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This paper presents a new form of robust distributed model predictive control (MPC) for multiple dynamically-
decoupled subsystems, in which distributed control agents exchange plans to achieve satisfaction of coupling
constraints. The new method offers greater flexibility in communications than existing robust methods, and
relaxes restrictions on the order in which distributed computations are performed. The local controllers use
the concept of tube MPC – in which an optimization designs a tube for the system to follow rather than a
trajectory – to achieve robust feasibility and stability despite the presence of persistent, bounded disturbances.
A methodical exploration of the trades between performance and communication is provided by numerical
simulations of an example scenario. It is shown that at low levels of inter-agent communication, the DMPC
can obtain a lower closed-loop cost than that obtained by a centralized implementation. A further example
shows that the flexibility in communications means the new algorithm has a relatively low susceptibility to the
adverse effects of delays in computation and communication.

Keywords: linear systems, distributed control, constrained control

1 Introduction

This paper develops a distributed form of Model Predictive Control (MPC) (Mayne et al. 2000,
Maciejowski 2002) for a group of linear subsystems that guarantees stability and satisfaction of
coupled constraints despite the action of persistent, unknown, but bounded disturbances. The
distributed control agents communicate plans with each other to achieve constraint satisfaction.
Key features of the new formulation are that (i) only one subsystem agent updates its plan at each
time step, (ii) robust stability is guaranteed for any choice of update sequence, and (iii) each agent
communicates only after its update; the resulting algorithm offers flexibility in communication
and computation. This is the first work to combine guaranteed robust feasibility and convergence,
in the presence of a persistent disturbance, with flexible communication. In addition, this paper
presents a thorough investigation of the trade between performance and communication for an
example scenario, identifying how to exploit the flexibility of the new algorithm, and examines
the effects on performance of delays in communication and computation.
Decentralized or Distributed MPC (DMPC) (Camponogara et al. 2002) has been developed

for application to large-scale systems, such as chemical plants (Venkat et al. 2004) and process
control (Borrelli et al. 2005), or teams of vehicles (Kuwata et al. 2007), in which a control by a
single centralized agent would require excessive communication, computation and reliance on a
single processor. Instead, DMPC distributes control decision-making among agents correspond-
ing to the different subsystems making up the whole. The challenge is then how to coordinate
efforts to ensure that the distributed decisions lead to constraint satisfaction, feasibility and
stability of the overall closed-loop system.
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Several strategies for DMPC have been presented in the literature, and many theoretical
results exist, including those for feasibility and stability; see Scattolini (2009) for a compre-
hensive survey. The approaches are broadly divisible by the type of couplings or interactions
assumed between constituent subsystems. For example, dynamically-coupled systems (Du et al.
2001, Camponogara et al. 2002, Ling et al. 2005, Dunbar 2007, Giovanini et al. 2007, Venkat
et al. 2008), coupling via the cost function (Shim et al. 2003, Raffard et al. 2004, Franco et al.
2007), and subsystems sharing coupled constraints (Waslander et al. 2004, Keviczky et al. 2006,
Richards and How 2007, Kuwata et al. 2007). The method presented in this paper assumes the
latter type of coupling, and has agents update their plans one at a time, without iteration, to
ensure coupled constraint satisfaction; however, unlike other methods, it also permits a flexible
order of updating.
Robustness to disturbances is a key challenge in the development of MPC (Mayne et al. 2000),

and is harder still when control decision-making is decentralized; few DMPC schemes in the lit-
erature offer robustness . In Richards and How (2007), robust feasibility and stability are guar-
anteed by updating each subsystem’s plan in a sequence, subject to tightened constraints, and
while ‘freezing’ the plans of others. Alternative approaches include treatment of interconnected
subsystems’ state trajectories as bounded uncertainties, and using min-max optimization (Jia
and Krogh 2002) – though the complexity issues with such an optimization method are well doc-
umented (Mayne et al. 2000). Using the comparison model approach to robustness (Fukushima
and Bitmead 2005), another distributed method (Kim and Sugie 2005) uses worst-case predic-
tions of state errors, determined based on a robust control Lyapunov function, and tightens
constraints accordingly. Magni and Scattolini (2006) propose a robust stable decentralized algo-
rithm for non-linear dynamically-coupled systems, with no information exchange between agents,
although for an asymptotically-decaying disturbance.
The distributed MPC method presented in this paper achieves robustness to persistent dis-

turbances by use of tube MPC (Mayne et al. 2005), a form of robust MPC that guarantees
feasibility and stability despite the action of an unknown but bounded disturbance. In this for-
mulation, the ‘tube’ is a sequence of robust invariant sets centered on a trajectory for the nominal
(i.e., disturbance-free) system; use of feedback ensures that the system remain insides the tube
for all possible realizations of the disturbance. A key observation of this new work is that if that
feedback uses only local information, each subsystem can remain within its tube without the
need for communication, and exchange of information with other agents is only required when
the tubes are updated by the optimization. The new algorithm in this paper exploits this feature
to achieve flexibility in communication. An additional advantage of this approach is that the
optimization involves only the nominal system dynamics, avoiding the large increase in compu-
tational complexity associated with the inclusion of uncertainty in the optimization (Scokaert
and Mayne 1998).
Many distributed methods proposed in the literature (e.g., Du et al. (2001), Kim and Sugie

