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Abstract: In this paper we develop a formal dynamic version of Chain
Event Graphs (CEGs), a particularly expressive family of discrete graph-
ical models. We demonstrate how this class links to semi-Markov models
and provides a convenient generalization of the Dynamic Bayesian Network
(DBN). In particular we develop a repeating time-slice Dynamic CEG pro-
viding a useful and simpler model in this family. We demonstrate how the
Dynamic CEG’s graphical formulation exhibits asymmetric conditional in-
dependence statements and also how each model can be estimated in a
closed form enabling fast model search over the class. The expressive power
of this model class together with its estimation is illustrated throughout by
a variety of examples that include the risk of childhood hospitalization and
the efficacy of a flu vaccine.
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1. Introduction

In this paper we propose a novel class of graphical models called Dynamic Chain
Event Graph (DCEG) to model longitudinal discrete processes that exist in

2130

http://projecteuclid.org/ejs
http://dx.doi.org/10.1214/15-EJS1068
mailto:L.M.Barclay@warwick.ac.uk
mailto:R.A.Collazo@warwick.ac.uk
mailto:J.Q.Smith@warwick.ac.uk
mailto:P.A.Thwaites@leeds.ac.uk
mailto:ann.nicholson@monash.edu


The dynamic chain event graph 2131

many diverse domains such as medicine, biology and sociology. These processes
often evolve over long periods of time allowing studies to collect repeated multi-
variate observations at different time points. In many cases they describe highly
asymmetric unfoldings and context-specific structures, where the paths taken by
different units are quite different. Our objective is to develop a graphical frame-
work that facilitates reasoning about conditional independence statements and
simplifies statistical inference for those dynamic processes. The last issue in-
cludes finding a well-fitted graph from data and quantifying the parameters of
a given graphical model.

In the literature there are various dynamic graphical models to model longi-
tudinal data. The most widely used is the Dynamic Bayesian Network (DBN)
(Dean and Kanazawa (1989); Nicholson (1992); Kjærulff (1992)), where the
process in each time-slice is modelled using a Bayesian Network (BN) and the
temporal dynamic is embedded in the model by temporal edges connecting
these different BNs. To allow for irregular time-steps, Nodelman et al. (2002)
suggested the development of a Continuous-Time BN (CTBN) whose variables
evolve continuously over time.

However a DBN (and also a BN) or a CTBN do not allow us to model
context-specific conditional independencies directly in their graphs and thus in
the statistical models. A DBN or a CTBN do this analytically but in a hidden
way by absorbing these context-specific statements into the implicit structures
within their conditional probability tables. This graphical limitation is illus-
trated in Example 1 using a BN to model a very simple process.

Example 1. Suppose that we would like to analyse the impact of weather on
traffic in a medium-size city. For this purpose, take the explanatory variable
“weather” with categories dry, drizzle, rain and a binary response variable “traf-
fic” which represents the risk of traffic jam with categories low and high. Assume
now that dry or drizzle have the same effect on traffic but that rain increases
the risk of a traffic jam substantially. Figure 1 depicts a standard BN for this
process. Note that without defing new random variables it is not possible to rep-
resent the context-specific statement graphically (Dry weather and drizzle have
the same impact on traffic).

Fig 1. BN of traffic example.

Another interesting class of dynamic graphical models is the local indepen-
dence graph (Didelez (2008)) or the graphical duration model (Gottard (2007)).
They have been developed to model event history data, which describe the rela-
tionship between a particular set of events that happen over time. These graph-
ical models explore the local independence structures that may be presented
in their corresponding processes. They, however, assume that the conditional
independencies do not change with time, and relationships can be naturally
expressed in terms of marked point processes.
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Here we propose a different graphical framework based on a tree to model
longitudinal data, which are observed at not necessarily regular time-steps. We
can incorporate many potential context-specific conditional independencies that
may vary over time within this class. This enables us to estimate each model
in a tractable and transparent way. In spite of their power and flexibility to
model diverse domains, previous graphical models are not able to enjoy all these
advantages.

Recently tree-based graphical models have been successfully used to describe
various phenomena. This tree provides a flexible graphical support through
which time sequences can be easily incorporated. Each path in the tree describes
the various possible sequences of events a unit can experience. One such alter-
native tree based model is the Chain Event Graph (CEG) (Smith and Anderson
(2008); Freeman and Smith (2011a); Thwaites (2013); Barclay et al. (2014)). In
a CEG not only conditional independencies, but also context-specific symme-
tries, are directly depicted in the topology of the graph, see Example 1 below.
Furthermore structural zero probabilities in the conditional probability tables
are directly depicted by the absence of edges in its graph. See, for example,
Smith and Anderson (2008); Barclay et al. (2013); Cowell and Smith (2014).

Example 1 (continued). Observe that even without being formally familiar with
the CEG semantic we can read from Figure 2 that the risk of traffic is identical
for weather classed as dry or drizzle but differs in the case of rain.

Fig 2. CEG of traffic example.

It has been recently discovered that a CEG also retains most of the useful
properties of a BN like closure to learning under complete sampling (Freeman
and Smith (2011a)) and causal expressiveness (Thwaites (2013); Thwaites et al.
(2010); Riccomagno and Smith (2009); Thwaites and Smith (2006a)). It also sup-
ports efficient propagation of new information (Thwaites et al. (2008); Thwaites
and Smith (2006b)). Hence CEGs provide an expressive framework for various
tasks associated with graphical representation and statistical inference, espe-
cially when the tree of the underlying sample space is asymmetric (French and
Insua (2010)).

The class of CEGs contains all discrete BNs (see Smith and Anderson (2008),
section 3.2, p. 56 for the proof), as well as all the extension of the BN to
context-specific BNs (Boutilier et al. (1996); Friedman and Goldszmidt (1998))
and Bayesian multinets (Geiger and Heckerman (1996); Bilmes (2000)). This
fact guarantees that all the conditional independencies entailed by these model
classes are embodied in the topology of the graph of a single CEG (see for



The dynamic chain event graph 2133

example Smith and Anderson (2008); Thwaites and Smith (2011) as well as many
others). The topology of the CEG has hence been exploited to fully represent
and generalize models such as context-specific BNs.

It has became increasingly apparent that in many contexts modelling variable
changes explicitly over time provide better results. For a comparison between
BNs and DBNs, see e.g. Rubio et al. (2014). Currently there is no such dynamic
CEG defined in the literature. Freeman and Smith (2011b) developed one dy-
namic extension of CEGs where the underlying probability tree is finite but
the stage structure of the possible CEGs is allowed to change across discrete
time-steps. This model, however, develops an entirely distinct class of models to
the one considered here. It looks at different cohorts of units entering the tree
at discrete time-points rather than assuming that repeated measurements are
taken over time.

In this paper we develop the DCEG model class that extends the CEG model
class so that it contains all dynamic BNs as a special case. In this sense we dis-
cover an exactly parallel extension to the original CEG extension of the BN
class. We show that any infinite tree can be rewritten as a DCEG, which repre-
sents the originally elicited tree in a much more compact and easily interpretable
form. A DCEG actually provides an evocative representation of its correspond-
ing process. It allows us to define many useful DCEG model classes, such as the
Repeating Time-Slice DCEG (RT-DCEG), that have a finite model parameter
space.

A DCEG also supports conjugate Bayesian learning where the prior distribu-
tion chosen in a family of probability distributions A together with the available
likelihood function yield a posterior distribution in the same family A. This is a
necessary requirement to guarantee analytical tractability and hence to design
clever model search algorithms that are able to explore the large numbers of
collections of hypotheses encoded within the DCEG model space. We further
demonstrate that we can extend this framework by attaching holding time dis-
tributions to the nodes in the graph, so that we can model processes observed
at irregular time intervals. Our learning framework is closely related to the one
developed by Nodelman et al. (2003) for CTBNs.

In Section 2 we present some important graph concepts and the definitions
of a BN, a DBN and a CEG. In Section 3 we formally define the infinite staged
tree and the DCEG. We further introduce the Extended DCEG which attaches
conditional holding times to each edge within the graph. We also define a special
class of DCEGs called the RT-DCEG which imposes certain restrictions on
the more general class of DCEGs. In Section 4 we show how to perform fast
conjugate Bayesian estimation of these model classes and demonstrate how a
typical model can be scored. In Section 5, we demonstrate that any general DBN
lies in the class of DCEGs and so show that DCEGs are a formal extension of
DBN models. We then present some connections between the (Extended) DCEG
model class and some (Semi-) Markov processes. We conclude the paper with a
short discussion.
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2. Background

In this section we revisit some graph notions that will be useful to discuss
graphical models. Next we explain briefly the BN and DBN models and then
define a CEG model. See Korb and Nicholson (2004); Neapolitan (2004); Cowell
et al. (2007); Murphy (2012) for more detail on BNs and DBNs. The CEG
concepts presented here are a natural extension of those in Smith and Anderson
(2008); Thwaites et al. (2010); Freeman and Smith (2011a). These conceptual
adaptations will allow us to directly use these concepts to define a DCEG model.

2.1. Graph Theory and conditional independence

Definition 1. Graph Let a graph G have vertex set V (G) and a (directed)
edge set E(G), where for each edge e(vi, vj) ∈ E(G), there exists a directed edge
vi → vj , vi, vj ∈ V (G). Call the vertex vi a parent of vj if e(vi, vj) ∈ E(G) and
let pa(vj) be the set of all parents of a vertex vj . Also, call vk a child of vi if
e(vi, vk) ∈ E(G) and let ch(vi) be the set of all children of a vertex vi. We say
the graph is infinite when either the set V (G) or the set E(G) is infinite.

Definition 2. Directed Acyclic Graph
A directed acyclic graph (DAG) G = (V (G), E(G)) is a graph all of whose

edges are directed with no directed cycles – i.e. if there is a directed path from ver-
tex vi to vertex vj then a directed path from vertex vj to vertex vi does not exist.

Definition 3. Tree
A tree T = (V (T ), E(T )) is a connected graph with no undirected cycles.

