
Analysing the Resolution of
Security Bugs in Software

Maintenance

Saad Bin Saleem
BS(Hons) and MS

Department of Computing and Communications
The Open University

A thesis submitted for the degree of
Doctor of Philosophy

June 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Online

https://core.ac.uk/display/30275171?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

Abstract

Security bugs in software systems are often reported after incidents of mali-

cious attacks. Developers often need to resolve these bugs quickly in order

to maintain the security of such systems. Bug resolution includes two kinds

of activities: triaging confirms that the bugs are indeed security problems,

after which fixing involves making changes to the code.

It is reported in the literature that, statistically, security bugs are reopened

more often compared to others, which poses two new research questions: (a)

Are developers “rushing” to triage security bugs too soon under the pressure

of deadlines? (b) Do developers need to spend more time fixing security bugs

to avoid frequent reopening?

This thesis explores these questions in order to determine whether security

bug fixing should take a higher priority than other bugs to avoid malicious

attackers exploiting vulnerabilities before the problems are fixed, and whether

security bug fixing should take a higher priority than other bugs.

In this thesis a quantitative approach has been adopted by conducting sta-

tistical empirical studies to observe the behaviour of software developers

engaged in dealing with security bugs.

Firstly, the concept of “rush” has been borrowed from the time management

literature to refer to the behaviour of people delivering work under the pres-

sure of deadlines. By observing how developers deliver bug resolution before

the deadline of releases,the degree of rush has been measured as the ratio

between the actual time spent by developers during triaging and the theo-

iii

retical time the developers have by delaying the fixes until the next regular

release.

In this thesis, a suggest that delaying bug assignment helps find the right

developer and gives the developer more time to prepare for the same workload

with more relaxed planning constraints. Secondly, to analyse the complexity

of security bug fixes, the fan-in complexity of functions relevant to security

bugs has been measured, rather than simply measuring the time spent by

the software developers on the fixing of such bugs.

The first null hypothesis is tested using a Man-Whitney method on five soft-

ware case studies, Samba, Mozilla Firefox , Red Hat , FreeBSD and Mozilla.

The second null hypothesis is tested by comparing the results of fixing secu-

rity and non-security bugs from the Samba and Mozilla Firefox case studies.

Statistically significant results suggest that security bugs are triaged in a

rush compared to non-security bugs for Red Hat , FreeBSD and Mozilla. In

terms of fan-in, the results of the Samba and Mozilla Firefox case studies

suggest that security bugs are more complex to fix compared to non-security

bugs.

iv

Acknowledgements

I want to thank my supervisors Yijun Yu, Bashar Nuseibeh for their contin-

uous support, encouragement, feedback and invaluable guidance in finishing

this thesis.

I am especially grateful to my supervisor, Yijun Yu, for his support in mak-

ing this work technically sound, and Bashar Nuseibeh for giving high level

comments and support to complete the thesis. I also want to thank Charles

Haley for his valuable reviews and comments at the early stage of my re-

search and Thein Tun for his reviews and occasional discussions relevant to

my research. To, Guenther Ruhe for discussions on the concept of planning

releases. To Arosha Bandra and Marian Petre for their moral support and

ideas to improve my work.

I would like to thank my examiners Professor Haris Mouratidis and Professor

Andrea Zisman for their constructive feedback to improve my work.

Special thanks goes to my mother, Nusrat Saleem, and my brothers Kashif

Saleem and Arslan Saleem for their continuous encouragement and support

throughout this difficult time. I cannot forget to acknowledge my late father,

Rana Muhammad Saleem, for encouraging and inspiring me to get a higher

education.

I am grateful to my fellow postgraduate students at the Department of Com-

puting and Communications and friends within and outside the Open Uni-

versity who were always available to help.

Finally, I am grateful to the Department of Computing and Communications

v

at The Open University. It would have been impossible to complete this

thesis without their continuous help and support.

vi

Publications

All the work in this thesis describes original contributions of the author.

• Svahnberg, Mikael; Gorschek, Tony; Feldt, Robert; Torkar, Richard;

Saleem, Saad Bin; and Shafique, Muhammad Usman (2010). A sys-

tematic review on strategic release planning models. In: The Journal

of Information and Software Technology, vol. 52, no. 3, pp. 237-

248. A measurement metric for rush inspired by the release planning

literature is detail in Chapter 3.

• Saleem, Saad Bin; Montrieux, Lionel; Yu, Yijun; Tun, Thein and

Nuseibeh, Bashar (2013). Maintaining security requirements of soft-

ware systems using evolving crosscutting dependencies. In: Chitchyan,

Ruzanna; Moreira, Ana; Araujo, Joao and Rashid, Awais eds. As-

pect Oriented Requirements Engineering, pp. 167-181, Springer. An

improved version of the proposed measurement is detailed in Chapter

4.

vii

viii

List of Figures

1.1 The graphical representation of research methodology with the

stages and inputs/outputs. 18

2.1 The summary of literature gaps grouping and the derived re-

search question from each gap group. 45

3.1 An example to explain the concept of rush using the time-

stamps of the bug number 7494 of Samba case study. 51

3.2 An example bug entry screen-shot. 53

3.3 An example bug activity screen-shot. 54

3.4 Relationship between bug life cycle labels L of Zaman et al.

(2011) and the derived bug life cycle labels C. 58

3.5 The relationship between bug derived life cycle C to the planned

bug life-cycle C ′. 63

3.6 The bug status and resolution description. 64

3.7 Rush in the triaging of CVE and Non-CVE bugs in the case

studies for the Samba, Mozilla Firefox ,Red Hat , FreeBSD ,

Mozilla. 69

3.8 The results of Mann Whitney U-test for Samba case study

from SPSS package. 72

3.9 The results of Mann Whitney U-test for Mozilla Firefox case

study from SPSS package. 73

ix

3.10 The results of Mann Whitney U-test for Red Hat case study

from SPSS package. 74

3.11 The results of Mann Whitney U-test for FreeBSD case study

from SPSS package. 75

3.12 The results of Mann Whitney U-test for Mozilla case study

from SPSS package. 76

4.1 The distributions of the fan-ins among functions. 89

4.2 The average fan-in of Samba and Mozilla Firefox case studies. 99

A.1 The example of logB data to retrieve the value of tREPORTED. 123

A.2 The example of logA data to obtain the bug tASSIGNED and

tRESOLV ED time stamps. 127

x

List of Tables

3.1 Gaps filled by answering the first research question (RQ1). . . 81

4.1 Gaps filled by answering the second research question (RQ2). . 104

B.1 Symbols and definitions used in Chapter 3. 136

B.2 Symbols and definitions used in Chapter 4. 137

xi

xii

Chapter 1

Introduction

In the year 2013, on average 13 vulnerabilities were reported every day out

of the annual total of 4,794 records in the National Vulnerability Database

(NVD) 1. Statistics show that the number of reported vulnerabilities in year

2013 was higher than the last five years (Florian, 2014). Most of these re-

ported vulnerabilities have been exploited by malicious attackers (Nagaraju

et al., 2013), which caused the loss of millions of dollars and damaged the

reputation of vendors. Not only is the exploitation of reported vulnerabilities

growing, but recent trends show an increase in the exploitation of unknown

or zero-day vulnerabilities as well (Donohue, 2014). The exploitation of such

types of vulnerability is even worse for the reputation of the vendors because

the zero-day vulnerability attacks not only cause security failure in the soft-

ware system but also show the vendors’ lack of awareness about the security

flaws in their system.

For example, credit and debit cards worth $130 million dollars were compro-

mised in a security breach of Heartland Payment Systems Inc. The company

has spent a total of $139.4 million dollars dealing with this security breach

issue (Vijayan, 2010). The cause of such a massive data breach was a bug

in the code of a web form which allowed access to the company’s corporate

1http://nvd.nist.gov/

13

network (Cheney, 2010).

In another security breach, a flaw was found in the release 1.7 of the Java

Virtual Machine (JVM) software owned by the Oracle Inc. This security

flaw started a debate in the news media about the security standards’ of

Oracle (Finkle, 2013). During the investigation of the attack, security ex-

perts from the US Department of Homeland Security explained that hackers

had exploited a bug in a version of Java using Internet Explorer to install

malicious software.

In general, a bug is defined as a problem in the software specification, design

and code or unexpected behaviour of the software program which leads to the

failure or improper functionality of the software system (Grubb and Takang,

2003). Specifically, a bug is referred to as security related when it creates

vulnerability in the software, which the malicious attackers could exploit to

attack the system (Viega and McGraw, 2011).

For example, the malicious attackers can exploit a buffer overflow bug in

which a program tries to store more data in a buffer (temporary data storage

area or random access memory) than its intended range (Margaret, 2007). As

the result of buffer overflow, the extra data of a program corrupts or overwrite

data into the adjacent buffers. This extra data may contain code designed

to do specific actions or send instructions to attack the software system.

Resulting in damage to data or disclosing the confidential information. The

buffer overflow bug is one of the common causes of security vulnerabilities

relevant to random access memory. Usually, such vulnerabilities lead to the

data integrity breaches.

It was reported by the institute of Security Leadership Essentials for Man-

agers (SANS) that in 2008 just two bugs caused half a million security

breaches 2. The growing exploitation of system vulnerabilities due to bugs

indicates the failure of software system security at two levels. The first source

of failure is overlooking at the security requirements of the system up-front,

2http://www.sans.org/

14

with no or bad security planning of the system by designers and the igno-

rance of programmers on security aspects of the system while writing the

code. The second source of the problem is giving insufficient attention to

maintaining the security of the system by resolving security bugs.

As a matter of fact all the security relevant bugs (those which can cause

potential vulnerability in the system) are difficult to detect at the testing

stage (Pfleeger and Pfleeger, 2006). Therefore, software developers not only

need to hunt for the security bugs (Arce, 2002) but also need to ensure the

proper resolution of such bugs to protect the system from malicious attackers.

For this reason, the focus of this thesis is to study about the resolution of

security bugs.

The gaps relevant to security bugs has been identified in Chapter 2 literature

review. In the following subsections, the key contribution of this thesis, the

research methodology and the structure of the thesis are discussed.

1.1 Contributions

This thesis provides a novel contribution concerning the resolution of security

bugs. Before explaining each contribution of the thesis, below is the definition

of terms used.

In this thesis, triaging refers to a process to priorities and assign bugs to

developers for fixing during their resolution. Throughout this thesis, “rush“

is refered to the time management behaviour of software developers on the

triaging of bugs. The “fan-in“ is an already established concept refers to the

number of times a function is invoked by the other functions. The Common

Vulnerability and Exposure (CVE) bugs are used as the confirmed security

bugs in this thesis.

The following are the contributions of this thesis.

• A technique to measure the degree of “rush” (the time management

behaviour of software developers) on the triaging of security and the

15

other types of bug.

According to the knowledge of the author of this thesis, this thesis is the

first to introduce the notion of “rush” in the triaging of bugs. The concept

of “rush” is borrowed from the time management literature for referring to

the behaviour of software developers delivering work under the pressure of

deadlines. Originally, “rush” is a concept in the time management litera-

ture refers to the behaviour of people delivering work under the pressure

of deadlines. During the triaging of bugs, it is challenging for the develop-

ers to priorities the fixing of bugs given the resource constraints and release

deadlines. Especially in the case of security bugs, it is very important to

priorities the fixing of high priority bugs and still deliver the fix on sched-

ule. The proposed technique to measure “rush“ in the triaging of bugs is

developed keeping this concern in mind. Therefore, the author of this thesis

claims that the proposed technique to measure “rush” in the triaging of bugs

is unique and new.

• A technique to measure the complexity of functions relevant to security

and the other types of bug fixes using the “fan-in” metric.

The fan-in is an already established concept, however according to the knowl-

edge of the author of this thesis. This thesis is the first to apply the fan-in

concept for developing a technique to measure the complexity of functions

relevant to bug fixes.

• An empirical study to measure “rush” (the time management behaviour

of software developers) on the triaging of security bugs and to measure

the complexity of functions relevant to bug fixes.

In this thesis, the demonstration of applying the techniques to measure rush

and the complexity of functions relevant to bug fixes to five case studies

(Samba, Mozilla Firefox ,Red Hat , FreeBSD and Mozilla) is unique. Es-

pecially, this thesis is the first to use Samba case study for analysing the

activities of bug resolution.

16

1.2 Research Methodology

In this thesis, the research is organised in the following stages as shown in

Figure 1.1: (a) search bug fixing literature, (b) identify gaps in the literature

studies, (c) classify the gaps into groups, (d) Formulate the research ques-

tions to fill the gaps, and (e) validate that the research questions has been

addressed and (f) validate that the gaps has been filled by addressing the

research questions.

1.2.1 Search security bug’s resolution literature

In the literature search phase, the terms such as “security bug resolution”,

“resolving security bugs”, “fixing security bugs” and “security bugs”, etc.

has been provided to the literature databases. Mainly, the “Google Scholar”

and “Computer Science Bibliography (DBLP)” has been used to search for

the relevant studies. To include/exclude a study in the list of studies rele-

vant to the resolution of security bugs, the author of this thesis has manu-

ally scanned the “title”, “abstract”, “introduction” and “conclusion” of each

study. Although, the author has also skimmed through the studies in some

cases when it was not straight forward to decide whether the study is relevant

to the resolution of security bugs.

1.2.2 Identify gaps relevant to the resolution of secu-

rity bugs

To find gaps in the studies relevant to the resolution of security bugs, first

each study has been read by the author of this thesis to identify the “problem”

addressed in the study, the proposed “solution” to the problem and the

method of “evaluation”. In the next stage, the “problem”, “solution” and

the “evaluation” method of each study has been synthesised and scrutinised

by the author of this thesis. In some cases, the study has been discussed with

17

Start

Search Security Bug’s

Resolution Literature

Studies relevant to

the resolution of

security bugs

Bug Triaging Bug Fixing
Categorise Gaps

Formulate the Research

Questions

Address the Research

Questions

Validate that the Research

Questions has been

addressed

End

GG1 GG2

Validate that the Gaps has

been filled

Gaps relevant to the

resolution of

security bugs

Identify Gaps relevant to

the Resolution of Security

Bugs

Identify Gaps relevant to

Bug Triaging and Fixing

Activities

Gaps relevant to bug

triaging and fixing

activities

Group Gaps

RQ1 RQ2Technique to

measure rush in

bug triaging

Technique to

measure bug fix

code complexity

Results from

the case studies

Figure 1.1: The graphical representation of research methodology with the
stages and inputs/outputs.

the supervisors to take their opinion. Finally, a gap is determined in each

study by the author of this thesis based on his synthesis and observations

18

about the study.

1.2.3 Categorise gaps

After finding gaps in the studies relevant to the resolution of security bugs,

each gap has been categorised according to the triaging and fixing activities

of bug resolution. The bug triaging involves reproducing and prioritising the

bugs by the software developers before assigning it to fixing. The bug fixing

involves making changes to the code. The outcome of bug triaging process is

bug reports and the outcome of bug fixing process is code patches. Therefore,

after categorisation of gaps relevant to the resolution of security bugs; further

literature search has been conducted to find out studies relevant to triaging

of security bugs by the software developers, fixing security bugs by making

changes to the code and about the outcome of bug resolution as the bug

reports and code patches.

1.2.4 Identify gaps relevant to triaging and fixing ac-

tivities

The similar process to identify gaps relevant to the resolution of security bugs

as discussed in Sub-section 1.2.2 has been adopted to identify gaps relevant

to the bug triaging and fixing activities. In this way, the list of gaps has

been prepared that contains gaps relevant to the triaging of security bugs by

the software developers, the fixing of security bugs by making changes to the

code and about the outcome of bug resolution as the bug reports and code

patches.

1.2.5 Group gaps

As the gaps relevant to the resolution of security bugs are categorised into

two main categorise (bug triaging and fixing). Therefore, each gap is related

19

to bug triaging and fixing from the list of gaps. The gaps relevant to the

triaging of security bugs has been grouped together and named as the “first

group of gaps” and the gaps relevant to the fixing of security bugs are named

as the “second group of gaps”.

1.2.6 Formulate the research questions

During the gaps analysis of security bug resolution, it is found in the literature

that security bugs are triaged faster and reopened more frequently compared

to the other bugs. Therefore, two research questions relevant to the triaging

of bugs has been identified as listed in Section 2.6. Similarly, a gap relevant

to the fixing of security bugs has been identified during the gaps analysis

of security bug resolution. The bug fix complexity is relevant to the fixing

activity of bug resolution; therefore the gaps relevant to the fixing of bugs

are grouped into one category. The two research questions are formulated to

know about the bug fix complexity of security bugs as reported in Section 2.6.

1.2.7 Address the research questions

To address the formulated first research question, a technique to measure

rush in the triaging of bugs has been developed. Similarly, to address the

second research question, a technique to measure bug fix code complexity

has been developed.

1.2.8 Validate that the research questions has been ad-

dressed

For the validation that research question has been addressed, the following

two options has been scrutinsed for conducting the case studies.

Deeply involved with development process:. The first option is to

observe the security bug resolution process in a real industrial setting by

20

actually resolving the bugs or interviewing the software developers. For this

purpose, An industrial case study needs to be searched that already has a

bug resolution process in place and whose developers have some experience

of resolving security bugs. However, the following challenges are identified

in conducting the study in such a way.

1. As a researcher, getting access to an industrial security critical project

is difficult if not impossible, because usually organisations cannot share

their security breach data with outsiders;

2. Software developers are generally reluctant to share detailed inside

knowledge about their personal process for resolving security bugs be-

cause of the fear to lose privacy;

3. Researchers may impose confirmation bias and subjectivity by getting

deeply involved with the developers which may cause the change of the

data;

4. All organisations have different processes in place for bug resolution,

therefore repeating one study requires changing the settings to another

case study which may lose the generality of the findings.

On the other hand, the strength of conducting this type of case study is that

developers can immediately confirm and verify the findings.

Collecting and analysing historical data from publicly available

projects:. Another option is to analyse how the security relevant bugs

were resolved in the past using historical bug resolution data. Although the

threat of not getting the documentation of security bugs from the organi-

sations is still valid for such types of case studies, a key advantage is that,

bug reports and code repositories of open source security critical projects

is readily accessible from their repositories and could be verified by other

developers and researchers.

The following enumerates the advantages of conducting a case study using

historical data.

21

1. It is easier to repeat the study using the historical data of bugs resolved

in the past rather than using qualitative data that are subject to varying

interpretations;

2. The findings are easier to generalise as the other researchers can verify

them by repeating the study using the same settings.

3. The results produced are more reliable compared to the results inter-

preted from the process of bug resolution or through the interviews of

the software developers.

4. Getting access to the historical data is relatively easier than arranging

interviews with the software developers.

One drawback of conducting a case study using historical data is that the

results might be different if the organisation changes their process in the

future.

Taking into account of the advantages and disadvantages of the two options,

the decision has been made to conduct the case studies using the historical

data of open source projects (e.g., Samba 3) to observe their security bug

resolution process. The five case studies (Samba, Mozilla Firefox , Mozilla,

Red Hat , FreeBSD) has been conducted to validate that first research ques-

tion has been addressed. On the other hand, the technique to measure code

complexity of bug fixes has been validated on the two above cases (Samba,

Mozilla Firefox).

1.2.9 Validate that the gaps has been filled

At-last, the results of case studies has been mapped with the research ques-

tion to conclude that the identified gaps in the literature have been addressed.

3https://www.samba.org/

22

1.3 Justifying the choice of empirical case study

During the design of research, the author of this thesis has thought about the

reliability of results and what to consider as a valid answer from the outcome

of the research. The purpose of this thesis is “to investigate the resolution

process of security bugs”, which require observations of bug resolution pro-

cess. Therefore, the positivists philosophical stance has been adopted for

accepting the evidence in response to the designed research questions. The

positivists philosophical stance states that “all knowledge must be based on

logical inference from a set of observable facts” (Easterbrook et al., 2008).

In the above subsection about “validate that the research questions has been

addressed” 1.2.8 of research methodology section, the options to chose a re-

search method for collecting data are discussed. The confirmatory case study

method has been chosen as a method of investigation because the purpose of

this study is to test the hypothesis based on existing literature (Yin, 2014).

Another reason of choosing the empirical case study is the availability of data

in the open source projects as discussed in above section 1.2.8. This study is

designed for the multiple cases for the greater validity. As the nature of this

study is confirmatory, therefore same results are expected from the outcome

of different case studies (literal replications). A security critical project is a

unit of analysis for each case in this thesis. The process of resolving bugs

might be different for different organisations and projects. It means chang-

ing context can influence on the observations. Therefore, the case studies are

preferred over the controlled experiments for this study.

1.4 Structure of the thesis

The thesis is organised into five chapters. In Chapter 2, gaps relevant to

security bugs has been identified and organised into groups. After the group-

ing of gaps, two research questions has been formulated to be addressed in

the technical chapters. The Chapter 3 is about measuring rush the time

23

management behaviour of software developers on the triaging of bugs. The

technique is applied to the five case studies that includes Samba, Mozilla

Firefox , and Red Hat , FreeBSD and Mozilla. The Chapter 4 is about mea-

suring the fan-in complexity of functions relevant to bug fixes. The fan-in

complexity technique is applied to Samba and Mozilla Firefox case studies.

The both chapters include the details of algorithms used for the development

of technique. The chapters also include explanation of tools developed for

data collection and analysis to conduct the case studies. Finally, Chapter 5

provides the conclusion and discusses the future work and vision.

24

Chapter 2

Literature Review

Security bugs are one of the primary concerns for software developers during

maintenance of the systems as motivated in the introduction. The focus of

this chapter is on categorising existing studies relevant to security bugs to

address the problem of maintaining security in a software system.

2.1 Security Bugs

According to Zaman et al. (2011) on average a security bug reopens 2.5 times

more frequently than a performance bug and significantly more often than

the other types of bug. One can conclude from this finding that the security

bugs are more often prematurely resolved compared to the other bugs by

the software developers. Following this finding, the study has also reported

that on average a security bug is triaged faster compared to the other bugs

during their resolution. The study has explained that it might be possible

that developers strategically triage security bugs faster to hide information

about the fixing of such bugs from the attackers to avoid further exploit of the

system. However the faster triage and then frequent reopening also pose a

question whether the software developers rush to resolve security bugs on the

triaging. The follow up question is whether rush by the software developers is

25

the reason of security bugs premature assignment and frequent reopening. As

the focus of this thesis is on the resolution of security bugs, which involves

bug triaging. Therefore, investigating whether developers rush to triaging

security bugs will help to improve the overall process of resolving security

bugs.

In another study, Bhattacharya et al. (2013) have measured the median bug

fixing time of security and the other types of bug for the Mozilla and Google

code-based apps. The study has found that the security bugs were given high

priority in the Mozilla case study compared to the Google code-based apps.

The finding indicates that security bugs are treated differently in different

systems. Therefore, it is very difficult to generalise that faster triage of

security bugs is because of their higher priority compared to the other bugs.

On the other hand, Mitropoulos et al. (2012) has found that the number

of unresolved security bugs are increasing in the projects compared to the

other bugs. Similarly, Li et al. (2006) have reported that the percentage of

unresolved security bugs is increasing in the Mozilla Firefox and Apache open

source systems.The both studies has not provided any scientific explanation

of this phenomena. Although, Li et al. (2006) has explained that the proper

resolution of security bugs is becoming important for all types of software

systems. This finding leads to a question that why more security bugs are

found unresolved in such systems. one can argue that complexity in fixing

of such bugs might attribute to their status being unresolved for the longer

period of time compared to the other bugs. In another study, Caglayan et al.

