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Abstract

There is extensive empirical evidence that travellers consider many ‘qualities’ (travel time, tolls, reliability, etc.) when choosing

between alternative routes. Two main approaches exist to deal with this in network assignment models: Combine all qualities

into a single (linear) utility function, or solve a multi-objective problem. The former has the advantages of a unique solution and

efficient algorithms; the latter, however, is more general, but leads to many solutions and is difficult to implement in larger systems.

In the present paper we present three alternative approaches for combining the principles of multi-objective decision-making with

a stochastic user equilibrium model based on random utility theory. The aim is to deduce a tractable, analytic method. The three

methods are compared both in terms of their theoretical principles, and in terms of the implied trade-offs, illustrated through simple

numerical examples.
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1. Introduction

It has long been known that there are many qualities, other than travel time, that motivate travellers in their choice

of route, such as trip length, tolls and travel time unreliability. For example, from a route choice survey, Abdel-Aty

et al. (1995) identified the three most important qualities to be: (1) shorter travel time (ranked as the first reason by

40% of respondents); (2) travel time reliability (32%); and (3) shorter distance (31%). Note that some people chose

to indicate more than one quality as most important, which explains the sum being bigger than 100%. In the present

paper we are interested in ways in which such multiple qualities may be accounted for in general in a predictive

network model, with a specific focus (given its timeliness) on the way in which travellers deal with the potentially

competing objectives of choosing a route to minimise their mean travel time and choosing one to minimise travel time

unreliability.

Presently there exist two main ways of dealing with multiple qualities in a (deterministic) network user equilibrium

(UE) context. The first (single objective) approach is to combine them into a single measure of generalised cost for

each route and compute traffic flows that satisfy the Wardrop (1952) user equilibrium condition, which is attained

if no user can improve their cost by unilaterally changing their route. A common approach to incorporate several
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route choice qualities is to consider a generalised cost function, which is the sum of monetary cost (such as tolls and

vehicle operating costs, which are closely related to distance) and travel time multiplied by a value of time, see e.g.

Dial (1979); Leurent (1993); Florian (2006); Chen et al. (2010). Regarding travel time reliability, Lo et al. (2006)

formulated a multiple user-class equilibrium model considering travel time and travel time reliability, combined in a

single objective as minimising travel time budget, which is defined as the expected travel time plus a travel time margin

(or buffer time), with the travel time margin being dependent on the level of risk aversion of each user class. Watling

(2006) proposed a late arrival penalised UE (LAPUE) which assumes users minimise a composite path disutility,

incorporating the generalised cost plus a late arrival penalty. A few researchers, such as Larsson et al. (2002) have

also considered nonlinear generalised cost functions.

The second approach, which has been the subject of more recent research, is to treat the qualities separately and

to aim for a multi-objective equilibrium. This approach follows the principle of Pareto optimality or non-dominance

commonly applied in multi-objective optimisation: A multi-objective equilibrium is attained if no user can improve

any of the route choice qualities without deteriorating at least one other. Wang et al. (2010) showed that this approach

is more general than approaches based on (additive) generalised cost functions, even if the latter consider a distribution

of the value of time, as proposed by Leurent (1993) or Dial (1996). In fact, there are multi-objective equilibrium

solutions that are based on rational route choices, that generalised cost approaches will miss. Wang and Ehrgott (2013)

proposed a bi-objective approach considering the qualities travel time and toll, whereas Wang et al. (2014) consider

travel time and travel time reliability (measured as standard deviation of travel time) as route choice qualities, and

Wang and Ehrgott (2014) propose a multi-objective equilibrium model with travel time, travel time reliability and toll

as objectives users aim to minimise.

In Table 1 we summarise other existing approaches from the literature that deal with multiple criteria network user

equilibrium models. For each reference, we distinguish between the route choice criteria that have been considered

and the path cost objective used in the models. We also state whether the model follows the UE or stochastic user

equilibrium (SUE) principle (SO means social optimum) and what source of heterogeneity is considered.

Table 1. Other multiple criteria user equilibrium models.