Here we only consider a directed rooted tree. In this case, it has one vertex,
called the root vertex v0, with no parents, while all other vertices have exactly
one parent. A leaf vertex in V (T ) is a vertex with no children. A level L is the
set of vertices that are equally distant from the root vertex. A tree is an infinite
tree if it has at least one infinite path.

Definition 4. Floret
A floret is a subtree F(si) = (V (F(si)), E(F(si))) of T , si ∈ S(T ) where:

• its vertex set V (F(si)) consists of {si} ∪ ch(si), and
• its edge set E(F(si)) consists of all the edges between si and its children

in T .

There are various alternative ways of defining conditional independence. For
the purposes of this paper it is more convenient to use the definition below.

Definition 5. Conditional Independence
A discrete random variable Xa is conditionally independent of a discrete ran-

dom variable Xb given a set of discrete random variables X = {X1, . . . , Xn} if
for every triple (xa, xb,x), where x = (x1, . . . , xn), we have that

P (Xa = xa|Xb = xb,X = x) = P (Xa = xa|X = x). (1)

We write this conditional independence statement as Xa ⊥⊥ Xb|X .
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2.2. A Bayesian Network and a Dynamic Bayesian Network

A Bayesian Network is a probabilistic graphical model whose support graph is
a DAG G = (V (G), E(G)). Each vertex vi ∈ V (G) represents a variable Zi and
the edge set E(G) denotes the collection of conditional dependencies that are
assumed in the variable set. Here we assume that the vertex set V (G)) is well-
ordered and that there can be a directed edge e(vi, vj) if and only if i < j. Thus
the variable Zj is conditionally independent of variable Zi given the variable set
Zi

j = {Z1, . . . , Zj−1} \ {Zi} whenever an edge e(vi, vj) does not exist in E(G).
Formally,

Zj ⊥⊥ Zi|Z
i
j ⇔ e(vi, vj) /∈ E(G). (2)

Recall that the concept of conditional independence plays a central role in this
model class (Dawid (1998); Pearl (2009), Chapter 1, p. 1–40). Below we give
a simple example that is more complex than the first since it entails not only
context-specific independencies but also various asymmetric developments.

Example 2. An individual is at risk of catching flu. Having caught flu he either
decides to take antiviral treatment or not (Treatment variable, see Figure 3). If
he takes the antiviral treatment we assume that he will always recover. On the
other hand if he does not take the antiviral treatment he either manages to re-
cover or he dies from the virus (Recovery variable, see Figure 3). Given a full
recovery the individual can either decide to go back to his normal life or to receive
an influenza vaccine to prevent him from being at risk again (Vaccine variable,
see Figure 3). We further hypothesise that the decision of taking a vaccine is
conditionally independent of the decision to take the antiviral treatment given,
of course, that the individual is alive. Thus the Recovery and Vaccine variables
depends, respectively, on the Treatment and Recovery variables, but the Vac-
cine variable is conditionally independent of the Treatment variable given the
Recovery variable. Figure 3 shows a standard BN to model this process.

Fig 3. BN of flu example.

Another class of graphical model we will discuss and compare in this paper
is the Dynamic Bayesian Network (DBN) which models the temporal changes
in the relationships among variables. It extends directly the BN conception.
A DBN G = (V (G), E(G)) can be interpreted as a collection of BNs {Gt =
(V (Gt), E(Gt)); t = 1, 2, . . .} where the variables in time-slices t can also be
affected by variables in the previous time-slices but not by variables in the next
ones. These dependencies between time-slices are represented graphically by
edges called temporal edges. Formally, V (G) =

⋃

t V (Gt) and E(G) =
⋃

t[E(Gt)∪
Et], where Et is the set of temporal edges {e(vi,τ , vj,τ ); τ < t} associated with
a BN Gt and vi,τ represents a variable Zi in time-slice τ < t.

In this paper we only consider discrete BNs and discrete DBNs where all
variables have discrete state spaces.
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2.3. A Chain Event Graph

A full description of this construction for finite processes can be found in Smith
and Anderson (2008); Freeman and Smith (2011a); Thwaites et al. (2010). Here
we summarise this development.

Definition 6. Event Tree
An event tree is a finite tree T = (V (T ), E(T )) where all vertices are chance

nodes and the edges of the tree label the possible events that happen. A non-leaf
vertex of a tree T is called a situation and S(T ) ⊆ V (T ) denotes the set of
situations.

The path from the root vertex to a situation si ∈ S(T ) therefore represents
a sequence of possible unfolding events. The situation denotes the state that is
reached via those transitions. Here we assume that each situation si ∈ S(T )
has a finite number of edges, mi, emanating from it. A leaf node symbolises
a possible final situation of an unfolding process. An edge can be identified
by two situations si and sj (edge e(si, sj)) or by a situation si and one of its
corresponding unfolding events k (edge esik).

Definition 7. Stage
We say two situations si and sk are in the same stage, u, if and only if

1. there exists an isomorphism Φik between the labels of E(F(si)) and
E(F(sk)), where Φik(esij) = eskj, and

2. their corresponding conditional probabilities are identical.

When there is only a single situation in a stage, then we call this stage and its
corresponding situation trivial.

If two situations are in the same stage then we assign the same color to their
corresponding vertices. In other publications, for example Smith and Anderson
(2008), corresponding edges of situations in the same stage are also given the
same color. For clarity here we only color vertices and edges corresponding to
non-trivial situations. We can hence partition the situations of the tree S(T )
into stages, associated with a set of isomorphisms {Φik : si, sk ∈ S(T )}, and
embellish the event tree with colors to obtain the staged tree.

Definition 8. Staged Tree
A staged tree version of T is one where

1. all non-trivial situations are assigned a color
2. situations in the same stage in T are assigned the same color, and
3. situations in different stages in T are assigned different colors.

We illustrate these concepts through a simple example on influenza, which
we later develop further using a DCEG model.

Example 2 (continued). After eliciting the event tree (see Figure 4) corre-
sponding to the Example 2 we can hypothesize possible probabilistic symmetries
in this process. For example, we might assume that recovering with or without
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Fig 4. Flu example.

treatment will not affect the individual’s probability to decide to get the vaccine.
This demands that the probabilities on the edges emanating from s1, labeled
“resume normal life” and “get vaccine”, are identical to the probabilities on the
edges emanating from s5 with the same labels. This assumption can be visualized
by coloring the vertices of the event tree and their corresponding edges.

A finer partition of the vertices in a tree is given by the position partition.
Let T (si) denote the full colored subtree with root vertex si.

Definition 9. Position

Two situations si, sk in the same stage, that is, si, sk ∈ u ∈ U, are also in the
same position w if there is a graph isomorphism Ψik between the two colored
subtrees T (si) → T (sk). We denote the set of positions by W .

The definition hence requires that for two situations to be in the same position
there must not only be a map between the edge sets E(T (si)) → E(T (sk)) of
the two colored subtrees but also the colors of any edges and vertices under this
map must correspond. For example when all children of si, sk are leaf nodes
then T (si) = F(si) and T (sk) = F(sk). Therefore si and sk will be in the
same position if and only if they are in the same stage. But if two situations
are further from a leaf, not only do they need to be in the same stage but also
each child of si must correspond to a child of sk and these must be in the same
stage. This further applies to all children of each child of si and so on.

Definition 10. Chain Event Graph (Smith and Anderson (2008))

A CEG C = (V (C), E(C)) is a directed colored graph obtained from a staged
tree by successive edge contraction operations. The situations in the staged tree
are merged into the vertex set of positions and its leaf nodes are gathered into a
single sink node w∞.

A CEG depicts not only the unfolding of events expressed in a tree but also
the types of probabilistic symmetries.
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Fig 5. CEG of flu example.

Example 2 (continued). The hypothesis that recovering with or without treat-
ment does not affect the probability of the individual taking the flu vaccine,
places s1 and s5 in the same position. We then obtain the following CEG given
in Figure 5 with stages and positions given by:

w0 = u0 = {s0}, w1 = u1 = {s1, s5}, w2 = u2 = {s2}, w∞ = {s3, s4, s6, s7, s8}

Note that the corresponding BN (Figure 3) cannot depict graphically the
asymmetric unfolding of this process and the context-specific conditional state-
ments.

3. Infinite probability trees and DCEGs

In this section we extend the standard terminology used for finite trees and
CEGs to infinite trees and DCEGs. In the first subsection we derive the infinite
staged tree, followed by a formal definition of the DCEG. The next subsection
we extend the DCEG to not only describe the transitions between the vertices
of the graph but also the time spent at each vertex. Finally we define a useful
class of DCEG models.

3.1. Infinite staged trees

Clearly an infinite event tree can be uniquely characterized by its florets, which
retain the indexing of the vertices of T . The edges of each floret can be labeled as
esij ∈ E(F(si)), j = 1, . . . ,mi, where si hasmi children. As noted above, we can
think of these edge labels as descriptions of the particular events or transitions
that can occur after a unit reaches the root of the floret. In particular, we
can also use the index j = 1, . . . ,mi to define a random variable taking values
{x1, . . . , xmi

} associated with this floret.

Example 2 (continued). Assume that the individual is every month at risk of
catching the flu. As before, given a full recovery from the virus, with or without
treatment, the individual can either decide to go back to his normal life where he
is at risk of catching flu again or decide to receive an influenza vaccine to prevent
him from being at risk again. As the tree is infinite, only an informal depiction
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Fig 6. Flu example: the beginning of the infinite staged tree, T .

of the corresponding tree can be given (Figure 6), where implicit continuations
of the tree are given by the notation ‘. . .’.

In our example the edges E(F(s0)) describe whether the individual catches the
flu (edge e(s0, s1)) or not (edge e(s0, s2)), while the floret of vertex s1 describes,
having caught the flu, whether the individual takes the treatment (edge e(s1, s3))
or not (edge e(s1, s4)).

