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Abstract 

 

As the demand for hydrocarbons increases, more complex, non-conventional plays have 

been targeted in volcanic margin settings. Consequently, it is important to understand 

the role igneous rocks have in affecting hydrocarbon systems.  This is particularly 

relevant to the Rosebank Field, offshore UK Continental Shelf, North Atlantic. The 

field was discovered in 2004 with the 213/27-1z well and encountered Palaeogene 

volcanic rocks interbedded with siliciclastic and volcaniclastic rocks, representing a 

brand new play type. Three appraisal wells were drilled and encountered good quality 

light oil (37° API) with drill steam tests achieving ~ 6000 STB per day (Duncan et al., 

2009). Initially four companies had a stake in the field; Chevron (40%), Statoil (30%), 

OMV (20%) and Dong (10%) however in 2011, OMV bought out Statoil leaving them 

with a 50% stake. Chevron remain the operators. 

The importance of volcaniclastic sediments within these sequences has 

previously been overlooked and so a better understanding of how these rocks behave 

during burial is essential. This research quantitatively characterises and assesses the 

reservoir potential of a range of volcaniclastic and siliciclastic sedimentary rocks within 

such basins.  

 The Rosebank Field comprises a range of volcaniclastic lithic arenites and lava 

flows interbedded with sublithic arenites and quartz arenites. However samples could 

only be taken from limited the limited cores. This made interpreting 3D architecture 

difficult and therefore it was decided that a onshore analogue was require. The Staffa 

Formation of the Palaeogene Mull Lava Field, NW Scotland, provides an excellent 

analogue to the Rosebank Field within the Faroe-Shetland Basin. It comprises basaltic 

lava flows interbedded with a variety of volcaniclastic and sedimentary rocks. A range 

of rock types occur within the Staffa Formation, including vent-proximal pyroclastic 

rocks, such as massive scoria rich tuffs to re-worked volcaniclastic lithic arenites to 

vent-distal facies where the siliciclastic component begins to dominate, such as quartz 

arenites.  The Staffa Formation has therefore, been compared and contrasted to the 

Rosebank rocks to better understand composition, burial history and reservoir potential. 

Detailed characterisation of the volcaniclastic rocks has been undertaken using a 

variety of analytical techniques (optical microscopy, SEM and XRD), and demonstrates 

that volcanic material in potential reservoir rocks may significantly reduce their 
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reservoir quality. Proximal pyroclastic rocks, which can have reasonably good porosity 

and permeability at the surface, degrade to non-reservoir values at shallow depths 

(<1km), as reactive volcanic components alter to both grain-coating and pore-filling 

clays during diagenesis. This process dominates diagenesis meaning that it only requires 

small proportions of volcanic material to be incorporated within a sediment to destroy 

its porosity. In some cases, alteration is so severe that the original rock textures and 

clast outlines are lost, making the rock difficult to identify.  Several generations of pore-

filling and grain-coating clays, formed from the alteration of volcanic glass, including 

gel and fibrous palagonite, Fe-smectite and chlorite, have been identified in the 

volcaniclastic rocks samples from both the Rosebank core and the Staffa Formation.   

The nature of the volcanic material plays an important role in a rock’s ability to 

retain reservoir quality. Factors such as the composition, shape and grain size of 

volcanic clasts in these rocks affect how the sediment behaved during diagenesis. 

Spatter bombs and scoria, for example, react differently clasts derived from lava. Labile 

volcanic ash shards that underwent minimal surface reworking altered to fibrous clay, 

and were then flattened and moulded around framework grains during diagenesis and 

burial. This reduced the local porosity and permeability in the rocks. Clay alteration of 

weathered basaltic clasts resulted in the development of pseudomorph grains that 

preserved the original grain structure and had only a minimal effect on surrounding pore 

throats. Clay formation in these rocks was extremely heterogeneous and highly 

dependent on the immediate grain-scale mineralogy. Clay phases developed during 

early diagenetic stages blocked or altered later fluid pathways, which led to an 

extremely patchy diagenetic mineralogy. Rocks inferred to be located at more distal 

locations from the vent have higher proportions of siliciclastic components and 

somewhat simpler paragenetic sequences that are characterised by carbonate and silicic 

cements and minimal authigenic clays. Oxygen and hydrogen isotopic data provide 

constraints on pore water chemistry and temperatures during diagenesis. 

Together, these data have been used to determine the diagenetic histories of the 

Rosebank Field and Staffa Formation, and enabled the development of a conceptual 

model to determine the threshold at which volcaniclastic rocks are no longer viable as 

petroleum reservoir rocks. The model shows that volcaniclastic rocks containing more 

than 10% volcanic clasts are likely to have very poor reservoir quality at depth. 

However, this is dependent on a number of factors such as clast size, clast type, 
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depositional setting, sorting, pore water composition and timing. These data will be of 

use in the assessment of potential plays in volcanic rifted margins worldwide. 
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Chapter 1 Introduction 

1 Introduction 

 

1.1 Research Rationale 
 

As conventional hydrocarbon reserves decline, the oil industry has been forced to find 

alternative hydrocarbon resources in more unconventional settings such as crystalline 

basements and volcanic terrains, off West Greenland, offshore Faroe Islands and 

offshore Namibia. Until recently, volcanic-dominated sequences have been disregarded 

as containing potentially significant hydrocarbon reservoirs (Remy, 1994) due to:  

 

Difficulties with seismic imaging 

 

The crystalline nature and irregular morphology of extrusive igneous bodies (e.g. 

basaltic lava flows) result in significant scattering of seismic wave energy and  

attenuation of higher frequency seismic waves (Hardwick et al., 2012). The resolution 

of sub-basalt imaging is poor and this leads to large errors in interpretation (Maresh et 

al., 2006; Nelson et al., 2009; Shaw et al., 2008; Wright, 2013).  Intrusive dykes are 

often not visible on seismic profiles due to their sub-vertical angles. However, recent 

improvements in seismic interpretation techniques has resulted in better imaging and 

has allowed sub-basalt plays to be explored (Ziolkowski et al., 2001; Gallagher and 

Dromgoole, 2007; Spitzer and White, 2005; Petersen et al., 2012).   

 

Complexities of volcanic facies architecture 

 

The facies architecture within basaltic-dominated sequences was until recently, poorly 

understood. Recent work by Jerram, (2002), Passey and Bell, (2007) and Watton et al, 

(2013; 2014) have provided insights into volcanic facies architecture however it is 

difficult to identify individual flow units using geochemistry leading to significant 

uncertainties surrounding correlations between units encountered in well logs. How 

volcanic rocks interact on entry into sedimentary basins is also poorly understood.  
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Poor characterisation of non-marine basaltic volcaniclastic rock diagenesis 

 

Much of the previous work has focused on the diagnosis of marine volcaniclastic rocks 

at hydrothermal vents and during seafloor spreading. The non-marine diagenesis of 

basaltic volcaniclastic and pyroclastic rocks is not as well characterised within the 

literature. This thesis will focus on non-marine diagenesis as the bulk of Rosebank and 

Staffa Formation rocks are from a non-marine environment. The relationship between 

the diagenetic paragensis and reservoir qualities, such as porosity and permeability is 

also poorly quantified. Nomenclature of volcanic rocks often varies from author to 

author, spawning a wide variety of classification schemes (e.g. Fisher, 1961; Cas and 

Wright, 1987; McPhie et al., 1993; White and Houghton, 2006), none of which have 

been adopted as standard. Figure 1.1 shows a simple flow chart that attempts to help 

users correctly classify rocks (White and Houghton, 2006). However, there are a 

number of problems with this approach. Firstly, the term primary volcaniclastic itself is 

a genetic term that may not always be suitable, due to difficulties in determining 

fragmentation, transportation and deposition. Reworked volcaniclastic material could be 

classified as primary, epiclasts or as sedimentary clasts. Difficulties also arise when 

determining if a clast is primary or has been reworked. Hyaloclastites for example 

contain fragmented clasts that are primary in origin. This thesis used indicators such as 

sedimentary structures, proportion of quartz and clast roundedness as indicators to 

wither a rock was primary or reworked.  The proportion of volcanic material required in 

order for a rock to be classified as volcaniclastic is also debated. The Integrated Ocean 

Drilling Program (Shipboard Scientific Party, 2002) defines the amount at 60% volcanic 

clasts before the rock is classified volcaniclastic, whereas the BGS (Gillespie and 

Styles, 1999) define the threshold as 10% volcanic clasts. However, both these 

definitions may lead to over or under classification of many volcaniclastic rocks. Within 

this thesis, the BGS definition will be used and the term volcaniclastic will refer to rock 

within a volcanic terrain that contains >10% volcanic clasts. Historic connotations 

between the term “volcaniclastic” and poor reservoir quality within hydrocarbon 

companies has led to the more conservative BGS scheme to be adopted within this 

thesis.  
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Figure 1.1:  Classification scheme by White and Houghton, (2006). The classification is over simplified 

as they argue  reworked volcanic (e.g. non primary) volcaniclastic rocks are classified as “ordinary” 

sedimentary rocks. This is something that forms an important constituent of volcaniclastic terrains.  

 

Diagenetic effects of volcanic material 

 

The diagenetic effect of volcanic clasts on host sedimentary rocks within sedimentary 

basins is poorly understood. Much of the research on volcaniclastic diagenesis focuses 

on silicic rocks (Hay, 1978; Lijima, 1978; Utada, 1991; Kawano and Tomita, 1997), 

whereas the majority of work on basaltic rocks focuses on sea floor and marine settings 

(Bonatti, 1965; Furnes, 1975; Hein and Scholl, 1978; Honnorez, 1978; Lijima, 1978; 

after Brey and Schmincke, 1980; Viereck et al., 1982; Fisher and Schmincke, 1984; 

Zhou and Fyfe, 1989; Gislason and Oelkers, 2003; Walton and Schiffman, 2003). 

Volcaniclastic sandstones are highly susceptible to diagenesis due to the instability of 

volcanic fragments (e.g. volcanic glass) at the Earth’s surface (Pettijohn et al., 1987). 

The diagenetic history of volcaniclastic sandstone is controlled by a number of inter-

related factors (Remy, 1994); including depositional environment, detrital mineralogy, 

grain size, pore-water chemistry, temperature, pressure, and burial history (Hay, 1966, 

1978; Surdam and Boles, 1979 and Chan, 1985). Volcaniclastic rocks are 

mineralogically heterogeneous compared to aeolian sandstones, which are almost 

entirely composed of quartz (SiO2) and is therefore, chemically inert. Some authors 
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have linked the diagenetic paragenesis of volcanic rocks to reservoir quality. Figure 1.2 

shows how a complex number of phases can lead to the destruction and creation of 

porosity (Mathisen and McPherson, 1991).  

 

 
Figure 1.2: Flow chart showing the complex paragenesis that leads to the destruction and creation of 

porosity within volcaniclastic rocks. (Edited from: Mathisen and McPherson, 1991).  

 

Volcanic diagenesis can be linked to changes in porosity. Remy (1994) demonstrated 

how reactive volcanic grains behave plastically under compaction and can eliminate 

porosity. Several other authors have linked the alteration of basaltic glass to pore-filling 

palagonite and other mixed-layer clay minerals that greatly reduce porosity and 

permeability (Pittman, 1979; Tang et al., 1994; Stroncik and Schmincke, 2001 and 

Burley and Worden, 2003). As the degradation of volcanic components happens at 

relatively shallow depths, any clay produced may shield framework grains from fluid 

flow and halt further diagenetic reactions during deeper burial. Dobson et al., (2003) 

studied photomicrographs of cored volcaniclastic sandstones taken from Yellowstone 

National Park.  Silicification of these sandstones had resulted in a porosity reduction of 

50%, and a decrease in permeability of nearly two orders of magnitude. Stewart and 

McCulloch, (1977) demonstrated that zeolites (in particular laumontite) can be 

produced during burial of volcaniclastic sandstones, thus reducing primary porosity. 
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The above evidence suggests that volcanic material within any given reservoir should 

render that reservoir unproductive. However, the presence of volcanic material within 

reservoir sands does not always produce a poor quality reservoir. 

 

Direct effects of igneous bodies on sedimentary basins 

 

The thermal, mechanical and chemical effects of an igneous body on reservoir rocks is 

poorly constrained. Intrusions may act as barriers to fluid migration, resulting in the 

compartmentalisation of reservoir units (Schutter, 2003). Conversely, they can provide 

fluid pathways that focus diagenetic fluid flow, or even oil migration within the 

reservoir (Rohrman, 2007; Cukur et al., 2010; Schofield et al., 2012).  Contact 

metamorphic effects, including calcite cementation and metasomatic clay formation, 

can reduce porosity around intrusions (Girard et al., 1989; Merino et al., 1997; Doyle, 

2001; Mckinley, 2001; Iima and De Ros, 2002; Bernet and Gaupp 2005). Direct 

diagenetic effects on sandstone reservoir rocks are also seen underlying ponded lava 

flows (Jerram, and Stollhofen, 2002; Grove, 2013).  

 

Volcaniclastic reservoirs 

 

Seemann and Scherer, (1984) and Mathisen and McPherson, (1991) reviewed the 

hydrocarbon potential of volcaniclastic reservoirs across the world and found a number 

of viable reservoirs within volcanic terrains. High quality hydrocarbon reservoirs within 

volcanic settings have subsequently been reported in Australia (Hawlader, 1990), 

Georgia (Vernik, 1990), East Java, Indonesia (Willumsen and Schiller, 1994), Brazil 

(dos Anjos et al., 2000), Turkey (Büyükutku, 2006), Pakistan (Berger et al., 2009), 

Central Mexico (Lendhart and Gotz, 2011), Argentina (Sruoga et al., 2004; Sruoga and 

Rubinstein, 2007), and more recently in China (Wu et al., 2006; Zou et al.,  2008; Zou 

et al.,  2012). Many of these studies link diagenetic paragenesis within volcanic rocks to 

porosity and permeability; however, most of these studies lack quantification and are 

concentrated on site specific processes.     
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1.2 Research Aims and Objectives 
 

Recent exploration within the Faroe-Shetland Basin (Figure 1.3) has highlighted the 

need to understand and quantify the diagenetic history of volcanic rocks. The Rosebank 

Field is approximately 20 km long by 5 km wide and sits on the Corona Ridge, ~125 km 

northwest of Shetland and close to the boundary between the UK and Faroese 

Territorial waters. The Rosebank Field was discovered during the drilling of the 213/27-

1z well by the Rosebank Partnership (Chevron 40% and operator, Statoil 30%, OMV 

20% and DONG 10%) in 2004. The well encountered a series of petroleum-bearing 

siliciclastic rocks (quartz arenites) with high porosity and permeability that are 

interbedded with volcanic rocks (basaltic lava flows) with poor reservoir qualities. 

However, lateral heterogeneity also exists along strike within each of the sedimentary 

interbedded units, with volcaniciclastic rocks at one end of the reservoir and siliciclastic 

rocks at the other. This vast contrast in reservoir quality highlights the need to 

understand how volcanic material reacts during burial. Rosebank lies north east of the 

Cambo discovery which comprises of a similar intra basaltic play (Quinn et al., 2011; 

Fielding et al., 2014). 
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Figure 1.3: Location map showing the Rosebank Field and other hydrocarbon fields in the Faroe-Shetland 

Basin. Edited from: Wright (2013). 

 

 

The primary aim of this thesis is to characterise and quantitatively assess the reservoir 

potential of volcaniclastic rocks and compare them to the siliciclastic sandstone 

reservoir rocks. This has been achieved by quantifying the proportion of contaminant 

volcanic material within a sample, and investigating variations in diagenetic history and 

developing a conceptual model to determine the threshold at which volcaniclastic sands 

are no longer viable reservoir rocks (i.e., the minimum % of volcanic clast inclusions 

needed to occlude porosity).  The local diagenetic effects of lava flows on adjacent 

siliciclastic and volcaniclastic rocks (e.g., are there changes in porosity, alteration 

towards the contacts, and the nature of magma-sediment contacts).  From these data 

facies models are developed using onshore analogues (Staffa Formation, Mull, NW 

Scotland) in order to inform depositional models for offshore plays. These data will be 

useful in the assessment of potential plays in rifted volcanic margins. The onshore 

analogue used is the Staffa Formation which crops out in the southwest of Mull. The 

Staffa Formation was chosen as an analogue as it is composed of similar rocks to those 

found in the Roseabk Field. It comprises an ~275 m thick sequence of basaltic lava 
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flows interbedded with subordinate volcaniclastic and sedimentary rocks. The Staffa 

Formation is also logistically easier to access than other analogues such as Greenland. 

 

A number of key questions were identified by the Rosebank Development Team at 

Chevron and will be addressed within this thesis. These questions include:  

 

 How do basaltic volcanic clasts react to burial? What physical and chemical 

changes do basaltic volcanic clasts in clastic rocks undergo during diagenesis? 

What factors control the diagenetic history (e.g. particle size, clast type, 

abundance)? In addition, what effect does this have on reservoir quality (e.g., 

porosity and permeability).  

 Does the distance from volcanic source have an impact on subsequent reservoir 

quality? 

 How much volcaniclastic material do you need before reservoir quality is 

degraded? 

 What are the diagenetic effects of lava flows at sediment/lava interfaces? 

 What is the paragenetic sequence of the Rosebank Field and Staffa Formation, 

and can this be linked to basin wide evolution? 

 Is the Staffa Formation a viable onshore analogue? 

 

The key objectives of the thesis are to: 

 

 describe and classify the reservoir intervals and their diagenetic evolution in 

both the Rosebank Field and Staffa Formation. 

 determine the how rock composition affected the diagenetic history of the 

Rosebank and Staffa Formation rocks. 

 determine the diagenetic history and the evolution of reservoir quality of the 

reservoir rocks in the Rosebank Field. 

 elucidate the diagenetic effects caused by lava flows and igneous intrusions on 

adjacent reservoir rocks. 

 use analogue outcrop data from the Staffa Formation to inform our 

understanding geological history of the Rosebank Field. 

 

35



Chapter 1 Introduction 

1.3 Thesis Outline  

 

Chapter 2 – Methods 

 

Chapter 2 describes and discusses the methodology used throughout the thesis. It details 

how data and samples were collected from the Rosebank drill core and from the field. It 

then describes the analytical methods used (including (1) petrographical analysis using 

polished blocks, thin sections, manual point counting and image analysis,  (2) scanning 

electron microscopy (SEM), (3) Energy Dispersive X-ray Analysis (EDAX) and 

element mapping (4) bulk, clay separate and quantitative X-ray diffraction (QXRD) and 

(5) hydrogen and oxygen isotopic analysis.  

 

Chapter 3 – Geology of the Rosebank Field 

 

Chapter 3 introduces the geology of the Faroe-Shetland Basin and Rosebank Field. The 

stratigraphy and paleogeography of the field are briefly discussed and then each 

chronostratigraphical unit is described in detail. Lithofacies are described and 

interpreted and the nature of contacts between lava flows and sedimentary rocks are 

detailed. 

 

Chapter 4 - Sedimentation of vent-proximal pyroclastic and volcaniclastic deposits: 

Staffa Formation, Mull 

 

Chapter 4 describes the geology of the onshore analogue of the Rosebank Field: the 

Staffa Formation, Isle of Mull. An introduction to the British-Irish Palaeogene Igneous 

Province (BPIP) is provided before introducing the basic geology of the Staffa 

Formation, and discussing its suitability as an onshore analogue. Nineteen lithofacies 

identified within the Staffa Formation rocks are described and interpreted in detail. 

Samples were collected from five localities, which are described and interpreted in 

detail, building on previous work by Williamson and Bell (2012). Models of formation 

are then presented for each location, highlighting the importance of understanding 

depositional relationships. A comparison between the onshore and offshore rocks is 
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then made. Igneous – sedimentary contacts within the Staffa Formation are described 

and interpreted and are compared to examples in the Rosebank cores.  

 

Chapter 5- Petrographic and SEM characterisation of volcaniclastic rocks 

 

This chapter provides a detailed petrographical analysis of the different lithofacies of 

the Staffa Formation and Rosebank Field. The main rock forming minerals are 

identified, together with diagenetic phases, and alteration textures described and 

discussed. Optical properties of the igneous – sedimentary contacts are described.  The 

chapter also focuses on understanding how alteration of key phases has led to the 

reduction or preservation of porosity. The diagenetic paragenesis is explored using 

results from SEM, EDAX and element mapping analysis.  

Chapter 6 - Quantification of diagenetic phases in volcaniclastic rocks and their role in 

hydrocarbon reservoir quality 

 

Quantification of the diagenetic phases within the samples are presented within this 

chapter. Firstly, bulk XRD results are used to identify the main rock-forming minerals. 

These results proved inconclusive so clay orientated XRD was undertaken. QXRD was 

undertaken on a small sample set to allow relationships between phases to be 

determined. 

  The relationship between diagenetic phases and porosity was determined using 

point counting data. The relationship between volcanic content and permeability is also 

briefly examined using data provided from Chevron. The direct effects of an igneous – 

sedimentary contact on porosity and permeability are then considered. Finally isotopic 

data are presented and discussed for selected samples.  

Chapter 7 - The diagenetic evolution of onshore Staffa Formation rocks and offshore 

Rosebank rocks 

 

This chapter interprets the diagenetic histories of the two case studies and compares 

them to the regional diagenesis. A conceptual model for predicting the diagenetic 

evolution of volcanic rocks is presented and discussed. 
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Chapter 8 – Conclusions  

 

 A synopsis of the thesis is provided and draws together the main conclusions from each 

of the proceeding chapters.  
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2 Methods 

 

In order to address the aims and objectives of the project a wide range of analytical and 

field techniques were undertaken. This chapter discusses each of the field and analytical 

methods in turn. A list of samples for both on and offshore locations is provided in the 

appendix (Sample List). A glossary of terms used throughout this thesis can also be 

found within the appendix.  

 

2.1 Fieldwork 

 

The Staffa Formation on the south west of Mull was selected as the location for field 

work for a number of reasons: 

 

• The Staffa Formation is part of the British and Irish, Igneous Palaeocene 

Provenance and was deposited at a broadly similar time to rocks within the Rosebank 

prospect.  

• The Staffa Formation is composed of a series of interbedded lavas and 

sedimentary rocks similar to those found in Rosebank. These units can be traced 

laterally for 10–100 of metres. This allows field relationships to be determined both 

vertically and laterally, something that is difficult to do offshore. 

 

During each field session a series of common field techniques were undertaken at the 

following locations (Figure 2.1; Table 2.1): 

 

Field location Grid Reference 

Ardtun NM 3772 2480 

Biod Buidhe NM 4518 1926 

Carraig Mhor  NM 5565 2118 

MacCulloch’s Tree NM 4024 2783 

Malcolm’s Point – Carsaig Bay NM 4906 1853 - NM 5019 1881 

The isle of Staffa NM 3230 3510 

The Ladder NM 4025 2780 

Table 2.1 Field locations  
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Figure 2.1: Geological map of the south of Mull showing the locations of fieldwork. 

 

Detailed measured stratigraphic sections through sedimentary rocks sections were made 

at 26 locations (Ardtun, MacCulloch’s Tree and Malcolm’s Point–Carsaig Bay, see 

Figure 2.2). Rocks were logged at a centimetre scale.  

 Field sketches were made at all locations. Sketches allowed 3D facies 

relationships to be better determined. All notable outcrops were photographed at a 

number of scales. Several photographs were then used for image analysis. 

A total of 60 rock samples were taken from all five main field sites. Rock 

samples were taken from a full range of lithofacies from primary pyroclastic fall 

deposits through to siliciclastic sandstones and conglomerates. A suite of samples of 

sedimentary rocks close to lava flow contacts were also collected. Some rocks could not 

be sampled due to poor lithification. Ardtun, MacCulloch’s Tree and Malcolm’s Point 

are sites of special scientific interest (SSSI) and samples were taken from loose blocks 

that could be traced to their original location.  

Basic clast analysis was undertaken on conglomerates at Ardtun and Malcolm’s 

Point – Carsaig Bay and on primary pyroclastic deposits at MacCulloch’s Tree and 

Malcolm’s Point. One metre by one metre areas where marked off using masking tape. 

Clast lithology, size, morphology and orientation were recorded.  
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Figure 2.2: Example of a graphic log taken at Ardtun, South of Mull. 

 

2.2 Rosebank Field 

2.2.1 Core Logging 

 

The Rosebank core was viewed at the C21 Core Store, Aberdeen (Table 2.2).  

 

Well Name Core Number Depth range (m) 

213/26-1 3 2872.4 – 2888.6 

205/1-1 1 2926.4 – 2938.6 

213/27-2 1 2872.7 – 2877.9 

213/27-2 2 2934.0 – 2961.1 

Table 2.2: Core numbers and depths. Relative well locations can be found in Section 3.4.2, Figure 3.14.  

The wells in Table 2.2, were logged in detail, photographed and areas of interest where 

marked out for sampling (Figure 2.3).  
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Figure 2.3: Example of a log and notes taken from Rosebank core.  

 

2.2.2 Core Sampling  

 

Core boxes were sent to Core Laboratories in Aberdeen for sample extraction. The 

majority of the samples were from lava-sedimentary rock boundaries. Four samples 

were taken from silliclastic sandstones 10 were taken from adjacent lava flows and 

volcaniclastic units, at varying distances (max 20cm due to limitations in the core) from 

the contacts. A total of 40 samples were successfully cut from the core  

A second sampling visit identified 20 volcaniclastic rocks. Due to the high value 

of the core plugs, only 1-2 cm of each plug could be taken as a sample, but this proved 

sufficient quantities for analysis.  

 

2.3 Optical Analysis 

2.3.1 Polished Slabs 

 

A number of larger (30 cm x15 cm) samples were taken from pyroclastic units at 

MacCulloch’s Tree and Malcolm’s Point. These samples were cut and polished by John 

Gilleece at the University of Glasgow. The slabs were examined using a hand lens and a 

binocular microscope. On wet polished surfaces, mineralogy and textures can be better 

resolved.  
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2.3.2 Thin Sections 

 

Thirty-eight standard size 30 µm polished thin sections and 2 large format 30 µm 

polished thin sections were made from a range of representative lithofacies from the 

Mull samples. All sections were stained blue for porosity using blue epoxy resin.  

Thin sections were made in a series of batches (Table 2.3): 

 

Batch Number Made by 

1,2,3 Dave Sales, Durham University  

4 
Birmingham University as facilities at Durham were temporally 

unavailable 

Table 2.3: Thin section batch 

 

Forty large format 30 µm polished thin sections were made from the Rosebank core 

samples. These thin sections were made by Core Laboratories (Canada).  The large 

format allowed sedimentary rock-lava contacts to be examined. The thin sections were 

blue stained to highlight porosity. 

2.3.3 Thin section scans 

 

Thin sections were scanned using two different methods. Standard size slides were 

scanned using a Minolta DiMAGE Scan Elite II film scanner. Large format sections 

were scanned using a flat bed scanner in refractive light mode. A number of different 

scan modes and thin section positions were tested in order to gain the best quality 

image. It was found that rock down at 2.5X magnification and at a resolution of 3200 

dpi provided the clearest images within a reasonable time limit. While the film scanner 

produced the best results, the mechanical set-up limited the size of thin sections that 

could be scanned. 

 

2.3.4 Petrology  

 

All thin sections were examined using a polarising microscope. Thin sections were 

characterised according to grain size, texture, sorting, mineralogy and alteration. A 
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paragenetic sequence was then established for each thin section by examining spatial 

and cross-cutting relationships of alteration of mineral phases. Samples were classified 

based on volcanic clast content and primary volcanic textures. In some cases alteration 

was so extreme that identification of phases proved difficult. Analysis using the SEM 

was therefore required to refine the mineralogy and paragenesis of each sample. Thin 

section maps highlighted key features and photomicrographs at a variety of scales.   

 

2.4 Modal analysis 

2.4.1 Manual analysis 

 

Point counting was undertaken on all thin sections manually using an ID818 Stepping 

Stage and Petroglite Point Counting Software. Several vertical and horizontal transects 

were made across each section to gain representative results. Thin sections were 

analysed for 500 counts using a step size of 2 mm. This had a number of inherent 

problems: 1) heterogeneity between and within each thin section lead to problems 

setting a consistent step size, without over-estimating the proportion of larger grains; 2) 

difficulties in distinguishing the mineral phases, especially in sections of strongly 

altered rock. The latter reduced the accuracy of the point counting data. Some of the 

most altered thin sections were re-counted after SEM analysis to refine the point 

counting data set.  

2.4.2 Image analysis   

 

Typical siliciclastic thin sections scans were analysed using JPOR software in Image J 

using the method described in Grove and Jerram (2011) to estimate porosity. The 

method was adapted to a range of volcaniclastic thin sections by making custom pallets. 

The pallets threshold colours to highlight percentages of components such as quartz, 

feldspar, and volcanic lithoclasts. However, difficulties in thresholding occurred, 

because many authigenic clay phases are similar shades of brown. A more detailed 

custom pallet improved the thresholding results but made the process very time 

consuming, so the decision was taken not to analyse every sample in this way. Although 

the results from the JPOR method incurred smaller total errors and are more accurate, 

they were still in error of manual point counting methods.  
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Groups of mineral phases with similar hue (such as quartz and feldspar) were 

created and thresholding was applied. The resultant black and white image was 

converted into a binary image in Image J. This was opened in image tool and the “count 

black and white pixels” action was performed. This is a faster method than JPOR and 

allows a greater number of thin sections to be analysed. Although the results are less 

accurate because they do not take into account areas of shadow on mineral grains, they 

were still within error of the JPOR results.  

 

2.5 Scanning Electron Microscope (SEM) 

 

The scanning electron microscope was used to examine samples at extremely high 

magnifications (up to 30000x) and determine authigenic mineral structures, grain 

boundaries, grain coating and pore-filling material and is very useful in understanding 

the diagenetic history of rock samples.  

 The SEM uses a high power electron gun to emit a beam of electrons through 

two or more electromagnetic lenses targeted at the sample surface. These electrons 

interact with the sample in three ways: (1) secondary electrons (SE) are emitted when 

the electron beam causes loosely bound electrons in the sample surface to become 

excited and ejected. The collection of secondary electrons provides topographic 

information about the sample surface. (2) Backscattered electrons (BSE) are primary 

beam electrons that are scattered from within the sample. The amount of these electrons 

detected is related to the atomic number of the phase in which they have interacted. 

Therefore BSE gives you information on chemical composition. (3) X-rays are 

produced when the electron beam excites an electron in an inner shell causing it to 

move to an outer shell. When a high energy outer electron then moves back to replace 

the inner electron an X-ray is emitted. The process is dependent on atomic number and 

the collected X-rays (EDAX) give information on the chemical composition of the 

target.  
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2.5.1 Sample Preparation 

 

Thin sections and rock chips were coated in ~20 nm thick layer of carbon using a 

carbon coater. One batch of samples was coated by Peter Chung at Glasgow University; 

all others were coated at Durham University. Sections containing organic matter were 

prone to charging during SEM analysis—these were coated in a thicker layer (~30 nm) 

of carbon. Core Laboratory thin sections were prepared using an oil-based grinding 

method. As a result these samples charged significantly during analysis and had to be 

cleaned and re-ground before analysis. 

2.5.2 Analysis 

  

A Hitachi SU-70 Scanning Electron Microscope at Durham University and a Carl Zeiss 

Sigma Variable Pressure Analytical Scanning Electron Microscope at the Imaging 

Spectroscopy and Analysis Centre (ISAAC), Glasgow University, were used to analyse 

the samples (Figure 2.4). The secondary electron mode was used to study sample 

morphology. Relationships between mineral phases, such as clay grain coats could be 

established using this method, which helped to unravel the sample paragenesis. This 

mode also helped to refine the mineralogy by examining clay morphologies when used 

in conjunction with the SEM Petrology Atlas, Welton (1984). The backscattered 

electron mode was used to obtain compositional data, which proved most useful when 

examining the complex diagenetic histories within the samples. Areas that could not be 

resolved optically were refined by studying compositional differences. Phase 

relationships that were undetectable petrographically could be resolved under the SEM. 

Areas of interest were photographed using the inbuilt camera systems within the SEMs.  
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Figure 2.4: Hitachi SU-70 Scanning Electron Microscope, Durham University.  

 

2.5.3  Energy-dispersive X-ray Spectroscopy (EDX)  

 

Compositional data were collected using an Oxford Instruments EDX system and then 

processed using INCA software. Data were collected in order to identify mineral phases 

and this was particularly useful in identifying extremely altered volcanic grains and 

authigenic clays.  

2.5.4 Element Mapping 

 

Highly complex areas of the thin sections where the paragenetic sequence was difficult 

to resolve were chosen for element mapping. These areas were pre-programmed into the 

SEM along with the time and scan rate. The SEM was then left running the scan 

overnight (8–12 hours) to collect spatial element data. These maps proved a useful tool 

in understanding complex areas at a range of magnifications (Figure 2.5). For example, 

the detail highlighted in these maps allowed original grain boundaries of extremely 
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altered feldspar grains to be resolved. The maps also helped show alteration rims on 

volcanic grains that are not initially obvious in backscatter images due to components 

being similar shades of grey.  

 

 

Figure 2.5: Example of element mapping on the SEM. The top left image shows a BSE SEM image. Q- 

Quartz, B- Basalt clast. All other images are element maps of this image. From these maps grain 

boundaries and complex interactions between phases can be resolved.  

 

2.6 X-ray Diffraction (XRD) 

 

X-ray diffraction can be used to identify mineral phases within a sample. X-rays diffract 

off the atomic structure of atoms in set patterns as determined by Bragg’s Law:  

 

2dsinθ = nλ.  

 

Where d is the spacing between diffracting planes, θ is the incident angle, n is an integer 

and λ is the wavelength of the beam. These patterns (reflections) are unique to a mineral 

phase and therefore, if the intensities of the reflections can be measured then the mineral 

phase can be identified. The XRD technique was first developed in 1912 by von Laue.  
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Rather than out-source XRD analysis on the samples it was decided that an 

attempt be made to carry out the analysis in house despite expertise being limited and 

use the process as a training exercise. Much useful advice was gained from converse 

with Dr Steve Hillier, an expert on clay XRD from the Hutton Institute in Aberdeen.  

2.6.1 Bulk XRD 

 

2.6.1.1 Sample preparation  

 

Bulk XRD was undertaken on a number of samples to identify mineral phases. Rock 

samples were crushed gently by hand using an agate mortar and pestle. Care was taken 

not to shear or over-grind the samples in order to preserve the clay particles. Larger 

blocks that were too hard to be manually crushed were first broken into smaller pieces 

using a weighted press. It is noted that other methods such as freeze drying produce 

better results, but due to time constraints within the project it was decided that hand 

grinding was the optimal method. To minimise contamination all equipment was 

cleaned between samples.   

 

2.6.1.2 Sample packing 

 

Two methods of bulk analysis were undertaken. The smear method involves a glass 

slide (already inserted in the sample holder) smeared with a small amount of Vaseline. 

The sample powders were then sieved through a 250 mesh sieve in an attempt to 

remove larger particles. A thin layer of sample was then sieved onto the Vaseline. Care 

was taken to cover the whole slide with an even thickness of sample. Excess sample 

was wiped from the edges and the sample holder was tapped to remove loose powder. 

The sample was then analysed as described below. Results from this method had 

extremely large background levels that obscured several peaks. This could be explained 

by the large amount of amorphous volcanic glass in some samples combined with the 

effects seen from the Vaseline. As the sample is sieved onto the glass, grains will 

preferentially orientate as they fall. This can lead to a bias within the sample. Hillier 

(1999; 2002) has patented a spray drier that will spray the sample onto the holder and 

eliminate the preferential orientation (discussed in the QXRD section). Future studies 

and any follow up work carried out follow this method.  
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The second method of bulk XRD analysis was to use a random orientation 

packing method. Samples were crushed to a powder following the technique above and 

then packed into a well within a Perspex holder. The surface was roughened using the 

sharp edge of a spatula helping to minimise the effects of packing.  

 

2.6.1.3 Bulk XRD analysis 

 

Samples were analysed in a Bruker D8 Advance Diffractometer (CuKα radiation) 

counting from 5 to 90° 2θ with a 0.02° 2θ steps at 0.85s per step. Results were analysed 

by fitting whole patterns to standard patterns within the International Centre 

for Diffraction Data (ICDD) powder diffraction data base using Bruker Diffrac Plus 

EVA™ software. Patterns were also matched in EXCEL to standard D spacing from 

literature. 

 

2.6.1.4 Confidence in XRD data  

 

Several checks were made to improve the confidence in the XRD data obtained at 

Durham. Firstly, the Reynolds Cup, XRD competition 2012 was entered as a check on 

the quality of the methods. Three unknown samples were analysed for bulk XRD at 

Durham and the results showed that the majority of the main mineral phases and clays 

were correctly identified, however many of the minor phases, such as pyrite and 

magnetite had been missed. This was due to a large number of background counts, 

thought to come from a combination of interference from the sample holder, poor beam 

alignment and having samples that were preferentially aligned rather than being 

randomly orientated.   

 As the minor phases may be important when considering the diagenetic history 

of the samples it was decided to analyse a number of samples at the Hutton Institute in 

Aberdeen. Several representative samples were prepared following the method 

discussed in the QXRD section below. The results showed a lower background with 

better resolution of peaks. For future analysis I recommend the reader follows this 

method for clearer XRD results.   
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2.6.2 Clay orientated XRD 

 

Due to the extremely heterogeneous nature of the volcaniclastic samples the results 

from both bulk techniques proved difficult to interpret.  The sheer number of mineral 

phases meant multiple overlapping peaks and the large proportion of amorphous glass 

in some samples lead to a large background signal. Most samples showed a distinctive 

“bump” at low 2 theta angles indicating the presence of clays, however these could not 

be resolved and the a decision was taken to undertake clay orientated XRD.  

 

2.6.2.1 Sample preparation 

 

Sample preparation for XRD is dependent on a number of factors and can be 

approached in several different ways. The method outlined in Moore and Reynolds, Jr 

(1997) was adapted following advice from Joao Trabucho-Alexandre (pers. Comm.). 

Rock samples (approx. 2 cm
3
) were gently disaggregated with mortar and pestle 

as described above and efforts were made to avoid hitting or shearing of the sample, 

which can damage clay structures. Many authors advise against milling the sample as 

they say friction and heat caused in the milling process can also affect clay structures.  

The sample was then sieved to remove larger fragments. 

Organic matter can cause noise within the results and was removed. This 

involved leaving the sample in a solution of 6% hydrogen peroxide (20 ml for each 

gram of sediment) for two days. The samples were heated to 70ºC to remove the 

remaining organic matter and then dried at 50ºC. 

Removal of carbonate material was achieved using the method in Moore and 

Reynolds, Jr (1997). The sample powder was reacted in ≤ 3 molar acetic acid until it 

stopped effervescing. It was important to continually monitor the samples to insure that 

the acid would not start to react with the clay minerals within the sample. The samples 

were then washed by centrifuging with demineralised water to remove the left-over 

acid. 

Enough sample powder to cover the conical end of a centrifuge tube (below the 

5ml line) was placed in a standard 50 ml centrifuge vial. Five millilitres of peptisation 

liquid (Hydrated Sodium Pyrophosphate) was then added and the sample was mixed by 

vigorous shaking. Initial samples were prepared using 20 ml of peptisation solution as 

in Trabucho-Alexandre (2007), however higher concentrations of solution proved 
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difficult to wash out. Initially it was unclear of the exact effects the peptisation solution 

would have on future isotopic work and therefore the amount was reduced to 5ml. At 

5ml the powder appeared to adequately defloculate. Some repeat samples were prepared 

without using a peptisation solution to act as a control for later isotopic studies. These 

samples had significantly lower clay yields than those where peptisation solution had 

been added highlighting the need for a defloculant. Centrifuge vials were then filled 

with deionised water and were shaken well. Vials were centrifuged at 750 rpm for 3 

minutes before checking that all larger fragments had sunk to the bottom, if not the vials 

were re-centrifuged. This could be achieved faster by replacing centrifuging in an ultra 

centrifuge at 20000 rpm for 3 minutes. According to Moore and Reynolds, Jr (1997), 

the supernatant contained particles below 2µm (defined as the clay fraction) and so was 

decanted off into another centrifuge vial. This was then topped up with more deionised 

water and centrifuged at 3300 rpm for 30 minutes. While this new supernatant can be 

coloured it must not be cloudy: where it was cloudy the centrifuge step was repeated. 

The supernatant now contains particles less than 0.2 µm, while the pellet contains grains 

between 2 µm and 0.2 µm—therefore the supernatant was removed (Table 2.4). These 

steps were repeated to concentrate as large a clay fraction as possible. Samples must be 

thoroughly washed by toping up the vial with deionised water and centrifuging at 3300 

rpm for 30mins. The water was decanted off and a few ml of new deionised water was 

added to the pellet. The amount of water added depends on the amount of pellet in the 

vial; a “gloopy” consistency was desired.  

A small amount of the clay solution was pipetted onto half a standard glass slide. 

A sediment concentration of 60 mg of clay per millilitre of liquid was desired (Figure 

2.6).  The glass slides were designed to fit into custom-made Perspex XRD holders 

(Figure 2.7). Glass slides were chosen as the desired substrate because they can cope 

with heating treatments. Custom-made aluminium holders were also made and although 

cheaper, they contributed to a large background signal during analysis.   

In order to distinguish between clays heating and glycol treatments were 

performed on the samples (Figure 2.8) 
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Table 2.4: Settling times for sedimentation of particles. From Moore and Reynolds, Jr 1997. 

 

 

 

Figure 2.7: Custom made Perspex holder containing a glass slide. Note this slide is coated in a test 

solution not clays.  

 

 

Figure 2.6: Clay fractions that have been pipetted onto glass slides. The three slides in the bottom right of 

the picture have air dried. Silver containers are 4.5cm in diameter.   
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Figure 2.8: Example XRD trace showing the differences in air dried, glycolated and furnace in corrensite. 

Corrensite swells when gylcolated and therefore moves the peak at 14.7Å to 15.7Å. Heating the 

corrensite causes the interlayers to collapse moving the peak to 12.1Å. Therefore, how the peaks react to 

the different treatments can help identify which clay you have. Example scans from: Moore and 

Reynolds, Jr 1997. 

 

2.6.2.2 Air dried technique 

 

Samples were pipetted onto a glass slide as described above and covered to protect from 

dust and impurities, but to allow air circulation. Samples typically took 2 days to air 

dry. Some authors suggest heating the slide to 90°C before pipetting the solution on to 

the slide in order to compensate for particle-size segregation. This was tested in some 

sample repeats, but no resolvable difference in XRD results was noted. 

 

2.6.2.3 Furnace dried technique 

 

Samples were pipetted onto glass slides as described above and left to air dry before 

being heated in a furnace for 24 hours at 550°C. This drove off interlayer water within 

the clays, collapsed the D spacing and allowed for identification of certain clay types.  
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2.6.2.4 Glycol technique 

 

Samples were pipetted onto glass slides and left to air dry as described above. Ethylene 

glycol was then added to the base of a porcelain dish. Sample slides were placed on a 

porcelain plate within the dish and the lid was added. Care was taken not to let the 

glycol touch the samples. Samples were then heated at 60°C for 12 hours in an oven. 

Most authors suggest a minimum of 3 hours, but Trabucho-Alexandre (2007) suggested 

a longer glycolation time. Once the glycolation was complete samples were analysed 

one at a time, because glycol can evaporate and its effects are negated.  

 

2.6.2.5 XRD analysis 

 

Samples were analysed in a Bruker D8 Advance Diffractometer. (CuKα radiation) 

counting from 2 to 60° 2θ with a 0.02° 2θ steps at 0.85 s per step.  Lower angles were 

run than in bulk analysis in order to see low angle clay peaks. Results were then 

analysed as in section 2.6.1.3. 

 

2.7 Quantitative X-Ray Diffraction (QXRD) 

 

Quantitative XRD was undertaken at the Hutton Institute in Aberdeen under the 

supervision of Steve Hillier. Due to time constraints only 8 samples could be analysed. 

The samples were chosen to be representative of volcaniclastic and silicilastic rocks 

from Mull and Rosebank.  

2.7.1 Rock Disaggregation  

 

Samples were crushed by hand using a mortar and pestle. Approximately 3 grams of 

samples were placed in an agate mill. Ethonol was then added at a 1:6 or 1:8 ratio. The 

ratio of ethanol was calculated from Table 2.5 (Hillier, 2011) and is highly dependent 

on the nature of the sample. As the rock samples contain swelling smectite, ethanol was 

used instead of water. The mixture of sample and ethanol was then ground in a 

McCrone Mill for 12 minutes. The McCrone Mill shears samples and minimises 

damage to delicate clay structures.  
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2.7.2 Spray Drying 

 

It is important during bulk powder XRD and QXRD methods to have random particle 

distribution. Crystals will only produce reflections in certain orientations and therefore 

platy minerals such as micas and clays may be over or under represented in a bulk 

sample (Figure 2.9). The size of the particles is also important. The smaller the size the 

more crystals there are (per unit volume) to produce reflections and hence the validity of 

the data will be improved. If all the crystals are roughly the same size powder-

preferential packing of the sample will not occur, and the errors will be less. For the 

latter reason, the spray drying technique of Hillier (1999, 2002) was adopted. Once the 

sample and ethanol slurry had been ground down in the McCrone Mill it was placed in 

an air gun. This is the most critical part of the process. It is important at this stage to 

make sure that the consistency of the slurry is correct. If the slurry is too liquid then 

particles may evaporate or be forced upwards during the spraying process. Conversely, 

if the slurry is too thick the sample will simply drip through the air flow and the 

particles will not be randomly orientated. The sample is then sprayed through the air 

drying chamber, which contains a stream of air heated to 60°C. The slurry must be 

sprayed at the lowest possible pressures (typically 10–15 psi) because at high pressures, 

the slurry will be retained in suspension within the air flow and will be carried upwards 

 

Table 2.5: Guidelines on slurry compositions for spray drying (Hillier 2011). 
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rather than reaching the base of the chamber. At very low pressures the sample will 

move through the air stream at a slower pace and will have more time to dry before 

reaching the base of the chamber. The air gun must be held vertically, in the centre of 

the chamber and there must be a continuous sample flux (Figure 2.10). Once the sample 

has been sprayed it can be collected from the base of the chamber.  

 

 

 

Figure 2.9: Difference between A) a freeze-dried bulk powder scan and B) Spray-dried bulk powder scan. 

The Spray-dried scans are much more reproducible in terms of relative insanity and therefore will 

significantly reduce the error in Quantification results. Hillier, 2011. 
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Figure 2.10: Spay gun held over the furnace vertically. Hillier, 2011. 

 

2.7.3 Analysis 

 

The QXRD analysis was undertaken by Steve Hillier using a Panalytical Expert Pro 

XRD. Full patterns were matched (as in section 2.6.1.3) to identify the main mineral 

phases. To quantify the mineral phases full patterns were matched to reference patterns. 

The reference patterns were created by spiking samples with 50 wt.% corundum so that 

relative peak intensity could be calculated. Hiller then used an EXCEL™ spreadsheet 

and the SOLVER™ add-in to calculate the difference between observed full patterns 

and a pattern that had been created from the sum of the standard reference patterns, as 

discussed in Omotoso et al., (2006).   

 

2.8 Isotopic work 

 

Stable isotope analysis can inform on the diagenetic history of the rocks. Meteoric 

waters are enriched in 
16

O relative to 
18

O and in 
1
H relative to 

2
D, whereas, igneous-

derived and hydrothermal waters tend to be enriched in
18

O relative to meteoric waters. 

Information about the pore water in the samples can be gained by analysing oxygen and 

deuterium ratios in clay minerals. The fractionation of O and H isotopes between a clay 

mineral and water is controlled primarily by temperature (Delgado and Reyes, 1996) 

and therefore, the temperature of clay formation can also be estimated. 
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 The analyses were undertaken at the Scottish University Environment Research 

Centre, Stable Isotope Lab, under the supervision of Adrian Boyce.  

2.8.1 Sample preparation  

 

Samples were prepared following methods described in section 2.6.2.1. Approximately 

10 mg of clay fraction was collected for oxygen isotope analysis and 50 mg for 

deuterium analysis.  

A pure phase of clay is needed for isotopic work to be accurate and therefore, 

XRD analysis was undertaken on all clay separates to identify which mineral phases 

were present. The clay separates contained smectite, mixed layer corrensite and minor 

chlorite along with minor amounts of quartz. The amount of quartz was deemed to be 

nominal, however it will provide a further error that must be acknowledged. Gilg et al., 

(2004) have discussed ways in which clays such as smectite and chlorite can be 

separated. However, the effect of these separation techniques on the clays’ isotopic 

signatures was poorly constrained and the techniques proved difficult and time 

consuming to achieve. It was therefore, decided to analyse the clay separates as a bulk 

separates and then analyse the results as end-member values.     

 

2.8.2 Collecting the oxygen 

 

Oxygen (in the form of CO2) was collected using a glass oxygen fluorination line 

(Figure 2.11). Approximately 2 mg of sample powder was weighed and placed into a 

pre-baked sample block along with laboratory standards (Figure 2.12). The sample 

block was then placed into an oxygen line and evacuated before being reacted with 

Chlorine trifluoride ClF3. On the first attempt samples were left to react with the reagent 

for approximately 2 hours to allow for moisture on the surface to react and for gases to 

be pumped away. However, the yields from this method were too low because the 

sample clays reacted very quickly with the reagent. It was therefore, decided not to pre-

fluorinate. A larger shot of ClF3 reagent was then released into the chamber and the 

sample was heated to > 1500 °C by a CO2 laser (Sharp, 1990). The laser power was 

increased gradually. Combustion resulted in release of O2 from the silica lattice. The 

gases from the fluorination process are passed through a slush trap (dry ice and acetone) 

and a further freeze trap (liquid nitrogen) to freeze impurities and left-over reagent, 
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which can be explosive on contact with air. All glass in the line is pre-heated and 

pumped prior to sending the sample through it in order to minimise sample 

contamination. The remaining O2 was then then passed through a heated graphite rod 

that converted it to CO2. This CO2 gas yield was then measured before being collected in 

a mass spectrometer tube.   

 

 

Figure 2.11: Oxygen fluorination line. SUERC. 

 

 

Figure 2.12: Oxygen fluorination line sample holder containing approx. 2mg of clay sample (brown) and 

standards (white) in the wells. Sample block approx. 3cm in diameter.  
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2.8.3 Collecting the hydrogen 

 

Hydrogen was collected using a glass hydrogen line (Figure 2.13). The sample Pt 

crucible was heated and left to outgas for 24 hours. Approximately 30 mg of sample 

was placed in the sample crucible and put under high vacuum, heated to 150 °C and left 

overnight to release labile volatiles. The samples were then placed in an evacuated 

quartz tube and heated to approximately 1200°C gradually by radiofrequency induction 

using a Cheltenham Induction Heater and coil for 30 minutes. The released gasses were 

then passed through a liquid nitrogen trap and frozen.  The glass line is heated around 

the trap in order to collect any hydrogen that bonded to the glass. The liquid nitrogen 

trap is then removed and replaced with a slush trap. The slush trap is less cold and 

releases any CO2 which can then be pumped away. The slush trap is removed and the 

remaining gas was passed through a chromium furnace at 800°C (Donnelly et al. 2001), 

which has the effect of reducing the water to H2. The hydrogen is collected in a mercury 

monometer to measure the yield before it was collected in a mass spectrometer tube 

using a Toepler pump. Several international water standards; Greenland Ice sheet 

precipitate (GISP), Standard Mean Ocean Water (V-SMOW) and an internal lab 

specific standard (Lt Std) were run to calibrate the process. An international mineral 

standard NBS-30 (biotite) was also run. 

Due to several problems with the hydrogen line only one sample was collected 

during two weeks. Tony Donnelly and Alison McDonald from SUERC performed the 

hydrogen collection at a later date.  
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Figure 2.13: Hydrogen Line. SUERC. 

 

2.8.4 Analysis  

 

The oxygen isotopes were analysed on-line by a VG SIRA 10 spectrometer by Alison 

McDonald. Reproducibility is better than ±0.3‰ (1). Results are reported in standard 

notation (18O) as per mil (‰) deviations from the Standard Mean Ocean Water (V-

SMOW) standard. 

 Hydrogen isotopes were analysed by Tony Donnelly using a VG Optima mass 

spectrometer. Replicate analyses of water standards (mentioned above) gave a 

reproducibility of ±2‰. Replicate analyses of international mineral standard gave 

reproducibility around ±3‰.  

 

2.9 Helium Porosity 

 

Helium porosity was undertaken on a range of core and sidewall samples by Chevron. 

Helium gas at a known pressure was injected into the rock sample, the difference in 

pressure was then recorded and the porosity was calculated. Helium gas can penetrate 
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micro pores and so the helium porosity of a sample if often much higher than the visible 

porosity calculated from point counting. Chevron provided access to the helium 

porosity data set that was used within this thesis.   
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3 Geology of the Rosebank Field 

This chapter aims to discuss the geology and hydrocarbon system within the Rosebank 

Field in the Faroe-Shetland Basin. Rock cores taken from the Rosebank wells are 

logged in detail providing context for the petrographic and diagenetic studies presented 

later in the thesis. 

3.1 Introduction to the Faroe-Shetland Basin 

The Faroe–Shetland Basin (FSB) is a series of northeast-southwest trending sub-rift 

basins that lie between Shetland and the Faroe Islands in the North Atlantic Margin, 

(Figure 3.1; Sørensen, 2003; Ritchie et al., 2011; Rateau et al., 2013). The evolution of 

these sub-basins was controlled by transfer zones during phases of rifting and 

compression that dictated sediment transportation and deposition in the depocentres 

(Figure 3.2; Dean et al., 1999; Jolley and Morton, 2007; Ellis et al., 2009; Moy and 

Imber, 2009; Fletcher et al., 2013; Wright, 2013).  

 

 

Figure 3.1: Location map of the Faroe-Shetland Basin and surrounding area, showing the highs and 

basins. Modified from Wright (2013) using from Stoker et al. (1993), Ritchie et al. (1996, 1999), 

Sørensen (2003), Ellis et al. (2009) and Moy & Imber (2009). 
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3.2 Geological history of the Faroe-Shetland Basin 

 The southern part of the FSB has had a complex geological history with a number of 

major tectonic events that influenced both sedimentation and the structural development 

of the basin (Figure 3.3 and 3.4; Dean et al., 1999). 