Reference Criteria Objective UE vs. SUE Heterogeneity

Jaber and O’Mahoney (2009) Service charge, time, toll Generalised cost SUE Multiclass VOT, multigroup information

Leurent (1996) time, cost Generalised time UE VOT distribution

Nagurney (2000) time, cost Generalised cost UE Multiclass VOT

Nagurney and Dong (2002) time, cost Generalised cost UE Multiclass VOT

Tzeng and Chen (1993) time, air polllution, distance Generalised cost UE Discrete set of weights

Yang and Huang (2004) time, cost Generalised cost UE, SO Multiclass VOT

The single-objective approach has the advantage of typically providing a unique solution, see e.g. Florian and

Hearn (1995) and Gabriel and Bernstein (1997), for the case of additive and non-additive path costs, respectively.

This is extremely useful for planners when assessing proposed future policies using the network user equilibrium

model. Also, efficient computational methods have been proposed for implementing it in large-scale systems (Dial,

2006; Florian et al., 2009; Bar-Gera, 2010; Gentile, 2014). However, the difficulty in specifying or estimating any

general form of utility function means that almost always a constant linear form must be assumed, whereas it is not

clear that travellers really perceive or trade off qualities in this way. On the other hand, the multi-objective approach

has the advantage that it does not need to pre-suppose any relationship between the qualities (it is invariant to a

monotone transformation of the qualities). However, its purpose is to generate a whole set of candidate solutions,

which is difficult for planners to use in evaluating policy measures, and also gives rise to computational difficulties for

identifying such solution sets for anything more than small-scale systems.

In the present paper we aim to take the best elements of each of these approaches. We adopt the basic philosophy

of a multi-objective approach, but then aim to derive probability measures which distribute travellers to particular

routes, thus aiming for a unique solution. The methods we shall propose extend and/or generalise the well-known

single objective stochastic user equilibrium (SUE) model (Daganzo and Sheffi, 1977). In doing so, therefore, they

also provide a future pathway to extending efficient algorithms developed for SUE to our new formulations, so that

large-scale systems may be solved. The purpose of the present paper is to set out several alternative candidate formu-
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lations of our multi-objective model. Through simple illustrative examples, we demonstrate the features of the new

approach(es), and compare them with the existing single-objective SUE approach. In particular, since our ultimate

desire is to lead the pioneering work on small-scale multi-objective network problems towards methods that may be

scaleable, we shall aim for an efficient analytic formulation of the problem.

2. Multi-objective Route Choice and Stochastic User Equlibrium

The main focus of the present section will be to set out several alternative behavioural principles that might be

adopted for individual decision-making in a multi-objective setting under uncertainty, from which new notions of

multi-objective SUE are defined. We first set out the well-known principle of random utility theory underlying single-

objective SUE, in Section 2.1. We then propose a first model that extends this principle, of computing the probability

that a particular route is “best”, to the case when multiple route qualities are considered, i.e., we consider the probabil-

ity of a particular route being the best in one of the qualities (Section 2.2). While this model is a natural generalisation

of SUE, it retains important features of it, in particular the property that it allows a closed form solution for the

choice probabilities of the alternatives. On the other hand, we demonstrate that it does not comply with the princi-

ple of Pareto optimality or non-dominance implemented in the multi-objective deterministic user equilibrium (DUE)

models reviewed in Section 1.

In Section 2.3, we propose an alternative multi-objective generalisation of SUE. We show that this model com-

plies with the non-dominance principle, i.e., the model is based on probabilities that a certain route is dominated by

another route in the sense that there exists an alternative route that is not worse in all qualities and strictly better in

at least one of them. This model does, however, require the computation of conditional probabilities, which makes it

computationally expensive.

Finally, we present a model that is computationally tractable and also implements the non-dominance principle,

in Section 2.4. This model is based on describing the attractiveness of an alternative by means of the differences of

the utilities of alternatives (routes) in the different qualities, which are modelled as the sum of a deterministic term

plus a random error. While this model allows closed form solutions, it entails the loss of transitivity of the evaluation

of quality values for alternatives (it is possible that events of the following kind may have positive probability of

simultaneous occurrence with respect to a given quality: Alternative i is more attractive than j, j is more attractive

than l, yet l is more attractive than i). We note that while this may seem an undesirable property from a theoretical

point of view, it is nevertheless a phenomenon that is observed in real-life decision-making, see e.g. Tversky (1969);

Fishburn (1991); Cavagnaro and Davis-Stober (2014) for discussion of non-transitivity of preferences.