(2005), Dunbar and Murray (2006), Alessio and Bemporad (2007), Richards and How (2007),
Venkat et al. (2008)) do not consider the implications that the scheduling of local optimizations
has on the time required for communications. For example, the constraint-tightening DMPC
approach proposed by Richards and How (2007), also for dynamically-decoupled systems with
coupled constraints, assumes repeated instantaneous exchanges during each sampling period.
On the other hand, Jia and Krogh (2002) used a stability constraint to permit a one-step
delay in information exchange, while Franco et al. (2007, 2008) show input-to-state stability
for systems with for multiple-step delays. Richards and How (2005) present a robust DMPC
method with explicit allowance for computation and communication delays. Though delays are
not explicitly considered for the new algorithm developed in this paper, its single-update nature
implicitly allows time for communications after each optimization, and no instantaneous inter-
agent exchanges of information are assumed. We provide a numerical investigation of the effects
of delays on the new algorithm; the results highlight the reduced susceptibility of the proposed
tube DMPC to delay in both communication and computation.
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Section 2 defines the problem statement, and reviews tube MPC. Section 3 develops the main
result, a robust distributed MPC algorithm, by extending tube MPC to a distributed imple-
mentation where only one subsystem agent updates at each time step. Section 4 analyses the
communication requirements for the new algorithm, and Section 5 presents results from numeri-
cal simulations, including an exploration of the trades between performance and communication,
and an investigation into the effects of delays.
Notation: The matrix mapping of a set is defined as AB ,

{
c | ∃b ∈ B, c = Ab

}
. The

operator ‘∼’ denotes the Pontryagin difference (Kolmanovsky and Gilbert 1998), a set-shrinking
operation defined as A ∼ B ,

{
a | a+b ∈ A, ∀b ∈ B

}
. The operator ‘⊕’ denotes the Minkowski

sum, defined as A⊕B ,
{
a+b,a ∈ A,b ∈ B

}
. The double subscript notation (k+j|k) indicates

a prediction of a variable j steps ahead from time k. Let N ,
{
0, 1, 2, . . .

}
.

2 Preliminaries

2.1 Problem statement

The aim is to control a system of Np linear time-invariant, discrete-time subsystems, the set of
which is denoted P =

{
1, . . . , Np

}
, described by the state equations

xp(k + 1) = Apxp(k) +Bpup(k) +wp(k), ∀p ∈ P, k ∈ N, (1)

where xp ∈ R
Nx,p , up ∈ R

Nu,p and wp ∈ R
Nx,p are respectively the state vector, control input

vector, and disturbance acting on subsystem p. Assume that each system
(
Ap,Bp

)
is controllable,

and that the complete states xp are available at each sampling instant. The disturbances are
unknown a priori, but are assumed to lie in known independent compact sets that contain the
origin:

wp(k) ∈ Wp ⊂ R
Nx,p , ∀p ∈ P, k ∈ N.

Each subsystem is subject to local constraints:

Cpxp(k) +Dpup(k) ∈ Yp ⊂ R
Ny,p , ∀p ∈ P, k ∈ N,

where Yp is closed, and also Nc coupling constraints across multiple subsystems. Each coupling
constraint c ∈ C =

{
1, . . . , Nc

}
applies to the sum of coupling outputs zcp ∈ R

Nz,c :

∀c ∈ C, p ∈ P, k ∈ N : zcp(k) = Ecpxp(k) + Fcpup(k),

Np∑

p=1

zcp(k) ∈ Zc ⊂ R
Nz,c ,

where Zc is closed. The matrices Cp,Dp,Ecp,Fcp and the sets Yp,Zc are all chosen by the
designer as part of the problem.
The system-wide objective is assumed to be decoupled, and is a summation of some function

of the state and input, given by

min

Np∑

p=1

∞∑

k=0

lp
(
xp(k),up(k)

)
, (2)

where it is assumed that lp
(
xp,up

)
≥ c ‖xp,up‖ for some c > 0, and lp

(
0,0

)
= 0.
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2.2 Coupling structure

The following definitions identify structure in the coupling, and are used later to determine the
requirements for communication. Define Pc as the set of all subsystems involved in constraint c,
and similarly let Cp be the set of constraints involving subsystem p:

Pc ,
{

p ∈ P :
[
Ecp Fcp

]
6= 0

}

, (3)

Cp ,
{

c ∈ C :
[
Ecp Fcp

]
6= 0

}

. (4)

Then the set of all other subsystems coupled to p is

Qp =

(
⋃

c∈Cp

Pc

)

\{p}. (5)

2.3 Tube model predictive control

Tube MPC (Mayne et al. 2005) uses the nominal system dynamics to design a sequence of
disturbance-invariant state sets for a horizon of N steps. The decision variable includes the
initial state, and is defined as Up(k) ,

