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Abstract

Up to now, studies on the semi-linear Cauchy problem foptdlipartial diterential equations
needed to assume that the source term present in the gayerquation is a global Lipschitz func-
tion. The current paper is the first investigation to not ot more general but also the more
practical case of interest when the souce term is onfycal Lipschitz function. In such a situ-
ation, the methods of solution from the previous studie$ &iglobal Lipschitz source term are
not directly applicable and therefore, novel ideas andrtiegles need to be developed to tackle
the local Lipschitz nonlinearity. This locally Lipschitbgrce arises in many applications of great
physical interest governed by, for example, the sine-Gardane-Emden, Allen-Cahn and Liou-
ville equations. The inverse problem is severely ill-posethe sense of Hadamard by violating
the continuous dependence upon the input Cauchy data. fdheran order to obtain a stable so-
lution we consider theoretical aspects of regularizatibtne problem by a new generalized filter
method. Under some priori assumptions on the exact solutvenprove and obtain rigorously
convergence estimates.

Keywords and phrasesCauchy problem; Nonlinear elliptic equation; Ill-posedlplem; Error
estimates.

Mathematics subject Classification 20@5K05, 35K99, 47J06, 47H10

1. Introduction

Let H be a Hilbert space with the inner prodydct) and the nornil.||, and letA: D(A) c H - H
be a linear, positive-definite, self-adjoint operator vadmpact inverse oH. ForL > 0, consider
the inverse problem of finding the function [0, L] — H from the equation

d?u(2)
dz

=AU2 + G(zu(2), ze(O,L), (1.1)
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with the (initial) Cauchy conditions

{u(O) _f,
du (1.2)
d—Z(O) =h,

where (f, h) are given data il xH and the source functid@ : [0, L]xH — H will be defined later.
In practice, the dataf(h) € HxH is noisy and is represented by the perturbed dttdn{) € HxH
satisfying

11— fllw +Ih° = hlly <6, (1.3)

where the constait> 0 represents a known upper bound of the measurement error.

It is well-known that in general the Cauchy problem for dltgequations is severely ill-posed
in Hadamard'’s sense, i.e. a small perturbation in the givamcBy data (1.2) may cause a very
large error in the output solutiom(z) for z € (0,L]. Moreover, the instability increases with in-
creasing the distanadrom the boundary = 0. Therefore, it is very diicult to solve the problem
by using classical numerical methods of inversion, [22]oldder to overcome this instability, reg-
ularization methods are naturally required.

Equation (1.1) is an abstract version which generalizesymasil-known equations. For a
simple example, ifA = —A (Laplace operator) anG(z u(z)) = —k?u(z) with k real or purely
imaginary, then the equation (1.1) becomes the Helmholinadified Helmholtz equation, re-
spectively, which arises in many engineering applicatreteted to propagating waves irfidirent
environments or heat transfer in fins. More generally,Aox= —A and G a nonlinear function
of u, equation (1.1) becomes the nonlinear Poisson equatiochwhiencountered in numerous
applications in heat and mass transfer, chemical recatgassdynamics and fluid flow in porous
media, [2, 3, 19].

In the past, there have been many studies on the homogenatlsm given by equation (1.1)
with G = 0 and (1.2). For instance, Elden and Berntsson [14] usedotrithmic convexity
method to obtain a stability result of Holder type. Aleshami et al. [1] provided optimal stability
results under minimal assumptions, whilst Reginska andefdnahn [32] presented some stabil-
ity estimates and a regularization method for a Cauchy proldbr Helmholtz equation. Many
methods have been proposed to solve the Cauchy problemné&arlhomogeneous elliptic equa-
tions, such as the method of successive iterations [10jlteenating method [26], the conjugate
gradient method [11, 24], the iterative regularization imoef [15], the quasi-reversibility method
[23, 28], the fourth-order modified method [30], the Foutiemcation regularized (or spectral
regularized method) [17, 35], etc. Nevertheless, theditee devoted to the Cauchy problem for
linear homogeneous elliptic equations is very rich, see[é,&, 7,9, 12, 13, 16, 21, 23, 29, 33, 35]
and the references therein. Recently, a linear inhomogeneersion of Helmholtz equation (i.e.
G(z u(2)) = G(2) in equation (1.1)) has been considered in [34].

