QUASI-EINSTEIN METRICS ON HYPERSURFACE FAMILIES

STUART JAMES HALL

Abstract

We construct quasi-Einstein metrics on some hypersurface families. The hypersurfaces are circle bundles over the product of Fano, Kähler-Einstein manifolds. The quasi-Einstein metrics are related to various gradient Kähler-Ricci solitons constructed by Dancer and Wang and some Hermitian, non-Kähler, Einstein metrics constructed by Wang and Wang on the same manifolds.

1. Introduction

1.1. Motivation and definitions. This article is concerned with a generalisation of Einstein metrics that in some sense interpolates between Einstein metrics and Ricci solitons, namely, quasi-Einstein metrics.
Definition 1.1. Let M^{n} be a smooth manifold and g be a complete Riemannian metric. The metric g is called quasi-Einstein if it solves

$$
\begin{equation*}
\operatorname{Ric}(g)+\operatorname{Hess}(u)-\frac{1}{m} d u \otimes d u+\frac{\epsilon}{2} g=0 \tag{1.1}
\end{equation*}
$$

where $u \in C^{\infty}(M), m \in(1, \infty]$ and ϵ is a constant.
It is clear that if u is constant then we recover the notion of an Einstein metric; we will refer to these metrics as trivial quasi-Einstein metrics. By letting the constant m go to infinity we can also recover the definition of a gradient Ricci soliton. In line with the terminology used for Ricci solitons, we will refer to the quasi-Einstein metrics with $\epsilon<0, \epsilon=0$ and $\epsilon>0$ as shrinking, steady and expanding respectively.

There has been a great deal of effort invested in finding non-trivial examples of Ricci solitons on compact manifolds. However, they remain rare and the only known examples are Kähler. Due to work the work of Hamilton [13] and Perelman [19], non-trivial Ricci solitons on compact manifolds must be shrinking gradient Ricci solitons. The first non-trivial examples were constructed independently by Koiso and Cao on $\mathbb{C P}^{1}$-bundles over complex projective spaces [3, 15]. These examples were subsequently generalised by Chave and Valet 7 and Pedersen, Tønneson-Freidman and Valent 18 who found Kähler-Ricci solitons on the projectivisation of various line bundles

[^0]over a Fano Kähler-Einstein base. The reader should note that what we call a Ricci soliton is referred to as a quasi-Einstein metrics in the papers [7] and [18]. Recently Dancer and Wang generalised these examples by constructing some Kähler Ricci solitons on various hypersurface families where the hypersurface is a circle bundle over the product of Fano Kahler-Einstein manifolds [9]. The solitons found by Dancer and Wang were also independently constructed by Apostolev, Calderbank, Gauduchon and Tønneson-Freidman [1].

In the complete non-compact case Feldman, Ilmanen and Knopf 11 found shrinking gradient Kähler-Ricci solitons on certain line bundles over $\mathbb{C P}^{n}$. Steady gradient Kähler-Ricci solitons were first constructed on \mathbb{C}^{n} by Cao [3] (the $n=1$ case was first found by Hamilton [12]). Cao also found steady gradient Kähler-Ricci solitons on the blow up of $\mathbb{C}^{n} / \mathbb{Z}_{n}$ at the origin. Expanding gradient Kähler-Ricci solitons have been found by Cao on \mathbb{C}^{n} [4] and by Feldman, Ilmanen and Knopf on the blow ups of $\mathbb{C}^{n} / \mathbb{Z}_{k}$ for $k=n+1, n+2, \ldots, 11$. Examples were also found by Pedersen, TønnesonFreidman and Valent on the total space of holomorphic line bundles over Kahler-Einstein manifolds with negative scalar curvature [18]. As in the compact case, these examples have been generalised by Dancer and Wang who constructed shrinking, steady and expanding Kähler-Ricci solitons on various vector bundles over the product of Kähler-Einstein manifolds 9].

In the recent work 6] Case suggested that there should be quasi-Einstein analogues of Dancer-Wang's solitons. He points out that the quasi-Einstein analogue of Koiso-Cao, Chave-Valent and Pedersen-Tønneson-FreidmanValent type solitons was already constructed by Lü, Page and Pope [16]. The purpose of this article is to show that Dancer-Wang's solitons indeed have quasi-Einstein analogues. However it is better to think of these metrics as quasi-Einstein analogues of various Hermitian, non-Kähler, Einstein metrics constructed by Wang and Wang on these spaces [20]. The WangWang Einstein metrics generalise a construction originating with Page [17] and Berard-Bergery [2]. We now state the precise results we wish to prove. Non-trivial steady or expanding quasi-Einstein metrics can only occur on non-compact manifolds [14]. In the non-compact case we have the following which is the quasi-Einstein analogue of theorem 1.6 in [20]:

