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Can weakly nonlinear theory explain
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The Faraday problem is an important pattern-forming system that provides some middle
ground between systems where the initial instability involves just a single mode and in
which complexity then results from mode interactions or secondary bifurcations, and
cases where a system is highly turbulent and many spatial and temporal modes are
excited. It has been a rich source of novel patterns and of theoretical work aimed at
understanding how and why such patterns occur. Yet it is particularly challenging to tie
theory to experiment: the experiments are difficult to perform; the parameter regime of
interest (large box, moderate viscosity) along with the technical difficulties of solving the
free boundary Navier–Stokes equations make numerical solution of the problem hard; and
the fact that the instabilities result in an entire circle of unstable wavevectors presents
considerable theoretical difficulties.
In principle, weakly nonlinear theory should be able to predict which patterns are stable

near pattern onset. In this paper we present the first quantitative comparison between
weakly nonlinear theory of the full Navier–Stokes equations and (previously published)
experimental results for the Faraday problem with multiple frequency forcing. We confirm
that three-wave interactions sit at the heart of why complex patterns are stablised but
also highlight some discrepancies between theory and experiment. These suggest the need
for further experimental and theoretical work to fully investigate the issues of pattern
bistability and the role of bicritical/tricritical points in determining bifurcation structure.

Key words: Faraday waves, superlattice patterns, quasipatterns

1. Introduction

Since Faraday (1831) identified that regular patterns can appear on the surface of a
shaken container of fluid, the Faraday experiment has been an important system for
investigating pattern formation. Experiments in the 1980’s such as those conducted by
Simonelli & Gollub (1989) tended to focus on the dynamics of the interaction of patterns
in small containers excited by a sinusoidal forcing with a single frequency component.
More recently the focus has switched to larger containers with multiple frequency com-
ponents: as pointed out in Arbell & Fineberg (1998), one special feature of the Faraday
experiment is that by using multiple frequency forcing one can investigate the interac-
tion of a small number of controllable modes with different characteristic length scales.
This provides some middle ground between pattern-forming systems where the initial
instability involves just a single mode and in which complexity then results from sec-
ondary bifurcations, such as in the Bénard–Marangoni experiment or the Taylor-Couette
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2 A. C. Skeldon and A. M. Rucklidge

experiment, and cases where a system is highly turbulent and many spatial and temporal
modes are excited.
Within the Faraday experiment, a rich variety of complex patterns are seen, some of

which have a complicated spatial structure but are time-periodic with the periodicity
of the drive and some with both a complicated spatial and temporal structure. Aside
from the ubiquitous stripes, squares and hexagons, observed patterns include: quasipat-
terns (Christiansen et al. (1992), Edwards & Fauve (1994)); superlattice patterns (SL1)
(Kudrolli et al. (1998); Epstein & Fineberg (2006)); spatially subharmonic superlattice
states, modulated hexagonal disorder, two mode superlattices and unlocked states (Ar-
bell & Fineberg (1998)); oscillons (Arbell & Fineberg (2000)), and double hexagon states
Arbell & Fineberg (1998). An excellent summary of many of the experimental results is
given in Arbell & Fineberg (2002).
In parallel with the experiments, theoretical advances have resulted in an effective nu-

merical method for performing the linear stability analysis of the Navier–Stokes equation
that marks the transition from an unpatterned to patterned state (Kumar & Tuckerman
(1994)). The challenge here is that many of the experiments are carried out at moderate
viscosity whereas early theoretical results of Benjamin & Ursell (1954), which help ex-
plain the underlying instability mechanism, are for an inviscid fluid. There have also been
theoretical explanations for why, unlike the Bénard–Marangoni system, the observed pat-
terned states include superlattice patterns (Silber & Skeldon (1999); Silber et al. (2000);
Silber & Proctor (1998); Rucklidge & Silber (2009)).
These theoretical mechanisms rely on three-wave resonance between critical modes

and modes close to critical and have successfully explained why particular superlattice
patterns are observed. The suggested theoretical mechanism for the appearance of super-
lattice patterns is compelling, and the link between which modes are excited and which
patterns are observed has been explored in some detail experimentally, for example see
Arbell & Fineberg (2002); Epstein & Fineberg (2006). However, without carrying out a
careful quantitative comparison between experiment and theory, it is hard to know the
extent to which the theoretical ideas really do explain the experimental results (Boden-
schatz et al. (2000)). This is particularly true for the Faraday experiment where, as we
will explain in greater detail below, the very region for which the theory predicts super-
lattice patterns is the region for which some of the underlying assumptions of the theory
break down.
While it is not possible to write down closed-form solutions of the full Navier–Stokes

equations for the Faraday problem, quantitative predictions of the patterns expected near
the transition from non-patterned to pattern states can be made using weakly nonlinear
analysis (Skeldon & Guidoboni (2007)). Weakly nonlinear analysis centres on using an
asymptotic expansion in terms of the slowly varying amplitudes of the critical modes at
onset, using ideas first developed in Malkus & Veronis (1958) and Segel & Stuart (1962)
in the context of convection experiments. Analysis of the resulting amplitude equations
leads to predictions on the relative stability of different patterned states.
Our aim in this paper is to do a quantitative comparison between previously published

experimental results and a weakly nonlinear analysis of the Navier–Stokes equations for
the Faraday problem, with a particular focus on multiple frequency forcing. A previous
comparison between the theory and experiments in the Faraday problem was carried out
by Westra et al. (2003) for single frequency forcing in which the authors declare that the
excellent agreement they observe means that the Faraday problem is essentially a ‘solved
problem’. In particular, their paper uses a Lyapunov stability argument based on the
theory of Chen & Viñals (1999) to find the ‘most stable’ pattern as a function of the key
non-dimensional groups in the problem representing non-dimensional measures of viscous,
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gravitational and surface tension forces. Results from this theoretical study agree very
well with the author’s experimental results. However, the extension to multiple frequency
forcing is far from trivial. The method used by Chen & Viñals (1999) to reduce the Navier-
Stokes equations to amplitude equations is not applicable, and the more general theory
in Skeldon & Guidoboni (2007) is needed; the addition of more frequency components
introduces more non-dimensional parameters, resulting in a much greater ability to probe
underlying three-wave mechanisms. Consequently, patterns such as superlattice patterns,
which are not observed in the single frequency context, are found. In fact, as we will show,
for multiple frequency excitation there remain many open questions. We note also that
Westra et al. (2003) use a Lyapunov stability argument to determine preferred patterns.
We use similar arguments, but have in addition carried out a bifurcation analysis of the
relevant amplitude equations. This has the added benefit of not only determining the
‘most stable’ pattern but also indicating regions where patterns are bistable.
Specifically, in this paper we discuss to what extent the existing weakly nonlinear the-

ory can explain observed patterns in multiple-frequency Faraday experiments and provide
some new explanations in some cases. While agreement is very good in many cases, we
note that quantitatively linking theory with experiment is particularly challenging after-
the-fact as the results are sensitive to precise values of viscosity and surface tension and
even the sign of the drive term, something that is not normally recorded. There are also
places where the analysis strongly suggests that patterns should have a subharmonic
component, when no subharmonic component has been observed. In particular, with re-
gard to the superlattice patterns, we discuss two methods that have been used to promote
the stability of superlattice patterns: firstly by approaching the so-called bicritical point
in two-frequency forced experiments; and, secondly, by adding a third frequency to the
drive. We highlight the differences between these two mechanisms.

Overall, we confirm that three-wave interactions sit at the heart of why complex pat-
terns are stablised. However, the discrepancies between theory and experiment suggest
the need for further experimental and theoretical work to fully investigate the issues of
pattern bistability and the role of bicritical/tricritical points in determining bifurcation
structure.

2. Equations

Using a variety of container shapes, Edwards & Fauve (1994) elegantly demonstrated
that many of the patterns that occur with moderate viscosity fluids in large containers
are not strongly dependent on the lateral boundaries of the container. Consequently it
is a reasonable modelling assumption to consider an infinite horizontal layer of viscous
incompressible fluid of finite depth that is subjected to gravity g̃ and to a vertical periodic
excitation with non-dimensional frequency components jω. At the lower boundary the
fluid is in contact with a rigid plane while at the upper boundary the surface is open to
the atmosphere. This means that the upper surface is a free boundary whose shape and
evolution is an unknown of the problem.
The motion of the fluid can be described by the Navier–Stokes equations, where, to

take account of the parametric excitation, a frame of reference which is moving with the
periodic excitation is considered. The z-axis is chosen perpendicular to the rigid plane at
the bottom, which lies at z = −h̃/l̃, where h̃/l̃ is the non-dimensional depth of the layer
when the fluid is at rest. A sketch of the geometry is shown in figure 1. Assuming the
free surface may be written as z = ζ(x, y; t), which excludes the formation of droplets
or breaking waves, then the fluid motion in the bulk is described by the dimensionless
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incompressible Navier–Stokes equations

∇ · u = 0,

∂tu+ u · ∇u = −∇P + C∆u− (1 + f(t))e3, (2.1)

where u = (u, v, w) is the velocity field, P the pressure and for multiple frequency
excitation,

f(t) =
∑

j

aj cos(jωt+ φj), (2.2)

where j are integers and the non-dimensional amplitudes aj and phases φj are real.