(2012) have argued that a bug fix takes more time of developers in case its

affected code have higher complexity. However, it is difficult to justify this

argument higher code complexity contributes to the status of security bugs

being unresolved without knowing whether such bugs are more complex to

fix.

As the bug fix complexity is related to the fixing stage of bug resolution,

therefore knowing about the complexity of security fixes will also help to

26

improve the resolution process of security bugs.

In this section, focus has been on the studies about and relevant to security

bugs, and the following gaps labelled by SB, which stands for Security Bugs

has been identified.

SB1: There is a need to investigate whether rush by the software developers

on the triaging of security bugs is one of the reasons of their premature

assignment and then frequent reopening (Zaman et al., 2011),(Bhat-

tacharya et al., 2013).

SB2: There is a need to investigate whether security bugs are more complex

to fix compared to the other bugs (Caglayan et al., 2012).

The gap relevant to rush in triaging and bug fix complexity relevant to fixing

activities of security bugs are related to the resolution process, which will be

detailed in the next section.

2.2 Bug Resolution Process

Triaging and fixing are the main activities involved in bug resolution (Xia

et al., 2013). Bug triaging is concerned with the prioritisation and assign-

ment of bugs to the right developers for fixing (Mani et al., 2013). After the

assignment of a bug to the right developer, the bug fixing involves chang-

ing the code affected by the bug (Zeller, 2002). The following sections are

discussing studies relevant to triaging and fixing activities.

2.2.1 Bug triaging

The developer who triage a bug needs to make sure that enough information

is available to reproduce the bug (Anvik et al., 2006). According to Baysal

et al. (2012), the fixing and reopening of a bug depends on how well the bug

is triaged. In two other studies, Guo et al. (2010) and Guo et al. (2011)

have argued that there is a higher chance of bug re-assignment if a developer

assign bug for fixing without understanding its cause.

27

Similarly, Jeong et al. (2009) have argued that there is a less chance of re-

assigning bugs to other developers in case the developer who triages the

bug (a) carefully reproduce the bug by understanding the cause of bug, and

(b) has assigned the bug to the right developer according to the problem

description. All the above studies have emphasised that the developer should

carefully triages the bug. However, none of these studies have quantitatively

analysed bug triaging activity by the software developers.

As bug triaging activity is relevant to the resolution of security bugs, therefore

without analysing bug triaging activity one can not know whether security

bugs are triaged in rush. Therefore, quantitative analysis of bug triaigng

activity is necessary to fill a gap relevant to the security bugs.

In another study, Francalanci and Merlo (2008) have found that the most

of bugs are fixed closer to the release dates. They have explained that this

phenomenon shows when the release date approaches developers hasten to fix

bugs with the aim of including changes in the forthcoming release. Usually,

the delivery of a bug fix is prioritised during triaging. Therefore in this hustle

to fix bugs in the forth coming release, practically the developers can prolong

the fixing of low priority bugs those can still be delivered in the next release

in parallel to fixing the high priority bugs. In this way, the developers can

deliver more high priority bugs within their resource limits. However, in

their analysis to fix bugs near to the release deadlines. The study has not

considered this practical fact that the developers can prolong the fixing of

some bugs to fix more high priority bugs.

As the focus of this study is to measure rush during the triaging of bugs

reflecting the real life software project. Therefore, it is necessary to consider

the practical situation of bug fixing when the developers have to fix high

priority bugs within the given release deadlines.

Similarly, Hooimeijer and Weimer (2007) have found that the daily workload

of the developers can affect on their ability to triage bugs. This finding

indicates that there is a possibility that the developer who triages the bug

28

with the bigger workload might assign it to the other developer without

understanding the cause of the problem. Therefore, there is a possibility that

the developers might rush during the triaging of bugs due to the workload

and can assign the bug to the wrong developer leading to the re-assignment

or re-opening of bugs. However, the study has not measure rush during the

triaging of bugs by the software developers.

2.2.2 Bug fixing

During the fixing of bugs, the developers make changes to the affected source

code as a solution to recover the system in its operational state (Thung

et al., 2013). According to Zhang et al. (2013) have found that the quickness

and slowness in the fixing of bugs by developers depends on the complexity

of code relevant to bugs. Similarly, Murphy-Hill et al. (2013) have found

that the developers fix the bugs with the higher code complexity nearer to

the release deadlines compared to the bugs with the lower code complexity.

These finding indicate that the bugs with the higher code complexity can be

difficult to fix. However, neither study have measured the complexity of code

relevant to bug fixes to argue that the bugs with the higher code complexity

are indeed difficult to fix.

In their study, Zhang et al. (2012), have argued that the bugs with the higher

code complexity are not as simple to fix. Similarly, Shihab et al. (2010) have

argued that the bugs with the higher code complexity are complex to fix

for the software developers. In other studies, Marks et al. (2011), Kim and

Whitehead, Jr. (2006) and Weiss et al. (2007) are agreed with the findings

of Shihab et al. (2010) that code complexity of bug fixes can increase their

fixing time. But these studies have used the bug fixing duration and average

bug fixing time as the measure of the complexity of code relevant to bugs.

However, it is not necessary that the developers immediately start making

changes to the code without spending some time in understanding the cause

of the bug. Therefore, the claim that those bugs took more time to be fixed by

29

developers are complex without actually measuring their code complexity is

not fully quantified. The above studies are relevant to this thesis as they are

supporting the argument presented in this thesis to measure the complexity

of bug fixes.

Other studies by Anbalagan and Vouk (2009) and Giger et al. (2010) have

acknowledged that claiming the bugs those are more complex to fix take the

more time of developers is very shallow without measuring the complexity

of code relevant to bugs using the code complexity metric. However, these

studies themselves have not measured the complexity of code relevant to bugs

using any other technique than the fixing time.

2.2.3 Gaps in the study of bug resolution

In this section, the focus was on the studies about and relevant to the bug

resolution process which include bug triaging and fixing. The following is a

summary of gaps identified from the studies, the gaps are labelled as BR,

which stands for Bug Resolution.

BR1: There is a need to quantitatively analyse how the developers triage

bugs during their resolution (Guo et al., 2010),(Guo et al., 2011),(Jeong

et al., 2009).

BR2: There is a need to measure rush during bug triaging considering the

practical handling of bugs by the software developer near to the re-

lease deadlines (Francalanci and Merlo, 2008),(Hooimeijer and Weimer,

2007).

BR3: There is a need to measure the complexity of code relevant to bug

fixes to argue that bugs with the higher code complexity are difficult

to fix (Zhang et al., 2013),(Murphy-Hill et al., 2013).

BR4: There is a need to verify that the bugs with the higher code complex-

ity are more difficult to fix using different complexity metrics from the

fixing time (Zhang et al., 2012),(Shihab et al., 2010),(Kim and White-

head, Jr., 2006),(Weiss et al., 2007),(Anbalagan and Vouk, 2009),(Giger

30

et al., 2010).

In previous two sections, the two key gaps has been identified: (a) there is a

need to measure rush by the software developers in the triaging of bugs, and

(b) the bugs with the higher code complexity are difficult to fix. Therefore, in

the next two sections the focus of study is on the rush behaviour of software

developers during triaging of bugs and on studies about the complexity of

code relevant to bug fixes.

2.3 Software Developers

In software maintenance, the developers’ personal traits, such as the be-

haviour towards time management, play an important role in their outputs

(Wynekoop and Walz, 2000). Therefore, a detailed discussion is provided to

describe the relationship between the time management behaviour of soft-

ware developers and how such behaviour can be measured.

According to Ye and Kishida (2003), Ko et al. (2006) and Xiao and Afzal

(2010) that not only the technical skills but the personality traits, such as the

time management behaviour of the developers are equally important to suc-

cessfully resolve the bugs. Usually, the developers are not working on a single

project or doing only one task at a time. Therefore, it becomes extremely

important how the software developers manage their time to complete the

assigned tasks within the deadlines (Sillitti et al., 2003). Bad time manage-

ment behaviour means that either the developer delays the completion of

the task or quickly finishes the task in a rush without caring much about

doing the work properly. Rush is a time management behaviour of software

developers under the pressure of deadlines as suggested by the König and

Kleinmann (2005).

Other studies by Rasch and Tosi (1992) and Höst et al. (2000) have discussed

how time pressure can affect the rate of task completion by developers, be-

cause under time pressures either the developers try to finish the task in

31

a rush or slow down the work on some tasks. All these studies have indi-

cated that time pressure affects developers’ outputs. However, none of these

studies has discussed how rush the time management behaviour of software

developers, can be measured when they are under the pressure of time.

Peralta et al. (2010) have measured the daily and weekly utilisation of time

by software developers to analyse how they managed their time to complete

the assigned tasks. However, the study did not measure rush the time man-

agement behaviour of software developers on the triaging of bugs.

In other studies, Zhong et al. (2000), Prechelt and Unger (2001) and Yanyan

and Renzuo (2008) are of the view that the time spent by software devel-

opers to complete a certain task is an indication of their time management

behaviour. For example, Johnson et al. (2003) have measured the time spent

daily by the software developers in completing the assigned tasks to evalu-

ate their behaviour towards achieving the set deadlines. They have argued

that such behavioural evaluation helps to determine the developers’ personal

process of completing the tasks. However, the study did not discuss whether

rush the time management behaviour of software developers on the triaging

of bugs, can be measured by calculating the time spent by them on their

daily task of bug assignment.

In another study, Shihab et al. (2012) have argued that reopening of bugs

depends on how fast or slow a bug is resolved by the software developers.

Based on this finding, one can conclude that the bugs which are resolved

quickly are more likely to reopen. Similarly, Jongyindee et al. (2012) have

found that the bugs marked as NEW or CLOSED by expert software devel-

opers are less likely to re-assign or reopen compared to the bugs which are

marked by the incautious developers. But neither study discusses whether

rush the time management behaviour of software developers can be one of

the reasons of their premature assignment and subsequently reopening.

In this section, the focus of study was on the studies about and relevant to

the time management behaviour of the software developers. The following

32

gaps are identified from the studies. The gaps are represented by the symbol

Software Developer (SD).

SD1: There is a need to measure rush the time management behaviour of

software developers on the triaging of bugs (Rasch and Tosi, 1992) ,

(Höst et al., 2000), and (Peralta et al., 2010).

SD2: There is a need to verify whether rush the time management behaviour

of software developers on the triaging of bugs can be measured by

calculating the time spent by them on bug assignment (Prechelt and

Unger, 2001) and (Johnson et al., 2003).

SD3: There is a need to verify whether rush the time management behaviour

of software developers can be one of the reasons of premature bug

assignment and subsequently their reopening (Jongyindee et al., 2012),

(Shihab et al., 2012).

In brief, a discussion is provided to study the code complexity metrics to

measure the complexity of code relevant to bug fixes. Techniques for such

measurement will be compared in the next section.

2.4 Code Complexity

The amount of time spent by the developers during the fixing of bugs is

directly related to the complexity of code (Banker et al., 1989). The code

metric is a quantitative method to measure the complexity of code relevant to

software systems (Henry and Selig, 1990). The source lines of code (SLOC),

Cyclomatic Complexity (CYC), and fan-in are examples of source code met-

rics based on the call graph of the system (Abandah and Alsmadi, 2013).

The call graph reflects the complexity of the code based on the relationship

between the functions (Ryder, 1979). The source line of code (SLOC) is a

code metric to count the size of a program or software system (Albrecht

and Gaffney, 1983). The Cyclomatic Complexity (CYC) helps to measure

the linearly independent paths in a program or software system (McCabe,

33

1976). However, neither technique helps to count the function calls. But

the fan-in metric is useful to count the number of times a function has been

called by the other functions (Marin et al., 2007).

In the following sub-sections, an explanation about the use of call graph

based metrics to measure the complexity of code relevant to bug fixes.

2.4.1 Call graph based metrics

The complexity of code relevant to bugs could increase the fixing time sig-

nificantly. As discussed above, there are different code metrics to measure

the complexity of the code statically. This sub-section focuses on measuring

the complexity of code relevant to bug fixes.

According to Zhang et al. (2007), the modules relevant to bugs with more

lines of code are time consuming to fix. However, the study does not mea-

sure the complexity of code relevant to bug fixes. Rather, it uses the average

module fixing time as the complexity metric. Multiple reasons, such as the

functions of the module, are tightly coupled and changing one function re-

quires changes in the other functions, which can cause a longer fixing time for

bugs. But the study does not measure the complexity of functions relevant

to bug fixes.

In another study, Nistor et al. (2013) has measured the complexity of bug

fixes inside a patch using the lines of code metric (SLOC). Based on their

results, they argued that the bugs with the larger sized patches are com-

plex to fix. The larger size of the patch does not necessarily mean that the

functions inside the patch are complex. It is possible that the logic used by

the programmer to solve a problem needs more lines of code, which actually

increases the size of the patch. Therefore, it is very difficult to generalise

that all the bug fixes with the larger patch size are complex without actually

measuring the complexity of functions relevant to bug fixes inside the patch.

Similarly, Kula et al. (2010) has measured the complexity of code relevant

to bug fixes using the cyclomatic complexity (CYC). They have found that

34

the affected code of bug patches with a complex structure of control flow

have higher fixing durations. It is possible that the developers have to search

through the whole patch to make code changes because of the broken control

flow, which causes the longer fixing duration. But this does not mean that

the functions inside the patch are also complex to fix. Therefore, it is very

difficult to generalise that the affected code relevant to bugs takes a longer

fixing duration without measuring the complexity of functions relevant to

the affected code of the bugs. However, the study does not measure the

complexity of functions inside the patch.

Shin and Williams (2008) have even gone one step further for computing the

code complexity of security and non-security functions by measuring their

lines of code and control flow structure. But the complexity of functions

relevant to bug fixes has not been computed. Secondly, in this study the

metrics of lines of code and cyclomatic complexity are used for measuring

the complexity of functions. In this way of measuring the complexity of

functions, the many functions which are invoked by the other functions inside

a patch have been ignored. When a function code is invoked by the other

functions inside a patch then the developers need to make changes to the

multiple functions relevant to bug fix, which increases the fixing duration.

Therefore, there is a need to use different complexity metrics to measure the

complexity of functions relevant to bug fixes.

2.4.2 Fan-in metric

Fan-in is one of the complexity metrics that is likely to tell the difference

between security and functionalities. It computes how many times a function

has been called by the other functions. In this section, the studies relevant

to fan-in analysis are discussed.

Marin et al. (2004) have argued that code relevant to security implementation

crosscuts many functions and have more fan-ins. However, the study has not

measured the fan-ins of functions relevant to security bug fixes.

35

In an earlier study, using a concrete example program (Saleem et al., 2013),

the author of this thesis has argued that all the crosscutting functions that

implement a security requirement shall be updated when the change to the

system is relevant to protection and asset (Haley et al., 2008). However, that

study has not quantified the complexity of crosscutting security functions in

terms of fan-ins.

In another earlier study, Yu et al. (2004) have discovered that crosscutting

implementation of a system often coincides with the crosscutting refinement

of quality requirements, which include security. The number of clones used

in the case study of the work has not been re-factored into high fan-ins

functions. Therefore, it was not possible to consider the fan-in impact of

crosscutting functions on fixing security bugs.

According to Mubarak et al. (2010), a bug fix with high fan-in classes is

more complex to fix but usually the developers have to change the affected

functions of the class relevant to a bug and that changed function might be

called by the other classes as well. Therefore, one cannot say whether a bug

is simple or complex to fix without measuring the fan-in of changed functions

relevant to a bug, rather than measuring the fan-in of classes relevant to a

bug.

Zhang et al. (2008) have used the fan-in metric to identify the methods whose

functionality is needed across the system. They argue that such methods

generate high fan-in values. This finding indicates that the developers have

to spend more time on changing the high fan-in functions. However, the

study have not measured the fan-in of functions relevant to bug fixes.

2.4.3 Gaps in the study of code complexity

In this section,the focus has been on the studies about and relevant to code

complexity metrics to measure the complexity of code relevant to bug fixes.

The following gaps are identified from the studies. The gaps are represented

by the label CC, which stands for Code Complexity.

36

CC1: There is a need to measure the complexity of functions relevant to

a bug fix using different complexity metric from the SLOC and CYC

(Zhang et al., 2007),(Nistor et al., 2013),(Kula et al., 2010),(Shin and

Williams, 2008).

CC2: There is a need to verify whether functions relevant to bug fixes have

high fan-in values (Mubarak et al., 2010),(Marin et al., 2004),(Zhang

et al., 2008).

In the sections of studies relevant to software developers and code complexity,

two key gaps has be found: (a) the need to measure rush the time manage-

ment behaviour of software developers on bug triaging, by calculating the

time spent by the software developers on bug assignment, and (b) the need

to measure the fan-in complexity of functions relevant to bug fixes. The

historical data of bug triaging is available in the bug reports, therefore to

realise the first gap, the literature relevant to bug reports for measuring rush

the time management behaviour of software developers is listed in the next

section. Similarly, the fixed code relevant to bugs is available in the code

patches, therefore the studies relevant to code patches to realise the second

gap are also included in the next section.

2.5 Software Artefacts

The bug reports and code patches are related types of software artefacts

produced during software maintenance. Usually, both artefacts are treated

as rich historical data to analyse the bug attributes and the quality of the

fixing code. In the following sub-sections, existing studies relevant to bug

reports and code patches are discussed.

2.5.1 Bug reports

In software development, whenever a new bug is found, it is documented

using a “bug tracking system” such as Bugzilla (do Rego et al., 2008). The

37

Bugzilla system requires from the reporter of the bug to fill relevant fields for

the documentation of the bug (Serrano and Ciordia, 2005), so the developers

can understand, reproduce and fix the problem. Filling information in these

fields is necessary to have a good quality bug report (Bettenburg et al., 2008).

The bug report not only helps to understand and reproduce the problem but

is also useful to keep track of the current state of bug.

In the Bugzilla system at the time of documenting the bugs, usually the

following fields are recorded (The Bugzilla Team, 2012). First, a bug is

assigned a unique identifier and its status field is updated according to its

stage in the life-cycle. A bug life-cycle starts from the time when the bug is

reported and it ends when the bug is finally closed. The names of components

and versions are recorded in which the bug is found. The importance of the

bug based on its priority and severity are also logged in the bug reports. The

name of the person to whom the bug is assigned for triaging or fixing, the

bug ids on which the bug depends on for fixing and the bug ids which are

dependent on fixing of this bug, the time when the bug is reported and the

time when the bug was last modified are all recorded in the bug report.

In research, the bug reports are used as rich historical information for the

analysis of past bugs. For example, Jain et al. (2012) have extracted the bug

reports marked as FIXED and VERIFIED from the historical bug reports

data. This past bug report data has been used for relatively quick assign-

ment of the newly reported bugs to the right developers based on their past

experience of fixing similar types of bug. The draw-back of assigning bugs

to developers based on the past bug reports assignment of bugs to the devel-

opers can reduce the triaging time, but usually the quick assignment of bugs

during triaging can lead to the re-assignment and reopening of bugs. How-

ever, the study has not extracted the bug reports data in a way to validate

whether the developers quickly assigned the bugs during the triaging.

Similarly, Ahmed and Gokhale (2009) have extracted the time stamps when

the bug status is reported and resolved from the bug modification histories

38

to measure the time spent on the resolution of bugs. In another study,

Ahmed and Gokhale (2008) have used the states of bugs to measure the bug

resolution duration according to their severity levels. Usually, the time spent

on the resolution of bugs is measured by taking the difference of time when

the bug is RESOLVED as fixed till the time period it was REPORTED.

However, the data extraction fields used in these studies are not usable for

the analysis of bug triaging.

Lamkanfi and Demeyer (2012) have extracted the time stamps when the bug

status is changed to reported and resolved, but usually the overall duration

spent on the resolution of bugs depends on the amount of time spent in

the triaging and fixing of bugs. In particular, the triage duration depends

on the availability of developers and their understanding of the problem.

However, the study has not extracted the bug status time stamps when the

bug is reported till it is assigned to the developers for measuring the time

management behaviour of software developers, such as rush during triaging.

Wu et al. (2011) have extracted the bug time stamps when the bug status is

resolved without taking into account the time stamps when the bug status

is reopened. Another study by Wang et al. (2012) has extracted the bug

reports based on time stamps when the bug status is resolved or the bugs are

marked as closed. In this way, both studies have extracted the bugs which

are either marked as closed or their status is updated to resolved, but in some

cases the bugs marked as resolved might reopen later. Therefore, ignoring

the time stamps when the bug status is reopened while extracting the bug

resolution time-stamps data might mislead on the duration of some bugs.

2.5.2 Code patches

The software system development is managed using the version control sys-

tems such as git (Loeliger and McCullough, 2012). Each version control

system maintains a log entry in the “commit log” whenever a developer

commits a patch in the source code (Chen et al., 2004). A patch reflects the

39

modifications made by the developers and the description of code changes.

Usually, a patch has a section of log message and another section describing

the code changes.

The log message contains a unique commit number to distinguish it from

the other patches, author name and email, the date of commit and a list

of names and emails of the other people to inform about the commit. The

description of code changes part begins with a file name and the bunch of

code lines started with the affected line numbers, old and new versions of the

file followed by the code fragments.

Zhou et al. (2012) have extracted the patched code relevant to bug fixes from

the code patches to analyse the size of patched code to fix the bugs. Such

an analysis is useful for determining the characteristics of the whole code

segment rather than the individual functions. However, the study did not

extract the functions relevant to fixed bugs to measure their complexity.

In another study, Fischer et al. (2003) and Cubranic and Murphy (2003) have

used the BUG and FIXED keywords to find the bugs in the patches relevant

to bug fixes. Usually, the fix in the code is marked with the bug number at

the time of commit by the developers. Therefore, one can parse the static

code of patches to extract the fixed code relevant to bugs. However, it is not

necessary that the developers always use the same keywords such as BUG

and FIXED to commit the code relevant to the bugs at the time of patching

the fix.

The changes to buggy code for fixing a bug may affect the multiple code frag-

ments of a patch or of the multiple patches (Sliwerski et al., 2005). Therefore,

such modified parts of the code can be extracted by taking the difference of

two patches using the git diff command (MacKenzie et al., 2003). How-

ever, the patch difference has not been used in these studies to extract the

functions relevant to bug fixes.

Kim and Ernst (2007) and Tian et al. (2012) have extracted the changed sets

from the patches relevant to bug fixes. Extracting the complete changed set

40

helps to know which lines or code fragments have been changed during the

bug fix, but one cannot analyse those functions relevant to the bugs which

have been changed during the fix without extracting the names of functions

from the changed set.

On the other hand, Kim et al. (2006) have parsed the patches relevant to bug

fixes to extract the components from the code hunks. Extracting the names

of components relevant to the bug fixes helps to analyse those components

which need more attention for the fixing of bugs. However, the developers

will still face problems in the fixing of bugs because there are many functions

in each component, so they have to go through all the functions relevant to

the bugs for fixing them properly. On the other hand, in cases where the

developers know which functions relevant to a bug fix have been called more

often such knowledge can reduce their effort in searching through the whole

system to fix the functions relevant to a bug. Therefore, measuring the code

complexity of functions relevant to a bug fix rather than a component will

help developers, but measuring the code complexity of functions relevant to

a bug fix is not possible without extracting the changed functions from the

code hunks of patches.

2.5.3 Gaps in the study of software artefacts

In this section, first the studies about and relevant to extracting the bug

status time stamps to measure the ”rush” time management behaviour of

software developers has been discussed. Then, the studies relevant to and

about extracting the changes functions from the changed set of the code

patches are focused upon. The following gaps are identified from the studies.