From the above example we can observe that each path within an infinite
event tree is a sequence through time. To embellish this event tree into a proba-
bility tree we need to elicit the conditional probability vectors (CPVs) associated
with each floret F(si). This is given by

πsi = (πsi1, πsi2, . . . , πsimi
), (3)

where πsij = P (esij |si) is the probability that the unit transitions from si along
the jth edge, and

∑mi

j=1 πsij = 1.
Collections of conditional independence (or Markovian) assumptions are in-

trinsic to most graphical models. For an event tree these ideas can be captured
by coloring the vertices and edges of the tree as discussed for CEGs in Sec-
tion 2.3. This idea immediately extends to this class of infinite trees.

Recall from Section 2.3 that a situation identifies a unique point in the de-
velopment of a unit over a particular process. Situations that have identical
conditional probabilities associated with their immediately subsequent events
are colored the same and are said to be in the same stage. Situations whose
unfolding subtrees are topologically and probabilistically equivalent constitute
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a position. Observe that situations in the same position are always in the same
stage but the inverse does not necessarily hold. This happens because stages
impose probabilistic and topological equivalences for only one step ahead. In
contrast position implies that these equivalences hold for the whole set of sub-
sequent unfoldings along the event tree. Therefore if we have two distinct situ-
ations in the same stage but in different positions, they will be represented by
two different vertices with the same color.

Now call U the stage partition of T and define the conditional probability
vector (CPV) on stage u to be

πu = (πu1, πu2, . . . , πumu
), (4)

where u has mu emanating edges. If U is the trivial partition, such that ev-
ery situation is in a different stage, then the coloring contains no additional
information about the process that is not contained in T .

As above we can further define a CPV on each position:

πw = (πw1, πw2, . . . , πwmw
). (5)

Surprisingly, the positions of an infinite tree T are sometimes associated
with a coarser partition of its situations than a finite subtree of T with the
same root. This is because in an infinite tree two situations lying on the same
directed path from the root can be in the same position. This is impossible for
two situations si, sk in a finite tree: the tree rooted at a vertex further up a
path must necessarily have fewer vertices than the one closer to the root, so in
particular no isomorphism between T (si) and T (sk) can exist. We give examples
below which explicate this phenomenon.

Note that, we would normally plan to elicit the structural equivalences of
the model – here the topology of the tree and stage structure associated with
its coloring – before we elicit the associated conditional probability tables. This
would then allow the early interrogation and adoption of the qualitative features
of an elicited model before enhancing it with supporting probabilities. These
structural relationships can be evocatively and formally represented through
the graph of the CEG and DCEG. In particular this graph can be used to
explore and critique the logical consequences of the elicited qualitative structure
of the underlying process before the often time consuming task of quantifying
the structure with specific probability tables.

Example 2 (continued). In the flu example we may have the staged tree as
given in Figure 6. Hence we assume that the probability of catching flu does not
change over the months and does not depend on whether flu has been caught
before. This implies that s0, s2, s5, s8 and s12 are in the same stage, as well
as all subsequent situations describing this event, which are not represented in
Figure 6. Similarly, s1 and s11 are in the same stage, such that whether the
antiviral medication is taken or not is also independent of the number of months
until the individual catches flu and independent of flu having been caught before.
We further assume that the probability of the individual returning to his normal
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life after recovery is the same when he recovers after treatment as when he
successfully recovers without treatment. This means that s3 and s7, as well as
all other situations representing the probability of returning to a normal life after
recovery, are in the same stage. It can be seen from the staged tree that, in this
example, whenever two situations are in the same stage, they are also in the
same position as their subtrees have the same topology and the same coloring of
their situations. Note that in this example the stage partition and the position
partition of the situations coincides. Hence our stage and position partition is
as follows:

w0 = u0 = {s0, s2, s5, s8, s12 . . .}, w1 = u1 = {s1, s11, . . .},

w2 = u2 = {s3, s7, . . .}, w3 = u3 = {s4, . . .}. (6)

Not all paths in the tree are infinite and hence a set of leaf vertices, {l6, l9, l10, . . .},
exists.

3.2. Dynamic Chain Event Graphs

From the definition of a position, w, given a unit lies in w, any information
about how that unit arrived at w is irrelevant for predictions about its future
development. As for the CEG, the positions therefore become the vertices of
the new graph, the DCEG, which we use as a framework to support inference.
Further, colors represent probabilistic symmetries between positions in the same
stage. Figure 7 depicts the DCEG corresponding to the staged tree shown in
Figure 6 above.

We can now define the DCEG, which depicts a staged tree (see Definition 8
in Section 2.3) in a way analogous to the way the CEG represents structural
equivalences.

Definition 11. Dynamic Chain Event Graph
A Dynamic Chain Event Graph (DCEG) D = (V (D), E(D)) of a staged tree

T is a directed colored graph with vertex set V (D) = W , the set of positions of
the staged tree T , together with a single sink vertex, w∞, comprising the leaf
nodes of T , if these exist. The edge set E(D) is given as follows: Let v ∈ w be a
single representative vertex of the position w. Then there is an edge from w to
a position w

′

∈ W for each child v
′

∈ ch(v), v
′

∈ w
′

in the tree T . When two
positions are also in the same stage then they are colored in the same color as
the corresponding vertices in the tree T .

We call the DCEG simple if the staged tree T is such that the set of positions
equals the number of stages, W = U , and it is then uncolored.

A DCEG is actually obtained from the staged tree by edge contraction op-
erations. Observe also that if two situations are in the same position w there is
a bijection between their corresponding florets. Thus we can take any vertex in
w to represent it.

Note that the DCEG class extends the CEG models since it could in principle
have an infinite number of distinct vertices. When a tree is finite, a CEG is
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Fig 7. Flu Example: DCEG of the infinite staged tree.

actually a DCEG. However the CEG is always acyclic, whilst a DCEG can
exhibit cycles – self-loops or loops across several vertices – when it has an infinite
number of atoms but a finite graph. In this case a cycle represents a subprocess
whose unfolding structure is unchangeable over time. We illustrate below that in
many applications the number of positions of a staged tree is finite even though
the tree’s vertex set is infinite. When this is the case the DCEG is a finite graph
and therefore provides a succinct picture of the structural relationships in the
process.

Example 2 (continued). Figure 7 shows the corresponding DCEG of the staged
tree given in Figure 6 with V (D) given in Equation 6. The loop from w0 into
itself illustrates that every month the individual could remain well and not catch
flu. Alternatively, the individual may move to w1 at some point, meaning that
he has caught flu. In this case he can recover either by getting treatment (w1 →
w2) or recover on his own (w1 → w3 → w2). Having recovered the individual
either decides to take a flu vaccine to avoid getting flu again (w2 → w∞) or to
simply resume his normal life and risk getting flu again (w2 → w0). Finally,
when not taking treatment, the individual may not recover, and hence move from
w3 to w∞. Here the position w∞ can be interpreted as representing stopped
subprocesses whose two different stopping reasons are indicated by the labels
(“Get flu vaccine” or “No survival”) of its incident edges.

3.3. DCEGs with holding time distributions

Given the graph of a DCEG we can trace the possible paths a unit may take
and the associated events that may occur across time. So far we have implicitly
assumed that we have regular steps such as days or months. For instance in
the DCEG of the flu example (Figure 7), every month the individual is at risk
of catching flu: If he catches flu, he traverses through the rest of the DCEG
ending up either at w∞ or back at w0; if not he loops back directly to w0. In
this case the time an individual stays in a particular position simply follows a
geometric distribution, where the probability that an individual stays in position
w for k time steps is equal to P [e(w,w)|w]k × [1 − P{e(w,w)|w}]. Further, it
has been assumed that once an individual catches flu, only the events of taking
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treatment, recovering, and receiving a vaccine are recorded and not the time
until these events occur. These could, for example, be recorded retrospectively
when measurements are taken a month later. Therefore, here the holding time
distributions on a position without a loop into itself lose information.

However, in many cases our process is unlikely to be governed by regular
time steps and it is much more natural to think of the time steps to be event
driven. A process like this is naturally represented within a tree and hence a
DCEG: when moving from one position to another the unit transitions away
from a particular state into a different state associated with a new probability
distribution of what will happen next. For example, the individual may not
record whether he catches flu or not every month but instead monitor the time
spent at w0 not catching flu, until one day he falls ill. Similarly, the time until
seeing the doctor for treatment or the time until recovery may be of different
lengths and so he spends different amounts of time at each position in the
DCEG. Motivated by this irregularity of events, we look at processes in which
a unit stays a particular time at one vertex of the infinite tree and then moves
along an edge to another vertex. We hence define in this section a generalization
of the DCEG, called the Extended DCEG, which attaches a conditional holding
time distribution to each edge in the DCEG.

We call the time a unit stays in a situation si the holding time Hsi associated
with this situation. We can further also define the conditional holding times
associated with each edge esij , j = 1, . . . ,mi in the tree, denoted by Hsij . This
describes the time a unit stays at a situation si given that he moves along the
edge esij next. Analogously to this we can further define holding times on the
positions in the associated DCEG: We let Hw be the random variable describing
the holding time on position w ∈ W in the DCEG and Hwj , j = 1, . . . ,mw the
random variable describing the conditional time on w given the unit moves along
the edge ewj next.

In this paper we assume that all DCEGs are time-homogeneous. This means
that the conditional holding time distributions for two situations are the same
whenever they are in the same stage u. Hence, given the identity of the stage
reached, the holding times are independent of the path taken. We denote the
random variable of the conditional holding time associated with each stage by
Huj , j = 1, . . . ,mu. Time-homogeneity then implies that when two situations
are in the same stage u then their conditional holding time distributions are also
the same. We note that a unit may spend a certain amount of time in position
w ∈ u before moving along the jth edge to a position w

′

which is in the same
stage. So a unit may make a transition into a different position but arrive at
the same stage.

We further assume throughout that the conditional probabilities of going
along a particular edge after reaching a stage, do not vary with previous hold-
ing times. In the flu example this would mean that the time until catching
flu does not effect the probability of taking treatment and the probability of
recovery without treatment. Similarly, the holding times are assumed to be in-
dependent of previous holding times. So, for example, the time until recovery
is independent of the time to catching flu. Contexts where the holding time
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distribution may affect the transition probabilities and future holding times can
provide an interesting extension to the DCEG and will be discussed in a later
paper. Under these assumptions an Extended DCEG is defined below.

