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Abstract

Scalable memory systems provide scalable bandwidth to the core growth demands in multicores and embedded
systems processors. In these systems, as memory controllers (MCs) are scaled, memory traffic per MC is reduced, so
transaction queues become shallower. As a consequence, there is an opportunity to explore transaction queue utilization
and its impact on energy utilization. In this paper, we propose to evaluate the performance and energy-per-bit impact
when reducing transaction queue sizes along with the MCs of these systems. Experimental results show that reducing
50% on the number of entries, bandwidth and energy-per-bit levels are not affected, whilst reducing aggressively of
about 90%, bandwidth is similarly reduced while causing significantly higher energy-per-bit utilization.
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I. INTRODUCTION

The higher degrees of memory contention achieved when increasing number of cores integrated in a single

chip have critical performance factor, therefore scalable memory systems through high-performance and low-energy

design strategies aim efficient communication to achieve optimum bandwidth/latency and low power.

Traditional double data rate (DDR) memory design to achieve larger memory bandwidth is based on the application

of the pair clock frequency - simply memory frequency - and memory width on the memory ranks - formed by set

of memory banks with data output aggregated and sharing addresses.

DDR family generations have been utilizing larger clock frequencies to improve its bandwidth. For example,

according to [1] a factor of 10x larger clock frequencies have been applied in DDR memory families. However,

since memory power usage is proportional to frequency, the traditional focus on memory design has switched from

frequency scaling to memory width scalability.

The straightforward method to increase memory parallelism represented by memory width is via scaling of MCs

- MC scalability. For example, in traditional multicores processors and embedded ones, Wide I/O 2 [2] commercial

solution presents up to 8 MCs, each one connected to a rank width of 128 bits, performing a maximum total width

of 1024 bits, while HyperMemory Cube (HMC) up to 8 MCs/ranks with individual rank width of 55bits (total of

440bits, I/O bit rate of 10Gbits/s).

Comparatively to these mentioned solutions, advanced memory interfaces explore significant larger number of

MCs - or MC counts. These advanced interfaces rely on optical- and radio-frequency (RF) technologies, which

allow them to use fewer I/O pins, allowing further degrees of MC scalability. For example, Corona [3] utilizes only
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two optical pins and DIMM Tree employs 39 RFpins [4], which are significantly less than 240 I/O pins present in

traditional DDR families.

As a consequence, Corona [3] is able to scale to 64 optical-MCs while DIMM Tree [4] up to 64 RFMCs (RF-

based memory controllers). In previous advanced systems, total memory width is estimated about 4096 bits when

interfaced to simple double data rate (DDR) memories.
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Fig. 1: memory system general overview

In above mentioned memory solutions, as MCs are scaled, the number of transaction queue elements present

in each MC is scaled as well. As noticed in [5], as MCs are scaled the amount of memory traffic per channel

is reduced, i.e., transaction queue utilization is reduced. We create a model based on these advanced memory

interface technologies, and assess it with different transaction queue sizes and different MC-counts using detailed

and accurate simulation tools combined with memory bandwidth-bound benchmarks. We envision the opportunity

to explore shallower transaction queues aspect in terms of bandwidth and power in order to advance the state of

art in scalable memory systems with the following contributions to determine:

• Bandwidth impact when employing shallower transaction queues under several workload conditions,

• Total rank and MC power impact when utilizing the reduced-size queues,

• Conditions to dynamically explore shallower transaction queues.

This paper is organized as follows. Section II presents the background while shallower transaction queues are

depicted in Section III. Next, it is discussed in Section IV the experimental results obtained, Section V the related

work, and finally, in Section VI the concluding remarks as well as future plans.
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II. BACKGROUND AND MOTIVATION

We describe the background of scalable memory systems and the motivations for shallower transaction queues.