The gaps are labelled by SA, which stands for Software Artefacts.

SA1: There is a need to extract the bug status time stamps when the bug

is reported till it is assigned to developers for measuring rush the time

management behaviour of developers on bug triaging (Jain et al., 2012),

(Ahmed and Gokhale, 2009),(Lamkanfi and Demeyer, 2012).

41

SA2: There is a need to extract the bug time stamps considering the re-

opening time of bugs (Wu et al., 2011),(Wang et al., 2012).

SA3: There is a need to extract the changed functions from the patches

relevant to a bug fix to measure the complexity of functions relevant

to bug fixes fix (Kim and Ernst, 2007),(Tian et al., 2012),(Kim et al.,

2006).

2.6 Summary of Literature Gaps

The motivation of this study is to investigate the bug resolution as discussed

in the Chapter1. Based on the motivation of the study, two key gaps has

been identified involving triaging and fixing activities for the resolution of

security bugs. Therefore, all the gaps identified from the literature survey

are organised into two groups. The first group of gaps is related to the

triaging activities of bug resolution. On the other hand, the second group of

gaps is related to the fixing activities of bug resolution.

The following are gaps organised in the first group. The gaps related to the

first group are labelled by GG1, which stands for the first Gap Group.

GG1.1: There is a need to investigate whether rush by the software devel-

opers on the triaging of security bugs is one of the reasons of their

premature assignment and then frequent reopening [SB1, §2.1].

GG1.2: There is a need to quantitatively analyse how the developers triage

bugs during their resolution [BR1, §2.2.3].

GG1.3: There is a need to measure rush during bug triaging considering the

practical handling of bugs by the software developer near to the release

deadlines [BR2, §2.2.3].

GG1.4: There is a need to measure rush the time management behaviour of

software developers on the triaging of bugs [SD1, §2.3].

GG1.5: There is a need to verify whether rush the time management be-

haviour of software developers on the triaging of bugs can be measured

42

by calculating the time spent by them on bug assignment [SD2, §2.3].

GG1.6: There is a need to verify whether rush the time management be-

haviour of software developers can be one of the reasons of premature

bug assignment and subsequently their reopening [SD3, §2.3].

GG1.7: There is a need to extract the bug status time stamps when the bug

is reported till it is assigned to developers for measuring rush the time

management behaviour of developers on bug triaging [SA1, §2.5.3].

GG1.8: There is a need to extract the bug time stamps considering the

reopening time of bugs [SA2, §2.5.3].

The first group of gaps is organised based on the resolution of security bugs

involving triaging activities. Therefore, the following research question about

the triaging of security bugs is derived from the first group of gaps. In fact,

this research question will fill the first gap relevant to the security bugs as

listed in Section [SB1 2.1].

RQ1: How can ‘rush’ of software developers be measured from their time

management behaviour exhibit in the bug repository? If rush can be

measured, is the hypothesis of ‘security rush’ be confirmed statistically?

Is rush a reason for prematurely assigning security bugs to software de-

velopers and subsequently reopening the bugs more frequently?

The following are gaps organised into the second gap group, which is labelled

by GG2:

GG2.1: There is a need to investigate whether security bugs are more com-

plex to fix compared to the other bugs [SB2, §2.1].

GG2.2: There is a need to measure the complexity of code relevant to bug

fixes to argue that bugs with the higher code complexity are difficult

to fix [BR3, §2.2.3].

GG2.3: There is a need to verify that the bugs with the higher code com-

plexity are more difficult to fix using different complexity metrics from

the fixing time [BR4, §2.2.3].

43

GG2.4: There is a need to measure the complexity of functions relevant to a

bug fix using different complexity metrics from the source lines of code

(SLOC) and cyclomatic complexity (CYC) [CC1,§2.4.3].

GG2.5: There is a need to verify whether functions relevant to bug fixes

have high fan-in values [CC2, §2.4.3].

GG2.6: There is a need to extract the changed functions from the patches

relevant to a bug fix to measure the complexity of functions relevant

to bug fixes [SA3, §2.5.3].

The second group of gaps is organised based on the resolution of security

bugs involving fixing activities. Therefore, the following research question

about the fixing activities of security bugs is derived from the second group

of gaps. In fact, this research question will fill the second gap relevant to the

security bugs as listed in Section [SB2 2.1].

RQ2: How can the complexity of a bug fix be measured from the code

repositories? Is the complexity of a security bug fix higher on average

than the complexity of a non-security bug?

All the identified literature gaps are summarised in Figure 2.1.

The first research question RQ1 will be addressed in Chapter 3 and the second

research question RQ2 will be addressed in Chapter 4.

44

RQ1 RQ2

SB1 SB2

SB3

BR2 SD2 BR3

BR4 BR1 SD1 SD3

CC1

CC2

SA1

SA2

SA3

Gap group1 Gap group2

(Chapter 3) (Chapter 4)

Figure 2.1: The summary of literature gaps grouping and the derived research
question from each gap group.

45

46

Chapter 3

Measuring Rush

To maintain the security of software systems, often there is a perception that

security bugs need to be resolved quickly in response to malicious attacks.

Therefore, usually software engineers treat them as urgent problems. How-

ever, it is evident from a literature study by Zaman et al. (2011) reported

in Section 2 of Chapter 2 that security bugs reopen more often than other

bugs. The reopening of security bugs could be attributed to rush.

To know that the developers really triage security bugs in a rush, there is

a need to understand the behaviour of developers when triaging a security

bug, their psychology and their time management skills. However, it is not

practical in a real life project to monitor the developers’ behaviour while they

are triaging the bugs, because the developers might not act normally when

they are aware that somebody is assessing their rushing behaviour.

On the other hand, the artefacts produced by developers can give clues about

the nature of task done by them in a specific time period. But one cannot

say that the task done by the developers in a specific time reflects the fact

that security bugs are triaged in a rush.

On the other hand, to address the “yes and no” part of RQ1, the following

null hypothesis is derived.

47

RQ1: How can ‘rush’ of software developers be measured from their time

management behaviour exhibit in the bug repository? If rush can be

measured, is the hypothesis of ‘security rush’ be confirmed statistically?

Is rush a reason for prematurely assigning security bugs to software de-

velopers and subsequently reopening the bugs more frequently?

In order to address the “how” part of RQ1, a technique to measure ’rush’ is

developed and explained in this chapter.

Hypothesis 1 Median rush on the triaging of security bugs is not higher

compared to the non-security bugs.

In this thesis, the notion of ‘rush’ is introduced in the triaging (process to

priorities and assign bugs to the developers for fixing) of bugs. The rush is

defined as the ratio between the actual time spent by the developers during

triaging and the theoretical time the developers have by delaying the fixes

until the next regular release. In this way, the developers have more flexibility

to relax the constraints for fixing high priority bugs earlier and still deliver

the bug fixes on the release time within the resource constraints.

By intuition, rush is a relative measure that relates the time used for planning

and the time used for the work. The metric of rush is based on the concept

of planning towards the deadlines (Svahnberg et al., 2010) to complete the

assigned tasks.

The theoretical measurement of rush considers the effect of delaying the

work. Suppose the maintenance project originally plans to deliver a fix of a

certain bug at the time of a certain release. If there is a rush, the bug may be

delivered before that time. The delivery of fix with the smallest rush requires

delaying the assignment of the bug till the moment when the work has to be

started. In other words, the triaging duration can be prolonged. Therefore,

the lower the ratio, the higher the rush in relation to the next release.

The following example is used to demonstrate the rush measurement in the

48

triaging of a bug. The bug 7494 of the Samba case study has been reported

on 04/06/2010 at the time 17 : 55 by an internal developer “Jeremy Allison”.

The time-stamp of bug report has been logged in the Samba Bugzilla sys-

tem. After the report of bug, the developer “Lars Müller” has reproduces the

bug and prioritised and assigned it to the developer “Jeremy Allison”. The

time-stamp 04/06/2010 18 : 11 when the bug is assigned for fixing has also

been logged in the Samba Bugzilla system. In this case, the bug is reported

and assigned for fixing to the same developer. However, it is not necessary

that a bug is assigned to the developer for fixing who has reported it. After

the assignment of bug, the developer “Jeremy Allison” has fixed the bug and

set the status of bug being resolved as fixed. The time-stamp 16/06/2010

06 : 21 when the bug status is changed from assigned to resolved has been

logged in the Samba Bugzilla live system. All the time-stamps when the

bug is reported, assigned and resolved are shown in the Figure 3.1.

Now in retrospective, let’s say in the weekly release fix there are three re-

leases schedule to be delivered on 07/06/2010, 14/06/2010 and 21/06/2010

respectively. In fact, the bug is already resolved after the delivery of first and

second release as shown in the Figure 3.1. Therefore, it can only be included

in the third release, which means in reality postponing the delivery of fix for

this bug till the release deadline. Effectively, it is the same as postponing

the assignment of this bug to fix till the maximum delay time. So, it can be

included in the third release. In this way of using the maximum delay time

for the assignment of bug, the more high priority bugs can be fixed within

the same resources. Software developers are one of the examples of resources

available for the fixing of bugs. The theoretical delay time is denoted by the

symbol tplanned, which the developers have to postpone the assignment of bug

for fixing till the next regular release.

Remember, the rush is defined as the ratio of actual and theoretical triage

duration. Therefore, first we need to calculate the actual triage duration,

maximum delay time for postponing the assignment of bugs and theoretical

49

triage duration to measure rush in the triaging of example bug 7494.

The actual triage duration is the difference of tassigned and treported, which is

denoted by the symbol d1 in the Figure 3.1. The actual fixing duration is the

difference of tresolved and tassigned, which is denoted by the symbol d2. For the

example bug 7494, the actual triage duration is 0.0115625− days and actual

fixing duration is 11.51 − days. By taking the difference of release deadline

which is 21/06/2010 in this case and actual fixing duration d2 in this case

11.51− days. The result is the maximum delay time 6.73505787− days. It

means the assignment of bug 7494 for fixing can be delayed till this time for

delivering it in the third weekly release.

After the calculation of delay time, the theoretical triage duration for the

bug 7494 is calculated by taking the difference of tplanned and treported. The

calculated theoretical triage duration is 6.72349537 − days denoted by the

symbol d′1. At-last the rush in the triaging of example bug 7494 is measured

by taking the ratio of d1 and d′1, which is .00171− day.

The rush has been computed by measuring the duration from the bug reports.

Therefore, the set of logs used to recover the bug reports from the Bugzilla

issue tracking system is defined in Definition 1.

Definition 1 The set of logs chosen in this study are: LOGS = {logB, logA}.
The set of logs contains the bug entry log logB and the bug activity log logA.

The set of bug entry logs logB is defined as logB = {bi | 1 ≤ i ≤ n ∧ n ∈ N ,

where bi ∈ B and B is the set of bugs.}
The bug activity log logA is defined as logA = {(bi, (li, ti)) | 1 ≤ i ≤ n∧n ∈ N ,

where bi ∈ B, li is the set of bug life cycle labels li ⊂ L, and ti is a time-stamp

of li, and ti ∈ T . }

50

Figure 3.1: An example to explain the concept of rush using the time-stamps
of the bug number 7494 of Samba case study.

51

3.1 Example Logs

The bug entry log logB contains a pair of elements with each pair as a single

bug report. In each pair, the element b represents the bug id.An example bug

entry log’s screen-shot is shown in Figure 3.2. In the figure, the retrieved bug

id and bug report time stamp are highlighted with arrows. In this definition

the set of security bugs Bs is the subset of bugs B.

The bug activity log logA contains pairs of elements with each pair as a single

bug status label and time-stamp. In each pair, b represents the bug id, C

represents the set of bug life cycle labels, and t represents the bug status

time. An example screen-shot of the bug activity log is shown in Figure 3.3.

We have used the script to obtain the bug entry log logB, and bug activity

log logA from Bugzilla bug tracking system. The scripts to obtain both logs

logB and logA are available in Appendix A.1 and A.2 respectively.

These logs are used to recover the bug time stamps data. In the next sec-

tion,an explanation has been provided about the choice of measuring rush

from the bug reports.

3.2 Computing Rush from the Bug Reports

In this section, the actual bug triage and fixing durations are defined and

the procedure to compute each duration is described using the algorithms.

The triage and fixing durations are based on the status labels of bugs. A

bug status label indicates the current stage of bug fixing. Zeller (2005) have

described the Bugzilla bug life cycle based on the Mozilla Firefox case

study. Zaman et al. (2011) have extended the Bugzilla bug life-cycle by

adding a “reopened” arrow when the bug status is ASSIGNED as shown in

the Figure 3.4.

In this study, the same Bugzilla bug life cycle as reported by Zaman et al.

(2011) has been followed. However, it has been found that the figure is in-

complete without two more kinds of arrows, which has been observed during

52

b
i

l i

Figure 3.2: An example bug entry screen-shot.

53

t i
b

i

l i

Figure 3.3: An example bug activity screen-shot.

54

the analysis of Samba case study, These are absent from the extended figure

of Zaman et al. (2011). The first arrow is added to indicate that a bug can be

tossed from the ASSIGNED state to the NEW state during fixing. The sec-

ond arrow is added to indicate that a bug can reach the state of RESOLVED

directly from the NEW state, skipping an intermediate ASSIGNED state. In

this latter case, the bug does not need to pass through the ASSIGNED state

for resolution. In the legend of the figure, the dotted line and circles are used

to represent our added lines from the original figure of Zaman et al. (2011).

The bug status labels in the bug life cycle are used to identify the current

health of the bug. From Figure 3.4, one can derive the set of Status labels L,

which can include L={ REPORTED, UNCONFIRMED, NEW, ASSIGNED,

RESOLVED, VERIFIED, CLOSED, REOPENED }.
A bug is assigned the status of REPORTED when an internal or external user

of the system reports a bug at the start of the bug fixing process. The bug

is assigned the status label of UNCONFIRMED to check that the reported

bug is valid or invalid. If the developers agree that the reported bug is a

valid bug then the status of NEW is assigned to the bug. Otherwise, the bug

is given the status of RESOLVED to ensure that the bug has been validated

by the testing team.

The status label of a bug is changed from NEW to ASSIGNED once the bug

is assigned to some developers for fixing. From ASSIGNED status, if the

bug is fixed then it is marked as RESOLVED for the testing team to verify

the fix. Otherwise, the bug is given the status label of REOPENED either

if there is some information missing or the developer does not have enough

knowledge to fix it. Once the bug is given the status of RESOLVED, then it

is the responsibility of the testing team to verify the fix and assign the status

label of VERIFIED if the bug was properly fixed. Otherwise, if the testing

team does not agree with the bug resolution, the bug is assigned the status

label of REOPENED. All these status changes represents the life cycle of a

bug in the Bugzilla system as shown in the Figure 3.4.

55

To retrieve the status labels relevant to triage and fixing durations, three

states of a bug’s life cycle are important, namely REPORTED, ASSIGNED,

RESOLVED. Although obvious in Figure 3.4, these states are not always

found in the bug database. For example, when RESOLVED is not found, the

status of CLOSED as its placeholder has been used in this thesis. However,

the bugs whose “ASSIGNED” state is absent due to one of RESOLVED state

via the edges INVALID, DUPLICATE, WONTFIX, or WORKSFORME has

not been considered in this thesis. In this thesis,the bugs those come from

the transition “FIXED” edge are chosen for the analysis because only then

is the fixing time not regarded as zero.

It has been observed during the study that there can be multiple states in a

bug’s life-cycle. For example, because of reopening, there can be more than

one “RESOLVED” state on the original life-cycle diagram in the life-cycle of

a bug. For the sake of simplicity, only the latest RESOLVED state to regard

all the reopening activities as a somewhat prolonged fixing process has been

considered in this thesis. There may be more than one ASSIGNED state due

to the reopening as well. In these cases, the very last ASSIGNED state in

the trace has been chosen for the bug analysis in this thesis. Formally, the

set of bug life cycle status labels C used to retrieve the bug status labels is

defined in Definition 2.

Definition 2 The set of derived bug life cycle : C. The set of bug status is

defined as C = {REPORTED,ASSIGNED,RESOLV ED}.
Algorithm 1 is used to get the derived bug life cycle. The set of bug life cycle

labels L given in the bug activity log logA is input. The set of derived bug

life cycle C is output. The procedure starts by initialising the set of derived

bug life cycle to the empty set. A multi branch switch statement is used to

retrieve the different cases of the set of bug life cycle labels L. In case the

element l of the set of bug life cycle labels L is UNCONFIRMED, an element

c with the value REPORTED is added in the set of derived bug life cycle C.

Similarly, a new element RESOLVED is added in the set of derived bug life

56

cycle C in case the element l of the set of bug life cycle labels L is equal to

RESOLVED. In any other case, the bug is assigned the status label of NEW.
Data: The set of bug status labels l ∈ L
Result: C = {REPORTED,ASSIGNED,RESOLV ED}

1 C = {};
2 switch (l ∈ L) do

3 case REPORTED

4 c = REPORTED;

5 break;

6 end

7 case ASSIGNED

8 c = ASSIGNED;

9 break;

10 end

11 case RESOLV ED

12 c = RESOLV ED;

13 break;

14 end

15 endsw
Algorithm 1: ObtainAssignedResolvedStatus : Obtain the set of bugs

derived life cycle labels C.
After these pre-processing steps, now each bug is only associated with at

most three states. The rather complex state transition diagram on the upper

part of Figure 3.4 is now simplified to convert it into the much simplified

state model on the lower part of the diagram. With these status labels, it is

now sufficient to compute the values of bug event stamps.

In the Bugzilla issue tracking system, the time at each stage of bug status

change is recorded in the bug activity log. Therefore, the set of derived status

labels are used to derive the bug event stamps whenever the bug status is

changed. The event stamps of each bug according to the current status of

bug resolving keep track of the time whenever a bug status is changed from

57

FIXED

TOSSED

REPORTED

Legend

his

Added Line

Added Circle

Transition Line

Figure 3.4: Relationship between bug life cycle labels L of Zaman et al.
(2011) and the derived bug life cycle labels C.

one to another.

For example, the bug no. 7067 has been reported by the Samba developer

“Jeremy Allison” at 2010 − 01 − 2618 : 48 : 57UTC in the Samba system.

The bug has been reported in the product “Samba3.5”. For reporting a bug,

it is necessary that the bug reporter have a valid account at the Bugzilla

live system for Samba. After login the system with a valid user account,

the user must use the option “File a Bug” available at the home page of

Bugzilla system 1. The process of reporting a bug starts with selecting a

product of the system in which the reporter found the bug. After selecting

the right product to report the bug, the reporter needs to fill the bug report

form by filling the fields that includes “Component”, “Version”, “Summary”,

“Severity”, “Hardware”, “OS” and “description”. The Bugzilla live system

logs the time of reporting a bug at the time of completing the bug report form

by the developer, which is logged as the bug reporting time in the system.

Once the bug is reported in the system, the Samba developer verifies the

1https://bugzilla.samba.org/

58

bug whether it is a valid by reproducing it based on the description given

in the bug report. In the case of aforementioned bug 7067, the same person

“Jeremy Allison” has reported and reproduced the bug. The bug reporting

guidelines for the Samba system has been provided on the following link

“https://bugzilla.samba.org/page.cgi?id=bug-writing.html”.

By using the similar method of bug reporting the bug 7104 has been marked

as reopen by the developer “Jeremy Allison”. A bug is marked as reopen

if the developer found that an already fixed bug is the source of problem

in the program. The reopened bug is not marked as “REPORTED” and

“NEW” because it is not a new problem. Therefore, it is directly assigned

to a developer or to a group of developers for fixing. An arrow from the

“RESOLVED” stage to “REOPENED” and from “REOPENED” stage to

‘ASSIGNED” stage is indicating the phenomenon of bug reopening in the

Bugzilla bug life cycle figure 3.4. It is observed that the example reopened

bug 7104 has been directly assigned to developer “Jeremy Allison” for fixing

rather than marking it as “REPORTED” and “NEW”.

After recovering the bug resolution event stamps, it is possible to measure the

actual triage durations. The set of bug event stamps is defined in Definition 3.

Definition 3 The set of bug event stamps : E. The set of bug event stamps

E is defined as: E = {(bi, (ci, ti)) | 1 ≤ i ≤ n ∧ n ∈ N}.
Algorithm 2 is used to retrieve the bug event stamps. The set of bug activity

log logA, and the set of derived bug status is input. The set of bugs event

stamps E according to the derived status is output. The algorithm starts by

initialising the set of event stamps E to the empty set, then for each element

of the set of bug event stamps E. The value of each bug status label li is

obtained using the algorithm 1.The obtained value is assigned to the element

ci of the set of derived bug life cycle labels C. The value of bug id bi, derived

life cycle label ci, and the time stamp for one particular event ti is assigned

to the set of event stamps.

59

Data: The set of bug activity log logA = {(bi, (li, ti))}, and the set of

derived bug life cycle C

Result: E = {(bi, (ci, ti))}
1 E = {};
2 foreach (bi, (li, ti)) ∈ logA do

3 ci = ObtainBugsDerievedStatus(li);

4 E = E ∪ {(bi, (ci, ti))}
5 end
Algorithm 2: ObtainBugEventStamps: Obtain the set of bug fixing event

stamps E.
The event stamps of each bug according to the current status of bug reso-

lution keep track of the time whenever a bug status is changed from one to

another. Therefore, after recovering the bug resolution event stamps, it is

possible to measure the actual triage and fixing durations. The set of bug

triage and fixing durations τ1 and τ2 are defined in Definition 4

Definition 4 The set of bugs’ traige durations : τ1, and the set of bugs’

fixing durations: τ2. The set of bugs’ triage durations τ1 = {(bi, d1i) | 1 ≤
i ≤ n∧n ∈ N}., where bi ∈ B and d1i ∈ τ1. The set of bugs’ fixing durations

τ2 = {(bi, d2i) | 1 ≤ i ≤ n ∧ n ∈ N}, where bi ∈ B and d2i ∈ τ2.

Algorithm 3 is used to get the set of bug triage τ1 and fixing τ2 durations.

The input is the set of bug event stamps E. The output is the set of bug

triage τ1 and fixing τ2 durations sets. The procedure starts by initialising the

set of bug triage τ1 and fixing τ2 durations to the empty set, then for each

bug b in the set of bug event stamps E. The value of derived bug life cycle

label c is checked using switch statement. In case the value of variable c is

REPORTED then the value of life cycle time ti is assigned to the variable

tREPORTED. In case the value of variable c is ASSIGNED then the value of

time ti is assigned to the variable tASSIGNED. Similarly, in case the value of c

is RESOLVED then the value of time ti is assigned to the variable tRESOLV ED.