{
x̄p(k|k), ūp(k|k), . . . , ūp(k + N − 1|k)

}
, ∀p ∈ P. As

the optimization involves only nominal terms, complexity is comparable to standard MPC, and
robustness to disturbance is guaranteed by use of a feedback law to keep the state around the tube
centre. The following standing assumption is required: there exists a local stabilizing controller
Kp for each subsystem

(
Ap,Bp

)
and hence a corresponding robust positively-invariant (RPI)

set Rp, satisfying

(
Ap +BpKp

)
xp +wp ∈ Rp, ∀xp ∈ Rp,wp ∈ Wp,

(
Cp +DpKp

)
Rp ⊂ Yp,

Np⊕

p=1

(
Ecp + FcpKp

)
Rp ⊂ Zc, ∀c ∈ C.

(6)

Then the centralized problem P
C
(
x1(k), . . . ,xNp

(k)
)
is

Jopt
(
x1(k), . . . ,xNp

(k)
)
= min

{U1(k),...,UNp (k)}

Np∑

p=1

Jp
(
Up(k)

)
(7)



April 6, 2010 8:10 International Journal of Control dmpc˙jnl

International Journal of Control 5

subject to ∀p ∈ P, ∀j ∈
{
0, . . . , N − 1

}
:

x̄p(k + j + 1|k) = Apx̄p(k + j|k) +Bpūp(k + j|k), (8a)

xp(k)− x̄p(k|k) ∈ Rp, (8b)

x̄p(k +N |k) ∈ XFp
, (8c)

ȳp(k + j|k) = Cpx̄p(k + j|k) +Dpūp(k + j|k), (8d)

ȳp(k + j|k) ∈ Ỹp, (8e)

∀c ∈ C : z̄cp(k + j|k) = Ecpx̄p(k + j|k) + Fcpūp(k + j|k), (8f)

Np∑

p=1

z̄cp(k + j|k) ∈ Z̃c, (8g)

where the cost function is a finite-horizon approximation to (2), involving the nominal states
and inputs:

Jp
(
Up(k)

)
, Fp

(
x̄p(k +N |k)

)
+

N−1∑

j=0

lp
(
x̄p(k + j|k), ūp(k + j|k)

)
. (9)

The sets Ỹp, Z̃c represent the sets Yp,Zc tightened by margins to allow for uncertainty:

Ỹp = Yp ∼
(
Cp +DpKp

)
Rp, (10a)

Z̃c = Zc ∼

Np⊕

p=1

(
Ecp + FcpKp

)
Rp. (10b)

The sets Rp are ‘cross-sections’ of the tubes and are RPI sets, as in (6). The sets XFp
are terminal

sets, each assumed to have an interior, and invariant under terminal control laws up = κFp
(xp),

∀p ∈ P, so that for all xp ∈ XFp
,

Apxp +BpκFp
(xp) ∈ XFp

, (11a)

Cpxp +DpκFp
(xp) ∈ Ỹp, (11b)

Np∑

p=1

Ecpxp + FcpκFp
(xp) ∈ Z̃c, ∀c ∈ C. (11c)

A further assumption is that, for each p, the terminal cost is a local Lyapunov function in XFp
:

Fp

(
Apxp +BpκFp

(xp)
)
− Fp

(
xp

)
≤ −lp

(
xp, κFp

(xp)
)
, ∀xp ∈ XFp

, p ∈ P. (12)

Assumptions (11) and (12), together with the requirements on the stage cost, represent A1–A4
in Mayne et al. (2000) or equivalently A1 and A2 in Mayne et al. (2005).
After the optimization is solved at each time step, the following control is applied to each

subsystem p ∈ P

up(k) = ūopt
p (k|k) +Kp

(
xp(k)− x̄opt

p (k|k)
)
. (13)
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Under this control, the closed-loop system then is robustly-feasible and stable; see Mayne et al.
(2005, Proposition 3).

3 Robust distributed MPC using tubes

This section extends tube MPC (Mayne et al. 2005) to a distributed implementation, with ap-
plication to the problem statement in Section 2, and states the main feasibility and stability
results. The centralized problem P

C is distributed amongst subsystem agents as local optimiza-
tion problems, and only one subsystem is permitted to update at each time step; it is possible
to permit the simultaneous updating of all agents in some cases (Trodden 2009), although this
generalization is not considered here. In the sequel, pk shall denote the agent optimizing at time
k. Therefore, how an agent obtains a new plan depends on whether it is selected for update: if
p = pk, the new plan for p is obtained as the solution to the local optimization; otherwise, the
previous plan for p is renewed by taking the tail of the previous feasible solution and augmenting
with a step of terminal control κFp

. That is, given U∗
p(k) at time k,

Ũp(k + 1) ,
{
x̄∗
p(k + 1|k), ū∗

p(k + 1|k), . . . , ū∗
p(k +N − 1|k), κFp

(
x̄∗
p(k +N |k)

)}
, (14)

is a feasible plan for time k+1. The agents thus update in a sequence,
{
p1, . . . , pk, pk+1, . . .