Definition 12. Extended DCEG
An Extended DCEG D = (V (D), E(D)) is a DCEG with no loops from a

position into itself and with conditional holding time distributions conditioned
on the current stage, u, and the next edge, euj, to be passed through:

Fuj(h) = P (Huj ≤ h|u, euj), h ≥ 0, ∀u ∈ U, j = 1, . . .mu. (7)

Hence Fuj(h) describes the time a unit stays in any position w merged into stage
u before moving along the next edge ewj .

Consequently, given a position w ∈ W (D) is reached, the joint probability of
staying at this position for a time less than or equal to h and then moving along
the jth edge is

P (Hwj ≤ h, ewj |w) = P (Hwj ≤ h|w, ewj)P (ewj |w) = Fuj(h)πuj , w ∈ u. (8)

Finally, the joint density of ewj and h is

p(ewj , h|w) = πujfuj(h),

where fuj is the pdf or pmf of the holding time at stage u going along edge
ewj , w ∈ u next.

An Extended DCEG with stage partition U is hence fully specified by its set
of conditional holding time distributions {Fuj(.) : u ∈ U} and its collection of
CPVs {πu : u ∈ U}. Note that it is simple to embed holding times into the
staged tree and into the DCEG. Example 2 below discusses this issue in terms
of qualitative and graphical modelling without using any specific holding time
distribution. Observe also that an Extended DCEG differs from a DCEG in that
the transition time between two positions depends on the initial and terminal
stages. This fact links Extended DCEGs to semi-Markov processes.

Example 2 (continued). Return again to the flu example from Section 3.1 with
a slightly different infinite tree given in Figure 8. Instead of measuring every
month whether the individual catches flu, the individual will spend a certain
amount of time at s0 before moving along the tree. Hence the second edge ema-
nating from s0 in Figure 6 and its entire subtree have been removed. As before,
it is assumed that the probability of catching flu and the decision to take treat-
ment does not depend on whether the flu has been caught before. Also, recovery
with or without treatment is assumed not to affect the probability of receiving a
vaccine. The corresponding Extended DCEG is given in Figure 9 with positions
given by

w0={s0, s4, s7, . . .}, w1={s1, s10, s11, . . .},

w2={s2, s6, . . .}, w3={s3, . . .}, w∞={l5, l8, l9, . . .}.
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Fig 8. Variant of flu example: infinite tree T ∗.

Fig 9. Variant of the flu example: Extended DCEG of the infinite staged tree.

In comparison to Figure 7 the loop from w0 into itself has been removed. Instead
the time spent at w0 is described by the holding time at position w0. Similarly,
the time until treatment is taken or not, the time until recovery or death and
the time to receiving the flu vaccine or not are of interest and holding time
distributions can be defined on these.

3.4. The repeating time-slice DCEG

Now we can define a useful DCEG class, called the repeating time-slice DCEG
(RT-DCEG), whose graph is composed by two different time-slice finite sub-
graphs.

Definition 13. Repeating Time-Slice DCEG
Consider a discrete-time process on I = {t0, t1, t2, . . .} characterised by a

finite collection of variables {Zp, p = 1, 2, . . . , P} where the index p defines the
same unfolding variable order for each time slice t ∈ I. Denote by Zp,t the
variable Zp in the time slice t and assume that all situations corresponding
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Fig 10. Repeating Time-Slice DCEG.

to a variable Zp,t define the level Lp,t in the corresponding event tree. Denote
also by {spl,t0} and {spl,t1} the set of situations associated to the last variables
of time-slices t0 and t1, respectively. We have a Repeating Time-Slice DCEG
(RT-DCEG) when all previous conditions are valid and there is a surjection
map Υ : {spl,t0} → {spl,t1} such that Υ(spl,t0) is in the same position as spl,t0

for all spl,t0 .

The main characteristic of the RT-DCEG topology is that in the end of
the second time slice the edges loop back to the end of the first time slice (see
Figure 10). Note that the levels Lp,t, t = 1, 2, . . ., correspond to the same variable
Zp. We will now illustrate a RT-DCEG modelling with a real-world example.

Example 3. We here consider a small subset of the Christchurch Health and
Development Study, previously analysed in Fergusson et al. (1986); Barclay et al.
(2013). This study followed around 1000 children and collected yearly informa-
tion about their family history over the first five years of the children’s life. We
here consider only the relationships of the following variables given below.

• Financial difficulty – a binary variable, describing whether the family is
likely to have financial difficulties or not,

• Number of life events – a categorical variables distinguishing between 0,
1− 2 and ≥ 3 life events (e.g. moving house, husband changing job, death
of a relative) that a family may experience in one year,

• Hospital admission – a binary variable, describing whether the child is
admitted to hospital or not.

In this setting each time slice corresponds to a year of a child’s life start-
ing from when the child is one year old, t0 = 1. A plausible RT-DCEG could
be the one given in Figure 10. Note that this RT-DCEG assumes that whether
the individual is admitted to hospital or not does not affect the subsequent vari-
ables. This is evident from the double arrows from w3 to w6, w4 to w7 and w5
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to w8. Also, observe that the variable describing the hospital admission is not
included at time t = 0, as it does not provide additional information under this
assumption.

We start at w0 in order to follow the path an individual might take through
the DCEG across time. The first part of the graph describes the initial CPVs
at time t0. It is first resolved whether or not the family has financial difficulties
(w0 → w1, w0 → w2) and whether the individual experiences 0, 1 − 2 or ≥ 3
life events during this year (w1 → w3,w1 → w4, w2 → w4, w2 → w5). She then
reaches one of the three positions w3, w4 and w5 describing a ‘health state’ the
individual is in before a hospital admission may occur. Independent of whether
an admission has occurred or not (w6, w7, w8) she then moves to positions that
describe the same three health states. Then, given the individual is in one of the
three health states (w3, w4, w5) at time t, for t ≥ t1, she traverses through the
graph in the following year according to the financial difficulty and number of
life events in year t + 1 and ends up in one of the three previous health states
again.

Note that the positions of the RT-DCEG encode the entire history of a unit
and we can trace back the full path a unit has taken through the graph. This
is a property inherited from the event tree that supports the RT-DCEG graph.
For instance, in Example 3 the probability of an individual having a hospital
admission at time t is given by P (Adm = 1|wi) = πwi

, i = 3, 4, 5. It therefore
depends on the position where the individual is located at time t. These positions
are reached depending on the number of life events and the financial difficulty
in that year and the health state of the previous year, which is again determined
by the financial difficulty and the number of life events of the year before.

4. Bayesian learning of the parameters of an extended DCEG

In this section we present the learning process of a finite Extended DCEG which
extends those for the CEG and is closely related to the learning framework for
CTBNs proposed by Nodelman et al. (2003). Conjugate learning in CEGs is
now well documented (Smith (2010); Freeman and Smith (2011a)), where the
developed methods resemble also the ones used for discrete BN learning – see
Korb and Nicholson (2004); Neapolitan (2004); Cowell et al. (2007); Heckerman
(2008).

Here we consider only conditional holding time distributions Fuj parametrised
by a one-dimensional parameter λuj . Assuming random sampling and prior in-
dependence of the vector π of all stage parameters and the vector λ of different
holding time parameters, we can show that the posterior joint density of π and
λ is given by:

p(π,λ|h,N,D) = p1(π|N,D)p2(λ|h,N,D), (9)

where h andN are, respectively, the vector of holding times associated with each
stage and the vector of the number of times each edge is taken in the sample;
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and p1(π|N,D) and p2(λ|h,N,D) are the posterior distributions of parameters
π and λ, respectively. See Appendix A for more details.

Equation 9 makes sure that the parameters π and λ can be updated indepen-
dently. The Extended DCEG learning can then be divided in two distinct steps:

1. learning the stage parameters π; and
2. learning the holding time parameters λ.

Learning the posterior p1(π|N,D) therefore proceeds exactly analogously to
learning within the standard CEG. Thus assuming local and global indepen-
dence of stage parameters π and random sampling – these conditions are also
assumed for conjugate learning of BNs – Freeman and Smith (2011a) show that
with an appropriate characterisation each stage must have a Dirichlet distribu-
tion a priori and a posteriori. Here we also assume these conditions to update
the stage parameters π in a DCEG model. It then follows that

πu ∼ Dir(αu1, . . . , αumu
) (10)

and
πu|N,D ∼ Dir(αu1 +Nu1, . . . , αumu

+Numu
), (11)

where αuj is the hyperparameter of the prior distribution associated with an
edge j of stage u and Nuj is the number of times an edge j of stage u is taken.

As with all Bayesian learning some care needs to be taken in the setting of
the hyperparameter values αu. In the simplest case we assume that the paths
taken on the associated infinite tree are a priori equally likely. We then specify
the hyperparameters associated with each floret accordingly. Given that the
Extended DCEG has an absorbing position w∞ we can find, under the above
assumptions, the αu, u ∈ U of the Extended DCEG structureD derived from the
infinite tree by simply summing the hyperparameters of the situations merged.
This direct analogue to Freeman and Smith (2011a) does not however work
when no absorbing position exists, for then these sums diverge. Hence we need
to take a slightly different approach. There are many possible solutions. Here
we will adapt the concept of ‘equilibrium’ in Markov chains and thus make
the simplest assumption that our prior beliefs with respect to the dynamic
stages are ‘in equilibrium’ (see the discussion of Example 3 below. In other
words, our prior beliefs are assumed to be the stationary distribution of the
stage transition matrix that assigns the same probability to any path in the
corresponding DCEG.

Note that when the holding time distributions are identical across the model
space an Extended DCEG is indeed a DCEG and thus it is only necessary to
learn the stage parameters π. To compare two different models we can then use
the log Bayes Factor. We illustrate below how we can update the CPVs in a
DCEG using the Christchurch example (Section 3.4).