Then the bug triage duration d1 is measured by subtracting the time when

the bug is assigned to developers for fixing tASSIGNED to the time when the

60

bug is reported tREPORTED. Likewise, the duration of bug fixing time d2 is

measured by subtracting the time when the bug is resolved tRESOLV ED from

the time when the bug is assigned to the developers for fixing tAssigned. The

computed bug triage d1 and fixing d2 durations are assigned to the bug triage

and fixing durations sets τ1 and τ2 respectively.
Data: The set of bug event stamps according to the bug status labels

E

Result: τ1 = {(b, d1)}, τ2 = {(b, d2)}
1 τ1 = {};
2 τ2 = {};
3 foreach (b ∈ logB) do

4 foreach

(c ∈ {REPORTED,ASSIGNED,RESOLV ED}(b, (c, t)) ∈ E)

do

5 if (b, (c, t)) ∈ E then

6 tc = t;

7 end

8 end

9 if (tASSIGNED ∧ tREPORTED) then

10 d1 = tASSIGNED − tREPORTED;

11 τ1 = τ1 ∪ {(b, d1)};
12 end

13 if (tRESOLV ED ∧ tASSIGNED) then

14 d2 = tRESOLV ED − tASSIGNED;

15 τ2 = τ2 ∪ {(b, d2)};
16 end

17 end
Algorithm 3: ObtainBugDuration: Obtain the bug triage and fixing du-

rations τ1 and τ2.
Through the above pre-processing steps, the values of bug triage d1 and fixing

d2 durations has been calculated. Now, it is possible to measure the value of

61

planned rush in the triaging of bugs.

3.3 Model for Measuring the Weekly Release

Fix Triage Durations

In this section, the model to measure the weekly release fix triage duration

has been explained for considering the situation when the developers have

time to plan the work. Figure 3.5 describes the model of measuring bug

triage duration based on the weekly release fix. In this model, it is assumed

that a bug can be planned in a release as long as it is reported before the

delivery of a release. In this way, our model measures the time from when

the bug is reported until it is released, which is the exact time spent before

the release of a bug. It includes the bug fixing time and any waiting time

before the release of the bug. For measuring the triage duration according

to the weekly release fixes, the status labels C ′ has been used in the thesis,

which is defined as the C ′ = {REPORTED,PLANNED,RESOLV ED}.
Figure 3.5 shows the relationship between the simplified life cycle of bugs

to the planned bug status labels C ′. The left hand part of Figure 3.5 is

relevant to the set of derived bug life cycle status labels C. The right hand

part of Figure 3.5 is relevant to the set of planned bug life cycle status labels

C ′. This relationship is used to compute the triage and fixing durations

at the time of planning (represented by the d′1 d
′
2 respectively), although

the planned triage duration d′1 to compute the value of weekly release fix

durations has been used. Before proceeding to compute the value of weekly

release fix triage duration, it is required to have the knowledge about the

release date of each bug. Formally, the set of release dates of bugs is defined

in Definition 5.

Definition 5 The set of weekly releases dates : Rτ . The set of weekly release

dates Rτ is defined as : Rτ = {(bi, trelease) | 1 ≤ i ≤ n ∧ n ∈ N}.

62

Figure 3.5: The relationship between bug derived life cycle C to the planned
bug life-cycle C ′.

63

Figure 3.6: The bug status and resolution description.

64

Algorithm 4 is used to get the set of weekly release dates. The input is the

set of bug event stamps E. The output is the set of weekly release dates

Rτ . The procedure starts by initialising the set of bug event stamps E to

the empty set. Then for each value of the set of bug event stamps E, the

condition is checked that the resolved time of bug tRESOLV ED should not be

null to ensure that each bug has already been resolved. If the bug has already

been resolved then the fix of bug is delayed to the latest release date rather

than the same day by allowing the delay of three days. The delay of three

days has been added because it is assumed that “Wednesday” as the release

day of every week starting from “Monday”. The retrieved release date of bug

has been assigned to the release date variable trelease. Finally, the bug id b

and the release date trelease are added to the set of releases dates Rτ .
Data: The set of bug event stamps E

Result: Rτ = {(bi, trelease) | 1 ≤ i ≤ n ∧ n ∈ N
1 Rτ = {};
2 foreach (b, (RESOLV ED, tRESOLV ED)) ∈ E do

3 if tRESOLV ED 6=< NULL > then

4 trelease = {tresolved + ||7− (tresolved − 3), 7|, 7|};
5 Rτ = Rτ ∪ {(b, trelease)};
6 end

7 end
Algorithm 4: ObtainWeeklyReleaseDates: Obtain the set of weekly re-

lease dates Rτ .
After determining the release dates for each bug, now it is possible to measure

the triage duration of a bug in case the developer have more time to triage

the bug during the planning phase of the work (b, d′1). The set of precise

triage duration based on weekly release fix is defined in Definition 6.

Definition 6 The set of precise triage duration based on the weekly release

fix : τ ′1. The set of precise triage duration based on the weekly release fix is

defined as: τ ′1 = {(bi, d1
′
i) | 1 ≤ i ≤ n ∧ n ∈ N}.

65

Algorithm 5 computes the bugs triage duration based on the bugs fixed in

weekly releases. The input is the set of bugs and their weekly release fix dates

Rτ , the set of bug event stamps E, and the set of bug fixing durations τ2.

The output is the set of weekly release fix triage durations τ1
′. The procedure

starts by initialising the set of weekly release fix triage durations τ1
′ to the

empty set. Then for each bug of (b, trelease) in the set of bugs fixed in the

weekly releases Rτ , the (bi, (REPORTED, treported)) in the set of E bug event

stamps, and the (b, d2) in the set of τ2 bug fixing duration. The resolved date

tresolved and the fixing duration d2 of bug has been deducted from the release

date trelease to get the triage duration d1
′ spent by the developers when they

have time to delay the triaging. The weekly release fix triage duration d′1 is

then added to the set of precise triage durations τ1
′.

Data: The set of weekly released dates : Rτ , and the set of bug event

stamps E

Result: τ1
′ = {(bi, d1

′)}
1 τ1

′ = {};
2 foreach (b, trelease) ∈ Rτ ,(bi, (REPORTED, treported)) ∈ E,(b, d2) ∈ τ2

do

3 d1
′ = trelease − tresolved − d2;

4 τ1
′ = τ1

′ ∪ {(bi, d1
′)};

5 end
Algorithm 5: ComputeWeeklyReleaseFixTriageDuration: Compute the

set of weekly release fix triage durations τ1
′.

After pre-processing of bugs fixed in the weekly releases, one can compute

the rush in the triaging of bugs.

3.4 Measuring Rush in the Triaging of Bugs

In this section, the value of rush for the triaging of bugs has been computed.

The planned rush in the triaging of bugs is a median ratio of the bug’s actual

triage duration d1 and the delayed release triage durations d′1. To verify

66

our hypothesis 1, the rush in triaging of all the bugs (resp. security and

non-security) bugs as B = Bs (resp. B = Bs̄) has been measured, which is

defined in Definition 7.

Definition 7 The planned rush in the triaging of the bugs is : λ(B). The

rush in triaging of bugs is defined as: λ(B) = M̃ (b,d1)∈τ1
(b,d′1)∈τ ′1

λ(B) = M̃
d1

d′1
(3.1)

Equation 3.1 is used to get the rush in triaging of bugs λ(B). The ratio is

retrieved by dividing the median of actual triage duration (b, d1) ∈ τ1 to the

median of precise measured triage duration of the bugs (b, d′1) ∈ τ ′1.

The median duration is chosen for calculating the ratio because there can be

outliers that distort the average of the data points.

Formally, the hypothesis 1 is restated as the set of security bugs Bs and

non-security bugs Bs̄, λ(Bs) < λ(Bs̄).

3.5 Applying the rush metric to the case stud-

ies

In this section, the technique to measure rush is applied to case studies and

values of rush are statistically tested.

3.5.1 Application of the technique

The median value of rush in the triaging of CVE relevant bugs for Samba,

Mozilla Firefox , Red Hat , FreeBSD and Mozilla case studies is 0.002, 0.0042,

0.024, 0.002 and 0.0017 respectively. On the the other hand, the median value

of rush in the triaging of non-CVE relevant bugs for the above case studies

in the same order is 0.088, 0.0044, 0.091, 0.5023 and 0.0369 respectively.

67

Graphically, the values of rush are represented in Figure 3.7. In the figure 3.7,

the y-axis represents the median value of rush in days and the name of case

studies are shown at the x-axis. The bar charts with dark red color represents

CVE relevant and the bar charts with blue color represents the Non-CVE

relevant bugs in figure 3.7.

The results of all these case studies shows that there is a rush in the triaging

of CVE relevant bugs compared to the non-CVE relevant bugs. Hence, one

can draw conclusion that security bugs are rushed during triaging in the

above case studies. The successful application of the technique to measure

rush the time management behaviour of software developers is answering

the first part (RQ1.1) of research question RQ1. Apart from the obvious

difference between the rush values of CVE and Non-CVE bugs, one may also

observe that FreeBSD has least median rush ratio for non-CVE bugs. One

possible explanation is that the enterprise vendors behind Samba, Mozilla

Firefox ,Mozilla and Red Hat might give their developers more pressure in

resolving bugs in general. Despite from this, it worth noting that FreeBSD

has the tightest rush ratio for the CVE bugs. A possible reason is that

FreeBSD products include primarily a dependable operating system that is

more sensitive to security breaches. In contrast, Red Hat and Mozilla Firefox

maintains many lines of products that may not be all as sensitive to security

as its Enterprise Linux product line.

3.5.2 Statistical verification of the results

To statistically verify the rush in triaging of security bugs for all the case

studies, the non-parametric Mann Whitney U-test has bee applied the CVE

and non-CVE relevant bugs of all the case studies. The parametric and

non-parametric are two types of statistical tests available to verify the sam-

ples from the population of data. Usually, the parametric tests are used

for the data when the assumptions are made about the parameters of the

population’s data distribution. However, no assumptions are made in the

68

0

0.1

0.2

0.3

0.4

0.5

0.6

Samba Mozilla
Firefox

Red Hat FreeBSD Mozilla

0.0022 0.0042
0.0242

0.0002 0.0017

0.0882

0.0044

0.0906

0.5023

0.0369

Median Rush in days CVE bugs

Non- CVE bugs

Figure 3.7: Rush in the triaging of CVE and Non-CVE bugs in the case
studies for the Samba, Mozilla Firefox ,Red Hat , FreeBSD , Mozilla.

non-parametric category of statistical tests about the distribution of data.

In other words using the parametric test, difference between the populations

69

is determined based on the assumption that the data is normally distributed.

But no assumptions are made on the population of data while using the non-

parametric test. Usually, the standard Quintile Regression (QQ-plot) is used

to determine the distribution of data. The rule is that in case the data is

symmetric and plots on the straight line then data is normally distributed.

The QQ-plot has been drawn for the security and non-security bugs of all

the case studies. The results showed that the security and non-security bugs’

data is not normally distributed. Therefore, the non-parametric category of

statistical tests has been chosen to evaluate the difference between the sam-

ples of all the case studies.

In the non-parametric category of statistical tests, the Mann Whitney U-test

is used to evaluate the difference between the population of two independent

data sets based on their median values Kasuya (2001). In our case, the CVE

relevant bugs are different from the non-CVE bugs, which means both data

sets are different from each other. Therefore, the Mann Whitney U-test has

been chosen to evaluate whether the values of rush for security bugs for all

the case-studies are significantly different from the non-CVE relevant bugs

for all the case studies.

The results of statistical test showed that the security bugs are rushed in

the Red Hat , FreeBSD and Mozilla case studies with the statistical signifi-

cance. However, the Samba and Mozilla Firefox case studies are inclusive.

Our results are based on the probability significance p− value obtained us-

ing the Mann Whitney U-test as described below. The p − values of Red

Hat , FreeBSD , Mozilla, Samba and Mozilla Firefox are 0.00001, .000, and

.001, 0.008291, 0.692843 respectively. The results of statistical test proves

that statistically there is a rush in the triaging of CVE bugs compared to

the Non-CVE bugs. The purpose of bug triaging is to prioritise and assign

bugs to the developers for fixing. Therefore, the statistical results verify that

security bugs are rushed to triage, which is one of the reasons of their pre-

mature assignment and subsequently reopening. The calculation of rush on

70

the triaging of bugs considers the first reporting time-stamp and last assign-

ment time-stamps. In this way a bug which reopens and reassigns is also

considered in the calculation of rush. Therefore, the conclusion about the

reopening of bugs is based on the values of rush. The statistical results of

rush answers the second part (RQ1.2) of the first research question RQ1.

The statistical significance results for all the cases studies (Samba, Mozilla

Firefox , Red Hat , FreeBSD and Mozilla) are shown in Figure 3.8, 3.9, 3.10,

3.11 and 3.12 respectively. The each above figure is an output for the statis-

tical test Mann Whitney U-test showing two tables. The first table explains

the number of bugs belonging to CVE and Non-CVE groups and their values

of mean rank and sum of ranks. In the group column of first table, the first

row 1.0 represents the CVE bugs and the second number 2.0 represents the

Non-CVE group of bugs. The second column is representing the number of

bugs in each group (CVE and Non-CVE) respectively. For example, the first

row of second column is representing that there are 9 CVE bugs in the Samba

case study. On the other hand, the second row is representing that there are

1702 Non-CVE bugs in the Samba case study as shown in Figure 3.8. The

third column of the first table is representing the mean rank for the CVE

and Non-CVE bugs. For example in the case of Samba case study, the mean

rank of CVE bugs is 422.33 and Non-CVE 858.29 respectively as shown in

Figure 3.8. The forth column of the first table is representing the sum of

ranks for CVE and Non-CVE bugs. For example, the sum of ranks for the

CVE bugs is 3801.00 and for the Non-CVE bugs is 1460815.00 as shown in

the first and second row of table in Figure 3.8.

The second table shows the derived statistics of λ values. In the table, the

row with the “Mann-Whitney U ” represents the difference between the totals

of CVE and non-CVE relevant bugs. The row “Wilcoxon W ” represents the

ranked sum of the smaller sample size of the data, which is security bugs for

our case studies. The row “Z ” represents the z-values for each case study.

Usually, the “z-value” can be used to reject the null hypothesis instead of the

71

p-value. However, the p-value has been used in the analysis which represents

by Asymp. Sig. (2-tailed) row. The definition of p-value is given in Appendix

5.2

Figure 3.8: The results of Mann Whitney U-test for Samba case study from

SPSS package.

72

Figure 3.9: The results of Mann Whitney U-test for Mozilla Firefox case

study from SPSS package.

73

Figure 3.10: The results of Mann Whitney U-test for Red Hat case study

from SPSS package.

74

Figure 3.11: The results of Mann Whitney U-test for FreeBSD case study

from SPSS package.

75

Figure 3.12: The results of Mann Whitney U-test for Mozilla case study from

SPSS package.

3.6 Tool Support

To answer the first research question (RQ1) for measuring rush on the triag-

ing of bugs, an automated tool has been developed. The tool has two com-

ponents “Data Extraction” and “Data Analysis”.

Data Extraction: In the data extraction, the first phase is to extract the

bug ids from the Bugzilla live system by conducting a query based advance

search. The query based search has been conducted to find-out the CVE and

non-CVE relevant bug ids for extracting the bug reports later in the second

76

phase of data extraction. The CVE relevant bug ids has been retrieved by

using the keyword “CVE-”. On the other hand, no keyword has been used to

retrieve the list of all the bugs. The searched bugs has been downloaded in

the comma-separated values (CSV) format. There is a possibility that some

CVE relevant bugs might exists in the list of all the bugs. Therefore, the

difference of the list of CVE and all the bugs has been taken to filter out the

CVE bugs from the list of all the bugs. After the filtration of CVE bugs from

the list of all the bugs, the list of all the bugs has been considered as non-CVE

relevant bugs. In the second phase of data extraction, the bug reports and

their associated bug activity reports relevant to CVE and non-CVE bug ids

has been retrieved. For retrieving the bug reports, the automated script A.1

has been used. On the other hand, for retrieving the associated activity

reports with the bug reports A.2 has been used. The bug reports have been

processed to get the reported, assigned and resolved time-stamps of bugs.

The scripts A.3 and A.4 has been used for retrieving the bug time stamps

data. Each script has been explained in detail in the appendix A.

Data Analysis: The date and time of reported, assigned and resolved time-

stamps of bugs has been collected separately during the data extraction.

Therefore, first the date and time of bug reported, assigned and resolved

time-stamps combined together before further pre-processing. After that all

the time-stamps has been stored in the set of bug event-stamps using the Al-

gorithm 2. The set of bug event-stamps contains the time-stamps when each

bug is reported, assigned and resolved. After getting the bug event-stamps,

the Algorithm 3 has been used to get the actual triaging and fixing durations

of bugs. As rush is the ratio of actual triage duration and the theoretical

triage duration (time developers have to delay the fixes until the next regular

release). Therefore, to calculate the theoretical triage duration, the weekly

release dates of each bug has been calculated using the Algorithm 4. Then,

the theoretical triage duration has been calculated using the Algorithm 5.

After these pre-processing steps to calculate the actual and theoretical triage

77

durations, the rush has been calculated by taking the ratio of actual and

theoretical triage durations for each bug. Finally, to compare the rush on

the triaging of CVE and non-CVE bugs for each case study, the median rush

has been taken using the Equation 3.1.

Advantages and the limitations of the tool:

The following are advantages of the tool to measure ’rush’ in the triaging of

bugs.

• The algorithms for data extraction and analysis phase has been pro-

vided. Therefore, it is easier to apply the technique to measure rush to

the more case studies. It also makes easier to repeat the case studies

conducted in this thesis to confirm the results.

• The data extraction phase of the tool is fully automated and the AWK

scripts to extract the bug reports has been provided in Appendix A.

The following are limitations of the tool to measure ’rush’ in the triaging of

bugs.

• The human involvement is necessary for searching the bug ids from

Bugzilla live systems during the data extraction phase.

• For some of the case studies, e.g. Mozilla, the Bugzilla live systems

has limitation to show the number of search records. Therefore, there

is a possibility of missing some bug reports during the data extraction

phase.

• For some of the case studies, e.g Mozilla Firefox , the Bugzilla live

systems has limitation to show the number of search records on the

screen, therefore a manual yearly search is needed to find the yearly

records of data and then such yearly records are integrated.

3.7 Threats to Validity

The following validity threats to this empirical case study has been discussed.

78

Internal Validity: The collected data is based on what an external de-

veloper could gather. The decision to label security bugs depends on the

external security experts who maintain the CVE database for the public,

while the developers inside each team must decide for themselves whether

they have fixed these high-profile security problems. The number of CVE

bugs (9, 14, 22) for the Samba, Mozilla Firefox and Mozilla case studies are

comparatively smaller than the Non-CVE bugs (1702, 31444, 219) respec-

tively. One can argue that the CVE and Non-CVE bugs are not comparable

in terms of the number of bugs. Therefore, the median value of rush is taken

to counter this threat to validity.

Construct Validity: The rush measurement approach is repeatable for the

other open-source projects as long as they use Bugzilla to report bugs.

However, the algorithms for the measurement of rush are applicable to the

bug duration data set of any issue tracking system. All the five vendors in

the study have security sensitive products, their Bugzilla data sets have

different number of CVE-related bugs. Also due to the difference in docu-

menting the status and time-stamps of the bugs, not all of their bugs are

sampled to compute the rush ratio. However, it is sufficient to draw mean-

ingful conclusions for checking the hypothesis.

In this study, rush the time management behaviour of software developers

is measured by calculating the time spent by them to assign the bugs. To

measure rush, the past data of bug assignment by the software developer

is used. Therefore, one can argue about the validity of results due to the

lack of the direct involvement of software developers in the study. Usually,

there is is no control on the developers in the open source projects because

they work on voluntary basis. Therefore, confirming the results of study

by involving software developers is the out of scope of this study. But the

technique to measure rush is well explained in this thesis. Therefore, the

other researchers can easily repeat this study to verify the results. Taking

the opinion of software developers about the results of this study is one of

79

the future works.

External Validity: This study intends to measure rush the time manage-

ment behaviour of software developer for the security and non-security bugs.

However, different bug reporting systems have different mechanism of tagging

the bugs as security and non-security relevant. There was a risk that wrong

tagging of bugs as either security and non-security related can pollute the

results. Therefore, we have used the CVE and Non-CVE confirmed security

and non-security bugs to measure rush.

In this thesis, five different security critical case studies has been conducted

to measure rush the time management behaviour of software developers.

Therefore, there is sufficient evidence about generalising the conclusion that

statistically rush is one of the reasons of security bugs premature assignment

and subsequently reopening.

3.8 Summary

In this Chapter, one of the contributions of this thesis “a technique to mea-

sure rush the time management behaviour of software developers” has been

introduced. The technique to measure rush is based on the concept of deliv-

ering bug fixes in the weekly releases. The technique is applied to the five

case studies Samba,Mozilla Firefox , Red Hat , FreeBSD and Mozilla. The

median value of rush on the triaging of CVE and Non-CVE bugs has been

calculated. It is found that the median ’rush’ on the triaging of CVE bugs

is higher for all the case studies compared to the Non-CVE bugs. To further

statistically verify the null hypothesis 1, the Mann Whitney U-test has been

applied on the median values of rush for all the case studies. The results of

test shows that statistically security bugs are triaged in a rush in Red Hat ,

FreeBSD and Mozilla case studies. However, there is no statistical significant

difference between the rush values of CVE and Non-CVE bugs for the Samba

and Mozilla Firefox case studies.

80

As in this thesis the CVE bugs are used as the representative of security

bugs and the Non-CVE bugs as the representative of Non-security bugs.

Therefore, based on the results of statistical test, the null hypothesis1 has

been rejected for the three case studies Red Hat , FreeBSD and Mozilla.

Table 3.1: Gaps filled by answering the first research

question (RQ1).

Gap reference Gap How the gap is filled

81

SB1

There is a need to investigate

whether rush by the software

developers on the triaging of

security bugs is one of the rea-

sons of their premature assign-

ment and then frequent re-

opening.

The purpose of bug triaging

is to assign bugs to the other

developers for fixing. There-

fore, if a bug reopens it means

the bug also need to reassign

for fixing. In fact, the re-

assignment of a bug leads to

the longer triage duration. In

this study, rush is defined as

the ratio of actual and theo-

retical triage durations. The

shorter triage duration means

less rush and on the other hand

longer triage duration means

more rush. This study has

found that the statistical value

of rush of security bugs for the

Red Hat , FreeBSD and Mozilla

case studies is higher than the

non-security bugs. Therefore,

in this study the conclusion is

drawn from the finding that se-

curity bugs reopens more of-

ten because of rush by the soft-

ware developers on the triag-

ing in Red HatFreeBSD and

Mozilla case studies. There-

fore, this gap has been filled by

the study.

82

BR1

There is a need to quantita-

tively analyse how the devel-

opers triage bugs during their

resolution.

This study has measured rush

by calculating the duration

spent by developers on triag-

ing. However, quantitative

analysis can be done on the

different aspects of bug triag-

ing. Therefore, this gap has

partially filled by this study.

BR2

There is a need to measure

rush during bug triaging con-

sidering the practical handling

of bugs by the software devel-

opers near to the release dead-

lines.

In this study, the rush is

defined as a ratio of actual

and theoretical triage dura-

tions. The theoretical triage

duration consider the time de-

velopers have to delay the as-

signment of a bug fix in the

weekly release. Therefore, this

study has filled this gap.

SD1

There is a need to measure

rush the time management be-

haviour of software developers

on the triaging of bugs

This study has measured rush

the time management be-

haviour of software developers

on the triaging of bugs. There-

fore, this gap has been filled by

this study.

SD2

There is a need to verify

whether rush the time man-

agement behaviour of software

developers on the triaging of

bugs can be measured by cal-

culating the time spent by

them on bug assignment.

This study has measured rush

by the software developers by

calculating the time spent by

them on the assignment of

bugs. Therefore, this study

has filled this.

83

SD3

There is a need to verify

whether rush the time man-

agement behaviour of soft-

ware developers can be one of

the reasons of premature bug

assignment and subsequently

their reopening.

This gap is related to the gap

SB1.

