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The use of spanwise wall oscillations to attenuate the growth of laminar streaks within
the incompressible Blasius boundary layer is investigated. As in the case of the flow
above a stationary flat plate, studied by Leib et al. (J. Fluid Mech. vol. 380, 1999, p.
169), free-stream convected gusts interact with the boundary layer to drive the streak
growth. Spanwise wall oscillations can either reduce or increase the total energy of the
laminar streaks, depending upon the wall oscillation amplitude and frequency, as well as
the free-stream gust properties. Reductions in streak energies of up to 90% are obtained,
indicating that spanwise wall oscillations are an effective technique for attenuating the
laminar streak growth. Therefore they may suppress secondary boundary-layer instabil-
ities and delay transition.

The laminar boundary-layer base flow matches the Blasius profile in the streamwise
and wall-normal directions, while in the spanwise direction a generalized version of the
classical Stokes layer profile (generated by a wall oscillating beneath a quiescent fluid) oc-
curs, which evolves downstream due to non-parallel flow effects. Via a Wentzel-Kramers-
Brillouin-Jeffreys (WKBJ) analysis this generalized Stokes layer is shown to approach
the classical Stokes layer in the limit of large downstream distances or high-frequency
plate oscillations. The laminar streaks forced by the generalized and the classical Stokes
flows differ significantly, which implies that the choice of the spanwise base flow may
affect the secondary instability and transition in this flow. The analysis also proves that
the use of the classical Stokes layer as spanwise base flow, as employed by Hack & Zaki
(Phys. Fluids. vol 24. 2012), is inappropriate.
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1. Introduction

Laminar-turbulent transition within a boundary layer is a topic of immense impor-
tance in the dynamics of flows around high-speed aerofoils, either in flight or within
turbomachinery. The process of transition can be initiated via a range of mechanisms,
including interactions of the boundary layer with free-stream disturbances (which can be
of entropic, vortical or acoustic kind), wall vibrations, and surface roughness (Liepmann
& Fila 1947; Ruban et al. 2013).

The free-stream disturbance intensity, Tu, has been recognized as an important fac-
tor affecting the transition process. Above a smooth flat plate, increasing Tu leads to
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transition occurring closer to the leading edge of the plate. For low levels of free-stream
turbulence (Tu < 0.1%), transition occurs via the growth of viscous Tollmien-Schlichting
waves (Goldstein 1983). Two other forms of disturbance, which have been shown to lead
to transition, are Görtler vortices and laminar streaks. The former are perturbations over
concave surfaces which have been shown to be inviscidly unstable (Hall 1983; Saric 1994;
Wu et al. 2011). The latter, which motivate this study, are time-periodic viscous streaky
disturbances which eventually grow and cause the formation of turbulent spots (Mat-
subara & Alfredsson 2001; Mans et al. 2005). These laminar streaks appear at Tu values
higher than the ones that typically trigger Tollmien-Schlichting waves and the engen-
dered breakdown to turbulence is often referred to as bypass transition. Laminar streaks
are known in the literature as Klebanoff modes, after the experiments performed by Kle-
banoff (1971). Before Klebanoff (1971), these perturbations were observed by Dryden
(1936) and Taylor (1939), who referred to them as breathing modes.

The growth of laminar streaks in boundary layers above a flat plate has been analyzed
by Leib et al. (1999) (subsequently referred to as LWG99), Wu & Choudhari (2001, 2003)
and Wundrow & Goldstein (2001). Extensions to account for components of velocity
and pressure in the outer portion of the boundary layer (Ricco 2009) and nonlinear
effects (Ricco et al. 2011) have been considered, while the compressible laminar streaks
have been studied by Ricco & Wu (2007). The main contribution of these studies is the
rigorous mathematical representation of the interplay between the decaying free-stream
perturbation and the growing streaky disturbances within the boundary layer. A second
class of models (referred to as optimal growth theories), which also purport to describing
the growth of laminar streaks, follows the works of Andersson et al. (1999) and Luchini
(2000). However, these models do not explicitly incorporate the interaction between the
streaks and the free-stream disturbances, which causes the perturbation entrainment into
the boundary layer and the downstream growth.

As turbulent wall-bounded flows produce larger drag than pre-transitional laminar
layers, significant research effort has been devoted to examining methods that may lead
to the attenuation of the first and secondary instabilities of boundary-layer growing
disturbances. Theoretical, numerical, and experimental works have been carried out with
the aim of preserving the laminar flow for as long as possible, thereby delaying the
occurrence of turbulence. The most commonly investigated strategy for controlling the
boundary-layer instability growth is the use of wall suction, which has been shown to
reduce the growth of Tollmien-Schlichting waves (Bodonyi & Duck 1990, 1992; Fransson
& Alfredsson 2003), laminar streaks (Byström et al. 2007; Davidsson & Gustavsson 2008;
Ricco & Dilib 2010) and Görtler vortices (Floryan & Saric 1983; Balakumar & Hall 1999).
Other techniques for controlling the growth of boundary-layer disturbances include wall
cooling and heating (El-Hady 1992; Hubbard & Riley 1995; Ricco et al. 2009) and wall
forcing (Ricco 2011). In the present study the evolution and attenuation of laminar
streaks are investigated above a spanwise oscillating plate.

The history of the study of fluid flows above oscillating bodies is rich. It dates back
to the Stokes second problem of the flow induced by a flat plate oscillating sinusoidally
below a quiescent fluid (Stokes 1851). Amongst several works on flows around oscillating
bodies (Lighthill 1954; Glauert 1956), only a limited number of studies have investigated
spanwise oscillations. The earliest study of spanwise oscillations in a boundary layer is
due to Wuest (1952), who primarily focused on an axially oscillating circular cylinder.
Subsequent studies also mainly concentrated on oscillating cylinders rather than flat
plates (Riley 1965, 1967, 1991). Fang & Lee (2009) investigated the effect of spanwise
wall oscillations on the stagnation point flow, for which a similarity solution exists.

To date only very few works have focused on the growth of perturbations within pre-
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transitional boundary layers above oscillating surfaces. Hack & Zaki (2012) attempted
to model the growth of boundary-layer streaks evolving over a spanwise oscillating flat
plate. This study employed the continuous spectrum of the Orr-Sommerfeld and Squire
equations as a proxy for free-stream turbulence, which has recently been shown to be
invalid for a variety of reasons (Dong & Wu 2013a,b). Non-parallel flow effects were not
taken into account as the streamwise flow was assumed to be purely parallel, thereby
causing a spurious “Fourier-modes entanglement”, a newly-coined term denoting an un-
physical interaction between free-stream modes. This renders the correct mathematical
representation of the free-stream perturbation impossible. In brief, Dong & Wu (2013a,b)
prove that the continuum spectrum is simply a by-product of the linear operator and
possesses no physical meaning. Furthermore, the spanwise oscillatory flow was assumed
by Hack & Zaki (2012) to coincide with the classical Stokes boundary-layer flow above
an oscillating plate. In the present study, it is shown that non-parallel terms must be
retained in the spanwise momentum equation, that is the base-flow wall-normal velocity
and the boundary-layer growth effects are essential for the evolution of the base-flow
spanwise boundary layer and of the boundary-layer disturbances.

Galionis & Hall (2005) considered the growth of Görtler vortices above a spanwise
oscillating surface that is concave in the streamwise direction, and found a reduction in
growth rate. The base flow consists of the non-parallel Blasius boundary layer in the
streamwise and wall-normal directions, while the spanwise base flow is reduced to the
classical Stokes oscillatory flow in a particular distinguished limit of large Görtler num-
ber. The boundary-layer velocity perturbations decay as the free stream is approached
because free-stream disturbances are absent. Recently, it has also been demonstrated that
spanwise wall oscillations lead to an increase in flow stability in Couette flow (Rabin et al.
2014).