Although there are many works on the linear case, the litezain the nonlinear case is quite
scarce. We mention here a nonlinear elliptic problem of [3wtjere the authors approximated
(1.1) and (1.2) by a truncation method. However, their tissarie only given for globally Lipschitz
source terms.

In practice, the applications of nonlinear problem recgittee extended Lipschitz source term.
For example, ifG(z u) = sinu, then the equation (1.1) is called the elliptic-sine Gordgnation
which occurs in several areas of mathematical physics diguthe theory of Josephsoftects,
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superconductors and spin waves in ferromagnets, see 8, 2Q[L Furthermore, the Lane-Emden
equatiomAu = —uP, implying G(z u) = —uP, p > 1, plays a vital role in describing the structure of
the polytropic stars, whengis called the polytropic index, [8]. Also, the reactiorffdsion equa-
tion Au = ®?uP, implying G(z u) = ®?uP, governs kinetic and usional phenomena in chemical
reaction engineering. In this equatiomjs the order of the reaction arbf is called the Thiele
parameter representing the ratio of kinetic to transpaistances in the domain, see [3] where
other physical models such as thermal explogifn u) = —expUu — 1), and substrate inhibition
G(z u) = ®?u/(1+au+pBu?), are also considered. Finally, fGr(z, u) = u-u?, we have the Allen-
Cahn equation originally formulated in the description Bpbase separation in fluids. From this
wide range of physical examples one can observe that, efeefite sine-Gordon equation in
which the sine-nonlinearity is a global Lipscitz functidhe other examples present a nonlinear
functionG which is only locally Lipschitz, i.e. for alB > 0, there exist&(B) > 0 such that

IG(zu) - G(zV)lly <k(B)llu-Vily  Yze[O,L], ifmax{lully, My} < B. (1.4)

To the best of our knowledge, the Cauchy problem (1.1) ar®®) (@r nonlinear elliptic equa-
tions with a locally Lipschitz source term is yet to be inwgated. Therefore, in the present paper,
we propose a new general filter function method to regulaheeproblem (1.1) and (1.2) in the
case thatG is locally Lipschitzian with respect ta. Remark that it is impossible to solve the
problem only with the asumption (1.4) by applying directhg tmethod of [37]. To overcome this
technical dificulty, in this paper, we propose a new idea in which the Igchipschitz source
function G is approximated by a sequenGg of globally Lipschitzian functions. Furthermore,
assuming that the functiok given in (1.4) is increasing on [8c), we then choose a positive
sequencéB;}sso satisfyingéﬂm Bs = +o00 on whichk(Bs) satisfies certain constraints. We then

define the functiori; from G as

Gs(zv) = (z, mln{”B|| }v) Y(z V) € [0, L] x H. (1.5)
H

In particular,G;(z 0) = G(z 0). In fact, since linp,o B; = +o0, for § small enough we have that
SURpo. U@L < Bs. From (1.5) this implies that

Gs(z u(2) = G(zu(2), VzelO,L], for¢ssmallenough (1.6)

We also have the following lemma giving the Lipschitz consfar the functionG;.

Lemmal.l.For§ > 0,ze€[0,L] and v, v» € H, we have

1Gs(z V1) = Gs(Z Vo)lln < 2K(Bs) IV — Vol - (1.7)

Proof. Due to the continuity, it is enough to prove the lemma for zems elements; andv; in
H. We can assume thf,|| > ||vo|| > 0. Using the local Lipschitz property (1.4) & and the

definition (1.5) ofGs, we have
“ z,mln{ Bs 1}v1)—G(z, min{i,l}vz)
IVally” [IV2lly

Bs B
k(Bs) mln{ 1} Vi — min{—‘s, 1} Vs
IVl [IV2ll
3

IGs(z V1) — Gs(z Vo)l

H

, VYze|[O,L].