The FSB is approximately 260 km wide by 460 km long and comprises a series 

of sub-basins divided by intra-basin highs (Ritchie et al., 2011). The basin floor is 

composed of late Archean to Paleo-proterozoic metamorphic crust from the Laurentian 

Terrane. During the early Palaeozoic the region was subjected to compression from 

northeast-trending Caledonian Orogenic thrust belts (McKerrow et al., 2000; Oliver, 

2002; Strachan et al., 2002; Ritchie et al., 2011). Once the Caledonian Orogeny ended 

in the Late Devonian the compressional structural regime changed to an extensional 

inter-montane rift basin setting (Roberts et al., 1999; Soper and Woodcock, 2003; 

Ritchie et al., 2011).  

The next major tectonic event to affect the FSB was the Variscan Orogeny 

caused by the closure of the Pangaean supercontinent in the Late Carboniferous to 

Permian, (Roberts et al., 1999; Glennie, 2002; Ritchie et al., 2011). This resulted in 

volcanism in the southeast of the FSB (Glennie, 2002; Ritchie et al., 2011). At the end 

of the Permian, the northeast trending Arctic Rift developed and was influenced by the 

inherited basement structures developed during the Caledonian Orgoeny (Roberts et al., 

1999; Ritchie et al., 2011). This rift caused the development of peripheral sub-rift 

basins. Throughout the Jurassic, the Arctic Rift moved northwards (Roberts et al., 

1999). During the late Jurassic rifting was responsible for a marine transgression (Dean 

et al., 1999).   

The FSB was dominated by a northwest-southeast trending extensional regime, 

which coincided with the main phase of rifting in the Atlantic in the Early Cretaceous. 

This led to regional uplift of the margin and a fall in relative sea level (Naylor and 

Shannon, 2005; Mudge et al., 2009). This phase of rifting was the major control on the 

lateral distribution of sediments (Larsen et al., 2010): clastic material was shed into the 

FSB from the West of Shetland High and the emergent Crona, Judd, Westray, Rona and 

Flett highs (Figure 3.5) and deposition was dominated by mudstones and argillaceous 

limestones.  
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Figure 3.2: Map showing the basin structure within the Faroe-Shetland Basin. (Wright (2013) modified 

from Stoker et al. (1993), Ritchie et al. (1996, 1999), Sørensen (2003), Ellis et al. (2009) and Moy & 

Imber (2009)).  
 

The Upper Cretaceous was marked by a period of tectonic quiescence 

accompanied by passive infill of early Cretaceous rift basins. A marine transgression 

submerged local highs, including the Corona Ridge (Figure 3.6) and a northward 

transition from carbonaceous siltstones and claystones to predominantly argillaceous 

limestone with rare carbonate shelf deposits, filled the Flett Sub-Basin (Mudge et al., 

2009). The latter sequence is thicker in the northern part of the basin due to later 

inflation by igneous intrusions.  

Localised rifting followed by regional uplift occurred in the Danian. 

Reactivation of Cretaceous faults led to a fault-driven topography, with a syn- to early 

post-rift phase leading to the creation of sub-basins (Mudge et al., 2009). In the 

Southern Flett Basin deep marine mudstones with mixed sandstone and mudstones 

marked the onset of deep water fan progradation into the FSB (Figure 3.7).  

66



Chapter 3 Geology of the Rosebank Field 

During the Upper Selandian, volcanic activity related to the rifting of the 

Atlantic began to the west of the FSB. Localised topography resulted in the 

development of submarine fans on the basin floor that extended to the Corona High to 

the west (Figure 3.8). A chaotic, submarine fan sequence with northwest-meandering 

channelised sands was deposited during this time (the Valia Formation). Later, the 

Lamba Formation, composed of progradational sands and mudstones, built out into the 

FSB from the SE (Mudge et al., 2009; Stoker and Varming, 2011). 

The Icelandic plume is thought to have impacted 62 Ma ago and was responsible 

for the development of the North Atlantic Igneous Province (NAIP), which covers an 

area of 10
6
 km

3 
(White and McKenzie, 1989). Volcanism developed in areas of 

weakened crust along the rift margin, including East Greenland, the Faroe Islands, the 

west coast of Scotland, and eastern Ireland (Saunders et al., 1997).  

During the Thanetian, basalt lavas erupted on the Faroe Islands and East 

Greenland and spread across ~12 0000 km
2
 (Passey and Hitchen, 2011). The oldest 

Palaeocene volcanic unit (the Lopra Formation encountered in boreholes on the Faroe 

Islands) comprises a series of volcaniclastic rocks intruded by sills (Ellis et al., 2002; 

Passey and Jolley., 2009). The volcaniclastic rocks record the progradation of lava-fed, 

Gilbert-type hyaloclastite deltas into the FSB. These caused a rotational shift in the 

orientation of the shoreline (Kiørboe, 1999; Passey and Hitchen, 2011; Wright, 2013). 

The overlying Beinisvørð Formation is ~3.3 km thick, and 900 m of it are exposed on 

the Faroe Islands (Passey and Hitchen, 2011). It is composed of aphyric basalt lavas 

(Waagstein, 1988), fed from extensive fissure systems (Passey and Bell, 2007), that 

covered the western portion of the FSB covering local basin highs, including the Corona 

Ridge (Figure 3.9) (Boldreel and Andersen, 1994). 
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Figure 3.3: Stratigraphical column for the structural highs and basins within the Faroe-Shetland Basin. 

(Mudge et al., 2009). 
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Figure 3.4: Generalised summary of the plate tectonic events within the Faroe-Shetland region. FSB- 

Faroe-Shetland Basin, RB- Rockall Basin and WTRC- Wyville Thomson Ridge. (From Ritchie and Ziska 

2011). 
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The volcanic rocks are thought to have interacted with and deflected the existing 

siliciclastic input as the volcanic rocks progressed westwards (Mudge et al., 2009; 

Stoker and Varming, 2011). A hiatus in volcanism led to the back-stepping of lava flow 

fields and localised erosion. The Prestfjall Formation comprising of coals, claystone and 

volcaniclastic sandstones (Rasmussen and Noe-Nygaard, 1970; Passey and Jolley., 

2009) were deposited onshore on the Faeroe Islands while its chronostratigraphical 

equivalent the Flett Delta (Flett Formation) was present in the FSB (Ellis et al., 2002; 

Jolley et al., 2002). The Hvannhagi Formation overlies the Prestfjall Formation on the 

Faeroe Islands (Passey and Jolley., 2009), comprises both pyroclastic and sedimentary 

rocks. These rocks are thought to be deposited in a terrestrial environment during 

quiescent inter-volcanic periods (Passey, 2004) and so correlate with the Colsay 

Formation found within Rosebank. The north westerly prograding sedimentary 

sequence initiated in the Selandian becomes a northerly prograding sequence that 

deposited the Colsay Sandstone Member: a predominantly terrestrial delta-top and 

fluvial sequence of rocks interbedded with lava flows (see Section 3.5 for more detail). 

 Volcanism recommenced on the Faroe Islands and is recorded by the 

Malinstindur Formation comprising thin anastomosing subaerial lava flows. However, 

this formation is not thought to have reached the FSB (Passey and Bell, 2007). The Enni 

Formation is the upper-most formation found on the Faroe Islands and is identified in 

the FSB. It is similar to the Beinisvørð Formation but comprises a mixture of compound 

and thin (<2.5 m) tabular flows suggesting it is sourced from point sources as well as 

fissures (Passey and Bell, 2007).  

Volcanism began to wane in the Ypresian and lava flows retreated to the west 

(Figure 3.10) (Mudge et al., 2009). This allowed the fluvio-deltaic system seen during 

the Thanetian to once again dominate, and is recorded by the Hildasay Sandstone 

Member (Flett Formation); a predominantly terrestrial, delta-top and fluvial sequence of 

rocks (Mudge et al., 2009; Stoker and Varming, 2011). Transgression towards the end 

of the Ypresian resulted in the delta sediments backstepping into the basin.  

 Overlying the Flett Formation is the Balder Formation, which represents the 

final volcanism recorded within the basin. The formation is typically between 50–150 m 

thick (Passey and Hitchen, 2011), covers the FSB and marks a regional unconformity 

(Dean et al., 1999; Rateau et al., 2013). It is composed of silty, carbonaceous mudstone 

interbedded with reworked basaltic tuffs (Knox et al., 1988) sourced to the west of the 

FSB (Faroes and Greenland), with some volcanic input from the Scottish hinterland 
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(Morton and Knox, 1990). Volcanic glass within the tuffs has been extensively altered 

to palagonite and chlorite (Passey and Hitchen, 2011). 

During the Late Eocene, volcanism ceased and the basin underwent a post-rift 

phase. Thermal subsidence led to thick (~550 m) accumulations of deep-water 

sediments (Brooks et al., 2001; Rateau et al., 2013). Sub-basinal highs became 

submerged leading to the formation of a large interconnected basin that forms the FSB 

seen today (Ritchie et al., 2011). The Eocene, Oligocene and Miocene were punctuated 

by basin-wide uplift that led to the formation of inversion structures (Smallwood and 

Kirk, 2005).  

 Volcanic activity in the FSB was also accompanied by the intrusion of large 

volumes of basaltic magma. The Faroe-Shetland Sill Complex (FSSC) is an extensive 

(~ 2.25 × 10
5
 km

2
) complex of sills and dykes that intrude the sedimentary rocks within 

the FSB (Hitchen and Ritchie., 1987). Most of the FSSC rocks intrude Upper 

Cretaceous strata, similar to the Palaeogene dyke swarm on Mull (Emeleus and 

Gyopari, 1992). There are also Thanetian aged sills intruded into Paleocene sedimentary 

rocks (Lamers and Carmichael, 1999). The majority of the intrusions occur towards the 

centre of the FSB, which has experienced the most crustal extension (Smallwood and 

Maresh, 2002).   

 

 

 

 

 
 

  
Figure 3.5: Schematic map and cross section of the Faroe-Shetland Basin, showing the relative sea level 

and sediment deposition during the Lower Cretaceous. Sketch map is orientated North. Line of section 

runs NW-SE. Scale of section ~80 km across. Modified from Mudge et al., (2009); Dean et al., (1999); 

Stoker and Ziska, (2011). 
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Figure 3.6: Schematic map and cross section of the Faroe-Shetland Basin, showing the relative sea level 

and sediment deposition during the Upper Cretaceous.  Large red arrow indicates transgression. Sketch 

map is orientated North. Line of section runs NW-SE. Scale of section ~80 km across. Modified from 

Mudge et al., (2009); Dean et al., (1999); Stoker and Ziska, (2011). 

 

 

 

 
Figure 3.7: Schematic map and cross section of the Faroe-Shetland Basin, showing the relative sea level 

and sediment deposition during the Danian, Lower Palaeocene.  Sketch map is orientated North. Line of 

section runs NW-SE.  Scale of section ~80 km across. Drawn using information from Mudge et al., 

(2009); Dean et al., (1999); Stoker and Varming, (2011). 
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Figure 3.8 Schematic map and cross section of the Faroe-Shetland Basin, Upper Selandian, Palaeocene. 

Sketch map is orientated North. Line of section runs NW-SE.  Scale of section ~80 km across. Modified 

from Mudge et al., 2009; Dean et al., 1999; Stoker and Varming, 2011. 

 
Figure 3.9 Schematic map and cross section of the Faroe-Shetland Basin, showing the relative sea level 

and sediment deposition during the Thanetian, Upper Paleocene.  Sketch map is orientated North. Line of 

section runs NW-SE.  Scale of section ~80 km across. Modified from Mudge et al., 2009; Dean et al,  

1999; Stoker and Varming, 2011; Passey and Hitchen, 2011. 
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Figure 3.10 Schematic map and cross section of the Faroe-Shetland Basin, showing the relative sea level 

and sediment deposition during the Ypresian, Lower Eocene. Sketch map is orientated North. Line of 

section runs NW-SE. Scale of section ~80 km across. Modified from Mudge et al., 2009; Dean et al., 

1999; Stoker and Varming, 2011; Passey and Hitchen , 2011. 
 

 

3.3 Hydrocarbon system within the Faroe-Shetland Basin 

 

The northeast-southwest trending depocentres within the sub-rift basins of the FSB 

contain commercially viable hydrocarbon reserves (Figure 3.11). All the elements of a 

typical hydrocarbon system can be found within the basin, however the large volume of   

volcanic and volcaniclastic rocks within the north west of the basin has limited oil 

exploration in the NW of the basin, to date.  

3.3.1 Source rocks 

 

Within the FSB nine potential source rocks have been identified, with four (Middle 

Devonian, Lower Jurassic, Middle Jurassic and Upper Jurassic) being linked to proven 

hydrocarbon resources (Peters et al., 1989; Bailey et al., 1990; Scotchman and Thomas, 

1995; Bailey et al., 1987; Quinn et al., 2011). The organic-rich Kimmeridge Clay 

Formation (KCF) is the major source rock within both the FSB and the North Sea 

(Holmes et al., 1999). Local to the Rosebank area there are four distinct types of 

hydrocarbon fields (Gas, Gas and Concentrate, Oil and Oil and Gas), (Table 3.1). All 

the fields in the FSB have a Kimmeridge Jurassic Type II source rock. 

 

74



Chapter 3 Geology of the Rosebank Field 

 
Figure 3.11 Map of hydrocarbon wells and fields within the Faroe-Shetland Basin, highlighting the 

economic potential of the area. Taken from Wright, 2013. 
 

 

 
Name Hydrocarbon type Source 

Victory Gas Multiple? 

Laggan Gas and condensate Upper Jurassic type II source 

Strathmore Oil Upper Jurassic type II source 

Cambo Oil Upper Jurassic type II source (KCF)  

Rosebank Oil and gas Upper Jurassic type II source (KCF) 

Foinaven Oil and gas Middle Jurassic lacustrine source mixed with Upper 

Jurassic (KFC) 

Clair Oil and gas Upper Jurassic type II source (KCF) 

 

Table 3.1 Hydrocarbon fields within the Faroe-Shetland Basin (Clark and Campbell, 2011). 
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3.3.2 Reservoir rocks 

 

There are a number of economically viable reservoir units of varying age and type 

found throughout the FSB (Table 3.2). The Upper Vaila Formation is the prime target in 

the majority of the fields. The Cambo field found along strike, has a similar aged 

discovery to the Rosebank field. High quality reservoir is found in the Cambo field with 

a permeability range of 100 mD to >1 Darcy (Fielding et al., 2014).    

 
Field Name Reservoir Unit Age 

Cambo Hildasay/ Colsay Sandstone Mb Ypresian 

Rosebank Colsay Sandstone Mb Thanetian / Ypresian 

Tornado Lamba Fm Thanetian 

Tormore Upper Vaila Fm Selandian 

Laggan Upper Vaila Fm Selandian 

Glenlivet Upper Vaila Fm Selandian 

Torridon Upper Vaila Fm, Lower Vaila 

Fm 

Selandian 

Schiehallion Upper Vaila Fm Selandian 

Suilven Upper Vaila Fm Selandian 

   

Table 3.2: Reservoir units within the Faroe-Shetland Basin Data compiled by Rosebank Team, (2009).  

 

3.3.3 Seal rocks 

 

A number of rock units act as seals within the FSB basin. The majority of the basin is 

sealed by low porosity, low permeability shales; however Late Thanetian and Ypresian 

aged reservoir intervals (Colsay Sandstone Mb) are sealed by shale and silts deposited 

during and after the transgression and in the thermal subsidence phase of the basin. The 

Balder Formation is also a possible seal (Rosebank Team, 2009).  

3.3.4 Expulsion, Migration and Charge 

 

Expulsion of hydrocarbons began in the Early Cretaceous and continued until the early 

Eocene. Peak expulsion is estimated to have occurred in the Upper Cretaceous 

(Scotchman et al., 2006; pers comm. Value Creation Team, 2011). Hydrocarbon 

migration began shortly after expulsion started in the Early Cretaceous. A second period 

of migration started in the Late Cretaceous and continues to the present day. Three 

phases of charge have been identified within the basin, the first in the Early Cretaceous 

with the deeper reservoirs within fault blocks being charged and then two later phases 

within the Paleogene (Ritchie et al., 1999; Scotchman et al., 2006).  
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3.3.5 Traps 

 

A number of different trap types occur within the FSB (Naylor et al., 1999), including 

inversion anticline structures (Doré et al., 1997), magmatic-driven uplift (Lamers & 

Carmichael, 1999), resulting in stratigraphic and fault bounded traps.  

3.3.6 Timing 

 

The timing of each element within the petroleum system in the FSB is shown in Figure 

3.12. The basin has all the elements required with suitable timings from source 

formation in the Upper Jurassic up to trap formation during the Eocene, Oligocene and 

Neogene. The trap formation occurs well after peak expulsion and migration. A number 

of theories have been proposed to explain the discrepancy in timing. The first is that a 

large volume of hydrocarbons had already been lost from the system. The second is that 

the hydrocarbons had been temporarily stored in another deeper reservoir before re-

migrating to their current position after trap formation. This model is named the Motel 

model (Lamers and Carmichael, 1999). The Whoopie Cushion model by Iliffe et al., 

(1999) suggests a similar system where hydrocarbons migrate laterally out of deep 

reservoirs. A build-up of pressure results in fracturing of the overlying seals and 

hydrocarbons can migrate through this fracture network into the present day reservoirs. 

Scotchman et al., (2006) however, highlight a number of problems with the above 

models stating that the models fail to consider the fluctuation in heat flow during rifting 

and therefore the influence of overpressure. As a result, they believe that the 

discrepancies in timing can be explained by delayed hydrocarbon generation due to 

overpressure.  

 

 

77



Chapter 3 Geology of the Rosebank Field 

 
Figure 3.12 Timing of the different elements within the hydrocarbon system within the Faroe-Shetland 

Basin (Modified from Clark and Campbell, 2011). 

 

 

 

3.4 The Rosebank Field 

 

The Rosebank Field is approximately 20 km long by 5 km wide and sits on the Corona 

Ridge, ~125 km northwest of Shetland and close to the boundary between the UK and  

Faroese territorial waters (Figure 3.13). The field was discovered during the drilling of 

the 213/27-1z well by the Rosebank Partnership (Chevron 40% and operator, Statoil 

30%, OMV 20% and DONG 10%) in 2004.  The primary target was initially the 

Cretaceous sandstones below the basalt cover within a four way dip closure, however, 

oil shows were found within the overlaying Palaeocene rocks. From 2011 the Rosebank 

Partnership became OMV 50%, Chevron 40% and DONG 10%. The well encountered a 

series of petroleum bearing siliciclastic rocks with high porosity (up to 25 %) and 

permeability (~3.5 D). These reservoir intervals are interbedded with volcanic rocks. To 

date, six wells and two sidetracks have been drilled, orientated NE-SW along the crest 

of the Rosebank structure (Figure 3.14). All wells encountered oil shows at the Colsay 

Sandstone Member level (depth of ~2700 m), while only 213/27-3 in the north of the 

structure found a very thin interval of oil (approx. 6 m net pay) at the Hildasay 

Sandstone Member level (depth of ~ 2500 m).  
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3.4.1 Rosebank petroleum system 

 

The source rock in the Rosebank Field was proven in the 213/27-1z and 213/27-2 wells 

to be Upper Jurassic Kimmeridgian shale with an average Total Organic Content (TOC) 

of 5.8% and Type II kerogen (Rosebank Team, 2009). The average source rock 

thickness is 77 m, but it is thought to thicken off the Corona Ridge. A maximum 

thickness of 236.8 m occurs off the Westray High (Quinn et al., 2011).  

Reservoir rocks occur in the Colsay Sandstone Member of the Flett Formation 

(Upper Thanetian and Lower Ypresian). These are typically fluvio-deltaic sands with 

high porosity (~20%) and permeability (up to 3.5 Darcies). The Hildasay Sandstone 

Member has similarly high reservoir qualities, however no oil and gas were found 

within this unit, other than a small 6 meter unit in the 213/27-3 well due to a possible 

breach in the seal (Rosebank Team, 2009). 

The seal within the Rosebank Field differs slightly from surrounding plays such 

as Cambo, where the Hildasay Sandstone Member is thought to be sealed by silty 

 
Figure 3.13: Location map Rosebank Field. Only UK wells plotted. Edited from Wright, 2013. 
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sediments seen within all the wells. However, no hydrocarbons occur within the 

Hildasay Formation indicating that the seal has been breached. A series of channels (the 

Breydon channels) cut into the overlying Balder Formation and this erosion, combined 

with faulting, is held responsible for the possible leak (Clark and Campbell, 2011). The 

Colsay Sandstone Member (which is the reservoir within Rosebank) is thought to be 

sealed by Late Thanetian T40-45 mudstones of the Flett Formation. However, the 

reservoir units were also periodically covered by basalt lava flows. The role of these 

volcanic rocks in sealing the system is still not fully understood.  

3.4.2 Stratigraphy 

 

Seismic data can be used to divide the field into four chronostratigraphic units, which 

equate to reservoir units (Colsay 1–4) interbedded with volcanic rocks.  Figure 3.15 

shows a chronostratigraphic correlation based on well log information. The Colsay units 

are named in reverse chronostratigraphical order: Colsay 4 is the oldest unit.  

Colsay 4 is the oldest unit of the Colsay Sandstone Member.  Its thickness is 

fairly constant across the reservoir ranging between ~30.5 – 46 m. Overlying this is a 

thick package of volcanic rocks named the Rosebank Lower Volcanic Unit, which at its 

thickest reaches ~91 m, comprising basaltic lavas and associated volcaniclastic rocks.   

The Rosebank Lower Volcanic Unit is overlain by another thin layer of volcanic 

rocks, followed by the Colsay 3 reservoir unit. Colsay 3 varies considerably in thickness 

along the Rosebank structure. In the south it is approximately 5.5 m but thickens to 54 

m in the north of the structure. It has volcanic facies (Net to Gross of 0%) in the south 

and siliciclastic sandstones with a (NTG) of 60% and porosities averaging 20% in the 

north. The Colsay 2 unit comprises volcanic rocks with rare, thin siliciclastic sands and 

silts found in the northern wells. 

Overlying this another unit comprising basaltic lavas and above this is the 

Colsay 1 reservoir unit. Lithostratigraphically the unit varies along the crest of the 

structure from 48 m of silicilclastic sandstones in the south to 41 m of volcaniclastic 

rocks in the north (the exact opposite of Colsay 3). The porosity and NTG ratio of the 

unit also varies, ranging from 21% and 55% respectively, in the southernmost well 

(205/1-1) to 0% porosity and NTG in the northern wells. The uppermost unit in the 

Colsay Sandstone Member is the Upper Rosebank Volcanic Unit, which is composed of 

~76 m of basalt lava flows and volcaniclastic rocks.  
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Figure 3.14: Map showing the relative locations of the Rosebank wells. Drawn using data from Duncan et 

al., (2009) and Fielding et al., (2014).    
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Figure 3.15: Schematic well correlation across the Rosebank Field. Purple colours represent volcanic lithofacies, sandy coloured units represent siliciclastic lithofacies. Units 

are correlated chronostratigraphically. The schematic highlights the alteration between volcanic and siliciclastic rocks vertically through the reservoir. Note variation also 

occurs along strike with volcanic rocks occurring in the 213/27-2 well in Colsay 1. Modified from  Rosebank Team (2009). 
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3.4.3 Paleogeography  

3.4.3.1 Upper Palaeocene – Colsay Sandstone Member 

 

The Rosebank Field lies at the interface between two competing systems (Figure 3.16); 

the Greenland Platform to the northwest (which shed volcanic material into the basin) 

and the West Shetland Platform to the southeast (which shed siliciclastic material into 

the basin). Thermal uplift associated with North Atlantic rifting caused a relative 

lowering of sea level (Mudge et al., 2009).  

 

 
Figure 3.16: Paleogeography of the Rosebank Field during Colsay Sst Mb times. Elongate red field 

outline is Rosebank. Circular red outline to the south is Cambo. The depositional environment in 

Rosebank area changes from shallow water shoreface to lagoonal/estuarine to fluival-deltaic as the Flett 

Delta migrated north eastwards. Modified from Rosebank Team (2009) using information from gained 

from Mudge et al., (2009); Stoker and Varming (2011); Passey and Hitchen (2011). 
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The Rosebank Field lay at the axis of a fluvio-deltaic depositional system generated by 

the initiation of the north-eastwards progradation of the Flett Delta. Rivers were 

deflected around the Cambo High and entered the Rosebank area from the southwest 

(Schofield and Jolley, 2013; Wright, 2013). Throughout the deposition of the Colsay 

Sandstone Member the Flett Delta moved northeast. Evidence for this is found in rocks 

at the base of the most northern well, 213/27-1, which indicate that shallow marine 

sediments were deposited during Colsay 4 times. This sequence is then overlain by 

shoreface and deltaic sediments during Colsay 3 and 2. Colsay 1 contains mainly 

terrestrial sediments but some marine sediments are found in the North (pers. comm. 

Rosebank Team 2013). The palaeo-shoreline data runs NW-SE across the basin and can 

be seen in seismic surveys. 

 Basaltic lava flows erupted towards the Faroe Islands and flowed southeast 

towards the basin margin. Isolated volcanoes to the southeast of Rosebank also inputted 

volcanic material into the basin (Schofield and Jolley, 2013; Wright, 2013). The lavas 

reached their maximum extent ~20 km east of Rosebank: a thin 30 m lava flow reached 

the location of well 205/8-1 (Figure 3.17). After each phase of volcanism, the 

siliciclastic regime regained dominance. As a result the basin depocentre experienced 

cyclic switches in sediment provenance between siliciclastic and volcaniclastic material. 

For example, during the deposition of Colsay 3 sediments the southern part of the field 

was subject to the emplacement of volcanic rocks while in the north, siliciclastic sands 

were being deposited. This relationship was reversed during Colsay 1 times when 

volcanic rocks dominate wells in the north and siliciclastic rocks are confined to 

southern wells.  

3.4.3.2 Lower Eocene – Hildasay Sandstone Member and Balder Formation 

 

The long established drainage basin that deposited the Colsay Sandstone Member 

continued with the deposition of the Hildasay Sandstone Member (Mudge et al., 2009; 

Schofield and Jolley, 2013). Palynological data indicate that the fluvial system cut 

through mature swamp forests (Jolley, 2007). A transgression resulting from basin sag 

resulted in the deposition of shallow marine sediments across the Rosebank area (Figure 

3.18). Volcanism in the basin came to an end, with tuffs in the Balder Formation 

deposited on regional highs. Both the marine sediments and the tuffs may act as seals in 

the Rosebank system (Figure 3.19). 
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Figure 3.17: Paleogeography of the Rosebank Field during Colsay times. Elongate red field outline is 

Rosebank. Circular red outline to south is Cambo.  As the delta progrades from SW- NE, pulses of 

volcanic material sourced from the northeast and potentially to south west migrate across the area. The 

maximum volcanic extent is shown as a thin lava unit is found in well 205/8-1 but no lava is found in 

205/12-1. The lavas change the topography altering the drainage system. As the lavas retreat 

volcaniclastic material is shed into the basin (Modified from Rosebank Team, (2009) using information 

gained from Mudge et al., (2009); Stoker and Varming (2011); Passey and Hitchen (2011), Schofield and 

Jolley (2013)). 
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Figure 3.18: Paleogeography of the Rosebank Field during Hildasay times. Elongate red field outline is 

Rosebank. Circular red outline to south is Cambo.  As the lavas retreat volcaniclastic material continues 

to be shed into the basin. A transgression causes shallow water rocks to be deposited during Hildasay 

times. Modified from Rosebank Team (2009) using information gained from Mudge et al., (2009); Stoker 

and Varming (2011); Passey and Hitchen (2011). 
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Figure 3.19 Paleogeography of the Rosebank Field during Hildasay times. Elongate red field outline is 

Rosebank. Circular red outline to south is Cambo.  A transgression causes shallow water rocks to be 

deposited during Hildasay times. Modified from Rosebank Team (2009) using information gained from 

Mudge et al., (2009); Stoker and Varming (2011); Passey and Hitchen (2011). 

 

 

3.5 Rosebank lithology 

 

Lithological units within the Rosebank wells have been identified by combining 

wireline log data with observations from rock cores and sidewall cores. A number of 

cores, taken from the Rosebank wells, targeted reservoir units in Colsay 1 and 3 and 

some of the volcanic rocks (Table 3.3). Despite drawing on literature the following 

section is based on my own descriptions and interpretations.  
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3.5.1 Colsay 4 

3.5.1.1 Lithofacies descriptions 

 

The lithofacies present within Colsay 4 were determined using petrophysical data from 

wireline log and sidewall cores (Siggerud, 2008; Bell, 2008). 

Colsay 4 is composed of well to poorly sorted, laminated sandstone and mudstone, 

which in places is bioturbated. The sandstones are fine- to medium-grained and show 

inverse grading. Also present are volcaniclastic claystone and fine-grained lithic arenite 

with abundant basalt lava fragments, feldspar, rarer quartz and lithic fragments. 

 

 

Well Name 
Chronostratigraphic 

unit 

Core 

Number 
Depth (m) Lithology 

No. 

Additional 

Sidewall 

cores 

205/1-1 Colsay 2 1 
2926.4 to 

2938.3 

Basalt lava 

flow 
52 

213/26-1 

Colsay 1 1 

2817.9 – 

2819.7 

Ripple 

laminated 

muddy 

sandstone 

50 

 Colsay 1 2 

2820.3 – 

2820.9 

Ripple 

laminated 

mudstone 

Colsay 3/2 3 

2872.4 – 

2888.9 

Basalt lava 

flow overlying 

silty sediment 

213/26-1z 

Colsay 1 1 
2926.1 – 

2927.0 

Mudstone and 

siltstone 

45 Colsay 1 2 
2942.5 – 

2947.8 

Mudstone and 

sandstone 

Colsay 3 3 
3005.3 – 

3014.5 

Mudstone and 

sandstone 

213/27-2 

Colsay 1 1 

2872.7 – 

2878.2 

Basalt lava 

flow with 

some silty 

sediment 
n/a 

Colsay 3 2 

2932.2 –
2959.4 

Interbedded 

sandstones, 

mudstones 

and silts 

Table 3.3: Core and Sidewall Core information. Table compiled using well logs in conjunction with 

Siggerud (2008) and Bell (2008). 

 

 A thin sequence of volcanic rocks separates Colsay 4 from the overlying Colsay 

3. The sequence is dominated by microcrystalline aphyric basalt lava flow and 

peperites. Lava flows contain euhedral plagioclase and pyroxene phenocrysts with 

minor amounts of altered olivine phenocrysts and abundant Fe-Ti oxides. Amygdales 
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are composed of clay minerals, calcite and zeolite. Peperite rocks comprise fluidal-

shaped basaltic clasts in a fine-grained siltstone matrix.  

 

 

 

3.5.1.2 Interpretation 

 

Rocks in the Colsay 4 chronostratigraphical unit are interpreted to record a transition 

from shallow marine, bioturbated sediments up through shoreface to mouth bar and 

fluvial deltaic sediments as a result of the northward progradation of the Flett Delta into 

the basin. This interval was followed by the emplacement of subaerial basalt lava flows.   

 

3.5.2 Colsay 3 

3.5.2.1 Lithofacies description 

 

The Colsay 3 chronostratigraphical unit was cored in well 213/26-1, 213/26-1z and 

213/27-2. Within the 213/26-1 wells the unit is composed of both volcanic and 

siliciclastic rocks while in the 213/27-2 well to the north the unit is composed of 

siliciclastic rocks.  

 

Well 213/27-2 core 

 

Approximately 27 m of siliciclastic rocks were cored in the 213/27-2 well. The base of 

the cored section comprises well-sorted claystones, siltstones and sandstones. 

Heterolithic bedding is common in the fine-grained sub-arkose with the proportion of 

thin muddy laminations, alternating between flaser and lenticular. In places the beds are 

locally disturbed by bioturbation and syn-sedimentary faulting. These fine-grained 

rocks grade upwards into very coarse- to medium granule grained, poorly sorted sub-

arkose composed of sub-rounded to sub-angular quartz, feldspar and lithic clasts. 

Coarse granule sized clasts (up 3 cm) are concentrated in normally graded bedsets that 

fine upwards to medium grained sand.  

 

Well 213/26-1z core 

  

Approximately nine metres of volcanic and siliciclastic rocks were cored in the 

213/26-1z well (Figure 3.20). The base of the core is composed of dark siltstone 
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containing clasts of amygdaloidal basalt interpreted to be a basaltic breccia. Clasts are 

sub-rounded to sub-angular with sharp contacts but without glassy chilled margins. 

Amygdale composition and size changes from calcite macro-amygdales (up to 8 mm in 

diameter) in the interior, to clay-filled micro-amygdales (up to 2 mm in diameter) at the 

clast edges. Most have tear-drop shapes with thin tails that are aligned horizontally 

across the basalt clasts.  

 The basaltic breccia then grades into a dark grey, fissile mudstone with 

millimetre-scale flaser bedding. Anastomosing calcite veins are commonly displaced by 

small scale faults towards the base of the section.  

 Overlying the mudstone are pale grey sub-arkose, siltstone and claystone beds 

with abundant sedimentary structures including symmetrical ripples, cross-bedding 

(max. 5cm), and millimetre-scale, organic-rich, lenses. Bedding is heterolithic and 

switches from lenticular to flaser highlighting fluctuating energy in the system. Four 

distinct (max. 5 cm) bivalve horizons are present within the more mud-rich layers. 

Abundant Apectodinium specimens are also found (Jolley, 2007). Overlying this is 

approximately 0.3 m of massive mudstone.  

 The gravelly, very coarse sub-arkose comprises vein quartz (up to 1cm), 

feldspar, and lithic clasts. Grains are sub-angular to rounded with moderate sphericity.  

There is oil staining throughout the sequence. 

 

Well 213/26-1 core 

 

A log of the 213/26-1 core through Colsay 3 and into Colsay 2 is seen in Figure 3.21. At 

the base of the core there is fine grained pale yellow siltstone, with faint ripples, 

convoluted bedding and possible bioturbation. Some small discontinuous lenses of 

darker, more organic-rich material are also present.  The rocks directly overlying this 

unit were not available for study. Above the removed section is a darker grey/brown 

fine grained siltstone, with some faint laminations and smaller flecks of darker, more 

organic-rich material. The siltstone also contains a large wood fragment. 

 The siltstone is overlain by 0.9 m of amygdaloidal basalt. The contact between 

the lava and sediment is sharp with no induration. Small veins of calcite (typically 5 

mm wide and up to 4 cm long) bound the base of the lava and penetrate vertically into 

the sediment below. Directly at the contact, the basalt is discoloured with chilled 

margins and with abundant calcite and/or zeolite pipe vesicles (up to 2 cm long) and 

spherical dark, glass rimmed, mm scale clay-filled amygdales. Approximately 4 cm 
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away from the contact the basalt is finely crystalline with rare plagioclase phenocrysts 

up to 0.5 cm long. Amygdales range from ~1–4 cm in diameter and are dominated by 

calcite, zeolite and clay minerals. Irregular areas of fine to medium grained grey 

sandstone are mixed with basalt and in places fill the irregular surface of the lava 

completely surrounding the basalt clasts.  

The amygdaloidal basalt grades into, approximately 4.6 m of greenish brown to 

grey massive basalt. The basalt has a glomeroporphyritic texture in places with 

randomly orientated clusters of euhedral plagioclase phenocrysts (up to 0.5 cm). Rare 

large (2 cm) aligned zeolite and smaller clay amygdales with glassy rims along with 

clay and calcite veins (max 5 mm wide but approx. 1 m long) are found at this depth.  

The massive basalt grades into ~2.25 m of light grey amygdaloidal basalt that 

resembles the one described above (Figure 3.22).  Overlying this basalt is a zone of fine 

to medium grained dark grey sandstone with faint parallel laminae. The contact is 

irregular and cross cuts the core at a high angle. A 2 – 5 mm darkened zone is seen 

within the basalt directly at the contact. As before, amygdales increase in size away 

from the contact. No thermal effects are seen in the sediment which fills fractures in the 

basalt. Small isolated blebs of basalt can also be found in the sediment. 

Overlying this is a small isolated section of basalt dominated by zeolite 

amygdales, with clay-filled amygdales at contacts with the sediment. The basal lava 

contact resembles others described above, however the upper contact of the basalt is 

yellow and has flame like structures protruding into the overlying sediment, which is 

laminated.  

 Figure 3.23 shows the upper part of the core. Amygdaloidal basalt, with clay 

amygdales and large zeolite-filled regions, grades into grey non-amygdaloidal 

crystalline basalt with abundant plagioclase phenocrysts up to 1 cm long.  Rare 

glomeroporphyritic texture with radial clusters of plagioclase phenocrysts is also 

present. This non-amygdaloidal basalt then grades into 1.5 m of light grey, 

amygdaloidal basalt with abundant (10%) plagioclase phenocrysts (up to 1.5 cm). 

Amygdales are teardrop shaped with tails and are aligned across the core along with 

small (up to 4 mm) lenses of glassy material and clay filled veins (max. 2 cm wide). A 

sediment fracture 10 cm long cuts into the basalt at the top of the core. The sediment is 

a fine to medium grained reddish brown sandstone. 
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3.5.2.2 Interpretation 

 

The presence of fossils and palynoflora in the sedimentary sequence within the 

213/26-1z core is indicative of a sub-tidal, estuarine environment seen in the Rosebank 

area at this time. 

  The alternation of amygdaloidal basalt with dense basalt seen throughout the 

cores represents alternations between pāhoehoe lava cores and crusts. As lava lobes 

inflate more vesiculated regions develop on the base and top of the flow (cf. Self et al., 

1998; Passey and Bell 2007). 

The nature of the sediment-lava interaction in the 213/26-1 and 213/26-1z cores 

is different. There are no thermal effects seen within the lava clasts in the 213/26-1z 

core which suggests that they were emplaced cold. This lava breccia could represent 

reworking of the cooled lava surface during a period of volcanic quiescence.  

This contrasts with the contacts seen in the 213/26-1 core. At the base of the 

lava, minor chilled margins imply hot emplacement however no thermal effects are seen 

in the sediment. Pipe vesicles are seen at the base of the lava while veins cut down into 

the sediment; however, the lava does not disrupt sedimentary structures. Therefore, the 

lava was emplaced passively, infilling the topography of the underlying sediment. 

Amygdales nearer to the contact are filled by clays derived from the glassy chilled 

margin. 

Interaction between the sediment and the top of the lava is peperitic. Fluidal 

basalt clast shapes with chilled margins locally disturb sedimentary structures, implying 

significant heat retention on deposition. Multiple faulting and vein forming events are 

evident, with relative displacement of veins. 
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Figure 3.20 : Log of the 213/26-1z Colsay 3 core. 
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Figure 3.21: Base of Colsay 3 core log in well 213/26-1 
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Figure 3.22: Colsay 3 core, well 213/26-1 
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Figure 3.23: Top of Colsay 3 core, 213/26-1 well. 
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3.5.3 Colsay 2 

3.5.3.1 Lithofacies description  

 

The lithofacies present within Colsay 2 were determined using petrophysical data from 

wireline logs, sidewall cores (Siggerud, 2008 and Bell, 2008) and by examining core 

from Well 205/1-1.  

The sedimentary rocks within the Colsay 2 unit are mainly moderately to poorly 

sorted, sub rounded to angular claystones and siltstones. A thin fine-grained, micaceous, 

bioturbated sublithic arenite occurs in well 213/27-1z. Volcanic lithofacies comprise 

basalt lava flows and volcaniclastic claystones and siltstones that resemble those 

described in Section 3.5.2.1.  

The base of the 205/1-1 core comprises volcaniclastic claystone that has been 

heavily altered by calcite veins. Overlying this is a non-vesicular micro-crystalline 

basalt lava with rare (max. 5 cm) patches of coarser-crystalline basalt. Calcite veining is 

confined to the base of the lava. Overlying this is an amygdaloidal basalt similar to 

those described Section 3.5.2.1.   

3.5.3.2 Interpretation 

 

 The absence of large sandstone units suggests that the emplacement of the lava 

flows diverted the fluvial channels seen in Colsay 3. Siltstone and claystone beds 

represent flood plain deposits. Volcaniclastic rocks may represent paleosols, while thin 

sandstones suggest that small rivers are present within the volcanic-dominated 

landscape.  

 

3.5.4 Colsay 1 

3.5.4.1 Lithofacies description 

 

The Colsay 1 interval was cored in the 213/26-1, 213/26-1z and 213/27-2 wells. The 

213/26-1 and 1z cores are described by Siggerud (2008) as being angular to well 

rounded fine sand to coarse granule grade sublithic arenites and conglomerates and fine 

grained laminated mudstones. Abundant sedimentary features such as ripple marks and 
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fining upwards sequences are also found.  The core taken in well 213/27-2 is volcanic 

and is shown on Figure 3.24.  

 

Well 213/27-2 Core 

 

At the base of the core is dark grey, massive, non-vesicular aphyric basalt. Overlying 

this is an area of lava and sediment mixing. The sediment is a dark brown, immature, 

granular, volcaniclastic lithic wacke. It is typically fine - medium grained, moderately 

sorted, with sub-angular to rounded grains with moderate sphericity. In places it is 

matrix supported with a very fine grained muddy matrix. The interaction between the 

two rocks is complex with a variety of peperitic textures developed, including fluidal 

basalt clasts with chilled margins and blocky jigsaw fit clasts where chilled margins are 

not extensively developed. Both textures seem to coexist only centimetres apart. 

 Overlying the peperitic zone is grey fine grained amygdaloidal basalt. This 

basalt resembles that described above with a mixture of calcite- and clay-filled 

amygdales. Several small clay- and calcite-filled fractures at two orientations (vertically 

down and at 45°) cross cut the core.  

 The contact between this basalt and the overlaying dark grey/ brown, fine-

medium grained, matrix supported volcaniclastic lithic wacke is similar to those 

described in the 213/26-1 Colsay 3 core. The grain size ranges from µ125- µ375 with 

occasional larger clasts up to 2 mm while the matrix is fine grained brown clay. Grains 

are poorly sorted, locally very heterogeneous and are angular to sub rounded with low 

sphericity. Lenses of darker finer grained muddy material up to 6 cm long and rare 

lenses of coarser grained material are intermingled with the wacke. 

 This unit grades into approximately 1.8 m of very fine grained grey, black lithic 

wacke and extremely altered basalt. The core here is very difficult to interpret. Areas of 

basalt are often only recognisable by areas of amygdales with clast boundaries being 

indistinguishable.  
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Figure 3.24: Colsay 1 core, 213/27-2 well. 
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3.5.4.2 Interpretation 

 

Colsay 1 is interpreted as predominantly fluvial channel sandstones and overbank 

mudstones (Siggerud, 2008). The lack of shoreface and deltaic lithofacies indicates that 

the Flett Delta had migrated northwards. 

Volcanic rocks in 213/27-2 can be interpreted in a similar way to those in 

213/26-1 in Colsay 3. The aphyric lava represents the core while the amyalgdaloidal 

basalt represents the flow crust. Fractures filled with sediment cross cut the core leading 

to peperitic textures being developed.  

 The difficult to interpret volcanic – sedimentary unit at the top of the 213/27-2 

core is interpreted to be a peperite comprising a mixture of basaltic material and very 

fine grained volcaniclastic mudstones. The small grain size however, and intense 

alteration makes interpretation at hand specimen level difficult. Peperites are not usually 

found at the top of lava flows as is discussed in Section 5.4.2. 

 

3.6 Conclusions 

 

The Rosebank Field lies at the orthogonal heart of two competing systems. Volcanic 

rocks in the form of basalt lava flows and volcaniclastic rocks dominantly enter the 

basin from the north-west, but also minor quantities may come from volcanic centres to 

the south east. These volcanic rocks directly compete with siliciclastic sediments 

sourced from a fluvial-deltaic system that progrades into the basin from the south-east. 

During periods of quiescence the volcanic activity wanes and the siliciclastic regime is 

re-established. The result is a complex stratigraphy that switches from volcanic to 

sedimentary and back again. As the lavas flow into the basin the evolving topography 

alters the drainage system, cutting off and diverting the siliciclastic system out of the 

area.  

 The reservoir quality of the rocks varies not only vertically through the 

stratigraphy, but also laterally across the field. High quality reservoir rocks with 

porosity on average of 20% can be found towards the north of the field during Colsay 3 

times. However, by Colsay 1 times the system has reversed with the good quality 

reservoir rocks occurring in the southern part of the field. 
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3.7 Next steps 

 

Thin section and sample plugs were taken from the core in order to characterise the 

petrography and analyse the paragenesis. Samples crossing contacts between the 

igneous and sedimentary rocks were also taken in order to better understand the 

interplay between the two competing systems. A field analogue has been used in order 

to better understand the facies architecture and field relationships that cannot be 

established when looking solely at the core.  

3.8 Further work 

 

Further work could be undertaken to correlate the lithofacies seen within these cores 

across the full Rosebank field area. A new ocean bottom seismic data (OBS) set have 

been acquired in the last year that will provide further precision in the mapping of 

lithofacies (e.g. identifying fluvial channel directions). Formation micro-imager (FMI) 

data could also be better linked to the wireline and core data, using the method outlined 

in Watton (2013) in order to better interpret the relationship between the volcanic and 

siliciclastic rocks.   
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4 Sedimentation of vent proximal pyroclastic and 

volcaniclastic deposits: Staffa Formation, Mull 

 

The amount of rock samples from the Rosebank core is extremely limited leading to 

difficulties in understanding the lithofacies architecture especially when examining the 

igneous sedimentary contacts. An onshore analogue was chosen in order to try and 

understand the lithofacies relationships in a spatial context. The following chapter 

presents findings from fieldwork carried out on the Staffa Formation in the south-west 

of Mull.  

 

4.1 Introduction to the BPIP 
 

The British-Irish Palaeogene Igneous Province (BPIP) consists of a series of flood 

basalt provinces and associated rocks emplaced across northern Ireland and the west 

coast of Scotland (Figure 4.1). It is part of the North Atlantic Igneous Province (NAIP), 

which extends for a minimum of 1.3×10
6
 km

2
 (Eldholm and Grue, 1994) and includes 

the Rosebank Field. The igneous activity is associated with ocean-floor spreading in the 

north east Atlantic Ocean (Naylor et al., 1999), with the onset of volcanism at 

approximately 62 Ma (White and Lovell, 1997). The BPIP comprises three flood basalt 

lava fields in Scotland (the Skye, Eigg and Mull Lava fields; Figure 4.2), and the 

Antrim Lava Field in Northern Ireland, as well as a number of intrusive centres (Skye, 

Rum, Ardnamurchan, Mull and Arran) in Scotland (Figure 4.2), and (Carlingford, 

Mourne Mountains and Slieve Gullion) Ireland. Interbedded with the flood basalt lava 

fields are pyroclastic and sedimentary rocks that form the focus of this study. 
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Figure 4.1: Map of the North Atlantic Igneous Provenance highlighting the igneous centres of British-

Irish Palaeogene Igneous Province and the igneous centres in the Faroe-Shetland Basin. The extent of the 

flood basalts in the Faroe-Shetland Basin is also mapped. Map created using data from Bell and 

Williamson (2002), Ritchie and Hitchen (1996) and Wright (2013).  
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4.2 Introduction to the Isle of Mull  
 

At approximately 940 km
2
 the Isle of Mull’s igneous centre (located off the west coast 

of Scotland) is one of the largest within the BPIP (Chambers and Pringle, 2001). The 

oldest rocks, the Neoproterozoic Moine basement, crop out on the Ross of Mull and 

comprise biotite schists and psammites that were metamorphosed during the Caledonian 

Orogeny. The basement rocks are intruded by Devonian granite (414 ± 3 Ma) 

surrounded by a well defined contact metamorphic aureole (Potts et al., 1995).  

These rocks are confined to the south west of Mull and are separated from the rest 

of the island by the NW–SE trending Assapol Fault (Holdsworth et al., 1987). To the 

east of this fault lie Jurassic and Cretaceous sandstones and limestones. These are 

overlain by the Palaeogene volcanic rocks that crop out over most of the island. The 

volcanic rocks have been extensively studied (Bailey et al., 1924; Bailey and Anderson, 

1925; Beckinsale et al., 1978; Morrison et al., 1980, 1985; Thompson et al., 1986; Kerr, 

1995a, 1995b, 1997, 1998; Kerr et al., 1999 and Williamson and Bell, 2012). A ~2 km 

thick pile of fissure-fed lava flows (the Staffa and Plateau formations) were erupted 60.5 

± 0.5 Ma (Chambers and Pringle, 2001) before being intruded by three igneous centres. 

A geological map of the island can be seen in Figure 4.3. 

 

 

 
Figure 4.2:  Map showing the Palaeogene central complexes and lava fields in NW Scotland. Redrawn 

from Brown et al., (2009). 
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4.3 The Staffa Lava Formation 
 

The Staffa Formation crops out in the southwest of Mull (Figure 4.5). It comprises a 

~275 m thick sequence of basalt lava flows interbedded with subordinate volcaniclastic 

and sedimentary rocks (Williamson and Bell., 2012). The formation is structurally 

bound to the west by the Assapol Fault, which separates it from the Moine basement 

rocks to the southwest. In the northeast it is bound by the Allt na Leacainn–Carraig 

Mhòr Fault. The formation unconformably overlies pre-Palaeogene Cretaceous and 

Jurassic rocks and is capped by the chemically and visually distinct lavas of the Mull 

Plateau Lava Formation. The Staffa Formation has been sub-divided into a genetic 

sequence of lavas and interbedded sedimentary rocks (Williamson and Bell, 2012). The 

sequences define extensive discontinuity surfaces rather than individual lithologies; 

packages of rocks of differing facies are grouped together. Each sequence contains a 

sedimentary unit overlain by volcanic strata. The sequence runs from GS-A1 to GS-A7, 

where A1 is the oldest package of rocks (Figure 4.4). The lavas and interbedded units 

have also been correlated across the island using palynological data (Jolley et al., 2009) 

and geochemistry (Kerr et al., 1999). Approximately 1.6km of basalt has been eroded 

off the top of the Mull Lava rocks (Holford et al, 2010) resulting in a minimum burial 

depth of ~2km.  

 
Figure 4.3. Geological map of Mull and surrounding islands. Edited from EDINA DigiMap with 

reference to Williamson and Bell (2012). 
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Figure 4.4. Genetic Sequences modified from Williamson and Bell (2012).  
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4.4 Lithofacies descriptions and interpretations 
 

Nineteen lithofacies were identified from five locations within the Staffa Formation. 

These lithofacies are summarised in Table 4.1. The lithofacies descriptions are later 

combined with petrographical descriptions to quantitatively characterise the 

volcaniclastic rocks of the Staffa Formation. The following section builds on work by 

Williamson and Bell (2012). All lithofacies descriptions and interpretations have been 

directly made by the author with reference to the previous body of work, unless 

otherwise stated. 

 

4.4.1 Basalt lava (L) 

 

Several different basaltic lithofacies are observed on Mull but these have been grouped 

together for simplicity. Two phase (colonnade and entabular) basalt flows are most 

common (Plate 4.1.A) but pillows, hyaloclastite and more rubbly brecciated facies can 

also be found. Lavas are typically finely crystalline, with plagioclase and pyroxene. The 

predominantly tholeiitic basaltic lavas are classed as a geochemically defined group 

named the Staffa Magma sub-Type (SMsT) (Kerr, 1995; 1998). Towards the top of the 

 
Figure 4.5. Map of the south-west of Mull. The Staffa Formation outcrops at the 6 locations named on the 

map. Edited from EDINA DigiMap with reference to Williamson and Bell (2012). 
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Staffa Formation the basaltic facies become more evolved. Basaltic hawaiite pāhoehoe 

lava flows are present at a number of locations (Beckinsale et al,. 1978).  

The basaltic lava flows range in size from ~2 m to a ~80 m ponded flow at 

Carsaig (NM 493 186). The colonnade part at the base of the flow, is often obscured by 

the sea at sample locations. Regular spaced columns of varying sizes are often at sub-

vertical angles. The upper entablature part of the flows are a chaotic mass of smaller-

spaced columns; however, locally, these become more regular again in the upper 

colonnade.  

Rubbly, chaotic basaltic lava (Plate 4.1.B), composed of weathered vesiculated 

lava clasts (up to 15 cm in diameter) is found in a number of locations. These rounded 

basalt clasts are highly altered and are set within a more coherent crystalline, lava 

matrix. Patches of clay are inferred to be completely altered lava clasts. More coherent 

lava blocks are punctuated with areas of isolated elongate and strung out vesicles that do 

not display a dominant orientation.  
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Large 50 cm pillow lavas originally described by Geikie (1888), and chaotic, 

brecciated lithofacies also exist in several places, with internal chilled margins 

highlighting lava lobes or lava tubes (Williamson and Bell, 2012).  

 The multi-tiered lava flows found within the Staffa Formation are interpreted to 

be pāhoehoe lavas that have been ingressed by water. The presence of pillows in places 

also suggests that the lavas have been erupted into a terrain filled with localised bodies 

of water (Lyle, 2000; Williamson and Bell, 2012).   

Lithofacies name Facies code Location of outcrop 

Genetic sequence 

(Williamson and 

Bell, 2012) 

Plate 

Basalt lava L All locations GS1-GS7 4.1 

Peperite P 
Biod Buidhe, 

Carraig Mhòr 
GS5 4.1 

Clastogenic lava cL 
Carsaig Arches, 

Ladder 
GS2, GS6 4.1 

Basaltic tuff T Carsaig Arches GS2 4.1 

Massive scoria-rich 

breccia  
mscBr 

Carsaig Arches, 

MacCulloch’s Tree 
GS2, GS5 4.2 

Massive scoria rich 

tuff 
mscT 

Carsaig Arches, 

MacCulloch’s Tree, 

Ladder 

GS2, GS5, GS6 4.2 

Scoria rich 

volcaniclastic 

breccias 

scvBr 
MacCulloch’s Tree, 

Ladder 
GS5, GS6 4.3 

Volcaniclastic 

siltstone 
vS MacCulloch’s Tree GS5 4.3 

Massive clast-

supported 

volcaniclastic 

breccias 

mcvBr Carsaig Arches GS2 4.3 

Massive matrix-

supported 

volcaniclastic 

breccia  

mmvBr Carsaig Arches GS2 4.3 

Volcaniclastic lithic 

wacke 
vlW Carsaig Arches GS2 4.3 

Conglomerate C Ardtun GS5 4.3 

Volcaniclastic lithic 

arenite 
vlA Ardtun GS5 4.4 

Sublithic arenite slA Carsaig Arches GS2 4.4 

Flint dominated 

conglomerate 
fC Carsaig Arches GS2 4.4 

Organic rich 

Mudstone 
M All locations GS1-GS7 4.4 

Coal Co 

Carsaig Arches, 

MacCulloch’s Tree, 

Ardtun 

GS2, 4.4 

Quartz arenite Q Carsaig Arches GS2 4.4 

Dolerite D All locations GS1-GS7 4.1 

Table 4.1: Table of Staffa Formation lithofacies, abbreviations and locations. Links to Williamson and 

Bell, 2012 GS scheme. Links to chapter figures. 
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4.4.2 Peperite (P) 

 

This lithofacies is composed of a mixture of dark grey, black fine grained siltstone and 

finely crystalline basalt lava fragments (Plate 4.1.C). The basalt clasts contain 

plagioclase phenocrysts (up to 5 mm in diameter) and are green due to clay alteration. 

