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Abstract

We study the Cauchy problem for non-linear (semilinear) elliptic partial differential equations in
Hilbert spaces. The problem is severely ill-posed in the sense of Hadamard. Under a weaka
priori assumption on the exact solution, we propose a new regularization method for stabilising
the ill-posed problem. These new results extend some earlier works on Cauchy problems for
nonlinear elliptic equations. Numerical results are presented and discussed.
Keywords and phrases:Cauchy problem; Nonlinear elliptic equation; Ill-posed problem; Error
estimates.
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1. Introduction

Let H be a Hilbert space with the inner product〈., .〉 and the norm‖.‖, and letL : D(L) ⊂ H → H
be a positive-definite, self-adjoint operator with compactinverse onH. Let M be a positive
number, and consider finding a functionu : [0,M] → H satisfying the Cauchy problem






uzz= Lu+ f (z, u(z)), z ∈ (0,M)

u(0) = ϕ,

uz(0) = 0,

(1.1)

where the dataϕ is given inH and the source functionf will be defined later. The Neumann
condition in (1.1) need not to be necessarily homogeneous. In practice, the dataϕ ∈ H is noisy
and is represented by the perturbed dataϕǫ ∈ H satisfying

‖ϕǫ − ϕ‖ ≤ ǫ, (1.2)

where the constantǫ > 0 represents an upper bound on the measurement error. Such problem is
not well-posed because its solution may not exist and, even if it exists, it does not depend con-
tinuously on the ”noisy” Cauchy dataϕǫ. Hence, a regularization process is required in order to
obtain a stable solution.

Equation (1.1) is an abstract version which generalizes many well-known equations. For a
simple example, ifL = −∆ (negative of Laplace’s operator) andf (z, u(z)) = −k2u(z) with k real
or purely imaginary, then the equation (1.1) becomes the Helmholtz or modified Helmholtz equa-
tion, respectively, which arises in many engineering applications related to propagating waves in
different environments or heat transfer in fins. More generally,for L = −∆ and f a nonlinear
function of u, equation (1.1) becomes the nonlinear Poisson equation which is encountered in



numerous applications in heat and mass transfer, chemical reactions, gas dynamics and fluid flow
in porous media, [2].

Nevertheless, there exist many studies on the linear problem, i.e. f (z, u(z)) = a(z)u(z) +
b(z), wherea andb are some given functions (usually taken to be zero) in Eq. (1.1), see e.g.
[3, 4, 5, 6, 7, 9, 10, 13, 14, 16, 17] to mention only a few. On theother hand, the Cauchy problem
for nonlinear elliptic equations has been much less investigated, [11, 21], and it is the purpose of
this study to make advances into the semi-linear problem (1.1).

2. Mathematical analysis

We assume thatL admits an orthonormal eigenbasis{φn}n≥1 in H, associated with the eigenvalues
such that

0 < λ1 ≤ λ2 ≤ λ3 ≤ ... lim
n→∞
λn = ∞.

and f satisfies the global Lipschitz condition

‖ f (z, v1) − f (z, v2)‖ ≤ K‖v1 − v2‖ (2.3)

for some constantK independent ofz, v1, v2 with

0 ≤ K <
1

MC
, C = max

{

1
√
λ1

, 1

}

. (2.4)

More general local Lipschitz nonlinearities can also be considered, [19]. As shown in [18], the
solutionu ∈ C([0,M]; H) is a weak solution of (1.1) ifu satisfies the integral equation

u(z) =
∞∑

n=1




cosh

( √

λnz
)

ϕn +

z∫

0

sinh
(√
λn(z− s)

)

√
λn

fn(u)(s)ds




φn, (2.5)

whereϕn =
〈

ϕ, φn

〉

and fn(u)(s) =
〈

f (s, u(s)), φn)
〉

. Sincez> 0 , we know from (2.5) that, whenn

becomes large, the terms cosh
(√
λnz

)

and sinh
(√
λn(z− s)

)

increase rather quickly. Thus, these
terms are causes for instability. Hence, to regularize the problem, we have to replace these terms
by some stability terms. In the present paper, the unstable solution (2.5) is regularized by the
solutionUǫ defined as

Uǫ(z) =
∞∑

n=1




coshǫ(

√

λnz)ϕ
ǫ
n +

z∫

0

sinhǫ(
√
λn(z− s))
√
λn

fn(U
ǫ)(s)ds

−
M∫

z

β(ǫ)e−
√
λn(s−z)

√
λn

(

β(ǫ) + e−
√
λnM

) fn(U
ǫ)(s)ds




φn, z ∈ [0,M], (2.6)

whereϕǫn =
〈

ϕǫ, φn

〉

, fn(Uǫ)(s) =
〈

f (s,Uǫ(s)), φn

〉

and

coshǫ(
√

λnz) :=
1
2

(

e−
√
λn(M−z)

β(ǫ) + e−
√
λnM
+ e−

√
λnz

)

, sinhǫ(
√

λnz) :=
1
2

(

e−
√
λn(M−z)

β(ǫ) + e−
√
λnM
− e−

√
λnz

)

.
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Hereβ(ǫ) ≥ 0 plays the role as the regularization parameter which has tobe chosen depending on
the noiseǫ. Under thea priori assumption

‖u(M)‖ + ‖uz(M)‖ ≤ E (2.7)

whereE > 0 is some known given positive number, we will obtain the error estimate between the
exact solutionu and the regularized solutionUǫ .