H

IA




It remains to show that

) B i B
Hmln{ 0 ,1} vy — mln{—‘s, 1} Vo
[IVally [IV2ll

This inequality is trivial ifBs > |[villy = [[Vallg. In the casdvy|ly = [[Volly = Bs, we have

o )

B,
= (12 = Vall + [l = vl ) < 212 = vl
IVl

< 2|vi = Vally .
H

Vi—Ve [IVally = [Vl
[IVally [IVall - V2l
Vi—V2
[IVall

||v1||H ||v2||H

H H

'”VZHH — Vil
IVl - V2l

Vo

Finally, if ||v|lq = Bs > [[V2l|y then

Bs — IV
“ vi-v| = s — | 1||HV V= Vo
IVl H [IValln H

Bs — [IVally

< |V FIlvi—Vally

[IVally I
= [Bs = Ivalla| + Vs = Vally < 21Iva =l
This implies the desired result (1.7). O

2. Cauchy problem for elliptic equations

From now on, suppose that: D(A) c H — H is a linear, positive-definite, self-adjoint operator
with compact inverse ohil. As a consequence, the operafoadmits an orthonormal eigenbasis
{¢n}n=1 IN H, associated with the eigenvalues

O< A1 << Az3< .. lim A, = o0,

Nn—oo

We can divide the Cauchy problem for elliptic equations thi@e cases: homogeneous linear
problem, inhomogeneous linear problem and nonlinear probl

2.1. Homogeneous linear problem
We first consider the homogeneous problem, = 0, of finding a functioru : [0O,L] — H

satisfying

d?u(2)
dz

=Au ze(O,L) (2.8)
subject to the Cauchy conditions (1.2). Let
U@ = )" (U@, 6n) ¢n (2.9)
n=1
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be the Fourier series ofin the Hilbert spacél. From (2.8), we obtain the following homogeneous
second-order dierential equation:

2
_22 <U(Z)’ ¢n> = An <U(Z), ¢n> =0
Solving this equation, we obtain
(U(). pn) = AV + Bpem Vi,

It follows from (1.2) that(u(0), ¢n) = (f, ¢n) andd%(u(O), ony = (h, ¢n). The obtained results for
A, andB, imply that

u2) = Z cosh( V2n2) (f, ) + ————

leading us to define the linear operat&g), S(z) : H —» H,

P@f = icosh( Vn2) (. 6o} (2.10)
n=1

smh( V2

(h, én) | én,
N $n)| ¢

i smh

S@T = 2~ (hen)en (211)

forze [0,L] and f € H. The solution of the homogeneous problem (1.2) and (2.8)ds given
by

ui2 = P@f +S(2h, ze][0,L]. (2.12)
2.2. Inhomogeneous linear problem and nonlinear problem
(i) We consider first the linear inhomogeneous problem ofifigca functionu : [0,L] — H
satisfying

d?u(2)

dz

subject to the Cauchy conditions (1.2). The solution this case has the Fourier series expansion
(2.9), where(u(z), ¢n> satisfies inhomogeneous second-ordéedential equation

=Au+G(z, O<z<lL (2.13)

2
§_22<U(z), &) = {U(D. 6n) = (G 61).

Solving this equation and using (1.2), we obtain the exakiti®m u to problem (1.2) and (2.13)
given by

u@ = i lcosl‘( VanZ) (f. o) + smh\(/i_z) (h, én)
sinh( VA,(z-Y)
+ f ( = )i9.8.)cs| o (2.14)

0
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With the definitions (2.10) and (2.11), equation (2.14) camdwritten as

u@ =P@f +S(@h+ fOZS(z— y)G(y)dy. (2.15)

Recently, Tuaret al. [34] regularized a simpler version of the equation (2.14)roycation
and quasi-boundary value methods.

