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Abstract 12 

Modelling cultural ecosystem services is challenging as they often involve subjective 13 

and intangible concepts. As a consequence they have been neglected in ecosystem 14 

service studies, something that needs remedying if environmental decision making is to 15 

be truly holistic. We suggest Bayesian Networks (BNs) have a number of qualities that 16 

may make them well-suited for dealing with cultural services. For example, they define 17 

relationships between variables probabilistically, enabling conceptual and physical 18 

variables to be linked, and therefore the numerical representation of stakeholder 19 

opinions. We assess whether BNs are a good method for modelling cultural services by 20 

building one collaboratively with canoeists to predict how the subjective concepts of 21 

fun and danger are impacted on by weir modification. 22 
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The BN successfully captured the relationships between the variables, with model 23 

output being broadly consistent with verbal descriptions by the canoeists. There were 24 

however a number of discrepancies indicating imperfect knowledge capture. This is 25 

likely due to the structure of the network and the abstract and laborious nature of the 26 

probability elicitation stage. New techniques should be developed to increase the 27 

intuitiveness and efficiency of probability elicitation. The limitations we identified with 28 

BNs are avoided if their structure can be kept simple, and it is in such circumstances 29 

that BNs can offer a good method for modelling cultural ecosystem services.   30 

 31 

Keywords:  Bayesian networks; cultural ecosystem service; recreation; canoeing; weirs; 32 

Don Catchment   33 

 34 

1 Introduction 35 

Predicting how the supply of ecosystem service (ES) will respond to ecosystem change 36 

is fundamental to the implementation of the ES framework. Yet despite a substantial 37 

and growing body of research on the subject, a number of research challenges remain 38 

(Millennium Ecosystem Assessment (MA), 2005; Daily et al., 2009; Fisher et al., 2009; 39 

de Groot et al., 2010). One of these is how the supply of cultural services can be 40 

predicted, an important class of service commonly neglected in ES studies (Raudsepp-41 

Hearne et al., 2010; Schaich et al., 2010; Daniel et al., 2012; Milcu et al., 2013).  42 

Cultural services include nonutilitarian and nonconsumptive benefits provided by 43 

ecosystems, such as sources of creative inspiration, or aesthetic, existence or 44 

recreational values (MA, 2005; Daniel et al., 2012; Milcu et al., 2013). They have a 45 
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number of qualities that makes their integration into ES modelling difficult (Norton et 46 

al., 2012). Many are intangible, are experienced in an intuitive and subjective fashion, 47 

and involve nebulous concepts such as ‘naturalness’, ‘identity’ and ‘excitement’ (Chan 48 

et al., 2012; Milcu et al., 2013). Their supply is generated through a complex interaction 49 

between ecosystems and people (Church et al., 2014). The capture of perceptions and 50 

values in models is considered a key research direction in the development of tools to 51 

aid environmental decision making (Borowski and Hare, 2007). 52 

A powerful modelling approach with properties suited to dealing with cultural services 53 

is the Bayesian Network (BN). The structure of a BN is formed by a directed acyclic 54 

graph (DAG), where variables and the cause-effect relationships between them are 55 

represented by nodes and edges (Jensen and Nielsen, 2007).  Each variable is defined as 56 

a set of discrete states or series of ranges, and the conditional relationships between 57 

them are described probabilistically (Jensen and Nielsen, 2007). Not only have they 58 

been used to build decision support tools in a wide variety of contexts such as medical 59 

diagnosis (Kahn Jr et al., 1997), image processing (Yang et al., 2002), urban planning 60 

(Kumar et al., 2013), land classification (Passuello et al., 2014), and catchment 61 

management (Holzkämper et al., 2012), their potential for modelling ecosystem services 62 

has also been recognised (Haines-Young, 2011; Landuyt et al., 2013; Church et al., 63 

