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Abstract

The interest is in a stochastic model for the competition of two species, which
was first introduced by Reuter [16] and Iglehart [10], and then analyzed by
Ridler-Rowe [17]. The model is related to the two-species autonomous competi-
tive model (Zeeman [21]), where individuals compete either directly or indirectly
for a limited food supply and, consequently, births and death rates depend on
the population sizes of one or both of the species. The aim is to complement
the treatment of the model we started in [7, 8] by focusing here on probabilistic
descriptors that are inherently linked to an individual: its residual lifetime and
the number of direct descendants. We present an approximating model based
on the maximum size distribution, and we discuss on various models defined in
terms of the underlying killing and reproductive strategies. Numerical examples
are presented to show the effects of the killing and reproductive strategies on
the behavior of an individual, and how the impact of these strategies on the
descriptors vanishes in highly competitive ecosystems.

Keywords: Bivariate birth-and-death process; competition process; lifetime;
Markov chain model; number of descendants; survival
2000 MSC: 92D25

1. Introduction

The two-species competition process is a simple mathematical model which
has been studied extensively from deterministic (Allen [2]) and stochastic (Allen
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[1]) perspectives under a variety of assumptions. A competitive interaction be-
tween two species is one of the basic interspecies relations for biological, eco-
logical and social networks, and it is characterized by the fact that individuals
compete either directly or indirectly for common resources in such a way that
an increase in the density of one species results in a decrease in the other species
that is proportional to the product of both species. The classical work, assuming
stochastic models, dates as far back as Iglehart [10] and Reuter [16]; more con-
cretely, Reuter [16] and Iglehart [10] analyze the competition process in terms
of bivariate and multivariate Markov chains, respectively, and they obtain suf-
ficient conditions for a competition process to be regular, positive recurrent,
absorbed with certainty, and to have finite mean absorption times. A simplified
version analyzed by Billard [3] assumes that each species can only decrease in
number because of deaths caused, for example, by starvation, overcrowding, or
removal in some form. A particular partitioning of the underlying matrix of
coefficients, which is lower triangular, allows Billard [3] to derive the population
size probabilities and moments with relative ease.

In a more general setting, we may cite the work by Cushing [5], Ellner [6],
Gopalsamy [9], Jovanović and Vasilova [11, 19], Li and Smith [12, 13], Qi-Min et
al. [15], and Zhang and Han [20], among others, who study a variety of models
under stochastic and deterministic perspectives, such as age-dependent mortal-
ity and fertility functions (Gopalsamy [9]), age-structured models (Qi-Min et
al. [15], Zhang and Han [20]), and four species that coexist in competition for
three essential resources (Li and Smith [12]). Cushing [5] studies the Lotka-
Volterra equations for two competing species under the assumption that the
coefficients are periodic functions of a common period. Linear assumptions in
Lotka-Volterra models for the interspecific interference are relaxed in Gilpin-
Ayala models, recently analyzed by Jovanović and Vasilova [11, 19]. In the case
of some models of two species competing in a randomly varying environment,
Ellner [6] obtains sufficient conditions for convergence to the corresponding sta-
tionary distribution. Li and Smith [13] incorporate internal resource variables
and external resource availability, and apply the resulting model to microbial
growth on two essential limiting resources. Stochastic competition models have
been recently applied in mathematical immunology as well. We may cite the
work by Molina-Paŕıs et al. [14], and Stirk et al. [18], where the dynamics of
two competing T cell clonotypes are studied in terms of a bivariate competition
process for the number of T cells belonging to the pair of clonotypes.

In this paper, the interest is in a stochastic model, termed Ridler-Rowe pro-
cess [17] for a community of two mutually competing species, which is related
to the two-species autonomous competitive model (Zeeman [21]). The Ridler-
Rowe process amounts to a time-homogeneous continuous-time Markov chain
(CTMC) defined on the quarter plane N0 × N0, where transitions are allowed
only to neighboring states, and it is related to an ecosystem of two species where
no emigration or immigration is supposed to take place. In analyzing the size of
the surviving species (Ridler-Rowe [17]), the quadratic form of the death rates
makes the solution intractable from an analytical point of view. Ridler-Rowe
[17] approximates the behavior of the underlying process, as the initial popula-
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tion size becomes large, by an essentially deterministic motion with a random
diffusion of smaller order superimposed upon it. This approach leads Ridler-
Rowe [17] to the asymptotic distribution of the size of the surviving species,
and a limit result for the probability that a given species should survive the
other. The approximation of Ridler-Rowe [17] depends only on the death rates
and, consequently, it alone may not answer all the questions which might be
reasonable to be asked about the extinction time, and about the joint distri-
bution of the extinction time and the size of the surviving species, particularly
under the assumption of small or moderate initial population sizes. Gómez-
Corral and López Garćıa [7] present an alternative approach that incorporates
the birth rates into modeling aspects and is amenable to numerical calculation.
Such an approach is based on the use of percentiles of the maximum number
of individuals alive in the ecosystem, and it is shown that it works specially
as the initial size is small. The approach in [7] results in the replacement of
the underlying Markov chain by a suitably defined finite CTMC; a comparative
study between the asymptotic result of Ridler-Rowe [17], results obtained from
a simulation study of the process, and the finite CTMC can be found in [7, Sec-
tion 4]. The maximum size distribution also allows Gómez-Corral and López
Garćıa [8] to investigate the joint distribution of the extinction size and the
numbers of births and deaths occurring during an extinction cycle, as well as
the effects of the killing strategy on the survival of an individual when random
and age-dependent assignments are taken into account.

The purpose of this paper is to complement the treatment of the Ridler-
Rowe process by focusing here on the residual lifetime of an individual, and
the number of direct descendants under the assumption of various killing and
reproductive strategies. To begin with, we define in Section 2 the underlying
Markov chain model, which is formulated as a reducible CTMC over N0 × N0

with the single absorbing state (0, 0). In Section 3, we first define age-dependent
killing strategies in terms of the way individuals within each species are selected
to die. Iterative schemes for the Laplace-Stieltjes transforms of the residual
lifetime and their moments are then derived following first-step principles. In
Section 4, the distribution of the number of descendants is analyzed under var-
ious killing and reproductive strategies, and numerical examples in Section 5
are presented to show the influence of the killing and reproductive strategies on
the dynamics of the competition process under different ecosystem conditions.
For ease of reference, we summarize in Appendix A some of the matrix notation
that is used in the paper, and Appendix B contains some algorithmic solutions.

2. The Markov chain model

The dynamics of the Ridler-Rowe process [17] are described in terms of a
time-homogeneous CTMC X = {(M(t), N(t)) : t ≥ 0} defined on the state
space S = N0 × N0, where M(t) and N(t) are the numbers of individuals in
species 1 and species 2, respectively, alive at time t. The process X is uniquely
specified by the following non-null transition rates q(m,n),(m′,n′) (Figure 1):
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(i) For states (m,n) with m > 0 and n > 0,

q(m,n),(m′,n′) =















α1m, if (m′, n′) = (m+ 1, n),
β1n, if (m′, n′) = (m,n+ 1),
γmn, if (m′, n′) = (m− 1, n),
δmn, if (m′, n′) = (m,n− 1),

(1)

and q(m,n) = −q(m,n),(m,n) = (α1 + γn)m + (β1 + δm)n, where α1, β1, γ
and δ are strictly positive.

(ii) For states (m, 0) with m > 0,

q(m,0),(m′,n′) =

{

α1m, if (m′, n′) = (m+ 1, 0),
α2m, if (m′, n′) = (m− 1, 0),

(2)

and q(m,0) = −q(m,0),(m,0) = (α1 + α2)m, with α2 > 0.

(iii) For states (0, n) with n > 0,

q(0,n),(m′,n′) =

{

β1n, if (m′, n′) = (0, n+ 1),
β2n, if (m′, n′) = (0, n− 1),

(3)

and q(0,n) = −q(0,n),(0,n) = (β1 + β2)n, with β2 > 0.

Equations (2) and (3) mean that, after one of the species first becomes
extinct, the dynamics of X can be readily studied from well-known results on
birth-and-death processes defined on N0×{0} (extinction of species 2) and {0}×
N0 (extinction of species 1), where (0, 0) is an absorbing state. If, for instance,
species 2 becomes extinct and the size of the surviving species equals m0 ≥ 1 at
time T = inf{t : either M(t) = 0 or N(t) = 0}, then species 1 evolving after T
behaves as a birth-and-death process on N0×{0} with birth rates {α1m : m ≥ 0}
and death rates {α2m : m ≥ 1}. As a result, species 1 becomes extinct (Allen
[1, Theorems 6.2-6.3]) with probability one if α2 ≥ α1, and with probability
(α−1

1 α2)
m0 if α2 < α1.