Example 3 (continued). Take the RT-DCEG depicted in Figure 10 (Section 3.4).
Note that again the stages and positions of the graph coincide and hence learn-
ing the stage parameters is equivalent to learning the position parameters of
the graph. To specify the stage priors, we determine the hyperparameters αu
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Table 1

Prior CPVs and data associated with each position

Position Prior Data

w0 Dir( 5
2
, 1

2
) (873, 189)

w1 Dir( 5
6
, 5

6
, 5

6
) (135, 436, 302)

w2 Dir( 1
6
, 1

6
, 1

6
) (9, 56, 124)

w3 Dir( 5
6
, 5

6
) (1735, 122)

w4 Dir( 1
2
, 1

2
) (766, 98)

w5 Dir( 1
6
, 1

6
) (406, 59)

w6 Dir( 5
6
, 5

6
) (1679, 178)

w7 Dir( 1
2
, 1

2
) (700, 164)

w8 Dir( 1
6
, 1

6
) (227, 238)

w9 Dir( 13
18

, 13

18
, 13

18
) (616, 1323, 618)

w10 Dir( 2
9
, 2

9
, 2

9
) (28, 180, 183)

w11 Dir( 1

18
, 1

18
, 1

18
) (15, 74, 149)

of the Dirichlet distribution associated with each stage u as suggested above as
follows: We first find the limiting distribution of the Markov process with state
space W={w3, w4, w5, w6, w7, w8, w9, w10, w11} and with the following transition
probability matrix that assumes all paths in the graph are equally likely:

P =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1

2
1
2 0

0 0 0 0 0 0 0 1
2

1
2

2
3

1
3 0 0 0 0 0 0 0

1
3

1
3

1
3 0 0 0 0 0 0

0 1
3

2
3 0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

So for example, the transition probability from position w9 is 2/3 to position
w3, 1/3 to position w4 and 0 to any other position. Solving the general balance
equations we then deduce that P (W = w3) = P (W = w6) =

5
27 , P (W = w4) =

P (W = w7) = 1
9 , P (W = w5) = P (W = w8) = 1

27 , P (W = w9) = 13
54 ,

P (W = w10) = 2
27 , P (W = w11) = 1

54 . This limiting distribution together
with an equivalent sample size of 3 (equal to the largest number of categories a
variable of the problem takes Neapolitan (2004)) determines the strength of the
prior on each stage. Therefore the strength of stages in the same level has to
sum up 3. Here this implies that we need to multiply the limiting distribution
associated with each stage by 9 to obtain its corresponding strength. Further,
assuming that the probabilities on the edges emanating from each position are
uniform we can deduce the stage priors to be as given in Table 1.

We can now update these priors separately and in closed form for each
stage using the data. The data set has 1062 children born in Christchurch,
New Zealand, for the first 2 − 5 years of their lives. We use the data from
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Table 2

Posterior CPVs and 95% credible intervals

Position Posterior Mean (95% credible interval)

w0 Dir(875 1

2
, 189 1

2
) 0.82(0.80, 0.84) 0.18(0.16, 0.20)

w1 Dir(135 5

6
, 436 5

6
, 302 5

6
) 0.15(0.13, 0.18) 0.50(0.47, 0.53) 0.35(0.31, 0.38)

w2 Dir(9 1

6
, 56 1

6
, 124 1

6
) 0.05(0.02, 0.08) 0.30(0.23, 0.36) 0.65(0.58, 0.72)

w3 Dir(1735 5

6
, 122 5

6
) 0.93(0.92, 0.94) 0.07(0.06, 0.08)

w4 Dir(766 1

2
, 98 1

2
) 0.89(0.86, 0.91) 0.11(0.09, 0.14)

w5 Dir(406 1

6
, 59 1

6
) 0.87(0.84, 0.90) 0.13(0.10, 0.16)

w6 Dir(1679 5

6
, 178 5

6
) 0.90(0.89, 0.92) 0.10(0.08, 0.11)

w7 Dir(700 1

2
, 164 1

2
) 0.81(0.78, 0.84) 0.19(0.16, 0.22)

w8 Dir(227 1

6
, 238 1

6
) 0.49(0.44, 0.53) 0.51(0.47, 0.56)

w9 Dir(616 13

18
, 1323 13

18
, 618 13

18
) 0.24(0.22, 0.26) 0.52(0.50, 0.54) 0.24(0.23, 0.26)

w10 Dir(28 2

9
, 180 2

9
, 183 2

9
) 0.07(0.05, 0.10) 0.46(0.41, 0.51) 0.47(0.42, 0.52)

w11 Dir(15 1

18
, 74 1

18
, 149 1

18
) 0.06(0.04, 0.10) 0.31(0.25, 0.37) 0.63(0.56, 0.69)

year 2 to update the initial positions w0, w1 and w2 and then use the hospital
admissions variable of year 2, as well as years 3 − 5, to update the remaining
CPVs. The data available for each position is presented in Table 1.

Doing so we obtain the posterior distributions associated with each stage given
in Table 2. We also present their corresponding means and 95% credible inter-
vals. Observe that each stage has a Dirichlet posterior distribution whose param-
eter is obtained by summing up the parameter of its Dirichlet prior distribution
and corresponding sample vector.

Thus, for example, the expected probability of a child being admitted to hos-
pital is 0.07 given she has reached position w3. This represents three possible
developments: i) she was previously in position w3 and had fewer than 3 life
events in the current year; ii) she was previously in state w4 and then had no
financial difficulties and less than 3 events in the current year; or iii) she was
previously in state w4 and had financial difficulties but no life events in the
current year. Similarly, we have that the probabilities of an admission when
reaching w4 and w5 are 0.11 and 0.13, respectively.

Next we consider the updating of the prior holding time distribution p(λ|D)
to its posterior distribution p(λ|h,N,D) using the holding time component of
the likelihood. Here we restrict ourselves to discussing some examples for con-
jugate learning. An option is to assume that each holding time parameter λuj

has a Weibull distribution W (λuj , κuj) with a known κuj . If we set κuj = 1,
the parameter λuj corresponds to the average rate that transitions from a stage
u using edge j occur. It corresponds to assuming an exponential distribution
for λuj . We noted that Nodelman et al. (2003) also used an exponential dis-
tribution to model the holding time distribution in a CTBN. In this case, it is
implicitly hypothesised that these transition events from a stage u using edge
j happen at a constant expected rate over time and are mutually exchangeable
given a DCEG model. Observe that this implies that the holding time distri-
butions are stationary and conditionally independent given their corresponding
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stages. However using a Weibull distribution we are also able to allow for the
possibility that the transition average rate varies over time by adjusting the
hyperparameter κuj ; for κuj < 1 this rate decreases over time and for κuj > 1
this rate increases over time. For more detail about the Weibull distribution and
its use for Bayesian learning see Johnson et al. (1995).

To learn the parameters of the conditional holding time distributions, the
priors on λuj are assumed to be mutually independent and have inverse-Gamma
distributions IG(αuj , βuj). This enables us to perform conjugate analyses which
are analytically tractable. It also allows us to incorporate some background
prior domain information. The hyperparameters αuj and βuj have a strict link
with the expected mean and variance of the transitions events about which
domain experts can provide prior knowledge. Of course in certain contexts the
parameter independence assumption a priori may not be appropriate because
the transition times are mutually correlated. In these situations it is likely that
conjugacy would be lost, requiring other methods such as MCMC to find the
corresponding posterior distribution.

Under the assumptions discussed above to obtain a conjugate learning, the
posterior of the rate under this model is given by

λuj |huj , Nuj ,D ∼ IG(αuj +Nuj , βuj +

Nuj∑

l=1

(hujl)
kuj ), (12)

where hujl, l = 1, . . . , Nuj are the conditional holding times for each unit l that
emanates from a stage u through an edge j. Example 2 below exemplifies how
we can apply this framework to learn the parameters of an Extended DCEG
that has a loop and also a sink node w∞.

Example 2 (continued). Recall again the Extended DCEG of the flu example
given in Figure 9. To first set up the Dirichlet priors on πu and the Inverse-
Gamma priors on λuj we again assume an uninformative prior on the paths of
the associated tree. Since the equivalent sample size has to be greater than 2.5
to ensure that the prior Inverse-Gamma distributions have a mean, we chose an
equivalent sample size of 3 to be only weakly informative. To determine the hy-
perparameters αu of the Dirichlet priors we can here use the standard approach
of summing the hyperparameters of the situations in each stage, as, due to the
sink node w∞, the sum will not diverge as in the previous example.

Recall from Equation 9 that, for example, u1 = {s1, s10, s11, . . .}. Then un-
der the above assumptions and the tree structure in Figure 8 the situations
in u1 have the distributions: v1 ∼ Dir(1.5, 1.5), v11 ∼ Dir(1.5ρ1, 1.5ρ1), v12 ∼
Dir(1.5ρ2, 1.5ρ2), where ρ1 = 0.25 and ρ2 = 0.125. Similarly, the next situa-
tions of u1 will have the distributions Dir(1.5ρ21, 1.5ρ

2
1), Dir(1.5ρ1ρ2, 1.5ρ1ρ2),

Dir(1.5ρ2ρ1, 1.5ρ2ρ1), Dir(1.5ρ22, 1.5ρ
2
2), . . .. The infinite sum of the hyperpa-

rameters of these distributions is hence a geometric serie whose initial term is
3 and whose rate is equal to ρ1 + ρ2 = 0.375. So we can obtain the hyperpa-
rameters of the prior on u1 as the limit of these two series, such that we have
πu1

∼ Dir(4.8, 4.8). The hyperparameters of the remaining priors on u2 and u3
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Table 3

Influenza Example: Prior distributions on CPVs and conditional holding times

Description Holding time distribution Prior

Time until catching flu Hu01
∼ Exp(λu01

) λu01
∼ IG(4.8, 3.8)

Take treatment Nu1
∼ Mult(πu1

) πu1
∼ Dir(4.8, 4.8)

Time until recovery with treatment Hu11
∼ Weibull(λu11

,K1) λ
K1

u11
∼ IG(4.8, 3.8)

Time until decide against treatment Hu12
∼ Exp(λu12

) λu12
∼ IG(4.8, 3.8)

Recovery Nu3
∼ Mult(πu3

) πu3
∼ Dir(1.2, 1.2)

Time until recovery Hu31
∼ Weibull(λu31

,K2) λ
K2

u31
∼ IG(1.2, 0.2)

Time until death Hu32
∼ Weibull(λu32

,K3) λ
K3

u32
∼ IG(1.2, 0.2)

Get vaccine Nu2
∼ Mult(πu2

) πu2
∼ Dir(3.8, 3.8)

Time until resume normal life Hu21
∼ Exp(λu21

) λu21
∼ IG(3.8, 2.8)

Time until vaccine taken Hu22
∼ Exp(λu22

) λu22
∼ IG(3.8, 2.8)

can be found in a similar way. They are given together with the priors of the
conditional holding times in Table 3.

