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ABSTRACT 

 
The random demodulator (RD) is a compressive sens-

ing (CS) architecture for acquiring frequency sparse, 

bandlimited signals. Such signals occur in cognitive 

radio networks for instance, where efficient sampling 

is a critical design requirement. A recent RD-based 

CS system has been shown to effectively acquire and 

recover frequency sparse, high-order modulated mul-

tiband signals which have been precoloured by an 

autoregressive (AR) filter. A shortcoming of this AR-

RD architecture is that precolouring imposes addi-

tional computational cost on the signal transmission 

system. This paper introduces a novel CS architecture 

which seamlessly embeds a precolouring matrix (PM) 

into the signal recovery stage of the RD model (iPM-

RD) with the PM depending only upon the AR filter 

coefficients, which are readily available. Experimental 

results using sparse wideband quadrature phased shift 

keying (QPSK) and 64 quadrature amplitude modula-

tion (64QAM) signals confirm the iPM-RD model 

provides improved CS performance compared with 

the RD, while incurring no performance degradation 

compared with the original AR-RD architecture.   

Index Terms— precolouring matrix, autoregres-

sive filter, random demodulator, spectral leakage 

 

1. INTRODUCTION 

 

Compressive sensing (CS) is an efficient strategy for 

both signal acquisition and recovery at much lower 

sampling rates than the Nyquist theorem mandates [1, 

2]. One of the key challenges which have given impe-

tus to CS is the continually increasing requirements on 

traditional analogue-to-digital converters (ADC) 

which operate at the Nyquist sampling rate. Example 

application domains where such challenges arise in-

clude cognitive radio (CR) networks, where wideband 

signals, with high sampling rate requirements are 

encountered. A necessary constraint for efficient CS is 

that the signal must be sparse in some domain, i.e., 

Fourier, so it can be represented by a smaller number 

of significant frequency components than its band-

width implies [3, 4]. This is often the case in wireless 

networks, where signals are intrinsically sparse in the 

frequency domain because of spectrum under-

utilization [5]. The greater the sparsity, the more effi-

cient the signal acquisition and subsequent recovery 

[1-4].  

The random demodulator (RD) is a CS architec-

ture which is able to effectively acquire and recover 

signals which are bandlimited, periodic and sparse in 

nature [6]. It has been recently shown [7, 8] the RD 

can efficiently acquire and recover the power spectral 

density (PSD) of high-order modulated multiband 

signals, such as quadrature phased shift keying 
(QPSK), binary PSK (BPSK) 16 quadrature ampli-

tude modulation (16QAM) and 64QAM. These modu-

lation schemes are widely encountered in various 

wireless networking standards including: the IEEE 

802.22 standard for CR [9], the IEEE 802.16 standard 

for Worldwide Interoperability for Microwave Access 

(WiMax) [10], and the 3
rd

 Generation Partnership 

Project (3GPP) long term evolution (LTE) standard 

[11].  

The reason for the improved RD performance with 

these signal types is that the input is firstly precol-

oured using an autoregressive (AR) filter to enhance 

signal sparsity. This amplifies the more significant 

spectral components, while concomitantly attenuating 

those lying outside the bands of interest. To select the 

best precolouring AR filter order, a nexus between 

filter order and CS performance for the AR-RD model 

has been established [7] to facilitate efficient PSD 

recovery.  

A limitation of the AR-RD design is that the pre-

colouring step is a separate pre-processing block to 

the RD. This is a consequence of not implementing a 

high-speed ADC within the AR filter, which offsets 

the benefit derived from using the innately lower 

sampling rates of the RD [7]. This however, imposes 

additional computational overheads on the transmis-

sion system, such as for example, licensed primary 

users (PU) in a CR network. Furthermore, the precol-

ouring process affects the information content of the 

signal, since it alters the input sample values. This 

provided the motivation to investigate seamlessly 

integrating precolouring into the RD architecture to 

remove these inherent constraints. 