}
, to

be chosen by the designer. The local problem P
D
p

(
xp(k);Z

∗
p(k)

)
for a subsystem p ∈ P is defined

by

Jopt
p

(
xp(k);Z

∗
p(k)

)
= min

Up(k)
Jp
(
Up(k)

)
(15)

subject to constraints (8a) to (8f) for agent p only, and

z̄cp(k + j|k) +
∑

q∈Pc\{p}

z̄∗cq(k + j|k) ∈ Z̃c, ∀c ∈ Cp. (16)

In this optimization, Z∗
p(k) denotes the collection of outputs z̄∗cq(·|k) required by p to evaluate

constraint (16). Note that the collection of (16) over all subsystems p ∈ P is equivalent to (8g);
the revised summation removes terms that are identically zero, using the definitions (3) and (4).
We assume at this point that the information Z∗

p(k) is known; in Section 4 the communication
requirements to obtain Z∗

p(k) are identified. This local optimization is then employed in the
following algorithm, executed by all agents in parallel.

Algorithm 1:

(i) Set k = 0. Wait for feasible solution U∗
p(0), information Z∗

p(0), and terminal set XFp
and

control law κFp
from central initializing agent.

(ii) Apply control (13): up(k) = ūp(k|k) +Kp

(
xp(k)− x̄p(k|k)

)
.

(iii) Increment k, and sample current state xp(k).
(iv) If pk = p,

a) Obtain new plan Up(k) = U
opt
p (k) as solution to P

D
p

(
xp(k);Z

∗
p(k)

)
.

b) Transmit new plan to agents in Qp.

Else renew current plan via (14): Up(k) = Ũp(k).
(v) Go to step (ii).

This algorithm requires that a feasible initial plan – i.e., part of a feasible solution to the
initial centralized problem P

C – be made available to each control agent, a common assumption
of DMPC methods; for example, see Richards and How (2007), Dunbar (2007). Note that the
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constraints of PC are not sequence dependent, and therefore the set of feasible initial plans is
not sequence dependent. In fact, given an initial solution to P

C, recursive feasibility holds for
the system controlled by DMPC for any subsequent choice of sequence, as Theorem 3.1 shows.
A further requirement is that the terminal set XFp

for the local optimization be made available
centrally, since coupling constraints must be satisfied therein. However, note that no further
centralized processing is required from that point on.
The following theorem states the main result of the paper.

Theorem 3.1 : Suppose the sequence U∗
p(k0) =

{
x̄∗
p(k0|k0), ū

∗
p(k0|k0), . . . , ū

∗
p(k0 + N −

1|k0)
}
, ∀p ∈ P, exists and is a feasible (but not necessarily optimal) solution to

P
C
(
x1(k0), . . . ,xNp

(k0)
)
at some time step k0. Then, for all xp(k0+1) ∈ Apxp(k0)+Bpup(k0)⊕

Wp, ∀p ∈ P, where up(k0) = ū∗
p(k0|k0) + Kp

(
xp(k0)− x̄∗

p(k0|k0)
)
, (i) the candidate sequence

Ũp(k0 + 1), defined by (14), is a feasible solution to P
D
p

(
xp(k0 + 1);Z∗

p(k0 + 1)
)
; (ii) the upper

bound on the local cost decreases monotonically:

J∗
p

(
xp(k0 + 1);Z∗

p(k0 + 1)
)
≤ J∗

p

(
xp(k0);Z

∗
p(k0)

)
− lp

(
x̄∗
p(k0|k0), ū

∗
p(k0|k0)

)
,

for all p ∈ P, where J∗
p

(
xp(k0);Z

∗
p(k0)

)
= Jp

(
U∗

p(k0)
)
; and (iii) subsequently, the resulting

closed-loop system controlled by Algorithm 1 is robustly-feasible and stable for any choice of
update sequence.

Proof For (i), given a feasible solution
{
U∗

p(k0)
}

p∈P
to P

C
(
x1(k0), . . . ,xNp

(k0)
)
, by Mayne et al.

(2005, Proposition 3),
{
Ũp(k0+1)

}

p∈P
is a feasible solution to P

C
(
x1(k0+1), . . . ,xNp

(k0+1)
)
.

Ũp(k0 + 1) is also a feasible solution to P
D
p

(
xp(k0 + 1);Z∗

p(k0 + 1)
)
, for any p; Proposition 3

in Mayne et al. (2005) implies that local constraints (8a) to (8f) are directly satisfied, while
constraint (16) is satisfied by the choice z̄cp(·|k0+1) = z̄∗cp(·|k0), ∀c ∈ Cp, so that

∑

p∈Pc
z̄∗cp(k0+

j|k0) ∈ Zc, j ∈
{
1, . . . , N

}
. This is then equivalent to constraint (8g) in the problem P

C
(
x1(k0+

1), . . . ,xNp
(k0 + 1)

)
, (all c /∈ Cp, p /∈ Pc, have z̄cp = 0).