It is assumed that the bottom of the container is rigid so that at z = −h̃/l̃ the fluid
satisfies the no-slip boundary conditions

u = v = w = 0. (2.3)

At the free surface z = ζ(x, y; t) we have the kinematic condition, which says that the
surface is advected by the fluid, and two further conditions, one for the balance of the tan-
gential stresses and one for the balance of normal stresses. This leads to three conditions
at z = ζ(x, y; t) namely

∂tζ + u∂xζ + v∂yζ = w,

t1 ·Tn = t2 ·Tn = 0, (2.4)

−P + 2CnD(u)n = BH− pe,

where T = −PI + 2CD(u) is the stress tensor, D(u) = (∇u + ∇Tu)/2 is the rate-of-
strain tensor, and H = ∇H · (∇Hζ/

√

1 + |∇Hζ|2) is the double mean curvature. Note
that ∇ = (∇H , ∂z) and ∇H = (∂x, ∂y). The unit normal and tangent vectors are defined
as

n(x, y; t) =

(

−
∂xζ

√

1 + |∇Hζ|2
,−

∂yζ
√

1 + |∇Hζ|2
,

1
√

1 + |∇Hζ|2

)

,

t1(x, y; t) =

(

1
√

1 + |∂xζ|2
, 0,

∂xζ
√

1 + |∂xζ|2

)

,

t2(x, y; t) =

(

0,
1

√

1 + |∂yζ|2
,

∂yζ
√

1 + |∂yζ|2

)

,

The units of length, time, velocity and pressure have been taken as l̃,
√

l̃/g̃,

√

g̃l̃ and ˜̺g̃l̃

respectively, where, ˜̺ is the density of the fluid and g̃ is the acceleration due to gravity.
The length scale l̃ is taken to be a length scale that is typical for the problem, such as the
primary wavelength of the observed patterns. Here, pe is the dimensionless pressure of the
external ambient fluid and is assumed known. There are two non-dimensional parameters
associated with the fluid, namely: C = ν̃/(g̃l̃3)1/2, the square of the inverse of the Galileo
number, and B = σ̃/ ˜̺g̃l̃2, the inverse Bond number, where ν̃ is the kinematic viscosity
and σ̃ is the surface tension. These two non-dimensional parameters measure the relative
importance of viscous and surface tension forces compared to gravity respectively. There
are three other sets of nondimensional parameters of importance, all associated with the
excitation. These are: the non-dimensional amplitudes aj , frequencies jω and phases φj

of the components of the excitation. In the comparison with experiments it is frequently
useful to quote the relevant dimensional values: we have used the convention that all
dimensional variables are labelled with a tilde.
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z = 0

z = −h̃/l̃

z = ζ(x, y; t)

g̃

f(t)

Figure 1. Sketch of a cross-section through the layer of fluid.

As in Kumar & Tuckerman (1994), it is convenient to define a new pressure,

p = P + (1 + f(t))z, (2.5)

which has the effect of shifting the acceleration term from the momentum equation to
the normal stress condition. In addition, we eliminate the pressure from the momentum
equation by taking −(∇×∇×). Using the relation ∇×∇× u = ∇(∇ · u)−∆u and the
fact that ∇ · u = 0, the problem then becomes

∇ · u = 0,

∂t∆u− C∆∆u = ∇×∇× (u · ∇u), (2.6)

with boundary conditions on z = −h̃/l̃,

u = v = w = 0 (2.7)

and on z = ζ,

∂tζ + u∂xζ + v∂yζ = w,

t1 ·Tn = t2 ·Tn = 0, (2.8)

2CnD(u)n = BH+ p− pe − (1 + f(t))ζ.

Equations (2.6) with boundary conditions (2.7) and (2.8) have a trivial solution,

u = 0, p = pe, ζ = 0. (2.9)

This solution corresponds to an unpatterned state where there is no relative motion of
the fluid with respect to the moving frame so the surface of the fluid is flat.

3. Does linear theory agree with experiments?

Understanding the linear stability of the unpatterned state is at the heart of under-
standing many of the nonlinear patterns that are formed close to onset. This is because
when the unpatterned state becomes unstable to one critical mode with a given critical
wavenumber, there are often several other modes with different wavenumbers that are
themselves only weakly damped. This is particularly true with multi-frequency forcing.
Resonant interaction of instabilities from different critical/close to critical modes drive
the selection mechanisms for the occurrence of particular patterns (Silber et al. (2000)).
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Benjamin & Ursell (1954) recognised that the linear stability of the flat-surface solution
for an inviscid, infinite depth fluid driven by a single frequency reduces to a Mathieu
equation. The Mathieu equation contains two parameters, related to the frequency ω̃ and
amplitude ã of the excitation respectively. Solutions to the Mathieu equation divide the
parameter plane into regions of bounded and regions of unbounded solutions where the
regions of unbounded solutions form tongues that touch the frequency axis at frequencies
mω̃/2,m = 1, 2..., the largest tongue occuring for m = 1. The tongues are typically
classified as either harmonic or subharmonic, depending on whether or not they are
an integer multiple of the frequency ω̃. This picture is modified with the addition of
damping: the boundaries of the regions are perturbed and no longer touch the frequency
axis, consequently a finite amplitude of excitation is required to excite waves; the regions
of bounded solutions become regions where the unpatterned state is locally stable; the
unbounded regions become regions where the unpatterned state is unstable.
Kumar & Tuckerman (1994) identified a numerical method to find the instability

tongues that can be used for all fluid viscosities and all depths and applied it to the
case of single frequency excitation. This was extended to multiple frequency excitation
by Besson et al. (1996). A typical example of tongues computed using Besson et al.

(1996)’s method and the corresponding bifurcation set for the primary stability bound-
ary is shown in figure 2.
The linear stability problem appears to be solved: the numerical method works well and

in Besson et al. (1996) the authors show that there is excellent agreement between their
linear stability calculations and experiments. However, unless experiments and theory
are carried out hand-in-hand, in practice there remain some difficulties in obtaining
really good agreement between theory and experiment even for this first transition from
patterned to unpatterned state. This is illustrated in figure 3 where numerical linear
stability results are superimposed on the experimental bifurcation sets published in:
Edwards & Fauve (1994) (panels (a) and (b)); Kudrolli et al. (1998) (panel (c)); Epstein
& Fineberg (2006) (panel (d)), and Ding & Umbanhowar (2006) (panels (e) and (f)).
The central issue here is that the position of the curves is sensitive to the values

of the surface tension, density and the viscosity and yet the values quoted in papers
are often taken from the manufacturers’ specifications for the fluids used. In order to
illustrate the issue, in each case we have plotted the linear stability curves for the quoted
viscosity and the quoted viscosity plus or minus 5%, a typical quoted tolerance for the
viscosity value. From figure 3 we see that: for the experiments in Edwards & Fauve
(1994) and Ding & Umbanhowar (2006), the upper extreme for the viscosity fits the data
best (panels (a),(b),(e) and (f)); for those in Kudrolli et al. (1998), the lower extreme
fits the subharmonic boundary best, but not the harmonic boundary (panel (c)); for
the experiments in Epstein & Fineberg (2006) the linear stability analysis suggests that
the actual viscosity of the fluid was higher than the upper value (panel (d)). We have
focussed here on viscosity because for the different fluids used in the results presented
here, errors in the viscosity have the biggest effect on the linear stability boundary. An
error in the viscosity of 5% can result in an error in the linear stability boundary of 5%,
whereas a 5% error in either the surface tension or the density leading to a 5% error in
the ratio σ̃/ ˜̺ leads to an error in the linear stability boundary of only around 1%.
Our aim in this paper is to compare weakly nonlinear theory with experiments. Since

the transitions from one preferred patterns to another turn out to be quite delicate,
clearly it is only realistic to hope for agreement for nonlinear pattern selection if there is
first excellent agreement with linear theory. In making our nonlinear comparisons below,
we have therefore used values of the viscosity found by fitting the linear theory to the
published data.
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ã6(g̃)