A. Background

According to the report [6], a typical MC is composed of (a) front engine (FE), which processes L2 cache

requests; (b) transaction engine (TE), which transforms these requests into control and data commands to be sent

to the ranks; and (c) physical transmission (PHY), composed by control / data physical channels.

In particular, along its optical or RF memory interfaces, modulation and demodulation of commands, data, clock,

and addresses are performed while executing typical read/write memory operations. Along these interfaces, signals

are transmitted over the optical/RF interconnection between the optical-MC/RFMC and rank. In addition, while

command, clock (CK), and address signals are demodulated at the ranks, these also modulate data to be returned

to the MC, when a read operation is performed. Figure 1 illustrates the context where the memory path is utilized.

To illustrate the need for more MCs, we show Figure 2 [1] to illustrate the behavior of rank bandwidth along to

different low power memory generations. We observe in this figure that total rank bandwidth is still restricted in

terms of magnitude which motivates the need of approaching bandwidth via MC scalability.
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Fig. 2: frequency versus bandwidth, repeated from [1]

Furthermore, recent-developed commercial memory solutions still employ larger number of pins, which can still

can restrict MC scalability, i.e., memory width. For instance, Hybrid Memory Cube [7] employs 55 pins and can

utilize up to 8 MCs. The maximum aggregated bandwidth in HMC is 320 GB/s while each I/O-link presents

individually 10 Gbit/s. Furthermore, Wide I/O 2 [2] employs 128 bits per rank and 8 MCs, thus still MC-count

restricted (total width 1024 bits).
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Compared to these solutions, advanced solutions that employ shorter amounts of pins present better MC scalability.

As previously mentioned, optical Corona [3] presents 2 optical pins only and 64 optical MCs. Moreover, given its

similarity to 2.5D integration on silicon interposer, RFiop [8] illustrated in Figure 3a originally designed for 16

RFMCs and 96GB/s (using 6GB/s, 64bit-ranks, total of 1024 bits) at 32nm, if scaled to 22nm, it is likely to achieve

32 RFMCs/ranks and 480GB/s, i.e., significatively larger number of MCs and bandwidth.

Another example of advanced solution is RFiof [5] illustrated in Figure 3b, which presents similar performance

benefits of optical-based interfaces. RFiof is designed to scale to 32 RFMCs and 345.6 GB/s, using 10.8GB/s ranks;

however given its lower number of pins and the adoption of a conventional RF-interface (FR-board as in DIMM

Tree [4]), this technology has the potentiallity to be scaled to use 64 RFMCs and ranks of 17.2 GB/s and likely

achieve the bandwidth of 1024GB/s (and total width of 4096 bits), which is an expressive bandwidth level.
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B. Motivation

Each MC has a transaction queue, which has a certain number of entries utilized to store cache requests in

each one. As applications run, these transaction queue entries are filled according to their memory-bound behavior.

Applications with a more intense memory-bound behavior are likely to have more entries filled, while applications

with a lesser intense memory behavior are likely to utilize less entries.

In scalable memory systems [3][5][8] MCs are scaled to improve bandwidth and decrease power. Simply put,

in these systems, the increase of the memory width - memory parallelism - via having multiple MCs and multiple

ranks allows the increase the number of simultaneous memory transactions treated in the system.
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Since there is more memory parallelism, transaction queue entries - that hold memory requests - are less utilized.

Therefore, all memory entries in the transaction queus - limited by transaction queue maximum size - are not fully

filled in these conditions.

Furthermore, even for intense memory applications transaction memory queues are less utilized. For example,

in RFiop [8] scalable memory system it is observed that, for the intense memory applications STREAM [10] and

pChase [11], the number of memory transactions entries occupied is reduced of up to 5x when scaling 2 MCs to

16MCs.

To conclude, in all previously mentioned cases, transaction queue usage entries are not completely occupied with

cache requests. Therefore, transaction queue entries are sub-utilized.