This paper presents a novel RD architecture which 

seamlessly integrates a precolouring matrix (PM) into 

the signal recovery stage, which generates the PSD of 

the input signal. The new iPM-RD model crucially 

avoids the need for pre-processing of the RD input 

signal, with the only prerequisite being a priori 

knowledge of the AR filter coefficients, which form 

the individual PM elements. The benefit of this CS 

implementation in a CR context for example, is that it 
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no longer imposes burdens upon the PU, since cur-

rently mobile telecommunications providers already 

determine and transmit AR coefficients for speech 

coding purposes [12, 13], so the required PM elements 

will be available. Furthermore, the PM promotes 

greater sparsity in the RD so enhancing the signal 

recovery performance. 

The experimental results corroborate that integrat-

ing the PM into the AR-RD structure provides im-

proved spectral leakage performance compared with 

the original RD architecture [6], while no performance 

degradation is incurred in comparison with the sce-

nario where precolouring is applied as a pre-

processing block to the RD [8].  

The remainder of the paper is organized as fol-

lows. Section 2 presents a brief overview of the AR-

RD structure, while Section 3 details the role and 

construction of the PM within the AR-RD architec-

ture. Experimental results are presented in Section 4, 

with some concluding comments being provided in 

Section 5.   

 

2. AN OVERVIEW OF THE AR-RD 

STRUCTURE 

 

The original AR-RD model [7,8] depicted in Fig. 1, 

consists of three constituent parts, with the AR filter 

precolouring the input signal x(n), the RD sub-

sampling the signal below the Nyquist rate and the 

recovery block estimating the signal PSD Sc(f) 

 

 

 

 

 
 

Fig. 1. The original AR-RD structure [7]  

 

Precolouring is performed by an AR filter which 

has the generalised form [14, 15]: 

1
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where ak are the filter coefficients optimally calculated 

using the modified covariance method [15] and p is 

the filter order, which is pragmatically chosen as p=4 

in accordance with [8]. Precolouring x(n) has the 

effect of either significantly reducing or eliminating 

the weaker frequencies lying outside the bands of 

interest, while sharpening the dominant spectral com-

ponents, so increasing signal sparsity and ultimately 

the CS performance of the AR-RD structure.  

The classic RD CS structure shown within the dot-

ted lines in Figure 1, performs three functions [3, 6]; 

the input signal is firstly multiplied by a pseudoran-

dom sequence which alternates at least at the Nyquist 

rate N, then it is low-pass filtered before it is captured 

at a sub-Nyquist rate M<N. If the precoloured signal 

xc(n) is employed as input, then the RD can be formal-

ised as: 

 

                 yc=Axc        (2) 

where xc and yc are the vector forms of xc(n) and y(n) 

respectively, and A is an M x N measurement matrix. 

An example of A for M=3 and N=9 has the following 

form [3, 17]:  

 
1 1 1 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 1 1

A

− 
 = − 
 − − 

     
(3) 

In general, A is a banded matrix with N/M non-zero 

consecutive entries at each row starting in column 

rN/M+1, with r=0,1,...,M-1 [3, 6].  

If fc is the Fourier representation of xc, then:  

 

fc=Fxc   or  xc=F
-1

fc             
(4) 

 

where F the N x N discrete Fourier transform (DFT) 

matrix. Using (4), (3) can now be expressed as:  

 

  yc =Axc = AF
-1

 fc = Gfc              
(5) 

 

where G= A F
-1. Signal recovery and subsequent 

calculation of Sc(f) is accomplished by solving (5) for 

fc using l1-norm minimization [4, 18].  

 

3. INTEGRATION OF PM INTO THE RD 

ARCHITECTURE 

 

The precolouring AR process in Fig. 1 is performed 

prior to the input signal being sub-sampled by the RD 

and so is not an integral part of the CS framework. 

This levies a computational cost upon the signal 

transmission systems, as well as affecting the signal 

information content by altering signal sample values. 

