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Abstract. Three dimensional microscopy images present significant po-
tential to enhance biomedical studies. This paper presents an automated
method for quantitative analysis of 3D primary vessel structures with
histology whole slide images. With registered microscopy images, we
identify primary vessels with an improved variational level set frame-
work at each 2D slide. We propose a Vessel Directed Fitting Energy
(VDFE) to provide prior information on vessel wall probability in an
energy minimization paradigm. We find the optimal vessel cross-section
associations along the image sequence with a two-stage procedure. Ves-
sel mappings are first found between each pair of adjacent slides with a
similarity function for four association cases. These bi-slide vessel com-
ponents are further linked by Bayesian Maximum A Posteriori (MAP)
estimation where the posterior probability is modeled as a Markov chain.
The efficacy of the proposed method is demonstrated with 54 whole slide
microscopy images of sequential sections from a human liver.

1 Introduction

Whole slide histological images contain rich information about morphological
and pathological characteristics of biological systems, enabling researchers and
clinicians to gain insights on the underlying mechanisms of the disease onsets and
pathological evolutions of distinct cancers. Although numerous imaging analyt-
ical approaches have been proposed to quantitatively analyze the 2D biological
structures (such as nuclei and vessels) in microscopy images [1], various clini-
cal applications require 3D modeling of the micro-anatomic objects for better
characterization of their biological structures in practice. One such application is
liver disease diagnosis where clinicians and researchers are interested in the 3D
structural features of primary vessels from a sequence of 2D images of adjacent
liver sections [2, 3], as illustrated in Fig. 1(a). Although there are a large suite
of methods for vessel structure analysis, they mainly focus on radiology image
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analysis and are not directly applicable to high resolution whole slide histological
images encoding enormous information of complex structures at cellular level.

In this paper, we propose an automated framework for 3D primary vessel
reconstruction with a set of registered histological whole slide images of liver
sequential tissue sections. To identify vessels, we use an improved variational level
set method with a Vessel Directed Fitting Energy (VDFE) as prior information
of vessel wall probability for the energy minimization paradigm. We associate the
segmented vessel objects across all slides by mapping primary vessels between
adjacent slides with four distinct association scenarios, and apply a Bayesian
Maximum A Posteriori (MAP) framework to the bi-slide vessel components to
recover the global vessel structures across all slides.

2 Methods for 3D Vessel Reconstruction

2.1 Automated 2D Vessel Segmentation

Due to large variations introduced by whole slide microscopy image preparation
and strong heterogeneity embedded in tissue anatomical structures, vessels of in-
terest in liver biopsies present distinct staining intensities. Although a number of
level set methods have been proposed to solve this issue [4, 5], these formulations
only work well when a given image has two primary classes of connected regions.
In our dataset, each typical liver image consists of primary vessel walls, lumens,
small vessel walls, bile ducts, and non-tissue regions, each presenting different
intensity characteristics. One solution is to employ multiple fitting functions to
reach functional minimum [5]. However, this would inevitably increase the com-
putational complexity. As we focus on identifying primary vessel walls in this
work, we propose an improved formulation with directed prior information on
vessel wall probability within a variational level set framework based on [5]. Let
us denote two 2D vectors x and y defined over the image domain Ω of image
I. Level set φ : Ω → R is a Lipschitz function defined over Ω. Vessel Directed
Fitting Energy (VDFE) EV is then defined as follows:

EV(x, f1, f2, φ) =λ1

∫

Ω

Gσ2
(‖x − y‖)Qσ3

(y)|I(y) ∗ Gσ1
(y) − f1(x)|2U1(φ(y))dy

+ λ2

∫

Ω

Gσ2
(‖x − y‖)P (y)|I(y) ∗ Gσ1

(y) − f2(x)|2U2(φ(y))dy

(1)
wheref1(x) and f2(x) are two fitting functions for interior and exterior regions of

zero level set. Gσ is a bivariate Gaussian filter; Ui(φ(x)) =

{

H(φ(x)), if i = 1

1 − H(φ(x)), if i = 2

and H(x) is a Heaviside step function; Qσ(x) = exp
(

− |∇x|2

2σ2

)

is a function de-

scribing image smoothness. P (y) = max p(y, si, τ, ω) is a pre-computed vessel
wall probability map indicating the likelihood of pixel y belonging to a vessel
wall [6] where si is the ith scale of a Gaussian filter that convolves with the
image channel representing vessel-specific immunohistochemical stain DAB [7];
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τ and ω are parameters governing the sensitivity of P (y) to measures of vessel
structure similarity and intensity change magnitude. We set τ = 0.5 and ω = 15.

