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Abstract

Up to now, studies on the semi-linear Cauchy problem for elliptic partial differential equations
needed to assume that the source term present in the governing equation is a global Lipschitz func-
tion. The current paper is the first investigation to not onlythe more general but also the more
practical case of interest when the souce term is only alocal Lipschitz function. In such a situ-
ation, the methods of solution from the previous studies with a global Lipschitz source term are
not directly applicable and therefore, novel ideas and techniques need to be developed to tackle
the local Lipschitz nonlinearity. This locally Lipschitz source arises in many applications of great
physical interest governed by, for example, the sine-Gordon, Lane-Emden, Allen-Cahn and Liou-
ville equations. The inverse problem is severely ill-posedin the sense of Hadamard by violating
the continuous dependence upon the input Cauchy data. Therefore, in order to obtain a stable so-
lution we consider theoretical aspects of regularization of the problem by a new generalized filter
method. Under some priori assumptions on the exact solution, we prove and obtain rigorously
convergence estimates.
Keywords and phrases:Cauchy problem; Nonlinear elliptic equation; Ill-posed problem; Error
estimates.
Mathematics subject Classification 2000:35K05, 35K99, 47J06, 47H10

1. Introduction

Let H be a Hilbert space with the inner product〈., .〉 and the norm‖.‖, and letA : D(A) ⊂ H → H
be a linear, positive-definite, self-adjoint operator withcompact inverse onH. ForL > 0, consider
the inverse problem of finding the functionu : [0, L] → H from the equation

d2u(z)
dz2

= Au(z) +G(z, u(z)), z ∈ (0, L), (1.1)
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with the (initial) Cauchy conditions


















u(0) = f ,

du
dz

(0) = h,
(1.2)

where (f , h) are given data inH×H and the source functionG : [0, L]×H → H will be defined later.
In practice, the data (f , h) ∈ H×H is noisy and is represented by the perturbed data (f δ, hδ) ∈ H×H
satisfying

‖ f δ − f ‖H + ‖hδ − h‖H ≤ δ, (1.3)

where the constantδ > 0 represents a known upper bound of the measurement error.
It is well-known that in general the Cauchy problem for elliptic equations is severely ill-posed

in Hadamard’s sense, i.e. a small perturbation in the given Cauchy data (1.2) may cause a very
large error in the output solutionu(z) for z ∈ (0, L]. Moreover, the instability increases with in-
creasing the distancez from the boundaryz= 0. Therefore, it is very difficult to solve the problem
by using classical numerical methods of inversion, [22]. Inorder to overcome this instability, reg-
ularization methods are naturally required.

Equation (1.1) is an abstract version which generalizes many well-known equations. For a
simple example, ifA = −∆ (Laplace operator) andG(z, u(z)) = −k2u(z) with k real or purely
imaginary, then the equation (1.1) becomes the Helmholtz ormodified Helmholtz equation, re-
spectively, which arises in many engineering applicationsrelated to propagating waves in different
environments or heat transfer in fins. More generally, forA = −∆ andG a nonlinear function
of u, equation (1.1) becomes the nonlinear Poisson equation which is encountered in numerous
applications in heat and mass transfer, chemical recations, gas dynamics and fluid flow in porous
media, [2, 3, 19].

In the past, there have been many studies on the homogeneous problem given by equation (1.1)
with G = 0 and (1.2). For instance, Elden and Berntsson [14] used the logarithmic convexity
method to obtain a stability result of Hölder type. Alessandrini et al. [1] provided optimal stability
results under minimal assumptions, whilst Reginska and Tautenhahn [32] presented some stabil-
ity estimates and a regularization method for a Cauchy problem for Helmholtz equation. Many
methods have been proposed to solve the Cauchy problem for linear homogeneous elliptic equa-
tions, such as the method of successive iterations [10], thealternating method [26], the conjugate
gradient method [11, 24], the iterative regularization method [15], the quasi-reversibility method
[23, 28], the fourth-order modified method [30], the Fouriertruncation regularized (or spectral
regularized method) [17, 35], etc. Nevertheless, the literature devoted to the Cauchy problem for
linear homogeneous elliptic equations is very rich, see e.g. [4, 5, 7, 9, 12, 13, 16, 21, 23, 29, 33, 35]
and the references therein. Recently, a linear inhomogeneous version of Helmholtz equation (i.e.
G(z, u(z)) = G(z) in equation (1.1)) has been considered in [34].

Although there are many works on the linear case, the literature on the nonlinear case is quite
scarce. We mention here a nonlinear elliptic problem of [37], where the authors approximated
(1.1) and (1.2) by a truncation method. However, their results are only given for globally Lipschitz
source terms.

In practice, the applications of nonlinear problem requires the extended Lipschitz source term.
For example, ifG(z, u) = sinu, then the equation (1.1) is called the elliptic-sine Gordonequation
which occurs in several areas of mathematical physics including the theory of Josephson effects,

2



superconductors and spin waves in ferromagnets, see e.g. [18, 20]. Furthermore, the Lane-Emden
equation∆u = −up, implyingG(z, u) = −up, p > 1, plays a vital role in describing the structure of
the polytropic stars, wherep is called the polytropic index, [8]. Also, the reaction-diffusion equa-
tion∆u = Φ2up, implyingG(z, u) = Φ2up, governs kinetic and diffusional phenomena in chemical
reaction engineering. In this equation,p is the order of the reaction andΦ2 is called the Thiele
parameter representing the ratio of kinetic to transport resistances in the domain, see [3] where
other physical models such as thermal explosionG(z, u) = − exp(u − 1), and substrate inhibition
G(z, u) = Φ2u/(1+αu+βu2), are also considered. Finally, forG (z, u) = u−u3, we have the Allen-
Cahn equation originally formulated in the description of bi-phase separation in fluids. From this
wide range of physical examples one can observe that, exceptfor the sine-Gordon equation in
which the sine-nonlinearity is a global Lipscitz function,the other examples present a nonlinear
functionG which is only locally Lipschitz, i.e. for allB > 0, there existsk(B) > 0 such that