2014).  64 

BNs have a number of qualities that appear to equip them for handling the challenges 65 

presented by cultural ESs. The aim of many decision support tools is to combine, 66 

interpret and communicate knowledge from diverse scientific disciplines to decision 67 

makers in such a way that an entire cause-effect chain can be evaluated from a synoptic 68 

perspective, something BNs do well (Kumar et al., 2013). By describing relationships 69 
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between variables probabilistically, BNs can integrate relationships derived from data, 70 

other models, and the judgement of individuals (Haines-Young, 2011; Holzkämper et 71 

al., 2012; Landuyt et al., 2013). This includes relationships involving the perceptions 72 

and judgements of value typical of cultural ecosystem services. Probabilities can also 73 

capture differences in opinion between stakeholders which are represented as 74 

uncertainty within the model (Holzkämper et al., 2012); important when dealing with 75 

the inherently variable nature of subjective variables. Furthermore, they allow 76 

relationships between variables to be defined even when the mechanism connecting 77 

them is unknown (Daly et al., 2011).  78 

Because BNs are structured as graphical cause-effect networks, model construction is 79 

considered more intuitive and transparent than other modelling approaches, facilitating 80 

stakeholder participation and consensus building during model development (Borsuk et 81 

al., 2004; Haines-Young, 2011; Landuyt et al., 2013). Even the need to discretise 82 

variables, a weakness when modelling the continuous gradients common in the physical 83 

world (Landuyt et al., 2013), is less of an issue in the context of cultural services 84 

modelling. This is because discretisation is consistent with human perception, as our 85 

mental models of the world are based on its categorisation (e.g. red/orange/yellow, 86 

tall/medium/small) (Harnad, 2005). These attributes allow BNs to serve as a tool that 87 

through a logical process can consolidate the views of multiple experts and make 88 

evidence explicit, thereby enabling a more considered approach to decision making. 89 

While BNs appear on paper to be well-suited to dealing with cultural ecosystem 90 

services, we are unaware of any attempted applications. In this paper we assess whether 91 

BNs are a good method for modelling cultural ecosystem services. We do this by 92 
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building a BN collaboratively with canoeists to model the fun and danger of the River 93 

Don, UK, which is impacted on by the management issue of weir modification.  94 

 95 

2 Methods 96 

2.1 Case study description 97 

The River Don is located in northern England and serves as the case study location (Fig 98 

1). Canoeing is a popular and growing recreational activity in the UK, with 1.78 million 99 

people estimated to have participated in paddlesports in 2010 (North, 2011). Multiple 100 

canoe groups use the River Don for their sport. 101 

Of significance to canoeists are the many weirs (low-head run-of-the-river dams) that 102 

impound the catchment. These structures were built mainly for water power and 103 

navigation purposes, and are typically 1-3m tall, with the steepness of the downstream 104 

face ranging from vertical to shallow. The weirs have a big impact on river ecology, 105 

primarily by inhibiting riverine connectivity, and for that reason there is considerable 106 

interest in their modification (Shaw, 2012).  107 

Canoeists chute (canoe over and descend) various weirs as they paddle stretches of the 108 

River Don, and indeed one stretch is known as the Five Weirs Paddle. Weirs affect the 109 

recreational value of the River Don both positively and negatively. The excitement of 110 

chuting weirs can be a fun experience. However weirs can also be very dangerous, 111 

posing a drowning risk. Fun and danger are both dependent on the physical attributes of 112 

a weir, and are altered when a weir is modified (e.g. weir height is changed).  113 

  114 
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2.2 Construction of the canoeing BN  115 

2.2.1 Identification of model structure 116 

An overview of the process of constructing the canoeing BN is presented in Figure 2. 117 

The first step was the identification of the BN structure i.e. the directed acyclic graph 118 

(DAG), and involved the identification of the physical and conceptual variables that 119 

determine the impact of weirs on river quality for canoeing. These variables are 120 

depicted as nodes within the BN, and the causal relationships that link them as edges. 121 

The independent and dependent variables in a pair of linked nodes are termed ‘parent’ 122 

and ‘child’ nodes.  123 

BN structure was built deliberatively over two workshops attended by five canoeists 124 

which collectively represented three local canoeing groups. As the canoeists were 125 

interested in the conceptual variables of weir danger and weir fun, these were 126 

designated as the basal child nodes (Fig 3a) (i.e. the variables we want to predict). To 127 

these the determining physical variables were added. It emerged, for instance, that 128 

danger is determined by two factors: ‘drawback’ i.e. the hydraulic roller at the foot of a 129 

weir that pulls the canoeist back towards the weir into cascading water, and the risk of 130 

obtaining injury from an impact with the fabric of the weir structure or river bed (see 131 

