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Abstract:
In recent years, the growth on the number of cores as well as the frequency of cores along different

processor generations has proportionally increased bandwidth needs simultaneously in both CPU
and GPU systems. In order to address the communication latency between CPU and GPU memories
in recent implementation of heterogeneous mobile embedded systems with hard or firm real-time
requirements, sharing the same address space adds significant levels of contention. In addition,
when heterogeneous cores are simultaneously present in a single system, memory parallelism is
significantly restricted by a small amount of memory controllers (MCs). As a strategy to approach
these significant levels of memory pressure, it is proposed in this paper evaluations of the impact
of scaling MCs up to 4-8 units - limited by motherboard size for embedded purposes. Our findings
show that performance is enhanced by a factor of 4x when employing only CPU cores, 4.6x when
only GPU cores and finally, 2x when both CPU and GPU cores are simultaneously considered.
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1 Introduction

In mobile heterogeneous embedded systems - particularly

considered in this study as a set composed by CPU and

GPU cores typically employed in cellphones, tablets, and

notebooks - larger clock frequencies and larger number of

embedded cores have been employed along each processor

generation. For example, recent cellphone processors have

started to achieve high frequencies such as 2.5 GHz [9].

Furthermore, cellphones and tablets are expected [4] to

be fabricated with 16 cores soon, whilst there are other

examples of embedded systems which present significantly

larger number of cores such as the Cisco-IBM CRS-1 router

[8] with 192 cores, Tilera Tile 64 [27] with just 64 cores, and

the embedded NVidia Tegra4 GPU processors [12] with 72

cores.

Higher frequencies combined to larger number of cores

under the intense use of bandwidth-bound applications such

as the one related to video processing, gaming, and graphical

environments, even with the presence of larger caches, these

restrictions have been further pushing the levels of memory

pressure.

In heterogeneous systems, namely systems which contain

both CPU and GPU processors, the typical communication

between these units is done via PCI Express bus [1]. Although

the speed and bandwidth over PCI Express bus have been

significantly increased, a number of techniques such as

software pipelining [30], buffering, as well as overlapping

of communication and computation [19] are employed to

minimize PCI express overhead, yet the speed and contention

of this bus is the communication bottleneck among CPU and

GPU cores.

In order to eliminate this overhead, designers have

designed CPU and GPU cores to share the same physical

memory. In this case, data can be passed via by exchanging

addresses, instead of transferring contents via PCI express

bus, thus notably reducing the communication latencies,

i.e., improving performance. However, this solution brings

CPU and GPU cores to one single address space, which

significantly leverages the pressure on the memory system.

Recently, most of heterogeneous embedded cores has

incorporated out of order (OOO) techniques into their cores.

For example, the incorporation of a reorder-buffer (ROB)

in ARM A9 [6] architecture improves the throughput in

regards of the number of instructions, which is likely to

demand higher data throughput from the memory as high

bandwidth-bound applications - such as graphic-oriented

traffic programs - are executed. Furthermore, Intel Atom [15]

processor already incorporated a ROB and the recent Intel

Haswell processor [16] - a traditional OOO-microprocessor

that employes a ROB - designed with low-energy techniques

to be also employed on embedded systems. This technique is

naturally going to increase memory pressure, when compared

to traditional in-order cores present in current embedded

mobile systems. Therefore, in systems with combination of

both types of cores to form an heterogeneous multicore

system the number of simultaneous memory requsts is going

to significantly increase, therefore pushing further the levels

of contention, represented by larger transaction queues and/or

larger duration of the transactions [20] at the MCs.

The natural solution to provide more bandwidth as the

number of heterogeneous cores scales is to increase memory

parallelism. One straightforward solution to augment

memory parallelism is by scaling MCs. However, as reported

in [21], the scalability of MCs in DDR-systems is restricted

by the scalability of I/O pins. As a consequence, typical DDR-

systems employed as memory solutions in mobile embedded

systems, present a low amount of MCs. For example, typical

cellphones or tablets present 1-2 MCs whilst about 8 MCs in

GPUs or router processors.