If we denote C1
0 = {(m, 0) : m ≥ 1} and C2

0 = {(0, n) : n ≥ 1}, then we may
write down

S = C ∪ C1
0 ∪ C2

0 ∪ {(0, 0)},

where C = N×N is an irreducible class of transient states. Suppose that states
are labeled so that states in C precede those in C1

0 , states in C1
0 precede those in

C2
0 , and states in C2

0 precede the absorbing state (0, 0). Then, the infinitesimal
generator Q of X takes the form

Q =









T S1 S2 0

0 T1 0 α2e(1)
0 0 T2 β2e(1)
0T 0T 0T 0









,
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where T1 and T2 are related to two suitably defined birth-and-death processes
over C1

0∪{(0, 0)} and C2
0∪{(0, 0)}, respectively, and T, S1 and S2 are structured

sub-matrices. Specifically, S1 and S2 correspond to jumps from the class C of
transient states to the sub-sets C1

0 and C2
0 , respectively, while T corresponds to

jumps between states in the class C. By expressing the class C as ∪∞

k=2l(k) with
the kth level defined by l(k) = {(m,n) ∈ S : m+ n = k,m > 0, n > 0}, we may
express the sub-matrix T in the form

T =











B2,2 B2,3

B3,2 B3,3 B3,4

B4,3 B4,4 B4,5

. . .
. . .

. . .











, (4)

where Bk,k is a diagonal matrix of order k − 1 with ith entry −q(k−i,i), and
the entries of Bk,k′ are associated with jumps from states of the kth level to
states of the k′th level, for k′ ∈ {k − 1, k + 1}; see Appendix A for concrete
specifications of the matrices Bk,k−1, Bk,k+1, S1, S2, T1 and T2.

The assumptions made on the transition rates q(m,n),(m′,n′) as functions of
m and n guarantee (Gómez-Corral and López Garćıa [7, Appendix], Reuter [16,
Theorem 5]) that the extinction of one or other species occurs with probability
one, and the expectation of the time at which this species first becomes extinct is
finite regardless of the initial population size (m,n) ∈ C. In Sections 3 and 4, we
focus on an individual belonging to species 1, and study its residual lifetime and
the number of direct descendants. The behavior of this individual is analyzed
under the practically relevant situation when α2 ≥ α1, which guarantees that
the final extinction of species 1 is certain.

3. Residual lifetime

Let us assume that, at time t = 0, we mark an individual in species 1. In
studying the residual lifetime of this marked individual, we have to specify the
way individuals of species 1 are selected to die. We define a killing strategy as a
family of mass functions K = {sm : m ≥ 1}, where the mass function sm is given
by sm = {sm(a) : 1 ≤ a ≤ m} and the value sm(a) determines the probability
that, as a death within species 1 occurs, the ath youngest individual in species
1 dies, given that species 1 consists of m ≥ 1 individuals at that particular time
instant. A natural killing strategy is specified by sm ∼ Binomial(m − 1, ps)
with ps ∈ [0, 1], where the probabilities sm(a) are given by

sm(a) =

(

m− 1

a− 1

)

pa−1
s (1− ps)

m−a,

for ages a ∈ {1, 2, ...,m}; in this case, the values ps = 0 and 1 yield the-
youngest-order and the-oldest-order assignments1, respectively, and values of ps

1Basic killing strategies are as follows: (i) random-order assignment (there exists identical
chance for selecting the individual who dies), with values sm(a) = m−1 for 1 ≤ a ≤ m,
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with 0 < ps < 0.5 and 0.5 < ps < 1 reflect that younger and older individuals
die more frequently, respectively.

For a predetermined killing strategy K, we reformulate states (m,n) of the
process X by adding a third component a that amounts to the age of the marked
individual within species 1. This results in states (m,n, a) for an ecosystem with
m and n individuals in species 1 and 2, respectively, where the value a = 0 is
related to the death of the marked individual. This leads us to consider an
augmented version of X , which is defined on the state space

S(A) = C(A) ∪ C
(A),1
0 ∪ C

(A),2
0 ∪ {(0, 0, 0)},

where

C(A) = {(m,n, a) : (m,n) ∈ C, 0 ≤ a ≤ m},

C
(A),1
0 = {(m, 0, a) : m ≥ 1, 0 ≤ a ≤ m},

C
(A),2
0 = {(0, n, 0) : n ≥ 1},

and states in the sub-set {(m,n, 0) : (m,n) ∈ C ∪ C1
0} ∪ C

(A),2
0 ∪ {(0, 0, 0)} are

considered as absorbing. We remark that absorbing states in S(A) represent the
death of the marked individual under study. Figure 2 shows transitions between

augmented states, for initial states (m,n, a) ∈ C(A) and (m, 0, a) ∈ C
(A),1
0 with

1 ≤ a ≤ m. For later use, we define the values sm(< a) and sm(> a) as

sm(< a) =
∑a−1

a′=1 sm(a′) and sm(> a) =
∑m

a′=a+1 sm(a′), with sm(< 1) =
sm(> m) = 0.

For the marked individual, we define its residual lifetime in terms of the
following random variables:

T(m,n,a) is the residual lifetime of the marked individual if species 1 and 2
consist of m > 0 and n individuals, respectively, and the age of the marked
individual at time t = 0 is given by a ∈ {1, 2, ...,m}.

Then, it is readily seen that the Laplace-Stieltjes transforms φ(m,n,a)(θ) =
E[exp{−θT(m,n,a)}], for Re(θ) ≥ 0, satisfy

(i) For states (m,n, a) with 1 ≤ a ≤ m and n ≥ 1,

(θ + (α1 + γn)m+ (β1 + δm)n)φ(m,n,a)(θ)

= α1mφ(m+1,n,a+1)(θ) + β1nφ(m,n+1,a)(θ)

+ γmn
(

sm(< a)φ(m−1,n,a−1)(θ) + sm(a) + sm(> a)φ(m−1,n,a)(θ)
)

+ δmnφ(m,n−1,a)(θ). (5)

that is, sm ∼ Uniform{1, 2, ...,m}; (ii) the-oldest-order assignment (the oldest individual
dies whenever a death occurs), with values sm(a) = δa,m for 1 ≤ a ≤ m; and (iii) the

youngest-order assignment (the youngest individual dies whenever a death occurs), with values
sm(a) = δ1,a for 1 ≤ a ≤ m.
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(ii) For states (m, 0, a) with 1 ≤ a ≤ m,

(θ + (α1 + α2)m)φ(m,0,a)(θ) = α1mφ(m+1,0,a+1)(θ)

+ α2m
(

sm(< a)φ(m−1,0,a−1)(θ) + sm(a) + sm(> a)φ(m−1,0,a)(θ)
)

.

(6)

It should be pointed out here that, since every absorbing state in the aug-
mented process amounts to the death of the marked individual, Laplace-Stieltjes
transforms for these states are all equal to 1, and they behave as boundary condi-
tions in (5)-(6). Similarly to [8, Equations (4)-(7)], (5)-(6) result in a theoretical
solution that is not amenable to numerical implementation. Therefore, we adopt
a truncation procedure that, for large enough values K and K ′ with K−1 ≤ K ′,
examines the dynamics of X till absorption into the absorbing state (0, 0) but
under the restriction that the finite set of states

S(K;K ′) =

K
⋃

k=2

l(k) ∪ {(m, 0) : 1 ≤ m ≤ K ′} ∪ {(0, n) : 1 ≤ n ≤ K − 1}

∪{(0, 0)}

cannot be abandoned. For the initial state (m,n) ∈ C, this procedure involves
truncation to a finite matrix Q(K,K ′), and constructing a sequence of restricted
Laplace-Stieltjes transforms of T(m,n,a) on the set Aq

(m,n) of sample paths ver-

ifying that the process X does not leave the sub-set S(K;K ′); note that the
value q in Aq

(m,n) is closely related to the selection of K and K ′ in Remark 1,

where the effects of overpopulation in the ecosystem are taken into account.

Remark 1 In our approach, values K and K ′ are inherently linked to the
initial state (m,n) ∈ C. They are specified as follows:

Step 1 We select K as the (100q)th percentile Kq of X
(m,n)
max , where X

(m,n)
max is the

maximum number of individuals simultaneously alive during an extinction
cycle starting with m and n individuals in species 1 and 2, respectively.
Then, for a predetermined probability q ∈ (0, 1), the value K = Kq is
routinely evaluated from [7, Algorithm 1].