Spanwise wall oscillations have also been shown to attenuate effectively the turbulence
intensity in wall-bounded flows, thereby producing a sustained reduction of turbulent
wall friction. Experimental (Laadhari et al. 1994), numerical (Quadrio & Ricco 2003),
and modelling (Dhanak & Si 1999) research works have appeared since the pioneering
study by Jung et al. (1992).

In the present study of laminar streaks over a spanwise oscillating wall, non-parallel
base flow effects are retained in the streamwise and spanwise momentum equations. This
formulation represents the rigorous mathematical framework of the spanwise Stokes layer
evolving along the streamwise direction. Boundary-layer disturbances are instigated by
free-stream vortical disturbances using a generalization of the formulation developed by
LWG99. Our study is the first to analyze the evolution of laminar streaks generated
by free-stream disturbances in a growing boundary layer above a temporally oscillating
plate. The linearized disturbances for a range of plate oscillation amplitudes and fre-
quencies, as well as a range of different free-stream vortical gusts, are analyzed. The
similarities and differences between the flows forced by the classical Stokes layer and the
generalized Stokes layer (for which non-parallel effects and coupling with the Blasius flow
are retained) are discussed.

Section §2 describes the mathematical framework of the base flow and of the per-
turbation flow above a spanwise oscillating flat plate. Sections §3 and §4 describe the
results for the base flow and the perturbation flow, respectively. In §5 the main results
are summarized and conclusions are drawn.
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Figure 1: A schematic illustration of free-stream convected gusts interacting with the
boundary layer above a spanwise oscillating plate.

2. Mathematical formulation

An incompressible uniform flow of velocity U∗∞ past a semi-infinite flat plate is con-
sidered. Superimposed on the flow are small vortical disturbances. Figure 1 shows a
schematic of the flow domain. The interaction between these vortical disturbances and
the laminar boundary layer above the flat plate gives rise to laminar streaks within the
boundary layer. Quantities denoted by the superscript ∗ are dimensional, while quanti-
ties not marked by any symbol are non-dimensional. Velocities are scaled by U∗∞, lengths
by λ∗z, the spanwise wavelength of the free-stream disturbance, time by λ∗z/U

∗
∞, and pres-

sure is scaled by ρ∗U∗2∞ , where ρ∗ is the density of the fluid. The Reynolds number is
defined as Rλ = U∗∞λ

∗
z/ν
∗ � 1, where ν∗ is the kinematic viscosity of the fluid.

The boundary-layer flow is composed by the streamwise (x) velocity component U∗, the
wall-normal (y) velocity component V ∗, and the spanwise (z) velocity component W∗.
The wall oscillates sinusoidally in time along the spanwise direction and the velocity
components satisfy the no-slip and no-penetration conditions at the wall:

{U∗, V ∗, W∗} =
{

0, 0, 2W∗m cos
(
ω∗gslt

∗)} =
{

0, 0, W∗m
(
eiω∗

gslt
∗

+ e−iω∗
gslt

∗
)}

, (2.1)

where 2W∗m and ω∗gsl are the amplitude and frequency of the wall oscillation, respectively.
The non-dimensional Strouhal number ω = ωgsl/kx = O(1) defines the frequency ratio,
where kx is the frequency of the free-stream perturbation.

As for the stationary-wall case (LWG99), the free-stream velocity is represented by a
uniform flow perturbed by small-amplitude vortical fluctuations of the convected gust
type, i.e. disturbances which are passively convected by the uniform flow,

u = ı̂ + εû∞ei(kxx+kyy+kzz−kxt) + εû∞e−i(kxx+kyy+kzz−kxt), (2.2)

where û∞ = {û∞, v̂∞, ŵ∞} and ε � 1 is a measure of the free-stream turbulence
intensity. Attention is focussed on free-stream disturbances with kx � ky, kx � kz and
ky/kz = O(1), as experiments distinctly show that low-frequency disturbances are the
most amplified within the boundary layer (Matsubara & Alfredsson 2001). The continuity
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equation links the perturbation velocity components and wavenumbers through

kxû
∞ + ky v̂

∞ + kzŵ
∞ = 0, (2.3)

while scaling implies

|û∞| =
√

(û∞)
2

+ (v̂∞)
2

+ (ŵ∞)
2

= 1. (2.4)

2.1. Base flow equations

The boundary-layer base flow over which the perturbation flow evolves is formed by the
interaction of the uniform flow U∗∞ with the spanwise-oscillating wall and is indepen-
dent of z. Its velocity components along the x, y, and z directions are Ubl, Vbl, and
Wgsl, respectively. Upon substituting these velocity components into the Navier-Stokes
equations, the x- and y-momentum equations decouple from the z-momentum equation
following the independence principle of Jones (1947). In the limit Rλ � 1, (Ubl, Vbl)
coincide with the classical laminar Blasius flow over a flat plate. In terms of the Blasius
similarity coordinate

η =
y

δbl
= y

√
Rλ
2x
, (2.5)

where δbl is the characteristic boundary-layer thickness, the Blasius flow is written as

{Ubl, Vbl}(x, η) =
{
F ′(η) , (2xRλ)

−1/2
[ηF ′(η)− F (η)]

}
, (2.6)

where the prime indicates differentiation with respect to η. The function F (η) satisfies
the Blasius equation

F ′′′ + FF ′′ = 0, (2.7)

subject to the boundary conditions F (0) = 0, F ′(0) = 0, and F → η − β as η → ∞,
where β = 1.217 · · · .

Non-parallel terms, i.e. terms involving streamwise derivatives and the wall-normal
velocity component Vbl, are retained in the z-momentum equation, which reads

∂Wgsl

∂t
+ Ubl

∂Wgsl

∂x
+ Vbl

∂Wgsl

∂y
=

1

Rλ

(
∂2Wgsl

∂x2
+
∂2Wgsl

∂y2

)
. (2.8)

Equation (2.8) satisfies the boundary conditions Wgsl = 2Wm cos(ω kx t) at y = 0 for
x > 0 and Wgsl → 0 as y → ∞. If the non-parallel terms were neglected, the base
flow Wgsl would become independent of x and would coincide with the classical Stokes
layer above an oscillating wall (Batchelor 1967, pp. 192). In the following, the generalized
Stokes layer described by (2.8) is referred to as GSL and the classical Stokes layer is
denoted by CSL.

At this point it is appropriate to introduce the adopted scaling because it applies to
the base flow and the perturbation flow. As shown by LWG99, the laminar streaks evolve
over a distance which is much larger than the spanwise wavelength in the limit Rλ � 1.
The x coordinate is therefore scaled by λ∗x, the streamwise wavelength of the free-stream
gust. This can be used as the representative scale of the downstream evolution of the
Klebanoff modes because no wavelength-adjustment mechanism occurs, as in Goldstein
(1983) for example. Time is rescaled by the gust period because this is the characteristic
time of the streak unsteadiness. The new scaled variables are thus x = kxx and t = kxt.
Laminar streaks are therefore observed at x = O(1) from the leading edge of the plate.
It follows that the streamwise diffusion term in the spanwise base flow equation (2.8)
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is O(kx/Rλ � 1) and can be neglected as it is asymptotically smaller than the other
terms.