Theorem 1.2. Let $\left(V_{i}, J_{i}, h_{i}\right), 1 \leq i \leq r, r \geq 3$, be Fano Kähler-Einstein manifolds with complex dimension n_{i} and first Chern class $p_{i} a_{i}$ where $p_{i}>0$ and a_{i} are indivisible classes in $H^{2}\left(V_{i}, \mathbb{Z}\right)$. Let V_{1} be a complex projective space with normalised Fubini-Study metric i.e. $p_{1}=\left(n_{1}+1\right)$. Let P_{q} denote the principal \mathbb{S}^{1}-bundle over $V_{1} \times \ldots \times V_{r}$ with Euler class $\pm \pi_{1}^{*}\left(a_{1}\right)+$ $\sum_{i=2}^{i=r} q_{i} \pi_{i}^{*}\left(a_{i}\right)$, i.e. $q_{1}^{2}=1$.
(1) Suppose $\left(n_{1}+1\right)\left|q_{i}\right|<p_{i}$ for $2 \leq i \leq r$ then, for all $m>1$, there exists a non-trivial, complete, steady, quasi-Einstein metric on the
total space of the $\mathbb{C}^{n_{1}+1}$-bundle over $V_{2} \times \ldots \times V_{r}$ corresponding to P_{q}.
(2) For all $m>1$ there exists at least one one-parameter family of non-trivial, complete, expanding, quasi-Einstein metrics on the total space of the $\mathbb{C}^{n_{1}+1}$-bundle over $V_{2} \times \ldots \times V_{r}$ corresponding to P_{q}.

For the compact case we have the following analogue of theorem 1.2 in [20].
Theorem 1.3. Let $\left(V_{i}, J_{i}, h_{i}\right), 1 \leq i \leq r, r \geq 3$, be Fano Kähler-Einstein manifolds with complex dimension n_{i} and first Chern class $p_{i} a_{i}$ where $p_{i}>0$ and a_{i} are indivisible classes in $H^{2}\left(V_{i}, \mathbb{Z}\right)$. Let V_{1} and V_{r} be a complex projective space with normalised Fubini-Study metrics. Let P_{q} denote the principal \mathbb{S}^{1}-bundle over $V_{1} \times \ldots \times V_{r}$ with Euler class $\pm \pi_{1}^{*}\left(a_{1}\right)+\sum_{i=2}^{i=r-1} q_{i} \pi_{i}^{*}\left(a_{i}\right) \pm$ $\pi^{*}\left(a_{r}\right)$, i.e. $\left|q_{1}\right|=\left|q_{r}\right|=1$.

Suppose that $\left|q_{i}\right|\left(n_{1}+1\right)<p_{i}$ and $\left|q_{i}\right|\left(n_{r}+1\right)<p_{i}$ for $2 \leq i \leq r-1$ and that there exists $\chi=\left(\chi_{1}, \chi_{2}, \ldots, \chi_{r}\right)$ where $\left|\chi_{i}\right|=1, \chi_{1}=-\chi_{r}=1$ such that

$$
\begin{equation*}
\int_{-\left(n_{1}+1\right)}^{\left(n_{r}+1\right)}\left(\chi_{1} x+\frac{p_{1}}{\left|q_{1}\right|}\right)^{n_{1}}\left(\chi_{2} x+\frac{p_{2}}{\left|q_{2}\right|}\right)^{n_{2}} \ldots\left(\chi_{r} x+\frac{p_{r}}{\left|q_{r}\right|}\right)^{n_{r}} x d x<0 \tag{1.2}
\end{equation*}
$$

then, for all $m>1$ there exists a non-trivial, shrinking quasi-Einstein metric on M_{q}, the space obtained from $P_{q} \times S_{1} \mathbb{C P}^{1}$ by blowing-down one end to $V_{2} \times \ldots \times V_{r}$ and the other end to $V_{1} \times \ldots \times V_{r-1}$.

We remark that the Futaki invariant (evaluated on the holomorphic vector field $f(t) \partial_{t}$ in the notation of the next section) is given by

$$
\int_{-\left(n_{1}+1\right)}^{\left(n_{r}+1\right)}\left(\frac{p_{1}}{q_{1}}-x\right)^{n_{1}}\left(\frac{p_{2}}{q_{2}}-x\right)^{n_{2}} \cdots\left(\frac{p_{r}}{q_{r}}-x\right)^{n_{r}} x d x
$$

If this integral vanishes then Dancer-Wang construct a Kähler-Einstein metric on M_{q}.
Finally we note that none of the metrics we find are Kähler. Indeed there is a rigidity result due to Case-Shu-Wei [5] that says, on compact manifolds, Kähler-quasi-Einstein metrics are trivial i.e. Kähler-Einstein.

Acknowledgements: I would like to thank Prof. Andrew Dancer for many interesting conversations about quasi-Einstein metrics and Ricci solitons. I would also like to thank Maria Buzano, Jeffrey Case and Tommy Murphy for useful comments on this paper. I would also like to thank the anonymous referee for useful suggestions and corrections to the previous version.

2. Proof of main theorems

2.1. Derivation of equations. We use the same notation as above. We consider
$M_{0}=(0, l) \times P_{q}$. Let θ be the principal $U(1)$-connection on P_{q} with curvature $\Omega=\sum_{i=1}^{r} q_{i} \pi^{*} \eta_{i}$ where η_{i} is the Kähler form of the metric h_{i}. We form the 1-parameter family of metrics on P_{q}

$$
g_{t}=f^{2}(t) \theta \otimes \theta+\sum_{i=1}^{i=r} g_{i}^{2}(t) \pi^{*} h_{i}
$$