In this example, it may further be plausible to assume an exponential distri-
bution on Hu01, which describes the time until catching flu, with scale parameter
λu01, the average time until the individual gets ill. Further it could be assumed
that Hu11 has the more general Weibull distribution, with scale parameter λu11

and with known shape parameter k1 > 1, describing the time until taking treat-
ment and recovering. As k1 > 1 it is assumed that the recovery rate increases
with time. The time until the individual decides not to take the treatment could
again be exponentially distributed with scale parameter λu12, i.e. it is assumed
to occur at a constant rate. Similarly to Hu11, Hu31 could also have a Weibull
distribution with known shape parameter k2 > 1. In contrast to this, Hu32 could
have a Weibull distribution with scale parameter λu32 and known shape parame-
ter k3 < 1 indicating that the death rate decreases with time. The holding times
Hu21 and Hu22 could again have exponential distributions with parameters λu21

and λu22 respectively. Here the time until getting the vaccine or resuming a
normal life is measured.

If Inverse-Gamma priors on λu01, λk1

u11
, λu12, λu21, λu22, λk2

u31
and λk3

u32

are assumed, a conjugate analysis as described above can be carried out. The
priors can be specified by assuming two conditions: i) a prior mean equal to
1 for all prior holding times; and ii) an equivalent sample size corresponding
to the strength of the prior belief on the edge associated with each conditional
holding time distribution (see Table 3). Then, given a complete random sample
of individuals going through the Extended DCEG for a certain length of time,
the number of times, Nuj, each edge, euj, is used can be recorded, as well as
the time spent at each position before moving along a particular edge. The prior
distributions on π and λ could then be updated in closed form by Equations 12
and 11, respectively. The CPVs and expected time spent at each position, before
moving along a certain edge, can thus be calculated.

Because the estimation above is in closed form, the corresponding marginal
likelihood can easily be computed. Thus, note that the marginal likelihood of
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an Extended DCEG structure given a complete random sample L(D|h,N) sep-
arates into two parts – one associated with the stages and another with the
holding times:

L(D|h,N) = L1(D|N)L2(D|h,N). (13)

Then, the marginal likelihood of an Extended DCEG takes the form:

L1(D|N) =
∏

u∈U

Γ(
∑mu

j=1 αuj)

Γ(
∑mu

j=1 αu +Nu)

mu∏

j=1

Γ(αuj +Nuj)

Γ(αuj)
. (14)

After a little algebra the second component of the marginal likelihood associated
with, for example, exponential holding times distributions can be written as:

L2(D|h,N) =
∏

u∈U

mu∏

j=1

β
αuj

uj

Γ(αuj)

Γ(αuj +Nuj)

βuj +
∑Nuj

l=1 h
αuj+Nuj

ujl

. (15)

When the prior distributions on λ are the same for all Extended DCEG
structures the log marginal likelihood, log L(D|h,N), can be written as a lin-
ear function of scores associated with different components of the models. The
overall linearity of the score is an important property to be explored to devise
clever techniques for traversing the Extended DCEG model space since the size
of this space is vast without further constraints.

5. Discussion

In this section we discuss the association between DCEGs and three other dy-
namic models: DBNs, Markov chains and semi-Markov processes.

5.1. The relationship between a DBN and a DCEG

Here we demonstrate that discrete DBNs (see Section 2.2) constitute a special
DCEG class. We then discuss some pros and cons in using one or other model.
Smith and Anderson (2008) and Barclay et al. (2013) have shown how a BN can
be written as a staged tree and hence as a CEG. This can be simply extended
to a dynamic setting and we explain below how a DBN can be represented as an
infinite staged tree and therefore as a DCEG. It is also easy to check that many
other processes such as dynamic context-specific BNs (Boutilier et al. (1996);
Friedman and Goldszmidt (1998)) or dynamic Bayesian multinets (Geiger and
Heckerman (1996); Bilmes (2000)) are amenable to this representation. Here to
match our methods against the usual formulation of the DBN we are focusing
only on the DCEG (Section 3.2), where one-step transitions are known and
holding times do not need to be explicitly considered.

Let {Zt : t ∈ I} where I = {t0, t1, t2, . . .} be a vector stochastic process.
Assume that at each time point t, we have a vector of nt variables Zt =
(Z1,t, . . . , Znt,t), and that the components Zp,t, p = 1, . . . , nt all take a finite
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number of values. The variables Zt then form a time-slice of the DBN for each
time point t. In the most general case, the DBN on Zt has an associated infinite
acyclic directed graph G where the component Zp,t of Zt has parents

pa(Zp,t) = {Zq,s : s < t, q ∈ {1, . . . , ns}} ∪ {Zq,s : s = t, q ∈ {1, . . . , p− 1}} .

Next we claim that any general DBN can be written as an infinite staged
tree. To demonstrate this, we first show how to write the variables of the DBN
as an infinite tree. We then define the conditional independence statements of
the DBN by coloring the florets in the tree to form a stage partition of the
situations.

Reindex the variables as Zk = Zp,t, k = 1, 2, 3, . . . so that, whenever Zi =
Zq,s ∈ pa(Zp,t), then the index i < k. This will ensure that parent variables
come before children variables and time-slices come before each other. There is
clearly always such an indexing because of the acyclicity and time element of G.
This gives a potential total ordering of the variables in {Zt : t ∈ I} from which
we choose one. Let a(Zk) = {Zi : i < k} be the set of antecedents of Zk for the
chosen variable order. Note that pa(Zk,t) ⊆ a(Zk).

By the assumptions of the ordering the components up to index k can be
represented by a finite event tree denoted by Tk = (Vk, Ek). Recall from Sec-
tion 3.1 that each floret in the tree can be associated with a random variable Zi

and the edges eij , j = 1, . . . ,mi describe the mi values in the sample space that
this random variable can take. Hence the paths in the tree Tk correspond to the
set of all combinations of values that variables Zk can take. Then a sequential
construction of the stochastic process allows us to define a set of trees {Tk}k≥1,
such that Tk is a subtree of Tk+1, recursively as follows:

Let Lk = Vk \ Vk−1 be the set of leaf vertices of Tk. Let also lki ∈ Lk,
i = 1, 2, . . . , Nk be a single leaf vertex i of Tk which has Nk leaf vertices.

1. For k = 1, let T1 be the floret, F(s0), associated with Z1 which can take
m1 values. Therefore V1 = {s0, l11, l12, . . . , l1m1

} and E1 = {es0j : j =
1, . . . ,m1}. Given Tk = (Vk, Ek), define the edge set of the tree Tk+1 as
follows:

Ek+1 = Ek ∪ E+
k+1,

where

E+
k+1 = {elkij : lki ∈ Lk, j = 1, 2, . . . ,mk+1} (16)

is a set of Nk ×mk+1 new edges such as mk+1 edges emanate from each
vertex lki, i = 1, 2, . . . , Nk. Each of these edge elkij describes a specific
value that the random variable Zk+1 can take. To define the vertex set of
Tk+1, attach now a new leaf vertex to each of the edges in E+

k+1 and let

V +
k+1 = {ch(lki) : lki ∈ Lk} (17)

and Vk+1 = Vk ∪ V +
k+1.
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Fig 11. A simple DBN for Christchurch Example.

2. The infinite tree T of this DBN is now simply defined as T = (V,E),
where the vertex and edges sets are, respectively, given by

V = lim
k→∞

Vk and E = lim
k→∞

Ek.

Note that the infinite length directed paths starting from the root of this tree
correspond to the atoms of the sample space of the process.

We demonstrate this recursive construction of the infinite tree below.

Example 4. Here we remodel the Christchurch example (Section 3.4) where
we take only the binary variables Financial Difficulty and Hospital Admission
into account. Let Z1,t and Z2,t denote, respectively, the variables Financial Dif-
ficulty and Hospital Admission in time-slice t. Suppose now that the financial
life enjoyed by a family in time t depends only on its previous financial situation
in time t − 1. Assume also that the probability of a child been admitted in the
hospital in time t depends if she visited the hospital in time t− 1 as well as on
the current financial difficulty faced by her family. The DBN given in Figure 11
represents this process over time. Note that this is a 1-Markov BN: a variable
is only affected by variables of the previous and current time-slices.

We can now reindex the variables of the DBN as follows:

Z1 = Z1,t0 , Z2 = Z2,t0 , Z3 = Z1,t1 , Z4 = Z2,t1 , Z5 = Z1,t2 , Z6 = Z2,t2 , . . .

where Zi represents a variable Financial Difficulty, if the index i is an odd
number, and a variable Hospital Admission, otherwise. Thus for example in the
event tree a(Z6) = {Z1, Z2, Z3, Z4, Z5} will be the antecedents of the variable
hospital admission associated with the third time-slice (Z2,t2).

Because we have defined Z1 = Z1,t0 , T1 hence corresponds to the tree given in
Figure 12 (a) with root vertex s0 and two emanating edges labeled No difficulty
and With difficulty. To obtain T2 (Figure 12 (b)) from T1 attach m2 = 2 edges
to each leaf vertex of T1 as defined by Equation 16 and attach a child to each new
edge as defined in Equation 17. Similarly, to obtain T3 from T2 attach m3 = 2
edges describing Z3 = 0 and Z3 = 1 to each leaf of T2 and attach a new leaf
to each new edge. Continuing in this way a representation of the infinite tree
is provided in Figure 17 (Appendix B), where again the notation ‘. . .’ describes
the continuation of the process.