SA1

There is a need to extract the

bug status time stamps when

the bug is reported till it is as-

signed to developers for mea-

suring rush the time manage-

ment behaviour of developers

on bug triaging.

In this study, the bug sta-

tus time-stamps has been ex-

tracted from the time when the

bug is reported till it is as-

signed to developers for mea-

suring rush the time manage-

ment behaviour of software de-

velopers. Therefore, this study

has filled this gap.

SA2

There is a need to extract the

bug time stamps considering

the reopening time of bugs.

In this study, the status time-

stamp of a bug is extracted

when the bug is first reported

and last assigned, which in-

clude the reopen time stamp as

well. Therefore, this study has

filled this gap.

84

Chapter 4

Measuring Code Complexity

The previous chapter reports that on average a security bug is triaged in

a rush compared to an average bug. However, the rush in the triaging of

security bugs does not mean that such types of bug are simpler or easier to

fix. The real time developers spend on such types of bug may vary and is

very difficult to know and measure. Another way to know that such types of

bug are easier or complex to fix is to measure their code complexity.

There are many ways to measure the complexity of code, ranging from simple

SLOC to McCabe. Concerning changes, however, it is not clear whether

touching one line of code is more complex than touching another, and whether

the change to the control flow is indeed more complex than a change that

does not introduce new control flows. Estimating the best complexity metric

is beyond the scope of this thesis. Our aim is to obtain measurements that

are suitable for verifying the hypothesis. Since the focus of this thesis is on

security bugs, a metric based on the evidence that security aspects tend to

crosscut many functions, and therefore have more fan-ins (Marin et al., 2004)

is chosen for measuring complexity of security bugs in this thesis. Based on

the literature evidence, the hypothesis is that security bug fixes also may

touch more functions and have larger fan-ins.

85

RQ2: How can the complexity of a bug fix be measured from the code

repositories? Is the complexity of a security bug fix higher on average

than the complexity of a non-security bug?

In order to address the “how” part of RQ2, a technique to measure fan-ins of

functions relevant to bug fixes is developed and explained in this Chapter.

On the other hand, to address the “yes and no” part of the RQ2, the following

null hypothesis is derived from the RQ2.

Hypothesis 2 On average the fan-in of changed functions in the patches of

security bugs is not higher than the fan-in of changed functions in the patches

of Non-security bugs.

4.1 Extracting Call Graph of the System

In order to check the above hypothesis, there is a need to compute the fan-in

of all the functions, and then the fan-in of changed functions by obtaining

first a call graph. Formally, a call graph as a directed graph is represented

by G =< V,E >, where V is a set of functions, and E is the call relationship

between a calling function to a “callee” function as shown in Definition 8.

Definition 8 Directed graph G =< V,E >: A digraph is a type of graph

to represent the objects in a specific order, where objects are referred to as

nodes and their ordered pairs of nodes are referred to as edges. Usually, it is

represented as G =< V,E >, where V = {vi | 1 ≤ i ≤ n∧ n ∈ N} is a set of

vertices and E = {(vi, vj) | 1 ≤ i, j ≤ |V | ∧ i, j ∈ N} is a set of edges. Here

N is the set of natural numbers.

The Samba case study is implemented in C/C++ language. To obtain the

call graph for such a system, A Google search has been conducted to find

static source code analysis tools for C-program. For example, keywords such

as “C fan-in analysis tools”, “call graph tools” and “C static source code

analysis tools” are used. The keyword “call graph tools” returned link to

86

the stack overflow forum (In Orbit, 2011) for obtaining the call graphs of C-

programs. In this link, a list of tools to obtain the call graph is provided that

includes Egypt as well. Our purpose is to conduct the source code analysis

of security bugs. Therefore, it is found that Egypt is useful in comparison to

the others tools because it is a Perl script to integrate the GCC compiler for

source code analysis and graphviz to generate the call graph. However, it only

used to study the source code analysis instead of generating the graph. The

further introduction of Egypt and details about its functions are available on

its home page1. Finally, Egypt has been selected to fit our purpose.

4.2 Computing Fan-in of Functions

The purpose of obtaining a call graph is to compute the fan-in of functions.

Formally, fan-in is defined in Definition 9.

Definition 9 Fan in, Fv The number of times a function is invoked by the

other functions is called its fan-in. On the call graph, fan-ins are the in-

degree of nodes, denoted by the following mapping set: Fv = {(v, |Cv|) | v ∈
V ∧ C = {v′ | (v′, v) ∈ E}}.
To automatically compute the fan-in of all the functions, Algorithm 6 is

used. The call graph G < V,E > is the input, where V is the set of functions

representing each node of the call graph, and E is the set of edges representing

the ordered pairs of calling and callee functions. The edge set {(i, j)} is used

to represent the index of functions, where i represents the calling function

(predecessor) and j represents the callee function (successor). The output is

the set of changed functions Fv, which is the Cartesian product of the set

of functions V and their fan-in is represented by |Cv|. Cv is a set of callers

of the functions v. The procedure starts by initialising the output changed

function set Fv to the empty set. Then it computes all the callers for each

function v and assigns to the set of the caller functions Cv. In Line 4 of the

1http://www.gson.org/egypt/egypt.html

87

procedure, the callee function v and the cardinality value of its caller set Cv

are a pair assigned to the output changed function set Fv.
Data: A digraph G =< V,E >, where the set of vertices

V = {vi | 1 ≤ i ≤ n ∧ n ∈ N} and the set of edges

E = {(vi, vj) | 1 ≤ i, j ≤ |V | ∧ i, j ∈ N}. Here N is the set of

natural numbers.

Result: Fv = {(v, |Cv|) | v ∈ V ∧ Cv = {v′ | (v′, v) ∈ E}}
1 Fv = {};
2 foreach v ∈ V do

3 Cv = {v′ | (v′, v) ∈ E};
4 Fv = F ∪ {(v, |Cv|)};
5 end
Algorithm 6: ComputeFan-In: Compute the fan-in of nodes functions

from the call graph.
The distribution of fan-ins of all the functions in the Samba case study are

shown in Figure 4.1. A total of 2553 functions’ fan-in is obtained from the

release 3.6.12. Most functions have fan-in in the range of 1 to 2, and there

is no function with zero fan-in because all such functions from the output

of Egypt have been filtered out. In the figure 4.1, the y-axis represents

the frequency of fan-ins of functions in the Samba case study. The a-axis

represents the ranges of fa-in. The range of fan-in starts from (1 to 10). One

can observe from the figure that the most functions’ fan-in lies in the range

of (1 to 10).

4.3 Extracting Changed Functions Relevant

to Bugs

When a bug is fixed, the change happens to the code that directly reflects

in the functions of the system. However, computing the fan-ins of all the

functions does not tell us anything about the changes in functions in response

88

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 2 3 4 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

M
o
re

Frequency of fan-ins

fan-in ranges

Figure 4.1: The distributions of the fan-ins among functions.

89

to the bug fix. To verify our hypothesis for the changed functions, the change

functions need to be obtained first by taking into account the difference of

the two patches. Hence, the set of all the Samba patches is required to get the

changed functions. The following procedure describes how the set of patches

in the Samba case study has been obtained. Another case study may involve

different change management systems, but the data extract steps should be

similar. The git version control system is used by the Samba development

team to keep track of changes made to the code, which maintains a commit

log whenever a fix to buggy code is patched. One can obtain commit logs

from git repository using the git command as discussed below and the set

of patches can be obtained from the commit logs. In general, the patches are

defined in Definition 10.

Definition 10 Patches : P and Commit logs : L. A set of patches P is

defined as: P = {p | contains(L, “commit′′ +p.id)} where L is the set of logs

of a git repository.

The set of patches is obtained from Algorithm 7. The log output from the

git repository is the input, and a set of patches is its output. The proce-

dure starts by initialising the set p to the empty set. The condition that a

line starts with the “commit” and has a commit id is checked using regular

expressions. When the condition is true, the whole line splits by the string

“commit” and returns the first element as the patch id into the variable p.

In the last step at Line 5, the commit id is stored as the set of patches by

the end of the procedure.

90

Data: L: the log output from a git repository obtained by the

command git log

Result: P = {p | contains(L, “commit′′ + p.id)}
1 P = {} ;

2 foreach line ∈ L do

3 if contains(line , ”ˆcommit) then

4 p = split(line , “commit′′)[1];

5 P = P ∪ {p};
6 end

7 end
Algorithm 7: ObtainPatches: Obtaining the list of patches.

Now, getting the changed functions it is possible that one can retrieve the set

of patches. To get changed functions, the git diff command is used to get

the change set ∆ by taking the difference of two patches. From each change

set, the list of changed functions can be retrieved. The patch p and changed

functions Vp are defined in Definition 11.

Definition 11 Patch : p , and Changed functions : Vp. A patch is defined as

a set of changes to the program: p = {∆} where ∆ is a change. Every patch

p can be identified by a hexadecimal number id, denoted by p.id. Usually a

patch happens as the result of a bug fix. The set of functions changed by a

patch p are denoted as Vp = {v | v ∈ V ∧ contains(∆, v) ∧∆ ∈ p}. Here V

is the set of functions already defined in Definition 8.

In Algorithm 8, the list of changed functions is obtained. The patch p is the

input and the set of changed functions Vp is the output. The patch p is a set

of changes ∆ obtained by taking the difference of two patches pi and pj. Each

element of the changed functions set Vp belongs to ∆ and the set of functions

V . The patch p is collected using the git diff id..id^ command, where

the id of each commit is provided to git to know the difference between two

patches. The procedure starts by initialising the set of changed functions Vp

to the empty set. Then for each change ∆ belonging to p and each function v

belonging to functions set V , the condition if ∆ contains v is checked. When

91

the condition is true, the function v is added to the set of changed functions

Vp.

Data: p = {∆} : a patch is a set of code changes id obtained using

the command git diff id..id^ , V : the set of functions

Result: Vp = {v | v ∈ V ∧ contains(∆, v) ∧∆ ∈ p}
1 Vp = {};
2 foreach ∆ ∈ p , v ∈ V do

3 if contains(∆ , v) then

4 Vp = Vp ∪ {v};
5 end

6 end
Algorithm 8: ObtainChangedFunctions:Obtaining the list of changed

functions from a patch.

4.4 Computing Fan-in of Changed Functions

Relevant to Bugs

Until now for the Samba case study the set of patches P and changed func-

tions Vp has been obtained. In order to know the patches which have high

fan-in changed functions relevant to a bug, the relationship between a patch

and the changed functions has to be analysed. Therefore, getting the accu-

mulative fan-in of all the changed functions inside all the patches will help

to know which patches have high fan-in changed functions. The indication

of high fan-in changed functions inside a patch tells us that a patch code is

complex.

Formally, the accumulative fan-in of all the changed functions in a patch is

given in Definition 12.

Definition 12 The accumulative fan-ins of all the changed functions inside

all the patches: FP , and the accumulative fan-in of all the changed functions

inside a patch : fp. The set of the accumulative fan-ins of all the changed

92

functions inside all the patches FP is defined as: FP = {(p,
∑
v∈Vp

Fv) | p ∈ P},

where VP is the set of changed functions, and Fv is a Cartesian product of the

set of functions and their fan-ins. The accumulative fan-in of all the changed

functions inside a patch fp is defined as: fp =
∑
v∈Vp

Fv(v).

The set of accumulative fan-ins of all the changed functions inside all the

patches is obtained using Algorithm 9. The set of changed functions fan-

ins inside the patches FP contains the pair of each patch and its fan-in. In

Algorithm 9, the set of functions’ fan-ins Fv and the set of patches P are the

input parameters. The set of functions’ fan-ins Fv is the result of applying

Algorithm 6 and the set of patches P is the results of applying Algorithm 7.

The procedure starts by initialising the set of the changed functions’ fan-ins

inside the patches FP to the empty set. This set is the Cartesian product

of patches and their fan-ins. Then for each patch p belonging to the set of

patches P , the value of the set of changed functions Vp is obtained using

Algorithm 8. Line 6 is aggregating the fan-ins of all the changed functions

inside each patch for the given function v. Here, the function v belongs to

the set of changed functions Vp and is assigned to the accumulative fan-in of

changed functions inside a patch fp.

Line 7 inside the loop is used to store the patch p and the sum of the fan-

ins of changed functions fp into the Cartesian product of patches and their

changed functions’ fan-ins FP .

93

Data: Fv, P

Result: FP = {(p,
∑
v∈Vp

Fv) | p ∈ P}

1 Fv = ComputeFan− In(G);

2 P = ObtainPatches(L);

3 FP = {};
4 foreach p ∈ P do

5 Vp = ObtainChangedFunctions(p);

6 fp =
∑
v∈Vp

Fv(v);

7 FP = FP ∪ {(p, fp)};
8 end
Algorithm 9: ComputeOverallFan-in: Compute the accumulative fan-in

of all the functions inside a patch.
The accumulative fan-ins of all the changed functions inside all the patches

FP has been calculated. Now one can find the bugs relevant to the set of

patches to know whether the changed functions of patches relevant to bugs

have higher fan-in. Therefore, the Cartesian product of the set of bugs and

patches is required, which is formally defined in Definition 13.

Definition 13 The set of bugs : B, and The set of bugs and their corre-

sponding patches : BP . The set of bugs B is defined as B = {b | b =

matcher(L(p), regex)}.
In this set, the regex is . ∗ [ˆa− z](bug|fix|correct)\\D ∗ (\\d+).∗ with b

being \\(d+) group1. The matcher is a function to match the regular expres-

sion with the given pattern. The Cartesian product of B and patches P is

defined as BP = {(b, p) | b ∈ B ∧ p ∈ P}.
The set of bugs and their corresponding patches are obtained using Algo-

rithm 10. Here, the set of logs output L from all the branches in git repos-

itory is the input parameter. The output is BP . The procedure starts by

initialising the value of BP to the empty set, then for each line of code be-

longing to the corresponding patch L(p), and for each patch p belonging to

the set of patches P . The regular expression in the line line is matched with

94

the bug id b. If the regular expression matches the value of bug b and patch

p are added as an element to the set of bugs and their corresponding patches

BP .
Data: L: the log output from a git repository obtained by the

command git log

Result: BP = {(b, p) | b ∈ B ∧ p ∈ P}, where

B = {b | b = matcher(L(p), regex)} in which

regex = . ∗ [ˆa− z](bug|fix|correct)

\\D ∗ (\\d+). ∗ withbbeing\\(d+)group1

1 BP = {};
2 foreach p ∈ P do

3 foreach line ∈ L(p) do

4 if containPatterns(line, b, regex) then

5 BP = BP ∪ {(b, p)};
6 end

7 end

8 end
Algorithm 10: ObtainBugs’Patches: Obtain the list of bugs and their

corresponding patches in which they are fixed.
After applying Algorithm 10, the set of bugs and their corresponding patches

BP and the set of accumulative fan-in of changed functions inside the patches

FP has been collected. In Samba it is observed that the fix to each bug can

be patched in one or multiple patches. Therefore, to know how many bugs

have high fan-in changed functions it is required to obtain the accumulative

fan-ins of all the changed functions inside all the patches relevant to the bug

fix. Formally, the accumulative fan-ins of changed functions inside all the

patches relevant to a bug fix is given in Definition 14.

Definition 14 The set of fan-ins of all the changed functions inside all

the patches relevant to the bugs :FB, and the accumulative fan-in of all the

changed functions inside all the patches relevant to a bug : fb. The Cartesian

product of bugs and their relevant patches’ changed functions fan-ins is de-

95

fined as FB = {(b, fb) | b ∈ Bp∧fb = fb+Fp.get(p)}, where fb is the fan-in of

changed functions inside all the patches relevant to a bug. The fb is obtained

by summing the changed functions fan-ins of all the patches corresponding to

a bug.

Algorithm 11 is used to obtain the changed functions fan-ins of all the patches

relevant to the bugs. The Cartesian product of patches and their changed

functions fan-in Fp and the Cartesian product of bugs and their corresponding

patches BP are input. The output is the fan-in of changed functions inside

the patches relevant to the bug fixes FB as defined in Definition 14. The

procedure starts by obtaining the values of Fp and BP from Algorithms 9

and 10 respectively. In Line 3, the value of FB is initialised to the empty

set. Then for each value of the bug b belonging to the BP , the fan-ins of

changed functions inside the patches relevant to a bug fix fb are initialised

to zero. Since each bug might have multiple patches, a “for” loop is used to

iterate all the patches P in the FP relevant to the bug b. At each iteration the

changed functions’ fan-in of each patch is added to fb to get the accumulative

changed functions’ fan-in of all the patches relevant to the bug b. Finally,

the pair of bug b and its fan-in fb are added to the FB.
Data: Fp, BP

Result: FB = {(b, fb) | b ∈ BP ∧ fb = fb + Fp.get(p)}
1 Fp = ComputeAccumulativeFanin(Fv, P);

2 BP = ObtainBugs′Pastches(L);

3 FB = {};
4 foreach b ∈ BP do

5 fb = 0;

6 foreach p ∈ Fp do

7 fb = fb + Fp.get(p);

8 end

9 FB = FB ∪ {(b, fb)};
10 end

Algorithm 11: ObtainBugsFanin: Obtain the fan-in of all the bugs.

96

After obtaining the set of changed functions’ fan-ins inside all the patches

relevant to the bugs, one can get the average fan-in of changed functions

inside all the patches relevant to security and all the bugs. The average

changed functions fan-in inside all the patches relevant to all the bugs is

given in Definition 15.

FB = ObtainBugsFanin(FP , BP) // write about this equation

Definition 15 Given the set of bugs B, and their average fan-in f̄B, the

average fan-in is defined as. The average fan-in of all the bugs f̄B is defined

as f̄B =
∑
b∈FB

fb/|FB|.

f̄B =
∑
b∈FB

fb/|B| (4.1)

It is not possible to verify our hypothesis for security and non-security bugs by

only calculating the average fan-ins of non-security bugs. Therefore, the se-

curity bugs are defined in Definition 16. The security bugs are retrieved from

the Samba security releases web-page http : //www.samba.org/samba/history/security.html.

At the time of study, only 14 of the retrieved CVE relevant bugs have

Bugzilla entries. In these 14-bugs, the patches of 9 bugs are available in

the Samba git repository.

Definition 16 The set of given security bugs BS, The fan-in of a security

bug fbs, and The average fan-in of security bugs f̄BS
. For this algorithm, the

security bugs are already given. The average fan-in of security bugs f̄BS
is

defined as f̄BS
=

∑
bs∈BS

fbs/|BS|.

¯fBS
=

∑
bs∈BS

fbs/|BS| (4.2)

Formally, the null hypothesis 2 is restated as f̄B > ¯fBS
.

97

4.5 Applying the fan-in metric to the case

studies

The technique to measure fan-in complexity of functions relevant to CVE

and Non-CVE bugs has been applied to two case studies Samba and Mozilla

Firefox . In the Samba case study, the average fan-ins of CVE bugs is ¯fBS
=

26.42 and average fan-ins of Non-CVE bugs is f̄BS̄
= 8.39. In the Mozilla

Firefox case study, the average fan-ins of CVE bugs is ¯fBS
= 4.5 and the

average fan-ins of Non-CVE bugs is f̄BS̄
= 0.44478723. Graphically, the

average fan-in values of CVE and Non-CVE bugs are presented in Figure 4.2.

In the figure, the y-axis represents the average fan-in values and the name

of case studies are presented on the x-axis. The bar chart with red color

represents the CVE relevant bugs and the bar chart with blue color represents

the Non-CVE relevant bugs. By applying the technique to measure fan-in

complexity of functions relevant to bug fixes. The first part (RQ2.1) of the

second research question (RQ2) has been answered.

The results of case studies shows that on average a CVE bugs has higher fan-

in compared to the Non-CVE bugs in the Samba and Mozilla Firefox case

studies. Based on the fan-ins comparisons of CVE and Non-CVE relevant

bugs. It is concluded that the null hypothesis 2 is rejected that on average the

fan-in of security bugs is lower than the non-security bugs. One can conclude

from these results that on average security bugs are more complex to fix than

the other bugs in Samba and Mozilla Firefox case studies. By comparing the

fan-ins complexity results of CVE and Non-CVE bug fixes, the second part

(RQ2.2) of the second research question RQ2 has been answered.

There is a difference in the fan-in results of Samba and Mozilla Firefox case

studies. A possible explanation of the lower fan-in of Mozilla Firefox case

study is that there a lot of patches delivered for the purpose of regression

testing. Therefore, in fact there are no function changes in such patches.

Another possible reason is that there is a less trace-ability between the bug

98

0

5

10

15

20

25

30

Samba Mozilla Firefox

26.416666

4.5

8.388189

0.44478723

Average Fan-in CVE bugs

Non-CVE bugs

Figure 4.2: The average fan-in of Samba and Mozilla Firefox case studies.

ids and code patches in the case of Mozilla Firefox case study.

4.6 Tool Support

To answer the second research question (RQ2) for measuring the complexity

of functions relevant to bug fixes an automated tool has been developed. The

tool has two components “Data Extraction” and “Data Analysis”.

Data Extraction: In the data extraction, the first phase is to download and

build the code of the system. To download and build the code of the system,

the instructions given for the development of open source system has been

used. For example, the instructions for the Samba’s developers on their wiki

99

to “Build Samba” 2 and “Contribute to Samba” 3 has been used to download

and build the code of the Samba system. The Samba system has been build

by creating the clone of its code base in the git version control system. In

the second phase of data extraction, the call graph of the Samba system has

been collected from the branches of git version control system. The steps to

extract the call graph has been described in Appendix A.5. The call graph

of Samba contains information about which function is calling which other

function in the system.

Data Analysis: In the data analysis, the first step is to measure the fan-in

of all the functions in the collected call graph. The fan-in of functions from

the call graph has been measured using automated program in Appendix A.5.

The call graph of the system is input of the program and the set of fan-ins of

functions Fv is its output. The next step is to collect patches delivered for the

fixing of bugs using the program in Appendix A.8. The patch commit log is

input of the program and the set of patches P is its output. After collecting

the set of patches P , the changed functions Vp has been collected by taking

the difference of patches. The program to obtain the set of changed functions

is provided in Appendix A.7. The set of patches P is input of the program

and the set of changed functions Vp is its output. In the next step, the fan-

ins of changed functions for each patch has been measured by mapping the

functions retrieved from the call graph Fv with the changed functions Vp. The

program to obtain the fan-ins of changed functions for each patch is provided

in Appendix A.9. The set of patches P and the set of changed functions Vp

are input of the program and a Cartesian product (p, fp) is output of the

program. In this Cartesian product, the fp represents the fan-in value of

changed functions corresponding to the patch p.

After getting the fan-in value of changed functions for each patch, the next

step is to look for the bugs those fix are delivered in the patches. In this

2https://wiki.samba.org/index.php/Build Samba
3https://wiki.samba.org/index.php/Contribute

100

way, the bugs and their corresponding patch are collected by parsing the

commit logs. The program to obtain the set of bugs and their corresponding

patches BP is provided in Appendix A.11. The patch commit log is input of

the program and a Cartesian product (bugID, P) is output of the program.

In this Cartesian product, the bugID represents the identifier for each bug

corresponding to the patch in which its fix is delivered. In the next step, the

fan-in value of each bug is obtained using the program in Appendix A.12. The

set of bugs and their corresponding patches BP and the Cartesian product

of the fan-in value of changed functions for each patch Fp are input of the

program. The Cartesian product of bugs and their fan-in value FB is output

of the program.