‖G(z, u) −G(z, v)‖H ≤ k(B) ‖u− v‖H ∀z ∈ [0, L], if max {‖u‖H , ‖v‖H} ≤ B. (1.4)

To the best of our knowledge, the Cauchy problem (1.1) and (1.2) for nonlinear elliptic equa-
tions with a locally Lipschitz source term is yet to be investigated. Therefore, in the present paper,
we propose a new general filter function method to regularizethe problem (1.1) and (1.2) in the
case thatG is locally Lipschitzian with respect tou. Remark that it is impossible to solve the
problem only with the asumption (1.4) by applying directly the method of [37]. To overcome this
technical difficulty, in this paper, we propose a new idea in which the locally Lipschitz source
function G is approximated by a sequenceGδ of globally Lipschitzian functions. Furthermore,
assuming that the functionk given in (1.4) is increasing on [0,+∞), we then choose a positive
sequence{Bδ}δ>0 satisfying lim

δ→0+
Bδ = +∞ on whichk(Bδ) satisfies certain constraints. We then

define the functionGδ from G as

Gδ(z, v) = G

(

z,min

{

Bδ
‖v‖H
, 1

}

v

)

, ∀(z, v) ∈ [0, L] × H. (1.5)

In particular,Gδ(z, 0) = G(z, 0). In fact, since limδ→0 Bδ = +∞, for δ small enough we have that
supz∈[0,L] ‖u(z)‖H ≤ Bδ. From (1.5) this implies that

Gδ(z, u(z)) = G(z, u(z)), ∀z ∈ [0, L], for δ small enough. (1.6)

We also have the following lemma giving the Lipschitz constant for the functionGδ.

Lemma 1.1. For δ > 0, z∈ [0, L] and v1, v2 ∈ H, we have

‖Gδ(z, v1) −Gδ(z, v2)‖H ≤ 2k(Bδ) ‖v1 − v2‖H . (1.7)

Proof. Due to the continuity, it is enough to prove the lemma for non-zero elementsv1 andv2 in
H. We can assume that‖v1‖ ≥ ‖v2‖ > 0. Using the local Lipschitz property (1.4) ofG and the
definition (1.5) ofGδ, we have

‖Gδ(z, v1) −Gδ(z, v2)‖H =

∥

∥

∥

∥

∥

∥

G

(

z,min

{

Bδ
‖v1‖H

, 1

}

v1

)

−G

(

z,min

{

Bδ
‖v2‖H

, 1

}

v2

)
∥

∥

∥

∥

∥

∥

H

≤ k(Bδ)

∥

∥

∥

∥

∥

∥

min

{

Bδ
‖v1‖H

, 1

}

v1 −min

{

Bδ
‖v2‖H

, 1

}

v2

∥

∥

∥

∥

∥

∥

H

, ∀z ∈ [0, L].

3



It remains to show that
∥

∥

∥

∥

∥

∥

min

{

Bδ
‖v1‖H

, 1

}

v1 −min

{

Bδ
‖v2‖H

, 1

}

v2

∥

∥

∥

∥

∥

∥

H

≤ 2‖v1 − v2‖H .

This inequality is trivial ifBδ ≥ ‖v1‖H ≥ ‖v2‖H. In the case‖v1‖H ≥ ‖v2‖H ≥ Bδ, we have
∥

∥

∥

∥

∥

Bδ
‖v1‖H

v1 −
Bδ
‖v2‖H

v2

∥

∥

∥

∥

∥

H

= Bδ

∥

∥

∥

∥

∥

v1 − v2

‖v1‖H
+
‖v2‖H − ‖v1‖H
‖v1‖H . ‖v2‖H

v2

∥

∥

∥

∥

∥

H

≤ Bδ

(
∥

∥

∥

∥

∥

v1 − v2

‖v1‖H

∥

∥

∥

∥

∥

H

+

∥

∥

∥

∥

∥

‖v2‖H − ‖v1‖H
‖v1‖H . ‖v2‖H

v2

∥

∥

∥

∥

∥

H

)

=
Bδ
‖v1‖H

(

‖v1 − v2‖H +
∣

∣

∣

∣

‖v2‖H − ‖v1‖H
∣

∣

∣

∣

)

≤ 2‖v1 − v2‖H .

Finally, if ‖v1‖H ≥ Bδ ≥ ‖v2‖H then
∥

∥

∥

∥

∥

Bδ
‖v1‖H

v1 − v2

∥

∥

∥

∥

∥

H

=

∥

∥

∥

∥

∥

Bδ − ‖v1‖H
‖v1‖H

v1 + v1 − v2

∥

∥

∥

∥

∥

H

≤
∥

∥

∥

∥

∥

Bδ − ‖v1‖H
‖v1‖H

v1

∥

∥

∥

∥

∥

H
+ ‖v1 − v2‖H

=

∣

∣

∣

∣

Bδ − ‖v1‖H
∣

∣

∣

∣

+ ‖v1 − v2‖H ≤ 2‖v1 − v2‖H .

This implies the desired result (1.7).

2. Cauchy problem for elliptic equations

From now on, suppose thatA : D(A) ⊂ H → H is a linear, positive-definite, self-adjoint operator
with compact inverse onH. As a consequence, the operatorA admits an orthonormal eigenbasis
{φn}n≥1 in H, associated with the eigenvalues

0 < λ1 ≤ λ2 ≤ λ3 ≤ ... lim
n→∞
λn = ∞.

We can divide the Cauchy problem for elliptic equations intothree cases: homogeneous linear
problem, inhomogeneous linear problem and nonlinear problem.