ã
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Figure 2. Typical tongues and linear stability region for the unpatterned state computed using
the method of Besson et al. (1996). Parameters as for Kudrolli et al. (1998): the (dimensional)

excitation is f̃(t̃) = ã6 cos 6ω̃t̃ + ã7 cos(7ω̃t̃ + φ7), where ã6 = ã cosχ, ã7 = ã sinχ, φ7 = 20◦,

ω̃/2π = 16.44 Hz, σ̃ = 20.6 dyn cm−1, ν̃ = 0.20 cm2s−1, ˜̺ = 0.95 g cm−3, h̃ = 0.3 cm. Note
that the structure inherited from the Mathieu equation is seen by the fact that the minimum
of each tongue occurs at half integer multiples of the drive frequency. In (a) χ = 0◦, the forcing

reduces to f̃(t̃) = ã6 cos 6ω̃t̃, with a forcing frequency of 6ω̃. The largest tongue has a minimum
for wavenumber of approx 15cm−1 for a forcing amplitude ã of approx 7.5g̃ and corresponds
to a mode of frequency 6ω̃

2
. In (c), χ = 90◦ the forcing reduces to f̃(t̃) = ã7 cos 7ω̃t̃ with a

forcing frequency of 7ω̃ leading to a primary instability mode with frequency 7ω̃/2. In the case
of (b), χ = 63◦, the presence of both 6ω̃ and 7ω̃ components in the forcing frequency mean
that the drive has periodicity 2π/ω̃ and is therefore of frequency ω̃. This leads to tongues at
mω̃/2 . . . ,m = 1, 2, . . .. The first five tongues that are visible from left to right correspond to:
ω̃/2, 4ω̃/2, 5ω̃/2, 6ω̃/2, 7ω̃/2. The largest tongues correspond to the 6ω̃/2 and the 7ω̃/2 modes
and are driven by the two main frequency components of the drive. There are tongues corre-
sponding to modes with frequency 2ω̃/2 and 3ω̃/2 but these occur off the top of the region
shown. This particular value of χ is close to the ‘bi-critical’ point where both harmonic modes
with frequency 6ω̃/2 and sub-harmonic modes with frequency 7ω̃/2 onset simultaneously. It is
close to this bi-critical point that many of the exotic patterns are observed. (d) Bifurcation set
showing the position of the tongue minimum that marks the instability of the unpatterned state,
as a function of ã6 and ã7.

4. Predicting patterns close to onset

4.1. Theoretical ideas

Once a mode with a given wave number has become unstable, the fact that there is no
preferred horizontal direction means that standing waves of any orientation can occur.
In the Bénard–Marangoni experiment, which has a similar orientational invariance, this
means that patterns consisting of nonlinear superpositions of modes with wave vectors of
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(a) (b)

(c)

(d)

(e) (f)

Figure 3. Comparison of the experimentally measured transition from unpatterned to pat-
terned state with numerically calculated linear stability curves using the method of Besson
et al. (1996). For each of the numerical calculations, three different values for the viscosity are
used. (a) and (b) Numerical curves overlaid on figure 12 of Edwards & Fauve (1994). Adapted
with permission from Edwards & Fauve (1994). σ̃ = 65 dyn cm−1; ν̃ = 1.00 ± 0.05 cm2 s−1;

˜̺ = 1.22 g m−3; h̃ = 0.29 cm; ãj , j = {4, 5}; φ4 = 0; φ5 = 75◦; ω̃/2π = 14.6 Hz. (c) Numerical
curves overlaid on figure 6(a) of Kudrolli et al. (1998) reprinted from Physica D, Vol 123, A.
Kudrolli, B. Pier and J.P. Gollub, ‘Superlattice patterns in surface waves’, p99–111, Copyright
(1998), with permission from Elsevier. σ̃ = 20.6 dyn cm−1; ν̃ = 0.20± 0.01 cm2 s−1; ˜̺ = 0.95 g

m−3; h̃ = 0.3 cm; ãj , j = {4, 5}; φ4 = 0; φ5 = 16◦; ω̃/2π = 22 Hz. (d) Numerical curves overlaid
on figure 2 of Epstein & Fineberg (2006). Adapted with permission from Epstein & Fineberg
(2006). Copyrighted by the American Physical Society. σ̃ = 20.6 dyn cm−1; ν̃ = 0.180 ± 0.009

cm2 s−1; ˜̺ = 0.949 g m−3; h̃ = 0.3 cm; ãj , j = {6, 7}; φj = 0◦; ω̃/2π = 14 Hz. (e) and (f)
Numerical curves overlaid on figures 1 and 3(a) of Ding & Umbanhowar (2006). Adapted with
permission from Ding & Umbanhowar (2006). Copyrighted by the American Physical Society.

σ̃ = 20.6 dyn cm−1; ν̃ = 0.20 ± 0.01 cm2 s−1; ˜̺ = 0.95 g m−3; h̃ = 0.65 cm; ãj , j = {4, 5};
φ4 = 0; φ5 = 16◦; ω̃/2π = 20 Hz.
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Figure 4. Possible spatial three-wave resonant interactions defined such that k1 + k2 = k3.
(a) |k1| = |k2| = |k3|; (b) |k1| = |k2| > |k3|; (c) |k1| = |k2| < |k3|; (d) |k1| 6= |k2| 6= |k3|.

the same wave number but different orientations often lead to the observation of patterns
with, for example, hexagonal symmetry. In principle, superlattice patterns could also
occur in convection experiments (Skeldon & Silber (1998)), but in practice they have not
been seen without the addition of a vertical oscillation, as in Rogers et al. (2000).

The ubiquitous occurrence of hexagons is a consequence of the importance of three-
wave interactions in determining which patterned states occur: three-wave interactions
give rise to the lowest order nonlinear (quadratic) terms in the amplitude equations that
describe behaviour close to onset. For Bénard–Marangoni convection, where instability to
a single dominant wavenumber occurs, the three-wave interaction of importance occurs
between three wave vectors with the same critical wavenumber, as shown in figure 4(a).
A distinct feature of the Faraday problem is that the Mathieu tongue-like structure to
the linear stability problem means that although typically there is a single mode that
becomes unstable first, there are nearby modes with different wavenumbers that are only
weakly damped. This can give rise to other three-wave interactions of relevance, such as
those shown in figure 4(b), (c) and (d).
These three-wave interactions involve waves with wavevectors k1,k2 and k3 and re-

spective frequencies nω/2, pω/2 and qω. For the three waves to interact they must satisfy
a spatial resonance condition,

± k1 ± k2 = k3, (4.1)

and a temporal resonance condition. In the spatial resonance condition the choice of
sign arises because the waves are standing waves and so have spatial fourier components
with both signs of wave vector. The temporal resonance condition depends on both the
frequencies of the waves and the various frequencies contained within the forcing term
f(t) and requires

±
n

2
±

p

2
± j = q (4.2)

where j is one of the frequency components of the drive see equation (2.2),cf Topaz et al.
(2004) and where all possible sign combinations of the different terms on the left-hand
side need to be considered because the waves are standing waves and the forcing is real.

The fact that a temporal resonance condition needs to be satisfied is one feature that
distinguishes the Faraday problem from Swift–Hohenberg multiple resonance problems
such as those studied in Müller (1994), Lifshitz & Petrich (1997), Rucklidge et al. (2012)
and others. This means that results from Swift–Hohenberg-like equations need to be
interpreted with care when applied to the Faraday problem, a point that we will return
to in the discussion.

For the appearance of superlattice patterns the argument goes that, given three critical
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modes ki as shown in figure 4(b) or (c) with amplitudes Ai, then using a multiple
timescale expansion near onset would lead to equations for the evolution of the amplitudes
on a slow timescale of the form

Ȧ1 = λ1A1 + α1A2A3 +A1(a|A1|
2 + b0|A2|

2 + c|A3|
2) + . . .

Ȧ2 = λ1A2 + α1A1A3 +A2(b0|A1|
2 + a|A2|

2 + c|A3|
2) + . . . (4.3)

Ȧ3 = λ2A3 + α2A1A2 +A3(d|A1|
2 + d|A2|

2 + e|A3|
2) + . . . ,

where λ1 and λ2 are the linear growth rates of the respective modes, and α1, α2, a, b0, c, d
and e are all real-valued constants. The quadratic coefficients, α1 and α2 are non-zero
only if the temporal resonance condition is met. Note that there is no assumption of
weak forcing/damping and so terms such as A1 do not appear (Alnahdi et al. (2014)).

