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Abstract: The influence of pre-rift crustal heterogeneity and structure upon the evolution of a continental rift and 

its subsequent passive margin is explored. The absence of thick Aptian salts in the Namibian South Atlantic allows 

imaging of sufficient resolution to distinguish different pre-rift basement seismic facies. Aspects of pre-rift 

basement geometry have been characterized which are then compared with the geometries of Cretaceous rift 

basin structure, and of subsequent post-rift margin architectural elements. Half-graben depocentres migrate 

westward within the continental syn-rift phase, at the same time as basin bounding faults become established as 

hard-linked arrays with lengths of approximately 100 km. The rift-drift transition phase, marked by Seaward 

Dipping Reflectors, gives way to the early post-rift progradation of clastics off the Namibian coast. In the Late 

Cretaceous, these shelf clastics are much thicker in the south, reflecting the dominance of the newly formed 

Orange River catchment as the main sediment entry point on the South African/Namibian margin. Tertiary clastics 

largely bypass the pre-existing shelf area, revealing a marked basinwards shift in sedimentation. Post-rift 

megasequence thicknesses do not vary simply according to the location of syn-rift half-grabens and thinned 

continental crust. Rather, the Namibian margin exemplifies margins influenced by a complex interplay of crustal 

thinning, pre-rift basement heterogeneity, volcanic bodies and transient dynamic uplift events on the evolution of 

lithospheric strain and depositional architectures.  

Keywords: South Atlantic, Lithospheric Stretching, Passive Margin,  

Basement Heterogeneity   

Introduction  

The South Atlantic passive margin provides an exceptional region to study the mechanisms involved in lithospheric 

stretching, continental break-up and margin development (Hirsch et al. 2007; Heine, et al. 2013; Pernon-Pinvidic et al. 

2013; Sibuet & Tucholke, 2014). But despite a recent focus on the evolution of passive margins, and the South Atlantic 

in particular (Blaich et al. 2011; Franke et al. 2013; Moulin et al. 2013), fundamental questions remain unanswered with 

regards to the degree that crustal heterogeneity controls passive margin formation, and the influence this 

structure may have on early margin accommodation space and on the development of oceanic transform 

Mohammed, Interaction of crustal heterogenity, Namibia

Accpeted Special Publication of Geological Society of London



 

segmentation. Addressing these questions is important not just for improving our understanding of lithospheric 

processes but also in constraining our knowledge of the petroleum system within such settings. This arises, for 

example, from spatial and temporal variations in lithospheric thickness across a margin and along its strike 

influencing heat flux both in the syn-rift phase and during post-rift thermal relaxation. Source rock maturation 

histories are therefore sensitive to variations in the underlying lithospheric structural and thermal evolution (e.g. 

Beglinger et al. 2012; Paton et al. 2008).  

In this study we focus on the Namibian margin for two reasons. Firstly it provides an opportunity to investigate the 

temporal evolution of a margin from rift initiation through break-up and seafloor spreading into full passive margin 

development. Secondly, as it is located to the south of the Walvis Ridge it is not complicated by the presence of 

salt. Therefore we can establish the architecture of the post-rift margin without either having to account for salt 

tectonics or being constrained by poor sub-salt imaging of the syn-rift.   

This study sets out to test a base case hypothesis, that although the configuration of passive margins are 

dominated by syn-rift structures and often by post-rift deformation, e.g. gravitational collapse, the pre-rift 

configuration plays an often poorly understood role in defining structure and evolution of such basins.   

Regional Setting  

The West African margin is closely associated with the grain of the Proterozoic to early Palaeozoic Pan-African fold 

belt along much of its length (Fig. 1; Clemson 1997) and the onshore part is dominated by the broadly N-S trending 

Neoproterozoic Gariep Belt (Coward 1981; Miller 1983). As a consequence of limited well data in the offshore, and 

the absence of significant Palaeozoic onshore outcrops, the stratigraphy of the post Pan-African basement is 

uncertain on the Namibian margin. It is generally considered that the basement is overlain by a Carboniferous-

Permian stratigraphy associated with the Karoo foreland basin (Maslanyj et al. 1992; Light et al. 1993). This is 

subsequently overlain by deposits associated with the early stages of continental rifting, although again the timing 

of this is poorly constrained. Clemson (1997) proposed that the early rift portion comprises Triassic to mid-Jurassic 

Karoo sediments that were deposited in a major rift basin along much of the present day passive margin. 

Regardless of the timing of this phase of rift initiation, there is a consensus that the Pan-African fabrics played an 

important role in the subsequent South Atlantic rift phase along the margin (e.g. Uchupi 1989; Maslanyi et al. 

1992). A significant rift onset unconformity has been identified in a number of previous seismic reflection studies 

(e.g. Gerrard and Smith 1982; Light et al. 1993) and has been attributed to the initiation of the main South Atlantic 

rift phase in the Late Jurassic.  