Step 2 We initialize K ′ = K − 1 and progressively increase K ′ until p(m,n) =
P (Aq

(m,n)) > q. This means that the probability of leaving the finite set

S(K;K ′) of states is as small as desired, by choosing q ∈ (0, 1) large
enough.

For an ecosystem consisting of m > 0 and n > 0 individuals in species 1
and 2, the probability p(m,n) in Step 2 (Remark 1) can be readily derived by
solving a finite system of linear equations, which involve probabilities p(m′, n′)
for states (m′, n′) ∈ S(K;K ′); in particular, for states of the form (m′, 0), it is

seen that p(m′, 0) = P (X
(m′,0)
max ≤ K ′) and

P
(

X(m′,0)
max ≤ K ′

)

=
(α2/α1)

K′
−m′+1

− 1

(α2/α1)
K′+1

− 1

(

α2

α1

)m′

, m′ ≤ K ′. (7)
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In our numerical work (Section 5), the focus is on initial states (m,n) ∈ C in such
a way that there exists real competition between species 1 and 2. However, if the
initial state has the form (m, 0), the truncating procedure can be appropriately
adapted since there is no need of the truncating value K any more. More
concretely, the process X starting from (m, 0) behaves as a birth-and-death
process over C1

0 ∪ {(0, 0)} and, consequently, the truncating procedure in Step
2 (Remark 1) starting with K ′ = n is still valid; in this case, it is clear that

p(m, 0) = P (X
(m,0)
max ≤ K ′).

Once the values K and K ′ are in hand, we replace the original process X
by its restriction to the set Aq

(m,n) of sample paths. We recall that, by Remark

1, values K and K ′ depend on the initial state (m,n) ∈ C and the probability
q ∈ (0, 1). Then, we propose to estimate the true Laplace-Stieltjes transform
φ(m,n,a)(θ) by the restricted transform

φ(m,n,a)(θ; q) = E
[

exp{−θT(m,n,a)};A
q

(m,n)

]

, Re(θ) ≥ 0.

It is worth noting that, by Remark 1, this implies that φ(m,n,a)(0; q) > q
since p(m,n) = φ(m,n,a)(0; q). For ease of notation, we from now on denote
the restricted transform φ(m,n,a)(θ; q) by φ(m,n,a)(θ). It is seen that the re-
stricted transforms satisfy a finite system of linear equations, which can be
decomposed into two sub-systems: (a) Sub-system 1 involves states in the set

C̄
(A),1
0 = {(m, 0, a) : 1 ≤ m ≤ K ′, 1 ≤ a ≤ m}; and (b) Sub-system 2 is related

to states (m,n, a) with (m,n) ∈ ∪K
k=2l(k) and 1 ≤ a ≤ m, but it also involves

some states of C̄
(A),1
0 .

Sub-system 1 The first sub-system of equations is inherently connected to
the dynamics of a finite birth-and-death process defined on {0, 1, ...,K ′} × {0},
and it is derived from first-passage arguments. Specifically, it consists of the
following equations:

(θ + α1 + α2)φ(1,0,1)(θ) = α1φ(2,0,2)(θ) + α2, (8)

(θ + (α1 + α2)m)φ(m,0,a)(θ) = (1− δm,K′)α1mφ(m+1,0,a+1)(θ)

+ α2m
(

sm(< a)φ(m−1,0,a−1)(θ) + sm(a)p(m− 1, 0)

+sm(> a)φ(m−1,0,a)(θ)
)

, 2 ≤ m ≤ K ′, 1 ≤ a ≤ m, (9)

where p(m′, n′) denotes the probability (Remark 1) that the process X does not
leave the set S(K;K ′) before absorption into states of {(0, 0)} ∪ {(0, n) : 1 ≤
n ≤ K − 1}, when (m′, n′) is its initial state.

Then, we may derive Algorithm 1 for computing the restricted Laplace-
Stieltjes transforms of the residual lifetime T(m,0,a), for 1 ≤ a ≤ m ≤ K ′. Its
proof is based on a forward elimination backward substitution solution sug-
gested by Ciarlet [4, page 144].

Algorithm 1 Computation of the restricted Laplace-Stieltjes transforms of
T(m,0,a), for states (m, 0, a) with 1 ≤ a ≤ m ≤ K ′

8



Step 1: i := 0;
m := 1;
hi
m(θ) := θ + α1 + α2;

jim(θ) := α2;
while 1 ≤ m ≤ K ′ − 1, repeat

m := m+ 1;
hi
m(θ) := θ+(α1 +α2)m−α1α2m(m− 1)sm(< m)(hi

m−1(θ))
−1;

jim(θ) := α2m(sm(< m)(hi
m−1(θ))

−1jim−1(θ)+sm(m)p(m−1, 0));
φ(K′,0,K′)(θ) := (hi

K′(θ))−1jiK′(θ);
while m ≥ 2, repeat

m := m− 1;
φ(m,0,m)(θ) := (hi

m(θ))−1(α1mφ(m+1,0,m+1)(θ) + jim(θ)).
Step 2: While i < K ′ − 2, repeat

i := i+ 1;
hi
i+1(θ) := θ + (α1 + α2)(i+ 1);

jii+1(θ) := α2(i+ 1)(si+1(1)p(i, 0) + si+1(> 1)φ(i,0,1)(θ));
for m = i+ 2, i+ 3, ...,K ′, compute

hi
m(θ) := θ + (α1 + α2)m

−α1α2m(m− 1)sm(< m− i)(hi
m−1(θ))

−1;
jim(θ) := α2m(sm(< m− i)(hi

m−1(θ))
−1jim−1(θ)

+sm(m−i)p(m−1, 0)+sm(> m−i)φ(m−1,0,m−i)(θ));
φ(K′,0,K′−i)(θ) := (hi

K′(θ))−1jiK′(θ);
for m = K ′ − 1,K ′ − 2, ..., i+ 1, compute

φ(m,0,m−i)(θ) := (hi
m(θ))−1(α1mφ(m+1,0,m−i+1)(θ)+jim(θ)).

Step 3: hK′
−1

K′ (θ) := θ + (α1 + α2)K
′;

jK
′
−1

K′ (θ) := α2K
′(sK′(1)p(K ′ − 1, 0) + sK′(> 1)φ(K′−1,0,1)(θ));

φ(K′,0,1)(θ) := (hK′
−1

K′ (θ))−1jK
′
−1

K′ (θ).

For later use (Appendix A), we define the vector f̃ (A)(θ), which contains the
restricted Laplace-Stieltjes transforms φ(m,0,a)(θ) for augmented states (m, 0, a)

with 1 ≤ a ≤ m ≤ K − 1. In particular, f̃ (A)(θ) consists of K − 1 sub-vectors

f̃
(A)
m (θ) whose ath entry is given by φ(m,0,a)(θ) for 1 ≤ a ≤ m ≤ K − 1.

Sub-system 2 To construct Sub-system 2, we first observe that (5) is satisfied
by restricted transforms φ(m,n,a)(θ) for states (1, n, 1) with 1 ≤ n ≤ K − 2. For
states (m,n, a) with m ≥ 2, n ≥ 1, m+n < K and 1 ≤ a ≤ m, it is readily seen
that

(θ + (α1 + γn)m+ (β1 + δm)n)φ(m,n,a)(θ)

= α1mφ(m+1,n,a+1)(θ) + β1nφ(m,n+1,a)(θ)

+ γmn
(

sm(< a)φ(m−1,n,a−1)(θ) + sm(a)p(m− 1, n)

+sm(> a)φ(m−1,n,a)(θ)
)

+ δmnφ(m,n−1,a)(θ). (10)

For states (m,n, a) with m ≥ 2, n ≥ 1, m + n = K and 1 ≤ a ≤ m, it is seen

9



that

(θ + (α1 + γn)m+ (β1 + δm)n)φ(m,n,a)(θ) = γmn
(

sm(< a)φ(m−1,n,a−1)(θ)

+ sm(a)p(m− 1, n) + sm(> a)φ(m−1,n,a)(θ)
)

+ δmnφ(m,n−1,a)(θ), (11)

and φ(1,K−1,1)(θ) satisfies

(θ + α1 + (K − 1)γ + (β1 + δ)(K − 1))φ(1,K−1,1)(θ)

= γ(K − 1) + δ(K − 1)φ(1,K−2,1)(θ). (12)

In solving Sub-system 2, we express the sub-set C̄(A) = {(m,n, a) : (m,n) ∈
∪K
k=2l(k), 1 ≤ a ≤ m} of transient states as

C̄(A) =
K−1
⋃

m=1

L(m),

where L(m) = ∪m
a=1l(m; a) and l(m; a) = {(m,n, a) : 1 ≤ n ≤ K−m}; note that

#L(m) = m(K −m). Then, in matrix form, Sub-system 2 can be expressed as

f (A)(θ) = C(A)(θ)f (A)(θ) + c(A)(θ), (13)

where f (A)(θ) contains the Laplace-Stieltjes transforms φ(m,n,a)(θ) with states

(m,n, a) ∈ C̄(A), entries of the vector c(A)(θ) are specified from the solution
of Algorithm 1 (Appendix A), and the matrix C(A)(θ) is constructed in the
usual form. More concretely, f (A)(θ) can be decomposed by levels L(m) into

sub-vectors f
(A)
m (θ), and C(A)(θ) has the structured form

C(A)(θ) =



















C
(A)
1,1 (θ) C

(A)
1,2 (θ)

C
(A)
2,1 (θ) C

(A)
2,2 (θ) C

(A)
2,3 (θ)

. . .
. . .

