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ABSTRACT 

The aim of this thesis is to provide an insight into the effects of user age on interactions 

with smartphones and tablets applications. The study considered two interaction methods to 

investigate the effects of user age on the usability of smartphones and tablets of different 

sizes: 1) eye-movements/browsing and 2) touch-gesture interactions. In eye movement 

studies, an eye tracker was used to trace and record users’ eye movements which were later 

analysed to understand the effects of age and screen-size on browsing effectiveness. Whilst 

in gesture interactions, an application developed for smartphones traced and recorded users’ 

touch-gestures data, which were later analysed to investigate the effects of age and screen-

size on touch-gesture performance. The motivation to conduct our studies is summarised as 

follows: 1) increasing number of elderly people in our society, 2) widespread use of 

smartphone technology across the world, 3) understanding difficulties for elderly when 

interacting smartphones technology, and 4) provide the existing body of literature with new 

understanding on the effects of ageing on smartphone usability.  

The work of this thesis includes five research projects conducted in two stages. Stage One 

included two researches used eye movement analysis to investigate the effects of user age 

and the influence of screen size on browsing smartphone interfaces. The first research 

examined the scan-paths dissimilarity of browsing smartphones applications for elderly 

users (60+) and younger users (20-39). The results revealed that the scan-paths dissimilarity 

in browsing smartphone applications was higher for elderly users (i.e., age-driven) than the 

younger users. The results also revealed that browsing smartphone applications were 

stimulus-driven rather than screen size-driven. The second study was conducted to 

understand the difficulties of information processing when browsing smartphone 

applications for elderly (60+), middle-age (40-59) and younger (20-39) users. The 

evaluation was performed using three different screen sizes of smartphone and tablet 

devices. The results revealed that processing of both local and global information on a 

smartphone/tablet interfaces was more difficult for elderly users than it was for the other 

age groups. Across all age groups, browsing on the smaller smartphone size proved to be 

more difficult compared to the larger screen sizes. 
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Stage Two included three researches to investigate: the difficulties in interacting with 

gesture-based applications for elderly compared to younger users; and to evaluate the 

possibility of classifying user’s age-group based on on-screen gestures. The first research 

investigated the effects of user age and screen size on performing gesture swiping 

intuitively for four swiping directions: down, left, right, and up. The results revealed that 

the performance of gesture swiping was influenced by user age, screen size, as well as by 

the swiping orientation. The purpose of the second research was to investigate the effects of 

user age, screen sizes, and gesture complexity in performing accurate gestures on 

smartphones and tablets using gesture-based features. The results revealed that the elderly 

were less accurate, less efficient, slower, and exerted more pressure on the touch-screen 

when performing gestures than the younger users. On a small smartphone, all users were 

less accurate in gesture performance – more so for elderly – compared to mini-sized tablets. 

Also, the users, especially the elderly, were less efficient and less accurate when 

performing complex gestures on the small smartphone compared to the mini-tablet. The 

third research investigated the possibility of classifying a user’s age-group using touch 

gesture-based features (i.e., gesture speed, gesture accuracy, movement time, and finger 

pressure) on smartphones. In the third research, we provide evidence for the possibility of 

classifying a user’s age-group using gesture-based applications on smartphones for user-

dependent and user-independent scenarios. The accuracy of age-group classification on 

smaller screens was higher than that on devices with larger screens due to larger screens 

being much easier to use for all users across both age groups. In addition, it was found that 

the age-group classification accuracy was higher for younger users than elderly users. This 

was due to the fact that some elderly users performed the gestures in the same way as the 

younger users do, which could be due to their longer experience in using smartphones than 

the typical elderly user. 

Overall, our results provided evidence that elderly users encounter difficulties when 

interacting with smartphones and tablet devices compared to younger users. Also, it was 

possible to classify user’s age-group based on users’ ability to perform touch-gestures on 

smartphones and tablets. The designers of smartphone interfaces should remove barriers 

that make browsing and processing local and global information on smartphones’ 

applications difficult. Furthermore, larger screen sizes should be considered for elderly 

users. Also, smartphones could include automatically customisable user interfaces to suite 
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elderly users' abilities to accommodate their needs so that they can be equally efficient as 

younger users. 

The outcomes of this research could enhance the design of smartphones and tablets as well 

the applications that run on such devices, especially those that are aimed at elderly users. 

Such devices and applications could play an effective role in enhancing elderly peoples’ 

activities of daily lives.  
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CHAPTER 1 

INTRODUCTION 

Smartphone technologies have been evolving at a rapid pace in various aspects such as 

screen-size and resolution, interface designs, network communications abilities, and 

applications. This has enabled users to use their smartphones in a variety of activit ies of 

daily life. Social networking, m-commerce, education, web browsing, healthcare, 

entertainment, instant messaging and video conferencing, and task management are some 

but few popular applications on smartphones. It is worth noting that the Apple iPhone – the 

first smartphone as we know them today – was released in 2007, just eight years ago. 

Smartphones and their applications are now an integral part of our lives and the ways in 

which we interact with others whether socially or in business. 

Whilst technology e.g. smartphones can, and they do, play an important role in our daily 

lives, evidence suggests that users who were not exposed to the technology during their 

‘formative years’ find the interaction with technology difficult (e.g. (Stößel, 2012)). This 

difficulty is exacerbated for elderly (60+ years old) because of their age-related deficits in 

sensation and perception, motor movement and cognitive abilities (Chen, 2013). Due to 

lack of experience in the use of technology e.g. PCs and smartphones, as well as their 

applications in general and age-related physiological and psychological issues in particular, 

elderly are faced with many obstacles in adopting rapidly evolving smartphone 

technologies, which otherwise could assist them in their activities of daily life (Evans & 

Minocha, 2013). There is also the problem of device manufacturers and application 

developers focusing their efforts in tailoring the design of smartphones and applications to 

younger generations and those in work in order to target a larger share of the market 

(Stößel, 2012). 

Considering elderly users’ abilities, limitations and their needs when designing 

technological solutions could allow elderly live independently. Such solutions could 

provide elderly people convenient and timely access to the benefits of using healthcare 

systems, important and relevant information, or to communicate with family, friends and 

carers that will help them overcome isolation (Minocha, et al., 2013), (Farage, et al., 2012). 
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Previous studies have shown that there is a digital divide between elderly users and younger 

users (e.g. Stößel, 2012)). It was recommended by (Chen, 2013) to conduct studies to 

understand the difficulty level for elderly when interacting with touchscreen technology.  

Based on previous recommendations and the limited number of studies on smartphone 

usability in the literature, there is a need for further systematic investigation on 

smartphones’ usability for the elderly users. Previous recommendations were for visual 

search studies using eye movement (Fukuda, 2008), (Obrist, et al., 2007), and gestures 

using finger touchscreens in the context of smartphone applications (Chen, 2013), (Stößel, 

2012). Such studies should consider ageing with the accompanied changes in sensation and 

perception, motor movement, and cognitive abilities impairments (Chen, 2013). To the best 

of our knowledge, there was no study conducted for elderly users to evaluate the usability 

of small smartphones and tablets based on eye movement and touch-gesture interactions. 

Our study has endeavoured to focus on smartphones and tablets devices for elderly using 

touch-gestures. 

The rest of this chapter is organised as follows: issues that motivated this research are 

presented in Section  1.1; the key research questions pursued in this thesis are discussed in 

Section  1.2; Section  1.3 explains the main aims and the focus of the study; Section  1.4 

provides a brief overview of the thesis organisation which is followed by Section  1.5 where 

our publications to-date are listed. 

1.1. Motivation 

The motivation to conduct an investigation into how the elderly interact with smartphone 

technology was driven by three main factors. First motivation is the significant increase of 

the elderly population. Based on the (AgeUK, 2015) report for people who are living in the 

UK, people aged 60+ years old number more than those aged 18 years old and below. Also, 

the elderly population aged over 60 in the UK is now nearly 14.5 million. The percentage 

of people currently living in the UK aged 60 to 64 years old is almost 55% of the total 

elderly population. Globally, the elderly persons aged 60+ are growing faster than the total 

population (Deloitte, 2014).  

Across the world, the number of persons aged 60+ years is approximately 810 million in 

2012 and by 2050 this number is predicted to grow to more than 2 billion. At that point, 
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elderly people will outnumber the population of those aged 0-14 years for the first time in 

human history. Asia has more than half (55%) of the world’s elderly persons, followed by 

Europe, which accounts for 21% of the total (Nations, 2012).  

Our second motivation is the widespread use of smartphone technology across the world 

and its potential benefits to elderly people. For example, based on the ICT report (ICT, 

2013) that the mobile-cellular subscriptions in Europe were estimated to be around 126 per 

100 people. Also, the highest internet usage is in the Europe region (i.e., 75%), followed by 

the Americas (i.e., 61%). According to recent figures showed by (Consulting, 2013) that has 

been conducted for all online shoppers, 39% of 60+ years old now own a smartphone 

device and 21 percent of 70-79 years old own a tablet device (Consulting, 2013). However, 

the average use of smartphone devices and applications by the elderly is still low (Deloitte, 

2014), despite the obvious benefits such technology can bring to elderly users. The third 

motivation is to understand the usability issues faced by elderly people when using 

smartphone applications in order to make it easier for them to use smartphone applications. 

This is due to limited number of studies on the effects of ageing on the usability of 

smartphones, especially using eye-movement tracking and touch-gesture interactions 

(Chen, 2013), (Stößel, 2012), (Fukuda & Bubb, 2003). The fourth motivation is to provide 

the existing body of literature with new understanding on the effects of ageing on 

smartphone usability. 

In order to increase the usability of smartphones and tablets, and to provide an empirical 

and a theoretical study to existing body of literature using eye movement and touch-gesture 

interactions on smartphones for the elderly, we derived a set of hypotheses based on the 

background experience of technology use e.g. PCs and smartphones for the elderly. This 

basis included the difficulty that the elderly encounter when interacting with technology in 

general, and a literature review of studies conducted on the two interaction methods and 

elderly users (more details of the hypotheses are given in Section  4.4). 

In human-computer interaction, the input methods affect the usability of an interactive 

system and make the interaction effective (or not). Eye movement analysis is increasingly 

being used in HCI to provide empirical evidence in evaluation studies because of its high 

gaze accuracy (Andrienko, et al., 2012). Moreover, eye movement is being used as an input 

mechanism on modern smartphones (for example to adjust screen brightness depending on 
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whether the user is looking at the screen or not). According to Tibken and Dolcourt (Tibken 

& Dolcourt, 2013), navigation on a phone can be performed with user’s eye. Gestural 

interactions are ushering in a new era of the technology design because of its intuitive use 

on touchscreens (Chen, 2013), (Stößel, 2012). Intuitive means natural to use gestures on 

touchscreens and learning ability without prior training, as well as quick to interact with 

touchscreens devices (Chen, 2013). In our thesis, we will use eye-movement and touch-

gestures as interaction methods to investigate the effects of ageing on smartphone usability. 

1.2. Research Questions 

Due to the increased population of elderly people in the world, and the widespread use of 

smartphone technologies, it is extremely important to understand the effects of age on the 

usability of rapidly evolving smartphone technology. Studies in HCI are required to 

minimise the “digital divide” between elderly users, and younger users. 

In this thesis, we pose the following research questions on the effects of age on 

smartphones and tablets applications: 

Q1: What is the effect of age in browsing smartphone applications using eye 

movements? (H1 – H4) 

Q2: To what extent could elderly perform gesture swiping on smartphone interfaces 

without needing to training? (H5 & H6) 

Q3: What is the effect of age on executing accurate gestures on smartphones using 

gesture-based applications?  (H7 – H14) 

Q4: Could we use gestures performed on smartphone applications to classify user 

age?  (H15 & H16) 

1.3. The Aim and Focus 

The aim of this thesis is to gain an insight into the effect of user age on interactions with 

smartphone and tablet applications using eye movement and touch-gesture interactions. 

Based on the attained insight, it is hoped the hardware and software designers could lower, 
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if not remove all together, some of the barriers faced by elderly in using applications on 

smartphones and tablets. The overall objectives of this thesis are: 

1. Investigate the effects of user-age and screen-size on smartphones’ and tablets’ 

usability using eye movement tracking.  

2. Investigate the effects of user-age and screen-size on smartphones’ and tablets’ 

usability using touch-gesture interactions. 

3. Assess the possibility of classifying user’s age-group using gesture-based features 

on smartphones and tablets. 

4. Propose methods and guidelines to enhance the usability of smartphones and tablets 

for elderly users. 

Five studies, organised in two stages as shown in Figure 1 below will be used to achieve 

the objectives of the thesis. Stage One includes two researches to investigate the effect of 

user-age and influence of screen-size on browsing smartphone interfaces using eye 

movement. The first research will examine the scan-path dissimilarity of browsing 

smartphones applications for elderly users (60+) and younger users (20-39). The aim of 

second research is to understand the difficulties of information processing when interacting 

with smartphone applications for elderly (60+), middle-age (40-59) and younger (20-39) 

users. The evaluation will be performed using three different screen sizes of smartphone 

and tablet devices. 
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Figure 1.  Organisation of the thesis into five research projects. 

Stage two includes three researches that investigate the difficulties in interacting with 

gesture-based features for elderly compared to younger users, and to evaluate the 

possibility of classifying user’s age-group based on on-screen gestures. The first research 

investigated the effect of user-age and screen-size in performing gesture swiping intuitively 

for four swiping orientations; down, left, right, and up. The purpose of second research is to 

investigate the effect of user age, screen sizes, and gesture complexity in performing 

accurate gestures using gesture-based features on smartphones and tablets. The third 

research investigates the possibility of classifying user’s age-group using gesture-based 

features on smartphones. In the third research, we aim to provide evidence for the 

possibility of classifying user’s age-group using a gesture-based application on 

smartphones for user-dependent and user-independent scenarios. Also, we suggest to use 

the user’s age-group classification study as a system to let the users interact with the 

smartphones technology based on their abilities that will let the system turn into a particular 

setting to fit their ability, especially for elderly users. This will lead to customized user 

interfaces that will increase the usability of smartphones and tablets for elderly users. 

 

Effects of Age on Smartphone and Tablet Usability, based 
on Eye-Movement Tracking and Touch-Gesture Interactions 

Stage One 

(Eye-movement tracking) 

1. Scan-path 
dissimilarity in 

browsing 
smartphones 
applications 
using eye-

movements 

(Secrion 5.1) 

2. Local and 
global difficulty 

information  
processing using 
eye-movements 

(Secrion 5.2) 

 

 

Stage Two 

(Touch-Gesture Interactions) 

 

3 .  Gesture 
Swiping 

based finger  
touchscreen  

(Secrion 6.1) 

 

4. Gesture 
accuracy and 
Complexity 

(Secrion 6.1) 

 

5. User's Age-
group 

classification on 
smartphones 

using  Gesture-
based 

Applications 

(Chapter 7) 
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1.4. Thesis Overview 

The rest of the thesis is organised as follows: 

Chapter 2 presents significant physiological and psychological changes related to ageing 

and an overview of elderly people’s attitudes, anxiety and expectations towards technology 

use e.g. PCs and smartphones. By reviewing number of previous studies, this chapter 

provides further evidence of pointing difficulties (e.g. mouse, pen-based), difficulties with 

smaller screen sizes and technologies designed for elderly users. In addition, the problems 

of technology designs that strive to accommodate elderly needs will be presented.  

Chapter 3 reviews existing literature on elderly users’ experience with technology use e.g. 

PCs and smartphones in general, and a review of usability studies based on the two 

interaction methods, namely eye movement and gesture interactions, for elderly users. 

Chapter 4 presents a definition of age groups of people who will be involved in the thesis. 

A description of all smartphone devices, study metrics and hypotheses that will be 

evaluated in this study will be given in this chapter. 

Chapter 5 presents two researches conducted on interface browsing for elderly users using 

eye movement on smartphone applications.  

Chapter 6 presents two researches conducted on gesture-based features using smartphones 

and tablets for elderly users; gesture swiping interactions, and gesture accuracy and 

complexity.  

Chapter 7 presents a research that investigated the user age-group classification using 

gesture-based features on smartphones. The influence of screen sizes on users of different 

age groups was examined. 

Chapter 8 presents an overview and summary discussion on the results from the two stages 

of this thesis. Subsequently, details for the study motivation, the general limitations, and 

study challenges will be given. Finally, our contributions, implications, and future work 

will be discussed. 
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 October,  pp. 255-261. 

2. Al-Showarah, S., AL-Jawad, N. & Sellahewa, H., 2014. “Effects of User Age on 

Smartphone and Tablet Use, Measured with an Eye-Tracker via Fixation Duration, 

Scan-Path Duration, and ratio of Saccades”. Lecture Notes in Computer Science 

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in 

Bioinformatics), 8514 LNCS (PART 2), pp. 3-14. 

3. S. Al-Showarah, N. Al-Jawad, H.Sellahewa, (2014). “User’s Age Classification on 

Smartphones using Gesture-based Applications”. BCS London Doctoral 

Consortium 2014, 22 May 2014, London Central Branch. 
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CHAPTER 2 

ELDERLY USERS AND TECHNOLOGY 

Ageing is generally accompanied by a variety of changes that are represented by 

impairments in sensation and perception, cognitive ability, and motor movement ability. 

Designers of interfaces technology e.g. PCs and smartphones must understand age-related 

physiological, psychological characteristics and social aspects that have an impact on user’s 

performance when using technology (Chen, 2013), (Victor, 2010), (Fisk, et al., 2009). This 

chapter presents an overview of relevant age-related impairments and a discussion on how 

they affect the typical elderly user’s performance, and the obstacles that the elderly users 

may face when interacting with technology. Furthermore, the chapter presents an overview 

of how the attitudes of elderly people, their anxiety and inexperience affect their use of 

technology. Readers familiar with aforementioned age related impairments may skip 

section 2.1.   

By reviewing a number of studies, this chapter provides further evidence of the actual 

problems with pointing difficulties (e.g. mouse, pen-based), difficulties with smaller screen 

sizes, and technology designs faced by elderly users. Furthermore, this chapter outlines the 

problems with different kinds of designs that strive to accommodate elderly needs. 

2.1. Physiological and Psychological Characteristics of Ageing 

This section provides a brief explanation of the key physiological and psychological 

characteristics that changes with ageing and how these changes affect human interactions 

with technology. 

Figure 2 shows the model human information processing by (Card, et al., 1983). According 

to the model human information processing we receive information via input channels (e.g. 

vision) when interacting with technology, e.g. PCs or smartphones. The information will be 

processed in the brain and saved in the memory (sensory memory, short-term memory, and 

long-term memory), and then the response will be given via output channels (motor control 

behaviours) (Downton, 1991). 
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Figure 2. Model Human Information Processing for HCI (source: (Downton, 1991)). 

2.1.1 Sensation and Perception 

The sensory perception of touch is one of the human physiological changes affected by 

ageing. This section discusses, two human senses modalities due to their link to the two 
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interaction methods used in the thesis; vision that is used for eye movement and finger-

based touchscreen that is used for touch-gesture interactions.  

Vision  

Vision is the most important input source of information for humans. It was stated by (DIX, 

et al., 2004) that the visual perception of humans can be divided into two stages. First, the 

human eye receives the stimulus (information) by the visual apparatus (sight) from the 

outside world. Secondly, the information is then transferred to the human brain for 

processing, to allow us to recognise and to distinguish that stimulus (e.g. colour). The 

human brain is involved more in visual processing than with any other sense (e.g. touch, 

smell, etc.) (Gonzalez, 2012). DIX et al. (DIX, et al., 2004) stated that human eye has a 

very important role in recognising interface contents, where colour is a good example to be 

recognized by the eye based on information processing using the human brain. It was 

reported by (Yarbzls, 1967) that human beings can perceive 80% of information that 

fixated voluntarily and involuntarily on the interface contents through users’ eyes. This 

information may give important indications and useful information regarding the user’s 

familiarity with the perception of objects that can be used to improve the usability of 

technology for users. 

Touch  

Touch is also an important human sense. It was stated by (DIX, et al., 2004) that tactile 

perception provides us with very crucial information about our environment; it provides us 

with feedback when our hands make contact regarding shape, size, or where our fingers are 

located. It was concluded by (e.g. (Stößel, 2012), (DIX, et al., 2004)) touch perception 

informs us if an action has been successfully performed (e.g. a button pressed), this is the 

meaning of perception. Touch sense based on human fingers is an important source in 

feedback used in interactions, as also used to control technology (Chen, 2013), (Linghao & 

Ying, 2010), (Piper, et al., 2010), (Bhuiyan & Picking, 2009). The successful interactions 

depend on the user’s ability to interact with technologies which is achieved through use one 

of input methods (e.g. keyboard, mouse, touchscreen, or voice) (Rogers, et al., 2005). More 

details on elderly deficits for sensory perception of touch when interactions with 

technology are given in Section  2.2.1. 
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2.1.2 Cognitive Abilities 

Cognitive abilities are defined as a set of mental processes that comprise memory, visual 

attention, learning, reasoning, problem solving, producing and understanding language, and 

decision making (Neisser, 1967). A declining cognitive ability is considered as one of the 

changes in ageing that makes interaction with technology difficult when information 

processing (Granata, et al., 2010), (Duval, et al., 2008). The human perceptions depend on 

the cognitive ability, where the cognitive ability links between human sensory and human 

reactions. Humans will react (i.e., process information) based on their cognitive ability for 

what is received through the senses, where the cognitive effort needed to perform a 

successful task is vary among persons (DIX, et al., 2004), (Mesulam, 1998). This section 

reviews the cognitive ability issues related to ageing. 

Memory 

The human information repository is the human memory. Memory has three functionality 

types: sensory-memory, short-term and long-term memories. The sensory-memory acts as 

buffers for the information that is received through the human senses. The information will 

pass into short-term memory that acts as a 'scratch-pad' for temporary recall by attention, so 

the human can use the information again. The information will be filtered for relevance at a 

given time, and then will be passed into a more permanent memory store (DIX, et al., 

2004). The ability of working memory is influenced particularly by age (Fisk, et al., 2009). 

Many daily activities can be negatively influenced by decline in human working memory 

such as problem solving and language comprehension (Granata, et al., 2010). It was 

suggested by (Dhillon, et al., 2011) (Arnott, et al., 2004), that technology interface designs 

should be provided by all the required information relevant to that particular task in order to 

avoid information load from steps; this is to compensate the user’s memory decline.  

The long term memory is a store for factual information, all information coming from 

experience, and also behaviour rules (DIX, et al., 2004). Retrieving information from long-

term memory for elderly people is difficult, where this memory is commonly not lost 

completely (Fisk, et al., 2009). There are three different kinds of long-term memory. The 

first of which is semantic memory, which remains intact and largely unchanged by age, and 

is the repository of world knowledge with the ability to remember factual information such 
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as the meaning of words (Fisk, et al., 2009). The second is prospective memory, which 

refers to the ability to remember to do something in the future. The prospective memory 

can be split into two parts: 1) Event-based prospective memory that refers to remembering 

to do something after a specific event has occurred (e.g. turn off the oven after cooking) 

and 2) Time-based prospective memory that is triggered by time. It is more difficult for an 

older person that to remember to perform a task after a specific lapse of time (e.g. take 

medicine in each 6 hours) (Fisk, et al., 2009). The third type of long-term memory is 

procedural memory, which refers to how to perform tasks learned in the past 

(Zimmermann, 2014). This memory is concerned with the knowledge that was learned in 

the past such as how to do automatic actions (e.g. driving a car) or a well-practiced routine 

(e.g. cooking a food), which remains fairly unchanged.  

Recent work on elderly cognitive ability (e.g. (Zimmermann, 2014), (Fisk, et al., 2009)) has 

shown that older persons behaviours may become slower if their performance requires 

more attention, and it will be difficult to remember automatic procedures if they are altered 

by a new context and behaviours. Fisk et al. (Fisk, et al., 2009) stated that developing 

automatic processes and learning new procedural tasks is more difficult for elderly people. 

Attention 

Attention is the capacity to keep a user focused on a specific stimulus. This ability changes 

with increasing age (Farage, et al., 2012). Attention refers to the user’s limited capacity of 

visual search and mental ability when information processing (Fisk, et al., 2009).  

There are three kinds of mechanisms that should be considered in order to understand the 

term attention, each responsible for a specific part where information will be processed 

(Stößel, 2012), (Cavanaugh & Blanchard-Fields, 2005). The first of which is selective 

attention that refers to the ability to choose relevant information to process. Additionally, 

selective attention is mainly linked to the visual search mechanism as it is required to 

interact with visual interfaces to identify a target among others (Quigley, et al., 2010), 

(Fisk, et al., 2009). Several studies reported (e.g. (Quigley, et al., 2010)) that elderly have 

difficulty in selective attention; this is because of their impairment in visual processing, 

which causes a failure in perception for the user rather than response to the selection. The 

second is divided attention (i.e., attentional capacity), it is the ability to simultaneously 

focus attention on more than one task in a given time (Seçer & Satyen, 2013), (Fisk, et al., 
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2009). Previous studies reported (e.g. (Seçer & Satyen, 2013)) that divided attention 

declines with increasing age, where the elderly have less attentional ability to perform dual 

tasks, this will make the performance less for one task or all tasks. The third type of 

information processing mechanisms is sustained attention which is the ability to sustain 

focus and spend a long period of time on a specific task. Quigley et al. (Quigley, et al., 

2010) stated that the sustained attention could be a good example for elderly users that they 

have difficulty to ignore irrelevant information that takes a longer time to perform a task 

and they also become distracted more easily by details.  

In summary, ageing often results in a decline in memory and attention abilities. The 

impairments in elderly users’ abilities make information processing and

performing tasks difficult (Granata, et al., 2010), (Fisk, et al., 2009), (Duval, et al., 2008).  

2.1.3 Motor Movement 

Motor movement is considered as one of the most notable physical characteristics that 

changes with ageing (Arnott, et al., 2004). It was stated by (Chen, 2013), (Piper, et al., 

2010), and (Findlater, et al., 2013) that deficits in motor movement abilities of elderly 

people almost results in slower performance of a task. The reaction time and accurate 

performance varies according to ability. For example, as it was reported by (DIX, et al., 

2004), the human brain receives number of processing stages to perform a task (e.g. hit a 

button) through sensory receptors. Based on what is received, the brain will tell the 

appropriate muscles to respond to perform that task. Each of these processing stages will 

take time and can be divided into two parts; reaction time and movement time. Movement 

time depends, to a significant extent, on the physical characteristics of users (e.g. age, 

fitness). Therefore, motor movement ability is an important part in the timely and accurate 

performance of a task.    

2.2. Elderly People and Interaction Difficulty with Technology 

There are at least three main factors that hinder elderly users when they interact with 

technology. These are: 1) ageing related impairments on physiological and psychological 

characteristics (these were discussed earlier in Section 2.1), 2) inexperience in technology 
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use, 3) complex technology interface designs (we will discuss different kinds of technology 

designs in Section  2.2.3).  

This section provides further evidence of problems faced by elderly by reviewing a number 

of studies on pointing difficulties, technology design and screen sizes. It also presents a 

discussion on elderly users’ attitude, and their anxiety towards technology use. Several 

kinds of technology designs mentioned in the literature that strive to accommodate elderly 

abilities will also be discussed. 

In terms of the elderly experience in technology use, it was reported by (Arnott, et al., 

2004) that elderly have much less experience in technology use than younger users. In 

addition, it was concluded by (e.g. (Guillaume & Nadine, 2010)) that learning how to use a 

technology such as a computer for elderly users is difficult, and they are more likely to 

make many mistakes when performing tasks. Recent studies highlighted that elderly people 

are not being exposed to and did not use such systems during their ‘formative years’, and 

their physiological and psychological impairments as reasons for the difficulties they face 

when using technology (e.g. (Chen, 2013), (Stößel, 2012)). These reasons can play a role in 

hindering elderly people’s interactions with technology, and make technology acceptance 

very low among them, which then will affect their attitude towards technology. 

2.2.1 Influence of Ageing Impairements on Performance 

A number of studies (e.g. (Piper, et al., 2010), (Arnott, et al., 2004)) stated that both human 

manual touch dexterity and vision sensitivity play an important role when interacting with 

technology devices that require accurate motor movements in order to be operated. For 

example, Phiriyapokanon (Phiriyapokanon, 2011) reported that impairment in motor 

control of elderly users makes the interaction with a PC using a mouse difficult.  

Piper et al. (Piper, et al., 2010) concluded that the physical limitations of ageing have a 

negative effect on performing a task, especially on small touchscreen sizes. Several studies 

(e.g. (Findlater, et al., 2013), (Chen, 2013), (Iwase & Murata, 2002),) in the field of 

physical limitations have found out that the elderly require longer time for mouse pointing 

targets on interfaces than younger and middle-aged users, where the error rate increases 

when the distance to the target increases, and the target decreases in size. It was stated by 
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(Guillaume & Nadine, 2010) that touchscreen could be difficult for elderly when items on 

the visual screens are crowded. 

It was reported by (Chen, 2013) that there have been a limited number of researches 

regarding the usability of gesture-based applications for elderly users. For example the 

study by (Stößel, 2012) was conducted on large touchscreen device (i.e., stationary 

touchscreen). In this context, we decided to conduct further investigations on the usability 

of smartphones/tablets based on finger-based touch-interaction using gesture-based features 

for elderly users. 

A number of previous studies such as (Phiriyapokanon, 2011), (Kim, et al., 2007), and 

(Arnott, et al., 2004) found that reduced vision capability for humans is the most common 

reason for problems when interacting with technology and worse when interacting with 

small items on visual display (e.g. font size), which slows down the speed of performing a 

task. It was reported by (Arnott, et al., 2004), (Harwood, 2001) that visual acuity worsens 

after the age of about 50, where many elderly people encounter visual difficulties that will 

have a larger influence on their ability to use computer technology effectively; the user’s 

ability to browse a visual display in searching for a specific target will be degraded by the 

difficulty in recognising and distinguishing small items, as well as by complex interface 

design, and their lack of experience in using technology.  

Several studies (e.g. (Linghao & Ying, 2010), (Piper, et al., 2010)) have considered the 

reduced visual acuity of elderly people by proposing guidelines for technology design like 

enlarging visual information on a touchscreen surface. Some studies (e.g. (Phiriyapokanon, 

2011), (Kim, et al., 2007), (Arnott, et al., 2004)) reported that visual search behaviour can 

be negatively influenced by the impairment of visual function and cognitive ability (e.g. 

memory). Based on using eye movement on PC, Fukuda and Bubb (Fukuda & Bubb, 2003) 

concluded that elderly users are less efficient than younger users when using visual 

browsing on web pages, and elderly require a longer time than younger users to perform a 

given task. Further investigation on eye movement based studies are recommended by 

(Fukuda, 2008), (Fukuda & Bubb, 2003) due to limited studies in this area.  