The basin fill of the main rift phase (Fig. 2), which has in parts been penetrated by boreholes in the South African 

part of the Orange basin, comprises continental clastics (fluvial claystones, sandstones and pebble beds) and 

claystones interbedded with volcaniclastics and volcanics (McMillan 2003), passing into significant thicknesses of 

volcanics  towards the top. Light et al. (1993) recognised a number of intra-syn-rift sequences with distinct seismic 

facies and also noted a marked variation in dip across the margin, with westward dips to the west of a structural 

͞ŚŝŶŐĞ ůŝŶĞ͟ ĂŶĚ ĞĂƐƚǁĂƌĚ ĚŝƉƐ ƚŽ ŝƚƐ ĞĂƐƚ͘ OĨ ƉĂƌƚŝĐƵůĂƌ ŶŽƚĞ ŝƐ ƚŚĞ ĚĞǀĞůŽƉŵĞŶƚ ŽĨ Ă ƐĞĂǁĂƌĚ ĚŝƉƉŝŶŐ ƌĞĨůĞĐƚŝŽŶ 
(SDR) complex that developed in the west just prior to continental break-up (Gladczenko et al. 1997). The timing of 

break-up is constrained by the M4 magnetic anomaly (126.5 Ma), indicating an Early Cretaceous age (Numberg & 

Muller 1991) or more specifically a Barremian age according to the Walker et al. (2012) timescale.   
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The break-up unconformity, which sits above the seaward dipping reflector package, is overlain across most of the 

basin by a Barremian-early Aptian package, which denotes marine inundation of much of the continental margin 

and has been considered part of the transition phase (Light et al. 1993). This package is important for the presence 

of organic-rich source rocks. An unconformity at the top of the transition phase marks the development of the 

main post-rift phase (Fig. 2), which is represented by a thick succession of Cretaceous and Tertiary age sediments 

that have a number of internal unconformities. These unconformities in the northern Orange basin in Southern 

Namibia, and the correlatable unconformities in the South African portion of the Orange Basin, have a variety of 

horizon names but are consistent in identifying the key basinwide events (Emery 1975; Gerrard and Smith 1982; 

Light et al. 1993; Brown 1995; Paton et al. 2008). The early part of the post-rift stratigraphy consists of an Aptian-

Turonian progradational succession that consists of deltaic and fluvio-marginal deposits that exceed 3500 m in 

thickness in the inner part of the margin.  The deposition of this package was punctuated in the Cenomanian and 

Turonian with organic-rich shales, which form significant, basinwide and correlatable reflections (Light et al. 1993; 

Brown et al. 1995). The top of the Cretaceous is identifiable with an additional basinwide unconformity and marks 

a major shift from deposition on the inner margin towards sediment accumulation predominantly on the outer 

margin during the Tertiary.   

  

Data and methods  

This study combines 2D reflection data from four surveys (ECL-89, SN-1996, GNA-1997 and Vernob-2003) that were acquired 

between 1998 and 2003. The data cover the northern parts of the Orange Basin in southern Namibia and in this study we 

utilise PSTM data that had a maximum recording time of between 5 and 7 seconds two-way travel time. The lines in the 

southern area of the data set intersect the Kudu gas field (wells Kudu 9A-1, 9A-2 and 9A-3) and these have been used to 

provide age and lithological constraints for the seismic interpretation. A megasequence approach has been taken for the 

interpretation of the data based upon identification of regional and local unconformities using reflection termination, cut-offs 

and onlap relationships with the sequence stratigraphic system based upon Muntingh & Brown (1993) (Figure 1 for location of 

Lines A, B and C shown as Figures 3a, 3b and 3c respectively).   

Megasequence Architecture  

Pre-rift  

The reflection character of the intra-basement pre-rift in the offshore data is highly variable and is consistent with 

the complex Gariep Belt that is directly onshore of the study area. In places, continuous high amplitude reflections 

are evident and are demonstrably beneath the divergent reflections that are indicative of the main rift phase (Fig. 

4). Given the presence of abundant mid-crustal reflectivity and of west-dipping and folded reflections in the 

eastern Namibian margin, these are likely to be imaging portions of the nearshore Gariep Belt. This is in contrast to 

the well imaged, concordant reflections that have been inferred to be Karoo sediments identified on other parts of 

the Namibian margin (e.g. Clemson 1997). Elsewhere the basement is much more akin to a transparent acoustic 

basement with no internal reflectivity or character and this seismic facies is present along much of the margin (Fig. 

3). This transparent acoustic basement forms a 30 km wide continuous zone that trends approximately North-

South.  The feature is often referred to as the hinge line (e.g. Light et al. 1993), which implies a discrete fulcrum 
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and by association conveys a kinematic process. In this study we will discuss the nature of this zone, but prefer to 

call it the Kudu Basement Ridge (Fig. 3) to differentiate between the feature and its origin.   

