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Abstract

We use Fast Fourier Transform (FFT) and Least-squares modification (LSM) of Stokes

formula to compute the approximate geoid over Khartoum State in Sudan. The two

methods (FFT and LSM) have been utilised to test their efficiency with respect to EGM08

and the local GPS-levelling data. The FFT method has many advantages, it is fast and it

reduces the computational complexity. The modification of Stokes formula is widely used

in geoid modelling, however, its implementation based on point-wise summation requires

a considerable amount of time. In FFT we combine the terrestrial gravity data and

the global geopotential model (GGM) by means of a remove-compute-restore procedure

and we successfully apply the modification of the Stokes formula in the least-squares

sense. FFT and LSM approximate geoid solutions are evaluated against EGM2008 and

the GPS-levelling data. The analysis of the undulation differences shows that the LSM

solution is more compatible with EGM08 and GPS-levelling data. The discrepancies of

the differences are removed using a 4-parameter model, the standard deviation (STD) of

the undulation differences of LSM decreased from 0.41 m to 0.37 m and from 0.48 m to

0.39 m for FFT solution. There is no significant impact to the LSM geoid when adding

the additive corrections, while the FFT geoid solution is slightly improved when terrain

correction is applied.

Keywords: EGM08, FFT, GPS-levelling, geoid, least-squares modification, remove-

compute-restore, Stokes formula, terrestrial gravity



1 Introduction

The geoid determination in Sudan still needs more concentration and intensive studies

due to the restrictions of the existing surveying data (GPS-levelling heights and local

gravity measurements). The country is vast and most of the areas are remote and diffi-

cult to access, therefore, most of the geodetic survey measurements were conducted along

the banks of the Nile River. The priority of computing a precise geoid model in Khar-

toum State stems from the considerable need for a proper geodetic system for various

engineering projects in Khartoum area.

In this paper, we utilise two different methods to compute two corresponding approximate

geoid models (no corrections applied). The Fast Fourier Transform (FFT) (Bracewell,

1978) is used for the first time to compute the geoid over Khartoum State. FFT is

an efficient procedure, it helps reduce the time of the computation and minimise of

the memory storage compared to the familiar geoid computation methods using Stokes

integral equation. FFT was broadly utilised in physical geodesy and addressed by several

authors (e.g. Sideris, 1987; Schwarz et al., 1990; Haagmans et al., 1993; De Min, 1994;

Sideris and She, 1995; Tziavos, 1996) it has a proper treatment for the complexity of the

discrete numerical integral of Stokes and Vening Meinesz (Tziavos, 1996). The technique

is based on the planar approximation of the Stokes kernel which helps to compute the

geoid efficiently over large areas (Denker, 1990; Forsberg and Sideris, 1991).

Over the years, many improvements were added to the FFT method in order to address

the drawbacks of the spherical approximation by utilising the full zero-padding technique

(Tziavos, 1993; Sideris and Li, 1993). The terrestrial gravity data do not cover the Earth

surface properly due to the lack of measurements, in addition the existing gravity data

are available in a discrete pattern. They are scattered over certain regions on the Earth

surface where measurements were conducted. This makes the use of short wavelength

information incomplete. On the other hand, the far-zone contribution will be missing due

to the truncation effects of Stokes formula over the gravity-covered areas (omission error).

The remove-compute-restore technique can efficiently handle this problem by combining
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short wave-length data (existing gravity data) and the long wave-length information from

the global geopotential model (GGM).

The steps of the remove-compute-restore (RCR) procedure were presented in different

geoid studies (e.g. see Abdalla and Tenzer, 2012a). In short, the RCR procedure is based

on the following steps: The gravity reference field is removed from the terrestrial gravity

data. The high-frequency, (residual geoid) is computed from the residual gravity data

using FFT. In this step the Stokes formula is reformulated into 2-D convolution format

to be compatible with the planar approximation. The reference gravity field and the long

wave-length geoid information are obtained from the global geopotential models. Finally

the terrain correction is computed by FFT to be enclosed in RCR procedure. The near-

zone contribution to gravity field can be computed by applying the discretised integral-

equation approach (see Abdalla and Tenzer, 2014). While the far-zone contribution to

gravity field is obtained by utilising the far-zone modified spherical harmonics (see Tenzer

et al., 2011).