To our knowledge, there has not been a regularization methodfor nonlinear elliptic equations
which provides a convergence rate under the weak condition (2.7). We also mention that, previ-
ously, in order to get a stability estimate, Zhang and Wei [21] assumed the stronger condition on
the exact solutionu:

∞∑

n=1

e2
√
λn(M+r) 〈u(z), φn〉2 ≤ E2

1, z ∈ [0,M], (2.8)

whilst Tuanet al. [18] assumed that

∞∑

n=1

e2
√
λn(M−z)

(

〈u(z), φn〉 +
〈uz(z), φn〉√
λn

)2

≤ E2
2, z ∈ [0,M]. (2.9)

One can further remark that there are not too many functionsu which satisfy conditions (2.8)
or (2.9) and moreover, in practice, these conditions are difficult to be checked. Therefore, in
our study we develop a new regularization method to obtain the error estimate under the weaker
assumption (2.7).

Our main results are stated in the following theorem:

Theorem 2.1. The integral equation(2.6)has a unique solution Uǫ ∈ C([0; M]; H). Suppose that
problem(1.1)has a weak solution u which satisfies(2.7). Letϕǫ ∈ H be measured data such that
(1.2)holds. Chooseβ(ǫ) > 0 such thatlimǫ→0 β(ǫ) = limǫ→0

ǫ
β(ǫ) = 0. Then, we have the following

estimate:

‖Uǫ(z) − u(z)‖ ≤ Q(ǫ; m)β(ǫ)1− z
M , z ∈ [0,M], (2.10)

for any m∈
(

0, 4
K2M2C2 − 1

)

, where

Q(ǫ; m) =

√√√√
(

1+ 1
m

)(

C4E2 + 2β(ǫ)−2ǫ2
)

1− 1
4

(

1+m
)

K2C2M2
. (2.11)

Moreover, there exists zǫ ∈ (0,M) such thatlimǫ→0 zǫ = M and

‖u(M) − Uǫ(zǫ)‖ ≤
(

Q(ǫ; m) + sup
0≤z≤M

‖uz(z)‖
) √

M

ln
(

1
β(ǫ)

) . (2.12)

Remark 2.1. (i) If we chooseβ(ǫ) = ǫα with α ∈ (0, 1] in (2.10)then, we get

‖Uǫ(z) − u(z)‖ ≤

√√√√
(

1+ 1
m

)(

C4E2 + 2ǫ2−2α
)

1− 1
4

(

1+m
)

K2C2M2
ǫα−

αz
M , z ∈ [0,M]. (2.13)
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(ii) In order to obtain the tightest upper bound in(2.10)we can minimize with respect to m∈
(

0, 4
K2M2C2 − 1

)

the function Q(ǫ; m) defined in(2.11). Noticing that

lim
mց0

Q(ǫ; m) = lim
mր

(

4
K2M2C2−1

)
Q(ǫ; m) = ∞,

and solving∂Q
∂m(ǫ; m) = 0 we obtain the minimum point mmin =

2
KMC − 1. Then the estimate(2.10)

becomes

‖Uǫ(z) − u(z)‖ ≤ Q(ǫ; mmin)β(ǫ)
1− z

M , z ∈ [0,M], (2.14)

where

Q(ǫ; mmin) =
2
√

C4E2 + 2β(ǫ)−2ǫ2

2− KMC
. (2.15)

3. Proof of Theorem 2.1

First we have the following lemma which will be useful in the proof of the theorem.

Lemma 3.1. The following inequalities hold (forǫ > 0 small):

coshǫ(
√

λnz) ≤ β(ǫ)−
z
M ,

| sinhǫ(
√
λnz)|√
λn

≤ β(ǫ)
− z

M

2
√
λ1

, z ∈ [0,M], (3.16)

| sinhǫ(
√
λn(z− s))|
√
λn

≤ C
2
β(ǫ)

s−z
M , 0 ≤ s≤ z≤ M, (3.17)

β(ǫ)e−
√
λn(s−z)

√
λn

(

β(ǫ) + e−
√
λnM

) ≤ Cβ(ǫ)
s−z
M , 0 ≤ z≤ s≤ M. (3.18)

Proof. First, we can deduce the following inequality:

e−
√
λn(M−z)

β(ǫ) + e−
√
λnM
=

e−
√
λn(M−z)

(

β(ǫ) + e−
√
λnM

)1− z
M
(

β(ǫ) + e−
√
λnM

) z
M
≤

(

β(ǫ) + e−
√
λnM

) −z
M ≤ β(ǫ)−

z
M . (3.19)

This implies that

coshǫ(
√

λnz) =
1
2

(

e−
√
λn(M−z)

β(ǫ) + e−
√
λnM
+ e−

√
λnz

)

≤
1
2

(

β(ǫ)−
z
M + 1

)

≤ β(ǫ)−
z
M

and

| sinhǫ(
√
λnz)|√
λn

=
1

2
√
λn

∣
∣
∣
∣
∣
∣

e−
√
λn(M−z)

β(ǫ) + e−
√
λnM
− e−

√
λnz

∣
∣
∣
∣
∣
∣
≤ 1

2
√
λn

(

e−
√
λn(M−z)

β(ǫ) + e−
√
λnM

)

≤ β(ǫ)
−z
M

2
√
λ1

,

where we have used (3.19) and thatλn ≥ λ1.
The inequality (3.17) is obtained immediately by replacingzwith z−s in the second inequality

in (3.16) and using thatC ≥ 1/
√
λ1, whilst the inequality (3.18) is obtained as in (3.19) by

employing the inequality

β(ǫ)e−
√
λn(s−z)

β(ǫ) + e−
√
λnM
=

β(ǫ)e−
√
λn(s−z)

(

β(ǫ) + e−
√
λnM

) s−z
M
(

β(ǫ) + e−
√
λnM

)1− s−z
M

≤ β(ǫ)
(

β(ǫ) + e−
√
λnM

) s−z
M −1
≤ β(ǫ)

s−z
M .
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The proof of Theorem 2.1 consists of two steps.