Syn-rift megasequence (MSB1 to MSB2)  

Although not penetrated by boreholes in this area, the syn-rift intervals are identifiable from divergence of 

reflections in a half-graben geometry; the fault locations and timings are mapped and constrained from the 

termination of these divergent reflections. Of particular note for this interval is the spatial distribution of faulting 

across the Kudu Basement Ridge that separates the basin into two distinct structural domains (Fig. 3).   

To the east of the basement ridge small wedge-shaped half-grabens with typical widths of between 5 and 12 km 

are present and are consistently controlled by west-dipping normal faults (Fig. 4). The geometry of the rift basin fill, 

which is predominantly contained within the lower syn-rift interval, is dominated by low to medium amplitudes 

and semi-continuous reflectivity, and the controlling faults reveal a highly asymmetric system with  faults which 

possibly decolle onto a more regionally correlatable west dipping crustal reflection within the pre-rift/basement 

sequence. The internal seismic character of the rift basins is consistent with the style of deposition typical of early 

continental rift basins, with isolated depocentres that are likely to be fluvial-dominated with occasional lacustrine 

basin fill (e.g. Gawthorpe & Leeder 2000). Comparable syn-rift intervals have been identified and penetrated to the 

south in well A-J1 in the South African Orange Basin (Jungslager 1999).   

The basins to the west of the basement ridge are also characterised by a divergent reflection geometry but these 

reflectors onlap onto the basement ridge to the east and thicken towards the west, and are controlled by east-

dipping normal faults. In the type sections Figs. 3 a and b, three diverging packages are imaged and each of them is 

bounded by an east-dipping fault. These western faults are more widely spaced than those to the east of the Kudu 

Basement Ridge, with half-graben widths of up to 50 km although it is likely that smaller faults that were active 

early in the syn-rift phase are also present but not resolved seismically. The seismic character of the basin fill to the 

west of the basement ridge is divided into a lower and upper package. The lower package, which is similar to that 

to the east of the ridge, is also noticeably different as it consists of higher amplitude, more continuous reflections. 

The early syn-rift interval, which is present on the east and west of the basement high, has a variable amplitude 

and semi-continuous reflectivity, while the later syn-rift interval shows divergence into the western normal faults 

but reflections are not cross-cut by the eastern faults, indicating that the late syn-rift faulting progressively 

migrated towards the west.   

The isochron maps of the lower syn-rift interval (Fig. 6a) reveal that sedimentation is controlled by NNW-SSE 

trending fault systems that are separated by the Kudu Basement Ridge (Fig. 6). The continuity of areas of sediment 

accumulation allows us to correlate faults between seismic lines. Discrete faults and associated depocentres are 

evident, typically 20-30 km in length, typical of fault segments in early rift systems (Gupta et al. 1998; Ebinger et al. 

1999; Cowie et al. 2000). This is the deepest resolvable syn-rift interval and faults, or linked fault arrays, show 

lateral continuities of between 20 and 100 km; again this is comparable to other rift systems. Three areas are also 

evident where fault traces abruptly terminate and are offset from neighbouring arrays (Fig. 6a). These correspond 

either to transfer/accommodation zones (Morley 1990) or conceivably represent later strike slip faults that dissect 

the rift basin. In contrast, the isochron map for the upper syn-rift interval (Fig. 6b) reveals a significant 

reorganisation of the rift system. The inboard faults are not present as they have switched off and accommodation 

ƐƉĂĐĞ ŝƐ ĨŽĐƵƐƐĞĚ ƉƌŽŐƌĞƐƐŝǀĞůǇ ŽŶƚŽ ƚŚĞ ŽƵƚďŽĂƌĚ ĨĂƵůƚƐ͘ FĂƵůƚ ĂƌƌĂǇƐ ĂŶĚ ĂƐƐŽĐŝĂƚĞĚ ŝƐŽĐŚƌŽŶ ͞ƚŚŝĐŬƐ͟ ĂƌĞ ŵŽƌĞ 
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continuous, indicating that the western fault sets had by this stage evolved into hard-linked rift segments of 

approximately 100 km in length. The transfer zones are also more clearly apparent at this time.   

Transitional megasequences (MSB2 to MSB4)  

The lower part of the megasequence above MSB2 is enigmatic (MSB2 to MSB2a; Fig. 5). It sits beneath a seaward 

dipping reflector package and shows a thickness increase to the west across the margin but there is no evidence, at 

least in the current data, of significant faulting.  This observation therefore disagrees with previously understanding 

of the system but our current data set is not extensive enough to define its geometry. Further analysis should be 

undertaken on subsequent data sets to determine whether the package is, or is not, fault controlled.   