The aim of modifying the Stokes function is to reduce the effects of the truncation errors

on the geoid solution due to the lack of gravity data on the Earth’s surface. This happens

by combining the local and global gravity data (GGM data) mutually in a so called

modified Stokes formula. Two modification methods are well known as deterministic and

stochastic and have been studied and developed by a large number of scientists for a long

time.

The deterministic methods intend to reduce the effects of the remote zone resultant from

the truncation of the original Stokes kernel within a limited spherical cap and therefore

improving its convergence using lower degree geopotential coefficients. Considering lower

degree terms on the modified kernels is useful to minimise the zero-degree error of the

gravity anomaly expansion. The deterministic methods were broadly studied by many

scientists, for instance (Molodensky et al., 1962; Wong and Gore, 1969; Meissl, 1971;

Vincent and Marsh, 1974; Jekeli, 1981). Some authors employed the RCR approach using

high degree coefficients of the GGM for generating a higher degree reference field and the

residual field is computed from the integral formula (see e.g. Jeffreys, 1953; De Witte,
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1967; Wong and Gore, 1969). More studies of the deterministic modifications to Stokes

functions based on the RCR approach were discussed and investigated by Featherstone

et al. (1998); Vaníček and Featherstone (1998); Featherstone (2003).

The stochastic modification of Stokes kernel aims to reduce the errors of the terrestrial

gravity and spherical harmonic coefficients of GGM by combining both of them optimally

in a least-squares sense (see e.g. Sjöberg, 1979, 1980; Wenzel, 1982; Sjöberg, 1984, 1991b,

2003b). A rigorous LSM procedure was introduced by Sjöberg (1984, 1991a, 2003b), it

was properly derived in three comparable versions (biased, unbiased and optimum) each

of the three versions can be adopted for obtaining the final gravimetric model, this study

is limited to the biased solution.

This paper is intent to test the quality of the geoid model when modifying and approxi-

mating Stokes kernel using LSM and FFT. We investigate the FFT method by means of

a remove-compute-restore (RCR) procedure and the modified Stokes integral by means

of least-squares (LSM). In this paper, the comparison is conducted to evaluate the geoid

solutions including the terrain correction (Forsberg and Tscherning, 1997) for RCR and

the additive corrections for LSM. The main difference between the two methods stems

from the way of treating the local gravity data, e.g. in RCR the gravity data are reduced

to the geoid by removing the effect of the topography the effect of the reference field

due to the truncation is also removed. After computing the residual geoid, the topogra-

phy correction and the reference field contribution are reduced back. While in the LSM

method the terrestrial gravity data are used without reduction, however, the associated

additive correction are added to the later after computing the the (e.g. Abdalla, 2013a).

Yildiz et al. (2012) conducted a comparison between LSM and FFT, least-squares colloca-

tion (LSC) based on RCR. The three methods showed comparable results when applying

1-Parameter fitting model, the differences between results were within (∼ 5mm) . Fur-

thermore, LSM had shown best agreement with EGM08 and maintained its superiority

over the mountainous areas. Abbak et al. (2012) conducted another comparison between

LSM and RCR over a mountainous area in central Turkey where gravity measurements are

a few. LSM with additive corrections again showed a significant best fit when compared
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with GPS-levelling data. The utilisation of LSM and associated additive corrections for

the computation of the gravimetric geoid models has been widely used in literature and

can be found in the publications of the geodesy division at Royal Institute of Technology

(KTH) and other peer reviewed articles, among them see Kiamehr (2006); Daras (2008);

Abdalla (2009); Ågren et al. (2009); Abdalla and Tenzer (2011); Abbak et al. (2012).

FFT and LSM methods are briefly presented in Section 2. The data used in this study are

described and addressed in Section 3. The analysis of the numerical results obtained from

the FFT and LSM methods are presented in Section 4. Finally in Section 5 a summary

of the current study is given and some concluding remarks are drawn.