Step 1. The existence and the uniqueness of a solution to (2.6).
Let us define the following norm on C([0;M]; H):

‖h‖1 = sup
0≤z≤M

β(ǫ)
z
M ‖h(z)‖, ∀h ∈ C([0; M]; H).

It is easy to show that‖.‖1 is a norm on C([0;M]; H). For anyw ∈ C([0; M]; H), we define

J(w)(z) :=
∞∑

n=1




coshǫ(

√

λnz)ϕn +

z∫

0

sinhǫ(
√
λn(z− s))
√
λn

fn(w)(s)ds

−
M∫

z

β(ǫ)e−
√
λn(s−z)

√
λn

(

β(ǫ) + e−
√
λnM

) fn(w)(s)ds




φn, z ∈ [0,M].

We claim that, for everyw1, w2 ∈ C([0,M]; H) we have

‖J(w1) − J(w2)‖1 ≤ KCM‖w1 − w2‖1. (3.20)

First, using Lemma 2.1 we have two following estimates for all z ∈ [0,M]:

∞∑

n=1

( z∫

0

sinhǫ(
√
λn(z− s))
√
λn

( fn(w1)(s) − fn(w2)(s))ds

)2

≤ z
∞∑

n=1

z∫

0

∣
∣
∣
∣
∣
∣

sinhǫ(
√
λn(z− s))
√
λn

( fn(w1)(s) − fn(w2)(s))

∣
∣
∣
∣
∣
∣

2

ds

≤ z
∞∑

n=1

∫ z

0
C2β(ǫ)

2s−2z
M

∣
∣
∣
∣ fn(w1)(s) − fn(w2)(s)

∣
∣
∣
∣

2
ds

≤ K2C2z
∫ z

0
β(ǫ)

2s−2z
M ‖w1(s) − w2(s)‖2ds

≤ β(ǫ)
−2z
M K2C2z2 sup

0≤s≤M

{

β(ǫ)
2s
M ‖w1(s) − w2(s)‖2

}

= β(ǫ)
−2z
M K2C2z2‖w1 − w2‖21 (3.21)

and

∞∑

n=1

( M∫

z

β(ǫ)e−
√
λn(s−z)

√
λn

(

β(ǫ) + e−
√
λnM

) ( fn(w1)(s) − fn(w2)(s))ds

)2

≤ (M − z)
∞∑

n=1

M∫

z

∣
∣
∣
∣
∣
∣

β(ǫ)e−
√
λn(s−z)

√
λn

(

β(ǫ) + e−
√
λnM

)( fn(w1)(s) − fn(w2)(s))

∣
∣
∣
∣
∣
∣

2

ds

≤ (M − z)
∞∑

n=1

∫ M

z
C2β(ǫ)

2s−2z
M

∣
∣
∣
∣ fn(w1)(s) − fn(w2)(s)

∣
∣
∣
∣

2
ds

≤ K2C2(M − z)
∫ M

z
β(ǫ)

2s−2z
M ‖w1(s) − w2(s)‖2ds

≤ β(ǫ) −2z
M K2C2(M − z)2‖w1 − w2‖21. (3.22)
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Then, for 0< z< M, using the inequality (a+ b)2 ≤ (1+ p)a2 +
(

1+ 1
p

)

b2 for any real numbers
a andb andp > 0, we have

‖J(w1)(z) − J(w2)(z)‖2 ≤ β(ǫ)
−2z
M K2C2(1+ p)z2‖w1 − w2‖21

+β(ǫ)
−2z
M K2C2

(

1+
1
p

)

(M − z)2‖w1 − w2‖21.

By choosingp = M−z
z , we obtain

β(ǫ)
2z
M ‖J(w1)(z) − J(w2)(z)‖2 ≤ K2C2M2‖w1 − w2‖21, ∀z ∈ (0,M). (3.23)

On other hand, lettingz= M in (3.21), we have

β2(ǫ)‖J(w1)(M) − J(w2)(M)‖2 ≤ K2C2M2‖w1 − w2‖21 (3.24)

and lettingz= 0 in (3.22), we have

‖J(w1)(0)− J(w2)(0)‖2 ≤ K2C2M2‖w1 − w2‖21. (3.25)

Combining (3.23) - (3.25), we obtain

β(ǫ)
z
M ‖J(w1)(z) − J(w2)(z)‖ ≤ KCM‖w1 − w2‖1, ∀z ∈ [0,M]

which leads to (3.20). SinceKCM < 1, it means thatJ is a contraction. It follows that the equa-
tion J(w) = w has a unique solutionw ∈ C([0; M]; H).

Step 2. Estimate the error‖Uǫ(z) − u(z)‖.
Differentiating (2.5) with respect toz, adding the result obtained to (2.5) and taking the inner

product withφn, we get

ϕn +

z∫

0

e−
√
λns

√
λn

fn(u)(s)ds= e−M
√
λn

[
〈

u(M), φn

〉

+

〈

uz(M), φn

〉

√
λn

]

−
M∫

z

e−
√
λns

√
λn

fn(u)(s)ds.