For (ii), the value of local cost associated with the feasible U∗
p(k0) at time k0 is

J∗
p

(
xp(k0);Z

∗
p(k0)

)
= Jp

(
U∗

p(k0)
)
. Then at time k0 + 1, all non-updating subsystems p 6= pk0+1

adopt their respective candidate solutions, Up(k0 + 1) = Ũp(k0 + 1), defined by (14), with
associated cost

J̃p
(
xp(k0 + 1);Z∗

p(k0 + 1)
))

= Jp
(
Ũp(k0 + 1)

)

= Jp
(
U∗

p(k0)
)
− lp

(
x̄∗
p(k0|k0), ū

∗
p(k0|k0)

)

+ lp

(

x̄∗
p(k0 +N |k0), κFp

(
x̄∗
p(k0 +N |k0)

))

+ Fp

(

Apx̄
∗
p(k0 +N |k0) +BpκFp

(
x̄∗
p(k0 +N |k0)

))

− Fp

(
x̄∗
p(k0 +N |k0)

)
.

By (12), the latter three terms sum to less than or equal to zero, leaving

J̃p
(
xp(k0 + 1);Z∗

p(k0 + 1)
)
≤ J∗

p

(
xp(k0);Z

∗
p(k0)

)
− lp

(
x̄∗
p(k0|k0), ū

∗
p(k0|k0)

)
,

for all p 6= pk0+1.
The optimizing subsystem pk0+1 obtainsUpk0+1

(k0+1) as the solution to the local optimization

P
D
pk0+1

(
xpk0+1

(k0+1);Z∗
pk0+1

(k0+1)
)
; as Ũpk0+1

(k0+1) is a known feasible solution, then an upper
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bound on the optimal cost is obtained

Jopt
pk0+1

(
xpk0+1

(k0 + 1);Z∗
pk0+1

(k0 + 1)
)
≤ J̃p

(
xp(k0 + 1);Z∗

p(k0 + 1)
)
.

Thus, for any subsystem p ∈ P, it follows that

J∗
p

(
xp(k0 + 1);Z∗

p(k0 + 1)
)
≤ J∗

p

(
xp(k0);Z

∗
p(k0)

)
− lp

(
x̄∗
p(k0|k0), ū

∗
p(k0|k0)

)
,

where J∗
p is the cost of a general feasible solution.

Part (iii) follows by applying recursion to (i) and (ii). Firstly, by construction, any solution
U∗

pk
(k) to P

D
pk

(
xpk

(k);Z∗
pk
(k)
)
taken with the candidate solutions

{
Ũp(k)

}
, p 6= pk, is a solution

to P
C
(
x1(k), . . . ,xNp

(k)
)
; solving P

D
pk

is equivalent to solving P
C with p 6= pk constrained to

take Up(k) = Ũp(k). A feasible solution to P
C
(
x1(0), . . . ,xNp

(0)
)
then implies all subsequent

optimizations PD
p

(
xp(k);Z

∗
p(k)

)
, k ≥ 0, are feasible, regardless of the choice of update sequence

{pk}k. Next, because J∗
p (k + 1) − J∗

p (k) ≤ −lp
(
x̄∗
p(k|k), x̄

∗
p(k|k)

)
, yet J∗

p (·) and the stage cost
lp(·, ·) are both strictly non-negative, then by recursion it follows that J∗

p (k+ 1)− J∗
p (k) → 0 as

k → ∞. In turn, this implies that lp
(
x̄∗
p(k|k), ū

∗
p(k|k)

)
→ 0. Because lp

(
xp,up

)
≥ c‖xp,up‖ for

some c > 0, and lp
(
0,0

)
= 0, it must be that the nominal state x̄∗

p(k|k) → 0 and the nominal
control ū∗

p → 0. Finally, by the fact that xp(k) ∈ x̄p(k|k)⊕Rp, ∀k, it follows that the true state
xp(k) → Rp as k → ∞, and, furthermore,

up(k) = ū∗
p(k|k) +Kp

(
xp(k)− x̄∗

p(k|k)
)

→ Kpxp(k)

as k → ∞. �

4 Communication analysis

It remains to evaluate exactly what information, denoted Z∗
p(k), is required in the local op-

timization for p. In the problem P
D
p

(
xp(k);Z

∗
p(k)

)
, the structure in the coupling constraints,

identified in (3) and (4), has been exploited. Firstly, only constraints c ∈ Cp are applied, as by
definition (4), z̄cp(k + j|k) = 0 for all other constraints c /∈ Cp, so these outputs do not affect
the update of subsystem p. Secondly, the summation in (16), for each c, includes output terms
from only those subsystems in Pc; by definition (3), z̄cr(k + j|k) = 0 for all other subsystems
r /∈ Pc. The coupling terms z̄∗cq(k + j|k), ∀q ∈ Pc \ {p} are not affected by the decision variables
Up(k), so they appear as fixed values in (16), denoted by ∗. Using the definition of coupled
subsystems (5), it follows that to evaluate (16), values for z̄∗cq(k+j|k), ∀c ∈ Cp, are required from
all other subsystems q in Qp.
We note, therefore, that it is not necessary to obtain the whole plan U∗

q(k) from some coupled
q. Instead, define a message vector from subsystem p regarding constraint c at time k as

mcp(k) ,
[
z̄∗cp(k|k)

T . . . z̄∗cp(k +N − 1|k)T x̄∗
p(k +N |k)T

]T
, (17)

which includes the coupling outputs and the terminal state. Again, the ∗ superscript denotes a
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feasible solution. Also, define a propagation matrix,

Πcp ,










0 I 0 . . . 0

0 0 I . . . 0
...
...
...
. . .