In order to leverage the area of heterogeneous embedded

core systems by evaluating the impact of improving memory

parallelism in these embedded systems, we investigate in this

paper the effects of scaling the number of MCs, respecting the

limits imposed by the I/O pin scaling in current DDR systems.

By considering that cache addresses are interleaved among

ranks, and each rank is independently connected to a different

MC to benefit the extraction of its maximum bandwidth,

we create a multi-core model and assess it in terms of

MC scalability, evaluating the bandwidth and performance

benefits, by using detailed and accurate simulation tools

combined to several intense and medium intense memory

bandwidth-bound benchmarks. As a result of this study, we

envision the following contributions:

• Current CPU and GPU cores share the same physical

address space via L3 sharing [16]. We assume

that future memory systems are likely to allow the

isolation of individual CPU or GPU address spaces

and investigate the performance benefits of scaling

the number of MCs within core:MC ratios limits of

current heterogeneous embedded systems. To the best

of our knowledge, through extensive analysis of related

researches, this is the first work which MC scalability

investigation and analysis are performed in embedded

systems.

• The investigation is performed aiming to determine

the performance benefits of MC scaling along each

individual (i) CPU address space, (ii) GPU address

space, and when (iii) combining both.

• Given that in (iii) the likely memory contention is

further larger than when either CPU or GPU cores

are individually using the memory address space, we

propose a methodology that combines the performance

of (i) and (ii) to obtain (iii), assuming the same number

of MCs and benchmarks with the same number of

memory requests.

Although memory power/energy are of fundamental

importance in mobile embedded systems, unfortunately we

leave the evaluation of these aspects for a further study.

Section 2 describes the background and motivation for

researching memory systems in order to provide larger

bandwidth in embedded systems. Section 3 describes

the benefits of scaling MCs and analysis when having

them allocated to CPU/GPU with separate or combined

address spaces. In Section 4 we discuss the experimental

methodology as also to present respective results, and finally

Section 5 describes the related work and Section 6 presents

the conclusions and items to be developed as future work.
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Figure 1: traditional memory path;

2 Background and Motivation

We start in this section by describing the role of MCs in

current memory systems. Next, an overview of the I/O pin

problem restrictions on MC scaling is discussed.
2.1 The role of MCs
In this subsection we describe the role of MCs in current

memory systems. Before we describe the role of MCs, we

assume that these systems are based on DDR-memories in

terms of timings, protocols, control-data signal separations,

and organization - ranks, banks, rows, and columns.

Furthermore, ranks are assumed to be manufactured as single

module chip packages in order to minimize its total occupied

area so that, when scaled together with the on-chip MCs,

they do not turn into a space restriction. We observe that

the assumption regarding rank manufacturing has its viability

relying on similar fabrication of ranks in this form, such as

in embedded systems or for servers with HMC [14] memory

system.

The role of the MC in typical memory systems is

illustrated in Figure 1. At the flip-chip package interface,

when a cache request is received at the MC, signals traverse

the following path from the MC to the rank: MC, package

trace, package via, repeaters, the structures which form the

pins - such as pad, solder balls, and PCB-pad - and finally

the signal reaches the PCB trace, and PCB via, followed by

the same sequence in the opposite order when these signals

reach the rank. The same path in the reverse order happens

when the rank response happens from the rank to the MC.

Similarly, in embedded systems, an interposer is employed

instead of a PCB, and the path of these signals is changed to:

MC, package trace, package via, repeaters, pad, solder balls,

interposer trace, and the reverse order when the response of

from the rank is performed.
2.2 The I/O pin problem
The I/O pin problem is characterized by a set of physical

restrictions which are likely to happen as the number of pins

increases, larger pin-densities are employed, and larger clocks

along the processor-to-memory channel are scaled. These

pin restrictions involve electro-migration and crosstalk effects

among pins, as well as implementing a reliable connection

between the motherboard PCB or alternatively the interposer,

and the processor pads [20]. In addition, as pins are scaled,

area costs are like wisely to increase.