We will test the models in Section 3. We shall use these tests to see whether the proposed models comply with the

non-dominance principle of multi-objective optimisation. In particular we expect to find (1) that alternatives which

are non-dominated (there is no other alternative which is not worse in all qualities, and strictly better in at least one)

to all have significantly bigger probabilities of being chosen than dominated ones; (2) that the relationship between

the qualities of alternatives is not necessarily linear (this is because the multi-objective paradigm of non-dominance

does not postulate any particular functional form of this relationship, or trade-off between alternatives). This second

property is also in line with the observation from multi-objective user equilibrium models, that generalised cost models

omit certain rational route choices as mentioned in Section 1.

Throughout the paper we will restrict attention to the case of a network with a single origin-destination movement

with fixed demand. The reason is only to avoid unwieldy notation; the models presented are readily extended in the

obvious way to a general network containing many origin-destination movements, with the relevant choice models

applied to the fixed demands for each such movement.

2.1. The conventional SUE formulation

We assume travellers are choosing between n discrete alternatives (routes). The utility Ui of alternative i is assumed

to have both a deterministic and a random component. The deterministic component of alternative i is formed from a

linear combination of m qualities combined using a linear transformation into a single utility measure

Ui =

m∑
k=1

θkVik + εi (i = 1, 2, . . . , n) , (1)
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where θk (k = 1, 2, ...m) are parameters, and {ε1, ε2, . . . , εn} are continuous random components following some given

joint probability distribution. The probability to choose any alternative i is then given by the probability that it is seen

as being the best alternative in the sense of having highest utility Ui among all the alternatives,

Pr
(
Ui ≥ max

{
U j : j � i, j = 1, 2, . . . , n

})
. (2)

In order to incorporate this in a formulation for SUE, we then suppose that the qualities (such as mean or standard

deviation in travel time) depend on the choices made by travellers, through the flows on the routes of the network. Let

the n-vector f denote the flows on the routes of the network, and let V(f) denote the n×m matrix of qualities across all

route alternatives as a given function of the flow vector f. Let P(V) denote the choice probability function, mapping

from a given matrix of qualities V to an n-vector of choice probabilities, through the combination of Eqn. (1) and

Eqn. (2). If d denotes the demand on the single origin-destination movement, then a flow vector f is an SUE if and

only if it satisfies the fixed point condition

f = dP(V(f)). (3)

This is the conventional approach for using models such as SUE for addressing problems where travellers have mul-

tiple qualities that motivate their choice. In the special case in which we assume the error terms follow independent

Gumbel distributions for the n (route) alternatives, it is well-known that we can derive the probability of alternative i
having the highest utility in closed form, based on a multinomial logit model as

Pr
(
Ui ≥ max

{
U j : j � i, j = 1, 2, . . . , n

})
=

eβ
∑m

k=1 θkVik∑n
j=1 eβ

∑m
k=1 θkV jk

. (4)

Note that β is introduced here as a sensitivity modelling parameter for our later numerical experiments.

2.2. A generalised SUE model derived from non-compensatory, multi-objective considerations, NCSUE

The conventional approach to dealing with multiple qualities, as described in Section 2.1, is based on the key tenet

of compensatory choice, namely that travellers will trade-off the different qualities through a linear utility function with

constant weights. However, it loses a central element of multi-objective decision-making theory, in which individuals

consider the best alternative(s) they can choose with respect to each individual quality. In other words, individuals

may prefer an alternative that they perceive as performing best in one of the m qualities, regardless of its performance

in the other quality. Such an alternative may be assigned a low probability by the multinomial logit model of Eqn.

(4). In the present section, we propose an extension to the SUE decision model which aims to retain the spirit of such

non-compensatory behaviour, while still providing a tractable formulation.