Fig 3b). The delineation of the DAG was completed when weir modification option 132 

nodes i.e. the management variables (changing weir height, steepness, orientation, 133 

profile of weir face, and installation of a canoe pass) were incorporated and agreed 134 

unimportant nodes were discarded.  135 

 136 
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2.2.2 Discretisation of variables 137 

The discretisation of the variables also occurred at the workshops. When variables were 138 

subjective (e.g. weir fun), states were defined collaboratively as descriptive categories 139 

(e.g. weir fun is high when it is exciting or enjoyable to descend). For the physical 140 

variables (e.g. weir steepness) we made use of predefined categories (e.g. see Figure 4). 141 

The objective of the discretisation was to produce a common definition of the variable 142 

states, and to set thresholds between states that when crossed tells us something about 143 

the likely state of the dependent variable (Kumar et al., 2008). For instance, weir danger 144 

initially increases rapidly with weir height, but the rate of increase diminishes until a 145 

maximum danger is reached (i.e. certain death). Setting a weir height threshold at 1m is 146 

more useful than at 10m, as the canoeists are able to tell us with confidence that weirs 147 

smaller than 1m will likely pose less of a danger than taller weirs. In contrast not much 148 

can be said about the danger posed by weirs smaller than 10m, as it ranges from 149 

negligible to close to the maximum possible.     150 

 151 

2.2.3 Probability elicitation 152 

Probability elicitation requires the expert to estimate the probability that each of the 153 

child node states (i.e. the dependent variable states) will occur given the states of the 154 

parent nodes (the states of the independent variables). As the number of combinations 155 

of parent node states grows exponentially with model complexity (Kumar et al., 2008), 156 

it quickly becomes impractical for probabilities for larger models to be directly elicited. 157 

The sub-network of weir fun for example (see Figure 3c), with seven parent nodes, 158 

needs probabilities for each of the 2916 combinations of parent node states. For this 159 

reason we employed a modified version of the relative weight and compatible 160 
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probability method proposed by Das (2004). This allowed us to reduce the number of 161 

questions to 120, from which the remaining conditional probabilities could be 162 

interpolated (Das, 2004). The questionnaire was designed to allow for the nonlinearity 163 

we knew from the workshops to exist between some variables e.g. weirs of an 164 

intermediate steepness have a greater degree of drawback than steeper or shallower 165 

weirs. This was achieved by eliciting probabilities for a range of parent node states that 166 

included those that maximise and minimise the child node state probabilities, thereby 167 

producing threshold responses. The questionnaire also obtained for each subnetwork 168 

weightings of the relative strength of the parent nodes (from 1-10) in influencing the 169 

child node.    170 

An example question is presented in Figure 5. The question elicits a set of probabilities 171 

for the weir fun subnetwork (see Figure 3c), and requires that the canoeists estimate 172 

how likely weir fun (the dependent variable) will be high, medium and low given the 173 

states of the determining variables. Since not all experts are familiar with probabilities 174 

and are more comfortable expressing their beliefs with words, the questions included a 175 

scale with both verbal and numerical intervals. As the weir fun subnetwork is the largest 176 

in the model, this was the most complex question put to the canoeist as they must 177 

simultaneously consider the effect of the seven independent variables. To ease the 178 

process we prepared supporting materials with illustrative figures e.g. Figure 4b.  179 