At-last, the fan-in of bugs relevant to CVE and Non-CVE is obtained using

the program in Appendix A.14. The set of bugs and their corresponding

patches FB and a file containing the list of bugs for either CVE and Non-

CVE bugs are input of the program. The output of this program is the

average fan-in value of either CVE and Non-CVE relevant bugs. As this

program is used to get the fan-in of both CVE and Non-CVE relevant bugs.

Therefore, the output of this program depends on the list of bugs in the

input file. One of the prerequisite of getting the average fan-in value for

CVE and Non-CVE bugs is to collect the CVE and Non-CVE bugs. In the

earlier chapter, it is reported that CVE and Non-CVE bugs are collected

from the Bugzilla system. Therefore, the CVE and Non-CVE bugs used for

measuring rush for the Samba and Mozilla Firefox case studies are also used

to compute the average fan-in.

Advantages and the limitation of the tool:

The following are advantages of the tool to measure ’fan-in’ complexity of

functions relevant to bug fixes.

• The algorithms for data extraction and analysis phase has been pro-

vided. Therefore, it is easier to apply the technique to measure fan-in of

functions relevant to bug fixes for the more case studies. It also makes

101

easier to repeat the case studies conducted in this thesis to confirm the

results.

• The data extraction and analysis phases of the tool are fully automated

and the data analysis phase has been programmed using Java. All the

Java programs are provided in Appendix A.

The following are limitations of the tool to measure ’fan-in’ complexity of

functions relevant to bug fixes.

• The tool is taking the difference of patches to extract the changed

functions from the change set. Therefore, the calculation depends on

the availability of the patches in the commit logs.

• The tool takes into account the patches delivered for the purpose of

regression testing which might affect on the outcome of the results.

• The “program to get the list of functions from the change set” and the

program to “obtain the list of patches” might take more time for the

case studies in which the number of patches delivered are higher.

4.7 Threats to Validity

Briefly, the following threats to validity to this empirical case study has been

discussed.

Internal Validity: For the Samba case study, only 14 CVE relevant bug

reports has been found in the Bugzilla database for the Samba system at

samba.bugzilla.org. In these 14 CVE entries, only 12 bugs have correspond-

ing patches available in the git repository. The results of CVE and non-CVE

bugs are based on 12 and 1945 bugs respectively. Therefore, smaller CVE

bugs data set for comparing the fan-in values of Samba case study is one

of the validity threats. To counter this threat to validity, the technique to

measure fan-in complexity of functions relevant to bug fixes has been applied

to another case study Mozilla Firefox . To measure the complexity of func-

tions relevant to bug fixes for Mozilla Firefox case study, the 14 CVE and

102

31444 Non-CVE bugs are used. However, it is found that Mozilla Firefox

does not disclose all of CVE relevant bugs in the public domain. Therefore,

it is possible that the sample size to compare the fan-in values for the both

case studies is not reflecting all the bugs. But it is sufficient enough to verify

the hypothesis.

In this study, the average fan-in complexity of functions relevant to bug fixes

has been compared. One can argue about the choice of comparing average,

well the total fan-ins by a code patch follows a normal distribution. That

means there are few outliers in the fan-in values because the complexity of

functions relevant to CVE and Non-CVE bugs is computed using the call

graph of the same system.

Construct Validity: Our complexity measurement on change impact com-

plexity using call graphs also provides a chance for objectively checking the

effort required for fixing the problems. One threat of validity is that not all

code patches are related to the bug numbers and not all fixed bug numbers

have comments in the code to indicate where their patches are. For example

in the Samba case study only 15% of code patches have their corresponding

bug id. The percentage of bug fixes with the lack of trace-ability between

the code patches for Mozilla Firefox is 40%. Although in another case study,

Yu et al. (2008) have extracted the trace-ability links between the source

code and its security design in UML sequence diagram. However, such links

cannot be used for the analysis of security bugs without an explicit UML

design model or 100% accurate bug-code trace-ability. In their book Huang

and Zisman (2012) has mentioned that managing trace-ability links between

different artefacts of the system is difficult. However, the lack of bug-code

trace-ability is still another area to work on for the research community.

Therefore, it is outside the scope of this thesis to address the risk that fan-in

computation only covers partial bugs.

External Validity: The git version control system and the open source

project for the validation of our approach has been used. Therefore, our

103

approach is applicable to any open source project using git, and any other

version of control system, if they can be converted to git. There are tools

available to convert the SVN and CVS repositories into git version control

system.

In this thesis, two different security critical case studies have been conducted

to measure the fan-in complexity of functions relevant to bug fixes. Therefore,

there is sufficient evidence about generalising the conclusion that on average

a CVE bug has higher fan-in complexity compared to a Non-CVE bug.

4.8 Summary

In this Chapter, the contributions of this thesis “a technique to measure the

fan-in complexity of functions relevant to bug fixes” has been introduced.

This thesis is the first to apply the concept of fan-in to measure the bug

fix complexity. The fan-in complexity technique is applied to the two case

studies Samba and Mozilla Firefox . The average fan-in of changed functions

relevant to the bug fixes relevant to CVE and Non-CVE bugs has been com-

puted. It is found that on average the functions relevant to CVE bug fixes

has higher complexity compared to the functions relevant to the Non-CVE

bug fixes for the both case studies.

As in this thesis the CVE bugs are used as the representative of security

bugs and the Non-CVE bugs as the representative of Non-security bugs.

Therefore, by comparing the fan-in values of CVE and Non-CVE bugs, the

null hypothesis2 has been rejected for the both Samba and Mozilla Firefox

case studies.

Table 4.1: Gaps filled by answering the second research

question (RQ2).

Gap reference Gap How the gap is filled

104

SB2

There is a need to investi-

gate whether security bugs are

more complex to fix compared

to the other bugs.

This study has developed a

technique to measure the com-

plexity of functions relevant to

bug fixes. The technique has

been applied to two case stud-

ies Samba and Mozilla Firefox .

The comparison of both case

studies showed that security

bugs have higher complexity

compared to the non-security

bugs. There are various met-

rics to measure the complexity

of bugs as explained in the lit-

erature review section of this

thesis. However, this study

is the first to use the fan-in

complexity metric to measure

the complexity of bug fixes.

Therefore, this study has par-

tially filled this gap.

BR3

There is a need to measure the

complexity of code relevant to

bug fixes to argue that bugs

with the higher code complex-

ity are difficult to fix.

The results of fan-in complex-

ity shows that security bugs

have higher complexity. Ex-

isting studies in the literature

have reported that bugs with

the higher code complexity are

difficult to fix. This study has

provided an evidence to sup-

port this argument. Therefore,

this study has filled this gap.

105

BR4

There is a need to verify that

the bugs with the higher code

complexity are more difficult

to fix using different complex-

ity metric from the fixing time.

This study has used the fan-in

complexity metric to measure

the complexity of bug fixes

rather than the fixing time.

Therefore, this study has filled

this gap.

CC1

There is a need to measure

the complexity of functions

relevant to a bug fix using

different complexity metrics

from the source lines of code

(SLOC) and cyclomatic com-

plexity (CYC).

This gap is related to the BR4.

CC2

There is a need to verify

whether functions relevant to

bug fixes have high fan-in val-

ues.

It is found in this study that

the functions relevant to secu-

rity bug fixes have higher fan-

in values. Therefore, this gap

has been filled by this study.

SA3

There is a need to extract

the changed functions from the

patches relevant to a bug fix

to measure the complexity of

functions.

In this study, the fan-in com-

plexity of functions relevant to

bug fixes by extracting the call

graph of the system. There-

fore, this study has filled this

gap.

106

Chapter 5

Conclusions and Future Work

The contributions of this thesis are two folds: (i) a technique to measure

rush the time management behaviour of software developers on bug triaging

has been developed. The technique has been applied to five security critical

case studies namely Samba, Mozilla Firefox , Red Hat , FreeBSD and Mozilla.

The values of rush are tested using statistical testing to compare CVE and

Non-CVE relevant bugs. (ii) Another technique to measure the complexity

of functions relevant to bug fixes has been developed. The technique has

been applied to the Samba and Mozilla Firefox case studies to compare the

fan-in complexity of functions relevant to CVE and Non-CVE bug fixes.

The following subsections discuss the conclusions drawn from the findings

and their implications if any, the limitations of our study, and finally future

work and future vision.

5.1 Conclusions

In this study, two research questions (RQ1) and (RQ2) has been answered.

Both research questions have two parts, the first part of each research ques-

tion is answering “how” to develop the technique and the second part is

answering the “so what” part about the application of technique. The fol-

107

lowing is a summary of the work.

First, a technique to measure “rush”, the time management behaviour of

software developers in the triaging of bugs has been developed. The al-

gorithms and formulas to measure “rush” in the triaging of bugs have been

provided. The technique has been applied to five case studies Samba, Mozilla

Firefox , Red Hat , FreeBSD and Mozilla. The findings of the study showed

that a CVE bug has been triaged in a “rush” by the software developers

in the above case studies compared to an average Non-CVE bug. Further,

the values of “rush” are statistically verified using the Mann-whitney U test.

The results of the test showed that the values of “rush” for CVE and Non-

CVE bugs for Red Hat , FreeBSD and Mozilla case studies are significantly

different. However, the value of “rush” for CVE and Non-CVE bugs for the

Samba and Mozilla Firefox case studies are not significantly different. Based

on these findings, it is concluded that CVE relevant bugs are triaged in a

rush in Red Hat , FreeBSD and Mozilla case studies. The ‘rush’ measure-

ment technique is useful in agile software development to determine which

bugs has been triaged in a rush.

Second, a technique to measure the complexity of functions relevant to bug

fixes using the call graph based fan-in metric has been developed. The al-

gorithms and formulas to compute the complexity of functions relevant to

bug fixes have been provided. The technique has been applied to the Samba

and Mozilla Firefox case studies. The findings show that the functions rele-

vant to a CVE bug have higher fan-in complexity compared to the functions

relevant to an average Non-CVE bug. The ‘fan-in’ complexity technique is

useful to measure the complexity of functions relevant to bug fixes.

5.2 The correctness and usefulness of find-

ings

In this section, the correctness and usefulness of findings are discussed.

108

5.2.1 The Correctness of findings

In this study, two key research questions has been answered. The first re-

search question is “whether rush the time management behaviour of soft-

ware developers is one of the reasons of the premature assignment and

subsequently reopening of security bugs”. The second research question is

“whether security security bugs are complex to fix”. The two null hypoth-

esis have been developed in addition to techniques to answer the research

questions.

To verify the null hypothesis relevant to the first research question, the tech-

nique to measure rush is applied to more than one case studies. Additionally,

the null hypothesis relevant to rush (the first research question) is tested us-

ing Mann Whitney U-test. However, the outcome of empirical research using

statistical hypothesis testing can not be regarded as a proof. But based on

the probabilities, statistical testing help to support or reject a hypothesis.

On the other hand, to verify the null hypothesis relevant to the second re-

search question, the technique to measure fan-in complexity is applied to

more than one case studies (Samba and Mozilla Firefox).

During the design of study, the same results are expected from the different

cases to reject the null hypothesis. The median value of rush for security bugs

is higher in the three case studies Red Hat , FreeBSD and Mozilla. Similarly,

the fan-in complexity of functions relevant to security fixes are higher for the

both Samba and Mozilla Firefox case studies. It mean the null hypothesis

designed in this study for measuring rush and fan-in complexity has been

rejected in more than one case studies. Therefore, the results produced by

this study are reliable and valid.

One can argue that the author of this thesis can bias the data collection

and analysis steps. Therefore, the tool kits for measuring rush and fan-in

complexity are explained, so the other researchers can repeat the study to

find the similar results.

109

5.2.2 The usefulness of findings

On the basis of the findings that CVE-relevant security bugs are triaged in a

rush compared to the Non-CVE bugs, and CVE-relevant security bugs have

higher fan-in complexity compared to the Non-CVE bugs. The following are

recommendations for developers and vendors involved in the maintenance of

software systems.

Delaying the bug assignment if there is time for the next regular

release: According to the release planning model of rush ratio definition, the

observation confirms that developers rush to deliver bugs before the dead-

line of releases. It suggests that delaying the assignment of some CVE bugs

when the release planning constraints allow could help find the right de-

veloper. In practice, however, many vendor provide quick patches through

security releases immediately after a CVE bug is ‘fixed’. It would give mali-

cious attackers two advantages: (a) the bug patch may not be thorough and

complete, yet presenting an illusion of security; (b) the very announcement

of bug fix earlier than a normal weekly release may lead to extra updates

that are be mended on the regular basis unless all users accept the risk of

immediate security updates. Of course, it is not to say that vendors should

give up security releases as a best-effort workaround under difficult situations

to save their reputation. The statistical findings merely suggest that more

often than ever vendors security releases could be aligned better with the

regular releases.

Incorporating rush and fan-in complexity techniques with the de-

velopment workflow: Since it is not difficult to compute rush ratio accord-

ing to the regular release dates and the bug reports, vendors could benefit

from incorporating the metric within their development process to help as-

sess how likely a CVE bug is handled in a rush. In this way, developers

can not only estimate the time required in advance but also compare each

other to find who can benefit more from a better time management. Such an

awareness could also help the vendor in understating the reason of rushing

110

and which features of the bug reports tend to cause rushing in the past. On

the other hand, incorporating fan-in technique in the development process

can help vendors in better estimation of the fixing effort. So that they can

allocate a single or team of developers on the fixing task accordingly.

Measuring the complexity of past security bug fixes to know the

complexity of newly reported similar type of bug fixes: The technique

to measure fan-in complexity of functions relevant to bug fixes is useful to

measure the complexity of past fixes. In this way, the software developers

can determine the complexity of similar type of newly reported bug fixes.

Such complexity measure can help them for better estimation about the

fixing time. The fan-in complexity will also help software developers at the

triaging stage to chose a developer based on his experience of fixing complex

bugs.

5.3 Future Work Directions

The research work presented in this thesis is extendable in the following

directions.

5.3.1 Using natural language classification technique

to retrieve security bugs

In this thesis, the CVE relevant bugs are used as the confirmed security bugs

to measure the rush and code complexity of functions relevant to bug fixes.

The CVE relevant bugs are already confirmed as the security bugs by the

security experts and people working in the security domain have a consensus

that these bugs are indeed security related. Therefore,the CVE relevant se-

curity bugs from the Samba, Mozilla Firefox , Red Hat FreeBSD and Mozilla

security release wikies and Bugzilla bug reports has been retrieved.

However, the CVE bugs are not the only security related bugs that exist in

111

the system, because in the bug tracking systems the bugs are reported by

the end-users, development and testing teams etc., and usually the bugs are

labelled as security related at the time of reporting. For example, in the

Mozilla Firefox system the bug reports labelled as security are treated with

high priority Mozilla (2014). Therefore, the bug report helps to determine

whether a bug is security related based on the label assigned to the bug report

or through looking at its description. Gegick et al. (2010) have used the bug

report labels and descriptions to classify them as CVE or non-CVE related.

In this thesis that approach could have been used to retrieve the security

bugs but one of the prerequisites of applying the approach was that the bugs

should be labelled as security related. However, in the Samba system the se-

curity bugs are not labelled, and CVE relevant labelling is the most reliable

source. Another challenge was that the natural language processing approach

is not automated; therefore applying the approach to retrieve security bugs

was a challenge. Hence, the future plan is to use the natural language bug

classification approach to retrieve security bugs for future studies. Similarly,

there is an automated tool support available for the classification of bug re-

ports using the natural language technique Podgurski et al. (2003). However,

such tool support needs to be extended for classifying security related bugs.

In future, the plan is to perform disambiguation for the natural language

description of security bugs (Hui Yang et al., 2011).

5.3.2 Applying rush and code complexity measurement

approach to the other case studies

The technique to measure rush have been applied to five case studies Samba,

Mozilla Firefox , Red Hat FreeBSD and Mozilla to know whether the security

bugs are triaged in a rush. To the best of our knowledge, this study is the

first to choose the Samba case study for bug analysis, and Mozilla Firefox ,

Red Hat , FreeBSD and Mozilla case studies to measure the rush. However, a

lot of studies on bug analysis have been conducted on the Apache open source

112

systems (Mockus et al., 2002). The Apache Tomcat has been widely used as

a web server to run web services for Java relevant platforms. Security is one

of the primary concerns for such a system as well. Therefore, the plan is to

apply the rush measurement technique for the other potential case studies in

the future.

The technique to measure code complexity of functions relevant to CVE bugs

have been applied to the Samba and Mozilla Firefox case studies to know

whether the functions relevant to CVE bugs have higher code complexity

compared to the other types of bug. In the future, the plan is to apply fan-in

complexity technique to the more case studies as well.

5.3.3 Confirming the rush phenomenon in the triaging

of security bugs in industrial settings

In this thesis, the rush in the triaging of CVE bugs has been measured

through mining the data from the bug repositories of Samba, Mozilla Fire-

fox ,Red Hat , FreeBSD and Mozilla open source projects. However, bug

triaging is a very human-oriented process in which a developer makes de-

cision about the assignment of a bug to the other developer for fixing and

whether there is enough information to reproduce the bug. In cases where

the developer is convinced that the reported bug is valid and cannot find

the duplicate bug then they assign it to another developer for fixing, but the

existing evidence in the literature shows that the number of reported bugs

everyday over-loads the developers for triaging in open source projects (An-

vik et al., 2005). Therefore, taking the developers’ view on the rush in the

triaging of bugs by conducting a survey is also in our list of future works.

In open source projects, software developers usually work in the distributed

teams on a voluntary basis compared to the closed source projects (Crowston

and Scozzi, 2008). Therefore, the teams working in closed source projects

face different challenges during the triaging of bugs. According to Kuan

(2004), there are different practices in place for the resolution of bugs for the

113

closed source projects compared to the open source. Therefore, there is a

plan to apply the rush measurement technique to the closed source projects.

5.3.4 Measuring complexity of functions for the closed

source systems

In Chapter 4 of this thesis the complexity of functions relevant to CVE bugs

for the Samba and Mozilla Firefox open source systems has been measured.

Usually, the open source systems are considered more extensible and less

coupled due to the limited control on the quality of the development pro-

cess (Stamelos et al., 2002). Therefore, it is considered that the functions

added and modified at the time of maintenance release in a closed source

project are closely related compared to the functions added and modified

in the open source (Paulson et al., 2004). However, it is an open question

whether the coupling of systems impacts on the fan-in value of functions rel-

evant to security bugs. Hence, one of the future tasks is to apply our code

complexity approach to measuring the fan-in of functions of the closed source

projects.

The more complex code is considered harmful for the security of software

systems (Wurster and van Oorschot, 2008) and usually a lot of effort is made

to encourage software developers to write a secure code. However, how the

software developers’ code writing skills impact on the complexity of software

systems is an open question to answer, which is one of our future work

directions.

Similarly, the author of this thesis is interested in comparing the complexity

of functions for CVE bugs in the open and closed source projects. Above it

is already discussed that how both types (open and closed source) of projects

have very different development processes in place. Therefore, such an anal-

ysis will help to determine whether the different development processes also

impact on the complexity of security relevant functions. Consequently in-

creases the fix time of bugs at the maintenance stage.

114

Another future task in this direction is to analyse the developers’ personal

process of fixing security bugs in the open and closed source systems. Such

an analysis will help to prepare general guidelines for the developers during

the fixing of security bugs.

5.4 Future Vision

In response to malicious attacks, the security relevant bugs need to be re-

solved on the urgent basis to secure the software system. Therefore, resolving

security bugs during the maintenance of software system is challenging for

the software developers. To investigate the resolution of security bugs during

software maintenance, at the start of this study, a literature survey has been

conducted. Two key gaps relevant to triaging and fixing activities of security

bug resolution has been found.

A gap that security bugs are triaged faster and reopens more often relevant

to triaging activities has been found. Therefore, in this thesis, first it is

investigated whether software developers rush to resolve security bugs on the

triaging. A technique to measure rush the time management behaviour of

software developers has been developed in this study. The technique has

been applied to five case studies. Further, the rush values of security and

non-security bugs are statistically tested to evaluate their significance. The

results shows that security bugs are triaged in a rush in Red Hat , FreeBSD

and Mozilla case studies. For the expansion of rush analysis, some plans

has been discussed in the future work sections 5.3.2 and 5.3.3. The plans

listed in above future work sections are more relevant to the verification of

the technique to measure rush.

On the high level, one of the follow up work is to investigate that how incorpo-

rating the rush measurement technique can help to improve the development

process. Software projects not using Bugzilla may follow somewhat different

practices in the resolution of bugs, in such cases the proposed release-planning

115

based rush metric definition will have to be extended to fit for the purpose.

The current calculation is based on the CVE bugs available from bug re-

port references to the CVE entries. Different types of vulnerabilities in CVE

records such as buffer over-flow, access validation error may also have differ-

ent consequences on the security of system. Therefore, weighing in our rush

metric with the classified features of CVE bugs developers could be more

informed about what to do in the face of security attack.

Concretely, answering the following research question relevant to rush metric

will give more insight about the triaging of security bugs and its role in the

security maintenance.

How can the ‘rush’ measurement technique be used to improve the bug

triaging process?

A gap that security bugs are more complex to fix compared to the other

types of bug relevant to fixing activities has been found. Therefore, in this

thesis, it is investigated whether security bugs are more complex to fix. A

technique to measure fan-in complexity of functions relevant to bug fixes has

been developed in this study. The technique has been applied to two case

studies Samba and Mozilla Firefox . For the expansion of fan-in analysis,

some plans has been discussed in the future work section 5.3.4.The plans

listed in above future work section are more relevant to the verification of

the technique to measure fan-in complexity.

On the high level, one of the follow up work relevant to fan-in complexity

technique is to measure the fixing time of security relevant bug fixes with the

higher fan-in complexity. In this way, one can verify whether such bugs also

takes the more time of developers for fixing. The bug fix complexity is key

in determining the fixing time of bugs but the fixing complexity can only be

measured after the resolution of bugs. However, such complexity measure

can help to predict the fixing time of similar types of bug resolved in the

past.

116

Concretely, answering the following research questions will give more insight

about fixing of security bugs.

How much additional time developers takes to fix security bugs with

higher fan-in complexity?

How can the ‘fan-in’ complexity be used to predict the fixing time of

security fixes?

117

118

Appendix A

Programming Scripts

A.1 Script to Obtain the Bug Entry Log logB

The following shell script is used to retrieve the bug entry log logB from all

three case studies, namely Samba, Mozilla Firefox , and Red Hat . The bug

entry log logB has been used to get the time stamps when the bug is reported

(tREPORTED).

Before running the script, first the bug ids b from the Bugzilla database

for each case study has been extracted. The advance search option at the

Bugzilla database for retrieving the bug ids b for each case study has been

used. In the advance search all the values of “product”, “component”, “ver-

sion”, “target”, “status”, “resolution”, “severity”, “priority”, “hardware”

and “OS” fields have been selected. Of course, different Bugzilla systems

has different limits to show the data set. Therefore, the results of advance

search have been downloaded in the Common Separated Files (csv) file for-

mat. The advance search process is repeatable, e.g. one can search all the

bugs relevant to the Samba case study from their advance search web page 1.

The script starts by assigning the case study Bugzilla URL to the variable

URL. For example, one can assign the URL bugzilla.samba.org for running

1https://bugzilla.samba.org/query.cgi

119

the script to get the bug logs of the Samba case study. The second line in

script is assigning the downloaded list of bug ids b csv file to the variable

DATA. The purpose of the third line is to store the output from the script

in the folder name tables. Then, the condition that a file relevant to bug

id b exists in the folder reports is checked. In cases when no file exists in

the folder reports the file is downloaded from its web page using the bug

identifier showbug.cgi?id. The downloaded web is moved to the folder bug

reports with the name bugentry id.