In our formulation, fitting function f1(x) fits better to y in close proximity
to x and with large Qσ3

(y). Similarly, f2(x) is biased to image locations y close
to x and with large P (y). Compared with small vessels, primary vessels have
longer edge contours where Qσ3

(y) is low. Thus, VDFE minimization guarantees
that f1(x) is automatically elected to fit to primary vessel wall regions where
Qσ3

(y) is small and that f2(x) fits to non-primary vessel regions where P (y)
is small. Therefore, the proposed VDFE uses joint information derived from
image regions, vessel edges, and the prior vessel wall probability map. To reg-
ulate zero level set smoothness, and retain signed distance property for stable
level set function computation, we use the following accessory energy terms [8]:
E1(φ(x)) = αQσ3

(x)|∇H(φ(x))| and E2(φ(x)) = βR(|∇φ(x)|). In addition, we
introduce another energy term to expedite zero level set convergence to vessel
walls: E3(φ(x)) = γ (1 − P (x)) H(φ(x)). Combining all energies, we formulate
the following functional to be minimized:

J (f1(x), f2(x), φ) =

∫

Ω

[

EV(x, f1(x), f2(x), φ) +

3∑

i=1

Ei(φ(x))

]

dx (2)

We update f1, f2, and φ in two sequential steps within each iteration as
suggested by the local binary fitting model [5]. First, we fix φ(x) and optimize
f1(x) and f2(x) to minimize functional by solving the system of Euler-Lagrange
equations. Next, we minimize functional J by optimizing φ(x) with two updated
fitting functions unchanged. Note that we can swap integration variables x and y,
change the integration order for the energy term EV, and re-write the integrand:

L(x, φ(x)) = λ1

∫

Ω

Gσ2
(‖y − x‖)|I(x) ∗ Gσ1

(x) − f∗
1 (y)|2dy

︸ ︷︷ ︸

defined as: F1(x)

Qσ3
(x)H(φ(x))

+ λ2

∫

Ω

Gσ2
(‖y − x‖)|I(x) ∗ Gσ1

(x) − f∗
2 (y)|2dy

︸ ︷︷ ︸

defined as: F2(x)

P (x)(1 − H(φ(x)))

+ α Qσ3
(x)|∇H(φ(x))| + β R(|∇φ(x)|) + γ (1 − P (x))H(φ(x))

By the Euler-Lagrange equation, we have the final updating equation as:

∂φ(x; t)

∂t
= −

∂J (φ)

∂φ
= −

∂L(x, φ(x))

∂φ(x)
+

2∑

i=1

∂

∂xi

(

∂L(x, φ(x))
∂φ(x)
∂xi

)

=
[

λ2F2(x)P (x) − λ1F1(x)Qσ3
(x)
]

H ′(x)

+ α
[

Qσ3
(x) ·

∇φ(x)

|∇φ(x)|
+ Qσ3

(x)div

(
∇φ(x)

|∇φ(x)|

)]

H ′(x)

+ β div
(R′(|∇φ(x)|)

|∇φ(x)|
∇φ(x)

)

− γ(1 − P (x))H ′(φ(x))

(3)
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2.2 Two-stage Vessel Association with Vessel Cross-sections

We perform vessel association by two steps: local bi-slide vessel mapping and
global vessel structure association. At each stage, we consider four different as-
sociation cases: one-to-one (growth), one-to-two (bifurcation), one-to-none (dis-
appearance) and none-to-one (appearance). For local bi-slide vessel mapping, we
take into account vessel shape descriptors and spatial features, with the overall
similarity function for each association case defined as follows:
(1) One-to-one: s

(
vt

i , v
t+1
j

)
= µ1 g

(
vt

i , v
t+1
j

)
+ µ2 d

(
vt

i , v
t+1
j

)

(2) One-to-two: s
(
vt

i , v
t+1
j1

, vt+1
j2

)
= µ1 g

(
vt

i , v
t+1
j1

∪ vt+1
j2

)
+µ2 d

(
vt

i , v
t+1
j1

∪ vt+1
j2

)

(3) One-to-none: s
(
vt

i , v
t+1
∅

)
= d (vt

i , Ωt)

(4) None-to-one: s
(
vt−1

∅
, vt

i

)
= d (vt

i , Ot)
where vt

i is the ith vessel object in slide t; functions g (·) and d (·) are two Gaus-
sian Radial Basis Functions (GRBF) with scale κ1 and κ2, representing the
similarity of vessel appearance by Fourier shape descriptors and the spatial dis-
tance between two vessel objects, respectively; Ωt and Ot are the boundary and
centroid of slide t; {µ1, µ2} with µ1 +µ2 = 1 are constant weights to control the
bi-slide vessel mapping smoothness.