2 Review of FFT and LSM methods

2.1 FFT method

The geoid heights can be computed from the terrestrial gravity anomalies ∆g using the

well-known Stokes formula. The classical form of Bruns-Stokes formula is written as

(Stokes, 1849)

N =
R

4γ0π

¨

σ

S (ψ) ∆g dσ (2.1)

where R is the Earth’s mean radius γ0 is the normal gravity evaluated at the surface of

the reference ellipsoid (Moritz, 1980), ψ is the geocentric angle, S (ψ) denotes original

Stokes function and dσ is the infinitesimal surface element of the unit sphere σ.

Stokes original kernel can be written in a closed form as follows:

S (ψ) =
1

sin
ψ

2

− 6 sin
ψ

2
+ 1 − 5 cos

ψ

2
− 3 cos

ψ

2
ln

(

sin
ψ

2
+ sin2 ψ

2

)

(2.2)

the Laplace spherical harmonics ∆gGGM
n for the gravity anomalies of degree n are defined

as (Heiskanen and Moritz, 1967)

∆gGGM
n =

GM
R2

(

R

r

)n+2

(n− 1)
n
∑

m=−n

Cn,mYn,m (2.3)
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where R = 6371 × 103 m is the Earth’s mean radius, GM = 3986005 × 108 m3s−2

is the geocentric gravitational constant, r is the geocentric radius, Cnm are the fully-

normalised harmonic coefficients which describe the disturbing potential T and Y nm are

the fully-normalised surface spherical functions.

the long wavelength geoid is computed by

NGGM =
GM
R2γ0

(

R

r

)n+1 n
∑

m=−n

Cn,mYn,m (2.4)

The form of convolution integrals of Equation 2.1 consists of a set of time-consuming

point-wise summations which require massive computer memory. In addition, the trun-

cation errors induced by confining the area of the terrestrial gravity data into the bound-

ary of the spherical cap radius around the computation points are expected to have a

significant contribution in the geoid solution. However, these can be reduced by using

suitable modified kernels as will be seen in section 2.2. The FFT can efficiently handle

the time problem and the numerical summation by efficacious multiplications instead.

FFT can be used in the evaluation of the Stokes integral by approximating the spherical

plane by a tangent planar plane in terms of the planar coordinates. The planar distance

S between the computation point and the vicinity data is obtained by

ℓ =
[

(xk − xi)
2 +

(

yl − yj

)2
]

1

2

(2.5)

Putting ψ =
S

R
and sinψ = ψ, the approximation of the Stokes kernel in Equation 2.2 is

yielded as

S (ψ) =
2R
ℓ

(2.6)

The planar form of Equation 2.2 is written by putting Rdσ = dx dy

N (x, y) =
R

2γ0π

¨

E

∆g
[

(xk − xi)
2 +

(

yl − yj

)2
]

1

2

dx dy (2.7)
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the planar form of the Stokes kernel is given as

l (x, y) =
1

(x2 + y2)
1

2

(2.8)

the discrete form of the 2D convolution in Equation 2.7 is evaluated in the following

spectral form

N (x, y) =
R

2γ0π

M−1
∑

i=0

N−1
∑

j=1

∆g(xi,yj)lN(xk−xi,yl−yj)∆x∆y (2.9)

=
R

2γ0π
∆g (xk, yl) ∗ lN (xk, yl)

where

l
N(xk−xi,yl−yj) =



















[

(xk − xi)
2 +

(

yl − yj

)2
]

−

1

2

xk 6= xi, yl 6= yj

0 xk = xi, yl = yj

(2.10)

applying 2D FFT evaluation of the geoid based on the gravity anomaly and the Stokes

kernel

NF F T =
R

2γ0π
F−1

{

F
[

∆g(xk,yl)

]

.F
[

lN(xk,yl)

]}

(2.11)

where F is the 2D Fourier operator, F−1is the inverse 2D Fourier operator

The big advantage when using FFT techniques is that the geoid heights will be computed

over the entire gravity data grid and no need for large gravity grids to maintain the secured

distance for the spherical radius cap out of the grid of the computation points.