...
0 0 0 . . .

(
Ecp + FcpKFp

)

0 0 0 . . .
(
Ap +BpKFp

)










,

assuming a linear terminal control law, i.e., κFp
(xp) = KFp

xp, so that mcp(k) = Πcpmcp(k−1) is
the message at time k for a non-updating subsystem p 6= pk. Suppose the last time a subsystem
p optimized its plan was at a step k̂p, before the current step k, defined as

k̂p(k) , max
k′∈{k′<k|pk′=p}

k′. (18)

Then the message at k for a subsystem p that last optimized at k̂p is mcp(k) = Π
(k−k̂p)
cp mcp(k̂p).

Relating this back to the information that is required by pk to evaluate (16), Z∗
pk
(k) is obtained

as

Z∗
pk
(k) =

{
Imcq(k)

}

c∈Cpk
,q∈Qpk

=
{
IΠ(k−k̂q)

cq mcq(k̂q)
}

c∈Cpk
,q∈Qpk

,
(19)

where the matrix operator I , diag
(
I, I, . . . ,0

)
removes the terminal states. The inclusion of the

terminal state x̄p(k+N |k) in the message permits the correct propagation for steps k > k̂q +N .
This propagation leads to the following requirement for obtaining Z∗

pk
(k).

Requirement 4.1 At a time step k, the control agent for an optimizing subsystem pk must
have received messages mcq(k̂q), ∀c ∈ Cpk

, from all subsystems q ∈ Qpk
.

This illustrates a key feature of tube MPC that means it lends itself to distribution; an
updating subsystem pk may obtain Z∗

pk
(k) by using Πcq to propagate previously-communicated

data regarding coupled subsystems, with no communication required in the interim. Therefore,
to meet Requirement 4.1 it is sufficient for each agent p to transmit the message mcp, ∀c ∈ Cp,
to all q ∈ Qp after each planning update, as in Algorithm 1.
However, instances exist where message transmissions are not necessary. The remainder of

this section identifies these instances, and shows how flexibility in update sequence choice can
be exploited to offer a DMPC scheme with low levels of communication. The measure of com-
munication that shall be used in the sequel is, with only small loss of generality, the number of
data exchanges between any pair of subsystems at a time step. A data exchange occurs whenever
a subsystem agent transmits its message to any other subsystem agent. This overlooks the fact
that messages may be of different sizes. However, this approach is justified, since the “cost” of
communication is often driven by connectivity rather than bandwidth.
It is observed that after the optimization at time k, the updating system pk needs to transmit

a message if both the following two criteria are met:

C1: The optimized plan differs from the candidate plan, i.e., Uopt
pk

(k) 6= Ũpk
(k);

C2: Before subsystem pk next optimizes, another subsystem in Qpk
will optimize.

Otherwise, the new information transmitted by pk is redundant. It follows that, following an
optimization, a subsystem pk must transmit its plan to all others in Qpk

if C1 and C2 are met.
Similarly, it is possible to establish the communication required for the centralized implemen-

tation of the controller (CMPC). If an optimization is to take place at time k, then a central
agent must have received xp(k) from all subsystems prior to the optimization. Susbequently,
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new plans must be communicated to all subsystems. Assuming that the control agent is lo-
cated on one of the subsystems p ∈ P, the minimum number of data exchanges required at an
optimization is therefore 2(Np − 1).
In the worst case, when coupling constraints exist between all subsystems, subsystem pk is

coupled to all other subsystems, and the number of coupled agents is n(Qpk
) = (Np − 1) for

any pk. By definition, n(Qpk
) ≤ (Np − 1); thus, DMPC requires, at most, only half as many

data exchanges per optimization as does CMPC. However, lower levels of communication can
be obtained by exploiting the the coupling structure.
For centralized MPC, at each time step, a decision is made whether to optimize or not. The

resulting number of data exchanges that take place over the length of a simulation is then
inextricably linked to the number of updating steps. With the distributed algorithm, we have an
extra degree of freedom, in that the decision is not only whether to optimize or not, but also which
subsystem is to optimize. For example, the sequence

{
1, 2, 1, 2, . . .

}
requires communication at

every step, whereas
{
1, 1, 2, 2, . . .

}
requires communication at alternating steps. There is a many-

to-one mapping of update sequences to data exchanges; thus, the link between the number of
updating steps and communication is broken. It remains to determine the effect this flexibility
has on system-wide performance, and this is explored in the next section.