and we then form the metric $\bar{g}=d t^{2}+g_{t}$ on M_{0}. The group $U(1)$ acts on M_{0} by isometries and generates a Killing field Z. We define a complex structure J on M_{0} by $J\left(\partial_{t}\right)=-f^{-1}(t) Z$ on the vertical space of θ and by lifting the complex structure from the base on the horizontal spaces of θ.
Lemma 2.1. Let M_{0} be as above and let $v=e^{-\frac{u}{m}}$. Then the quasi-Einstein equations in this setting are given by:

$$
\begin{gather*}
\frac{\ddot{f}}{f}+\sum_{i=1}^{i=r} 2 n_{i} \frac{\ddot{g}_{i}}{g_{i}}+m \frac{\ddot{v}}{v}=\frac{\epsilon}{2}, \tag{2.1}\\
\frac{\ddot{f}}{f}+\sum_{i=1}^{i=r}\left(2 n_{i} \frac{\dot{f} \dot{g}_{i}}{f g_{i}}-\frac{n_{i} q_{i}^{2}}{2} \frac{f^{2}}{g_{i}^{4}}\right)+m \frac{\dot{f} \dot{v}}{f v}=\frac{\epsilon}{2}, \tag{2.2}\\
\frac{\ddot{g}_{i}}{g_{i}}-\left(\frac{\dot{g}_{i}}{g_{i}}\right)^{2}+\frac{\dot{f} \dot{g}_{i}}{f g_{i}}+\sum_{j=1}^{j=r} 2 n_{j} \frac{\dot{g}_{i} \dot{g}_{j}}{g_{i} g_{j}}-\frac{p_{i}}{g_{i}^{2}}+\frac{q_{i}^{2} f^{2}}{2 g_{i}^{4}}+m \frac{\dot{g}_{i} \dot{v}}{g_{i} v}=\frac{\epsilon}{2} . \tag{2.3}
\end{gather*}
$$

In order that (M, g, u) be a quasi-Einstein manifold, as well as equation (1.1), u must also satisfy an integrability condition that essentially comes from the second Bianchi identity (c.f. Lemma 3.4 in [9]). The form we use here is given in Case [6] using the Bakry-Émery Laplacian:

$$
\Delta_{u}:=\Delta-\langle\nabla u, \cdot\rangle .
$$

Lemma 2.2 (Kim-Kim [14] Corollary 3). Let (M, g, u) be a quasi-Einstein manifold then there exists a constant μ such that

$$
\begin{equation*}
\Delta_{u}\left(\frac{u}{m}\right)+\frac{\epsilon}{2}=-\mu e^{\frac{2 u}{m}} . \tag{2.4}
\end{equation*}
$$

In the notation above (recalling $v=e^{-\frac{u}{m}}$) this condition becomes

$$
\begin{equation*}
\mu=v \ddot{v}+v \dot{v}\left(\frac{\dot{f}}{f}+\sum_{i} 2 n_{i} \frac{\dot{g}_{i}}{g_{i}}\right)+(m-1) \dot{v}^{2}-\frac{\epsilon}{2} v^{2} . \tag{2.5}
\end{equation*}
$$

The constant μ enters into the discussion of Einstein warped products when m is an integer. If (M, g, u) is a quasi-Einstein manifold with constant μ coming from (2.4) and (F^{m}, h) is an Einstein manifold with constant μ, then $\left(M \times F^{m}, g \oplus v^{2} h\right)$ is an Einstein metric with constant $-\epsilon / 2$ as in equation (1.1) (c.f. [14]).

Introducing the moment map change of variables as in [9] and [20] yields the following set of equations:

Proposition 2.3. Let s be the coordinate on $I=(0, l)$ such that $d s=f(t) d t$, $\alpha(s)=f^{2}(t), \beta_{i}(s)=g_{i}^{2}(t), \phi(s)=v(t)$ and $V=\prod_{i=1}^{i=r} g_{i}^{2 n_{i}}(t)$. Then the equations (2.1), (2.2), (2.3) and (2.5) transform to the following:

$$
\begin{gather*}
\frac{1}{2} \alpha^{\prime \prime}+\frac{1}{2} \alpha^{\prime}(\log V)^{\prime}+\alpha \sum_{i=1}^{r} n_{i}\left(\frac{\beta_{i}^{\prime \prime}}{\beta_{i}}-\frac{1}{2}\left(\frac{\beta_{i}^{\prime}}{\beta_{i}}\right)^{2}\right)+m\left(\frac{\alpha \phi^{\prime \prime}}{\phi}+\frac{\alpha^{\prime} \phi^{\prime}}{2 \phi}\right)=\frac{\epsilon}{2}, \tag{2.6}\\
\frac{1}{2} \alpha^{\prime \prime}+\frac{1}{2} \alpha^{\prime}(\log V)^{\prime}-\alpha \sum_{i=1}^{i=r} \frac{n_{i} q_{i}^{2}}{2 \beta_{i}^{2}}+m \frac{\alpha^{\prime} \phi^{\prime}}{2 \phi}=\frac{\epsilon}{2}, \tag{2.7}\\
\frac{1}{2} \frac{\alpha^{\prime} \beta_{i}^{\prime}}{\beta_{i}}+\frac{1}{2} \alpha\left(\frac{\beta_{i}^{\prime \prime}}{\beta_{i}}-\left(\frac{\beta_{i}^{\prime}}{\beta_{i}}\right)^{2}\right)+\frac{1}{2} \frac{\alpha \beta_{i}^{\prime}}{\beta_{i}}(\log V)^{\prime}-\frac{p_{i}}{\beta_{i}}+\frac{q_{i}^{2} \alpha}{2 \beta_{i}^{2}}+m \frac{\alpha}{2} \frac{\beta_{i}^{\prime} \phi^{\prime}}{\beta_{i} \phi}=\frac{\epsilon}{2}, \\
\phi\left(\phi^{\prime \prime} \alpha+\frac{\phi^{\prime} \alpha^{\prime}}{2}\right)+\phi \phi^{\prime}\left(\frac{\alpha^{\prime}}{2}+(\log V)^{\prime} \alpha\right)+(m-1)\left(\phi^{\prime}\right)^{2} \alpha-\frac{\epsilon}{2} \phi^{2}=\mu . \tag{2.8}
\end{gather*}
$$