Chilled margins and fluidal textures indicate the clasts are juvenile. The siltstone has 

faint laminations, which are locally disturbed by the basalt. Both blocky and fluidal 

peperite textures are present. These peperites are exclusively found at the bases of lava 

flows. 

The presence of both fluidal and blocky peperite suggests complex intermixing 

between the lava and the underlying siltstone. The highly altered nature of the juvenile 

basalt clasts suggests alteration by fluids. The locally disturbed sediment also indicates 

a degree of fluidsation implying that the sediment was sufficiently wet when intruded 

(cf. Kokelaar, 1982). 

 

4.4.3 Clastogenic lava (cL) 

 

This facies comprises crystalline basalt lava with irregular zones of agglutinated 

vesicular spatter clasts. The dark grey, finely crystalline lava contains rare plagioclase 

phenocrysts (2 cm) and is devoid of structures or vesicles. Agglutinated zones reach 2 m 

in diameter and have irregular shapes. These zones are distributed throughout the facies 

but occur more commonly towards the top of the outcrops. Within these zones the 

outlines of spatter clasts are barely visible. Spatter clasts range in size, from 5 cm-30 cm 

long. The densely welded spatter shapes are irregular and are predominantly flattened 

horizontally throughout the zones. Vesicles are elongate and deformed, particularly at 

the edges of the agglutinated zones. In places the edges of the zones are irresolvable and 

appear to blend into the surrounding crystalline basalt lava (Plate 4.1.D).  The 

clastogenic lavas are typically found in locations interpreted as vent proximal and reach 

a maximum thickness of around 5 m. 
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Plate 4.1 Volcanic lithofacies. A. Multi-tiered (colonnade (C) and entablature (E)) basalt lava flow, Isle of Staffa. Photo is 12 m across.  B. Rubbly, chaotic basaltic lava, 

Ardtun, pen for scale. C. Blocky peperite, lava clasts (L) in a silt matrix (S), Biod Buidhe. D. Clastogenic lava (cL), The Ladder, 50p coin for scale. E. Basaltic tuff (T), 

Carsaig Arches, finger for scale. F. Dolerite sill (D) intruding between volcaniclastic lithic wacke (vlW) and basalt lava (L), Carsaig Arches, view to the east, person for 

scale. 
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 This lithofacies is interpreted as the product of fountain-fed lava flows. High 

accumulation rates from lava fountains result in minimal radiative and convective 

cooling and can produce welded or agglutinated spatter deposits (cf. Walker, 1973). 

Accumulation rates of 20 cm/min can lead to densely welded spatter (Sparks and 

Wright, 1979; Sumner, 1998). Larger clasts cool at slower rates resulting in more 

welding and clastogenic textures (Thomas and Sparks, 1992). Two methods of 

clastogenic lava formation are envisioned by Sumner (1998). The first is simply an 

increase in accumulation rates under a lava fountain, and the second corresponds with 

the waning of the spatter column allowing spatter blocks to be carried or rafted upon an 

agglutinated layer below. Patches of more distinct spatter towards the top of the lava 

flow may represent rafted blocks; however, the Staffa Formation clastogenic lavas are 

not rubbly and there is little evidence for rotational slumping or failure as described by 

Sumner (1998). 

 

4.4.4 Basaltic tuff (T) 

 

This lithofacies comprises grey, poorly sorted, crystal-rich tuff (Plate 4.1.E) composed 

of fine-grained basaltic ash, minor quartz crystals (<5%), and fine (<5 mm in diameter.) 

basaltic scoria lapilli. The tuff displays faint milimetre scale laminations. This facies is 

only found in one location and forms a small 30 cm wide, laterally discontinuous unit.  

The tuff is interpreted to be a fall deposit and is thought to represent a waning in 

the explosive activity.  

 

4.4.5 Massive scoria-rich breccia (mscBr) 

 

This lithofacies is composed of irregular rag-shaped basaltic spatter clasts that reach 30 

cm in diameter, set in a matrix of palagonitised scoria clasts (1–2 cm diameter). Larger 

spatter clasts are mostly elongate and stand prominent from the exposure. They are 

highly vesicular with elongate, deformed vesicles and irregular fluidal edges (Plate 

4.2.A). Alteration rims (possibly thin chilled margins) are present on some larger spatter 

clasts. Basaltic bombs up to 80 cm in diameter are found throughout the facies (Plate 

4.2.B). These are commonly more spherical than the spatter clasts with more distinct, 

less fluidal edges. Typically, they have a finely crystalline groundmass and are less 

vesicular (Plate 4.2.C). Poorly-defined impact sags are present below some bombs. 
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There is no preferred orientation of the bombs but they typically occur in horizons with 

abundant large spatter clasts. The breccia is generally poorly sorted, clast-supported and 

massive, but locally exhibits diffuse bedding defined by layers of large spatter clasts 

and scattered bombs up to several metres thick, intercalated with layers of scoria lapilli. 

The larger spatter clasts exhibit a weak horizontal alignment of long axes within the 

finer scoriaceous matrix. Layering is sub-horizontal and mantles underlying topography. 

Lenses (up to 1 m long) of more rounded, scoria and rare quartz, are seen towards the 

top of the unit. This lithofacies is only found in vent proximal regions and is spatially 

associated with a number of other facies (mscT, scvBr and vS). The thickness of the 

lithofacies varies from the centimetre to decimetre scale. 

The breccia is interpreted as vent proximal basaltic pyroclastic deposits that may 

have formed part of a scoria cone. The fluidal spatter rags and bombs indicate 

deposition in a Hawaiian style vent proximal eruption (Valentine and Gregg, 2008). The 

presence of fluidal spatter clasts (Plate 4.2.D,E) indicate a significant retention of heat 

when deposited and large ballistic clasts suggest deposition close to the vent (cf. Kuno 

et al., 1964; Cas and Wright, 1987). Impact sags indicate that the large clasts were 

emplaced on ballistic trajectories. The breccias are primary in origin with small lenses 

of localised reworking and syn-rift faults. Bedding within the spatter is thought to 

represent different pulses of volcanic activity from the vent (cf. Cas and Wright, 1987). 

Variations can be seen in welding vertically through the facies units indicating pulses in 

volcanism and welding intensity (cf. Valentine and Gregg, 2008).  

 

4.4.6 Massive scoria-rich lapilli-tuff (mscT)  

 

This lithofacies is composed of massive, well-sorted basaltic scoria lapilli and ash. 

Scoria clasts range in diameter from 0.1 to 7 cm, are vesicular, have irregular shapes 

and some display a degree of horizontal flattening (Plate 4.2.F). Diffuse bedding is 

defined by parallel layers of slightly coarser-grained scoria lapilli and blocks. Welding 

degrees vary but weakly welded deposits are most common, which tend to mantle the 

topography below. This lithofacies forms a laterally continuous unit associated with a 

number of other facies (mscBr, cL, scvBr and vS). Its thickness varies depending on 

location, but can reach 5 m. 

This lithofacies is interpreted as vent proximal pyroclastic fall deposits. 

Accumulation rate and temperature of the eruption will define the type of scoria cones 
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produced (Head and Wilson, 1989). Fast accumulation rates with colder clasts will 

result in non-welded scoria. However, fast accumulation of warmer clasts leads to more 

welded scoria and spatter accumulations (Fisher and Schminke, 1984).  

  

4.4.7 Scoria-rich volcaniclastic breccia (scvBr)  

 

Small lenses of fine to medium grained sub-angular, yellowish quartz grains and lithic 

clast dominated sandstone can be found within finer-grained spatter-rich layers. 

Reworked scoria and spatter clasts (max. 6 cm) are mixed thoroughly with the quartz 

and lithic clasts (Plate 4.3.A). The lenses are typically no wider than 1 m x 1 m and pass 

gradationally into the adjacent mscT. Syn- and post-eruptive reworking and deformation 

of pyroclasts are locally preserved in the form of small scale sumps and loading.  

Reworked spatter intervals indicate a break in volcanism, with angular, fractured 

quartz possibly sourced from the volcanic vent itself.  As the explosive nature of the 

vent rips blocks of county rock free from the fissure walls it incorporates this into the 

eruption. However, it is unclear why this quartz would only be found in small lenses. 

During periods of relative quiescence, sedimentary derived quartz may have blown 

across the volcanic terrain and into cracks and depressions within the scoria. This may 

explain why lenses of more silicic material are found surrounded by a predominantly 

basaltic primary volcanic lithology.  

 

4.4.8 Volcaniclastic siltstone (vS) 

 

This facies is a dark grey silt layer, similar to the scvBr facies (Plate 4.3.B). It is much 

darker in colour with distinct layers of well sorted small (3 cm max.) spatter clasts and 

scoria, which appears more rounded and therefore reworked. Black organic fragments 

up to 5 cm long (likely to be wood-like plant material) make up around 10% of this 

facies. In places the facies is weakly laminated and fines upwards. This lithofacies is 

laterally continuous and often forms a 5-30 cm thick layer beneath lava flows. 

The more continuous silty layers are often found towards the top of the scoria 

reworked horizons and sit below the basalt. These may also indicate a period of 

quiescence with fluvial/alluvial and lacustrine systems beginning to wane with the onset 

of the next phase of volcanism. 
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4.4.9 Massive clast-supported volcaniclastic breccia (mcvBr) 

 

This facies comprises massive clast-supported, poorly sorted basaltic breccia containing 

angular to sub-rounded weathered basaltic blocks, <1 m in diameter, set in a dark black 

and red clay-rich matrix (Plate 4.3.C). Many of the blocks exhibit zeolite- and/or 

calcite-filled amygdales and have onion-skin style weathering. Unlike the mmvBr 

(section 4.4.10), the matrix is dominated by volcanic clasts and palagonitised and 

altered ash. This lithofacies is laterally discontinuous, with the maximum exposure 

being approximately 2 m wide by 3 m thick. 

The mcvBr is interpreted as a debris flow due to the angular clasts within the 

deposit. The basaltic blocks are locally derived from the underlying and surrounding 

lava flows. The red nature of many clasts suggests a period of weathering. The lack of 

other clast types such as flint would suggest that the debris flow was a result of 

localised movement on a weathered basalt scarp and did not interact with the 

surrounding fluvial / alluvial system.  

 

4.4.10 Massive matrix-supported volcaniclastic breccia (mmvBr) 

 

This facies comprises poorly-sorted, matrix-supported, massive breccia with sub-

rounded to angular blocks of basalt and flint as large as 1 m across (Plate 4.3.D). Two 

populations of basalt clasts are present: (1) highly vesicular basalt with calcite-filled 

amygdales; and (2) non-vesicular, dense lava that resembles corestones with exfoliation 

red-weathered surfaces. Two populations of flint clasts are also present: (1) a 

fossiliferous lithology; and (2) a non-fossiliferous altered lithology. The matrix ranges 

from fine to coarse grained quartz wacke. Most units fine upwards, although some 

outcrops do display localised reverse grading. This lithofacies varies in thickness but is 

typically 30 cm – 2 m thick. 

The massive matrix-supported breccia is interpreted to be a debris flow. The 

large weathered basalt lava clasts are sourced from surrounding weathered lava flows. 

The laterally discontinuous nature of this lithofacies may result from a structural, fault 

bound localised control on deposition. 
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Plate 4.2. A. Massive scoria-rich breccia (mscBr).  B. Fluidal basaltic bomb. C. Blocky basaltic bomb. D. Fluidal spatter clast within palagonitised scoria-rich matrix. E. 

Random orientation of fluidal shaped spatter clasts. F. Massive scoria rich tuff (mscT). All photographs from MacCulloch’s Tree. Hammer head 12 cm long; tape 30cm long. 
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Plate 4.3. A. Scoria-rich 

volcaniclastic breccia (scvBr) 

with reworked rounded scoria 

pyroclasts (p and outlined), 

MacCulloch’s Tree, pencil in 

view 3 cm. B. Volcaniclastic 

siltstone (vS) with some scoria 

clasts (p), MacCulloch’s Tree.  

C. Massive clast-supported 

volcaniclastic breccia (mcvBr) 

underlying flint dominated 

conglomerate (fC), Pulpit Rock. 

D. Massive matrix-supported 

volcaniclastic breccia (mmvBr) 

with rounded basaltic clasts (B) 

and flint clasts (F). E. Massive 

volcaniclastic lithic wacke 

(vlW) fining upwards sequence 

from mmvBr at the base. F. 

Volcaniclastic lithic wacke 

(vlW) with rounded spatter and 

flint clasts. Fining upwards 

sequence. G. Volcaniclastic 

lithic wacke (vlW) with 

reworked spatter horizons (S). 

H. Volcaniclastic lithic arenite 

(vlA). I. Conglomerate 

dominated by flint clasts (F) and 

rare basalt (B), Ardtun. Images 

D-G taken east of Carsaig 

Arches. Hammer 30 cm shaft.  
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4.4.11 Volcaniclastic lithic wacke (vlW) 

 

This lithofacies comprises massive grey and green, medium to coarse grained poorly 

sorted volcaniclastic lithic wacke composed of angular grains of quartz, feldspar, 

pyroxene, basaltic scoria, palagonitised ash, two types of flint (described in Section 

4.4.10), calcareous sandstone / limestone and rare weathered basaltic lava, mica and 

glauconite. The clay-rich matrix gives the facies a distinctive green colour. Most units 

are normally graded and weakly laminated (Plate 4.3.E,F); however, rare coarsening 

upward sequences and sedimentary structures such as crossbedding and asymmetrical 

ripples are also present.  Spatter and scoria rich beds up to 10 cm thick are interbedded 

with the vlW. The spatter in these beds shows a weak alignment along the long axis and 

in places is imbricated (Plate 4.3.G). This lithofacies is one of the most common found 

within the field area. It is laterally continuous and is often closely associated with 

mmvBr (Section 4.4.10). Beds vary in thickness from <10 cm to ~3 m. 

These rocks are interpreted as alluvial fan deposits due to their poorly sorted and 

matrix supported nature (cf. Sohn et al., 1999). Scoria and spatter clasts have been 

locally reworked into horizons within these units.  

 

4.4.12 Volcaniclastic lithic arenite (vlA) 

 

These yellow-brown-grey lithic arenites are typically clast supported with rounded 

quartz and feldspar crystals, angular clasts of flint, scattered pebbles of heavily altered, 

red glassy vesicular basalt, and very rare schist clasts (Plate 4.3.H). Beds vary in 

competency due to the presence of a calcite cement and often form lenticular beds in 

surrounding conglomerates. Larger clasts are found towards the base of individual beds 

and truncate cross bedding in places. Fining upward sequences are prevalent. Most units 

contain cross bedding with Type 1 ripple drift cross laminations (cf. Walker, 1963), 

while other beds contain asymmetrical ripples associated with the cross bedding and 

rare coarsening upward sequences.  This lithofacies is laterally continuous and can be 

traced for several metres along the foreshore. Beds range from 10 cm to ~2 m in 

thickness and are associated with the conglomerate (section 4.4.13) and mudstone 

(section 4.4.16) facies. 

These rocks are interpreted as fluvial in origin due to the relatively mature 

nature of the sediment. The lenses represent channels, with normal and inverse grading 
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indicating waxing and waning of flow. Type 1 ripple drift cross lamination occurs when 

abandoned channels are filled, indicating an anastomosing braided stream system (cf. 

Walker, 1963). This interpretation is consistent with the presence of channels. Ripples 

can also be seen forming on the back of mid-channel dunes suggesting that the river 

system was relatively large and well established (cf. Frostick and Jones, 2002). The red 

colour and rounded nature of many of the basalt clasts suggests they were weathered 

from a lava flow before being incorporated within the sediment. More evolved lava 

clasts are also found and these are thought to be from Devonian lavas and not sourced 

from the underlying lithology (Bailey and Anderson, 1925; Williamson and Bell, 2012).  

 

4.4.13 Conglomerate (C) 

 

This lithofacies comprises clast supported conglomerate with sub-angular to rounded 

flint clasts (up to 10 cm in diameter), quartz and weathered basalt clasts set in a coarse-

grained sublithic arenite matrix (Plate 4.3.I). At least two populations of flint are present 

as before. Cross bedding is prevalent, and elongate 1 m lenses of medium to coarse 

grained sublithic arenite with abundant organic fragments are also present. Cross 

bedded foresets form shallow angles of approximately 10° and are no greater than 30 

cm in height. Larger conglomeratic layers scour into sandy units below and in places 

can be seen truncating cross bedding. Fining upwards sequences are prevalent.  Clasts 

are predominantly randomly orientated (Plate 4.4.A); however, weak imbrication can be 

seen in places, tentatively indicating palaeo-flow direction to the south-east. Similar to 

the vlA (Section 4.4.12), this lithofacies is laterally continuous with a maximum bed 

thickness of 2 m. 

The conglomerates are interpreted to be fluvial channel deposits. The rounded 

nature of the clasts suggest it is a mature deposit, while the low angle cross bedding 

foresets indicates that the conglomerate was deposited in a lower river regime (cf. 

Frostick and Jones, 2002).  The 30 cm maximum height of the foresets suggests a 

maximum water depth of ~75 cm (cf. van de Neut and Eriksson, 2009), while the 

presence of possible obstacle clasts suggests a perennial river system (Stuart Jones, 

pers. comm).  Waxing and waning energy as the braided river channel system moves 

would lead to the normal and reverse grading, and erosional surfaces.  
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4.4.14 Sublithic arenite (slA) 

 

This lithofacies comprises sublithic arenite composed of pale yellow to grey, coarse to 

medium grained, well-sorted, sub-rounded quartz with angular flint clasts and minor 

quantities (<5%) of feldspar grains (Plate 4.4.B). Fining upward sequences are common 

with fine (mm scale) asymmetric ripples. In places, the unit has faint bedding, and is 

often interbedded with finer organic-rich silty or muddy layers with occasional flaser 

bedding. Many of these layers are disturbed by dewatering textures. This lithofacies is 

localised and cannot be traced for more than a few metres, with a maximum thickness of 

~30 cm. 

The sublithic arenites are interpreted to be fluvio-deltaic deposits. The deposits 

are relatively mature, demonstrated by the lack of abundant feldspars, and are most 

likely derived from a source area lacking volcanic rocks. Flaser bedding can be found in 

fluvial settings often on point bars within the lower part of the rivers course (cf. Davis, 

1983; Bhattacharya, 1997; Martin, 2000). Dewatering structures may be due to 

liquefaction but are most likely to be due to the loading of the lava flows above. 

 

4.4.15 Flint-dominated conglomerate (fC) 

 

This lithofacies comprises well sorted, massive, clast-supported cross-bedded 

conglomerate composed almost exclusively of flint clasts up to 40 cm in diameter (Plate 

4.4.C).  The matrix comprises coarse sand to pebble grade flakes of flint, minor 

amounts of quartz and rare feldspar crystals. Flint clasts are sub rounded to sub angular 

and of high to medium sphericity. No imbrication is present although a weak alignment 

of more elongate clasts can be seen in some beds. Clasts are weathered, many are 

fractured at grain contacts, and some are cross-cut by calcite veins that do not extend 

into the surrounding sediment. Cross bed foresets reach over 1 m in height and indicate 

transport to the southeast. Fining upward sequences are prevalent with coarser 

conglomeratic layers often pinching out against medium to coarse-grained flint 

dominated arenite layers. This lithofacies is only found at one location within the field 

area, with a maximum thickness of 4 m. 

Two populations of flint are present within the monolithic congolmerates 

indicating that initial reworking occurred before being deposited. Although well sorted, 
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clasts are angular and so transportation distances are thought to be low. The large cross-

bedding foresets indicate a maximum water depth of around 2.5 m. The deposit may be 

a large fluvial channel; however, no evidence such as obstacle clasts, could be found 

indicating a perennial river system and is therefore thought to be deposited by a 

hyperconcentrated flow regime. This is in agreement with Williamson and Bell’s (2012) 

interpretation that the conglomerate is a proximal fan deposit. 

 

4.4.16 Organic-rich mudstone (M) 

 

This lithofacies comprises grey to very dark grey/black, fine grained, fissile mudstone 

(Plate 4.4.D) with fine parallel laminations and abundant organic matter. A wide range 

of fossil plants and pollen are found within the mudstones (Boulter and Kvacek, 1989; 

Cleal et al, 2001; Jolley et al., 2009). This lithofacies is common throughout the field 

area; however it is limited to thin layers (typically less than 30 cm thick) and often 

occurs underneath lava flows. 

The mudstones are thought to be low energy, terrestrial, floodplain overbank 

deposits, which is consistent with the latest interpretation in Williamson and Bell 

(2012). The abundant fossils found within these deposits indicate a swampy or 

lacustrine environment, with a mature forest located nearby (Jolley et al., 2009).  

 

4.4.17 Coal (Co) 

 

This lithofacies comprises thin beds (max. 10 cm thick) of very dark grey/black coal 

(Plate 4.4.E). Units are weakly bedded, occasionally fissile and are often located 

beneath lava flows. These coals may have been further matured due to heat of the above 

lava. This lithofacies is commonly seen at the interface between lava flows and 

underlying sedimentary or pyroclastic sequences. It is typically a laterally continuous 

unit, with lenses ~ 20 m across.  

 

4.4.18 Quartz arenite (Q) 

 

This lithofacies comprises pale yellow, fine to medium grained siliciclastic sandstone 

composed almost entirely of quartz with very rare feldspar and flint clasts, and devoid 

of volcanic lithoclasts (Plate 4.4.F). Quartz grains are sub-rounded to rounded and well 
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sorted. The facies is poorly lithified, with no obvious sedimentary structures; however, 

in places there is a quartz cement giving an almost nodular appearance to the sandstone. 

This lithofacies is only exposed at one locality on the Carsaig foreshore. It sits towards 

the top of a sedimentary package and reaches a maximum of 30 cm in thickness.  

 The mature nature of the quartz arenite suggests deposition in a well established 

fluvial regime, with the lack of feldspar and clast roundness suggesting large transport 

distances relative to the more immature volcaniclastic sandstones.  

 

4.4.19 Dolerite (D) 

 

Shallow, finely crystalline dolerite intrusions are present within the Staffa Formation 

(Plate 4.1.F) (Bailey et al., 1924; Preston et al., 1998).  They vary in thickness from a 

few cm to several metres, with plagioclase phenocrysts up to 2 cm long. They exhibit 

chilled margins and some have disturbed the adjacent sedimentary structures. Straight, 

undulating, fluidal and peperitic texture contacts are found.  

The intrusions often exploit the lava / sediment interface. For example, at the 

Carsaig Arches (NM49798 18549) a sill intrudes between the top of the volcaniclastic 

sediment and the base of the lava above. However, this is not always the case; at Ardtun 

(NM 3773 2479) the sill initially intrudes into the sedimentary sequence, but then ramps 

upwards into the overlying lava, presumably following an original line of weakness 

such as a fault.  
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Plate 4.4. A. Conglomerate with randomly orientated clasts of flint (F) and basalt (B), Ardtun. B. Sublithicarenite (slA). C. Flint (F) dominated conglomerate (fC), Pulpit 

Rock, Walking stick in view 20cm. D. Organic rich Mudstone (M). E. Coal (Co) overlaying volcaniclastic siltstone (vS) at the base of a lava flow (L), MacCulloch’s Tree. F. 

Cross bedding in quartz arenite, Carsaig Arches. Photographs A,B, D and E, taken at Ardtun.   
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4.5 Field Locations 
 

Five field locations were chosen to examine the Staffa Formation in detail. Locations 

were chosen due to their accessibility and to allow the study of how the lithofacies 

interact laterally and vertically along the sediment interbeds to be undertaken.  

  

4.5.1 Carsaig Arches – Pulpit Rock  

 

The Carsaig Arches to Pulpit Rock (NM 49209 18557 – NM 50192 18816) sedimentary 

and pyroclastic sequence crops out on the south-west coast of Mull, to the west of 

Carsaig Bay (Figure 4.6). This complex sequence of sedimentary and pyroclastic rocks 

can be traced for one kilometre along the coast allowing vent proximal to vent distal 

rocks to be studied as summarised in logs 1-12 (Figures 4.6; 4.7). The sequence is 

assigned to the GS-A2 sedimentary unit in Williamson and Bell (2012).  

 At the Carsaig Arches (NM 49209 18557) the lowermost unit within the clastic 

sequence is a massive scoria-rich breccia (mscBr). In places this is overlain by an 

almost 4 m thick section of densely welded spatter and clastogenic lava (cL). The 

spatter units grade both vertically and horizontally into a massive volcaniclastic lithic 

wacke (vlW). Spatter- and scoria-rich beds up to 10 cm thick are interbedded with the 

wackes. Locally overlying this unit is a ~2 m thick matrix-supported volcaniclastic 

breccia (mmvBr). The breccia unit grades up into a series of vlW beds which vary in 

thickness along the sedimentary sequence. A small, max 10 cm, tuffacous unit (T) can 

be found at Carsaig Arches.  

Towards the eastern end of the outcrop the vlW beds pass upwards into a fine 

grained mudstone (M) which in turn is overlain by a thin, coal (Co). Above this unit is a 

pale yellow quartz arenite (Q), which stands out from the volcanic dominated 

succession below. Overlying this unit is another bed of dark, fissile mudstone (M).  

 Further, east at Pulpit Rock the clastic succession comprises a basal massive 

clast-supported volcaniclastic breccia (mcvBr), which overlies the weathered rubbly 

flow top of a pahoehoe lava, distinguished by a reddened weathering surface. Overlying 

the breccia is a clast-supported cross-bedded flint conglomerate (fC) that fines upwards 

into a poorly consolidated sublithic arenite (slA). The whole sedimentary sequence is 

cut by a number of dolerite (D) sills and dykes. The best example of this is at Carsaig 

Arches itself (NM49796 18549).  
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The sedimentary and pyroclastic rocks found at Carsaig are interpreted as a vent 

proximal to vent distal sequence (Figure 4.6 log 5 to12). Although no vents are 

preserved on Mull the primary deposits such as the massive scoria-rich breccias indicate 

a close proximity to a fissure. Syn- and post-eruptive reworking of these deposits 

indicate breaks in volcanism.  

The fining upwards sequence from the mmvBr to the vlW could represent 

switches between debris and hyperconcentrated flow deposits (cf. Lirer et al., 2001) 

common in alluvial fan settings (cf. Sohn et al., 1999) but may also be a result of 

localised flooding events (Williamson and Bell, 2012). Layers of spatter included in the 

volcaniclastic lithic wacke may represent periodic increases in explosive activity at the 

fissure, reflecting a switch of source area from volcanic spatter-rich to poor or may 

simply reflect an increase in channel energy. Cross-bedding within the volcaniclastic 

sandstones yield palaeoflow directions towards the south east (Williamson and Bell, 

2012). The yellow quartz arenite is devoid of volcanic material despite sitting at the top 

of a volcaniclastic rock package. This indicates that the fluvial system had re-

established itself over the volcanic terrain and the provenance has switched to a more 

distal location. The mudstone beds may represent overbank deposits and highlight the 

switch from a volcanic-dominated provenance to a more siliciclastic one. The massive 

matrix-supported breccias seen at the Pulpit Rock are interpreted as a debris flow 

deposit, linked to localised tectonic activity. The flint conglomerate that overlies this 

breccia is completely devoid of volcanic material. The switch from one regime to the 

next is sharp indicating a sudden and total change in provenance The historically 

tectonic nature of the graben could potentially have exposed chalk and flint escarpments 

that would provide sudden influxes of siliciclastic material into the system, allowing for 

the switching of source regions (Williamson and Bell, 2012). 
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Figure  4.6. Schematic logs taken at the Carsaig Arches to Pulpit rock section. Logs 1 to 6 are shown with their locations on the map. Note the scale differs on each log.  More vent proximal volcaniclastic rocks such as spatter rich rocks and 

clastogenic lavas are found towards the Carsaig Arches. Lithofacies codes match those in Table 4.1.  
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Figure  4.7. Continuation of Figure 4.6. chematic logs taken at the Carsaig Arches to Pulpit rock section. Logs 7 to 12 are shown with their locations on the map. Note the scale differs on each log.  There are no primary pyroclastic rocks within this 

section. Spatter and scoria are reworked and mixed with sillicilastic components such as quartz and flint. Towards the Pulpit rock the volcaniciclastic rocks pinch out and sillicilastic rocks begin to dominate. 
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4.5.2 MacCulloch’s Tree 

 

The MacCulloch’s Tree outcrop is found at the south-west end of the area called the 

Wilderness on Mull (NM 4025 2785) (Figures 4,3; 4.8). The outcrop consists of a large 

wave cut platform, which can only be seen in full at very low tides and the associated 

cliff section. The outcrop is named after a large tree mould in a lava flow at the base of 

the cliff. The sequence is part of the GS-A5 sedimentary and GS-V5 volcanic units 

(Williamson and Bell, 2012).  

The basal unit comprises a thick succession of basaltic spatter and scoria-rich 

pyroclastic breccias (mscBr). Thin lenses of scoria-rich volcaniclastic breccia (scvBr) 

can be found towards the top of the spatter unit within finer-grained spatter-rich layers. 

These lenses are up to 1 m wide and 30 cm thick and pass gradationally into the 

adjacent mscBr facies. Locally, towards the top of the spatter unit a 1 m by 40 cm lens 

of reworked vS can be found although this was only apparent during one field session as 

it is often masked by the boulder field. The mscBr fines upwards and passes into a 

distinct more continuous layer (max. 30 cm thick) of scvBr. Williamson and Bell 

(2012), noted the presence of cross bedding and other sedimentary structures, which 

they cited as evidence of reworking; however, these features were not observed in the 

present study. The mscBr in turn grades into a thin (5 cm thick max.) highly organic 

rich coal layer (Co), which is, in turn, overlain by the lava flow (L) which contains the 

famous MacCulloch’s Tree. The contact between the Co and the overlying lava flow is 

sharp with no evidence of peperitic textures; in places however, the lava does load the 

sediment with small scale (5 cm) dish-and-pillar structures. The nature of the lava flow 

is complex and changes considerably over a few metres. In places the lava flow directly 

above the organic layer is columnar-jointed while further to the east it forms pillows. 

The nature of the sediment-lava contact will be discussed in the contact section (Section 

4.8).  

In one location, to the west of the MacCulloch’s Tree the Co unit is missing and 

instead the unit is capped by a 2 m thick steeply-dipping spatter dome. The relatively 

fresh unaltered nature of this spatter contrasts with the surrounding deposits. Above the 

high tide mark it has been spared erosion from wave action; however, the high porosity 

preserved differs from similar deposits elsewhere on Mull. Similar textures are evident 

in the much younger deposits of the Columbia River (pers. comm. Richard Brown). The 

overlying lava flow appears to chill against the dome as it mantles the topography. The 
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lava at this location is chaotic and brecciated with several internal chilled margins 

highlighting lava lobes or lava tubes (Williamson and Bell, 2012).  

 The basaltic spatter and scoria-rich pyroclastic breccias (mscBr) found at 

MacCulloch’s Tree are similar to those seen at Carsaig Arches and are also interpreted 

as proximal pyroclastic fall deposits associated with a scoria cone, but with less 

reworking. No evidence for extensive hyaloclastite and channelised volcanic breccias as 

described in Williamson and Bell (2012) were noted, but these rocks may have been 

obscured by unusually high storm surge tides during fieldwork. Spatter is vesiculated 

and lacks quenched fragmentation textures common in hyaloclastite depoists. However, 

localised fall deposits into standing bodies of water are present. Freshwater algae 

microfossils and woody macrofossils in the mudstone layers indicate that the area was 

dominated by well-established upland coniferous swamps (Jolley et al., 2009). The 

presence of a large mature tree within the flow indicates a significant time gap between 

at pulse of volcanism in order for mature vegetation to colonise the substrate. The 

presence of pillow lava again suggests large areas of standing water.   
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Figure 4.8.  Field 

photographs from 

MacCulloch’s Tree. A: 

Undulating contact (dashed 

red line) between the 

columnar jointed lava and 

the underlying spatter and 

scoria breccia. B: The 

irregular columnar joints 

are perpendicular to the 

lava breccia. C: The 

Spatter and scoria breccia 

grades up into a layer of 

reworked scoria. 

Overlaying this is a pillow 

lava facies. D: Loaded lava 

contact. E: Loaded contact 

overlaying organic layer. F: 

Scoria rich breccia with 

large spatter rag. G: Fluidal 

spatter rag morphologies. 

H: Spatter mound. I: 

Bedded spatter in spatter 

mound. K: Large altered 

spatter rag. J: Fluidal, 

vesiculated scoria. 
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4.5.3 The Ladder 

 

The Ladder sequence is situated 700 m south east of MacCulloch’s Tree (NM 40506 

27309) (Figure 4.9). It comprises a 26 m high exposure composed of sedimentary and 

pyroclastic rocks sandwiched between basalt lava flows. It is part of the GS-A6 unit 

(Williamson and Bell, 2012). Although the sequence cannot be traced laterally along 

strike it gives an insight into the interplay between sedimentary, pyroclastic and 

volcanic systems vertically through time.  

 At the base of the sequence is a columnar-jointed pahoehoe lava flow (L) with a 

vesiculated upper crust. This is overlain by a 1.5 m thick series of sublithic arenites 

(slA) interbedded with organic-rich mudstone (M); however, the contact is not exposed. 

In general, the sedimentary unit is clast supported; however, a 10–40 cm lens of quartz 

cemented arenite is seen within the upper units. The slA are overlain by a massive, well-

sorted massive scoria-rich tuff (mscT) but the contact is not seen. The contact between 

this scoria and the overlying clastogenic lava (cL) unit is complex. In places the contact 

is fairly well defined and straight. The overlying unit comprises a more coherent lava 

with very few vesicles and the boundary between this and the brecciated facies below is 

sharp. In places however, this boundary is much more irregular and the more 

vesiculated brecciated lava appears to grade into the coherent unit above. Overlying this 

clastogenic lava there is a sharp transition into a 10 m thick well-jointed, basalt lava 

flow with a prominent colonnade (L). Columns at the base of the flow are tight, 

separated by 10–15 cm compared to the more regular spacing towards the centre of the 

flow. The cliff section is completed by a 3 m thick rubbly, brecciated vesicular basaltic 

lava with zeolite filled amygdales.  

The Ladder allows a unique opportunity to study an almost complete vertical 

cross section through a sedimentary sequence from the bounding lava at the base, to the 

one at the top. The sublithicarenites and mudstones at the base of the section are 

interpreted to be of fluvial origin (Williamson and Bell, 2012). The palynoflora found 

within the mudstone units suggest deposition in a fluvial marginal mire setting (Jolley et 

al., 2009). These rocks lack a significant volcanic component with only minor (<5%) 

altered glass shards present. The glass shards retain their vesicle wall structure and some 

retain fluidal shapes indicating minimal transportation distances. This rock therefore 

represents the  transition from dominantly silicilastic rocks to rocks that are dominated 

by volcanic clasts.  
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The overlying massive scoria-rich tuff (mscT) indicates that there was direct 

volcanic input into the system. As the volume of spatter ejected from the vent increases 

spatter on the ground begins to coalesce and flow as lava (Valentine and Gregg, 2008). 

This explains the complex transition from the basal brecciated unit into the more 

coherent clastogeneic lava unit punctuated by vesiculated areas. The closely spaced 

glassy nature to the base and top lava flow suggests it cooled quickly (cf. Grossenbacher 

and McDuffie, 1995). 
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Figure 4.9. Map showing the location of the Ladder section in relation to the MacCulloch’s Tree locality and schematic log. A: Photograph of U2–U6 (hammer shaft 30 cm). B: Laminated sublithicarenite (U5). C: Volcanic glass shard within a 

sublithicarenite. D: Altered, rounded scoria clasts reworked in asublithiarenite. E: Massive scoria rich lapilli tuff.  H: Graded contact between U8 and U9. G: Sharp contact between U8 and U9. I: vessiculated clast within U9 clastogenic lava unit. 

Photographs: B, C, D and E have a finger for scale. Photographs: H and I have a 50 pence coin for scale.    
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4.5.4 Ardtun 

 

The Ardtun sequence is situated in the south west of Mull and is the location of the 

famous Ardtun Leaf Beds (Duke of Argyll, 1851; Bailey et al., 1924). It comprises ~ 15 

m thick sedimentary unit interbedded between two lava flows. The exposure can be 

traced along the coast for several metres; however, access is limited to a steep gully 

which was artificially enhanced by the Duke of Argyll in the 1850s. A series of logs 

were taken through the Ardtun sequence providing a composite log for the section 

(Figure 4.10). 

At the base of the sequence is a basaltic hawaiite multi-tiered pāhoehoe lava 

flow (Beckinsale et al., 1978). The colonnade part of the flow is mainly under sea level 

although in places large mounds of regular spaced columns sweep out of the water. The 

upper entablature part of the flow is a chaotic mass of smaller-spaced columns; 

however, locally, these become more regular towards the very top of the flow. 

Overlying the entablature is a dark black, massive basaltic breccia flow top, with no 

obvious jointing. Large, 50 cm broken pillow lavas are also present within this unit 

(Geikie, 1888). The contact between the rLBr and the underlying lava unit is irregular 

and steep in places.  

The rubbly flow top is overlain by a thin (max. 30 cm thick) organic-rich 

mudstone (M), which is the first of the famous Ardtun Leaf Beds. In places the basal 

leaf bed is a thin coal horizon (Bailey et al., 1924). The contact between the two units is 

passive with the mudstone simply mantling the rubbly lava topography with no obvious 

erosional surfaces. There is no evidence of a bole or soil horizon above the lava. 

Directly overlying the first leaf bed is a massive volcaniclastic lithic arenite (vlA) (~ 1 

m thick). The contact between the mudstone and arenite is sharp. The arenite then fines 

upwards into another ~10 cm thick mudstone (Leaf Bed 2). Between the second and 

third mudstones (Leaf Bed 3) there is another package of vlA, this time interbedded 

with conglomerates (C). This package is thickest (~3 m) towards the centre of the gully 

and thins on either side (Bailey and Anderson, 1925). The conglomerates form channel 

shape deposits within the vlA units. The sedimentary sequence grades up into a third 

mudstone, approximately 20 cm thick, towards the top of the gully. The sedimentary 

sequence is capped by a regular-spaced columnar jointed lava flow (L) (Beckinsale et 

al., 1978; Thompson et al,. 1986). The contact again appears to be passive with no 

evidence of the lava interacting with the mudstone below. A dolerite (D) sill initially 
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intrudes at the junction between the upper mudstone and the lava flow; however, this 

sharply ramps up to intrude directly into the flow.  

The chaotic brecciated lava flow at the base of the Ardtun outcrop resembles a 

slump or debris flow type deposit. The large angular blocks and steep undulating, 

contact with the lava flow below may be erosional and would fit with this interpretation. 

The fragmented pillow lavas indicate the presence of water and suggest that pillows 

may have been caught up within the slump deposit. However, Williamson and Bell 

(2012) however, note the presence of pahoehoe tube-like structures and state that the 

inclined contact between the brecciated unit and the underlying flow suggests an 

intrusive-invasive relationship. The pahoehoe tube-like structures may simply be 

inflated pahoehoe lobes and therefore an invasive relationship may not be required.  

The overlying sedimentary sequence is interpreted as a fluvial/lacustrine/ 

riparian sequence (Gardner, 1887; Bailey et al., 1924; Bailey and Anderson, 1925; 

Boulter and Kvacek, 1989; Cleal et al., 2001; Jolley et al., 2009) based on palynological 

data from the fossiliferous mudstone beds. The sequence of channelized conglomerates 

and arenites are interpreted to be a series of large well established anastomosing braided 

stream deposits with the fine grained leaf beds representing low energy, terrestrial, flood 

plain over bank deposits (Williamson and Bell, 2012). The cross-bedding shows a 

palaeo flow direction to the east / north east with the sedimentary source to the south 

west. The Assapol Fault was likely to have influenced sediment deposition at Ardtun 

due to its proximity. A lack of granite–schist–gneiss basement clasts within the Ardtun 

sequence, however, suggests the fluival system did not traverse the fault (Williamson 

and Bell, 2012). 

Ardtun sediments lack significant volcanic detritus (<10%). Weathered volcanic 

clasts that are present may be Silurian–Devonian in age and derived from south east 

Mull and the Scottish Mainland rather than from the underlying Staffa Formation 

flow(s) (Bailey and Anderson, 1925). Therefore, the river system has passively filled 

the topography of the hardened lava flow surface. The channelised nature of the 

sedimentary rocks indicate the river was in its lower course and was therefore, less 

likely to actively erode down into the lava flow below. Despite being deposited during a 

thermal maximum when erosion rates were expected to be high (Jolley at al., 1999 

estimates the full Ardtun sedimentary sequence may have been deposited within 10 

thousand years) no volcanic boles are developed above the Ardtun lavas despite being 
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evident at other locations. This may be explained by prolonged and focused river 

currents effectively stopping weathering of the underlying lava flow.  

 

4.5.5 Biod Buidhe 

 

A thin (max. 1.5 m thick) sedimentary sequence can be found at Biod Buidhe (Figure 

4.11). At the base of the sequence is a thin (10 cm thick) mudstone (M), which passes 

vertically upwards into 1 m of medium- to coarse-grained dark grey volcaniclastic lithic 

arenite (vlA). Overlying this is a basalt lava flow with a blocky peperitic (P) contact. 

 

4.5.6 Carraig Mhór  

 

At Carraig Mhór there is a 250 m wide wave cut platform of  mudstones, sandstones 

and ignimbrite. These are intruded by a dolerite sill which has peperitic margins (Figure 

4.12). Overlying the peperitic unit there is a sedimentary sequence (~1 m thick). The 

sequence consists of a series of sub lithicarenites (slA) and mudstones (M) overlain by a 

thick volcanic package (Brown and Bell, 2007). The contact between the mudstone and 

the overlying lava flow is undulating. Overlying this is an extensive peperitic sequence, 

which is graded with both blocky and fluidal textures (Brown and Bell, 2007). 
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Figure 4.10. Location map and schematic log from the Ardtun locality. A: Ardtun gully, looking east showing the interbedded sediments between the lava units. B: Close up showing the relationship between the sediments and the volcanic lavas. C: Close up 

of U10 showing crossbedding. D:  Contact between the fissile fine grained U3 and the more massive coarser U4. E: Ripples within the  U9 sandstone. F: Coarser grained flint scours into the finer grained unit below. G: Angular flint and rounded volcanic 

clasts.  H: Sandstone lens within the coarses conglomerate layers within U10. I: Relatively passive contact between the fine grained (U11) mudstone and the overlying basaltic lava (U12). 
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Figure 4.11. Location map showing the Biod Buidhe locality. A: Photograph showing the contacts 

between the volcaniclastic sediment (vsst) and the overlying lava (CL). At the contact is a peperitic zone 

(P). Hammer shaft is 30 cm. B: Close up showing the straight nature of the contact between the peperite 

zone and the underlaying sediment. While a more irregular contact exists between the lava and the 

peperite.  C: Close up of the peperite unit showing the amoeboid morphology of the juvenile lava clasts.  
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Figure 4.12. Map showing the location of the Carraig Mhór locality. Photograph (left) shows the 

undulating, loaded contact between the underlaying sediment and the lava flow (note book is 15 cm). 

Photograph (middle) shows the range in peperite morphologies. L = lava; S= sediment; dashed red = 

fluival clast with a sub planner margin; dashed white = blocky jig saw fit; black = fluidal-amoeboid. 

Photograph 20 cm wide. Photograph (right) shows an elongate fluidal juvenile peperitic clast. Pen knife = 

10 cm long.  

139



Chapter 4                                         Sedimentation of vent proximal pyroclastic and volcaniclastic deposits 

4.6 Model of formation 
 

4.6.1 Carsaig Arches to Pulpit Rock mode of formation 

 

The Carsaig Arches to Pulpit rock exposure allows a transect along strike through a 

sedimentary and pyroclastic sequence to be recorded. The model shows a vent proximal 

to vent distal transition. Figure 4.13 shows a model of emplacement for the sedimentary 

interbeds at the Malcolm’s Point to Puplit Rock sequence. The model is split into four 

distinct zones that are characterised below:  

 

Zone 1 

Basalt lava flows were erupted from fissures in an actively subsiding graben and 

interacted with wet substrates and localised bodies of standing water. Volcanism was 

predominantly effusive and periodically explosive. Although volcanoes and their vents 

are not preserved, proximal deposits (<100s m from source) crop out at Malcolm’s 

Point. This zone is characterised by primary pyroclastic rocks, such as thick 

accumulations of non-welded and welded spatter and scoria and rare clastogenic lavas. 

The presence of volcanic bombs and spatter rags up to 40 cm in size suggest a 

proximity of no more than 200 meters from the vent (Richard Brown pers. comm.). 

Rocks found within this zone are dominated by volcanic detritus and have little to no 

siliciclastic input.  

 

Zone 2 

During periods of volcanic quiescence some of the primary material was locally 

reworked by the re-establishing fluvial/alluvial system into spatter- and scoria-rich 

horizons resulting in rocks that although still dominated by volcanic detritus, contain 

minor siliciclastic grains such as quartz and low abundances of flint.  

 

Zone 3 

Within this zone the volcanic and siliciclastic regimes are competing. Reworked 

primary pyroclasts are mixed with weathered basalt blocks and quartz, feldspar and flint 

from the newly established fluival/alluvial systems. Tectonic activity and vent wall 

collapse released large blocks into the system and cause localised debris flow deposits.  
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Zone 4  

At distal locations (~1 km) the siliciclastic regime begins to dominate as the fluvial 

system re-establishes over the volcanic terrain. Fluvial channel deposits dominated by 

quartz and flint with little to no volcanic component indicate a switch in provenance. 

The volcanic clasts are locally altered to clay, but are relatively fresh compared to the 

proximal equivalent, and overall poroperm is retained. The proportion of scoria begins 

to decrease and is replaced by clasts of aphyric and amygdaloidal basalt (< 1 m in 

diameter) from weathered lava flows. 

141



Chapter 4                                                                                                                                                     Sedimentation of vent proximal pyroclastic and volcaniclastic deposits 

 

 

Figure 4.13. Model of  deposition for the Carsaig Arches to Pulpit Rock section. Zone 1 (Carsaig Arches) is characterised by vent proximal deposits with primary pyroclastic 

textures. In zone 2 the proximal deposits are reworked. Volcanic rocks still dominate.  Zone 3 represents competing systems between the reworked volcanic rocks and the re-

establishing siliciclastic system. Zone 4 (Pulpit Rock) marks the transition to a system dominated by silicilastics and background pre volcanic processes. Distance between zone 1 

and zone 4 is ~1 km.  
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4.6.2 MacCulloch’s Tree model of formation 

  

Model – Vent Proximal 

 

The exposures at MacCulloch’s Tree preserve a sedimentary and pyroclastic sequence 

typically comprised of vent proximal rocks, similar to that of the Zone 1 deposits found 

at Carsaig Arches. The spatter lithofacies found at the MacCulloch’s Tree deposit is 

synonymous with the Fingal’s Cave Flow on Staffa (Williamson and Bell, 2012). Figure 

4.15 shows all three locations lie along a NW-SE trend, similar to the regional 

Paleogene dyke swarm trends (Emeleus and Gyopari, 1992). The rocks are produced by 

periodic pulses of explosive Hawaiian style volcanic activity along a fissure-fed system 

with localised vents and is concurrent with the Williamson and Bell (2012) 

interpretation that the lavas are dyke-fed. However, according to the genetic sequences 

outlined in Williamson and Bell, 2012, the Malcolm’s Point rocks are defined as GS2 

while the MacCulloch’s Tree and Staffa rocks are GS5. If this correlation is correct, 

these rocks are not temporally related.     

 Periods of quiescence in the volcanic activity allowed for localised reworking 

and for lenses of more siliciclastic material to be included. Organic rich mudstones are 

commonly found directly underlying lavas throughout the Staffa Formation. These 

represent the last remnants of a siliciclastic sedimentary system before the volcanic 

rocks again begin to dominate. The low energy deposits indicate a waning of the 

siliciclastic system as it is diverted by the emerging volcanic topography. The 

MacCulloch’s Tree Flow and the underlying organic-rich layer contains well 

established palynoflora indicating vegetation had time to establish after the initial 

volcanic activity. Large lake-like bodies of water, were created in part due to damning 

of the existing fluvial system by the evolving volcanic topography.  

 

4.6.3 The Ladder model of formation 

 

Model – Vertical transect through a sedimentary and pyroclastic sequence between 

lavas. 

 

The transition from basalt lava flow into relatively basalt-poor sediment indicates that a 

fluvial system developed across the surface of the lava flow during a period of volcanic 
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quiescence, and that the river was transporting and depositing sediment from a non-

volcanic source. The inclusion of reworked scoria in the upper beds within the fluvial 

unit suggests the partial re-establishment of the volcanic source or onset of another 

phase of volcanism. As the volcanic activity increased it began to overhaul and 

dominate the fluvial system. Lava dams may have blocked rivers further up stream or 

the evolving new volcanic topography caused the fluvial system to divert, as described 

in the Faeroe-Shetland Basin (Schofield and Jolley 2013) at St. Cyrus, North East 

Scotland (Hole et al., 2013) and Owyhee River, Oregon (Ely et al., 2012). 

  

  

Figure 4.14. Vent proximal deposits are found at three locations; Staffa, MacCulloch’s Tree and Carsaig 

Arches. All of these locations line up indicating that they may have been periodically erupted from a 

fissure system. The north west – south east direction of the potential fissure lines up with regional 

Paleogene dyke swarm as seen in the map on the right (Emeleus and Gyopari, 1992). Note locations are 

limited by exposure.  

 

 

4.6.4 Ardtun model of formation 

 

Model – Sedimentary interbed at distance from volcanic source. 

 

The Ardtun sedimentary sequence was deposited during a thermal maximum (Jolley et 

al., 2009) when weathering rates were thought to be high, and the full Ardtun sequence 

could have been deposited within a few thousand years (Bell, pers comm.). It is 

envisioned that during a period of quiescence in volcanic activity the sedimentary 

system re-established over the volcanic terrain. Palynoflora indicate the presence of 

early stage colonizing vegetation, rather than the mature forests as seen at MacCulloch’s 
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Tree (Jolley et al., 2009). Hence the sedimentary system was still in early stages of 

development when the next pulse of volcanic activity flowed over the area, supporting 

the potentially geologically rapid deposition of the sedimentary rocks.  

The Ardtun outcrop therefore, allows sampling of sedimentary interbed rocks at 

a distance from volcanic source. For the purpose of this thesis they are defined as being 

sedimentary rocks deposited within a volcanic terrain but not near the volcanic source 

and therefore have been brought in from outside the volcanic catchment area. They by 

definition contain little to no volcanic component derived from the surrounding volcanic 

rocks.  

 

4.6.5 Flint Provenance 

 

The origin of the flint within the Staffa Formation remains open to debate. There are 

currently no exposures of flint on Mull. As described earlier, two populations of flint 

are present (see Section 4.4.15). Larger flint clasts are fractured, with two sets of 

fractures evident. The first set is randomly orientated across clasts and are often filled 

by calcite, which does not extend into the matrix of the rock. Therefore, this set of 

fractures is thought to pre-date deposition in the Staffa Formation. Moldic porosity from 

the dissolution of fossil remains within the clasts has also partly been filled by calcite. 

The second set of fractures are found at grain edges, indicating the rocks have 

experienced some compaction. The flint-dominated conglomerate at Pulpit Rock best 

illustrates the flint enigma. The conglomerate was deposited within a volcanic terrain, 

directly overlying a volcanic derived breccia but lacks any inclusion of volcanic 

material. The monolithic nature of the conglomerate implies that it is derived from a 

source area solely of flint. Bell and Williamson (2012) suggest that the flint is derived 

from Cretaceous strata that have been locally uplifted in a fault scrap and then eroded. 

However, the sheer volume of flint included in the conglomerate and in other Staffa 

Formation exposures suggest that the source area must have been relatively extensive. 

Martin Lee, (per comm.) suggested that there may be two populations of flint within the 

samples. Lee suggested that the non-fossiliferous variety may be Jurassic in origin due 

to the lack of significant fossils within it. This would suggest several cycles of flint may 

have been incorporated into the deposit.  
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4.7 Comparison of Rosebank and Staffa lithofacies 
 

The Staffa Formation acts as a comparable analogue to the Rosebank Field (see Section 

2.1). Although differences with basin architecture exist, both localities consist of 

interbedded sedimentary and volcanic rocks.  

 

4.7.1 Volcanic lithofacies 

 

Both the Rosebank and Staffa Formation flows. have vesiculated crusts and more 

crystalline cores. Limitations of the Rosebank core mean it is difficult to ascertain if 

Rosebank lava flows have the characteristic colonnade and entablature displayed in the 

Staffa Formation lava flows. Amygdales in both localities are very similar with a wide 

range of complex fills, including calcite and clays. Peperitic lithofacies are found in 

both localities with similar fluidal and blocky textures. In both cases the peperite mixes 

with fine grained mudstone and locally sedimentary structures are disturbed.  

 The most obvious difference is the lack of primary pyroclasts within the 

Rosebank sequence. No evidence for primary spatter or scoria clasts are found in the 

Rosebank core leading to the conclusion that the wells are not located within 200 m of a 

vent. However, the chance of reworked scoria and ash being within some of the non-

cored volcaniclastic units within Rosebank cannot be eliminated. 