(ii) For the nonlinear problem (1.1) and (1.2), its solutiosatisfies the following integral equation:

o sinh( V1,2)
u@ = > |cos \/_ 2)(f, ¢, h, ¢n
D cost(VTa) 1.0) + == =)
smh( Van(z - y))
+ Of T (G0.u).dn)ay 1 (2.16)
This integral equation can be rewritten as
u2 =P2f +SE@h+ fo S(z-y)G(y, u(y))dy. (2.17)

The transformation of (1.1) and (1.2) into (2.17) is easilgyed by the separation of variables
method, as above. Prior to this study, a filter regulariratitethod was applied for solving a
backward heat conduction problem [31] and for the Cauchylpro of the Helmholtz equation

[36]. In the next section, we introduce a new general filtgutarization method to stabilise the
integral equation (2.17).

3. A general filter regularization method for the nonlinear problem

In this section, we present a new general filter requlaopatiethod and establish convergence
rates and error estimates.

First, let us remark tha®(z) and S(z) given by equations (2.10) and (2.11), respectively, are
unbounded linear operators. This means that the solutioin(2.17) is not stable. To approxi-
mateu, we introduce a regularized solutiof) obtained by replacin®(2), S(z) by bounded linear
operatord? (2), S’(2), respectively, as follows:

U, = P,@f° + Sy (ah” + fo Sa(z=Y)Gs(y. Uy (y))dy, (3.18)

whereG; is defined in (1.5) and & a = «(6) plays the role of the regularization parameter to be
chosen depending on the amount of ndise (1.3). Here P’ (2) andS’(2) are defined by

0 Vanz —VAnz
P = ) AACTEEREAE T 3.19)
n=1
Ny
S@f - ZQ(““‘* _ VE(“ ZLLRANTPA (3.20)
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forze [0,L]and f = i <f,¢n>¢n. In these expression§(a, 4,) andR(a, A,,) are called’regu-
n=1

larizing filter functions” For more details on regularizing filter functions, we refe reader to
the book of Kirsch [25]. With a regularization strategy= «(6) for the regularization parameter
satisfying

lim a(6) = Lin?)llug(z) —u(@|ly =0, Vzelo,L],

then we obtain a so-callétilter regularization method” Now consider the general regularizing
filter Q satisfying

0 < Q(a, 1,)eV™ < M(a) %",
{ Qe 4n) (@) vne N, (3.21)

|Q(C¥, /ln) - lle‘/E(z_L) < M(a)l—z/L,

whereM(«a) is some positive function satisfying lymo M(a) = 0. We also take the filteR(a, An)
to be the function

R(a, 1,) = Q(a, 2,) or, R(a,4,) =1 (3.22)

In this case, we only consider examples @rand from this, the filteR is directly defined by
(3.22). For more illustration, we give a couple of examptas) which satisfies (3.21).

Example 1 LetR;, Q; be as

e Vil
R]_(CU, /ln) = Ql(a, /ln) = m (323)
First, we can deduce the following inequality:
e VAn(L-2) g Vn(L-2)

O S Ql(a, /ln)e\//l_nz = —
@+ e Vit (a + e“//l—nL)1 Z/L(oz + e““—n'-)Z/L

—-z/L
< (0/ + e“/m) Tt (3.24)
By a similar technique, we get
~ Van(L-2)
e
Qu(a, Ay) — LeVmeL = L=~ o pra (3.25)
@+ e Vil

ThereforeQ; given in (3.23) satisfies (3.21) witk(a) = a = 6.

Example 2 Let us choos®, andQ, as follows:

1, if 2, <N,

Ro(a, A) = Qa(a, Ay) = { 0 i LoN (3.26)

whereN, is some positive number satisfying liny N, ;) = +o0. It follows from
eV if 1, <N,,

0, if 24,>N,,
7

Qx(a, /ln)e\//l_nZ = {



that
Qu(, Ap)eVh? < eVNez
and
|Qa(er, Ag) — 1ye V1D < @VNlh),

Therefore Q, given in (3.26) satisfies (3.21) witkl (o) = e - YN = 5. The solution of (3.18) with
filters (3.26) is called &runcation solution”, and it has recently been studied in [37].

At this stage, let us introduce the Geyrey-type space, [B, 27
Gq;:D(eg‘/:“):{{eH;Zezﬁ‘“—”|<{,¢n>|2<oo}, (3.27)
n=1

for someB > 0. This is a Hilbert space with the norm

s, = el z) = JZ V0| < o > .
n=1

Clearly, if £ € D(¢¥-*), then the Fourier cdcients off must decay exponentially, as— oo.
The next theorem states the main result of the paper.