Assume that travellers must choose between n discrete alternatives. Now instead of summing the utilities of an

alternative with respect to m qualities as in Eqn. (1), the attractiveness of each alternative is measured with respect

to the m different qualities separately, so that the utility Uik of an alternative i with respect to a quality k has both a

deterministic and a random component,

Uik = θkVik + εik (i = 1, 2, . . . , n; k = 1, 2, . . . ,m) , (5)

where θk (k = 1, 2, . . . ,m) are parameters, Vik is the measured/deterministic element of utility for alternative i with

respect to quality k, and {εik : i = 1, 2, . . . , n; k = 1, 2, . . . ,m} are continuous random components following some given

joint probability distribution.

For simplicity let us assume that the random components are independent between qualities. Then we aim to

calculate the probability Qi that for every quality (k = 1, 2, . . . ,m), there will be some alternative other than i that will

be seen as better than i . This probability will (by the above-made assumption of independence) simply be the product

over the qualities that some other alternative exists that betters i with respect to that quality, i.e.,

Qi =

m∏
k=1

Pr
(
Uik < max

{
U jk : j � i, j = 1, 2, . . . , n

})
(i = 1, 2, . . . , n) . (6)
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The component probabilities in this product can be calculated according to the usual, single objective random

utility model as

Pr
(
Uik < max

{
U jk : j � i, j = 1, 2, . . . , n

})
= 1 − Pr

(
Uik ≥ max

{
U jk : j � i, j = 1, 2, . . . , n

})
. (7)

Then we can calculate the complement of the probabilities Qi above, namely for each alternative i the probability

that it is the best alternative with respect to at least one quality is

Pi = 1 − Qi (i = 1, 2, . . . , n) . (8)

The final element in the choice model is to then propose that travellers choose alternatives according to the odds

Oi =
Pi∑n

j=1 Pj
(i = 1, 2, . . . , n) . (9)

We may then integrate such a model of probabilistic choice as a way of choosing routes within a congested network

assignment model. As for SUE, we suppose that the qualities V(f) depend on the route flow vector f. Now, however,

we let O(V) denote the odds function, mapping from a given matrix of qualities V to an n-vector of odds, through the

combination of equations Eqn. (5), Eqn. (6), Eqn. (7), Eqn. (8) and Eqn. (9). With d denoting the demand, then we

refer to a flow vector f as an NCSUE (Non-Compensatory SUE) if and only if it satisfies the fixed point condition

f = dO(V(f)). (10)

In the special case of m = 1 quality, the NCSUE model coincides with the conventional SUE model. For m > 1 the

NCSUE model has an attractive feature that it assigns a unique choice probability to each alternative, and that these

are expressible in closed form. However, as we explain in the following section, it does so by making a compromise

in terms of expressing ‘dominance’ in the conventional multi-objective sense. That is to say, in Eqn. (6) it compares

the probability of the given alternative with all other alternatives, and does not consider whether there is a single

alternative that exists that betters the current one. In the limit, as the θk tend to infinity (i.e. as the model approaches

deterministic choice) this certainly does not satisfy the standard definition of dominance. Effectively, in the limit case,

it assumes that travellers become ‘extremists’ who do not really trade off. The model is therefore not expected to be

so useful in such limit cases. However, if the model is calibrated away from the limit, then trade-offs will occur due

to the random error terms.

2.3. Multi-objective stochastic decision-making based on dominance, MSUE

The central element in the model of Section 2.2 is Eqn. (6). Here, due to the assumed independence of the

random components between qualities, the probabilities that alternative i is not the best with respect to quality k
for k = 1, . . . ,m are multiplied, in other words, Qi is the probability that alternative i is not the best in any of the

m qualities. Naturally, this is true if, for each quality k, there exists an alternative that is better than i. However,

this could possibly be a different alternative for each quality. In multi-objective optimisation, on the other hand, the

principle of non-dominance postulates that there be no single alternative that is at least as good or better than i for

all qualities k. Therefore, the NCSUE model proposed does not, in the limit as deterministic choice is approached,

satisfy the multi-objective principle of non-dominance. In the present section, as an alternative, we consider a model

formulation that does indeed satisfy such a property in the limit.