Now, the mode with wavevector k3 is not at its critical point but is weakly damped,
so λ2 < 0 and, close to onset (i.e. |λ1| small enough), it is therefore slaved by the critical
modes. Consequently, one can perform a centre manifold reduction on equations (4.3),
resulting in

A3 = −
α2

λ2

A1A2 + . . . ,

and

Ȧ1 = λ1A1 +A1(a|A1|
2 + b(θres)|A2|

2) + . . .

Ȧ2 = λ1A2 +A2(b(θres)|A1|
2 + a|A2|

2) + . . . , (4.4)

where

b(θres) = b0 + bres, bres = −
α1α2

λ2

. (4.5)

The presence of the weakly damped mode therefore changes the value of the cross-
coupling coefficient b(θres) between modes with wavevectors k1 and k2, offset at an
angle θres. The value of θres is determined by the ratio of critical and weakly damped
wavenumbers, but the same idea holds for any three-wave interaction between any k1

and k2 on the critical circle. This results in a function b(θ) with either a distinctive peak
or dip at θ = θres, depending on the sign of α1α2 and on the weakness of the damping
for the weakly damped mode.
Analysing the amplitude equations (4.4) shows that there are two types of solutions

that bifurcate from the trivial solution A1 = A2 = 0, namely stripes (A1 6= 0, A2 = 0
or vice versa) and rectangles (A1 = A2). The relative stability of rectangles to stripe
perturbations is dependent on the relative size of the self-coupling coefficient a in equation
(4.4) and b(θres) where, if bres > 0 (α1α2 > 0), then the stability of rectangles is enhanced
by the three-wave interaction and if bres < 0 (α1α2 < 0), then the stability of rectangles
is suppressed.

Of course, in the Faraday problem there are not just two modes and there are many
interactions and several weakly damped circles, but this idea that three-wave resonances
can promote patterns associated with the angle θres is powerful (Silber et al. (2000)). The
idea is that the dispersion relation determines which wavenumbers are critical or close to
critical; allowed three-wave resonant interactions then select out particular wavevectors;
the allowed wavevectors are necessarily oriented at particular angles as determined by the
ratios of available wavenumbers, leading to specific values for θres. Superlattice patterns
essentially consist of a nonlinear superposition of two sets of hexagons offset at an angle
to each other. There is a whole family of different superlattice patterns (Dionne et al.

(1997)), each corresponding to a different angle, but the particular superlattice that will
be promoted will be that with an angle given by θres.
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The superlattice patterns observed by Kudrolli et al. (1998) for {6, 7} excitation ex-
emplify the idea and motivated the early theoretical work. The superlattice patterns
that they observe are spatially periodic and a spatial Fourier transform of the pattern
indicates that they consist of essentially two sets of hexagonal modes offset by an angle
of 22◦. In this case, the particular three-wave resonance of relevance is of the type illus-
trated in figure 4(b) and is between a harmonic mode that is weakly damped of frequency
2ω̃/2, related to the 2ω̃/2 tongue, and two wavevectors with wavenumbers corresponding
to the 6ω̃/2 tongue (Silber et al. (2000)). This was surprising because the superlattice
state appears near the bicritical point where both 6ω̃/2 and 7ω̃/2 onset simultaneously
and naively, from inspection of the linear stability diagram (see figure 2(b)) one would
assume that it was a result of the interaction of 6ω̃/2 and 7ω̃/2 modes—the 2ω̃/2 tongue
onsets at an amplitude of approximately 50 so is not even visible on the scale shown.

This argument not only explains the presence of the 22◦ superlattice patterns but also
why patterns with angles close to 30◦ are seen in j = {4, 5} forcing (Skeldon & Guidoboni
(2007)). Extensions of this basic idea have been used to suggest ways to design forcing
frequencies to promote particular patterns in both Faraday waves (Porter et al. (2004))
and in a model partial differential equation (Rucklidge & Silber (2009)).

The results of Kudrolli et al. (1998) and the theoretical results of Silber et al. (2000)
showed how modes visible in the spatial Fourier transform of the experimentally ob-
served pattern can be linked to critical/weakly damped modes and three-wave resonant
interactions. It follows that given an experimentally observed pattern it should be pos-
sible to confirm whether or not it is a result of a particular interaction by establishing
which modes are present in the pattern. However, identifying precisely which modes are
involved can be tricky, as we illustrate in the following section.

4.2. Practical identification of relevent modes

In Epstein & Fineberg (2006) a detailed comparison of different patterns, referred to as
‘grid’ states and labelled as 3 : 2, 4 : 3 and 5 : 3 respectively is presented. The spatial
Fourier transform of the patterns enables the identification of the wavenumbers that are
present in these patterns: in each case they appear to be dominated by modes sitting on
two different circles, one on the primary harmonic instability with wavenumber k̃c and a
second circle with respective wavenumbers k̃3:2 = 0.38k̃c, k̃4:3 = 0.55k̃c and k̃5:3 = 0.23k̃c.
These ratios are fixed by the fact that the observed grid states consist of modes that fit
on to a hexagonal lattice. This suggests that they are strong candidates for superlattice
patterns that occur as a result of the mechanism discussed in section 4.1. Epstein &
Fineberg (2006) computed the linear stability curves, and their linear stability diagrams
are re-computed in figure 5(a) and (b). We note that the linear stability curves are similar,
but not identical, to those given in Epstein & Fineberg (2006) particularly at small k̃.
This is because we have made a different choice in the sign of the forcing term to that
made by Epstein & Fineberg (2006). This is explained further in Section 6. As stated by
Epstein & Fineberg (2006) and, as can be seen in this figure, the k̃3:2 wave number lines
up with the first harmonic tongue (2ω̃/2) and this strongly suggests that it is the same
mechanism that produces the familiar 22◦ superlattice patterns, seen by Kudrolli et al.
(1998), that produces the k̃3:2 grid state. For the two other states the situation is less
clear. Epstein & Fineberg (2006) state that k̃4:3 lines up with the the second harmonic
tongue (4ω̃/2), but this is not clear from figure 5 (the position of the line drawn in figure
5 of Epstein & Fineberg (2006) is not consistent with the value of 0.55k̃c given). Epstein
& Fineberg (2006) observe that the k̃5:3 mode does not appear to be aligned with any
tongue and that the 5 : 3 pattern occurs in a wedge-shaped region of parameter space
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Figure 5. Linear stability curves and Floquet multipliers calculated from the finite depth
Navier–Stokes equations (a) and (c) h̃ = 0.3 cm (b) and (d) h̃ = 0.2 cm. Parameter values
are taken from Epstein & Fineberg (2006) and are σ̃ = 20.6 dyn cm−1; ν̃ = 0.18 cm2 s−1;
˜̺ = 0.949 g m−3; ãj , j = {6, 7, 2}, where ã6 = 3.4, ã7 = 6.4, ã2 = 0.5; φj = 0◦; ω̃/2π = 14Hz.

that emerges from the bicritical point, unlike the 3 : 2 and the 4 : 3 state that occur at
a short distance from this point.

The difficulty here is that the linear stability diagram indicates that at an amplitude
of excitation of approximately 7.5g̃ the mode with wavenumber k̃c and frequency 6ω̃/2
becomes unstable and that there are five other damped modes with smaller wavenumber.
But the position of the tongues for these modes only gives a rough idea of the precise
wavenumber and damping associated with each mode at the pattern onset amplitude of
7.5g̃.
More accurate information on the damped modes can be obtained by calculating the

most critical Floquet multipliers, as detailed in Appendix A. The results for the parameter
values used by Epstein & Fineberg (2006) are shown in figure 5(c) and (d). We note that
with either possible sign for the forcing, the Floquet multipliers look very similar. As
identified by Epstein & Fineberg (2006), the k̃3:2 mode is aligned with the harmonic
tongue associated with frequency 2ω̃/2 for h̃ = 0.3 cm, but not for h̃ = 0.2 cm and
supports their observation that the k3:2 grid state will be seen for h̃ = 0.3 cm and not
for h̃ = 0.2 cm. The remaining two wavenumbers k̃5:3 and k̃4:3 are very close to the
subharmonic waves of frequencies ω̃/2 and 3ω̃/2 respectively. This clarifies the issue that
the k̃5:3 mode in Epstein & Fineberg (2006) did not appear to align with any mode on
the linear stability graphs and strongly suggests that the k̃4:3 mode was mis-identified as
harmonic. However, it also presents a problem in that temporal constraints mean that
it is not possible for two harmonic wavevectors to form a three-wave resonance with a
single subharmonic wavevector. Consequently, α1 = α2 = 0 in equations (4.3), so the
discussion in section 4.1 does not hold as it stands and there is no special angle θres.
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Epstein & Fineberg (2006) point out that the k̃5:3 case could be a result of a three-
wave resonance between modes with frequencies ω̃/2, 6ω̃/2 and 7ω̃/2 and this is strongly
supported by our Floquet multiplier calculation and is a permitted resonance in that it
satisfies both spatial and temporal constraints. Such a resonance appears to be consistent
with the spatial Fourier transform in figure 3(c) of Epstein & Fineberg (2006) and is
similar in structure to previous states identified in figure 20(c) of Arbell & Fineberg
(2002) as 2MS states. This would make it a three-wave resonance of the form shown
in figure 4 (d). This kind of resonance was discussed briefly by Porter & Silber (2002)
and results in patterns that occur in a wedge that emerges from the bicritical point.
This is consistent with the bifurcation sets shown by Epstein and Fineberg. The only
remaining conundrum for this particular pattern is that Epstein and Fineberg state that,
although all the evidence points to subharmonic modes being important, no subharmonic
component was found.