Kobayashi et al. (Kobayashi, et al., 2011) conducted study using a small screen (i.e., iPod 

3.5’) and large touch screen (i.e., iPad 9.7’) to understand elderly users’ difficulty on small 
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screen sizes. Their results revealed that the performance on the large screen size out-

performed the small screen size for dragging, pinching and tapping, and elderly users found 

touchscreens were generally easy to use. Screen sizes have an influence on performance, 

where some of studies (e.g. (Stößel, 2012)) concluded that increasing screen sizes increases 

the efficiency for the elderly in performing tasks. Nicolau and Jorge (Nicolau & Jorge, 

2012) stated that the error rate based on text-entry for elderly users compared to younger 

users was larger by 26% on a small mobile phone (3.5”) compared to 17% with an ASUS 

Transformer TF101 Tablet (10.1”). In line with previous studies, we expect that increasing 

screen size will have a positive influence on elderly performance when browsing 

smartphones applications using eye movement (hypothesis H4). 

In our thesis, we are interested in two interaction methods on smartphones and tablets: 

finger-based gestures on touchscreens and eye movement. Use of touch-gesture based 

interactions on smartphones is considered a recent development and a growing technology 

that provides a natural, direct and an intuitive way of interaction with a technology, 

allowing easier interaction for the elderly group of people (e.g. (Loureiro & Rodrigues, 

2011)). Eye movement is being used increasingly in HCI to provide empirical evidence 

because of its high gaze accuracy (Andrienko, et al., 2012), (Miyoshi & Murata, 2001). 

In summary, elderly users have difficulty with technology use, where this difficulty might 

be increased by deficits in ability of users and less experience technology use, by complex 

interface designs, and by small interface items, as well as small screen sizes. Moreover, 

several studies advocate preferential interface design for the elderly and recommended 

conducting further studies on both eye movement and gestures for the limited number of 

studies on these two interaction methods for elderly.  

2.2.2 Elderly Attitude and Anxiety towards Technology Use 

Attitude and anxiety are two different words used to measure how technology is accepted 

by users. Attitude is a psychological concept which refers to the feelings and user’s 

behaviour towards something (e.g. technology use). Anxiety is a clinical term, which refers 

to stressful emotional feelings when thinking about using something (Kelley & Charness, 

1995). Moreover, the concept of anxiety is used as a measure for the user’s attitude to using 

a computer (Gardner, et al., 1993). 
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The challenges for elderly users of technology use as stated by (e.g. (Kelley & Charness, 

1995), (Gardner, et al., 1993)) started with issues related to elderly physical impairments 

and psychological difficulties. For instance, Bikson and Bikson (Bikson & Bikson, 2001) 

stated that users who are less trained and are less familiar with technology use are often 

anxious about causing mistakes and damage to technology system, where it was reported by 

(Chen, 2013) that elderly users have fearing to cause a damage to the system. Several 

studies (e.g. (Chen, 2013)) reported that elderly users feel afraid, uncomfortable when using 

technology and they feel that they cannot be confident in their own capabilities.  

The anxiety and low confidence of the elderly can establish severe barriers to using 

technology. However, other studies (e.g. (Chen, 2013), (Stößel, 2012), (Leitão, 2012), (Tu, 

2012), (Arning, et al., 2010)) have concluded that elderly users’ general attitude towards 

technology and their performance can be improved when they understand the benefits of 

adopting a technology, by technology designed more intuitively to better match their needs, 

ability, and to their expectations, and when they are trained on computer-based skills. A 

number of studies (e.g. (Stößel, et al., 2009), (Leitão, 2012)) stated that elderly users are 

physically able to perform better on the task when properly trained. However, it was 

concluded by (Farage, et al., 2012) that elderly users need slow steps and frequent 

repetition of training for technology use. 

Chen (Chen, 2013) stated that elderly users often experience social isolation. While several 

studies (e.g. (Evans & Minocha, 2013), (Caprani, et al., 2012)) reported that adopting and 

enabling elderly people to participate in technology can assist to minimize the feeling of 

isolation that many elderly users experience, and this will provide them with access to 

technology and contact with their friends and family. Hence, Evans and Minocha (Evans & 

Minocha, 2013) suggested that using social media applications can enhance and improve 

quality of life for elderly people. 

A number of studies (e.g. (Chen, 2013), (Caprani, et al., 2012)) recommended to conducted 

further investigation on elderly users’ difficulty, their vulnerability and their general 

attitude towards technology use, this is to understand elderly difficulty level that will help 

to guide better technology design with more usability and make technology tailored to 

accommodate elderly ability. For example, Minocha et al. (Minocha, et al., 2013) 

conducted a study on social media (e.g. Facebook, Flicker, Twitter, and YouTube) to 
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investigate the role of technology on the quality of life for users aged over 65. Their 

investigation aimed to enhance and maintain social connectedness, overcoming social 

isolation and building supportive relationships and companionship amongst the elderly. 

They reported that not all older people are vulnerable or socially isolated and in need of 

help, some of the older people are in fact active and can use technology as younger users 

do.  

A number of previous studies (e.g. (Wagner, et al., 2010), (Su & Li, 2010), (Verstockt, et 

al., 2009)) stated that elderly users use mobile-phones in a very different way from younger 

users as regards operating commands and frequency use. Whilst several studies (e.g. (Evans 

& Minocha, 2013), (Chen, 2013)) reported that elderly people have deficits causing these 

differences, such as cognitive ability deficits, motor movement, and less experience in 

technology use, which creates obstacles in adopting technology amongst the elderly and  

makes technology use for elderly users limited. For instance, it was reported in (Sulaiman 

& Sohaimi, 2010) that making an emergency calls is mostly use of mobile phone for 

elderly people. In line with previous studies, we expect elderly users to exhibit scan-path 

dissimilarities in browsing smartphone applications compared to users of other age groups 

(hypothesis H1). 

2.2.3 Developing the Technology Interfaces for the Elderly 

It is very clear from previous studies (e.g. (Chen, 2013), (Stößel, et al., 2010), (Arning, et 

al., 2010), (Stößel, 2009), (Hawthorn, 2003)) that elderly suffer when using technology 

applications that designed to meet younger users ability more, and they find learning on 

how to use technology applications difficult. 

How can we increase the usability of technology for elderly users? 

As mentioned in the previous sections, low confidence, anxiety, inexperience in technology 

use and difficult design place barriers to the effective use of technology by elderly. These 

barriers can be surmounted by at least three ways (Stößel, 2012). The first is by motivating 

and encouraging elderly users to use technology in order to adapt them into new technology 

applications designs (Chen, 2013), (Laouris, 2009). The second way is training elderly 

users on how to use technology, which makes their performance better (Leitão, 2012), 
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(Artis, 2004). The third way is developing devices that better matches elderly users’ needs 

and abilities (Stößel, 2012), (Arning, et al., 2010), (Duval, et al., 2008). It was reported by 

(Stößel, 2012) that the usability of technology for elderly can be improved by a 

combination of these ways. Also, in order to find solutions to the difficulty of technology 

design, the researchers and designers should consider the following two kinds of designs.  

Design for All (exclusive), also known as design for human diversity, and social equality 

concentrates on designing technology with a focus on particular user groups (e.g. the 

elderly are exclusive), in order to enable them to have equal opportunity to contact with 

others and in every feature of society (Stockholm, 2009), (Elokla, et al., 2006). It was stated 

by (Stößel, 2012), and (Duval, et al., 2008) that this kind of design runs the risk of 

stigmatization and the acceptance of technology will be reduce by the elderly when the 

focus is on their impairments and physical deficiencies.  

Inclusive Design compromises what elderly users need and what other users of different 

ages need in the same design, where the compromises are not favoured by elderly users or 

by younger users (Stößel, 2012), (Hawthorn, 2003). Or Universal Design (i.e. 

transgenerational, lifespan design) means designing technology interfaces without focusing 

on particular user groups in order to be usable by all people. Previous studies (e.g. (Stößel, 

2012), (Elokla, et al., 2006), (Persad, et al., 2006), (Deardorff & Birdsong, 2003)) stated 

that the universal design might not appropriately address the problems of the elderly with 

technology use, where the universal designs believe that one design can suit everyone. 

Several studies (e.g. (Stößel, 2012), (Duval, et al., 2008)) reported that elderly people have 

difficulty using technology with these designs, where these designs do not accommodate 

the needs of the elderly, so these designs should be avoided when developing technology.  

Table 1 below summarises the relevant issues of age-related impairments on physiological 

and psychological characteristics to computing devices and our researches. 
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Table 1. A summary of age-related impairments and their effects on technology use. 

No Impairments Difficulties faced 

Relevant 

to this 

research 

1 Vision  Reduced vision capability makes the interaction difficult 

and worse in the following cases: 

- Small items on visual display (e.g. font, or small 

distances between interface items)  

- Smaller screen sizes 

Yes 

2 Touch  Reduced sensory perception of touch for users increases 

the task performance error.  This will be worse with 

smaller size content on interfaces. 

High/Low sensitivity touchscreen response increase error 

rate. 

Yes 

3 Memory Remembering the gestures’ shapes and positions on the 

visual display will influence on users performance. 

Remembering the steps to perform tasks are difficult. 

Recognizing the interfaces items based on how it works 

will not be easy for elderly users. 

Yes 

4 Attention  Crowded items on the visual display distract users’ 

attentions. 

Performing dual tasks reduce their focus. Difficult to 

balance attention on both speed and the accuracy of 

performing a task. 

Yes 

5 Control 

Movement 

time 

The performance accuracy will be reduced when control 

ability is reduced. Yes 

In order to assist in addressing technology design problems, and to increase the usability 

and quality of life for elderly people, we conducted a study on users’ age-group 

classification using gestures on smartphones which will let the users interact with 

technology based on their ability. We suggest to use the user’s age-group classification 

study as a system to let the users interact with the technology based on their abilities that 

will let the system turn into a particular setting to fit their ability, especially for elderly 

users. This will lead to customized user interfaces that will increase the usability of 

smartphone for elderly users (see Chapter 7 for more details on user-age-group 

classification using touch-screen gestures). 

2.3. Chapter Summary 

This chapter provided an overall background on the relationship between technology 

interactions and the elderly in two main aspects. First, the chapter reviewed and discussed 
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age-related changes in sensation and perception, cognitive ability and motor movement 

ability. These changes are linked to the problems that elderly encounter when interacting 

with technology and causes disinclination towards the use of technology. Secondly, several 

aspects of technology interaction have been discussed in greater detail by reviewing 

technology interaction problems for elderly such as pointing difficulties, complex interface 

designs, and issues with screen size. This was followed by a review of studies on the 

attitude and anxiety of elderly towards technology use. In addition, inappropriate 

technology designs that fail to accommodate elderly users’ needs and ability were 

discussed. Several technology designs; design for diversity, universal design, or 

compromise design and their suitability for elderly users were discussed.  

The next chapter will review existing work most relevant to our studies. In particular, we 

will review literature on the two interaction methods; eye movement and touch-gesture 

interactions. 
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CHAPTER 3 

LITERATURE REVIEW 

This chapter presents a review of literature usability studies based on eye movement 

analysis and touch-gestures. A particular emphasis will be on age related usability issues. 

Section  3.1 will focus on eye-movement tracking whilst Section  3.2 focuses on touch-

gesture based studies. We will discuss the advantages of using these two interaction 

methods to justify our approach to evaluate age-related issues on smartphones and tablets.  

3.1. Eye-Movement Tracking 

This section discusses the usefulness of using eye tracker systems and review studies from 

the literature that conducted on visual displays for elderly using eye-movement tracking. 

An eye-tracker system will be used in our study to track, record, and analyse eye 

movements of users during their browsing the smartphone application interfaces.  

3.1.1 Eye Movement in HCI 

Eye movement data can indicate browsing efficiency and difficulty in information 

processing. Rayner (Rayner, 1998) stated that eye movement data provides important 

information on the user’s behaviour. Based on eye movement data, user’s thoughts and 

intentions that links to user’s cognitive processes can be interpreted and inferred by the 

researchers. Moreover, previous studies have suggested (e.g. (Obrist, et al., 2007), (Cooke, 

2006)) to use eye movement data in HCI for using pertinent measures such as fixation 

duration and number of fixations on interfaces.  

 Minocha et al. (Minocha, et al., 2005), and Obrist et al. (Obrist, et al., 2007) stated that 

using eye movement in the evaluation can help discover the relationship between all of the 

preferences/expectations and visual browsing behaviour, and it provides many of the cues 

to human behaviour. Several studies (e.g. (Schotter & Rayner, 2013), (Poole & Ball, 2004)) 

stated that eyes and mind of user are linked when processing information, such as reading. 

Furthermore, eye movement data can provide much of cognitive information processing 

that might be useful to enhance the usability of technology interfaces.   
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A key feature of using eye movement was reported by (Poole & Ball, 2004) in that eye 

movement data provides practical evidence about the usability of technology. Investigating 

usability of technology interfaces for users’ behaviour will be interpreted based on eye-

movement data retrospectively. Jacob and Karn (Jacob & Karn, 2003) stated that 

interpretation of user’s eye movement behaviour is difficult; it is not similar or as 

straightforward as it is with more usual task performance, durations, or error rates. This 

kind of research on eye movement is always associated with the nature of the stimuli, and 

with the method (e.g. search technique) used to collect data from users when browsing 

technology applications (McConkie, 1982). 

Search technique is one of the methods used to collect data from the participants. It is used 

to find a particular item on the interface that will measure the time spent till a user finds a 

target (i.e., item). Several studies (e.g. (Jacob & Karn, 2003), and (Goldberg & Kotval, 

1999)) stated that an eye-tracker traces a user’s attention based on eye movement, and 

provide information on where the user is focused in relation to a visual display. The 

meaningfulness of the interface contents can be evaluated, and the interface design will be 

improved based on the evaluation of eye movement data. 

In our researches, we used similar interpretations for eye-movement data that were used in 

previous studies such as (Al-Wabil, 2009), and (Josephson & Holmes, 2002). These data 

include scan-paths string-edit, fixation duration, scan-path duration, and saccades amplitude 

that are explained in Chapter 4. Note that the previous studies were conducted on different 

populations, technology applications, and on different technology devices. 

3.1.2 Eye Movement Tracking in HCI for elderly 

Concerning technology evaluation using eye movement for elderly users, unfortunately 

there are not many studies. Fukuda and Bubb (Fukuda & Bubb, 2003) conducted a study on 

eye movement tracking to investigate the differences in behaviors for elderly users (14 

participants aged between 62-74 years old) and younger users (13 participants aged 

between 13-29 years old). The study was conducted using electronic timetable system on 

web pages using search task on a PC. The results revealed that elderly users exhibit longer 

fixation durations, more scan-path duration, and exhibit shorter eye movement length than 

younger users. They noted that the deficits of visual function for elderly can negatively 
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influence on the visual information processing when interacting with web pages, where 

small letters and small navigational buttons can disturb the interactions. Their findings also 

showed an inconvenient navigational structure and an inappropriate web pages design for 

elderly users and younger. They suggested the necessity of particular consideration for 

elderly users regarding their needs and ability in using web design. Based on these results, 

we expect that the interface contents (stimuli) will have a strong effect on the performance 

of elderly users in scan-paths dissimilarity when browsing smartphone applications 

(hypothesis H2). Also, we expect that elderly users will take longer time in finding a 

specific target on the interface and difficulties in browsing applications’ interfaces using 

eye movement than the other age group; this is for local and global information processing 

difficulties (hypothesis H3).  

Another study was conducted on eye movement to investigate the relationship between all 

of users’ expectations and preferences, and visual search behaviour. Minocha et al. 

(Minocha, et al., 2005) conducted a study on eye-movement in order to understand 

cognitive processes of users when interacting with the application interfaces of e-commerce 

websites. They were able to find a relationship and influence between users’ experiences on 

internet and e-commerce websites with their preferences, and expectations of e-commerce 

interaction using eye movement data. 

One of topics discussed in the literature using eye movement is scan-paths string, where 

scan-paths string were used to investigate the similarity browsing technology interfaces if 

scan-paths similarity are stimulus-driven and/or participant-driven. Josephson and Holmes 

(Josephson & Holmes, 2002) analysed scan-paths strings for re-visiting a view on three 

web pages to measure the scan-paths similarity. A study was conducted on students in the 

age (average 22.5 years old) with experience average of 9 hours/week in using internet for 

all participants. The participants were asked to browse web pages as they normally would 

do for 15 seconds. The results revealed that the main effect was significantly stimulus-

driven, with more similar sequences of scan-paths for text-intensive on a news story page 

than a graphic-intensive on advertising page (i.e., text-driven).  

In the same field of scan-paths string, Al-Wabil (Al-Wabil, 2009) conducted a study to 

examine if scan-paths were participant-driven or stimulus-driven. There were seven 

participants in the study (two dyslexics and five non-dyslexics, ages are between 22- 40 
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years) and all of them had at least seven years of experience in using the web. They 

conducted the study based on revisiting the visual display to find the similarity of scan-

paths string using Levenshtein algorithm between first and second view. The results 

revealed that there was variability in scan-paths for dyslexic people, and similarity between 

scan-paths string of different participants was higher than the similarity between scan-paths 

string of the same participants repeatedly exposed to the same stimuli (i.e., stimulus-

driven). Also, in the same study, the difficulties at local and global level in information 

processing for participants were investigated. The study (Al-Wabil, 2009) and (Josephson 

& Holmes, 2002) have guided our researches to the method and the procedure of 

conducting an experiments on scan-paths string, local, and global information processing 

difficulties that have been discussed in the Section  5.1, and in Section  5.2 respectively. To 

the best of our knowledge we have not come across any study that has conducted on scan-

paths string and on information processing difficulties for elderly users on smartphones and 

tablets. 

Unfortunately, there are only few studies concerning technology evaluation using eye 

movement for elderly users. However, the findings of previous studies reveal important 

issues to support and add new understanding about age effect on technology use. The 

researchers in (Igari, et al., 2008) conducted study on eye-movement for elderly people (65-

67 years old). Their study aimed to clarify the reasons behind traffic accidents using an 

indoor simulation compared elderly people with younger people (19- 22 years old). The 

participants were cycling in a fixed place while the video showed pedestrians on a board 

opposite to them. The eye movements on the Area of Interests were recorded as follows: 

looked straight ahead, looked down, right or left hand side, sky, and others. Based on total 

gaze time, the results showed that elderly people have difficulty in keeping attention on two 

or more objects. Also, the results showed that the elderly often looked down at the road. 

Obrist et al., (Obrist, et al., 2007) conducted a study based on search task to evaluate the 

usability of the information oriented interactive TV application using eye-tracking for the 

elderly. They involved users of two age groups: elderly users over 50 years old and users 

aged (20-30 years old). They focused on how elderly users perceive and interpret a 

navigation browsing oriented iTV application. Considerably, as they mentioned in their 

research (see http://mediaresearch.orf.at/), elderly people are the largest group of TV 
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consumers, where the elderly (60 years old and above) in European countries specifically 

watch TV on average for more than five hours a day. Their findings revealed that 

interactive TV provides elderly active viewers with the chance to extend their use of the TV 

similar to the internet. The researchers suggested that the designers of iTV applications 

should consider the sensory, physical limitations, and cognitive abilities that many elderly 

people suffer from such as visual deficits, as the elderly have difficulty with font sizes. The 

elderly took longer time to complete a task than the younger users. (Obrist, et al., 2007). 

In summary, most of the previous studies conducted on scan-paths string-edit using search 

target method and re-visited visual display focused on whether scan-paths are stimulus-

driven, text-driven, or participant-driven. However, whether scan-paths of browsing 

smartphones applications are age-driven or not was not considered. In our studies on eye 

movement analysis, people from different age groups; 60+, 40-59, and 20-39 years old, 

three different smartphones screen sizes and nine different interfaces of smartphone 

applications were used to investigate if scan-paths are age-driven, stimulus-driven or 

screen-size driven, as well as to investigate difficulties in information processing in local 

and global level. More details will be given in Sections  5.1, and  5.2 of Chapter 5. 

Table 2 below summarises the most similar existing works that have been conducted for 

elderly users using eye-movement tracking and highlights the areas that needed to be 

further investigated. 
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Table 2. A summary of existing work on eye-movement tracking. 

Authors Aim Applied on Age groups 

(Fukuda & 

Bubb, 2003) 

Evaluated the usability 

of web-pages 

Web-pages on PC Elderly users (62-

74 years old)  

Younger users (13-

29 years old) 

(Igari, et al., 

2008) 

Conducted to clarify the 

reason behind the traffic 

accident using eye-

movement tracking 

 Indoor simulation Elderly people (65-

67 years old)  

Younger people 

(19- 22 years old) 

(Obrist, et al., 

2007) 

Evaluate browsing TV 

applications 

Interactive TV 

applications 

Older users over 50 

years old  

Users aged (20-30 

years old) 

(Sulaiman 

and Sohaimi, 

2010) 

Investigated the 

obstacles that prevent 

elderly operate and use 

Mobile devices to 

obtain simple interface 

design of Mobile phone 

for elder. 

Interview  

Survey questions on 

user preferred features 

of mobile phones. 

Enhanced interface 

based on finding for 

mobile phone. 

Users in 50 years 

old and above 

Limitations of 

existing 

works 

Evaluating the usability 

of smartphones 

application interfaces 

Using eye movement 

tracking on 

smartphones 

application interfaces 

Elderly users 

compared with uses 

of different age 

groups. 

3.2. Touch-Gesture Interactions 

This section reviews a definition, and gestures usefulness for elderly users. In addition, this 

chapter reviews sets of studies from the literature regarding touch-gestures for the elderly 

as follows. 

3.2.1 Gestures in HCI 

Gestures in human communication were defined by Stößel et al. (Stößel, et al., 2010) that 

they are considered as useful and effective way of nonverbal communication. It was also 

stated by Bhuiyan and Picking (Bhuiyan & Picking, 2009) that gestures can be used as 

commands to operate/interact devices via interfaces, or to control smart interface appliances 
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in the intelligent environments. Chen (Chen, 2013) stated that gesture field has become one 

of the most important current topics of research in HCI.  

A key feature of using gestures on touchscreens was stated in several studies (e.g. (Chen, 

2013), (Caprani, et al., 2012), (Loureiro & Rodrigues, 2011)) that is their being more 

intuitive and natural to use, learning ability without prior training, and quick to use in the 

interaction with technology that can encourage usage on multi-touch devices for the 

elderly. Number of studies (e.g. (Stößel, 2012), (Caprani, et al., 2012), (Stößel, et al., 

2010)) stated that a growing and developing touchscreen technology offers a proper 

technological use based on gestures for elderly users. The developing on technology e.g. 

touchscreen could minimize the interaction obstacles, as technology design does not 

accommodate elderly users’ ability, which is considered a challenge for designers. It was 

reported by Quek et al. (Quek, et al., 2002) that gesture can be used to deliver information 

or message. For example drawing gestures (e.g. ellipse) can be used to convey information 

for multi-selection; it can be used to point to the location, orientation, and can be used to 

operate and select objects. Gestures are used in a wide range of devices (e.g. mobile phone, 

laptop).  

In was reported by Karam and schraefel (Karam & schraefel, 2005) that gestures can be 

executed on two dimensional (2D) surfaces using finger-based input or a PC mouse. The 

interaction method used in 2D can be divided into two parts: 1) Indirect input devices that 

are considered as traditional interaction method, which normally involves devices such as a 

PC mouse, or a stylus. 2) Direct input devices refer to the direct touch and manipulating the 

components in user interface. Direct manipulations involve the interaction of touchscreen 

applications and consist of gestures such as moving, selecting, dragging, sizing, and 

clicking objects. Several studies (e.g. (Stößel, 2012), (Findlater, et al., 2013)) used 2D 

devices in their evaluation studies for different populations, and different technology 

applications.  

In our researches, we will conduct touch-gestures’ studies on smartphones devices for 

elderly. In the next Section  3.2.2, several studies will be discussed from literature regarding 

gesture swiping, gesture accuracy, and user’s age-group classifications on smartphones 

using gesture-based features.  
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3.2.2 Touch-Gesture Interactions in HCI for the elderly 

This section provides a rich review for previous studies that investigated the effects of 

ageing and screen sizes on technology use in terms of performance efficiency for users on 

gesture swiping, gesture accuracy, and user’s age-group classification using gesture-based 

applications on smartphones and tablets, as follows:   

Gesture Accuracy and Gesture Complexity 

In terms of gesture accuracy on touchscreens, there has been only one study conducted on 

the gesture accuracy for elderly users using large touchscreen size (15-inch). Stößel et al. 

(Stößel, et al., 2010) conducted a study on a touchscreen (15”- Eizo L353T-C). This screen 

(i.e., stationary screen) was designed with three different rectangular boundary sizes on 

large screen size to compensate for the different screen sizes, as follows: 1) small (1.8 

inch); 2) medium (3.6 inch); and 3) large (7.2 inch). The three different sizes were chosen 

to represent different screen sizes as follows: 1) a medium screen size equal to the display 

of the screen size of an Apple iPhone; 2) a small size designed to 1/4 of medium size; and 

3) a large size designed to be four times the medium size.  

The above study was conducted on 18 elderly users in the age range 60-71 years old 

(average age: 63 years), and 18 younger users in the age range 21-33 years old (average 

age: 26 years). Each participant was asked to trace 42 different shapes of gestures; each 

gesture was repeated 3 times per screen size. The results of gesture accuracy were analysed 

based on directional stability and form stability for linear and circle gestures. In the form 

stability for the linear gestures, the angular deviations were averaged. This is for angles 

between linear fit and reference line through an orthogonal least square fit. But for circle 

gestures, the distances from the points to the fitted circle using least square ellipse fitting 

were calculated. Based on the observation, average deviations and average distances for 

linear and circular gestures, the directional stability was used to measure how smoothly the 

task was performed, or how much shakiness in the movement trajectory. In their results, 

gesture speed was significantly slower across all gesture sizes and complexities for older 

users. Also, based on form stability, angular deviations were influenced by size and 

complexity of gestures, but no significant differences due to age group could be observed.   
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The results of form stability showed a large effect of display size on gesture accuracy and 

speed. But there is no indication of the effect of age on gesture accuracy. As it was stated in 

the study (Stößel, et al., 2010) that the younger users were more accurate in the smallest 

gesture space than elderly users, while in the medium sized space both groups are roughly 

equal, but in the largest gesture space the elderly users were more accurate than younger 

users. In line with previous study Stößel, et al., we expect that the elderly would execute 

gestures slower on smartphones than the younger users (hypothesis H7). Moreover, an 

influence of complex gestures on age is expected with respect to the gesture speed and/or 

accuracy (hypothesis H10), also an influence of complex gesture on smartphones’ screen 

sizes is expected with respect to the gesture speed and/or accuracy (hypothesis H11). In 

addition, we expect that increasing screen size will positively affect gesture speed 

(hypothesis H12), and gesture accuracy (hypothesis H13). In addition, we also expect an 

influence of screen size on users when 1) performing gesture swiping (hypothesis H6), and 

2) on classifying user’s age-group (hypothesis H16).  

The work of Stößel, et al. (Stößel, et al., 2010) is different to ours in four areas (details are 

discussed later in Section  6.2.5 on Does user-age and gesture-complexity influence the 

gesture accuracy?): 1) Stößel, et al. used large touchscreen devices designed into different 

border sizes; 2) in Stößel, et al. study, the gesture was displayed on the screen for a short 

period and removed before the participant executed the gesture; 3) in Stößel, et al. study, 

each participant performed the gestures on each of the three designed sizes of touchscreens; 

and 4) they analysed their data using average angular deviation between reference line and 

linear fit and they used the average distances of non-linear least square fitting between the 

points and the fitted ellipse. 

The usability studies on the touchscreen interfaces using gestures for elderly have just 

begun. There is only one study on gesture based applications for older users on iPod touch. 

Stößel et al. (Stößel, et al., 2009) conducted a study on a set of 30 single finger gestures on 

iPod touch device regarding speed and accuracy measurements to find out whether finger 

gesture interaction could be a proper input method for senior friendly devices. Two age 

groups were involved in the study: 19 older (60-79 years) and 20 younger users (20-32 

years) on iPod touch device to compensate for small touchscreen devices. In addition, each 

gesture was executed three times for three postures (table, hand, and thumb) to investigate 
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the effect of different device postures on users of different age groups. Posture results 

showed that thumb operation mode was preferred the least by older as well as younger 

users. Results of form stability did not show any influence of age on the accuracy of the 

gesture performance or interaction of age with device posture. Elderly users were slower 

when performing gestures, as elderly can perform single gesture as correctly as younger 

users do.  

Recently, Motti et al. (Motti, et al., 2013) conducted a literature review research for studies 

which have been published between the years of 2000 - 2013. They reported that there is 

only one study conducted for 20 elderly in 60s and 70s years old on touchscreen in 

literature for these kinds of studies that are discussed in the following studies. Only one 

study was conducted to evaluate the performance interaction on two different screen sizes: 

1) iPad 9.7” to represent a large screen size, 2) iPod 3.5” to represent a small screen size of 

a mobile device. In their study, each participant was instructed to execute four tasks: 

dragging, tapping, pinching with panning, and pinching without panning. They aimed to 

determine the interfaces’ problems that elderly users encounter on touchscreens. Based on 

quantitative and qualitative results, performing tasks on touchscreens were overly easy for 

the elderly, their performance improved with a week’s experience. Also, dragging, 

pinching, and tapping on the large screen outperformed the smallest screen as they required 

more than one finger movement on the screen to be performed (Kobayashi, et al., 2011). 

Based on the literature review conducted by (Motti, et al., 2013), they found only one study 

in the literature on the small screen device with landscape orientation, which was conducted 

by (Nicolau & Jorge, 2012). Nicolau and Jorge examined text-entry performance for 15 

elderly in the age range 67-89 years old (average age: 79 years old) on two keyboard sizes 

of two touchscreens (small: HTC Desire: 3.5”, and ASUS Transformer TF101 Tablet: 

10.1”). The quality of transcribed sentences entered considered the measurement for input 

accuracy, and they measured the words per minute input as speed. The error rate was 

measured by using the formula, Minimum String Distance (required sentence, transcribed 

sentence) / mean size of alignments x 100. Based on the qualitative and quantitative 

analysis, results revealed that error rates were high for elderly users compared to younger 

users. Also, the input errors were strongly correlated to their hand tremor. The average of 

error rates achieved on small screen size of 25.97% (SD = 19.72%) was greater compared 
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to large screen size 16.55% (SD = 11.9%). Their findings revealed that elderly users indeed 

benefit from large screen devices. 

Continuing to measure the gesture accuracy for the elderly using gesture swiping, Leitão 

(Leitão, 2012) conducted a study to measure the accuracy of task performance for elderly 

users (65-95 years old). In order to measure the accuracy performance, they calculated the 

number of accurate target acquisitions divided by the number of attempts. A game was 

used, where a helicopter had to be moved (swipe) by finger from the left side toward a 

destination target on the opposite side of the screen. For tap, they used an insect game, 

where the participant is required to smash a target insect from grid squares. The results for 

Tap revealed that the participant’s performance was the best when target’s size was larger 

than 14mm of these sizes: (7, 10.5, 14, 17.5, and 21), with 3.5mm space between targets of 

these spaces: (0, 3.5, 7, and 10.5). Also, they found the horizontal orientation swiping was 

the best performance (Leitão, 2012).  