To resolve these overheads, this paper introduces 

the iPM-RD model which seamlessly embeds precol-

ouring into the RD by formulating a PM at the signal 

PSD recovery stage, which solely depends on the AR 

coefficients, which are readily available as discussed 

in Section 1. The PM is derived from (3) and can be 

expressed as: 

 

xc=Cx          (6) 

 

where xc and x are the vector expressions of xc(n) and 

x(n) respectively, while C is the PM of dimensions N 

x N. C is a lower triangular Toeplitz matrix with all 

main diagonal elements equal to one and the nonzero 

entries being functions of the ακ coefficients. Since the 

determinant of the PM is always one, C is guaranteed 

invertible, so from (3) and (6): 

 

yc =Axc=ACx=Acx                       (7) 
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where Ac =AC, which means that provided Ac is used 

as the measurement matrix, then the RD is able to 

perform precolouring. Ac is however, no longer a 

banded matrix and does 

 

1

2 1

2 1

1

1 2 1

1 0 0 . . . 0

1 0 . . . 0

1 . . . 0

. . . . 0

. . . . . . .

. . . . 1 0

. . 1

N

N N

c

c c

C c c

c

c c c c

−

−

 
 
 
 
 

=  
 
 
 
 
 

   (8) 

 

not have the same structure as A in (3). For this reason 

it cannot perform the functions of the RD, so instead 

C is integrated into the recovery stage of the model, so 

the RD now acts upon x instead of xc, as follows:  

 

  y =Ax                      (9) 

 

From (4) and (6), it is implied that: 

 

 

fc =Fxc=FCx   or  x=C
-1

F
-1

fc                     (10) 

 

which is always valid because C is invertible. Thus, 

(8) can be expressed as: 

 

y=Ax= AC
-1

F
-1

fc=Gc fc                       (11) 

 

where Gc=AC
-1

F
-1

=AFc
-1

. The frequency vector fc is 

derived by applying l1-norm minimization to (10) and 

the PSD subsequently estimated from fc. This theo-

retical derivation shows that by using Gc instead of G, 

the PSD recovery stage can undertake precolouring, 

so the AR filter in Fig. 1 becomes obsolete, since all 

that is required is the set of ακ coefficients to form C. 

Gc in (11) implies the sparsity basis matrix is now 

Fc=FC, which is tailored to the input signal by the PM 

coefficients. The corollary is this promotes greater 

sparsity in terms of basis representation. It is also 

apparent that for both precolouring approaches i.e., 

applied as an RD preprocessing block and applying 

the PM in the signal recovery stage, the same fre-

quency vector fc is obtained. A block diagram of the 

iPM-RD design is shown in Fig. 2, where precolour-

ing in the PSD recovery stage of the RD is highlighted 

by the thick-lined boxes which relate to (7) and (11). 

 

 

 

 

 

 

 

 

 

 

Fig.2. Block diagram of the iPM-RD architecture 

 

 

4. SIMULATION RESULTS 
 

The comparative performance of the iPM-RD model in 

Fig. 2 has been evaluated against the AR-RD (Fig. 1) and 

RD structures respectively. Experiments were undertaken 

upon a MATLAB-based platform using two 

QPSK/64QAM modulated test signals, with each being of 

300ms duration and bit-rate of 215bps with two bands 

centered at carrier frequencies of 1kHz and 2.5kHz respec-

tively. The sampling frequency was chosen 1.67 times 

greater than the Nyquist rate which corresponds to a signal 

length of 2048 samples.   

The CS performance was analyzed at sub-sampled rates 

of 68%, 34%, 17%, 8.5% and 4.25% of the Nyquist rate 

which corresponds to 1024, 512, 256, 128 and 64 samples 

respectively. These test signals have been also employed in 

[7, 8] when the original AR-RD CS design was introduced. 

It is assumed that x(n) has additive white Gaussian (AWG) 

noise so the input signal-to-noise ratio (SNR) was set to 

8.1dB and 15.6dB for QPSK and 64QAM respectively, as 

prescribed in the IEEE 802.22 standard for CR [19,20].  

 To critically evaluate the performance of the iPM-RD 

model the corresponding signal PSD was estimated and 

compared with both the classic RD and original AR-RD 

structure [7, 8], with precolouring applied directly to the 

input. The corresponding signal energies were then meas-

ured in the bands of interest at various sub-Nyquist sam-

pling rates. The results for both QPSK and 64QAM modu-

lation types are plotted in Fig. 4, where the total energy 

content percentage outside the bands of interest is termed 

the PSD spectral leakage.  