 

4.7.2 Sedimentary  lithofacies 

 

The rocks at Ardtun provide the best analogue within the Staffa Formation for the 

Rosebank siliciclastic lithofacies. Differences in the mineralogy and cementation of the 

lithofaces are noted. The most obvious of these being the lack of flint and calcite 

cements within the Rosebank lithologies.  

The depositional setting of the rocks is similar however. In both cases the rocks 

are devoid of a significant volcanic component despite being within a volcanic terrain. 

The fluvial and deltaic systems have passively established on top of lava flows without 

eroding and entraining material from the underlying lava and sediments are sourced 

from outside the volcanic catchment area. This process is not limited to the BPIP. 

Sediment devoid of volcanic material is found within the Columbia River Basalt 

Provenance in Washington State, USA (Brown, 2012). This river system traversed 
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hundreds of kilometres into the volcanic terrain without the inclusion of volcanic 

material. The drainage network includes both localised wasting of volcanic rocks and 

clean siliciclastic sediment brought into the volcanic terrain.  

Very fine grained organic rich mudstones are found in both the Rosebank and 

Staffa Formation rocks at the base of lava flows. Volcanic activity has the potential to 

alter significantly the drainage basin (Hole et al., 2013). At a critical point the 

volcanism in the basin will overpower the pre-existing fluvial system. Unlike 

siliciclastic systems, lavas have the potential to form positive topography (Passey and 

Varming, 2010) and therefore could cause a deflection or damming of the river course 

leading to a sudden cessation in silicilastic input (Stollhofen and Stanistreet, 1994; Ely 

et al., 2012). This would explain the fining upwards sequences and change from the 

fluvial and alluvial lithofacies to lower energy lacustrine deposits in both on and 

offshore settings.  

 

4.8 Igneous – sedimentary contacts 
 

Another important aspect of this research is the influence of the igneous material on the 

sediment directly at the contact. A number of igneous / sediment contact relationships 

can be seen within the Staffa Formation. These contacts have been categorised into 

seven styles as seen in Figure 4.14. These are then linked to the contact relationships 

seen in the Rosebank cores.  
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Figure 4.15. Igneous- sediment contacts. Type 1:  Straight contacts. Mull – Carsaig Arches, (Rucksack 50 cm). Rosebank- 213/26-1, 2880.2 m. Type 2:  Loaded contacts. 

Mull – MacCulloch’s Tree. Type 3: Irregular contact. Mull – Malcolm’s Point (hammer shaft 30 cm). Rosebank- 213/27-2, 2875 m. Type 4: Fluidal contact. Mull- Carsaig 

Arches (pen knife 15 cm). Rosebank- 213/26-1 2881 m. Type 5: Blocky peperitic contact. Mull- Biod Buidhe (photo width 1 m). Rosebank (blocky clasts are arrowed) 

213/27-2, 2877 m. Type 6: Fluidal peperitc contact. Mull – Carraig Mhór. Rosebank- 213/27-2, 2877.2 m. Type 7: Passive contact. Mull- Ardtun (pen for scale). Rosebank- 

213/27-2 2877.3 m.  In all photographs I- igneous, S- sediment. Rosebank core photographs 1,3,4 and 7 are 30 cm wide. Rosebank photographs 5 and 6 are 20 cm across.  
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4.8.1 Straight contacts 

 

The contact is defined as being a sharp transition from igneous body to sediment with 

no mingling textures developed. Contacts are generally concordant to bedding, but can 

occasionally have interconnecting lobes or fingers, which display an irregular contact 

relationship with the surrounding sediment (see below). Chilled margins are prevalent 

on both intrusive and extrusive examples. The maximum chilled margin found within 

this study was at the Carsaig Arches. Here the chilled margin was ~6 cm thick, 

associated with a 3 m thick intrusion. The size of the chilled margin depends on the 

thermal history of the magma (Huppert and Sparks, 1989). Indurated margins have been 

found surrounding intrusive rocks and at the base of lava flows in a number of other 

localities including Namibia (Jerram and Stollhofen, 2002; Grove, 2014,) and on the 

Faroe Islands (Simon Passey, pers. comm.). No evidence of significant indurated zones 

were found within the Staffa Formation rocks. This will be discussed more in following 

chapters.  

Mainly found in intrusive settings on Mull but also at the base of pāhoehoe lava 

flows in the Rosebank core. Columnar jointing is often developed with closer spaced 

joints towards the contacts. Vesicles are common within the extrusive examples, with 

pipe vesicles and veins acting as later stage fluid pathways between the lava and the 

underlying sediment. In places, mm scale fractures are present perpendicular to the 

contact. Within the Staffa Formation the majority of these fractures and columnar joints 

remain open. Minor clay, calcite and zeolite fill some fractures but possible fluid 

pathways remain. However, fractures at depth may behave differently to outcrops 

examples (Walker et al., 2012). All fractures found within the Rosebank core are filled, 

however a full Formation Micro-Imager Log (FMI) investigation in the future may aid 

understanding by allowing fractures to be mapped.  

A range of sedimentary rocks are found beneath straight igneous-sedimentary 

contacts within the Staffa Formation. There appears to be no correlation between 

sediment type and the straight contacts developed. In extrusive settings the base of the 

lava is broadly concordant with sedimentary beds beneath. The underlying sedimentary 

beds have actively controlled the geometry of the lava base, while sedimentary 

structures remain unaffected. The lack of mingling textures implies that the sediment 

was fully to partially consolidated before lava ingress.  
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4.8.2 Loaded contacts 

 

Loaded contacts form dish and pillar structures as the weight of the lava flows over the 

partially consolidated sediment. This type of contact is found at a range of scales from 2 

– 5 cm thick at MacCulloch’s Tree to ~30 cm at Carraig Mhór. The transition from the 

sediment to the igneous body is sharp and well defined with no mingling. Chilled 

margins are common within the lava and are best developed adjacent to the pillar 

structures. Here the sediment shows signs of discoloration, perhaps providing evidence 

of minor thermal alteration. No induration or thermal effects are seen below the thin 

coal and organic-rich mudstone layers. No loaded contacts are seen within the Rosebank 

core. 

Loaded contacts are commonly found at the base of columnar jointed lava flows 

but also occur under pillow facies within the Staffa Formation. The columnar jointing is 

well developed; however, unlike in straight contact examples there is no change in scale 

of the joints at the contact. Small internal jointing and fractures occur within each of the 

columns. Pipe vesicles are common at contacts similar to those seen in straight contact 

types. 

Loading contacts are commonly associated with very fine- to fine- grained 

mudstones and coal horizons. Sedimentary structures are locally disturbed around the 

edges of the basalt columns however no fluidisation or mingling occurs. It is likely that 

the sediment was partially consolidated in order to accommodate the loading.  

 

4.8.3 Irregular contacts 

 

Irregular contacts have complex geometries. They can be concordant but also cross cut 

bedding at sharp sub-vertical angles. An example of this is seen at the Carsaig Arches 

where a dolerite sill runs concordantly to bedding in the underlying volcaniclastic 

sediment before cross cutting bedding at a sharp angle of approximately 35°. The 

transition from the sediment to the igneous body is sharp and well defined with no 

mingling. However, margins are irregular, sub-planar and curvilinear. Chilled margins 

similar to those seen in straight contacts are prevalent. Near the contact vesicles and 

fractures are often filled by a mixture of sediment and igneous micro-clasts, due to 

mechanical stress induced auto-brecciation (c.f. Skilling et al., 2002) as the igneous 
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body is emplaced. Similar textures are present within the Rosebank cores alluding to the 

presence of shallowly invasive flows or magma lobes at the base or edge of the main 

flow body.  

Irregular contacts within the Staffa Formation most commonly form within 

intrusive settings; however, they can occur as invasive fingers or lobes of lava at the 

base or edge of a lava flow. Columnar jointing is much less well developed or absent; 

however, vesicles are common. Fracturing is present but is not confined to being 

perpendicular to the contact.  

As with straight contact settings irregular contacts develop with a wide range of 

sedimentary units. There does not appear to be any correlation between sediment type or 

grain size and this contact type. Where the igneous body is concordant sedimentary 

structures are unaffected. Where the irregular contacts cross cut bedding sedimentary 

structures are locally truncated or disturbed. No evidence of fluidisation, induration or 

sediment mingling is seen within the sediment. It is likely that the sediment is fully to 

partially consolidated. 

 

4.8.4 Fluidal contacts 

 

Fluidal contact types have highly irregular geometries. Lobes of interconnected magma 

can isolate and trap large bodies of sediment.  Rafts of sediment and broken bridges are 

present where sediment has been caught up between igneous flow lobes as they 

coalesce. The irregular nature of the contact may be a small-scale version of the magma 

finger propagation method (Schofield et al., 2010). Chilled margins on these lobes are 

prevalent. Sediment must be partially unconsolidated as fluidisation occurs (Kokelaar, 

1982). Fine-grained fragments of igneous material within the sediment may be 

explained by pore-water steam explosions and localised magma-sediment density 

contrasts (c.f. Skilling et al., 2002). Both processes combined with the fluidal 

morphology of the contact would suggest the emplacement deformed the contact in a 

ductile fashion. Fluidal contacts often grade into peperite style contacts. 

Fluidal contacts only occur within intrusive settings in the Staffa Formation; 

however, Skilling et al. (2002) and Hole et al. (2013) suggest similar textures can 

develop on invasive lava flows. In the Staffa Formation, igneous bodies with fluidal 

contacts normally lack columnar jointing and fractures associated with the contact zone. 

All fluidal contacts within the Rosebank core are vesiculated as are the majority of 
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Staffa Formation examples; however, rare non-vesiculated areas are also found. 

Vesicles towards the contact are commonly filled by sediment and in places by small 

fragments of igneous material. 

Fluidal contacts are most commonly associated with fine grained sediment but 

can also occur with the volcaniclastic sandstones in the Staffa Formation. Sedimentary 

structures are locally disturbed with evidence of sediment fluidisation; however, no 

sediment mingling occurs.  

 

4.8.5 Peperitic contacts 

 

Peperites are well documented in the literature and occur in a variety of sediment-

igneous interfaces. They are classed as hot contacts and result in mixing of juvenile lava 

clasts and surrounding sediment. They typically develop in wet sediment; however, a 

number of authors report the presence of peperite in dry aeolian settings (Jerram and 

Stollhofen, 2002; Petry et al., 2007; Waichel et al., 2008). Therefore, peperite is used as 

a general term to mean any sediment-igneous body interaction in which mingling occurs 

(White et al., 2000).  An extensive review in which peperites were subdivided into a 

number of distinct groups, was undertaken by Skilling et al. (2002). Four styles of 

peperite are identified within this study: 1) blocky; 2) irregular angular; 3) amoeboid; 

and 4) fluidal elongate (c.f. Busby-Spera and White, 1987; Skilling et al., 2002).  

Peperite is found surrounding both intrusions and invasive lava flows in the 

Staffa Formation and the Rosebank core. The majority of the peperite within the Staffa 

Formation is non-vesiculated; however, vesiculated basaltic clasts are present within the 

peperitic facies in the 213/27-2 Rosebank well. Peperitic texture may be partly 

dependant on the volatile content of the parent magma (Skilling et al., 2002) with 

several authors reporting the presence of highly vesiculated juvenile clasts (Rawlings, 

1993; Doyle 2000).  Peperitic textures can also develop at the base of fractures within a 

lava flow crust.  

The peperite lithofacies found within the Staffa Formation and the Rosebank 

core occur exclusively in fine-grained mudstones. Sedimentary structures are disrupted, 

with extensive fluidisation suggesting the sediment was unconsolidated and wet at the 

time of mixing.  
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Four types of sediment-lava mingling occur within this study: 

 

Type 1: Juvenile clasts have a blocky, jig-saw fit morphology. Clasts are angular and 

irregular with sharp and well defined edges. Clasts within type 1 peperite, found at 

Carraig Mhor, have well developed chilled margins. Heavily altered clasts have a 

distinct yellow green discolouration due to alteration.  

 

Type 2: Juvenile clasts are irregular and angular but lack jig-saw fit morphology and 

lack extensively developed chilled margins. This type of peperite is found within the 

213/27-2 well in Rosebank as well as at Boid Budhe on Mull. 

 

Type 3: Juvenile clasts have an amoeboid morphology and lack extensively developed 

chilled margins. Juvenile clasts range from 2–8 cm across.  On Mull, this peperite type 

is best developed at Biod Buidhe. 

 

Type 4: Juvenile clasts have an elongate fluidal morphology. Clasts have complex edges 

with evidence of fluid-fluid shearing. They are often elongate and are connected by 

small thin necks. They are also often deformed around ridge framework grains within 

the sediment (Skilling et al., 2002).  Fluidal clasts are found in both Rosebank cores and 

in the Staffa Formation.  

 

The type of peperite developed depends on a number of factors including magma 

temperature, flow rate, sediment grain size and fluid composition. Busby-Spera and 

White (1987) and Skilling et al. (2002) state that fluidal peperite types exist when 

magma is intruded into fine grained wet sediment where full mixing can occur. It is 

common in a basaltic regime for stable vapour films to surround clasts and act as a 

barrier to pore fluid allowing complex mixing to occur (Skilling et al., 2002). Magma- 

sediment density contrasts can also lead to mixing (Donaire et al., 2002).  

Blocky, jigsaw fit style peperite occurs at lower temperatures where the magma 

behaves in a less ductile fashion but can also result from a higher sediment water 

content, where phreatomagmatic reactions can occur producing sharp angular clasts 

(Skilling et al., 2002).  

At Carraig Mohr, blocky, amoeboid and elongate fluidal peperite types occur in 

close proximity (within 1 m), despite no obvious change in sediment or magma type. 
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The change in peperite type is thought to relate to the water content of the sediment. 

The underlying sediment can also affect the type of peperite produced. Surface 

depressions that collect more water resulted in thicker peperites with a higher degree of 

mingling (c.f. Waichel et al., 2007). 

 

4.8.6 Passive cold contacts 

 

Passive contacts are defined as cold contacts found at the top of a lava flow. Once the 

lava flow has cooled the sedimentary system can re-establish over the lava surface. This 

can be after a period of time in which the top surface of the lava is weathered and 

eroded, or can be relatively quickly where the sediment mantles the top surface of the 

lava flow. In both cases the sediment passively fills depressions in the surface of the 

underlying flow. This can be seen at Ardtun where the sediment is seen to mantle the 

underlying flow. Sediment filled fractures are also observed in the Rosebank core. As 

the pahoehoe lava develops sediment could be incorporated into the crust, filling 

fractures and vesicles. If the sediment entered the fracture shortly after the lava was 

emplaced then the centre of the flow may retain heat. Therefore, thermal effects such as 

chilled margins and fluidal peperite textures could develop at the base of the fracture 

(Figure 4.15). As the flow progresses autobrecciation could cause already cooled, 

angular clasts of lava to be incorporated into the fracture.  

Sediment can also be incorporated into the base of the flow as it moves over the 

substrate, leading to isolated bodies of sediment, which have undergone brittle 

deformation, caught up within the flow crust (Figure 4.16).  Other examples of sediment 

filling fractures within lava can be seen in Brazil (Waichel et al., 2007; Holz et al., 

2008), in St Cyrus, Scotland (Hole et al., 2013) in the Faroes (pers comm. Simon Passy) 

and inflation clefts as described by Walker (1991) and Self et al., (1998). 
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Figure 4.16. Lava-sediment contacts. A: As the lava advances over the substrate fractures form in the lava 

crust. B: The toe of the lava lobe starts to advance. This causes a thinning of the lava core and causes 

fractures in the crust to be extenuated. Sediment becomes entrained within the vesicles and fractures at 

the contact. C: Another lava lobe breaks out where the previous crust had being thinned. This process 

causes more sediment to be entrained and completely surrounded by lava. D: Sediment passively infills 

the surface of the cooled lava flow. Sediment falls down inflation clefs (Self et al., 1998) in the lava crust. 

The core however may retain heat for longer, causing a fluidal peperitic effect at the base of the fracture. 

Previously cooled crust can also be eroded and entrained into the fracture resulting in a mixture of both 

fluidal and blocky clasts.  
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4.8.7 Factors controlling the type of contact produced 

 

The type of sediment-lava contact produced depends on a number of factors. 

 

The nature of the igneous body 

 

Intrusive bodies and invasive lava flows will differ from subaerial lava flows. The 

nature of the contact is highly dependent on how the igneous body interacts with the 

surface. In this study intrusive and invasive contacts (such as the fluidal contacts at the 

Carsaig Arches, see Section 4.8.4) were more disruptive to surrounding sediment than 

lava flows which flowed passively over the substrate.  

 

The type of lava  

 

This will have an effect on the nature of the contact. The surface of a ropey pāhoehoe 

lava is very different from that of an aa flow and so will interact with the sediment 

differently. Brecciated lava flow bases typically form more irregular contacts than that 

of a columnar jointed flow. The physical form the lava flow takes is often highly 

associated with the environment which it is traversing, and this will also affect the 

nature of the contact produced.  For example, pillow lavas form in water and are 

rounded, tending to spall off into soft water laden sediment (Yamagishi, 1985) and so 

will form a completely different contact type to that of a thick pāhoehoe inflated flow 

that has traversed dry desert sands.  

 

The angle of the contact 

 

Lava flows can form peperite textures in dry environments highlighting that the energy 

and angle of intrusion are equally important in contact formation as the water content of 

the sediment (Jerram and Stollhofen, 2002).  If a lava flows down a steep sided dune 

surface or fault scarp it will gain energy allowing it to effectively plough into 

surrounding sediment (Petry et al., 2007).  Sediment deformation and peperitic contacts 

are therefore, more likely to develop in a setting with large slope angles than if the lava 

were to creep passively along a relatively flat river bed. 
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The temperature of the igneous body 

 

Localised melting of surrounding sedimentary rocks and the development of a limited 

metamorphic aureole are seen at intrusion edges. Their formation depends on a number 

of inherent factors, including the temperature and duration of the igneous body 

(Mckinley et al., 2001).  The temperature of the igneous body can also influence 

whether the contact is likely to behave in a ductile or brittle fashion (Skilling et al., 

2002). At Carraig Mhór and in the 213/27-2 Rosebank core, the nature of the igneous 

contact changes significantly from brittle to ductile style morphologies within a few 

centimetres.  

 

The location of the contact relative to the igneous body 

 

Different effects are seen at the top and basal contacts of a lava flow. This is also 

applicable in intrusive bodies. For example, heat and fluids associated with saucer 

shaped sills will focus on sill tips as the body propagates (Schofield et al., 2010). 

Therefore, fluidisation of sediment is more likely to occur towards the leading edges of 

sills than directly above or below. Hydrothermal systems are also more likely to 

develop at sill tips (Schofield  et al., 2010). Evidence for this is seen in seismic sections 

where areas of seismic disturbance can often be correlated around the edges of sill.  

 

Sediment consolidation 

 

Different effects are seen depending on whether the igneous body interacts with soft 

unconsolidated sediment or is intruded into hard sedimentary rock. If the sediment is 

unconsolidated peperitic textures are more likely to develop (Skilling et al., 2002). 

Where sediment is partially consolidated loading can occur. This is seen onshore at 

MacCulloch’s Tree where the contact changes from a straight contact to a loaded 

contact within 5 meters. 
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Sediment regime 

 

The type of sedimentary regime that develops over a volcanic terrain will influence the 

type of contact produced. Large energy, upper flow, fluidal systems would be more 

likely to be erosive and entrain underlying volcanic material than a meandering or 

braided, lower flow system that may passively fill underlying topography.    

 

Water content of the sediment 

 

A number of authors have linked sediment-water content to the type of igneous contact 

produced (Skilling et al., 2002; Wacichel et al., 2007; Hole at al., 2013). Higher 

sediment water contents are linked to more intense mingling due to the formation of 

vapour films around igneous clasts (Skilling et al., 2002; Waichel et al., 2007).  

 

Original sediment type 

 

Within this study all of the contacts involving sediment mingling occurred in fine 

grained relatively well sorted sediment. Fluidisation occurs when fluid can move freely 

through the sediment without being trapped or hindered by grains or being focused into 

elutriation pipes (Skilling et al., 2002). Therefore, sediment with good initial porosity, 

permeability and sorting should promote the development of fluidisation textures.  

 

4.9 Conclusions 
 

The Staffa Formation of the Palaeogene Mull Lava Field, NW Scotland, comprises a 

~275 m thick sequence of basaltic lavas interbedded with a variety of subordinate 

volcaniclastic and sedimentary units. The complex inter-relationship between these 

rocks provides an excellent analogue for similar hydrocarbon producing offshore 

sequences (e.g. Rosebank, Faroe-Shetland Basin).  

Lavas were erupted in an actively subsiding graben and interacted with wet 

substrates and localised bodies of standing water. Volcanism was predominantly fissure 

fed and periodically explosive. Although vents are not preserved, proximal deposits are 

found at Carsaig Arches, MacCulloch’s Tree and on the Isle of Staffa (NW of Mull). 

Here massive scoria-rich breccias display characteristics of primary volcanic origin, 
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with large spatter rags up to 60 cm long and well developed eutaxitic textures within 

scoria-rich horizons. These horizons are dominated by highly vesicular, fluidal-shaped, 

glassy scoria indicating the primary nature of the deposit. 

During periods of quiescence some of the primary material was locally reworked 

into spatter- and scoria-rich horizons and contains quartz grains and low abundances of 

flint clasts. At more distal locations (1 km) the proportion of quartz and flint increases 

as a siliciclastic regime re-establishes over the volcanic terrain. The proportion of scoria 

begins to decrease and is replaced by clasts of aphyric and amygdaloidal basalt (< 1 m 

in diameter) from weathered lava flows. These are interpreted as debris flow deposits 

within a tectonically active basin. At very distal locations (~3 km) the siliciclastic 

regime begins to dominate. Fluvial channel deposits dominated by quartz and flint with 

little to no volcanic component indicate a switch in provenance. The volcanic clasts are 

locally altered to clay, but are relatively fresh compared to the proximal equivalent, and 

overall poroperm is retained. 

A wide range of igneous- sediment contact types are found both onshore within 

the Staffa Formation but also offshore in the Rosebank cores. The type of contact 

produced is dependent on a number of factors including; nature of the igneous body, the 

rate and angle in which it intrudes, the composition, porosity, perambility and ridgity of 

the sediment, temperature and water content. Contact types can change over centimeter 

distances if one of the above factors changes. On Mull the most common lava-sediment 

contact is lava overlaying fine grained mudstone or coal. This may be because the 

siliclclastic sedimentary system has been damned or diverted by the impending volcanic 

lavas, resulting in swampy overbank type deposits with low energy to be deposited.  

These coal or fine grained units effectively protect the sediment below from the thermal 

effects of the overlaying sediment. No obvious induration or thermal effects are seen 

within the sediment in this study.  

 

4.10 Next steps 
 

Samples were taken from all of the localities in order to characterise the petrography 

and analyse the paragenesis. Samples crossing contacts between the igneous and 

sedimentary rocks were also taken in order to better understand the interplay between 

the two competing systems.   
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5 Petrographic and SEM characterisation of volcaniclastic 

rocks 

5.1 Introduction 

 

The previous two chapters discussed the large range of lithofacies found in the 

Rosebank cores and in the Staffa Formation. These chapters highlighted the field and 

core relationships between the different lithofacies and linked these to modes of 

formation and to depositional setting. To further understand these rock types 

petrographical analysis was undertaken using the methods described in Chapter 2.  

 

5.2 Petrography  
 

A total of 50 thin sections were made from samples collected from the Staffa Formation 

and 40 from the Rosebank core (see sample list in appendix). Each sample was 

extensively studied under a petrographic microscope as described in Section 2.3.4. Point 

counting results for each lithofacies can be found in be found in the appendix.  

 

5.2.1 Rosebank 

 

Point counting results for each Rosebank Formation lithofacies can be found in Figure 

5.1 and tabulated results can be found in the appendix.  

 

5.2.1.1 Rosebank basalt lava 

 

There are subtle differences in the lava petrography across the Rosebank cores. The 

basalt lava from well 205/1-1 core contains predominantly euhedral plagioclase feldspar 

(~0.5 mm), altered interstitial glass and rare pyroxene (Figure 5.2.A). The basalt is 

relatively fresh with only minor alteration to the plagioclase crystals. None of the 

interstitial glass remains isotropic and instead displays brown to yellow interference 

colours. The glass has altered to gel palagonite around crystal surfaces and fibrous 

palagonite fills any visible intragranular porosity left from the alteration of the glass. 

Amygdales are also typically rimmed by gel palagonite and filled by lighter fibrous 

palagonite (Figure 5.2. Type 1).  
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Basalt in the 213/26-1 well has a much lighter appearance, with a greater amount 

of pyroxene and with large feldspar phenocrysts that often occur in glomeroporphyritic 

textures. Phenocrysts have embayed grain boundaries with a pitted sieve texture (Figure 

5.2.B).  Abundant iron and titanium oxides are also found. As in the 205/1-1 core all 

interstitial glass is similarly altered to orange-brown fibrous palagonite. Porosity created 

from the alteration of plagioclase phenocrysts is also filled by palagonite. Within the 

213/26-1 well there a number of different amygdale fills. Type 1 (Figure 5.2.1) are lined 

by gel palagonite and filled by fibrous palagonite. Type 2 (Figure 5.2.2) is very similar 

to Type 1 with the only difference being small colourless spherical features that develop 

towards the edge of the vesicle. These spherical features resemble spherulitic textures 

formed by the devitrification of rhyolitic glass. However, rather than being composed of 

quartz and k feldspar as is common in rhyolitic varieties these spherical features are 

thought to be composed of calcite rich zeolites. Type 3 (Figure 5.2.3) have zeolite 

coating occurs completely around the outer amygdale edge (Figure 5.2.C).  

The fourth type (Figure 5.2.4) of amygdale present within the 213/26-1 basalts is 

very similar to Type 1 amygdales but fibrous palagonite forms a regular coating with 

coarse crystalline calcite filling the interior of the amygdale (Figure 5.2.D). Amygdale 

types 5 (Figure 5.2.5) and 6 (Figure 5.2.6) are also filled by calcite. Type 5 has similar 

spherical structures developed around the edge of the vesicle but in this case the 

spherical structures are composed of fibrous palagonite instead of zeolite (Figure 5.2.E).   

In most cases the palagonite has started to alter to clays, such as pore filling 

smectite and chlorite. This is most common in the 213/26-1 core, especially close to 

areas of sediment. The basalt is a more distinctive green colour due to the phyllosilicate 

clay presence. Amygdales are typically more complex with several different phases of 

fill, alternating between altered palagonite, clays, zeolite and calcite, Type 7 (Figure 

5.2.7) and Type 8 (Figure 5.2.8). Figure 5.3.A.B, shows an example of a complex 

amygdale fill. The vesicle is rimmed by a thin white layer in ppl that displays 

undulating low order interference colours in xpl (Figure 5.3.C,D,G,H). This is then 

lined by a thin layer of light brown amorphous material that displays very dark colours 

under xpl. There is then a thicker fibrous layer that has bright colours under xpl. These 

layers resemble similar textures seen in core of volcaniclastic rocks taken during the 

Ocean Drilling Program (Calanchi et al., 1994) and therefore, are identified as zeolite, 

altered gel palagonite and altered fibrous palagonite, respectively. The palagonite is 

now altered to clays.  The centre of the vesicle is filled with spherulitic style clays with 
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high interference colours (Figure 5.3.E,F). This marks a distinctive switch from wall 

nucleation to point source nucleation. It is unknown why such a switch would occur. If 

conditions within the pore filling fluid suddenly favoured clay growth, wall based 

nucleation might be expected to accelerate causing the fibres to grow and meet in the 

middle of the vesicle, resulting in an axiolitic style texture. However, this has not 

happened and instead a switch to point source nucleation has occurred.  

Figure 5.4.A,B, shows another example of a common amygdale type. Here, 

layers of gel and fibrous palagonite are present, but this vesicle lacks the outer zeolite 

rim. The colour of the palagonite is much more orange perhaps reflecting its less altered 

state. The centre of the amygdale is filled by an amorphous brown material that appears 

to have zones (Figure 5.4.C). Under xpl the amygdale appears to be sector zoned and 

has a fibrous appearance (Figure 5.4.D). 

Most of the amygdales within the basalt lava flows are completely filled. 

However, occasionally partially filled amygdales that retain some porosity can be found 

(Figure 5.4.D1,D2). Where the clay spherulites are closely packed porosity is lost; 

however, where the spherulitic clays are less tightly packed interstitial porosity remains. 

Therefore, with the same apparent clay material two different structures are present. If 

the vesicle had been completely filled by the wall nucleation type all porosity would 

have been destroyed; however, the point source nucleation has resulted in some minor 

porosity remaining. Axiolitic texture is common within the amygdale clay fills (Figure 

5.4.E1,E2).  

Porosity in all of the offshore basalt lava flow thin sections is less than 10% and 

most have no porosity at all. All fractures and vesicles are partially filled with clays 

resembling those found within the Staffa Formation samples and while interstitial glassy 

material is less altered, porosity is still severely reduced.  
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5.2.1.2 Rosebank volcaniclastic lithic wacke 

 

The volcaniclastic lithologies within the Rosebank core are similar to the volcaniclastic 

lithic wackes found within the Staffa Formation. Two dominant rock types are found 

within the core; a siliciclastic poor rock type that is dominated by volcanic clasts and a 

second type where the proportions of siliciclastic clasts and volcanic clasts are almost 

equal. The sediment in both cases is a dark brown colour resulting from thorough 

alteration of the volcanic components (Figure 5.5.A1,2).   

The volcanic rich wacke is dominated by angular volcanic clasts. As in the 

onshore equivalents, a range of alteration is present within the volcanic clasts. The 

glassy groundmass of clasts is often altered to fibrous and gel palagonite, while quartz 

and feldspar are rounded with some dissolution of grain boundaries (Figure 5.5.B1), 

However, relatively fresh basaltic fragments are also present where the glass remains 

isotropic (Figure 5.5.C1).  Almost all of the porosity is filled by altered palagonite and 

clays. Fibrous palagonite forms grain coats that are easily seen under cross polarised 

light (Figure 5.5.C2). Dissolution of framework grains is more prevalent than in onshore 

equivalents with all interstitial porosity and vesicles commonly filled by palagonite 

and/or clays. Layering can be seen within some pore fills (Figure 5.5.D1,2). As in 

 

Figure 5.1: Average point counting results for each offshore lithofacies, based on 500 points. For full 

results see the “Point counting” file in the appendix. 
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onshore examples, some volcanic clasts appear to have more altered cores than grain 

boundaries (Figure 5.5.E1,2).  It is unclear why the centre of the grain would alter more 

that the outside. It is thought that aggressive dissolution of the glass could cause moldic 

porosity, which could later be filled by remobilised palagonite and clays. Another 

possibility is that material could be precipitated on the outside of clasts, which may be 

more resistance to alteration.  

 The more siliciclastic clast dominated wackes have a more heterogeneous 

petrography. They have almost equal parts quartz, feldspar and volcanic clasts, as well 

as biotite, sandstone and mudstone lithoclasts, and pollen and plant fragments (Figure 

5.6.A,B). As in the more volcanic rich sediments, they comprise a range of volcanic 

clasts with similar alteration textures to those already described (Figure 5.6.C). Despite 

the siliciclastic grains having more of an influence in the sediment, than in the volcanic-

rich rocks, the porosity is very low. All inter- and intra-granular porosity is filled by 

palagonite and clays (Figure 5.6.D). Compaction of the sediments is similar to onshore 

equivalents; however, more crystalline clasts tend to retain their original structure better 

than the glassy clasts found in the Staffa rocks (Figure 5.6.E1,2). Spherulitic and 

axiolitic clay textures are also commonly found in the Rosebank vlW rocks; however, 

no pyroclastic textures were found indicating that the volcanic clasts are not of a 

pyroclastic origin. Zeolites are found as a pore lining in some samples (Figure 5.6.F1,2).  

 

5.2.1.3 Rosebank siliciclastic lithofacies 

 

As in the onshore equivalents these facies are dominated by quartz grains ranging from 

25– 51%. The quartz ranges in length from 0.1 mm in the more silty facies to 2 cm in 

the conglomeratic units. The quartz is mono crystalline and ranges from very angular to 

sub-rounded with minor dissolution boundaries. Plagioclase and microcline feldspar are 

abundant but is highly dissolved with minor sericitic alteration. Subordinate biotite and 

muscovite mica and granitic and muddy and granitic lithoclasts are also found. 

 Visible porosity in these facies ranges from 2% in the silty facies up to 26% in 

the well-sorted sandstones. (Figure 5.7.A1,2,3,4). Pores are well connected and are 

often oversized with floating grains. Moldic porosity is also present where feldspars 

have dissolved. Dark green clay is a minor phase coating some quartz grains. It is often 

associated with areas of more muddy lithoclasts. Patchy calcite cement is present in 
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some of the samples (Figure 5.7.A5). The irregular morphology of the calcite cement 

regions closely resembles the quartz cemented region within the quartz arenite samples, 

onshore (Figure 5.7.A6).  The edges of these calcite cement areas, while irregular do not 

show significant dissolution (Figure 5.7.A7, A8). Calcite completely fills the pore space 

in these areas, which contrasts with the oversized pores found throughout the rest of the 

sample (Figure 5.7.A9).  

There are at least two possibilities as to why the pores may be oversized. Firstly, 

the calcite may have originally completely cemented the rock protecting it from 

compaction. At a later stage, this calcite was then dissolved out leaving only isolated 

small patches behind. However, as previously discussed the remaining calcite does not 

show any evidence of dissolution. To remove large quantities of calcite from the rock 

would also require prolonged interaction with diagenetic fluids (Blatt, 1979) and for the 

diagenetic system to be open. Removal of this quantity of calcite appears unlikely. The 

second explanation is that the sediment never experienced widespread calcite 

precipitation and that pores were held open due to over pressure. This scenario seems 

more likely as protection from compaction could be provided by the volcanic lavas 

above and below each of the sandstone layers. However, evidence of compaction is 

noted in some samples, with mica and organic fragments being deformed around 

framework grains (Figure 5.8). Where calcite has filled intra granular porosity grains 

have not compacted, indicating the importance of an early calcite cement.  
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Figure 5.2: Basalt lava flows with a range of amygdale fills. Annotations- A = Amygdale; P = 

Plagioclase; CPX = clinopyroxene; I = altered interstitial glass; MO = metal oxides (Fe, Ti); gp = glass 

palagonite; fp = fibrous palagonite; v = vein; s = spherical structures; numbers correlate to amygdale fill 

types. 5.1.A:  well 205/1-1 depth of 2931.2 m. All other images are from the 213/26-1 well with depths of 

2874.4 m; 2879.5 m; 2879.4 m; 2881.1 m and 2887.6 m respectively.  
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Figure 5.3: Complex amygdale fill. Sample Chev 8. A (ppl); B (xpl): Amygdale within altered basalt. C 

(ppl); D (xpl): Some interstitial porosity remains between the spherulitic clays. The basalt has also 

altered. E (ppl); F (xpl): Amygdale is rimmed by a thin white layer, possibly zeolite (z). A thin layer of 

altered gel palagonite (gp) from the alteration of the volcanic glass and coasts the zeolite layer. A thicker 

layer of fibrous palagonite (fp) grows outwards into the centre of the vesicle. Spherulitic clays grow in the 

centre of the amygdale (s). G (ppl); H (xpl): Close up of the transition from zeolite to amorphous gel and 

then fibrous palagonite.  
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Figure 5.4:  Spherulitic clay amygdale fills. Sample: Chev 9. A: Amygdale within a basalt. B: More 

magnified view, showing the basalt groundmass is altered to a similar material as the amygdale fill. C1: 

Amygdale is rimmed by gel palagonite (gp) and then fibrous palaognite (fp). C2: Core of the amygdale 

(xpl) is filled by fibrous, sector zoned orange clay minerals.  D1  Amygdale in altered volcanic glass (v) 

with spherulites (S) (ppl); D2 (xpl): Amygdale centre is filled with tightly packed spherulitic clays. 

Where the spherulites are loosely packed (outlined with dashed line) interstitial porosity is retained.  E1 

(ppl); E2 (xpl): Axiolitic texture (dashed lines) developed within the clay fill.  
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Figure 5.5: Rosebank volcanic rich vlW. A1,2: Thin section scans of example vlW. B1: Angular volcanic 

clast  (V) with altered fibrous palagonite (fp) coating and quartz (Q) in a clay rich matrix. C1 (ppl): 

Relatively fresh basaltic clast with plagioclase phenocryst (F). C2 (xpl): Fibrous palagonite grain coats. 

D1 (ppl), D2 (xpl: Fresh glassy volcanic clast (V1) and altered vesicular volcanic clast (V2). E1 (ppl); 

E2(xpl): Volcanic clast with altered core (outlined by dashed white line). Note: fibrous palagonite (fp) 

layering in pore filling material (arrowed).  
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Figure 5.6: Rosebank vlW. A: Layer of siliciclastic grains; quartz (Q), feldspar, mica, mudstone and 

sandstone lithoclasts (S) in between more volcanic rich layers. Box is location of B. B: Magnified 

image of the siliciclastic rich layer. C: Rounded altered volcanic clast showing similar texture to 

onshore examples. D: Pollen fragment where intragranular porosity has been filled by clays. E1 

(ppl), E2 (xpl): Three types of volcanic clast (V1-3). V2 is a lava clast that is altering but retains 

overall shape and structure. F1 (ppl), F2 (xpl): spherulitic clay texture between lava clasts. Possible 

zeolite (white) pore rim.   
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Figure 5.7: Rosebank 

sublithic and quartz 

arenites. A1-A4: Blue 

stained thin sections 

showing the range in 

visible porosity within the 

Rosebank sublithic arenite 

samples. B: Irregular 

patchy calcite cement 

(dashed yellow line). C: 

Difference in calcite filled 

pores (left of yellow line) 

and oversized uncemented 

pores. D(ppl); E(xpl): 

Irregular calcite edge but 

with no obvious dissolution 

textures. F: Further from 

calcite-cemented areas 

sandstone has well 

developed, oversized pore 

network. 
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Figure 5.8: Evidence of compaction in the Rosebank siliciclastic samples. A1: Photomicrograph showing 

the location of other photomicrographs in yellow and red boxes. A2: Mica deformed around framework 

grains. B1 (ppl); B2 (xpl): Mica deformed between framework grains; quartz (Q) and feldspar (F). Where 

calcite cements intragranular porosity the grain is not compacted to the same degree.  C1 (ppl); C2 (xpl): 

Magnified image showing mica compacted around the quartz grain. D1 (ppl); D2 (xpl): Altered biotite 

grain compacted around quartz grain; however, some porosity remains.   
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5.2.2 The Staffa Formation 

 

Point counting results for each Staffa Formation lithofacies can be found in Figure 5.9 

and tabulated results can be found in the appendix. Volcanic clast type abundance is 

seen in Figure 5.10 

 
Figure 5.9: Average point counting results for each onshore lithofacies, based on 500 points. Other 

includes organic material, mica, pyroxene, lithoclasts, glaucophane, zeolite and opaque’s. For full results 

see the “Point counting” file in the appendix.  

 

 
Figure 5.10: Average volcanic clast types within each lithofacies based on 500 points. For full results see 

the “Point Counting” file in the appendix. 
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5.2.2.1 Basalt lava (L) 

 

The Staffa Formation basalt flows are aphyric and comprises plagioclase and pyroxene 

set in a glassy groundmass. Plagioclase phenocrysts (1 mm – 2 cm) is sub-euhedral to 

euhedral with minor resorption textures. Pyroxene (0.2 mm – 2mm) is commonly zoned 

and extremely altered. Most samples are amygdaloidal with abundant circular, teardrop 

and pipe shaped, calcite- and clay-filled amygdales (0.1 mm – 5mm). Amygdales are 

more prevalent in crustal regions (~20%) than in the cores (~5%). 

 

5.2.2.2 Massive scoria-rich breccia (mscBr) 

 

Several samples from the massive scoria- rich breccias were taken from the proximal 

deposits at the Carsaig Arches and MacCulloch’s Tree localities. The samples comprise 

irregular rag-shaped basaltic spatter clasts up to 15 cm in diameter, set in a matrix of 

palagonitised scoria lapilli (1–2 cm diameter).  

A wide variety of textures are evident from aphyric glass-rich scoria through to 

scoria clasts abundant in microcrystalline plagioclase laths to others with well-

developed plagioclase phenocrysts up to 2 cm in length. The scoria pyroclasts are 

dominantly yellow to brown in plane polarised light. Under cross polarised light the 

scoria is rarely isotropic and birefringence colours range from dark browns and yellows 

to reds with undulating extinction patterns. Spatter pyroclasts have rag shaped 

morphologies with glassy chilled margins and are often aligned within the samples. The 

spatter pyroclasts range from yellow and brown through to black in plane polarised 

light. Localised autobrecciation of less vesiculated spatter clasts occurs within some of 

the samples.  

Most pyroclasts have circular to flattened amygdales filled by a complex 

alternating sequence of clay minerals, calcite and rarely zeolites. A thin layer of fibrous 

clays that have high order interference colours commonly rims the outer edge of each 

amygdale.  Blocky calcite or clays with large radial interference colours fill amygdale 

interiors.  

Rare quartz crystals (<2%) are also scattered throughout the samples. They are 

often fractured and have a strained, undulose extinction; however, they lack evidence of 

significant dissolution or overgrowth textures. Pyrite is found as an accessory mineral in 

some samples.  
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Alteration is prevalent throughout the samples. All volcanic clasts are highly 

altered to yellow brown clay like material. In places, this alteration is so prevalent that 

original primary textures are overprinted and clast boundaries are difficult to 

distinguish. Vesicles are filled by a number of different minerals indicating several 

diagenetic phases. This paragenesis is difficult to unravel optically as many of the 

alteration phases are a similar dark brown.  

 The ~visible porosity of the samples is less than 2%.  Much of the original pore 

space is filled by clays with minor calcite and zeolite.  The initial porosity within the 

pyroclastic facies varied dependant on grain welding.  

5.2.2.3 Massive scoria-rich tuff (mscT)  

 

Petrographically the mscT samples are a fine-grained equivalent of the mscBr samples 

(Figure 5.11). They are composed of basaltic scoria lapilli (0.1 to 6.4 cm) and ash with 

rare basaltic lava bombs. Scoria clasts have fluidal morphologies and are often very 

vesicular (Figure 5.12.A1,2; Figure 5.13.A). Amygdales within the clasts are 

predominately spherical, but some show evidence of flattening (Figure 5.12.B1,2). The 

amygdales are typically lined with bands of yellow brown material that under plane 

polarised light (ppl) appears to have no structure (Figure 5.12.C1). However, under 

cross polarised light (xpl) these bands have brighter yellow – brown interference 

colours with distinctive fan-like structures and undulating, wave-like extinction when 

the stage is rotated (Figure 5.12.C2).  These minerals are tentatively identified as altered 

gel and fibrous palagonite and zeolite. The vesicles are commonly filled by a darker 

brown to green clay mineral that fans out into the centre. Plagioclase feldspars within 

the more crystalline pyroclasts display a wide variation in alteration textures. Some 

appear fresh with euhedral crystal shapes, well developed cleavage and twinning while 

other feldspars have heavily dissolved sutured grain boundaries. Rare quartz and flint 

grains are also found within some of the samples (Figure 5.12.F.1,2). This resembles the 

quartz in the mscBr.  

Basaltic glass that makes up the matrix is highly altered and no longer isotropic 

(Figure 5.2.D.1,2). Instead, it has yellow to brown low order birefringence with 

concentric rings. Glass surfaces are pitted with abundant inclusions and twinning is 

undulose. Axiolitic textures are prevalent throughout, and are often associated with 

spherulitic like textures at grain contacts. Faint perlitic fractures can also be seen within 
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the altered glass shards. Fractures are filled with brown to yellow palagonite similar to 

the matrix material (Figure 5.12.E).  

As in the mscBr, samples were difficult to analyse due to their dark appearance 

under the petrographic microscope. Therefore, a variety of image analysis techniques 

were adopted to interpret the samples (Figure 5.13.A). The matrix and amygdales can be 

highlighted allowing the fluidal-shaped basalt clasts to be better identified. In some 

samples the location of the quartz and feldspar could be used as a proxy for the location 

of scoria clasts (Figure 5.13.B). The scoria and ash is often flattened resulting in the 

occlusion of surrounding pore spaces. The porosity of these samples is very low with 

only minor intragranular porosity present within some of the larger scoria pyroclasts.  

 

 

Figure 5.11: Plot of proportion of lithoclast type. End member types: flint (F); basalt lava clast (B); 

pyroclasts (P). Samples plotted all contain more than 10% total lithoclasts. Data points are based on point 

counting.  
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Figure 5.12: mscT photomicrographs. A1: Vesiculated basalt clast (ppl). Note the zeolite pore filling material surrounding the clast. A2: Glassy groundmass (xpl) has altered 

and is no longer isotropic. Note fibrous nature of pore filling material. B1: Amygdale morphologies (ppl). B2: Range of amygdale fills (ppl). C1: Amygdale (ppl) 

comprising; a gel palagonite (gp) rim, a fibeous palagonite coating (fp) and a clay pore fill (C). C2: Interstitial glass outside the vesicle has also altered (xpl). D1 (ppl); D2 

(xpl): Pore space (p) filled by fibrous clays. E1: Filled fractures (f) within a scoria clast (V). F1 (xpl); F2 (ppl): Flint clast within the mscT sample. 
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Figure 5.13: Image analysis of proximal mscT.  A1: Thin section scan from MacCulloch’s Tree. A2: Desaturated image with clay matrix highlighted. A3: Matrix highlighted 

showing locations for close up figures in red, blue and black. A4: Amygdales within a juvenile lava clast are filled by clays. A5: Intergranular pore space filled by clays. Note 

fluidal nature of basaltic clasts.  A6: Clay filled amygdales (top left) and intergranular pore space. Internal structure of pore fill can be seen.  B1: Thin section scan from 

Carsaig Arches of locally reworked mscT. B2: Quartz and feldspar (black) highlight edges of spatter clasts. B3: Juvenile, fluidal shaped spatter clasts are highlighted.  
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5.2.2.4 Massive volcaniclastic lithic wacke (vlW) 

 

Massive volcaniclastic lithic wacke was sampled from the Carsaig – Pulpit Rock 

sequence and also from The Ladder.  These samples are heterogeneous and contain a 

complex mineralogy (Figure 5.14).  

Quartz is abundant in all these samples and ranges from sub angular to rounded, 

is monocrystalline and shows minor dissolution with convex-concave boundaries. It is a 

relatively fresh phase devoid of extensive alteration or inclusions; however, undulose 

extinction is common, indicating the quartz has been stressed.  

Fossiliferous and non-fossiliferous populations of flint are present within this 

lithofacies, (Figure 5.15). Type 1 is a fossil-rich variety that is extensively altered with 

highly dissolved grain boundaries. Alteration is focused on fossils resulting in moldic 

porosity where fossil material has dissolved and in many cases the pores are filled by 

brown clay material resembling that found in the matrix. Type 2 is a non-fossiliferous 

variety that appears fresher with grain interiors remaining intact and dissolution around 

grain boundaries less severe. Fractures within both flint types have been annealed by 

calcite and minor quantities of calcite can be found in places around grain edges. A 

second set of clay-filled fractures are focused at grain boundaries emanating out from 

flint-flint or flint-quartz point contacts. 

 Both biotite and rarer muscovite mica can be found within these samples. In 

both cases the mica appears relatively fresh with little alteration other than radiation 

spots within the biotite. The mica is often bent around other more ridged framework 

grains. Rare organic fragments such as pollen and silicified wood occur throughout the 

samples.  

 A wide variety of volcanic clasts are found with most samples containing 10–50 

% volcanic clasts. The clasts range from reworked pyroclasts to basalt lava clasts 

(Figure 5.11; Figure 5.16). The lava clasts range from aphyric to hyalopilitic to ophitic 

in texture. Alteration varies from relatively unaltered clasts to clasts that have been 

completely replaced by clays. Some clasts no longer have isotropic groundmass as the 

glass has altered to brown clays with low order yellow to brown interference colours. 

Some clasts have been extensively weathered and have Fe rich rims. Rarely clasts show 

chilled margins. The more crystalline clasts are usually the least altered although 

exceptions do occur.  
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In the more volcanic-rich parts of the samples the matrix has been compacted 

(Figure 5.17.A, B). Here, glassy/tuffaceous grains are typically deformed around more 

ridged framework grains (Figure 5.17.C). Pseudo-pyroclastic textures can also be found 

such as perlitic fractures within clasts (Figure 5.17.D). In most cases however, the 

alteration is so prevalent that primary pyroclastic textures within clasts/grains and 

pseudo-pyroclastic textures in the matrix are destroyed. It might be expected that 

alteration would be more prevalent at clast edges especially on any clast with a chilled 

margin. This is because the amorphous glass will preferentially alter over the more 

crystalline interior.  However, several clasts were found throughout the vlW sample 

range that had the opposite texture, with the clast cores altering more than the edges 

(Figure 5.17.E). Where alteration is extreme, volcanic clasts can only be identified from 

the plagioclase pseudomorphs (Figure 5.17.F).   

 Field and petrographic observations indicate that the vlW represent the complex 

interplay between competing volcanic and sedimentary systems. The siliciclastic input 

includes clasts that have been through several cycles of weathering and transportation 

and so come with inherited diagenetic phases, which complicates the history of the vlW. 

The petrography of the samples is highly variable and while the main constituent 

minerals discussed above can all be found, their individual quantities can vary 

significantly through individual samples as well as between samples. The heterogeneity 

of the system adds to the complexity to the diagenetic regime the samples undergo. 

 The visible porosity of the vlW samples ranges from zero to ~5%. The 

porosity reduction can mostly be attributed to the presence of clays and less crucially 

calcite.  The abundance of pore filling clays appears to be directly correlated with the 

amount of volcanic clasts within the facies (discussed in Section 6.5.4.5). Figure 5.18 

shows a selection of thin sections taken from the vlW samples. Vent proximal samples 

(Zone 2-3, see the Carsaig model of formation, Section 4.6.1) have a greater proportion 

of volcanic clasts and associated pore filling clays, and therefore, are low porosity. 

Samples at more distal locations, where the siliciclastic regime has begun to dominate 

(e.g. Zone 3 rocks) have a much lower proportion of volcanic clasts and therefore, have 

greater porosities. At very distal locations, small quantities of ash and scoria can alter to 

clays; however, this appears to fill only localised pores (Figure 5.19). Zone 4 rocks have 

very little (<10%) volcanic material and so the porosity remains unaffected.  
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Figure 5.14: Quartz, feldspar and lithic plot for sedimentary lithofacies. Data based on point counting data 

using the Q,F,L regions defined in Pettijohn et al., 1987.  
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Figure 5.15. Flint clasts within the vlW.  A1 (ppl); A2 (xpl): Type 1 fossiliferous flint (F1), Type 2 (F2) 

non fossiliferous flint and an altered volcanic clast (V) set within a clay matrix. Calcite fractures 

(arrowed) occur in the flint but do not continue into the matrix. Therefore, the filled fractures predate the 

rock formation. B: Type 1 flint (F1) has highly irregular dissolved grain boundaries in comparison to the 

rounded quartz grain (Q).  
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Figure 5.16: Range of volcanic clasts within the massive volcaniclastic lithic wacke.  A: Range of basaltic clasts; altered cryptocrystalline (V1); microporphyritic (V2); non- altered cryptocrystalline (V3); porphyritic (V4). B: more example basaltic clasts. 

C: Range in alteration stages; semi altered (V1); interstitial glass completely altered but phenocrysts preserved (vs); non altered (V3); alteration reached completion (V4). D: Variation in weathering; non- weathered basalt clast (V1); weathered basaltic 

clast with Fe rich staining (V2). E: Porphyritic fluidal shaped reworked scoria clast with clay filled Amygdales (A). The groundmass is only partially altered. F: Porphyritic fluidal shaped reworked scoria clast (outline in white) with clay filled amygdales 

(A). The groundmass has completely altered to clays; however, plagioclase feldspar phenocrysts (pF) show only minor resorption. G: Crystalline dolerite clast. (outlined in white). Plagioclase crystals remain relatively fresh. H: Altered glassy scoria clast 

(outline in white) with eutaxitic texture and altered amygdales (arrowed). I: Altered scoria clast (outlined in white). The more crystalline core of the clast is less altered. J: More siliciclastic rich sediment that comprises quartz (Q); flint (F) and plagioclase 

feldspar (pF) as well as a range of volcanic clasts with varying stages of alteration (V1-4).  K: Altered tuffaceous clast with relict eutaxitic texture. L:  Rounded reworked scoria clast (outlined in white) with eutaxitic texture. 
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Figure 5.17: Volcanic textures within the vlW samples. A: Compaction textures (arrowed). Volcanic clast 

(V) is bent around framework grains, quartz (Q) and flint (F). B: Pseudo-eutaxitic texture in clast 

(arrowed) between a flint grain (F) and an altered volcanic clast (V). C: Volcanic glass shard (V) 

compacted around flint grain (F). D: Relict perlitic fractures in altered glass shard. E: Volcanic clast 

(outlined in solid white) with more altered core (outlined in dashed white). F: Extensive alteration 

resulting in clay pseudomorphs of plagioclase feldspar phenyocryts.    

 

 

184



Chapter 5 Petrographic and SEM characterisation of volcaniclastic rocks 

 
Figure 5.18: Heterogeneity in porosity of vlW samples. Thin section scans from most proximal (A) to 

most distal (F). Proportion of volcanic clasts decreases with distance from the vent. Proportion of quartz 

(Q) and flint (F) increase with distance from vent. A2: Image processed to distinguish volcanic clasts 

(red) from clay matrix.    
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Figure 5.19: Vent distal vlW. A: Altered volcanic scoria (V) within a quartz (Q) rich vlW. B: Volcanic 

clasts retain relict eutaxitic texture (arrowed). C1 (ppl); C2 (xpl): Volcanic clast surrounded by localised 

pore filling clays. D1 Flint (F) and quartz surrounded by volcanic matrix (V) (ppl); D2 (xpl): Quartz 

grains are caught up within the edge of the altered scoriaceous fragments. E: Within the sample, porosity 

(p) near volcanic clasts, is locally filled by pore filling clays. F: Further from the volcanic clasts porosity 

(p) is retained with only minor clay fill.  