Also, there was one study designed to involve users with previous experience on 

touchscreen. Findlater et al. (Findlater, et al., 2013) conducted a study on 20 elderly 

participants (ages from 61 to 86 years - mean age 74.3) and 20 adult participants (ages from 

19 to 51 years - mean age 27.7); where 12 adult participants and 9 elderly reported daily 

touchscreen use. They used Apple iPads and Apple laptops (Mac OS X 10.7) to examine 

gesture performance using speed, movement time and index of difficulty for five tasks; 

pointing, dragging, crossing, and steering. On the touchscreen, they also examined pinch-

to-zoom gestures. The results showed that elderly people were slower in using both 

touchscreen and mouse movements in general when compared to younger users. Also, the 

error rate decreased on the touchscreen for both age groups. In addition, steering was the 

most difficult task when using a mouse, while dragging was the slowest gesture on the 

touch-screen. 

Moffatt and McGrenere (Moffatt & McGrenere, 2010) conducted a study to reduce pen-

based errors for elderly users using two techniques. First, Bubble cursor for missing: 

“landing and lifting outside the target bounds”. Second, Steady Clicks for slipping: 

“landing on the target, but slipping off before lifting”). These two techniques were 

combined, which have been designed for mouse errors and were used in the study to reduce 

two of the most common types of pen-based errors for elderly users. In the study, Tablet PC 
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and Wacom Cintiq 12WX pen tablet was used to measure the pen pressure. Two age groups 

were involved in the study; 12 younger (aged 19-29, average age: 23), and 12 older adults 

(aged 65-86, average age: 73), where all their participants were novices to pen-based 

computing. Each participant was instructed to select targets on the screen using a pen-based 

input device for 324 selection tasks. Based on likert scale ratings, the participants ranked 

the cursors techniques on speed; ease, frustration, and preference. Their results found that 

older adults exerted 50% more pressure than the younger, and Bubble significantly reduced 

misses when targets were not adjacent, and slips independent of spacing. The older adults 

missed significantly more, and were slower than the younger adults. In line with previous 

studies, an ageing effect on force pressure when executing gestures using finger-based on 

touchscreen is expected (hypothesis H9). 

Piper et al. (Piper, et al., 2010) conducted a study to execute gestures on large screens (e.g. 

large table-touch) for multi touch gestures. The participants of 20 older adults (aged 60 to 

88 years old) were involved in the study using gesture-based interactions on a multi-touch 

surface (large table touch) for moving cards on the surface and zooming x-ray images. 

Their results showed that older adults were able to complete a range of touch screen 

gestures with little difficulty. However, older adults found gestures to resize images and 

rotate images challenging. Based on the high error rate for elderly in previous studies 

(Nicolau & Jorge, 2012) and less accurate gesture performance on small gesture space 

compared to younger users (Stößel, et al., 2010), we expect that elderly users would 

execute gestures with less accuracy on smartphones than younger users (hypothesis H8). 

Gesture Swiping 

The most popular method used in the field of gesture swiping is evaluating a user’s 

performance using agreement scores as described in (Ruiz, et al., 2011) and (Wobbrock, et 

al., 2009). An agreement score reflects the degree of consensus among users about gestures. 

For example, Tu (Tu, 2012) conducted a study for 20 elderly (65-77 years old) and 20 

younger users (20-30 years old). In their study, they used different kinds of gesture tasks 

(e.g. delete, pate, zoom-in, and pan). The study was conducted on a HP touch smart tablet 

tx2 tablet-computer (12.1 inches). The results revealed that both elderly and younger people 

showed a high agreement score for easier use of some commands, such as, move, next, pan, 

previous, rotate, select group, insert, zoom-out, and zoom-in. However, there were five 
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commands had different agreement scores (i.e., non-consensus) for both age groups (i.e., 

select single, open, paste, enlarge and maximize).  

Another study conducted by Stößel (Stößel, 2012) using agreement score also for 42 

gestures (e.g. maximize window, save file, continuous scroll, play, and pause). The study 

involved 26 elderly users and 27 younger users. Handheld paper card mock-ups (screen 

size: 127 x 77 mm) using a USB webcam were used as tools to gather data. A visual trace 

of participant’s fingertips using black paste on the Plexiglas insert that covered the card was 

used to measure a participant’s fingertip movement. Once the participant completed each 

task, the surface of Plexiglas insert was cleaned and the topmost card was changed by the 

next task, where each task was explained for each participant. The results revealed that the 

executed gestures for younger users were more coherent, while there was great diversity 

within the suggested gestures for elderly users. The highest overall agreement score was 

measured for selecting a single element from the list. Also, a scroll task has received a 

relatively high consensus among users, meaning that scrolling can be performed better than 

other gestures. All previous studies on gesture swiping were not conducted systematically. 

In other words, the system does not provide the values for movement time (i.e., time spent 

on the experiment), finger pressure, or gesture lengths in pixels, as our research does. In 

line with previous studies, an ageing effect on gesture swiping execution is expected 

(hypothesis H5).  

Conducting studies systematically is necessary to understand the difficulty level for the 

elderly when using technology applications; this is to establish design recommendations for 

such applications. To the best of our knowledge, we have not come across any research 

conducted on finger touchscreen to investigate gesture swiping for elderly users (see 

Section  6.1 for more details about our research in gesture swiping). 

 

Table 3 below summarises the most similar existing works that have been conducted for 

elderly users using touch-gestures and highlights the areas that needed to be further 

investigated. To the best of our knowledge, there was no systematic study conducted to 

examine gesture accuracy and complexity, as well as to examine gesture swiping for elderly 

users on smartphone and tablets devices. 



36 

 

Table 3. A summary of existing work on gesture-based applications. 

Authors Aim Applied on Age groups 

(Stößel, et 

al., 2010) 

Investigated whether finger gesture 

input is a suitable input method 

Touch-gestures  Elderly (60-

71 years old) 

Younger 

users (21-33 

years old) 

(Kobayashi, 

et al., 2011) 
Evaluated the influence of training for 

one week on users performance using 

two different screen sizes:  

1) Large screen size (iPad 9.7”). 

2) Small screen size:  (iPod 3.5”). 

Performing four 

tasks on 

touchscreens: 

dragging, 

tapping, pinching 

with panning, 

and pinching 

without panning. 

Elderly in 

60s and 70s 

years old 

(Nicolau & 

Jorge, 

2012) 

Examined the keyboard sizes 

influence on error rate when typing 

text using two touchscreens sizes of 

smartphones:  

1)  Small smartpone: (3.5”). 

2) Tablet large size (10.1”). 

Entry-text on 

touchscreen 

devices. 

Elderly 

users (67-89 

years old) 

Limitations 

of existing 

works 

Executing gestures accurately and 

gesture swiping efficiently on 

smartphones and tablets devices for 

elderly users 

Gesture based 

features 

Elderly 

compared 

with 

younger 

users. 

User’s Age-group classifications Using Gesture-Based Application 

This section presents previous studies regarding most similar work to user’s age-group 

classification. We have not come across any research conducted on user’s age-group 

classification using gesture-based features on small smartphones and tablets for elderly 

users.  

In most similar work, Hurst et al. (Hurst, et al., 2008) conducted a study aimed to 

distinguish between sub movements pointing for data collected from 8 younger adults (20-

30 years old), 8 adults (35-65 years old), 7 older adults (70+ years old), and 6 participants 

with Parkinson’s Disease (48-63 years old). This study is considered as the second stage of 

the study (Keates & Trewin, 2005) that was conducted to examine the effects of age and 

Parkinson's disease on cursor positioning using a mouse. The specific features they used in 

the dataset are: 1) number of times if the task was performed correctly, and 2) time 
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movement needed to complete the task. The statistical analysis showed that Hurst et al. 

were able to distinguish pointing behaviours among users. Based on Decision Tree, the 

statistical result between adults group vs. older adults group was at 93.8%, adults group vs. 

younger adults group was at 59.3.8%, and younger adults group vs. older adults group was 

at 93.3% classification accuracy. In line with previous studies, we expect a possibility of 

classifying user’s age-group based on their abilities when interacting with technology 

(hypothesis H15).  

Our research is different to Hurst et al. (Hurst, et al., 2008) in three main areas. First, they 

based their measurement on PC mouse movements. Second, they used the following 

metrics in their study: 1) the movement time needed to complete the task, and 2) the 

number attempts needed to perform a task correctly. Finally, they used decision tree based 

on the observation in the statistical analysis (see Chapter 7 for more details about our 

research in user’s age-groups classifications). 

Sultana and Moffatt (Sultana & Moffatt, 2013) conducted a study to evaluate four 

algorithms; Decision Trees, Neural Networks, Naïve Bayesian Networks, and Rule 

Induction for identifying errors from sub-movement behaviour using pen-based data for 

older adults (12 users, age range 65-86 years old), and younger (12 users, age range 19-29 

years old). This study is considered as the second stage for the study (Moffatt & 

McGrenere, 2010) that conducted to reduce pen-based errors for elderly users from sub-

movement behaviour. The results of the study in (Moffatt & McGrenere, 2010) were 

analysed based on observation and was discussed in Section  3.2.2 on Gesture Accuracy and 

Gesture Complexity. In order to distinguish errors from sub-movement of older users, there 

were three training datasets from the collected data, as follows: 1) older users, 2) younger 

users, 3) all users, and they labelled each data in the all databases as “Error” and “No-

Error”. In their study, four algorithms were used; Decision Trees, Neural Networks, Naïve 

Bayesian Networks, and Rule Induction (RI) algorithms for all training datasets. The results 

showed that each algorithm yielded a classification accuracy rate of around 90%, while the 

Naïve Bayesian Networks provided the best classification accuracy between all algorithms. 

Accuracy classification for truly predicted errors for elderly was high compared with other 

age groups on all algorithms used.  
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In summary, most of the previous studies were conducted and analysed based on using 

quantitative and qualitative analysis for behavioural usability metrics on specially designed 

prototypes of application. Few studies (e.g. (Stößel, 2012), and (Sultana & Moffatt, 2013)) 

focused on the gesture based applications and touchscreens. We have discussed and 

differentiated between our research and these previous studies.  

The calculation methods used in the previous studies to measure gesture accuracy were 

different such as number of accurate target acquisitions divided by the number of attempts 

(Leitão, 2012), and recently, form stability and directional stability (Stößel, et al., 2010), 

(Stößel, et al., 2009). In our research, the algorithms used to calculate gesture accuracy and 

the experiment procedures are different compared to the previous studies. In addition, we 

have not come across any research study conducted systematically on gestures swiping, 

gesture accuracy specifically on smartphones, as well as on user’s age-group classification 

using gesture-based features on smartphones for elderly users. The user’s age-group 

classification using gesture-based features research has yet to show if the technology of 

smartphones can classify user’s age-group based on user’s ability to serve elderly users’ 

needs and abilities (see Chapter 7 for more details about user’s age-group classification 

research). 

Table 4 below summarises the most similar existing work that have been conducted for user 

age-group classification research and highlights the areas that needed to be further 

investigated.  
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Table 4. A summary of existing work on user age-group classification and limitations. 

Authors Aim Applied on Age groups 

(Hurst, et al., 2008) Distinguished 

between sub-

movements pointing 

for data collected 

from participants. 

PC mouse. Younger adults (20-

30 years old) 

Adults (35-65 years 

old). 

Older adults (70+ 

years old) 

Participants with 

Parkinson’s Disease 

(48-63 years old) 

(Sultana & Moffatt, 

2013) 
Evaluated the 

feasibility of using 

four algorithms; 

Decision Trees, 

Neural Networks, 

Naïve Bayesian 

Networks, and Rule 

Induction for 

identifying errors 

from sub-movement 

behaviour collected 

from the participants. 

 

Pen-based 

interfaces. 

Older adults (65-86 

years old) 

Younger (19-29 years 

old) 

The above two studies were analyzed using quantitative and qualitative methods. 

Limitations of 

existing works 

Classifying users’ 

age-groups on 

smartphones and 

tablets devices for 

user-dependant and 

user-independent 

scenarios. 

Gesture based-

features. 

Elderly users 

compared with 

younger users. 

3.3. Chapter Summary 

This chapter presented the literature review for two interaction methods used in this thesis; 

eye movement tracking and touch-gesture interactions. Also, this chapter presented the 

basic definition for each interaction method, and discussed aspects of usages, which were 

laid by characterizing what qualifies both of interaction methods in HCI.  

In order to increase the usability for elderly users, a number of previous studies 

recommended to investigate the usability of current technology using eye-movement 
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tracking and touch-gesture interactions. The data from both interaction methods: touch-

gestures and eye movement will be interpreted and will help in those recommendations that 

will advise the designers to consider needs of the elderly in their designs. Several studies 

were presented and discussed regarding the elderly and their difficulty in interacting with 

technologies. Subsequently, numbers of previous studies that have been conducted in the 

usability of touchscreen devices using different applications and tools in the field of HCI 

were discussed. Based on the previous studies, an efficient performance for elderly users in 

interfaces’ browsing, accurate performance, and the difficulties information processing 

were presented and discussed.  

The next chapter describes the methodology used in our work. The chapter describes the 

participants, smartphone devices, study metrics, gesture applications, eye movement 

stimuli, and hypotheses for both eye movement tracking and touch-gesture studies. 

Experiments, results and discussions will be presented in chapters 5 – 7. 
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CHAPTER 4 

THE METHODOLOGY 

This chapter presents the overall methodology used in our experiments. The chapter 

includes a definition of age groups for people who took part in our researches and a 

description of the smartphone devices used in our researches. Furthermore, the metrics and 

hypotheses relevant to both eye movement and gestures studies will also be explained in 

this chapter. In addition to these, the chapter will provide a description of the eye tracker 

device, gesture applications and eye movement stimuli that were used in our studies.  

4.1. Ages Definition 

Age refers to the number of years since birth (Pitt-Catsouphes, et al., 2012), and it is a 

demographic variable that indirectly predicts the level of disablement in older adults (e.g. 

physical or cognitive decline). Users of three different age groups took part in our studies:  

elderly users, middle-aged users (40-59 years old), and younger users (20-39 years old). 

Elderly Ages. Glascock and Feinman (Glascock & Feinman, 1980) cited in (Organization 

& others, 2010) that the definition of older or elderly people can be divided into three 

categories: First, chronology. Second, change in social role (i.e., retirement from work, 

menopause status). Third, change in their functional capabilities (i.e., physical 

characteristics, physiological characteristics). In the conclusion, they reported that the 

prominent means of defining older age is link to the change in social role, while a 

chronological definition would be a preferred definition for combining additional 

definitions; such functional and social definitions.  

In terms of age bands, there are no agreed definitions on the age range at which a person 

becomes old. Moreover, as it was stated in the study (Organization & others, 2010) that the 

United Nations consider elderly population ages are those people aged 60 years old and 

over. However, the acceptable definition of elderly or older person in some of developed 

countries is for the chronological age of 65+ years old. Also, the definition of elderly or 

older ages at which a person becomes eligible for working retirement pensions has often 

used the ages of 60 and 65 years old. 
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Several studies considered people 60+ years old in their studies as elderly (e.g. 

(Teimourikia, et al., 2014), (Reddy & Chattopadhyay, 2014), (Toyota, et al., 2014), (Stößel, 

2012)). However, there were number of studies considered the elderly age is cut-off from 

65 years and over (e.g. (Sugawara, et al., 2004)), while some other studies considered 

elderly people are those who are from 50 years and over (e.g. (Benoit, et al., 2009)). 

Several studies used the concept as ‘elderly’ (e.g. (Stößel, 2012), (Kobayashi, et al., 2011)), 

while many of studies refer to it as ‘older’ (e.g. (Findlater, et al., 2013). So, in our studies, 

we will adapt the opinion of Fisk et al. (Fisk, et al., 2009), and to go with the study’s 

viewpoint Stößel (Stößel, 2012) regarding their participants’ ages  that they gave the 

definition ‘elderly users’ for people in age 60+ years old. This will represent the elderly 

group (60+ years old) in our researches (i.e., EG). 

Middle Ages. According to the (Alleyne, 2010) study, the middle ages begins at 35 and 

ends in the late 50s (specifically 58 years old). Several studies (e.g. (Mui, 2013)) 

considered people in the range of ages (40-61) years old are middle-aged, while other 

studies (e.g. (Murata, et al., 2002)) considered the middle-aged are in age range of 50-59 in 

their study. Based on these previous studies, we will cover all range possible for the 

middle-age group that are cut-off from 40 to 59 years to represent the middle-age group in 

our researches (i.e., MG). 

The middle-aged users were involved only in the eye-movement tracking research in 

Section  5.2, whilst they were not involved in the touch-gesture studies due to the difficulty 

in collecting enough participants. Most of users in this age group have work commitments 

during the day-time compared to elderly users who normally are in retirement and have 

flexible time in the day, similar the most of the younger users are university students 

therefore easier to invite them to participate in the research.  

Younger Ages. Several studies (e.g.(Mui, 2013)) considered people under the age of 40 

years old are younger ages, while other studies considered the age for younger age group 

starts from 20 years old (e.g. (Sugawara, et al., 2004)), and ends in the late 20s (e.g. 

(Murata, et al., 2002). As there are number of studies (e.g. (Stößel, 2012)) that considered 

people aged from 20 to 33. Based on these previous studies, we will cover all ages possible 

for younger age group that are in age bracket (20-39) to represent the younger age group in 

our researches (i.e., YG). 
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4.2. Research Requirements 

4.2.1 Participants Invitations 

We followed number of approaches to invite the participants to be involved in our studies, 

as follows: 

1. University of Buckingham website. 

2. University public emails to staff and students. 

3. Advertise in local newspaper. 

4. Some other invited by friends from Buckingham community. 

Table 5 review an overall the total number of participants that were involved in the eye-

movement tracking and touch-gesture researches.  

Table 5. An overall the total number of participants are involved in each chapter. 

Age Group 
Age 

Range 

Eye-movement 

number of participants 

(Chapter 5) 

Touch-Gesture number 

of participants 

(Chapter 6 and chapter 

7) 

Elderly group 60+ 22 25 

Middle-aged group 40-59 31 - 

Younger group 20-39 50 25 

Total - 103 50 

4.2.2 Ethical Issues 

In this study we followed a number of procedures to meet ethics issues, as follows: 

 Data to be collected is depending on the participants’ performance tasks using finger 

touch-gestures and recording eye-movement on smartphone applications. There was no 

use in our researches for any type of camera for taking pictures for the participants. 

 School of Science and Medicine Ethical Approval Form (SSMEC) has been approved 

 Consent Form from the participants for using the collected data in our researches was 

taken, as shown in Appendix C. 
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 The demographic data that was collected from the participants were transferred into 

personal hard drive and each participant has given a unique number as shown in 

Appendix D. 

 There were no specific requirements to destroy data after study. 

4.2.3 Demographic Data 

The users have provided us their demographic data regarding their date of birth (year) and 

their experience in using small smartphones, mini-tablet, and large tablet size as shown in 

Appendix D. The participants have provided their experience in using applications e.g. 

Skype, Facebook, email on smartphones and PCs for eye-movement researches. Also, the 

participants have provided their experience in smartphone use e.g. calling, texting. 

4.2.4 Lessons Learned 

Based on working with elderly people in our researches, we learned a number of lessons 

that will be useful for new researchers to consider when inviting elderly users to their 

researches: 

1. Researchers should be trained on how to make elderly people not to feel that they 

always need assistance during conducting the research. 

2. Researchers should respect the appointment times of elderly people when inviting 

them to participant in the research. 

3. Researchers should be very patient with elderly when they need more time to 

perform a task or when they need to repeat an explanation on how to conduct a 

task. 

4. Researchers should consider ethical issues when dealing with elderly people e.g. 

avoiding issues such as causing stress if the task is perceived be to too difficult to 

be performed and ensuring that they are not pressured into participating.  

4.3. Smartphones and Screen Sizes 

Smartphone screen sizes were used in this thesis for the following reasons: 1) they are 

widely used and available; 2) these devices (i.e. smartphones and tablets) are being 

continually developed, and have become essential tools used in our daily activities. Also, 
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we used smartphones that are built based on Andriod operating system since they are 

widely used in most the countries compared with smartphones of other operating systems. 

For example, according to recent figures the most widely used operating system in 

smartphones is Android (79.4% market share), followed iOS (15.6%), Microsoft (3.2%), 

Blackberry (1.9%), and others (0.9%) respectively (Srivastava, 2014). 

The criteria for choosing the type of smartphones and tablets depended on the device 

usability. We have chosen the small smartphone device, and two different tablet devices of 

two sizes, one that can be handled easily in one hand and the other needs two hands. The 

three sizes of smartphones used in our thesis are: 1) typical small smartphones screen sizes 

which are between 3 and 5 inches; 2) medium size mini-tablets screens are typically 7 

inches; and 3) large full-size tablet devices are typically 10.1 inches wide or larger.  

The three smartphone screen sizes used to examine the influence of screen sizes on users of 

different age groups using both eye movement and gesture interactions are: 

Small - Two small smartphones devices were used in the thesis; one of them was used 

in gesture experiments and the other one was used in eye movement experiments. 

Selection the small smartphone for each research depended on the availability of the 

device at that of conducting the experiments. The devices we used:  

1. Samsung Galaxy Ace S 5830 - dimensions 112.4 x 59.9 x 11.5 mm, screen 

resolution: 320 x 480 pixels, screen size 3.5 inches – this device was used in 

gestures studies. 

2. HTC wildfire - dimensions 106.8 x 60.4 x 12 mm, screen resolution: 240 x 320 

pixels, with screen size of 3.2 inches - this device was used in eye-movement 

studies. 

Medium - Samsung Galaxy Tab 2, dimensions 193.7x122.4x10.5 mm, screen resolution 

1024 x 600 with screen size 7 inches - this device was used in gestures and eye 

movement studies. 

Large - Samsung Galaxy Note 10.1, dimensions 262x180x8.9 mm, screen resolution 

1280 x 800 pixels. Due to the challenge in collecting sufficient number of participants 

we will use this device only in eye-movement researches but not in touch-gestures 

researches. 
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4.4. Hypotheses 

Previous chapters highlighted the need for systematic studies that analysed eye movements 

and touch-screen gestures to investigate the effects of user-age on interactions with modern 

smartphones. Such studies are required to gain a better understanding of the difficulties 

faced by elderly when using modern smartphones and tablet devices. To the best of our 

knowledge, we have not come across previous systematic studies that analysed eye 

movements and touch-gestures to investigate the effects of user-age on interactions with 

modern smartphones. 

The following hypotheses have been derived based on previous literature and background 

knowledge of technology use for the elderly to guide our empirical investigation: 

H1: Elderly users have high scan-paths dissimilarity when browsing smartphone 

applications interfaces compared to other age groups. An ageing influence on scan-

paths dissimilarity is expected when browsing smartphone applications e.g. Skype, 

Facebook, email. 

H2: The stimuli of smartphone applications interfaces will have a strong effect on 

elderly performance when browsing smartphone applications interfaces than the 

influence of smartphone screen sizes. Scan-path dissimilarity of elderly users when they 

browse smartphone applications interfaces is expected to be stimulus-driven effect than 

screen size-driven. 

H3: Elderly users will have local and global information processing difficulties 

compared to other age groups. An ageing influence on eye movement regarding 

recognising items promptly and easy browsing structure is expected with respect to local 

and global processing measured by fixation duration and scan-path duration. 

H4: Elderly users have greater difficulties in executing eye-movement on small screen 

sizes compared to other age groups. An effect of screen size, measured in terms ratio of 

saccades, on users’ performance is expected, specifically for elderly. 

H5: Elderly users have greater difficulties in performing gesture swiping compared to 

younger users. An ageing effect on intuitive gesture swiping is expected. 
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H6: Screen sizes have greater influence on users’ gesture swiping performance. An 

influence of screen size on users when performing gesture swiping is expected. 

H7: Elderly users execute gestures on smartphone at a slower speed than younger 

users. An ageing influence on gesture performance speed is expected. 

H8: Elderly users execute gestures on smartphone less accurately than younger users. 

An ageing influence on performing accurate gestures is expected. 

H9: Elderly users will exert more finger force pressure when performing gestures 

than younger users. An ageing influence on finger force pressure when executing gesture 

is expected. 

H10: Complex gestures can influence largely on elderly users performance than 

younger users. An influence of complex gestures on age with respect to gesture speed 

and/or accuracy is expected. 

H11: Screen sizes have greater influence on the execution of complex gestures. An 

influence of screen size on the execution of complex gestures in terms of gesture speed 

and/or accuracy is expected. 

H12: Gesture performance efficiency increases when increasing smartphone screen 

size. An influence of screen size on gestures performance speed is expected when 

performing gestures accurately. 

H13: Gesture accuracy increases when increasing smartphone screen size. An 

influence of screen size on gesture accuracy is expected. 

H14: Force pressure increases when decreasing smartphone screen sizes. An influence 

of screen sizes on the force pressure when executing gestures on smartphone is expected. 

H15: Users’ age-groups can be classified using touch gesture based features. Touch 

gestures based features are expected to be linked to specific user age-group making it 

possible to use them as discriminant features to classify a user’s age-group. 

H16: Screen size has an effect in user’s age-group classification based on touch-

gesture features. An effect of screen sizes on user’s age-group classifications using 

gesture-based features is expected. 



48 

 

The hypotheses from H1 to H4 will be examined in two eye-movement studies: The first 

research will investigate scan-path dissimilarities of browsing smartphones and tablets 

applications interfaces for elderly (see Section  5.1 for more details about experiment’s 

contents and results). The second research will investigate information processing 

difficulties at both local and global level (see Section  5.2 for experiments and results). The 

hypotheses related to the gesture swiping H5 and H6 investigate the effects of age and 

screen size influence on user’s performance (see Section  6.1 for more details about 

experiment’s contents and results). The hypotheses H7 – H14 concerning gesture accuracy 

and complexity investigate the effects of age and screen size influence on user’s 

performance (see Section  6.2 for more details about experiment’s contents and results). The 

hypotheses H15 & H16 concerning smartphone user’s age-group classification using 

gesture-based features investigate the possibility of classifying user’s age-group, and 

investigates the effect of smartphone’s screen size on user-age-group classifications (see 

Chapter 7 for more details about experiment’s contents and results). 

4.5. Eye-movement Stimuli 

Eye-movement experiment consists of nine interfaces of smartphone applications e.g. 

Skype, Facebook, email. These applications were chosen as they are common applications 

on smartphones and are widely used by people of all ages. We note that recently, several 

studies (e.g. (Minocha, 2013), (Quinn, et al., 2011)) used social media network (e.g. email, 

Facebook, Skype) to evaluate the influence of these social media applications on ageing 

behaviour in order to alleviate elderly from social isolation, and to enhance their quality of 

life. 

Each of the nine interfaces of smartphones’ applications has two experiment groups, EXP1 

and EXP2. As shown in Table 6, most questions in EXP1 are about the interfaces contents 

of smartphone applications’ that are not well known or used infrequently by users (e.g. 

locate the button that will show a list of contacts) compared to EXP2 questions, which are 

about very common and most popular interfaces contents on smartphones applications. For 

example, “locate the button that will show a list of contacts” is used relative infrequently 

compared to “locate the ‘exit’ button”. These two experiments were conducted to find out if 

the user can recognise the most popular interfaces contents (targets) on smartphones 



49 

 

applications interfaces in faster time in EXP2 than in EXP1. This is to explore the influence 

of stimulus and information processing difficulties on users’ performance when browsing 

smartphone applications interfaces. 

Following Broder’s (Broder, 2002) recommendations on finding specific information/target 

on a web page, questions/tasks on each application were carefully designed and have only a 

specific answer. Each participant is instructed to find specific target on smartphones 

applications interfaces, where this method is called search method (Jacob & Karn, 2003) 

(see Section  3.1.1 for more details on search method), we will use this search method to 

examine the time that the user needs to recognise the interface content, and also looking at 

the device and finding the needed target is considered as the first point of interaction 

between the user and the application interface. Table 6 shows the questions/tasks that were 

posed to the participants of each age group on small smartphone (screenshots of the same 

application interfaces on the mini-tablet and large tablet size are shown in Appendix, E.1: 

Figure 31-Figure 39, and Appendix, E.2: Figure 40-Figure 48 respectively). 
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Table 6. Experiment questions and applications interfaces for EXP 1 and EXP 2. 

App no 1 2 3 

Apps 

   
EXP 1 Locate the user who is not online. Locate the Backspace button. Locate the button used to change 

your current status to be visible 

EXP 2 Locate the image of David Albert. Locate the Numbers Field. Locate the account holder’s Picture. 

App no 4 5 6 

Apps 

   
EXP 1 Locate the number of incoming 

messages 

Locate the number of deleted 

messages. 

Locate the delete image button. 

EXP 2 Locate the account holder’s name. Locate the number of new messages. Locate the Share photo button. 

App no 7 8 9 

Apps 

   

EXP 1 Locate the active alarm. Locate the button that will show a 

list of contacts. 

Locate the button to view Wireless 

and networks settings. 

EXP 2 Locate the button to add a new 

alarm. 

Locate the ‘exit’ button. Locate the button that lets you 

change Sound settings. 
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4.6. Eye-movement Metrics (features) 

Various eye-movement metrics (e.g. fixation durations, scan-path durations, and saccades 

amplitude) have been used in previous studies on HCI (e.g. (Takeuchi & Habuchi, 2007), 

(Cooke, 2006), (Jacob & Karn, 2003)) to provide an insight on the link between eye 

movements and cognitive information processing. The eye-movement metrics that have 

been used in our research are discussed in the next sections. Figure 3 displays an example 

of fixation duration, scan-path duration, and saccades amplitude metrics as produced by the 

eye-tracker system. Increasingly, eye tracking systems are being used in visual display and 

HCI studies to evaluate technology design for users with expectations, preferences, and 

experiences (Andrienko, et al., 2012), (Minocha, et al., 2005). 

 

Figure 3. Visual output of eye-tracking metrics. The circles are tagged by its fixation time in milliseconds, 

saccades amplitude is represented by the arrows red between fixations. 

Our experiments use five metrics to measure a user’s visual attention on smartphone 

application interfaces. These metrics are explained below. 
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4.6.1 Fixation Duration (FD) 

Measures the amount of time the eyes are focused on a specific item on the screen (Cooke, 

2006). FD measures the user’s difficulties in local information processing (Al-Wabil, 2009), 

where a longer FD indicates higher difficulties in locating and recognising a target on the 

smartphone applications interfaces (Fukuda & Bubb, 2003). FD is measured in 

milliseconds. 