Theorem 3.1. (General regularization filters)
Assume that the proble(i.1) and (1.2) has a solution te C([0, L]; H). Choose Ma) such that
6/M(a) is bounded and choose Buch that
V2k(Bs)z
Vi

Suppose that there exist positive constantx ll, such that

!Si_r]?) M ()%t exp( ) =0, ze[O,L). (3.28)

””'D(m)ﬂ/_lﬂ—l” (o3 f HG(z,u(z))H Jydz< e (3.29)
or,
59 (12 [ D = 2 30

Then, fors small enough, the solutiorj wf (3.18) satisfies the following estimates:

P, exp(ﬁ%ﬁ")z) M(a):?", if (3.29) holds
P, exp(%ﬁé’z) M(a):7", if (3.30) holds

w(2 - u(z)HH < = 0, (3.31)
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where

1 0 1 1 0
P]_ = |1+(1+ \/2_/11) W, P2 = 2|2 maX{l,ﬁ}'i'(l'i' \/2_/11) W (332)

Moreover, there exists [0, L] satisfyinglims_,z; = 0 such that

(Z) H

U, (z5) — U(L)lIn < sup

O<z<L

In(— (3.33)

Remark 3.1. If in Theorem 3.1 we choose the regularization parameteom M(a) = ¢ then, by
taking B such that

K(Bs) < 7‘/_ |n(|n(5 H)
for somey > 0, we can conclude the(B.28)hoIds. Indeed, it is easy to see that
lim M(a)*?* exp(w) <limé# I’ =0, VvzelO,L).
6—0 \//l_l 6—0

For proving Theorem 3.1 the following lemmas are needed.

Lemma 3.1. The operators P(z) and S)(2) defined by(3.19)and(3.20) respectively, are bounded
and linear, and their norms satisfy
M(a) 7t

||Pg(z)||lL(H) < M(a)_Z/L’ ”Sg(z)”L(H) < \/2_/11 ’

where|| - [|l.4) Stands for the operator norm on the space of bounded linearaiprs from H onto
itself.

ze[0,L], (3.34)

Proof. Let f € H be arbitrary and represented as- io] <f ¢n>¢n. Then, from (3.19), (3.21) and
noting thatR(a, 1,)e” Y? < maxQ(a, 1,), 1}je~ Vi? < max{M(a) 2L 1) = M(e)™?", we have

(f.00)

2
= M(a) #MIf115.

2

Vanz —Vnz
IP@FI3 = Z [Q(a, An)eVt -;R(a/, An)€ ]2

n=1
< M@ ) (1.00)
n=1

This latter estimate implies that

IPo@|, 4y < M@, ze[O,L].
Similarly, we can easily show the second estimate of the lanindeed, sincg, > A, forn > 1,
and using (3.20), (3.21) and tl(@g—b)z < a%bz for a, b > 0, we have

(F.0n)

2

> VAnz _ — VAnz
IS I = ) [RedeT e e P72

n=1 2\//l_n
M Q)L & )%/
e X [(r.e0) )= H e,
This latter inequality implies the second estimate of tmertea. O
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Lemma 3.2. For each(f°,h’) € H x H, the integral equatior{3.18)has a unique solutioniue
C([O, L]; H).

Proof. For eachw € C([0, L]; H), we define

FW@ = P, + S,(@h" + fo S5z = Y)Gs(y, w(y))dy.