In the RCR procedure, the effect of the topography on the gravity field is utilised in the

remove step. The terrestrial gravity data are further smoothed by reducing the gravity

into the geoid surface. The gravity reduction is computed by means of terrain correction

as described in Heiskanen and Moritz (1967)

Cp = −GρR2

2

¨

σ

(HQ −HP )2

ℓ0

dσ (2.12)

where G is the Newtonian gravitational constant, ρ denotes the crustal density of the

Earth, ℓ0 is the spherical distance between the computation point P and the running
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point Q

The indirect effect of the topography on the geoid height is computed based on Sideris

and She (1995); Abbak et al. (2012)

Nind = −πGρH2
P

γ
− GρR2

6γ

¨

σ

H3
Q −H3

P

ℓ0

dσ (2.13)

2.2 LSM method

The gravimetric geoid height N is computed as a sum of the following components

(Sjöberg, 2003a):

N = Ñ + δNT + δNA + δNdwc + δN ell (2.14)

where Ñ is the approximate geoid height, δNT the combined topographic correction, δNA

the combined atmospheric correction, δNdwc the downward continuation correction and

δN ell the ellipsoidal correction for the formulation of the Stokes formula in the spherical

approximation to the problem.

For geoid modelling over Khartoum State, the approximate geoid model Ñ is computed

by the following modified Stokes formula (Sjöberg, 1984)

Ñ =
R

4πγ0

¨

σ0

Sℓ (ψ) ∆g sinψ dσ0 +
R

2γ0

n̄
∑

n=2

bn ∆gGGM
n (2.15)

where R denotes the Earth’s mean radius, ψ is the geocentric angle, Sℓ (ψ) is the mod-

ified Stokes function, ∆g is the terrestrial gravimetric data and dσ0 denotes the surface

integration element and bn are the least-squares coefficients (cf. Sjöberg, 2003b)

The modified Stokes kernel reads

Sℓ (ψ) = S (ψ) −
n̄
∑

n=2

2n+ 1
2

bn Pn (cosψ) (2.16)

where S (ψ) is the (original) Stokes kernel, Pn (cosψ) are the Legendre polynomials of

degree n for the argument of cosine of the spherical distance ψ. The second constituent
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on the right-hand side of Equation 2.15 represents the GGM contribution to the approx-

imate geoid heights. This contribution is computed from the GGM coefficients up to a

maximum degree n̄ of spherical harmonics and from a set of the least-squares modification

parameters {βn : n = 2, 3, ..., n̄}.

Since LSM does not need a gravity reduction, hence, the additive corrections for the

topographic, ellipsoidal, downward continuation of the gravity to the geoid surface and

atmospheric effects are added to the geoid estimator. The additive corrections are exten-

sively addressed in other literature Kiamehr (2006); Daras (2008); Abdalla (2009); Ulotu

(2009); Abdalla and Tenzer (2011). A one-by-one magnitude of the additive corrections

on the geoid has been investigated by Abdalla (2013b); Abdalla and Mogren (2015)

3 Data in use

3.1 Local gravity data

The terrestrial gravity data used in this study are provided by GETECH. The gravity

data of the entire country (Bouguer and free-air anomalies) were evaluated against the

propagation of the gross error using two cross-validation tests, more information about

the refinement of the gravity data set is found in (Abdalla, 2009; Abdalla and Fairhead,

2011). The grid of gravity data used in this study was provided by Getech, it consists of

a 23509 points of free-air gravity anomalies.

The Sudan gravity database was compiled by Getech in 1988 Fairhead (1988) from all

available land based surveys and include academic data from e.g. the Geological Research

Authority of Sudan (GRAS), Strojexport and other oil companies (see also Green and

Fairhead, 1996), the distribution of the gravity data is shown in Figure 1. The age of

the data ranges from 1960s to 1980s.There is a mix of altitude measurement methods

used from spirit levelling, benchmark, trigonometric point to barometric all tied to bench

marks and trigonometric points, least accurate was barometric at ±3 m (∼0.6 mGal

error).
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[Figure 1 about here]

The current data set is limited by the boundary of Khartoum State, despite the fact that

some areas are not yet covered by the local gravity, we utilised information from EGM08

to fill the gaps. The distribution of the local gravity data used in this study is shown in

Figure 2

[Figure 2 about here]

3.2 GGMs

The geopotential model used in this study is GOCO-TIM-R1, it was found by Abdalla

et al. (2012) that TIM-R1 is one of the best-fit GGMs over Khartoum State. Another

study by Abdalla and Tenzer (2012b) shown that GOCE time-wise GOCO-TIM-R2 has

best fit with New Zealand GPS-levelling data (cf. Tenzer et al., 2011, 2013) based on

the newly-derived vertical offsets between the New Zealand local datums (Tenzer et al.,