We illustrate the effect of these restrictions (a) in current

embedded and typical microprocessors in terms of cores

versus MC counts and (b) the effects of pin-counts on

bandwidth and MC counts.

Aiming to illustrate (a), we show the effects of the

increase of the number of cores versus MC counts in typical

microprocessors which have similar features to the most

advanced employed in embedded systems. In Figure 2a, for

purposes of reference, we show the red-line where core:MC-

count ratio has magnitude 1:1. All the examples in this figure

are placed on the right of the 1:1 magnitude, which means that

most of the systems - embedded and traditional - have more

cores than MCs, and which reflects the current imbalance

between MC counts and cores. Another example is the 192-

core Cisco-IBM CRS-1 router, which has 16 MCs [5][8][27].

In Figure 2a, the total bandwidth magnitudes achieved

are still at lower-sides when compared to core-growth, even

counting the largest rank bandwidths over each MC since,

since MC counts are found at lower ranges. Figure 2b

illustrates (b) how significant are pin-count magnitudes in

current systems. It also shows how bandwidth is restricted in

terms of number of MCs and pins in Intel systems according

to Polka [26]. Furthermore, it shows larger MC- and pin-

counts of GPUs such as NVIDIA GPU GT200 (8 MCs, 2500

pins) as well as embedded Tilera Tile 64 (4 MCs, 1500 pins).

As a motivation, Figures (a) and (b) demonstrate the need

of focusing on larger MC counts to approach the bandwidth

demands due to the core growth. Given these motivations,

we proceed to analyze the impact of MC scalability towards

bandwidth and performance.

3 MC scalability

Equation 1 shows how rank bandwidth and the number of I/O

pins are combined to obtain the bandwidth per pin:

bw pin = bandwidth rank/number of IO pins, (1)

To understand the effects of MC scaling towards improving

bandwidth, we observe in this equation that as the number of

pins is reduced, bandwidth per pin is increased.

Before we define bandwidth as a function of rank

frequency and width, as previously mentioned it is important

to note that we are assuming address interleaving among

different ranks. Assuming a typical configuration where

the MC clocked at half of the processor frequency, rank

frequency is the dominant factor in terms of performance.

To understand the effects of scaling MC counts towards

bandwidth, we define the peak bandwidth supplied by one

rank as a function of its frequency and width as follows:

peak bandwidth = rank frequency ∗ width (2)

According to the memory path previously described, data

stored in the rank is forwarded to or comes from the MC,

which itself forwards to the cache(s) attached to it (them).

Assuming we have multiple MCs, each MC independently

connected to one rank, we can model the total peak bandwidth

as in equation 3. Since MCs are independently controlling

the ranks attached, the peak bandwidth is proportional to

the number of MCs. For instance, for a typical rank data

frequency or data rate of 1333MT/s in a system with only 1
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other examples - repeated from [20]

MC can have a peak bandwidth of 10.664 GB/s, whilst with

2 MCs, the peak bandwidth achieves the double, i.e., 21.328

GB/s. and with 4 MCs, peak bandwidth is improved fourfold,

and finally about 8x for 8 MCs.

peak bandwidth = rank frequency ∗ width ∗MCcounts (3)

These peak bandwidth levels when performing read or

write operations are reduced due to contention in the crossbar

or buses that are employed along the interconnection from the

MC to the rank, ranks, and caches.

3.1 Dedicating MCs to CPU-, GPU-based, and

combined CPU-GPU address spaces
In order to scale MCs and allocate them to each individual

memory space - formed by only CPUs, GPUs, and combined

CPUs and GPUs, we propose the following mechanisms:

• The number of MCs to be scaled is dedicated to each of

these memory address spaces (CPUs/GPUs/combined

CPU/GPU) can be selected via an operating system

(OS) interface combined to a crossbar (or similar

dedicated hardware), or by disabling L3 sharing among

the different sets of cores.