In the
(
x, η, t

)
-coordinate system equation (2.8) becomes

∂Wgsl

∂t
+ F ′

∂Wgsl

∂x
− F

2x

∂Wgsl

∂η
=

1

2x

∂2Wgsl

∂η2
, (2.9)

after use of (2.5), (2.6), and Rλ � 1. Equation (2.9) is linear and, consistently with (2.1),
a solution is sought in the form

Wgsl

(
x, η, t

)
=
kx
kz
Wgsl

(
x, η, t

)
=
kx
kz

[
W (x, η) eiωt +W ?(x, η) e−iωt

]
, (2.10)

where ? denotes the complex conjugate. The factor kx/kz will be shown to be necessary to
retain the terms synthesizing the effect of wall oscillations in the disturbance equations.
Matching coefficients of eiωt in (2.9) leads to

iωW + F ′
∂W

∂x
− F

2x

∂W

∂η
=

1

2x

∂2W

∂η2
, (2.11)

which satisfies the free-stream boundary condition W → 0 as η → ∞, and, at the wall,
W (x, 0) = (kz/kx)Wm = Wm for x > 0. Equation (2.11) is parabolic in x and therefore
requires initial conditions for x � 1. These are derived in Appendix A. Second-order,
implicit finite-difference schemes are employed to solve (2.11) (Cebeci 2002).

2.2. Disturbance flow equations

As LWG99 showed that O(ε) free-stream perturbations lead to O(ε/kx) disturbances
within the boundary layer, and because of the distinguished limit kxRλ = O(1) which
emerges when the spanwise diffusion becomes comparable with the wall-normal diffusion,
the condition for linearization for the boundary-layer disturbance equations is based
upon a turbulent Reynolds number, rt = εRλ � 1. The velocity and pressure fields are
therefore expanded as

{U, V,W, P} = {Ubl, Vbl,Wgsl,−1/2}(x, y, t) + rt{u, v, w, p}(x, y, z, t) . (2.12)

Following Gulyaev et al. (1989), LWG99, and Ricco (2009), the disturbance velocities
and pressure are further decomposed as follows

{u, v, w, p} =Q

{
kz
kx
u,

√
2xkx
Rλ

kz
kx
v, w, κz

√
kx
Rλ

p

}

+Q(0)

{
u(0),

√
2xkx
Rλ

v(0), −kx
kz
w(0),

kx
Rλ

p(0)

}
, (2.13)

where κz = kz/
√
kxRλ. The coefficients Q = iκ2

z (ŵ∞ + ikz v̂
∞/Γ) /kz and Q(0) =

iκ2
z (û∞ + ikxv̂

∞/Γ) /kz, with Γ =
√
k2
x + k2

z , are found through rapid distortion the-
ory by ensuring the non-penetration of the vortical gusts near the leading edge of the
plate.

Upon substituting (2.12) and (2.13) into the Navier-Stokes equations and by collecting
terms of O(rt), it is found that the leading-order components in the core of the boundary
layer, i.e. {u, v, w, p}, studied by LWG99, and the components which dominate the outer
portion of the boundary layer, i.e.

{
u(0), v(0), w(0), p(0)

}
, investigated by Ricco (2009),

satisfy the linearized unsteady boundary region (LUBR) equations, which, when modified
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to take into account the flow above a spanwise oscillating plate, take the form

∂u

∂x
− η

2x

∂u

∂η
+
∂v

∂η
+

1

kz

∂w

∂z
= 0, (2.14a)

∂u

∂t
+ F ′

∂u

∂x
− ηF ′′

2x
u− F

2x

∂u

∂η
+ F ′′v +

Wgsl

kz

∂u

∂z
=

1

2x

∂2u

∂η2
+

1

kxRλ

∂2u

∂z2
, (2.14b)

∂v

∂t
+

(ηF ′)′

2x
v + F ′

∂v

∂x
− F

2x

∂v

∂η
+

[
F − η (ηF ′)′

]

(2x)
2 u+

Wgsl

kz

∂v

∂z

= − 1

2x

∂p

∂η
+

1

2x

∂2v

∂η2
+

1

kxRλ

∂2v

∂z2
, (2.14c)

∂w

∂t
+ F ′

∂w

∂x
+

(
∂Wgsl

∂x
− η

2x

∂Wgsl

∂η

)
u− F

2x

∂w

∂η
+
∂Wgsl

∂η
v +

Wgsl

kz

∂w

∂z

= − kz
kxRλ

∂p

∂z
+

1

2x

∂2w

∂η2
+

1

kxRλ

∂2w

∂z2
. (2.14d)

In the present study, the focus is on the dynamics of {u, v, w, p}, the leading-order terms
inside the boundary layer. To account for the linear coupling between different modes,
the solution can be expressed as a Fourier series in time t and the spanwise coordinate z,
with the form

{u, v, w, p} =

∞∑

m,n=−∞

{
u[m,n], v[m,n], w[m,n], p[m,n]

}
(x, η) eimkzz+int. (2.15)

The Fourier coefficients satisfy the Hermitian conditions
{
u[−m,−n], v[−m,−n], w[−m,−n], p[−m,−n]

}
=
{
u[m,n]? , v[m,n]? , w[m,n]? , p[m,n]?

}
. (2.16)

At this stage attention is restricted to Strouhal numbers ω = N , which is a strictly
positive integer. This corresponds to a case in which the period of the gust is N times the
period of the wall oscillation. The extension of the formulation to wall oscillation periods
that are integer multiples of the gust period are considered in §4.3. Further extensions
to rational and irrational Strouhal numbers are beyond the scope of this paper.

The first exponential term in (2.2) forces the m = 1 and n = −1 mode in series (2.15),
while its complex conjugate term in (2.2) forces the m = −1 and n = 1 mode. All the
other modes must decay at large distances from the plate as the free-stream disturbance
does not include these modes. Given a base flow of the form of (2.10) it is expedient to
consider whether terms in the Fourier series are linked. Multiplying terms in the Fourier
series with terms from the base flow expansion of the form e±iNt couples all the modes
for a given m value because a base flow of this form does not lead to spanwise coupling
of modes. Modes with m 6= ±1 are not directly forced by the free-stream gust and are
not connected to a forced term through the base flow. Therefore, the coefficients u[m,n],
v[m,n], w[m,n] and p[m,n] equal zero if m 6= ±1. The only non-zero modes are those that
satisfy m = ±1, and, given the Hermitian conditions (2.16), it is sufficient to consider
the m = 1 modes. In order to simplify the notation, these modes are subsequently denoted
by
{
u[n,1], v[n,1], w[n,1], p[n,1]

}
=
{
u[n], v[n], w[n], p[n]

}
. The z dependence (contained in

the eimkzz factor that multiplies every term) can also be eliminated.

For N = 1, the spanwise base flow introduces a modulation of the form e±it relating
all the modes for which m = ±1. However, for N = 2 only the coefficients with n odd are
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non-zero, while for larger N even fewer terms are linked. This modulation produces terms
involving ei(n+N)t and ei(n−N)t in the momentum equations. These terms can be written
in the form eint by means of a suitable redefinition of the dummy indexing variable.
For instance, if ñ is defined to satisfy ñ = n − N , terms of the form u[n]ei(n−N)t are
transformed to u[ñ+N ]eiñt. All the remaining exponential terms can be written in the
form eint, while creating a linear coupling between the Fourier coefficients corresponding
to different modes. This is numerically expedient and, for each n, the Fourier coefficients
satisfy the LUBR equations for the flow above a spanwise oscillating plate:

∂u[n]

∂x
− η

2x

∂u[n]

∂η
+
∂v[n]

∂η
+ iw[n] = 0, (2.17a)

(
in+ κ2

z −
ηF ′′

2x

)
u[n] + F ′

∂u[n]

∂x
− F

2x

∂u[n]

∂η
− 1

2x

∂2u[n]

∂η2
+ F ′′v[n]

+iWu[n−N ] + iW ?u[n+N ] = 0, (2.17b)
(

in+ κ2
z +

(ηF ′)′

2x

)
v[n] + F ′

∂v[n]

∂x
− F

2x

∂v[n]

∂η
− 1

2x

∂2v[n]

∂η2

+

[
F − η (ηF ′)′

]

(2x)
2 u[n] +

1

2x

∂p[n]

∂η
+ iWv[n−N ] + iW ?v[n+N ] = 0, (2.17c)

(
in+ κ2

z

)
w[n] + F ′

∂w[n]

∂x
− F

2x

∂w[n]

∂η
− 1

2x

∂2w[n]

∂η2
+ iκ2

zp
[n]

+

(
∂W

∂x
− η

2x

∂W

∂η

)
u[n−N ] +

∂W

∂η
v[n−N ] + iWw[n−N ]

+

(
∂W ?