Equating (2.6) and (2.7) we obtain

$$
\begin{equation*}
-m \frac{\phi^{\prime \prime}}{\phi}=\sum_{i=1}^{i=r} n_{i}\left(\frac{\beta_{i}^{\prime \prime}}{\beta_{i}}-\frac{1}{2}\left(\frac{\beta_{i}^{\prime}}{\beta_{i}}\right)^{2}+\frac{q_{i}^{2}}{2 \beta_{i}^{2}}\right) \tag{2.10}
\end{equation*}
$$

Following [9, 20] we look for solutions that satisfy

$$
\frac{\beta_{i}^{\prime \prime}}{\beta_{i}}-\frac{1}{2}\left(\frac{\beta_{i}^{\prime}}{\beta_{i}}\right)^{2}+\frac{1}{2} \frac{q_{i}^{2}}{\beta_{i}^{2}}=0
$$

This condition can be geometrically interpreted as saying that the curvature of \bar{g} is J-invariant in the sense that $\overline{R m}(J \cdot, J \cdot, J \cdot, J \cdot)=\overline{R m}(\cdot, \cdot, \cdot, \cdot)$ where J is the complex structure on M_{0}. Imposing this forces ϕ to be a linear function of s. We write $\phi(s)=\kappa_{1}\left(s+\kappa_{0}\right)$ for some constants $\kappa_{0}, \kappa_{1} \in \mathbb{R}$. Hence (2.9) becomes

$$
\begin{equation*}
\alpha^{\prime}+\alpha\left((\log V)^{\prime}+\frac{(m-1)}{\left(s+\kappa_{0}\right)}\right)=\frac{\epsilon\left(s+\kappa_{0}\right)}{2}+\frac{\mu}{\kappa_{1}^{2}\left(s+\kappa_{0}\right)} . \tag{2.11}
\end{equation*}
$$

Accordingly there are two classes of solution β_{i} :

$$
\beta_{i}=A_{i}\left(s+s_{0}\right)^{2}-\frac{q_{i}^{2}}{4 A_{i}}
$$

or

$$
\beta_{i}= \pm q_{i}\left(s+\sigma_{i}\right)
$$

where $A_{i} \neq 0$ and σ_{i} are constants. We note that the case $\beta_{i}=-q_{i}\left(s+\sigma_{i}\right)$ corresponds to the metric \bar{g} being Kähler with respect to the complex structure. Hence the rigidity result of Case-Shu-Wei rules out having any solutions of this form (in fact choosing β_{i} of this form leads to inconsistency).

If we input $\beta_{i}=A_{i}\left(s+s_{0}\right)^{2}-\frac{q_{i}^{2}}{4 A_{i}}$ into 2.8 we see that

$$
\alpha^{\prime}+\alpha\left((\log V)^{\prime}+m(\log \phi)^{\prime}-\frac{1}{\left(s+s_{0}\right)}\right)=\frac{\epsilon}{2}\left(s+\kappa_{0}\right)+\frac{E^{*}}{\left(s+\kappa_{0}\right)}
$$

where

$$
E^{*}:=\frac{8 A_{i} p_{i}-\epsilon q_{i}^{2}}{8 A_{i}^{2}}
$$

Comparing with equation (2.11) we see that solutions are consistent providing $\kappa_{0}=s_{0}$ and

$$
\frac{\mu}{\kappa_{1}^{2}}=E^{*}=\frac{8 A_{i} p_{i}-\epsilon q_{i}^{2}}{8 A_{i}^{2}}
$$

Solving gives

$$
\begin{equation*}
\alpha(s)=V^{-1}\left(s+\kappa_{0}\right)^{1-m} \int_{0}^{s} V\left(s+\kappa_{0}\right)^{m-2}\left(E^{*}+\frac{\epsilon}{2}\left(s+\kappa_{0}\right)^{2}\right) d s \tag{2.12}
\end{equation*}
$$

2.2. Compactifying M_{0}. We recall that $V_{1}=\mathbb{C P}^{n_{1}}$ and we are adding in the manifold $V_{2} \times \ldots \times V_{r}$ at the point $s=0$. We refer the reader to the discussion immediately after equation (4.17) in [9]. In a nutshell, in order for the metric to extend smoothly we require that

$$
\alpha(0)=0, \alpha^{\prime}(0)=2, \beta_{1}(0)=0 \text { and } \beta_{1}^{\prime}(0)=1
$$