. . .

C
(A)
K−2,K−3(θ) C

(A)
K−2,K−2(θ) C

(A)
K−2,K−1(θ)

C
(A)
K−1,K−2(θ) C

(A)
K−1,K−1(θ)



















,

(14)

where

C
(A)
m,m−1(θ) =

















C
1,1
m,m−1(θ)

C
2,1
m,m−1(θ) C

2,2
m,m−1(θ)

. . .
. . .

C
m−1,m−2
m,m−1 (θ) C

m−1,m−1
m,m−1 (θ)

C
m,m−1
m,m−1(θ)

















,

C(A)
m,m(θ) = diag(C1,1

m,m(θ),C2,2
m,m(θ), ...,Cm,m

m,m(θ)),

C
(A)
m,m+1(θ) =











0(K−m)×(K−m−1) C
1,2
m,m+1(θ)

C
2,3
m,m+1(θ)

. . .

C
m,m+1
m,m+1(θ)











,
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and entries of Cl,l′

m,m′(θ) are specified in Appendix A.
Algorithm 2 is inspired from block-Gaussian elimination, and it indicates

how one may solve (13) in terms of previously computed transforms φ(m,0,a)(θ)

(Algorithm 1), which are stored in vector f̃ (A)(θ).

Algorithm 2 Computation of the restricted Laplace-Stieltjes transforms of
T(m,n,a), for states (m,n, a) with (m,n) ∈ ∪K

k=2l(k) and 1 ≤ a ≤ m

Step 1: m := 1;

Hm(θ) := Im(K−m) −C
(A)
m,m(θ);

Jm(θ) := c
(A)
m (θ);

while m < K − 1, repeat
m := m+ 1;

Hm(θ) := Im(K−m)−C
(A)
m,m(θ)−C

(A)
m,m−1(θ)H

−1
m−1(θ)C

(A)
m−1,m(θ);

Jm(θ) := C
(A)
m,m−1(θ)H

−1
m−1(θ)Jm−1(θ) + c

(A)
m (θ).

Step 2: f
(A)
m (θ) := H−1

m (θ)Jm(θ);
while m > 1, repeat

m := m− 1;

f
(A)
m (θ) := H−1

m (θ)(C
(A)
m,m+1(θ)f

(A)
m+1(θ) + Jm(θ)).

Let τ
(l)
(m,n,a) be the lth restricted moment of the residual lifetime T(m,n,a).

In evaluating the restricted moments of the residual lifetime, straightforward
algebra yields (8) and (9) with θ = 0, where each transform φ(m,0,a)(θ) is

replaced by its corresponding moment τ
(l)
(m,0,a), and α2 (Equation (8)) and

α2msm(a)p(m−1, 0) (Equation (9)) are replaced by lτ
(l−1)
(1,0,1) and lτ

(l−1)
(m,0,a), respec-

tively; then, Algorithm B.1 (Appendix B) shows how to compute the expected
values

τ
(l)
(m,0,a) = E

[

T l
(m,0,a);A

q

(m,0)

]

,

for states (m, 0, a) with 1 ≤ a ≤ m ≤ K ′, by adapting our arguments in
Algorithm 1. In a similar manner, Algorithm B.2 (Appendix B) computes the
moments

τ
(l)
(m,n,a) = E

[

T l
(m,n,a);A

q

(m,n)

]

,

for states (m,n, a) ∈ C̄(A).

4. Number of direct descendants

In this section, we focus on a marked individual and evaluate the number
of direct descendants, which aims to be a measure of the reproductive potential
at a certain time instant. Let us assume that t = 0 is such a time instant, and
define the number of next-generation births as follows:

11



D(m,n,a) is the number of direct descendants generated by a marked individual
(in species 1) during its residual lifetime, on the assumption that m and
n individuals in species 1 and 2, respectively, are alive at time t = 0
and the marked individual is the ath youngest one within species 1, with
1 ≤ a ≤ m.

It is clear that the random variable D(m,n,a) depends on concrete specifi-
cations for the reproduction of individuals in species 1, as well as the killing
strategy under consideration. In what follows we investigate its probability dis-
tribution (i.e., the probability mass function) in terms of generating functions

ϕ(m,n,a)(z) = E
[

zD(m,n,a)
]

, |z| ≤ 1,

and factorial moments

ν
(l)
(m,n,a) = E[D(m,n,a)(D(m,n,a) − 1) · · · (D(m,n,a) − l + 1)],

for predetermined killing and reproductive strategies K and R, where the family
R = {rm : m ≥ 1} of mass functions is defined from the probabilities rm(a)
that, as a birth within species 1 occurs, the ath youngest individual in species
1 is the progenitor, given that species 1 consists of m ≥ 1 individuals, with
1 ≤ a ≤ m.

As in the case of the residual lifetime T(m,n,a), the (infinite) system of linear
equations governing the dynamics of the numbers D(m,n,a) of direct descen-
dants is not analytically tractable and, consequently, the generating functions
ϕ(m,n,a)(z) in our approach are estimated by the restricted versions on the set
Aq

(m,n) of sample paths, where q ∈ (0, 1) is the large enough value chosen for

selecting the truncating values K and K ′; see Remark 1 and (7). Then, the
resulting finite system of linear equations can be decomposed into a first sub-

system involving states in C̄
(A),1
0 , and a second one for states (m,n, a) with

(m,n) ∈ ∪K
k=2l(k) and 1 ≤ a ≤ m, and some states of C̄

(A),1
0 .

More concretely, a first-passage argument yields

(α1 + α2)ϕ(1,0,1)(z) = α1zϕ(2,0,2)(z) + α2, (15)

(α1 + α2)mϕ(m,0,a)(z) = (1− δm,K′)α1m (rm(a)z + rm( 6= a))ϕ(m+1,0,a+1)(z)

+α2m
(

sm(< a)ϕ(m−1,0,a−1)(z)

+sm(a)p(m− 1, 0) + sm(> a)ϕ(m−1,0,a)(z)
)

,

2 ≤ m ≤ K ′, 1 ≤ a ≤ m, (16)

where rm( 6= a) = 1− rm(a). Then, an appeal to [4, page 144] leads us to Algo-
rithm 3.