∂x
− η

2x

∂W ?

∂η

)
u[n+N ] +

∂W ?

∂η
v[n+N ] + iW ?w[n+N ] = 0. (2.17d)

The spanwise base flow equation is given by (2.11) with ω = N . This is a system of
parabolic equations for each

{
u[n], v[n], w[n], p[n]

}
. The no-slip boundary conditions are

applied at the wall, while the free-stream boundary conditions and the initial condi-
tions for x � 1 are found in Appendix B. The numerical procedures are described in
Appendix C.

3. Spanwise base flow

The spanwise base flow is now analyzed and compared with the CSL, i.e. the flow
obtained by sinusoidal oscillations of a flat plate below a quiescent fluid. The differences
in the perturbation flow field arising from the use of the asymptotically correct GSL and
the CSL are discussed.

In the coordinate system (x, η), the CSL solution (Batchelor 1967, pp. 192) for the
flow above an oscillating plate has the form

Wcsl = 2Wm exp
(
−
√
ω x η

)
cos
(
ω t−

√
ω x η

)
. (3.1)

The CSL has uniform thickness in the streamwise direction. However, once scaled by
the Blasius wall-normal coordinate η, the CSL thickness decays due to the exponential
dependence on

√
x.
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3.1. Large-x and high-frequency spanwise base flows

Upon defining a new coordinate x̂ = Nx = ω∗gslx
∗/U∗∞ (i.e. by scaling through the

streamwise distance travelled by a free-stream fluid particle during one plate oscillation
period), the spanwise base flow equation (2.11) becomes

iW + F ′
∂W

∂x̂
− F

2x̂

∂W

∂η
=

1

2x̂

∂2W

∂η2
. (3.2)

Large values of x̂ correspond to either large downstream distances at fixed Strouhal
number or, at a fixed downstream distance, to a sequence of flows for which the wall
oscillates with increasing frequency. To analyze the flow behaviour for x̂ large, a Wentzel-
Kramers-Brillouin-Jeffreys (WKBJ) solution of (3.2) is sought with the form

W = W (x̂, η) e−(2x̂)1/2Θ(η), (3.3)

following the analysis of LWG99 for the edge layer. Matching coefficients of powers of x̂
gives

[Θ′(η)]
2

= i, (3.4)

at leading order. The permissible solution, which satisfies W (x̂, 0) = Wm and decays for
large η, is

Θ(η) =
(1 + i)η√

2
. (3.5)

Matching coefficients at O
(
x̂−1/2

)
gives

W
′

= (F ′η − F )
W

2
. (3.6)

The large-x̂ solution of the GSL flow is

Wgsl|x̂�1 =
WmF

′′(η)

F ′′(0)
exp

(
Fη

2

)
exp
[
−x̂1/2(1 + i)η

]
exp
(
iNt
)

+ c.c., (3.7)

where c.c. indicates the complex conjugate. For Wgsl to be O(1), the exponent in the
second exponential function, x̂1/2(1 + i)η, must be O(1), and therefore for x̂ � 1, it is
only significant when η � 1. In this limit the exponent of the first exponential function
is small and, on returning to dimensional variables, the remaining terms give

Wgsl|x̂�1 ∼Wm exp

[
−(1 + i)

√
ω∗gsl

2ν∗
y∗
]

exp
(
iω∗gslt

∗)+ c.c. (3.8)

Expression (3.8) matches the CSL solution for the flow above an oscillating plate. There-
fore, it is proven that the GSL flow approaches the CSL flow as x̂ increases.

This is verified in figure 2, via comparison between the GSL numerical solution of (2.11)
(solid lines) and the CSL analytical solution (3.1) (dashed lines). The dotted lines indi-
cate the Blasius boundary-layer thickness, here defined as the η location at which the
streamwise velocity is equal to 0.99U∗∞. The top row illustrates the evolution in x of both
types of Stokes layers for N = 1. For small x, the CSL initially penetrates much further
into the flow than both the GSL and the Blasius boundary layer. At x = 0.5, the ratio
between the CSL thickness and the GSL thickness is smaller than at x = 0.0625 and the
CSL is still thicker than the Blasius layer. Further downstream, the difference between
the two Stokes profiles decreases and the spanwise layers occupy a smaller and smaller
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Figure 2: GSL profiles (solid lines) and CSL profiles (dashed lines). The thick lines
correspond to t = 0, while the thin lines correspond to a π/2 phase shift. The top row
shows profiles with increasing x and N = 1, while the bottom row shows profiles with
increasing N and x = 0.5. The Blasius boundary layer thickness, here defined as the η
location at which U∗bl = 0.99U∗∞ (dotted lines), and the WKBJ solution (3.7) at t = 0
(dash-dotted lines in graphs (b) and (c)) are also shown.

proportion of the Blasius boundary layer as x grows. For large x (x = 8, N = 1, fig-
ure 2(c)), the differences between the GSL and the CSL become very small as non-parallel
flow effects attenuate as x increases. This matches the WKBJ prediction.

The lower row shows the base-flow profiles at fixed x = 0.5, in a sequence of flows for
which N increases. As predicted by the WKBJ theory, the discrepancies between the GSL
and the CSL decrease as the oscillation frequency grows. Figure 2(c) and figure 2(f) show
two cases in which x̂ = Nx = 8. The profiles are identical up to very small numerical
differences, which have absolute value less than 10−2. This further justifies the definition
of a new streamwise coordinate x̂ = Nx � 1 for the WKBJ analysis. Figure 2(b) and
figure 2(c) also confirm the convergence of the GSL profile to the WKBJ solution (3.7),
shown by dash-dotted lines.

The confinement of the GSL within the Blasius boundary layer occurs at every x
and is a distinguished feature of this flow. This is markedly different from the CSL,
which is much thicker than the Blasius layer at small x, as shown in figure 2(a). The
GSL remains confined within the Blasius boundary layer because viscous effects in the
spanwise momentum equation are now balanced by the steady convection terms. This is
different from the case of viscous effects being balanced by the unsteady convection term
as in the classical problem studied by Rayleigh (refer to Schlichting & Gersten 2001,
pp. 126), which leads to unbounded growth of the boundary layer over time. To prove
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that sufficiently far upstream the GSL thickness δgsl is comparable with δbl, the Blasius
boundary layer thickness, in the spanwise momentum equation it is sufficient to scale y∗

by δ∗gsl and x∗ by a length L∗, ν∗/U∗∞ � L∗ � U∗∞/k
∗
x, i.e. large enough to be able to

neglect the streamwise viscous diffusion effects and small enough to ensure x� 1. This
shows that

δ∗gsl ∼ δ∗bl ∼
(
L∗ν∗

U∗∞

)1/2

, (3.9)

and that the unsteady term is negligible at leading order.

4. Linearized disturbance flow

Linear disturbances above a spanwise oscillating plate are now investigated with the
aim of determining the conditions that produce reductions in the streak energy. To re-
duce the parameter space, only free-stream disturbances with κy = κz are considered
(denoted subsequently by κ), where κy is the scaled wall-normal wavenumber defined in
Appendix B after (B 1).