The bi-slide vessel mapping is considered as a multi-object tracking problem,
and solved by constrained Integer Programming [9] based on the defined similar-
ity functions. This stage generates a set of bi-slide vessel components B = {Bi}.
Next, we reconstruct the global vessel structures by linking {Bi} across all slides
within a Bayesian Maximum A Posteriori (MAP) framework [10, 11]. Denote
V = {Vk} as the set of hypotheses on vessel structures over all slides. Each
vessel structure Vk may contain the pre-defined four association cases and can
be written as Vk = {Bk

i } where Bk
i is the ith bi-slide vessel component in vessel

structure Vk. Bk
i can be represented as Bk

i = (vk
p′ → vk

p ) where vk
p′ and vk

p are

the associated vessel objects linked by Bk
i . We maximize the following marginal

posterior probability to obtain the best vessel structure hypothesis V∗:

V∗ = argmax
V

P (V|B) = argmax
V

∏

Vk∈V

P (Vk|B) = P∅→1
Bk

s ∈Vk

(
Bk

s |B∅

)

∏

Bk
i ,Bk

j ∈Vk

P1→1

(
Bk

j |B
k
i

) ∏

Bk
m,Bk

n1
,Bk

n2
∈Vk

P1→2

(
Bk

n1
, Bk

n2
|Bk

m

) ∏

Bk
e ∈Vk

P1→∅

(
B∅|B

k
e

)

(4)
As no vessel structure in our dataset overlaps with others (i.e., Vk ∩Vl = ∅, ∀k 6=
l), we assume each Vk is conditionally independent given B. We model P (Vk|B)
as a Markov chain by taking into account the four distinct association cases;
Bk

s and Bk
e are the “start” and “end” components of Vk, respectively; Bk

x with
x ∈ {i, j, m, n1, n2} represents an intermediate vessel component. Probabilities
for the four defined association cases are:
P1→1

(
Bk

j |B
k
i

)
= ω1 g

(
vk

p , vk
q

)
+ ω2 d

(
vk

p , vk
q

)
+ ω3 b

(
vk

p , vk
q

)

P1→2

(
Bk

j |B
k
i

)
= ω1 g

(
vk

m, vk
n1

∪ vk
n2

)
+ω2 d

(
vk

m, vk
n1

∪ vk
n2

)
+ω3 b

(
vk

m, vk
n1

∪ vk
n2

)

P1→∅

(
B∅|B

k
e

)
= Lα

const, P∅→1

(
Bk

s |B∅

)
= L

β
const

where Bk
i = (vk

p′ → vk
p ) and Bk

j = (vk
q → vk

q′ ); function b (·) indicates the
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change of a vessel trajectory. Lα
const and L

β
const are constant likelihoods of bi-slide

vessel components being the last and the first in vessel structure Vk, respectively;
{ω1, ω2, ω3} s.t. ω1 +ω2 +ω3 = 1 are constant weights to adjust the global vessel
association smoothness. Function b is defined as:

b
(
Bk

i , Bk
j

)
= exp

(
−
(
a
(
vk

p′ , vk
p , vk

q

)
− a

(
vk

p , vk
q , vk

q′

))
/κ2
)

(5)

where a
(
vk

p′ , vk
p , vk

q

)
is defined as

〈o(vk
p′)−o(vk

p), o(vk
p)−o(vk

q )〉
||o

“

vk

p′

”

−o(vk
p)|| ||o(vk

p)−o(vk
q )||

, indicating the

orientation change when Bk
i is associated with Bk

j . o(·) is a vector pointing
to a vessel center. Next, we take logarithm of the objective function and solve
the MAP problem by Linear Programming technique. We assume there are M
bi-slide vessel components generated from all slides and h possible associations
between these bi-slide vessel components. The optimal global vessel structures
can be achieved by solving the following problem:

arg max
x

pT x s.t. (RT x)i ≤ 1, 0 ≤ xj ≤ 1 (6)

where i = 1, ..., 2M , j = 1, ..., h; p is a h× 1 vector with each entry representing
the likelihood of one bi-slide vessel association; R is a h×2M binary matrix with
each column indicating the index of bi-slide vessel components on the global
association; (RT x)i is the ith element of (RTx) and the constraint (RTx)i ≤ 1
guarantees that each bi-slide vessel component can be selected at most once;
the optimal solution x is a h × 1 binary vector where xj = 1 indicates the
jth association is included in the optimal solution. In our tests, the resulting
optimal solution by Standard Simplex algorithm [9] is identical to that of the
Integer Programming problem.