Algorithm 3 Computation of the restricted generating functions of D(m,0,a),
for states (m, 0, a) with 1 ≤ a ≤ m ≤ K ′

Step 1: i := 0;
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m := 1;
ĥi
m(z) := (rm(i)z + rm( 6= i))

−1
(α1 + α2);

ĵim(z) := (rm(i)z + rm( 6= i))
−1

α2;
while 1 ≤ m ≤ K ′ − 2, repeat

m := m+ 1;

ĥi
m(z) := (rm(m)z + rm( 6= m))

−1
(

(α1 + α2)m

−α1α2m(m− 1)sm(< m)(ĥi
m−1(z))

−1
)

;

ĵim(z) := (rm(m)z + rm( 6= m))
−1

α2m

×
(

sm(< m)(ĥi
m−1(z))

−1ĵim−1(z) + sm(m)p(m− 1, 0)
)

;

m := m+ 1;
ĥi
m(z) := (α1 + α2)m− α1α2m(m− 1)(ĥi

m−1(z))
−1sm(< m);

ĵim(z) := α2m
(

sm(< m)(ĥi
m−1(z))

−1ĵim−1(z) + sm(m)p(m− 1, 0)
)

;

ϕ(m,0,m)(z) := (ĥi
m(z))−1ĵim(z);

while 2 ≤ m ≤ K ′, repeat
m := m− 1;
ϕ(m,0,m)(z) := (ĥi

m(z))−1(α1mϕ(m+1,0,m+1)(z) + ĵim(z)).
Step 2: While i < K ′ − 2, repeat

i := i+ 1;
ĥi
i+1(z) := (ri+1(1)z + ri+1( 6= 1))

−1
(α1 + α2)(i+ 1);

ĵii+1(z) := (ri+1(1)z + ri+1( 6= 1))
−1

α2(i+ 1)
×
(

si+1(1)p(i, 0) + si+1(> 1)ϕ(i,0,1)(z)
)

;
for m = i+ 2, i+ 3, ...,K ′ − 1, compute

ĥi
m(z) := (rm(m− i)z + rm( 6= m− i))

−1
(

(α1 + α2)m

−α1α2m(m− 1)sm(< m− i)(ĥi
m−1(z))

−1
)

;

ĵim(z) := (rm(m− i)z + rm( 6= m− i))
−1

×α2m
(

sm(< m− i)(ĥi
m−1(z))

−1ĵim−1(z)

+sm(m−i)p(m−1, 0)+sm(> m−i)ϕ(m−1,0,m−i)(z)
)

;

ĥi
K′(z) := (α1+α2)K

′−α1α2K
′(K ′−1)sK′(< K ′−i)(ĥi

K′−1(z))
−1;

ĵiK′(z) := α2K
′

(

sK′(< K ′ − i)(ĥi
K′−1(z))

−1ĵiK′−1(z)

+sK′(K ′−i)p(K ′−1, 0)+sK′(> K ′−i)ϕ(K′−1,0,K′−i)(z)
)

;

ϕ(K′,0,K′−i)(z) := (ĥi
K′(z))−1ĵiK′(z);

for m = K ′ − 1,K ′ − 2, ..., i+ 1, compute
ϕ(m,0,m−i)(z) := (ĥi

m(z))−1

×
(

α1mϕ(m+1,0,m−i+1)(z) + ĵim(z)
)

;

ϕ(K′,0,1)(z) := ((α1 + α2)K
′)
−1

α2K
′

×
(

sK′(1)p(K ′ − 1, 0) + sK′(> 1)ϕ(K′−1,0,1)(z)
)

.
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Similarly to (15)-(16), the restricted generating functions ϕ(m,n,a)(z) for
states (m,n, a) with (m,n) ∈ ∪K

k=2l(k) and 1 ≤ a ≤ m, satisfy the equalities

(α1 + γn+ (β1 + δ)n)ϕ(1,n,1)(z) = (1− δn,K−1)

×
(

α1zϕ(2,n,2)(z) + β1nϕ(1,n+1,1)(z)
)

+ γn+ δnϕ(1,n−1,1)(z),

1 ≤ n ≤ K − 1, (17)

((α1 + γn)m+ (β1 + δm)n)ϕ(m,n,a)(z)

= α1m(rm(a)z + rm( 6= a))ϕ(m+1,n,a+1)(z) + β1nϕ(m,n+1,a)(z)

+ γmn
(

sm(< a)ϕ(m−1,n,a−1)(z) + sm(a)p(m− 1, n)

+ sm(> a)ϕ(m−1,n,a)(z)
)

+ δmnϕ(m,n−1,a)(z),

2 ≤ m ≤ K − 1, n ≥ 1,m+ n < K, 1 ≤ a ≤ m, (18)

((α1 + γn)m+ (β1 + δm)n)ϕ(m,n,a)(z) = γmn
(

sm(< a)ϕ(m−1,n,a−1)(z)

+sm(a)p(m− 1, n) + sm(> a)ϕ(m−1,n,a)(z)
)

+ δmnϕ(m,n−1,a)(z),

2 ≤ m ≤ K − 1, n ≥ 1,m+ n = K, 1 ≤ a ≤ m. (19)

In matrix form, Equations (17)-(19) can be written as

gm(z) = (1− δ1,m)C
(A)
m,m−1(0)gm−1(z) +C(A)

m,m(0)gm(z)

+(1− δm,K′−1)Ĉm,m+1(z)gm+1(z) + ĉm(z), 1 ≤ m ≤ K − 1,

where gm(z) consists of sub-vectors ga
m(z) and the nth entry of ga

m(z) is given
by ϕ(m,n,a)(z), for 1 ≤ a ≤ m ≤ K − 1 and 1 ≤ n ≤ K − m. The matrix

Ĉm,m+1(z) has the structured form












0(K−m)×(K−m−1) Ĉ
1,2
m,m+1(z)

Ĉ
2,3
m,m+1(z)

. . .

Ĉ
m,m+1
m,m+1(z)













, (20)

with sub-matrices Ĉa,a+1
m,m+1(z) = (rm(a)z+ rm( 6= a))Ca,a+1

m,m+1(0), and the vector
ĉm(z) is specified by

ĉm(z) = A(A)(0)g̃m(z) + t(A)(0),

where the ath entry of g̃m(z) is given by ϕ(m,0,a)(z). As the reader may easily
verify, Algorithm 2 allows us to compute the restricted solution gm(z) by re-

placing C
(A)
m,m′(θ), C

(A)
m,m+1(θ) and c

(A)
m (θ) by C

(A)
m,m′(0), Ĉm,m+1(z) and ĉm(z),

for m′ ∈ {m− 1,m}.
Algorithms B.3-B.4 (Appendix B) show how to compute the restricted fac-

torial moments of the number of descendants, for augmented states (m,n, a) in
S(A). The correlation structure between the residual lifetime T(m,n,a) and the
number D(m,n,a) of descendants may be analyzed by using the joint transform

E
[

exp{−θT(m,n,a)}z
D(m,n,a)

]

, Re(θ) ≥ 0, |z| ≤ 1,
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which can be estimated by its restricted version on the set Aq

(m,n) of sample

paths. For practical use, this means that the restricted joint transforms of the
random pairs (T(m,n,a), D(m,n,a)), for augmented states in S(A), can be charac-
terized as the solution of a finite system of linear equations, and the coefficient
of correlation ρ(T(m,n,a), D(m,n,a)) may be readily derived by taking derivatives
on the resulting equations at point (θ, z) = (0, 1). It is clear that Sub-systems
1-2 (Section 3) and Equations (15)-(19) can be then viewed as particular cases
of the resulting system of equations at points (θ, z) with z = 1 and Re(θ) ≥ 0,
and θ = 0 and |z| ≤ 1, respectively. For the sake of brevity, we omit the details.

5. Numerical examples

Next we present a numerical study of our preceding theoretical results which
illustrates the effect of the killing and reproductive strategies K and R on the
residual lifetime and the number of descendants. In our examples, we consider
an ecosystem with balanced competition between species 1 and 2 and, more
concretely, per capita parameters are selected as (α1, γ) = (β1, δ) = (1.0, 0.25),
and α2 = 1.25. Initial population sizes in Figures 3-10 are given by (m,n) =
(20, 10), (20, 20) and (20, 30), and they should be considered as slowly, moder-
ately or highly competitive ecosystems, respectively, for an individual belonging
to species 1.

Our examples in Figures 3 and 4 are related to the residual lifetime of a
marked individual, for killing strategies based on Binomial and Uniform families.
Specifically, Figures 3 and 4 show the variability of the expected value and the
coefficient of variation as functions of the killing probability ps, for ecosystems
with initial sizes (m,n) = (20, 10), (20, 20) and (20, 30). In each graph, three
curves associated with the Binomial case and initial ages a ∈ {5, 10, 15} are
displayed; the solid line is related to the Uniform case, and it does not depend
on ps. It is worth noting that smaller values of the expected residual lifetime
are associated with more overcrowded ecosystems at the initial time instant,
regardless of the killing strategy. This reveals that the effect of the killing
strategy on the expected residual lifetime decreases with increasing initial sizes,
thus showing the influence of an increasing environmental pressure. We also
observe that, as is to be expected, the expected residual lifetime behaves as an
increasing function of the initial age for small values of ps and, on the contrary,
it decreases with increasing values of the initial age for higher values of the
killing probability ps. This behavior can be easily explained by recalling that,
in the Binomial case, the values of ps varying in [0, 0.5) and (0.5, 1] reflect that
younger individuals and older individuals will die more frequently, respectively.
Values of ps that are close to 0.5 do not yield any remarkable behavior on the
expected residual lifetime of the marked individual, which is inherently linked to
the fact that killing strategies are dynamically adapted over time as a function
of the number M(t) of individuals alive in species 1.