5. Observed patterns near onset: theoretical bifurcation sets

compared with experiment

In spite of the difficulties in identifying modes, nevertheless, in experiments with dom-
inant forcing frequencies j = {4, 5} or j = {6, 7} there is a coherent picture: in the
{6, 7} case, observed superlattice patterns near onset have an angle of 22◦; for j = {4, 5},
observed patterns near onset are quasipatterns with an angle of 30◦. Although there
are technical difficulties with considering quasipatterns in the same way as superlattice
patterns (Rucklidge & Rucklidge (2003); Rucklidge & Silber (2009); Iooss & Rucklidge
(2010)), nevertheless they appear to fit within the same framework with resonant in-
teractions with weakly damped modes associated with 2ω̃/2 contributing to bres and
explaining the appearance of the appropriate angle. The different angle seen in the {4, 5}
case as compared with the {6, 7} case is because of differences in the wavenumbers of
the interacting modes. In both cases, superlattice/quasipatterns are only seen near the
bicritical point where the two modes driven by the two main components of the forcing
onset simultaneously.

Here, we aim to carry out a careful comparison of the results of weakly nonlinear the-
ory and experimental results to explore to what extent there is quantitative agreement
between experiments and theory as the bicritical point is approached. We present results
from the experiments of Ding & Umbanhowar (2006) because we have excellent agree-
ment for the linear stability curves with ν̃ = 0.21 cm2 s−1, as shown in figure 3(e) and
(f), and this set of experiments includes the most comprehensive study of how multiple
frequencies interact via the superlattice mechanism outlined above. Specifically, acknowl-
edging the importance of the 2ω̃/2 tongue, Ding & Umbanhowar (2006) carry out a series
of experiments that systematically explore the effect of adding a third frequency that pro-
motes this mode.
The weakly nonlinear theory is carried out using the method given in Skeldon &

Guidoboni (2007) for analysing equations (2.6) to (2.8). For all details of how weakly
nonlinear analysis is used to derive coefficients for the relevant amplitude equations we
refer the reader to Skeldon & Guidoboni (2007). In order to examine the relative stability
of superlattice patterns a minimal set of twelve amplitude equations corresponding to
twelve vectors on the critical circle are needed. However, the stability of the planforms
that bifurcate from the non-patterned state can be found by calculating the coefficients
on three one-dimensional subspaces of this twelve dimensional problem: one describing
stripes, one for hexagons and one for rectangles generated from wavevectors separated
by an angle θ as detailed in Skeldon & Silber (1998). By varying θ, this formulation then
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Figure j ãj , φj Parameters Figure from
varied Ding & Umbanhowar (2006)

6 {4, 5} (φ4, φ5) = (0, 16◦) ã4 and ã5 1
7 {4, 5, 2} ã2 = 0.8g̃, (φ4, φ5, φ2) = (0◦, 16◦, 32◦) a4 and a5 3 (b)
8 {4, 5, 2} ã5 = 5g̃, (φ4, φ5, φ2) = (0◦, 5◦, 32◦) ã4 and ã2 4 (a)
9 {4, 5, 2} (ã4, ã5, ã2) = (3.8, 5.8, 0.8)g, φ4 = 0◦ φ5 and φ2 4(b)
10 {6, 7 (φ6, φ7) = (0◦, 40◦) ã6 and ã7 2
11 {6, 7, 2} ã7 = 7g̃, (φ6, φ7, φ2) = (0◦, 40◦, 80◦) ã6 and ã2 6(a)
12 {6, 7, 2} (ã6, ã7, ã2) = (5.2, 7.8, 0.6)g̃, φ6 = 0◦ φ7 and φ2 6(b)

Table 1. Summary information for figures comparing weakly nonlinear analysis with the
experiments of Ding & Umbanhowar (2006).

results in determining the stability of stripes to any perturbation of the same wavenum-
ber; the stability of hexagons to (i) stripes arbitrarily close to any given orientation (ii),
rectangles arbitrarily close to any given aspect ratio, (iii) to superlattice patterns of any
angle; the stability of rectangles to (i) stripes of any orientation (ii) superlattice pat-
terns on the same lattice; the stability of superlattice patterns to hexagons, stripes or
rectangles that are made up of a subset of the superlattice wavevectors.
Since the weakly nonlinear stability analysis indicates that for many parameter values

there is more than one stable pattern, results are presented in two ways, first showing
the regions of stability for individual patterns—only those that have some region of sta-
bility are shown, and secondly showing the bifurcation set for the most stable state, as
computed from the weakly nonlinear coefficients using the Lyapunov functional given in
Skeldon & Guidoboni (2007). The most stable states are superimposed on the experi-
mental results of Ding & Umbanhowar (2006). In the case of superlattice patterns, the
resonant interactions mean that it is always the particular pattern associated with θres
that has the largest region of stability and it is perturbations associated with this angle
that first destabilise hexagons. Consequently where superlattice patterns are shown it is
always the superlattice pattern associated with θres that is relevant.
Ding and Umbanhowar consider the two sets of frequency components most widely used

by other experimental groups, namely j = {4, 5} and j = {6, 7} and then systematically
investigate the inclusion of a third mode, so considering the combinations j = {4, 5, 2}
and j = {6, 7, 2}. We have carried out the weakly nonlinear stability analysis for each of
their parameter studies and the results are presented in figures 6-12 where the principle
parameters considered and the corresponding figures in Ding & Umbanhowar (2006) are
summarised in table 1.
In each case the weakly nonlinear results are superimposed on the experimental re-

sults. The parameters have been chosen to match those quoted in the paper of Ding &
Umbanhowar (2006) with the exception of the viscosity where, as seen in figure 3, the
linear stability curves fitted best with a viscosity of ν̃ = 0.21 cm2s−1 rather than ν̃ = 0.20
cm2s−1 quoted in their paper (or the value of ν̃ = 0.204 cm2s−1 quoted in Ding (2006)).

5.1. Results for {4,5} and {4,5,2}

In figure 6 we see that the weakly nonlinear theory predicts bistability between squares
and hexagons for low values of ã5, with squares losing stability as the bicritical point
is approached. There is good agreement between the point at which squares become
unstable (approximately ã5 = 2.2g̃, figure 6(a)), and the transition between squares
and hexagons in the experiment. However, before squares become unstable, the theory
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Figure 6. Comparison with figure 1 from Ding & Umbanhowar (2006).
ãj = {4, 5}, (φ4, φ5) = (0, 16◦), ω̃/2π = 20 Hz. The fluid parameters are as in the cap-
tion to figure 3(e),(f) with ν̃ = 0.21 cm2s−1. (a)-(b) Stability regions for different planforms.
(a) Stable squares in green; unstable squares in grey; (b) stable hexagons in blue; unstable
hexagons in grey. Note that for ã5 > 0, there are quadratic terms in the amplitude equations
which mean that hexagons bifurcate transcritically. The unstable solutions that are produced
in this transcritical bifurcation are stabilised in a saddle-node bifurcation, resulting in a
small region of stable, subcritical hexagons. This region of stable subcritical hexagons is only
visible on the scale of the figure close to the bicritical point. (c) ‘Most stable’ state using a
Lyapunov energy argument: + squares; ∗ hexagons; � quasipatterns. The theoretical results
are overlaid on figure 1 from Ding & Umbanhowar (2006). Adapted with permission from Ding
& Umbanhowar (2006). Copyrighted by the American Physical Society.