This implies that

un(z) :=
〈

u(z), φn

〉

= cosh
( √

λnz
)

ϕn +

∫ z

0

sinh
(√
λnz

)

√
λn

fn(u)(s)ds

= coshǫ(
√

λnz)ϕn +

∫ z

0

sinhǫ(
√
λn(z− s))
√
λn

fn(u)(s)ds

+
[

cosh
( √

λnz
)

− coshǫ(
√

λnz)
]

ϕn +

∫ z

0





sinh
(√
λnz

)

√
λn

− sinhǫ(
√
λn(z− s))
√
λn




fn(u)(s)ds

= coshǫ(
√

λnz)ϕn +

∫ z

0

sinhǫ(
√
λn(z− s))
√
λn

fn(u)(s)ds

+
β(ǫ)e

√
λnz

2(β(ǫ) + e−
√
λnM)




ϕn +

z∫

0

e−
√
λns

√
λn

fn(u)(s)ds





= coshǫ(
√

λnz)ϕn +

∫ z

0

sinhǫ(
√
λn(z− s))
√
λn

fn(u)(s)ds

+
β(ǫ)e

√
λn(z−M)

2(β(ǫ) + e−
√
λnM)

[
〈

u(M), φn

〉

+

〈

uz(M), φn

〉

√
λn

]

−
M∫

z

β(ǫ)e−
√
λn(s−z)

2
√
λn

(

β(ǫ) + e−
√
λnM

) fn(u)(s)ds.
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Using that

∣
∣
∣
∣
∣
∣

〈

u(M), φn

〉

+

〈

uz(M), φn

〉

√
λn

∣
∣
∣
∣
∣
∣
≤ C

(
∣
∣
∣
∣

〈

u(M), φn

〉
∣
∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣
∣

〈

uz(M), φn

〉∣∣
∣
∣

)

,

expression (2.6) and Lemma 2.1 we obtain
∣
∣
∣
∣U
ǫ
n(z) − un(z)

∣
∣
∣
∣

≤ coshǫ(
√

λnz)
∣
∣
∣
∣ϕ
ǫ
n − ϕn

∣
∣
∣
∣ +

β(ǫ)e
√
λn(z−M)

2(β(ǫ) + e−
√
λnM)

∣
∣
∣
∣
∣
∣

〈

u(M), φn

〉

+

〈

uz(M), φn

〉

√
λn

∣
∣
∣
∣
∣
∣

+

∫ z

0

| sinhǫ(
√
λn(z− s))|
√
λn

∣
∣
∣
∣ fn(U

ǫ)(s) − fn(u)(s)
∣
∣
∣
∣ds

+

∫ M

z

β(ǫ)e−
√
λn(s−z)

2
√
λn

(

β(ǫ) + e−
√
λnM

)

∣
∣
∣
∣ fn(U

ǫ)(s) − fn(u)(s)
∣
∣
∣
∣ds

≤ β(ǫ)− z
M

∣
∣
∣
∣ϕ
ǫ
n − ϕn

∣
∣
∣
∣ +

1
2

C2β(ǫ)1− z
M

(
∣
∣
∣
∣

〈

u(M), φn

〉
∣
∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣
∣

〈

uz(M), φn

〉∣∣
∣
∣

)

+
C
2

z∫

0

β(ǫ)
s−z
M

∣
∣
∣
∣ fn(U

ǫ)(s) − fn(u)(s)
∣
∣
∣
∣ds+

C
2

M∫

z

β(ǫ)
s−z
M

∣
∣
∣
∣ fn(U

ǫ)(s) − fn(u)(s)
∣
∣
∣
∣ds

≤ β(ǫ)−
z
M

∣
∣
∣
∣ϕ
ǫ
n − ϕn

∣
∣
∣
∣ +

1
2

C2β(ǫ)1− z
M

(
∣
∣
∣
∣

〈

u(M), φn

〉
∣
∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣
∣

〈

uz(M), φn

〉∣∣
∣
∣

)

+
C
2

M∫

0

β(ǫ)
s−z
M

∣
∣
∣
∣ fn(U

ǫ)(s) − fn(u)(s)
∣
∣
∣
∣ds.

From the inequality

(a1 + a2 + a3)
2 ≤ 2

(

1+
1
m

)

a2
1 + 2

(

1+
1
m

)

a2
2 + (1+m)a2

3

for any real numbersa1, a2, a3 andm> 0, we obtain

‖Uǫ(z) − u(z)‖2 =
∞∑

n=1

∣
∣
∣
∣U
ǫ
n(z) − un(z)

∣
∣
∣
∣

2

≤ 2

(

1+
1
m

)

β(ǫ)−
2z
M

∞∑

n=1

∣
∣
∣
∣ϕ
ǫ
n − ϕn

∣
∣
∣
∣

2
+

1
2

(

1+
1
m

) ∞∑

n=1

C4β(ǫ)2− 2z
M

∣
∣
∣
∣

〈

u(M), φn

〉

+
〈

uz(M), φn

〉∣∣
∣
∣

2

+
(1+m)

4

∞∑

n=1

C2β(ǫ)2− 2z
M

[ M∫

0

β(ǫ)
s
M−1

∣
∣
∣
∣ fn(U

ǫ)(s) − fn(u)(s)
∣
∣
∣
∣ds

]2

≤ 2

(

1+
1
m

)