It is sufficient to show thaF has a unique fixed point i6([0, L]; H). This fact will be proved by
the contraction principle.
We claim by mathematical induction with respectic- 1, 2, ... that, for allw, v € C([O, L]; H),

@@ - F) @I < 8w v vzeqo,, (339)

where|||.||| is the sup norm il€([0, L]; H) and C= C(14, k(Bs)) is given by
_ V2k(By)
VA
Form= 1, using (1.7), (3.34) and (3.36) we have

(3.36)

IFW)(@ - FM@Il =

f S5(2— Y)[ Goly, W(y) - Gi(y. v(y))M

0

H
M ()~ W/t
N

2z=Y), ., [Gs wiy) - Gaty, vy dy < 2K(By) f [wty) - v dy

]L(H)'

z
sf‘
0

Z_ i - Vil

f Jwty) v dy < o2

= M(@) )

Suppose that (3.35) holds for= j. We prove that (3.35) holds fon = | + 1. Indeed, we have
[F W)@ - Fm)@||,, = [IF(F' W)@ - F(Fj(V))(Z)IIH

< e )f||FJ(w)(y)—FJ(v)(y)||de< e~ '”f(M( ) Yy

c \I*l i+
:(M(a)) G-k

Therefore, the inequality (3.35) holds for all= 1, 2, ... by the induction principle. In particular,

one has (CL/M(@)"
IF™(W)(@) - FP W)@l < T"MW— vill

Since CL/M o
im (CLIM(@)

M—-+co m!

10
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there exists a positive integer numbmy such that=" is a contraction mapping. It follows that
F™ has a unique fixed poin in C([0, L]; H). SinceF™(F(uw’)) = F(F™(u’)) = F(u’), we obtain
F(uw) = U due to the uniqueness of the fixed poinfdP. The uniqueness of the fixed pointBf
also follows from the uniqueness of the fixed point/. The unique fixed point’ of F is the
solution of (3.18). O

Lemma 3.3. The integral equation
v4
W2 = Po(2f +S;(9h + f Sh(z— Y)Gs(y, w(y))dy (3.37)
0

has a unique solutiordve C([0, L]; H). Furthermore, we have the following estimate:

) _ 1 a -z/L
W2 - V2Dl < (1+ \/2_/11) M(a) @ expC2s, ze<]O0,L]. (3.38)

Proof. Using Lemma 3.2, we conclude that the integral equation7{3hZs a unique solution
v € C([0, L]; H). Using (1.7), (3.18) and (3.34), we have

P@(F - ), + [si@ - n)
+ fo "S5z [Coy L) - G|

< IPS@lILnll = Flln + 11Se@llih® = hilk

+ fo Z 1S5z = Ml lIGs(y: i (y)) — Gy, Vo Y)lIndy

U2 = Vi (Dl < |

g, M@ P VM@)o
< M) ¥+ 2 2t + K(B) fo TG ) ~ Oy, (3.39)

Multiplying both sides of (3.39) b (a)?", it yields

1 ’ VLI (V) —
x/ﬂ)“cfo M (@)U () = Vo (Y)llkdly.

1

M@WW%@—@@Ms@+

Applying Gronwall’s inequality, we obtain

1
M(a)?"IW(2) — V(2 s(1+ )ex )6.
(@) U2 - Vo (DlIn N p(&)
Dividing both sides the latter estimate M(«)%", we conclude that (3.38) holds. This completes
the proof of the lemma. O

Now, we present some estimates in the Gevrey space (3.27).

Lemma 3.4. Assume that & D(e-Y=*). Then, we have the following estimates:

IP,@f - P@fll < MWVWquq’ (3.40)
and

s M(a)t £

;@1 = S@fls < =7l ) (3.41)
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Proof. Sincef = i <f, ¢n>¢n, noting that R(a, 4,) - 1]? < [Q(a, 4,)—1]? and using (2.10), (2.11),
n=1
(3.19)-(3.21), we have

2
= [Qle, An) - 1| €V*? + [R(a, An) - 1] g2V 2
IP@f -P@TIE < Z 5 (1, @n)
< > |Qte ) - 1] e Vhebg Vil ( f, ¢>'
n=1
£ @V ~ M()*%
< M(a)? ;ez ()| = M@y ||f||2D(M)
and
- Q(a /ln) 1[ eV 2
ISc@f - S@ Il < Z [ (£, én)
2
= [Qla. Ar) - 1| € Vil 2
a)z-z—z N At g M(a)* *
< Zez Jgn)| = yrm L8 o)
Taking the square roots in these expressions we obtain tines¢ss (3.40) and (3.41). 0
Lemma 3.5. For 6 small enough, we have:
(i) If the assumptior§3.29)holds, then
IV(2) = u@)lly < 1 expCIM(a)" 7", ze[0,L]. (3.42)