2.1. Homogeneous linear problem

We first consider the homogeneous problem, i.e.G = 0, of finding a functionu : [0, L] → H
satisfying

d2u(z)
dz2

= Au, z ∈ (0, L) (2.8)

subject to the Cauchy conditions (1.2). Let

u(z) =
∞
∑

n=1

〈u(z), φn〉 φn (2.9)
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be the Fourier series ofu in the Hilbert spaceH. From (2.8), we obtain the following homogeneous
second-order differential equation:

d2

dz2
〈u(z), φn〉 − λn 〈u(z), φn〉 = 0.

Solving this equation, we obtain

〈u(z), φn〉 = Ane
√
λnz+ Bne

−
√
λnz.

It follows from (1.2) that〈u(0), φn〉 = 〈 f , φn〉 and d
dz 〈u(0), φn〉 = 〈h, φn〉. The obtained results for

An andBn imply that

u(z) =
∞
∑

n=1

















cosh
( √

λnz
)

〈 f , φn〉 +
sinh

(√
λnz

)

√
λn

〈h, φn〉
















φn,

leading us to define the linear operatorsP(z), S(z) : H → H,

P(z) f =
∞
∑

n=1

cosh
( √

λnz
) 〈

f , φn

〉

φn, (2.10)

S(z) f =
∞
∑

n=1

sinh
(√
λnz

)

√
λn

〈

f , φn

〉

φn (2.11)

for z ∈ [0, L] and f ∈ H. The solution of the homogeneous problem (1.2) and (2.8) is then given
by

u(z) = P(z) f + S(z)h, z ∈ [0, L]. (2.12)

2.2. Inhomogeneous linear problem and nonlinear problem
(i) We consider first the linear inhomogeneous problem of finding a functionu : [0, L] → H
satisfying

d2u(z)
dz2

= Au+G(z), 0 ≤ z≤ L (2.13)

subject to the Cauchy conditions (1.2). The solutionu in this case has the Fourier series expansion
(2.9), where

〈

u(z), φn

〉

satisfies inhomogeneous second-order differential equation

d2

dz2

〈

u(z), φn

〉

− λn

〈

u(z), φn

〉

=
〈

G(z), φn

〉

.

Solving this equation and using (1.2), we obtain the exact solution u to problem (1.2) and (2.13)
given by

u(z) =
∞
∑

n=1

















cosh
( √

λnz
)

〈 f , φn〉 +
sinh

(√
λnz

)

√
λn

〈h, φn〉

+

z
∫

0

sinh
(√
λn(z− y)

)

√
λn

〈

G(y), φn

〉

dy





















φn. (2.14)
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With the definitions (2.10) and (2.11), equation (2.14) can be rewritten as

u(z) = P(z) f + S(z)h+
∫ z

0
S(z− y)G(y)dy. (2.15)

Recently, Tuanet al. [34] regularized a simpler version of the equation (2.14) bytruncation
and quasi-boundary value methods.

(ii) For the nonlinear problem (1.1) and (1.2), its solutionusatisfies the following integral equation:

u(z) =
∞
∑

n=1

















cosh
( √

λnz
) 〈

f , φn

〉

+
sinh

(√
λnz

)

√
λn

〈

h, φn

〉

+

z
∫

0

sinh
(√
λn(z− y)

)

√
λn

〈

G(y, u(y)), φn

〉

dy





















φn. (2.16)

This integral equation can be rewritten as

u(z) = P(z) f + S(z)h+
∫ z

0
S(z− y)G(y, u(y))dy. (2.17)

The transformation of (1.1) and (1.2) into (2.17) is easily proved by the separation of variables
method, as above. Prior to this study, a filter regularization method was applied for solving a
backward heat conduction problem [31] and for the Cauchy problem of the Helmholtz equation
[36]. In the next section, we introduce a new general filter regularization method to stabilise the
integral equation (2.17).

3. A general filter regularization method for the nonlinear problem

In this section, we present a new general filter regularization method and establish convergence
rates and error estimates.

First, let us remark thatP(z) andS(z) given by equations (2.10) and (2.11), respectively, are
unbounded linear operators. This means that the solutionu of (2.17) is not stable. To approxi-
mateu, we introduce a regularized solutionuδα obtained by replacingP(z), S(z) by bounded linear
operatorsPδα(z), Sδα(z), respectively, as follows:

uδα(z) = Pδα(z) f δ + Sδα(z)h
δ +

∫ z

0
Sδα(z− y)Gδ(y, u

δ
α(y))dy, (3.18)

whereGδ is defined in (1.5) and 0< α = α(δ) plays the role of the regularization parameter to be
chosen depending on the amount of noiseδ in (1.3). Here,Pδα(z) andSδα(z) are defined by

Pδα(z) f =
∞
∑

n=1

Q(α, λn)e
√
λnz+ R(α, λn)e−

√
λnz

2

〈

f , φn

〉

φn, (3.19)

Sδα(z) f =
∞
∑

n=1

Q(α, λn)e
√
λnz− R(α, λn)e−

√
λnz

2
√
λn

〈

f , φn

〉

φn (3.20)

6



for z ∈ [0, L] and f =
∞
∑

n=1

〈

f , φn

〉

φn. In these expressions,Q(α, λn) andR(α, λn) are called”regu-

larizing filter functions”. For more details on regularizing filter functions, we referthe reader to
the book of Kirsch [25]. With a regularization strategyα = α(δ) for the regularization parameter
satisfying

lim
δ→0
α(δ) = lim

δ→0
‖uδα(z) − u(z)‖H = 0, ∀z ∈ [0, L],

then we obtain a so-called”filter regularization method”. Now consider the general regularizing
filter Q satisfying















0 ≤ Q(α, λn)e
√
λnz ≤ M(α)−z/L,

|Q(α, λn) − 1|e
√
λn(z−L) ≤ M(α)1−z/L,

∀n ∈ N
∗, (3.21)

whereM(α) is some positive function satisfying limδ→0 M(α) = 0. We also take the filterR(α, λn)
to be the function

R(α, λn) = Q(α, λn) or, R(α, λn) = 1. (3.22)

In this case, we only consider examples forQ, and from this, the filterR is directly defined by
(3.22). For more illustration, we give a couple of examples for Q which satisfies (3.21).