As we are using $\beta_{1}(s)=A_{1}\left(s+\kappa_{0}\right)^{2}-\frac{q_{1}^{2}}{4 A_{1}}$ we must have $A_{1}=\frac{1}{2 \kappa_{0}}$ and $\left|q_{1}\right|=1$. We also have normalised so that $p_{1}=n_{1}+1$ hence the consistency conditions become

$$
E^{*}=\frac{\mu}{\kappa_{1}^{2}}=\frac{\kappa_{0}}{2}\left(4\left(n_{1}+1\right)-\epsilon \kappa_{0}\right)=\frac{8 A_{i} p_{i}-\epsilon q_{i}^{2}}{8 A_{i}^{2}} \text { for } 2 \leq i \leq r .
$$

2.3. Steady quasi-Einstein metrics. In this case $\epsilon=0$. Setting $V_{1}=$ $\mathbb{C P}^{n_{r}}$ and compactifying we obtain a $\mathbb{C}^{n_{1}+1}$-vector bundle over $V_{2} \times \ldots \times V_{r}$. In order that $\beta_{i}(0)>0$ on $I=[0, \infty)$ we must have $A_{i}>0$ and

$$
E^{*}=\frac{\mu}{\kappa_{1}^{2}}=\frac{\kappa_{0}}{2}\left(4\left(n_{1}+1\right)\right)=\frac{p_{i}}{A_{i}} \text { for } 2 \leq i \leq r
$$

Hence $A_{i}=\frac{p_{i}}{E^{*}}$ and

$$
\beta_{i}(s)=\frac{p_{i}}{E^{*}}\left(s+\kappa_{0}\right)^{2}-\frac{E^{*} q_{i}^{2}}{4 p_{i}} .
$$

It is clear that in order for $\beta_{i}(0)>0$ we must have

$$
\left(n_{1}+1\right)\left|q_{i}\right|<p_{i} \text { for } 2 \leq i \leq r .
$$

In order to ensure the metrics are complete it is sufficient to check that the integral

$$
\begin{equation*}
t=\int_{0}^{s} \frac{d x}{\sqrt{\alpha(x)}} \tag{2.13}
\end{equation*}
$$

diverges as $s \rightarrow \infty$ (this says that geodesics cannot reach the boundary at infinity and have finite length). If we compute the function $\alpha(s)$ we see that
it is asymptotic to a positive constant K. Hence the above integral diverges and we obtain a complete quasi-Einstein metric for all $m>1$ generalising the non-Kähler, Ricci-flat ones constructed in [20]. Choosing a different value of E^{*} simply varies the metric by homothety.
2.4. Expanding quasi-Einstein metrics. Here we take $\epsilon=1$ to factor out homothety. Again the manifolds in question are $\mathbb{C}^{n_{1}+1}$-vector bundles over $V_{2} \times \ldots \times V_{r}$. Here the consistency conditions become

$$
E^{*}=\frac{\mu}{\kappa_{1}^{2}}=\frac{\kappa_{0}}{2}\left(4\left(n_{1}+1\right)-\kappa_{0}\right)=\frac{8 A_{i} p_{i}-q_{i}^{2}}{8 A_{i}^{2}} \text { for } 2 \leq i \leq r
$$

If $\left|q_{i}\right|\left(n_{1}+1\right) \leq p_{i}$ then we choose $0<E^{*}<2\left(n_{1}+1\right)^{2}$,

$$
\kappa_{0}=2\left(n_{1}+1\right)+2 \sqrt{\left(n_{1}+1\right)^{2}-\frac{E^{*}}{2}}
$$

and

$$
A_{i}=\frac{1}{2 E^{*}}\left(p_{i}+\sqrt{p_{i}^{2}-\frac{E^{*} q_{i}^{2}}{2}}\right)
$$

In order that $\beta_{i}(0)>0$ we require $2 \kappa_{0} A_{i}>\left|q_{i}\right|$ for $2 \leq i \leq r$. This can be seen as
$2\left(2\left(n_{1}+1\right)+2 \sqrt{\left(n_{1}+1\right)^{2}-\frac{E^{*}}{2}}\right) \frac{1}{2 E^{*}}\left(p_{i}+\sqrt{p_{i}^{2}-\frac{E^{*} q_{i}^{2}}{2}}\right)>\frac{2\left(n_{1}+1\right) p_{i}}{E^{*}}>\left|q_{i}\right|$.
In the case that $\left|q_{i}\right|\left(n_{1}+1\right)<p_{i}$ we note also that

$$
\left(1+\sqrt{1-\frac{E^{*} q_{i}^{2}}{2 p_{i}^{2}}}\right)>\left(1+\sqrt{1-\frac{E^{*}}{2\left(n_{1}+1\right)^{2}}}\right),
$$

hence,

$$
\begin{gathered}
2\left(2\left(n_{1}+1\right)-2 \sqrt{\left(n_{1}+1\right)^{2}-\frac{E^{*}}{2}}\right) \frac{1}{2 E^{*}}\left(p_{i}+\sqrt{p_{i}^{2}-\frac{E^{*} q_{i}^{2}}{2}}\right)> \\
\frac{4 p_{i}\left(n_{1}+1\right)}{2 E^{*}}\left(1-\sqrt{1-\frac{E^{*}}{2\left(n_{1}+1\right)^{2}}}\right)\left(1+\sqrt{1+\frac{E^{*}}{2\left(n_{1}+1\right)^{2}}}\right)=\frac{p_{i}}{\left(n_{1}+1\right)}>\left|q_{i}\right| .
\end{gathered}
$$