In this case, what we require instead of Eqn. (6) is the probability that alternative i is dominated, i.e. the probability

that there is an alternative j that dominates alternative i. This is the product over all qualities k = 1, . . . ,m that some

alternative j is better than i in quality k, given that j is already better than i in qualities k′ = 1, . . . k − 1. This is the

product of conditional probabilities

Qi =

m∏
k=1

Pr
(
Uik < max

{
U jk : j � i, j = 1, 2, . . . , n}|Uik′ < max{U jk′ : j � i, j = 1, 2, . . . , n

}
for all k′ < k

)
. (11)
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Thus, from Eqn. (11), and similar to Eqn. (8), the probability that alternative i is non-dominated is

Pi = 1 − Qi (i = 1, . . . , n) . (12)

The probability of an alternative to be chosen (following Eqn. (9)) is then

Oi =
Pi∑n

j=1 Pj
(i = 1, 2, . . . , n) . (13)

In the same way as for the NCSUE model, we now define a flow vector f to be an MSUE (Multi-objective SUE) if

and only if it satisfies the fixed point condition

f = dO(V(f)), (14)

with the difference being that now O(V) is defined through the combination of equations Eqn. (11), Eqn. (12) and

Eqn. (13).

Notice that for the case of m = 1, Eqn. (12) gives the same results as Eqn. (2), and hence, just like the NCSUE

model of Section 2.2, this model is a proper generalisation of the conventional stochastic user equilibrium model to

the multiple objective case. However, the need to consider conditional probabilities in Eqn. (11) incurs a heavy price

for modelling the non-dominance principle: We lose the closed form solution available in the single objective case,

see Eqn. (4), and in the model of Section 2.2. Thus, it seems that the odds of Eqn. (13) need to be computed via Monte

Carlo simulation methods.

2.4. A Multi-Objective Non-Transitive SUE model, MSUE-NT

Assume choosing between n discrete alternatives. The relative attractiveness of an alternative i compared to another

alternative j with respect to m different qualities is based on the difference of the utility Uik of an alternative i with

respect to a quality k and the utility U jk of alternative j with respect to the same quality k. We assume that this

difference has both a deterministic and a random component

Uik − U jk = θk
(
Vik − Vjk

)
+ εi jk (i = 1, 2, . . . , n; k = 1, 2, . . . ,m) , (15)

where θk > 0 (k = 1, 2, . . . ,m) are parameters, Vik is the measured/deterministic element of utility for alternative i
with respect to quality k, Vjk is the measured/deterministic element of utility for alternative j with respect to quality

k. Most importantly we assume that for each quality k and each pairwise comparison of alternatives (i, j), the random

terms εi jk are independent between pairs. We suppose that these random terms follow a distribution that is given by

the difference of two Gumbel random variables (i.e. a logistic distribution).

Hence, if we consider just a single pair of alternatives, the probability of an alternative j to be better than i in terms

of quality k would be the same as in the case of a binary logit model as shown in Eqn. (16),

Qk
j,i = Pr

(
U jk − Uik > 0

)
(16)

= Pr
(
U jk > Uik

)
=

eβθkV jk

eβθkV jk + eβθkVik
.

(Note that β is introduced here as a sensitivity modelling parameter as in Eqn. (4).)

The key property that we introduce here is that of independence between the error terms of pairs of alternatives.

In order to understand this, imagine there is a single quality and three alternatives from which to choose. A standard

multinomial logit model (as underlies SUE) can be effectively implemented by creating random terms (ε12, ε13, ε23)

for the three pairwise comparisons as above, but the key property is that these terms must be generated by a single

set of three independent Gumbel variables (ε1, ε2, ε3), such that (ε12, ε13, ε23) = (ε1 − ε2, ε1 − ε3, ε2 − ε3), and these are

certainly not independent. By assuming, on the contrary, that the random terms (ε12, ε13, ε23) are independent, it will

turn out that we break transitivity of preferences in a probabilistic sense (as we explain below).