Example 1: Let R1, Q1 be as

R1(α, λn) = Q1(α, λn) =
e−
√
λnL

α + e−
√
λnL
. (3.23)

First, we can deduce the following inequality:

0 ≤ Q1(α, λn)e
√
λnz =

e−
√
λn(L−z)

α + e−
√
λnL
=

e−
√
λn(L−z)

(

α + e−
√
λnL

)1−z/L(

α + e−
√
λnL

)z/L

≤
(

α + e−
√
λnL

)−z/L
≤ α−z/L. (3.24)

By a similar technique, we get

|Q1(α, λn) − 1|e
√
λn(z−L) =

αe−
√
λn(L−z)

α + e−
√
λnL
≤ α1−z/L. (3.25)

Therefore,Q1 given in (3.23) satisfies (3.21) withM(α) = α = δ.

Example 2: Let us chooseR2 andQ2 as follows:

R2(α, λn) = Q2(α, λn) =

{

1, if λn ≤ Nα,

0, if λn > Nα,
(3.26)

whereNα is some positive number satisfying limδ→0 Nα(δ) = +∞. It follows from

Q2(α, λn)e
√
λnz =















e
√
λnz, if λn ≤ Nα,

0, if λn > Nα,
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that

Q2(α, λn)e
√
λnz ≤ e

√
Nαz

and

|Q2(α, λn) − 1|e
√
λn(z−L) ≤ e

√
Nα(z−L).

Therefore,Q2 given in (3.26) satisfies (3.21) withM(α) = e−L
√

Nα = δ. The solution of (3.18) with
filters (3.26) is called a”truncation solution”, and it has recently been studied in [37].

At this stage, let us introduce the Geyrey-type space, [6, 27],

Geβ = D
(

eβ
√
−A

)

=

{

ζ ∈ H;
∞
∑

n=1

e2β
√
λn| < ζ, φn > |2 < ∞

}

, (3.27)

for someβ > 0. This is a Hilbert space with the norm

‖ζ‖Geβ = ‖ζ‖
D

(

eβ
√
−A

) =

√

√ ∞
∑

n=1

e2β
√
λn | < ζ, φn > |2.

Clearly, if ζ ∈ D
(

eβ
√
−A

)

, then the Fourier coefficients ofζ must decay exponentially, asn→ ∞.
The next theorem states the main result of the paper.

Theorem 3.1. (General regularization filters)
Assume that the problem(1.1) and (1.2) has a solution u∈ C([0, L]; H). Choose M(α) such that
δ/M(α) is bounded and choose Bδ such that

lim
δ→0

M(α)1−z/L exp













√
2k(Bδ)z√
λ1













= 0, z ∈ [0, L). (3.28)

Suppose that there exist positive constants I1 or I2 such that

‖ f ‖
D

(

eL
√
−A

) +
1
√
λ1

‖h‖
D

(

eL
√
−A

) +
1
√
λ1

∫ L

0

∥

∥

∥

∥

G(z, u(z))
∥

∥

∥

∥

D

(

eL
√
−A

)dz≤ I1, (3.29)

or,

sup
0≤z≤L

{

∥

∥

∥

∥

u(z)
∥

∥

∥

∥

D

(

e(L−z)
√
−A

),

∥

∥

∥

∥

du(z)
dz

∥

∥

∥

∥

D

(

e(L−z)
√
−A

)

}

≤ I2. (3.30)

Then, forδ small enough, the solution uδα of (3.18), satisfies the following estimates:

∥

∥

∥

∥

uδα(z) − u(z)
∥

∥

∥

∥

H
≤























P1 exp
( √

2k(Bδ)z√
λ1

)

M(α)1−z/L, if (3.29) holds

P2 exp
( √

2k(Bδ)z√
λ1

)

M(α)1−z/L, if (3.30) holds
=: Θ, (3.31)
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where

P1 = I1 +

(

1+
1
√

2λ1

)

δ

M(α)
, P2 = 2I2 max

{

1,
1
√
λ1

}

+

(

1+
1
√

2λ1

)

δ

M(α)
. (3.32)

Moreover, there exists zδ ∈ [0, L] satisfyinglimδ→0 zδ = 0 such that

‖uδα(zδ) − u(L)‖H ≤ sup
0≤z≤L

∥

∥

∥

∥

du(z)
dz

∥

∥

∥

∥

H

√

L

ln( 1
M(α) )

+ Θ. (3.33)

Remark 3.1. If in Theorem 3.1 we choose the regularization parameterα from M(α) = δ then, by
taking Bδ such that

k(Bδ) ≤
γ
√
λ1√

2L
ln

(

ln(δ−1)
)

for someγ > 0, we can conclude that(3.28)holds. Indeed, it is easy to see that

lim
δ→0

M(α)1−z/L exp













√
2k(Bδ)z√
λ1













≤ lim
δ→0
δ1−z/L lnγ(δ−1) = 0, ∀z ∈ [0, L).

For proving Theorem 3.1 the following lemmas are needed.

Lemma 3.1.The operators Pδα(z) and Sδα(z) defined by(3.19)and(3.20), respectively, are bounded
and linear, and their norms satisfy

∥

∥

∥Pδα(z)
∥

∥

∥

L(H)
≤ M(α)−z/L,

∥

∥

∥Sδα(z)
∥

∥

∥

L(H)
≤

M(α)−z/L

√
2λ1

, z ∈ [0, L], (3.34)

where‖ · ‖L(H) stands for the operator norm on the space of bounded linear operators from H onto
itself.