Therefore if we have the strict inequality $\left|q_{i}\right|\left(n_{1}+1\right)<p_{i}$ then we can also choose

$$
\kappa_{0}=2\left(n_{1}+1\right)-2 \sqrt{\left(n_{1}+1\right)^{2}-\frac{E^{*}}{2}} .
$$

If $\left|q_{i}\right|\left(n_{1}+1\right)>p_{i}$ then we can choose $0<E^{*}<2\left(n_{1}+1\right)^{2} \min \left(p_{2}^{2} / q_{2}^{2}, \ldots, p_{r}^{2} / q_{r}^{2}\right)$. If we also choose

$$
\kappa_{0}=2\left(n_{1}+1\right)+2 \sqrt{\left(n_{1}+1\right)^{2}-\frac{E^{*}}{2}}
$$

and

$$
A_{i}=\frac{1}{2 E^{*}} p_{i}+\sqrt{p_{i}^{2}-\frac{E^{*} q_{i}^{2}}{2}}
$$

then $\beta_{i}(0)>0$. We can also choose $E^{*}<0$ in this case. Completeness follows as $\alpha(s)$ is asymptotic to $K s^{2}$ for a positive constant K and so the integral 2.13 diverges. Hence we find complete, quasi-Einstein analogues of the non-Kahler, Einstein metrics constructed in [20].
2.5. Shrinking quasi-Einstein metrics. In order to factor out homothety we take $\epsilon=-1$ and so the consistency conditions are

$$
\frac{\mu}{\kappa_{1}^{2}}=\frac{\kappa_{0}}{2}\left(4\left(n_{1}+1\right)+\kappa_{0}\right)=\frac{8 A_{i} p_{i}+q_{i}^{2}}{8 A_{i}^{2}} \text { for } 2 \leq i \leq r .
$$

We split the discussion into the compact case and the non-compact, complete case. For the compact case we consider I to be the finite interval $\left[0, s_{*}\right]$. We set $V_{r}=\mathbb{C P}^{n_{r}}$ and at the point $s=s_{*}$ we add in the manifold $V_{1} \times \ldots \times V_{r-1}$. For the metric to extend smoothly we require that $q_{r}=1, p_{r}=n_{r}+1$ and $-1=2 A_{r}\left(s_{*}+\kappa_{0}\right)$. Putting these into the consistency conditions we see that

$$
\kappa_{0}\left(4\left(n_{1}+1\right)+\kappa_{0}\right)=\left(s_{*}+\kappa_{0}\right)^{2}-4\left(n_{r}+1\right)\left(s_{*}+\kappa_{0}\right)
$$

and hence

$$
s_{*}=\sqrt{\kappa_{0}\left(4\left(n_{1}+1\right)+\kappa_{0}\right)+4\left(n_{r}+1\right)^{2}}-\kappa_{0}+2\left(n_{r}+1\right)
$$

We note that if $n_{1}=n_{r}$ then $s_{*}=4\left(n_{1}+1\right)$. For the time being we note that $s_{*}=s_{*}\left(E^{*}\right)$ and β_{i} is completely determined by E^{*} once we have chosen the value of q_{i}^{2} and the sign of A_{i}. The value A_{i} is given by

$$
A_{i}=\frac{1}{2 E^{*}}\left(p_{i}+\chi_{i} \sqrt{p_{i}^{2}+\frac{E^{*} q_{i}^{2}}{2}}\right)
$$

where $\chi_{i}=1$ if $A_{i}>0$ and $\chi_{i}=-1$ if $A_{i}<0$. In order to have a quasiEinstein metric we must be able choose a value of $E^{*}>0$ such that the integral

$$
\int_{0}^{s_{*}\left(E^{*}\right)} \prod_{i=0}^{i=r}\left[\left(\left(s+\kappa_{0}\right)^{2}-\frac{q_{i}^{2}}{4 A_{i}^{2}}\right)^{n_{i}}\right]\left(s+\kappa_{0}\right)^{m-2}\left(E^{*}-\frac{1}{2}\left(s+\kappa_{0}\right)^{2}\right) d s=0
$$

Changing coordinates to

$$
x=\frac{1}{2}\left(s+\kappa_{0}\right)-\left(\left(n_{1}+1\right)^{2}+\frac{E^{*}}{2}\right)^{1 / 2},
$$

then the above integral becomes (ignoring constants)
$\left.F\left(E^{*}\right)=\int_{-\left(n_{1}+1\right)}^{x_{*}\left(E^{*}\right)} \prod_{i=0}^{i=r} P_{i}(x)\left(x+\left(\left(n_{1}+1\right)^{2}+\frac{E^{*}}{2}\right)^{1 / 2}\right)^{m-2}\left(x^{2}+2 x\left(\left(n_{1}+1\right)^{2}+\frac{E^{*}}{2}\right)^{1 / 2}\right)+\left(n_{1}+1\right)^{2}\right) d s$
where
$P_{i}(x)=\left(x^{2}+2 x\left(\left(n_{1}+1\right)^{2}+\frac{E^{*}}{2}\right)^{1 / 2}+\left(n_{1}+1\right)^{2}+\frac{2 p_{i}\left(\chi_{i} \sqrt{p_{i}^{2}+\frac{E^{*} q_{i}^{2}}{2}}-p_{i}\right)}{q_{i}^{2}}\right)^{n_{i}}$
and

$$
x_{*}\left(E^{*}\right)=\left(n_{r}+1\right)+\left(\frac{E^{*}}{2}+\left(n_{r}+1\right)^{2}\right)^{1 / 2}-\left(\frac{E^{*}}{2}+\left(n_{1}+1\right)^{2}\right)^{1 / 2} .
$$