The transitional phase (MSB2a to MSB4), as a whole, encompasses the transition from the syn-rift interval into the 

demonstrable passive margin megasequences, and here we divide it into a lower transition megasequence and an 

upper transition megasequence (Fig. 5). The lower transition megasequence only occurs west of the basement high 

and is characterised by onlap onto either the uppermost reflection of the syn-rift or onto the basement/pre-rift 

ridge to the east. The megasquence (MSB2-3), which is the deepest penetrated by the Kudu wells (Bagguley, 1997; 

Schmidt, 2004), is of Hauterivian-Barremian age and consists of interbedded volcanic and fluvial strata that form 

the main clastic reservoir interval for the area. The upper part of this megasequence is characterised by high 

amplitude reflections with a fanning, west-dipping geometry that corresponds to Seaward Dipping Reflections 

typical of volcanic passive margins (e.g. Franke 2013). In plan view the lower transition megasequence thickens 

noticeably to the west where there is the lateral transition into the SDRs (Fig. 6c). It is evident that seismically 

resolvable faulting has switched off by this stage and the accumulation of volcanics was being controlled by 

accommodation space outboard of the main early continental rift system.  

The upper transition megasequence (delineated by MSB3-4) overlies the SDRs, is best developed west of the 

basement high and is Barremian-early Aptian in age. It is dominated by high amplitiude and laterally continuous 

reflections that overstep the Kudu Basement Ridge and which are shallowly truncated by the bounding reflection 

at the top of the package. This interval contains the organic rich source rock encountered in the Kudu well and is a 

consequence of the restricted marine environment and the major flooding event during the early Aptian in which 

the regionally important black shale was deposited (Serranne & Anka 2005).   

There is a distinct pattern of variation in thickness of this upper package (Fig. 6d), in contrast to the lower transition 

megasequence. For much of the margin the unit is noticeably thin and is often condensed to be below seismic 

resolution.  Towards the north there is a clear thickening into the basin forming an elliptical geometry which is 

bound on the east by the Kudu Basement Ridge.   

Cretaceous megasequences (MSB4 to MSB6)  

The two post-rift Cretaceous megasequences, which have a thickness of up to 4 km, account for most of the 

stratigraphy in both the inner and outer parts of the passive margin. The Cretaceous post-rift megasequences are 

bound by the MSB4 surface (mid-Aptian) at the base, showing some erosional truncation of the underlying 

Transitional package, and by the MSB6 horizon at the top.   

The lower of the two Cretaceous post-rift megasequences (MSB4-5) comprises the first broadly progradational unit 

of the margin. It progressively onlaps onto the top of the syn-rift and onto basement to the east (Fig. 3c). The 

westward-ƉƌŽŐƌĂĚŝŶŐ ĐůŝŶŽĨŽƌŵ ŐĞŽŵĞƚƌǇ ƚǇƉŝĐĂůůǇ ŚĂƐ Ă ͞ŚĞŝŐŚƚ͟ ;ŝŶ ƚǁŽ-way-travel time) of approximately 100 

ms (Fig. 3b), the steepest slope of which is inferred to represent a pro-delta (outer-shelf) to slope mudstone facies 
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transition.  The package thins downdip to the west where it becomes condensed, and in places is not seismically 

resolvable.  The MSB5 horizon, at the top of this lower post-rift package, is defined by a high amplitude reflection 

that is correlatable across the entire basin and corresponds to the end-Cenomanian maximum flooding surface.  

The progradation of the MSB4-5 megasequence towards the west marks the development of an established 

coastline or shelf-break and the migration of that coastline basinward; the Kudu wells indicate this is a mainly 

shallow marine interval. The megasequence thickness is greater in the south (Fig. 3a) compared to the middle or 

the north of the study area (Figs. 3b and c). This reflects that there was a dominant sediment input point for the 

basin in a similar location to the present day Orange River, to the south of the basin (Fig. 6e). 

  

The overlying package (MSB5-6) is dominated by an aggradational to progradational architecture and the 

progressive development of a bathymetric break in slope of up to 800 ms.  In the middle part of the margin it is 

noticeable that the package is dominated by continuous, high amplitude and concordant reflections over a length 

scale of at least 80 km across the margin. The sedimentology of this megasequence is dominated by claystones, as 

documented in the Kudu wells. In contrast, the geometry of the outer margin is markedly different. In the southern 

part of the basin the upper part of the megasequence is dominated by gravity collapse structures (Fig. 3a); the up-

dip extensional domain and the associated down-dip compressional domain are clearly imaged and have been 

described in detail elsewhere (Butler & Paton 2008; Dalton et al. 2015; Dalton et al. in press).  

The timing of the upper horizon (MSB 6) is diachronous across the margin, having a subcrop of Maastrichtian age 

(67 Ma) stratigraphy in the inner margin and early Tertiary (53-65 Ma) stratigraphy in the outer margin (as 

constrained by the Kudu wells (Bagguley 1997; Schmidt 2004).  This diachroneity is a consequence of a varying 

degree of erosion at the top of the Cretaceous megasequence as shown by the erosional truncation of its 

uppermost reflections. In the outer margin there is no erosion, with concordant reflections throughout the 

Cretaceous and Tertiary megasequences. This is also the case at the break in slope of the Cretaceous margin. To 

the east of this, however, there is a progressive increase in erosion toward the inner shelf and the amount of 

erosion may be calculated by projecting the geometry of the underlying stratigraphy from the position at which 

erosion begins (Paton et al. 2008 for method). This indicates a variable degree of erosion along 200 km of the 

Namibian margin, with a maximum of approximately 800 m of section lost by erosion at the end-Cretaceous.   