Proof. Let f ∈ H be arbitrary and represented asf =
∞
∑

n=1

〈

f , φn

〉

φn. Then, from (3.19), (3.21) and

noting thatR(α, λn)e−
√
λnz ≤ max{Q(α, λn), 1}e−

√
λnz ≤ max{M(α)−z/L, 1} = M(α)−z/L, we have

‖Pδα(z) f ‖2H =
∞
∑

n=1

[Q(α, λn)e
√
λnz+ R(α, λn)e−

√
λnz

2

]2∣
∣

∣

∣

〈

f , φn

〉

∣

∣

∣

∣

2

≤ M(α)−2z/L
∞
∑

n=1

∣

∣

∣

∣

〈

f , φn

〉

∣

∣

∣

∣

2
= M(α)−2z/L‖ f ‖2H.

This latter estimate implies that
∥

∥

∥Pδα(z)
∥

∥

∥

L(H)
≤ M(α)−z/L, z ∈ [0, L].

Similarly, we can easily show the second estimate of the lemma. Indeed, sinceλn ≥ λ1 for n ≥ 1,

and using (3.20), (3.21) and that
(

a−b
2

)2
≤ a2+b2

4 for a, b ≥ 0, we have

‖Sδα(z) f ‖2H =
∞
∑

n=1

[Q(α, λn)e
√
λnz− R(α, λn)e−

√
λnz

2
√
λn

]2∣
∣

∣

∣

〈

f , φn

〉

∣

∣

∣

∣

2

≤
M(α)−2z/L

2λ1

∞
∑

n=1

∣

∣

∣

∣

〈

f , φn

〉

∣

∣

∣

∣

2
=

M(α)−2z/L

2λ1
‖ f ‖2H.

This latter inequality implies the second estimate of the lemma.
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Lemma 3.2. For each( f δ, hδ) ∈ H × H, the integral equation(3.18)has a unique solution uδα ∈
C([0, L]; H).

Proof. For eachw ∈ C([0, L]; H), we define

F(w)(z) = Pδα(z) f δ + Sδα(z)h
δ +

∫ z

0
Sδα(z− y)Gδ(y,w(y))dy.

It is sufficient to show thatF has a unique fixed point inC([0, L]; H). This fact will be proved by
the contraction principle.

We claim by mathematical induction with respect tom= 1, 2, ... that, for allw, v ∈ C([0, L]; H),

‖Fm(w)(z) − Fm(v)(z)‖H ≤
(Cz/M(α))m

m!
|||w− v|||, ∀z ∈ [0, L], (3.35)

where|||.||| is the sup norm inC([0, L]; H) and C= C(λ1, k(Bδ)) is given by

C =

√
2k(Bδ)√
λ1

. (3.36)

Form= 1, using (1.7), (3.34) and (3.36) we have

‖F(w)(z) − F(v)(z)‖H =

∥

∥

∥

∥

∥

∥

∥

∥

z
∫

0

Sδα(z− y)
[

Gδ(y,w(y)) −Gδ(y, v(y))
]

dy

∥

∥

∥

∥

∥

∥

∥

∥

H

≤
z

∫

0

∥

∥

∥

∥

Sδα(z− y)
∥

∥

∥

∥

L(H)

∥

∥

∥

∥

Gδ(y,w(y)) −Gδ(y, v(y))
∥

∥

∥

∥

H
dy≤ 2k(Bδ)

z
∫

0

M(α)−(z−y)/L

√
2λ1

∥

∥

∥

∥

w(y) − v(y)
∥

∥

∥

∥

H
dy

≤ C
M(α)

z
∫

0

∥

∥

∥

∥

w(y) − v(y)
∥

∥

∥

∥

H
dy≤ Cz

M(α)
|||w− v|||.

Suppose that (3.35) holds form= j. We prove that (3.35) holds form= j + 1. Indeed, we have
∥

∥

∥F j+1(w)(z) − F j+1(v)(z)
∥

∥

∥

H
=

∥

∥

∥F(F j(w))(z) − F(F j(v))(z)
∥

∥

∥

H

≤
C

M(α)

z
∫

0

∥

∥

∥F j(w)(y) − F j(v)(y)
∥

∥

∥

H
dy≤

C
M(α)

|||w− v|||
z

∫

0

(

C
M(α)

) j yj

j!
dy

=

(

C
M(α)

) j+1 zj+1

( j + 1)!
|||w− v|||.

Therefore, the inequality (3.35) holds for allm = 1, 2, ... by the induction principle. In particular,
one has

|||Fm(w)(z) − Fm(v)(z)||| ≤
(CL/M(α))m

m!
|||w− v|||.

Since

lim
m→+∞

(CL/M(α))m

m!
= 0,
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there exists a positive integer numberm0 such thatFm0 is a contraction mapping. It follows that
Fm0 has a unique fixed pointuδα in C([0, L]; H). SinceFm0(F(uδα)) = F(Fm0(uδα)) = F(uδα),we obtain
F(uδα) = uδα due to the uniqueness of the fixed point ofFm0. The uniqueness of the fixed point ofF
also follows from the uniqueness of the fixed point ofFm0. The unique fixed pointuδα of F is the
solution of (3.18).

Lemma 3.3. The integral equation

w(z) = Pδα(z) f + Sδα(z)h+
∫ z

0
Sδα(z− y)Gδ(y,w(y))dy (3.37)

has a unique solution vδα ∈ C([0, L]; H). Furthermore, we have the following estimate:

‖uδα(z) − vδα(z)‖H ≤
(

1+
1
√

2λ1

)

M(α)−z/L exp(Cz)δ, z ∈ [0, L]. (3.38)

Proof. Using Lemma 3.2, we conclude that the integral equation (3.37) has a unique solution
vδα ∈ C([0, L]; H). Using (1.7), (3.18) and (3.34), we have

‖uδα(z) − vδα(z)‖H ≤
∥

∥

∥

∥

Pδα(z)( f δ − f )
∥

∥

∥

∥

H
+

∥

∥

∥

∥

Sδα(z)(h
δ − h)

∥

∥

∥

∥

H

+

∥

∥

∥

∥

∫ z

0
Sδα(z− y)

[

Gδ(y, u
δ
α(y)) −Gδ(y, v

δ
α(y))