The coefficient of variation is a dimensionless number, so when comparing
between two values of ps yielding significantly different expected values (Figure
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3), it is observed in Figure 4 that, for every fixed initial size (m,n), the distribu-
tion of the residual lifetime shows slower-variance when the killing probability ps
is close to 1 and, consequently, the killing strategy approaches the oldest-order
assignment. We point out here that, in the particular case ps = 1 representing
the oldest-order assignment, the residual lifetime of the marked individual with
initial age a is exactly described by the time until occurring m−a deaths within
species 1, which yields low values for the coefficient of variation regardless of
the initial state. Moreover, when we fix the initial population size (m,n), the
highest variance is attained at moderately small magnitudes of the killing prob-
ability ps if the marked individual is young (Figure 4, initial age a = 5) at the
initial time instant; on the contrary, moderately high values of ps lead to higher
variance when the initial age increases (Figure 4, a = 15).

In Figures 5-7, we focus on the mean number of descendants. Figures 5 and
6 serve to show the behavior of this mean value as a function of the killing prob-
ability ps when a Binomial killing strategy is assumed; each graph contains a
solid curve, which is related to the Uniform case, and five curves corresponding
to Binomial reproductive strategies with probabilities pr ∈ {0, 0.25, 0.5, 0.75, 1}.
Figures 5-6 suggest that the way in which the individuals reproduce within
species 1 (i.e., the reproductive strategyR) is crucial or not for the mean number
of descendants of a marked individual depending on the ecosystem characteris-
tics. More concretely, under a low competitive environment (in our examples,
(m,n) = (20, 10)) or when the individual has a high expected residual lifetime
(for example, ps ∈ [0, 0.5) and a = 15 in Figure 6), the reproductive strategy
plays an important role in the number of descendants to be expected, and large
numbers of descendants might be reached. On the other hand, in a more com-
petitive ecosystem (in our examples, (m,n) = (20, 30)) or when the individual
has a low expected residual lifetime (for example, ps ∈ (0.5, 1] and a = 15 in Fig-
ure 6), the expected number of descendants is small regardless of the particular
reproductive strategy under study.

Figure 7 shows the variability of the mean number of descendants as a func-
tion of the reproductive probability pr for initial sizes (m,n) = (20, 10), (20, 20)
and (20, 30), when the Uniform killing strategy is assumed. In each graph, we
plot four curves corresponding to the initial ages a ∈ {5, 10, 15} and the Uni-
form reproductive case. It is observed that increasing initial sizes (m,n) result
in decreasing mean numbers of descendants, regardless of the killing strategy.
In the same manner than with the reproductive strategy in Figures 5-6, the
effect of the killing strategy on the number of descendants in Figure 7 vanishes
under highly competitive environments. For every fixed size, the mean number
of descendants behaves as a non-monotone function of the killing probability
pr, in such a way that graphs have similar shapes in the Binomial reproductive
case, but the resulting magnitudes are notably different; in particular, maxi-
mum values are derived when the marked individual has a moderately high age
(Figure 7, a = 15) at the initial time instant and older individual reproduce
more frequently than younger individuals in species 1.

In Figures 3-7 we have analyzed the impact of the way in which individuals
die within the ecosystem on the expected residual lifetime and the expected
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number of descendants, this latter descriptor also being affected by the way in
which individuals reproduce within species 1. At the same time, identified be-
haviors in those figures reflect a clear dependence between the residual lifetime
of a marked individual and its number of descendants, this dependence seeming
higher or lower depending on the environmental conditions. To probabilistically
quantify this dependence we plot in Figures 8-10, for the same ecosystem charac-
teristics than in Figures 5-7, the coefficient of correlation between the residual
lifetime of a marked individual and the number of descendants. As intuition
tells us, values of this descriptor are strictly positive, which means that decreas-
ing (respectively, increasing) residual lifetimes imply decreasing (respectively,
increasing) numbers of descendants. In particular, Figures 8-9 show that the
coefficient of correlation is not necessarily a monotone function of the killing
probability ps, but the resulting magnitudes are notably different with ps vary-
ing. A similar remark may be made for the linear dependence between T(m,n,a)

and D(m,n,a) in Figure 10, where it is observed that maximum values of the
coefficient of correlation are related to the highest value of the initial age in
our examples (a = 15) as the reproductive probability pr is high, and however
the smallest age (a = 5) in the initial time instant yields the maximum linear
dependence if the values of pr are small and moderate.
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Appendix A

Glossary of notation

Throughout this paper, vectors are denoted by bold lowercase letters (like a)
and matrices are represented in bold uppercase (like A). The transpose of A is
denoted by AT and, by default, vectors are column vectors. The column vectors
of order i with all entries equal 1 and 0 are denoted by ei and 0i, respectively.
We denote by ei(j) the column vector of order i such that all entries equal 0,
except for the jth one which equals 1. If the number of entries of ei, 0i and
ei(j) is not finite, then we use the notation e, 0 and e(j), respectively.

The identity matrix of order i is denoted by Ii, 0i×j denotes the null matrix
of dimension i×j, and I and 0 denote the identity and null matrices, respectively,
with an infinite number of rows and columns, so that 0 can represent either an
infinite vector or an infinite matrix of zeros depending on context. The matrix
diag(a1, ..., ak) has elements a1, ..., ak along its diagonal and zeros elsewhere,
even if the entries a1, ..., ak are vectors or matrices.

The Kronecker delta δi,j is equal to 1 if i = j, and 0 if i 6= j. For a set A of
states and x, y ∈ A, #A denotes the cardinality of A, and x ∝ y denotes that
x precedes y.
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Expressions for Bk,k−1, Bk,k+1, S1, S2, T1 and T2

The infinitesimal generator Q of the process X consists of sub-matrices T,
S1, S2, T1 and T2. Assuming that, for states of the kth level, an ordering is
defined as (k− 1, 1) ∝ (k− 2, 2) ∝ ... ∝ (2, k− 2) ∝ (1, k− 1), it can be verified
that Bk,k−1 and Bk,k+1 in (4) are readily given by

Bk,k−1 =



















(k − 1)γ
2(k − 2)δ 2(k − 2)γ

3(k − 3)δ 3(k − 3)γ
. . .

. . .

(k − 2)2δ (k − 2)2γ
(k − 1)δ



















,

Bk,k+1 =















(k − 1)α1 β1

(k − 2)α1 2β1

(k − 3)α1 3β1

. . .
. . .

α1 (k − 1)β1















.

By (1)-(3), the sub-matrices S1 and S2 can be expressed as

S1 = diag(a2,1,a3,2,a4,3, ...),

S2 = diag(b2,1,b3,2,b4,3, ...),

with aj,j−1 = (j − 1)δej−1(1) and bj,j−1 = (j − 1)γej−1(j − 1), for j ≥ 2.
Finally, T1 and T2 are associated with birth-and-death processes defined on
the non-negative integers, and they are given by

T1 =











−(α1 + α2) α1

2α2 −2(α1 + α2) 2α1

3α2 −3(α1 + α2) 3α1

. . .
. . .

. . .











,

T2 =











−(β1 + β2) β1

2β2 −2(β1 + β2) 2β1

3β2 −3(β1 + β2) 3β1

. . .
. . .

. . .











.

Expressions for c(A)(θ) and C
l,l′

m,m′(θ)

The vector c(A)(θ) in (13) can be expressed as

c(A)(θ) = A(A)(θ)f̃ (A)(θ) + t(A)(θ),

where the entries of f̃ (A)(θ) are evaluated from Algorithm 1, and the matrix

A(A)(θ) is the diagonal matrix diag(A
(A)
1 (θ),A

(A)
2 (θ), ...,A

(A)
K−1(θ)), with sub-

matrices

A(A)
m (θ) = diag

(

a(A)
m (θ; 1),a(A)

m (θ; 2), ..., a(A)
m (θ;m)

)

,

18



and a
(A)
m (θ; a) = (θ+(α1+γ)m+β1+ δm)−1δmeK−m(1). In a similar manner,

t(A)(θ) consists of column vectors t
(A)
m (θ), for 1 ≤ m ≤ K − 1, where

t(A)
m (θ) =













t
(A)
m (θ; 1)

t
(A)
m (θ; 2)

...

t
(A)
m (θ;m)













,

and entries of t
(A)
m (θ; a) are related to the death of the marked individual, when

species 1 consists of m individuals, that is, the nth entry of t
(A)
m (θ; a) is given

by

(θ + (α1 + γn)m+ (β1 + δm)n)
−1

γmn (δ1,m + (1− δ1,m)sm(a)p(m− 1, n)) ,

for 1 ≤ n ≤ K −m.
By (5) and (10)-(12), entries of Cl,l′

m,m′(θ) are specified as follows:

(i) For 1 ≤ a ≤ m ≤ K − 1,

(

Ca,a
m,m(θ)

)

i,j
=







(θ + (α1 + γi)m+ (β1 + δm)i)−1δmi, if j = i− 1,
(θ + (α1 + γi)m+ (β1 + δm)i)−1β1i, if j = i+ 1,
0, otherwise,

with 1 ≤ i, j ≤ K −m.