β(ǫ)−
2z
M ǫ2 +

(

1+
1
m

)

C4β(ǫ)2− 2z
M

(

‖u(M)‖2 + ‖uz(M)‖2
)

+
(1+m)

4
C2Mβ(ǫ)2− 2z

M

M∫

0

β(ǫ)
2s
M −2‖ f (s,Uǫ(s)) − f (s, u(s))‖2ds,
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where we have applied the Holder inequality

[ M∫

0

β(ǫ)
s
M−1

∣
∣
∣
∣ fn(U

ǫ)(s) − fn(u)(s)
∣
∣
∣
∣ds

]2

≤
M∫

0

12ds

M∫

0

β(ǫ)
2s
M−2

∣
∣
∣
∣ fn(U

ǫ)(s) − fn(u)(s)
∣
∣
∣
∣

2
ds

= M

M∫

0

β(ǫ)
2s
M −2

∣
∣
∣
∣ fn(U

ǫ)(s) − fn(u)(s)
∣
∣
∣
∣

2
ds.

This leads to

β(ǫ)
2z
M−2‖Uǫ(z) − u(z)‖2 ≤ 2

(

1+
1
m

)

β(ǫ)−2ǫ2 +

(

1+
1
m

)

C4E2

+
(1+m)

4
K2C2M

M∫

0

β(ǫ)
2s
M−2‖Uǫ(s) − u(s)‖2ds. (3.26)

SetI (z) := β(ǫ)
2z
M−2‖Uǫ(z)− u(z)‖2 for all z ∈ [0,M]. SinceUǫ , u ∈ C([0; M]; H), the functionI is

continuous on [0,M] and attains over there its maximumP at some pointz0 ∈ [0,M]. Therefore,
(3.26) yields

β(ǫ)
2z
M−2‖Uǫ(z) − u(z)‖2 ≤ 2

(

1+
1
m

)

β(ǫ)−2ǫ2 +

(

1+
1
m

)

C4E2 +
(1+m)

4
K2C2M2P

Choosingz= z0 on the left-hand side of this inequality, we get

P ≤ 2

(

1+
1
m

)

β(ǫ)−2ǫ2 +

(

1+
1
m

)

C4E2 +
(1+m)

4
K2C2M2P

or,
[

1− (1+m)
4

K2C2M2

]

P ≤ 2

(

1+
1
m

)

β(ǫ)−2ǫ2 +

(

1+
1
m

)

C4E2 =

(

1+
1
m

)

(C4E2 + 2β(ǫ)−2ǫ2).

Sincem ∈
(

0, 4
K2M2C2 − 1

)

it follows that the left hand-side bracket is positive. Thisimplies that
for all z ∈ [0,M] we have

β(ǫ)
2z
M−2‖Uǫ(z) − u(z)‖2 ≤ P ≤ Q2(ǫ; m).

Thus (2.10) holds.
Finally, in order to get the estimate (2.12) atz= M, we use that

‖u(M) − Uǫ(z)‖ ≤ ‖u(M) − u(z)‖ + ‖u(z) − Uǫ(z)‖ ≤
(

sup
0≤z≤M

‖uz(z)‖
)

(M − z) + Q(ǫ; m)β(ǫ)1− z
M .

For everyǫ > 0, there exists a uniquezǫ ∈ (0,M) such thatM − zǫ = β(ǫ)1− zǫ
M . This implies that

ln(M−zǫ )
M−zǫ

=
ln(β(ǫ))

M . Using the inequality lny > −1
y for everyy > 0, we obtainM−zǫ <

√
M

ln( 1
β(ǫ) )
. This

leads to (2.12). Theorem 1.1 has been proved.
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4. Numerical experiments

Let Ω = (a, b) × (c, d) ⊂ R
2 be a rectangle and letM > 0 be a constant. Consider the following

Cauchy problem for the three-dimensional sine-Gordon elliptic equation:

∆u = f (x, y, z, u) =
1
2

sin(u) + R(x, y, z), (x, y, z) ∈ Ω × (0,M), (4.27)

u(x, y, 0) = ϕ(x, y), (x, y) ∈ Ω, (4.28)

uz(x, y, 0) = 0, (x, y) ∈ Ω, (4.29)

u(x, y, z) = 0, (x, y, z) ∈ ∂Ω × (0,M). (4.30)

where∆ is the three-dimensional Laplace operator. We takeR(x, y, z) = ∆χ(x, y, z)−1
2 sin(χ(x, y, z)),

where

χ(x, y, z) =
sin

[

qz2(x− a)(b− x)(y− c)(d − y)
]

(x− x0)2 + (y− y0)2 + 1
(4.31)

plays the role of the exact solution of the above problem, forany contantsx0, y0 andq. In addition,
we can check thatχz(x, y, 0) = 0 and thatϕ(x, y) = χ(x, y, 0) = 0 is the exact Cauchy data of the
problem.

Using a uniform rectangular grid with a resolution ofI × J in the xy-plane, which is defined
by nodal interior points (xi , yj) as

xi = iδx + a, δx =
b− a
I + 1

, i = 1, I , I ∈ N
∗, (4.32)

yj = jδy + c, δy =
d − c
J + 1

, j = 1, J, J ∈ N
∗, (4.33)

we define the data input

ϕǫi j = χ(xi , yj, 0)+ ǫ rand(xi , yj) = ǫ rand(xi , yj), (4.34)

which is disturbed by the pseudo-random rand(·, ·) function determined uniformly on [−1, 1] and
ǫ ≥ 0 denotes the amplitude of noise.