4.6.2 Scan-Path Duration (SPD) 

A scan-path is a sequence of all fixations and saccades across a visual display (Cooke, 

2006), (Rayner, 1998). SPD measures difficulties in global information processing on 

interfaces (Al-Wabil, 2009), where a longer SPD indicates less efficient scanning and 

browsing (Poole & Ball, 2004), (Goldberg, et al., 2002). SPD is measured in milliseconds. 

4.6.3 Scan-Paths String  

The applications interfaces of the smartphones were divided into set of regions represented 

by letters starting from letter “A” depending on the number of regions of interest on the 

screen. Eye tracker generates the scan-path string by tracing the participant’s eye movement 

that visits different regions to find a given target (Al-Wabil, 2009). Scan-paths string refers 

to a set of regions represented by letters given to the visited regions on a screen until a 

target is found (Josephson & Holmes, 2002). This metric used to measure the scan-paths 

dissimilarity in browsing interfaces among participants for each age group. 

The scan-paths dissimilarity were calculated based on the distances between all pairs of 

scan-paths for each of the nine interfaces of applications among all users of each age group 

on each smartphone screen size separately. The algorithm used to calculate the distances 

between pairs of scan-paths is Levenshtein algorithm which finds the minimum cost to 

transform one string of scan-paths into another string, where a large distance value 

indicates high dissimilarity. Table 7 (Duchowski, et al., 2010) illustrates the calculation of 

Levenshtein distance for the two strings S1= {AFBFFDCDF}, and S2= {ABCFEFFGDC}, 

where the highlighted background number in corner of the table shows the distance 

between these two strings. 
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Table 7. Example of Levenshtein distance calculation. 

 A F B F F D C D F 

A 0 1 2 3 4 5 6 7 8 

B 1 1 1 2 3 4 5 6 7 

C 2 2 2 2 3 4 4 5 6 

F 3 2 3 2 2 3 4 5 5 

E 4 3 3 3 3 3 4 5 6 

F 5 4 4 3 3 4 4 5 5 

F 6 5 5 4 3 4 5 5 5 

G 7 6 6 5 4 4 5 6 6 

D 8 7 7 6 5 4 5 5 6 

C 9 8 8 7 6 5 4 5 6 

 

The formula of Levenshtein algorithm is defined in equations (1) and (2) below: 

             

                               

                              

                   

  
(1) 

The first and second terms of equation (1) handles the costs of deletions and insertions, and 

the third term handles substitutions, with: 

         
                  

                                 
  

(2) 

The Levenshtein distance, “LDIS”, between the participants on each application interface is 

presented by “A” in equation (1). 

4.6.4 Saccade Amplitude (SA) 

Saccades occur when the eye moves from one fixation to another fixation (Cooke, 2006), 

(Rayner, 1998). Large length of saccade amplitude gives more meaningful cues and 

browsing, and less task difficulty (Goldberg, et al., 2002). SA is measured in terms of visual 

angle degree.  

4.6.5 Ratio of saccades (RS) 

It is a measurement derived from the saccade amplitude and scan path duration - RS is the 

total length of SA divided by SPD. A larger RS indicates more meaningful searches and 
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efficient browsing. Ratio of saccades is used to examine the effects of screen sizes on 

browsing efficiency and application interfaces usability for all age groups. 

4.7. Eye Tracker Device and Experiment Set up 

The eye tracker device used in the eye movement experiments is the Eye-link 1000 desktop 

device mounted with an IR illuminator on the right (SR_Research.Ltd, 2010). The eye 

tracker device is used to trace and record users’ eye movements on the visual display of 

smartphone application interfaces. Also, another PC screen was used to display the question 

for each target of interfaces on the smartphone applications. 

The eye tracker device was placed under a visual display unit (a PC screen), whilst the 

participant fixed his/her chin and head on a chinrest – a chinrest was used to avoid head 

movement during the experiment – at a distance of approximately 55-60 cm between the 

user and eye tracker as recommended by (SR_Research.Ltd, 2010), and as used in the study 

(Nettleton & Gonzalez-Caro, 2012). The chinrest was centred on, and horizontally aligned 

with the monitor, while participants remained seated in a comfortable position during the 

experiment. Figure 4 show a graphical illustration of the eye tracker and participant. 

Once seated for an experiment, the first task was to perform a camera adjustment which 

included a calibration and validation for the participant. A 9-point grid calibration and 9 

validations with the eye tracker were conducted. Calibration and validation involved a user 

to follow nine white circles on the screen with their eyes, and match between the calibration 

and validation. A re-calibration and a re-validation were carried out until a good validation 

was achieved.   
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Figure 4. An example of calibrating the eye-tracker system for a participant. 

After successful calibration and validation, the system will start to display the nine 

interfaces of smartphone application screenshots as images, one-by-one, to the participant. 

On each image view, another calibration is performed to check the user’s current eye 

position with the one that was taken at the initial calibration to make sure the accuracy of 

gaze quality remains high, this is to start track and record to eye movement by the system. 

The question for each target on the displayed application interface was presented on 

another screen placed next to and in parallel to the experiment’s screen. Each task ends 

when the participant presses the space bar of the experiment’s device keyboard, or the eye 

tracker ends by itself if the participants could not find the target in 30 seconds. Once a user 

finds the target on the screen and hit the space bar, the system will stop tracking and 

recording the participants eye-movement for that particular task (SR_Research.Ltd, 2010). 

Then the next screenshot will be displayed to continue the experiment. 

4.8. Gesture Applications  

Gesture study consists of eight single-line gesture shapes as illustrated in Figure 5. The 

eight gestures were implemented on a small smartphone and a mini-tablet device (see 
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Section  4.2 for more details about screen sizes). These gestures were identified by 

Microsoft (Microsoft, 2009), and they are similar to the single-line gestures that were used 

in (Akl & Valaee, 2010), and (Stößel, et al., 2009).  

 

Figure 5. Gesture Applications of eight shapes. 

The single-line gestures were chosen for the following reasons: 1) Single-finger gestures 

were preferred by older users; 2) it was stated by (Stößel, 2012) that multi-touch based 

interaction in a mobile environment is not necessarily used and perceived by younger users 

as most natural and intuitive; 3) it was recommended by Stobel (Stößel, 2012) to avoid 

designing multi-finger gestures; 4) longer length gestures offer strong possible results when 

calculating gesture accuracy for having many points of the coordination (x,y) along the 

trajectory to match the reference data with the data obtained. This will not be available in 

other kinds of gestures such as tap gesture, pinch gesture that have short length of gesture. 

Longer length gesture will provide enough information about finger movement behaviour 

that includes accurate performing gestures, force pressure, movement time, etc. 

4.9. Gesture Metrics (Features) 

A total of seven metrics were used in our gesture studies to evaluate ageing effects on 

smartphone usability. Four metrics were used in the gesture swiping research: force 

pressure (i.e. FP), movement time (i.e. MT), gesture swiping speed, and the ratio of speed 

to finger pressure. Five metrics were used in the gesture accuracy and complexity research 

(note that some of metrics were used in both studies): force pressure (i.e. FP), movement 

time (i.e. MT), gesture accuracy speed, gesture accuracy, gesture complexity. Figure 6 and 



57 

 

Figure 7 illustrates how these metrics are calculated for an example gesture, while the rest 

of the chapter explain each metric in detail.  

 

Figure 6. Gesture swiping metrics used in the research. 

 

Figure 7. Illustration of how gesture metrics are calculated for the Arrow to Down gesture. 

We designed our own smartphone applications to display the eight gestures (see Figure 5 

and Figure 25) to capture relevant data for gesture accuracy and gesture swiping studies. 

All gesture applications used in our experiments were implemented in Java for Android 

Version: (4.2.1). The applications trace a participant’s finger movement on the surface of 

smartphones and record time-stamps, finger pressure, and the coordinates (x,y) for each 

point on the trajectory as the user performs the gesture. The seven metrics used in the 

gestures studies reported in Chapter 6 and 7 are as follows: 
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4.9.1 Movement Time (MT) 

MT is the task completion time which will be used to measure time spent on the task to 

examine the effect of age on gesture-based applications on smartphones and mini-tablets. 

MT is the time spent between finger-down and figure-up for gesture accuracy research or 

between finger-down and hit the target for gesture swiping when executing a gesture 

(Findlater, et al., 2013), (Farage, et al., 2012), and (Stößel, et al., 2010), and it is measured 

in seconds. This metric was used in gesture swiping, and gesture accuracy studies. 

4.9.2 Finger/Force Pressure (FP) 

The smartphone application traces a user finger on the surface/screen of smartphones, can 

measures the force pressure exerted at each point (i.e., (x,y) coordinate on the screen) on 

the trajectory when performing gestures. Finger pressure is used to measure and compare 

the amount of force pressure exerted by younger and elderly users when performing 

gestures. Finger pressure is used to examine the influence of age in performing gestures 

across two screen sizes, and then to investigate if screen size has influence on smartphone 

and mini-tablet usability. This metric was used in gesture swiping, and gesture accuracy 

studies. 

As it was reported in previous studies, hard pressure on the technology contents (e.g. 

keyboard keys)- specifically on small contents - indicates lower sensory and perceptual 

sensitivity of the body against a surface, more so for elderly (Farage, et al., 2012). Elderly 

users found pen-based interfaces on tablet PC (laptop 12.1’) tiring and exerted 50% more 

force pressure compared to younger users (Moffatt & McGrenere, 2010). Moreover, the 

meaning and the interpretation of the touch behaviour is left to the receiver of that touch 

(Gao, et al., 2012). Based on previous studies, we supposed that a lower force pressure 

value of finger on smartphone touchscreen indicates the user’s increased sensory perception 

of touch, which indicates a positive usability of the technology. In line with the previous 

studies, an influence of screen sizes on the force pressure for users when executing gestures 

on smartphones is expected (hypothesis H14). To the best of our knowledge, we have not 

come across any research that used finger-based touchscreens to measure finger pressure to 

examine smartphone usability for elderly. 
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4.9.3 Gesture Swiping Speed 

The speed in gesture swiping research is calculated by dividing the gesture swiping length 

(total distance in pixels) by MT (milliseconds). Gesture swiping speed is used to measure 

user's efficiency when executing gesture swiping on smartphones and mini-tablet. 

Based on speed, we also investigated the surface space influence on users’ performance for 

the orientation swiping. For this, we divided the results into two parts, 1) vertically 

orientation, which consists of swiping down, and swiping up, 2) horizontally orientation, 

which consists of swiping left and swiping right. 

4.9.4 Ratio of Speed to Finger Pressure (RSTFP) 

Ratio of speed to finger pressure is gesture swiping speed divided by FP of gesture swiping. 

This metric investigates the ratio between a user’s efficiency - measured based on speed, 

and the force pressure exerted. In other words, this metric is used to measure the 

smoothness of gesture swiping on smartphones. A high ratio indicates a smooth gesture 

performance. This metric was used only in the gesture swiping research. 

4.9.5 Gesture Accuracy (Acc) 

Gesture accuracy is used to measure a user’s ability perform gestures accurately. The 

calculation for the gesture accuracy was built based on the distances between the optimal 

path (reference data) of a gesture and data obtained from the user’s gesture. The reference 

data is from the centre of starting box through the middle of the path to the centre of ending 

box; all the reference data are invisible to the user. For example, the MT in Figure 7 

illustrates the starting point of the box (i.e., T1) and ending point of the box (i.e., T2), 

where the discrete red line in the path represents the reference data that are invisible to the 

user. The reference data for each of the circles and triangles was designed from the centre 

of the box through the middle of the path to the centre of the same box, as we have only 

one box for each of these gestures. Short distance between the reference data and data 

obtained indicates high accuracy in gesture performance.  

Gesture accuracy was calculated using Dynamic Time Warping (DTW) to examine the 

effect of age in executing accurate gestures on smartphones and mini-tablets, and to 
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examine the effect of screen sizes on users of different age groups. DTW measures the 

distance between two different sequences of different lengths (Keogh & Ratanamahatana, 

2005). Normalization was applied for all participants across all screen sizes, and then the 

average and STD of accuracy for each age group was calculated by using 2-way ANOVA 

test. 

4.9.6 Gesture Speed  

The speed in our gesture accuracy research is used to measure the efficiency of users of 

different age groups across two screen sizes, and to investigate if screen size has an 

influence in performing accurate gestures on smartphone/tablet (see e.g. (Farage, et al., 

2012), (Stößel, 2012), and (Stößel, et al., 2010)). This metric was used only in the gesture 

accuracy research. 

The speed in our gesture accuracy research is calculated from gesture lengths (total 

distances in pixels) divided by MT (milliseconds). The gestures lengths for arrow to down, 

arrow to left, arrow to right, and arrow to up were calculated using Euclidean distance 

between the start point (x1, y1), and end point (x2, y2). While the total gestures lengths for 

circle to left, circle to right, triangle to left, triangle to right were calculated using Euclidean 

distance also to find the distance between any two points on the trajectory from start point 

(x1, y1), until the end point (x2, y2); this is because there are curves and corners in these 

gestures. 

4.9.7 Gesture Complexity  

The complex movement pattern of gestures is considered as independent variable to 

measure the influence of complex and non-complex gestures on user’s performance. This 

metric consists of two parts: simple gestures (i.e. non-complex) and complex gesture for 

having curves and corners in the complex gesture. The eight gestures were divided into two 

parts: non-complex (i.e., simple gestures) and complex gestures. The circles and triangles 

are considered as a complex gestures based on corners and curves used in these four 

gestures (i.e., circle to left, circle to right, triangle to left, and triangle to right). While the 

other four gestures (i.e. arrow to down, arrow to left, arrow to right, and arrow to up) are 
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considered as a non-complex gestures as it was executed in (Stößel, et al., 2010). This 

metric was used only in the gesture accuracy research. 

The gesture complexity was measured based on two kinds of metrics; gesture speed, and 

gesture accuracy. Each was conducted separately to examine the effect of complex and non-

complex gestures on age and screen sizes using these two metrics. The difference area 

between what we did in our research and the one by (Stößel, 2012) is that they used 

velocity and form stability in examining complex gestures, whereas we conducted our 

research on gesture speed and gesture accuracy on complex gesture and non-complex 

gesture to measure the gesture complexity influence on user performance. 

In order to calculate the gesture complexity, we took the following steps: First, grouping the 

participants into two age groups. Second, the gesture speed/gesture accuracy data were 

divided into two parts based on complex gesture and simple gesture. Third, the statistical 

analysis for each age group was calculated using ANOVA. 

4.10. Chapter Summary 

This chapter described the methodology used in the study in five main aspects. First, it 

presented a definition of age groups used in the thesis. Secondly, the chapter gave details of 

the smartphones and tablets devices used for experiments in the thesis. Third, a set of 

hypotheses were posted for our investigation that will provide a theoretical and an 

empirical account of visual search behaviour and touch-gesture interactions for elderly 

users on smartphones and tablets to the existing body of literature. Fourth, in this chapter 

there were review and describe for eye movement stimuli and gesture applications that we 

designed our experiments based on them. Finally, the various metrics that will be used to 

analyse usability issues were defined. The results of these metrics will extract the level of 

usability of smartphone interfaces for elderly users compared to other age groups.  

The next three chapters are devoted to present and discuss the results of the various 

experiments we conducted. Sections  5.1 and  5.2 in Chapter 5 will address the research 

question Q1 to cover hypotheses H1 – H4 regarding scan-paths dissimilarity and difficulties 

in information processing at both local and global level. The results of two studies 

conducted using eye movement and smartphones applications will be the basis of this 

chapter. Section  6.1 of Chapter 6 will address the research question Q2 for hypotheses H5 - 
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H6 regarding the influence of ageing and screen sizes of smartphones on performing 

gesture swiping intuitively, whilst Section  6.2 addresses the research question Q3 for 

hypotheses H7 - H14 regarding the effect of ageing, screen sizes, and gesture complexity in 

performing accurate gestures on smartphones. Chapter 7 will address the research question 

Q4, which is linked hypotheses H15 - H16 regarding the possibility of classifying user’s 

age-group based on user’s ability to use gesture-based features on smartphones. All 

research questions were posed in Section  1.2, and all the hypotheses were described in 

Section  4.4.  
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CHAPTER 5 

EYE MOVEMENT INTERACTIONS ON SMARTPHONES 

FOR ELDERLY USERS 

This chapter conducts exploratory studies of smartphone interface interaction behaviours 

for elderly users using eye movement. Two studies having been conducted using nine 

interfaces of smartphone applications to address the research question Q1 described in 

Section  1.2 which is relevant to hypotheses H1 - H4. The first research was conducted to 

investigate scan-paths dissimilarity in browsing smartphone applications based on string-

edit method to compare performances of elderly users with younger users. The second 

research was conducted to investigate difficulties in information processing at both local 

and global level for elderly users compared to middle-aged and younger users. Chapter four 

presented relevant details on age groups, smartphone devices, the eye-tracker system, the 

stimuli and the various metrics will be using here. 

A particular interest of age in these two studies is elderly users. Users of other age groups, 

i.e., middle-aged and younger users, were involved in these two studies in order to 

understand the difficulty level for the elderly compared to users of other age groups.  

In addition to investigating the effects of age, three sizes of smartphones/tablets were used 

in the two aforementioned studies to examine the screen size influence on users’ interface 

browsing effectiveness/characteristics. In terms of smartphone usability, we have not come 

across any other research conducted on smartphones/tablets applications browsing for 

elderly users using eye movement tracking. Therefore, the outcomes of these studies will 

add to our understanding of the particular needs of this user population that will have 

implications for the design of effective interface structures for modern technology.  

5.1. Browsing Effectiveness on Smartphones 

In this section we will use scan-paths dissimilarity to investigate the effects of age and 

screen-size on browsing smartphone applications. A scan-path is considered as one of the 

most important metrics captured by eye tracking systems. The investigation was performed 
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on three smartphone screen sizes; small, medium, and large. Levenshtein algorithm is used 

to calculate the distances between pairs of scan-paths string for elderly users and younger 

users (see Section  4.6.3 for more details on scan-paths string-edit). 

5.1.1 Overview of Experimental Hypotheses  

The specific expectations that were examined in this experiment are hypotheses H1 and H2 

regarding scan-path dissimilarity browsing for elderly, and screen sizes influences on users’ 

performance (see Section  4.4 for more details on the relevant hypotheses). 

5.1.2 Methodology 

Experiment Structure  

Each smartphone size has two experiments (EXP1 and EXP2), and each experiment is 

conducted using participants from two age groups (YG, and EG). A participant was 

involved in only one smartphone screen size and in one experiment to avoid any influence 

of familiarity on the participant’s performance. Figure 8 illustrates how experiments and 

different groups of participants are organized. 

 

Figure 8. Organization of smartphone experiments and age groups. 

Apparatuses 

This research used the eye tracker, and smartphones of three screen sizes; small, medium, 

and large screen sizes. Specific details of the smartphones and the eye tracker device are in 

Section  4.2 and Section  4.7 respectively. 

Participants and Stimuli 

In total, 32 participants took part in this exploratory experiment as described in Table 8. 

The participants were selected from different age groups and include university students, 

university staff, and people from the local community. Each participant was asked to fill a 
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demographic data form regarding age group, and their average experience in using 

applications; Skype, Facebook, and email, on smartphones/tablets and on PC (a data form 

is shown in Appendix-A). The average experience of a participant was calculated based on 

their experience in using Skype, Facebook, and email on smartphones/tablets. For example, 

if a participant has 2 years of experience in using a smartphone for Skype, Facebook, and 

email, the average experience of the smartphone applications for this participant is 2 years. 

The participant’s experience of using smartphone applications for Skype, Facebook, and 

email were averaged based on two age groups as shown in Table 8. Figure 9-a shows the 

average experience of application use for the two age groups on each of the three 

smartphones screen sizes, whilst Figure 9-b shows the average experience of application 

use for the two age groups on PCs. The nine interfaces of smartphone applications used as 

stimuli were explained in Section  4.5. 

Table 8. Participant details. 

Age Group No. of 

participants 

The average experience  of 

applications use on 

smartphones/tablets 

EG 16 0.18 years 

YG 16  0.76 years 

Small smartphones 12 0.57 years 

Mini-tablet 9 0.39 years 

Large-tablet 11 0.46 years 

 

  

Figure 9. Average experience of applications use: a) on smartphones/tablets, b) on PCs. 
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5.1.3 Experimental Design and Procedure 

Each of the nine interfaces of applications has two experiment groups (EXP1 and EXP2), 

and each has different questions (i.e., targets). The experiment procedure for this research 

was described in more details in the Section  4.7. 

In order to investigate if scan-paths dissimilarity are age-driven, and to ascertain whether 

scan-paths dissimilarity are either smartphone screen size-driven or stimulus driven, we 

followed two steps to calculate the mean and standard deviation (STD) of scan-paths 

dissimilarity for each age group on each screen size. First, equation (3) shows how the 

distance between pairs of scan-paths on one interface of applications, each from different 

participant, is calculated. We use the scan-path of the first participant (i.e., scan-

path(YG1(participant 1))) and compare it with the scan-path of the same interface of 

applications, but from the second participant (i.e., scan-path(YG1(participant 2))), and then 

compare the scan-path of first participant with the scan-path of third participant, and so on 

to find the distance between all scan-paths among all participants of that age group for that 

application interface. For each comparison, we used equation (1) and (2) in Section  4.6.3 to 

calculate the distance.  

                                            (3) 

 

 

Second, after calculating the distances between all pairs of scan-paths on each interface 

among all participants of each age group, we calculated the average (mean) for nine 

interfaces of applications for each age group on each smartphone screen size, which is 

represented by MA as shown in equation (4): 

     
 

 
     

 

 
               

 

   

  
 

 

  (4) 

where i and j are the participants of an age group, k is the number of calculated distances 

for each application’s interface, and l is number of applications interfaces. 
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5.1.4 Experimental Results and Discussions  

The average results and STD of the scan-paths dissimilarity for each age group are shown 

in Table 9, and the minimum and maximum average of scan-paths dissimilarity of two age 

groups on three smartphone screen sizes are shown in Figure 10 - Figure 12. Scan-paths 

dissimilarities for elderly users on small, medium, large screen sizes for EXP 1 are 10.37, 

13.44, and 11.81 respectively; whilst for EXP 2 they are 6.93, 10.35, 10.44 respectively. 

The results show that scan-paths dissimilarities for elder are higher compared to the scan-

paths dissimilarities associated with the younger users on small, medium, large screen sizes 

for both experiments (it is 4.41, 8.33, 7.33 respectively for EXP 1, and 3.00, 3.89, and 5.04 

respectively for EXP 2). A high scan-path dissimilarity in browsing indicates that elderly 

users have difficulties in browsing smartphones applications compared to younger users. 

The scan-paths dissimilarity was high for elderly because their eyes visited most of 

smartphones applications contents before they could find a given target compared to 

younger users that their eyes visited few number contents to find a given target.  

These results confirm our hypothesis H1 that scan-paths in browsing smartphone 

applications are age-driven. Our findings are in line with previous studies conducted on 

technology design in general (e.g. (Stößel, et al., 2010)), which found elderly have 

difficulties when interacting with technology. The elderly users’ difficulties when browsing 

technology can be highlighted for the following reasons. First, as stated by (Victor, 2010), 

and (Fisk, et al., 2009), ageing is almost accompanied by a variety of changes represented 

by impairments in cognitive and motor movement abilities. Second, as concluded by 

(Stößel, et al., 2010), elderly people encounter difficulties when interacting with 

technology; this is because of technology devices are not designed to accommodate their 

special needs. Third, as stated by (Dyk, et al., 2013), and as shown in Table 8, and Figure 9-

a, the elderly are less experienced with smartphone application use.  

The average experience in using smartphones applications may have had an influence on 

the users’ performance, which resulted high scan-paths dissimilarity for elderly users. 

Elderly users who took part in our research had a lower average experience in using the 

interfaces of smartphone applications at 0.18 years compared to younger users at 0.76 

years.  
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Our research suggests that the elderly users have higher scan-paths dissimilarity which can 

be ascribed to the following reasons: 1) as stated by (Dyk, et al., 2013), and as shown in 

Figure 9-a, the elderly are less experienced in using the interfaces of smartphone 

applications; the shorter period of experience for elderly users in using smartphone 

applications (i.e. 0.18 years) compared to the longer experience of younger users (i.e. 0.76 

years) has influenced in elderly users having a higher scan-path dissimilarity; 2) as reported 

by (Victor, 2010), (Fisk, et al., 2009), ageing is almost accompanied by a variety of changes 

represented by impairments in sensory perception of touch, cognitive and motor movement 

abilities, and 3) as stated by (Stößel, 2012) that technology design does not meet elderly 

users need – application interfaces are complex. It seems that all these factors can explain 

why the elderly have higher scan-paths dissimilarity on the interfaces of smartphones 

applications than younger users. Consequently, we suggest to avoid designing complex 

interfaces structures for the elderly. 

Table 9. Average scan-paths dissimilarities for all age groups for three smartphone screen sizes. 

Screen size Age group 
EXP 1 EXP 2 

Mean (STD) Mean (STD) 

Small 

 

YG 20-39 4.41 (3.31) 3.00 (0.85) 

EG 60+ 10.37 (6.45) 6.93 (4.14) 

Medium 

 

YG 20-39 8.33 (4.30) 3.89 (1.90) 

EG 60+ 13.44 (5.61) 10.35 (4.59) 

Large 

 

YG 20-39 7.33 (4.44) 5.04 (2.84) 

EG 60+ 11.81 (3.61) 10.44 (2.19) 
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Figure 10. Minimum-Maximum mean distances for each group (high dissimilarity for elderly) on small 

smartphone: a) EXP 1, b) EXP 2. 

 

Figure 11. Minimum-Maximum mean distances for each group (high dissimilarity for elderly) on medium 

smartphone: a) EXP 1, b) EXP 2. 

 

Figure 12. Minimum-Maximum mean distances for each group (high dissimilarity for elderly) on large 
smartphone: a) EXP 1, b) EXP 2. 
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Table 10. Average Scan-Path dissimilarities of 9 applications in EXP 1. 

Screen 

size 

App 

No 
1 2 3 4 5 6 7 8 9 

S
m

al
l 

YG 4.33 2 6 1.67 6.67 1.67 2 11.67 3.67 

EG 16.33 14.33 17.33 17.67 11.67 7.33 3.33 3 2.33 
M

ed
iu

m
 

YG 10 13 11 10 8 13 0 5 5 

EG 13 19 18 17 10 15 1 17 11 

L
ar

g
e YG 2.67 13.67 13.00 4.67 12.33 4.33 3.00 7.00 5.33 

EG 11.33 14.00 15.00 16.33 12.33 8.33 4.33 12.33 12.33 

Table 11. Average Scan-Path dissimilarities of 9 applications in EXP 2. 

Screen 

size 

App 

No 
1 2 3 4 5 6 7 8 9 

S
m

al
l 

YG 3.33 3 2.67 3.33 3.67 1.33 2.33 4.33 3 

EG 12.33 6.33 2.67 3 5 6.33 12.33 11.67 2.67 

M
ed

iu
m

 

YG 6 3 2 3 6 1 3 6 5 

EG 6.5 12 4 4 10.33 14 11.33 16.67 
14.3

3 

L
ar

g
e YG 11.33 3 2.33 2.67 4 6 5.33 7 3.67 

EG 14 8 10 8 11 9 12 13 9 

The hypothesis H2 is designed to investigate if it is stimulus-driven or smartphone screen 

size-driven that has a greater influence on users’ performance when browsing smartphones 

applications measured by scan-paths dissimilarity. In order to examine the hypothesis H2, 

we investigated the screen size-driven first as follows. The average scan-paths dissimilarity 

for elderly on medium screen size in EXP1 (13.44) is greater than the average scan-paths 

dissimilarity on both large and small screen sizes in EXP1 (11.81 and 10.37 respectively; 

see Table 9). Because of this, the first part of hypothesis H2 indicates that there was no 

influence of screen sizes on scan-paths dissimilarity of users.  

In terms of the second part of hypothesis H2 – stimulus-driven, we considered each 

experiment (i.e. EXP 1, EXP 2) individually for the three smartphone screen sizes to 

investigate if the smartphone application is stimulus-driven. In other words, this 

investigates the influence of smartphone application’s contents on users’ performance 

measured by scan-paths dissimilarity when browsing smartphone applications. Based on 

the results in Table 10, and by taking the two smallest values of scan-paths dissimilarities of 
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the nine interfaces of applications for each age group of each screen size, we will see App 7 

is appeared 4 times out of 6 to be the larger number repeated in EXP 1 (see shading cells 

for App 7 in Table 10). Also, based on the results in Table 11 and by taking the two smallest 

values of scan-paths dissimilarities of the nine interfaces of applications for each age group 

of each screen size, we will see App 3 is appeared 4 times out of 6 to be the larger number 

repeated in EXP 2 (see shading cells for App 3 in Table 11). 

User experience might have influenced users’ performance to make the scan-path 

dissimilarity stimulus-driven than to be screen sizes driven for the users of two age groups.  

This could be explained by the following reasons. First, the participants’ experience might 

have influenced their performance which made their scan-paths dissimilarity lower on some 

interfaces; the participants have longer experience in using the applications on PCs than 

their experience in using the same applications on smartphones shown in Figure 9. Note 

that the average experience in using the applications interfaces on PCs for EG is 5 years, 

and for YG is 4.15 years as shown in Figure 9. However, as shown in Figure 9-a, the 

average experience in using the applications interfaces on smartphones for EG is 0.18 

years, and for YG is 0.76 years. So, using the applications on PCs might have influenced on 

the users performance when using the same applications on smartphones for having the 

same design and contents that will make the scan-paths dissimilarity lower on these 

interfaces. Secondly, it was found by (Al-Wabil, et al., 2008) and (Josephson & Holmes, 

2002) that interfaces’ stimulus have stronger effect when browsing the interfaces of web-

pages on PCs. Their studies were conducted on a different population (i.e., dyslexic users 

with an average age of 31 years, and younger users with an average age of 22.5 years), and 

applications (i.e., website pages). It seems all these reasons may make the influence of 

stimulus more than the influence of screen sizes on users’ performance. 

Overall, the results showed that the scan-paths dissimilarity of browsing the interfaces of 

smartphone applications is tend to be influenced by stimulus than by smartphone screen 

sizes (i.e. a stronger influence by the stimulus than screen sizes). There was an influence for 

the stimulus in App 7 of EXP 1, and App 3 of EXP 2 - across all three smartphone screen 

sizes - that have lower scan-paths dissimilarities. However, there is no influence of 

smartphone screen sizes on the scan-paths dissimilarity on EXP 1. This proved the 
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hypothesis H2 that scan-paths dissimilarity of smartphone applications are stimulus-driven 

than they are smartphone screen size-driven.  

5.1.5 Section Conclusion 

Based on examining pairs of scan-paths using Levenshtein algorithm, this research 

provided evidence of scan-path dissimilarities for the participants when browsing 

smartphones applications. The results showed evidence of ageing effect on performance 

(i.e., age-driven) that elderly users have high scan-paths dissimilarity than younger users 

when browsing smartphone applications. To the best of our knowledge, this is the first work 

to adopt age-driven in browsing smartphones applications using scan-paths on eye-tracking. 