We will compute the $\operatorname{limit} \lim _{E^{*} \downarrow 0} F\left(E^{*}\right)$ and the limit $\lim _{E^{*} \rightarrow \infty} F\left(E^{*}\right)$.
We begin with 0 . We note that as $m>1$ the function $f(x)=\left(x+\left(n_{1}+1\right)^{m-2}\right.$ is integrable on $\left[-\left(n_{1}+1\right), x\left(E^{*}\right)\right]$ so by the dominated convergence theorem we can evaluate the integral of the limit. This is given by
$S \int_{-\left(n_{1}+1\right)}^{2\left(n_{r}+1\right)-\left(n_{1}+1\right)} \prod_{\chi_{i}=-1}\left[x+\left(n_{1}+1\right)\right]^{2 n_{i}} \prod_{\chi_{j}=1}\left[\frac{4 p_{i}^{2}}{q_{i}^{2}}-\left(x+\left(n_{1}+1\right)\right)^{2}\right]^{n_{j}}\left(x+\left(n_{1}+1\right)\right)^{m} d x$,
where

$$
S=(-1)^{\sum_{\chi_{i}=-1} n_{i}} .
$$

The hypothesis on the p_{i} and q_{i} mean that the sign of $\lim _{E^{*} \downarrow 0} F\left(E^{*}\right)$ is that of S.

For $E^{*} \rightarrow \infty$ we consider

$$
\lim _{E^{*} \rightarrow \infty} F\left(E^{*}\right)\left(E^{*}\right)^{\frac{1}{2}\left(1-m-\sum_{\chi_{i}=-1} n_{i}\right)}=K(-1)^{\sum_{\chi_{i}=-1} n_{i}} \int_{-\left(n_{1}+1\right)}^{\left(n_{r}+1\right)} \prod_{i=1}^{i=r}\left[\chi_{i} x+\frac{p_{i}}{\left|q_{i}\right|}\right]^{n_{i}} x d x
$$

where K is a positive constant. Hence if we can choose χ_{i} so that

$$
\int_{-\left(n_{1}+1\right)}^{\left(n_{r}+1\right)} \prod_{i=1}^{i=r}\left[\chi_{i} x+\frac{p_{i}}{\left|q_{i}\right|}\right]^{n_{i}} x d x<0
$$

we can find an $E^{*}>0$ such that $\alpha\left(s_{*}\right)=0$. A discussion similar to that in 9$]$ and [20] shows that this is enough to ensure we have smooth quasi-Einstein metrics.

3. Examples and future work

We end with an example of theorem 1.3, some discussion of the geometry of the quasi-Einstein metrics constructed and a discussion of possible sources future compact examples.
3.1. An example. We consider an example that is also considered in (9). They consider a $\mathbb{C P}^{1}$-bundle over $\mathbb{C P}^{2} \times \mathbb{C P}^{2}$. In theorem 1.3 this corresponds to taking $r=4, n_{1}=n_{4}=0, n_{2}=n_{3}=2$ and $p_{2}=p_{3}=3$. Hence to apply the theorem we must consider $\left|q_{2}\right|,\left|q_{3}\right|<3$. They take $\left(q_{2}, q_{3}\right)=(1,-2)$. The Futaki invariant is given by

$$
\int_{-1}^{1}(3-x)^{2}\left(\frac{3}{2}+x\right)^{2} x d x
$$

which they calculate is 7.8 . This means that

$$
\int_{-1}^{1}(3+x)^{2}\left(\frac{3}{2}-x\right)^{2} x d x=-7.8<0
$$

and we have non-trivial quasi-Einstein metrics on this space for all $m>1$.
3.2. Remarks on the geometry of the quasi-Einstein metrics. In 9$]$ section 4 , the authors comment on the geometry at infinity of their examples of steady and expanding gradient Kähler-Ricci solitons. In particular they conclude that their steady examples are asympotically parabolic and that the expanding examples are asymptotically conical. We recall that the examples of steady quasi-Einstein metrics constructed in theorem 1.2 have $\alpha(s) \sim K$ for some positive constant K and so the following asymptotic behaviour holds (ignoring multiplicative constants)