The questionnaires were posted to the workshop participants. However, as none were 180 

returned, it was necessary to recruit three new canoeists whom we personally supervised 181 

to fill out the questionnaires in face-to-face interviews. While the number of experts 182 

was low, this is often the case with BNs as it is difficult to find many domain experts 183 

willing to commit the time required for model construction (Richardson and Domingos, 184 
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2003). In such circumstances it is often better to focus on obtaining comprehensive and 185 

thorough (‘deeper’) knowledge from available high quality experts, which is why we 186 

chose experts with >8 years of canoeing experience. This contrasts with the ‘broader’ 187 

knowledge that arises from spending less time with individual experts so that a greater 188 

number can be interrogated.  189 

The elicited probabilities were first checked for inconsistencies, and then the conditional 190 

probability tables were compiled by interpolating the questionnaire responses. The 191 

median values of the combined probabilities were used to train the BN using the 192 

commercially available BN modelling software Netica (V4.18).  193 

 194 

3 Results 195 

The output of the canoeing BN is demonstrated with two hypothetical scenarios set to 196 

maximise and minimise danger to canoeists, both with and without canoe passes (see 197 

Figure 6). The presence or absence of a canoe pass is the most important variable 198 

determining weir danger, suggesting that canoeists perceive canoe passes as being 199 

highly effective at reducing weir danger. Weir fun on the other hand is most sensitive to 200 

river flow, with the probability that fun will be high increasing by as much as 29% 201 

when flow is high as opposed to low. 202 

In Table 1, the effects of the management variables on weir fun and danger are 203 

presented. All of the options affect weir danger, though only canoe pass installation has 204 

a big effect. Weir fun is only affected by canoe pass installation, weir height, and river 205 

flow. The model also finds weir fun and weir danger to be correlated, though this is not 206 

surprising since danger influences excitement.  207 
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Some of the management variables only have a small effect on the BN output. The main 208 

example is weir orientation, with weir danger changing <5% between the ‘smiling’, 209 

orthogonal, and ‘frowning’ states (see Figure 7).  210 

 211 

4 Discussion 212 

4.1 Knowledge capture 213 

The capture of the canoeist’s perceptions was generally successful, with the predictions 214 

of the canoeing BN by and large corresponding with the verbal descriptions of the 215 

canoeists. However, there were multiple small inconsistencies that demonstrate some of 216 

the limitations with BNs. A number of the model variables were described as strongly 217 

determining weir danger, while in the BN only the presence or absence of a canoe pass 218 

has a major effect. This is particularly exemplified by weir orientation, with which there 219 

was strong consensus amongst the canoeists that the most dangerous orientation was 220 

one that was ‘frowning’ (from the perspective of the canoeist facing downstream (see 221 

Figure 7)), as these are difficult to escape. In contrast, ‘smiling’ weirs, with the opposite 222 

shape, were considered much safer. That the BN predicts little difference between the 223 

dangers posed by these orientations demonstrates imperfect knowledge capture during 224 

the probability elicitation stage.  225 

The model discrepancies were caused by two main factors. The low importance of the 226 

other weir modification options relative to the canoe pass is due to their position in the 227 

DAG. The canoe pass node is connected directly to the weir danger node, whereas the 228 

other nodes such as weir steepness and orientation are connected through several 229 

intermediate nodes, forming longer chains of variables. The high uncertainties at the 230 
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intermediate nodes weakens the inferencing strength of the relationship between the 231 

upper parent node (input variable) and the lowest child node (output variable), as is 232 

known to have occurred in other BNs (Marcot et al., 2001; Varis and Lahtela, 2002; 233 

Ames et al., 2005; Barton et al., 2008).  234 

Other inconsistencies, such as the misrepresentation of orthogonal weirs as being more 235 

dangerous than frowning weirs, were caused by the nature of probability elicitation 236 

stage. While the identification of the DAG structure and the variable discretisation 237 

stages progressed quickly, with workshop participants finding the cause-effect network 238 

intuitive and engaging, they struggled with the process of eliciting the probabilities. The 239 

canoeists required careful supervision to fill out the probability questionnaires, which 240 

took between 2 to 5 hours to complete. Participants often dwelt on questions, thought 241 

carefully, requested additional explanation, and reported that answering was difficult. 242 