Furthermore, there was a lower dissimilarity of scan-paths for applications with popular 

contents such as active alarm application and account holder picture on the Skype 

application. These results suggest that viewing patterns on smartphone applications tend to 

be more stimulus-driven than to be smartphone screen size-driven. User experience might 

have influenced users’ performance to make the scan-path age-driven and stimulus-driven 

as shown in Table 8, and Figure 9-a. 

5.2. Difficulties in Local and Global Information Processing on 

Smartphones 

In this section we will investigate the effects of user’s age-group, as well as screen sizes on 

smartphone usability in terms of difficulties in information processing. The evaluation was 

performed using three different screen sizes of smartphones and tablets devices: small, 

medium, and large, and included three different age groups: elderly, middle-aged users, and 

younger users (see Sections  4.1 and  4.2 for more details on users and smartphones screen 

sizes respectively). An eye-tracker device was employed to obtain three metrics: fixation 

duration, scan-path duration, and saccades amplitude. All results have been statistically 

evaluated using ANOVA. 

5.2.1 Overview of Experimental Hypotheses  

The specific expectations that were examined in this experiment are hypotheses H3, and H4 

regarding difficulties in information processing for users, and screen size influence on 
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users’ performance when browsing smartphones applications (see Section  4.4 for more 

details on the relevant hypotheses). 

5.2.2 Methodology 

Experiments Structure 

Each of the three smartphone sizes (i.e., small, medium, and large) has two experiments: 

EXP1 and EXP2. Each experiment is conducted using participants from three age groups 

(i.e., EG, MG, and YG). As before, each participant was involved in only one smartphone 

screen size and in one experiment to avoid any influence of familiarity on the participant’s 

performance. Figure 13 illustrates how experiments and different groups of participants are 

organized. 

 

Figure 13. Organization of smartphone experiments and age groups. 

Apparatuses 

The smartphones of three screen sizes and the eye tracker device were used in this research 

to collect data. Specific details of the selected smartphones devices and eye tracker are 

available in Section  4.2 and in Section  4.7 respectively. 

Participants and Stimuli 

A total of 103 participants took part in the experiments as described in Table 12. The 

participants were selected from different age groups and include university students, 

university staff, and people from the local community. Each participant was asked to fill a 

demographic data form regarding age group, and their average experience in using 

applications; Skype, Facebook, and email, on smartphones/tablets and on PC (a data form 

is shown in Appendix-A). The explanation on how the average experience was calculated 
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was described in Section  5.1.2 on Participants and Stimuli. The average experience on two 

age groups, and on two screen sizes of smartphones are shown in Table 12, and Figure 14. 

Figure 14-a shows the average experience of application use for two age groups on three 

smartphones screen sizes. Whilst Figure 14-b shows the average experience of application 

use for two age groups on PC. The nine interfaces of smartphone applications used as 

stimuli are explained in Section  4.5. 

Table 12. Participant details. 

Age Group No. of 

participants 

The average experience of 

applications use on 

smartphones/tablets  

EG 22 0.36 years 

MG 31 0.81 years 

YG 50 1.73 years 

Small smartphone 35 1.03 years 

Mini-tablet 36 0.99 years 

Large-tablet 32 0.89 years 

  

Figure 14. Average experience of applications use: a) on smartphones/tablets, b) on PCs. 

5.2.3 Experimental Design and Procedure 

The experiment design and procedure for this research was described in details in Section 

 4.7. 

5.2.4 Eye-tracking Metrics 

We used the following four eye-tracking metrics as dependent and independent variables to 

explore the determinants of visual browsing behaviour on smartphone interfaces. The 

dependent variables are: 1) FD, 2) SA, and 3) SPD. The independent variable is RS.  
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We calculated the average FD, RS, SPD and SA of each participant (based on non-

erroneous search tasks of the nine search tasks) (Stößel, et al., 2010). A two-way ANOVA 

was used to provide the average, STD, and P-value for each age group. In ANOVA, we 

used  < 0.05, which indicates the confidence level between the tested means. 

5.2.5 Experimental Results and Discussions 

The hypotheses H3 - H4 will be discussed in this research that elderly users have local and 

global information processing difficulties on smartphone applications compared to the 

middle-aged and younger users measured by FD and SPD respectively. Also, a small 

smartphone was difficult to use in browsing smartphone applications measured by RS. In 

Section  5.2.5 on Do elderly users have both local and global information processing 

difficulties on smartphone/tablet use than other age groups?, we will look at the 

information processing difficulties in local and global level using eye-movement tracking, 

and on Do screen sizes have influenced on users interactions?, we will look at the influence 

of smartphone screen sizes on the users’ performance in terms of browsing smartphones 

applications using eye-movement tracking. 

Do elderly users have both local and global information processing difficulties on 

smartphone/tablet use than other age groups?  

Based on visual search behaviour using eye movement on smartphones applications, we 

investigated two kinds of information processing difficulties in local and global level 

measured by FD and SPD respectively. Fixation duration and scan-path durations results on 

small, medium and large screen sizes are shown in Table 13, Table 14, Figure 15, Figure 16, 

and Figure 17.  

In terms of information processing difficulties at local level, the results show a significant 

ageing effect (f= 20.213, p= 0.000, n
2
= 0.25) measured by FD. Elderly users took 

significantly (i.e., p= 0.000) longer FD in 2922 milliseconds when compared to younger 

users who took 1686 milliseconds, and middle-aged (i.e., p = 0.019) who took 2376 

milliseconds of FD. Also, the results show middle-aged took significantly (i.e. p = 0.000) 

larger than that of the younger-age group. The local information processing difficulties 

indicated that there are difficulties when interacting with interface contents, the elderly 

spend longer time (i.e., larger FD) in information processing on the interface contents, and 
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this gives indication that some of application components on the interfaces were not 

properly designed for the elderly to be recognised promptly.  

Table 13. Average and STD of FDs and SPDs across all three screen sizes for each age group when P < 
0.05. 

Age Group/ 

Metrics 

YG MG EG 

Mean STD mean STD mean STD 

FD 1686   701.47 2376 857.84 2922   1267.19 

SPD 1884   774.04 2810 973.34 3172   1428.21 

Table 14. The average for all metrics: Fixation Durations, Scan-Path Durations. Arrow up shows larger 

value, and arrow down shows lower values. 
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Figure 15. Eye-tracking metrics for small screen size. (a) Mean FD, and (b) Mean SPD, in millisecond. 

 

Figure 16. Eye-tracking metrics for medium screen size. (a) Mean FD, and (b) Mean SPD, in millisecond.  
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Figure 17. Eye-tracking metrics for large screen size. (a) Mean FD, and (b) Mean SPD, in millisecond. 

In term of information processing difficulties at global level, the results show a significant 

ageing effect (f= 15.667, p= 0.000, n
2
= 0.21) measured by SPD. Elderly users took 

significantly (i.e. p = 0.000) longer SPD in 3172 milliseconds when compared to younger 

users who took 1884 milliseconds, but not significantly (i.e. p= 0.182) between SPDs of 

elderly and middle-aged who took 2810 milliseconds. Also, the results show a significantly 

(i.e. p= 0.000) larger value of SPD for middle-aged and younger age group. The results 

provided evidence that the elderly have significant global information processing 

difficulties on smartphone applications measured by larger SPD. The results indicated that 

there are overall impediments in browsing the interfaces of applications, which might be 

related to the complex design of interface structures. 

In addition, as shown in Table 12, and Figure 14-a, the average experience in using 

smartphones applications may have had an influence on the users’ performance, which 

resulted in the difficulties at both local and global level information processing for elderly 

users. Elderly users who took part in our research had a lower average experience in 

smartphone applications use; Skype, Facebook, and email, at 0.36 years compared to 

middle-aged users at 0.81 years and younger users at 1.73 years. Whilst Figure 14-b shows 

the large average experience in using the applications on PC for elderly users, this large 

average experience on PC than on smartphone because some of elderly users used the email 

on PC for long time that reached to 20 years, but this large experience for elderly on PC 

compared to the middle-aged and younger users might not made influence on their 

performance in browsing smartphones. 

These results support our hypothesis H3; elderly users exhibit difficulties in local and 

global information processing on smartphone applications represented by the larger values 
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of FD and SPD respectively. Longer time-consuming searches can be caused by at least 

three factors as reported by (Chen, 2013), (Phiriyapokanon, 2011), (Wagner, et al., 2010) 

(Arnott, et al., 2004): 1) Inappropriate technology design (i.e., complex design). 2) Lack of 

user experience on the technology use. 3) Also, as it was mentioned in Chapter  2, 

impairments in users’ ability can make the interaction difficult. For example, difficulties in 

remembering the steps to complete tasks.  

Based on previous studies (e.g. (Chen, 2013), (Fukuda, 2008)) using different tools, 

condition, and applications it has been found that elderly users have difficulty when 

interacting with technology in general. It was concluded by number of studies (e.g. (Fukuda 

& Bubb, 2003), (Findlater, et al., 2013), (Froehlich, et al., 2007), Stößel, 2012)) that elderly 

users took longer time to perform a given task.  

Do screen sizes have influenced on users interactions? 

This question focuses on examining the influence of smartphone screen sizes on the users’ 

performance in terms of browsing smartphones applications using eye-movement measured 

by ratio of saccades.  

The average results of ratio of saccades (RSs) for the three smartphones screen sizes across 

three age groups are shown in Table 15, Figure 15, Figure 16, and Figure 17. The results 

show a significant influence of screen sizes on the performance efficiency of users across 

all age groups (f= 4.467, p= 0.014, n
2
= 0.04) measured by RS. The average value of RS on 

large-tablet size is significantly (i.e. p = 0.000) larger in 1.584 than the average value of RS 

on mini-tablet that is 1.221, and significantly (i.e., p = 0.000) larger than on small 

smartphone that is 1.219. There is no significant difference between the RSs of small 

smartphone and mini-tablet (i.e., p = 0.981). The efficient performance for all users was 

significantly better on large-tablet size for larger RS as mentioned above than mini-tablet, 

and small smartphone. Moreover, as shown in Table 12, and Figure 14, the average 

experience of participants in using smartphones applications who were involved in small 

smartphone is greater (1.03) than the experience for participants who were involved in 

mini-tablet (0.99), and who were involved in tablet large screen size (0.89), however, the 

large screen size still has larger ratio of saccades for the easy technology design that meet 

elderly users abilities. These results support our hypothesis H4, and in line with the study 

(Stößel, 2012)) that elderly users perform better when screen size is increased.  
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In addition, elderly users were more likely to suffer from age-related deficits when 

interacting with technology, which can act as an obstacle that makes technology use more 

difficult (Arnott, et al., 2004). The designers should consider the interaction difficulty with 

small screen sizes and the small interfaces contents in their designs for elderly users. 

Table 15. Average ratio of saccades of three screen sizes. Significant differences for three screen sizes 
when (p< 0.05). 

Metrics/Screen 

Sizes 

Small Medium Large 

Mean STD Mean STD Mean STD 

RS 1.219   0.303 1.221 0.395 1.584  0.669 

5.2.6 Section Conclusion 

In this research, we examined the local and global information processing difficulties, and 

screen sizes influence on smartphones usability. Experiments were conducted on three 

screen sizes involving participants of three different age groups. An eye-tracker was used to 

measure fixation durations, scan-path durations and saccades amplitude. 

Impairments in motor ability, low cognitive ability, less experience of using smartphones, 

and a complex design can make the browsing on smartphone applications difficult for the 

elderly. The elderly exhibited more difficulties in information processing on smartphones at 

both local and global levels across all screen sizes than middle-aged and younger users. The 

results of ratio of saccades indicated that the usability in browsing smartphones applications 

on a large screen size is easy for all age groups compared to small smartphones, and mini-

tablets.  

In general, the results revealed a possible relationship between getting older with less 

experience in using smartphones and the complexity of interface design with smaller screen 

sizes of smartphones. Designers should consider the complex interface design for 

smartphone applications, and the difficult application structure that makes a global 

browsing difficult, specifically on small smartphones in their designs for elderly users. 

5.3. Chapter Summary 

This chapter presented two studies conducted on eye movement and smartphones for 

elderly users. First, the scan-paths dissimilarity using string-edit were examined on three 
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screen sizes of smartphones involving two age groups; elderly users and younger users. The 

results showed evidence that there is ageing effect (i.e., age-driven) when browsing 

smartphones applications, where elderly users have higher scan-paths dissimilarity than the 

younger users. Furthermore, there was a lower dissimilarity (i.e., high similarity) of scan-

paths for the applications with popular contents such as active alarm application (EXP1 - 

APP 7) and account holder picture on the Skype application (EXP2 - APP 3). These results 

suggest that viewing patterns tend to be more smartphone application stimulus-driven than 

to be smartphone screen size-driven. Second, an investigation on the information 

processing for users, and screen sizes influence on users’ performance on smartphone/tablet 

use was conducted. The investigation was performed involving three age groups on three 

different screen sizes of smartphones and tablets devices. The results revealed that elderly 

exhibited more difficulties in information processing at both local and global level on 

smartphones across all screen sizes than did the middle-aged and younger users. The results 

of ratio of saccades indicated that the usability in browsing smartphones interfaces using 

eye-movement on a large tablet screen size is more usable for all age groups as compared to 

small screen sizes. 

In general, the results revealed a possible relationship between getting older with less 

experience in using smartphones and the complexity of interface design with smaller screen 

sized smartphones for elderly users. 

The following chapter presents two studies based on touch gestures to understand age-

related usability issues of smartphones. Section  6.1 will address the research question Q2 

for hypotheses H5 - H6 regarding the influence of ageing and screen sizes of smartphones 

in performing gesture swiping intuitively. Section  6.2 will address the research question Q3 

for hypotheses H7 - H14 regarding the influence of ageing, screen sizes and gesture 

complexity in performing accurate gestures on smartphones. 
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CHAPTER 6 

GESTURE-BASED APPLICATIONS ON SMARTPHONES 

FOR ELDERLY USERS 

Previously in Chapter five, we showed results relevant to information processing 

difficulties for elderly users, and the stimulus effect on scan-path dissimilarities when 

browsing smartphone applications. This chapter presents two exploratory studies conducted 

using gesture-based applications on smartphones/tablets to address the research question 

Q2 described in Section  1.2, which is relevant to hypotheses H5-H6, and the research 

question Q3, also described in Section  1.2, which is relevant to hypotheses H7-H14. The 

first research was conducted to investigate the effects of ageing in performing gesture 

swiping intuitively. The second research was conducted to investigate the effects of ageing 

in performing gestures accurately, and to understand the influence of complex gestures on 

users’ performance. The influence of screen size will also be considered in each of the two 

gesture studies. All results have been statistically analysed using ANOVA.  

A particular interest of age in the two studies presented here is the elderly user group. Users 

of younger group were involved in these two studies in order to understand the difficulties 

faced by the elderly compared to users of other age groups. The outcomes of these studies 

will add to our understanding of the particular needs of elderly user population which will 

have implications for the effective technology design that meets elderly ability when 

executing gestures on touch-screen devices. 

6.1. Gesture Swiping Interactions 

Gesture swiping is one of the gesture movement patterns on touchscreens. The aim of this 

research is to examine the effect of ageing and screen sizes influence in performing gesture 

swiping intuitively on smartphones and tablets. A total of 35 participants from elderly and 

younger users were involved in the research to understand how users execute gesture 

swiping intuitively in four directions (i.e., swipe left, swipe right, swipe up, and swipe 
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down), and to understand the influence of smartphone screen sizes on gesture swiping 

performed by users of two age groups. 

We will show that the elderly users are less efficient, exert more force pressure, and they 

are less smooth in performing gesture swiping when compared to the younger users. 

Furthermore, elderly users are less efficient in swiping vertically, but not in swiping 

horizontally. Results show that a small smartphone is less usable for elderly users.  

The rest of this section presents the experiment design and a detailed analysis of 

experimental results.  

6.1.1 Overview of Experimental Hypotheses  

The specific expectations that were examined in this experiment are hypotheses H5 and H6 

which relates to the effect of ageing and screen sizes on users when performing gesture 

swiping intuitively (see Section  4.4 for more details on the relevant hypotheses). 

6.1.2 Methodology 

Experiments Structure 

Our research is conducted on two sizes of smartphones and includes four gesture swiping 

directions (i.e. swipe left, swipe right, swipe up, and swipe down). Participants were 

divided into two age groups; EG, and YG. Each participant was involved in one only 

experiment to avoid any influence of familiarity on the participant’s performance. Figure 18 

below gives an overall view of the experiment setup.  

 

Figure 18. Organization of smartphone experiments and age groups. 
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Apparatus 

Two sizes of smartphones were used in the research; small smartphone, and mini-tablet. 

Details of these devices were given in Section  4.2. 

Participants 

Details of the 35 participants who took part in the experiments are described in Table 16. 

The participants were selected from different age groups and include university students, 

university staff, and people from the local community. Each participant was asked to fill a 

demographic data form regarding their age group, and their average experience in using 

smartphones (a data form is shown in Appendix-B). The average experience of a participant 

was calculated based on their experience in using smartphones/tablets for calling and 

texting. For example, if a participant has 2 years of experience in using a smartphone for 

calling and texting on each of small smartphone, mini-tablet, and large-tablet size, the 

average experience of smartphones use for calling and texting on smartphones for this 

participant is 2 years. The participants’ experiences of smartphone use for calling and 

texting were averaged based on the two age groups and the two screen sizes as shown in 

Table 16, and Figure 19. 

Table 16. Participant details. 

Age Group No. of 

participants 

No. of 

participants 

on small 

smartphone 

No. of 

participants 

on mini-

tablet 

Average 

Age in 

years 

The average 

experience for 

calling and texting 

on 

smartphones/tablets  

EG 16 9 7 65.2  1.13 years 

YG 19 8 11 25.4  0.96 years 

Small 

smartphone 

17 - - - 1.51 years 

Mini-tablet 18 - - - 0.59 years 
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Figure 19. Average experience use for users on smartphones and tablets. 

6.1.3 Experiment Design and Procedure 

Experimental Design 

Gesture swiping experiments included swiping in four directions (i.e., left, right, up, and 

down) and four targets (a target is a number in a list of numbers from 1 to 51) per direction. 

Participants were asked to swipe the smartphone/tablet touch-screen in one of the four 

directions at a time to find a given target number. Each swiping task starts from number ‘1’ 

shown at the centre of the screen and ends when the participant taps on the target number.  

Figure 20 shows two example gesture swiping directions, each from start (i.e., number 1 

shown in the first column) to target number (i.e., number 39 shown in the third column). 

The application was written in Java for Android Version 4.2.1, and the displayed numbers 

were designed using Photoshop. 

The total number of tasks performed by a participant is 16 (i.e., 16 trials). Using 35 

participants, we were able to collect a total of 560 trials of gesture swiping.  
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Figure 20. Gesture  swiping tasks stages; a) a user start to swipe to right or to down, b) finger swiping to find a target (39), c) finger tap on the target 
(39).
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Experimental Procedure  

Each participant was invited to a computer lab in the university and was provided with a 

chair and table for the experiment. Each participant used a table with a comfortable 

distance and height that suits them. A description of the experiment was given to each 

participant; each participant was asked to practice one gesture (i.e. swiping down) for 2 

times to familiarize themselves with the gesture tasks. The smartphone/tablet device was 

placed on a table in landscape orientation to ensure consistent experiment conditions for all 

the participants. The participant used one hand to hold the device on the table whilst using 

the other hand to perform gesture swiping tasks. This procedure was used to avoid any 

shaking of the smartphone/tablet that might occur if the users held the device in hand 

(physical ability among users vary). For example, finger pressure measurements could be 

influenced if the user pushes the screen from two opposite sides; downward pressure from 

the finger that performs gestures on the screen and upward pressure from the hand that 

holds the device. Note that Nicolau and Jorge (Nicolau & Jorge, 2012) used the landscape 

orientation in their study, but they let their participants hold the device in their hand (see 

description in Section  3.2.2 on Gesture Accuracy and Gesture Complexity). 

Each of the four different gesture swiping directions (i.e., swipe down, swipe up, swipe left, 

and swipe right) was repeated four times for four different targets. The participants were 

asked to swipe images and hit (tap) the target (i.e., a given number). Once the participant 

hit (tap) the target number it moves to the centre of the screen which indicates the end of 

the gesture swiping task for that target number. The participants were asked to point to the 

target as quickly as possible. The targets for each direction (i.e., 39, 49, 44, and 35) were 

selected to be close to the last number on the list (i.e., 51) to let participants have enough 

distance to swipe on the screen. For each direction, the four numbers were selected 

randomly. Furthermore, the targets were selected to be different numbers to avoid any 

influence of familiarity on participant's performance in case if the participant received the 

same target number in more than one task. 

6.1.4 Dependent and Independent Variables 

Four metrics were used in this research to evaluate the effect of ageing and screen-size 

influence on gesture swiping interactions on smartphones. Three out of the four metrics will 
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be considered to be the dependant variables: 1) MT (seconds), 2) FP, and 3) speed. The 

ratio of speed to FP metric is considered to be the independent variable (the metrics were 

explained in Section  4.9). 

Each metric for a participant was calculated in three stages. First, for each participant, the 

metric for each target of each gesture direction was calculated (note that a number of 

swipes could be required to reach the target). Then we took the average of that metric 

obtained from the four targets (i.e., 39, 49, 44, and 35) of a specific direction as that 

participant’s specific gesture task performance. Then we took the average of all four gesture 

directions (i.e., swipe down, swipe up, swipe left, and swipe right) of task performances as 

that participant’s performance for a given metric. Finally, the average of all participants was 

taken based on the age-group and screen-size as necessary. 

When calculating Gesture Speed, the Euclidean distance was used to calculate the distance 

between any two points on a trajectory of a gesture swipe.  

6.1.5 Experimental Results and Discussions 

The research hypotheses H5 and H6 regarding the effect of ageing and screen sizes on users 

when performing gesture swiping intuitively will be discussed in this section. Section  6.1.5 

on Does user age influence gesture swiping performance?, will focus on the effects of 

ageing on gesture swiping performance, and on Does smartphone screen size influence 

gesture swiping performance?, will focus on the influence of smartphone screen sizes on 

the users’ gesture swiping performance.  

Does user age influence gesture swiping performance? 

This question focuses on the effect of ageing in performing gesture swiping. Our findings 

revealed that elderly users have difficulty in performing gesture swiping compared to 

younger users. The average results of MT, FP, speed, and ratio of speed to FP for each age 

group across two screen sizes are shown in Table 17, Figure 21, and Figure 22. 

In terms of the metric movement time, the results in Table 17 and Figure 21-a show that EG 

took significantly (f =14.646, P=0.001, n
2
= 0.26) longer MT  at 6.85 seconds than YG who 

took less MT at 5.05 seconds to complete gesture swiping tasks. Longer time spent on tasks 

indicates more difficulty in task performance. Our findings are in line with previous works 
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in examining the effect of age on technology using MT where their results showed in 

general, elderly people took longer time to complete tasks using technology than younger 

people (Findlater, et al., 2013), (Farage, et al., 2012), (Stößel, et al., 2010), and  (Rogers, et 

al., 2005). 

Table 17. Average metrics for each age group across two screen sizes. Asterisks mark significant effects (* 

p< 0.05). 

  

Figure 21. The average for (a) MT and (b) FP on screen sizes, and minimum and maximum averages for 

each age group. 
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Features (metrics) 
YG EG 

Sig.* 
Mean STD Mean STD 

MT (seconds) 5.05    0.91 6.85   1.95 * 

FP 0.25    0.12 0.31   0.12  

Speed 0.25    0.093 0.18   0.091 * 

RSTFP 1.12  0.41 0.74  0.55 * 

Vertically swiping (speed) 0.20  0.09 0.13  0.06 * 

Horizontally swiping (speed) 0.31  0.11 0.25  0.14  
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Figure 22. The average for (a) speed, and (b) RSTFP on screen sizes, and minimum and maximum 
averages for each age group. 

Average finger pressure results of the gesture swiping research are shown in Table 17, and 

Figure 21-b. The results show that there were no significant effect on ages (f = 2.994, p = 

0.094, n
2
= 0.01) in exerting force pressure. However, the results show that, on average, 

elderly exerted more force pressure at 0.31 compared to younger users who exerted 0.25 

force pressure. The study by (Moffatt & McGrenere, 2010) reported that elderly users 

exerted 50% more force pressure using pen-based interfaces on a tablet PC (laptop 12.1’) 

than younger users. Our research suggests that the elderly users’ problem in using 

technology is not with touchscreen, but can be ascribed to the following reasons: 1) as 

concluded by (Farage, et al., 2012), elderly users are known to use hard force pressure 

when interacting with technology (e.g. keyboard buttons); 2) as reported by (Victor, 2010), 

(Fisk, et al., 2009), ageing is almost accompanied by a variety of changes represented by 

impairments in sensory perception of touch, cognitive and motor movement abilities; and 

3) as stated by (Dyk, et al., 2013), and as shown in Figure 19, the elderly are less 

experienced with smartphone application use. It seems that all these factors can explain 

why the elderly exerted more force pressure on smartphones than younger users. 

Consequently, we suggest considering this problem when designing touchscreen for the 

elderly, especially for gesture swiping to enhance the usability for elderly users because the 

response of technology does not meet elderly ability when executing gestures. This is to be 

equally efficient for elderly as it is for younger users. 

Average Gesture speed results of the gesture swiping research are shown in Table 17, and 

Figure 22-a. The results show that elderly users were significantly (f = 5.321, p= 0.028, 
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n
2
= 0.13) slower in performing gestures at a speed of 0.18 pixels/ms compared to the 

younger users at a speed of 0.25 pixels/ms. This indicates that elderly users were less 

efficient (i.e., slower) in performing gestures when compared to younger users. Our results 

are in line with previous studies (e.g. (Stößel, 2012), (Farage, et al., 2012), (Tu, 2012), and 

(Stößel, 2012)) that examined the effects of age on technology and concluded that the 

elderly are less efficient in performing tasks than younger users especially on small screen 

sizes. 

In addition to the above observations, we noticed that the variance in the results for speed, 

movement time, and finger pressure between the users of two age groups comes from the 

performance difficulty when they are asked to hit (tap) the target as quickly as possible – it 

took more attempts for elderly users to correctly hit the target compared to younger users. 

The elderly users have difficulty in performing gesture swiping if the designers of 

smartphone touch screens do not consider accommodating elderly ability and expectations 

in terms of smartphone’s response to user gestures. 

Table 17, and Figure 22-b show results based on ratio of speed to finger pressure, which 

measures the smoothness of gesture performance. The ratio is derived to measure the 

relationship between performance efficiency measured by speed, and force pressure. The 

results show that, on average, elderly users have a significantly (f= 5.862, p = 0.022, n
2
= 

0.09) lower ratio at 0.74 than the younger at 1.12. Based on the above results, we conclude 

that elderly users were less smooth in performing gestures compared to younger users, 

indicating a difficulty faced by elderly. 

Based on using speed of gesture swiping, we measured the performance efficiency of users 

for gestures in two orientations. First, in vertical gesture swiping (i.e., swipe up, swipe 

down), elderly users were significantly (f = 9.089, p= 0.005, n
2
= 0.19) slower in task 

performance at a speed of 0.13 pixels/ms compared to the younger users at a speed of 0.20 

pixels/ms. Second, in horizontal (i.e., swipe left, swipe right) gesture swiping, elderly were 

slower at a speed of 0.25 pixels/ms in task performance than younger users at a speed of 

0.31 pixels/ms but not significantly (f =2.059, p= 0.161, n
2
=0.06). In other words, Elderly 

users were less efficient in performing vertical gesture swiping tasks compared to swiping 

gestures horizontally. This could be an indication that large display space (in landscape 

orientation) has a positive influence when performing gesture swiping tasks. Our finds are 
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in line with previous studies (e.g. (Leitão, 2012)) that were conducted on elderly users 

based on task completion times, and number of attempts per task. Results by Leitão (Leitão, 

2012) revealed that horizontal orientation gives the best performance for swiping tasks. We 

conducted our research systematically on gesture swiping in such a way that data were 

collected/measured in real-time by smartphone applications and this differs from the 

previous study by (Leitão, 2012) where they conducted their studies based on data collected 

(i.e., task completion times, and the number of attempts per task) by observing users as they 

performed the gesture tasks. Details of Leitão’s work were explained earlier in Section  3.2.2 

on Gesture Accuracy and Gesture Complexity. 

The above results support our hypothesis H5; elderly users have greater difficulties in 

performing gesture swiping. To the best of our knowledge, we have not come across any 

study that has used finger-based touchscreens with gesture swiping to examine the effects 

of age on smartphones/tablets. 

Does smartphone screen size influence gesture swiping performance?  

This question focuses on the influence of smartphone screen sizes on the users’ 

performance in terms of gesture swiping. The average results for FP, speed, and ratio of 

speed to FP for each screen size across two age groups are shown in Table 18, Figure 21, 

and Figure 22. 

Average finger pressure results of the gesture swiping research are shown in Table 18, and 

Figure 21-b. The force pressure applied on small smartphones was significantly (f = 

264.430, p= 0.000, n
2
 = 0.89) higher at 0.39 force pressure compared to the mini-tablet at 

0.16 force pressure when performing gesture swiping. The results reveal that the users of 

two age groups exerted more force pressure on small smartphones than on mini-tablets. As 

it was concluded by (Farage, et al., 2012) that the small interfaces’ contents make the force 

pressure higher when the body makes full contact with the surface of the technology.  

Gesture speed results of the gesture swiping research are shown in Table 18, and Figure 22-

a. The results show that, on average, there were no significant influence of screen sizes on 

gesture speed (f = 0.580, p=0.452, n
2
= 0.02) -- the average speed on the small smartphone 

is 0.23 pixels/ms compared to the average speed of 0.21 pixels/ms on the mini-tablet. The 

results show that the users' efficiency in performing gesture swiping was marginally better 
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on the small smartphone compared to the mini-tablet. However, on closer inspection we 

found that it was the younger users who were much faster on the small smartphone 

(average speed of 0.30 pixels/ms on the small smartphone compared to average speed of 

0.21 pixels/ms than on the mini-tablets) but the elderly users were slower on the small 

smartphone than they were on the mini tablet. We suspect that it is the user experience that 

might have contributed to the younger users’ faster performance on the small smartphone – 

the average experience of younger users on small smartphones is 1.84 years compared to 

the average experience of younger users on mini-tablet, which is only 0.42 years (see 

Figure 19 for more details on user experience). Moreover, the elderly users’ were more 

experienced on the small smartphone (i.e., 1.17 year) than the elderly users who were 

involved on mini-tablet (i.e., 0.76). However, the gesture swiping speed of elderly users on 

the mini-tablet is 0.20 pixels/ms, which is faster than the elderly users’ gesture speed on the 

small smartphone (speed of 0.17 pixels/ms). See Figure 22 for more details. This indicates 

that the elderly users’ performance has been affected by the screen size than by their 

experience (see Figure 19 for more details on users’ experience).  