$$
f(t)=O(1) \text { and } g_{i}(t) \sim t .
$$

In the expanding case we recall that $\alpha(s) \sim K s^{2}$ and so we have

$$
f(t) \sim e^{t} \text { and } g_{i}(t) \sim e^{t}
$$

3.3. Future families. The space $\mathbb{C P}^{2} \sharp \overline{\mathbb{P}}^{2}$ fits into the framework of theorem 1.3 as a non-trivial $\mathbb{C P}^{1}$-bundle over $\mathbb{C P}^{1}$. On this space there is the Page metric, the Koiso-Cao soliton and the quasi-Einstein metrics of theorem 3 (originally due to Lü-Page-Pope). The space $\mathbb{C P}^{2} \sharp 2 \overline{\mathbb{C P}}^{2}$ also admits a non-Kähler, Einstein metric due to Chen, LeBrun and Weber [8] and a Kähler-Ricci soliton due to Wang and Zhu [21]. It would seem reasonable that there should be a family of quasi-Einstein analogues to these metrics. The metrics on $\mathbb{C P}^{2} \sharp 2 \overline{\mathbb{C P}}^{2}$ are not cohomogeneity-one but do have an isometric action by \mathbb{T}^{2}. One observation is that the Lü-Page-Pope quasiEinstein metrics are conformally Kähler (as any $U(2)$-invariant metric on $\mathbb{C P}^{2} \sharp \overline{\mathbb{C P}}^{2}$ is). The Chen-LeBrun-Weber metric is also conformally Kähler (a fact orginally proved by Derdzinski [10]) and so one might hope that the same would be true for analogues of the Lü-Page-Pope metrics on $\mathbb{C P}^{2} \sharp 2 \overline{\mathbb{C P}}^{2}$. Both the Page and Chen-LeBrun-Weber metrics are conformal to extremal Kähler metrics which satisfy a PDE that 'occurs naturally' in Kähler geometry. It would be an interesting first step to try and find an analogous PDE/ODE for the Kähler metrics that are conformal to the Lü-Page-Pope metrics. The author hopes to take up the existence questions in a future work.

References

[1] V. Apostolev, D. Calderbank, P. Gauduchon, C. Tønnesen-Friedman, Hamiltonian 2-forms in Kähler geometry IV: Weakly Bochner-flat Kähler manifolds, Commum. Anal. Geom., 16, (2008), 91-126.
[2] L. Bérard-Bergery, Sur des nouvelles variétés riemannienes d'Einstein, Publication de l'Institute Elie Cartan, Nancy (1982).
[3] H.-D. Cao, Existence of gradient Ricci solitons, Elliptic and parabolic methods in geometry,A.K. Peters, Wellesley, (1996) 1-16.
[4] H.-D. Cao, Limits of solutions to the Kähler-Ricci flow, J. Diff, Geom., 45, (1997), 257-272.
[5] J. Case, Y. Shu, G Wei, Rigidity of quasi-Einstein metrics, Diff. Geom Appl., 29, (2011), 93-100.
[6] J. Case, Smooth metric measure spaces and quasi-Einstein metrics, preprint, (2010), arXiv:1011.2723v3 [math.DG].
[7] T. Chave, G. Valent, On a class of compact and non-compact quasi-Einstein metrics and their renormalizability properties, Nuclear Phys. B, 478, no. 3, (1996), 758-778.
[8] X. Chen, C. LeBrun, B. Weber, On conformally Kähler, Einstein manifolds, J. Amer. Math. Soc., 21, no. 4, (2008), 1137-1168.
[9] A. Dancer, M. Wang, On Ricci solitons of cohomogeneity one, Annals of Global Analysis and Geometry, 39, (2011), 259-292.
[10] A. Derdzinski, Self-dual Kähler manifolds and Einstein manifolds of dimension four, Compositio Math., 49, no. 3, (1983), 405-433.
[11] M. Feldman, T. Ilmanen, D. Knopf, Rotationally symmetric shrinking and expanding gradient Kähler-Ricci solitons, J. Diff. Geom., 65, (2003), 169-209.
[12] R. Hamilton, The Ricci flow on surfaces, Contemporary Mathematics, 71, (1988), 237-261.
[13] R. Hamilton, The formation of singularities in the Ricci flow, Surveys in differential geometry, Voll. II (Cambridge, MA, 1993), (1995), 7-136.
[14] D.-S. Kim, Y.H. Kim, Compact Einstein warped product spaces with nonpositive scalar curvature, Proc. Amer. Math. Soc. 131, (2003), 2573-2576.
[15] N. Koiso, On rotationally symmetric Hamilton's equation for Kähler-Einstein metrics, Advanced studies in Pure Mathematics, vol. 18-I. Academic Press, Tokyo, (1990), 327-337.
[16] H. Lü, D. Page, C. Pope, New inhomogenous Einstein metrics on sphere bundles over Einstein-Kähler manifolds, Phys Lett B, 593, (2004), 218-226.
[17] D. Page, A compact rotating gravitational instanton, Phys Lett, 79B, (1979), 235238.
[18] H. Pedersen, C. Tønnesen-Freidman, G. Valent, Quasi-Einstein Kähler metrics, Lett. Math. Phys., 50, no. 3, (1999), 229-241.
[19] G. Perelman, The entropy formula for the Ricci flow and its geometric applications, preprint, (2002), arXiv:math/0211159 [math.DG].
[20] J. Wang, M. Wang, Einstein metrics on S^{2}-bundles, Math Ann, 310, (1998), 497526.
[21] X.-J. Wang, X. Zhu, Kähler-Ricci solitons on toric manifolds with positive first Chern class. Adv. Math. 188, (2004), 87-103.
Department of Applied Computing, The University of Buckingham, Hunter Street Buckingham, MK18 1EG,United Kingdom
email: stuart.hall@buckingham.ac.uk

[^0]: ${ }^{1}$ © 2013. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