3 Experimental Results and Validation

We have tested our method on 54 registered whole slide images of sequential liver
tissue sections from one human patient, with z -resolution of 50µm. These biopsy
sections are stained by Immunohistochemistry (IHC). The resulting images for
analysis are down-sampled from the base level by 64:1, with the final resolution
of 1530 × 1373 pixels. We apply our segmentation method to images with pa-
rameters: σ1 = 1, σ2 = 4, σ3 = 1.5, λ1 = λ2 = 1, α = 65, β = 2, γ = 5. In general,
we can have similar results with reasonable perturbations to this parameter set.
The segmentation time cost for each image is 43.65 ± 0.63 seconds in Matlab
R2013 with Dual Xeon E5420 CPUs at 2.5Ghz. In Fig. 1, we present vessel seg-
mentation results from a typical image where the detected vessels are marked in
green. The final vessel detection results in Fig. 1(e) are produced by combining
final vessel wall results in Fig. 2(a) with detected lumens after removing can-
didates with unduly long perimeter length. To further examine the efficacy of
VDFE directing level set function to vessel boundaries, we illustrate in Fig. 2
vessel wall segmentation results with and without prior information on vessel
wall probability before post-processing. It is apparent that VDFE in Fig. 1(a)
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Fig. 1. Representative segmentation result of primary vessels. (a) a typical 2D liver
histology image with vessels highlighted in brown; (b) DAB stain image channel derived
from color deconvolution; (c) vessel wall probability map P (x); (d) smooth indicator
function Qσ3

(x); (e) segmented primary vessels after post-processing (in green); and
(f) markup image with one-to-one vessel pairs by human (red) and machine (green),
with yellow mask resulting from red and green mask.

navigates zero level set to specific vessel edges in a target segmentation process.
By contrast, results without VDFE guidance in Fig. 1(b) show that zero level set
partitions the image purely based on fitting error (or homogeneity), with poor
selective specificity to primary vessel boundaries. We compare our segmentation
results with primary vessel annotations by human. Due to the large number of
vessels in presence and variable confidence of vessel recognition by their appear-
ances, only representative primary vessels with high recognition confidence are
annotated by human. Table 1 presents the validation results of all one-to-one
human-machine vessel pairs measured by Jaccard coefficient, precision, recall,
F1 score, and Hausdorff distance. We also compare our Vessel Directed Level
Set (VDLS) method with morphological reconstruction (MR) approach [12] in
Table 1.

To avoid unduly high vessel association complexity and error, we apply our
vessel association approach to top 30 candidates by size on each slide. The most
expensive computation is linear programming (64.56 ± 3.49 seconds). The pa-
rameters are empirically set as µ1 = 0.63, κ2

1 = 50000, κ2
2 = 50, ω1 = 0.54,

ω2 = 0.36, κ2 = 500, Lα
const = 0.5 and L

β
const = 0.5. After vessel association, we

perform B-Spline interpolation between adjacent associated vessel objects due to
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Fig. 2. Primary vessel wall segmentation result of (a) directed and (b) non-directed
prior information on vessel wall probability before post-processing.

Table 1. Evaluation of the segmentation results (Mean ± Standard Deviation).

Jac Pre Rec F1 Haus

MR 0.45 ± 0.21 0.60 ± 0.27 0.77 ± 0.26 0.59 ± 0.22 34.48 ±75.45

VDLS (our method) 0.84 ± 0.10 0.96 ± 0.06 0.87 ± 0.08 0.91 ± 0.07 6.82 ± 30.99

low z -axis data resolution, and volumetrically render the 3D vessel structures.
In Fig. 3(a), we present a panoramic view of our 3D visualization result for
representative primary vessels from our dataset. One close-up view of a vessel
segment is illustrated in Fig. 3(b). The right most image frame observed from
right to left in the panoramic view is shown in Fig. 3(c), with color-coded 2D
vessel candidates for 3D reconstruction. Note that reconstructed vessels with
candidates by MR method are generally shorter due to imperfect vessel identifi-
cation in intermediate image frames. As our analysis focuses on primary vessels,
the vessel association result is relatively robust to registration outputs.

4 Conclusion

In this paper, we present an automated framework for 3D primary vessel struc-
ture analysis on whole slide histological images of liver tissue sections. For vessel
segmentation, we propose an improved variational level set framework with prior
information on vessel wall probability. We achieve optimal vessel associations by
local bi-slide vessel mapping and global vessel structure association within a
MAP framework. Experiments with real world use case present satisfactory re-
sults and quantitative evaluations demonstrate its effectiveness. In future work,
we will develop a system that can dynamically analyze whole slide images at
higher resolutions to accommodate micro-vessel analysis.
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