Our results are in line with previous studies (e.g. (Stößel, 2012), (Farage, et al., 2012), (Tu, 

2012), and (Stößel, 2012)) that examined the effects of age on technology and concluded 

that the elderly are less efficient than younger users in performing tasks especially on small 

screen sizes. Our findings substantiate the results of previous studies (e.g. (Stößel, 2012)) 

that showed large screen sizes can increase the performance of elderly users. Therefore we 

suggest designing touch interfaces with large displays to increase the usability of 

smartphones for the elderly (i.e., screen sizes, and interface contents).  

Table 18. Average metrics for each screen size. Asterisks mark significant effects (*p< 0.05). 

Features (metrics) 
Small Mini-tablet 

Sig.* 
Mean STD Mean STD 

FP 0.39    0.05 0.16    0.03 * 

Speed 0.23    0.11 0.21    0.09  

RSTFP 0.59  0.29 1.28  0.45 * 

Vertically swiping (speed) 0.19    0.10 0.14    0.06 * 

Horizontally swiping (speed) 0.28    0.13 0.29    0.13  
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Table 18, and Figure 22-b show results based on ratio of speed to finger pressure. The 

results show that, on average, the value of ratio on the small smartphone was significantly 

(f= 29.228, p= 0.000, n
2
= 0.44) lower at 0.59 than the ratio on the mini-tablet at 1.28 for 

users of two age groups. The performance on the mini-tablet was smoother compared to the 

ratio value on the small smartphone. 

The gesture speed was used as a measure to examine the effects swiping orientation 

(vertical and horizontal swiping orientation) on gesture swiping. Results of gesture swiping 

speed for each of the two directions are given in Table 18. Across the two screen sizes, the 

users’ of the two age groups were faster on horizontal swiping orientation. Regarding the 

influence of vertical swiping, the results show that, on average, the users of the two age 

groups were faster on the small smartphone (f = 4.459, p=0.043, n
2
= 0.09) (average speed 

of 0.19 pixels/ms) than on the mini-tablet (average speed of 0.14 pixels/ms). The overall 

larger speed of vertical swiping orientation was a result of the younger users being much 

faster on small smartphone (average speed of 0.30 pixels/ms) than on mini-tablet (average 

speed of 0.21 pixels/ms). Whereas the elderly users were faster on mini-tablet (average 

speed of 0.20 pixels/ms) than on small smartphone (average speed of 0.17 pixels/ms). This 

was explained earlier under gesture speed paragraph. Stößel (Stößel, 2012) stated that 

increasing screen sizes increase the efficiency of users. This could explain the faster gesture 

swiping on horizontal direction compared to the slower gesture swiping in vertical 

direction.  

The above results support our hypothesis H6; the screen size influences gesture swiping 

performance. Elderly users were less efficient in performing gesture swiping, exerted more 

force pressure, and were less smooth when swiping gestures on the small smartphone 

compared to their performance on the mini-tablet that have a larger screen. 

6.1.6 Section Conclusion 

Gesture swiping tasks were conducted to examine the effects of age on smartphone/mini-

tablet, and to examine the influence of screen sizes on users of two age groups. The results 

showed that elderly users were less efficient in performing gesture swiping tasks, their 

swipes were less smooth in performing the task, and they exerted more force pressure to 

compensate for their impairment in sensory perception of touch, physiological impairments, 
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and what we found to be their less experience in using smartphones, compared to the 

younger users.  

In addition, the results show that the elderly were significantly less efficient in performing 

vertical gesture swiping, but not so in performing horizontal gesture swiping. Moreover, the 

small smartphone was less usable in terms of gesture swiping for elderly users. This is 

because small smartphones required more efficiency in swiping, more force pressure. 

Furthermore, swiping on small smartphones was not smooth for users. 

Our findings indicated that getting older with lack of experience, and smaller screen sizes 

of smartphones, lead to difficulties in performing gesture swiping efficiently. We suggest 

that the designers consider elderly difficulties when swiping touch-gestures on smartphones 

in order to enhance the usability of smartphones and their applications for elderly users 

because the response of smartphones does not meet elderly ability when executing gestures. 

6.2. Gesture Accuracy and Complexity 

In Section 6.1 above, we investigated the effects of age and screen-size on smartphone 

usability based on gesture swiping performance (swipe left, swipe right, swipe up, and 

swipe down). Now we will look at the effects of age and screen-size on smartphone 

usability based on gesture accuracy and complexity. A total of 50 participants from elderly 

and younger age groups were involved in this research that analysed their performance on 

eight gestures. The Dynamic Time Warping algorithm was used to measure gesture 

accuracy with respect to a reference gesture. The Euclidean distance was used to calculate 

gesture lengths to calculate gesture speed. Through experimental results, we will show that 

age and screen size influence the accurate execution of touch gestures on 

smartphones/tablets. We will show that elderly users are less accurate in performing touch 

gestures, they are less efficient, and they exert more force pressure - more so on small 

smartphones - when compared to the younger users. Also, we will show that complex 

gestures and non-complex gestures have influenced elderly users’ performance, more so on 

small smartphones.  

The rest of this section presents the details of experiment design and a discussion of results. 
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6.2.1 Overview of Experimental Hypotheses  

The specific expectations that were examined in this experiment are hypotheses H7 – H14 

which relate to the influence of ageing, screen size, and gesture complexity in performing 

gestures accurately. See Section  4.4 for more details on the relevant hypotheses. 

6.2.2 Methodology 

Experiments Structure 

Our research was conducted on two sizes of smartphones and included eight gesture 

applications. Participants were divided into two age groups; EG, and YG. Figure 23 gives 

an overall view of the experiment setup. Each participant was involved only on one 

smartphone screen size to avoid any influence of familiarity on the participant’s 

performance. 

 

Figure 23. Organization of smartphone experiments, age groups, and 8 gesture applications. 

Apparatuses and Gesture Applications  

Two sizes of smartphones were used in the research; small smartphone, and mini-tablet. 

Details of these smartphones devices were given in Section  4.2. All eight gesture 

applications that we used in this research were explained in Section  4.8. 

Participants 

The participants were selected from different age groups and include university students, 

university staff, and people from the local community. Details of the 50 participants took 
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part in the experiments are described in Table 19. Each participant was asked to fill a 

demographic data form regarding age group, and their average experience in using 

smartphones (a data form is shown in Appendix-B). The participants’ experiences of 

smartphone use for calling and texting were averaged based on two age groups and two 

screen sizes and shown in Table 19 and Figure 24.  

Table 19. Participant details. 

Age Group No. of 

participants 

No. of 

participants 

on small 

smartphone 

No. of 

participants 

on mini-

tablet 

Average 

Age in 

years 

The average 

experience for 

calling and texting 

on 

smartphones/tablets  

EG 25 13 12 64.77  0.67 years 

YG 25 13 12 26.19 1.05 years 

Small 

smartphone 

26 - - - 0.77 years 

Mini-tablet 24 - - - 0.95 years 

 
Figure 24. Average experience use for users on smartphones and tablets. 
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participants we could not use them in the analysis (see Appendix, F - Table 36 for more 

details about the measurements and the data received). When examining the effect of finger 

base circumference, we excluded 9 out of 50 of the participants from the analysis because 

only 41 out of the 50 participants were measured using our scoring tools. The remaining 9 
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of their finger size via email, but we are not sure about the tools they used to score their 

finger size. 

Table 20. Participant’s finger base circumferences size. 

Smartphone 

size 

Age 

group 

participant’s finger base 

circumferences size 

ranged 

Mean Excluded participants due 

to  unavailability of size 

data 

Small 

smartphone 

EG 50mm - 73.5mm 61mm 
P1, P9, P16, P25, and P26 

YG 51.2mm - 65.3mm 59mm 

mini-tablet 
EG 58.9mm - 73.5mm 66mm 

P30, P32, P39, and P47 
YG 53.8mm - 73.5mm 61mm 

6.2.3 Experimental Design and Procedure 

Experimental Design 

Each participant repeated eight different gestures six times producing a total of 48 trials per 

participant. Therefore, the total number of trials collected from 50 participants is 2400. The 

Gesture Applications used in the research were illustrated earlier in Section  4.8 

Experimental Procedure  

This research includes eight gestures (i.e., circle to right, circle to left, triangle to right, 

triangle to left, arrow down, arrow left, arrow right, and arrow up) as shown in Figure 5, 

Section  4.8. Gesture data were collected by following the same procedure explained earlier 

in Section  6.1.3 on Experimental Procedure. Only the gestures and the number of 

repetitions were different; participants repeated each gesture six times. Participants were 

asked to trace gestures for each of the two circles and two triangles from the centre of the 

box (start point) through the middle of the path to the centre of the same box (start and the 

end points of the triangle and circle are represented by the same box) as shown in Figure 25 

and Figure 26. With regard to the remaining four gestures (i.e., arrow down, arrow left, 

arrow right, and arrow up), the start and the end points of the gestures were represented by 

two boxes as shown in Figure 5, Section 4.7. In all gestures, an arrow was used as a guide 

to indicate the direction of the gesture. Following the instruction of (Teather, et al., 2010), 

the participants were asked to trace the complete gestures as quickly and accurately as 

possible. 
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Figure 25. Capturing data for gesture accuracy experiments. 

 

Figure 26. An illustration of the Circle to the Right gesture. 

6.2.4 Dependent and Independent Variables 

Five metrics were used in this experiment to evaluate the effects of ageing and screen size 

influence on users’ ability to perform accurate gestures on smartphones. Four out of the five 

metrics will be considered to be the dependant variables: 1) MT (seconds), 2) FP, 3) gesture 
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speed, and 4) gesture accuracy. The gesture complexity is considered to be the independent 

variable (the metrics were explained in Section  4.9).  

The average metric for an age group or screen-size was calculated in three stages. First, we 

calculate the average metric (e.g. MT) of the six trials of a participant as the measurement 

of that participant’s specific gesture task performance. We then took the average 

measurement of all eight gestures as that participant’s performance for a metric (e.g. MT). 

Finally, the averages of all participants were taken based on the age-group and/or screen-

size as necessary. Figure 7 in Section  4.9 showed how MT, FP, gesture speed, and gesture 

accuracy are calculated. 

6.2.5 Experimental Results and Discussions 

The research hypotheses H7 – H14 regarding ageing influence and screen sizes on users 

performing accurate gestures will be discussed here. Section  6.2.5 on Does user-age and 

gesture-complexity influence the gesture accuracy?, will focus on the effects of ageing on 

gesture accuracy, and on Does the smartphone screen size influence gesture accuracy?, will 

focus on the influence of smartphone screen size on gesture accuracy. 

Does user-age and gesture-complexity influence the gesture accuracy? 

This question focuses on the effect of ageing on gesture accuracy. The average results of 

gesture accuracy, MT, FP, and speed for each age group across two screen sizes are shown 

in Table 21, Figure 27, and Figure 28. To the best of our knowledge, this is the first research 

conducted on small smartphones and mini-tablets using touch-gestures for elderly users.  

Movement time (MT) results show that on average, participants of the elderly group (EG) 

took significantly (f= 23.321, P = 0.000, n
2
= 0.33) longer time (at 2.82 seconds) to execute 

the gesture tasks compared to participants of the younger group (YG) who took less time at 

(1.75 seconds) to complete the same gesture tasks. The longer time spent by elderly on the 

tasks indicates difficulty in gesture task performance compared to the younger users. Our 

findings are in line with previous works (Findlater, et al., 2013), (Farage, et al., 2012), and 

(Rogers, et al., 2005) on the effects of ageing on technology where their results showed, in 

general, elderly people taking longer time to complete tasks using technology. 
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Gesture speed results show that, on average, elderly users performed tasks at a significantly 

slower speed (f=10.156, p = 0.003, n
2
= 0.15) (speed at 471.86 pixels/ms) compared to the 

younger users who completed the same tasks at a speed of 636.50 pixels/ms. As expected in 

hypothesis H7, elderly users were significantly less efficient (i.e., slower) in performing 

gestures than younger users. This is in line with previous studies that conducted on a large 

stationary touchscreen (e.g. (Stößel, 2012), (Stößel, et al., 2010)), where elderly users were 

found to be less efficient in performing tasks. 

Table 21.  Average metrics of gesture performance for each age group across two screen sizes. Asterisks 

mark significant effects (* P < 0.05). 

 

Figure 27. The average for (a) gesture accuracy, and (b) gesture speed on small smartphone and mini-tablet 

with a minimum and a maximum averages on each age group. 
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Screen Sizes 
(b) 

60+  

20-39 

Features (metrics) 
YG EG 

Sig.* 
Mean STD Mean STD 

Gesture accuracy 0.15     0.12 0.39      0.32 * 

MT (seconds) 1.75     0.51 2.82      0.97 * 

FP 0.28     0.11 0.33      0.13 * 

Speed  636.50 174.73 471.86  206.09 * 

Complex Gesture  
(speed) 

587.63 137.42 571.50  381.77  

Complex Gesture  

(Gesture accuracy ) 
0.15     0.12 0.38      0.33 * 

Non-complex Gesture  

(speed) 
685.37 234.97 428.10 203.26 * 

Non-complex Gesture  

(Gesture accuracy ) 
0.02     0.02 0.08     0.21  
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Figure 28. The average for (a) MT, and (b) FP on small smartphone and mini-tablet with a minimum and a 

maximum averages on each age group. 

Gesture accuracy results are presented in Table 21, and Figure 27-a. Note that a larger 

distance between the optimal path of a gesture (i.e., reference data) and path obtained from 

a user indicates less accuracy in performing the gesture. Results show that, on average, 

elderly users are significantly less accurate in performing gestures (f=36.392, p = 0.000, 

n
2
= 0.20) at gesture accuracy of 0.39 distance compared to younger users who performed 

gestures at an accuracy of 0.15 distance. This was as expected in hypothesis H8. Our results 

on the influence of age on executing gestures accurately are not in line with previous 

studies. For example Stößel, et al. (Stößel, et al., 2010) conducted a study for elderly on 

large touch-screens and found no influence of age on executing gestures accurately. 

Our research is different to the work of Stößel, et al. (Stößel, et al., 2010) mentioned above 

in five main areas. First, we used widely available consumer devices in our experiments. 

Ours is the first research conducted on small smartphones using gestures for elderly users. 

This differentiates our research from previous studies that adapted large touchscreen 

devices to evaluate age effects on gestures by dividing the large touchscreen into different 

border sizes to compensate for the small touchscreen devices. Secondly, our experimental 

procedure was designed differently to the previous study; gesture path and the direction 

arrow of the required gesture remained displayed on the screen as a guide whilst the 

participant executed the gesture. This is different to the previous study where the gesture 

was displayed on the screen for a short period and removed prior to the participant 

executing the gesture. This procedure requires participants to remember the required 

gesture, its shape and its size; this could affect the performance due to memory load related 

factors, especially for elderly people. Thirdly, in our research, each participant was 
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involved in performing the gesture experiment on only one screen size of smartphones. 

This was to avoid any influence on the participant’s performance if they performed the 

gestures again on another device. This is different to the previous study where each 

participant performed the gestures on each of the three designed sizes of touchscreens.  

Fourthly, in our research, we have extracted the force pressure feature in our gesture 

analysis. This is different to the previous study which did not consider the force pressure 

for gesture analysis. Finally, we used DTW to calculate distances between the optimal path 

(i.e., reference data) of a gesture and the executed one (i.e., data obtained) considering all 

points along the trajectory of the gesture. This is different to the use of average angular 

deviation between a reference line and linear fit for the linear gestures. Whilst for the non-

linear gestures (i.e. ellipse), optimizing the squared sum of orthogonal distances from the 

points and the fitted ellipse. 

Based on speed and gesture accuracy results of elderly users discussed in the previous two 

paragraphs we noticed that the elderly users trade-off accuracy for speed (i.e., gesture speed 

is preferred over gesture accuracy). The ratio of gesture accuracy for elderly is large at 

2.6% stance – based on the formula (i.e., EG gesture accuracy / YG gesture accuracy) 

compared to the ratio of speed for elderly at 0.74% (i.e., EG speed / YG speed) (see Table 

21 for more details about the results). Therefore, gesture accuracy performance of elderly 

users is worse than their gesture performance speed.  

Force pressure results show that, on average, participants of the elderly group (EG) exerted 

significantly more force pressure (f= 11.229, p = 0.002, n
2
= 0.04) at 0.33 of force pressure 

compared to the participants of the younger group (YG) who exerted 0.28 of force pressure. 

This was as expected in hypothesis H9. Our research suggests that the elderly users’ 

problem with using technology is multifaceted. One of the factors that might have 

contributed to the application of a greater force pressure on the smartphone touchscreens by 

elderly is their lack of experience using smartphone applications.  On average, the elderly 

participants were less experienced on smartphone application use (i.e., 0.67 years) than the 

younger participants (i.e., 1.05 years) as shown in Figure 24. This needs further 

investigation and will be considered as part of our future work. 

We investigated the influence of complex gestures on the users’ gesture performance 

measured in terms of gesture speed and accuracy. In terms of using speed to measure the 
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influence of complex gestures (i.e., circles and triangles), the results show that, on average, 

elderly users were slower (average speed of 571.50 pixels/ms) in performing complex 

gestures, but not significantly (f=0.011, p = 0.916, n
2
=0.00) compared to younger users 

who exhibited an average speed of 587.63 pixels/ms. Due to the large variations in 

performance among the participants, no age group effects were observed.  

In terms of the influence of complex gestures on gesture accuracy, the results show that, on 

average, elderly performed complex gestures significantly (f=35.844, p = 0.000, n
2
=0.17) 

less accurately at 0.38 distance compared to younger users who performed complex 

gestures at 0.15 distance. This was as expected in hypothesis H10. Our findings are not in 

line with previous works such as (Stößel, et al., 2010) that their study showed that elderly 

little slower, but not necessarily less accurate than younger users across different levels of 

gesture complexity.  

In addition to complex gestures, we investigated the influence of non-complex gestures 

(left, right, down, and up) on the users’ performance using speed and gesture accuracy. In 

terms of using speed to measure the influence of non-complex gestures, the results show 

that, on average, elderly were significantly (f=17.366, p = 0.000, n
2
=0.26) slower (average 

speed of 428.12 pixels/ms) in performing non-complex gestures compared to younger users 

who exhibited an average speed of 685.37 pixels/ms. Whilst in terms of using gesture 

accuracy to measure the influence of non-complex gestures, the results show that, on 

average, elderly performed non-complex gestures less accurately but not significantly 

(f=2.181, p = 0.147, n
2
=0.04) (average gesture accuracy of 0.08 distance) compared to 

younger users who performed non-complex gestures at gesture accuracy of 0.02 distance. 

Elderly users were significantly less efficient when performing non-complex gestures. 

In summary, the above results showed complex gestures significantly influencing elderly 

users’ ability perform gestures accurately when compared to younger users. However, there 

were no significant differences in the speed of performing complex gestures by elder and 

younger users. The above results support our hypotheses H7-H10; elderly users have 

greater difficulties in performing gestures accurately. In general, elderly were slower, less 

efficient, less accurate in performing gestures, and they exerted more force pressure on the 

surfaces of touchscreens when compared to younger users. Also, complex gestures can 

significantly influence the elderly users’ ability to perform gestures accurately.  
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We noticed that the result of gesture accuracy for all gestures (i.e. complex and non-

complex gestures) for elderly users (average gesture accuracy 0.39 distance) is so close to 

the result when performing only complex gestures (average gesture accuracy 0.38 

distance), as shown in Table 21. Whilst the participants performed the non-complex gesture 

very accurately (average gesture accuracy 0.08 distance). This showed that the influence of 

complex gestures on user performance was larger. These results reveal that elderly have 

large difficulty in performing complex gestures accurately compared with non-complex 

gestures. 

Different users have different finger sizes which could influence gesture performance. We 

examined the influence of finger size (i.e., finger-base circumference) on user’s 

performance based on three metrics (i.e., gesture accuracy, gesture speed, and finger 

pressure). We analysed gesture performance for all finger sizes across two screen sizes, and 

across two age groups for small fingers ranged (A to O), and large finger size ranged (W to 

Z+5). The results are shown Appendix, F: Table 37, Table 38, and Table 39. The average of 

gesture accuracy for small and large finger size was (0.36 and 0.23 respectively. The 

average finger pressure for small finger size was 0.32, while it was 0.29 for large finger 

size. The average speed for small finger size was 547, while it was 555 for large finger size.  

In conclusion, we found a potential relationship between finger size and user performance 

on based on finger-based circumference. However, our analysis was conducted on a small 

sample of participants and the results did not show any significant differences for finger 

pressure and speed. We suggest conducting further investigations using a large number of 

participants for each range of finger sizes and measurements that we suggested in the 

Appendix, F. 

Does the smartphone screen size influence gesture accuracy?  

This section examines the influence of smartphone screen size on the users’ performance in 

terms of gesture accuracy. The average results of gesture accuracy, FP, speed, and gesture 

complexity for each screen size of smartphones across two age groups are shown in Table 

22, Figure 27, and Figure 28. More detailed results for each age group on each screen size 

of smartphones are shown in Table 23.  
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The gesture speed results reveal that, on average, the users of two age groups performed 

tasks at a slower speed, but not significantly (f= 2.689, p = 0.108, n
2
= 0.04), (average 

speed of 514.88 pixels/ms) on the small smartphone compared to the users of two age 

groups who completed tasks on mini-tablet at an average speed of 596.76 pixels/ms. The 

results show that the users' efficiency in performing gesture speed was marginally better on 

the mini-tablet (i.e., larger value of speed) compared to the small smartphone. This was as 

expected in hypothesis H12. This finding supports Stößel’s study (Stößel, 2012) conducted 

on gestures for elderly users where they found elderly users’ performance efficiency to 

increase when increasing the screen size. 

Gesture accuracy results reveal that, on average, the users of the two age groups are 

significantly less accurate (gesture accuracy of 0.45 distance) in performing gestures on the 

small smartphone (f=85.613, p = 0.000, n
2
= 0.46) compared to the users who completed 

tasks on the mini-tablet with a gesture accuracy of 0.08 distance. This was as expected in 

hypothesis H13. The results suggest that practical performance of gestures by users 

increased when screen size increased. This is in line with the study by Stößel (Stößel, 2012) 

in that they reported screen size influences the users’ ability to perform gesture accurately.  

Force pressure results show that, on average, the users of both age groups exerted 

significantly (f= 240.139, p = 0.000, n
2
= 0.81) more force pressure on small smartphone at 

0.41 of force pressure compared to the users who completed the gesture tasks on the mini-

tablet at 0.19 of force pressure. This was as expected in hypothesis H14. The user’s 

performance on small smartphone required large force pressure than on mini-tablet. 

In terms of using gesture speed to measure the influence of screen size with gesture 

complexity on user’s performance, the results in Table 22 show that, on average, the users 

were significantly (f=5.904, p= 0.019, n
2
=0.10) slower in performing complex gestures on 

the small smartphone (average speed of 495.23 pixels/ms) compared to the users who 

completed the tasks on the mini-tablet (average speed of 670.93 pixels/ms). This indicates 

that the efficiency in performing complex gestures on a mini-tablet across the two age 

groups was better (i.e., faster) than on a small smartphone.  
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Table 22. Average metrics for each screen size across two age groups. Asterisks mark significant effects (* 
p < 0.05). 

Features (metrics) 
Small mini-tablet 

Sig.* 
Mean STD Mean STD 

Gesture accuracy 0.45     0.27 0.08      0.088 * 

FP 0.41     0.06 0.19      0.04 * 

Speed 514.88 210.13 596.76  198.18  

Complex Gesture  

(speed) 
495.23 163.33 670.93  355.23 * 

Complex Gesture  

(Gesture accuracy) 
0.44     0.26 0.07     0.06 * 

Non-complex Gesture  

(speed) 
534.53 266.94 580.78 241.01  

Non-complex Gesture  

(Gesture accuracy) 
0.03     0.09 0.07     0.20  

Table 23. The average gesture accuracy results for users and screen sizes together. 

Screen Sizes Features Age Group EG YG 
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e
 Gesture accuracy 

Mean 0.65      0.25      

STD 0.23 0.08 

Speed 
Mean 366.40  663.36  

STD 120.00 172.68 

FP 
Mean 0.43      0.38      

STD 0.07 0.05 

m
in

i-
ta

b
le

t Gesture accuracy 
Mean 0.12      0.05      

STD 0.11 0.03 

Speed 
Mean 586.12  607.40  

STD 222.64 179.74 

FP 
Mean 0.21      0.16      

STD 0.05 0.02 

In terms of using gesture accuracy to measure the influence of screen size and gesture 

complexity on user’s performance, the results in Table 22 show that, on average, the users 

of the two age groups performed complex gestures significantly (f= 102.418, p = 0.000, 

n
2
=0.49) less accurately on the small smartphone (gesture accuracy of 0.44 distance) 

compared to the users of the two age groups who completed the tasks on the mini-tablet 

(gesture accuracy of 0.07 distance). This means performing complex gestures on the mini-

tablet was more accurate than on the small smartphone. Our findings are in line with 

Stößel, et al. (Stößel, et al., 2010) where they found gesture complexity and screen sizes to 



107 

 

have influenced users’ performance in terms of velocity and form stability. To conclude, 

based on gesture accuracy and gesture speed, we found a significant influence of complex 

gestures and screen sizes on users’ performance. This was as expected in hypothesis H11. 

In terms of using gesture speed to measure the influence of screen sizes with non-complex 

gestures on user’s performance, the results reveal that, on average, the users of two age 

groups were slower in performing non-complex gestures on small smartphone, but not 

significantly (f= 0.583, p = 0.449, n
2
=0.01) (average speed of 534.53 pixels/ms) compared 

to performance on mini-tablet (average speed of 580.78 pixels/ms). Whilst in terms of 

using gesture accuracy to measure the influence of screen sizes on non-complex gestures, 

the results show that, on average, the users of two age groups performed non-complex 

gestures less accurately on mini-tablet but not significantly (f=0.567, p= 0.455, n
2
=0.01) 

(gesture accuracy of 0.07 distance) compared to the performance on small smartphone 

(gesture accuracy of 0.03 distance). The results for non-complex gestures using gesture 

accuracy were better on small smartphones. The users perform non-complex gestures 

accurately because the non-complex does not have curves or corners.  

In summary, the results revealed that the users were significantly less efficient and less 

accurate when performing complex gestures on small smartphone. We found a relationship 

between getting older, decreasing screen size, complex gestures, gesture accuracy and 

performance efficiency, and force pressure. The above results support our hypotheses H11 - 

H14; a small smartphone was difficult for users to perform gesture accurately. The users of 

the two age groups were less efficient and less accurate when performing complex gestures 

on small smartphones.  

6.2.6 Section Conclusion  

This research provides new insight into how accurately and efficiently elderly users can 

execute gestures specifically on small smartphones and mini-tablets devices. The metrics 

used to analyse the effects of age and screen-size on gesture performance were MT, FP, 

gesture speed, and gesture accuracy.  Dynamic Time Warping was used to measure gesture 

accuracy; the Euclidean distance was employed to calculate gesture lengths when 

calculating gesture speed. 
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The results showed that there was a systematic influence of ageing and screen sizes on 

performing gestures accurately. Elderly users were significantly less accurate when 

performing gestures - worse on the small smartphone. Furthermore, elderly users were less 

efficient, and they exerted more force pressure compared to the younger users. Also, the 

users, the elderly in particular, were less efficient and less accurate when performing 

complex gestures on the small smartphone compared to the mini-tablet. In addition, we 

found a potential relationship between finger size and user performance. This needs further 

investigation and will be considered as part of our future work. 

Results indicated that there were relationships between old age, low accuracy and 

efficiency in gesture performance, complex gestures, and smaller screen size of 

smartphones. This needs to be considered for future universal design of smartphone/tablets 

as the usability of smartphones for elderly users is not the same as it is for younger users. 

The feedback received for touch-gestures does not meet elderly ability when executing 

gestures.   

6.3. Chapter Summary 

This chapter conducted two studies using touch-gestures on smartphones and mini-tablets. 

The first research investigated the effects of age and screen sizes on performing gesture 

swiping intuitively on smartphones and tablets. A total of 35 participants from elderly and 

younger age groups were involved to understand how users perform gesture swiping 

intuitively in four directions. Also, smartphones of two screens sizes were used to examine 

the influence of smartphone screen size on users of two age groups. The results showed that 

elderly users were less efficient in performing gesture swiping tasks, their gesture swipes 

were less smooth, and they exerted more force pressure than younger users. In addition, the 

elderly were significantly less efficient in performing vertical gesture swiping, but not so 

when performing horizontal gesture swiping. Moreover, the small smartphone was less 

usable for users of both age groups, more so for elderly. 

The second research investigated the relationships among gesture accuracy, gesture 

complexity, user age, and screen-size. A total of 50 participants from the elderly and the 

younger age groups were involved in the research that analysed user performance on eight 

gestures. Dynamic Time Warping was used to measure gesture accuracy and the Euclidean 
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distance was used to calculate gesture lengths to calculate gesture speed. The results 

showed that there were age and screen size influences on gesture accuracy. Elderly users 

were less accurate in performing gestures - worse on the small smartphone. Furthermore, 

they were less efficient, and they exerted more force pressure. The users, the elderly in 

particular, were significantly less efficient and less accurate in performing complex gestures 

on the small smartphone compared to the mini-tablet.  

The above results indicate the possibility of using gesture based metrics such as movement-

time, finger-pressure, gesture speed, and gesture accuracy as discriminant features to 

classify a user’s age-group. Motivated by this observation, the next chapter will investigate 

the possibility of classifying a user’s age-group based on his/her ability to perform touch-

gestures on smartphones.  
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CHAPTER 7 

USER AGE-GROUP CLASSIFICATION USING GESTURE-

BASED FEATURES 

This chapter investigates the possibility of classifying users’ age-group using gesture-based 

features on smartphones and aims to address the research question Q4 described in Section 

 1.2, which is relevant to hypotheses H15 and H16. The work presented here was motivated 

by the results in Section  6.2 of the previous chapter where we found significant differences 

in touch-gesture performance by elderly compared to younger users. For example, elderly 

users were slower and less accurate in performing gestures compared to younger users. 

Furthermore, elderly users exerted more pressure on the touch-screen than their younger 

counterparts. Based on these observations, we propose the use of four touch-gesture based 

metrics, i.e., gesture accuracy, gesture speed, finger pressure, and movement time, as 

discriminant features to classify to users’ age-group. This is also to investigate the 

usefulness of gesture-based features on classifying users’ age-groups. 