 

5.2.2.5 Volcaniclastic lithic arenite (vlA) 

 

Volcaniclastic lithic arenites were sampled at Ardtun. The clast-supported samples 

comprise quartz, feldspar and flint (Figure 5.11; Figure 5.20) that have similar 
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compositions and textures to those described in Section 5.2.2.4. Small fragments of 

zoned clinopyroxene are present, as are very rare schist clasts; however, the variety of 

volcanic clasts found is much less. Reworked pyroclasts are rare and instead samples 

contain scattered pebbles of glassy fine-grained and heavily altered red coloured 

vesicular basalt lavas (0.5 – 2cm) and rarer more evolved clasts (Figure 5.11). The 

volcanic clasts are sub-rounded to well-rounded. As in the vlw samples there is a range 

of alteration present within the basalt clasts but most seem fresher than their vlW 

equivalents. The glass in most clasts has altered; however, plagioclase phenocrysts have 

only minor dissolution textures. The lava clasts often have iron stained edges and lack 

chilled margins.  

The matrix within these samples is mainly a mixture of clays and calcite. The 

clays are predominantly green in ppl and are only brown when situated near to a 

volcanic clast. Calcite is a much more abundant pore fill than in the vlW samples.    

Initial porosity in these samples is generally higher than those of the more 

volcanic rich rocks due to less heterogeneity and better sorting. Compaction is evident 

by convex-concave boundaries and undulose extinction in quartz grains. Porosity 

reduction as before is mainly due to clays and calcite. In areas of the thin sections where 

there were abundant volcanic grains, clay inhibits visible porosity, while in the more 

siliciclastic regions the porosity is reduced by calcite. 

These samples tend to only include one or two volcanic clasts types resulting in 

a simpler diagenetic history.  

 

 

 

 
Figure 5.20: Photomicrographs from vlA samples.  A: Quartz (Q); flint (F); volcanic clasts (V) are 

cemented by calcite (C) and minor pre filling clays (p). B: Weathered basalt lava clast (V).  
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5.2.2.6 Sub-lithic arenite (slA)  

 

Sub-lithic arenites were sampled at Pulpit Rock.  The samples resemble the 

volcaniclastic arenites with the only real difference being the lack of volcanic clasts 

(Figure 5.14; Figure 5.21).  

The main mineral phase is quartz, which has both poly- and mono-crystalline 

varieties. Minor dissolution occurs in some of the grains with convex-concave 

boundaries. Overgrowths of an unknown accreted material can be found around some 

grains, which is out of optical continuity.  The quartz however, typically appears 

relatively fresh compared with the surrounding rock with only rare fractures, inclusions 

and undulose extinction. The second most predominate phase is flint as described 

above. Other phases include: plagioclase and microcline feldspars, which are in many 

places extensively altered; rare mica; organic material such as woody fragments and 

pollen; sandstone and mudstone lithoclasts; and in some samples rounded fragments of 

glauconite. Crucially these samples contain virtually no volcanic material of any 

description.  

 Visible porosity in the samples ranges from 1–10%. Pores are, in most cases, 

filled by clays and blocky calcite. The clays are a deep green to brown colour with high 

order interference colours. They coat quartz and flint grains and block pore throats. Thin 

rims of calcite can also be seen coating some grains and filling fractures in flint clasts. 

This calcite appears more altered with heavily dissolved grain boundaries and a pitted 

texture.   

 Compaction is seen within these samples reducing initial porosity. The strained 

undulose extinction and convex-concave boundaries seen within the quartz imply that 

the sediment had been compacted as the lava pile grew above. Mica and elongate 

woody fragments are folded around quartz and flint grains again implying the sediment 

has been compacted. The presence of glauconite would suggest a marine environment 

and may support the suggestion that the sea may periodically have entered the basin 

(Williamson and Bell, 2011). However, the fragmental and well-rounded nature of the 

glauconite suggests that it is more likely to have been recycled into the sediment from 

another source. Much of the porosity is reduced by late stage calcite cement discussed 

in more detail in Section 6.5.4.3. 
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Figure 5.21: Photomicrographs of slA samples. A1 (ppl); A2 (xpl): Quartz (Q), flint, feldspar and fine 

grained organic material (O) is cemented by calcite (C).  

 

5.2.2.7 Quartz arenite (Q) 

 

One sample of quartz arenite was sampled at Carsaig.  The rock is poorly lithified and 

so made sampling difficult.  Mineralogically, the sample is much simpler than the other 

rocks and is dominated by mono-crystalline, angular to sub-rounded, well sorted quartz 

grains (Figure 5.14; Figure 5.22.A). Many of the quartz grains were artificially fractured 

during thin section manufacture due to the friable nature of the rock. The key difference 

between this rock type and the sublithic arenite is the lack of flint, feldspar and 

lithoclasts as well as the lack of matrix material. The quartz arenite sample has a high 

visible porosity (40%) and has no pore filling clays. Pores in places are oversized 

(Figure 5.22.A2) hinting the rock was once over pressured with only limited 

compaction. In places however, sutured grain contacts are noted (Figure 5.22.B1,2) 

suggesting minor compaction did occur. Two small areas of the sample are quartz 

cemented (Figure 5.22.C1,2). The quartz cement may have initially been prevalent 

throughout the sample protecting framework grains and pore space from significant 

amounts of compaction. If parts of this cement were then dissolved this could lead to 

the over-sized secondary porosity. The rock is devoid of volcanic clasts and is also 

devoid of pore fillings clays.   
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Figure 5.22: Photomicrographs of quartz arenite. A: Thin section scan showing the two quartz cemented 

areas (outlined in dashed yellow). A2: Oversized pore (P) surrounded by quartz. B1 (ppl); B2 (xpl): 

Quartz rich sediment with large well developed pore network. Some quartz grains have sutured grain 

contacts. C1 (ppl); C2 (xpl): Contrast in porosity between the quartz cemented region (below yellow 

dashed line) and the excellent reservoir quality region above. Note: grain fractures are man-made during 

thin section manufacture.  
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5.3 Igneous-sedimentary contacts 
 

One of the key aims of the thesis was to establish the direct and indirect diagenetic 

effects at igneous-sedimentary contacts. A number of samples were, therefore taken 

across a variety of igneous-sedimentary contacts both from the Rosebank core and the 

Staffa Formation. 

5.3.1 Peperite (P) 

 

Rosebank 

 

Thin sections of the igneous-sedimentary contacts within the Rosebank cores were 

examined in order to better characterise the contact types.  

The top lava contact on the 213/26-1 core was shown to be a fluidal contact with 

small isolated juvenile clasts of lava within the sediment. These small clasts show 

highly fluidal, elongated and stretched morphologies (Figure 5.23.A) and range in size 

up to ~ 15 mm long. They are composed of finely crystalline basalt with plagioclase 

microcrysts. Well developed chilled margins are seen on both the main lava unit as well 

as the clasts.  The surrounding sediment is very fine grained volcaniclastic lithic wacke 

comprising sub-rounded to sub-angular quartz (up to 2 mm across), feldspar crystals ( 

up to 1 mm across) and dark black to brown basalt clasts set in a palagonitised glass and 

clay-rich matrix. There is no change in the mineralogy of the sediment closer to the 

igneous contact. Vesiculated regions (up to 2 mm across) are present within the matrix 

of the sediment. These regions contain several circular amygdales linned by palagonite 

and filled by clays.  

Samples at the top of the 213/26-1 core were initially interpreted as a fluidal 

contact; however, on closer inspection, several small clasts of basalt observed within the 

sediment indicating the more peperitic nature of the contact. The fluidal shapes to the 

clasts along with the well developed chilled margins suggest hot emplacement. The 

clasts are well dispersed throughout the host sediment indicating intimate mixing 

between the volcaniclastic sediment and the igneous component.  

The vesiculated regions within the sediment could be explained in a number of 

ways. Firstly, they may represent altered vesiculated scoria that has been incorporated 
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into the sediment. This scoria has then altered to palagonite and then to clay minerals. 

Alteration has reached completion so that only the fluidal shape and vesiculated texture 

remain and the clast is largely indistinguishable from the matrix of the sediment. These 

scoria fragments may be associated with the basalt lava; however, much of this lava 

appears fresher with alteration having not reached completion. It is possible that small 

fragments entrained within the sediment could experience greater alteration due to the 

greater surface area and therefore, a greater rock to fluid ratio. However, there are basalt 

clasts caught up within the sediment that are smaller than the vesiculated regions but 

have not been completely altered. A second possibility is that the vesiculated ash may 

be unrelated to the basalt contact and could simply have been reworked into the 

sediment, and therefore explaining the range in alteration levels. However, the regions 

have fluid morphologies with little evidence of erosion or transportation. The final 

possibility is that vesiculated areas could represent sediment vesiculation (c.f. Skilling 

et al., 2002; Hole et al., 2013). This would indicate that the sediment had been fully 

fluidised and would agree with the dispersed nature of the juvenile basalt clasts. 

However, it is unclear why vesiculation would be limited to small well-defined regions 

within the sediment.  

The peperite at the base of the 213/26-1 core (Figure 5.23.B) is slightly different 

to the peperite observed at the top of the lava flow. Small isolated regions of sediment 

are entrained into the base of the lava. The lava itself has a greater degree of alteration 

and has a green/brown colour as a result of clay alteration. Amygdales are either filled 

by calcite, complex layers of clays, a mixture of both or in places, sediment. The 

sediment comprises predominantly rounded to sub-angular grains of quartz and 

feldspar, with rare siltstone lithoclasts in calcite cement. The sediment is mixed with 

finer grained sediment that has a clay rich matrix. There are no induration effects 

(discussed in Chapter 4) at the contact.  

The multiple amygdale fills suggest that there have been several phases of pore-

filling fluids. Amygdales closer to the contact tend to be filled with either sediment or 

clays, whereas amygdales further from the contact tend to be filled with calcite. The 

amygdales that are a mixture of both phases tend to have linings of clay and are filled 

by calcite implying that the calcite was a late stage diagenetic phase.  
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Staffa Formation 

 

These peperite textures are also found onshore within the Staffa Formation. Both 

fluidal and blocky lithofacies are present. The peperite from the Carraig Mhor locality 

resembles that of the 213/26-1 well peperite. The lava is similarly altered to clay 

minerals and has a greenish appearance. Lava clast shapes are fluidal (Type 4) with 

inclusions of sediment caught up within the lava (Figure 5.23.C). Where the peperite 

facies is more blocky (Type 2) the sediment appears to be more coherent with rafted 

blocks being caught up within the lava. Many of the blocks retain sedimentary 

structures such as bedding or laminations. The lava itself is much less altered and often 

lacks significant chilled margins (Figure 5.23.D).  

At Carraig Mhor, the peperite changes from a fluidal type to blocky types over 

cm scales. As discussed in Section 4.8.7, this change in texture may be due to a number 

of factors. For the Carriag Mhor peperite, sediment competency and water content have 

the largest influence on the type of peperite produced. Where sediment is more 

coherent, fluidisation cannot occur and insulating vapour films do not protect lava clasts 

resulting in brittle fragmentation (Skilling et al., 2002.)  

5.3.2 Straight contacts 

 

Straight contacts are seen in several places throughout the Rosebank core and within the 

Staffa Formation. At a mineralogical scale the contact is defined as being a straight 

sharp transition from the igneous rock into the sedimentary rock. The igneous rock 

often has a glassy chilled margin at the contact. This glass in most cases has extensively 

altered to palagonite and then to pore filling clays. The number of amygdales also 

increases towards the contact, with their morphology becoming smaller and more 

elongate. Amygdale fill consistently switches from calcite to clay and or sediment filled 

towards the contact (Figure 5.24.A1).   

The sediments underlying straight contacts in this study ranged from very fine 

grained mudstone and coals, which were common onshore, to volcaniclastic lithic 

wackes more commonly found offshore. All of the sediment rock types were sampled 

and examined petrographically, to determine the effects of the igneous body. None of 

the sediment rock, regardless of composition, showed any significant thermal effects 
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across the contact. No evidence of melting or calcite cementing that has previously been 

found in other studies (Grove et al., 2014). Increased compaction was noted due to the 

weight of the overlying igneous body. Quartz and feldspar grains often showed signs of 

strain and grain boundaries showed evidence of dissolution with suture contacts. 

However, the amount of dissolution to the framework grains does not appear to 

significantly decrease with distance from the contact. In more porous lithologies there 

was a slight increase in the amount of clay matrix towards the contact. However, this 

may be a result of later stage dissolution and remobilisation of the glassy chilled margin 

within the igneous body rather than a direct effect from the contact. Diagenetic fluids 

may also be focused along contacts heightening dissolution and clay precipitation 

The contact between the lava crust and the overlying volcaniclastic / peperitic 

unit in the 213/27-2 well was examined in more detail. The contact was interpreted as a 

straight contact due to its straight nature and well developed chilled / altered margin 

(Figure 5.24.A2), however this interpretation is limited by the width of the core. This 

contact is unusual in that the peperitic unit “overlies” the lava. The nature of the contact 

implies that the lava intruded the overlying volcaniclastic sediment and chilled against 

it. Therefore, the juvenile basalt clasts within the peperite may be related to the main 

body below.  

 

5.3.3 Irregular and fluidal contacts 

 

In Section 4.8.3, irregular contacts were defined as resembling straight contacts that 

were locally discordant to bedding, whereas fluidal contacts are characterised by their 

fluidal morphology. Petrographically, irregular contacts are difficult to identify if no 

sedimentary structures can be accurately determined. The top of the 213/26-1 core was 

identified in hand specimen as being an irregular contact as it appears relatively straight 

but cross cuts the sediment at an oblique angle even when well deviations are taken into 

account. However, at a microscopic scale the contact was revealed to be more fluidal in 

nature (Figure 5.24.B1) with minor peperitic textures developed.  

Fluidal contacts are characterised by irregular edges of the igneous body which 

display well-developed chilled margins (Figure 5.24.B2). As observed at straight 

contacts amygdales become smaller towards the contact and are often filled by sediment 

or pore filling clays. Fluidal contacts occur most commonly in association with fine 
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grained sediment that shows very little evidence of thermal effects. Similar to straight 

contacts, no melting of framework grains, such as feldspars, occurs. However, alteration 

within these sediments is prevalent, especially in the offshore examples (213/26-1 well). 

Therefore, any direct thermal effects may have been overprinted by later diagenetic 

fluids.  

 
Figure  5.23: Peperitic contacts. A: Peperite from the 213/26-1 well, depth of 2881 m. Fluidal basalt clast 

completely surrounded by volcaniclastic sediment. Note the chilled margin on the basalt (L) denoted as a 

dashed line. Quartz (Q); possible sediment (VS). B: Peperite from the 213/26-1 well, depth 2887.7 m. 

Altered basalt lava (L) with complex clay and calcite filled amygdales; sediment filled amygdales (sA); 

fluidal shaped inclusions of sediment (S). Sediment matrix is mixture of clay (brown) and calcite (white). 

C: Fluidal peperite from the Carraig Mhor section. Fluidal, shape, altered basalt lava (L – outlined in 

white) surrounded by fine grained volcaniclastic sediment (S). D: Blocky peperite from the Carraig Mhor 

section. Bedding can be seen in some of the sediment “clasts”. All thin sections have been stained blue 

for porosity. 
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5.3.4 Passive contacts 

 

Passive contacts were identified in a number of locations both on and offshore. They are 

characterised as being sharp, sometimes erosional contacts and differ to straight contacts 

because they form when the igneous body is cold. Sediment in fills the lava topography 

but no direct mixing between the lithologies occurs. Both the lava and the sediment 

show no thermal effects such as chilled margins or baking.  

The igneous-sediment contacts at the base of the 213/26-1z core comprise clasts 

of lava within a siltstone matrix (Figure 5.24.C). Some lava clasts have an alteration 

halo around the edge of the clast; however, there is no evidence to state that this is a 

chilled contact.  

 Two passive igneous-sediment contacts occur at the base of the 213/27-2 core. 

The base of the lava passively fills depressions in the underlying sediment without 

disturbing sedimentary structures such as bedding (Figure 5.24.D1), similar to the 

passive contacts seen on Mull. A small darkened layer is seen at the base of the lava, 

which was originally interpreted to be a chilled margin at its base of the lava; however, 

closer inspection of the thin section reveals small fragments of rounded quartz and 

therefore the blackened horizon is now interpreted as sediment. Calcite veins cut down 

through the base of the basalt. In the basalt, these take the path of least resistance 

noticeably along vesicle walls. The veins then cut down into the sediment at a uniform 

angle suggesting they developed under tensile shear stress (pers. comm. Eddie 

Dempsey). The veins are consistent through the darkened sediment but fan out within 

the underlying sediment. Here quartz grains are totally surrounded by the calcite. This 

suggests that the sediment was not fully lithified with the calcite vein was injected. 

However, through the darkened sediment the vein is confined suggesting that the dark 

sediment has a higher rigidity than the underlying sediment. This could be evidence for 

minor sediment baking below the lava, similar to that found in Namibia and the Faroes 

as discussed in Section 4.8.5. However, as the sediment is so fine grained it is difficult 

to tell if there are any thermal effects on the sediment, or what is causing the extra 

rigidity.   

Amygdales at the contact are partially filled by sediment (Figure 5.25). As the 

lava moved over the substrate sediment was entrained within the vesicles. Pore filling 

clays then filled the remaining pore space within the vesicle. 
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 The second passive contact seen within the 213/27-2 core is shown in Figure 

5.24.D2. It is unusual as the contact is between siliciclastic sediment with no volcanic 

detritus. A darkened halo can be seen within the sediment, which was initially thought 

to be due to pore filling clays; however, this was not the case. Instead, the sediment is 

completely cemented by calcite (Figure 5.26) and the darkened zone simply represents a 

slightly smaller grain size. 

 

5.4 Identifying the Rosebank contact types 
 

A number of contacts within the Rosebank core proved difficult to identify at hand 

specimen scale. Each of these contacts were sampled, to better characterise the contact 

type. 

5.4.1 213/27-2 peperite identification 

 

While the peperite in the 213/26-1 well and onshore was easy to identify some other 

rocks proved more challenging. The rocks above the basalt lava flow in the 213/27-2 

core were tentatively identified as peperite during core viewing. Thin section scans 

where subjected to image analysis techniques which can strip out alteration and allow 

the original primary mineralogy to be examined (Figure 5.27). 

 Basalt lava clasts have extremely fluidal shapes and were thoroughly mixed with 

the altered clay rich sediment (Figure 5.27.A2). In places alteration appears to be 

focused along the edge of the juvenile basalt clasts (Figure 5.27.B2).  The basalt lava is 

extremely altered with much of the interstitial glass having completely altered to pore 

filling clays. The sediment is extremely fine-grained claystone that contains darker 

more, organic-rich regions. Calcite alteration is prevalent throughout the samples. In 

places, the calcite fills vesicles within the basalt clasts (Figure 5.27.A3) but can also be 

found filling porosity within more organic rich layers in the sediment.  
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Figure 5.24. Basalt- sediment contacts 

are shown in yellow. A1:  Straight 

contact where sediment passively in 

fills lava surface. Transition from 

calcite to clay amygdales approaching 

contact. Well 213/26-1, 2880.2 m. A2: 

Straight contact between sediment and 

lava. Well 213/27-2, 2875.1 m, 

deviation ~ 25°.  B1: Irregular – fluidal 

contact with well-developed chilled 

margin. Dispersed peperite as juvenile 

lava clasts in sediment (outlined in 

white). Well 213/26-1, 2880.6 m. B2: 

Fluidal – irregular contact with chilled 

margin. Well 213/26-1, 2880.9 m. C: 

Irregular contact. No evidence of 

thermal effects. Lava clasts are outlined 

in red. Well 213/26-1z, 3014 m,  ~ 

34.5° deviation. D1: Passive lava-

sediment contact. Glassy chilled margin 

has completely altered to clays. 

Sediment comprises quartz, feldspar, 

organic and woody fragments and 

shows no thermal effects, with bedding 

undisturbed. Note unusual calcite 

veining. Well 213/26-1, 2888.4 m. D2:  

Passive cold contact. Quartz and 

feldspar rich sediment has filled 

fracture within the basalt. Lava is 

altered to clays. Sediment matrix 

changes from calcite to clay at contact 

(dashed line). Well 213/26-1, 2888.2 m.   
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Figure 5.25: Amygdales partially filled by sediment in 213/27-2 core. A1 (ppl): Quartz and feldspar (white 

grains within amygdale) collect in the base of the vesicle. A2 (xpl): Altered palagonite and clays (bright 

yellows) fill the remaining porosity around the sediment grains. 

 

 
Figure 5.26: Photomicrograph of sediment 1 cm above a passive contact within the 213/27-2 core. A1 (ppl): 

Quartz (Q), feldspar (F), biotite (B) and lithoclasts with a calcite cement (C), ppl. A2: Calcite cement fills all 

porosity, xpl.   

 

 The fluidal nature of the basalt clasts would suggest their juvenile origin and 

suggests the rock is a peperite rather than a volcaniclastic epiclastic sediment or altered 

lava flow top. The alteration is much greater than in the other peperite facies found within 

the Rosebank cores as well as onshore peperite. Much of the basalt clasts have started to 

alter with often only the cores of the clasts having not reached completion (Figure 

5.28.A1,2). Vesicles have been lined by palagonite and filled by clays. Porosity created by 

dissolution of the basaltic glass, towards the edges of clasts, has been filled by clays. Pore 

space in the host sediment, has also been filled by clays. Any remaining interstitial 

porosity within the basaltic clasts has been filled by late stage calcite. In places zeolites fill 

moldic porosity (Figure 5.28.B1,2).  
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Figure 5.27: Peperite from the 213/27-2 well. A1: Scan of thin section from a depth of 2874.1 m. Juvenile 

basalt clast outlined in red. A2: Black area highlights the fluidal texture of the juvenile basalt clast. White 

areas are sediment. Grey areas are so altered that they cannot be properly identified. A3: Red highlights 

calcite alteration over print. Circular amygdales are noted as well as clays minerals replacing areas of altered 

matrix. B1: Scan of thin section from 2874.5 m. Juvenile texture is difficult to identify due to alteration. B2: 

Black highlights juvenile basalt clast. Grey areas are possible basalt but alteration overprint makes 

identification difficult. B3: Red highlights the prevalent calcite alteration.  
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Figure 5.28: Photomicrographs of peperite (A1( ppl) B1( xpl)) and sketch maps of phases (A2, B2). from the 

213/27-2 well at a depth of 2872.9 m. In both images the fluidal shape of the basalt is seen. Clay, calcite and 

zeolite alteration is focused towards the edges of clasts. Spherical clay alteration is seen in B1.  

5.4.2 The top contact peperite problem 

 

Peperite with a chilled lava flow contact, was identified at the top of lavas in the 213/26-1 

and 213/27-2 cores. This is unusual as in order for peperite to form here the lava must 

intrude into the sediment. The 213/26-1 well has a deviation of ~ 0.93 – 1.59° at the depth 

of the peperite while the 213/27-2 well has a larger deviation of around 25.57° (pers. 

comm. Rosebank Team 2013). Despite the larger angle of deviation in the 213/27-2 well 

the peperite unit will still sit above the underlying lava. Therefore, the lavas must be 

invasive or alternatively, represent a shallow sill. The lavas are not interpreted to be an 

apophysis of an overlying flow (c.f. Vosgerau et al. 2010) as in both cases the overlaying 

crystalline lava is more than ~10 m above.  
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5.4.3 213/27-2 fracture contact 

 

The igneous-sediment contact at depth of 2877 m in the 213/27-2 core was interpreted to 

be sediment entrained within a basalt fracture. Parts of the fracture appear to have formed 

in a cold, brittle regime with sharp, angular edges to the basalt lava clast (Figure 

5.29.A1,2). There is no evidence of chilled margins or thermal alteration of either the 

basalt or the sediment. Small angular fragments of basalt can also be found entrained 

within the sediment infill.  Further into the fracture both brittle clasts and fluidal shaped 

clasts are present (Figure 5.29.B1,2). The more rounded clasts have a distinctive altered 

margin, while more angular clasts show no obvious alteration. At the base of the fracture 

the lava behaves in a more ductile fashion and displays a fluidal morphology, indicating it 

was still hot during emplacement (Figure 5.29.C1,2). 

 In the centre of the fracture both fluidal and brittle clasts exist side by side. 

Therefore, these contacts were sampled to better understand them (Figure 5.30.A). The 

chilled margin at the edge of the fluidal clasts comprises more interstitial glass than the 

crystalline clast core. This glass appears to have altered more than the clast interior (Figure 

5.30.B). The fresher lava clasts have irregular contacts that passively interact with the 

surrounding substrate. The cold crystalline clasts display much less alteration than the 

fluidal shaped clasts (Figure 5.30.C1,2). The fluidal contacts appear to have no influence 

on surrounding sediment, with no evidence of thermal effects (Figure 5.30.D1,2). 

However, the supposedly cold angular crystalline clast has a small layer of fine grained 

darkened sediment underlying it (Figure 5.30.E1,2). This sediment resembles that found 

under the lava at the base of the 213/26-1 core as described earlier. As this sediment differs 

from the underlying sediment it is suggested that it was transported attached to the basalt 

clast. If this sediment does represent a small, indurated layer beneath the volcanic clast this 

would imply the clast was hot. However, no thermal effects such as chilled margins or 

alteration zones are seen surrounding the basalt clast itself making a thermal influence 

unlikely.  
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Figure 5.29: Lava (L) sediment (S) contacts in well 213/27-2 between depths of 2876.7 m – 2877 m. Cold 

contact (brittle) shown in black. Hot contacts (ductile) shown in white. Chilled margin defined by dashed 

line. A1: Core photo of brittle fracture (2876.7 m). A2:  No chilled margin on lava implying cold contact. 

Angular clasts of lava entrained in sediment. B1:  Core photo showing the close proximity of cold and hot 

lava clasts (2876.9 m). B2: Cold lava clasts appear fresher than altered hot clasts. Chilled margin has altered 

to clays. Thin section taken from half cut so does not precisely match the core photo. C1: Core photo of 

relationship between fluidal hot and brittle cold contacts (2876.7m). C2: Thin section scan of area within red 

box. Fluidal lava is much more altered than brittle cold lava.  
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Figure 5.30: Photomicrographs highlighting the contrast between the hot and cold contacts within the 

213/27-2 well. Red line defines the edge of the altered hot clast, while yellow defines the edge of the more 

crystalline clast. Darkened, fine grained sediment is outlined in dashed yellow. A: Thin section scan with 

coloured boxes highlighting the locations of the photomicrographs (F- a fracture in the slide).  B: Altered 

margin on a hot contact. The upper portion of the image is more crystalline and alteration of interstitial glass 

is less prevalent. At the clast margin all of the glass has been altered to palagonite (ppl image). C1 (ppl); C2 

(xpl):  Highlights the contrast in alteration between more crystalline lava clast and the very altered glassy 

lava clast above. D1: Relationship of both clast boundaries with the surrounding sediment. Sediment matrix 

comprises clays similar to those forming from the interstitial glass in the upper volcanic clast. E1 (ppl); E2 

(xpl): Darkened sediment layer underlying the crystalline clast. 
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5.5 SEM characterisation of mineral phases and textures  

 

Considerable alteration of the rocks leads to difficulties in identifying grain boundaries, 

original pore space and clay mineral phases. The Scanning Electron Microscope (SEM), 

using the method outlined in Section 2.5.1, allowed these issues to be better resolved and 

the main diagenetic phases to be identified. Each mineral phase will be described and 

interpreted in detail and the diagenetic sequence determined. Rosebank core samples 

experienced significant charging (Section 2.5.1) and therefore backscatter and EDAX 

analysis were limited within these samples.  

 

5.5.1 Quartz 

 

Mull 

Quartz grains in all samples exhibited minor dissolution at grain boundaries, but suture 

contacts are common. Quartz overgrowths and cements are not generally present, with the 

exception of a patchy quartz cement in the siliciclastic quartz arenite found at the Carsaig 

Arches (Section 4.5.1).  

 

Rosebank 

All quartz grains in the samples exhibit minor dissolution similar to that seen onshore. 

Suture contacts are common between quartz grains. Embayed contacts are also more 

common in the siliciclastic lithofacies in Rosebank than onshore.  

 

5.5.2 Quartz interpretation  

 

The quartz dissolution and minor suture contacts imply that the sample has undergone 

some compaction. Quartz overgrowths are a common diagenetic phase in sandstones and 

are often responsible for a reduction in porosity (Pittman 1972, Worden and Morad 2000, 

Zhou and Friis 2013). Quartz overgrowths form from pore waters saturated in silica (Leder 

and Park, 1986). Bloch et al., (2002) suggest that development of early clay rims will 

impede overgrowths as they eliminate nucleation sites for the silica.  Therefore, the lack of 

quartz overgrowths within the samples could be due to the early stage development of 

clays.  
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5.5.3 Flint 

 

Mull 

Two types of flint clasts occur in the Mull samples (Figure 5.31.A ) as described above. 

Type 1 flint exhibits extensive dissolution along grain boundaries but only limited 

alteration within the interior which results in a pitted texture. Type 2 flint has similar 

dissolution along grain boundaries but the grain interiors are more altered. Calcite and 

phosphorous-rich minerals (e.g. fluorapatite) replace clasts margins Figure 5.31.B,C) while 

alteration in the interior is focused on fossils. Moldic porosity is commonly filled by clay 

minerals and calcite (Figure 5.31.D,E). Delicate lace-like structures within the flint are 

commonly preserved (Figure 5.31.F).  

 

Rosebank 

No flint is found within the Rosebank samples.  

  

5.5.4  Flint interpretation 

 

The greater degree of alteration in Type 2 flint may be a result of the moldic porosity 

providing better pathways for diagenetic fluids to infiltrate the clast. The flint is 

Cretaceous in age (Williamson and Bell, 2012) and has been previously buried, uplifted 

and eroded, and therefore, has been exposed to earlier diagenetic fluids prior to being 

included within the Staffa Formation rocks. Evidence for this is further discussed within 

Section 5.5.12. It is unlikely that even with minimal transport, delicate lace-like structures 

such as the one seen in Figure 5.31.F would survive erosion and consequently silica 

dissolution may have occurred. Dissolution may have exploited the flint, and in particular 

the pre-altered fossiliferous variety, over that of the quartz, due to its microcrystalline 

structure (Siever 1962). 
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Figure 5.31: Backscatter images of flint.  A. Flint (F); type 1 on left; type 2 on right; fossil arrowed; quartz (Q); calcite (C). Note type 2 flint is much more altered. B. 

Fluorapatite replaces flint clast. Fractures are filled by calcite (white arrow). Moldic porosity filled by calcite (red arrow). C. Close up of flint clast with considerable 

alteration. Moldic porosity filled by phyllosilicates (Ph). D. Moldic porosity filled by phyllosilicates. E. Intra granular flint dissolution. F. Delicate lace-like structures at the 

edge of the flint clast.  
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5.5.5 Volcanic Clasts 

 

A variety of predominantly basaltic volcanic rock clasts are present within the samples. 

These are divided into three main types: crystalline lava clasts, crystalline pyroclasts, and 

ash. All three clast types are found in the Mull rocks, whereas only lava clasts and ash are 

found within the Rosebank rocks. There are no obvious differences in alteration between 

Staffa and Rosebank, and, therefore both rock will be examined together.   

 

5.5.5.1 Crystalline basaltic lava clasts  

 

The crystalline lava clasts are generally the least altered of all the basaltic clast types, but 

they still show a variety of alteration textures. The groundmass in the more-altered clasts 

has completely altered to clay minerals. In some cases, clasts can only be identified by clay 

pseudomorphs and by remnants of plagioclase phenocrysts. A common alteration texture 

identified in Section 5.4.3 was where clasts cores altered more than at the grain 

boundaries. Under the SEM this texture was often used to distinguish relict basaltic lava 

clasts from the altered rock matrix. While clast margins do show some concave-convex 

dissolution textures they remain crystalline and are composed of a sodium-rich silicate 

such as albite. In places this material appears to have been precipitated on the outside of 

the basalt clast or could form from leaching of mobile trace elements towards the edges of 

the clast (Figure 5.32.A). Despite the high levels of alteration, clasts typically retain their 

strength and do not easily compact around framework grains. In the less altered basaltic 

clasts the interstitial glass has partially altered; however, the feldspars crystals are 

unaltered and only exhibit minor dissolution at grain boundaries (Figure 5.32.B).  

 

5.5.5.2 Scoria lapilli pyroclasts  

 

This clast type is only found in Staffa Formation samples. They are generally more altered 

than the crystalline lava clasts, and there is less variation in alteration textures. Extensive 

dissolution and replacement has resulted in complex diagenetic textures that overprint 

much of the original igneous textures. Clast boundaries even at the micron scale are 

difficult to resolve (Figure 5.32.C). As in the crystalline lava clasts, the glassy groundmass 

has been replaced by large, randomly orientated, clays that fill relict pore space. Clay 

plates nucleated on plagioclase feldspar microcryst surfaces and have grown into pores. 
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Intra-granular porosity has developed between clay fibres towards the centre of the pores. 

Figure 5.32.D). Axiolitic textures developed as clay nucleation fronts met; thus creating an 

interconnected network of clay minerals that have effectively destroyed localised porosity 

as the clays swelled (Figure 5.32.E).  Plagioclase feldspar microcrysts within the 

pyroclasts are generally much more altered than those in the lava clasts, and have highly 

dissolved crystal boundaries. Diagenetic fluids exploited the dissolved regions of the 

feldspar crystals which has produced clay fibres that appear to have grown from inside the 

feldspar clast. Typically, only small remnants of feldspars remain (Figure 5.32.F). 

Titanium-rich minerals are dispersed throughout the groundmass. Commonly, the 

amygdaloidal clasts are the most altered as alteration is focused at vesicle walls.  

 

5.5.5.3 Basaltic ash 

 

A large amount of basaltic ash particles occur within the more vent-proximal primary 

pyroclastic rocks of Mull. Rare glass shards are found within the Rosebank volcaniclastic 

samples. Very little fresh volcanic glass was seen within the samples; with most 

completely altered to fibrous clays with radial titanium-rich bands (Figure 5.33.A). Tightly 

packed clay minerals coat the ash particles, presumably replacing gel palagonite, whereas 

more fibrous clays replace the fibrous palagonite and grow into pore space from the glass 

shard walls (Figure 5.33.B). Titanium oxides are concentrated into “strings” along glass 

shard edges as they cannot be incorporated into the clay minerals as they grow. This 

extenuates any relict dissolution textures present within the samples (Figure 5.33.C). 

Shard-like axiolitic textures are found highlighting a change from Fe to Mg rich clay 

minerals (Figure 5.33.D). This most likely represents alteration/ devitrification of the glass 

shards. The structures do not resemble those formed from microbial action (c.f. Cockell 

2009) or root structures found in paleosoils.  

 

5.5.6 Volcanic clast interpretation 

 

Basaltic ash clasts are the most susceptible to alteration due to their glass texture and high 

surface area. Mafic glasses are more reactive than their silicic counterparts (de Gennaro et 

al. 2000).The chemical composition of the glass controls the authigenic facies produced 

and affects the kinetics of the alteration process (Khalaf, 2013). Vesicular pyroclasts are 
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more susceptible to alteration than less vesicular varieties. If vesicles are interconnected 

more diagenetic fluids can percolate through the clast, aiding alteration from the interior, 

out to the margins of the clast. Vesicle walls are also likely to be weaker and less 

crystalline, thus promoting vein development, as fluids follow the path of least resistance. 

The larger surface area of the vesiculated clasts results in greater rock to water ratios. 

Particles composed of volcanic glass are also more susceptible to compaction during 

diagenesis than crystalline lava clasts.  

After burial basaltic volcanic glass first alters to gel palagonite, which lines pores. 

Fibrous palagonite then nucleates on this and grows outwards into the pore space. With 

increasing depth and temperatures (~80°C) palagonite is transformed into clay minerals 

such as smectite (Gifkins et al., 2005).   

 In vent proximal regions rocks are dominated by pyroclasts that were produced 

within a short time period and should have relatively uniform alteration. In medial and 

distal locations the range of alteration textures of volcanic clasts in the volcaniclastic lithic 

wackes is much higher, due to the greater range in clast compositions, morphologies and 

ages. Therefore, the clasts are all at different alteration states. Due to severe alteration it is 

typically impossible to separate out weathering alteration that may form at the surface, 

from the diagenetic alteration the clast experiences at depth.   
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Figure 5.32: Crystalline basaltic clasts and basaltic pyroclasts. A: vlW sample comprising: flint (F) and quartz (Q) and basaltic lava clast (B) with altered groundmass (G) 

and relict plagioclase pseudomorphs (P). The clast appears fresher towards the boundaries with K-rich material possibly accreted around the edge of the clast (red line and 

arrowed).  B: Altered interstitial glass between plagioclase crystals (P). Clay grows from crystal walls into pore (arrowed). Titanium (Ti) from the glass is concentrated in 

titanium oxides. C: Extremely altered pyroclasts with relict feldspar. Clays replace the groundmass and grow into pores (red box). D: Interstitial glass (G) within a basalt 

crystalline pyroclasts (B). E: Small fragments of plagioclase form isolated islands within the fibrous network of clays (G). F: Small altered plagioclase microcrysts (P).  
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Figure 5.33: Backscattered SEM image of altered volcanic glass textures. A: Glass shard (Gs) that has altered 

to clays (ph) with titanium banding (Ti). B: Altered glass shard (Gs). Titanium (Ti) coats vesicle and shard 

edges. Dark Mg-rich tightly packed clay coats the shard, possibly replacing gel palagonite. More fibrous 

clays (Ph) grow from the vesicle walls into dissolved pore space (red arrows). C: Titanium (Ti) highlights 

relict dissolution texture. Pseudomorphs of plagioclase phenocrysts (P) are replaced by clays (Ph). D: 

Axiolitic texture developed in altered glass shards (Gs). Mg rich clays (dark), Fe rich clays (light).  

 

5.5.7 Feldspars 

 

Plagioclase and alkali feldspar crystals occur in most rocks types within the Staffa 

Formation and Rosebank samples. In common with the volcanic clasts, there are no 

notable differences in feldspar alteration between on and offshore samples.  

 

Siliciclastic samples  

 

Within siliciclastic samples plagioclase feldspar is the dominant feldspar, with only minor 

quantities of alkali feldspar. Alteration is less advanced than for the volcanic clasts, with 

only minor dissolution to crystal boundaries. Alkali feldspars are typically more strongly 

altered.   
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Volcaniclastic samples 

 

Plagioclase feldspar crystals are the dominant feldspars found in the volcaniclastic rocks. 

EDAX results indicate that Na-rich feldspar is most common and there are only minor 

quantities of Ca-rich feldspar. The extent of alteration of plagioclase feldspar crystals 

varies from relatively fresh with only minor dissolution along cleavage planes to extreme 

alteration resulting from intense dissolution (Figure 5.34.A). In most cases, plagioclase 

crystals are very altered with only isolated fragments remaining in a “matrix” of 

phyllosilicate minerals.  Figure 5.34.B shows one such isolated fragment surrounded by 

smectitic clay fibres, which bridge outward into the pore space from the crystal edges.  

Commonly, the Ca- and Na-rich plagioclases are replaced by patches of K-rich 

material. Figure 5.34.C, shows a Na-rich albite feldspar with K-rich zones, which appear 

to form along the cleavage (Figure 5.35). However, the K-rich zones are more commonly 

found in randomly distributed patches (Figure 5.36). Dissolution on this crystal is 

extensive and it has pitting on the surface. Dissolution is focused within the K-rich areas 

leaving isolated Na-rich feldspar fragments (Figure 5.34.D).  

Smectitic clay fibres fill inter and intra granular pore space, growing from Na-rich 

plagioclase grain boundaries, while fragments of K-rich feldspar are dispersed between the 

smectitic clays (Figure 5.34.E). In some samples, the smectite appears to directly interact 

with the highly irregular dissolution boundaries of the feldspar crystal (Figure 5.34.F). 

More rarely plagioclase feldspars crystals are replaced by calcite (Figure 5.34.G).   

 

5.5.8 Feldspar crystal interpretation 

 

The majority of the feldspar crystals have been extensively dissolved, which would have 

created an initial secondary porosity (e.g. Schmidt and McDonald 1979), that was then 

filled by smectitic clays, or more rarely, calcite. Differing feldspar alteration states can be 

explained in a similar way to the volcanic clasts; feldspar crystals are derived from a range 

of sources and have therefore experienced variable amounts of alteration. Albitisation is 

prevalent throughout the samples. K-rich zones could be attributed to exsolution and solid-

state solution of the feldspars. However, such alteration tends to be focused along cleavage 

lines in well-ordered zones, but in many samples, the K-rich zones are scattered randomly 
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throughout the crystals. Potassium is a relatively mobile element and hence it is suggested 

that the K-rich fluids could have been focused in the areas of maximum alteration rather 

than being a by-product of the feldspar alteration itself. Alternatively, the most highly 

altered areas of feldspar could be attributed to secondary diagenetic feldspar produced as a 

result of analcime alteration (c.f. Surdam, 1977). 

Volcanic grains are often rimmed by alkali feldspar. It is unlikely that grains are 

altering from the inside out, as much of the alteration will be focused on grain boundaries 

that are in contact with pore fluids. These original grain boundaries could act as a focus for 

diagenetic fluids. The feldspar may be diagenetic in origin and have been precipitated 

around the edge of the grains, which are then later extensively dissolved. The result is that 

the clast is more structurally rigid than volcanic ash and suffers less under compaction. 

The alteration appears to be contained within the clast and so pore spaces surrounding the 

basaltic clasts remain unaffected. 

 

5.5.9 Amygdales 

 

Amygdales within basaltic clasts are present within the samples from both on and offshore, 

and these are described earlier (Section 5.2.2.1). There appears to be no correlation 

between amygdale fill and sample location, with amygdales in both on and offshore setting 

being similar. Clast type can also not be correlated with amygdale fill composition with 

similar amygdales being found in all three basaltic clast types as defined above. However, 

the groundmass surrounding the amygdales tends to be more altered in glassy clasts than in 

crystalline clasts (Figure 5.37.A,B). 

 Amygdales are partially to totally filled by a complex mineral assemblage of clay, 

calcite and zeolites. Commonly, the sequence of pore filling material changes considerably 

from amygdale to amygdale within the same basaltic clast (Figure 5.37.C). Regardless of 

the fill composition, most amygdales have a thin lining of tightly packed fibres, identified 

as smectite using EDAX. This lining follows the vesicle wall, replacing the surrounding 

glass groundmass rather than growing into the vesicle centre. The clay coating has also 

nucleated around small feldspar fragments resulting in spherulitic masses of clay at vesicle 

edges (Figure 5.37.D). These clay phases are often followed by larger fibres of corrensite 

to chloritic composition clay that nucleates on the vesicle lining and grow into the vesicle 

centre in a randomly orientated, sinuous fashion. Visible porosity in the vesicle is severely 
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reduced, but not completely occluded (Figure 5.37.E).  In some vesicles the pore coating 

clay precipitation is prolonged, resulting in thick fan-like structures rather than the 

randomly orientated sinuous fibres (Figure 5.37.F). Some amygdales have several layers of 

clay lining before the later-stage fibrous fill (Figure 5.37.G).  

Titanium-rich minerals are commonly concentrated around the edges of vesicles 

(Figure 5.37.H,I,J), as the glass alters to palagonite and then later smectitic clays. Titanium 

rims were much more common in vesicles within glass shards rather than in crystalline 

lava clasts. Zeolite minerals were only found in a small number of vesicles and always 

occurred as a late stage fill. Tightly packed Fe-rich smectitic clay commonly formed a pore 

coat in the vast majority of samples. In samples where the lining was restricted to a few 

microns, larger pore filling clay of a more chloritic and corrensite composition commonly 

filled the vesicle, with minor amounts of intra-fibre porosity retained in the vesicle centre.   

Zeolite occurs more commonly as a late stage vesicle fill in the offshore volcanic 

rich samples (Figure 5.37.K).  

 

5.5.10 Amygdale interpretation 

 

The range of pore filling material is complex and can vary within millimetres in the same 

sample, with neighbouring amygdales having different mineral assemblages highlighting 

the complex interplay of pore waters and surrounding mineralogy. The examples presented 

are the most common in both on and offshore samples with the exception of calcite-filled 

vesicles, which were encountered during SEM, but due to charging issues with the sample 

an image of significant quality was unable to be taken. Titanium found within the glass is 

considered to be immobile (Brimhall and Dietrich, 1987) and therefore is not taken into the 

clay and instead is concentrated at vesicle walls.  
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Figure 5.34: SEM feldspar 

images. All backscatter 

apart from B which is 

secondary electron. 

Abbreviations: plagioclase 

(P); clays (Ph); K-rich 

feldspar (K); feldspar 

dissolution (F); basalt clast 

(B); quartz (Q); calcite (C); 

Gs (altered glass shard). A: 

Extremely altered 

plagioclase crystal 

surrounded by clays. B: 

Smectitic coating growing 

from the plagioclase 

surface (arrowed). C: K-

feldspar alteration along 

cleavage plane within a 

plagioclase crystal. D: K-

rich feldspar areas are more 

altered than Na-rich 

plagioclase areas. E: Small 

isolated K-feldspar 

fragments within clay 

fibres.  F: Clays appear to 

exploit weaknesses within 

the feldspar crystal 

structure (arrowed). G: 

Calcite replaces plagioclase 

feldspar. 

216



Chapter 5  Petrographic and SEM characterisation of volcaniclastic rocks 

 

Figure 5.35: SEM phase map of a vlw sample. A: Composite image made from all phases. B: Na-rich feldspar is highlighted in green. C: K-feldspar is highlighted in pink. 

Note the K-feldspar is focused on the cleavage of the Na-rich feldspar. D: Mg- and Fe-rich clay minerals. E: Ca- and Ti-rich minerals. F: Quartz.  
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Figure 5.36: SEM phase map of a vlw sample. A: Composite image made from all phases. B: Na-rich feldspar is highlighted in green. C: K-feldspar is highlighted in pink. 

Note the K-feldspar appears as patches within the Na-rich feldspar.. D: Mg- and Fe-rich clay minerals. E: Ca- and Ti-rich mineral. F: Quartz. 
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Figure 5.37: SEM backscatter images of amygdales in a range of basalt clasts. Annotations: basalt (B); altered glass shard (Gs); Titanium oxides (Ti); zeolite 

(Z); phyllosilicate minerals (Ph); pore coating smectite clay (Pc); Pore filling clay (Pf) typically corrensite or chloritic in composition. A: Flattened amygdale 

within a crystalline basalt clast. Clast shows only minor alteration. Note: amygdale shows evidence of flattening highlighted by Pc clay (red arrows). B:  

Amygdale within an altered glass shard. Clays replace clast groundmass.  C: Top amygdale has a thick clay coating with little remaining porosity, bottom 

vesicle has thin coating and more porosity preserved. D: Pc point nucleates creating a spherulitic texture at the amygdale edge. E: Thin, tightly packed Pc 

layer. Randomly orientated Pf then grows into vesicle space. F: Thick Pc layer grows into the amygdale. Figure continued on next page. 
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Figure 5.37 cont. G: Pf reaches completion filling the amygdale with only minor inter-fibre porosity. H: Titanium oxides concentrated at amygdale edge. I: 

Magnified view of H. Amygdale centre to right of image. J: Titanium concentration within the altered glass increases towards the amygdale edge. Note the 

large size of chlorite clays (Pf) filling amygdale.  K: Late stage zeolite fills the pore.  
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5.5.11 Zeolite minerals 

 

Zeolite minerals were identified optically in a number of volcaniclastic samples in both the 

Staffa Formation and Rosebank samples. They occurred as late-stage pore and vesicle fills 

in some vent proximal pyroclastic samples (e.g., MacCulloch’s Tree and the Carsaig 

Arches). However, very little zeolite was identified in the volcaniclastic lithic wackes. In 

the offshore samples zeolite occurred only as a rare vesicle fill, most commonly in the lava 

flows.  

 However, evidence for extensive zeolite minerals were not found within the SEM 

analysis. Severe charging effects occurred in the majority of the volcanic Rosebank 

samples (see Section 2.5.1 for discussion). Therefore, the SEM accelerating voltage had to 

be lowered and this resulted in no adequate secondary electron images of zeolite minerals. 

At low voltages the electron signal was also too low for the backscatter detector to 

function efficiently and accurate identification of the zeolite under the SEM proved 

difficult.   

 

5.5.12 Calcite 

 

Several phases of calcite occur within the samples. Each phase enters the rock at a 

different stage within the diagenetic sequence and therefore, affects the porosity in a 

slightly different way. Calcite textures between on and offshore samples are similar; 

however, differences do exist between siliciclastic and volcaniclastic samples.  

 

Siliciclastic samples  

 

Onshore samples from the volcaniclastic lithic arenites and the sublithic arenites both have 

extensive calcite cements. Offshore, a patchy calcite cement was found within some of the 

reservoir rocks. This cement may have contributed to the protection of framework grains 

from compaction and that subsequent dissolution of this calcite phase led to a well-

developed oversized pore network. Within the calcite patches porosity is completely 

eliminated and in places the calcite fills aggressively dissolved framework grains (Figure 

5.38.A). Outside these cemented areas, framework grain boundaries are better preserved 

with sharp contacts and euhedral shapes (Figure 5.38.B). Pores are oversized and well 
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connected. Some point grain contacts show minor dissolution with suture contacts; 

however, this texture is not extensive. Minor clay coats occur on framework grains within 

the high porosity zones (Figure 5.38.C), and are typically illite and more rarely kaolinite. 

The clay mineral coats nucleate on grain boundaries and grow out into the pore but stop 

growing well before porosity is eliminated (unlike the amygdale examples). Areas of 

sample where clays and calcite co-exist were identified. Unfortunately, no obvious cross 

cutting relationships could be established between the two (Figure 5.38.D).  

 

 
Figure 5.38: Backscatter images of calcite in Rosebank siliciclastic samples. Annotations: quartz (Q); 

feldspar (F); siltstone lithoclast (S); phyllosilicate minerals (Ph); calcite (C); pore space (p). A: Calcite 

cement fills all porosity. B: Oversized and well-connected pore network exists away from calcite areas. 

Grain boundary dissolution is less than in calcite cemented regions. C: Calcite aggressively dissolves 

framework grains (arrowed) while phyllosilicate minerals line grains in uncemented areas. Box shows 

location of D. D: Calcite and clays within the same pore. No cross cutting relationships are evident.  
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Volcaniclastic samples 

 

Calcite is much more common in the onshore sample suite. There are six different phases 

of calcite, which result in complex relationships between calcite and surrounding minerals.  

Type 1 calcite is exclusively associated with the flint clasts (only found within 

onshore samples). This calcite fills fractures and vugs within the flint grains but is not seen 

surrounding the grain or in the adjacent matrix. Figure 5.39.A,B shows examples of 

fractures through flint clasts that have been annealed by calcite. The calcite in both 

examples does not continue into the surrounding matrix.  

Type 2 calcite predominantly fills pores, fractures and in some cases acts as a grain 

coat. Aggressive dissolution has modified grain boundaries and leaves the calcite with a 

pitted rough appearance (Figure 5.39.C). The calcite does not appear to have interacted 

with surrounding mineralogy as clays can be seen growing outwards from its irregular 

surface.  

Type 3 calcite is very similar to Type 2 in that it is also highly corroded with 

dissolution pits. There is also little interaction between clay fibres and the edge of the 

calcite. However, unlike Type 2, Type 3 calcite appears to fill porosity created by the 

extremely altered volcanic mineralogy (Figure 5.39.D).  

Type 4 calcite shows highly altered grain boundaries and a pitted texture. Here 

surrounding clays grow up into the calcite edge and fibres grow directly into it (Figure 

5.39.E).  

Type 5 calcite similarly interacts more with the surrounding mineralogy. Figure 

5.36.F shows how the calcite and fibrous clay display a complex interwoven texture, with 

clay fibres appearing to compartmentalise the calcite. A more magnified image of this 

relationship (Figure 5.39.G) shows clay fibres cross-cutting the calcite. Small pore spaces 

do still exist along the edge of some of the calcite fibres.  

Finally, Type 6 calcite replaces plagioclase feldspar phenocrysts in some samples 

(Figure 5.39.H). 
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5.5.13 Calcite interpretation  

 

Calcite found within the offshore siliciclastic samples is interpreted as an early diagenetic 

phase, which may have helped to lessen the effects of compaction. Calcite is susceptible to 

dissolution in acidic fluids (Ehrenberg, 1990). Therefore, the calcite may have been 

aggressively dissolved in the non-cemented areas. However, the presence of clay coats 

may further dispute this theory. If the calcite cement was dissolved leaving only small 

patches behind before the onset of the clay formation, clays might be expected to coat 

calcite grains at the edges of the cemented areas. Therefore, this suggests that the clay 

grain coats may have formed first, inhibiting wide spread calcite precipitation and resulting 

in a patchy calcite cement. At a later stage this already patchy calcite cement may have 

been dissolved leaving only minor amounts remaining within the sample. Therefore a 

combination of early clay and later patchy calcite cement and later dissolution, could 

explain why the siliciclastic offshore samples are less compacted than would be expected.  

The calcite found within the onshore samples is much more complex. Type 1 

calcite is only associated with flint clasts with no evidence of it affecting surrounding 

grains. It is highly unlikely that fluid pathways were restricted to the flint grains only and 

therefore, that the calcite may originate from a first cycle diagenetic fluid (pre-Paleogene). 

The flint had previously been buried and silicified. During burial fractures within the flint 

clasts may have been annealed by a late-stage calcite cement. Following this, localised 

tectonism of the basin led to the flint being uplifted and eroded. These clasts were 

incorporated into the Staffa Formation rocks and were then buried for a second time. The 

calcite cemented fractures survived the process whereas pore filling material was lost with 

erosion.  

The order of the other calcite phases is difficult to determine. Type 2 calcite 

appears to pre-date the onset of the clays and is an early stage diagenetic phase. The calcite 

was aggressively dissolved before later stage clay fibres grew outwards from the surface 

filling pore spaces. Type 3 calcite is very similar in texture, but appears to fill the pore 

space around altered volcanic clasts and therefore postdates the clay alteration.  