III. TRANSACTION QUEUE SIZE REDUCTION

The occupation of the TE transaction queue with memory requests depends on the following factors:

• the ratio between rank clock frequency and processor clock frequency: the higher the ratio is, the higher the

time transaction queue is occupied. In addition, the higher the latency is, the lower the bandwidth is. Given

that each cache request is transformed to physical memory request at the MC, the higher the ratio MC clock

frequency to processor clock frequency is, the higher the time the cache transaction takes to be transformed

into memory request, also the higher the latency is.

• memory-bound behavior of the benchmark being executed: the higher the memory-bound behavior of the

benchmark executed is, the higher the ratio of memory instructions per cycle (or over a thousand of instructions

or misses per kilo-instructions - MPKI) is achieved.

Assuming a typical interleaving of addresses over different last level cache (LLC) unit, MC scaling implies on

memory width scaling. Therefore, as the number of simultaneous number of memory transactions on the memory

system is increased, it may lead to larger bandwidth.

In this context, the total memory traffic is increased due to larger width, and this behavior may be expressed

qualitatively as follows:

Bw = Rw ∗ freq (1)

where Bw means total rank bandwidth, Rw the total rank width, and freq the frequency with which ranks are

set. Therefore, as MCs are scaled with ranks, total rank bandwidth is similarly scaled.

Given that memory transactions are spread over larger number of MCs, memory traffic per MC is decreased,

qualitatively derived to:
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MtpMC =

MCs∑

i=1

TT

MCs
(2)

where MtpMC means memory traffic per MC, TT the total traffic. It is immediate to derive that as MCs are

increased, MtMC is increased.

This behavior can be exemplified on a scalable MC system, e.g., RFiop [8] in which each MC TE transaction

queue presents 32 entries to store memory requests. From bandwidth-bound benchmark experimental results, RFiop

scalable memory system with a 32-element transaction queue size only utilizes 25% of each of its transaction queues.

Therefore, given the lower utilization it is possible to reduce transaction queue sizes without having performance

(MtpMC and Bw) degradation.

A straightforward way to mitigate the transaction queue sub-utilization is to employ shallower transaction queues.

In this case, under the same amount of traffic, the ratio between the total number of utilized entries and the total

queue size is increased, i.e., a better utilization is obtained.

It is important to note that while having a better utilization, a transaction queue with a reduced number of

elements spends a smaller amount of power. By reducing the number of elements utilized, correspondent circuit

area is smaller, thus allowing to save power.

IV. EXPERIMENTAL RESULTS

In this section we perform a series of experiments to demonstrate the power and performance effects due to the

reduction of transaction queue sizes in scalable memory systems.

A. Methodology

To have a global picture of the methodology employed in this study, we have listed all the simulators employed

and the description of their purpose in Table I. The general methodology employed to obtain bandwidth is adopted

from [20]: by using bandwidth-bound benchmarks to stress the memory system, we combine M5 [15] and DRAMsim

[13] simulators as follows.

Before describing the experiments, we observe that the baseline for the experiments presents 32 cores and 32

MCs to maintain the ratio core:MC the same (32:32) such as in [5].

In order to evaluate this scalable memory system, we combine detailed accurate simulators using the methodology

developed in [20]: we combine the creation of a 32-multicore model in M5 [15], which upon benchmark execution

of a multicore model generates memory transactions which are captured by DRAMsim [13] which is properly

configured with 32 RFMCs so that core:MC ratio is 32:32. In the sequence, DRAMsim responds to M5 with the

result of each memory transaction.
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tool description

Cacti [12] cache latencies configured with

McPAT [6] determine power of individual

path elements: TE and FE

DRAMsim [13] Capture memory transactions

from M5 configured

with 32 RFMCs. Respond

to M5 with the result

of the memory transaction.

Determine power spent [13][14].

Determine the number of

memory accesses and

transaction queue size.

M5 [15] Configured as 32-core

OOO processor

and not L2 shared

cluster (avoid sharing).