We considered different scenarios of application where in one scenario we assumed to have 

prior knowledge of individual user behaviour (i.e., user-dependent age-group classification) 

and in others we assumed to have no knowledge of individual user behaviour (i.e., user-

independent age-group classification) as shown in Figure 29. On each scenario, two kinds 

analysis were considered; single feature and combination between features. Also, the 

influence of screen size on age-group classification accuracy was considered in this 

research.  

In this chapter, we will demonstrate the possibility of classifying user’s age-group using 

touch-gesture based features for both user-dependent and user-independent scenarios. A 

higher classification accuracy can be achieved on small smartphones compared to mini-

tablets. This could be because users of all age groups experienced similar difficulties when 

interacting with small-size smartphones resulting in both age groups producing similar 

gesture-based features/measurements. We will also show that the classification accuracy is 

relatively higher for the younger age group compared to the elderly age group; this is 
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because some elderly users were able to perform touch-gestures with similar characteristics 

to the younger age group. 

The outcomes of this particular research could be used as a system to adapt itself to let 

users interact with technology based on their age-related abilities, i.e., the system will turn 

into a particular setting based on its current user’s age-group (note that different interface 

designs were highlighted and discussed in Section  2.2.3). This could be particularly helpful 

to users who are unable to setup their own smartphone, tablet or a similar device to their 

own preferences or for public systems that could be used by different users at different 

times. 

 

Figure 29. Organization of Users age-groups classification research. 

7.1. Overview of Experimental Hypotheses  

The specific expectations that will be examined in this research are hypotheses H15 and 

H16 that relate to the possibility of classifying a user's age-group and the influence of 

screen size on the classification accuracy (see Section  4.4 for more details of the relevant 

hypotheses). 
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7.2. Methodology and Data Collection 

The apparatuses, gesture applications, and participants were explained earlier in Section 

 6.2.2. Participants’ gesture-based data were collected earlier in Chapter 6. In summary, the 

user age-group classification included 50 participants (25 Elderly and 25 younger) as 

shown in Section  6.2.2 on Participants and the eight gestures as shown in Figure 5. The 

participants performed each gesture six times (six trials). Therefore, the total number of 

gesture samples acquired were 2400 which reached to 9600 trials when we extracted the 

four features from each gesture sample. The four features were extracted from the previous 

research in Section  6.2.2 to be used in the users’ age-groups classification research. More 

details about these features and the process we followed to classify users’ age-groups are 

presented in the next sections. 

7.3. Touch-gesture based Age-related Features 

The set of touch-gesture based features used here for age-group classification are the four 

metrics, i.e., gesture accuracy, gesture speed, finger pressure, and movement time we used 

in the previous chapter. These four metrics were introduced earlier in Chapter 6, Section 

 6.2.4. 

7.4. User Age-Group Classification Process 

The classification process includes a training stage and a testing stage. The training stage is 

used to represent an age-group (on all screens or for a specific screen size) by preparing 

feature vectors for individual metrics, and depending on the experiment, a combined feature 

vector. The first of the six samples (trials) of a gesture was used for training. During testing, 

a feature vector representing a user will be compared with the two training feature vectors 

(one per age group) using Euclidean distance. The user’s age-group will be classified based 

on the nearest neighbour (NN), since there are only two exemplars in the training dataset. 

Testing was performed by using the five samples of the gesture data that were not part of 

the training data. 

The training data (i.e., the feature vectors representing the younger age-group and the 

elderly age-group) are calculated as follows. Calculate the average metric Mi (e.g. gesture 

speed) of an age group (e.g. younger age-group) for a specific gesture Gj (e.g. Circle-left) 
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on a specific screen-size (e.g. small) by using the first sample of that gesture performed by 

each participant from that age-group. Likewise, calculate the average metric Mi for the 

seven remaining gestures for the same screen-size and age group. This gives the feature 

vector for metric Mi which consists of eight coefficients that represents an age group in the 

training data set. Figure 30 shows an example of how we extracted the training dataset and 

the testing dataset for one age group (e.g. elderly users) on the small smartphone using only 

one metric (e.g. MT). The feature vectors for the other three metrics are calculated the same 

way. We will look at the classification accuracy of individual metrics as well as 

combinations of them – concatenate feature vectors of individual metrics to produce a 

combined (i.e., fused) feature vector of 32 coefficients. 

 

Figure 30. User age-group classification process. 

We found some similar work in (Hurst, et al., 2008) to our research in users age-groups 

classification research. However, our research is different to Hurst et al. in three main areas. 

First, they based their measurement on PC mouse movements, but we used finger-based 

touch-gestures on smartphones. Second, their study used the following metrics: 1) the 

movement time needed to complete the task, and 2) the number attempts needed to perform 

a task correctly. Whereas the metrics used in our research are: gesture accuracy, gesture 
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speed, finger pressure, and movement time. Also, we used dynamic time warping (DTW), 

and Euclidean distance (ED) to calculate gesture accuracy, and gesture lengths to calculate 

speed respectively (see Section  6.2 for more details about how gesture accuracy and gesture 

speed were calculated). Finally, Hurst et al. used decision trees based on the observation in 

the statistical analysis, whereas in our research, we used nearest-neighbour (NN) with ED 

to classify user’s age-group. 

7.5. Experimental Results and Discussions  

In our research, the effect of age and screen size influence were considered for three 

scenarios: user-dependent (100%); user-independent with 50% training data; and user-

independent with data from one participant per age-group as training data. The explanation 

given in the previous section was for training data relevant to user-dependent scenario, i.e., 

100% of participants from each age group were used in the training datasets. We used only 

half of the participants from each age group in the training datasets for user-independent 

with 50% training data. Likewise, we used only one participant from each age group in the 

training datasets for user-independent with data from one participant as training data. We 

evaluated the classification accuracy results of individual metrics as well as their 

combinations to measure the influence of gesture features on the age-group classification 

accuracy on different screen sizes under difference scenarios. 

7.5.1 User-Dependent Age-group Classification (training with all 

participants) 

Effect of Age: Table 24 below shows the classification results for users of the two age 

groups. In analysing single features, gesture speed achieved the highest classification 

accuracy of 63% (see arrow-up) for elderly users, and gesture accuracy resulted in the 

lowest classification accuracy of 39% (see arrow-down). For younger users, the highest 

classification accuracy (94%, see arrow-up) was achieved with MT whilst the FP resulted in 

the lowest classification accuracy (74%, see arrow-down). 

With combined features, the highest classification accuracy (59%), for elderly users was 

achieved with gesture accuracy, FP, and speed.  The lowest classification accuracy (52%) 

was achieved with gesture accuracy, FP, and MT. For younger users, the highest 
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classification accuracy of 94% was achieved with gesture accuracy, FP, and MT. The lowest 

classification accuracy (86%) was based on gesture accuracy, FP, and speed. In general, 

combinations gesture-based features have had a positive effect on the classifications 

accuracy for younger users – the classification accuracy improved from 74% to 86%. Also, 

the lowest classification accuracy for elderly users improved from 39% to 52% using a 

combination of features.  

Table 24. User’s age-group classifications research results for user-dependent (100%) of ageing influence. 
Arrow up shows larger value, and arrow down shows lower values. 

Analysis Feature 

Age Groups 

EG YG 

Individually 

Speed 63.20% ↑ 82.40% 

Gesture accuracy 39.20% ↓ 92.80% 

FP 58.40% 73.60% ↓ 

MT 50.40% 94.40% ↑ 

Combinations 

Gesture accuracy, FP 52.00% 92.80% 

Gesture accuracy, FP, Speed 59.20% ↑ 85.60% ↓ 

Gesture accuracy, FP, MT 52.00% ↓ 94.40% ↑ 

Gesture accuracy, FP, MT, Speed 55.20% 92.00% 

Gesture accuracy, Speed 56.80% 86.40% 

FP, MT, Speed 56.00% 88.00% 

MT, Speed 56.00% 89.60% 

The above results reveal that the classification accuracy is higher for younger users than it 

is for elderly users. This indicates that the performance of some elderly users was similar to 

the younger users’ performance. Note that Minocha et al. (Minocha, et al., 2013) concluded 

that not all elderly people are vulnerable in performing technology tasks. Our research 

provides evidence for the possibility of classifying user’s age-group based on touch-

gestures. Also, the combinations of features have improved the classification accuracy. 

Screen Size Influence: Table 25 shows the classification results for the two screen sizes 

across two age groups. In analysing single features, the gesture speed achieved the highest 

classification accuracy of 85% (see arrow-up) and FP resulted in the lowest classification 

accuracy of 62% (see arrow-down) for the users of two age groups on small smartphone. 

On the mini-tablet, the highest classification accuracy (70%, see arrow-up) was achieved 
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with FP whilst the gesture accuracy resulted in the lowest classification accuracy (53%, see 

arrow-down). 

With combined features, the highest classification accuracy of 86% was achieved on small 

smartphone with gesture accuracy, FP, and speed. The lowest classification accuracy (77%) 

was achieved with gesture accuracy, FP, and MT. On the mini-tablet, the highest 

classification accuracy (69%) was achieved with gesture accuracy, FP, and MT. The lowest 

classification accuracy (58%) was based on gesture accuracy, FP, and speed.  

Table 25. User’s age-group classifications research results for user-dependant (100%) of screen sizes 

influence. Arrow up shows larger value, and arrow down shows lower values. 

Analysis Feature 

Screen Sizes 

Small  

Smartphone 
Mini-tablet 

Individually 

Speed 85.38% ↑ 59.17% 

Gesture accuracy 78.46%  52.50% ↓ 

FP 62.31% ↓ 70.00% ↑ 

MT 75.38% 69.17%  

Combinations 

Gesture accuracy, FP 80.77% 63.33% 

Gesture accuracy, FP, Speed 86.15% ↑ 57.50% ↓ 

Gesture accuracy, FP, MT 76.92% ↓ 69.17% ↑ 

Gesture accuracy, FP, MT, Speed 80.00% 66.67% 

Gesture accuracy, Speed 83.85% 58.33% 

FP, MT, Speed 80.00% 63.33% 

MT, Speed 80.00% 65.00% 

The results reveal that the classification accuracy is higher on small smartphone than on the 

mini-tablet. This is could be very much linked to the difficulties face by elderly users in 

using small smartphones compared to large sizes. In general, combining gesture-based 

features had a positive effect on the classification accuracy – the lowest classification 

accuracy on the mini-tablet improved from 53% to 58%. Also, the lowest classification 

accuracy on the small smartphone improved from 62% to 77%. Our research provides clear 

evidence for the possibility of classifying user’s age-group based on touch-gestures, 

especially on small smartphones – further investigation is necessary to identify suitable 

discriminant features/metrics for large screen sizes. 
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7.5.2 User-Independent Age-group Classification (training with 50% of 

participants) 

In this experiment, we wanted to evaluate the age-group classification accuracy based on 

participants that were not in the training set to simulate real-life application scenarios. For 

example, a user interacting with a smartphone/tablet device at a shopping centres to find 

product information. In this experiment scenario, training data consist of only 50% of the 

participants from each age group. The results presented in Table 26 and Table 27 show that 

the system can classify the user’s age-group with no significant difference accuracy 

classification between user-independent and user-dependent scenarios. 

Effect of Age:  

Table 26 below shows the classification results for users of the two age groups. In analysing 

single features, gesture speed achieved the highest classification accuracy of 61% (see 

arrow-up) for elderly users, while the gesture accuracy resulted in the lowest classification 

accuracy of 46% (see arrow-down). For younger users, the highest classification accuracy 

(90%, see arrow-up) was achieved with gesture accuracy whilst FP resulted in the lowest 

classification accuracy (75%, see arrow-down). 

With combined features, the highest classification accuracy (57%) for elderly users was 

achieved with FP, MT, and gesture speed. The lowest classification accuracy (46%) was 

achieved with gesture accuracy, and speed. For younger users, the highest classification 

accuracy of 91% was achieved with two different of combinations: 1) gesture accuracy, 

and FP, 2) gesture accuracy, FP, and gesture speed. The lowest classification accuracy 

(88%) was based on FP, MT, and gesture speed.  

As in the user-dependent scenario, the results revealed that the classification accuracy is 

higher for younger users than it is for elderly users. This indicates that the performance for 

some elderly is similar to the younger users’ performance. In general, combining gesture-

based features had a positive effect on the classification accuracy for younger users - the 

lowest classification accuracy with a single feature increased from 75% to 88%. The 

research provides evidence for the possibility of classifying user’s age-group based on 

touch-gesture, even with a small number of participants in the training datasets and they did 

not include the user in question. 
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Table 26. Age-group classifications research results for User-Independent metrics (50%) of ageing 
influence. Arrow up shows larger value, and arrow down shows lower values. 

Analysis 
Feature Age Groups 

 
EG YG 

Individually 

Speed 60.80% ↑ 82.40% 

Gesture accuracy 45.60% ↓ 90.40% ↑ 

FP 56.80% 75.20% ↓ 

MT 55.20% 89.60% 

Combinations 

Gesture accuracy, and FP 52.80% 91.20% ↑ 

Gesture accuracy, FP, Speed 
53.60% 91.20% ↑ 

Gesture accuracy, FP, MT 
56.00% 88.80% 

Gesture accuracy, FP, MT, Speed 
56.00% 89.60% 

Gesture accuracy, Speed 
46.40% ↓ 90.40% 

FP, MT, and Speed 56.80% ↑ 88.00% ↓ 

MT, and Speed 56.00% 89.60% 

Screen Size Influence: 

 Table 27 shows the classification results for the two screen sizes across the two age groups. 

In analysing single features, gesture speed achieved highest classification accuracy of 85% 

(see arrow-up) on small smartphones, and the FP resulted in the lowest classification 

accuracy of 62% (see arrow-down). On the mini-tablet for the users of the two age groups, 

the highest classification accuracy (71%, see arrow-up) was achieved with FP whilst the 

gesture accuracy resulted in the lowest classification accuracy (53%, see arrow-down). 

With combined features, the highest classification accuracy (82%), on small smartphone 

was achieved with gesture accuracy and gesture speed. The lowest classification accuracy 

(81%) was achieved with FP, MT, and gesture speed. On mini-tablet, the highest 

classification accuracy (63%) was achieved with three different combinations: 1) gesture 

accuracy, FP, MT, and gesture speed; 2) FP, MT, and gesture speed; and 3) MT, and gesture 

speed. The lowest classification accuracy (53%) was based on gesture accuracy, and 

gesture speed.  
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The results reveal that the classification accuracy is higher on the small smartphone than it 

is on the mini-tablet reflecting the difficulties in using small smartphones compared to 

mini-tablet. In general, combining gesture-based features had a positive effect on the 

classification accuracy – the lowest classification accuracy with a single feature increased 

from 62% to 81%. The results of users-independent (50%) age-group classification 

accuracy are slightly similar to the results in user-dependent (100%) scenario. This provides 

further evidence to the possibility of classifying user age-group on different smartphones 

screen sizes, even if the number of participants in the training datasets was fewer and did 

not include users’ training. 

Table 27. Age-group classifications research results for User-Independent metrics (50%) of screen size 

influence. Arrow up shows larger value, and arrow down shows lower values. 

Analysis Feature 

Screen Sizes 

Small  

smartphone 
Mini-tablet 

Individually 

Speed 84.62% ↑ 57.50% 

Gesture accuracy 81.54% 53.33% ↓ 

FP 61.54% ↓ 70.83% ↑ 

MT 79.23% 65.00% 

Combinations 

Gesture accuracy, and FP 81.54% 61.67% 

Gesture accuracy, FP, Speed 
81.54% 62.50% 

Gesture accuracy, FP, MT 
81.54% 62.50% 

Gesture accuracy, FP, MT, Speed 
81.54% 63.33% ↑ 

Gesture accuracy, Speed 
82.31% ↑ 53.33% ↓ 

FP, MT, and Speed 80.77% ↓ 63.33% ↑ 

MT, and Speed 81.54% 63.33% ↑ 

7.5.3 User Independent (training with participant) 

In this experiment, we want to evaluate the scenario where only limited number of 

participants are available to collect training. Therefore, we used the gesture data of one 

participant from each age group to create the training datasets. The results presented in 

Table 28 and Table 29 show that the system can classify users’ age-group using a small 

number of training data and still achieve a reasonable classification accuracy compared to 

user-dependent (100%) or user-independent (50%) scenarios we presented earlier. 
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Effect of Age: Table 28 below shows the age-group classification results for users of the 

two age groups. In analysing single features, gesture speed achieved the highest 

classification accuracy of 74% (see arrow-up) for elderly users, and the MT resulted in the 

lowest classification accuracy of 42% (see arrow-down). For younger users, the highest 

classification accuracy (96%, see arrow-up) was achieved with MT whilst and gesture 

speed resulted in the lowest classification accuracy (72%, see arrow-down). 

With combined features, the highest classification accuracy (70%), for elderly users was 

achieved with two different feature combinations: 1) gesture accuracy, FP, and gesture 

speed, 2) gesture accuracy, and gesture speed. The lowest classification accuracy (42%) 

was achieved with gesture accuracy, FP and MT. For younger users, the highest 

classification accuracy of 97% was achieved with gesture accuracy, FP, and MT. The 

lowest classification accuracy (75%) was based on gesture accuracy, and gesture speed.  

Table 28. User’s age-group classifications research results for User-Independent metrics (1 participant) of 
ageing influence. 

Analysis Features (metrics) 
Age Groups 

EG YG 

Individually 

Speed  74.40% ↑ 72.00% ↓ 

Gesture accuracy 45.60% 76.80% 

FP 52.00% 83.20% 

MT 42.40% ↓ 96.00% ↑ 

Combinations 

Gesture accuracy, and FP 43.20% 92.00% 

Gesture accuracy, FP, Speed 69.60% ↑ 80.80% 

Gesture accuracy, FP, MT 42.40% ↓ 96.80% ↑ 

Gesture accuracy, FP, MT, Speed 56.80% 93.60%  

Gesture accuracy, Speed 69.60% ↑ 75.20% ↓ 

FP, MT, Speed 56.00% 93.60%  

MT, Speed 53.60% 93.60%  

As in the previous scenarios, the results of this experiment show that the classification 

accuracy is higher for younger users than it is for elderly users. In general, combining 

gesture-based features had a positive effect on the classification accuracy for younger users 

- the highest classification accuracy with a single feature increased from 96% to 97%. Also, 

the lowest classification for younger users the accuracy improved from 72% to 75%. The 



121 

 

research provides further evidence for the possibility of classifying users’ age-group based 

on touch-gestures, even if the numbers of participants in training datasets were very small. 

Screen Size Influence. Table 29 shows the classification results for the two screen sizes 

across the two age groups. In analysing single features, gesture speed achieved the highest 

classification accuracy of 86% (see arrow-up) on the small smartphone, whilst FP resulted 

in the lowest classification accuracy of 65% (see arrow-down). On the mini-tablet, the 

highest classification accuracy (70%, see arrow-up) was achieved with FP whilst the 

gesture accuracy resulted in the lowest classification accuracy (56%, see arrow-down). 

Table 29. User’s age-group classifications research results for User-Independent metrics (1 participant) of 

screen sizes influence. 

Analysis Features (metrics) 

Screen Sizes 

Small  

smartphone 
mini-tablet 

Individually 

Speed  86.15% ↑ 59.17% 

Gesture accuracy 66.15% 55.83% ↓ 

FP 65.38% ↓ 70.00% ↑ 

MT 77.69% 60.00% 

Combinations 

Gesture accuracy, and FP 76.92% ↓ 57.50% ↓ 

Gesture accuracy, FP, Speed 90.00% ↑ 59.17% 

Gesture accuracy, FP, MT 77.69% 60.83% ↑ 

Gesture accuracy, FP, MT, Speed 88.46% 60.83% ↑ 

Gesture accuracy, Speed 85.38% 58.33% 

FP, MT, Speed 87.69% 60.83% ↑ 

MT, Speed 85.38% 60.83% ↑ 

With combined features, the highest classification accuracy (90%), on the small smartphone 

was achieved with gesture accuracy, FP, and gesture speed. The lowest classification 

accuracy (77%) was achieved with gesture accuracy, and FP. On the mini-tablet, the 

highest classification accuracy of 61% was achieved with four different feature 

combinations: 1) all four features together; 2) gesture accuracy, FP, and MT; 3) FP, MT, 

and gesture speed; and 4) MT, and gesture speed. The lowest classification accuracy (58%) 

was based on gesture accuracy and FP.  

The results demonstrate that the classification accuracy is higher on the small smartphone 

than it is on the mini-tablet – gesture performance on large screen sizes is relatively similar 

for the different age groups. In general, taking a combination of gesture-based features has 
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had a positive effect on the classification accuracy – on the small smartphone, the highest 

classification accuracy with a single feature increased from 86% to 90% and the lowest 

classification accuracy with a single feature improved from 65% to 77%. In addition, the 

lowest classification accuracy on mini-tablets improved from 56% to 58 %.   

The results of users-independent experiment are similar to the results achieved in user-

dependent scenario. These results provide further evidence for the possibility of classifying 

users’ age-group on smartphones, even if the number of participants in the training datasets 

is very minimal. 

7.6. Chapter Conclusion and Summary 

This chapter conducted experiments to provide evidence for the possibility of classifying 

users’ age-group based on gesture-based features on smartphones and tablets. Based on the 

research discussed in Chapter 6, four gesture-based metrics (i.e., gesture accuracy, gesture 

speed, movement time, and finger pressure) from (the research in Section  6.2) were 

identified as features to use in age-group classification. NN classification was used to 

classify a given user’s age-group. The research included 25 elderly, and 25 younger 

participants and eight gestures. Classification accuracy for user-dependent and user-

independent training scenarios were considered. In each scenario, we analysed the four 

metrics individually as well as in combination to evaluate their ability to distinguish users 

as belonging to one of two age-groups.  

The results of the highest and lowest classification accuracies for elderly and younger users 

based on the three scenarios presented in Table 24 - Table 29 are summarised in Table 30. 

Also, the results of the small smartphone and the mini-tablets based on the three scenarios 

presented in Table 24 - Table 29 are summarised in Table 31. These summarised results 

provide evidence for the possibility of classifying users’ age based on touch-gestures – this 

is as was expected in hypotheses H15 and H16. In addition, combinations gesture-based 

features have improved classifications accuracy. 

Our analysis showed that age-group classification based on the four features is higher on 

the small smartphone compared the mini-tablet size. This is because, as we found in the 

previous chapter, the gesture performance on the small smartphone was different for the 

two age-groups – elderly were particularly slow, less accurate and exerted more pressure on 
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the screen than the younger users. On the other hand, less significant differences in gesture 

performance were found for the two age groups on the mini-tablet.  

Table 30. Summary results for age influence on user’s age-group classifications. 

Analysis  
EG YG 

1 50% 100% 1 50% 100% 

In
d
iv

id
u
al

ly
 

Highest 
Metrics Speed Speed Speed MT Acc MT 

Results 74% 61% 63% 96% 90% 94% 

Lowest 
Metrics MT Acc MT Speed FP FP 

Results 42% 46% 50% 74% 75% 74% 

C
o
m

b
in

at
io

n
s Highest 

Metrics 

(Acc, 

FP, 

speed)   

 (Acc, 

speed) 

(MT, 

FP, 

speed) 

(Acc, 

FP, 

speed) 

(Acc, 

FP, 

MT) 

(Acc, FP)        

(Acc, FP, 

speed) 

(Acc, 

FP, MT) 

Results 70% 57% 59% 97% 91% 94% 

Lowest 
Metrics 

(Acc, 

FP, MT) 

(Acc, 

speed) 

(Acc, 

FP, MT) 

(Acc, 

speed) 

(MT, FP, 

speed) 

(Acc, 

FP, 

speed) 

Results 42% 46% 52% 75% 88% 85% 

Table 31. Summary results for screen size influence on user’s age-group classifications. 

Analysis  
Small smartphone mini-tablet 

1 50% 100% 1 50% 100% 

In
d
iv

id
u
al

ly
 

Highest 
Metrics Speed Speed Speed FP FP FP 

Results 86% 85% 85% 70% 70% 71% 

Lowest 
Metrics FP FP FP Acc Acc Acc 

Results 65% 62% 62% 56% 53% 52% 

C
o
m

b
in

at
io

n
s 

Highest 
Metrics 

(Acc, FP, 

Speed) 

(Acc, 

speed) 

(Acc, FP, 

speed) 

(All) 

(Acc, FP, 

MT) 

(FP, MT, 

speed) 

(All) 
(Acc, FP, 

MT) 

Results 90% 82% 86% 61% 63% 69% 

Lowest 
Metrics (Acc, FP) 

(FP, MT, 

speed) 

(Acc, FP, 

MT) 

(Acc, 

FP) 

(Acc, 

speed) 

(Acc, FP, 

speed) 

Results 77% 81% 76% 58% 53% 58% 

The age-classification results show that it was relatively easier to classify younger users 

than the older ones. This because the gesture performance of most younger users were 

similar to each other, where as some elderly users, probably due to their experience, were 
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able to perform gestures with similar characteristics to younger users – a significant number 

of elderly users were misclassified as belonging to the younger age-group. 

Using a combination of gesture features in the classification process improved the 

classification accuracy when compared to using a single feature. The results for all three 

scenarios remained close to each other indicating that the age-group classification can be 

performed with reasonable accuracy by using only a small number of training samples and 

these does not have to belong to the user.  

We have proposed the use of touch-gesture based features on smartphones to classify users’ 

age-group and have demonstrated the viability of such a scheme through a number of 

experiments. A comprehensive set of experiments with detailed analysis is required to 

identify other useful gesture based features for age-group classification. To the best of our 

knowledge we have not come across any study conducted on smartphones to classify age-

group using gesture-based features. 

The next chapter – the concluding chapter of the thesis – presents a general overview of the 

thesis and a summary discussing results of the five studies. The chapter will discuss the 

limitations and challenges of the study and will conclude with a list of contributions and the 

implications of the study, followed by directions of future work. 
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CHAPTER 8 

GENERAL DISCUSSIONS AND FUTURE WORK 

User Interfaces (UI) play an important role in HCI especially in smartphones and tablets. 

Due to the increased population of elderly people (60+) in the world, and the widespread 

use of smartphone technologies, it is extremely important to understand the effects of age 

on the usability of rapidly evolving smartphone technology. Studies in HCI are required to 

minimise the “digital divide” between elderly users who are known to suffer from 

physiological and psychological impairments, and younger users who adopt technology 

faster. Eye movement is being increasingly used in HCI research to provide empirical 

evidence on evaluation the usability of technology because of its high gaze accuracy. 

Touch-gestures has become the most common method of interaction with applications on 

modern smartphones and tablets.  

The aim of this thesis was to provide an insight into the effects of age on interactions with 

smartphone and tablet applications. Five studies were conducted to understand the 

difficulties that elderly users encounter when they interact with smartphones and their 

applications. Studies were conducted on two interactions methods; eye-movement tracking, 

and touch-gestures using smartphones/tablets of three screen sizes. 

This chapter presents a general overview of our work and a discussion of results from the 

five studies that make up this thesis. We will discuss challenges and the general limitations 

of the study. The chapter, and in turn the thesis will conclude by listing the contributions 

and the implications of the study, followed by our future direction of work. Our findings 

aims provide the literature with a theoretical and an empirical account of visual search 

behavior and touch-gestures for elderly users on smartphones. 

8.1. Motivation 

The motivations for conducting the research studies in this thesis can be summarized as 

follows: 
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 Elderly population in our society is increasing; there are more people in the UK who 

are 60+ than people who are aged below 18 years old. According to a recent UN 

report (UN, 2013), the total number of persons aged over 60 years old increased 

from 9.2 % in 1990 to 11.7 % in 2013 and this is projected to double by 2050. 

 The technology use is widespread across the world and a significant percentage of 

elderly people now use a smartphone/tablet device for a variety of application. For 

example, 39% of 60+ years old now own a smartphone and 21 percent of 70-79 

years old own a tablet device (Consulting, 2013). Such technology can assist elderly 

users in their activities of daily lives and increase their quality of life (e.g. 

healthcare monitoring, social isolation) (Minocha, 2013), (Minocha, et al., 2013).  

 Understanding the usability issues faced by the elderly people using smartphone 

applications is important in order to make it easier for them use smartphone 

applications (Balakrishnan, et al., 2012), (Caprani, et al., 2012), (Reddy & 

Chattopadhyay, 2014). 

 Provide the existing body of literature with new understanding on the effects of 

ageing on smartphone usability.  

8.2. Study Stages 

The thesis includes five studies that were conducted in two stages. This section provides a 

brief overview of the stages and the respective studies.  

8.2.1 Stage One 

This stage investigated the effects of ageing and the influence of screen size on users based 

on smartphone interface browsing using eye movement tracking. This stage included 

researches to address the following question: 

What is the effect of age in browsing smartphone applications using eye 

movements? (H1 – H4). 

The First Research investigated the scan-path dissimilarities when browsing smartphone 

applications by participants from elderly (EG), and younger (YG) age groups. The results 

revealed that there is an ageing effect on scan-path dissimilarities when browsing 

smartphones applications – higher scan-path dissimilarities were found for elderly users. 



127 

 

The results also revealed that browsing applications was stimulus-driven rather than screen 

sizes-driven. 

The Second Research investigated the local and global information processing difficulties 

when browsing smartphone applications by elderly, middle-age and younger users. The 

results revealed that elderly users faced difficulties in local and global information 

processing because of the design of smartphone applications compared to users of other 

ages. Furthermore, the users’ performance efficiency was higher on large screen sizes (e.g. 

tablet size) compared to small screen sizes. 

In general the results of both researches revealed a possible relationship between getting 

older with less experience in using smartphones, smaller screen sizes, and the complexity 

of interface design with smaller screen sizes of smartphones. This leads the users having 

high dissimilarity in browsing and had difficulties in information processing. The 

difficulties were in local information processing measured by fixation duration for spending 

long time in recognising interface contents, and also in global information processing 

measured by scan-path duration for difficult interface structure. 

8.2.2 Stage Two 

This stage investigated the effects of ageing and the influence of screen size on users based 

on gesture-based applications on smartphones/tablets. Stage two included three researches: 

The First Research investigated the effects of ageing on gesture swiping performance. 

This section addressed the following question: 

 To what extent could elderly perform gesture swiping on smartphone interfaces 

without needing to training? (H5 & H6) 

In this research we found a relationship between the increasing of user age, with lack of 

experience, and smaller screen sizes. The results showed that elderly users were less 

efficient in performing gesture swiping tasks, their gesture swipes were less smooth, and 

they exerted more force pressure than younger users. In addition, the elderly were 

significantly less efficient in performing vertical gesture swiping, but not so when 

performing horizontal gesture swiping. Moreover, the small smartphone was less usable in 

terms of gesture swiping for users of both age groups, more so for elderly.  
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The Second Research used gesture-based features to investigate the effects of user age, 

smartphone screen-size and gesture complexity on performing accurate gestures. This 

section addressed the following question: 

What is the effect of age on executing accurate gestures on smartphones using 

gesture based applications?  (H7 – H14) 

In this research, we found a relationship between the increasing of user age, lack of 

experience, smaller screen sizes, and complex gestures. The results showed that elderly 

users were significantly less accurate in performing touch gestures – worse on the small 

smartphone. Also, elderly users were less efficient, and they exerted significantly more 

force pressure compared to the younger users. The users of two age groups were 

significantly less efficient and less accurate when performing complex gestures on small 

smartphone compared to the mini-tablet.  