Type 4 and Type 5 calcite timings are difficult to determine, for example the 

altered volcanic grain in the upper part of Figure 5.39.H, has clay that fans outwards from 

this grain towards the calcite surface. This clay could be interpreted as growing out into an 

open pore space because clay fibres increase in size towards the centre of the space. Late-
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stage pore fluids could then precipitate the calcite around the delicate clay fibres, leading 

to the complex intergrowth. There is no evidence of clay growing from the calcite surface 

as seen in the Type 2 example, indicating that the calcite may post date the clay. However, 

the small circle in the bottom left of the image appears to show clay fibres growing from 

the calcite to fill the hole. This would imply that the calcite was already in place before the 

clays grew and the fibrous intergrowths were simply exploiting fractures and weaknesses 

in the calcite crystal structure. The magnified image (Figure 5.39.F) could be interpreted in 

either way. If the calcite was a late stage fluid filling the space between the clay fibres it 

might be expected to completely fill the pore. However, the clay structures would 

undoubtedly restrict pore throats leading to pore scale compartmentalisation and partial 

calcite precipitation. Conversely, if the calcite pre dates the clay fibres, it might be 

expected that the fibres would be orientated parallel to the cleavage and fracture regime in 

the calcite crystals, or that the edges of calcite crystals would show dissolution or 

alteration along their boundaries. Neither scenario is observed as fibres are randomly 

distributed and calcite crystal edges are straight and run parallel to clay fibres.  An 

alternative theory is that the calcite may have precipitated simultaneously. The 3D shape 

of the pore must also be considered. If the pore was relatively shallow then the SEM thin 

section could show fibrous clay from below growing upwards, resulting in the illusion that 

the calcite and clays were intermixed. However, as this feature is fairly common and 

occurs in several different samples it is thought that the relationship is not just an optical 

anomaly.  

Finally, Type 6 calcite is thought to represent a late stage replacement of feldspar 

phenocrysts.  
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Figure 5.39: Backscattered images of 

calcite in volcaniclastic samples. 

Annotations: flint (F); quartz (Q); 

calcite (C); basalt (B); plagioclase 

feldspar (P); clay (Ph); pore coating 

clays (Pc); pore filling clays (Pf). A: 

Calcite filled fractures terminate at 

flint grain boundaries (arrowed). B: 

Calcite fills fractures in flint. C: 

Clays grow out from dissolved flint 

grain boundaries to meet dissolved 

calcite (arrowed). D: Calcite 

aggressively attacks altered basaltic 

clast (arrowed). E: Clay fibres mixed 

within calcite pore fill (arrowed). F:. 

Clays grown from altered basaltic 

clast to calcite (top of image). Clays 

grow into calcite (top right and 

bottom centre). Clays grow from 

calcite into pore (bottom right). G: 

Magnified image showing calcite 

compartmentalised by clay fibres. 

H:). Pore coating clays line 

framework grains. Pore filling grains 

grown into interstitial pore space. 

Highly dissolved feldspar grains 

replaced by calcite 
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5.5.14 Clay minerals 

 

A range of different clay mineral compositions and morphologies were found in all 

samples. There were no obvious differences between clay minerals found in offshore 

samples versus those found onshore.  

 

Siliciclastic samples 

 

Siliciclastic samples (sublithic arenites and quartz arenites) have only minor amounts of 

clay. Detrital clay minerals that were found within these samples typically formed grain 

coats on framework grains (see Section 5.5.14.2, Figure 5.38.C). While these clay minerals 

do limit permeability by clogging pore throats, overall visible porosity is retained.  

 

Volcaniclastic samples  

 

Clay minerals are more abundant in the volcaniclastic samples, both on and offshore. A 

wide range of compositions, morphologies and textures are present and these are discussed 

below.  

5.5.14.1 Identification 

 

Clay minerals are the dominant pore space and amygdale fill within all of the 

volcaniclastic samples, regardless of lithofacies type. They are most abundant in vent 

proximal rocks that contain high proportions of basaltic pyroclasts. The proportion of clay 

minerals reduces with distance from the volcanic source and can be correlated to a 

reduction in the abundance of glass-rich volcanic clasts in the samples. 

 Optically these clays appear as a brown-green masses leading to difficulties in 

identification. However, four different clay structures were identified using the SEM.  

Type 1 clays comprise tightly packed randomly orientated fibres and are abundant 

in almost all of the volcanic rich-samples. The clay is Fe-rich and often forms fan 

structures, and platelets are typically less than 5 μm long (Figure 5.40A). It is 

predominantly associated with the altered groundmass of basaltic clasts and ash, and forms 

pore linings on vesicles.  
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 Type 2 clay appears to transition between more fibrous material and more blocky 

platelets (Figure 5.40.B). This clay generally has less Ca and Na than the previous type.  

Type 3 clay is present within samples as long elongate fibres that, locally, form 

radial fans (Figure 5.40.C). These plates are much larger ( 5–10 μm) and reach (20 or 30 

μm) in length (Figure 5.40.D) where they appear less blocky and slightly more elongate. 

This clay type lacks Na and Ca.  

Type 4 clay is more Fe-rich than the others. This clay has long elongate aligned 

plates, which are commonly orientated in large fan structures. The plates are typically over 

50 μm (Figure 5.40.E).  

 The different clay structures were tentatively identified using EDAX spectra in 

combination with examples in literature, (Welton, 1984). Type 1 clays are rich in Si and 

Al, Na and Ca, as well as minor amounts of Fe and Mg, and have been identified as 

smectitic clay. Type 2 clay minerals represent a transitional clay from smectitic to chloritic 

composition, possibly corrensite, due to the mixture of both platy and fibrous structures. 

Chemically, they are similar to Type 2 clay but contain less Na and Ca and more Fe and 

Mg. Type 3 clays contain Si, Al, Fe and Mg, but lack Na and Ca, and represent chloritic 

material. Type 4 clays are of very similar in composition to Type 3, but are relatively 

enriched in Fe.  

The identification of clay minerals proved difficult as limitations on the EDAX 

beam spot size (1 µm) and accelerating voltage resulted in a significant error within 

results. The complex heterogeneity in the samples may lead to surrounding mineralogy 

being included within the EDAX results. Therefore, XRD and QXRD analysis was 

undertaken in order to better identify the clay phases.  
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Figure 5.40: SEM images of clay types found within volcaniclastic samples. Annotations: quartz (Q); basalt clast (B); plagioclase feldspar (P). All images are backscatter 

except B which is secondary electron. A: Type 1, smectite. B: Type 2, possibly corrensite. C: Type 3, chlorite. D: Type 3, chlorite. Note larger size up to 30µm. E: Type 4, 

chlorite with platelets exceeding 50µm.   
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5.5.14.2 Grain coats 

 

The clay phases are partly responsible for the decrease in visible porosity in the samples. 

Therefore, the nature of how the clays interact with the surrounding mineralogy was 

examined.  

 Clay grain coats in the volcaniclastic rich samples (volcaniclastic lithic wacke), 

were all identified as Type 1 smectite clays. A number of previous studies have linked the 

presence of volcanic glass with the formation of similar smectitic grain coats (Davies and 

Ethridge, 1975; Khalaf, 2013). A sample of volcaniciclastic lithic wacke from the Staffa 

Formation was taken in order to assess the relationship between the smectite grain coats 

and the volcanic ash. The sample (mt3d) from a vent medial location contains ~15% 

reworked basaltic pyroclasts but is mostly composed of quartz and flint grains. Visible 

porosity within the sample is estimated to be ~15%. Localised areas of pore lining and 

filling clay are randomly distributed throughout the sample.  

 In areas rich in volcanic clasts (Figure 5.41.A), the grains are coated in tightly 

packed smectite coating that severely reduces porosity and permeability of surrounding 

pores and reduces the visible porosity within the thin sections to 0%. Secondly, an area 

towards the edge of a volcanic clast rich zone was examined (Figure 5.41.B). Here, 

smectite coats the volcanic clasts as before; however, some quartz and feldspar grains have 

incomplete grain coats. Therefore, the smectite grain coats seem to be associated with the 

volcanic grains and hence only locally reduce the visible porosity and permeability of the 

pore network. Visible porosity in the thin section here is ~ 3%. Finally, an area of sample 

mt3g devoid in volcanic clasts was examined (Figure 5.41.C). Here, framework grains 

completely lack the smectite grain coats and the pore network remains unaffected, with 

viable porosity of ~ 15%.  

As the basaltic clasts and ash start to alter to smectite, grain coats can form. In 

samples that contain abundant glass the smectite appears to coat the vast majority of 

grains. In samples such as the one described above only grains directly in contact and 

proximal to volcanic grains are likely to be affected by the smectite grain coats. In most 

cases the grain coats acted as the precursor to later stage pore filling clays. Therefore, 

pores surrounding grains that have a substantial grain coats, are likely to be filled.  

Several authors (Imam, 1986; McBride, 1989; Worden and Morad, 2003) suggest 

that early chlorite formation can lead to the preservation of porosity during burial. They 

suggest that early pore coating chlorite inhibits the formation of quartz overgrowths by 
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limiting the nucleation sites in which the silica can form, thus protecting the pore network. 

Figure 5.42 (Bloch et al., 2002) shows a breach in a similar type of clay rim leading to the 

nucleation of an overgrowth and a reduction in porosity. Early grain coats may also inhibit 

nucleation of other early cements such as calcite.   

Why therefore, in previous studies has clay formation stopped resulting in porosity 

preservation, but continued in the rocks in this study, until the visible porosity has been 

eliminated? Firstly, pore rims imaged within this study are significantly thicker than those 

seen in previous studies, indicating that grains were exposed to clay favourable diagenetic 

fluids for relatively long time scales. Secondly, large amounts of altered volcanic glass 

within the samples may have resulted in pore waters enriched in Fe and Mg and this may 

have promoted the formation of phyllosilicate minerals. The chloritic clays may also 

develop from a smectitic precursor (e.g. García-Romer et al., 2005). However, previous 

studies (Zou et al., 2008, 2012) also suggest volcanic clasts as the origin of their clay 

coats. If the samples in these studies contain only lava clasts with little amounts of ash or 

pyroclasts, then clay development may be localised and therefore lead to incomplete pore 

fill. Hydrothermal circulation affecting the rocks in this study may also promote clay 

growth and lead to more reservoir damaging clay growth.  

 

 

 
Figure 5.41: Secondary electron images of smectite grain coats within sample mt3g. A: Volcanic clast (B) is 

coated with smectite, which clogs localised pore space (arrowed). B: Volcanic clasts have smectite grain 

coating but quartz (Q) and plagioclase feldspar (P) only have incomplete grain coats (arrowed). C: Quartz 

rich area of the sample devoid of volcanic grains. No extensive smectite grain coats are present.  
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Figure 5.42: Breach in clay coats leading to quartz overgrowth development. Abbreviations: Quartz (qtz); 

Clay coat (rim); breach in clay coat (br); quartz overgrowth (ovg). From Bloch et al. (2002). 

 

5.5.14.3 Pore throats 

 

Pore throats are the most important part of the pore network because they control 

permeability (Doyen, 1998; Bryant, and Blunt, 1992). The reservoir quality of a rock can 

be reduced by only limited amounts of clay in pore throats. All volcaniclastic samples 

exhibited reduced permeability due to clogged pore throats. Figure 5.43.A shows an 

example of how smectite grain coats grow outwards into the centre of the pore to occlude 

the porosity and reduce permeability.  

5.5.14.4 Pore-filling clay 

 

The majority of pores within the volcaniclastic samples are filled by pore-filling clays. The 

pore-filling clay comprises corrensite or chlorite fibres, which have nucleated on the grain 

coats and grew into the centre of the pore. In most volcanic clast rich samples the pore 

filling clay has completely filled the surrounding pore space (Figure 5.43.B). Where the 

pore-filling clay has not reached completion intergranular porosity between the fibres is 

present (Figure 5.43.C). While limited porosity is retained, these fibres can significantly 

reduce permeability.  

 While there does not seem to be significant differences in pore-filling clay textures 

between on and offshore samples, some differences are seen between rock types. Samples 

with abundant scoria and ash clasts, such as the massive scoria rich lapilli tuff, typically 

have much greater amounts of pore-filling clay than samples that contain lava clasts. 

Figure 5.43.D shows a typical pore-filling texture in the scoria-rich samples. Glass has 

altered to smectite and are also often coated by smectite, which appears to have been 

remobilised and lines the pores parallel to the edges of the glass. Pore-filling corrensite has 
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then grown with a blocky fan like structure, and filled the pore. The blocks are randomly 

orientated and often appear to radiate from a point source or to form an axiolitic texture. In 

samples dominated by altered lava clasts, pores are typically filled by more fibrous clay 

that grows perpendicular to the framework grains and into the pore in a more regular and 

ordered fashion (Figure 5.43.D). The visible porosity is therefore, reduced with time until 

clay fibres meet in the centre of the pore (Figure 5.43.E). 

 The extent of the pore-filling clay minerals appears to correlate with the amount of 

volcanic material (in particular volcanic glass) in the sample. The pore filling clay is 

tentatively identified as chlorite and corrensite. Therefore, the transition from pore-coating 

to pore-filling marks a textural change from tightly packed to wider spaced fibres, but also 

reflects a compositional change from Ca- and Na- rich smectite to Fe- and Mg- rich 

chlorite. This transition is discussed in Section .  

 The difference in clay textures in samples containing abundant pyroclasts versus 

samples that contain lava clasts might be explained by pore architecture.  Firstly, lava 

clasts are generally more resistant to compaction and so retain their shape. As a result the 

surrounding pores are held open for longer during compaction. These pores are often 

larger and therefore will take longer time scales to fill, resulting in incomplete pore fills. 

Glassy pyroclasts are structurally less rigid than lava clasts and so will compact more 

easily leading to an early reduction in porosity. As a result pores are smaller and therefore 

will fill faster. Secondly, glass rich pyroclasts alter more than lava clasts resulting in more 

material being available within the diagenetic fluids to be taken into the clays.   

5.5.14.5 Unusual clay textures 

 

Clay patches 

 

Type 4 clay is almost exclusively found as patches within volcanic rich samples. This clay 

is Fe rich, very large (in the order of 50 μm) and commonly forms a distinctive texture. 

Fibres grow outwards from sinuous line point sources that curve through the patch forming 

a complex replacement / pore filling texture. The edges of the patches are very sharp and 

there is no evidence of pore coating material (Figure 5.44.A). All clay patches have an 

almost euhedral shape (Figure 5.44.B).  

 Initially these clay patches were thought to be amygdales within basalt clasts. 

However, the nature of the clay is different from other vesicles. No pore-rimming clays 
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could be found and clays growing into the centre of the vesicle were absent. The patches 

were then thought to be altered glass clasts with clay minerals growing off relict perlitic 

fractures that developed when the glass started to alter. However, the overall euhedral 

shapes of the patches make them unlikely to be glass. The patches also seem to withstand 

compaction unlike the majority of the observed glass shards. It is therefore thought that 

Type 4 clay is more likely to be replacing a mineral phase, because the majority of the 

patches occur within basaltic clasts these may have originally been pyroxene phenocyrsts. 

It is not clear why the clay has grown in this orientation; however, it is assumed that this is 

an artefact of the pyroxene alteration. The axiolitic texture of the clay may be artificially 

accentuated. As the clays grow and meet, the remaining pore fluid will be enriched in 

elements not taken into the clay structure such as Ti or excess Fe. These elements could 

then precipitate out in the remaining pore space, resulting in long thin strands that join clay 

fibres on either side. Both Ti and Fe are bright under the SEM these strands would stand 

out against the surrounding clays resulting in the unusual wavy axiolitic texture developed.   

 

Large clay areas 

 

Large areas of clay are more commonly found within the Rosebank volcaniciclasic 

samples. Unlike the more commonly tightly packed smectite clay matrix that has formed 

from altered glass, these areas have extremely large clay minerals that appear to be 

growing into open pore space. The fibres are Mg and Fe rich and have been interpreted as 

chlorite. The fibres have grown in fan-like shapes and appear to radiate out from single 

point nuclei (Figure 5.45.A1). They are extremely large, and often exceed 50 μm, which is 

unusual in itself as the clay fraction of a rock is, by definition, <2 μm. Some pore space is 

retained between fibres; however, overall permeability is reduced. Veins of tightly packed 

clays are often found cross-cutting the clay areas. Original framework grains have been 

extensively dissolved with only minor fragments of feldspar remaining (Figure 5.45.A2). 

This feldspar often has patchy K alteration zones as described in Section 5.5.7. Extensive 

dissolution of framework grains has taken place in the large clay areas, with very little of 

the original rock structure remaining. The chlorite has then grown into the large open voids 

nucleating on the remaining fragments of framework grains.  

The large >50 μm platelets may have most likely grown from a sustained high 

temperature fluid (cf. Hillier, 1994). As there is no apparent correlation between these clay 

areas and hot igneous – sediment contacts samples it is though they are not a direct result 
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of contact effects. Therefore, it is more likely that the clay areas are a result of circulating 

hydrothermal fluids that resulted in extensive dissolution of framework grains and then 

rapid chlorite growth at elevated temperatures. 

 

Spherulitic clay alteration 

 

Spherulitic clay textures were noted in vesicles in several samples. However, in places 

spherulitic clay structures also appear to aggressively attack surrounding feldspar 

framework grains (Figure 5.45.B1) leaving isolated fragments of feldspar with irregular 

margins. The formation of these textures is not yet understood.   

5.5.14.6 Clay evolution 

 

Several clay phases are present throughout the samples. Often one phase appears to have 

grown into another (e.g. smectite grain coats transform into larger clay fibres of chloritic 

composition that fill the pore, Figure 5.46). This relationship is common in many of the 

volcanic rich samples, both on and offshore. Chang et al., (1986) explain that most basaltic 

volcaniclastics alter to trioctahedral smectites. Gifkins et al., (2005) have reported a 

transition from smectite to chlorite with increasing depths and temperatures. The evolution 

of the clay phases is discussed further in Chapter 7.  

5.5.15 Compaction 

 

Evidence of compaction can be found within all the samples, but is most common in the 

volcanic clast rich, onshore samples (minimum burial depth of ~ 2km).  

 

Siliciclastic samples 

 

The sublithic and quartz arenites found onshore show signs of compaction, mainly within 

the flint grains. Sutured contacts are common and altered flint clasts are often deformed 

around stronger quartz grains (Figure 5.47.A). Fractures are also common within the flint 

clasts and they radiate out from point grain contacts (Figure 5.47.B). 
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Volcaniclastic samples 

 

Compaction is greatest in samples containing significant amounts of volcanic glass and 

pyroclasts, such as the massive scoria lapilli tuffs. Compaction can be seen in the 

volcaniclastic lithic wackes, as ash clasts are flattened and deformed around framework 

grains (Figure 5.47.C,D,E). Lava clasts are more resistant to compaction and retain their 

structure better, preserving surrounding porosity. In examples where the clasts have been 

completely replaced, but have an unaltered coating or rim, this rim seems to protect the 

clast from further compaction (Figure 5.47.F).  
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Figure 5.43: Backscatter SEM images of pore filling clays. A: Clays (Ph) coat flint gains (F). Clays meet in 

the centre of the pore throat reducing the permeability of the sample. B: Pore (outlined in red) in between 

three basaltic clasts (B) that is filed by pore filling clays (Pf). C: Highly dissolved flint grain (F) that is 

coated by pore coating clays (Pc) before larger and more fibrous pore filling clays (Pf) grow into remaining 

porosity. D: Pore space between two altered glass shards (Gs) has been filled firstly by remobilised smectite 

pore coats (Pc) and then by more blocky corrensite (Pf). Note titanium banding in glass shard.  E: Larger 

scale pore space (P) being filed by fibrous pore filling chlorite (Pf). 
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Figure 5.44: Backscattered SEM images of the clay patches. A: Clay patch (Ph- black dashed outline) with 

euhedral shape within a basalt clast (B). Red box shows location of magnified imaged B. B: Dashed line 

shows sharp transition from the basalt clast into the clay patch. Plagioclase (P) within the basalt clast is 

relatively fresh, while the groundmass (G) is altered to smectite. Note the axiolitic texture within the clay 

(Ph) patch (arrowed).  

 

 

 
Figure 5.45: Backscatter SEM images of unusual clay textures. A1: Clay with large fibrous platelets. 

Fragments of feldspar (F) are interdispersed throughout clays. Tightly packed vein (black arrow). Artificial 

fracture (black resin) produced during thin section manufacture. A2: Magnified image showing clay texture. 

Note light areas on feldspar (F) are K rich, whereas dark areas are Na rich. B1: Feldspar (F) being 

aggressively attacked by spherulitic clays (P). B2: Remaining fragments of feldspar have irregular 

boundaries.   
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Figure 5.46: Backscattered SEM images of clay evolution. Annotations: flint (F); plagioclase feldspar (P); 

quartz (Q); calcite (C); smectite clay coat (Pc); corrensite pore fill (Pf). A: Framework grains are firstly 

coated by smectite. Chlorite then fills old pores. Calcite fills the remaining porosity. B: Magnified image 

showing the pore coating layer on flint grain, then a transition layer (between dashed lines), before chlorite 

fills the pore. Note the relationship between the Pf clay and the calcite (arrowed). C: Magnified image 

showing the tight structure of the Pc clay, contrasting with the larger well formed fan structures in the Pf 

clay.  Relict feldspar exists between the layers.  
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Figure 5.47: Backscattered SEM images of compaction. A: Sutured contact (arrowed) between two flint clasts (F). The more altered type 1 flint is deformed around the more 

resistant quartz grain (Q). B: Fractures within flint clasts (F) emanating from point contacts (arrowed). Large pores (P) are typically retained, but in this case have been filled 

by calcite (C). C: Altered ash clasts are bent around quartz grains (Q). D: Altered volcanic clast is deformed around a flint clast (F). Altered plagioclase feldspar (P) remnants 

remain. E: Compaction texture, scoria fragments are deformed round remaining plagioclase fragments. (B). Note plagioclase (P) has been replaced by calcite. F: Basaltic lava 

clasts (B) have completely altered, but retain their shape due to the feldspar coating or rims (arrowed). Matrix comprising altered ash deformed around the basalt lava clast 

and quartz (Q) framework grains.  
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5.6 Conclusions 
 

Petrographical and SEM analysis has revealed a large number of diagenetic phases within 

the samples. The offshore samples from Rosebank were very similar to the samples found 

onshore from the Staffa Formation.  

 

Staffa Formation siliciclastic samples  

 

All of the non-volcanic samples from the Staffa Formation (e.g. sublithic and quartz 

arenites) have much simpler mineralogy than the volcanic-rich samples. Framework grains 

are preserved, showing only slight dissolution at grain contacts, with the exception of Type 

1 flint that is often much more altered. Evidence for significant compaction is seen 

throughout with more malleable grains such as micas being deformed around framework 

grains. Very little authigenic clay can be found within the samples; most forms thin grain 

coats and is locally confined to areas containing mud lithoclasts or organic material.  A 

wide range of porosity exists within the samples. The quartz arenites have the highest 

porosities (discussed in the next chapter) with good quality oversized pore networks. The 

sublithic arenites however, have limited porosity due to a pervasive calcite cement. 

 

Rosebank siliciclastic samples  

 

The Rosebank siliciclastic samples have the most simple petrography of all the samples, 

being dominated by quartz with rarer feldspar and micas. Evidence of compaction can be 

found in places, with micas being deformed around framework grains, similar to that seen 

in the Staffa Formation samples. Some minor dissolution of quartz grains is seen and rare 

suture contacts also show the sample has experienced some compaction. However, the 

porosity of these samples is very good with well developed pore networks often with 

oversized pores. Clays are rarely found coating framework grains and may help protect 

pores from later stage diagenetic fluids by providing a barrier to nucleation. A patchy 

calcite cement is found through the samples that locally reduces porosity. This calcite 

cement may have also influenced the pore network. The timing of this cement could then 

prove crucial. If early, the cement could protect pores from compaction, with later 

dissolution of this calcite resulting in pores being preserved. However, significant amounts 

of diagenetic fluids would be required to dissolve and transport the calcite out of the 
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reservoir making this sole explanation unlikely. Conversely, a simpler explanation would 

be that the cement has only ever been patchy with very limited amounts of dissolution.  

 

Staffa Formation volcaniclastic samples 

 

The volcanic-rich samples have a much more heterogeneous mineralogy than the 

siliciclastic samples due to variable input from volcanic and fluvial/alluvial sources. Vent 

proximal samples are dominated by pyroclasts that were produced instantaneously, 

resulting, therefore in more uniform alteration states across the sample. In the reworked 

samples such as the volcaniclastic lithic wacke, a greater range of volcanic clasts are 

present and therefore, the range of alteration textures produced is more complex. Grain 

dissolution is prevalent and in some cases so severe that original rock textures have been 

completely obliterated.  Feldspar alteration is unusual with evidence of K metasomatism. 

 Clays are abundant in all samples, and the proportion of clay increases with the 

abundance of volcanic clasts (see Figure 6.33). The basaltic glass firstly alters to gel and 

fibrous palagonite, which in time is replaced by smectite. Titanium is concentrated into 

layers as it is not taken into the smectite. More blocky clays tentatively identified as 

corrensite then grow from the smectite grain coat precursor into the pores. In most cases, 

pores are completely filled; however, in places extremely large chlorite clays represent a 

late stage clay fill. Several phases of calcite also exist within the samples with different 

timings. Late stage calcite fills the last remaining porosity within the samples. A minor 

phase of zeolite was also found within the samples. The diagenetic paragenesis is difficult 

to unravel due to the large amounts of phases, complex timing and amount of alteration. 

Diagenetic phases are locally defined and highly dependent on surrounding mineralogy. 

 

Rosebank volcaniclastic samples 

 

The Rosebank samples have very similar textures to those found onshore. Their 

petrography is slightly different in that they do not contain flint or primary pyroclasts; 

however, they do show similar alteration textures, such as axiolitic and spherulitic clay 

textures and rare perlitic fractures within altered glass samples. Visible porosity is also 

similarly reduced with clay grain coats and pore fills resulting in rocks with poor reservoir 

quality. However, the low porosities of these rocks may make them good seals.  
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5.7 Next steps 

 

Some correlations have been made between volcanic clast abundance and visible porosity 

and these relationships are explored and quantified in the next chapter. Clays were also 

only tentatively identified using SEM images and EDAX. QXRD was therefore 

undertaken to better identify and quantify the diagenetic phases and is discussed in Chapter 

6.  
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6 Quantification of diagenetic phases in volcaniclastic and 

siliciclastic rocks and their role in hydrocarbon reservoir 

quality 

 

6.1 Introduction  

 

In the previous chapter a number of diagenetic phases were tentatively identified using 

the SEM and EDAX. However, clay minerals proved particularly difficult to identify 

and so X-ray Diffraction (XRD) was undertaken, using the methods described in 

Section 2.6. As discussed below the XRD results posed a number of further questions 

and due to limitations with the techniques, Quantitative X-ray Diffraction (QXRD) was 

undertaken. QXRD allowed the quantification of mineral phases and aided the 

identification of the authigenic clays, which resulted in a better understanding of the 

paragenesis of the samples. 

 The second part of the chapter uses point counting data to discuss the 

relationship between porosity and permeability with each of the main diagenetic phases 

(e.g. pore filling clay minerals and calcite cements). The final part of the chapter 

presents isotopic data that better constrain temperatures and the chemistry of the water 

in which the pore filling clays grew.  

 

6.2 X-ray Diffraction 

 

For the purpose of this study, all of the samples were separated into six categories 

depending on volcanic clast content and lithofacies (Table 6.1): Group 1 - vent 

proximal, comprises vent proximal rocks that are dominated by primary pyroclasts; 

Group 2 – volcanic-rich epiclastic, comprises rocks that have <20% volcanic clasts, 

which have clearly been reworked; Group 3 – volcanic-poor epiclastic lithofacies, 

comprises rocks that have between 10%-20% volcanic clasts; Group 4 - siliciclastic 

lithofacies, comprises rocks that contain <10% volcanic clasts; Group 5 - Rosebank 

volcaniclastic rocks, comprises all of the volcaniclastic facies encountered within the 

Rosebank cores; Group 6 - Rosebank siliciclastic, comprises all of the siliciclastic facies 

sampled from the Rosebank cores. 

Note that flint is not easily resolvable by XRD, as it is composed of 

recrystallized silica and therefore crystalline varieties appear as quartz in XRD traces. 
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More amorphous silica varieties will result in a vitreous halation at angles between 20° 

and 30° (Verstraete et al., 2004). In many cases this will be undetectable in samples that 

have larger background intensities due to volcanic glass and / or accidental interference 

from the Perspex sample holders. Therefore, within this chapter the term “quartz” is 

used to include all crystalline silica, including flint.   

 

Group name Lithofacies Samples 
Dominant 

characteristic 

Group 1: Vent proximal 

Massive scoria-rich breccias 

(mscBr) 
MT2, MT8, MT9, 

Primary pyroclasts: 

vesicular scoria lapili 

and ash 

Massive scoria rich tuff 

(mscT) 
MT4, MT5, 

Scoria rich volcaniclastic 

breccias (scvBr) 

MT1, MT3e, 

MT3f 

Group 2: Volcanic rich 

epiclastic 

  

Volcaniclastic lithic wacke 

(VLw) (volcanic clast rich 

samples)  

CA1a, CA1b, 

Ca1c, Ca1d, Ca2, 

Ca3, Ca5a, Ca5b, 

MP03d, MP03e  

Mix of reworked 

pyroclasts, lava clasts, 

quartz, flint. More than 

20% volcanic clasts. 

Group 3: Volcanic poor 

epiclastic 

Volcaniclastic lithic wacke 

(vlW) (volcanic clast poor 

samples)  

MT3g,  MT3d, 

BB1, BB2, BB3 

Dominated by quartz, 

flint with rare mica and 

lithoclasts. Volcanic 

clasts are mainly lava 

clasts but rare ash 

pyroclasts. Volcanic 

clasts 10-20% 

Volcaniclastic lithic arenite 

(vlA) 

AT1, AT2, AT3, 

AT4 

Group 4: Siliciclastic 

rocks 

Sublithic arenite (slA) 
MT3a, MT3b, 

MT3c 
Dominated by quartz, 

flint and feldspar with 

rare mica and organic 

material. Volcanic 

clasts <10% Quartz arenites (Q) MP04 

Group 5: Rosebank 

volcaniclastic 
Volcaniclastic lithic wackes  

CHEV 1, CHEV 

6, CHEV 8, 

CHEV 13 

Dominated by lava 

clasts with some ash, 

quartz, feldspar 

Group 6: Rosebank 

siliciclastic 

Sublithic arenites 

 

CHEV 16, CHEV 

17, CHEV 25  

Dominated by quartz 

and feldspar with rare 

mica and mudstone 

lithoclasts. No volcanic 

clasts.  Quartz arenites CHEV 19 

Table 6.1: Summary of groupings used within this chapter  

245



Chapter 6 Quantification of diagenetic phases in volcaniclastic rocks  

6.2.1 Bulk XRD 

 

Bulk XRD analysis was undertaken on the majority of the samples. Initially, the smear 

method was used, but due to poor results and a high background signal, the packing 

method was then utilised (both methods are described in Section 2.6.1). It was hoped 

that bulk analysis could be used to quantitatively predict the minerals within each 

sample. Peak positions correlated well with literature, allowing the main mineral phases 

within each sample to be identified. While absolute peak intensities are arbitrary, 

relative peak intensities can be used to quantify the amounts of mineral phases.  

However, due to poor instrumentation set up and preferential alignment of minerals in 

the samples during sample preparation, reproducibility of the relative peak sizes was 

poor. This lowered the confidence of the data and as a result accurate quantification was 

not attempted with this data set. The results from bulk analysis are described below 

using the groupings as described in Table 6.1.  

 

Group 1 – Vent proximal samples results 

 

Seven samples from the vent proximal grouping were analysed by bulk XRD (Figure 

6.1). Generally, there is a good correlation between the scans for each sample, although 

minor differences do occur. All samples comprise rock-forming minerals such as 

feldspar (albite and anorthite) and minor quantities of quartz, while diagenetic phases 

include calcite and clays. The peak labelled K was initially identified as kaolinite; 

however, this peak may represent chlorite or a mixture of both minerals (discussed in 

Section 6.2.2). Samples MT1, MT5 and MT8 and MT9 all contain the zeolite, analcime. 

A high background intensity is seen in all of the group 1 samples, making identification 

of minerals difficult.  

 

Group 1- Vent proximal samples interpretation 

 

The bulk XRD results correlate well with the mineralogy seen in the previous chapter. 

The high background intensity within the scans implies the presence of an amorphous 

material. This could be explained by the large quantities of altered volcanic glass within 

the proximal samples. The large, broad peak at low angles indicates an abundance of 

several phases of clay minerals 
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Figure 6.1: Bulk XRD traces for representative Group 1 samples. Annotations: quartz 

(Q); anorthite (An); albite (Al); calcite (C); analcime (A); kaolinite / chlorite (K).  

 

Group 2 - Volcanic rich epiclastic 

 

Six samples from the volcanic rich epiclastic grouping were analysed by bulk XRD 

(Figure 6.2). Correlation between these scans was better than that of Group 1 samples, 

with most samples containing the sample mineral phases. Group 2 traces have less noise 

than the Group 1 scans allowing for easier identification of mineral phases. The samples 

comprise quartz and anorthite (albite was not found). Diagenetic minerals are similar to 

Group 1, with clay minerals found in all samples.  

 

Group 2 - Volcanic rich epiclastic interpretation 

 

The large well defined quartz peak in the Group 2 results indicates a greater proportion 

of quartz than in the Group 1 samples, which correlates well with the petrography data 

(Section 5.2.2.4). The broad peak at low angles again indicates the presence of a large 

amount of clay minerals. The large background within the scans suggests the presence 

of large amounts of volcanic glass. Notable differences between these results and the 

Group 1 samples are the lack of calcite and albite. If clay pore fill has been extensive 

this could explain the lack of calcite within samples. The lack of albite however, is 

harder to explain as Na-rich feldspars were found in the SEM data.  
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Figure 6.2: Bulk XRD traces for representative Group 2 samples. Annotations: quartz 

(Q); anorthite (An); calcite (C); kaolinite /  chlorite (K).  

 

Group 3 - Volcanic poor epiclastic 

 

Five samples from the volcanic poor epiclastic grouping were analysed by bulk XRD 

(Figure 6.3). The background in all samples is much lower than the previous two 

groups. Correlation between all the Ardtun (AT) samples is very good. Quartz and 

albite are the main rock forming minerals found within the samples, and calcite is the 

dominate pore filling phase in the Ardtun samples. No calcite is found within sample 

MT3d.   

 

The presence of a small broad low angle peak indicates that minor amounts of clay 

minerals can be found within the samples. There is no distinctive kaolinite/ chlorite 

peak at 12.5°, as found in the previous two groups; however, a minor peak may just rise 

above the background. Analcime was only present within sample MT3g.  

 

Group 3 - Volcanic poor epiclastic interpretation 

 

The lower background levels indicate less amorphous material within the samples and 

therefore less volcanic glass than in the previous groupings. The smaller, broad clay 

peak and minor peak at 12.5° indicate that the proportion of clay within the sample is 

much less than in previous groupings. This correlates well with the SEM data, which 

identified calcite as the main pore-filling phase within the volcaniclastic lithic arenites.  
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Figure 6.3: Bulk XRD trace for typical Group 3 samples. There is good correlation 

between all of the traces. Annotations: quartz (Q); calcite (Ca); albite (Al).   

 

Group 4: Siliciclastic rocks 

 

Four samples from the siliciclastic rock grouping were analysed by bulk XRD (Figure 

6.4) and correlation between the samples is very good. The background within the 

samples is relatively low, especially within the MT samples (The Ladder locality). 

These samples are dominated by quartz. The MT samples have very little clay with no 

obvious low angle peaks. MP04 (Malcolm’s Point locality) has a visible clay peak but 

also has calcite.  

 

 Group 4: Siliciclastic rocks interpretation 

 

The low background counts indicate low amounts of amorphous volcanic glass within 

the sample. The MT samples have very little clay or calcite, which correlates well with 

the petrographic and SEM data for quartz arenites in the previous chapter. MP04 has a 

small amount of calcite, which also correlates to the patchy calcite cement found within 

the sublithic arenites.   
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Figure 6.4: Bulk XRD trace for typical Group 4 samples. Large unlabelled peaks are 

secondary quartz and calcite.    

 

Group 5: Rosebank volcaniclastic samples 

 

Two representative samples from the Rosebank volcaniclastic rock group display 

significant differences in their traces and represent end member samples (Figure 6.5). 

CHEV 1 represents a quartz-rich volcaniclastic wacke. The sample comprises quartz, 

Ca- and Na-rich feldspar (anorthite and albite) and calcite. CHEV 13 represents a 

volcanic clast-rich sample comprising albite and calcite but lacking quartz and anorthite. 

It also contains significant quantities of analcime. A sharp peak at 6° in both samples, is 

identified as smectite. The background in all samples is high and resembles that seen in 

the volcanic-rich onshore rocks.      

 

Group 5: Rosebank volcaniclastic sample interpretation 

 

The background is higher in CHEV 13 indicating the presence of more volcanic glass 

than in CHEV 1. The more volcanic-rich sample is also the zeolite-rich sample, that has 

very little quartz. The very high quantities of clay (in this case smectite) are similar to 

the onshore volcanic clast-rich rocks (groups 1 and 2).  
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Figure 6.5: Bulk XRD traces for representative Group 5 samples. Annotations: quartz 

(Q); anorthite (An); albite (Al); calcite (C); analcime (A); smectite (S). Red annotations 

= minerals only found in CHEV1, blue are only found in CHEV 13, black are found in 

both.  

 

Group 6: Rosebank siliciclastic 

 

Four samples from the Rosebank silicilastic rock grouping are shown in Figure 6.6. 

These samples correlate well with most minerals being identified in each trace, and have 

very low background readings, similar to group 4 samples. They comprise quartz and 

feldspar (anorthite and albite) but lack calcite, which was found in onshore equivalents. 

A very small peak is noted at 12.5° indicating the presence of minor amounts of clay.  

 

Group 6: Rosebank siliciclastic interpretation 

 

The low background counts indicate the samples lack volcanic glass. The small clay 

peak indicates very minimal amounts of clay minerals similar to the onshore equivalents 

(Group 4). Calcite was found within these samples in Section 5.2.1.3; however, no 

calcite appears within the group 6 bulk XRD traces, which may be explained by the 

patchy nature of this cement.  
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Figure 6.6: Bulk XRD traces for representative Group 6 samples. Annotations: quartz 

(Q); anorthite (An); albite (Al); kaolinite / chlorite (K).  

 

Bulk XRD discussion  

 

Most of the major phases were identified and confirmed by using the bulk XRD 

method. Siliciclastic samples (groups 4 and 6) contained few phases and had a lower 

background, leading to more accurate and easier identification.  However, volcanic-rich 

samples (group 1, 2 and 5) all have large backgrounds with multiple peaks, resulting in 

a difficult identification process.  

Some minerals (e.g. pyroxene, alkali feldspar, mica) identified in the previous 

chapter  (Section 5.2.2.5) were not identified in any of the XRD traces. There may be 

several reasons for this. Firstly, the missing minerals are all fairly minor components of 

the rocks and therefore may have been lost in the sampling process. Secondly, poor 

instrumental set up may result in larger backgrounds which could obscure smaller 

peaks. As already stated samples containing large amounts of amorphous glass will 

cause an increase in the background and may also contribute to smaller peaks being 

obscured. Finally, sample orientation may lead to some phases being overestimated 

while others may be reduced. Bulk XRD samples were prepared using firstly the smear 

method and then a packing method (as described in Section 2.6.1.2). Roughening of the 

sample surface within the packing method aims to reduce preferential orientation and 

keep the power randomly orientated. However, the technique is limited and some 

preferential alignment may occur. It is likely that missing minerals are due to a 
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combination of all three of these factors. In the future I would recommend that bulk 

samples be prepared by using the spray drying method discussed in Section 2.7.2.  

6.2.2 Clay separate XRD 

 

A broad peak at low angles was found in the majority of the bulk XRD traces. This peak 

was identified as clay minerals but could not be further subdivided. Similarly a sharp 

peak at 12.5° was found in several traces. However, the resolution of the bulk scans was 

such that differentiation between kaolinite and chlorite could not be achieved. For these 

reasons clay orientated XRD was undertaken.  

 The clay fraction (<2µm) was separated out using the method described in 

Section 2.6.2.1.  The samples were examined under the SEM to ensure clay platelets 

were adequately orientated. These samples were then analysed in three ways; air dried, 

etholene glycollated, and furnace to 550°C. Clay types will react differently to the 

treatments and therefore identification can be made (Carroll, 1970; Thorez, 1976; 

Moore and Reynolds, 1997). Using the groupings defined above, the typical clay 

separate scans are displayed below.  

 

Group 1 – Vent proximal  

 

An example of a Group 1 sample, MT5, is seen in Figure 6.7. The small sharp peaks at 

26.65° and 20.85° seen in all three scans are identified as quartz. The peaks at 12.5° and 

25° could either be chlorite or kaolinite or a mixture of both mineral types. The sample 

was heated to 550°C in order to differentiate between the two minerals. Kaolinite 

becomes amorphous to X-rays at this temperature and therefore the diffraction pattern 

will disappear (Moore and Reynolds, 1997). The peak in MT5 is reduced but still 

visible indicating that it is more likely to be chlorite than kaolinite. The broad peak 

around 6° swells to ~ 5.2° under glycollation and collapses to ~8.4° after heating. This 

would indicate that the peak is smectite.   

 

Group 2 - Volcanic rich epiclastic 

 

An example of a Group 2 sample, CA1d, is seen in Figure 6.8. Quartz peaks are 

identified at 26.65° and 20.85°. The peaks at 12.5° and 25° can be identified within the 
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furnace trace indicating the presence of chlorite rather than kaolinite. Smectite is also 

identified within the Group 2 samples. The chlorite peak is relatively much larger than 

the smectite peak, indicating a greater proportion of chlorite within the sample.  

 

 
Figure 6.7: Clay separate XRD traces for Group 1 sample, MT5. Air (blue),glycollated 

for 18 hours (red), furnace at 550°C for 24 hours (green). Annotations: quartz (Q); 

chlorite (C); smectite (S).   

 

 

 
Figure 6.8: Clay separate XRD traces for Group 2 sample, CA1d. Air (blue), glycollated 

for 18 hours (red), furnace at 550°C for 24 hours (green). Annotations: quartz (Q); 

chlorite (C); smectite (S).  
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Group 3 – Volcanic-poor epiclastic  

 

An example of a Group 3 sample, Ca5b, is seen in Figure 6.9. A very small amount of 

quartz is identified within this sample. The dominant clay phase is smectite; however, 

the collapse of the 12.5° and 25° peaks in the furnace trace indicates the presence of 

kaolinite instead of chlorite.  

 

Group 4: Siliciclastic rocks  

 

An example of a Group 4 sample, CA4, is seen in Figure 6.10. As in the Group 3 

example the 12.5° and 25° peaks collapsed in the furnace trace indicating the presence 

of kaolinite, which is the most dominant clay type.  Smaller peaks of smectite are also 

identified.  

 

Group 5: Rosebank volcaniclastic 

 

Despite the slight differences in the mineralogy of the Group 5 bulk traces, clay peak 

positions were constant throughout the sample set. Analysis of all the Group 5 samples 

showed very similar clay separate results. An example of a Group 5 sample, Chev 1, is 

seen in Figure 6.11. Quartz peaks are again identified, as is chlorite and smectite. The 

sharp peaks at 8.8° and 17.73° that are unaffected by glycollation or heating indicate the 

presence of illite. 

 

Group 6: Rosebank siliciclastic 

 

An example of a Group 6 sample, CHEV 16, is seen in Figure 6.12. Quartz peaks are 

identified as is chlorite, which is the dominant clay type. Illite is also identified; 

however, smectite peaks are absent.  
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Figure 6.9: Clay separate XRD traces for Group 3 sample, CA5b. Air (blue), glycollated 

for 18 hours (red), furnace at 550°C for 24 hours (green). Annotations: quartz (Q); 

kaolinite (K); smectite (S).  

 

 

 
Figure 6.10: Clay separate XRD traces for Group 4 sample, CA4. Air (blue), glycollated  

for 18 hours (red), furnace at 550°C for 24 hours (green). Annotations: kaolinite (K); 

smectite (S).  
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Figure 6.11: Clay separate XRD traces for Group 5 sample, CHEV 1. Air (blue), 

glycollated for 18 hours (red), furnace at 550°C for 24 hours (green ). Annotations: quartz 

(Q); chlorite (C); smectite (S); illite (I) .  

 

 

 
Figure 6.12: Clay separate XRD traces for Group 6 sample, CHEV 16. Air (blue), 

glycollated for 18 hours (red), furnace at 550°C for 24 hours (green). Annotations: quartz 

(Q); chlorite (C); illite (I) . 
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Clay orientated XRD discussion  

 

All of the samples comprising volcanic clasts contain smectite. Volcanic clast-rich 

samples (groups 1, 2 and 5) were dominated by smectite and chlorite. Group 3 samples 

still contain a significant smectite component; however, instead of chlorite, they contain 

kaolinite. Despite the lack of volcanic clasts within Group 4 samples, they still contain 

minor amounts of smectite; however the dominant clay is kaolinite.  Offshore group 6 

samples are devoid of smectite and instead comprise chlorite. Illite is found as a minor 

phase in both offshore sample sets, but is not found within the onshore samples. 

The clay separate analysis followed standard protocol found within the 

literature. By definition the clay fraction of the rock is material under 2 μm in size 

(Moore and Reynolds, 1997). Samples were separated into size fractions by 

centrifugation, using times calculated according to Stokes’ Law (Jackson and Barak, 

2005). Stokes’ Law describes the relationship between the gravitational force acting on 

a spherical particle as it falls against the resistive forces of the fluid it is falling through. 

This relationship is only relevant for spherical particles under 20 μm (Moore and 

Reynolds, 1997). The samples in this study are unusual in that clay fibres as large as 50 

μm long were observed using the SEM. Clay particles are also not spherical in shape 

meaning that they will take longer to settle in a resistive fluid and will stay in 

suspension longer. As a result, clay particles larger than 2 μm will be included within 

the analysis. However, the 50 μm chlorite platelets may still be too large to be included 

within the separate.  

 Four samples were re-analysed but this time the < 5 μm size fraction was 

analysed. This size fraction should include more of the larger clay platelets. The results 

from the re-analysis of a Group 2 sample (Ca1d) is shown in Figure 6.13, and shows a 

relative increase in the chlorite and quartz peaks compared to Figure 6.8. This indicates 

more chlorite was present within the sample suggesting that some of the large 50 μm 

platelets have been lost from the original analysis. However, the increase in quartz 

indicates that small quantities of crystalline minerals were included in the size fraction. 

The well-formed crystalline nature of these minerals produces relatively large peaks 

which obscured smaller clay peaks and made identification of the mineral phases 

harder.  
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 The “lost” chlorite is not thought to significantly change the overall conclusion 

of this study; however, the presence or absence of very large metosamatic or 

hydrothermal clays is an important consideration during clay separate analysis.  

 
Figure 6.13: XRD trace for the < 5  μm fraction. Note the more prominent chlorite and 

quartz peaks compared to Figure 6.8 .  

 

 

6.3 Quantitative X-ray Diffraction (QXRD) 

 

Bulk and clay separate analysis allowed the main mineral phases to be identified within 

each sample grouping; however, only tenuous semi-quantification could be attempted 

based on relative peak heights. In order to better quantify mineral amounts, QXRD was 

attempted on 8 samples (Table 6.2), which were chosen to represent the spectrum of 

lithofacies seen both on Mull and Rosebank. The correlation between offshore and 

onshore mineralogy is very good. The samples can be classified into the facies 

groupings discussed in Table 6.1. 
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6.3.1  Results from this study 

 

Table 6.3 shows the simplified QXRD results where all compositions of minerals have 

been grouped together under one heading (e.g. compositions from albite to anorthite are 

all included under plagioclase).  

 

 

 

SAMPLE ID LOCATION FACIES TYPE 
LITHOFACIES 

GROUPING 

MT8 

Onshore: 

MacCulloch’s Tree, 

Mull 

Massive scoria-rich 

breccia 

 Group 1: Vent Proximal 

MT5 

Onshore: 

MacCulloch’s Tree, 

Mull 

Massive scoria rich tuff  

Ca1d 
Onshore: 

Carsaig Arches, Mull 

Volcaniclastic lithic 

wacke (volcanic rich) 

Group 2: Volcanic-rich 

epiclastic 

MT3g 
Onshore: The Ladder, 

Mull 

Volcaniclastic lithic 

wacke (volcanic poor) 

Group 3: Volcanic-poor 

epiclastic 

MT3a Onshore: Ardtun, Mull Sublithic arenite 
Group 4: Sililciclastic 

rocks 

CHEV 6 Offshore: 

Well 213/27-2 

Volcaniclastic lithic 

wacke Group 5: Rosebank 

volcaniclastic 

 
CHEV 13 

 

Offshore: 

Well 213/27-2 

Volcaniclastic lithic 

wacke 

CHEV 16 
Offshore: 

Well 213/27-2 
Sublithic arenite 

Group 6: Rosebank 

siliciclastic 

Table 6.2:  8 samples analysed by QXRD.  
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Sample name % Quartz  % Plagioclase % K-feldspar % Pyroxene % Glass % Other 

MT8 3.9 33.1 4.7 10.6 18.1 1.5 

MT5 3.0 12.7 3.4 10.9 15.2 2.3 

MT3g 31.5 14.4 1.3 1.4 11.0 1.4 

CHEV 6 0.6 2.1 3.1 5.5 25.1 1.9 

Ca1d 11.2 7.0 3.0 2.8 11.3 1.9 

CHEV13 0.7 0.7 2.6 4.0 20.9 2.5 

MT3a 38.8 10.5 8.2 10.0 8.2 0.6 

CHEV16 57.8 20.1 7.1 0.8 2.3 0.6 

 

Sample 

name 

% Calcite  % Analcime % Corrensite  % Saponite  % Nontronite  % Di-

smectite  

% Illite/smectite  % Kaolinite  Sum 

MT8 0.0 1.2 16.0 10.9 0.0 0.0 0.0 0.0 100 

MT5 1.1 1.4 6.4 24.8 9.0 4.0 5.8 0.0 100 

MT3g 2.1 0.8 26.9 2.3 4.8 0.0 0.0 2.1 100 

CHEV 6 0.2 13.2 32.6 15.7 0.0 0.0 0.0 0.0 100 

Ca1d 0.0 9.8 24.5 3.5 8.8 0.0 13.8 2.4 100 

CHEV13 0.2 8.0 42.2 13.3 4.9 0.0 0.0 0.0 100 

MT3a 0.0 0.5 7.0 4.7 0.0 4.8 6.7 0.0 100 

CHEV16 0.0 0.4 9.5 0.0 0.0 1.1 0.3 0.0 100 

Table 6.3:  QXRD summary resul ts.  % Other includes;  amphibole and pyrite.  
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Group 1 

 

MT8 and MT5 are both proximal vent facies and so contain abundant primary 

pyroclastic lithoclasts. The QXRD data suggests they contain high proportions of 

plagioclase (33.1% and 12.7%), pyroxene (10.6% and 10.9%) and glass (18.1% and 

15.2%).  Minor amounts of quartz (<4 %) and zeolite are present.  MT5 also contains 

minor amounts of calcite (1.1%) as well as traces of amphibole and pyrite. The 

proportion of total clay is much higher than in siliciclastic equivalents. MT5 has 50% 

total clay whereas MT8 has 26.9%. The clay phases reported differ in the samples. MT8 

is dominated by corrensite (16%) but also contains saponite (10.9%), whereas MT5 is 

dominated by saponite (24.8%) with only 6.4% of corrensite. MT5 also contains several 

other types of clay such as nontronite (9%), illite/smectite mixed layer clay (5.8%) and 

dioctrohedral smectite (4%).  

 The QXRD data set broadly correlates with the point counting results for Group 

1 samples (see the “Point counting” file in the appendix). Portions of clay and glass 

were higher in point counting results while plagioclase and zeolite were found in higher 

proportions within the QXRD data set. The  QXRD data set cannot distinguish between 

plagioclase clasts and plagioclase phenocrysts within basalt clasts therefore QXRD data 

sets will have higher plagioclase feldspar proportions relative to point counting data. 

One key difference is the proportion of pyroxene. Less than 1% pyroxene was identified 

during point counting however ~10% was found in the QXRD analysis. This may be 

explained by the degree of alteration. If the pyroxene was highly altered then in may be 

difficult to identify optically and could have been classed as clay.  

 

Group 2 

 

Onshore sample Ca1d, represents a much more transitional volcaniclastic facies as it 

contains a significant siliciclastic component as well as a volcanic component. Ca1d, 

based on QXRD, comprises 11.2% quartz and 10% feldspar, both significantly greater 

than the offshore examples; however, the zeolite and total clay components are similar, 

with 9.8% and 5.3% respectively. Corrensite is the dominant clay phase (24.5%), with 

illite/smectite mixed layer (13.9%), nontronite (8.8%) and minor, kaolinite and saponite 

present.  
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 Group 2 samples also loosely correlate to point counting values (see the “Point 

counting” file in the appendix). Here the main difference was the proportion of clay, 

which was underestimated in the point counting data set with respect to the QXRD data 

set. The volcanic clasts however were over estimated. This again highlights the 

difficulties associated with classifying minerals during point counting. Where a relect 

basalt clast edge was present the clast was counted as basalt however, the clast may 

have been partially replaced by clays resulting in the QXRD data having a higher clay 

content.   

Group 3 

 

Sample MT3g is transitional between volcanic-rich and volcanic-poor (31.5% quartz, 

15.7% feldspar, 11% glass and a minor calcite phase of 2.1%). Less volcanic rich facies 

have a lower percentage of total clay than the more volcanic rich facies at 36.1%. 

Corrensite is the dominant clay phase (26.9%), with minor quantities of nontronite 

(4.8%), saponite (2.3%) and kaolinite (2.1%) also present.  

 Group 3 QXRD results correlate well with point counting data. The only slight 

difference is the proportion of clay which was slightly underestimated in the point 

counting (25%) compared to the QXRD results (36.1%).  

 

Group 4 

 

Quartz is found in all samples and in this case can be used as a good inverse proxy to 

volcanic content. MT3a, based on QXRD, has a high proportion of quartz (38.8%) and 

although is classified as siliciclastic, it does contain rare (<2%) of weathered basalt 

clasts. This results in a more complex mineralogy than that of samples devoid of 

volcanic material (e.g. CHEV 16). MT3a contains low proportions of feldspar (11% 

plagioclase and 8% k-feldspar) but also contains pyroxene (10%). The clay mineralogy 

of MT3A is complex with a total clay content of 23%. This is made up of corrensite 

(7%), saponite (4.7%), illite/smectite (6.7%) and nontronite (4.8%).  