(ii) For 2 ≤ a ≤ m ≤ K − 1,

(

C
a,a−1
m,m−1(θ)

)

i,j
=

{

(θ + (α1 + γi)m+ (β1 + δm)i)−1γmism(< a), if j = i,
0, otherwise,

with 1 ≤ i ≤ K −m and 1 ≤ j ≤ K −m+ 1.

(iii) For 2 ≤ m ≤ K − 1 and 1 ≤ a ≤ m,

(

C
a,a
m,m−1(θ)

)

i,j
=

{

(θ + (α1 + γi)m+ (β1 + δm)i)−1γmism(> a), if j = i,
0, otherwise,

with 1 ≤ i ≤ K −m and 1 ≤ j ≤ K −m+ 1.

(iv) For 1 ≤ a ≤ m ≤ K − 2,

(

C
a,a+1
m,m+1(θ)

)

i,j
=

{

(θ + (α1 + γi)m+ (β1 + δm)i)−1α1m, if j = i,
0, otherwise,

with 1 ≤ i ≤ K −m and 1 ≤ j ≤ K −m− 1.
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Appendix B

Algorithms B.1 and B.2

Algorithm B.1 allows us to compute the lth moments τ
(l)
(m,0,a) from the pre-

viously computed values hi
m(0) and φ(m,0,a)(0) in Algorithm 1.

Algorithm B.1 Computation of τ
(l)
(m,0,a) = E[T l

(m,0,a);A
q

(m,0)] for states (m, 0, a)

with 1 ≤ a ≤ m ≤ K ′

Step 1: r := 0;
for 1 ≤ a ≤ m ≤ K ′, compute

τ
(r)
(m,0,a) := φ(m,0,a)(0).

Step 2: While r < l, repeat
r := r + 1;
m := 1;

j
0,(r)
m := rτ

(r−1)
(m,0,m);

while m < K ′, repeat
m := m+ 1;

j
0,(r)
m := α2msm(< m)(h0

m−1(0))
−1j

0,(r−1)
m−1 + rτ

(r−1)
(m,0,m);

τ
(r)
(K′,0,K′) := (h0

K′(0))−1j
0,(r)
K′ ;

while m > 1, repeat
m := m− 1;

τ
(r)
(m,0,m) := (h0

m(0))−1(α1mτ
(r)
(m+1,0,m+1) + j

0,(r)
m );

i := 0;
while i < K ′ − 2 repeat

i := i+ 1;

j
i,(r)
i+1 := α2(i+ 1)si+1(> 1)τ

(r)
(i,0,1) + rτ

(r−1)
(i+1,0,1);

for m = i+ 2, i+ 3, ...,K ′, compute

j
i,(r)
m := α2m(sm(< m− i)(hi

m−1(0))
−1j

i,(r)
m−1

+sm(> m− i)τ
(r)
(m−1,0,m−i)) + rτ

(r−1)
(m,0,m−i);

τ
(r)
(K′,0,K′−i) := (hi

K′(0))−1j
i,(r)
K′ ;

for m = K ′ − 1,K ′ − 2, ..., i+ 1, compute

τ
(r)
(m,0,m−i) := (hi

m(0))−1(α1mτ
(r)
(m+1,0,m+1−i) + j

i,(r)
m );

τ
(r)
(K′,0,1) := ((α1 + α2)K

′)−1(α2K
′sK′(> 1)τ

(r)
(K′−1,0,1) + rτ

(r−1)
(K′,0,1)).

Similarly to Equation (13), the vector τ (l) in Algorithm B.2 consists of sub-

vectors τ
(l)
m with (restricted) moments E[T l

(m,n,a);A
q

(m,n)] for states (m,n, a) ∈

C̄(A). Again, matrices Hm(0) and vectors f
(A)
m (0) used in Algorithm B.2 are

those ones obtained in Algorithm 2 when solving (13).

Algorithm B.2 Computation of τ
(l)
(m,n,a) = E[T l

(m,n,a);A
q

(m,n)] for states (m,n, a) ∈

C̄(A)

20



Step 1: r := 0;
m := 0;
while m < K − 1, repeat

m := m+ 1;

τ
(r)
m := f

(A)
m (0).

Step 2: While r < l, repeat
r := r + 1;

J
(r)
1 := (−1)rc

(r)
1 (0)+

∑r
i=1

(

r
i

)

(−1)i
(

C
(A),(i)
1,1 (0)τ

(r−i)
1 +C

(A),(i)
1,2 (0)τ

(r−i)
2

)

;

for m = 2, 3, ...,K − 1, compute

J
(r)
m := (−1)rc

(r)
m (0) +C

(A)
m,m−1(0)H

−1
m−1(0)J

(r)
m−1(0)

+
∑r

i=1

(

r
i

)

(−1)i
(

C
(A),(i)
m,m−1(0)τ

(r−i)
m−1 +C

(A),(i)
m,m (0)τ

(r−i)
m

+(1− δm,K−1)C
(A),(i)
m,m+1(0)τ

(r−i)
m+1

)

;

τ
(r)
K−1 := H−1

K−1(0)J
(r)
K−1;

for m = K − 2,K − 3, ..., 1, compute

τ
(r)
m := H−1

m (0)
(

C
(A)
m,m+1(0)τ

(r)
m+1 + J

(r)
m

)

.

The matrixC
(A),(i)
m,m′ (0) corresponds to the ith derivative ofC

(A)
m,m′(θ) at θ = 0.

Based on the structured form of C
(A)
m,m′(θ) in (14), its elements are specified by

(

Ca,a,(r)
m,m (0)

)

i,j
=







((α1 + γi)m+ (β1 + δm)i)−(r+1)(−1)−rr!δmi, if j = i− 1,
((α1 + γi)m+ (β1 + δm)i)−(r+1)(−1)−rr!β1i, if j = i+ 1,
0, otherwise,

(

C
a,a−1,(r)
m,m−1 (0)

)

i,j
=

{

((α1 + γi)m+ (β1 + δm)i)−(r+1)(−1)−rr!γmism(< a), if j = i,
0, otherwise,

(

C
a,a,(r)
m,m−1(0)

)

i,j
=

{

((α1 + γi)m+ (β1 + δm)i)−(r+1)(−1)−rr!γmism(> a), if j = i,
0, otherwise,

(

C
a,a+1,(r)
m,m+1 (0)

)

i,j
=

{

((α1 + γi)m+ (β1 + δm)i)−(r+1)(−1)−rr!α1m, if j = i,
0, otherwise.

The vector c
(r)
m (0) in Step 2 (Algorithm B.2) satisfies

(−1)rc(r)m (0) =
r

∑

r′=0

(

r

r′

)

(−1)r
′

A(A),(r′)
m (0)f̃ (A),(r−r′)

m + t(A),(r)
m (0),

where A
(A),(r)
m (0) consists of the sub-vectors

a(A),(r)
m (0; a) = (−1)rr!((α1 + γ)m+ β1 + δm)−(r+1)δmeK−m(1),

for 1 ≤ a ≤ m ≤ K − 1, t
(A),(r)
m (0) contains sub-vectors t

(A),(r)
m (0; a) with

elements
(

t(A),(r)
m (0; a)

)

i
= r! ((α1 + γi)m+ (β1 + δm)i)

−(r+1)

×γmi (δ1,m + (1− δ1,m)sm(a)p(m− 1, i)) ,
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for 1 ≤ i ≤ K −m and 1 ≤ a ≤ m ≤ K − 1, and f̃
(A),(l)
m is a column vector of

order m, whose ath entry is given by τ
(l)
(m,0,a).