]

dy
∥

∥

∥

∥

H

≤ ‖Pδα(z)‖L(H)‖ f δ − f ‖H + ‖Sδα(z)‖L(H)‖hδ − h‖H

+

∫ z

0
‖Sδα(z− y)‖L(H)‖Gδ(y, uδα(y)) −Gδ(y, v

δ
α(y))‖Hdy

≤ M(α)−z/Lδ +
M(α)−z/L

√
2λ1

δ + k(Bδ)
∫ z

0

√
2M(α)

y−z
L

√
λ1

‖uδα(y) − vδα(y))‖Hdy. (3.39)

Multiplying both sides of (3.39) byM(α)z/L, it yields

M(α)z/L‖uδα(z) − vδα(z)‖H ≤
(

1+
1
√

2λ1

)

δ + C
∫ z

0
M(α)y/L‖uδα(y) − vδα(y))‖Hdy.

Applying Gronwall’s inequality, we obtain

M(α)z/L‖uδα(z) − vδα(z)‖H ≤
(

1+
1
√

2λ1

)

exp(Cz)δ.

Dividing both sides the latter estimate byM(α)z/L, we conclude that (3.38) holds. This completes
the proof of the lemma.

Now, we present some estimates in the Gevrey space (3.27).

Lemma 3.4. Assume that f∈ D
(

eL
√
−A

)

. Then, we have the following estimates:

‖Pδα(z) f − P(z) f ‖H ≤ M(α)1− z
L ‖ f ‖

D

(

eL
√
−A

), (3.40)

and

‖Sδα(z) f − S(z) f ‖H ≤
M(α)1− z

L

√
λ1

‖ f ‖
D

(

eL
√
−A

). (3.41)
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Proof. Since f =
∞
∑

n=1

〈

f , φn

〉

φn, noting that [R(α, λn)−1]2 ≤ [Q(α, λn)−1]2 and using (2.10), (2.11),

(3.19)-(3.21), we have

‖Pδα(z) f − P(z) f ‖2H ≤
∞
∑

n=1

[

Q(α, λn) − 1
]2

e2
√
λnz+

[

R(α, λn) − 1
]2

e−2
√
λnz

2

∣

∣

∣

∣

〈

f , φn

〉

∣

∣

∣

∣

2

≤
∞
∑

n=1

[

Q(α, λn) − 1
]2

e2
√
λn(z−L)e2

√
λnL

∣

∣

∣

∣

〈

f , φn

〉

∣

∣

∣

∣

2

≤ M(α)2− 2z
L

∞
∑

n=1

e2
√
λnL

∣

∣

∣

∣

〈

f , φn

〉

∣

∣

∣

∣

2
= M(α)2− 2z

L ‖ f ‖2
D

(

eL
√
−A

)

and

‖Sδα(z) f − S(z) f ‖2H ≤
∞
∑

n=1

[

Q(α, λn) − 1
]2

e2
√
λnz

λn

∣

∣

∣

∣

〈

f , φn

〉

∣

∣

∣

∣

2

≤
∞
∑

n=1

[

Q(α, λn) − 1
]2

e2
√
λn(z−L)

λ1
e2
√
λnL

∣

∣

∣

∣

〈

f , φn

〉

∣

∣

∣

∣

2

≤ M(α)2− 2z
L

λ1

∞
∑

n=1

e2
√
λnL

∣

∣

∣

∣

〈

f , φn

〉

∣

∣

∣

∣

2
=

M(α)2− 2z
L

λ1
‖ f ‖2

D

(

eL
√
−A

).

Taking the square roots in these expressions we obtain the estimates (3.40) and (3.41).

Lemma 3.5. For δ small enough, we have:
(i) If the assumption(3.29)holds, then

‖vδα(z) − u(z)‖H ≤ I1 exp(Cz)M(α)1−z/L, z ∈ [0, L]. (3.42)

(ii) If the assumption(3.30)holds and R(α, λn) = 1, then

‖vδα(z) − u(z)‖H ≤ 2I2 max

{

1,
1
√
λ1

}

exp(Cz)M(α)1−z/L, z ∈ [0, L]. (3.43)

(iii) If the assumption(3.30)holds and R(α, λn) = Q(α, λn), then

‖vδα(z) − u(z)‖H ≤ I2 exp(Cz)M(α)1−z/L, z ∈ [0, L]. (3.44)

Proof. We assume thatδ is small enough such that (1.6) holds. We divide the proof into two parts
corresponding toi = 1 andi = 2.

Part A. Assume that (3.29) holds. From (2.17) and Lemma 3.3, we have

vδα(z) − u(z) =
[

Pδα(z) f − P(z) f
]

+
[

Sδα(z)h− S(z)h
]

+

∫ z

0
Sδα(z− y)

[

Gδ(y, v
δ
α(y)) −Gδ(y, u(y))

]

dy

+

∫ z

0

[

Sδα(z− y)G(y, u(y)) − S(z− y)G(y, u(y))
]

dy.
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By taking the norms inH on both sides and using (1.6), (3.34), (3.40) and (3.41), we obtain

‖vδα(z) − u(z)‖H ≤ ‖Pδα(z) f − P(z) f ‖H + ‖Sδα(z)h− S(z)h‖H

+

∫ z

0

∥

∥

∥Sδα(z− y)
∥

∥

∥

L(H)

∥

∥

∥

∥

Gδ(y, v
δ
α(y)) −Gδ(y, u(y))

∥

∥

∥

∥

H
dy

+

∫ z

0

∥

∥

∥

∥

Sδα(z− y)G(y, u(y)) − S(z− y)G(y, u(y))
∥

∥

∥

∥

H
dy

≤ M(α)1−z/L‖ f ‖
D

(

eL
√
−A

) +
M(α)1−z/L

√
λ1

‖h‖
D

(

eL
√
−A

)

+C
∫ z

0
M(α)

y−z
L

∥

∥

∥

∥

vδα(y) − u(y)
∥

∥

∥

∥

H
dy+

1
√
λ1

∫ z

0
M(α)1− z−y

L

∥

∥

∥

∥

G(y, u(y))
∥

∥

∥

∥

D

(

eL
√
−A

)dy.