2011). It was utilised in the determination of the long wavelength gravity and geoid at

the maximum degree and order 224. The gravity field generated by this model is unbiased

to any other fields, it has been improved by considering the errors of the coefficients by

employing relative variance-covariance information. The satellite gravity information is

taken from the satellite orbit and parametrised up to degree and order 100, while gravity

data from gradients are derived from satellite gravity gradients up to degree and order

224. Regularisation is applied to near zonal coefficients and coefficients from degree and

order 170 to 224, for more information the reader is referred to Pail et al. (2011).

The free-air gravity data were derived from the geopotential model (Equation 2.3) in

order to smooth the terrestrial gravity data by removing the reference field component

and obtaining the residual gravity data (remove step). The residual gravity data will

be used in Equation 2.11 to generate the residual geoid model using 2D FFT (compute

step). The long wave-length geoid is computed by the GGM and is added to the residual

geoid solution (restore step) to recover the missing information (Equation 2.4).
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3.3 GPS-levelling points

The number of the GPS-levelling points over Khartoum State is 25 points of orthometric

heights and similar of co-located ellipsoidal heights (Figure 3). The data set has been

collected for the sake of evaluating the vertical and horizontal control of the State (Ali,

2012). The levelling network campaign was conducted in 2010. The precise levelling

measurements were conducted to determine orthometric height differences. Modern dig-

ital level instruments were employed to start from eight old benchmarks established in

the early 1930s. The orthometric heights are referred to mean sea level (MSL) of the

Mediterranean Sea at Alexandria tide gauge. The accuracy of the levelling network is

within a tolerance of 10
√
k mm, where k is the length of levelling circuit in kilometers (cf.

Ali, 2012). In 2010, the GPS points were co-located with the levelling points to compute

the ellipsoid heights statically using the differential method. Two receivers were initially

used to measure the length of the baseline (based on two known coordinate points). Af-

ter that, two more receivers were attached to the measurement, considering the same

configuration of the baseline receivers.

[Figure 3 about here]

4 Numerical investigations

4.1 Comparison with EGM08

The residual geoid has been computed from the residual gravity data using the 2D FFT

method (Figure 4a). On the other hand, the terrestrial gravity data were employed

to compute the approximate geoid height (Figure 4b) using Equation 2.15. The main

difference between the two estimators is that in the LSM we use the terrestrial free-

air data as is without any reduction processes. This is because we later add so called

additive corrections for the effects of topography, ellipsoidal approximation, downward

continuation of the gravity data to the sea level and the finally the effect of the atmosphere

on the geoid. However, as we mentioned earlier in Section 1 the additive corrections
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are out of the study scope, thus they are not shown in this study. In this section, we

firstly compare our geoidal solutions with respect to EGM08 (Pavlis et al., 2012), after

that another comparison with the GPS-levelling will also be given to have a complete

information about the quality of the obtained results.

[Figure 4 about here]

The long wave-length geoid heights are obtained from the GGM for both methods using

Equation 2.4 and the second right term in Equation 2.15. The use of the equations is

straight forward, however to start using Equation 2.15, least-squares coefficients are to

be derived first. We employ the direct method (no regularisation) to obtain the LS coef-

ficients which belong to the biased solution. It is called biased because of the assumption

that the gravity data the GGMs use are error-less. Therefore, the coefficients are derived

directly by inverting of the design matrix, more information about the derivation of the

least-squares coefficients can be found in (Ellmann, 2005).

The approximate geoid solution is obtained from the summation of two components

(Stokesian and GGM solutions), see Figures 4e and 4f. The approximate geoid solutions

(FFT and LSM) are compared with EGM08 model. The differences between EGM08

and FFT geoid solution start from -1 m in the south-western part and extend in the

direction of the east to exceed -3 metres far east (see Figure 5a), the differences in most

of the central parts are less than a metre. In some spots in the far north, south and

east the differences went down to -0.50 m (see Figure 5b). It is obvious that the FFT

residual solution is shifted above LSM and EGM08 solutions, while the differences of the

comparison of the LSM and FFT solutions is 0.14 m (see Figures 4a, 4b, 5a and 5b).