At each streamwise and wall-normal position the root mean square (rms) of the stream-
wise velocity can be reconstructed from the streamwise Fourier coefficients as

urms(x, η) =


2

∞∑

n=−∞
n 6=0

∣∣∣u[n](x, η)
∣∣∣
2




1/2

, (4.1)

where the factor of 2 follows from the Hermitian condition. The streak energy is com-
puted by integrating the square of the rms velocity over the wall-normal and streamwise
directions as follows

E =

∫ ∞

0

∫ ∞

0

|urms(x, η)|2 dxdη. (4.2)

Above a stationary plate, all the streak energy is contained within the forced mode.
As Wm increases, unforced modes in the Fourier series become coupled to the forced one,
and energy is transferred from the forced modes to the adjacent modes in the Fourier
series. Consequently, the energy contained in coupled modes other than the forced one
increases with Wm, while the energy contained within the forced mode falls.

The change in streak intensity for κ = 1, Wm = 8, and N = 1 is shown in figure 3.
Figure 3(a) shows the streamwise growth and decay of the maximum streamwise velocity

u[n]
max(x) = max

η

{
u[n](x, η)

}
, (4.3)

associated with the nth mode. The forced mode is indicated by a solid line, while dashed
and dot-dashed lines show the lower and higher indexed unforced modes, respectively.
Across all the modes, the maximum velocity is obtained in the forced mode, while the
other modes show lower and lower energies as the distance in Fourier space from the
forced mode increases. The x position of the overall maximum velocity of each mode
moves downstream as the mode index increases relatively to the forced mode. These
effects are due to the gradual energy transfer to the unforced modes over increasing x,
compared to direct energy input into the forced mode from the free stream.

Figures 3(b)-(d) show wall-normal profiles of the forced mode and the next three largest
unforced modes with negative index for the u, v, and w profiles at x = 0.5. The modes at
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Figure 3: Top: streamwise evolution of u
[n]
max(x) for the forced mode n = −1 and six

adjacent modes, when the spanwise base flow is given by a GSL with Wm = 8. Bottom:
corresponding profiles for u[n], v[n] and w[n] modes with negative index at x = 0.5.

the same relative distance in Fourier space from the forced mode have very similar shape
and therefore modes with zero or positive index are not shown for clarity. The maximum
u moves closer to the wall as the distance in Fourier space relative to the forced mode
increases. Only the forced v and w modes are non-zero in the far field, which follows from
the free-stream boundary conditions (B 1).

4.1. Laminar streaks in classical and generalized Stokes layer spanwise base flows

The aim of this section is to compare the streak dynamics computed by the use of the
GSL with the streak evolution when the CSL is employed as spanwise base flow. As
outlined in §1, this study is motivated by the results of Hack & Zaki (2012), who utilized
the CSL to alter the laminar streaks.

The maximum streamwise rms velocity at each x is denoted by

umax(x) = max
η
{urms(x, η)} , (4.4)

and is shown in figure 4(a) for a GSL and a CSL for Wm = 8, κ = 1, and N = 1. On first
inspection these profiles suggest that the streaks generated by the two spanwise Stokes
layers are rather similar, with the percentage relative error,

E(%) = 100

(
Egsl − Ecsl

Egsl

)
, (4.5)

between the two flows being 1.8%. In this case the GSL streaks have more energy than
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Figure 4: (a) Evolution of umax with Wm = 8 and κ = 1 for a GSL and a CSL and (b)
the percentage error in the total streak energy versus κ if the CSL is used instead of the
GSL. The case presented in graph (a) is circled in graph (b).

the CSL streaks. The CSL and GSL streaks have the same intensity for κ ≈ 0.9, while for
κ smaller than this value, the CSL calculations over predicts the energy. For κ > 0.9, the
CSL gives an under prediction of the energy, which reaches its maximum when κ ≈ 2.7.
For larger κ values the CSL streak energy approaches the GSL streak energy. All these
cases are for N = 1, as the WKBJ analysis of §3 indicates that the GSL tends to the
CSL as N increases.

The laminar streaks in the CSL case are further investigated in figure 5. The same case
presented in figure 3 (N = 1, κ = 1, Wm = 8) is shown, the only difference being the use
of the CSL instead of the GSL. Although the urms profiles, shown in figure 4, are similar
and only have a 1.8% difference in total streak energy, the profiles of the individual modes
in figure 3 and 5 are notably different. When the CSL is used, the maximum velocity of
the forced mode is less than two-thirds of the equivalent velocity generated when the GSL
is used. This is because the CSL is thicker than the GSL for x � 1 (refer to figure 2),
and consequently the energy contained in the forced mode is more rapidly transferred to
the other Fourier modes.

The changes in the relative error in streak energies are not consistent with what might
be expected from the analysis on the large-x behaviour of the spanwise base flow, studied
in §3.1. Streaks with small κ values are less attenuated by viscous effects and therefore
persist over larger x. Far downstream the difference between the GSL and CSL decreases,
so one might expect the difference in the streak energy to diminish, too. This is not sup-
ported by figure 4, which shows that significant relative errors result from over prediction
of streak energy at small κ when the CSL is used. This indicates that the difference in
streak energies is accrued at smaller x.

The largest differences between the GSL- and CSL-driven mode profiles, shown at the
bottom of figures 3 and 5, are observed in the u component, with the forced mode being
particularly affected. This is the velocity component that dominates the boundary-layer
dynamics. The differences between the v and the w profiles are smaller. When the CSL
is employed, the forced mode no longer has the largest streamwise velocity, while the
monotonic decay of the maxima relatively to the forced mode in the GSL case is no
longer detected.

A final comparison of the streamwise velocity profiles is shown in figure 6, where the
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Figure 5: As figure 3, but showing the disturbance evolution when interacting with a
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Figure 6: Wall-normal distributions of the forced streamwise velocity mode u[−1] at a
range of x for (a) a GSL, (b) a CSL and (c) a stationary-wall case. In all cases κ = 1,
while Wm = 8 and N = 1 where spanwise wall forcing is present.

forced mode in (a) the GSL case, (b) the CSL case, and (c) the stationary-wall case are
shown at several x positions. In comparison to the stationary-wall case, the maxima of
the GSL-induced forced mode occur at larger wall-normal distances, while the wall-shear
stress associated with the GSL modes is also reduced. These changes are also observed
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Figure 7: (a) The streamwise evolution of umax(x) for N = 1, κ = 1, and a range of Wm,
and (b) the corresponding percentage energy reductions compared to a stationary plate.

when streamwise velocity profiles with steady spanwise wall forcing are compared with
those above a stationary plate (refer to Ricco 2011, figure 9). Comparisons with the
CSL-induced modes are less conclusive, as these profiles often have multiple local velocity
maxima, which may be located at a lower or higher wall-normal position with respect to
the corresponding maxima in the stationary-wall case.

4.2. Variation with plate oscillation amplitude

The energy contained in the forced mode with GSL forcing falls as Wm grows, while the
energy of the unforced modes increases. Therefore it is opportune to discern whether the
total energy rises or falls as Wm changes. The evolution of umax is shown in figure 7(a)
for a free-stream perturbation with κ = 1, N = 1, and a range of Wm. The energy
falls monotonically as Wm increases, while the position of the global maximum velocity
moves towards x = 0. This is reflected in figure 7(b), which shows the percentage energy
reduction compared to a stationary plate,

ER(%) = 100

(
Estat − Eoscil

Estat

)
, (4.6)

as Wm increases. The energy reduction with increasing Wm indicates that the energy
lost from the forced mode above an oscillating plate is larger than the energy transferred
to the adjacent unforced modes by the plate oscillations. Therefore this can potentially
be a successful method for delaying transition in laminar boundary layers.