Then, for the rectangleΩ = (a, b) × (c, d) and homogeneous Dirichlet boundary conditions
(4.30) on∂Ω, the regularized integral equation (2.6) can be rewritten as follows:

uβ(z) =
∞∑

m=1

∞∑

n=1

[

coshǫ(z
√

λmn)
〈

ϕǫ, φmn

〉

+

∫ z

0

sinhǫ((z− s)
√
λmn)√

λmn

〈

f (s, uβ(s)), φmn

〉

ds

−
∫ M

z

βe−(s−z)
√
λmn

√
λmn

(

β + e−M
√
λmn

)

〈

f (s, uβ(s)), φmn

〉

ds




φmn, (4.35)

whereβ = β(ǫ) and

φmn(x, y) = sin

(

mπ(x− a)
b− a

)

sin

(

nπ(y− c)
d− c

)

, λmn =

( mπ
b− a

)2

+

( nπ
d − c

)2

. (4.36)

Denote the Fourier coefficients of a functionv(x, y) by

〈v, φmn〉 = v̂mn =
2

(b− a)
2

(d − c)

∫ b

a

∫ d

c
v(x, y)φmn(x, y) dxdy.

Next part explains the numerical procedures for solving Eq.(4.35).
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4.1. Calculation procedures
In order to solve Eq.(4.35) numerically, we shall adopt the Picard iteration. For a given dis-

crete data{ϕǫi j } from Eq.(4.34), to obtain the left-hand-side of Eq. (4.35),we need to approximate
both of the Fourier coefficients, the double summation and the integrals included in the right-
hand-side. The main idea is to use trigonometric polynomials, see [8], Chapter 2, which then
leads us to benefit of using the Fast Fourier Transform technique (FFT). First, we model a data
function from its discrete values so that the calculation ofthe Fourier coefficients and double sum-
mation can be performed using the FFT, and then we numerically evaluate the integrals involved.

Firstly, using the trigonometric polynomial approximation (4.36) the dataϕǫ(x, y) is modeled
from {ϕǫi j } as follows:

ϕǫ(x, y) =
I∑

m=1

J∑

n=1

ϕ̂ǫmnsin

(

mπ(x− a)
b− a

)

sin

(

nπ(y− c)
d − c

)

, (4.37)

where

ϕ̂ǫmn :=
2

I + 1
2

J + 1

I∑

i=1

J∑

j=1

ϕǫi j sin
( mπi
I + 1

)

sin
( nπ j
J + 1

)

, m= 1, I , n = 1, J (4.38)

is the so-called two-dimensional sine transform, with its inverse transformation given by

ϕǫi j =

I∑

m=1

J∑

n=1

ϕ̂ǫmnsin
( mπi
I + 1

)

sin
( nπ j
J + 1

)

. (4.39)

The relationships between ˆϕǫmn andϕǫi j given in Eqs. (4.38) and (4.39) can also be found in
[12], Chapter 12. So far, Eqs. (4.37) - (4.39) giveϕǫ(xi , yj) = ϕǫi j (the double summation) and
〈ϕǫ , φmn〉 = ϕ̂ǫmn (the Fourier coefficients) precisely. In addition, one has the discrete form of
Parseval’s identity

I∑

m=1

J∑

n=1

∣
∣
∣ϕ̂ǫmn

∣
∣
∣
2
=

2
I + 1

2
J + 1

I∑

i=1

J∑

j=1

∣
∣
∣ϕǫi j

∣
∣
∣
2
.

Combining the latter identity with the triangle inequality, one can obtain, see [8], Chapter 2,

‖ϕǫ − ϕ‖ ≤ ǫ0, (4.40)

whereǫ0 = ǫ
√

(b− a)(d − c) + C1(δ2x + δ
2
y)

√

‖∂2
xϕ‖2 + ‖∂2

yϕ‖2 andC1 is some positive constant

independent ofϕ, δx andδy.
The calculations in Eqs. (4.38) and (4.39) are performed in anatural way. For instance, the

sine transform{ϕǫi j } 7→ {ϕ̂ǫmn} (Eq. (4.38)) can be computed in two steps:

Step 1: Loop fori = 1, I ,

wni :=
2

J + 1

J∑

j=1

ϕǫi j sin
( nπ j
J + 1

)

, n = 1, J. (4.41)

Step 2: Loop forn = 1, J,

ϕ̂ǫmn =
2

I + 1

I∑

i=1

wni sin
( mπi
I + 1

)

, m= 1, I . (4.42)
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Here, the subroutinesint1f of FFTPACK5, [15], is adopted for these calculations. The total
computational burden in bothi- andn-loops (Eqs. (4.41) and (4.42)) is of order

I ∗O(J log J)
︸          ︷︷          ︸

i-loop

+ J ∗O(I log I )
︸          ︷︷          ︸

n-loop

∼ O(IJ log(IJ)),

which is equal to the number of operations on a one-dimenstional vector withI ∗ J components.
Similarly, calculation of the inverse transform{ϕ̂ǫmn} 7→ {ϕǫi j } (Eq.(4.39)) is performed using the
subroutinesint1b in the same manner.