A south to north reduction in interval thickness is also evident in the Turonian- Maastrichtian megasequence (Figs. 

3 a-c) but is less pronounced than in the preceding megasequence, with a much more uniform distribution of 

sediment. It is only in the most northern part of the basin that significant thinning is apparent and this corresponds 

to a northward progradation of the package.  The thinning that is evident in the isochron map in the inner margin is 

a reflection of the uppermost Cretaceous-earliest Tertiary erosion rather than deposition (Fig. 6e).  

Tertiary megasequence (MSB6-Sea Bed)  

The seismic character and geometry of the Tertiary megasequence (MSB6-sea bed) varies significantly both across 

and along the margin. In the inner part of the margin the megasequence is very thin and characterised by medium 

to high amplitude, continuous, sub-parallel to parallel reflections that downlap onto the base-Tertiary 

unconformity. The most eastern part of the megasequence has undergone tilting and erosional truncation at the 

seabed where it is in places entirely absent.   
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For most of the southern area (Fig. 3a) the megasequence shallowly progrades and where the underlying base-

Tertiary unconformity forms a break of slope the Tertiary megasequence forms a shelf margin  system. Within the 

megasequence there is a correlatable horizon that is characterised by erosional truncation below and onlap and 

downlap above, and divides the Tertiary into two packages. This horizon corresponds to the SCB-B surface of 

Weigelt & Uenzelmann-Neben (2004) and is inferred to be of Middle Miocene age. This horizon separates two 

wedges both of which prograde from the underlying break in slope towards the west.   

Stratigraphic data from the Kudu wells show that most of the Tertiary sediments are dominated by claystones and 

siltstones, with interbedded sandstone. On the shelf, the Tertiary sediments are very thin and characterised by high 

amplitude, parallel and continuous reflections which are interpreted to represent the presence of interbedded 

calcareous sandstones and shelly limestones (Gerrard & Smith 1982).  

The internal architecture of the Tertiary megasequence along most of the margin is broadly similar with a relatively 

thin package, probably representing significant sediment bypass of the shelf above the base Tertiary unconformity 

(Figs. 3a-c). A rapid thickening towards the west, beyond the shelf break, is also evident along the margin and the 

location of this is controlled by the geometry of the base-Tertiary unconformity that mimics the Late Cretaceous 

break in slope.   

The most outboard part of the basin is dominated by downlap onto the more distal portion of the base-Tertiary 

unconformity. Despite the westward switch in location of sediment accumulation during the Early Tertiary (Fig. 6f), 

the margin is remarkably undeformed with very little faulting and no significant gravity collapse structures that are 

so characteristic of the underlying Late Cretaceous megasequence.   

Development of the Namibian part of the Orange Basin  

The Orange Basin of Southern Namibia preserves an exceptional record of the development of a continental margin 

from rifting through to the present day. We now present a summary of the development of the margin and 

consider both its spatial and temporal development (Figs. 7 and 8).  

The Late Jurassic to Early Cretaceous early rift phase shows distributed extension with a number of relatively long 

north-south trending normal fault sets (Fig. 8a). The onshore Gariep Belt structures converge with depth onto a 

west-dipping crustal deformation zone (Gray et al. 2008) which when extrapolated offshore can explain the west-

dipping, mid-crustal reflections that are observed. The early rift faults, at least those east of the Kudu Basement 

Ridge, also appear to converge onto this zone, suggesting that this basement heterogeneity localised the 

deformation, at least during the early rift phase (Figs. 7a and 8a). This early evolution of a rift system corresponds 

well with equivalent histories documented in many rift systems that were at least partly controlled by crustal 

heterogeneity (Clemson, 1997). The Kudu Basement Ridge, as discussed, is an interesting feature as it separates 

two pre-rift basement zones of more continuous reflection character but has little internal character itself. We 

interpret this to represent a Precambrian granitoid body around which the Pan-African deformation of the Gariep 

Belt is localised. The shape and scale of this feature consistent with other similar bodies along the southern African 

margin, such as the Cape Granites. From the perspective of continental rifting, it appears to have acted to localise 

stress at its edges and so influenced where the rift system developed and its spatial geometry.   
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The exact configuration of the main rift system is relatively poorly constrained given the widely spaced 2D seismic 

dataset that is available over much of the study area, but geometrically it resembles many rift systems with normal 

faults that show segmentation along their length. Comparisons with fault growth models, such as those developed 

by Gupta et al. (1998) and Cowie et al. (2000) appear to be appropriate.   