The energy reductions compare favourably with those obtained by Ricco (2011, refer
to figure 8) for the response of laminar streaks to steady sinusoidal spanwise wall os-
cillations. Energy reductions were found to increase with the amplitude of the steady
wall oscillations. In the current study the amplitude of the spanwise forcing differs by a
factor 2kx/kz from that earlier study. In the present notation, a steady wall oscillation of
amplitude Wm = 15.7, for example, corresponds to an energy reduction of 89% compared
to a stationary plate when κ = 1. This value is larger than the energy reductions obtained
herein. However, the maximum energy reductions of Ricco (2011) were optimized with
respect to the streamwise wavelength of the sinusoidal forcing, which makes like-for-like
quantitative comparison difficult, as the equivalent optimization (with respect to N) has
not been carried out.
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4.3. Variation with plate oscillation frequency

Figure 8(a) shows the evolution of umax for κ = 1, Wm = 8 and integer values of N > 1.
The formulation presented so far is restricted to integer values of N , corresponding to N
plate oscillations per free-stream gust oscillation. For increasing N values, the maximum
streamwise velocity increases, while the position of the maximum moves slightly down-
stream. Increments in streamwise velocity from the N = 1 streak are first noted in the
region of streak decay, and move towards the location of maximum velocity as N in-
creases. There is a sizeable energy reduction even for N = 8. For N > 1 the non-zero
modes spread out, leaving N − 1 zero-valued coefficients between each non-zero mode.
For computational expediency only the non-zero modes are calculated.

The formulation can be generalized to consider plate oscillations that take longer than
free-stream gust oscillations by introducing a new scaled time t̂ = ωt. In particular, if
there exists an integer N̂ such that ω = N̂−1, these cases can be explored by taking N = 1
in (2.17), and j = −N̂ in (B 1) and (B 3). This configuration corresponds to N̂ free-stream
gust oscillations over one period of wall oscillation.

Cases for N 6 1 with increasing N̂ values are shown in figure 8(b). Larger maxima
are observed for decreasing N . The profiles remain largely unchanged when the streaks
decay, with the increases being largely localized about the point of maximum velocity.
Only modes with −Nf 6 n6Nf are calculated, where Nf is the maximum number of

modes of the truncated series, as discussed in Appendix C. For larger N̂ values, it was
not possible to obtain converged solutions for computationally practical values of Nf as
the forced mode becomes closer to the edge of the band of calculated modes.

For κ = 1 and Wm = 8, the lowest streamwise streak velocities are obtained for N = 1.
This is confirmed in figure 9(a), which shows energies for a range of κ values and Wm = 8.
For increasing κ, the Strouhal number N associated with the minimum total energy
increases slightly. For larger κ values, the range of energies narrows. The corresponding
energy reductions are shown in figure 9(b). These indicate that the wall motion is less
effective at reducing the energy for larger κ values, and in some cases (κ = 3 and N <
1/4), the streak energy grows.
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sponding energy reductions.

4.4. Variation with free-stream gust properties

The disturbance profile is strongly affected by changes in the free-stream gust properties,
with the streamwise extent of the disturbances being reduced (increased) as κ increases
(decreases), causing more (less) viscous dissipation. For streaks above a stationary plate
with large κ, LWG99 showed that the steady boundary region equations describe the
streak dynamics and all the scaled disturbances profiles collapse on top of one another
for large κ. The equivalent scaled disturbances above a spanwise oscillating plate are now
investigated.

4.4.1. Large κ and N = O(1) scaling

Motivated by the scaling of LWG99, scaled velocity and pressure Fourier modes for
κ� 1 are proposed in the form

{
u[n], v[n], w[n], p[n]

}
=
{
ũ[n], κ2ṽ[n], κ2w̃[n], κ2p̃[n]

}
(x̃, η) , (4.7)

where x̃ = κ2x. Note that this scaling differs by a multiplicative factor κ2 from the
earlier scaling proposed by LWG99 (refer to their equations 5.32-5.34). This difference is
accounted for by the extra factor κ2

z present in Q in (2.13).
If this scaling is applied, the terms arising from time derivatives and the terms in-

volving the spanwise base flow are O
(
κ−2

)
smaller than the remaining steady terms.

Consequently, if this scaling is applied without additionally rescaling the spanwise base
flow, the inter-mode coupling vanishes in the large-κ limit. The unforced modes have zero
disturbance velocities, while the behaviour of the forced mode is given by the linearized
steady boundary region equations of LWG99 for disturbances above a stationary plate.
In this case, the large-κ scaling analysis of LWG99 applies directly to the forced mode,
with the scaled streamwise disturbance velocities tending to the LWG99 large-κ profiles.

To retain interactions between different modes for large κ, it is necessary to scale the
spanwise base flow, i.e. W̃ = Wκ−2. If attention is restricted to N = O(1), as terms
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involving time derivatives appear at O
(
κ−2

)
, equation (2.9) simplifies to

F ′
∂W̃

∂x̃
− F

2x̃

∂W̃

∂η
=

1

2x̃

∂2W̃

∂η2
, (4.8)

subject to W̃ = W̃m for x̃ > 0, η = 0. With sinusoidal rather than uniform spanwise
wall forcing, an equation of this form also governs the steady spanwise base flow above a
wall with steady spanwise forcing (Ricco 2011, equation 5). However, in the current case,
the spanwise base flow remains time dependent as the actual velocity is reconstructed
using (2.10). The problem of uniform spanwise motion beneath a Blasius boundary layer
was previously studied by Fang & Lee (2009), and therefore the solution of (4.8) can be
expressed as

W̃ = W̃m (1− F ′) , (4.9)

confirming that the fully developed spanwise boundary layer has a comparable wall-
normal extent as the Blasius boundary layer near the leading edge. The spanwise flow (4.9)
exactly matches the leading-order small-x behaviour (A 3) of the full unsteady problem.

In the limit κ � 1, the solution of (4.8) becomes strictly real valued and hence the
perturbations satisfy linearized unsteady boundary region equations of the form

∂ũ[n]

∂x̃
− η

2x̃

∂ũ[n]

∂η
+
∂ṽ[n]

∂η
+ iw̃[n] = 0, (4.10a)

(
1− ηF ′′

2x̃

)
ũ[n] + F ′

∂ũ[n]

∂x̃
− F

2x̃

∂ũ[n]

∂η
− 1

2x̃

∂2ũ[n]

∂η2
+ F ′′ṽ[n]

+iW̃ ũ[n−N ] + iW̃ ũ[n+N ] = 0, (4.10b)
(

1 +
(ηF ′)′

2x̃

)
ṽ[n] + F ′

∂ṽ[n]

∂x̃
− F

2x̃

∂ṽ[n]

∂η
− 1

2x̃

∂2ṽ[n]

∂η2

+

(
F − η (ηF ′)′

)

(2x̃)
2 ũ[n] +

1

2x̃

∂p̃[n]

∂η
+ iW̃ ṽ[n−N ] + iW̃ ṽ[n+N ] = 0, (4.10c)

w̃[n] + F ′
∂w̃[n]

∂x̃
− F

2x̃

∂w̃[n]

∂η
− 1

2x̃

∂2w̃[n]

∂η2
+ ip̃[n]

+

(
∂W̃

∂x̃
− η

2x̃

∂W̃

∂η

)
ũ[n−N ] +

∂W̃

∂η
ṽ[n−N ] + iW̃ w̃[n−N ]

+

(
∂W̃

∂x̃
− η

2x̃

∂W̃

∂η

)
ũ[n+N ] +

∂W̃

∂η
ṽ[n+N ] + iW̃ w̃[n+N ] = 0. (4.10d)

The convergence of these solutions for increasing κ values is demonstrated in figure 10,

which shows the profiles of (a) umax and (b) u
[−3]
max for N = 1 clustering together as κ

increases. The convergence of the solutions for κ large with steady spanwise wall forcing
has also been confirmed (refer to Ricco 2011, figure 7).