(i) If the assumptior§3.30)holds and Ra, 1)) = 1, then

IV(2) = u@lln < 21, max{l, i}exp(Cz)M(a)l-Z/L, ze [0, L]. (3.43)

1

(iii) If the assumptior(3.30)holds and R, 1,)) = Q(a, 4,), then
V(2 - U@k < 12expCIM(a)* 2", z€ [0, L]. (3.44)

Proof. We assume thattis small enough such that (1.6) holds. We divide the proaf inmo parts
corresponding to = 1 andi =

Part A. Assume that (3.29) holds. From (2.17) and Lemma 3.3, we have
V(2 - u@ = [P5@f - P@f|+[Si(9h - S@h| + fo S3(z-y)|Gs(y: V3 ) - Gs(y: u(y))|dy

+ fo [Siz=Y)G(y. u(y) ~ Sz~ Y)G(y. u(y)) |dy
12



By taking the norms irH on both sides and using (1.6), (3.34), (3.40) and (3.41), btaio
Vo (@) = U@l < IP,(DT — P@flIn + IS, (D - Sl
+ fo 182 g G562 ~ Gty u) | ay

o

< M(@)"7HIfl

S3(z- Y)G(y, uy)) - Sz~ y)G(y, u) dy

M(a 1-z/L
L||h||

o) T ()
1 z l_%’
) - o dy+ = [

Y4
+cf M(a)T
0

Multiplying by M(a)?" both sides, we have

G(y, u(y))ij(M)dy.

M(&)" V() — U@l

1 1 [
M1+ g+ ) Mo ot g0
«C [ M@ \o0) - uo) o

This together with (3.29) implies that

M(@)?"IV2(2) - U@l < M(@)l +C f "M@

V() - u))|, dy:
Then Gronwall’s inequality yields
M(@)*"Iv,(2) - U@l < M(a)l1exp(Q).
From this we obtain
M@ — U@l < 11M(a)"#"exp(@),  z€ [0, L],
which is the desired estimate (3.42).

Part B. Assume that (3.30) holds.
For the proof of this part, we consider two cases, as follows.

Case 1 The filterR(e, 4,) = 1.
Taking the inner product af(z) and its derivative from (2.16), and adding the results give

W Vi r VI
<U(Z), ¢n> + <d—\//l_> = e‘m—”z<f, ¢n> + e\/jl_ <h’ ¢n> + © j//l—y <G(y’ U(y)), ¢n>dy
n n 2 n

13



From (2.16), Lemma 3.3, and (3.19), (3.20) wiRfx, A,) = 1, we obtain

= (Qe, ) — 1) (52 9n)
CRICEDY “—[(u(z),qsn) - Jo
"2,

[ stte-yleiion -6, u(y»]dy]%
Then the triangle inequality and equations (1.6), (1.7.21Band (3.34) lead to

o0 , <dU(Z) ¢n>

@, An) — mer m=T u(2), on +
Z(Q( An) 1) 2 VIn(z-L) @2 Vaa(L z)[< 2), ¢ > ]
n=1

M@ - @il < =
o [ l1s2z= g 0506 66D - Gatun)]
o (22, 6,))
< M(@)* ZemL | @D gy + =
Q)T - d
cfo M(@)T [V, U(y)HH y

du(2) 2
dz +0n >

IA

00 2 2 o
M(a)l—Z/L 2 Z e2\/2—n(L—Z) < u(z)’ ¢n > ‘ + — Z eZN/E(L—Z) <
n=1 4 n=1

C fo "M@=
a2+ |

Z
+ cf M(a) T ||V
0

Multiplying by M(a)%* both sides, we have

) Y

IA

du(2 H e(L Z) \/_A)

o) e

M(@)? IV (2) — U@l < 2 max{l, 7}} M(@)l; + C f "M@ v

1

- uy)|| d
Then Gronwall’s inequality yields
1
M(a)? V(2 — u(Z sZmax{l,—}M I, exp(C2).
(@) IVe (2) — u(@)lln T (@)12exp(&)

This implies that

IV(2) — u@)lln < 21, max{l, i} M(a)* 7" exp(@), ze][0,L], (3.45)

VA
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which is the desired estimate (3.43).