Secondly, as mentioned before, a numerical solution to Eq.(4.35) can be found by a fixed-
point convergent iteration. To calculate auβ-profile, we need to compute the integrals inside the
RHS of Eq. (4.35) from a prioruβ-profile. Therefore, the computation is performed on a fixed
mesh inz-direction, namely,

zk = (k− 1)δz, δz =
M

K + 1
, k = 1,K, K ∈ N

∗. (4.43)

Using Fubini’s theorem, the integrals can be formed as
∫

〈Φ, φmn〉 ds=

〈∫

Φ ds, φmn

〉

for eachm = 1, I , n = 1, J andz ∈ [0,M], where the functionΦ = Φ(x, y, z, s,m, n) has only
discrete values for variablesz ands. For simplicity, we are going to approximate the integral

∫ sp

s1

Φ(s) ds (4.44)

from the values ofΦl = Φ(sl), l = 1, p. Note that∆s= sl+1− sl = δz and interval in (4.44) belongs
to two cases:s1 = 0, sp = zk or s1 = zk, sp = M, for eachzk ∈ [0,M] given in Eq. (4.43). Now
using Newton-Cotes formulas (closed-typed), we have

∫ sp

s1

Φ(s) ds≃ δz
p∑

i=1

Hp,i Φi, (4.45)

where (see [1], p. 886) the coefficientsHp,i are given by in Table 1 forp = 2, 8, i = 1, p. For
p > 8, we also have that Eq. (4.45) can be written as

∫ sp

s1

Φ(s) ds≃ δz
(

17
48
Φ1 +

59
48
Φ2 +

43
48
Φ3 +

49
48
Φ4 + Φ5 + · · · + Φp−4

+
49
48
Φp−3 +

43
48
Φp−2 +

59
48
Φp−1 +

17
48
Φp

)

, (4.46)

with the leading error proportional to|∆s|4.

We also approximate the functionf by its own trigonometric polynomials, thus,

〈 f (zl, u(zl)), φmn〉 =
4

(I + 1)(J + 1)

I∑

i=1

J∑

j=1

f (u(xi, yj, zl), xi, yj , zl) sin
( mπi
I + 1

)

sin
( nπ j
J + 1

)

.

Note that the double summation in Eq. (4.35) is now finite.
Equation (4.40) indicates that the quality of data functionϕǫ modeled by the trigonometric

polynomials is dependent on both the noise amplitudeǫ, mesh resolution (δx andδy), and smooth-
ness of the approximated functionϕ (i.e. ‖∂2

xϕ‖ and‖∂2
yϕ‖). The following test cases illustrate

such dependencies.

11



Table 1: The coefficientsHp,i for p = 2, 8, i = 1, p.

p i Error
1 2 3 4 5 6 7 8

2 1
2

1
2 −Φ

(2)(ξ)
12 |∆s|3

3 1
3

4
3

1
3 −Φ

(4)(ξ)
90 |∆s|5

4 3
8

9
8

9
8

3
8 −3Φ(4)(ξ)

80 |∆s|5

5 14
45

64
45

24
45

64
45

14
45 −8Φ(6)(ξ)

945 |∆s|7

6 95
288

375
288

250
288

250
288

375
288

95
288 −275Φ(6)(ξ)

12096 |∆s|7

7 41
140

216
140

27
140

272
140

27
140

216
140

41
140 −9Φ(8)(ξ)

1400 |∆s|9

8 5257
17280

25039
17280

9261
17280

20923
17280

20923
17280

9261
17280

25039
17280

5257
17280 −

8183Φ(8)(ξ)
518400 |∆s|9

4.2. Test cases

We introduce two examples based on the test function (4.31).

• Example 1: Choosea = c = 0, b = d = 5, M = 1.1, x0 = y0 = 2.5, q = −0.1. The graph of
the exact solution is shown in Fig. 1(a).

• Example 2: Choosea = c = 0, b = d = 5, M = 1.1, x0 = y0 = 3, q = 0.2. The graph of the
exact solution is shown in Fig. 1(b).

(a) Example 1 (b) Example 2

Figure 1: The analytical test functionsχ(x, y,M) (Eq.(4.31)) for Examples 1 and 2.
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The aim of the numerical experiments is to observe the relative error given by

δǫ,β(M) :=

√√√√∑I
i=1

∑J
j=1

∣
∣
∣uβ(xi , yj,M) − U(xi , yj,M)

∣
∣
∣
2

∑I
i=1

∑J
j=1

∣
∣
∣U(xi , yj ,M)

∣
∣
∣
2

, (4.47)

asβ tends to zero, in two following cases:

1. ǫ = 0: {ϕ0
i j } represents exact data.

2. ǫ > 0: {ϕǫi j } represents measured data with random noise.

Here the computation domainΩ × [0,M] is meshed with resolutionsI = J = K = 2l − 1 for
l = 6, 9.

In the numerical practice of our study, the process of Picarditeration was terminated when
the relative errors between two sequent solutions were lessthan 10−9. Based on this, the number
of iterations was around 8 for all of test cases. The numerical solution of the integral equation
(4.35) in three-dimensions is time consuming, particularly to obtain a desired accuracy, we need
to refine the three-dimensional mesh up to billions of grid points. Therefore, the numerical code
has been parallelized by OpenMP [20] in Fortran90.

Tables 2 and 3 show the relative errorδǫ,β(M) (Eq. (4.47)) for Examples 1 and 2, respec-
tively. The computations were performed on a three-dimensional mesh with four resolutions
I = J = K = 2l − 1 for l = 6, 9, for exact data withǫ = 0 and for noisy data withǫ > 0. As
shown in these tables, the magnitude of the relative errorδǫ,β(M) depends on both of the mesh
resolutions and the noise amplitudeǫ.