 The results for the iPM-RD model show the PM en-

hances sparsity with the average spectral leakage improv-

ing by ≈36% and ≈33% respectively for QPSK and 

64QAM modulations compared with the basic RD. In 

addition, for both modulation types the spectral leakage is 

consistently lower than 20% for the PM case, even when 

the sampling rate falls below 5% of Nyquist, compared 

with more than 30% when precolouring is not applied. 

 To appraise the robustness of iPM-RD to input SNR, 

Fig. 5 displays the respective results for the two test modu-

lation signals at various AWG noise levels. The sampling 

rate was arbitrarily chosen at 34% of the Nyquist rate, 

x(n)  

RD 

Recovery stage 

y(n) 

Construct PM  Compute  GC=AC-1F-1 

Solve y=Gc fc for fc 

 

Calculate Sc(f) 

 Sc(f) 



though other sub-Nyquist rates are equally applicable. The 

results conclusively reveal that for both QPSK and 

64QAM modulations the spectral leakage is lower than 

20% across the entire input SNR range, when the PM is 

integrated into the RD structure, compared with more than 

30% and 20% respectively for the original RD structure 

[6]. 

 The influence of the greater sparsity which the PM 

promotes is illustrated in Fig. 6(a) and 6(b), which plots 

the recovered PSD for the RD and iPM-RD models respec-

tively, for 64QAM at a sampling rate 4.25% of Nyquist. 

Despite being a very low sampling rate, the occupied 

bands are still able to be readily identified by iPM-RD, in 

contrast to the RD. Similar performance improvements can 

be observed for  the QPSK test signals. 

 Finally, to validate the theoretical iPM-RD framework 

presented in Section 3, a comparative performance analysis 

with the original AR-RD model is given in Table 1 for 

QPSK modulation. This confirms the two CS architectures 

exhibit equivalent PSD spectral leakage performance and 

input SNR robustness, with a similar trend being evident 

for 64QAM. 

 

5. CONCLUSION 

 

This paper has presented an integrated PM-RD (iPM-RD) 

compressive spectrum (CS) estimation model for sparse, 

digitally modulated multiband signals, by embedding a 

precolouring matrix (PM) into the signal recovery stage. 

The PM is derived from the AR filter coefficients em-

ployed by signal providers for data compression purposes. 

Experimental results for higher-order digital modulation 

schemes such as QPSK and 64QAM, have compellingly 

shown the iPM-RD CS spectrum estimation structure con-

sistently provides reduced PSD spectral leakage, while 

concomitantly being more robust to input SNR. Moreover, 

iPM-RD provides equivalent capability in terms of PSD 

spectral leakage reduction, compared with its original 

counterpart. Future research will investigate incorporating 

precolouring and the PM into other CS techniques, such as 

the compressive multiplexer, as well as formulating a 

computational complexity analysis for the iPM-RD model.  

 

Sampling 

Rate 

(% Nyquist) 

PSD Spectral 

leakage (%)  

iPM-RD 

PSD Spectral 

leakage (%)  original 

AR-RD 

4.25 21.3 21.3 

8 13.9 13.9 

17 12.2 12.2 

34 7.9 7.9 

68 4.6 4.6 

 
Table 1. PSD spectral leakage comparison at different sampling 

rates for the iPM-RD and AR-RD models for QPSK modulation 

 

 
Fig. 4. PSD spectral leakage results showing the impact of using 

the PM for the QPSK and 64QAM test signals at various sam-

pling rates 

 
Fig. 5. Effect of the PM on the PSD spectral leakage results for 

the QPSK and 64QAM test signals for various SNR 

 
(a) 

 
(b) 

Fig. 6. Recovered normalised PSD (W/Hz) at a sampling rate of 

4.25% Nyquist for: (a) RD and (b) iPM-RD 



 

 

REFERENCES 
 
[1]  E. J. Candès, J. Romberg, T. Tao, “Robust uncertainty prin-

ciples: Exact signal reconstruction from highly incomplete 

frequency information”, IEEE Trans. Information Theory, 

vol. 52, no. 2, pp. 489-502, Feb. 2006.   