Multiplying by M(α)z/L both sides, we have

M(α)z/L‖vδα(z) − u(z)‖H

≤ M(α)















‖ f ‖
D

(

eL
√
−A

) +
1
√
λ1

‖h‖
D

(

eL
√
−A

) +
1
√
λ1

∫ z

0
M(α)y/L

∥

∥

∥

∥

G(y, u(y))
∥

∥

∥

∥

D

(

eL
√
−A

)dy















+C
∫ z

0
M(α)y/L

∥

∥

∥

∥

vδα(y) − u(y)
∥

∥

∥

∥

H
dy.

This together with (3.29) implies that

M(α)z/L‖vδα(z) − u(z)‖H ≤ M(α)I1 + C
∫ z

0
M(α)y/L

∥

∥

∥

∥

vδα(y) − u(y)
∥

∥

∥

∥

H
dy.

Then Gronwall’s inequality yields

M(α)z/L‖vδα(z) − u(z)‖H ≤ M(α)I1 exp(Cz).

From this we obtain

‖vδα(z) − u(z)‖H ≤ I1M(α)1−z/L exp(Cz), z ∈ [0, L],

which is the desired estimate (3.42).

Part B. Assume that (3.30) holds.
For the proof of this part, we consider two cases, as follows.

Case 1. The filterR(α, λn) = 1.
Taking the inner product ofu(z) and its derivative from (2.16), and adding the results give

〈

u(z), φn

〉

+

〈

du(z)
dz , φn

〉

√
λn

= e
√
λnz

〈

f , φn

〉

+
e
√
λnz

√
λn

〈

h, φn

〉

+

z
∫

0

e
√
λn(z−y)

√
λn

〈

G(y, u(y)), φn

〉

dy.

13



From (2.16), Lemma 3.3, and (3.19), (3.20) withR(α, λn) = 1, we obtain

vδα(z) − u(z) =
∞
∑

n=1

(Q(α, λn) − 1)
2

[

〈

u(z), φn

〉

+

〈

du(z)
dz , φn

〉

√
λn

]

φn

+

∞
∑

n=1

[ ∫ z

0
Sδα(z− y)

[

Gδ(y, v
δ
α(y)) −G(y, u(y))

]

dy

]

φn.

Then the triangle inequality and equations (1.6), (1.7), (3.21) and (3.34) lead to

‖vδα(z) − u(z)‖H ≤

√

√

√

∞
∑

n=1

(

Q(α, λn) − 1
)2

e2
√
λn(z−L)e2

√
λn(L−z)

[

〈

u(z), φn

〉

+

〈

du(z)
dz , φn

〉

√
λn

]2

+

+

∫ z

0

∥

∥

∥Sδα(z− y)
∥

∥

∥

L(H)

∥

∥

∥

∥

Gδ(y, v
δ
α(y)) −Gδ(y, u(y))

∥

∥

∥

∥

H
dy

≤ M(α)1−z/L

√

√

√

√ ∞
∑

n=1

e2
√
λn(L−z)

















〈u(z), φn〉 +

〈

du(z)
dz , φn

〉

√
λn

















2

+ C
∫ z

0
M(α)

y−z
L

∥

∥

∥

∥

vδα(y) − u(y)
∥

∥

∥

∥

H
dy

≤ M(α)1−z/L

√

√

2
∞
∑

n=1

e2
√
λn(L−z)

∣

∣

∣

∣

< u(z), φn >

∣

∣

∣

∣

2
+

2
λ1

∞
∑

n=1

e2
√
λn(L−z)

∣

∣

∣

∣

<
du(z)

dz
, φn >

∣

∣

∣

∣

2

+ C
∫ z

0
M(α)

y−z
L

∥

∥

∥

∥

vδα(y) − u(y)
∥

∥

∥

∥

H
dy

≤ M(α)1−z/L

√

2
∥

∥

∥

∥

u(z)
∥

∥

∥

∥

2

D

(

e(L−z)
√
−A

) +
2
λ1

∥

∥

∥

∥

du(z)
dz

∥

∥

∥

∥

2

D

(

e(L−z)
√
−A

)

+ C
∫ z

0
M(α)

y−z
L

∥

∥

∥

∥

vδα(y) − u(y)
∥

∥

∥

∥

H
dy.

Multiplying by M(α)z/L both sides, we have

M(α)z/L‖vδα(z) − u(z)‖H ≤ 2 max

{

1,
1
√
λ1

}

M(α)I2 + C
∫ z

0
M(α)y/L

∥

∥

∥

∥

vδα(y) − u(y)
∥

∥

∥

∥

H
dy.

Then Gronwall’s inequality yields

M(α)z/L‖vδα(z) − u(z)‖H ≤ 2 max

{

1,
1
√
λ1

}

M(α)I2 exp(Cz).

This implies that

‖vδα(z) − u(z)‖H ≤ 2I2 max

{

1,
1
√
λ1

}

M(α)1−z/L exp(Cz), z ∈ [0, L], (3.45)
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which is the desired estimate (3.43).

Case 2. The filterR(δ, λn) = Q(δ, λn).
Let the functionwδα be defined by

wδα(z) =
∞
∑

n=1

Q(α, λn)
〈

u(z), φn

〉

φn. (3.46)

From (3.19), (3.20) withR(α, λn) = Q(δ, λn) we have

Pδα(z) f =
∞
∑

n=1

Q(α, λn) cosh(
√

λnz)
〈

f , φn

〉

φn, Sδα(z)h =
∞
∑

n=1

Q(α, λn)
sinh(

√
λnz)√
λn

〈

h, φn

〉

φn,

and it is easy to see thatwδα satisfies the following identity:

wδα(z) = Pδα(z) f + Sδα(z)h+
∫ z

0
Sδα(z− y)G(y, u(y))dy. (3.47)

This is equivalent to replacing in (2.16) the eigenfunctions φn by the filtered onesφn
√

Q(α, λn).
Combining (3.37) and (3.47), we get

‖vδα(z) − wδα(z)‖H =

∥

∥

∥

∥

∫ z

0
Sδα(z− y)Gδ(y, vδα(y))dy−

∫ z

0
Sδα(z− y)G(y, u(y))dy

∥

∥

∥

∥

H
.