Other researchers have also found the probability elicitation stage to be problematic for 243 

expert knowledge providers (Henriksen et al., 2007; Landuyt et al., 2013). Our 244 

experience points to both the questionnaire length and the abstract nature of its 245 

questions as causing problems. To envisage the multiple states of a set of parent nodes 246 

described in text is mentally taxing, and when repeated 120 times likely results in 247 

respondent fatigue. Ultimately time demands placed on stakeholders during probability 248 

elicitation constrains the maximum potential complexity of BNs constructed using 249 

expert knowledge.  250 

4.2 Lessons 251 

We draw a number of lessons from the experience of building the canoeing BN. When 252 

expert knowledge is used, DAG structure should be kept simple in two respects. Firstly, 253 

the number of nodes, node linkages and node states should be restricted to limit the 254 
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length and complexity of the probability elicitation stage. Even so, interpolation of 255 

conditional probabilities from a subset elicited from the experts (see Das (2004)) will be 256 

required for all but the simplest of models. Note that the canoeing BN has 16 nodes and 257 

one of the experts needed 5 hours to answer the 120 probability elicitation questions.    258 

Secondly, the length of chains of variables in the DAG should be limited to reduce the 259 

propagation of uncertainty through the model. This is possible as the variables only 260 

need to be connected through a cause effect relationship, the details of which do not 261 

need to be incorporated into the model. A downside of restricting chain length is that 262 

when intermediate nodes are excluded, model transparency declines and probability 263 

elicitation becomes more abstract. 264 

In addition to DAG simplification, probability elicitation methods need to be improved 265 

so that they become more intuitive, engaging and efficient. A promising approach is 266 

computer-based visualisation, which can avoid the need to present questions in text. For 267 

example, Gill et al. (2010) displayed weirs and their river setting in an interactive 3D 268 

visualisation software. This communication medium provides a more natural way by 269 

which visible weir attributes like height and steepness can be represented 270 

simultaneously. The efficiency of the probability elicitation process could also be 271 

improved if stakeholder probabilities were fed during elicitation directly into the BN 272 

through a digital interface, rather than being collected in a paper questionnaire. This 273 

would enable the model probabilities to be compiled in the presence of the stakeholders, 274 

and as a result, for the performance of the BN to be instantly assessed and iteratively 275 

corrected.    276 

 277 
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4.3 Remaining questions 278 

There are a number of additional questions regarding the suitability of BNs for 279 

modelling cultural ESs that will need future investigation. BNs cannot easily deal with 280 

spatial interactions and feedback loops (Holzkämper et al., 2012), which may constrain 281 

their utility when dealing with shifting patterns of land-use or temporal change. This 282 

was not such an issue in the present study as weirs occur as discrete landscape elements, 283 

so we were able to deal with them on an individual basis. However, weirs do interact, 284 

and a series of fun weirs along a stretch of river have a total value that is greater than 285 

the sum of the values of the constituent weirs, something that we could not address with 286 

the canoeing BN.  287 

Another question we raise is whether BNs inhibit creativity and the deliberative 288 

development of new solutions to management problems. There is a need for 289 

stakeholders to develop innovative solutions in environmental management (Borowski 290 

and Hare, 2007), and as discrete management options are predefined in a BN, then 291 

scope for users to later explore new management options is restricted. This was not 292 

relevant to the canoeing BN as there are only a few weir modification options, but it 293 

may be a problem in situations when the flexibility to integrate novel management 294 

interventions is required.  295 

Lastly, some fundamental questions remain on the general principle of modelling 296 

cultural ESs. While the relationships and variables involved in determining river quality 297 

for canoeing were clear to the canoeists, this may not be the case for other cultural 298 

services. Indeed, some cultural values (such as perceptions of spiritual or aesthetic value) 299 

may resist reduction to a collection of variables, as concepts may be broad and 300 

overlapping (e.g. wildness, naturalness and beauty) and stakeholders may be unwilling 301 