As the rift evolved, there was a marked migration of the system towards the incipient spreading centre in the west, 

while the system in the east progressively switched off (Fig. 5). The end of the rift phase is characterised by an 

erosion event in the east and by the widespread development of the two packages within the transition phase. The 

lower transitional megasequence includes the emplacement of SDRs as well as the extrusion of more extensive 

volcanics across the basin that cap the syn-rift half-graben fills. The distribution of volcanics is often associated with 

lower crustal bodies (Hirsch et al. 2010).  As these bodies are considered to be emplaced at the time of rifting it is 

likely that these lower crustal bodies represent the remnants of the magma chambers that fed the surface 

volcanics. The end of the SDR package is marked by the onset of the upper transition megasequence which 

includes the main organic source rock unit, suggesting rapid basin deepening and anoxic conditions. As seen in Fig. 

3a, there is a significant thickness variation of this upper transitional unit, with the greatest thickness occurring 

immediately to the west of the Kudu Basement Ridge. This is likely to be a consequence of where post-rift thermal 

subsidence was greatest at this earliest stage of break-up.  

 

Throughout the syn-rift and transitional phases of the Namibian margin there is relatively little variation along the 

200 km of the margin (Fig. 8a). The Late Cretaceous package, by contrast, exhibits significant variation (Fig. 8b). The 

lower portion is dominated throughout by the progradation of the shelf margin clinoforms and by the development 

of a clastics-dominated margin sequence. The sediment input at this stage is obviously determined by its 

provenance, but at this stage it is most likely to be have been derived from the erosion of the remnant rift margin 

and proximal continental sequences.   

To the south of the study area, in the South African portion of the Orange Basin, the Aptian clastic shallow marine 

succession was sourced from a number of smaller river systems along the margin (Paton et al. 2008). This results in 

a relatively uniform deposition of this mainly deltaic package along much of the margin to the south of the Orange 

River. In contrast, on the Southern Namibian margin the isochron map for this interval (encompassed by Fig. 6e) 

conforms much more to a single entry point for deposition, with the location of the source being very close to the 

present day Orange River delta. This is in agreement with previous studies that propose the evolution of the 

Oliphants drainage system into the Orange system during the Albian (e.g. Dingle & Hendry, 1984). The 

sedimentology of the package in the Kudu wells confirms that it is a clastics-dominated shallow marine sequence. 

The result is a radial distribution of the clastic shallow marine deltaics to the north and west. In the north this is 

represented by a very thin, and most likely highly condensed, sequence that can be interpreted as the transition 

from pro-delta to distal shelf deposits.   

In contrast, the Late Cretaceous megasequence is much more extensively developed both across and along the 

Namibian margin (Figs. 7d and 8b). Only in the most distal, north-western part of the margin are accumulations of 

limited thickness (equivalent to 200 ms TWT or less). The progradational geometry of the MSB4-5 megasequence is 

replaced initially by a much more aggradational geometry, but then becoming more progradational again in the 

later stages of the Late Cretaceous MSB5-6 megasequence (e.g. Fig. 3c). This change in depositional geometry is 
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coincident with a dramatic change from a coarser clastics-dominated system to a claystone-dominated system. A 

similar relationship between geometry and sedimentology is also observed in the southern Orange Basin (Paton et 

al. 2008). The abrupt switch in sediment grade is considered to reflect the emergence of the Orange River 

catchment area capturing, eroding and draining the Karoo Basin over much of southern Africa. Despite significant 

sediment accumulation in the Late Cretaceous the concordant reflections of the inner margin imply uniform 

subsidence across much of the margin, over an area at least 100 km in width and 300 km in length. The Late 

Cretaceous shelf was remarkably stable apart from small normal faults with throws equivalent to reflector offsets 

on the order of 50-80 ms TWT. The end of the Turonian-Maastrichtian megasequence is marked by the erosional 

event that is most evident in the south (Fig. 3a) but which also extends towards the north (Fig. 3b); this is 

equivalent to a similarly aged erosion event in the southern portion of the Orange Basin (Paton et al. 2008).  

A comparison of the Cretaceous post-rift and Tertiary post-rift isochron maps (Figs. 6e and f) reveals the abrupt 

reorganisation of the shelf depositional system. The relatively thin (200 ms TWT) Tertiary megasequence of the 

middle margin likely reflects modest subsidence post-erosion, but also represents the significant bypass of 

sediments across a shelf that is 100 km wide, leading to deposition in the available accommodation space that lay 

outboard of the inherited Cretaceous shelf break. The lateral variation along the Tertiary continental slope is a 

reflection of the switching of the Bengula current that redistributes sediments from south to north along the 

margin (Weiglt & Uenzelmann-Neben 2004).    

Discussion   

What controls fault evolution from continental rift to drift stages?  

A number of studies have documented the influence of crustal heterogeneity upon the evolution of passive margins (Ring 

1994; Schumacher 2002; Korme et al. 2004). In this part of the South Atlantic the role of the Pan-African basement fabric 

being utilised by Mesozoic extension has been discussed previously (Light et al. 1993; Clemson 1997), and in particular the 

inheritance of Gariep Belt fabrics as a control on the north-south structural trend (Frimmel et al. 1996; Halbich & Alchin 1995). 