• Upon the creation of the isolated address spaces and the

configuration of the number of MCs allocated to each

of them - both further discussed - in case independent

address spaces are needed, each proceeds its memory

access as an independent one, with different degrees

of memory parallelism given by the number of MCs

available to that space. We leave the discussion of the

identification, allocation, and reconfiguration of these

address spaces as a future effort.

In the text that follows next, we define each of the

address spaces by exemplifying their functionality. Figure

3 illustrates the case with CPU, GPU, and combined

heterogeneous (CPU/GPU) region. Each region, CPU, GPU,

or heterogeneous has a certain number of MCs allocated

to it. To exemplify the functionality of the mechanisms

proposed we illustrate with the following examples: (i)

previous configuration: address space shared by both CPUs

and GPUs and an interleaved memory addressing along

8 MCs (which we assume as the upper limit within the

restriction of current pin scaling technologies); assuming

that after a reconfiguration - further described, addresses

generated by the CPUs are interleaved only among 6 MCs,

which form a CPU address space, while, on the second

address space (isolated as well) there are only GPUs, which

are able to utilize the remaining 2 MCs.

Another example (ii), with the previous configuration as

the last one (i), after a first reconfiguration of example (i);

assuming as a motivation that CPUs are executing cache-

intensive programs (and not bandwidth-bound), we propose
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CPU Core 16 cores, 4.0 GHz,

OOO-Core, 4-wide issue,

tournament branch predictor

GPU Core 256 cores, based on Fermi

architecture [2], 0.325 GHz,

technology 22 nm

L1 cache 32kB dcache + 32 kB icache;

associativity = 2

MSHR = 8, latency = 0.25 ns

L2 CPU cache 1MB/per core ; associativity = 8

MSHR = 16; latency = 2.0 ns

L2 GPU cache 32kB/MC

MSHR = 16; latency = 2.0 ns

crossbar latency = 1 cycle

(CPU region)

GPU interconnection 0.325 GHz,

MCs 1 to 8 MCs; 1 MC/core,

trans. queue 2.0GHz for CPUs, on-chip, close page mode

trans. queue 2.0GHz for GPUs, on-chip, close page mode

buffer size = 32/MC

Memory rank DDR3 1333MT/s, 1 rank/RFMC, 1GB,

8 banks, 16384 rows, 1024 columns,

64 bits, Micron MT41K128M8 [23]

tras=26.7cycles, tcas=trcd=8cycles

Table 1 Modeled architecture parameters

the creation of an address space with just 2 MCs dedicated to

the CPUs, while the remaining 6 MCs, can be allocated to the

GPUs, which form a second address space.

As a final example of (iii), we consider the previous

configuration (ii): after performing (ii) we propose to form

a single address space, where all the 8 MCs available

and can be used towards heterogeneous programs where

CPUs and GPUs simultaneously have their respective slice

of computation, and where variables and dataflow of

each computation unit (CPU/GPU) interact (exchange via

passing addresses among them, where OpenCL and CUDA

paradigms are employed as programming paradigms).

The reconfiguration operations assumed are responsible

for the reconfiguration itself of the created address spaces

and the allocation of the MCs to the processing elements

according to the selected goal. After these steps, the new

regions, address space, and MC allocation are performed.

Due to the design and evaluation complexities involved, the

investigation of the creation and reconfiguration of these

address spaces and its properties are left as future researches.

4 Experimental Section

In this section we present the methodology employed first,

followed by the bandwidth/speedup results obtained in our

experimental infrastructure.