The Third Research investigated the possibility of classifying user’s age-group using 

gesture-based applications on smartphones/tablets. This section addressed the following 

question: 

Could we use gestures performed on smartphone applications to classify user age?  

(H15 & H16)  

Four gesture-related features (i.e., gesture accuracy, movement time, speed, and finger 

pressure) were extracted from the second research of this stage to use in the age-group 

classification research. Three different scenarios were evaluated to test the effectiveness of 

the four features for age-group classification. These were: classification with prior 

knowledge of the individual user’s behaviour (i.e., user-dependent age-group classification 

-100% of participants) and classification with no prior knowledge of the individual user’s 

behaviour (i.e., user-independent age-group classification - 50% and 1% of participants). 

On each of three scenarios, we considered the classification performance of individual 

features separately as well as their combinations.  

Experimental results revealed that it is possible to classify a user’s age-group based on 

user’s touch-gesture features. The classification accuracy was higher for younger users than 

it was for elderly users. This is because most of younger users performed gestures similar to 

each other, where as some elderly users’ gestures performance were similar to younger 
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users, thereby getting misclassified as belonging to the younger age group. Also, the 

classification accuracy was higher on a small smartphone than on a mini-tablet. This is 

because small smartphones was difficult for all users in general compared to mini-tablets.  

Results provided evidence for the possibility of classifying user age-group on different 

screen sizes of smartphones. It was possible to classify user age-group without prior 

knowledge of the individual user. Also, the combinations of metrics (or feature-fusion) 

enhanced the classification accuracy compared to individually metrics. The best features for 

combination are gesture accuracy, finger pressure, movement time, that were on user-

independent scenario (1%) for younger users at (i.e., 97%), and the least classification 

accuracy was on the same scenario and features for elderly users at (42%).  

The outcomes of this particular research could be used to develop a system that can adapt 

itself to the particular user’s needs based on his/her ability.(i.e., the system will turn into a 

particular setting based on its current user’s age-group). This could be helpful in particular 

to users who are unable to setup their own smartphone, tablet or a similar device to their 

own preferences, or for a public system that could be used by different users at different 

times (e.g. touchscreen devices in the shopping centre used to find a particular shop, or 

those that are used in the hospital or GP that used for self check-in system). 

8.3. Contributions 

Our contributions in the thesis can be highlighted as key contributions, and secondary 

contributions. 

8.3.1 Key Contributions  

In terms of eye movement tracking and touch-gestures on smartphones and tablets for 

elderly users, our studies provides a theoretical and an empirical account of visual search 

behaviour and touch-gesture interactions to the existing body of literature. 

The four major contributions of this thesis are: 

1. An in-depth understanding of difficulties that elderly users experience when browsing 

smartphones applications. Experimental findings provided empirical evidence of 

interaction difficulties that elderly users experience on smartphones applications; 
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elderly users were slower and have difficulties in information processing, exerted 

more force pressure, and exhibited less efficient search compared to other age 

groups. This thesis provides evidence linked to the elderly deficits and limitations. 

2. Provided evidence of how elderly use finger gestures on touchscreens when interacting 

with applications on small smartphones and tablet. In this thesis, more details are 

provided about elderly difficulties when performing gesture swiping on smartphones 

and mini-tablets devices. These researches are considered as the first work conducted 

on gesture-based applications using small smartphones and mini-sized tablets for 

elderly users, which will add to the existing body of literature with both theoretical and 

empirical researches in the field of HCI and usability of smartphone for elderly users 

using gesture-based applications. 

3. Provided evidence of how elderly use eye-movement when interacting with smartphone 

applications. In this thesis, eye-movement tracking was used to provide more details 

about elderly difficulties when browsing smartphones. This included scan-path string 

dissimilarity and difficulties at both local and global information processing on 

smartphones interfaces browsing for elderly users. Our work is considered as the first 

work conducted on eye-movement using small smartphones and mini-sized tablets for 

elderly users, which will add to the existing body of literature with both theoretical and 

empirical researches in HCI and usability of smartphone for elderly using eye 

movement. 

4. Evidence of the possibility of classifying users’ age-group using features extracted from 

user’s touch gestures on smartphones. In this thesis, evidence for the possibility of 

classifying users’ age-groups based on a user’s ability using gesture-based features on 

smartphones and tablets devices is provided. 

8.3.2 Secondary Contributions  

Beyond the experimental results, the contributions of this thesis within the scope of HCI 

and smartphone usability contexts are: 

1. Providing a study that could work as a system for user’s age-group classification using 

gesture-based feature on smartphones.  

2. Providing new experimental procedures and analysis methods in gesture accuracy 

research. In our research, the users were asked to execute the gestures on a displayed 



131 

 

path on the smartphones. In addition, DTW algorithm was used to calculate the distance 

between the reference data and data obtained from the participants. The experiment 

procedure and algorithm used in the analysis are new in this field of research. 

8.4. Implications and Recommendations of the Study 

The implications and recommendations of our study can be listed as follows:  

 Consider the force pressure applied on smartphone touch screens by elderly users to 

improve the touchscreen’s response to touch gestures taking in to account elderly 

users’ reduced movement ability, and sensory perception of touch. It was shown 

from the researches in Chapter 6 that elderly exerted more force pressure on 

smartphones than younger users. We suggest to consider user age-group 

classification work to solve force pressure problem when designing touchscreen for 

the elderly. This is to enhance the usability of smartphones for elderly users because 

the response of technology does not meet elderly ability when executing gestures. 

This is to be equally efficient for elderly as it is for younger users. 

 Eliminate unnecessary complex gestures and use simple gestures (i.e., employ 

single-line gestures without a lot of corners and curves) to interact with smartphone 

applications, especially the ones designed for elderly users to assist in the activities 

of their daily lives.  

 Make elderly users familiar with smartphone applications by providing them 

training on new designs of interface contents. This could be done by the carers of 

elderly people. 

 Training of elderly on touch-gesture patterns is required. This could be done by the 

carers of elderly people. Also, training them on not to press hard on the touchscreen 

will reduce errors when performing tasks. 

 Consider devices with large screen sizes for applications designed specifically for 

elderly users.  

 Mobile apps developers should consider designing applications in landscape 

orientation.  

 Consider adapting the device/application by its self to accommodate user’s ability 

when executing gestures based features in the public system. This will make the 
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device/application customise its self to the particular setting to enhance the usability 

of the devices/application for elderly, particularly when such devices are used in 

public places. 

8.5. Limitations of the Study 

We acknowledge that there are a number of limitations in our study. Some are due to time 

and resources limitations while others relate to methodology. The main limitations are: 

1. Smartphone applications used in the eye-movement analysis study had to be 

displayed as screenshots on a PC screen. Ideally, we would have liked to use an eye-

tracker device that can analyse participants’ eye-movements as they browsed 

applications on the smartphone itself (e.g. a head-mounted eye-tracker). 

Nevertheless, ours is one of the few studies that used an eye-tracker device to 

analysis application browsing behaviours of elderly. (eye-movement tracking 

researches) 

2. The representation of users’ experience when using smartphones and tablets could 

be refined. For example, one user might have used/owned a smartphone for a longer 

period, but used only occasionally and for few basic applications (e.g. call, text, 

camera), whereas another user may have used/owned smartphone for a shorter 

period than the first user, but much more frequently and for a many applications 

(e.g. call, text, email camera, social networking, social media, internet browsing). 

(eye-movement tracking and touch-gestures researches) 

3. Limited numbers of gestures were used to collect data. In particular, the circle and 

the triangle gestures could have been performed clock-wise and anti-clock-wise. 

Furthermore, we have not considered pinch and zoom gestures that are commonly 

used to interact with smartphone applications. (gesture accuracy research) 

4. Consideration of the influence of finger size was limited. Also, we have not 

considered the influence of finger length on gesture performance – it could be 

argued that finger length could affect gesture length, movement time and speed. 

(touch-gestures researches) 

5. Small number of participants, in particular participants in the elderly age group. 

Since we did not want to use the same participant to collect data on different screen 
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sizes, we had to find many participants from each age group, which was a difficult 

task. Although the numbers were relatively small, our study is based on data 

acquired from far more participants than those used in other studies. (eye-movement 

tracking and touch-gestures researches) 

6. Consideration of left handed and right handed for the users were limited. Also, we 

have not considered the influence of hand-held use in performing gestures on 

smartphones – it would be useful to investigate the influence of hand-held use on 

user’s performance. (touch-gestures researches) 

7. Consideration of education level of participants was limited. This required large 

number of participants to cover a range of education levels for the participants in 

order to investigate the influence of participants’ education on their performance. 

(eye-movement tracking and touch-gestures researches) 

8. Consideration of participants’ vision sensitivity and physical-ability were limited. 

Relevant information can be collected based on reports provided by participants. 

(eye-movement tracking and touch-gestures researches) 

9. We have some limitations in our analysis, as we did not look at performances at 

individual participant level. We conducted the work only on average results for each 

age group. (eye-movement tracking and touch-gestures researches) 

8.6. Future Work 

In future, we intend to conduct further studies on touch-gestures and eye movement 

tracking for users of different age groups. The following are some of the work we intend 

carry out starting with addressing a limitation of the current study.  

- Analyse the effects of finger-size on user efficiency and accuracy when performing 

touch gestures on smartphones of different sizes. Metrics to consider are finger base 

circumference, fingertip circumference, finger length, and hand span. A number of 

complex and non-complex gestures should be considered as part of this future study. 

- Investigate the influence of user experience on performance using large sample size of 

participants. This is to involve users of different ages and group them based on specific 

experience e.g. experience in using smartphones, frequency of smartphone use, 

experience on specific applications. In addition, investigate the influence of user 
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training on touchscreens and measure accuracy and force pressure when executing 

gestures on touchscreen. 

- Conduct further investigation on elderly users who have high efficiency and high 

performance accuracy. This is to analysis the individual level results for users. Also, the 

same investigation on younger users to analysis the individual level results for users 

who have less efficiency and less performance accuracy. 

- Investigate the possibility of employing the 8 gestures we used in the research in 

Section 6.2 as commands to control smartphone applications. For example, using 

the circle gesture to save a file, the triangle gesture to open a file, and so on. 

- Extend the work of touch-gesture based age-group classification to smartphone user 

identification (i.e., user touch-gesture as a biometric). This could be used to enhance 

the security of screen pattern based unlock system used in most smartphones. 

- Investigate smartphones and tablets usability based on multi-touch gestures (e.g. 

pinching, dragging, zooming-in and zooming-out on online maps). Such a study is 

required to understand the nature of the challenge faced by elderly users when 

executing gestures using multiple fingers. 

- Investigate the influence of each of the following cases: user education, and hand-

handled that used to perform tasks on users performance.  
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Appendices 

A. Eye Tracker Demographic Data Sheet 

A.1 Demographic data: 

1. Participant ID: …………….......   Participant Email: ……………………….. 

2. What is your first language? ………………….. 

3. Occupation: ………………........  Education Level: ………………….. 

4. Please tick one of the age group bellow: 

Age Brackets 20 – 29 30 - 39 40 – 49 50-59 60 + 

      

A.2 Mobile phone and Apps experience: 

5. How many years have you used a mobile phone? ……. 

6. How many times per a day do you use a mobile phone for calling? ……. 

7. Please give details of your current and previous mobile phones in the table below: 

Number of Years Mobile phone name  

  Current Phone 1 

   Current Phone 2 

  Previous Phone 1 

  Previous Phone 2 

Choose any of these software do you use with how many years on your mobile phone: 

 Software  Number of Years 

1 Skype   

2 Tango    

3 Viber    

4 WhatsApp   

5 Yahoo email   

6 Facebook   

7 Other (please specify)   
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B. Gestures Demographic Data Sheet  

B.1 Demographic data: 

1. Participant Email: …………………………………………………………. 

2. Occupation: ………………… Education Level: …………………………. 

3. DOB (year): ………………. 

B.2 Mobile phone and tools experience: 

Tick the option that applies to you: 

How frequently do you use Phone with touch screen a day please tick your answer: 

Up to 2 hours From 2 up to 4 hours 

From 4 hours up to 6 hours More than 6 hours. 

What are you doing during these hours on your mobile: 

Chatting……….., Texting………, Calling………., Browsing………,  

Gaming…………, Using maps…………., Other (please specify): ………….…… 

 

Specify your experience in using touch smartphones with different screen sizes: 

Screen size Yes/No Finger/Pen Stylus Months/Years 

Normal size  

(ex. Samsung S3 or iphone) 

(around 4 inch or so) 

  

(M)/(Y) 

Medium size (tablets)  

(around 7 inches or so) 

  
(M)/(Y) 

Large size (tablets) 

(10.1 inches or so) 

  
(M)/(Y) 
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C. Consent Form  

“The Usability of Smartphones and the Applications” 

Consent Form 

 

I have received a copy of the study’s information document and Ethical Form for this 

research. 

Y / N (please circle as appropriate) 

 

I understand the researcher’s work and collecting data regarding my experience, skills, 

satisfaction in using Smartphone’s applications that would serve his study and I am willing 

to participate in answering questions in an experiment, an interview and fill-in 

questionnaire. 

 Y / N    (please circle as appropriate) 

 

I give my consent form to use the data excluding presenting my demographic data to 

identify me in dissemination activities of this research. 

I understand that I am able to withdraw from this research at any time. 

Y / N    (please circle the appropriate) 

Participant’s email address:    ------------------------------ 

Participant’s contact number: ------------------------------ 

Signed: ---------------------------------                                Date: ----------------------------------- 

Researcher’s information: 

Name: Suleyman Al-Showarah 

Email: suleyman.al-showarah@buckingham.ac.uk 
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D. Demographic data  

D.1 Participants on small smartphone 

Table 32. Demographic Data for users who were involved in eye-movement on small smartphone. 

ID Age 
Skype 

(smartphone) 

Skype 

(PC) 

Facebook 

(smartphone) 

Facebook 

(PC) 

Email 

(smartphone) 

Email 

(PC) 

P1 30 2 3 2 3 2 13 

P2 60+ 6 6 3 6 0 12 

P3 30 0 5 0 4 3 17 

P4 20 2 3 2 7 2 15 

P5 20 0.16 3 0.08 4 0.16 5 

P6 30 2 2 0 2 5 12 

P7 20 1 3 1 3 2 3 

P8 20 1 1 1 1 2 8 

P9 20 1 2 1 3 2 8 

P10 20 1 1 2 4 1 4 

P11 30 5 5 5 5 5 10 

P12 30 2 5 2 4 2 10 

P13 20 0 1 0.5 1 0.5 5 

P14 20 1 3 1 3 2 10 

P15 20 4 10 5 8 6 12 

P16 30 0 0 0 1 0 10 

P17 20 3 6 2 4 3 10 

P18 20 2 4 2 5 2 5 

P19 20 0.5 0 0 0 0.5 0 

P20 50 0 5 0 2 0 10 

P21 50 0 4 0.5 4 0.5 4 

P22 50 1 4 0 3 1 28 

P23 40 0 0 0 1 0 10 

P24 40 1 1 0 1 0.5 12 

P25 40 2 4 3 4 3 16 

P26 50 0 0.5 2 5 2 8 

P27 50 1 2 2 0 2 17 

P28 60+ 0.5 6 1 5 4 12 

P29 60+ 0 0 1 4 0 4 

P30 60+ 0 1 0 3 0 15 

P31 60+ 0 2 0 1 0 12 

P32 60+ 0 1 0 1 0 12 

P33 60+ 0 0 0 0 0.5 12 
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P34 60+ 0.5 0 1 10 0.5 10 

P35 60+ 1 1 0 0.5 0.5 12 

D.2 Participants on mini-tablet size 

Table 33. Demographic Data for users who were involved in eye-movement on mini-tablet. 

ID Age 
Skype 

(smartphone) 

Skype 

(PC) 

Facebook 

(smartphone) 

Facebook 

(PC) 

Email 

(smartphone) 

Email 

(PC) 

P36 30 3 5 3 4 3 11 

P37 30 1 4 3 4 2 10 

P38 30 1 6 1 1 4 10 

P39 30 1 2 1 4 1 14 

P40 20 2 6 2 7 4 9 

P41 20 2 4 0 1 3 6 

P42 30 0 0 0 0 0 10 

P43 20 0 4 4 6 4 10 

P44 30 1 7 3 5 3 12 

P45 20 1 2 2 7 3 10 

P46 20 3 5 5 7 5 10 

P47 30 0 1 0 1 0.5 10 

P48 30 0 3 2 6 2 10 

P49 20 1 0 3 4 3 9 

P50 20 0 5 3 6 3 16 

P51 40 0 0 1 1 2 15 

P52 50 0 0 0 0 0 10 

P53 50 0 2 0 2 0.5 15 

P54 50 0 5 0 0 2 15 

P55 40 0 3 0 0 0 6 

P56 40 0 3 2 7 4 24 

P57 40 0 0 3 8 2 25 

P58 50 0 0 0 0 0 0.125 

P59 50 0.25 0 0 0 0 25 

P60 40 2 7 0 0 2 13 

P61 50 0 1 0 0 0 7 

P62 50 0 0 0 0 3 17 

P63 50 0 0 0 2 0 15 

P64 50 0 0 0 0 0 5 

P65 60 0 0 0 0 0 5 

P66 60 1 1 0 0 0.25 5 

P67 60 0 3 0 4 0 15 

P68 60 0 1 0 3 0 20 
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P69 60 3 2 3 6 0 18 

P70 60 0 0 0 0 1 15 

P71 60 0 0 0 0 1 15 

D.3 Participants on large tablet size 

Table 34. Demographic Data for users who were involved in eye-movement on large tablet. 

ID Age 
Skype 

(smartphone) 

Skype 

(PC) 

Facebook 

(smartphone) 

Facebook 

(PC) 

Email 

(smartphone) 

Email 

(PC) 

P72 30 0.41 8 0.75 3 0.75 12 

P73 30 1 4 1 3 2 11 

P74 30 3 5 3 3 3 11 

P75 20 0 3 2 3 3 12 

P76 20 1 2 3 3 2 3 

P77 20 0 0 0 0 0 5 

P78 20 1 2 3 3 3 4 

P79 20 3 7 3 6 2 13 

P80 20 0.5 0.5 0 2 1.5 12 

P81 30 0 1 0 2 0.33 10 

P82 20 1 1 3 3 3 3 

P83 30 1 1 1 3 1 14 

P84 30 1 2 1 3 3 11 

P85 30 0 0 4 4 6 10 

P86 20 1 2 1 4 1 5 

P87 20 1 1 1 1 1 7 

P88 20 0.3 2 0.3 2 0.3 13 

P89 50 0 0 0 0 0 10 

P90 40 6 6 6 6 5 12 

P91 50 0 0 0 0 2 25 

P92 40 0 0 1 5 0 22 

P93 40 0 3 0.5 2 0.5 8 

P94 50 0.5 0 0.5 0 1 15 

P95 40 0.25 3 0.25 3 2 13 

P96 50 0 1 0 0 0 7 

P97 50 0.5 0 0 0 0.5 4 

P98 60 0.16 3 0 3 0.16 15 

P99 60 1 4 0 0 2 20 

P100 60 0 0 0 3 0.5 5 

P101 60 0 0.5 0 0 0 3 

P102 60 0 3 0 4 0 15 

P103 60 0 1 0 1 0 12 
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D.4 Participants on all two screen sizes of smartphone (touch-gestures) 

Table 35. Demographic Data for users who were  involved in touch-gestures on two sizes of smartphones. 

Small smartphone (60+ years old) 

ID 
DOB 

(year) 

Ring 

Size 

Ring 

Size 

(MM) 

finger 

length 

mm 

hand 

span mm 
4inch 7inch 10.1inch 

P1 1952 R 58.9 65 80 4 0 2 

P2 1948 5 73.5 95 85 3 0 0 

P3 1950 S 60.2 - - 0 0 0 

P4 1947 R 58.9 75 80 1 0 0 

P5 1947 T 61.4 75 80 0 0 0 

P6 1949 T 61.4 - - 0 0 0 

P7 1951 K 50 65 79 2.5 0 0 

P8 1949 Z 68.5 - - 0 0 0 

P9 1944 
 

75 67 81 0 0 3 

P10 1951 u 62.7 70 78 0.5 0 0 

P11 1951 A 37.8 70 80 3 0 2 

P12 1952 s 60.2 80 80 0 0 0 

P13 1953 w 65.3 65 90 0 0 0 

Small smartphone (20-39) 

ID DOB 
Ring 

Size 

Ring 

Size 

(MM) 

finger 

length 

mm 

hand 

span mm 
4inch 7inch 10.1inch 

P14 1980 T 61.4 75 85 5 0 3 

P15 1987 O 55.1 70 75 4 0 1 

P16 1986 - - - - 3 3 0 

P17 sara R 58.9 - - 0 0 0 

P18 1979 Q 57.6 - - 3 0 0 

P19 1992 Q 57.6 - - 3 0 0.25 

P20 1992 R 58.9 - - 0.75 0.16 0 

P21 1988 W 65.3 - - 1 0 0 

P22 1994 S 60.2 - - 2 0 0 

P23 1985 L 51.2 80 70 1 1 0 

P24 1987 U 62.7 85 90 2 0 0 

P25 1975 - - - - 0.5 0 1 

P26 1989 - - - - 2 0 2 

mini-tablet (60+ years old) 

ID 
DOB 

(year) 

Ring 

Size 

Ring 

Size 

(mm) 

finger 

length 

cm 

hand 

span cm 
4inch 7inch 10.1inch 



154 

 

P27 1953 W 65.3 - - 5 0 2 

P28 1945 R 58.9 - - 5 0 2 

P29 1945 U 62.7 - - 0.5 0 2 

P30 1946 - - - - 0 0 2 

P31 1952 X 66.6 78 78 2 0 0 

P32 1941 
 

75 65 90 0.041 0 2 

P33 1946 s 60.2 90 80 0 0 0.6 

P34 1953 5 73.5 80 85 0 0 0 

P35 1950 R 58.9 75 85 2 0 0 

P36 1942 5 73.5 75 85 0 0 0.5 

P37 1941 y 67.8 70 70 0 0 0 

P38 1949 w 65.3 85 75 2 1 0 

mini-tablet (20-39 years old) 

ID 
DOB 

(year) 

Ring 

Size 

(mm) 

finger 

length 

cm 

hand 

span 

cm 

age 4inch 7inch 10.1inch 

P39 1993 - - - 20 3 1 1 

P40 1986 65.3 - - 27 4 1 0.92 

P41 1987 53.8 - - 26 0 0 2.33 

P42 1987 58.9 70 75 26 3.25 0 0.5 

P43 1985 58.9 - - 28 1.5 0 0 

P44 1992 56.3 - - 21 0.66 1.33 0 

P45 1977 73.5 80 90 36 0 0 1 

P46 1994 60 72 79 19 4 0.08 0 

P47 1991 55.1 - - 22 0 0.33 1 

P48 1985 62.7 - - 28 3 0 0 

P49 1982 64 - - 31 1 0 0 

P50 1985 64 75 95 28 5.25 0 3.6 
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E. Smartphone applications (Stimulus: Eye Movement) 

E.1 Medium screen size – mini-tablet size 

 

Figure 31. Skype Contact list. 

 

Figure 32. Skype Calling Screen. 
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Figure 33. Skype account holder profile. 

 

Figure 34. Facebook main screen 
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Figure 35. Yahoo mail screen. 

 

Figure 36. Tablet Gallery screen. 

 



158 

 

 

Figure 37. Tablet alarm screen. 

 

 

Figure 38. Skype main screen. 
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Figure 39. Tablet setting screen. 

D.2 Large screen size – 10.1 tablet size 

 

Figure 40. Skype contact list. 
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Figure 41. Tablet calling screen. 

 

Figure 42. Skype account holder profile. 
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Figure 43. Facebook main screen. 

 

 

Figure 44. Yahoo email screen. 
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Figure 45. Tablet gallery screen. 

 

 

Figure 46. Tablet alarm screen. 
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Figure 47. Skype main screen. 

 

 

Figure 48. Tablet setting screen. 
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F. Finger Measurements for Gesture Experience 

Table 36. Finger measurements for gestures experiments. 

  
Participant 

No 

Finger 

tip 

Size 

(mm) 

Finger base 
Circumferences 

Size (British 

size) 

Finger base 

Circumfere

nces Size 

(mm) 

Finger 

length 

(mm) 

Hand 

span 

(mm) 
S

m
a
ll

 S
m

a
r
tp

h
o
n

e
 

EG 

P1 15 R 58.9 65  80  

P2 - 5 73.5  95 85 

P3 - S 60.2 -  -  

P4 - R 58.9 75 80 

P5 - T  61.4 75 80 

P6 - T 61.4 -  -  

P7 - K 50  65 79  

P8 - Z 68.5 -  -  

P9 18 -  75 67  81  

P10 15 U 62.7  70 78 

P11 - A  37.8 70 80 

P12 - S  60.2 80 80 

P13 - W  65.3 65 90 

Y

G 

P14 - T  61.4 75 85 

P15 - O 55.1 70 75 

P16 - -  - -  -  

P17 - R 58.9 -   -  

P18 - Q 57.6 -  -  

P19 - Q 57.6 -  -  

P20 - R 58.9 -  -  

P21 - W 65.3 -  - 

P22 - S 60.2 -  -  

P23 21 L 51.2 80 70 

P24 22 U 62.7 85 90 

P25 - -  - -  -  

P26 - -  -  -  - 

m
in

i-
ta

b
le

t 

EG 

P27 - W 65.3 -  -  

p28 - R 58.9 -  -  

P29 - U 62.7 -  -  

P30 - -  - -  - 

P31 25 X 66.6 78  78  

P32 23 -  75 65  90  

P33 - S  60.2 90 80 

P34 15 5  73.5 85 85 
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P35 25 R 58.9 75 85 

P36 - 5  73.5 75 85 

P37 - Y  67.8 70 70 

P38 - W 65.3 85 75 

Y

G 

P39 - -  - -  -  

P40 - W 65.3 -  -  

P41 - N 53.8 -  -  

P42 15.5 R 58.5 70  75  

P43 - R 58.9  - -  

P44 - P 56.3 -  -  

P45 20 5  73.5 95  90  

P46 - -  60  72 79  

P47 - O 55.1 -  -  

P48 - U 62.7 -  -  

P49 - V 64 -  -  

P50 - V 64 75 95 
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Table 37. Finger Ring size analysis using Gesture accuracy. 

Finger size 37.5 50 51.2 53.8 55.1 56.3 57.6 58.9 60.2 61.4 62.7 64 65.3 66.6 67.8 68.5 73.5 

A K L N O P Q R S T U V W X Y Z z+5 

EG_smaLL 0.83 0.66 
     

0.32 0.58 0.58 1 
 

0.68 
  

0.74 0.32 

NO of 
participants 

1 1 
     

1 2 2 1 
 

1 
  

1 1 

AVERAGE 0.75  0.61 0.58  

 
YG_smaLL 

  
0.32 

 
0.25 

 
0.18 0.25 0.3 0.28 0.22 

 
0.15 

    
NO of 

participants   
1 

 
1 

 
2 2 1 1 1 

 
1 

    

AVERAGE 0.29  0.26 0.15  

 
EG_mini-

tablet        
0.07 0.27 

 
0.12 

 
0.03 0.07 0.12 

 
0.29 

NO of 
participants        

2 1 
 

1 
 

2 1 1 
 

2 

AVERAGE 0  0.13 0.14  

 
YG_mini-

tablet    
0.09 0.02 0.06 

 
0.07 

  
0.03 0.05 0.04 

   
0.03 

NO of 
participants    

1 1 1 
 

2 
  

1 2 1 
   

1 

AVERAGE 0.06  0.06   0.04  

 
ALL AVG 0.36  0.26 0.23  
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Table 38. Finger Ring size analysis using FP. 

Finger size 37.5 50 51.2 53.8 55.1 56.3 57.6 58.9 60.2 61.4 62.7 64 65.3 66.6 67.8 68.5 73.5 

A K L N O P Q R S T U V W X Y Z z+5 

EG_smaLL 0.42 0.34 
     

0.5 0.41 0.41 1 
 

0.42 
  

0.35 0.52 

NO of 
participants 

1 1 
     

1 2 2 1 
 

1 
  

1 1 

AVERAGE 0.38  0.46  0.43  

 
YG_smaLL 

  
0.45 

 
0.38 

 
0.35 0.35 0.42 0.38 0.39 

 
0.34 

    
NO of 

participants   
1 

 
1 

 
2 2 1 1 1 

 
1 

    

AVERAGE 0.42  0.38 0.34  

 
EG_mini-

tablet        
0.17 0.18 

 
0.21 

 
0.17 0.19 0.27 

 
0.27 

NO of 
participants        

2 1 
 

1 
 

2 1 1 
 

2 

AVERAGE 0  0.18 0.22  

 
YG_mini-

tablet    
0.19 0.14 0.16 

 
0.17 

  
0.17 0.16 0.23 

   
0.18 

NO of 
participants    

1 1 1 
 

2 
  

1 2 1 
   

1 

AVERAGE 0.16  0.17 0.18  

 
ALL AVG 0.32  0.30 0.29  
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Table 39. Finger Ring size analysis using Speed. 

Finger size 37.5 50 51.2 53.8 55.1 56.3 57.6 58.9 60.2 61.4 62.7 64 65.3 66.6 67.8 68.5 73.5 

A K L N O P Q R S T U V W X Y Z z+5 

EG_smaLL 293.6 310 
     

477.64 476.26 476.26 1 
 

215.7 
  

352.3 532.22 

NO of 
participants 

1 1 
     

1 2 2 1 
 

1 
  

1 1 

AVERAGE 301.77  400.83  366.72  

 
YG_smaLL 

  
619.3 

 
963.8 

 
787 509.87 754.01 559.39 660.3 

 
637.7 

    
NO of 

participants   
1 

 
1 

  
2 1 1 1 

 
1 

    

AVERAGE 791.54  598.682 637.67  

 
EG_mini-

tablet        
505.76 1002.5 

 
366.8 

 
548.4 750.3 753 

 
327.62 

NO of 
participants        

2 1 
 

1 
 

2 1 1 
 

2 

AVERAGE 0  595.195  542.57  

 
YG_mini-

tablet    
402.5 633.3 609.7 

 
482.91 

  
841.7 670.6 433.1 

   
910.48 

NO of 
participants    

1 1 1 
 

2 
  

1 2 1 
   

1 

AVERAGE 548.53  602.51 671.19  

 
ALL AVG 547.28  549.30 554.54  

 

 

 