Case 2 The filterR(d, 1,) = Q(6, 1y).
Let the functionw?, be defined by

w2 = i Q@ 10){U(D). ¢n)n. (3.46)
From (3.19), (3.20) withR(a, 1,) = Q((;,_ A,) we have
P@f = 2%, Ar) cosh(yn2)(f, ¢n)dn,  S3(DN = i Qe An)wvj_j_”z)m Bn)bn
and it is eas;/ to see thef satisfies the following identity_:
W,(2) = P2f +S)(2h + fo "S3(z- Y)B(y. uy)dy (3.47)

This is equivalent to replacing in (2.16) the eigenfuncsigp by the filtered oneg, VQ(«, ;).
Combining (3.37) and (3.47), we get

Jy S22 = 9)Guly, )y - [ S3(z - V)Gly, )| .
Then (1.6), (1.7) and (3.34) lead to

M@ - W@l =]

IA

V(D) = W, Dl fo 182 W o V2D - Gty )|

cfozlvl(a)y;f

where we note again equation (1.6) holds damall enough. Moreover, from (2.9), (3.21) and
(3.46), we deduce that

IA

V() - )| dy (3.48)

2

IW(2) — u(2)lIn

Ji ‘Q(a', An) — l‘zeZVﬂT(z—L)ezm(L_z)

n=1

(u(), ¢n)

2

IA

(u(), ¢n)

< M(@)+74,. (3.49)

M(a)*? LJ 2 V(L)
M(a)* Y u@)

A

p(et-2v4)

Summing up (3.48) and (3.49), and using the triangle inetyuak obtain

V@ - U@l < M@, + C f "M@

V() - u))|, dy. (3.50)
Multiplying by M(a)?" both sides of (3.50) we obtain

M M@ -u@|, < M@)I+c f "M@
0

15
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Finally, Gronwall’s inequality yields
- u(z)“H < 1L,M(@) L exp(), ze[O,L],
which is the desired estimate (3.44).

O

Now, we shall finish the proof of Theorem 3.1. Applying triégmgnequality together with
(3.38), we obtain

5@ -u@)||, < [w@-va@)|, + M@ -u),
1 -z
< (1 + \/2_/11) M(a) 7" exp(C)s + - u(z)HH.
If assumption (3.29) holds then
w(2) - u(z)H < M) exp(@) |11 + (1+ \/1_) M((sa)] (3.52)
If assumption (3.30) holds then
w(2 - u(z)H < M(@)V# exp(@) |2 max{l } ( )%] (3.53)

Hence, the estimates (3.31) hold.

We shall show that for each fixed<0z < L, the functionu’(z) gives a good approximation to
u(2). However, it is dificult to derive its approximation at= L. We therefore need an adjustment
in choosing the regularized solution. The main idea is thatfwst use the continuity ofi to
approximate the initial valua(L) by u(z;) for some suitable sma#i; < L, and then approximate
u(z;) by W2(z;). The parametez; will be choosen as follows. For evesy> 0, there exists a unique
Zs € (0, L) such that

(L-2)=M(@)"t. (3.54)
It implies that =2 = 2@ - ysing the inequality la > —2 for everyz > 0, we obtain
L-z< In( 7 To estlmate the error we use the trlanglelnequahty
M(e)

W@ -uLl < (L) — U@l + Iu@) - U(2)lI
WD) (-2 + 1) - L@

IA

0<z<L
The estimate above applied fbe z; together with the estimates (3.31) lead to

I (2) ~ ULl WD) (=20 + huz) - i

IA

sup
0<z<L

IA

?

du(Z) H

nggL In(—

hence (3.33) holds. This ends the proof of the main Theordmal3out general regularization fil-
ters for quasilinear Cauchy problems with locally Lipszhibnlinear source.
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