4.1 Methodology

To model a CPU-based address space with a set of allocated

MCs we employ a combined integration between M5 [24]

and DRAMsim [11] simulators. In this integration, memory

transactions are generated by M5 and sent to DRAMsim,

which configured with multiple MCs, yet responding to

M5 with the result of the memory transactions. We

Benchmark Input Size read:write, MPKI

Copy, Add, Scale, Triad 4Mdoubles per 2.54:1 , 54.3

(STREAM) core, 2 iterations

pChase 64MB/thread, 158:1 , 116.7

3 iterations, random

Hotspot, 6000 x 6000, 3 iter. 2.5:1 , 12.5

Pathfinder 65536, 2 iter. - , -

Backprop 2 iter. - , -

Srad, (Rodinia) 2 iter. - , -

Table 2 benchmarks and input sizes

further describe how timings involved in the interconnection

(crossbar) are incorporated in these combined simulators.

To model a GPU-based address space with an allocated

set of MCs, we employ GPGPUsim [3] simulator, which

already contains a module that implement multiple DDR-

based MC-system. Memory transactions are generated by the

multiple GPU caches and and treated in the memory module

of GPGPUsim. Similarly to the CPU-based case, we further

describe how interconnection timings are incorporated in this

simulator.

In order to model a heterogeneous address space, also

taking into consideration the same simulators previously

mentioned, the integration of the GPGPUsim into GemM5

CPU simulator is already implemented as indicated in [13].

Nevertheless, this combined infrastructure further increases

simulation complexity, and therefore, significantly increases

simulation times. To address this restriction, we propose a

simpler methodology: (i) we first determine the maximum

bandwidth of each CPU and GPU address spaces. (ii) We

obtain the bandwidth of the heterogeneous address space by

assuming that the bandwidth of the heterogeneous address

space as a fraction of the bandwidth of the CPU or GPU

address spaces, given that a larger number of requests is

present in the heterogeneous ones. This fraction corresponds

to the memory access component on the CPU or GPU over

the total memory accesses. In this study, given the difference

in terms of number of cores and operating frequencies, we

make the simplest assumption of having the number of GPU

memory requests of the same order of CPU memory requests.

Therefore, the bandwidth obtained in the heterogeneous

address space is halved.

To determine the behavior of programs where tasks

are scheduled between CPU and GPUs, it is necessary to

perform an individual program analysis which depends on the

program parallelization in order to identify the composition

of these memory accesses in each CPU or GPU spaces. We

leave this investigative analysis as a future effort.

For the CPU regions, we employ different MC counts in

the 16:1 to 16:8 range (i.e., up to 8 MCs for 16 cores), and the

baseline with 2 MCs, to reflect typical configurations found

in tablets and cellphones [9][16]. For the GPU regions, we

utilize similar methodology, varying MCs in the 1-8 range

and apply it in Nvidia Fermi architecture [2]. In order to

evaluate MC scalability, memory timing parameters are based

on 1GB DDR3 rank, based on Micron model MT41K128M8

[23].

Regarding validating MC scalability to other rank

parameters such as other rank clock frequencies, it is

important to mention that this type of parallelism was
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previously explored [20][21] not only in off-chip memories

but also for on on-package memory configurations which

employ other different ranges of frequencies, which further

demonstrate the validity and the coverage of the proposed

technique, when high-bandwidth applications executed on

multi-cores demand high memory bandwidth.

As to guarantee pressure on the memory system in the

CPU address space, we have utilized an OOO embedded core.

The CPU processor modeled follows a clustered architecture,

where we have one core per L2 slice, i.e., private L2 slices in

order to avoid cache sharing effects. The CPU ISA employed

is based on Alpha processor, configured as a 4-way issue

OOO core similar to Intel Haswell [16]. Furthermore, we

presumed a banked and scalable L2 MSHR structure [29]

and assumed 1MB/core as an L2 (CPU) cache slice size

to reflect current OOO embedded cores. Similarly, GPU

processor utilized in the GPU-based regions follow Nvidia

Fermi architecture [2] which itself, given its larger number of

cores, yet typical employed applications, demands significant

memory bandwidth.