While our study agrees with this for the nearshore portion of the margin, we propose that an alternative explanation of the 

Kudu Basement Ridge, especially given its transparent internal character, is that it is a Precambrian granitoid body. This is 

supported by the ridge being directly along trend of the granite bodies contained within the onshore Gariep Belt (Fig. 1).  This 

would suggest that rifting to the west of this basement high may not have reactivated pre-existing fabric on through-going 

structures, and therefore caution must be applied before extrapolating basement fabric as continuous to the more distal parts 

of the basin margin.  

In addition to affecting the location of the subsequent rift structure, our results suggest that the pre-existing crustal 

heterogeneity influences the evolution of the rift faults. A significant number of studies have documented the nature in which 

faults grow and interact with sedimentary basin fill, through field observations (e.g. Cartwright et al. 1995; Dawers & Anders 

1995), analogue and numerical models (e.g. Gupta et al. 1998; Marchal et al. 1998; Cowie et al. 2000; McClay et al. 2002), and 

subsurface seismic studies at a variety of scales from regional 2D to high resolution 3D data (e.g. Morley 1999; Dawers & 

Underhill 2000; Contreras et al. 2000; McLeod et al. 2000; McLeod et al. 2002). Given the caveat that we cannot clearly map 

the earliest fault development, we present evidence of smaller faults growing and linking to form larger structures. These 

early faults do not show evidence of significant en-echelon patterns as predicted by numerical and analogue models (e.g. 

Cowie et al. 2000; McClay et al. 2000). Even accounting for the line spacing of the available data, we would expect such a 

spatial geometry to be evident in our data; therefore we propose that the absence of en-echelon faults is because the 

inheritance of basin fabric itself plays a role in modifying the nature of how the faults grow and interact (Walsh et al. 2002; 
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Paton 2006). It has been documented within the Cape Fold Belt of South Africa that the basement fabric can result in the co-

linear development of normal faults and we invoke a similar process here (after Paton 2006). The faults that we do observe 

are evident as having length scales of up to 30 km in the early syn-rift, but these had coalesced by the late syn-rift into linked 

segments of up to 100 km; again these observations are consistent with normal fault developments in southern Africa (Paton 

et al. 2006). However, what we propose is that there are significant offsets in fault locations on a wavelength of 100 km, and 

that these steps are accommodated through accommodation zones or strike-slip faults, which would be akin to continental 

transfer faults (Bosworth, 1985). 

  

Numerical models of rift evolution show that as lithospheric stretching approaches incipient break-up strain should 

progressively localise towards the spreading centre. Huismans and Beaumont (2013) predicted that during a rift stage 

distributed strain, and hence a wide rift basin, would progressively localise onto the rift axis. Although previous studies have 

demonstrated that this may happen during the continental rift phase (e.g. Skogseid 2001), this study suggests that this is the 

case throughout much of the rift history and into the oceanic spreading phase.   

Segmentation and margin evolution  

The segmentation of passive margin basins has been much discussed, and clearly plays a significant role in the tectonic 

evolution of the South Atlantic (Clemson et al. 1997; Franke et al. 2007). Of note is the correspondence between segment 

boundaries and onshore structural lineaments, specifically with the well-established trends of Damara fold belt and Gariep 

structures, (e.g. Clemson et al. 1997; Corner 1983; Holzförster et al. 1999; Stollhofen et al. 2000; Corner et al. 2002).  

Koopman et al. (2014) provides further insights into the role of segmentation in the evolution of the Orange Basin, including 

discussion of how these formed propagation barriers to the northward progression of seafloor spreading, and they associated 

these features with onshore structures, e.g. Cape Cross. On the conjugate margin in Argentina and Uruguay, Stica et al. (2014) 

outline how these segments play a fundamental role in ocean spreading and margin development, as well as influencing plate 

reconstructions (e.g. Moulin et al. 2013; Numberg & Muller 1991; Heine et al. 2013). Although there is evidence that not all 

onshore structures control offshore transfer zones, for example on the northern Norwegian margin (Tsikala et al. 2001), there 

is broad agreement that pre-existing structures can influence the location of fracture zones (e.g. Lister et al. 1986; Sitca 2014). 

A point recognised by Sitca (2014) is that no studies to date can relate the first evolution with break up segmentation. 

Clemson et al. (1997) discuss the importance of segmentation for the development of the passive margin along the entire 

Namibian basin. Our results agree with their conclusion, but in addition demonstrate for the first time that some rift segments 

will become inactive as a function of how faults grow and interact, but that where continental transform faults may have 

formed major structures they do remain significant features during the post-rift phase and into the oceanic domain.    

