|{foobf}|

|{fext}|
≤ tol.

and
ni ≤ ni,max.

3: if load step = 1

4: Apply beam-shell coupling. Algorithm 4.3

5: Adjust the boundary conditions (BC) if the
relevant DOF have been condensed out dur-
ing coupling.

6: Solve for the incremental displacements (for
the retained DOF).

{δdr} (1.7)

7: Recover the displacements at DOF con-
densed out during the coupling process by
mapping between the beam and shell DOF
at each coupling interface, using the inverse
of [C̃].

{δdc} (4.18)

8: Calculate the incremental reactions. {δfext}
9: end

10: for shell element = 1, 2, 3, ..., ns

11: Formulate the MITC9 stiffness matrix and
internal element force vector.

[Ke
s ],

{f e
ext, s}

Algorithm 3.2

12: Assemble these into the (sparse) global stiff-
ness matrix and global internal force vector.

[K],
{fint}

13: Store the Cauchy stress calcuated at each
Gauss point in Algorithm 3.2.

σGP

14: end

15: for beam element = 1, 2, 3, ..., nb

16: Formulate the three-dimensional (3D)
Euler-Bernoulli (EB) beam element stiffness
matrix and calculate the internal element
force vector.

[Ke
b ],

{f e
ext, b}

Algorithm 2.1
{f e

int, b} = [Ke
b ]{de}

17: Assemble these into the global (sparse) stiff-
ness matrix and global internal force vector.

[K],
{fext}

18: Calculate the maximum combined axial and
bending stress.

σb

19: end

20: Calculate the out-of-balance force vector at it-
eration i.

{foobf, i} (1.8)

21: end

22: end
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Algorithm B.2 continued.

OUTPUTS:

{d} Nodal displacements.

{σGP} Gauss point Cauchy stresses in shell elements.

{σb} Maximum combined axial and bending stress in beam elements.
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Appendix C

Beam Analysis Results - Additional

Data

Member External Radius (m) fxx fyy fzz Mxx Myy Mzz

Top-radial A 0.6 156 - 6 - 10 0 - 14 7
Top-radial B 0.6 - 78 - 135 - 10 12 7 - 7
Top-radial C 0.6 - 78 135 - 10 - 12 7 7
Inclined A 0.5 87 63 - 1 - 1 0 - 13
Inclined B 0.5 - 54 - 72 - 1 0 - 1 - 13
Inclined C 0.5 - 54 76 - 1 0 - 1 13

Bottom-radial A 0.5 - 127 - 46 1 0 - 1 16
Bottom-radial B 0.5 64 111 1 1 0 16
Bottom-radial C 0.5 64 - 110 1 - 1 0 - 16

Leg A 0.65 66 15 - 2 - 1 - 1 - 8
Leg B 0.65 - 32 - 55 - 2 1 1 - 8
Leg C 0.65 - 32 58 - 2 - 1 1 8

Upper central 0.75 - 105 - 105 1 - 4 - 4 0
Lower central 0.75 66 66 0 1 - 1 0
Central pile 0.75 93 93 0 1 - 1 0

Pile A 0.65 61 30 0 - 1 - 1 - 18
Pile B 0.65 - 27 - 46 0 1 1 - 18
Pile C 0.65 - 27 52 0 - 1 1 18

Table C.1: Combined axial and bending stresses in MPa for the untwisted jacket when unit
loads are applied independently at node 1.
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Appendix C. Beam Analysis Results - Additional Data

Member External Radius fxx fyy fzz Mxx Myy Mzz

Top-radial A 0.6 116 - 112 5 6 13 - 15
Top-radial B 0.6 - 155 - 44 5 - 8 12 - 15
Top-radial C 0.6 - 39 156 5 - 14 - 2 - 15
Inclined A 0.5 - 58 - 63 - 2 2 2 - 4
Inclined B 0.5 - 55 36 - 2 - 2 - 2 - 4
Inclined C 0.5 58 66 - 2 2 - 2 - 4

Bottom-radial A 0.5 - 36 87 2 - 1 - 3 6
Bottom-radial B 0.5 61 - 67 2 2 2 6
Bottom-radial C 0.5 - 88 - 18 2 - 3 1 6

Leg A 0.65 38 - 49 - 1 2 - 1 - 4
Leg B 0.65 - 61 - 22 - 1 1 2 - 4
Leg C 0.65 29 59 - 1 - 2 - 2 - 4

Upper central 0.75 96 96 1 5 - 5 0
Lower central 0.75 64 64 1 2 - 2 1
Central pile 0.75 63 63 1 2 - 2 1

Pile A 0.65 34 - 43 - 3 1 - 2 - 4
Pile B 0.65 - 27 39 - 3 - 2 1 - 4
Pile C 0.65 51 28 - 3 - 2 - 1 - 4

Table C.2: Combined axial and bending stresses in MPa for the twisted jacket when unit
loads are applied independently at node 1.
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Member Jacket Twist = 0◦ Jacket Twist = 60◦

With
Original
Bracing

Extra
Bracing -
Option A

Extra
Bracing -
Option B

With
Original
Bracing

Extra
Bracing -
Option A

Extra
Bracing -
Option B

Top-radial A - 342 - 375 - 372 361 365 - 206
Top-radial B 130 166 130 153 91 54
Top-radial C - 75 - 69 - 78 - 141 - 163 299
Inclined A 3 - 7 - 7 19 - 24 - 30
Inclined B - 59 - 47 - 43 - 96 - 57 - 62
Inclined C - 9 - 7 - 25 - 34 - 27 20

Bottom-radial A - 12 - 18 - 27 - 43 - 3 - 17
Bottom-radial B 68 58 34 90 71 51
Bottom-radial C 1 - 1 6 0 - 5 - 68

Leg A - 55 - 35 - 39 - 15 - 23 - 23
Leg B - 8 - 2 - 2 31 19 17
Leg C - 5 - 3 - 19 - 52 - 33 - 33

Upper central - 87 - 29 - 122 - 12 - 29 - 127
Lower central 8 28 21 5 5 20
Extra bracing A n/a 4 - 9 n/a - 54 9
Extra bracing B n/a 58 17 n/a - 23 - 6
Extra bracing C n/a 24 1 n/a 10 - 44
Central pile - 17 8 - 55 5 3 26

Pile A - 31 - 28 21 - 61 - 54 - 49
Pile B - 2 - 4 31 - 21 - 16 - 18
Pile C 23 22 22 - 58 - 57 - 63

Table C.3: Total combined axial and bending stresses in MPa in the IBGS with additional
bracing for the load case in Figure 5.4.
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