suggests that there is a region of bistability between hexagons and squares and that in
this region hexagons and not squares, as seen in the experiment, are the most stable state.
Of course, in this region, the particular pattern observed experimentally will depend to
some extent on the way in which the experiments were carried out. For example, if the
experimental procedure was to fix ã4 and to increase ã5 from zero in small steps, one
would expect to see squares until the limit of their stability. Regions of quasipatterns are
also predicted by the weakly nonlinear theory (almost off the scale of the figure 6) and
observed in the experiment but since they do not occur close to onset it is perhaps not
surprising that the theory and experiment do not agree.
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ã
4
(g̃
)

(b)

4 5 6 7 8
3

4

5(c)
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Figure 7. Comparison with Ding & Umbanhowar (2006) Figure 3(b),
j = {4, 5, 2}, (φ4, φ5, φ2) = (0, 16◦, 32◦). (a)-(b) Stability regions for different planforms.
(a) Stable hexagons in blue, unstable hexagons in grey; (b) stable quasipatterns in red,
unstable quasipatterns in grey. Both quasipatterns and hexagons bifurcate transcritically
and may be stabilised in a saddle-node bifurcation. This can result in stable subcritical
quasipatterns/hexagons. (c) ‘Most stable’ planform using a Lyapunov energy argument
superimposed on figure 3(b) from Ding & Umbanhowar (2006). Adapted with permission from
Ding & Umbanhowar (2006). Copyrighted by the American Physical Society. ∗ hexagons; �
quasipatterns, • disordered states, where the coloured symbols are the theoretical results and
the black symbols the experimental results. The red line is the linear instability curve for the
harmonic 2ω̃/2 tongue. The black cross indicates the point at which the experiment shown in
figure 9(c) was carried out.

In figure 7, we see that by adding in a forcing component that excites the 2ω̃/2 mode
directly Ding & Umbanhowar (2006) showed that they could increase the region of quasi-
patterns, to the extent that they become the first pattern observed after the unpatterned
state becomes unstable. Our theoretical results for the same parameter values also show
an enhanced region for the superlattice patterns—but not as enhanced as for the exper-
iment. Two possible reasons for this are (i) the nearby presence of the bicritical point
where both the 2ω̃/2 and the 4ω̃/2 tongue onset simultaneously which means that our
weakly nonlinear calculations would need to be extended; (ii) the sensitivity of the results
to phase. We discuss both of these in more detail below.
Figure 8 shows excellent agreement between the theoretical results and the experimen-

tal results for the pattern at onset for increasing ã2, with agreement diminishing with
distance from onset.

There is surprisingly good agreement for the variation with phase shown in figure 9.
In the experimental results, black indicates low correlation at an angle of 30◦. This
lines up well with areas where the theory indicates competition between squares and



Faraday waves 17

0 0.2 0.4 0.6 0.8

3.6

4

4.4

4.8
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ã2(g̃)

ã
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Figure 8. Comparison with Ding & Umbanhowar (2006) figure 4(a).
j = {4, 5, 2}, ã5 = 5g̃, (φ4, φ5, φ2) = (0, 16◦, 32◦). (a) and (b) stability regions for hexagons and
quasipatterns respectively. Coloured symbols stable; grey unstable. Hexagons and quasipatterns
both bifurcate from the unpatterned state at a transcritical bifurcation, where the unstable
bifurcating branch changes direction at a saddle-node bifurcation. This leads to regions of
stable hexagons and quasipatterns that are subcritical. (c) ‘Most stable’ planform: ∗ hexagons;
� quasipatterns, overlaid on figure 4(a) from Ding & Umbanhowar (2006). Adapted with
permission from Ding & Umbanhowar (2006). Copyrighted by the American Physical Society.
The coloured symbols are the theoretical results and the black symbols the experimental
results. The black dots indicate disordered states. Note that the linear stability boundary for
the 2ω̃/2 mode is just off this diagram, and is approximately parallel to the a4 axis through a
value of a2 ≈ 1. The bicritical point where the 2ω̃/2 and the 4ω̃/2 modes onset simultaneously
occurs when (ã2, ã4) = (1.05, 3.80)g̃.

hexagons. White areas, where there is high correlation at 30◦, line up well with stable
quasipatterns. In the regions where there are no coloured symbols, the weakly nonlinear
analysis indicates no stable states. This region is mostly mid-grey in the experiment,
indicating some correlation at 30◦.
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The agreement in figure 9 is surprising because the results correspond to a point with
ã4 = 3.8g̃, ã5 = 5.9g̃ and ã2 = 0.8g̃, which according to the theory is close to a transition
from quasipatterns to hexagons in a region where both hexagons and quasipatterns are
stable, whereas in the experiment it is firmly in the quasipattern region. (In order to help
cross-reference between the two figures, a black cross has been marked on both figure 7(c)
and figure 9.) Figure 9 highlights the sensitivity of the results to phase and in fact, with
our weakly nonlinear analysis we find that the size of the region of quasipatterns changes
significantly depending on the phase. This sensitivity to the precise value of the phase
could be part of the difficulty in obtaining agreement for the onset of quasipatterns in
figure 7.
The results are, of course, also sensitive to the viscosity. Away from the bicritical point,

changing the viscosity tends to translate the nonlinear bifurcation lines as one might
expect: upwards if the viscosity is increased, downwards if the viscosity is decreased, in
line with the changes to the transition from unpatterned to patterned state seen in Figure
3. Close to the bi-critical point the effects are more pronounced with small changes in
viscosity sometimes leading to large changes in the regions in which particular patterns
dominate.

5.2. Results for {6,7} and {6,7,2}

In figure 10 the weakly nonlinear theory predicts bistability between squares and hexagons
for low values of ã7, with squares losing stability as the bicritical point is approached. As
for figure 6, although there is good agreement between the point at which squares become
unstable (approximately ã7 = 4.5g̃), and the transition between squares and hexagons in
the experiment, this agrees less well with the results of the energy argument.
In figure 11 both theory and experiment agree that for low and moderate values of ã2

hexagons are the preferred pattern. As ã2 increases, hexagons are replaced by superlattice
patterns, although the transition observed experimentally occurs slightly earlier than in
the weakly nonlinear calculations. Away from onset, the agreement is qualitative rather
than quantitative: in the experiments superlattice patterns are observed for a much larger
region than predicted by the weakly nonlinear theory and hexagons are observed in
regions where the theory predicts bistability of rectangles and hexagons, with rectangles
being the most stable state. For large values of ã2 and ã6, the experiments see disordered
states. The weakly nonlinear theory cannot predict such states, but note that none of
the planforms considered are found to be stable for large ã2 and ã6 (there are no symbols
from the theoretical calculations in the top right of figure 11).

The results shown in figure 12 again show that the theoretical results have the same
diagonal dependency as seen in the experiments, a consequence of a phase invariant as
discussed further below. For the experimental results, white indicates a high correlation
with the angle of 22◦ and this does seem to align with where superlattice patterns occur,
although for much of the lighter regions the weakly nonlinear analysis predicts no stable
pattern. The black regions correspond to a low correlation at 22◦ and Ding & Umban-
howar (2006) state that this region contains ‘disordered’ patterns: our theoretical results
suggest that both rectangles and hexagons are stable for much of this region each having
a similar Lyapunov energy. Consequently one might expect competition between these
two states, resulting in the observed disorder.