4.4.2. Large κ and large N scaling

To retain time-dependent plate oscillations in the large-κ limit, in addition to the
scalings described in (4.7), a rescaled Strouhal number

Ñ =
N

κ2
, (4.11)
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max, against the scaled stream-

wise coordinate κ2x for increasing values of κ above a spanwise oscillating plate with an
oscillation frequency N = 1.
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Figure 11: The streamwise evolution of (a) umax and (b) u
[n]
max for the mode 2κ2N terms

removed from the forced mode in the Fourier series.

is defined. The spanwise wall boundary condition also requires a new O(1) time scale,
t̃ = κ2t. In this case equation (2.11) becomes

iÑW̃ + F ′
∂W̃

∂x̃
− F

2x̃

∂W̃

∂η
=

1

2x̃

∂2W̃

∂η2
. (4.12)

This is the full time-dependent problem for the spanwise base flow, while in this limit the
scaled velocity and pressure perturbations satisfy the full linearized unsteady boundary
region equations (2.17), with x replaced by x̃, N replaced by Ñ , and κz = 1.

The collapse of these scaled streamwise disturbance velocities onto one profile in the
limit of large κ and large N is confirmed in figure 11. Figure 11(a) shows the collapse
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of umax for increasing κ. In this time-dependent case, the spacing between coupled modes
depends on N , and therefore the non-zero coupled modes spread out through the Fourier
mode spectrum as κ increases, as a consequence of (4.11). This spreading of non-zero
modes is illustrated in figure 11(b). A collapse of the profiles is observed, illustrating the
robustness of the large-κ scaling.

5. Summary and outlook

The evolution of laminar streaks above a flat plate which oscillates in the spanwise di-
rection has been investigated. Streaks within laminar boundary layers have been observed
to be precursors to turbulent transition (Matsubara & Alfredsson 2001), and therefore
techniques (in this case spanwise plate oscillations) that control their growth have the
potential to reduce drag and increase the efficiency of aerofoils and turbomachinery.
Variations in streak growth due to different wall-oscillation amplitudes, frequencies, and
free-stream gust properties have been investigated. Reductions in total streak energy
have been observed across a wide parameter range.

For the base flow above a spanwise oscillating plate, as a result of the independence
principle of Jones (1947), the streamwise and wall-normal momentum equations decouple
from the spanwise momentum equation. The streamwise and wall-normal base flow pro-
files therefore match the Blasius solution for the flow above a stationary plate, while the
spanwise base flow satisfies a generalized, streamwise-dependent Stokes layer equation.
The streamwise dependence is due to the non-parallel flow effects. The contribution from
these terms was neglected in an earlier analysis of this problem (Hack & Zaki 2012). It
has herein been shown that the inclusion of these terms has a crucial effect upon both the
base flow and the perturbation flow. These non-parallel terms have the greatest effect for
small to moderate streamwise distances, where the laminar streak growth predominates.
A WKBJ analysis shows that the GSL tends to the CSL in the limit of either large
streamwise distances or high-frequency oscillations. If a classical Stokes spanwise base
flow is used instead of the generalized Stokes spanwise base flow, significant deviations
manifest themselves in the resulting laminar streak profiles. Large variations in the modal
streamwise velocities are observed even when the total rms streamwise velocity and the
total streak energy are comparable. Therefore the use of the CSL as spanwise base flow
is inappropriate and can produce both under- and over-estimates of the streak energy,
depending on the nature of the free-stream forcing and the Strouhal number.

Evolution equations have been determined and solved for the disturbance flow above a
spanwise oscillating plate. Even when nonlinear terms are neglected in the regime of initial
streak growth, a linear coupling exists between the velocity components, indicating that
the secondary flow structures do not obey the independence principle of Jones (1947).

When interacting with the spanwise base flow, the laminar streaks are affected by
a range of parameters including the spanwise plate oscillation amplitude, the Strouhal
number (which is a measure of the frequency ratio between the free-stream disturbance
and the plate oscillations), and the properties of the free-stream gusts. The latter are
particularly important in the current formulation, as the free-stream gust directly forces
the laminar streak growth via a mechanism which follows a generalization of the matched
asymptotic analysis of Leib et al. (1999) for the flow above a stationary plate. This
link between the free-stream gust properties and the laminar streak evolution enables a
direct analysis of the former upon the latter. It represents a distinctive feature of the
current methodology when compared to approaches based on optimal growth theory,
where forcing by the free-stream is entirely absent (Andersson et al. 1999; Luchini 2000)
and on models which incorrectly rely on the continuous spectrum of the Orr-Sommerfeld
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equation to generate free-stream forcing (Hack & Zaki 2012), as shown by Dong & Wu
(2013a,b).

Reductions in total streak energy in excess of 80% are found for streaks with κ = 1,
Wm > 18 and N = 1. Two sets of scaled large-κ solutions have been obtained, which
extend the earlier analysis of LWG99 for the stationary-wall case.

The spanwise wall oscillation technique joins a growing collection of possible methods
for delaying laminar-turbulent transition, which also includes boundary-layer suction,
boundary-layer cooling, and steady spanwise wall forcing. Further experimental investi-
gation is required to confirm the effectiveness of this particular approach. The inherent
three-dimensionality of the boundary-layer structures described herein makes the experi-
mental investigation of these phenomena challenging. A single three-dimensional vortical
gust can be created using a thin vibrating wire located in the free stream, parallel to
the flat plate, and placed at an angle with respect to the oncoming base flow (Wu 2001).
Further investigation is also required to generalize the existing stability analyses for the
CSL (refer for instance to Hall 1978; Luo & Wu 2010) to the GSL case.

The work was partially supported by EPSRC First Grant EP/I033173/1. This research
used computing resources at the University of Aberdeen and the University of Sheffield.
We would like to thank Claudia Alvarenga, Elena Marensi, and Eva Zincone for reading
a preliminary version of the manuscript and for providing insightful comments.

Appendix A. Initial conditions for spanwise base flow momentum
equation

This appendix presents the initial conditions for the spanwise base flow momentum
equation (2.11) for x� 1. In this limit, a power series solution for W is sought with the
form

W (x, η) ∼W0(η) + 2xW1(η) + O
(
x2
)
. (A 1)

Note that, unlike the small-x series solution of the disturbance equations calculated
by LWG99, equation (2.11) does not involve terms of the order of x1/2. Terms of this
magnitude are therefore not required in expansion (A 1). For x� 1, matching coefficients
at O(1) leads to

W ′′0 + FW ′0 = 0, (A 2)

subject to W0(0) = Wm, and W0 → 0 as η → ∞. From the Blasius equation (2.7), it
follows that

W0(η) = Wm (1− F ′) =
kz
kx
Wm (1− F ′) . (A 3)

The profile of W0(η) /Wm = 1 − F ′, shown in figure 12(a), proves that that the initial
spanwise boundary-layer thickness equals the streamwise boundary-layer thickness due
to their common dependence upon F ′. Matching coefficients at O(x) gives

W ′′1 + FW ′1 = iωW0 = iωWm (1− F ′) =
iωkz
kx
Wm (1− F ′) , (A 4)

subject to the boundary conditions W1(0) = 0 and W1 → 0 as η → ∞. The solution to
(A 4) is

W1(η) = iωWm

(∫ η

0

F ′′
∫ η̃

0

1− F ′
F ′′

dη̆ dη̃ − F ′∆
)
, (A 5)
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Figure 12: Profiles of (a) the leading-order base flow W0(η) /Wm, and (b) the imaginary
part of W1(η) / (ωWm).

where

∆ =

∫ ∞

0

F ′′
∫ η̃

0

1− F ′
F ′′

dη̆ dη̃ = 1.713. (A 6)

From (A 3) and (A 4), Re[W1(η)] = 0. The profile of Im[W1(η)] / (ωWm) is shown in
figure 12(b).