Finally, the script to obtain the time stamps when the bug is reported

tREPORTED has been called. The details of script to obtain the time stamps

when the bug is reported are given in the following subsection A.3.

1 \#\ !/ b in / bash
2 URL=b u g z i l l a . case−study . org

3 DATA=bugs case−study . csv

4 echo > t a b l e s /”$DATA” bug eventstamps . txt

5 i f [! −e r e p o r t s / bugentry $ id . html] ; then

6 c u r l −s −O ” https : //$URL/show bug . c g i ? id=$id ”

7 mv show bug . c g i \? id\=$id r e p o r t s / bugentry $ id . html

8 f i

9 awk −f b u g i n i t .awk −v id=$id r e p o r t s / bugentry $ id . html >>

t a b l e s /”$DATA” b u g e v e n t i n i t i a l . txt

10 done

A.2 Script to Obtain the Bug Activity Log

logA

The following shell script is used to retrieve all the bug activity logsA from

the Bugzilla database for all the case studies. The bug activity logs logA

have been used to get the time stamps when the bug is assigned and resolved

tASSIGNED and tRESOLV ED respectively. The same bug ids b csv file retrieved

from the advanced bug search has been used as explained in the above section

120

to obtain the bug entry logs. The first two lines has been copied from the

above script to obtain the bug entry logs because the variables “URL” and

“DATA” are initialised in this script in the same ways as is done in the script

to obtain the bug entry logs. The third line of script is used to redirect the

output file of bug tASSIGNED and tRESOLV ED to the folder “tables”. The

procedure starts by checking the value of each bug id b in the “reports”

folder. In cases where there is no file of bug activity log relevant to the

bug id b found in the folder then the bug activity web page with the URL

showactivity.cgi?id relevant to the bug id b is obtained. The obtained bug

log logA is moved to the reports folder with the corresponding bug id b.

Finally, the script to obtain the values of time stamps when the bug is “As-

signed” tASSIGNED and “Resolved” tRESOLVED has been obtained and

moved to the folder “tables”.

1 #!/ bin / bash

2 URL=b u g z i l l a . case−study . org

3 DATA=bugs case−study . csv

4 echo > t a b l e s /”$DATA” b u g e v e n t i n i t i a l . txt

5 for id in ‘ cut −d , −f 1 b u g z i l l a /$DATA‘ ; do

6 i f [! −e r e p o r t s / $ id . html] ; then

7 c u r l −s −O ” https : //$URL/ sho w ac t i v i t y . c g i ? id=$id ”

8 mv sho w ac t i v i t y . c g i \? id\=$id r e p o r t s / $ id . html

9 f i

10 awk −f bugeventstamps .awk −v id=$id r e p o r t s / $ id . html >> t a b l e s /”

$DATA” bug eventstamps . txt

11 done

A.3 Obtaining tREPORTED : the Event Stamp

When the Bug is Reported

The following “AWK” script is used to get the time stamps when the bug

is reported (tREPORTED). The logB is input of the script and the bug id

121

b and time stamps when the bug is reported tREPORTED is output of the

script. An “AWK” script starts with the pattern matching string. Therefore,

the first line of script is “Reported” indicating the start of script when the

pattern “Reported” appears in the data. The screen-shot of example logB

indicates the pattern matching string in the data of logB as shown in the

Figure A.1. The second line of script is setting the variable start to true.

The next statement in the script is matching a regular expression in the data

of logB to split the time stamp’s data from the other information, which

is irrelevant. Before splitting the string to get the regular expression, the

value of start variable is checked to ensure that the string to split must be

related to the pattern “reported”. Then, the split statement is used with the

three parameters to split the string containing the time stamp. The “AWK”

function split($1, a, >) splits the first field of the string using the delimiter

“ >′′. In the next statement, the second element a[2] of the array a is assigned

to the date variable by adding the spaces between the second $2 and the third

$3 fields. For example, the second element a[2] of the array a in the example

logB data is 2003 − 09 − 0709 : 23UTC as shown in the Figure A.1. The

2003− 09− 07, 09 : 23, UTC are the first, second and the third elements of

the second element a[2] of array a in the given example logB data. The date

variable is printed with the variable id, which corresponds to the bug id b of

the time stamp tREPORTED. The variable id is the parameter provided to the

script at the time of call. After printing the time stamp data, the variable

start is rested to the zero.

Input: logB

1 /Reported/ {
2 s t a r t = 1

3 }
4 /<td>[0−9]+−.∗”/ {
5 i f (s t a r t) {
6 s p l i t ($1 , a , />/)

7 date=a [2] ” ” $2 ” ” $3

122

8 p r in t id , date

9 s t a r t = 0

10 }
11 }

Output: (b, tREPORTED)

Figure A.1: The example of logB data to retrieve the value of tREPORTED.

123

A.4 Obtaining tASSIGNED and tRESOLV ED : the

Bug Event Stamps When the Bug is As-

signed to Fix and When the Bug is Fixed

The following “AWK” script is used to get the time stamps when the bug

is assigned (tASSIGNED) and resolved (tRESOLV ED). The logA is input of the

script and the bug id b and time stamps when the bug is assigned tASSIGNED

and resolved tRESOLV ED are the outputs.

In the bug activity log logA, the assigned, resolved and reopened status are

added at the time when the bug status changes to any of these states. There-

fore, the script starts with the pattern matching string Added as indicated on

the first line to begin the process. The data to match the pattern “Added”

is indicated in the Figure A.2 of logA example screen-shot.

The values of variables start and last are set to true by assigning 1 to both of

them. The purpose of start variable is to process the time stamps at the time

of bug assignment. On the other hand, the purpose of the last variable is to

only get the latest value of time stamps when the bug is resolved, ignoring

all the reopening states.

The script is divided into two parts. The purpose of the first part of the

script is to process the regular expression by matching the pattern starting

with “ < tdrowspan′′. Once the script finds the pattern, it splits the third

field of the split string using the split function and stores in the array a using

the delimiter “ >′′. The second element of array a is stored in the variable

date by adding the spaces between the fourth and fifth fields. Then the value

of the start variable is checked to ensure that the time stamps belong to the

time stamp when the bug was assigned. The value of the date variable is

then assigned to the firstdate variable and the value of the start variable is

set to zero.

The purpose of the second part of the script is to check to which status

of bug the obtained time stamps from the data of logA belong. To check

124

that the obtained time stamps belong to the status of the bug when it is

assigned, the pattern < td > ASSIGNED is used. In cases where the

pattern matches, the value of the b1 variable is set to firstdate. Similarly,

the patterns matching to < td > RESOLV ED and < td > REOPENED

are matched to check whether the time stamp is related to “resolved” and

“reopened” states of the bug. The example of patterns matching the status

of the bug are shown in the Figure A.2 of example logA. In the logA when the

pattern is matched to “Resolved”, the variable last is set to true by assigning

the value 1. However, the value of the last variable is set to zero when the

pattern is matched to “reopened” state of bug.

In the last part of the script, the value of the last variable is checked to be

true with the help of condition last == 1. If the value is true then the bug

id b with the value of assigned b1 and resolved b2 are printed in the file.

Otherwise, the script prints only the value of time stamp when the bug is

assigned b1.

Input: logA

1 /<th>Added<\/th>/ {
2 s t a r t = 1

3 l a s t=−1

4 }
5 /<td rowspan=”[0−9]+” va l i gn=”top ”>[0−9]+−[0−9]+/ {
6 sp l i t ($3 , a ,/>/)

7 date=a [2] ” ” $4 ” ” $5

8 i f (s t a r t) {
9 f i r s t d a t e = date

10 s t a r t = 0

11 }
12 }
13 /<td>ASSIGNED/ {
14 b1=”ASSIGNED: ” f i r s t d a t e

15 }
16 /<td>RESOLVED/ {
17 b2=”RESOLVED: ” date

125

18 l a s t =1

19 }
20 /<td>REOPENED/ {
21 b3=”REOPENED: ” date

22 l a s t =0

23 }
24 END {
25 i f (l a s t == 1)

26 print id , b1 , b2

27 e l s e

28 print id , b1

29 }

Output: (b, tASSIGNED, tRESOLV ED)

126

Figure A.2: The example of logA data to obtain the bug tASSIGNED and

tRESOLV ED time stamps.

127

A.5 Obtaining Call Graphs

To use Egypt for generating a call graph, it is important to install the GCC

version 4.7, which is compatible for the “fdump-rtl-expand” option. This

option is not available in the default version 4.2. Through this option GCC

dumps the given source code file to its intermediate representation with an

extension of .expand. The following is a statement by statement description

of the code used to obtain the call graphs. In the first statement, the folder

path to Samba in shell has been changed to do operations on the Samba

code. The second statement is used to install the gcc compiler version4.7.

After the installation of the compiler, the command “CC” standing for “C-

compiler” is used to generate the expand files from the gcc compiler using

the option “fdump-rtl-expand”. Before doing this the Samba code first needs

to be configured. This is done using the waf configure command. After the

configuration, in the next statement the Samba “make file” is generated to

build executable Samba code. The purpose of “make file” is to organise

the code compilations. Then, the expand file output is redirected to the

callgraph.dot file in the tmp folder. Finally, the output is refined by removing

the first and last lines digrpah and } through searching the files with the

.expand extension only. The purpose of refining the output is to make sure

that it only contains the calling relationship.

1 cd ˜/samba

2 sudo port i n s t a l l gcc47 // for mac use r s

3 CC=”gcc−mp−4.7 −fdump−r t l−expand” . / b u i l d t o o l s / bin /waf c o n f i g u r e

4 CC=”gcc−mp−4.7 −fdump−r t l−expand” make

5 echo > /tmp/ c a l l g r a p h . dot /echo commands r e d i r e c t the output to

the c a l l g r a p h . dot f i l e \
6 f i n d . −name ” ∗ . expand” | while read f i l ename ; do

7 egypt \ $ f i l ename | grep −v ” digraph ” | grep −v ”\}” >> /tmp/

c a l l g r a p h . dot

8 done

128

A.6 Program to Compute the Fan-ins of a

Call Graph

1 public stat ic HashMap<Str ing , Integer> getFanin () throws Exception {
2 HashMap<Str ing , Set<Str ing>> g ; // input

3 HashMap<Str ing , Integer> f = null ; // output

4 g = new HashMap<Str ing , Set<Str ing >>();

5 Scanner scanner = new Scanner (new Fi leReader (” ca l l g raph −3 .6 . 12 . dot ”)) ;

6 while (scanner . hasNextLine ()) {
7 St r ing l i n e = scanner . nextLine () ;

8 S t r ing [] l a b e l s = (St r ing []) l i n e . s p l i t (”\””) ;

9 i f ((l a b e l s . l ength > 3)) {
10 St r ing v prime = l a b e l s [1] ;

11 St r ing v = l a b e l s [3] ;

12 i f (! (g . containsKey (v))) {
13 Set<Str ing> c = new HashSet<Str ing >() ;

14 c . add ((v prime)) ;

15 g . put (v , c) ;

16 } else {
17 Set<Str ing> c = g . get (v) ;

18 c . add (v prime) ;

19 }
20 }
21 }
22 f = new HashMap<Str ing , Integer >() ;

23 for (S t r ing v : g . keySet ())

24 f . put (v , g . get (v) . s i z e ()) ;

25 return f ;

26 }

A.7 Program to Get List of the Functions

from the Change Set

1 public stat ic HashSet<Str ing> getChangedFunctions (S t r ing p)

2 throws Exception

129

3 {
4 HashSet<Str ing> v p = new HashSet<Str ing >() ;

5 Process proc = Runtime . getRuntime () . exec (new St r ing [] { ”/ bin /

bash” , ”−c” , ”/ usr / bin / g i t d i f f ” + p + ” . . ” + p + ”ˆ” }) ;

6 proc . waitFor () ;

7 Scanner scanner = new Scanner (new InputStreamReader (proc .

getInputStream ())) ;

8 while (scanner . hasNextLine ()) {
9 St r ing l i n e = scanner . nextLine () ;

10 St r ing [] l a b e l s = (St r ing []) l i n e . s p l i t (”\@\@”) ;

11 i f ((l a b e l s . l ength > 2) && l a b e l s [2] . c onta in s (” (”)) {
12 St r ing [] namesWithoutBrackets = l a b e l s [2] . s p l i t (” \\(”) ;

13 St r ing [] names = namesWithoutBrackets [0] . s p l i t (”\\W”) ;

14 St r ing v d e l t a = names [names . l ength − 1] ;

15 v p . add ((v d e l t a)) ;

16 }
17 }
18 return v p ;

19 }

A.8 Program to Obtain the List of Patches

1 public stat ic HashSet<Str ing> getPatches ()

2 throws Exception

3 {
4 HashSet<Str ing> P = new HashSet<Str ing >() ;

5 Process proc = Runtime . getRuntime () . exec (new St r ing [] { ”/ bin /

bash” , ”−c” , ”/ usr / bin / g i t −−no−pager l og > t . l og ” }) ;

6 proc . waitFor () ;

7 Scanner scanner = new Scanner (new F i l e (” t . l og ”)) ;

8 while (scanner . hasNextLine ()) {
9 St r ing l i n e = scanner . nextLine () ;

10 i f (l i n e . s tartsWith (”commit”)) {
11 St r ing [] l a b e l s = (St r ing []) l i n e . s p l i t (”commit”) ;

12 i f ((l a b e l s . l ength > 1)) {
13 St r ing p ID = l a b e l s [1] ;

130

14 P. add ((p ID)) ;

15 }
16 }
17 }
18 return P;

19 }

A.9 Program to Compute Accumulative Fan-

ins of all the Patches

1 public stat ic f loat getAccumulativeFanin (HashSet<Str ing> P,

HashMap <Str ing , Integer> F v) throws Exception {
2 HashMap<Str ing , Integer> F p = new HashMap<Str ing , Integer

>() ;

3 for (S t r ing p : P) {
4 HashSet<Str ing> V p = getChangedFunctions (p) ;

5 int f p =0;

6 for (S t r ing v : V p)

7 i f (F v . get (v) !=null)

8 f p= f p + F v . get (v) ;

9 F p . put (p , f p) ;

10 }

A.10 Program to Compute Average Fan-ins

of all the Patches

1 public stat ic f loat getAverageFanin (HashSet<Str ing> P, HashMap <

Str ing , Integer> F p) throws Exception {
2 int sum f p = 0 ;

3 for (S t r ing p : P)

4 sum f p = sum f p + F p . get (p) ;

5 avg f p = (f loat) sum f p /P. s i z e () ;

6 return avg f p ;

7 }

131

A.11 Program to Obtain the List of Bugs and

their Corresponding Patches

1 // precond i t i on : t . l o g always s t a r t s wi th ”commit”

2 public stat ic HashMap<Str ing , HashSet<Str ing>> getBugsPatches ()

3 throws Exception {
4 HashMap<Str ing , HashSet<Str ing>> B P = new HashMap<Str ing ,

HashSet<St r ing >>() ;

5 Scanner scanner = new Scanner (new F i l e (” t . l og ”)) ;

6 S t r ing patchID = null ;

7 S t r ing matchingStr ing = null ;

8 S t r ing f i r s t L i n e = null ;

9 while (scanner . hasNext ()) {
10 i f (f i r s t L i n e==null) {
11 f i r s t L i n e = scanner . nextLine () ;

12 }
13 else i f (f i r s t L i n e . s tartsWith ((”commit”))) {
14 St r ing [] commitLine = (St r ing []) f i r s t L i n e . s p l i t (”commit”) ;

15 patchID=commitLine [1] ;

16 do {
17 Pattern pattern = Pattern . compi le (” . ∗ [ˆ a−z] (bug | f i x |

c o r r e c t) \\D∗(\\d+) .∗ ” ,

18 Pattern . CASE INSENSITIVE) ;

19 matchingStr ing = scanner . nextLine () ;

20 Matcher matcher = pattern . matcher (matchingStr ing) ;

21 i f (matcher . f i n d ()) {
22 St r ing bugID = matcher . group (1) ;

23 i f (! (B P . containsKey (bugID))) {
24 HashSet<Str ing> P = new HashSet<Str ing >() ;

25 P. add (patchID) ;

26 B P . put (bugID , P) ;

27 }
28 else {
29 HashSet<Str ing> P = B P . get (bugID) ;

30 P. add (patchID) ;

31 B P . put (bugID , P) ;

132

32 }
33 }
34 f i r s t L i n e=matchingStr ing ;

35 } while (! (f i r s t L i n e . s tartsWith (”commit”))&& scanner . hasNext

()) ;

36 }
37 }
38 return B P ;

39 }

A.12 Program to Get Bugs’ Fan-ins

1 public stat ic HashMap<Str ing , Integer> getBugsFanin (HashMap<

Str ing ,

2 HashSet<Str ing>> B P ,

3 HashMap<Str ing , Integer> F p)throws Exception {
4 HashMap<Str ing , Integer> F B = new HashMap<Str ing ,

Integer >() ;

5 for (S t r ing b : B P . keySet ()) {
6 int f b =0;

7 for (S t r ing p : B P . get (b))

8 f b= f b+ F p . get (p) ;

9 i f (f b !=0)

10 F B . put (b , f b) ;

11 }
12 return F B ;

13 }

A.13 Program to Get Average Fan-ins of all

the Bugs

1 public stat ic f loat getAverageFaninBugs (HashMap<Str ing , Integer>

F B)

2 throws Exception {
3 f loat avg f B =0;

133

4 int sum f b =0;

5 for (S t r ing b : F B . keySet ())

6 i f (F B . get (b) !=null)

7 sum f b= sum f b + F B . get (b) ;

8 avg f B=sum f b /F B . s i z e () ;

9 return avg f B ;

10 }

A.14 Program to Get Average Fan-ins of CVE

and Non-CVE Bugs

1 // precond i t i on : f i r s t l i n e s t a r t s wi th the bug id

2 // output : the program w i l l output fan−in o f CVE bugs i f the

prov ided to i t con ta ins CVE re l e v an t bug . On the o ther hand ,

i f the f i l e prov ided to i t con ta ins the Non−CVE bugs then the

program w i l l output the fan−i n s o f Non−CVE bugs

3 public stat ic f loat getAverageFaninBugs (F i l e f i l e , HashMap<

Str ing , Integer> F B) throws Exception {
4 HashSet<Str ing> B withtype = new HashSet<Str ing >() ;

5 Scanner scanner = new Scanner (f i l e) ;

6 while (scanner . hasNext ()) {
7 St r ing bugID = scanner . nextLine () ;

8 B withtype . add (bugID) ;

9 }
10 int sum f b =0;

11 for (S t r ing b : B withtype) {
12 i f (F B . get (b) !=null)

13 sum f b = sum f b + F B . get (b) ;

14 }
15 f loat avg f B= (f loat) sum f b / B withtype . s i z e () ;

16 return avg f B ;

17 }

134

Appendix B

Definitions and Calculations

In this appendix section, the first subsection explains the symbols and defini-

tions used in Chapter 3 and Chapter 4 of the thesis. The second subsection

describes the p-value and the screen-shots of p-values of all the case studies

derived from the Statistical Package for the Social Sciences (SPSS).

B.1 Definitions of Symbols used in the Chap-

ter 3 and Chapter 4

In this section, the symbols and definitions used in Chapter 3 and Chapter

4 have been provided respectively.

In the table B.1, each row introduces a symbol and its definitions used in

the 3, and the instance of the symbol in the Samba case study.

135

Table B.1: Symbols and definitions used in Chapter 3.

SymbolDescription Definition E.g. Samba

LOGS
A set of bug entries logB and bug

activities logA
Definition 1 6171-items

B A set of bugs Definition 1 6171-items

Bs
The set of security bugs Bs is the

subset of bugs B
Definition 1 9-items

C A set of derived bug life cycle from LDefinition 2 Omitted

E A set of bug fixing event stamps Definition 3 Omitted

τ1 Duration of bugs triage time set Definition 4 22369.05-days

τ2 Duration of bugs fixing time set Definition 4121396.35-days

Rτ A set of weekly release dates Definition 5 Omitted

τ ′1
A set of precise triage duration

based on weekly release fix
Definition 6 Omitted

λ(B) The planned rush in triaging of bugs Definition 7 Omitted

Similarly, in the table B.2, each row introduces a symbol and its definitions

used in the 4, and the instances of symbol in the Samba case study.

136

Table B.2: Symbols and definitions used in Chapter 4.

Symbol Description Definition E.g. Samba

G =< V,E >
A directed graph of function calls

(i.e., call graph)
Definition 8 1.00

Fv The set of function fan-ins of a call graph Definition 9 2553.00

Cv The set of callers of a function Definition 9 Omitted

L A set of commit logs Definition 10 Omitted

P A set of all the patches Definition 10 156694.00

p A set of changes as a patch Definition 11 Omitted

∆ A change to the code Definition 11 Omitted

Vp
A subset of functions being

changed by a patch p
Definition 11 Omitted

FP The set of patch fan-ins Definition 12 458958

fP The accumulative fan-in of a patch Definition 12 2.92

B The set of bugs Definition 13 2540

BP The set of bugs and their corresponding patchesDefinition 13 2540

FB A set of bugs fan-ins Definition 14 Omitted

fb The sum of bugs fan-ins Definition 14 21306.00

f̄B The average fan-in of a set of bugs Definition 14 8.39

BS The set of given security bugs Definition 15 9

fbs The sum of security bug fan-ins Definition 15 317.00

f̄Bs The average fan-in of security bugs Definition 15 26.42

5.2 Calculating p-value to Evaluate the Sta-

tistical Significance of Rush

The p-value is the probability statistical value to test the significance of

sample population data. The Mann Whitney U-test to statistically evaluate

the significance of rush in all the three case studies has been chosen based on

the p-value using predetermined threshold of 0.05. For applying the Mann

137

Whitney U-test, The standard SPSS 1 statistical package has been used for

the statistical analysis of data.

1http://en.wikipedia.org/wiki/SPSS

138

Bibliography

Abandah, H. and Alsmadi, I. (2013), ‘Call graph based metrics to evaluate

software design quality’, The International Journal of Software Engineer-

ing and Its Applications, 7(1), pp. 1–12.

Ahmed, M. F. and Gokhale, S. S. (2009), ‘Linux bugs: Life cycle, resolu-

tion and architectural analysis’, The Journal of Information and Software

Technology, 51(11), pp. 1618–1627.

Ahmed, M. and Gokhale, S. (2008), Linux bugs: Life cycle and resolution

analysis, in ‘Proceeding of the 8th International Conference on Quality

Software’, QSIC ’08, pp. 396–401.

Albrecht, A. and Gaffney, J. E. (1983), ‘Software function, source lines of

code, and development effort prediction: A software science validation’,

The Journal of IEEE Transactions on Software Engineering, SE-9(6), pp.

639–648.

Anbalagan, P. and Vouk, M. (2009), On predicting the time taken to correct

bug reports in open source projects, in ‘Proceeding of the 25th IEEE In-

ternational Conference on Software Maintenance’, ICSM ’09, pp. 523–526.

Anvik, J., Hiew, L. and Murphy, G. C. (2005), Coping with an open bug

repository, in ‘Proceedings of the 2005 OOPSLA workshop on Eclipse tech-

nology eXchange’, ACM, pp. 35–39.

139

Anvik, J., Hiew, L. and Murphy, G. C. (2006), Who should fix this bug?, in

‘Proceedings of the 28th International Conference on Software Engineer-

ing’, ICSE ’06, ACM, pp. 361–370.