 

[2]   D. L. Donoho, “Compressed sensing”, IEEE Transactions on 

Information Theory, vol. 52, pp. 1289-1306, Apr. 2006  

 

[3]  R. Baraniuk, M. A. Davenport, M. F. Duarte and C. Hegde, 

“An Introduction to Compressive Sensing”. [Online]. Avail-

able: “http://cnx.org/content/col11133/1.5”, (Accessed 5-06-

2014). 

 

[4] E. Candès, M. Wakin, “An Introduction To Compressive 

Sampling”, IEEE Signal Processing Magazine, Vol.25, Issue 

2, pp. 21-30,  Mar. 2008. 

  . 

[5] Federal Communications Commission, “Spectrum Policy 

Task Force” Rep. ET Docket no. 02-135, Nov. 2002. 

 

[6]  J. A. Tropp, J. N. Laska, M. F. Duarte, J. K. Romberg and R. 

G. Baraniuk, “Beyond Nyquist: Efficient sampling of sparse 

bandlimited signals’’, IEEE Transactions On Information  

Theory, Vol. 56, No. 1, pp.520-544, Jan. 2010. 

 

[7] D. Karampoulas, L.S. Dooley and S.K. Moustéfaoui, “Pre-

colouring in Compressive spectrum estimation for cognitive 

radio”, IEEE EUROCON, pp. 1715-1720, Zagreb, Jul. 2013. 

 

[8]   D. Karampoulas, S. M. Kouadri and L.S. Dooley, “A novel 

precolouring-random demodulator architecture for compres-

sive spectrum estimation”, IET/ISP Conference, pp.1-6, 

London, Dec. 2013.  

 

[9]   A. N. Mody, G.Chouinard, “IEEE 802.22 Wireless regional 

area networks”, IEEE 802.22-10/0073r03, Jun. 2010. 

 

[10] J. Rakesh, W. Vishal, U. Dalal, “A survey of mobile WiMax 

IEEE 802.16m standard”, International Journal of Computer 

and Information Security, vol.8, no. 1, pp.125-131, Apr. 

2010. 

 

[11]  3GPP TR 36.814 V9.0.0  (technical report), Mar. 2010. 

 

[12]  J. Proakis, “Wiley Encyclopedia of Communications”, Vol. 

5, N. Jersey, USA, Wiley-Interscience. 

 

[13] L. Deng, D. O’Shaughnessy, “Speech Processing: A dy-

namic and optimization-oriented approach (Signal Process-

ing and Communications), CRC Press, New York, 2003. 

 

[14]  D. Manolakis, V. Ingle, S. Kogon,  “Statistical and Adaptive 

Signal Processing”, Artech House, Boston, USA, 2005. 

 

[15] S.L. Marple, “Digital Spectral Analysis with Applications”, 

Englewood Cliffs, New Jersey, USA, Prentice-Hall, 1987.  

 

[16] R.Gitlin, J.Hayes and S.Weinstein, “Data Communications”, 

Plenum Press, NewYork, 1992. 

 

[17] T. Ragheb, J. N. Laska, H. Nejati, S. Kirolos, R. G. Bara-

niuk, and Y. Massoud “A prototype hardware for random 

demodulation based compressive Analog-to-Digital Conver-

sion”, 51st IEEE Midwest Symposium in Circuits and Sys-

tems, pp. 37-40, Aug. 2008. 

 

[18] l1 Magic, a collection of MATLAB routines for solving the 

convex optimization programs central to compressive sam-

pling. [Online]. Available: “http://www.l1-magic.org/”, (Ac-

cessed 24-06-2013). 

 

[19] M. Nekovee, “A survey of cognitive radio access to TV 

white spaces”, Hindawi Publishing Corporation, Interna-

tional Journal of Digital Media Broadcasting, Vol. 2010, Ar-

ticle ID 236568, Apr. 2010. 

 

[20] A. N. Mody, G.Chouinard, “IEEE 802.22 Wireless regional 

area networks”, IEEE 802.22-10/0073r03, Jun. 2010. 