5 Numerical examples

This section presents simulation results using the new distributed MPC algorithm. The first
example compares the performance of DMPC with that of CMPC by investigating the trade
between performance and communication, and shows that the flexibility in communication can
be exploited to obtain better performance for DMPC with low levels of communication. The
second example investigates the effect of delays on the performance of the proposed DMPC.
In both examples, a comparison is made with the constraint-tightening (CT-DMPC) method

of Richards and How (2007). That method shares certain similarities with the DMPC pro-
posed in this paper: CT-DMPC also guarantees robust constraint satisfaction and feasibility
for subsystems coupled through the constraints, by updating agents’ plans sequentially. How-
ever, CT-DMPC uses a fixed, pre-determined sequence for updating plans, and – based on the
assumption of instantaneous data exchanges – all agents optimize within the same time step.
Consider the system consisting of Np identical point masses moving in 1-D, each with double

integrator dynamics, discretized using a time step T = 1 second. For all p ∈ P:

Ap =

[
1 1
0 1

]

, Bp =

[
0.5
1

]

.

Each mass is subject to local constraints on speed and control, i.e.,
∣
∣[0 1]xp

∣
∣ ≤ 2 and

∣
∣up(k)

∣
∣ ≤

1, and all pairs are coupled by a constraint to remain ‘close’:
∣
∣[1 0] (xp − xq)

∣
∣ ≤ ∆x, ∀p 6= q.

The feedback controller is chosen to be the nilpotent controller, Kp =
[
−1 −1.5

]
, such that

(
Ap+BpKp

)2
= 0. Then the setsRp are finitely-determined, and given byWp⊕

(
Ap+BpKp

)
Wp,

where Wp in this case is a simple hypercube,
{
wp ∈ R

2 : ‖wp‖∞ ≤ 0.1
}
.

The objective function is the quadratic form

lp
(
xp,up

)
= xT

pQxp + uT
p Rup,

Fp

(
xp

)
= xT

pPxp,

where Q = I2, R = 0.01, and P =
[
2.0066 0.5099
0.5099 1.2682

]

is the terminal cost matrix associated with

the optimal, nominal, unconstrained LQR problem
(
Ap,Bp,Q,R

)
. The terminal control law

is chosen as the LQR controller, i.e., κFp
= KLQR =

[
−0.6609 −1.3261

]
. Subsequently, the
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terminal sets XFp
for the distributed algorithm are the maximal output-admissible invariant

sets (Kolmanovsky and Gilbert 1998) associated with this control, in which coupling constraints
are satisfied in a decoupled manner; i.e., xp,1 ≤ 0.5∆x for each p. On the other hand, the
centralized algorithm is provided with a larger, centralized version of this set, in which coupling
constraint satisfaction is achieved in a centralized – rather than decoupled – sense.
Note that the same controllers and terminal set are also used for the CT-DMPC implementa-

tion, permitting a fair comparison.

5.1 Performance versus communication

A number of simulations were performed, varying the number of subsystems, the update sequence
and the maximum separation distance, ∆x. The initial states were xp(0) = [20 0]T, ∀p ∈ P,
with a horizon of 20 steps, and each mass subject to a random disturbance sequence throughout
a simulation. The update sequence was varied in a different manner for CMPC, DMPC and
CT-DMPC. For CMPC, a simple mark-space scheme was employed, where a mark represents
an updating step and a space represents a zero-update step. The resulting sequence is repeated
periodically to form the update sequence for the simulation. For example, for a mark value of 3
and a space value of 2, the resulting sequence is

{
c, c, c, 0, 0, c, c, c, 0, 0, . . .

}
, where c denotes a

centralized optimization.
For DMPC, a similar mark-space scheme is used, but with an additional degree of freedom. It

is assumed that the subsystems optimize in a cyclical manner. Then, n1 denotes the number of
repetitions of update steps per subsystem (marks), n2 denotes the number of zero-update steps
(spaces), and n3 denotes the number of extra zero-update steps that follow the completion of a
cycle. For example, with n1 = 2, n2 = 3, n3 = 4:

{
c, 1, 1
︸︷︷︸

n1

, 0, 0, 0
︸ ︷︷ ︸

n2

, 2, 2, 0, 0, 0, . . . , Np, Np
︸ ︷︷ ︸

n1

, 0, 0, 0
︸ ︷︷ ︸

n2

, 0, 0, 0, 0
︸ ︷︷ ︸

n3

, . . .
}
,

where c denotes the initial centralized step.
Finally, the update sequence for CT-DMPC was chosen to resemble to centralized sequence,

but where a mark step corresponds to all agents updating in the preset sequence {1, 2, . . . , Np}.
This amounts to employing the algorithm in its originally-intended, sequential manner (Richards
and How 2007), yet permitting the communication levels to vary by introducing zero-update
steps where all agents adopt the candidate plans. Each algorithm is initialized with an optimal
centralized plan at k = 0.
Figure 2 shows plots of closed-loop cost against communication, in which a ‘good’ controller is

one whose data point lies close to the bottom left of the graph. Results are shown as the convex
hulls of points obtained for each controller by varying the update sequence, and as (i) the number
of subsystems varies (left to right), (ii) the separation distance ∆x increases (top to bottom). The
measure of performance in this instance is the value of the stage cost, summed over the duration
of the simulation and all subsystems. As discussed in Section 4, the measure of communication is
the number of data exchanges between subsystems. As expected, all the graphs for both DMPC
and CMPC show a trade: better performance can be achieved by using more communication.
Firstly, on the comparison between the centralized and distributed forms of tube MPC, in