Now we apply the concept of non-dominance in multi-objective optimisation. We assume that an individual will

consider an alternative as a plausible alternative as long as it is not dominated by another alternative. So what we are
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interested in, as in Section 2.3, is first to find the probability of an alternative being dominated, denoted by Qi. This is

the probability of the union of the events that alternative i is dominated by some of the n − 1 alternative j � i. Using

the inclusion-exclusion principle, due to the independence of the error terms εi jk, we get

Qi =

n−1∑
d=1

(−1)d+1
∑

j1, j2,..., jd ; jr�i
1≤ j1< j2<...< jd

Q jr ,i, (17)

where Qj,i =
∏m

k=1 Qk
j,i is the probability that alternative i is dominated by alternative j.

Then we can calculate the complement of the probabilities above, namely for each alternative i, the probability Pi

that it is not dominated by any other alternative as in Eqn. (12),

Pi = 1 − Qi (i = 1, 2, . . . , n) (18)

and we choose alternatives according to the odds

Oi =
Pi∑n

j=1 Pj
(i = 1, 2, . . . , n) . (19)

In the same way as for the NCSUE and MSUE models, we define a flow vector f to be an MSUE-NT (Multi-

objective Non-Transitive SUE) if and only if it satisfies the fixed point condition

f = dO(V(f)) (20)

with O(V) defined through the combination of Eqns. (15), (15), (17), (18) and (19).

In the MSUE-NT model, we are thus able to find closed form solutions, by making the assumptions that the

error terms of the differences between alternatives are independent, rather than the error terms on the evaluations of

alternatives according to qualities, as in Eqns. (1) and (5). So what is it, that we lose in comparison to the conditional

probabilities model of Section 2.2? Because of the assumption of independence of the εi jk, it is now possible that

Uik > U jk, U jk > Ulk, yet Ulk > Uik, i.e. we lose transitivity in the comparison of utilities. For example, a traveller

may perceive the standard deviation of travel time on Route 1 as smaller than on Route 2, on Route 2 as smaller than

on Route 3, yet on Route 3 smaller than on Route 1.

3. Illustration of the Route Choice Models

In this section, we will use a simple illustrative example to compare the conventional SUE model as described in

Section 2.1, the NCSUE model described in Section 2.2, and the MSUE-NT model of Section 2.4. Let us assume that

we have a single O-D pair with three possible routes, such as depicted in Figure 3. The qualities we are interested in

are expected travel time and standard deviation of travel time. Empirical evidence suggests that the standard deviation

of travel time has at least two roles in influencing behaviour. The first, and most often used, is the interpretation that

higher standard deviation is likely to be associated with arriving late at the destination (see, for example, Watling

(2006)). A second alternative is as a measure of inconvenience (Noland et al., 1998). That is to say, while individuals

may have flexibility in re-arranging the arrival and departure times of their trips and associated activities, all other

things being equal they prefer not to incur the inconvenience of such re-scheduling. Therefore, they would tend to

avoid the risk of having to do this wherever possible. For example, it may well be possible to bring forward or delay

a meeting in response to travel conditions on the journey to work, but such re-arranging would have a nuisance value

that might be avoided. Noland et al. (1998) found that this nuisance effect was something that could be separately

identified to the issue of concerns for late arrival.

We first consider the hypothetical case of fixed quality values and use fixed values of β = 0.5 and θ = [3, 3]. In

this case no equilibration is required, and so we can just focus on the probabilities/odds of the alternative routes (we

consider the flow-dependent case later).

We consider three cases: In Case 1 all three routes are non-dominated, in Case 2 two routes are non-dominated and

the other is dominated and in Case 3 one route is non-dominated, one is weakly non-dominated (i.e. there is no route
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that is strictly better in all qualities), and the other is dominated. Note that dominance here refers to the deterministic

component of the qualities. These cases are illustrated in Figure 1, which plots the values of standard deviation of

travel time SDT against expected travel time ET for Route 1 (blue), Route 2 (red), and Route 3 (green).

3.1. Case 1 – All routes are non-dominated

Table 2 shows the values for travel time ET, standard deviation of travel time SDT, and the probabilities assigned to

the three routes by the three different models (SUE, NCSUE, and MSUE-NT, respectively). Notice that, because both

the expected travel time and standard deviation of travel time are minimised, but all SUE based models work with

utilities to be maximised, the corresponding utility values are −θ1 ET −θ2 SDT, and −θ1 ET −θ2 SDT, respectively.