[Figure 5 about here]

The statistical comparison of the undulation differences shown in Figure 5 reveals that the

FFT solution has large discrepancies Table 1. Standard deviation of the geoid differences

between EGM08 and FFT solution is 0.53 m. Analogously, LSM has a similar relation

and statistics with the FFT as EGM08 model, the mean of differences of the geoid heights
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is up to 2.34 m, their STD is about 0.42 m. It is obvious from Table 1 that the FFT has

a big portion of the discrepancies due to the differences in the FFT residual solution in

Figure 4a comparing to the LSM estimator in Figure 4b.

[Table 1 about here]

The associated additive corrections (Figures 6a, 6b, 6c and 6d) are computed to be

added to the LSM approximate geoid solution. For the FFT solution which based on the

RCR procedure, gravity reduction ( Figure 6e) has been computed by means of terrain

correction (Equation 2.12) to be used in the “remove” step and the indirect effect of the

topography on the geoid (Figure 6f) computed by Equation 2.13 is restored with reference

field geoid and then added to the residual geoid solution obtained in the “compute” step.

[Figure 6 about here]

With respect to the correlation between the gravimetric solutions and EGM08, LSM

solution shows high correlation with EGM08 (R2 = 0.96). On the other hand, FFT

solution is less correlated with EGM08, it shows an identical level of correlation with both

EGM08 (R2 = 0.88) and LSM (R2 = 0.89) models as shown in Figure 7. The least-squares

parameters and the modified Stokes kernel have provided a significant improvement for

the quality of LSM solution.

[Figure 7 about here]

4.2 Comparison with GPS-levelling data

In order to check the absolute accuracy of our gravimetric solutions, we utilise another

comparison test versus the GPS-levelling data. The values of the two gravimetric solutions

were interpolated over the GPS-Levelling points to carry out our comparison tests. The

mean of the geoid differences reaches up to 2 metres due to the approximation of Stokes

kernel, the STD is 0.50 m in the FFT solution. On the other hand, the consistency of the

LSM solution remains unchanged either with respect to STD (0.41 m), and meanwhile
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the mean of the anomaly differences is a decimetre level which is better than the FFT

solution.

As we see that the gravimetric solutions still contain systematic errors (Table 2). In

order to eliminate these errors we applied LS analytical 4-Parameter model (Kotsakis and

Sideris, 1999) to reduce the systematic error found between the geometric and gravimetric

geoid heights.

The observation equations were adapted to the residuals of the differences between the

geometric and gravimetric geoid heights ∆N at the GPS-levelling testing network and

solved using least-squares analysis. model is given as

aix =

























cosϕi cosλi

cosϕi sin λi

sinϕi

1

























×

























x1

x2

x3

x4

























(4.1)

The matrix system of observation is solved as

Ax = ∆N − ε (4.2)

applying least-square approach the parameters x̂ are obtained by

x̂ =
(

A⋆AT
)

−1

A⋆∆N (4.3)

The accuracy after removing the biases is 0.39 m and 0.37 m in FFT and LMS, respec-

tively.

[Table 2 about here]

The magnitude of the corrections has been tested on both FFT and LSM geoid solutions.

The performance of the fitting model has also been tested with respect to the correction

magnitude (see Table 3. The additive corrections have an insignificant impact on the final

solution in terms of STD value, STD remains identical before and after adding the additive

13



corrections (0.37m). On the other hand, the contribution of the topography correction

have improved the STD about 1 cm compared to the uncorrected FFT solution, however,

despite the proximity between the STD of the both solutions, LSM’s STD remains smaller

than that of the corrected FFT (0.38m).

[Table 3 about here]

5 Summary and concluding remarks

We tested the geoid accuracy over Khartoum State using two methods for geoid modelling,

the Fast Fourier Transform (FFT) and the least-squares modification of Stokes formula

(LSM). The use of the FFT is fast and efficient to carry out computations especially

over large areas where using Stokes integrals is time consuming. The FFT solution was

implemented to by means of a remove-compute-restore procedure. The idea of this paper

was to test both methods without applying the associated corrections to the terrestrial

gravity data.