We next represent the conditional independencies of the DBN by coloring
the vertices and associated edges that are in the same stage as described in
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Fig 12. Illustration of T1 and T2 of a DBN.

Section 3.1. The resulting staged tree then encodes the same conditional inde-
pendencies as the DBN.

Notice that the vertex lki ∈ Vk ⊆ V labels the conditioning history of the
variable Zk+1 based on the values of its antecedent variables. By the definition
of a DBN

Zk+1 ⊥⊥ a(Zk+1)|pa(Zk+1), (18)

which means that a variable Zk+1 is independent of its antecedents given its
parents. So by the DCEG definition the leaf nodes lki1 and lki2 associated with
the event tree Tk are in the same stage whenever their edge probabilities are the
same. More formally

P (elki1
j |lki1) = P (elki2

j |lki2) (19)

for all edges elki1
j and elki2

j , j = 1, . . . ,mk+1 or alternatively,

P (Zk+1 = zk+1|lki1) = P (Zk+1 = zk+1|lki2), (20)

where zk+1 is a value the variable Zk+1 can take. If this is true then we assign
the same color to lki1 as to lki2 . Thus the corresponding DCEG follows directly
from the staged tree by performing edge contraction operations according to the
position partition (see Section 3.2).

Example 4 (continued). Recall the previous Example 4. Assume now that the
conditional probability tables remain the same across the time-slices t, t ≥ t1,
for the Financial Difficulty variable set and the Hospital Admission variable set.
Consider also that the probability of hospital admission in a specific time-slice
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Fig 13. Illustration of the RT-DCEG of a DBN.

t, t ≥ t1, only changes – in this case positively – if a family currently enjoys
a good financial situation and their child was not admitted to the hospital in
the previous time-slice. This probability is hypothesised to be equal to the one
assigned to a child that lives in a financially stable family in the first time-slice.
Appendix B shows the staged tree corresponding to these hypotheses. Note that
the colors alternate between odd and even levels because of the invariance of
the conditional probability tables over time. Observe that it is not possible to
represent these context-specific conditional statements graphically using a DBN
model on these variables although they are encoded in the DBN’s conditional
probabilistic tables. In contrast, these additional conditions are not only directly
depicted in a DCEG – which is actually a RT-DCEG – but also the corresponding
graph is quite compact and easily interpreted (Figure 13).

Note that the re-expression of the DBN as a staged tree emphasizes how the
usual classes of DBNs only represent graphically certain specific families of sym-
metric conditional independencies. In contrast, the DCEG can allow us to depict
asymmetric dependence structures between the variables of a time-slice and also
across time-slices. When the dependence structure is defined through symmet-
ric conditional independencies then the DBN is topologically much simpler than
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the corresponding DCEG. But when, as is often the case, many combinations of
values of states are logically impossible and the number of non-zero probability
transitions between states is small then the DCEG depicts these zeros explicitly
and can sometimes be topologically simpler than the DBN.

Consider the staged tree of Example 4 (Figure 17, Appendix B). If the condi-
tional probability tables of the BN state that P (Z2,t0 = Adm|Z1,t0 = No diff) =
0 then the edge describing this probability can be omitted from the tree and the
tree is hence reduced to three quarters of its size. Hence unlike the BN and its
dynamic analogue, as well as depicting independence relationships the DCEG
also allow us to read zeros in the corresponding transition matrix, represented
by missing edges in the tree. This is particularly helpful when representing pro-
cesses which have many logical constraints. However, these gains imply that the
DCEG model space scales up super-exponentially with the number of variables.
Here the main challenge is to devise clever algorithms to search the DCEG
model space.

5.2. DCEG and Markov chain

In this section we use some examples to illustrate some topological links between
DCEG graphs and state-transition diagrams of Markov Chains. These connec-
tions constitute a promising start pointing to extend many of the well-developed
results on Markov processes to the DCEG domain – see, for example, the use of
limiting distribution to initialise the DCEG learning process (Section 4). In its
turn, the DCEG framework can be used to verify if there is statistical evidence
that supports modelling a real-world process as a Markov Chain, and (if there
is) to infer its corresponding transition matrix.

Note that the topology of the DCEG graph resembles the familiar state-
transition diagram of a Markov process, where the positions of the DCEG can
be reinterpreted as states of the Markov process. However, as mentioned at the
end of Section 3.1 the DCEG is usually constructed from a description of a
process as a staged tree rather than from a prespecified Markov chain. Thus
there are also some differences between the DCEG graph and standard state-
transition diagrams such as the one-to-one relationship between the atoms of
the space of the DCEG and its paths and its coloring as will be illustrated in
the simple examples below.

Example 5. Example of a Markov Chain I
Let {Xn : n ∈ N} be a discrete-time Markov process on the state space {a, b, c}

with transition matrix P given by

P =

⎛

⎝

0.2 0.3 0.5
0.5 0.3 0.2
0.5 0.3 0.2

⎞

⎠ ,

and with initial distribution α = (0.4, 0.4, 0.2). Note that the transition proba-
bilities from states b and c are the same. The state-transition diagram of the
associated Markov process is given in Figure 14.
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Fig 14. State-transition diagram of the Markov process in Example 5.

However, the DCEG representation gives a different structure, which becomes
apparent when looking first at the tree representation of the problem. As the
process is infinite, the number of situations of the tree is also infinite. The initial
situation s0, the root of the tree, has emanating edges which represent the choice
of initial state with associated CPV πs0 = (0.4, 0.4, 0.2). The other situations
could be indexed as {si,n, i = a, b, c, n ∈ N} with CPVs πsa,n = (0.2, 0.3, 0.5) and
πsb,n = πsc,n = (0.5, 0.3, 0.2). It is then immediate that the corresponding DCEG
only has three stages and positions with the stage and position partition given
by

u0 = w0 = {s0} , u1 = w1 = {sa,n, n ∈ N} , u2 = w2 = {sb,n, sc,n, n ∈ N} .

There is no w∞ as all paths are infinite and hence no leaf vertices exist in the
tree. The DCEG can then be drawn as given in Figure 15a and the associated
CPVs are πw0

= (0.4, 0.4, 0.2), πw1
= (0.2, 0.3, 0.5) and πw2

= (0.5, 0.3, 0.2).
For a better comparison the CPVs have here also been attached to the edges of
the DCEG. Figure 15b depicts the same process when it has a degenerate initial
distribution πs0 = (1, 0, 0).

Even here, where the process is initially defined through a transition matrix,
the graph of the DCEG automatically identifies states which have equivalent
roles: here state b being identified with state c, and illustrates the identical

Fig 15. DCEG representation of the Markov process in Example 4.
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conditional probabilities associated with the two states by putting sb,n and sc,n,
for n ∈ N in the same position w1 in Figure 15.

The DCEG also depicts explicitly the initial distribution of the process given
by the edges emanating from w0 and acknowledges the initially elicited distinc-
tions of the states b and c through the double edge from w0 to w2. Observe also
that if a process has a degenerate initial distribution – for example, the one
depicted in Figure 15b – the DCEG will show this phenomenon transparently
and it only implies minor changes in the DCEG topology.

These topological properties often have important interpretive value, as the
DCEG can discover a different partition of the states of a variable or even
help to construct new informative variables to represent a problem. Further,
any residual coloring, inherited from the staged tree allows us to elaborate the
structure of the transitions in a natural and consistent way, highlighting some
possible common underlying structures between the states of a Markov process.
This can bring new questions and motivate a deeper understanding of the pro-
cess under analysis. For example, the state-transition diagram and DCEG graph
(Figure 16) corresponding to the simple Example 6 are identical except for the
colors. By coloring the positions red, the DCEG model stresses that their tran-
sition processes are probabilistically identified with each other (i.e. they are in
the same stage). In real-world problems if these coloring properties appear in
the best scoring model based on the given data set, then these features are ex-
plicitly depicted and fed back to domain experts who can then speculate about
the possible reasons for their presence.

Example 6. Example of a Markov Chain II

A coin is tossed independently, with probability P (H) = λ of throwing heads
and probability P (T ) = 1 − λ = λ̄ of throwing tails. The coin is tossed until
N heads have appeared when the game terminates. Its DCEG has thus N+1
positions describing whether 0, 1, 2, . . ., N−1 or N heads have been tossed and
is given in Figure 16.

Notice here that because each toss has the same probability λ of heads the posi-
tions w0, w1, w2, . . . , wN−1 are all in the same stage and so its vertices w0, w1, w2,
. . . , wN−1 are colored red. If this was a model discovered from observations an
expert could immediately deduce that a coin with the same probability of heads
was being used at each time.

Being able to embed the state-transition diagrams and to register the entire
unfolding process in its coloring and topology, a DCEG model provides a very
expressive graphical representation of a stochastic process. After searching a
well-fitting DCEG model and learning it, we would then be able to identify

Fig 16. DCEG representation of coin tossing example.
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if there is at least a subgraph in this DCEG model that represents a Markov
process. If this is possible, this will enable us to further explore some asymptotic
behaviours of this subprocess using the well-established Markov theory.

5.3. Extended DCEG and semi-Markov process

As there is a connection between a DCEG and Markov processes, an Extended
DCEG is closely linked to semi-Markov processes (Barbu and Limnios (2008);
Medhi (1994)). These are a generalization of Markov processes that allow for
the holding times to have any distribution instead of restricting them to have
a geometric distribution (discrete-time Markov processes) or an exponential
distribution (continuous-time Markov processes). We recall the definition of a
semi-Markov process below:

Definition 14. Semi-Markov Process (Medhi (1994))
Let {Yt, t ≥ 0} be a stochastic process with discrete state space and with

transitions occurring at times t0, t1, t2, . . .. Also, let {Xn, n ∈ N} describe the
state of the process at time tn and let Hn be the holding time before transition
to Xn. Hence Yt = Xn on tn ≤ t < tn+1. If

P (Xn+1 = j,Hn+1 ≤ t|X0, X1, . . . , Xn, H1, . . . , Hn)

= P (Xn+1 = j,Hn+1 ≤ t|Xn), (21)

then {Xn, Hn} is called a Markov Renewal process and {Yt, t ≥ 0} a semi-
Markov process. Also, {Xn, n ∈ N} is the embedded Markov chain with transition
probability matrix P = (pij), where pij = P (Xn+1 = j|Xn = i).