 Group 4 rocks correlate well with point counting data. Again the proportions of 

feldspar and pyroxene have been underestimated however the proportion of quartz and 

total clay is within 5% in both data sets. 
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Group 5 

 

Offshore samples CHEV 13 and CHEV 6 are volcanic-rich samples. These rocks, based 

on QXRD, have very little quartz (<1%), feldspar (<5.2%) and pyroxene (<6%), but 

much higher proportions of volcanic glass (21–25%). Both rocks also have a significant 

zeolite component with CHEV 6 containing 13.2% analcime and CHEV 13 containing 

8%. CHV6 has a total clay mineral content of 48.3% while CHEV13 is as high as 

60.4%. The clays in these rocks are very similar with corrensite being the dominate 

phase in both (32.6% – 42.2%) followed by saponite (15.7% – 13.3%). Sample 

CHEV13 also contains 4.9% of nontronite.  

 The proportion of zeolite and clay minerals is much higher in QXRD results 

than in the point counting data. Some zeolite may have been misidentified during point 

counting as calcite. Difficulties again arise in distinguishing between and characterising 

altered volcanic clasts under optical conditions.  

Group 6 

 

CHEV 16 has based on QXRD data, high proportions of quartz (58%), together with 

high proportions of both plagioclase (20%) and k-feldspar (7%). The only clay phase 

present is corrensite (10%). Group 6 QXRD results correlate well with the point 

counting data set.  

 

 

 

6.4 QXRD discussion  

 

The QXRD results generally correlate well with the bulk XRD results. Some 

discrepancies such as the lack of pyroxene and K-feldspar in the bulk XRD results can 

be explained by the more accurate sample preparation techniques and machine set up in 

the QXRD method, resulting in better resolution of peaks and therefore more detailed 

and accurate identification. The higher precision method and extensive custom made 

clay trace database and expertise at the Hutton Institute, allowed smectite phases to be 

separated.  

However, one significant difference between the XRD undertaken at Durham 

and that undertaken at the Hutton Institute remains unexplained.  Clay separate XRD 
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and SEM analysis both indicated the presence of well-formed chlorite.  Small quantities 

of chlorite were lost in the clay separate sample preparation. However, no chlorite was 

identified in the QXRD samples. These samples were not prepared by separation 

techniques and so should still contain all of the chlorite. Mixed layer chlorite-smectite 

are often difficult to resolve due to peak interference (Moore and Reynolds, 1997); 

however, very sharp chlorite peaks were observed in the clay separate results indicating 

that chlorite close to pure phase was present. This anomaly remains unexplained. 

 

6.4.1 Volcanic glass 

 

The relationship between quartz and volcanic glass is linear, although the sample small 

sample set must be considered (Figure 6.14).   The relationship between the proportion 

of volcanic glass and the total amount of clay is shown in Figure 6.15. This highlights 

that having large quantities of volcanic glass within a sample will result in high 

proportions of clays. There is a threshold relationship with all samples over 10% glass 

having significant proportions (> 26%) of clay minerals.  

 

 

Figure 6.14: Relationship between % of quartz and % of volcanic glass  using QXRD 

data. Square points are volcanic rich samples , diamonds are intermediate samples and 

circles are volcanic poor samples.  Dashed line defines siliciclastic samples.  
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Figure 6.15: Relationship between % of total clay minerals  and % of volcanic glass using 

QXRD data. Square points are volcanic rich samples, diamonds are intermediate samples 

and circles are volcanic poor samples.  Dashed line defines siliciclastic samples.  

 

6.4.2 Phyllosilicates 

 

Understanding the composition of clay within a reservoir is important in the 

hydrocarbon industry (Eslinger and Pevear, 1988). Different clay minerals have 

different structures and therefore, affect the porosity and permeability of the sample 

differently (Moore and Reynolds, 1997). Smectite can swell in the presence of water, 

and fill surrounding pore spaces, while chlorite can be dissolved in acid resulting in 

precipitation of iron hydroxide and amorphous silica – aluminous gel that can reduce 

permeability (Moore and Reynolds, 1997). Therefore, an understanding of the type of 

clay is crucial during hydrocarbon extraction.  

The QXRD results allowed the difference in the smectite clays to be resolved 

and quantified. Therefore, the relationship between clay minerals and other mineral 

phases could be explored. 
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Corrensite  

 

Large quantities of corrensite (a mix layer smectite-chlorite clay) were identified in the 

QXRD results, but not in the clay separate XRD. Corrensite is difficult to identify using 

XRD (Reynolds, 1988). It forms peaks at very low angles (~3°), which would be 

obscured by the high background within the clay separate samples. Other corrensite 

peaks overlap with the smectite peaks and so could contribute to the width of these 

peaks within the clay separate results. The effect of glycollation on corrensite peaks is 

hard to identify due to peak interference with smectite. Corrensite also hydrates very 

quickly (within minutes) meaning that the effects of heating are often lost before 

analysis is complete (Moore and Reynolds, 1997). A combination of all these factors 

has most likely resulted in corrensite peaks being unresolvable in the clay separate 

traces.  

Corrensite has been found in volcanic rocks in a number of studies (e.g. Schulte, 

1963 and Whitney and Northrop, 1986) with several linking the presence of corrensite 

to the weathering and alteration of basaltic rocks (Smith, 1960 and Shau et al., 1990). 

Figure 6.16 shows the relationship between corrensite and volcanic glass within the 

QXRD results. With the exception of one Group 1 sample all samples containing 

volcanic glass contained large quantities (>15%) of corrensite.  

There are currently two differing opinions on corrensite. Some authors consider 

corrensite to be a mix layer phyllosilicate on the saponite to chlorite continuous (Chang 

et al, 1986, Reynolds, 1980; Robinson and Bevins 1994) or discontinuous (Inoue et al. 

1988; Inoue and Utada, 1991) conversion series, bridging the large compositional 

difference between saponite and chlorite. Brigatti and Poppi, (1984) hypothesize that 

the continuous chemical variation of corrensite between chlorite and smectite is due to 

Mg and Fe mobilization by hydrothermal fluids. Other workers consider corrensite to be 

a single phase and itself, an end member (Reynolds, 1988; Roberson, 1988; Beaufort et 

al., 1997). These authors found the composition of corrensite was constant throughout 

their sample sets and was only very rarely found with saponite. Figure 6.17, shows the 

relationship between saponite and corrensite found within this study. Both phases were 

found in all of the samples apart from the Group 6 offshore silicilclastic sample. 

Samples that contain higher percentages of corrensite also contain high proportions of 

saponite. Apart from in Group 1 rocks that have low levels of corrensite.  
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Several authors have reported that different compositions of smectite / chlorite 

mix layer clays are found in vesicle lining versus amygdale fills.  Typically mix layer 

smectite chlorite / expandable clay is found as a vesicle lining, whereas a phase 

approaching the chlorite end member fills the amygdale centre (Boles and Coombs, 

1977; Viereck et al, 1982; Shau et al., 1990). This is consistent with the SEM results 

and explains the presence of both clay phases within the QXRD results. If the origin of 

the chlorite identified in the clay separate does result from a smectite or corrensite 

precursor then this could in part explain why this material was identified as corrensite 

during QXRD analysis.    

 

 

Figure 6.16: Plot of % volcanic glass against % corrensite  using QXRD data.  Dashed 

line defines siliciclastic samples .  
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Figure 6.17: Plot of % corrensite against saponite  using QXRD data.  Dashed line defines 

siliciclastic samples.   

 

Smectite 

 

Several authors have reported volcanic glass as a precursor to smectite formation 

(Nadeau and Reynolds, 1981; Bohor and Triplehorn, 1993; Moore and Reynolds, 1997; 

Stroncik and Schmincke 2002; Gifkin et al., 2005 and references therein). Excluding 

one sample, a strong relationship exists between volcanic glass and total smectite 

composition in this study (Figure 6.18).  

 The type of smectite produced is dependent on the precursor material (Moore 

and Reynolds, 1997). Banfield et al., 1991 suggests that smectites that form from 

pyroxene and basaltic glass are likely to contain high amounts of Fe and Mg, but low 

amounts of Al, whereas smectites that are produced from the weathering or alteration of 

plagioclase are more likely to result in di-smectites that have higher Al contents. 

Smectites containing the highest amounts of Al are likely to have been produced from 

the alteration of other minerals such as kaolinite (Moore and Reynolds, 1997).  

Three types of smectite were found within this study: 1) saponite, an Mg-rich tri 

smectite; 2) nontorinite, a relatively poor Al di-smectite; and 3) other undifferentiated 

di-smectites such as montmorillonite, an Al-rich smectite (Smykatz-Kloss, 1974). 

Therefore, all three of the smectite types discussed in Banfield et al. (1991) are present, 

which can be linked to the precursor material.  Firstly, the relationship between saponite 

and the di-smectites is examined (Figure 6.19).  Volcanic clast-rich samples (e.g. Group 
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1 onshore and Group 5 offshore) all have greater amounts of saponite than di-smectites. 

The inverse is true for siliciclastic, volcanic poor samples (groups 4 and 6) and for 

intermediate samples (groups 2 and 3).   

   

 

Figure 6.18: Plot of % volcanic glass against % total smectite  using QXRD data. Dashed 

line defines siliciclastic  samples. Liner Trend line and R
2
 value calculated excluding the 

Group 1 proximal point from analysis.   

 

 
Figure 6.19: Plot of % volcanic glass against smectite. Bold colours represent saponite % 

whereas light colours represent the di smectite percentage.  Note: volcanic glass rich 

samples are dominated by saponite , whereas other samples are dominated by di smectites.  
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The relationship between saponite and volcanic glass is strong, with the samples 

containing greater than 15% volcanic glass having more than 10% saponite (Figure 

6.20). This suggests that the saponite within the samples grew from the alteration of 

volcanic glass. No clear relationship is seen between volcanic glass and nontronite 

(Figure 6.21). Four samples do contain nontronite including the two intermediate 

samples (group 2 and 3). These samples are the most likely to contain a mixture of both 

volcanic glass, plagioclase and kaolinite.  

An inverse relationship between di-smectites and volcanic glass was found 

within this study (Figure 6.22). One exception is sample MT5 (Group 1), which 

contains a larger percentage of all the smectite clays. According to Moore and Reynolds 

(1997) Al-rich di-smectites are associated with alteration of kaolinite and plagioclase.  

Kaolinite was only identified in the intermediate group 2 and 3 rocks within these 

samples. However, kaolinite was identified in other Group 4 samples in the clay 

separate analysis. Large quantities of plagioclase were found within the siliciclastic 

phases (groups 4 and 6); however, these feldspars were fresher than those found within 

the volcanic samples. Therefore, alteration to smectite may be occurring but is not as 

extensive as within volcanic rich samples.  

 

 

Other clay phases  

 

Mix layer illite-smectite and kaolinite were dominantly found in the non-volcanic clast 

rich samples.  The smaller amounts of clay found in the Group 6 offshore samples 

explains why their porosity is higher than onshore (Group 4) equivalents. These clay 

phases are likely to be detrital rather than authigenic.  
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Figure 6.21: Plot between % volcanic glass and nontronite  using QXRD results.  Dashed 

line defines siliciclastic samples.   

 

 

 

Figure 6.20: Plot between % volcanic glass and % saponite  using QXRD results. Dashed 

line defines siliciclastic samples.    
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Figure 6.22: Plot between % volcanic  glass and di-smectite using QXRD results.  Dashed 

line defines siliciclastic samples .  

 

6.5 Porosity  

6.5.1 Previous work  

 

A considerable body of work has been undertaken on the porosity of siliciclastic 

sandstones; however, very little work has been undertaken on volcaniclastic rocks. 

Some authors have indicated that it is possible to have a volcaniclastic reservoir, as 

some porosity and permeability is retained within volcaniclastic rocks during diagenesis 

(Seeman and Scherer, 1984 and Vernik, 1990). More recently work has focused on the 

diagenetic paragenesis (Mathisen and McPerson, 1991) and geophysical responses 

(Revil et al., 2002).  The association with volcanic rocks and pore filling zeolites is also 

outlined in Iijima (2001). A number of factors affect the porosity of a sample as 

outlined below. The visible porosity for each lithofacies was estimated during point 

counting, see Figure 5.9 and the “Point Counting” file in the appendix.  

 

Compaction 

 

Typical compaction curves for a normally pressured, lightly to un-cemented sandstone 

are seen in Figure 6.23. The curves show the typical porosity reduction due to 

compaction for different percentages of rigid grains. The reduction in porosity is greater 

for samples with high proportions of plastic grains, such as mica or volcanic glass. 
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Therefore, samples rich in volcanic glass shards should experience greater compaction 

than quartz rich lithologies.  

 

 

 

Figure 6.23 Compaction curves for a non-cemented sandstone. Porosity in a sandstone 

with only 10% rigid grains will be reduced at shallower depths (modified from Oxtoby 

and Grant, 1992)  

 

Grain size and sorting 

 

The relationship between grain size, sorting and porosity is complex. While fine-grained 

sediments typically have lower visible (but higher micro) porosity, this is dependent on 

other factors such as cementation and grain packing. Poorly sorted rocks will have 

lower initial porosities than well-sorted rocks (Brayshaw and Hogg, 1992). 

Volcaniclastic samples are often more heterogeneous and have poorer sorting than 

siliciclastic equivalents and so have lower initial porosity (Selley, 1978). This however, 

is completely lithology dependant, as a strongly welded pyroclastic rock will have a 

much lower initial porosity than a non-welded rock. Houseknecht and Hathon (1987), 

suggested that at depth, porosity reduction was less in poorly sorted rocks than well 
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sorted examples as the stresses of compaction are more equally spread across a large 

number of grain contacts.  

 

Porosity in volcaniclastic rocks 

 

Porosity can also be altered at depth due to a number of diagenetic phases such as quartz 

and/or calcite cementation, clay and zeolite growth, and dissolution. Figure 6.24 shows 

a number of diagenetic phases associated with volcaniclastic sediments, which will 

potentially alter the overall porosity compaction curves (Figure 6.25).  Cements will 

greatly reduce the porosity, whereas dissolution will create secondary porosity in the 

form of moldic or intra-granular pores.  

 

 

Figure 6.24: Flow chart showing the complex paragenesis that leads to the destruction 

and creation of porosity within volcaniclastic rocks ( modified from Mathiesen and 

McPherson, 1991).  
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6.5.2 Relationship between porosity and depth 

 

As the Staffa Formation samples now crop out at the surface their relationship to depth 

cannot be properly analysed. No correlation was found between depth and porosity from 

the offshore Rosebank samples however, as the samples have been taken from cores and 

so the depth range is relatively small. To better understand the true relationship between 

the samples and depth, sidewall core data covering the full length of the wells (provided 

by Chevron) was plotted (Figure 6.26).  On a whole these data show no obvious 

relationship between porosity and depth, and that porosities vary considerably 

throughout the chronostratigraphical units. Colsay 4 samples do show some correlation 

is, where porosity drops from 24.3% at 3131 m to 11.3% at 3199 m. There is a week 

increase in helium porosity with depth if only the volcanic samples are considered. This 

can be explained by the breakdown of volcanic glass into clays. The clays restrict pore 

throats but often do not completely occlude pores with micro-porosity between clay 

structures being created.  

 

Figure 6.25: Alteration of simple compaction curves by diagenetic effects such as late 

stage cements or early gra in coats.  Curves are based on 100% ridged grains with normal 

reservoir pressure (modified from Oxtoby and Grant, 1992).  
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Figure 6.26: Plot of porosity against depth for the Rosebank wells (data plotted is 

sidewall core data provided by Chevron). Circles are  siliciclastic samples, squares are 

volcaniclastic samples.  

 

6.5.3 Relationship between total volcanic clasts and porosity 

 

Offshore  

 

Figure 6.27 shows the percentage of total volcanic clasts versus visible porosity 

calculated from point counting data for the offshore samples. The Rosebank samples are 

split into chronostratigraphical groups, as described in Chapter 2. Square points 

represent volcanic rich (Group 5) samples, whereas circles represent the siliciclastic 

(Group 6) samples.  
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Figure 6.27: Plot of total volcanic clasts against visible porosity for the Rosebank rocks. 

Squares represent Group 5 volcanic rocks, whereas circles represent Group 6 rocks . Note 

all samples comprising more than 10% volcanic clasts have less than 4% porosity.    

 

 A large range of porosities are present within the samples. Group 6 siliciclastic 

samples (Colsay 4 and Hildasay) contain less than 1% volcanic clasts and have very 

similar porosity distributions, ranging from 1–25%. Lower porosities represent finer 

grained units that often have interbedded clay and silt facies. Colsay 1 and 3 samples 

contain a higher percentage of volcanic clasts (up to 8%) but have a similar range in 

porosity (2-25%).  

The more volcanic-rich samples from Group 5 show a strong relationship 

between the proportion of volcanic clasts in each sample and porosity. The rocks within 

the Upper and Lower Rosebank Volcanic Sequence and Colsay 2 groups all have a high 

proportion of volcanic clasts ranging from 6 – 40% with the exception of one rock 

found within the Upper Rosebank Volcanic sequence, which was found to be a small 

quartz rich siltstone that contained no volcanic clasts. Excluding that sample from the 

analysis, all volcanic rich samples have porosities < 4%. There does not appear to be a 

direct correlation between the percentage of volcanic clasts in the rock and porosity. 

There is however, a threshold limit: all rocks containing more than 10% volcanic clasts 
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have less than 5% porosity, whereas rocks that contain less than 10% volcanic clasts 

have variable visible porosities of up to 26%.  

 

Onshore  

 

These findings are compared to the results from the onshore Staffa Formation samples, 

(Figure 6.28). The onshore samples generally plot on the same trend as the offshore 

data. The majority of rocks with abundant volcanic clasts (above 10%) fit the 5% 

threshold porosity with the exception of three samples that plot between 6 – 10% 

porosity. Rock samples with less than 10% volcanic clasts have lower porosities than 

their offshore equivalents. This is explained below, when the nature of the pore-filling 

material is examined.  

 

 

Figure 6.28: Plot of total volcanic clasts against visible porosity for all samples. Onshore 

samples are generally similar to offshore samples ; however, onshore samples all have 

much lower porosities.   
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6.5.4 Porosity reduction within the samples  

 

Both onshore and offshore samples were analysed optically in order to assess the nature 

of the pore filling materials and the relationship between phases and visible porosity. 

 

6.5.4.1 Quartz 

 

In both the Staffa Formation and Rosebank rocks quartz cements are a relatively minor 

phase. Only one sample within the Staffa sample suite exhibits evidence of a quartz 

cement that has been aggressively dissolved at a later stage. This represents a relatively 

minor phase and contributes to less than 1% of the overall visible porosity reduction.  

 

6.5.4.2 Zeolite 

 

Zeolites commonly fill vesicles and fractures in volcanic rocks (Hay, 1978; Fisher and 

Schmincke, 1984) and were therefore expected to contribute to significant porosity 

reduction in the study samples. Zeolites zones surrounding the Mull Central Complex 

have previously been mapped out by Walker (1971) and suggest that mesolite and 

laumonite should be present within the Mull samples (see Section 7.5, Figure 7.9). 

Similarly, Jørgensen (2006) indicates the presence of a wide range of zeolites on the 

Faero Islands and uses these to predict geothermal gradients across the Faero-Shetland 

Basin. Therefore, it was expected that Rosebank samples would contain similar zeolite 

minerals. However, the only zeolite found was analcime, which was slightly more 

abundant in the Rosebank volcanic-rich samples, and typically filled intragranular 

porosity in basalt clasts. In one proximal pyroclastic Staffa Formation sample analcime 

was the dominant pore filling material. However, this sample is anomalous as in all 

other Staffa Formation samples, regardless of rock type, zeolites contribute less than 2% 

of total visible porosity reduction. The discrepancy between the zeolite found in this 

study and those in the literature is further discussed in Section 7.5. 
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6.5.4.3 Calcite 

 

Minor calcite cements are present in many of the samples and were discussed in Section 

5.5.12.  

 

Offshore  

 

Figure 6.29 shows the proportion of calcite in the Rosebank samples versus visible 

porosity. Three samples (two points overlay each other at 15% calcite) comprise 15–

20% calcite cement, which is the main porosity reducing factor. Excluding these 

samples the majority of rocks have less than 5% calcite cement, and so these cements 

play only a minor role in porosity reduction (or secondary porosity was created by 

dissolution of these cements).  

 

 

Figure 6.29: Plot of pore filling calcite  (%) against visible porosity for the Rosebank 

samples. Group 5 samples (squares) and Group 6 samples (circles) show a wide range of 

porosities. Calcite is the main pore filling phase in 3 samples (2 overlie at 15% calcite).  
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Onshore 

  

The Staffa Formation rocks with lower proportions of volcanic clasts have higher 

proportions of calcite cements. This, in part, explains why some of the onshore rocks, 

the Ardtun samples in particular, do not fit the volcanic porosity trend (Figure 6.28). 

The rocks at Ardtun have lower than expected visible porosity due to precipitation of a 

late stage calcite cement. Similar lithologies at other locations on Mull, such as the 

rocks at Malcom’s Point have much lower percentages of calcite cement. Here, larger 

quantities of volcanic ash have resulted in higher percentages of authigenic clays, which 

reduce visible porosity and limit pathways for later fluids. As a result, these rocks have 

only minor quantities of calcite. If this late stage calcite cementation had not occurred 

the siliciclastic Staffa samples their visible porosities would be in line with their 

offshore equivalents (Figure 6.30).   

 

 

Figure 6.30: Plot of  total volcanic clasts  (%) against visible porosity (+ calcite) for the 

Staffa Formation samples. Bold colours represent actual visible porosity values. Light 

colours represent the equivalent samples where the effect of late stage calcite 

cementation on porosity has been removed. This is achieved by adding the total calcite 

pore fill to porosity.  Dashed arrows indicate large differences in porosity when calcite is 

removed. Red circle highlights Ardtun samples.    
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6.5.4.4 Phyllosilicates 

 

Offshore 

 

Figure 6.31 shows the percentage of pore filling clay minerals versus visible porosity in 

each of the rock samples. The siliciclastic Group 6 samples, Hildasay and Colsay 1, 3 

and 4, all show a strong inverse trend between clay pore fill and visible porosity, with 

the most porous rocks containing the least amount of pore-filling clay minerals. The 

majority of the samples have less than 40% pore-filling clay, with the exception of two 

Colsay 3 samples that have high proportions of pore-filling clay (up to 60%). Rocks that 

contain less than 10% pore filling clays have a wide range of porosities, from 4 – 26%, 

the same relationship as is seen with volcanic clasts. Group 5 samples with more than 

10% pore filling clays typically have less than 10% porosity, with the exception of two 

samples. The volcanic-rich rocks have high proportions of pore-filling clays, ranging 

from 20–48%, and low porosities, below 6%.  

 

 

Figure 6.31: Plot of total pore filling clay against  visible porosity for the Rosebank 

rocks. Samples that contain a lot of pore filling clay have lower porosity.  N=46 
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Onshore 

 

No direct link between pore filling clay and visible porosity could be made in the Staffa 

samples. However, a patchy calcite cement in some samples resulted in lower porosity. 

When the effects of this late-stage calcite are removed the relationship between porosity 

and clay pore fill closely resembles that of the offshore samples, with samples 

containing less than 20% pore filling clay retaining porosity of over 15% (See section 

6.5.4.3 and Figure 6.30). 

 

6.5.4.5 Relationship between volcanic clasts and pore filling clay. 

 

Offshore  

 

Figure 6.32 shows the proportion of volcanic clasts plotted against pore filling clays. 

The majority of the siliciclastic Group 6 units with less than 10% volcanic clasts have 

variable proportions of pore filling clay, ranging from 0 – 39%; however, two Colsay 3 

samples have higher proportions of clay, up to 58%. The more volcanic rich Group 5 

samples have pore filling clay proportions up to 48%, but critically, all volcanic rich 

samples have more than 12% pore filling clays. This implies that a rock with more than 

10% volcanic clasts will have a significant amount of porosity reduced by clays. The 

relationship between volcanic clast type and pore filling clay will be dealt with in 

Section 6.5.4.7. 
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Figure 6.32: Plot of total volcanic clasts against % pore filling clay. All samples that 

contain more than 10% volcanic clasts contain more than 12% pore filling clay.  

 

Onshore  

 

The onshore samples show a positive linear relationship (r
2
=0.58) between the 

proportion of pore filling clays and volcanic clasts. Group 1 and 2 samples comprise the 

greatest amounts of volcanic clasts and also the largest proportions of pore filling clays 

(Figure 6.33). This is different from offshore volcanic samples that had a weak negative 

relationship. This difference can be explained if the total amount of volcanic clasts and 

rate of alteration is considered. If a rock has a large proportion (>60%) of volcanic 

clasts then the amount of clay produced will also be high leading to a positive 

relationship. In a closed system such as the offshore samples most of the volcanic 

fragments have altered resulting in rocks that only have a few volcanic clasts remaining 

but high proportions of clay.   
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Figure 6.33: Plot of total volcanic clasts against % pore filling clay  for the Staffa 

samples.  There is a linear relationship between total volcanic clasts and total % of pore 

filling clay.  

 

6.5.4.6 Relationship between volcanic clasts and pore filling clay type 

 

Offshore 

 

Within the Rosebank samples, two groups of clay could be identified optically; a dark 

brown green clay (Type 1) and a lighter brown yellow clay (Type 2).  Using XRD and 

SEM techniques, Type 1 clays were identified as smectitic and chloritic clays as well as 

mix layer varieties such as corrensite, whereas Type 2 clays were identified to be illite-

smectite mix layer clays with minor kaolinite.  

 Figure 6.34 shows the proportion of volcanic clasts against Type 1 clays. The 

siliciclastic Group 6 samples (Hildasay and Colsay 4) have less than 15% of Type 1 

clays. The majority of Colsay 3 samples also have less than 15% Type 1 clay with only 

one rock sample having a value of 23%. Colsay 1 samples are slightly more variable 

with three samples containing more than 25% Type 1 clays. For the Group 5 volcanic 

rich samples, Type 1 clay content varies from 9% to as much as 47%.  
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Total volcanic clasts vs pore filling clay Type 1  

(corrensite + smectite + chlorite)  

 

 
Figure 6.34: Plot of % total volcanic clasts against % Type 1 pore filling clay.  n=46.  

 

 Figure 6.35 plots the proportion of volcanic clasts against Type 2 pore filling 

clays. Group 6 samples again display a wide range in clay amounts from 0 – 50%; 

however, the volcanic rich Group 5 samples have less than 5% of Type 2 clays with the 

vast majority of samples containing less than 1%.  

 

 

Total volcanic clasts vs pore filling clay Type 2 

(illite/smectite + kaolinite) 

 

Figure 6.35: Plot of % total volcanic clasts against % Type 2 pore filling clay.  n=46.  
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The average proportion of Type 1 clays in the Group 6 samples is 7%, whereas the 

average proportion of Type 2 clays is 11%. This shows that both clay types can be 

found in low proportions in siliciclastic rocks, but Type 2 clay is more commonly 

associated with rock samples that have low proportions of volcanic clasts. The average 

proportion of Type 2 clays in group 5 samples is 28% while the average proportion of 

Type 2 clays is 1.5%. Hence rocks rich in volcanic clasts are much more likely to be 

dominated by Type 1 (smectite + corrensite + chlorite) clays than by Type 2 

(illite/smectite + kaolinite).  

 

Onshore  

 

The relationship between Type 1 clay minerals and total volcanic clasts is shown in 

Figure 6.36.  Group 1 rocks are the most volcanic rich but also contain the highest 

proportions of Type 1 clay minerals (>30%). The inverse is true of Group 4 rocks, 

which have less than 10% volcanic clasts but also have less than 4% Type 1 clay 

minerals and are abundant in Type 2 clay minerals (Figure 6.37).  Group 2 and 3 rocks 

typically have a combination of both clay types. 

 

 

Figure 6.36: Plot of total volcanic clasts against % of Type 1 pore filling clay. n=32.  
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Figure 6.37: Plot of total volcanic clasts against % of Type 2 pore filling clay.  

 

 

 

 

6.5.4.7 Relationship between volcanic clast type and pore filling clays 

 

Figure 6.38 plots volcanic clasts against percentage of pore filling clays for the onshore 

Staffa Formation samples and shows a positive relationship. However, the type of 

volcanic clast influences this relationship. Several different volcanic clast types were 

identified in Chapter 5. To simplify the analysis these clasts have been sub-divided into 

two groups. Group 1 is ‘Basaltic Clasts’ and contains all dominantly crystalline basaltic 

lithoclasts regardless of their alteration / weathering state. Group 2 is named ‘Basaltic 

Glass’ and contains all basaltic ash fragments and glassy pyroclasts that lack abundant 

micro crystalline material. This group contains both vesicular and non-vesicular glass 

shards regardless of alteration states. The different clasts types were also plotted against 

different clay types however there was no correlation.  
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Figure 6.38: Plot of % total volcanic clasts against % pore filling clay for the Staffa 

samples. There is a linear relationship between total volcanic clasts and pore filling clay.  

 

 Figure 6.39 plots the proportion of ‘Basaltic Clasts’ against pore filling clay, and 

a weak positive relationship is observed. Samples containing higher proportions of 

basaltic lava clasts typically have higher proportions of pore filling clay; however, some 

scatter does occur.  

 Figure 6.40 plots ‘Basaltic Glass’ against pore filling clay, and a strong positive 

linear relationship is observed. Therefore, the proportion of volcanic ash and pyroclasts 

in the rock has a much larger influence on porosity reduction than the proportion of 

basalt clasts 
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Figure 6.39: Plot of % basalt clasts against % pore filling clay . There is a weak linear 

relationship between basalt clasts and pore filling clay.  n=31.  

 

. 

 

Figure 6.40: Plot of % basaltic pyroclasts and ash against % pore filling clay. The re is a 

strong liner relationship between basaltic glass and pore filling clay.  n=31. 
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There are a number of reasons for this relationship (Figure 6.41). Crystalline basalt 

clasts retain their structure under compaction better than glass-rich pyroclasts and ash, 

preserving surrounding pore space. The glassy groundmass of the lava clasts is 

protected by the crystalline component and therefore, alteration is contained within the 

general structure of the basaltic clasts resulting in only limited, localised porosity fill.  

In sediment containing basaltic ash and glassy pyroclasts, the basaltic glass 

shards are more reactive than the crystalline basalt. Therefore, glass shards are more 

likely to start altering to clays and blocking pore throats, more rapidly after burial than 

crystalline clasts. The crystalline lava clasts may take longer to alter, resulting in pore 

throats being left open and being exposed to diagenetic fluids for longer. Basaltic glass 

shards have lower compressive strength and may behave in a more plastic way when 

subjected to compaction. As the rock is buried, ash and glass rich scoria fragments can 

become flattened and strung out along their axis (Branney and Sparks, 1990.) As a 

result the clast can deform around surrounding grains obstructing pore throats and 

filling surrounding pores. The effects of the alteration are therefore, far wider reaching 

than those seen with basaltic lava clasts. Together, this means that a volcanic rich 

sediment composed of crystalline basaltic clasts will retain initial porosity under 

compaction better than a sediment composed of basaltic pyroclasts. 

 

 

Figure 6.41: Schematic interpretation of the behaviour of basaltic lava clasts and glassy 

pyroclasts under compaction.  
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6.5.4.8 Relationship between depositional environment and porosity reduction 

 

It has already been shown that factors such as sorting, maturity and grain size effect 

porosity and so depositional environment can influence the rocks behaviour during 

diagenesis. As a general correlation between volcanic clast type and porosity can be 

distinguished and links can also be made to depositional setting. On Mull, the highest 

proportions of volcanic glass and therefore lowest porosities occur in rocks that are 

proximal to a vent. Samples taken close to a volcanic vent are likely to contain higher 

abundances of volcanic clasts in particular volcanic glass rich pyroclasts and ash and 

therefore, it will have lower porosity after initial burial than rocks at more distal 

locations. The rocks at Ardtun contain a low percentage of basaltic lava clasts and 

therefore porosity reduction is localised and not the deterministic factor of final porosity 

values. 

6.5.4.9 Relationship between igneous-sediment contacts and porosity 

 

Previous studies have linked destruction of porosity to direct induration effects found at 

igneous-sediment contacts (Girard et al., 1989; Merino et al., 1997; Doyle, 2001; 

McKinley et al., 2001; Lima and De Ros, 2002; Bernet and Gaupp, 2005). Figure 6.42 

shows a series of thin sections taken at varying distances from the base of a lava contact 

with sandstone, Namibia (Dougal Jerram, unpublished). The photomicrographs show an 

aggressive calcite cement filling porosity at the lava contact; however, at a distance of 4 

m there is no calcite cement and the porosity of the sediment matches background 

levels. (Grove and Jerram, 2011), also found similar porosity reduction due to calcite 

cements and contact metamorphic effects surrounding intrusions in Namibia. 

 In both of the previous studies the effects of the contacts appear to be reduced to 

nominal at a distance of 4 m from the contact. In offshore samples, limitations such as 

contact angle and core size, meant sampling of rock 4 m from the contact could not be 

achieved. Therefore, background porosity levels could not be defined and pore filling 

phases could not be directly linked to contact effects. No notable differences in porosity 

or mineralogy occurred over the small centimetre scale distances from contacts that 

could be measured in the Rosebank cores. 

 Systematic sampling of units at igneous-sediment contacts was possible for the 

Staffa Formation. Figure 6.43 shows a series of thin sections taken at progressive 
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distances from the base of the 3 m thick sill at the Carsaig Arches (Section 4.4.1). No 

changes in mineralogy are seen within the 4 samples, and porosity is predominantly 

filled by pore filling clays with only very minor amounts of calcite. Throughout the 

Staffa samples no significant porosity reduction or induration was seen at any of the 

contact types.  

 There are a number of key differences between the sediment in this study and 

that of the previous studies. Firstly the Namibian examples are within aeolian rocks 

with high initial porosity (~30%), whereas in this study the rocks have much more 

variable initial porosity (generally < 10%). Where the underlying sediment has poor 

porosity this may act as a barrier to any fluids associated with the igneous body, and 

force them to percolate up through fractures within the body or along the contact 

towards the margins of the body rather than down into the sediment below (Schofield et 

al., 2010). Many of the Staffa contact examples have thin layers of organic rich 

sediment, coal or low permeability volcaniclastic sandstone layers underlying the lavas, 

and these units may act as an insulating layer protecting the sediment below.  

 

Figure 6.42: Photomicrographs (left) and cathodoluminescence images (right) taken at 

increasing distances from the base of a lava contact. A calcite cement fills porosity at the 

contact,  but at 4 m calcite cement is minimal and porosity is unaffected. Annotations: 

quartz (Q); pore space (P), calcite (C).  Modified from Grove (2014).  
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Figure 6.43: Scans of thin sections taken 

at distances from the base of an 

intrusive contact (Carsaig Arches, Staffa 

Formation). Samples are taken at 5 mm, 

5cm, 1.4 m and 3.9 m beneath contact.  

No notable differences in mineralogy or 

porosity are seen throughout the 

samples, although the proportions of 

clay, calcite, flint and quartz does alter 

slightly.   

 

 

6.6 Permeability 

6.6.1 Previous work 

 

The permeability of a rock is equally as important in a hydrocarbon reservoir as 

porosity. Very fine-grained rocks tend to have lower permeabilities, whereas very 

coarse grained rocks have much higher permeabilities (Hogg et al., 1996; Evans et al, 
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1997). Clay growth generally has a detrimental effect on reservoirs with as little as 1% 

needed before pore throats are clogged and permeability is reduced (Moore and 

Reynolds, 1997).  

6.6.2 Onshore samples 

 

Analysis of several samples from the Staffa Formation using a permeameter from the 

University of Aberdeen proved unsuccessful, due to difficulties in creating a seal with 

polished blocks. On samples that an adequate vacuum could be reached, permeability 

was very low, in the order of 0–2 mD. Permeability in all samples has been significantly 

reduced by clay coatings or, in the case of the onshore siliciclastic units, calcite. Further 

information on the permeability of these samples could have been acquired using 

mercury injection techniques or examining the pore network under the FIB-TEM; 

however, it was decided that such low permeability would not be of commercial 

significance with regards to reservoir quality. Such permeability may have a significant 

effect on long term seal integrity; however, this was deemed to be beyond the scope of 

the project.  

  

6.6.3 Offshore samples 

 

Permeability data were obtained by Chevron for a number of wells, typically from 

sidewall cores and plugs. Figure 6.44 plots the permeability of sidewall samples versus 

depth. The permeability of the samples varies considerably, independent of depth, and 

highlights the importance of facies type on permeability.  
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Figure 6.44: Permeability against depth. Squares are volcanic rich samples ,  whereas 

circles are siliciclastic samples. Colours represent stratigraphical units: Upper Volcanics 

(black); Colsay 1 (reds); Colsay 2 (blues); Colsay 3 (greens); Lower Volcanics (purples) ; 

Colsay 4 (oranges). Plot shows no correlation between depth and permeability. n=126.  

 

 

Figure 6.45 shows helium porosity and permeability values for sidewall cores taken in 

four wells. There is a large range in permeability throughout the samples from 0.002 

mD to as high as 8.6 D, and the data show a strong exponential relationship between 

porosity and permeability.  

Figure 6.46 shows the ambient horizontal air permeability plotted against 

ambient helium porosity in core plug samples. Here the importance of lithofacies type 

on poro-perm relationships is clear. Core 3 from the 213/26-1 well and the 205/1-1 are 

both taken in volcanic intervals: helium porosity is low with the majority of samples 

plotting below 15%, as is the permeability, with most samples in the range of 0.01–1 

mD and all lying below 10 mD. In the siliciclastic lithofacies the samples have 12-30% 

helium porosity and permeability typically greater than 10 mD and up to as high as 24.5 

D.  

 

297



Chapter 6           Quantification of diagenetic phases in volcaniclastic rocks  

 

Figure 6.45: Plot of ambient helium porosity against permeability  for core plug samples. 

Squares represent volcanic rich Group 5 samples. Circles represent the siliciclastic 

Group 6 samples. n= 106.  

 

 Basalt lava flows inherently have a lower porosity due to their crystalline nature, 

whereas volcaniciclastic rocks have higher percentages of pore filling clays, and 

therefore lower permeability, making them undesirable reservoirs. The siliciclastic units 

within the Rosebank core do however, have desirable porosity and permeability values. 

The pore network in these rocks has remained open. The lower permabilites of the 26/1 

well core 1 samples can be explained by the percentage of interbeded silty material seen 

within this core. This again highlights that facies mineralogy exerts a strong control on 

the resultant poro-perm relationships.  
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Figure 6.46: Plot of ambient helium porosity against horizontal air permeability in the 

Rosebank cores. Squares represent volcanic samples,  whereas circles represent 

siliciclastic samples. Two distinct groups can be identified. The volcanic clast rich 

samples have low porosity and permeability , whereas the volcanic poor reservoir rocks 

have porosity and permeability values an order of magnitude higher. n=165 

 

 

6.6.4 Permeability of basalt lava flows 

 

The permeability measurements taken in the volcanic facies were collected on small 

plugs and sidewall cores and therefore, do not accurately measure potential permeability 

within fractures or jointing over the entirety of a basalt lava flow. As noted in Chapters 

3 and 4 the basalt lava flows often have significant columnar jointing. On Mull the vast 

majority of the jointing was partially sealed by clays and in places zeolite and calcite; 

however, it is unclear how joints and fractures will behave at depth. At greater depths, 

joints and fractures may be annealed leading to poor conductivity between pore waters 

below and above a lava flow. However, fluid pathways could develop through open 

joints and fractures, and therefore, lava flows cannot automatically be assumed to act as 

a seal. 
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6.7 Isotopic work 

 

The clay fraction of a number of samples was analysed for stable isotopes in order to 

understand the pore water chemistry and temperatures in which the clay minerals 

formed.  Nineteen samples were analysed for oxygen and hydrogen, using the method 

described in Chapter 2, for a representative range of rock types (Table 6.4). 

 

6.7.1 Creating a pure phase clay 

 

Obtaining a pure phase of clay to analyse is an important factor when undertaking 

isotopic work (Morad et al., 2003). All minerals have different fractionation factors and 

will exchange isotopes with pore fluids at different rates. It is therefore important, to 

have only one phase of material present in the analysis. The sub 2 μm phase was 

separated out from the sample and analysed by clay separate XRD as discussed in 

Section 2.8.1. Care was taken to avoid samples thought to contain large abundances of 

detrital clays as only authigenic clays will provide information on diagenetic conditions. 

However, as already discussed in Section 6.4.2 all clay separates contained a complex 

range of clay minerals, some of which are thought to be mix layer. SEM analysis 

showed that the clays phases are often complex intergrown phases, for example the 

transition from grain coating clays to pore filling clays.  Separation of such clay phases 

is an extremely difficult and time consuming process with large errors and uncertainties 

in results, and therefore, all of the clay within each separate was analysed. This 

however, also introduces errors into the data as several clay phases could be present 

within each sample, including minor quantities of detrital clays.  

A small quantity of quartz was also present within some clay separates. The 

crystalline nature of quartz means it will produce large XRD peaks even when 

miniscule amounts are present. Therefore, samples with small quartz peaks relative to 

the clay peaks are likely to contain negligible amounts of quartz. Care was taken to only 

select samples with very low amounts of quartz. However, the presence of small 

quantities of quartz within a sample will contribute to the overall error within the 

isotopic data and must be considered when interpreting results.  
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Sample 

Name 

Lithofacies 

Group 
Sample Location 

Sample 

Preparation 
Analysis Undertaken 

MT8 1 MacCulloch’s Tree Air Hydrogen/ Oxygen 

MT8f 1 MacCulloch’s Tree Furnace Hydrogen / Oxygen 

MT5 1 MacCulloch’s Tree Furnace Hydrogen / Oxygen 

MP03d 2 Malcolm’s Point Furnace Hydrogen / Oxygen 

MP03d (R) 2 Malcolm’s Point Furnace Hydrogen / Oxygen 

MP03e 2 Malcolm’s Point Furnace Oxygen only 

Ca1d 2 Carsaig Arches Furnace Hydrogen / Oxygen 

Ca1d (R) 2 Carsaig Arches Furnace Hydrogen / Oxygen 

Ca1d 2 Carsaig Arches Air Hydrogen / Oxygen 

Ca5b 2 Carsaig Arches Furnace Hydrogen / Oxygen 

MT3d 2 The Ladder Furnace Hydrogen / Oxygen 

MP02 3 Malcolm’s Point Furnace Hydrogen / Oxygen 

MP02 (R) 3 Malcolm’s Point Furnace Hydrogen / Oxygen 

MT3g 3 The Ladder Air Hydrogen / Oxygen 

AT1 3 Ardtun Furnace Hydrogen / Oxygen 

AT4 3 Ardtun Furnace Hydrogen / Oxygen 

MT3b 4 The Ladder Air Hydrogen / Oxygen 

Ca4 4 Carsaig Arches Furnace Hydrogen / Oxygen 

CHEV 1 5 213/27-2 Furnace Hydrogen / Oxygen 

CHEV 1(R) 5 213/27-2 Furnace Oxygen Only 

CHEV 13 5 213/27-2 Furnace Hydrogen / Oxygen 

CHEV9 5 213/26-1 Furnace Oxygen only 

CHEV8 6 205/1-1 Furnace Hydrogen / Oxygen 

CHEV 25 6 213/27-2 Furnace Hydrogen / Oxygen 

CHEV 19 6 213/27-2 Furnace Hydrogen / Oxygen 

     

Table 6.4:  Table showing all samples and repeats (R)  and the type of isotopic analysis.  

 

6.7.2 Choosing a fractionation factor 

 

As all of the samples had a mix of clay minerals the fractionation factors for the end 

member clays were calculated and plotted. Both XRD and QXRD results were used to 

determine relative abundances in each sample. The main clay phases were smectite, 

corrensite and chlorite; however, corrensite is a mix layer smectite-chlorite mineral and 

therefore, does not have its own fractionation factor. Fractionation will occur at 

different rates across the different smectite and chlorite layers within the corrensite 
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structure. If the proportion of smectite to corrensite layers in the corrensite and the exact 

chemical composition of these layers is known then a new oxygen fractionation factor 

could be calculated using the methods described in Zheng (1993a, 1993b). However, 

accurate information on the structure and composition of the corrensite and mix layer 

chlorite smectite minerals were not available in this study. For this reason, only the 

smectite and chlorite end-member fractionation factors were used, which adds 

significant error into the data.  

Hydrogen fractionation is poorly defined for smectite and chlorite clay minerals 

(Morad et al, 2003). Fractionation is highly dependent on clay composition (Graham et 

al., 1987; Sheppard and Gilg, 1996) and therefore, a large error in hydrogen isotope 

values must be taken into account within this study as clay compositions are unknown. 

   

6.7.3 Error 

 

Low standard errors (maximum ± 0.3‰) and good reproducibility of data indicate high 

precision in the results of this study. However, as discussed above there are a number of 

factors that affect the accuracy of the results, as the following assumptions have to be 

made: 

 Each of the samples contain only one clay mineral type or a mixture of several 

end member clay minerals that formed at the same time from the same 

conditions.  

 Each sample contains only authigenic clay minerals. 

 All inter layer water within the clay mineral structure has been removed. 

 Clay minerals are similar compositions to the end member phases quoted in the 

literature.  

 Fractionation coefficients quoted in the literature are applicable to these 

samples. 

 

None of the above assumptions can be guaranteed within this study and therefore, all 

results must be treated with caution and only considered a best estimate of formation 

water conditions.   
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6.7.4 Smectite  

 

Oxygen 

 

Water-smectite and saponite oxygen fractionation coefficients are plotted in Figure 

6.47. Saponite follows the same general trend as smectite but is shifted due to higher 

fractionation differences at low temperatures.   

 

 

Figure 6.47: Experimentally derived smectite clay-mineral –  water oxygen isotope 

fractionation factors (adapted from Morad et al.,2003). Data for smectites: Savin and Lee 

(1980), Sheppard and Gilg (1986). Data for saponite: Escanda (1983). 

 

The fractionation factor was plotted against temperature for different isotopic values of 

smectite found within this study, using the Sheppard and Glig (1986) fractionation 

factor (Figure 6.48). If the samples formed from meteoric water (~6 –8‰ SMOW) this 

would indicate formation temperatures ranging between ~70°C and 300°C. The 

fractionation factor was plotted against temperature for different values of saponite 

found within this study (Escanda, 1983), (Figure 6.49). Assuming the saponite formed 

from meteoric waters the temperature range is higher than that of smectite, with samples 

forming at temperatures above ~140 °C.  
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Figure 6.48: Plot of smectite –  water fractionation for each sample  using the Sheppard 

and Glig (1986) fractionation factors.  
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Figure 6.49: Plot of saponite –  water fractionation for each sample using the Escanda 

(1983) fractionation factors.  

 

Hydrogen 

 

The only available hydrogen smectite fractionation factor was for temperatures between 

25- 120°C (Yeh, 1980). This temperature range is likely to be too low for this study and 

therefore, hydrogen results must be viewed with caution.  

 

6.7.5 Chlorite 

 

Oxygen 

 

Water-chlorite oxygen fractionation coefficients are plotted in Figure 6.50. Despite 

differing Mg and Fe contents the majority of the sources have similar results, with the 

exception of Cole and Ripley (1999) who have much heavier oxygen isotope ratios at 

lower temperatures; however, their equation is only suitable for temperatures between 

170-350°C. The Fe content of the clays within the study samples is not known although 

they are expected to be Fe rich. A conservative mid-range Fe equation was selected 

from Savin and Lee (1988).  
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Figure 6.50:  Experimentally derived chlorite clay-mineral –  water oxygen isotope 

fractionation factors (Zheng, 1993b; Savin and Lee, 1988; Wenner and Taylor, 1971; 

Cole and Ripley, 1998).  

 

The Savin and Lee (1988), fractionation factor for each of the samples is plotted in 

Figure 6.51. Assuming the chlorite formed from meteoric water (~6– 8‰ SMOW) the 

temperature range of formation would be between ~50– 200°C. 
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Figure 6.51: Plot of chlorite –  water fractionation for each sample using the Savin and 

Lee (1988) fractionation factors.  

 

 

Hydrogen 

 

The fractionation factor for chlorite was taken from Graham et al. (1984b); however, 

Graham et al. (1987) state that hydrogen fractionation for chlorite is highly dependent 

on mineral chemistry.  
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6.7.6 Temperature range  

 

The wide temperature ranges calculated from the fraction factors have shown the 

difficulty in contrasting temperature of formation within the samples. The fractionation 

factors estimate that the formation of smectite and saponite could occur at higher 

temperatures than chlorite.  However, this directly conflicts spatial relationships 

observed in the SEM analysis, which indicated that the smectite and saponite formed 

first as grain coats, before the late stage chlorite pore fill. The maximum temperatures of 

smectite formation within the literature is ~ 100 °C (see Section 7. 4, Figure 7.8 ). 

Within this study much of the smectite has altered into corrensite or chlorite and 

therefore, may have lost its original isotopic composition during the chloritisation 

process (Morad et al., 2003).  

6.7.7 Results  

 

The isotopic data for each of the three main end member clay minerals were plotted for 

a formation temperature of 200 °C (Figure 6.52).  The data plots in a roughly delta 

shape primarily, in the meteoric to hydrothermal water fields (as defined by Sheppard, 

1986). As samples are bulk compositions they will lie somewhere within this end 

member field. Therefore, it is likely that samples formed from a mixture of meteoric and 

magmatic waters. The difference between clay end members results in a spread of ~16 

‰ δ
18

O and ~95 ‰ δD from 100 % smectite to 100 % chlorite.  

Figure 6.53 shows the smectite end member plotted at a range of temperatures. 

The spread in the oxygen data is greater at 20 ‰ δ
18

O, however the spread in hydrogen 

values remains similar to the clay end members value at 95 ‰ δD. Therefore, 

temperature exerts a greater effect on oxygen isotopic ratios than clay composition.   

 Figure 6.54 shows the samples labelled in their respective lithofacies groups, 

and indicates no correlation between lithofacies type (and therefore clay type) with the 

isotopic result. No correlation between the isotopic ratio of the clay minerals and their 

position relative to lava / sediment contacts was found. Therefore, within this study, 

lava-contacts have not significantly changed pore waters in terms of temperature or 

chemistry. It is likely that the hydrothermal waters are a result of intrusions (more 

information in Section 7.5). Figure 6.55 plots sample locations for 100% chlorite 

compositions. Three offshore samples have much higher deuterium values. The Group 6 
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sample was found to contain very low levels of chlorite. Therefore, in reality this point 

will plot at lower values, closer to the meteroirc – hydrothermal water field. However, 

both Group 5 samples do contain significant amounts of chlorite indicating these 

samples were influenced by metamorphic and/or seawater. Sample CHEV13, is Colsay 

1 in age and comes from the 213/27-2 well. CHEV 8 is Colsay 2 in age and comes from 

the 205/1-1 well. There is a marine influence in the northern Colsay 1 samples 

(Rosebank Team, 2013), which may be responsible for the elevated deuterium values. 

However, the high Colsay 2 point currently remains unexplained.   

 

 

 

Figure 6.52: Plot of isotopic results for three end member clay types; 100% smectite,  

100% saponite 100% and chlorite all at 200 °C. The data plots within the meteroric 

hydrothermal waters field and implies that meteo ric water has mixed with magmatic 

water. Water fields reproduced from Sheppard et al. (1986).  n=15. 
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Figure 6.53: Plot of isotopic results assuming samples are 100% smectite for different 

temperatures; 100, 200 and 300°C. The raw uncorrected data  are also plotted in black. 

Water fields reproduced from Sheppard et al. (1986).  n=19 

 

 

 

Figure 6.54: Plot of isotopic results for different lithofacies groups. All values are 

plotted at 200 °C. Water fields reproduced from Sheppard et al. (1986).  
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Figure 6.55: Plot of isotopic results for different localities. All values are plotted at 200 

°C. Water fields reproduced from Sheppard et al. (1986).  

 

6.8 Conclusions 

 

Bulk XRD allowed the main minerals to be identified in each of the main lithofacies 

groupings, while clay separate XRD allowed the main clay minerals to be identified. 

The traditional method of clay separate XRD using the clay size fraction of the sample 

resulted in larger clay minerals being lost from the analysis.  The mineralogy is 

summarised in Table 6.5 below. 
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Group name Point counting data Bulk XRD Clay separate XRD 

Group 1: Vent proximal 

Volcanic glass, 

crystalline lava clasts, 

clay minerals, zeolite, 

opaques, calcite  and 

quartz  

Volcanic glass, chlorite, 

abundant clay minerals, 

albite, anorthite, calcite 

and quartz 

Smectite and chlorite 

(potentially mix layer 

smecite / chlorite) 

Group 2: Volcanic rich 

epiclastic 

Volcanic glass, 

crystalline lava clasts, 

clay minerals, quartz, 

flint, calcite, feldspar, 

organic material, mica, 

pyroxene, lithoclasts, 

zeolite, opaques and 

glauconite 

Volcanic glass, chlorite, 

abundant clay minerals, 

quartz, anorthite and 

analcime 

Smectite and chlorite 

(potentially mix layer 

smecite / chlorite) 

Group 3: Volcanic poor 

epiclastic 

Quartz, flint, volcanic 

glass or crystalline lava 

clasts, feldspar,  organic 

material, mica, 

pyroxene, lithoclasts, 

zeolite, opaques and 

glauconite  

Quartz, albite, calcite, 

minor clay 
Smectite and kaolinite 

Group 4: Siliciclastic 

rocks 

Quartz, flint, calcite, 

minor clay, minor 

volcanic lithoclasts, 

minor feldspar 

Quartz, calcite, minor 

clay 

Kaolinite and minor 

smectite 

Group 5: Rosebank 

volcaniciclastic 

Volcanic glass, 

crystalline lava clasts, 

clay minerals, zeolite, 

opaques, calcite  and 

quartz 

Volcanic glass, 

abundant clay minerals 

(including smectite), 

albite, anorthite, calcite, 

analcime, and quartz, 

Smectite, chlorite 

(potentially mix layer 

smecite / chlorite) and 

illite  

Group 6: Rosebank 

siliciclastic 

Quartz, calcite, feldspar 

and minor clay  
Quartz,  albite, 

anorthite, chlorite 

Chlorite (potentially 

mix layer smecite / 

chlorite) and illite 

Table 6.5 Summary of point counting, bulk XRD and clay separate XRD results .  Minerals 

are ordered in relative abundance.  
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QXRD allowed the quantification of mineral phases in each grouping. The following 

relationships were established: 

 

 There is a strong correlation between on and offshore samples. 