Generates memory

transactions which are

passed to DRAMsim [13].

Miss-status

handling register

(MSHR) counts from

typical microprocessors [16].

RF-crossbar Implemented in M5 [15]

with RF settings from [17][18].

RF- RF-circuitry

communication modeling

delays and scaling [17][19].

TABLE I: methodology: tools and description

The baseline configuration is the one with 32 RFMCs and 1-to-16-element queue elements. We employ a 4.0-

GHz (Alpha ISA) and 4-wide out-of-order (OOO) core, while having RFMCs at 2.0GHz (typically at half of

microprocessor clock frequency [21]). We use Cacti [12] to obtain cache latencies and adopted MSHR counts

of typical microprocessors [16]. We employ 1 MB/core L2 caches, which are interconnected via an 80GB/s-RF-

crossbar (magnitude set in order to not restrict total throughput) with 1-cycle latency (adopting same timing settings

of [17][18]: 200ps of TX-RX delays, plus the rest of the cycle to transfer 64 Bytes using high speed and modulation).

In order to be general, we have selected a DDR3-rank. Observing the RF-crossbar upper constraint, the selected

rank is a medium data-rate DDR3-rank employed in typical PCs and smartphones/pads (64 data bits, based on the

DDR3 model Micron MT41K128M8 of 1GB [14], and listed in Table IIa).

Each RFMC is assumed to be connected to one rank in order to extract its maximum bandwidth. In order

to not take advantage of locality, we have employed a conservative addressing by interleaving cache lines along

the RFMCs, as well as closed page mode since, as reported in [22], this mode benefits performance and energy

utilization in multicores. To finalize, all architectural parameters are summarized in Table IIa.

To determine the total energy-per-bit spent, we employ DRAMsim power infrastructure and combine them with
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Core 4.0 GHz, OOO, multicore,

32 cores, 4-wide issue,

turnament branch predictor

Technology 22 nm

L1 cache 32kB dcache + 32 kB icache;

associativity = 2

MSHR = 8, latency = 0.25 ns

L2 cache 1MB/per core ; associativity = 8

MSHR = 16; latency = 2.5 ns

RF-crossbar latency = 1 cycle, 80GB/s

RFMC 32 RFMCs; 1 RFMC/core,

2.0GHz, on-chip

trans. queue entries = 16/MC,

close page mode

Memory rank DDR3 1333MT/s,

1 rank/MC, 1GB, 8 banks,

16384 rows, 1024 columns, 64 bits,

Micron MT41K128M8 [14],

tras=26.7cycles,

tcas=trcd=8cycles

RF

interconnection

length size 2.5 cm

delay 0.185ns

Benchmark Input Size read : write MPKI

Copy, Add, 4Mdoubles per 2.54:1 54.3

Scale, core

Triad 2 interations

(STREAM)

pChase 64MB/thread, 158:1 116.7

3 iterations,

random

Multigrid:MG Class B 76:1 16.9

(NPB) 2 iterations

Scalar Class B 1.9:1 11.1

Pentadiagonal:

SP (NPB) 2 iterations 1.9:1 11.1

Hotspot, 6000 x 6000, 3 iter. 2.5:1 12.5

FT: Fourier Class W, 1.3:1 6.8

Transform (NPB) 3 iterations

TABLE II: a and b: methodology tools description; benchmarks description

the memory throughput extracted from the benchmark (ratio of the number of memory transactions and execution

time).

To model RF communication, we have considered RF-circuitry modeling and scaling proposed in [17][19] which

is also adopted by other reports [17][18][23]. In these models, crosstalk effects, modulation, interference, and noise

margin reduction are employed aiming a low bit error rate (BER). In addition, these models are validated with

prototypes for different transmission lines [19][24], while following ITRS [25]. We determine RF-interconnection

power as in [5]: using McPAT [6] tool at different frequencies to determine FE/TE power components and RF-

interconnection power modeling as in [4].