Then (1.6), (1.7) and (3.34) lead to

‖vδα(z) − wδα(z)‖H ≤
∫ z

0

∥

∥

∥Sδα(z− y)
∥

∥

∥

L(H)

∥

∥

∥

∥

Gδ(y, v
δ
α(y)) −Gδ(y, u(y))

∥

∥

∥

∥

H
dy

≤ C
∫ z

0
M(α)

y−z
L

∥

∥

∥

∥

vδα(y) − u(y)
∥

∥

∥

∥

H
dy, (3.48)

where we note again equation (1.6) holds forδ small enough. Moreover, from (2.9), (3.21) and
(3.46), we deduce that

‖wδα(z) − u(z)‖H =

√

√ ∞
∑

n=1

∣

∣

∣

∣

Q(α, λn) − 1
∣

∣

∣

∣

2
e2
√
λn(z−L)e2

√
λn(L−z)

∣

∣

∣

∣

〈

u(z), φn

〉

∣

∣

∣

∣

2

≤ M(α)1−z/L

√

√ ∞
∑

n=1

e2
√
λn(L−z)

∣

∣

∣

∣

〈

u(z), φn

〉

∣

∣

∣

∣

2

≤ M(α)1−z/L‖u(z)‖
D

(

e(L−z)
√
−A

) ≤ M(α)1−z/LI2. (3.49)

Summing up (3.48) and (3.49), and using the triangle inequality we obtain

‖vδα(z) − u(z)‖H ≤ M(α)1−z/LI2 + C
∫ z

0
M(α)

y−z
L

∥

∥

∥

∥

vδα(y) − u(y)
∥

∥

∥

∥

H
dy. (3.50)

Multiplying by M(α)z/L both sides of (3.50) we obtain

M(α)z/L
∥

∥

∥

∥

vδα(z) − u(z)
∥

∥

∥

∥

H
≤ M(α)I2 + C

∫ z

0
M(α)y/L

∥

∥

∥

∥

vδα(y) − u(y)
∥

∥

∥

∥

H
dy. (3.51)
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Finally, Gronwall’s inequality yields
∥

∥

∥

∥

vδα(z) − u(z)
∥

∥

∥

∥

H
≤ I2M(α)1−z/L exp(Cz), z ∈ [0, L],

which is the desired estimate (3.44).

Now, we shall finish the proof of Theorem 3.1. Applying triangle inequality together with
(3.38), we obtain

∥

∥

∥

∥

uδα(z) − u(z)
∥

∥

∥

∥

H
≤

∥

∥

∥

∥

uδα(z) − vδα(z)
∥

∥

∥

∥

H
+

∥

∥

∥

∥

vδα(z) − u(z)
∥

∥

∥

∥

H

≤
(

1+
1
√

2λ1

)

M(α)−z/L exp(Cz)δ +
∥

∥

∥

∥

vδα(z) − u(z)
∥

∥

∥

∥

H
.

If assumption (3.29) holds then
∥

∥

∥

∥

uδα(z) − u(z)
∥

∥

∥

∥

H
≤ M(α)1−z/L exp(Cz)

[

I1 +

(

1+
1
√

2λ1

)

δ

M(α)

]

. (3.52)

If assumption (3.30) holds then
∥

∥

∥

∥

uδα(z) − u(z)
∥

∥

∥

∥

H
≤ M(α)1−z/L exp(Cz)

[

2 max

{

1,
1
√
λ1

}

I2 +

(

1+
1
√

2λ1

)

δ

M(α)

]

. (3.53)

Hence, the estimates (3.31) hold.

We shall show that for each fixed 0≤ z < L, the functionuδα(z) gives a good approximation to
u(z). However, it is difficult to derive its approximation atz= L. We therefore need an adjustment
in choosing the regularized solution. The main idea is that we first use the continuity ofu to
approximate the initial valueu(L) by u(zδ) for some suitable smallzδ < L, and then approximate
u(zδ) by uδα(zδ). The parameterzδ will be choosen as follows. For everyδ > 0, there exists a unique
zδ ∈ (0, L) such that

(L − zδ) = M(α)1− zδ
L . (3.54)

It implies that ln(L−zδ)
L−zδ

=
ln(M(α))

L . Using the inequality lnz > −1
z for every z > 0, we obtain

L − zδ <
√

L
ln( 1

M(α) )
. To estimate the error we use the triangle inequality

‖uδα(z) − u(L)‖H ≤ ‖u(L) − u(z)‖H + ‖u(z) − uδα(z)‖H

≤ sup
0≤z≤L

∥

∥

∥

∥

du(z)
dz

∥

∥

∥

∥

H
(L − z) + ‖u(z) − uδα(z)‖H.

The estimate above applied forz= zδ together with the estimates (3.31) lead to

‖uδα(zδ) − u(L)‖H ≤ sup
0≤z≤L

∥

∥

∥

∥

du(z)
dz

∥

∥

∥

∥

H
(L − zδ) + ‖u(zδ) − uδα(zδ)‖H

≤ sup
0≤z≤L

∥

∥

∥

∥

du(z)
dz

∥

∥

∥

∥

H

√

L

ln( 1
M(α) )

+ Θ,

hence (3.33) holds. This ends the proof of the main Theorem 3.1 about general regularization fil-
ters for quasilinear Cauchy problems with locally Lipschitz nonlinear source.
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