Continuity of post-rift megasequences and thermal subsidence  

Our mapping of the rift architecture, and hence the level of the top pre-rift surface,  shows that is it very variable, 

both along and across the margin, with half grabens interspersed with basement highs (Fig. 8). When compared 

with the South African portion of the Orange Basin the variability increases and is a reflection of the presence of 

the Cape Fold Belt reactivation that cross-cuts the north-south trending Atlantic rift system (Paton et al. this 

volume). The results of this study, in conjuction with Paton et al. (this volume) reflects significant variations in the 

extent to which the upper crust has been stretched along the margin.  Yet there is remarkable continuity of post-

rift megasequences along the 1000 km length of the Orange Basin. The early post-rift fill (MSB4-5) is dominated by 

margin-derived clastic deposits prograding westward into the ocean basin, having been sourced from a number of 

smaller fluvial systems. Sediment thicknesses are broadly comparable throughout the Aptian-Albian, suggesting 

erosion rates of the hinterland were similar along its length. The Cenomanian sees the development of the Orange 
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River as the dominant sediment entry point (Jungslager, 1999) and because there were no significant ocean current 

systems at the time, there is a broad symmetry in its deposits to its north (Namibia) and south (South Africa).  

Stratigraphic successions are almost identical and have remarkably similar thicknesses, except in the furthest north 

beyond the edge of the Orange River system.   

The geometry and accommodation space created along a passive margin should be a function of crustal thinning 

(McKenzie 1978; Steckler & Watts 1978). It would be expected that areas with greatest extension should correspond 

to areas of greatest post-rift thermal subsidence, at least during the earlier phase of the post-rift period. Yet the 

observations from the combined South African-Namibian Orange Basin (this study and Paton et al. 2008) 

demonstrate that the earliest post-rift phase shows little thickness variation along the 1000 km margin regardless 

of the rift architecture on which it sits. This is strong evidence that the magnitude of upper crustal extension does 

not always correspond to that of the lower crust, as is invoked by depth-dependant stretching models (e.g. 

Huisman and Beaumont 2011).  

Conclusion  

  

Using the Southern Namibian margin as an example, we have demonstrated that rift evolution and subsequent 

passive margin architecture are the products of a complex interplay of lithospheric processes and crustal 

heterogeneity. The latter plays a role in influencing the dimensions and style of fault evolution and in establishing 

the position of cross-cutting structures. We also highlight the role of pre-rift granitic bodies in influencing the 

location of deformation.   
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Figure captions  

Figure 1 ʹ Regional map of the Namibian South Atlantic margin (namcor.com.na). This study focuses on the northern 

part of the Orange Basin, which includes the Kudu Field. The position of illustrated seismic sections are indicated.  

Figure 2 ʹ Tectono-stratigraphic scheme for the Namibian continental margin, with megasequence boundaries 

(MSB1-MSB6) identified in this study. Previous nomenclature of Brown et al. (1995) for key seismic reflections is 

included for comparison, from 1At1 to 22At1. Geologic timescale is from Walker et al. (2012).  

Figure 3 ʹ Regional east-west sections across the Namibian Orange Basin. a) this section, which is in the south, is 

taken as the type section and shows the Kudu Basement Ridge, the syn-rift and transition phase, and the 

Cretaceous and Tertiary post-rift sequences. b) and c) are to the north of Section (a) and show how the basin 

changes configuration towards the north (Figure 1 for location).  

Figure 4 ʹ This section (and its interpretation on the lower panel) is located to the east of the Kudu Basement Ridge 

and shows reflectivity within the crust. This corresponds to the offshore equivalent to the Gariep Belt and shows 

how Mesozoic faulting reactivates pre-existing heterogeneity (Figure 1 for location).  

Figure 5 ʹ This section (and its interpretation on the lower panel) is located to the west of the Kudu Basement 

Ridge. It shows the transition from continental crust through the volcanic syn-rift sequence and seaward dipping 

reflections into ocean crust (Figure 1 for location).   
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Figure 6 ʹ Isopach maps of the main tectono-stratigraphic intervals in the study area. a) The deposition of the lower 

syn-rift is controlled by a number of north-south trending normal faults on both side of the Kudu Basement Ridge 

that are interpreted here as being dissected by SW-NE trending transform faults. b) In contrast the upper syn-rift 

interval is controlled by fewer faults in the west of the basin, indicating localisation of strain towards the incipient 

spreading centre. The continued localisation of accommodation space towards the west is reflected in the lower 

transition phase c) whereas accommodation space dramatically reorganises in the upper transition phase (d). The 

change in post-rift thickness variations between a single point source in the south in the Cretaceous (e), compared 

with bypass deposition in the outer margin (f) is evident.   

Figure 7 ʹ Cartoon evolution of the Namibian margin showing the progressive evolution of the syn-rift, transition 

phase and the post-rift deposition.  

Figure 8 ʹ 3D cartoon to show the variation through time at the end of the Transition phase (MSB4), the end 

Cretaceous (MSB6) and Present day in the margin geometry based upon the three sections in Figure 3.   
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