5.3. Common themes

From our comparison, a number of themes emerge:
(a) There is excellent agreement with theory at onset in some cases (figure 8).
(b) In other cases, figure 6 and 10, bistability of patterns makes it difficult to compare
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Figure 9. Comparison with Ding & Umbanhowar (2006) figure 4(b). Phase diagram
for j = {4, 5, 2} with (ã4, ã5, ã2) = (3.8, 5.8, 0.8)g̃. (The position of this point for
(φ5, φ2) = (16◦, 32◦) is shown in figure 7(c).) (a)-(c) stability regions for squares, hexagons
and quasipatterns respectively. Coloured symbols stable; grey unstable. (d) ‘Most stable’ plan-
forms: + squares; ∗ hexagons; � quasipatterns. The results are overlaid on figure 4(b) of Ding &
Umbanhowar (2006). Adapted with permission from Ding & Umbanhowar (2006). Copyrighted
by the American Physical Society. The cross indicates the point which corresponds to the cross
in figure 7.

theory and experiment. The experimental results for the pattern at onset are consistent
with the theory, but sometimes the pattern at onset is not that predicted by considering
the Lyapunov argument. This is one difficulty in comparing with experiment post festum,
since in regions of bistability, which pattern is observed can depend on the way that the
experiments are performed.
(c) When the additional forcing component (ã2 6= 0) is included that promotes the

mode with frequency 2ω̃/2, then in both theory and experiments patterns associated
with the resonant angle are promoted and consequently appear for a larger region of
parameter space.
(d) In the experimental results, the additional forcing causes regions where both hexag-

onal states and superlattice patterns occur close to onset. This is also true in the weakly
nonlinear analysis, but to a lesser extent, see figure 7 and 11. There are two possible
causes here: firstly, the theoretical results are sensitive to the phase, so changing the
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Figure 10. Comparison with Ding & Umbanhowar (2006), figure 2.
j = {6, 7}, (φ6, φ7) = (0, 40◦), ω̃/2π = 16.5 Hz. (a)-(b) stability regions for rectangles
and hexagons. Coloured symbols stable; grey unstable. (c) ‘Most stable’ planform: + rectangles;
∗ hexagons, overlaid on figure 2 of Ding & Umbanhowar (2006). Adapted with permission from
Ding & Umbanhowar (2006). Copyrighted by the American Physical Society.
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ã2(g̃)

ã
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Figure 11. Comparison with Ding & Umbanhowar (2006), figure 6(a).
j = {6, 7, 2}, ã7 = 7g̃, (φ6, φ7, φ2) = (0, 40◦, 80◦), ω̃/2π = 16.5 Hz. (a)-(c) stability re-
gions for rectangles, hexagons and superlattice patterns respectively. Coloured symbols stable;
grey unstable. (d) ‘Most stable’ planforms superimposed on figure 6(a) from Ding & Umban-
howar (2006). Adapted with permission from Ding & Umbanhowar (2006). Copyrighted by the
American Physical Society. The same symbol styles are used for both experiments and theory
(△ superlattice; ∗ hexagons; + rectangles; • disordered states). Coloured symbols represent
theoretical results and black symbols are the experimental results.

phase can expand the region of stable superlattice patterns. Secondly, the presence of
the weakly damped 2ω̃/2 mode means that the results are in a region that is close to
a bicritical point where both 2ω̃/2 and 4ω̃/2 modes onset simultaneously. In the neigh-
bourhood of this bicritical point, one would expect the regions of stability as predicted
from a codimension one analysis, at best, be perturbed, and, at worst, be inaccurate. We
will return to this point in the discussion and note for now the red line in figure 7 that
marks the onset of this mode.
(e) Quantitative agreement in most cases only occurs close to onset.

In addition, in all cases, close to the subharmonic instability boundary the theory
predicts squares (not shown in the figures), as seen in the experiments.
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Figure 12. Comparison with Ding & Umbanhowar (2006), figure 6(b). Phase diagram for
j = {6, 7, 2}, (ã6, ã7, ã2) = (5.2, 7.8, 0.6)g̃, ω̃/2π = 16.5 Hz. (a)-(c) stability regions for rectan-
gles, hexagons and superlattice patterns respectively. Coloured symbols stable; grey unstable.
(d) ‘Most stable’ planform, superimposed on figure 6(b), Ding & Umbanhowar (2006). △ su-
perlattice; ∗ hexagons; + rectangles. Coloured symbols represent theoretical results and black
symbols are the experimental results. Note that in (d) hexagons are rarely the ‘most stable’
planform: whenever hexagons are stable, rectangles usually are too. Although the Lyapunov
energy for hexagons is often similar to that for rectangles, rectangles nearly always have the
lowest value.

6. Discussion

The Faraday problem is an important pattern-forming system, yet it is particularly
challenging to tie theory to experiment. The experiments are difficult to perform; the
parameter regime of interest (large box, moderate viscosity) along with the technical
difficulties of solving the free boundary Navier–Stokes equations make numerical solution
of the problem hard, to the extent that although there has been some progress (see Périnet
et al. (2009, 2012)) it is only very recently that any fully three-dimensional calculations
of superlattice patterns in the Faraday problem have been reported Kahouadji et al.

(2015). The fact that the instabilities result in an entire circle of unstable wavenumbers
presents considerable theoretical difficulties (see Melbourne (1999)) and has meant that
theory is, by necessity, restricted to a finite number of modes—the finite number normally
chosen as the minimal set which will allow for the existence of the experimental pattern
of most interest. Furthermore, by its nature, weakly nonlinear theory cannot be expected
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to capture behaviour that is inherently strongly nonlinear: so a weakly nonlinear analysis
of the transition from non-patterned to patterned state can only be expected to agree
with experiment close to onset.
Nevertheless, our detailed comparison with Ding & Umbanhowar (2006) shows very

good agreement between experiment and weakly nonlinear results at onset, with the
caveat that the theory often predicts bistability of patterns. Where there is bistability,
the observed pattern will be dependent on the path taken through parameter space and
might consist of competition between the different possible stable states. Consequently,
in some cases it is only possible to say that the weakly nonlinear theory is consistent
with experiments.
The results suggest that the qualitative idea that the three-wave resonances determine

the angles that appear in the patterns does indeed explain many of the patterns observed
close to onset.
The results also highlight the particular aspects of the Faraday problem that lead to

an amplification of bres. Equation (4.5),

b(θres) = b0 + bres, bres = −
α1α2

λ2

,

suggests that there are two main contributions, one from the quadratic coupling coeffi-
cients (α1 and α2) and one from the linear damping of the weakly damped mode (λ2).
Promotion of patterns with angle θres requires the quadratic coefficients to be sufficiently
large and/or the damping to be sufficiently small. As illustrated in figure 13(a) and (b)
for j = {4, 5} and in (d) and (e) for j = {4, 5, 2} although increasing a5 and heading
towards the bicritical point would appear to change the value of the linear damping for
the 2ω̃/2 tongue, this is in fact not the dominant effect. This can be seen in figure 13(c)
and also in (f) where the Floquet multipliers are plotted for both ã5 = 0 and a value of
ã5 near the bicritical point. It can be seen that increasing the amplitude of the j = 5
mode in the forcing promotes the 5ω̃/2 tongue, as expected, but has little impact on the
damping of the other modes. In contrast, now comparing figure 13(c) with (f), we see
that the addition of the j = 2 mode does have the effect of reducing the damping of the
mode associated with the 2ω̃/2 tongue as seen by an increase in the Floquet Multiplier
from approximately 0.5 for ã2 = 0 to 0.9 for ã2 = 0.8g̃.

Rather than changing the damping of the weakly damped mode, increasing the am-
plitude of the j = 5 mode, so heading towards the bicritical point, has the effect of
increasing the quadratic coefficients α1 and α2: in the limit when ã5 = 0 the quadratic
coefficients are zero. This is because the temporal resonance condition discussed in sec-
tion 4.1 is not met when ã5 = 0, so there can be no coupling between the 2ω̃/2 mode
and the 4ω̃/2 mode.

Topaz et al. (2004) consider a weak viscosity limit and show that in the case of
j = {m,n} forcing the temporal resonance condition results in possible three-wave inter-
actions with an (n−m) mode, where one expects

bres =
α|an|

2

|λ2|
, (6.1)

where λ2 is the linear damping of the weakly damped mode and α is a coefficient.
Although this cannot necessarily be expected to apply to the moderate viscosity case of
the experiments in Ding & Umbanhowar (2006), we see in figure 14 that the calculated
values for bres for the j = {4, 5} case have a close to quadratic dependence on a5 as
suggested by equation (6.1). For j = {m,n, p} frequency forcing that has a three-wave
resonance with an (n −m) mode, as for the case j = {4, 5, 2}, Topaz et al. (2004) find
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Figure 13. Linear stability curves and Floquet multipliers for j = {4, 5} and j = {4, 5, 2}
excitation using parameter values as in Ding & Umbanhowar (2006). (a) and (b) Linear stability

curves for f̃(t̃) = ã(cosχ cos 4ω̃t̃ + sinχ cos 5ω̃t̃), where (a) has χ = 0 and (b) has χ = 63◦. (c)
the corresponding Floquet multipliers where the solid line is for χ = 0 and the dashed line is for
χ = 63◦. The Floquet multipliers are calculated for ã fixed at the value for the minimum of the
4ω/2 tongue. So, for χ = 0, ã = 4.35g̃, for χ = 63◦, ã = 7.19g̃ (d) and (e) Linear stability curves

for f̃(t̃) = ã(cosχcos 4ω̃t̃+ sinχ cos 5ω̃t̃+ â2 cos 2ω̃t̃) where (a) has χ = 0, a2 = aã2 = 0.8g and
(b) has χ = 62◦, ã2 = ãâ2 = 0.8g̃. (c) The corresponding Floquet multipliers where the solid
line is for case (d) where ã5 = 0 and the dashed line is for (e) where ã5 6= 0. The Floquet
multipliers are calculated for ã fixed at the value for the minimum of the 4ω̃/2 tongue. So, for
χ = 0, ã = 4.40g̃, for χ = 63◦, ã = 7.27g̃.