Algorithms B.3 and B.4

In Algorithm B.3 the values ν
(l)
(m,0,a) correspond to the (restricted) moments

ν
(l)
(m,0,a) = E[D(m,0,a)(D(m,0,a) − 1)...(D(m,0,a) − l + 1);Aq

(m,0)],

for states (m, 0, a) ∈ C̄
(A),1
0 . For states (m,n, a) ∈ C̄(A), the values ν

(l)
(m,n,a) in

Algorithm B.4 are defined by

ν
(l)
(m,n,a) = E[D(m,n,a)(D(m,n,a) − 1)...(D(m,n,a) − l + 1);Aq

(m,n)].

In Algorithm 4, the matrix Ĉ
(1)
m,m+1(1) in Step 2 has the structured form

(20) with the sub-matrices Ĉ
a,a+1
m,m+1(z) replaced by rm(a)Ca,a+1

m,m+1(0), and the

matrix Ĥm(1) is iteratively evaluated, similarly to Hm(θ) in Algorithm 2, from

Ĥm(z) = Im(K−m) −C(A)
m,m(0)− (1− δ1,m)C

(A)
m,m−1(0)Ĥ

−1
m−1(z)Ĉm−1,m(z).

Finally, the vector ĉ
(l)
m (1) is defined by A(A)(0)ν̃

(l)
m , where ν̃

(l)
m is the sub-vector

with entries ν
(l)
(m,0,a) for 1 ≤ a ≤ m, which are derived from Algorithm B.3.

Algorithm B.3 Computation of ν
(l)
(m,0,a) for states (m, 0, a) with 1 ≤ a ≤

m ≤ K ′

Step 1: r := 0;
for 1 ≤ a ≤ m ≤ K ′, compute

ν
(r)
(m,0,a) := ϕ(m,0,a)(1).

Step 2: While r < l, repeat
r := r + 1;
m := 1;

ĵ
0,(r)
m := rrm(1)α1ν

(r−1)
(m+1,0,m+1);

while m < K ′, repeat
m := m+ 1;

ĵ
0,(r)
m := α2msm(< m)(ĥ0

m−1(1))
−1ĵ

0,(r)
m−1

+(1− δm,K′)α1mrrm(m)ν
(r−1)
(m+1,0,m+1);

ν
(r)
(K′,0,K′) := (ĥ0

K′(1))−1ĵ
0,(r)
K′ ;

while m > 1, repeat
m := m− 1;

ν
(r)
(m,0,m) := (ĥ0

m(1))−1(α1mν
(r)
(m+1,0,m+1) + ĵ

0,(r)
m );

i := 0;
while i < K ′ − 2 repeat

i := i+ 1;
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ĵ
i,(r)
i+1 := α2(i+ 1)si+1(> 1)ν

(r)
(i,0,1) + α1mrrm(1)ν

(r−1)
(i+2,0,2);

for m = i+ 2, i+ 3, ...,K ′, compute

ĵ
i,(r)
m := α2m(sm(< m− i)(ĥi

m−1(1))
−1ĵ

i,(r)
m−1

+sm(> m− i)ν
(r)
(m−1,0,m−i))

+(1− δm,K′)mα1rrm(m− i)ν
(r−1)
(m+1,0,m+1−i);

ν
(r)
(K′,0,K′−i) := (ĥi

K′(1))−1ĵ
i,(r)
K′ ;

for m = K ′ − 1,K ′ − 2, ..., i+ 1, compute

ν
(r)
(m,0,m−i) := (ĥi

m(1))−1(α1mν
(r)
(m+1,0,m+1−i) + ĵ

i,(r)
m );

ν
(r)
(K′,0,1) := ((α1 + α2)K

′)−1α2K
′sK′(> 1)ν

(r)
(K′−1,0,1).

Algorithm B.4 Computation of ν
(l)
(m,n,a) for states (m,n, a) ∈ C̄(A)

Step 1: r := 0;
m := 0;
while m < K − 1, repeat

m := m+ 1;

ν
(r)
m := gm(1).

Step 2: While r < l, repeat
r := r + 1;

Ĵ
(r)
1 := ĉ

(r)
1 (1) + lĈ

(1)
1,2(1)ν

(l−1)
2 ;

for m = 2, 3, ...,K − 1, compute

Ĵ
(r)
m := ĉ

(r)
m (1)+C

(A)
m,m−1(0)Ĥ

−1
m−1(1)Ĵ

(r)
m−1+(1−δm,K−1)lĈ

(1)
m,m+1(1)ν

(l−1)
m+1 ;

ν
(r)
K−1 := Ĥ−1

K−1(1)Ĵ
(r)
K−1;

for m = K − 2,K − 3, ..., 1, compute

ν
(r)
m := Ĥ−1

m (1)(Ĉm,m+1(1)ν
(r)
m+1 + Ĵ

(r)
m ).
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Figure 1: Transitions among states in the two-species competition process X
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Figure 2: Transitions among augmented states
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Figure 3: Expected residual lifetime versus the killing probability ps for (from top to bottom)
initial population sizes (m,n) = (20, 10), (20, 20) and (20, 30), and initial ages a ∈ {5, 10, 15}.
Killing strategies: sm′ ∼ Binomial(m′ − 1, ps) and Uniform{1, 2, ...,m′}, for m′ ∈ N.
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Figure 4: Variation coefficient of the residual lifetime versus the killing probability ps for (from
top to bottom) initial population sizes (m,n) = (20, 10), (20, 20) and (20, 30), and initial ages
a ∈ {5, 10, 15}. Killing strategies: sm′ ∼ Binomial(m′−1, ps) and Uniform{1, 2, ...,m′}, for
m′ ∈ N.
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Figure 5: Expected number of descendants versus the killing probability ps for (from top

to bottom) initial populations sizes (m,n) = (20, 10), (20, 20) and (20, 30), and initial age
a = 5. Killing strategies: sm′ ∼ Binomial(m′ − 1, ps), for m′ ∈ N; reproductive strategies:
rm′ ∼ Binomial(m′ − 1, pr) with pr ∈ {0, 0.25, 0.5, 0.75, 1}, and Uniform{1, 2, ...,m′}, for
m′ ∈ N.

29



Figure 6: Expected number of descendants versus the killing probability ps for (from top

to bottom) initial populations sizes (m,n) = (20, 10), (20, 20) and (20, 30), and initial age
a = 15. Killing strategies: sm′ ∼ Binomial(m′ − 1, ps), for m′ ∈ N; reproductive strategies:
rm′ ∼ Binomial(m′ − 1, pr) with pr ∈ {0, 0.25, 0.5, 0.75, 1}, and Uniform{1, 2, ...,m′}, for
m′ ∈ N.
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Figure 7: Expected number of descendants versus the reproductive probability pr for (from
top to bottom) initial populations sizes (m,n) = (20, 10), (20, 20) and (20, 30), and initial
ages a ∈ {5, 10, 15}. Killing strategies: sm′ ∼ Uniform{1, 2, ...,m}; reproductive strategies:
rm′ ∼ Binomial(m′ − 1, pr) and and Uniform{1, 2, ...,m′}, for m′ ∈ N.

31



Figure 8: Coefficient of correlation versus the killing probability ps for (from top to bot-

tom) initial populations sizes (m,n) = (20, 10), (20, 20) and (20, 30), and initial age a = 5.
Killing strategies: sm′ ∼ Binomial(m′ − 1, ps), for m′ ∈ N; reproductive strategies:
rm′ ∼ Binomial(m′ − 1, pr) with pr ∈ {0, 0.25, 0.5, 0.75, 1}, and Uniform{1, 2, ...,m′}, for
m′ ∈ N.

32



Figure 9: Coefficient of correlation versus the killing probability ps for (from top to bot-

tom) initial populations sizes (m,n) = (20, 10), (20, 20) and (20, 30), and initial age a = 15.
Killing strategies: sm′ ∼ Binomial(m′ − 1, ps), for m′ ∈ N; reproductive strategies:
rm′ ∼ Binomial(m′ − 1, pr) with pr ∈ {0, 0.25, 0.5, 0.75, 1}, and Uniform{1, 2, ...,m′}, for
m′ ∈ N.
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Figure 10: Coefficient of correlation versus the reproductive probability pr for (from top

to bottom) initial populations sizes (m,n) = (20, 10), (20, 20) and (20, 30), and initial ages
a ∈ {5, 10, 15}. Killing strategies: sm′ ∼ Uniform{1, 2, ...,m′}, for m′ ∈ N; reproductive
strategies: rm′ ∼ Binomial(m′ − 1, pr) and Uniform{1, 2, ...,m′}, for m′ ∈ N.
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