CPU and GPU L2 slices are interconnected through

an 1-cycle crossbar (optimistic assumption to elucidate the
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Figure 4: top to bottom: (a) bandwidth versus number of

MCs for CPU regions; (b) speedup versus number of MCs for

CPU regions.

noticeability of the memory transfers). We obtained cache

latencies from Cacti [7] with energy optimizations and

adopted MSHR counts for each L2 slice of as in typical multi-

cores [16].

PCB delays are not included in the baseline modeling

since we found a broad variety of magnitudes; due to that,

the baseline measurements, such as bandwidth / speedups, are

closer to the ideal case, i.e., the likely bandwidth results are

better than ones achieved in this experimentation.

STREAM suite applications [22] are specifically designed

to evaluate bandwidth, whilst pChase is designed to evaluate

both bandwidth and latency [25], and Hotspot, Pathfinder,

Backpropagation, and Srad are some of the bandwidth-

bound applications in heterogeneous Rodinia suite [28].

Using Loh’s criteria [18] to select memory bandwidth-bound

benchmarks, however with focus on the ones with medium

or high number of misses per kiloinstructions (MPKI) to

stress the memory system. the following benchmarks have

been selected for CPU regions: STREAM [22] suite, which

we decompose in its four sub-benchmarks (Copy, Add,

Scale, and Triad); pChase [25] benchmark with pointer

chase sequences randomly accessed. to evaluate combined

heterogeneous CPU and GPU regions spaces, Hotspot and

Pathfinder from Rodinia suite [28] were selected, and finally,

Backpropagation and Srad applications from Rodinia suite to

evaluate GPU regions.

Table 2 summarizes the benchmarks experimented, input

sizes, read-to-write rate, and L2 MPKI obtained in the

experiments. In all benchmarks, the parallel regions of

interest were executed until completion. All the input sizes

are larger than the total rank memory size, which guarantees

that all the memory spaces are stressed. The average results

were calculated based on harmonic average.

4.2 Results: Bandwidth and Speedups

Figure 4a shows the bandwidth results obtained for the CPU

region. In all STREAM benchmarks and pChase, which were

designed to measure bandwidth magnitudes, a remarkable

bandwidth improvement factor of 4x more bandwidth than

the baseline for the CPU space was obtained. As a

result, significant larger number of memory transactions are

simultaneously processed. Therefore, the memory parallelism

obtained through MC-scaling also reduces the size of the

transaction queues and time transactions occupied in the

queue.

Alternatively, since bandwidth and latency are related,

bandwidth increase is followed by a latency reduction. To

understand the benefits of the lower latency obtained, we

have measured the transaction queue average occupancy

and duration in the CPU spaces. Compared to the baseline,

transaction queue occupancy is respectively reduced about

90%, as shown on the right side of Figure 4a.

The speedups obtained across the benchmarks for the

CPU regions are illustrated on Figure 4b. In this figure,

for all benchmarks, we observe that speedups increase in

the same proportion as a result of the larger scalability.

For STREAM, speedups of CPU spaces are up to 4x faster

than the baseline, therefore noticeably faster. Similar scaling

trends are obtained for pChase as well. Furthermore, it is

important to highlight that significant results obtained in
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pChase in regarding to speedups, bandwidth, and latency

given that they are obtained with random accesses, they

also demonstrate the generality of the solution when high-

bandwidth is required by the application, as demonstrated

from the diversity of benchmarks employed in this evaluation

either in CPU or GPU spaces.

As mentioned before the method to obtain the bandwidth

of the heterogeneous region, given that we have arbitrarily

selected the CPU bandwidth to be used in this method, so

bandwidth results for the GPU spaces are not shown though

concentrating on their speedups. The correspondent speedups

are illustrated in Figure 5a. For all benchmarks programs

we observe similar behavior to the CPU spaces regarding

MC scaling, that is, speedups proportionally increases as

the number of MCs increases. For Hotspot, Pathfinder,

Backpropagation, and Srad, similar improvement trends

are obtained. The largest bandwidth/speedup improvements

occur for Pathfinder, achieving about 4.5x faster than the

baseline, due to its access pattern and MPKI magnitudes

(refer to Table 2). Moreover, these significant speedup results

show that memory traffic is contained in the CPU spaces.