In caseǫ = 0, convergence of numerical solution is improved with finer mesh asβ decreases
until β = 10−5. However, forβ = 10−6 the error could not be decreased further with the finest
mesh (I = J = K = 511), hence, a higher mesh resolution should be adopted if wewant to obtain
a higher accuracy. In addition, Figure 2 shows the graphs ofuβ(x, y,M) for Examples 1 and 2
with the exact data{ϕ0

i j } for the coarse mesh resolutionI × J × K = 633. Forβ too small such as
10−6, the instability phenomenon is manifested by the strongly oscillating contour lines.

Table 2: Example 1, relative errorδǫ,β(M) defined by Eq. (4.47). The computations were performed withmesh
resolutionsI = J = K = 2l − 1 for l = 6, 9.

K = 63 K = 127 K = 255 K = 511 K = 511
β ǫ = 0 ǫ = 10−2 ǫ = 10−3 ǫ = 10−4 ǫ = 10−5 ǫ = 10−6

1.0E-1 7.3E-1 7.3E-1 7.3E-1 7.3E-1 7.4E-1 7.3E-1 7.3E-1 7.3E-1 7.3E-1

1.0E-2 1.3E-1 1.3E-1 1.3E-1 1.3E-1 1.1E+0 1.7E-1 1.3E-1 1.3E-1 1.3E-1

1.0E-3 1.7E-2 1.8E-2 1.7E-2 1.7E-2 1.1E+1 1.1E+0 1.1E-1 2.0E-2 1.8E-2

1.0E-4 6.5E-3 2.4E-3 1.9E-3 1.9E-3 Diverged 1.1E+1 1.1E+0 1.1E-1 1.1E-2

1.0E-5 3.7E-2 1.0E-2 3.1E-3 1.4E-3 Diverged Diverged 1.1E+1 1.1E+0 1.1E-1

1.0E-6 2.3E-1 6.3E-2 1.9E-2 7.3E-3 Diverged Diverged Diverged 1.1E+1 1.1E+0

In case of noisy data withǫ > 0, to show the sensitivity of the computational accuracy to noise
of the data, we repeated calculations with a variety of noiseamplitudesǫ = 10−l for l = 2, 6, and
illustrated the numerical results only with the finest meshI × J × K = 5113, so that errors from
mesh resolution do not contribute toδǫ,β. These results are shown in Tables 2 and 3 and Figures
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Table 3: Example 2, relative errorδǫ,β(M) defined by Eq. (4.47). The computations were performed withmesh
resolutionsI = J = K = 2l − 1 for l = 6, 9.

K = 63 K = 127 K = 255 K = 511 K = 511
β ǫ = 0 ǫ = 10−2 ǫ = 10−3 ǫ = 10−4 ǫ = 10−5 ǫ = 10−6

1.0E-1 1.7E+0 1.7E+0 1.7E+0 1.7E+0 1.7E+0 1.7E+0 1.7E+0 1.7E+0 1.7E+0

1.0E-2 6.6E-1 6.6E-1 6.6E-1 6.6E-1 1.4E+0 6.7E-1 6.6E-1 6.6E-1 6.6E-1

1.0E-3 1.9E-1 1.9E-1 1.9E-1 1.9E-1 1.2E+1 1.3E+0 2.3E-1 1.9E-1 1.9E-1

1.0E-4 5.3E-2 4.3E-2 4.1E-2 4.0E-2 Diverged 1.2E+1 1.2E+0 1.3E-1 4.2E-2

1.0E-5 1.1E-1 3.2E-2 1.3E-2 8.7E-3 Diverged Diverged 1.2E+1 1.2E+0 1.2E-1

1.0E-6 6.6E-1 1.8E-1 5.4E-2 2.1E-2 Diverged Diverged Diverged 1.2E+1 1.2E+0

3 and 4 for Examples 1 and 2, respectively. Asβ tends to zero but its value is still greater than
10ǫ, the approximated solutionuβ is still convergent in most cases, however, whenβ is smaller
than≤ 10ǫ the numerical solutions start to diverge and become unstable. This is signaled by the
contour lines becoming non-smooth. As justified by Theorem 2.1, for noisy data withǫ > 0, the
value ofβ(ǫ) should be chosen according to Remark 2.1 such that the stability estimate (2.13) is
ensured.
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(a) Example 1,β = 10−4 (b) Example 2,β = 10−4

(c) Example 1,β = 10−5 (d) Example 2,β = 10−5

(e) Example 1,β = 10−6 (f) Example 2,β = 10−6

Figure 2: Graphs ofuβ(x, y,M) for Examples 1 and 2 with exact dataϕ0
i j .
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(a) ǫ = 0, β = 10−1 (b) ǫ = 10−4, β = 10−1

(c) ǫ = 0, β = 10−2 (d) ǫ = 10−4, β = 10−2

(e) ǫ = 0, β = 10−3 (f) ǫ = 10−4, β = 10−3

Figure 3: Graphs ofuβ(x, y,M) for Example 1 with dataϕǫi j , ǫ ≥ 0.
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(a) ǫ = 0, β = 10−1 (b) ǫ = 10−4, β = 10−1

(c) ǫ = 0, β = 10−2 (d) ǫ = 10−4, β = 10−2

(e) ǫ = 0, β = 10−3 (f) ǫ = 10−4, β = 10−3

Figure 4: Graphs ofuβ(x, y,M) for Example 2 with dataϕǫi j , ǫ ≥ 0.
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