By adopting a methodology similar to the one proposed in [16] to evaluate the memory system, we have selected

bandwidth-bound benchmarks with a medium-to-significant number of misses per kilo-instructions (MPKI) taking

the following aspects into consideration:

• Generate proper memory traffic and number of outstanding memory transactions in order to utilize a 32 MC-

system;

• The selected input sizes are obtained as trade-off between simulation times and memory traffic generated.

In order to evaluate this scalable memory system, we have selected bandwidth-bound benchmarks: (i) STREAM

[10] suite, which we decompose in its four sub-benchmarks (Copy, Add, Scale, and Triad); (ii) pChase [11] with

pointer chase sequences randomly accessed; (iii) MG, SP, and FFT from NPB benchmarks [26], and Hotspot. All
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benchmarks are set to use 32 threads, since we are employing a 32-core processor. No special thread-to-core is

applied when executing these benchmarks.

Table IIb lists the benchmarks experimented, input sizes, read-to-write rate, and L2 MPKI obtained in the

experiments. In all benchmarks, parallel regions of interest are executed until completion, and input sizes guarantee

that all memory space used is evaluated. Average results are calculated based on harmonic average.

B. Results

In this section we present the results regarding the aspects of memory bandwidth, processor performance measured

through instruction per cycle (IPC) parameter, and rank energy-per-bit magnitude.

Figure 4a illustrates the results of the bandwidth experiments: as transaction queues are reduced from 16 to 1

entry, we observe a bandwidth reduction of up to 65% for pChase and 91% for STREAM (average of STREAM

benchmarks). These largest bandwidth reductions happen for the smallest size transaction queues (1-element).

Bandwidth starts to reduce significantly when transaction queues start to have most of their elements filled: we

observe that this specific behavior starts to be observed with 8 elements, but is more present with 4 elements,

when bandwidth is significantly reduced. For most of the benchmarks, half of the transaction queue elements can

be eliminated without hurting bandwidth magnitudes. The largest bandwidth reduction happens for Hotspot (about

83.5%), while the smallest one happens for FFT (about 87.6%). This can be justified by the bandwidth-bound

behavior of the benchmark which is more present in Hotspot (as well as in pChase, STREAM, and MG) and less

in FFT.

Figure 4b illustrates the related energy-per-bit results: as transaction queue sizes are reduced from 16 to 1 entry,

average energy-per-bit levels reduce since reduced size queues have lesser elements, thus using less amount of energy.

The largest energy reduction happens for STREAM while the smallest one happens for FFT. It is interesting to

notice that even for 2-element transaction queue, energy-per-bit usage decrease is within the range of (75-90%).

Comparing Figures 4a and b we find that configurations that present interesting trade-offs in terms of performance

and energy. For example, configurations with 4 elements is an interesting case, since it presents an interesting

bandwidth magnitude - comparable to 16 elements - while presenting some degree of energy-per-bit magnitude

savings.

Figure 4c illustrates the effect of shallower transaction queues on processor performance. We observe that,

except for FFT, IPC magnitudes generally follow the behavior of bandwidth, i.e., IPC magnitudes reduce as

transaction queues are reduced. As sizes are reduced, less amount of memory transactions are processed, thus

causing processor performance degradation. Similar to bandwidth, the lowest IPC magnitudes obtained happen for

1-element transaction queues. In particular, since FFT presents a smaller degree of memory-boundness compared

to the rest of the benchmarks, this benchmark is less sensitive to IPC variations. Furthermore, in the case of FFT
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shallower queues are not only interesting in terms of energy-per-bit but also in terms of bandwidth/IPC.

C. Conditions for a Dynamic Approach

Comparing Figures 4a and b, it is interesting to notice that 4 and 8 entries (up to 50% of the total number of

entries 16 entries) have equivalent performance to 16 entries while presenting a potential energy-per-bit saving.