The same bandwidth trends happen regarding the

heterogeneous CPU/GPU region, i.e., MCs proportionally

scales with bandwidth as shown in Figure 5b. With the

assumption of equivalent number of memory requests on the

CPU and GPU individual spaces, we have obtained up to

2x bandwidth, assuming the baseline described as follows.

Instead of having the previous baseline reference (2 MCs),

we have preferred to present the above results having the

CPU region as a general baseline in order to demonstrate

their smaller bandwidth comparatively to the CPU regions

obtained in Figure 4a.

As a general conclusion, we observe that for individual

CPU or GPU spaces, as well as for the heterogeneous one,

MC scaling benefits performance by improving memory

parallelism. Combined CPU/GPU sets need more bandwidth

to achieve the same levels of speedup of independent ones.

Finally, although it is not our aim to compare

parallelization techniques and parallel architectures, it is

interesting to observe that, using the same inputs for CPU

and GPU spaces, the behavior of the performance of the

benchmarks experimented in these two platforms is different.

Hotspot presents a better performance on the CPU regions,

whilst Pathfinder on the GPU ones. In Rodinia, these GPU

programs were parallelized using CUDA, while on the CPU

versions, the same Rodinia applications utilized OpenMP.

This apparent inconsistency happens due to the fact that

in order to have a fair performance comparison between

programs executed on different architectures, as indicated

in [17], we should have both programs parallelized in

both platforms using similar techniques to achieve the best

possible performance on that architecture. For example, if

parallelized in CUDA, the program indirectly control GPU

caches, and similar techniques should be employed for the

CPU version aiming to have the fairest comparison; therefore

it is not possible to have a fair comparison under these

circumstances without developing all the steps as target.
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Figure 5: top to bottom: (a) Speedup versus number of MCs

for GPU regions; (b) bandwidth results for heterogeneous

region (CPUs and GPU shared region); the baseline for the

heterogeneous region is assumed as the same of Figure 4a

5 Related work

10 TB/s-bandwidth Corona [10] optical memory system (160

GB/s/MC) was designed aiming low energy levels (7.8 nJ/bit)

per memory channel access, and most importantly, with only

2 optical I/O-pins per optical memory. In this study, we

employ traditional digital MC organization and electrical and

therefore, MC scaling limits are significantly limited.

HMC [14] is a recent memory solution designed to target

3Dstacking and for off-chip memory systems. In the case

of off-chip memories, either HMC or this study use an

external memory package as memory ranks. HMC organizes

its memory package by employing sets of banks of the

memory dies, and processor/memory communication is done

via serial/deserial, with 10-Gbit/s-I/O-links. To contrast with

HMC, in this study, we follow a typical DDR memory

organization, however, we share with this technology the use

of external memory packages.

The levels of MC scaling employed in this study

are significantly lower than the employed in RF-memory

systems [21], given the latter approaches MC scalability in a
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similar way to optics (RFpins and optical-pins to favor MC

scalability).

6 Conclusions

In this investigation, we proposed a strategy to increase

the memory bandwidth of heterogeneous embedded mobile

systems, consisting of having individual address spaces for

CPUs and GPUs, or for heterogeneous shared CPU/GPU

spaces, whereas on each one, we evaluate the effects of

scaling MCs on the memory bandwidth. The result of this

investigation indicates significant bandwidth and speedup

improvements in each type of address space listed.

As a further effort, we plan to implement and evaluate

the larger MC scalabilities via optical and RF techniques as

well as investigate the benefits of these techniques in terms

of energy benefits. Furthermore, we also aim to investigate

the benefits of programs where tasks are divided among

CPUs and GPUs using CUDA/OpenCL programming APIs.

We also intend to proper identify, propose allocation and

reconfiguration mechanisms of these address spaces as a

future effort.
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