that the dominant contribution to bres is given by

bres = α|an|
2P2(Φ), (6.2)

where Φ = φp + 2φm − 2φn and P2 is given by

P2 =
|λ2|+ µa2 sinΦ

|λ2|2 − µ2a22
,

where µ is a coefficient. As a2 → 0, equation (6.2) reduces to equation (6.1). However,
for a2 non-zero, the effect of P2 is to make the leading order dependence of bres on a2 not
purely quadratic, so it is not surprising that for this case, an assumption of quadratic
dependence fits less well.
Note that the Φ dependence, which comes from a parameter symmetry, does explain

the strong diagonal structure to the figures showing the pattern dependence as a function
of two of the phases, see figures 9 and 12.
There is a further issue to consider. Increasing the amplitude of the j = 2 mode

brings the location of the bicritical point where both the 4ω̃/2 and the 2ω̃/2 mode onset
simultaneously closer to the pattern onset point. This is seen in figure 7 which shows
both the linear stability boundaries for both 4ω̃/2 and 2ω̃/2 modes. The proximity of
the linear stability boundary means that, in order to quantitatively predict the regions
of quasipatterns, it is likely that one would need to consider the tri-critical problem
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Figure 14. The value of bres for j = {4, 5} (crosses) and for j = {4, 5, 2} (dots) for increasing
ã5. The solid lines are proportional to ã2

5. Parameter values as in Ding & Umbanhowar (2006)
but with ν̃ = 0.21cm2s−1.

where 4ω̃/2, 5ω̃/2 and 2ω̃/2 modes all occur simultaneously. The onset boundaries for
the three modes for j = {4, 5, 2} are shown in figure 15: the position of the tri-critical
point is at approximately (ã4, ã5, ã2) = (3.5, 6.4, 1.0)g̃. The situation for j = {6, 7, 2}
forcing is similar, and one explanation for discrepancies between the weakly nonlinear
theory and experimental results may be that they are a consequence of the proximity of
the codimension three point. This kind of discrepancy was previously demonstrated by
Riyapan (2012) in a comparison of a codimension one and a codimension two analysis of
superlattice patterns in a model PDE.

Another important feature of the analysis considered here is that, the codimension
one description of the problem results in amplitude equations that are variational. This
variational structure is useful and it enables us to construct a Lyapunov functional to
predict the ‘most stable’ pattern. However, this variational framework also means that all
predicted patterns repeat with either the period or half the period of the drive but cannot
exhibit more complicated time dependence. As discussed in Rucklidge et al. (2012), in
the vicinity of the bicritical point and depending on the signs of the quadratic terms,
an infinite sequence of resonances can take place leading to spatio-temporal chaos. This
may explain some of the disordered states seen close to onset in the experiments in
Epstein & Fineberg (2004) and Ding & Umbanhowar (2006). The difficulties of analysing
and numerically solving the time-dependent Navier-Stokes equations leave a clear role
for reduced models here. For example, the model of Zhang & Viñals (1997) is derived
from the Navier–Stokes equations under the assumptions of infinite depth and weak
viscosity but, as was shown in Skeldon & Porter (2011), weakly nonlinear analysis of
the Zhang–Viñals equations agrees surprisingly well with weakly nonlinear analysis of
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Figure 15. Surfaces for the onset of modes with frequencies 4ω̃/2, 5ω̃/2 and 2ω̃/2. Parameter
values as in Ding & Umbanhowar (2006) but with ν̃ = 0.21cm2s−1.

the full Navier–Stokes equations even for the moderate viscosity values used in many
Faraday experiments.

Finally, our results suggest that weakly nonlinear theory is a useful tool to understand
the pattern transitions near onset, but there are some caveats. Ideally experiments and
theory would be done hand-in-hand otherwise it may be hard to get agreement even in
the linear theory, as we saw in section 3; or establish which modes are present in patterns,
as we saw in section 4; or establish if there is bistability, as we saw in section 5. There are
even problems at the basic level of the definition of the forcing in equation (2.1). In single
frequency experiments changing the sign of f(t) is equivalent to a phase shift in time, so
the sign of the forcing is not important. However, for multiple frequencies the analogous
result is perhaps less transparent: changing the sign requires not just a translation in
time but requires an altered definition for the phases. The particular sign convention
used by any one experimental group will depend on how the accelerometer is wired up to
the experiment. Specifically, it will depend on whether or not the accelerometer records
its maximum value when the oscillator is at its highest point or at its lowest. This level
of detail is not normally recorded — perhaps because an assumption is made that it does
not matter. However, this can lead to some confusion: for example, the phase invariant Φ
discussed in Porter et al. (2004) is derived with one particular choice of sign for f(t) and
thus one specific definition of the phases for the forcing components. Ding & Umbanhowar
(2006) note that they find a difference between the position of the maximum value of the
phase invariant and the theory of Porter et al. (2004) and between their results and those
of Epstein & Fineberg (2006), but in both cases these differences can be explained by a
different convention for the sign of the forcing f(t). Based on the observations in Ding
& Umbanhowar (2006), we have used the same sign convention as Porter et al. (2004)
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for our comparison with the work of Epstein & Fineberg (2006) and the opposite sign
convention for Ding & Umbanhowar (2006).

Appendix A. Calculating Floquet multipliers

The Floquet multipliers can be calculated by considering the linear stability of the triv-
ial solution (2.9) of equation (2.6) and associated boundary conditions to perturbations
of the divergence free form

u =

(

i

k
∂zW (z, t), 0,W (z, t)

)

eikx.

This leads to a fourth order equation for W (z, t) for −h̃/l̃ < z < 0

(

∂t − C
(

−k2 + ∂zz
)) (

−k2 + ∂zz
)

W = 0, (A 1)

with boundary conditions at z = −h̃/l̃,

W (−h̃/l̃, t) = ∂zW |
−h̃/l̃ = 0

and at z = 0,

∂tZ = W,
(

k2 + ∂zz
)

W = 0,
(

∂t + C
(

3k2 − ∂zz
))

∂zW = −
(

(1 + f(t))k2 +Bk4
)

Z.

A finite difference discretization of equation (A 1) and its boundary conditions is then
carried out by letting Wn

j = W (zj , tn), j = 0..J, zj = −h̃/l̃ + h̃j/l̃J and tn = nδt and
Zn = Z(tn). The resulting map is of the general form

A



















Wn+1
1

Wn+1
2

...
Wn+1

J−1

Wn+1

J

Zn+1



















= B(tn)



















Wn
1

Wn
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...
Wn

J−1

Wn
J

Zn



















, (A 2)

where A and B are (J + 1)× (J + 1) matrices given by

A =























r 1 0
1 r 1 0
0 1 r 1 0
...

. . .
...

0 1 r 1 0
0 2 r 0

0 1




















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and

B =































c+ Cδt/δz2 b Cδt/δz2 0
b c b Cδt/δz2 0

Cδt/δz2 b c b Cδt/δz2 0
0 Cδt/δz2 b c b Cδt/δz2 0
...

. . .
...

0 Cδt/δz2 b c b Cδt/δz2 0
Cδt/δz2 b c− Cδt/δz2 b+ d 0

2Cδt/δz2 b+ e c+ g f̃n

0 δt 1































.

where

r = −
(

2 + k2δz2
)

b = 1− 2Ck2δt− 4C
δt

δz2

c = −
(

2 + k2δz2
)

+ C
δt

δz2
(

6 + 4k2δz2 + k4δz4
)

d = C
δt

δz2
(

2− k2δz2
)

e = 1− 4Ck2δt

fn = 2δtδz
(

(1 + f(tn)) k
2 +Bk4

)

g = −C
δt

δz2
(

2− k2δz2
)2

.

The matrix B contains time dependence through the term fn(tn).
The map (A2) is iterated through one period, T , of the drive resulting in a map

WN = DW0 that takes W0 to WN where N = T/δt. The eigenvalues of the matrix D

then give the required Floquet multipliers.

This paper builds on discussions about pattern formation in the Faraday problem with
many individuals over the years. In particular the authors would like to acknowledge the
input of Mary Silber, Jeff Porter and Jay Fineberg. We thank the referees for their
thorough reading of the paper and their helpful comments.
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