As previously analysed, the point where bandwidth starts to be significantly reduced is for 4 transaction queue

sizes. This point is very important for stablishing a dynamical approach: the transaction queue can be configured -

or re-configured in the case it relies on a reconfigurable hardware structure - so that transaction queue size could

be matched to the bandwidth needs, which is a function of the benchmark, cache L2 MSHRs, and/or number of

outstanding memory transactions. We leave this dynamic approach as further efforts.

V. RELATED WORK

Evaluations on transaction queue reduction in terms of power and performance impact was introduced in [27].

In this research, we further advance the investigation of he utilization of shallower queues and evaluated the

performance - not only in terms of memory bandwidth but also processor IPC - and power features, verifying and

analyzing them for several scientific benchmarks. We also determine conditions for a dynamic approach.

Solutions as Optical- [3] or RF-based [5][8] utilize proper memory interfaces to address the previously mentioned

I/O pin restrictions in order to allow MC scalability. Since the adopted approach is focused on transaction queues,

it is orthogonal to any of these optical or RF-based solutions. Therefore, it can be applied to any of these systems.

The strategy proposed in this investigation can also be applied to commercial systems such as HMC [7] with

medium degree of MC scalability. In RFiop [8], it is reported that as MCs are scaled, transaction queue occupation

is decreased. This observation is a motivation to further explore the behavior of shallower transaction queues, same

as those performed here.

Memscale [28] is a set of software policies and specific hardware power mechanisms which enable the trade-off

between memory energy and performance in typical memory systems. It dynamically changes voltage and frequency

scaling (DVFS) in terms of memory ranks and memory channels. Memscale is guided by OS performance counters

which periodicaly monitor memory bandwidth usage, energy utilization, and the degree of performance degraded

in the case of trade-off. The research proposed in this work is orthogonal to Memscale, since we statically explore

the impact on the reduction of transaction queues in the context of scalable memory systems, and also determe the

conditions for a dynamic approach in terms of transaction queue size reduction.

In [22], Howard et al. propose memory DVFS to address memory power at data centers using bandwidth as a

restricting factor. Although our approach is orthogonal to this study - since we focus on evaluating the benefits of

11



shallower transaction queues - a combined approach DVFS applied to the transaction queue can be a candidate for

further investigation.

The study [29] architects servers with mobile memory systems for lower energy-per-bit consumption and efficient

idle modes in order to approach energy utilization differences under different bandwidth demands. As part of the

architected proposal, this investigation suggests the use of mobile memories with new circuitry to reduce power.

That is, this investigation is orthogonal to the mentioned study, since it can be applied to servers with mobile

memories that present larger number of MCs where shallower transaction queues can be utilized.

VI. CONCLUSIONS AND FUTURE PLANS

In this paper we have proposed an evaluation on the performance and power impact when performing a static

transaction queue size reduction in the context of scalable memory systems. Experimental results obtained show that

shallower transaction queues only affect performance in bandwidth-bound applications, as well as energy-per-bit

utilization for significant size reductions.

Other types of applications such as those not bandwidth-bound ones are likely to allow an aggressive reduction

of transaction queue sizes. As future approach, we plan to investigate a dynamic approach that matches bandwidth

and transaction queue size utilization. In addition, methods that combine DVFS [22] to shallower transaction queues

under different memory traffic intensities and applications are likely to be considered. Furthermore, heterogeneous

systems [30] offer interesting opportunities to evaluate transaction queue size reduction.

From the results achieved in this paper, the evaluation of other scientific benchmarks such as database and

bag-of-tasks [31] benchmarks to multicore architectures will also be considered.

In order to improve the energy efficiency of the embedded mobile platforms, the design of a software approach

similar those presented in [32] for Software Defined Radio Components are possible to be taken into consideration.

Since the approach is targeted to embedded systems, we also plan to develop another approach of the modeling

here utilized, referencing the one presented in [33], to facilitate maintenance and model improvement.
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