Arce, I. (2002), ‘Bug hunting: the seven ways of the security samurai’, The

Computer Journal, 35(4), pp. 11–15.

Banker, R. D., Datar, S. M. and Zweig, D. (1989), Software complexity and

maintainability, in ‘Proceedings of the 10th International Conference on

Information Systems’, ICIS ’89, ACM, pp. 247–255.

Baysal, O., Holmes, R. and Godfrey, M. (2012), Revisiting bug triage and

resolution practices, in ‘Proceeding of the 1st International Workshop on

User Evaluation for Software Engineering Researchers’, USER ’12, pp. 29

–30.

Bettenburg, N., Just, S., Schröter, A., Weiss, C., Premraj, R. and Zimmer-

mann, T. (2008), What makes a good bug report?, in ‘Proceedings of the

16th ACM SIGSOFT International Symposium on Foundations of Soft-

ware Engineering’, SIGSOFT ’08/FSE-16, ACM, pp. 308–318.

Bhattacharya, P., Ulanova, L., Neamtiu, I. and Koduru, S. (2013), An em-

pirical analysis of bug reports and bug fixing in open source android apps,

in ‘Proceeding of the 17th European Conference on Software Maintenance

and Reengineering’, CSMR ’13, pp. 133–143.

Caglayan, B., Misirli, A. T., Miranskyy, A., Turhan, B. and Bener, A. (2012),

Factors characterizing reopened issues: a case study, in ‘Proceedings of the

8th International Conference on Predictive Models in Software Engineer-

ing’, PROMISE ’12, ACM, pp. 1–10.

Chen, K., Schach, S. R., Yu, L., Offutt, J. and Heller, G. Z. (2004),

‘Open-source change logs’, The Journal of Empirical Software Engineering,

9(3), pp. 197–210.

140

Cheney, J. S. (2010), ‘Heartland payement systems: Lesson learned

from a data breach’, http://philadelphiafed.org/consumer-credit-and-

payments/payment-cards-center/publications/discussion-papers/2010/D-

2010-January-Heartland-Payment-Systems.pdf. [Online; accessed 04-

April-2014].

Crowston, K. and Scozzi, B. (2008), ‘Bug fixing practices within Free/Li-

bre open source software development teams’, The Journal of Database

Management, 19(2), pp. 1–30.

Cubranic, D. and Murphy, G. (2003), Hipikat: recommending pertinent soft-

ware development artifacts, in ‘Proceeding of the 25th International Con-

ference on Software Engineering’, ICSE ’03, pp. 408–418.

do Rego, R., Ribeiro, M., Aleixo, E. and De Souza, R. M. C. R. (2008),

Bug reports retrieval using self-organizing map, in ‘Proceeding of the 3rd

International Conference on Digital Information Management, ICDIM 08’,

pp. 320–325.

Donohue, B. (2014), ‘Hackers milk ie zero day before patch’,

http://threatpost.com/hackers-milk-ie-zero-day-before-patch/104713.

[Online; accessed 07-April-2014].

Easterbrook, S., Singer, J., Storey, M.-A. and Damian, D. (2008), Selecting

empirical methods for software engineering research, in ‘Guide to advanced

empirical software engineering’, Springer London, pp. 285–311.

Finkle, J. (2013), ‘Oracle corp to fix java security flaw shortly’,

http://www.reuters.com/article/2013/01/12/us-usa-java-security-

idUSBRE90B0EX20130112. [Online; accessed 04-April-2014].

Fischer, M., Pinzger, M. and Gall, H. (2003), Populating a release history

database from version control and bug tracking systems, in ‘Proceeding

141

of the 19th International Conference on Software Maintenance, ICSM 03’,

pp. 23–32.

Florian, C. (2014), ‘Report: Most vulnerable operating systems and

applications in 2013’, http://www.gfi.com/blog/report-most-vulnerable-

operating-systems-and-applications-in-2013/. [Online; accessed 07-April-

2014].

Francalanci, C. and Merlo, F. (2008), Empirical analysis of the bug fix-

ing process in open source projects, in B. Russo, E. Damiani, S. Hissam,

B. Lundell and G. Succi, eds, ‘Open Source Development, Communities

and Quality’, Vol. 275 of IFIP International Federation for Information

Processing, Springer, pp. 187–196.

Gegick, M., Rotella, P. and Xie, T. (2010), Identifying security bug reports

via text mining: An industrial case study, in ‘Proceeding of the 7th IEEE

Working Conference on Mining Software Repositories’, MSR ’10, pp. 11–

20.

Giger, E., Pinzger, M. and Gall, H. (2010), Predicting the fix time of bugs,

in ‘Proceedings of the 2nd International Workshop on Recommendation

Systems for Software Engineering’, ACM, pp. 52–56.

Grubb, P. and Takang, A. A. (2003), Software maintenance: concepts and

practice, World Scientific Publishing Company Incorporated.

Guo, P. J., Zimmermann, T., Nagappan, N. and Murphy, B. (2011), Not my

bug! and other reasons for software bug report reassignments, in ‘Proceed-

ings of the ACM 2011 Conference on Computer Supported Cooperative

Work’, ACM, pp. 395–404.

Guo, P., Zimmermann, T., Nagappan, N. and Murphy, B. (2010), Character-

izing and predicting which bugs get fixed: an empirical study of microsoft

142

windows, in ‘Proceeding of the ACM/IEEE 32nd International Conference

on Software Engineering’, pp. 495 –504.

Haley, C., Laney, R., Moffett, J. and Nuseibeh, B. (2008), ‘Security require-

ments engineering: A framework for representation and analysis’, The

Journal of IEEE Transactions on Software Engineering 34(1), pp. 133–

153.

Henry, S. and Selig, C. (1990), ‘Predicting source-code complexity at the

design stage’, The Journal of IEEE Software, 7(2), pp. 36–44.

Hooimeijer, P. and Weimer, W. (2007), Modeling bug report quality, in ‘Pro-

ceedings of the 22nd IEEE/ACM International Conference on Automated

Software Engineering’, ASE ’07, ACM, pp. 34–43.

Huang, J. Gotel, O. and Zisman, A. (2012), Software and Systems Traceabil-

ity, Springer Books.

Hui Yang, de Roeck, A., Gervasi, V., Willis, A. and Nuseibeh, B. (2011),

‘Analysing anaphoric ambiguity in natural language requirements’, The

Journal of Requirements Engineering 16(3), pp. 163–189.

Höst, M., Regnell, B. and Wohlin, C. (2000), ‘Using students as subjects -—A

comparative study of students and professionals in lead-time impact assess-

ment’, The Journal of Empirical Software Engineering, 5(3), pp. 201–214.

In Orbit, L. R. (2011), ‘Tools to get a pictorial function call

graph of code’, http://stackoverflow.com/questions/517589/tools-to-get-a-

pictorial-function-call-graph-of-code. [Online; accessed 03-mayl-2014].

Jain, V., Rath, A. and Ramaswamy, S. (2012), Field weighting for automatic

bug triaging systems, in ‘Proceeding of the IEEE International Conference

on Systems, Man, and Cybernetics’, SMC ’12, pp. 2845–2848.

143

Jeong, G., Kim, S. and Zimmermann, T. (2009), Improving bug triage with

bug tossing graphs, in ‘Proceedings of the the 7th Joint Meeting of the Eu-

ropean Software Engineering Conference and the ACM SIGSOFT Sympo-

sium on The Foundations of Software Engineering’, ESEC/FSE ’09, ACM,

pp. 111–120.

Johnson, P. M., Kou, H., Agustin, J., Chan, C., Moore, C., Miglani, J., Zhen,

S. and Doane, W. E. J. (2003), Beyond the personal software process: Met-

rics collection and analysis for the differently disciplined, in ‘Proceedings

of the 25th International Conference on Software Engineering’, ICSE ’03,

IEEE Computer Society, pp. 641–646.

Jongyindee, A., Ohira, M., Ihara, A. and Matsumoto, K.-i. (2012), ‘Good or

bad committers? –– a case study of committer’s activities on the eclipse’s

bug fixing process’, The Journal of Transactions on Information and Sys-

tems, E95-D(9), pp. 2202–2210.

Kasuya, E. (2001), ‘Mann–Whitney u test when variances are unequal’, The

Journal of Animal Behaviour, 61(6), pp. 1247–1249.

Kim, S. and Ernst, M. D. (2007), Which warnings should i fix first?, in ‘Pro-

ceedings of the the 6th Joint Meeting of the European Software Engineer-

ing Conference and the ACM SIGSOFT Symposium on the Foundations

of Software Engineering’, ESEC-FSE ’07, ACM, pp. 45–54.

Kim, S., Pan, K. and Whitehead Jr, E. E. (2006), Memories of bug fixes, in

‘Proceedings of the 14th ACM SIGSOFT International Symposium on the

Foundations of Software Engineering’, ACM, pp. 35–45.

Kim, S. and Whitehead, Jr., E. (2006), How long did it take to fix bugs?,

in ‘Proceedings of the 2006 International Workshop on Mining Software

Repositories’, MSR ’06, ACM, pp. 173–174.

144

Ko, A., Myers, B., Coblenz, M. and Aung, H. (2006), ‘An exploratory study

of how developers seek, relate, and collect relevant information during soft-

ware maintenance tasks’, The Journal of IEEE Transactions on Software

Engineering, 32(12), pp. 971–987.

König, C. and Kleinmann, M. (2005), ‘Deadline rush: A time management

phenomenon and its mathematical description’, The Journal of Psychol-

ogy, 139(1), pp. 33–45.

Kuan, J. (2004), Is open source software” better” than closed source soft-

ware? using bug-fix rates to compare software quality, in ‘Industry Studies

Association Working Papers’, Industry Studies Association.

Kula, R. G., Fushida, K., Kawaguchi, S. and Iida, H. (2010), Analysis of bug

fixing processes using program slicing metrics, in M. A. Babar, M. Vieri-

maa and M. Oivo, eds, ‘Product-Focused Software Process Improvement’,

number 6156 in ‘Lecture Notes in Computer Science’, Springer, pp. 32–46.

Lamkanfi, A. and Demeyer, S. (2012), Filtering bug reports for fix-time anal-

ysis, in ‘Proceeding of the 16th European Conference on Software Main-

tenance and Reengineering’, CSMR’12, IEEE, pp. 379–384.

Li, Z., Tan, L., Wang, X., Lu, S., Zhou, Y. and Zhai, C. (2006), Have things

changed now?: an empirical study of bug characteristics in modern open

source software, in ‘Proceedings of the 1st Workshop on Architectural and

System Support for Improving Software Dependability’, ASID ’06, ACM,

pp. 25–33.

Loeliger, J. and McCullough, M. (2012), Version Control with Git: Power-

ful tools and techniques for collaborative software development, ” O’Reilly

Media, Inc.”.

MacKenzie, D., Eggert, P. and Stallman, R. (2003), Comparing and Merging

Files with GNU diff and patch, Network Theory Ltd.

145

Mani, S., Nagar, S., Mukherjee, D., Narayanam, R., Sinha, V. S. and

Nanavati, A. A. (2013), Bug resolution catalysts: Identifying essential

non-committers from bug repositories, in ‘Proceedings of the 10th Work-

ing Conference on Mining Software Repositories’, MSR ’13, IEEE Press,

pp. 193–202.

Margaret, R. (2007), ‘What is buffer overflow’,

http://searchsecurity.techtarget.com/definition/buffer-overflow. [On-

line; accessed 04-December-2014].

Marin, M., Deursen, A. V. and Moonen, L. (2007), ‘Identifying crosscut-

ting concerns using fan-in analysis’, The Journal of ACM Transactions on

Software Engineering and Methodology, 17(1), p. 3.

Marin, M., Van Deursen, A. and Moonen, L. (2004), Identifying aspects using

fan-in analysis, in ‘Proceeding of the 11th Working Conference on Reverse

Engineering’, WCRE ’04, pp. 132–141.

Marks, L., Zou, Y. and Hassan, A. E. (2011), Studying the fix-time for bugs

in large open source projects, in ‘Proceedings of the 7th International

Conference on Predictive Models in Software Engineering’, Promise ’11,

ACM, pp. 11:1–11:8.

McCabe, T. J. (1976), ‘A complexity measure’, The Journal of IEEE Trans-

actions on Software Engineering, SE-2(4), pp. 308–320.

Mitropoulos, D., Gousios, G. and Spinellis, D. (2012), Measuring the occur-

rence of security-related bugs through software evolution, in ‘Proceeding

of the 16th Panhellenic Conference on Informatics’, PCI ’12, pp. 117 –122.

Mockus, A., Fielding, R. T. and Herbsleb, J. D. (2002), ‘Two case studies of

open source software development: Apache and mozilla’, The Journal of

ACM Transactions on Software Engineering and Methodology, 11(3), pp.

309–346.

146

Mozilla (2014), ‘Handling mozilla security bugs’,

https://www.mozilla.org/en-US/about/governance/policies/security-

group/bugs/. [Online; accessed 24-April-2014].

Mubarak, A., Counsell, S. and Hierons, R. (2010), An evolutionary study

of fan-in and fan-out metrics in OSS, in ‘Proceeding of the 4th Interna-

tional Conference on Research Challenges in Information Science’, RCIS

’10, pp. 473–482.

Murphy-Hill, E., Zimmermann, T., Bird, C. and Nagappan, N. (2013), The

design of bug fixes, in ‘Proceedings of the 35th International Conference

on Software Engineering’, ICSE ’13, IEEE Press, pp. 332–341.

Nagaraju, S. S., Craioveanu, C., Florio, E. and Matt, M. (2013),

‘Software vulnerability exploitation trends: Exploring the impact

of software mitigations on patterns of vulnerability exploitation’,

http://www.microsoft.com/en-gb/download/details.aspx?id=39680. [On-

line; accessed 07-April-2014].

Nistor, A., Jiang, T. and Tan, L. (2013), Discovering, reporting, and fixing

performance bugs, in ‘Proceedings of the 10th Working Conference on

Mining Software Repositories’, MSR ’13, IEEE Press, pp. 237–246.

Paulson, J., Succi, G. and Eberlein, A. (2004), ‘An empirical study of open-

source and closed-source software products’, The Journal of IEEE Trans-

actions on Software Engineering, 30(4), pp. 246–256.

Peralta, A., Romero, F., Olivas, J. and Polo, M. (2010), Knowledge ex-

traction of the behaviour of software developers by the analysis of time

recording logs, in ‘Proceeding of the 19th IEEE International Conference

on Fuzzy Systems’, FUZZ ’10, pp. 1–8.

Pfleeger, C. P. and Pfleeger, S. L. (2006), Security in Computing (4th Edi-

tion), Prentice Hall PTR.

147

Podgurski, A., Leon, D., Francis, P., Masri, W., Minch, M., Sun, J. and

Wang, B. (2003), Automated support for classifying software failure re-

ports, in ‘Proceeding of the 25th International Conference on Software

Engineering’, ICSE ’13, pp. 465–475.

Prechelt, L. and Unger, B. (2001), ‘An experiment measuring the effects of

personal software process (PSP) training’, The Journal of IEEE Transac-

tions on Software Engineering, 27(5), pp. 465–472.

Rasch, R. H. and Tosi, H. L. (1992), ‘Factors affecting software develop-

ers’ performance: An integrated approach’, The Journal MIS Quarterly,

16(3), pp. 395–413.

Ryder, B. (1979), ‘Constructing the call graph of a program’, The Journal

of IEEE Transactions on Software Engineering SE-5(3), pp. 216–226.

Saleem, S. B., Montrieux, L., Yu, Y., Tun, T. T. and Nuseibeh, B. (2013),

Maintaining security requirements of software systems using evolving cross-

cutting dependencies, in ‘Aspect-Oriented Requirements Engineering’,

Springer, pp. 167–181.

Serrano, N. and Ciordia, I. (2005), ‘Bugzilla, ITracker, and other bug track-

ers’, The Journal of IEEE Software, 22(2), pp. 11–13.

Shihab, E., Ihara, A., Kamei, Y., Ibrahim, W., Ohira, M., Adams, B., Has-

san, A. and Matsumoto, K. (2010), Predicting re-opened bugs: A case

study on the eclipse project, in ‘Proceeding of the 17th Working Confer-

ence on Reverse Engineering’, WCRE ’10, pp. 249 –258.

Shihab, E., Ihara, A., Kamei, Y., Ibrahim, W., Ohira, M., Adams, B.,

Hassan, A. and Matsumoto, K.-i. (2012), ‘Studying re-opened bugs in

open source software’, The Journal of Empirical Software Engineering,

18(5), pp. 1005–1042.

148

Shin, Y. and Williams, L. (2008), An empirical model to predict security

vulnerabilities using code complexity metrics, in ‘Proceedings of the 2nd

ACM-IEEE International Symposium on Empirical Software Engineering

and Measurement’, ESEM ’08, ACM, pp. 315–317.

Sillitti, A., Janes, A., Succi, G. and Vernazza, T. (2003), Collecting, integrat-

ing and analyzing software metrics and personal software process data, in

‘Proceeding of the 29th Euromicro Conference’, pp. 336–342.

Sliwerski, J., Zimmermann, T. and Zeller, A. (2005), When do changes in-

duce fixes?, in ‘Proceedings of the 2005 International Workshop on Mining

Software Repositories’, MSR ’05, ACM, pp. 1–5.

Stamelos, I., Angelis, L., Oikonomou, A. and Bleris, G. L. (2002), ‘Code

quality analysis in open source software development’, The Journal of In-

formation Systems, 12(1), pp. 43–60.

Svahnberg, M., Gorschek, T., Feldt, R., Torkar, R., Saleem, S. B. and

Shafique, M. U. (2010), ‘A systematic review on strategic release planning

models’, The Journal of Information and Software Technology 52(3), pp.

237–248.

The Bugzilla Team (2012), ‘The bugzilla guide - 4.2.3 release’,

http://www.bugzilla.org/docs/4.2/en.

Thung, F., Lo, D. and Jiang, L. (2013), Automatic recovery of root causes

from bug-fixing changes, in ‘Proceeding of the 20th Working Conference

on Reverse Engineering’, WCRE ’13, IEEE, pp. 92–101.

Tian, Y., Lawall, J. and Lo, D. (2012), Identifying linux bug fixing patches, in

‘Proceeding of the 34th International Conference on Software Engineering’,

ICSE ’12, pp. 386–396.

149

Viega, J. and McGraw, G. (2011), Building Secure Software: How to Avoid

Security Problems the Right Way (Paperback) (Addison-Wesley Profes-

sional Computing Series), 1st edn, Addison-Wesley Professional.

Vijayan, J. (2010), ‘Heartland breach expenses pegged at $140m

– so far’, http://www.computerworld.com/s/article/9176507/Heartland

breach expenses pegged at 140M so far. [Online; accessed 04-April-2014].

Wang, D., Zhang, H., Liu, R., Lin, M. and Wu, W. (2012), ‘Predicting bugs’

components via mining bug reports.’, The Journal of Software, 7(5), pp.

1149–1154.

Weiss, C., Premraj, R., Zimmermann, T. and Zeller, A. (2007), How long will

it take to fix this bug?, in ‘Proceedings of the 4th International Workshop

on Mining Software Repositories’, MSR ’07, IEEE Computer Society, p. 1.

Wu, L. L., Xie, B., Kaiser, G. E. and Passonneau, R. (2011), BUGMINER:

software reliability analysis via data mining of bug reports, Technical Re-

port cucs-024-11, Department of Computer Science, Columbia University.

Wurster, G. and van Oorschot, P. C. (2008), The developer is the enemy, in

‘Proceedings of the 2008 Workshop on New Security Paradigms’, ACM,

pp. 89–97.

Wynekoop, J. L. and Walz, D. B. (2000), ‘Investigating traits of top per-

forming software developers’, The Journal of Information Technology and

People, 13(3), pp. 186–195.

Xia, X., Lo, D., Wang, X. and Zhou, B. (2013), Accurate developer recom-

mendation for bug resolution, in ‘Proceeding of the 20th Working Confer-

ence on Reverse Engineering’, WCRE ’13, IEEE, pp. 72–81.

Xiao, J. and Afzal, W. (2010), Search-based resource scheduling for bug fixing

tasks, in ‘Proceeding of the 2nd International Symposium on Search Based

Software Engineering’, SSBSE ’10, pp. 133 –142.

150

Yanyan, Z. and Renzuo, X. (2008), The basic research of human factor analy-

sis based on knowledge in software engineering, in ‘Proceeding of the 2008

International Conference on Computer Science and Software Engineering’,

Vol. 5, pp. 1302–1305.

Ye, Y. and Kishida, K. (2003), Toward an understanding of the motivation of

open source software developers, in ‘Proceeding of the 25th International

Conference on Software Engineering’, pp. 419–429.

Yin, R. K. (2014), Case study research: Design and methods, Sage publica-

tions.

Yu, Y., Jurjens, J. and Mylopoulos, J. (2008), Traceability for the mainte-

nance of secure software, in ‘Proceeding of the IEEE International Con-

ference on Software Maintenance’, ICSM ’08, pp. 297–306.

Yu, Y., Leite, J. C. S. d. P. and Mylopoulos, J. (2004), From goals to aspects:

Discovering aspects from requirements goal models, in ‘Proceedings of the

12t IEEE International Requirements Engineering Conference’, RE ’04,

IEEE Computer Society, pp. 38–47.

Zaman, S., Adams, B. and Hassan, A. E. (2011), Security versus perfor-

mance bugs: a case study on firefox, in ‘Proceedings of the 8th Working

Conference on Mining Software Repositories’, MSR ’11, ACM, pp. 93–102.

Zeller, A. (2002), Isolating cause-effect chains from computer programs, in

‘Proceedings of the 10th ACM SIGSOFT Symposium on Foundations of

Software Engineering’, SIGSOFT ’02/FSE-10, ACM, pp. 1–10.

Zeller, A. (2005), Why Programs Fail: A Guide to Systematic Debugging,

Morgan Kaufmann Publishers Inc.

Zhang, D., Guo, Y. and Chen, X. (2008), Automated aspect recommenda-

tion through clustering-based fan-in analysis, in ‘Proceeding of the 23rd

151

IEEE/ACM International Conference on Automated Software Engineer-

ing’, ASE ’08, IEEE, pp. 278–287.

Zhang, F., Khomh, F., Zou, Y. and Hassan, A. (2012), An empirical study

on factors impacting bug fixing time, in ‘Proceeding of the 19th Working

Conference on Reverse Engineering’, WCRE ’12, pp. 225–234.

Zhang, H., Gong, L. and Versteeg, S. (2013), Predicting bug-fixing time: An

empirical study of commercial software projects, in ‘Proceedings of the

35th International Conference on Software Engineering’, ICSE ’13, IEEE

Press, pp. 1042–1051.

Zhang, H., Zhang, X. and Gu, M. (2007), Predicting defective software com-

ponents from code complexity measures, in ‘Proceeding of the 13th Pacific

Rim International Symposium on Dependable Computing’, PRDC ’07,

pp. 93–96.

Zhong, X., Madhavji, N. and El Emam, K. (2000), ‘Critical factors affecting

personal software processes’, The Journal of IEEE Software, 17(6), pp.

76–83.

Zhou, J., Zhang, H. and Lo, D. (2012), Where should the bugs be fixed?

more accurate information retrieval-based bug localization based on bug

reports, in ‘Proceeding of the 34th International Conference on Software

Engineering’, ICSE ’12, pp. 14–24.

152