14 

 

or unable separate them. In fact, such a wide range of perceptions of certain concepts 302 

may exist that they cannot be defined precisely enough to provide the model with any 303 

predictive ability. In order to answer these questions, a better understanding is required 304 

of how commonly ecosystem-cultural linkages can be represented as probabilistic 305 

networks. 306 

  307 

Conclusion 308 

The elicitation of knowledge from the canoeists revealed that the value of the 309 

recreational ecosystem service of canoeing on the River Don is determined by 310 

subjective variables (danger, fun) that are linked to physical variables (e.g. weir 311 

steepness) through the personal judgement of canoeists. We suggest that such a mix of 312 

subjective and physical variables is typical of cultural ESs.  313 

For this reason the process-based or data-driven models often used to model other 314 

classes of ES are unsuitable for modelling cultural ESs. However, by creating a BN to 315 

model the impact of weir modification on the quality of the River Don for canoeing, we 316 

have shown that it is possible to model at least some cultural ESs using this technique. 317 

The use of conditional probabilities to describe the relationships between variables 318 

enabled the canoeists to successfully express their opinions on how management 319 

variables affected subjective concepts.  320 

The output of the BN was broadly consistent with the verbal description of the canoeists. 321 

Some discrepancies, however, indicate imperfect capture of knowledge, which occurred 322 

due to two reasons. Firstly the influence of some weir modifications at the top of long 323 

chains of variables were poorly inferenced due to the high uncertainties at intermediate 324 
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nodes. Secondly, the probability elicitation stage was demanding in both time and 325 

mental effort, as was demonstrated by the difficulty the canoeists had completing this 326 

abstract and laborious stage, and the misrepresentation in the BN of some of their 327 

opinions. To avoid these problems expert built BNs must have a simple structure with 328 

few nodes that are not connected in long chains. New techniques should be developed to 329 

increase the intuitiveness and efficiency of probability elicitation, such as the utilisation 330 

of 3D visualisation software to communicate visual variables.  331 

Despite the limitations we have shown that BNs can be used to model some cultural ESs, 332 

and we expect their capacity to represent stakeholder values and perceptions will only 333 

improve as new methods of knowledge capture are developed.   334 
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Figure 1. Map of the Don Catchment showing the River Don, the city of Sheffield, and 458 

the distribution of weirs. 459 
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 465 

 466 

Figure 2. Overview of the process of the construction of the canoeing BN.   467 

 468 

Figure 3. The evolution of the BN structure in the identification of model variables and 469 

structure stage. a) the subjective variables of weir danger and fun which served as the 470 
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basal nodes, b) weir danger was found to be controlled by the weir drawback and risk of 471 

physical injury descending the weir, c) the final canoeing BN structure with all 472 

remaining parent nodes and linkages identified. The subnetwork determining weir fun is 473 

coloured green.  474 

 475 

 476 

 477 

 478 

Figure 4. a) Visual aid used to help the canoeists classify the states for the variable weir 479 

steepness. b) The resulting ranges of weir steepness allocated to the discrete states of 480 

shallow, intermediate and steep. 481 
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 482 

Figure 5. An example probability elicitation question.  483 
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 487 

 488 

Figure 6. The output of the canoeing BN for two scenarios with and without canoe 489 

passes installed. (a) The river is upland, rapid and has a high flow. The weir is high, 490 

narrow, has a rough profile, of an intermediate steepness and a perpendicular plane.  491 

(b) The river is lowland, slow and has a low flow. The weir is low, wide, has a smooth 492 

profile, of a low steepness and a ‘smiling’ plane. 493 

 494 

 495 

 496 

 497 

Table 1. The effect of weir changes on weir danger and fun. The effect of each 498 

modification was tested while the other predictive variables were balanced across all of 499 

their potential states (e.g. 33% high, 33% medium, 33% low).  500 
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Canoe pass installation +ve (less dangerous) +ve 

Increasing weir profile 

roughness 

-ve NA
1
 

Increasing weir height -ve +ve 

Increasing weir steepness -ve Trivial
2
  

Change weir plane to 

‘smiling’ 

+ve NA 

Change weir plane to 

orthogonal 

-ve NA 

Increase flow of river +ve +ve 

1
Not applicable as node not connected to weir fun 501 

2
<1% change 502 
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Figure 7. Weir danger BN predictions for three weir orientations described by the 509 

canoeists as being least dangerous (a), of an intermediate danger (b) and most dangerous 510 

(c).  511 
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