The terrestrial gravity provided by GETECH-UK were used to compile the geoid solutions

in this study. The geopotential model GOCO TIM-R1 was selected to be used in this

study, the selection of this GGM was based on a previous study after testing several

GOCE geopotential models against terrestrial gravity and GPS-levelling data. TIM-R1

was utilised at degree and order 224 (maximum).

For LSM, we used the same GGM degree and order (224) for the modification task, we

also select the spherical cap to be 3 arc-degree around the computation points. The

modification degree and the spherical cap were optimised with the terrestrial gravity

error degree variance (12 mGal2) to derive the LS coefficients. Three identical sets of LS

coefficients were successfully derived, among them, the biased solution was selected for

use in this study, assuming that the terrestrial gravity and the GGM are error-less.

The FFT and LSM solutions were evaluated against EGM08 and the local GPS-levelling

data. Both comparisons reveal that the LSM solution is more consistent in terms of

systematic errors and it is highly correlated with EGM08, the mean values of the geoid

14



differences with respect to EGM08 and GPS-levelling data is found to be 0.14 m and

0.11 m, respectively. The approximation of Stokes kernel in FFT causes large offsets

in the geoid heights when comparing with the GPS-levelling, EGM08 and LSM geoids.

To remove the discrepancies between the gravimetric geoids (FFT and LSM) and GPS-

levelling data, we applied the LS 4-parameter model, it significantly improved the STD

of the anomaly differences between FFT solution and the GPS-levelling data from 0.48

m to 0.39 m, while a slight improvement is obtained in the consistent LSM solution.

The 4-parameter model has improved the STD of anomaly heights between LSM and the

GPS-levelling data to be 0.37 m instead of 0.41 m. The contribution of the assoiciated

corrections to FFT and LSM solutions was checked. The additive corrections did not add

any further improvements to LSM solution, while the terrain correction has changed the

STD of the FFT solution from 0.39 m to 0.38 m (∼ 1 cm)
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Figure 1: Local gravity data for Sudan and South Sudan. Inset focuses on the distribution of
gravity stations in Khartoum State area.
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Figure 2: Free-air anomalies over Khartoum State. Unit: mGal
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Figure 3: Location and boundary of Khartoum State (in green), GPS-levelling points and the
surrounding states, 1) Northern, 2) Nile River, 3) Kassala, 4) Gadaref, 5) Gezira, 6) White Nile,
7) Northern Kordofan.
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(a) FFT residual geoid (b) LSM geoid estimator

(c) Long wavelength FFT geoid (d) Long-wave length LS geoid

(e) FFT approximate geoid (f) LSM approximate geoid

Figure 4: Geoid components computed from FFT (left panel) and LSM (right panel). Unit:
1m
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(a) EGM08 VS FFT
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(b) EGM08 VS LSM

Figure 5: Undulation differences between EGM08 model to degree 360 and geoid solutions.
a) FFT, b) LSM. Unit: 1m
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(c) Downward continuation
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(f) Indirect effect

Figure 6: The additive corrections for LSM, the gravity reduction and the indirect effect of
the topography on the geoid over Khartoum State
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Figure 7: Correlation between the gravimetric solutions

Tables:

Table 1: Statistics of the undulation differences between EGM08, FFT and LSM. Unit:1 m

EGM08-FFT EGM08-LSM LSM-FFT

Min -3.50 0.69 -3.30
Max -0.98 0.82 1.50
Mean -2.10 0.14 -2.34
STD 0.53 0.30 0.42
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Table 2: Statistics of the undulation differences between the GPS-levelling data, FFT and
LSM. Unit:1m

FFT LSM

Before After Before After

Min -3.10 -0.70 -1.14 -0.81
Max -1.21 0.90 0.69 0.86
Mean -2.07 0.00 -0.11 0.00
STD 0.48 0.39 0.41 0.37
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Table 3: The performance of the fitting model on LSM and FFT geoid models before and after
applying their associated corrections. Units: 1 m

FFT LSM

Before After Before After

Min -0.70 -0.74 -0.81 -0.76
Max 0.90 0.81 0.86 0.84
Mean 0.00 0.00 0.00 0.00
STD 0.39 0.38 0.37 0.37
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