A semi-Markov process is usually specified by an initial distribution α and
by its semi-Markov kernel Q whose ijth entry is given by

Qij(t) = P (Xn+1 = j,Hn+1 ≤ t|Xn = i). (22)

We assume here that all Markov processes considered are time-homogeneous and
hence the above equations do not depend on the index n. In order to illustrate
a link between the Extended DCEG and semi-Markov processes we write the
semi-Markov kernel as

Qij(t) = pijFij(t), (23)

where
Fij(t) = P (Hn+1 ≤ t|Xn+1 = j,Xn = i) (24)

is the conditional holding time distribution, i.e. the holding time at Xn = i
assuming that we move to Xn+1 = j next and pij is given in Definition 14. We
can then show that a particular subclass of the time-homogeneous Extended
DCEG corresponds to a semi-Markov Process.

Theorem 1. Let an Extended DCEG D with holding times be simple and let
no two edges lead from the same parent into the same child. Then this Extended
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DCEG is a semi-Markov process with state space S = {V (D)\w0} and with the
entries of its transition matrix given by

pij =

⎧

⎪⎨

⎪⎩

πwij : if ewij = e(wi, wj) exists

1 : if wi = wj = w∞

0 : otherwise,

and with conditional holding time distributions

Fij(t) =

⎧

⎪⎨

⎪⎩

P (Hwij ≤ t|ewij , wi) : if ewij = e(wi, wj) exists

1 : if wi = wj = w∞

0 : otherwise.

If the position w0 is a source vertex then the initial distribution is given by
α = πw0

. Otherwise the initial distribution assigns probability 1 to w0 and w0 is
included in the state space.

Proof. See Appendix C.

Results such as the one in Theorem 1 allow us to identify particular Extended
DCEG subclasses whose models have a strong connection with semi-Markov pro-
cesses. This can indeed be very useful as many of the well-developed results on
Markov processes could be extended to the DCEG. For instance, from Equa-
tion 8 the probability of staying at a position w for a time ≤ h and then moving
along the edge ewk can be calculated. This equation corresponds to the entries
of the semi-Markov kernel (Equation 22) of a semi-Markov process. Then, for
example, Barbu and Limnios (2008) or Kulkarni (1995) have shown how to de-
rive the transition matrix of the semi-Markov process from the semi-Markov
kernel, in order to calculate the probability of being in state j at time t given
that we are initially in state i. These types of calculations could be directly ex-
tended to the Extended DCEG. This would further enable the Extended DCEG
to be applicable to the wide-ranging domain of semi-Markov processes, which
includes reliability theory, finance and insurance or traffic modelling.

6. Conclusion

We have demonstrated here that a dynamic version of the CEG is straightfor-
ward to develop and that this class enjoys most of the convenient properties
of the CEG. It further usefully generalizes the discrete DBN when the context
demands it.

Although we do not envisage the DCEG taking over from the DBN as a rep-
resentational device and framework for learning we nevertheless believe that it
provides a valuable alternative tool. It is particularly suited to domains where
the levels of state vectors are numerous but the associated transitions are sparse,
or when context-specific symmetries abound. The fact that the DCEGs express
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DBNs as a special case means that the DCEG and DBN representations are
particularly complementary. The first focuses on the micro structure of the
transitions between states of the process whilst the other focuses on the macro
elements of the relationships between relevant variables within the study do-
main.

Despite the closed form of their score functions, the major challenge that
exists is to develop effective model search algorithms to discover potential causal
mechanisms within the DCEG class. Faster and more efficient algorithms are
now becoming available for CEG model search (Collazo and Smith (2015)) and
the technology is now being transferred to address DCEG model selection. Early
results on this topic are promising and will be reported in a later paper.

Appendix A: Parameter independence

Here we show that under some mild conditions the Extended DCEG param-
eters associated with stages and holding times can be learnt independently.
Recall that the Extended DCEG has a set of stages u ∈ U and that each po-
sition in u has mu edges emanating from it. As defined in Equation 4 we have
associated with each stage u a CPV πu = (πu1, πu2, . . . , πmu

) and we denote
the concatenation of these vectors of stage parameters by a vector π. As in Sec-
tion 3.3, we can further attach a vector of conditional holding time distributions
(Fu1, Fu2, . . . , Fumu

) to each stage u with parameters λu = (λ1, λ2, . . . , λmu
).

This could be, for example, a set of exponential holding time distributions with
scale parameters λu or more general distributions such as th Weibull distribution
with scale parameter λu and known shape parameter. We call the concatenation
of these different holding time parameters λ.

Given an Extended DCEG D, for each unit that traverses the DCEG, the
edges he passes along can be recorded as well as the holding times at each
position. Assume the unit ι takes the path ǫι = (ewi0

j0 , ewi1
j1 , . . . , ewinι

jnι
)

along nι + 1 edges starting at wi0 = w0. Then, let w
ι
ia

describe the ath position
reached by unit ι, hι

ia
the holding time at position wι

ia
and eιiaja the ath edge

passed along, where a = 0, 1, . . . , nι. Then, by the definition of a DCEG (see
Definition 12) the likelihood, given a unit ι, with path ǫι and vector of holding
times hι = (hι

i0
, hι

i1
, . . . , hι

in
), is given by

L(π,λ|ǫι,hι,D) =

nι∏

a=0

p(eιiaja , h
ι
ia
|wι

ia
) =

nι∏

a=0

πwι
ia

jafwι
ia

ja(h
ι
ia
). (25)

This can now be generalized to a complete random sample S of n units going
through the tree to obtain the likelihood

L(π,λ|S,D) =

n∏

ι=1

L(π,λ|ǫι,hι,D) =

n∏

ι=1

nι∏

a=0

πwι
ia

jafwι
ia

ja(h
ι
ia
). (26)



2164 L. M. Barclay et al.

This likelihood can then be rewritten by counting the number of times the units
pass through a position w ∈ u and go along the jth edge, j = 1, . . . ,mu, which
is denoted by Nuj . Let huj be the vector of conditional holding times for the
units who arrive at stage u and move along the jth edge next and let hujl be
the holding time of the lth pass along this edge. Denote the vector of holding
times by h = {huj , u ∈ U, j = 1, . . . ,mu} and the vector of the number of times
each edge is taken by N = {Nuj , u ∈ U, j = 1, . . . ,mu}. The likelihood of π
and λ given a complete random sample and an Extended DCEG D is therefore
given by

L(π,λ|N,h,D) =
∏

u∈U

mu∏

j=1

π
Nuj

uj

Nuj∏

l=1

fuj(hujl), (27)

where the units go Nuj times along edges ewj , w ∈ u each time staying for a
time hujl at the previous position. Then, immediately from Equation 27 the
likelihood L(π,λ|N,h,D) of a complete random sample separates. Explicitly,
we have that

L(π,λ|N,h,D) =

L1(π|N,D)
︷ ︸︸ ︷

∏

u∈U

mu∏

j=1

π
Nuj

uj ×

L2(λ|h,N,D)
︷ ︸︸ ︷

∏

u∈U

mu∏

j=1

Nuj∏

l=1

fuj(hujl) . (28)

If λ and π are believed to be a priori independent so that

p(π,λ|D) = p1(π|D)p2(λ|D),

then p1(π|D) and p2(λ|D) can be updated independently using L1(π|N,D) and
L2(λ|h,N,D) respectively, to obtain the posterior density

p(π,λ|h,N,D) = p1(π|N,D)p2(λ|h,N,D), (29)

which also separates.
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B. The staged tree of a DBN – Example 4

Fig 17. Illustration of the staged tree of T of a DBN.

C. Proof of Theorem 1

The proof of Theorem 1 is given below:

Proof. Assume we have a Extended DCEG D which is simple and which has no
double edges from one vertex into another. To show that this can be written as
a semi-Markov process the state space needs to be defined and the semi-Markov
kernel and initial distribution need to be specified.

Define the state space of the semi-Markov process and its jump process to
be S = {V (D)\w0}, the set of positions not including w0. As no two edges lead
from the same parent into the same child each edge is uniquely determined by
the two positions it connects. First consider the case where wi �= w∞ and then
the case where wi = w∞. Note that not every Extended DCEG will have a final
position of leaf vertices, in which case the second case does not apply.
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Case 1: wi �= w∞: If e(wi, wj) exists, then the ijth entry of the transition ma-
trix P of the jump process is given by

pij = P (Xn+1 = wj |Xn = wi) = P (e(wi, wj)|wi).

Assuming without loss of generality that the jth edge of wi leads to wj ,
then,

P (Xn+1 = wj |Xn = wi) = P (ewij |wi)

= πwij

= πuij ,

where ui = wi as the Extended DCEG is simple. The conditional holding
time distributions can be derived in a similar way. Assuming again that
the jth edge of wi leads to wj

Fij(t) = P (Hn+1 ≤ t|Xn+1 = wj , Xn = wi)

= P (Hwij ≤ t|ewij , wi)

= P (Huij ≤ t),

where ui = wi as the Extended DCEG is simple. By Equation 22 the ijth

entry of the semi-Markov kernel is then given by Qij(t) = pijFij(t). If
e(wi, wj) does not exist then the ijth entry of the semi-Markov kernel is
zero as no transition from wi to wj occurs.

Case 2: wi = w∞: When wi = w∞, then the unit stays in w∞ forever once
reaching this state and hence Qij(t) = 1 when wj = w∞ and 0 otherwise.

When w0 in the Extended DCEG is a source node and no edges lead back to
w0, so that it solely serves as a starting point of the process, then the initial
distribution of the corresponding semi-Markov process is given by α=πw0

=πu0
.

If w0 can be reached again throughout, then w0 is included in the state space and
the initial distribution of the semi-Markov process assigns w0 probability 1.
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