the majority of cases, the plots show regions where the closed-loop objective values for tube
DMPC are lower than the corresponding CMPC values for the same level of communication.
Predictably, at very high levels of communication, CMPC performs better than DMPC. This is
intuitive since DMPC solves the same optimization but in a more constrained manner. However,
at low levels of communication, DMPC can perform better. This is enabled by the extra degree
of freedom in the DMPC update sequence, breaking the link between computation and commu-
nication levels. In tube DMPC, it is possible to construct an update sequence in which some
subsystem replans at every step, but communication is required far less frequently. Furthermore,
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the range of communication for which DMPC outperforms CMPC can be seen to increase as
either ∆x increases or Np decreases. These movements correspond to making the optimization
less tightly coupled, thus giving more flexibility for local decision making.
Comparing these results to those obtained for CT-DMPC, that method obtains – in the

majority of cases – better performance at all levels of communication. Furthermore, in most
cases performance is better than for even centralized tube MPC. Although communication for
CT-DMPC can scale poorly as the number of subsystems increases, even then instances exist
where performance at low communication levels is better than any tube MPC implementation.
In fact, the CT method for robustness is less conservative than the tube method (Trodden 2009).
However, and crucially, the CT-DMPC algorithm relies on instantaneous inter-agent transfers of
data during a time step, while none of the tube DMPC exchanges require this. The effect that
delays in this inter-agent communication have on performance is studied in the next example.

5.2 Effect of delays

Two different delays were introduced to the problem: Dcomp < T is the time delay between a
local agent’s measuring of its state and the subsequent updating of its control input (following
optimization) during a time step of length T , while Dcomm < T is the time taken to successfully
communicate a new plan to other agents. For CT-DMPC, it is assumed that the pth agent
may not optimize during step k until information is received from agent p − 1 from earlier in
the same interval (Richards and How 2007). Conversely, tube DMPC allows the whole interval
[k +Dcomp, k + 1) for communication.
For a two-mass system, with x1(0) = [5 1]T and x2(0) = [5 0]T, the delays Dcomp and

Dcomm were varied over the intervals [0, 0.25T ] and [0, 0.5T ] respectively, where T = 1 second.
All parameters are the same as in the previous section, with the exception of the horizon, which
was shortened to N = 7 to reflect the closer proximity to the origin of the initial states. During
each simulation, disturbances were applied to force the masses apart: w1(k) = [1 1]T and
w2(k) = −[1 1]T for all k.
Figure 3 compares the values of closed-loop cost obtained for both tube DMPC and CT-

DMPC. As shown by the previous example, where no delays are present CT-DMPC achieves best
performance. As delays are lengthened, the cost values for CT-DMPC are seen to increase, more
severely so for Dcomp. Where cost data are absent over the delay domain, the system violated

the constraints; CT-DMPC goes infeasible for Dcomp

T
& 0.175 and additionally for high total

delay Dcomp+Dcomm. On the other hand, the system controlled by tube DMPC achieves robust
feasibility over the whole domain. In addition, although higher than those of CT-DMPC for low
values of delay, the cost values increase approximately linearly with Dcomp and do not increase
with Dcomm. Consequently, tube DMPC out-performs CT-DMPC when delays are longer. This
result confirms that CT-DMPC – with its reliance on instantaneous data exchanges – is the
more susceptible of the two methods to the effect of delays, both in terms of feasibility and
performance. Furthermore, it highlights a key feature of the tube DMPCmethod: that at least the
full remainder of one time step is available for information exchange following an optimization.

6 Conclusions

In this paper, a formulation has been presented for robust distributed model predictive control
of LTI subsystems coupled through the constraints. The order of optimization for each sub-
system is unrestricted and communication between subsystems is required only when relevant
updates are performed, leading to flexible communications. The new formulation extends the
tube MPC concept to a distributed implementation and inherits its property of robust feasibility
and stability despite persistent disturbances. By exploiting the greater communication flexibil-
ity of the new algorithm, better performance can be achieved than centralized tube MPC when
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Figure 2. Closed-loop cost for DMPC (solid), tube CMPC (dash), and CT-DMPC (dash-dot). The convex hulls of points, obtained by varying update sequences, are shown.
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Figure 3. Surfaces of closed-loop cost versus communication delay Dcomm and computation delay Dcomp. Contours are
additionally shown for CT-DMPC.

communication is limited. Furthermore, a comparison with a similar robust distributed method
has shown that the new algorithm offers a clear benefit, in terms of feasibility and performance,
when computational and communication delays are present.
On-going research is investigating how to obtain closed-loop performance given a particular

structure of coupling constraints. In particular, inter-agent cooperation may be employed – by
including a consideration of other subsystems’ objectives in the local cost function – to promote
system-wide performance by avoiding ‘greedy’ local decision-making.
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