  There is a direct relationship between the amount of volcanic glass within a 

sample and the proportion of clay. 

 Samples containing high amounts of volcanic glass (>15%) had the highest 

proportions of saponite (>10%). Intermediate samples had the highest 

proportions of nontronite and samples containing very few (<10% volcanic 

glass) contained di-smectites.  

 Large pore filling chlorite was not seen in QXRD results but corrensite (mix 

layer chlorite / smectite) was observed. 

 

Point counting data allowed the relationship between minerals and visible porosity to be 

established. The following conclusions were made: 

 

 In Rosebank sample lithology has more of an effect on porosity than burial 

depth. 

 Samples containing more than 10% volcanic clasts have less than 5% visible 

porosity. 

 Clay is the primary pore-filling material. 

 Onshore samples that lack abundant volcanic clasts have had their porosity 

reduced by a late-stage calcite cement.   

 Samples containing high proportions of volcanic clasts (>20%) also contain 

abundant pore-filling clays (>20%). 

 Rocks containing abundant volcanic clasts (>10%) tend to have corrensite, 

smectite and chlorite clay minerals. 

 Rocks with <10% volcanic clasts have higher proportions of mix layered illite- 

smecite and kaolinite.  

 Distance from source affects the porosity of the sample. Rocks closer to volcanic 

sources tend to contain more volcanic glass and therefore, more pore filling clay. 

 Basaltic glass and pyroclasts have a much higher influence in surrounding 

porosity than crystalline lava clasts due to their reactive nature and plasticity.  
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 No direct contact diagenetic effects could be ascertained on the samples 

surrounding intrusions or beneath lava flows. 

 

Permeability data for the offshore samples provide the following conclusions: 

 

 In the Rosebank samples lithology exerts a greater control on permeability than 

depth, but the small depth range in which the samples have been taken must be 

taken into account.  

 Volcaniclastic rocks have lower permeabilities (<10 mD) than the siliciclastic 

rocks (up to 10000 mD).  

 

Isotopic data provide the following conclusions: 

 

 Although the precision of the isotopic data are good (max. error 0.3‰), the 

accuracy of the data has a very large error with many assumptions and therefore, 

the data can only be used as an estimate. 

 Offshore and onshore samples have experienced similar diagenetic histories.  

 The samples formed at relatively high temperatures from a mixture of meteoric 

and hydrothermal waters. 

 Lithofacies cannot be correlated to the isotopic results. 

 Sample location does have an effect on the isotopic results, with some offshore 

samples having elevated δD values, potentially due to an influx of sea water. 

 

6.9 Further work 

 

Further work is required to accurately assess the permeability of the onshore samples. 

Mercury injection methods, (for example, Pittman, 1992; Tang et al., 2008) may 

provide more accurate data; however, it is anticipated that all volcaniclastic and 

pyroclastic samples would have similarly poor permeability to their offshore 

equivalents of under ~ 5 millidarcies.  
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7 The diagenetic evolution of onshore Staffa Formation 

rocks and offshore Rosebank rocks 

 

7.1 Introduction 
 

A simplified paragenetic sequence has been determined for the various diagenetic 

phases identified in each of the lithofacies groups described in previous chapters.  Links 

to regional heat flow and burial are then identified. A simplified model of volcaniclastic 

basaltic rock diagenesis is provided and a risk chart introduced, which applies the 

findings from this study to further exploration in flood basalt provinces. 

 

7.2 Diagenetic paragenesis of the Staffa Formation rocks 
 

7.2.1 Group 1 – Vent Proximal 

 

Stage 1 

 

Alteration is abundant within the Group 1 – vent proximal pyroclastic lithofacies. This 

is due to the abundance of reactive volcanic glass and its thermodynamic instability, and 

the lack of more chemically inert forming minerals such as quartz (Figure 7.1, Stage 1).  

 

Stage 2 

 

Basaltic glass in the samples starts to alter soon after deposition (Figure 7.1, Stage 2) 

(e.g. Stronick and Schmincke, 2002; Gifkins, et al., 2005). Element mobility during 

alteration leads to changes in the water-rock chemistry, which dominates diagenetic 

paragenesis thereafter. As water interacts with the glass, micro dissolution and 

precipitation cause the development of amorphous gel palagonite as seen in Figure 5.3 

(c.f. Peacock 1962; Hay and Iijima 1968; Staudigel and Hart 1983; Furnes 1984; 

Thorseth et al., 1991; Stroncik and Schmincke 2001).  The composition of the 

palagonite is highly dependent on the initial glass and water composition (Stroncik and 

Schmincke 2002). During gel palagonite formation, there is a relative reduction in the 

volume of the glass as SiO2, Al2O3, MgO, CaO and Na2O are lost to pore waters 
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(Stronick and Schmincke, 2002; Gifkins, et al., 2005). Within this study, alteration is 

more common in the glass-rich pyroclasts than in crystalline bombs and lava clasts. 

Feldspar alteration also starts to occur. 

 

Stage 3 

 

As the sediment is buried diagenetic compaction of basaltic scoria and ash occurs (e.g. 

Branney and Sparks, 1990). This compaction is responsible for a large reduction in 

visible porosity as the scoria and ash are strung out and deformed around more rigid 

grains (Figure 5.8; Figure 7.1, Stage 3). More crystalline clasts retain their structure, 

resulting in surrounding porosity being preserved (see Figure 6.41).  

As the rocks were buried and experienced higher temperatures, the amorphous 

palagonite altered to more structured and crystalline fibro-palagonite. This process is 

volume constant and results in CaO and Na2O being lost into the pore water. However, 

SiO2, Al2O3, MgO and K2O are all gained from the pore water. Some authors suggest 

that K-rich palagonite could result from interaction with seawater (Staudigel and Hart, 

1983; Fisher and Schmincke, 1984; Zhou and Fyfe, 1989; Jercinovic et al., 1990; 

Thorseth et al., 1991). However, Stroncik and Schmincke (2001) have demonstrated 

that no relationship between K concentration and water type exists in the early phases of 

alteration. The Ti banding found during SEM analysis is a result of low water/rock 

ratio, which concentrates immobile Ti and Fe
3+

 into concentric bands (Crovisier et al., 

1992; Stroncik and Schmincke 2002).  

 The Na released during palagonitisation causes the pore waters to become 

increasingly alkali, which in turn accelerates the dissolution of volcanic glass (Stroncik 

and Schmincke 2002). Therefore, the process of palagonitisation results in a complex 

feedback loop (Gieskes and Lawrence, 1981; Gislason and Eugster 1987; Gislason and 

Arnórsson, 1993; Steefel and Lasaga, 1994; Stroncik and Schmincke 2002). The Na 

released during the palagonitisation process may also have aided the albitisation of 

feldspars, for example seen in Figures 5.32 and 5.33.  

 

Stage 4 

 

Increasing depth and elevated temperatures and pressures in the samples resulted in the 

alteration of palagonite to Fe-rich smectites (cf. Zhou and Fyfe 1989) (Figure 7.1, Stage 
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4). Small spherical features within the fibro-palagonite (see Figure 5.28 for reference) 

are identified as “stevensitic smectite”, which is interpreted as an unstable Mg-rich 

smectite-like material that acts as a precursor material to smectite (Eggleton and Keller, 

1982; Zhou and Fyfe, 1989; Stroncik and Schmincke 2002). Stevensitic smectite has 

been previously identified on Mull (Davison, 1989) 

Smectite forms from volcanic glass under alkaline conditions provided there is a 

sufficient source of Ca, Mg and Na ions (Deer et al., 1966).  Therefore, the Ca and Na 

realised during the palagonitisation process is incorporated into the smectite structure 

(Zhou and Fyfe 1989). The abundance of Fe in the scoria and ash fragments within this 

study results in formation of Fe-rich end member smectites. Palagonite may be replaced 

by K-rich smectite initially (Honnorez, 1978). Zhou and Fyfe (1989) identified an 

increase in K from glass to the palagonite; however, no K-rich smectite is recognised 

within the Group 1 samples.  

Similar Fe-rich smectites have been reported in basaltic sequences in the Faero 

Islands (Sabine, 1971). The formation of these clays has been attributed to hydrothermal 

fluids causing argillisation of volcanic tuffs and from meteoric alteration of basalts 

(Parra et al., 1986).  

The link between saponite and volcanic glass was shown in Figure 6.20, and 

Stroncik and Schmincke (2001) note that saponite and nontronite form from a 

palagonite precursor. Smectite is by definition a swelling clay (Moore and Reynolds, 

1997; Worden and Morad 2003) and therefore, the process of palagonite to smectite 

formation is not isovolumetric, resulting in surrounding pore space being impeded by 

smectite. The smectite forms tightly packed grain coats (e.g. Figure 5.37) that mimic the 

earlier palagonite structure.  

 Zeolites are the second most common mineral formed from the alteration of 

volcanic rocks after smectite (Fisher and Schmincke, 1984). The zeolite, analcime, is 

reported in some Group 1 samples. Analcime (16NaAlSi2O6-H2O, Si/Al ratios vary) is 

one of the most common zeolites and can form in a wide range of geological 

environments over a large range of temperatures (Gaines et al., 1997),  but is typically 

formed from the alteration of volcanic glass (Hay, 1966). Analcime can form from a 

range of silica glass compositions, but typically forms from Na
+
 rich basaltic glass or in 

rocks that experienced hydrothermal waters that were high in Na
+ 

(Höller and 

Wirsching, 1978). Therefore, Na released in the palagonitisation process may be 

incorporated into the analcime. Zeolite does not replace the glass directly but will 
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crystallise around the vitroclasts (Hay, 1966). Some authors (Surdam, 1977; Gifkins, et 

al., 2005) suggest that analcime can only be formed from the alteration of precursor 

zeolites such as clinoptilolite, phillipsite and erionite and cannot form directly from the 

volcanic glass. This would imply that a precursor zeolite forms during Stage 4 and is 

altered later (Stage 5) to analcime. Palagonitisation and the albitisation of feldspars (see 

Figure 5.35 for reference) leads to fluctuations of Ca and Na ions in the pore waters that 

can promote the formation of these precursor, calcic zeolites (Utada, 1991).  

 

Stage 5  

 

At further increased depths and temperatures, there is a switch from smectite to 

corrensite or mix layer smectite chlorite formation (Figure 7.1, Stage 5).  The corrensite 

nucleates on the smectite grain coats and grows perpendicular from the grain surface, 

further reducing pore space (see Figure 5.46).  High Fe and Mg varieties indicate they 

formed from hydrothermal waters (Höller and Wirsching, 1978).    

 During SEM analysis anomalous patches of K-rich material of unknown origin 

were found in albitised feldspars and surrounding some clasts (Figure 5.32A). 

Munhaetal (1980) suggests that interaction of volcanic glass with Na-rich sea water 

could exchange K and result in the formation of alkali feldspar. Several authors also 

report a transition from zeolites such as analcime to diagenetic alkali feldspar (Surdam, 

1977; Hay, 1978), however, this normally results in crystalline overgrowths around 

plagioclase feldspars, which is not observed in this study. K liberated in the formation 

of zeolites and in the transition from earlier formed zeolites into analcime, may release 

K into the pore waters (Surdam, 1977) resulting in alkali feldspar formation (cf. Gifkins 

et al., 2005) or K-metasomatism. Noh and Boles (1989) note the formation of a K-rich 

gel like glass as a transitional mineral during the transformation from silicic glass to 

crystalline K-feldspar. Such material is identified in this study (e.g. Figure 5.32.A); 

however, Group 1 samples contain basaltic glass, which is unlikely to contain large 

quantities of K and therefore, another mechanism of releasing K into pore waters may 

be required. Mica, K-feldspar and organic material can all release K during burial 

(Berner and Berner, 2012) leading to K-metasomatism; however, none of these minerals 

were found within the Group 1 lithofacies.  Therefore, the K may have been brought 

into the rocks from hydrothermal waters (e.g. Chapin and Lindley, 1985). At this stage, 

the porosity and permeability of the rock was severely reduced, limiting potential fluid 
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pathways, which contradicts the suggestion of large amounts of pore water accessing 

the rock.  

 

Stage 6 

 

Several authors report chloritisation of smectite (and corrensite) during burial diagenesis 

(Hillier, 1994; Worden and Morad, 2003; Gifkins et al., 2005). Mg, Fe and Al are 

increasingly concentrated into pore waters as the volcanic glass alters, during smectite 

and zeolite formation, and from the dissolution of pyroxene in more crystalline clasts 

(Worden and Morad, 2003). Mg is fixed in corrensite resulting in pore waters that are 

enriched in Al and Fe (Biron et al., 1999), explaining the pore filling Fe-rich chlorites in 

the Group 1 samples (Figure 7.1, Stage 6). The clay patches (Chapter 5, section 

5.5.14.5, Figure 5.3.1.B) may grow into pore space formed by late stage albite and 

pyroxene dissolution. The porosity of these samples is reduced to less than 5%.   

The chloritisation process results in the production of quartz (Worden and 

Morad, 2003); however, no diagenetic silica is found within the samples. Giles et al. 

(1992) and Bjørlykke et al. (1994) suggest burial depths of >2 km are required before a 

significant quartz cement is developed and therefore, the Staffa Formation samples may 

have been too shallow for this to occur.  Alternatively, the extensive clay development 

earlier in the paragenetic sequence limited the availability of silica nucleation sites. 

McKinley et al. (2003) suggest that Ca can be released during chloritisation resulting in 

the formation of carbonate, and some Group 1 samples do display minor late stage 

calcite cements.  

Ti is not incorporated into the chlorite structure and is concentrated within pore 

waters. Therefore, Ti oxides such as rutile and its alteration product, leucoxene, are the 

last minerals to form within the pores. The Ti oxides fill spaces around the chlorite 

platelets as they meet, resulting in the anastomosing textures seen in many pores and 

vesicles within Group 1 rocks.  
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Figure 7.1: Simplified paragenetic sequence for Group 1 rocks.  
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7.2.2 Group 2 – Volcanic rich epiclastic rocks 

 

Stage 1 

 

The diagenetic paragenesis of Group 2 volcanic rich epiclastic samples is the most 

complex of all the rocks in this study, due to their heterogeneous nature. More 

variations in parent material will result in a wider range of phyllosilicate compositions 

(Khalaf, 2013). Volcanic clasts of several different compositions, textures and ages are 

found, together with feldspar, quartz, flint, mica and organic material (Figure 7.2, Stage 

1).   

 

Stage 2 

 

Initially, paragenesis is similar to the Group 1 rocks, as the glass-rich reworked 

pyroclasts alter to palagonite and feldspars are altered (Figure 7.2, Stage 2). However, 

the range of alteration in volcanic clasts is much greater in Group 2 samples due to the 

heterogeneity of clast compositions.  

Some flint clasts already have inherent diagenetic phases, such as calcite filled 

fractures (see Figure 5.39B). Alteration is more pronounced in fossiliferous Type 1 flint 

(see Section 5.5.3). Amorphous silica within the flint is partially dissolved creating 

intragranular, moldic porosity.  

 

Stage 3 

   

During compaction, the reworked pyroclasts, mica and organic fragments are deformed 

around framework grains such as quartz, resulting in the localised reduction of visible 

porosity (Figure 7.2, Stage 3). Crystalline basalt lava clasts retain their structure better 

and so adjacent pores remain open (see Figure 6.41).  Sutured grain boundaries are 

common as compaction causes limited dissolution at grain boundaries.  
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Stage 4 

 

Smectite coats scoria clasts and partially fills vesicles within less altered lava clasts 

(Figure 7.2, Stage 4), where the glassy groundmass starts to alter to palagonite. Flint 

alteration and the albitisation of feldspars continue to create moldic porosity and a 

patchy calcite cement replaces the palagonite in places (e.g. Dimroth and Lichtblau, 

1979).  This calcite may form from Ca released during feldspar alteration and from the 

remobilisation of calcite in fractures within flint clasts.  

 

Stage 5 

 

An influx of localised acidic pore waters caused partial dissolution of the calcite cement 

(e.g. Bjørlykke 1984; Mathisen 1984), resulting in the creation of secondary porosity 

(Figure 7.2, Stage 5).  The groundmass and grain coats of the more crystalline lava 

clasts alter to smectite. As in Group 1 rocks this smectite then alters to corrensite, which 

fills the surrounding porosity. Some samples also contain limited amounts of analcime, 

formed by the alteration of volcanic glass, similar to that formed in Group 1 samples.  

 

Stage 6 

 

Similar to the Group 1 samples, K-metasomatism results in patchy K-feldspar like 

material, which is then preferentially altered (Figure 7.2, Stage 6). Alteration in all 

clasts is now so extreme that identifying initial clast boundaries can prove challenging. 

Another phase of calcite precipitation, potentially linked to the release of Ca during the 

palagonitisation of the remaining crystalline clasts and/or the albitisation of feldspars, 

re-cements localised porosity.    

 

Stage 7 

  

A further phase of calcite dissolution creates secondary porosity (Figure 7.2, Stage 7).  

Some authors (e.g. Siebert et al. 1984; Surdam et al. 1984) suggest late stage calcite 

dissolution may result from fluids associated with clay minerals. Similar to the Group 1 

rocks, the chloritisation of corrensite and smectite leads to much of the remaining 

porosity being filled by chlorite.  
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Stage 8 

 

Similar to the Group 1 rocks, much of the remaining porosity is filled by a calcite 

cement thought to be a result of the release of Ca during chloritisation of corrensite. As 

a result samples have less than 10% porosity (Figure 6.28).  

Several phases of precipitation and dissolution of calcite are present but these 

are not evenly spread throughout all the samples, or even within one sample. Diagenetic 

paragenesis is therefore, strongly dependent on the localised, surrounding mineralogy 

which can variably considerably throughout individual samples.  
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Figure 7.2 

Simplified 

paragenetic 

sequence 

for Group 2 

rocks. 
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7.2.3 Group 3 – Volcanic poor epiclastic rocks 

 

The Group 3 volcanic poor epiclastic samples from Ardtun have a different diagenetic 

paragenesis than those sampled at other Staffa Formation locations and therefore, the 

volcaniclastic lithic arenites will be discussed separately from the volcaniclastic lithic 

wackes.   

 

7.2.3.1 Volcaniclastic lithic arenites (vlA) 

 

Stage 1 

 

The vlA samples are characterised by basalt lava flow clasts, quartz, flint, mica and 

organic material and contain no pyroclasts (Figure 7.3, Stage 1). Porosity within these 

samples is initially good with the rocks being less heterogeneous than Group 2 rocks. 

 

Stage 2 

 

Under compaction feldspar and flint are altered, resulting in the formation of moldic 

porosity (Figure 7.3, Stage 2). Mica is deformed and sutured boundaries are common. 

Some of the lava clasts have inherited diagenetic phases such as calcite vesicles, or Fe 

stained rims due to weathering.  

 

Stage 3 

 

Lava clasts altered to palagonite and smectite formed grain coats (Figure 7.3, Stage 3). 

If formed early during compaction the smectite may help to protect porosity from 

compaction. Alteration of feldspars and flint resulted in moldic porosity. 

 

Stage 4 

 

Alteration of the basalt lava clasts continued with smectite altering to corrensite, and 

chlorite. However, only the porosity immediately surrounding the volcanic clasts is 
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affected (Figure 7.3, Stage 4).  Visible porosity at this stage are estimated to up to 25% 

(Section 6.5) 

 

Stage 5  

 

The Ardtun samples have lower than expected visible porosity (<10% see Figure 6.30). 

This is due to an aggressive late stage calcite cement that almost completed filled 

porosity (Figure 7.3, Stage 5). The source of this calcite remains unexplained, however 

Ca was added to pore waters during feldspar dissolution. The amount of volcanic clasts 

is limited, resulting in fewer clay grain coats.  Fluid pathways remain open therefore, 

resulting in the circulation of late stage pore fluids that could lead to calcite 

precipitation. Williamson and Bell (2011) suggest that the Ardtun calcite may be 

hydrothermal in origin.  

 

7.2.3.2 Volcaniclastic lithic wackes (vlW) 

 

Stage 1 

 

Initially the vlW resemble the vlA samples, with the main difference being the presence 

of reworked scoria and ash pyroclasts (Figure 7.4, Stage 1). They contain more quartz 

and flint than Group 2 samples.  

 

Stage 2 

 

During initial compaction the vlW display a mixture of compaction textures seen in the 

Group 2 and vlA samples (Figure 7.4, Stage 2). The scoria, ash, mica and organic 

fragments deformed more than the crystalline clasts causing a localised reduction in 

porosity, whereas the lava clasts retained their structure and preserving surrounding 

porosity.   
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Stage 3 

 

Similar to the vlA samples, feldspar and flint dissolution occurred (Figure 7.4 Stage 3). 

Volcanic clasts also altered to palagonite, with reworked pyroclasts showing the most 

alteration.  

 

Stage 4 

 

Porosity is reduced by the formation of smectite and corrensite locally around volcanic 

clasts (Figure 7.4, Stage 4). The reduction is most extreme surrounding the pyroclasts 

with pore throats being occluded. Overall porosity is higher than in the Group 2 rocks. 

Zeolite was also rarely found within the samples, and is thought to form in the same 

way as described in the Group 1 rocks.  

 

Stage 5 

 

Late stage calcite has not affected these samples, unlike the vlA (Figure 7.4, Stage 5). 

Late stage chlorite and kaolinite formed minor grain coats and filled porosity 

surrounding volcanic grains. Further from the volcanic clasts porosity was retained, 

perhaps due to minor clay coats blocking potential silica nucleation sites and halting late 

stage quartz cements.  

 

7.2.4 Group 4 – Siliciclastic rocks 

 

Stage 1 

 

Siliciclastic sandstone diagenesis history is typically much simpler to understand due to 

less authigenic phases forming and less heterogeneity within the system. Unlike the 

volcanic rich samples, the Group 4 samples are composed predominantly of stable 

minerals such as quartz (Figure 7.5, Stage 1) so they are less likely to alter.  
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Stage 2 

 

While volcanic minerals can add a wide range of ions into the system, alteration of 

quartz and flint can only provide silica. Ca could be provided by the dissolution of 

feldspars and from the remobilisation of calcite from fractures within the flint. Sutured 

boundaries are common indicating some compaction, and visible porosity, although 

reduced, is preserved (Figure 7.5, Stage 2). A patchy quartz cement resulting from the 

mobilisation of silica from suture grain contacts and the dissolution of flint, helped to 

protect some grains from further compaction. Feldspar was also dissolved leading to the 

formation of moldic porosity.   

 

Stage 3 

 

Minor kaolinite and illite authigenic clay grain coats developed due to the alteration of 

feldspars and mica (Figure 7.5, Stage 3). These grain coats may have helped to preserve 

porosity during further compaction. 

 

Stage 4  

 

A late stage patchy calcite cement filled pores; however, it did not significantly alter the 

overall porosity of the rock with visible porosity up to 38% being retained (Figure 7.5, 

Stage 4).  
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Figure 7.3: Simplified paragenetic sequence for Group 3 vlA rocks. 
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Figure 7.4: Simplified paragenetic sequence for Group 3 vlW rocks. 
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Figure 7.5: Simplified paragenetic sequence for Group 4 rocks. 

 
 

7.3 Diagenetic paragenesis of the Rosebank rocks 
 

7.3.1 Group 5 – Volcaniclastic rocks 

 

Stage 1 

 

The volcanic facies within the Rosebank field exhibit many similarities to those seen in 

onshore equivalents. This indicates that within this study, that the diagenetic 

paragenesis of the volcaniclastic facies was dependant more on localised mineralogy 

than by basin wide fluctuations in pore water chemistry (Figure 7.6, Stage 1). 
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Stage 2 

 

The Group 5 samples resemble the Group 3 vlA samples, but with much greater 

quantities of basalt lava clasts and no flint. Alteration of the volcanic clasts varies 

considerably across the samples due to variations in clast composition, size and age 

(Figure 7.6, Stage 2). 

 

Stage 3 

Group 5 rocks behaved similarly under compaction to the onshore equivalents. The 

amount of compaction experienced was greater than in the Staffa examples, due to 

greater burial depths (Figure 7.6, Stage 3). Sutured contacts are common between grains 

and mica was deformed around framework grains. Albitisation and feldspar dissolution 

resulted in significant secondary porosity. Volcanic clasts altered to palagonite, locally 

reducing visible porosity and permeability by clogging pore throats.  

 

Stage 4 

 

Similar to the onshore equivalents extensive smectite grain coats formed from the 

alteration of palagonite (Figure 7.6, Stage 4). The K-metasomatism found in onshore 

rocks is also present within the Rosebank samples. This would indicate that 

metasomatism was related to the alteration of volcanic clasts rather than an external 

source of K being brought into the rock. Microcline crystals were rarely found within 

the samples; however, any early alteration of this feldspar would result in K being 

included in the pore waters and could explain the K-metasomatism. Similar textures are 

seen in Group 1 samples where alkali feldspar was not present and therefore, the exact 

nature of the K-metasomatism is not fully understood.  

 Zeolite is much more common in the Group 5 samples than in onshore 

equivalents. The Rosebank rocks are currently at depth of over 2000 m, which is deeper 

than the estimated maximum burial depth of the Staffa Formation (Williamson and Bell, 

2012). If the Rosebank rocks were buried to greater depths than the Staffa rocks earlier 

in their paragenesis, then greater quantities of analcime could form before the onset of 

clay formation.    
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Stage 5 

 

At greater depths, the smectite altered to corrensite (as explained in the Group 1 section 

above) resulting in only limited porosity remaining (Figure 7.6, Stage 5). 

 

Stage 6 

 

Late stage chlorite formed from the chloritisation of smectite and corrensite, and filled 

remaining visible porosity (Figure 7.6, Stage 6). Ca produced from the chloritisation of 

smectite resulted in the development of a patchy late stage calcite cement. Visible 

porosity is reduced to < 6%.  

A key similarity between Group 5 rocks and their Staffa equivalents is the 

variability of the diagenetic assemblage produced. Although the processes that affect 

each group are similar, these models have been simplified and large variations exist in 

the diagenetic mineral assemblage within each sample, on a millimetre scale. Vesicles 

and pore spaces near to glassy groundmass are dominated by smectitic clay minerals, 

whereas vesicles located closer to feldspar rich areas are more likely to be filled by 

zeolite or calcite. Complex fluid pathways were established throughout the volcanic rich 

Group 5 samples as vesicles towards the centre of basalt clasts were filled with calcite, 

whereas ones on the periphery were clay filled.  The outer edge of the clasts are likely to 

alter earlier in the paragenetic sequence. This leads to the production of clays filling 

vesicles towards the edge of clasts. Vesicles within the centre of the clasts are likely to 

retain their porosity for longer and therefore remain open as fluid pathways. Late stage 

calcite then fills vesicles in the centre of the clasts. 
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Figure 7.6: Simplified paragenetic sequence for Group 5 rocks. 
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7.3.2 Group 6 – Siliciclastic rocks 

 

Stage 1 

 

Group 6 samples are generally homogenous with a relatively simple mineralogy and 

therefore, have the simplest paragenesis. The samples have good visible porosity (up to 

25%) with large oversized pores and floating grains (Figure 7.7, Stage 1).  

 

Stage 2 

 

An early calcite cement partially filled pores prior to significant compaction. Alteration 

and dissolution of feldspar grains resulted in limited moldic porosity being created 

(Figure 7.7, Stage 2).  

 

Stage 3 

 

At greater burial depths the calcite cement protected grains from compaction (Figure 7.7 

Stage 3). Where the calcite was not present compaction resulted in sutured contacts at 

grain point contacts. Porosity was also reduced as mica and organic material were 

deformed around framework grains. The formation of minor smectite and illite grain 

coats in non-cemented areas locally reduced porosity however, the grain coats later 

helped to preserve porosity. Feldspars within cemented areas were less altered as the 

calcite provided protection from pore fluids. 

 

Stage 4 

At a later stage, changes in pore water chemistry resulted in the dissolution of 

this calcite, which allowed significant secondary porosity to develop (Figure 7.7, Stage 

4) and therefore visible porosities as high as 36% are retained (Section 6.5). This alone 

however, cannot explain the apparent floating grains. It is postulated therefore, that the 

large package of lava flows above the sandstones protected the underlying reservoir 

from compaction, creating overpressure in the sandstone units. Overpressure has been 

recorded in other places within the Faeroe-Shetland Basin Alternatively, the timing of 

hydrocarbon entry into the system may have affected any clay coats that developed, as 
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hydrocarbons entering sandstone units can significantly reduce production of authigenic 

clays, and therefore protect porosity. Several of the sandstones within the Rosebank 

core are stained with oil although the exact timing of hydrocarbon entry, compared to 

mineral paragenesis is unknown.  

 

 

Figure 7.7: Simplified paragenetic sequence for the Group 6 samples.  

 

336



Chapter 7 The diagenetic evolution of onshore Staffa Formation and offshore Rosebank rocks 

 

7.4 Relating paragenetic mineralogy to temperature 
 

The simplified paragenetic sequences for each of the sample groups are discussed in 

detail above. Using cross cutting relationships within the samples palagonite was found 

to be the earliest phase, whereas chlorite and calcite were the final phases to form. The 

formation of each phase can now be tentatively linked to the temperature range in which 

it formed (summarised in Figure 7.8).  

The maximum reported temperature of palagonite formation is ~150 °C, with 

fibro-palagonite only found above ~90 °C (Gifkins et al., 2005). The rate of 

palagonitisation is dependent on temperature and time. Hekinian and Hoffert (1975) 

calculated that 3 µm of palagonite would develop in 1000 years, but at increased 

temperatures (100 °C) the rate of palagonitisation increases to 2.8 µm per year and 

doubles for every 12 °C increase in temperature (Jakobsson and Moore, 1986). 

However, within this study, the thickness of the palagonite varies extensively (up to 3 

mm) from clast to clast, even within individual samples, indicating that the relationship 

between palagonite formation and temperature is not clearly defined. Several authors 

suggest that the time a clast is exposed to fluid is more influential than temperature (e.g. 

Staudigel et al., 1981; Jercinovic et al., 1990; Stroncik and Schmincke 2001). This study 

has found that palagonite coatings tend to be thicker in glassy scoria clasts, than in 

crystalline lava clasts, implying that palagonitisation starts earlier on the labile glass 

clasts.  

 Smectite typically forms below 150 °C, whereas saponite can reach higher 

temperatures of ~200 °C (Gifkins et al., 2005). The first appearance of corrensite occurs 

at temperatures as low as ~60 °C but it is more typically found from ~100 °C to 250 °C 

(Chang et al. 1986; Gaines et al., 1997). Corrensite alters to chlorite, and corrensite 

disappears at ~250 °C (Kristmannsdóttir, 1975, 1979; Evarts and Schiffman, 1983). 

Although no definitive link between chlorite platelet size and temperature of formation 

exists (Walker, 1993; de Caritat et al., 1993; Hillier, 1994; Shanvas Sathar pers.comm.), 

large platelets (thought to be of the most stable form of chlorite), form at sub-

metamorphic temperatures, up to ~300 °C (Hayes, 1970, Weaver et al., 1984, Gifkins et 

al., 2005), and at a maximum of 3-4 km depth (Karpova, 1969). All chlorite in the 

samples is Fe-rich potentially indicating its “hot” formation, as Fe rich chlorites 

typically form at the highest temperatures (above 150° C) (de Caritart et al., 1993). 
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Calcite forms at a wide range of temperatures, up to and exceeding 300 °C 

(Gifkins et al., 2005), and therefore, it is not surprising that several phases of calcite are 

found throughout the samples. Analcime typically forms at temperatures between ~50 - 

120 °C (Gifkins et al., 2005); however, analcime has been formed in the lab at 

temperatures as high as 250 °C (Höller and Wirsching, 1978).  Jørgensen (2006) 

suggests that analcime forms in a wide range of temperatures from 65 °C to as high as 

300 °C and claimed that different volcanic glass compositions caused the temperature of 

formation of zeolites to increase by up to 100 °C. This highlights the inherent 

difficulties with using zeolites as paleo-indicator minerals.  Albitisation can begin at 

temperatures as low as 25 °C if sea water is present, but more commonly starts at ~100 

°C (Gifkins et al., 2005; Ramseyer et al., 2006). Alkali feldspar alteration typically 

forms below 100 °C (Gifkins et al., 2005); however, K-metasomatism can occur at 

much higher temperatures (>200 °C). The temperature dependence of this process is 

poorly understood, meaning that the presence of K-metasomatism cannot be used as an 

accurate geothermometer.  

 

 

Figure 7.8: Estimated temperature range of diagenetic mineral growth for the key minerals found within 

this study (edited from Gifkins et al., 2005 and references therein).  
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7.5 Regional diagenetic paragenesis in the Staffa Formation rocks 
 

It is estimated that approximately 1.6 km of rock has been eroded from the Staffa 

section (Holford et al, 2010). Even with an elevated geothermal gradient due to the Ross 

of Mull Granite, burial temperatures would be unlikely to reach the high temperatures 

responsible for the large chlorite platelets to develop. This chlorite may be linked to late 

stage hydrothermal fluid circulating through the limited remaining pore network. 

Isotopic data in this study support this conclusion, and Williamson and Bell (2012) also 

attribute calcite and zeolite formation to hydrothermal waters.  

Walker (1971), note the presence of several late stage zeolites filling vesicles 

and fractures in the Staffa Formation lavas in this study. Figure 7.9 (Walker, 1971) 

shows the proposed zeolite zones for the Mull Central Complex. The samples from this 

study are all on the outermost fringes of the aureole, within the mesolite zone and 

locally, the laumontite zone. Walker (1971) proposes depths for the Mull lavas of 

greater than 1500 m; however, only analcime was discovered within this study. 

Laumontite is a Ca-rich zeolite commonly formed at high temperatures of 110°C–

140°C, whereas mesolite is a Na-rich zeolite found in geothermal areas and typically 

forms between 70 °C- 90°C (Kristmannsdóttir and Tómasson, 1978). Fission track 

results agree with Walker’s interpretation and estimate palaeo-temperatures (for the 

areas within this study) of a maximum of 150 °C within the Central Complex (Holford 

et al, 2010).  

 The presence of analcime within the samples rather than mesolite or laumontite 

indicates similar temperatures of formation, but implies pore waters that were enriched 

in Na relative to Ca. The isotopic data also indicate some influence from geothermal 

waters, suggesting that the Staffa samples may have been affected by heat from the 

Mull Central Complex.  
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Figure 7.9: Zeolite zone map, showing the sample locations from this study within the 

mesolite and laumontite zones (redrawn and edited from Walker, 1971). 

 

 

7.6 Regional diagenetic paragenesis in the Rosebank rocks 
 

Heat flow and burial histories have been estimated in the Faeroe-Shetland Basin, with 

an average present day geothermal gradient of 34.6 °C/km estimated using temperature 

data from wells in the south of the basin (Gatliff et al., 1996). As the Rosebank rocks 

are currently at ~2500 m depth this would imply maximum temperatures of around 90 

°C. However, the wells used within the Gatliff study have not extensively been affected 

by Palaeogene volcanism, and wells that underlie the flood basalts were not included in 

the study. This suggests that the geothermal gradient within the Rosebank rocks may be 

higher. Fluid inclusions found within Upper Vaila Sandstone samples (the Vaila 

Formation underlies the Flett Formation) have temperatures as high as 200 °C, which 

Parenell et al. (1999) linked to volcanism during the Eocene. Fluid inclusion studies in 

the Rosebank discovery well estimate temperatures of up to 127 °C at depths of ~3510 

m approximately 1000 m below the Rosebank reservoir rocks hinting the geothermal 

gradient might be ~36°C/km. Zeolites have been used to estimate the paleo-geothermal 

gradient on the Faroe Islands, with Jørgensen (2006) estimating an average geothermal 

gradient of 60°C/km, which was regionally constant across the Faeroe-Shetland basin. 

This is much higher than the present day geothermal gradient.  
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Using a combination of rifting / volcanic subsidence history and maturation, the 

burial history of the southern Faeroe-Shetland Basin was estimated (Carr and 

Scotchman, 2003). The Flett Formation was rapidly buried to ~ 1 km within the early 

Palaeogene. Subsidence stopped and minor uplift occurred due to volcanism associated 

with the Icelandic plume (Clift, 1999). This was followed by a second phase of 

subsidence after the volcanism ceased (Jones et al., 2001). A compressional event in the 

Oligo-Miocene (Doré and Lundin, 1996) led to uplift and erosion. In the 205/22-1 well 

to the south of Rosebank, late stage uplift occurred in the Neogene, followed by 

subsidence.  Together, this led to a final depth for the Flett Formation of ~2500 m.  

This burial history is for the area to the south and south west of the Rosebank 

Field and must only be used as an estimate; however, the complex history could in part 

explain the paragenesis seen within the Rosebank rocks. The rapid subsidence could 

result in samples experiencing elevated temperatures earlier in the diagenetic history. 

This could explain the greater quantities of zeolite found in the Rosebank rocks, as 

higher temperatures would promote zeolite formation.  

The uplift phases could correspond to differences in pore waters, potentially 

leading to the multiple phases of calcite precipitation and dissolution. Isotopic data 

indicate the presence of hot geothermal waters. Samples located close to lava contacts 

did not have markedly different isotopic signatures indicating that meteoric water 

temperatures at the surface were not elevated by lavas. Instead, meteoric waters more 

likely mixed with relatively large hydrothermal cells that developed around large scale 

intrusions (Gifkins et al., 2005).  

 

 

7.7 Model for predicting diagenetic evolution of volcaniclastic rocks 
 

Figure 7.10 provides a simplified flow chart showing the typical diagenetic phases 

identified within this study and their net effect on the reservoir quality of the rock. 

Timing of the diagenetic phases is extremely important. Many of the early stage events 

such as the development of smectite or chlorite grain coats and the precipitation and 

subsequent dissolution of calcite cements, protects pores from compaction. The 

dissolution of mineral phases such as volcanic glass, feldspar and pyroxene leads to 

production of secondary, often intragranular and moldic, porosity. In the majority of 

currently producing volcaniclastic reservoirs worldwide, these processes have preserved 
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reservoir quality (Zou et al., 2013). The main difference between this study and 

previous examples is that clay formation has not stopped at the grain coating phase and 

has continued to fill much of the porosity.  This may be due to rapid burial promoting 

clay development or simply reflect the abundance of volcanic clasts that react with pore 

waters.  

 The main conclusion from this study is that the diagenetic mineral paragenesis is 

highly dependent on localised mineralogy and can vary considerably throughout 

individual samples. This ultimately makes predicting reservoir quality significantly 

more challenging than in a typical sandstone reservoir that may be affected by basin 

wide changes in pore water.  The rapid burial, combined with a highly reactive 

mineralogy and potentially increased temperatures due to geothermal effects, results in 

the destruction of the pore network at relatively shallow depths, early in the diagenetic 

history. As a result, fluid pathways through the rocks become limited and the rock 

behaves as a closed system. Lava flows above and below the reservoir rocks, as well as 

intrusions, compartmentalise the reservoir, further reducing fluid pathways. This results 

in a feedback mechanism, as small amounts of pore waters become trapped within the 

pores. These waters cannot exchange with an outside source and become enriched in 

elements such as Na, which in turn accelerates alteration, causing more authigenic 

minerals to be formed and further reducing the fluid pathways available. This feedback 

also causes more pronounced isotopic fractionation.  
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Figure 7.10: Diagenetic flow chart highlighting the simplified diagenetic reactions that occur when a 

basaltic volcaniclastic sediment is buried in a non-marine environment.  Boxes represent the diagenetic 

phase. Ovals represent the consequence to porosity. Blue is a net porosity increase. Yellow is a net 

porosity decrease.  
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Figure 7.11 uses data gathered within this study to provide a porosity/permeability 

“risk” chart, in order to de-risk future exploration in basaltic volcaniclastic rocks. Red 

on the colour chart indicates rocks that are likely to have poor reservoir qualities (< 5 % 

porosity and < 5 mD permeability), whereas green indicates rocks that are likely to have 

good reservoir qualities (>20% porosity and > 100 mD permeability). .  

 This study found that vent proximal rocks (within 250 m of the vent) were likely 

to have a significantly greater reduction in porosity and permeability during diagenesis 

than rocks located at more distal locations (>1 km). A threshold of 10% volcanic clasts 

was identified using point counting data, whereby those above the threshold are likely 

to have lower resultant macro porosity and permeability. The volcanic clast type was 

found to influence diagenetic paragenesis, with pyroclasts and ash having a greater (and 

earlier) effect on the pore network than crystalline lava clasts. The overall heterogeneity 

of the samples was also found to be an important factor (e.g. Group 2 rocks have the 

most complex paragenesis due to their highly variable original mineralogy). As with all 

rock types, grain size and sorting also influence the subsequent reservoir quality of rock 

during burial.  

 A combination of all the above factors, together with changes in pore water 

chemistry and temperature, ultimately control the final reservoir quality of the rock. 

Therefore, the risk chart can only be used a guide in predicting the likely of reservoir 

quality. For example, a rock found at a vent distal location with abundant lava clasts 

should have higher reservoir quality than a rock from a vent distal location that 

comprises abundant pyroclasts.  
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Figure 7.11:  Porosity / permeability risk chart. The colour scales ranges from red (poor reservoir 

quality) to green (good reservoir quality).  
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8 Conclusions 

 

This thesis provides an insight into the complex diagenetic paragenesis of volcaniclastic 

rocks and their relationship with visible porosity. Volcaniclastic rocks are characterised 

and their reservoir potential quantitatively assessed, and compared with siliciclastic 

sandstone reservoir rocks. This is achieved by describing and classifying the 

volcaniclastic rocks found offshore in core from the Rosebank Field and onshore from 

the Staffa Formation, Mull. The nature of contacts between the igneous and sedimentary 

rocks was also described and classified, and diagenetic and alteration effects considered. 

Outputs of the study include: 1) a flow chart conceptual model that predicts how 

volcanic clasts react during burial; and 2) a risk chart that forecasts the reservoir quality 

of volcaniclastic samples.  Together, these outputs will aid the assessment of potential 

plays in the Faroe-Shetland Basin and other volcanic rifted margins.  

 

In the introduction to the thesis a number of questions regarding diagenesis and 

potential reservoir quality of volcaniclastic rocks were posed. These questions are 

addressed below.  

 

8.1 How do basaltic clasts react during burial?  

 

Basaltic clasts are highly reactive during burial. The alteration process begins at the 

surface, where basaltic glass alters to a wide range of diagenetic minerals such as gel- 

and fibro- palagonite, smectite and zeolites. The alteration products produced depend on 

pore water chemistry, temperature and the time the clasts are in contact with the pore 

fluid. Crystalline clasts similarly alter but are less reactive than there glassy 

counterparts.  Alteration therefore, was more prevalent in basaltic glass than in basaltic 

lava clasts.     

 

 

8.2 What physical and chemical changes do basaltic clasts in clastic 

rocks undergo during diagenesis? 

 

Basaltic glasses were diagenetically flattened resulting in greater levels of compaction 

and an associated reduction in porosity. The basaltic glass found in this study alters 
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firstly to gel-palagonite, early after burial. With increasing pressure and temperature the 

gel-palagonite alters to fibro-palagonite and then to smectite, which forms grain coats 

and locally reduces porosity. The smectite underwent chloritisation, resulting in the 

production of corrensite and late stage chlorite pore fill, which significantly reduced 

porosity and reservoir quality.  The formation of zeolites (analcime) from volcanic glass 

also locally reduced porosity in some samples.  

 

8.3 What factors control diagenetic history (e.g. particle size, clast 

type, abundance)?  

 

Clast type is an important control on diagenetic history. Vesiculated pyroclasts and 

glass fragments underwent higher amounts of diagenetic flattening than crystalline lava 

clasts. Compaction was greatest in the samples that contained pyroclasts, with localised 

porosity severely reduced. Crystalline lava clasts retained their structure better, 

preserving the surrounding porosity. Glass-rich clasts were the most severely altered 

due to the reactive nature of the glass, which in turn altered to pore-filling clays.  

 

The greater the abundance of volcanic clasts within a sample, the lower the porosity.  

Particle size can also influence diagenesis.  For example, small ash sized basaltic 

particles were typically the most altered. 

 

 

8.4 What effect does volcanic material have on reservoir quality (e.g. 

porosity and permeability)? 

 

Dissolution of glass and feldspar leads to the formation of moldic secondary porosity; 

though this is not commonly interconnected. While early grain coating smectite can 

help to preserve net porosity, localised pore space is reduced and pore throats are 

impeded. In this study the smectite grain coats acted as a precursor to corrensite and 

chlorite, which filled pores, reducing porosity. Zeolite and calcite cements produced as 

a by-product of volcanic glass and clay alteration also reduced the net porosity of the 

samples.  
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8.5 Does the distance from volcanic source have an impact on 

subsequent reservoir quality? 

 

Within the Staffa Formation sample set, distance from the volcanic source affected 

diagenetic paragenesis. Vent proximal samples had a higher percentage of glass-rich 

pyroclasts and therefore, lower visible porosity. Rocks at vent medial and distal 

locations (>250 m from the postulated vent) show a reduction in porosity; however, 

volcanic clast type and abundance have more influence on resulting porosity in these 

locations.  

 

 

8.6 How much volcaniclastic material do you need before reservoir 

quality is degraded? 

 

In this study, all samples that contained more than 10% volcanic clasts, regardless of 

clast type, had less than 10% resultant porosity. Pittman and Larese, (1991) state the 

economic minimum visible porosity is 12%. However, this study has also highlighted 

the heterogeneity of volcaniclastic samples and the complex result this has on the 

paragentic sequence. Therefore, although the 10% threshold can be applied to the rocks 

in this study, caution must be applied when applying the threshold elsewhere. Although 

abundance of volcanic clasts is important, other factors such as clast type, timing, pore 

water composition and location within the volcanic terrain must all be considered when 

evaluating the reservoir quality of volcaniclastic rocks.  

 

 

8.7 What are the diagenetic effects of lavas at sediment/lava 

interfaces? 

 

A range of igneous-sediment contacts were identified in the Rosebank and Staffa 

Formation rocks, and demonstrate complex interaction between the igneous and 

sedimentary components and considerable variation over small distances (cm scale). 

The contact types identified were; 1) Straight; 2) loaded; 3) Irregular; 4) Fluidal; 5) 

peperitic and 6) passive. The type of contact produced depends on a number of factors 

including: 1) the nature of the igneous body; 2) the rate and angle at which the igneous 

body intrudes/invades; 3) the composition, porosity, permeability and rigidity of the 
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sediment; and 4) water content. Previous studies (e.g. Girard et al., 1989; Merino et al., 

1997; Doyle, 2001; Mckinley, 2001; Iima and De Ros, 2002; Bernet and Gaupp 2005; 

Jerram, and Stollhofen, 2002; Grove, 2013) have found contact diagenetic and 

metamorphic effects surrounding intrusions and at the base of lava flows; however, no 

obvious contact effects (e.g. induration, magmatically derived calcite, or thermal 

effects, such as melting of feldspars), other than the formation of thin chilled margins 

and localised fluidisation of the sediment, was identified in this study. In many 

examples in the Staffa Formation a small organic-rich siltstone layer underlies the lava, 

which may provide enough thermal insulation to protect the underlying sediment. In 

other cases poor initial porosity would force any magmatically derived fluids along the 

base and up into the igneous body rather than percolating down into the sediment. As a 

result, contact effects may be focussed towards the sill tip or lava lobe toe. Isotopic 

results from samples close to an igneous contact were not markedly different to those 

several meters from the contact, indicating that the lavas did not significantly alter the 

pore waters in which the authentic clay mineral phases formed.   

 

 

8.8 What is the paragenetic sequence of the Rosebank Field and 

Staffa Formation, and can this be linked to basin wide evolution? 

 

The paragenetic sequence within the volcaniclastic rocks both on and offshore varies 

considerably on a centimetre scale due to heterogeneity in mineralogy and as a result 

only tentative links can be made to basin wide pore waters. A simplified model of 

paragenesis was presented within Chapter 7. 

 

8.8.1 Staffa Formation- vent proximal rocks (Group 1) 

  

The paragenetic sequence observed in the vent proximal rocks is controlled by the 

alteration of glassy pyroclasts. The lack of more chemically inert phases such as quartz, 

results in greater levels of alteration, earlier (and therefore shallower) in the diagenetic 

history. This in turn leads to earlier porosity reduction.  Basaltic volcanic glass alters to 

palagonite and then to smectite, that coats grains. This smectite then undergoes 

chloritisation that leads to the development of pore filling corrensite and chlorite. 

Hydrothermal waters associated with emplacement of the Mull Central Complex are 
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likely to be responsible for elevated pore water temperatures and therefore, the 

extensive authigenic clay development.  

 

8.8.2 Staffa Formation – volcanic clast-rich rocks (Group 2) 

 

The paragenetic sequence in these rocks is much more complex due to their 

heterogeneity. The rocks comprise a mixture of pyroclasts, crystalline lava, quartz, flint, 

and mica. During burial each mineral reacts differently, resulting in a complex 

paragenesis. As the pore network is impeded by the development of smectite grain coats 

and pore-filling zeolite, corrensite and chlorite (due to the alteration of volcanic clasts), 

the water-rock ratio is low. As a result the rock acts as a closed system, with pore waters 

becoming more enriched in certain ions as alteration proceeds. This in turn accelerates 

the dissolution of remaining glass and the alteration of clays. 

 

8.8.3 Staffa Formation – volcanic clast-poor rocks (Group 3) 

 

Paragenesis in these rocks is highly dependent on the type of volcanic clast present. 

Alteration is more pronounced in rocks that contain glassy pyroclasts than crystalline 

lava clasts.  The paragenetic sequence is very similar to the Group 2 samples; however, 

clay formation and therefore, porosity reduction, is focused in pores surrounding 

volcanic clasts. Consequently, porosity is only limited in areas surrounding volcanic 

clasts and overall net porosity may be retained. In Group 3 from Ardtun, porosity is 

eliminated by a late stage calcite cement.     

 

 

8.8.4 Staffa Formation – siliciclastic samples (Group 4) 

 

Group 4 samples have a much simpler paragenetic sequence as they are dominated by 

relatively inert minerals such as quartz. Sutured grain contacts show some compaction 

has occurred, reducing porosity. Minor clay coats are locally present; however, porosity 

is not extensively affected. A patchy silica cement locally occludes porosity.  
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8.8.5 Rosebank – volcaniclastic rocks (Group 5) 

 

Volcanic clasts within these samples are extensively altered to gel- and fibro-palagonite. 

This palagonite altered to smectite, which formed extensive grain coats that reduced 

porosity and clogged pore throats. Alteration of the volcanic glass also formed 

analcime, which further reduced porosity. Chloritisation of smectite led to the growth of 

mix layer smectite / chlorite and corrensite that filled much of the remaining pore space.  

Albitisation of plagioclase released Ca into pore waters resulting in the development of 

a localised calcite cement. Isotopic data demonstrate that magmatic water from 

intrusions is likely to have mixed with meteoric waters and led to elevated temperatures 

at shallower depths, promoting and accelerating clay growth. Seawater may also have 

mixed with meteoric and hydrothermal waters, elevating deuterium values in some 

samples.   

 

8.8.6 Rosebank – siliciclastic rocks (Group 6) 

 

These samples have good porosity and, in places, have large oversized pores or floating 

grains. Evidence of compaction includes minor sutured quartz grain contacts and the 

deformation of mica and mud lithoclasts around framework grains. The remnants of an 

early patchy calcite cement, which helped protect the rocks from compaction, is found 

within some samples. Much of this calcite was dissolved creating the large oversized 

pores and floating grains. Minor late stage illite and kaolinite clays coat the grains and 

help to prevent nucleation of late stage quartz cements.  

 

Compartmentalisation of these reservoir rocks due to the lava flows and potential 

intrusions could impede the circulation of large-scale basin-wide pore fluids, protecting 

the rocks from late stage silica precipitation.   

 

8.9 Is the Staffa Formation a viable onshore analogue? 

 

 

Although differences between the Staffa Formation and the Rosebank Field exist (e.g. 

detrital mineralogy, scale and age), the paragenetic sequence found in both sample sets 

is remarkably similar. In both settings, volcanic clasts behaved in a similar way during 
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burial, with the extensive production of palagonite and subsequent alteration to 

smectite, corrensite and chlorite. Alteration textures such as Ti-banding formed during 

glass alteration, moldic porosity created from the dissolution of feldspars, albitisation, 

K-metasomatism, and the concentration of metal oxides into anastomosing, axiolitic 

texture, all occurred in both sample sets. Therefore, the Staffa Formation provides a 

viable analogue for the Rosebank Field.  

 

 

8.10 Further work 

 

This thesis highlights the complex diagenetic paragenesis that volcaniclastic samples 

undergo during burial.  However, the following studies could be undertaken in order to 

better understand the influence of volcanic material within sedimentary basins.  

 

Further work could be undertaken to correlate the lithofacies seen within the Rosebank 

cores across the full Rosebank field area. A new ocean bottom detection seismic data set 

has been recently acquired that will provide further precision in the mapping of 

lithofacies (e.g. identifying fluvial channel directions). FMI data could also be better 

linked to wireline and core data, using the method outlined in Watton (2013), in order to 

better interpret the relationship between the volcanic and siliciclastic rocks. Other wells 

that drilled volcanic sequences within the Faeroe-Shetland Basin could also be 

examined and there reservoir qualities examined.  

  

Microprobe analysis may help to improve the chemical data set, providing a better 

understanding of elemental movement. Clay separation and fluid inclusion work could 

help to better constrain temperature and pore water chemistry, and if compositional data 

were known for individual clay phases then more accurate fractionation factors could be 

developed to improve further isotopic analysis. Isotopic analysis of calcite phases may 

also help to define pore water evolution.  

 

Mercury injection methods (e.g. Pittman, 1992; Tang et al., 2008) may provide more 

accurate data on the permeability of the onshore samples; however, it is anticipated that 

all volcaniclastic and pyroclastic samples would have poor permeability (<5 

millidarcies) similar to their offshore equivalents.  
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