Appendix B. Initial and free-stream boundary conditions for the
boundary region equations

In this appendix the initial and free-stream boundary conditions for the forced and
unforced modes are described. The spanwise base flow W → 0 as η → ∞, and conse-
quently, for the forced mode, the large-η LUBR equations are identical to those given on
page 181 of LWG99 as the unforced modes all decay in the far field. Therefore, given the
additional factor Q in (2.13), the solution of (2.17) that matches with the free-stream
gust satisfies

u[n] →0, (B 1a)
[
∂

∂η
+ |κz| (2x)

1/2

]{
v[n], w[n], p[n]

}
→

{
−1, κy (2x)

1/2
, 0
}
δjnQe

−ijx+iκy(2x)1/2η−(κ2
y+κ2

z)x, (B 1b)

as η →∞, where η = η−β, with β defined immediately after (2.7), and κy = ky/
√
kxRλ.

The position j of the forced mode in the Fourier series takes the value j = −1 for integer
valued Strouhal numbers. The Kronecker delta

δjn =

{
0, j 6= n,

1, j = n,

is used to indicate that the only non-zero contribution is from the forced n = j mode. On
the plate, u[n] = v[n] = w[n] = 0 in order to satisfy no-slip and no-penetration conditions.
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The initial conditions for η = O(1) are obtained via a small-x power series of the form

{
u[n], v[n], w[n], p[n]

}
=

∞∑

i=0

(2x)
i/2

{
2xU

[n]

i (η) , V
[n]

i (η) , −iW
[n]

i (η) ,
P

[n]

i (η)

(2x)
1/2

}
, (B 2)

using the method outlined by LWG99 on page 182. Upon asymptotic matching with the
free-stream behaviour, the initial conditions are

u[n] ∼ δjnQ
{

2xU
[n]

0 + (2x)
3/2

U
[n]

1

}
, (B 3a)

v[n] ∼ δjnQ
{
V

[n]

0 + (2x)
1/2

V
[n]

1

+
ie−ijx

(κy − i |κz|) (2x)
1/2

[
eiκy(2x)1/2η̄−(κ2

y+κ2
z)x − e−|κz|(2x)1/2η̄

]

− e−ijx−|κz|(2x)1/2η̄

[
3β

4
− g

[n]
1 |κz|

2
(2x)

1/2

]
+ η̄ +

3β

4

− (2x)
1/2

[
− i

2
(κy + i |κz|)

(
1 + η̄2

)
+
|κz| g[n]

1

2
+

3β |κz| η̄
4

]}
, (B 3b)

w[n] ∼ −δjnQ
{
W

[n]

0 (η) + (2x)
1/2

W
[n]

1 (η)

+
e−ijx

(κy − i |κz|)
[
κye

iκy(2x)1/2η̄−(κ2
y+κ2

z)x − i |κz| e−|κz|(2x)1/2η̄
]

− 3β |κz|
4

(2x)
1/2

e−ijx−|κz|(2x)1/2η̄

− 1− (2x)
1/2

[
i (κy + i |κz|) η̄ −

3β |κz|
4

]}
, (B 3c)

p[n] ∼ δjnQ
{
P

[n]
1 (η) +

[
g

[n]
1 −

3β

4 |κz| (2x)
1/2

]
e−|κz|(2x)1/2η − g[n]

1 −
3βη

4

}
. (B 3d)

Here

g
[n]
1 =

2c
[n]
1

|κz|
+

3β2

2
+ i

(
κy
|κz|

+ i

)(
1 + β2

)
, (B 4)

matching the definition given by (B 15) of LWG99 for a single uncoupled forced mode,

while c
[n]
1 is a constant found through the numerical solution.

In the power series, inter-mode coupling does not commence until the third order
terms in the power series are reached. Therefore, in the absence of forcing, the first
and second terms of the small-x power series are all zero with the exception of the
forced n = m mode. The forced mode terms satisfy the ordinary differential equations
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(B1-B8) of LWG99, which have the form

2U
[j]

0 − ηU
[j]

0

′
+ V

[j]

0

′
+W

[j]

0 = 0, (B 5a)

U
[j]

0

′′
+ FU

[j]

0

′
+ (ηF ′′ − 2F ′)U

[j]

0 − F ′′V
[j]

0 = 0, (B 5b)

P
[j]

0

′
= 0, (B 5c)

W
[j]

0

′′
+ FW

[j]

0

′
= 0, (B 5d)

at leading order and at the next order,

3U
[j]

1 − ηU
[j]

1

′
+ V

[j]

1

′
+W

[j]

1 = 0, (B 6a)

U
[j]

1

′′
+ FU

[j]

1

′
+ (ηF ′′ − 3F ′)U

[j]

1 − F ′′V
[j]

1 = 0, (B 6b)

V
[j]

0

′′
+ FV

[j]

0

′
− (ηF ′)

′
V

[j]

0 +
[
η (ηF ′)

′ − F
]
U

[j]

0 = P
[j]

1

′
, (B 6c)

W
[j]

1

′′
+ FW

[j]

1

′
− F ′W [j]

1 = −κ2
zP

[j]

0 . (B 6d)

As the velocity components and pressures associated with the unforced modes must decay
to zero in the far field and the first two terms of the power series for the unforced modes
are zero, the initial conditions for the velocity components and pressures of the unforced
modes are identically zero to this order of approximation.

Note that inter-mode coupling of the first two terms of the power series of the leading-
order velocity components and pressure does not exist. If additional terms of the power
series were included or if the higher-order components

{
u(0), v(0), w(0), p(0)

}
of Ricco

(2009) were considered, inter-mode coupling would occur.

Appendix C. Numerical procedures

This appendix outlines the numerical procedure used to solve the LUBR equations (2.17),
given the initial and boundary conditions in Appendix B. To enable a numerical solution,
the doubly infinite Fourier series are truncated so that only modes with indices in the
range −Nf < n < Nf are included within the calculation, where Nf is a positive inte-
ger. As one moves away from the forced n = −1 mode in the Fourier series, the energy
contained within each mode decreases, and therefore the remaining modes can be safely
neglected for a suitably large value of Nf .

A second-order central finite-difference scheme is used in the wall-normal direction and
a fourth-order backward scheme is used in the streamwise direction to evaluate the Fourier
coefficients. Both schemes are implicit. The calculation of coefficients of the velocity
components and the pressure for each Fourier mode requires 4(2Nf + 1) unknowns to
be evaluated at each point. The spanwise plate oscillations and the implicit streamwise
discretization method result in linear coupling between the unknowns. The unknown
velocity and pressure Fourier coefficients in the linear system are collected together so
that:

(a) the velocity and pressure coefficients for one Fourier mode and one wall-normal
station are grouped first;

(b) all the Fourier coefficients at that wall-normal station are then grouped together;
(c) starting from the wall, the solution at each wall-normal station is obtained.

The resulting linear system is block tridiagonal, with each (dense) block synthesising
all the velocity and pressure Fourier coefficients at one wall-normal station. The actual
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value of Nf is determined by the total energy contained within the Fourier mode, which
is dominated by the streamwise disturbance velocity. The value of Nf for each calculation
is chosen so that a further increase in Nf does not alter the total streak energy E by
more than 2%.
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