Tables 3 and 4 are analogous for Cases 2 and 3.

The standard SUE model clearly puts almost all probability on Route 1, which has the highest standard deviation,

but the lowest expected travel time. Nonetheless its combined utility with the chosen parameter values of β and θ is

best. On the other hand, Routes 2 and 3 have very small probabilities of being chosen, despite being rational choices

from a multi-objective point of view. On the other hand, the NCSUE model of Section 2.2 distributes probabilities

almost equally between Routes 1 and 3, i.e. the two routes that are best for either expected travel time or standard

deviation, but shows a very low probability for route 2, which is not the best for any quality, but nevertheless non-

dominated. The MSUE-NT model is the only one that assigns significant positive probabilities to all three non-

dominated routes.

Table 2. Case 1 – All routes are non-dominated, β = 0.5, θ = [3, 3].

Probabilities

Route ET SDT SUE NCSUE MSUE-NT

1 10 4 9.9750 × 10−1 5.0236 × 10−1 3.6230 × 10−1

2 15 3 2.4726 × 10−3 2.3853 × 10−2 2.9622 × 10−1

3 20 1 2.7468 × 10−5 4.7380 × 10−1 3.4149 × 10−1

3.2. Case 2 – One route is dominated, the other two are both non-dominated

In this case (see Table 3, Route 2 is dominated, while Routes 1 and 3 are non-dominated. The result for the

conventional SUE model is even more extreme, with the probability for choosing Route 1 being 0.99997. The result

for the NCSUE model remains almost the same as in Case 1, allocating considerably higher probabilities to the two

non-dominated routes (which happen to coincide with the routes optimising the individual qualities). Since the ET

and SDT values of Routes 1 and 3 are unchanged compared to Case 1, and Route 2 is not the best in any quality in

both cases, this similarity is to be expected. The MSUE-NT model shows a similar solution, with the probabilities for

Test Case 1 Test Case 2 Test Case 3
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Fig. 1. Expected travel time ET and standard deviation of travel time SDT for three test cases.
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Routes 1 and 3 more equal. Notice that the similarity between the NCSUE and MSUE-NT models seen here is due to

the fact that there are only two non-dominated routes, as Case 2 illustrates.

Table 3. Case 2 – One route is dominated, the other two are both non-dominated, β = 0.5, θ = [3, 3].

Probabilities

Route ET SDT SUE NCSUE MSUE-NT

1 10 4 9.9997 × 10−1 5.0263 × 10−1 4.9305 × 10−1

2 25 3 7.5824 × 10−10 2.3588 × 10−2 1.9330 × 10−2

3 20 1 2.7536 × 10−5 4.7378 × 10−1 4.8762 × 10−1

3.3. Case 3 - One route is dominated, one route is weakly non-dominated, one route is non-dominated

In the third case, Route 3 is best with respect to both of the qualities, while weakly non-dominated Route 1 is best

with respect to travel time but does have higher standard deviation than Route 3, hence we would expect the NCSUE

model to assign positive probability to both of these routes, which it does. Notice that the results are similar to those

of the MSUE-NT model. On the other hand, the conventional SUE model still puts a very high probability on one

of the routes, but now Route 1, which dominates the other two and with the chosen θ = (3, 3) has the best combined

utility. This shows that the SUE model requires careful choice of parameters to avoid such counter-intuitive results. In

this case, the MSUE-NT model does assign relatively high odds to non-dominated as well as weakly non-dominated

routes, but to different degrees. Since weakly non-dominated routes are best in at least one quality, the NCSUE and

MSUE-NT models both compute similar odds in this case.

Table 4. Case 3 – One route is dominated, one route is weakly non-dominated, β = 0.5, θ = (3, 3).

Probabilities

Route ET SDT SUE NCSUE MSUE-NT

1 20 4 1.0987 × 10−2 3.3152 × 10−1 3.2832 × 10−1

2 25 3 2.7233 × 10−5 3.0975 × 10−2 2.5478 × 10−2

3 20 1 9.8899 × 10−1 6.3750 × 10−1 6.4621 × 10−1

In summary, in Cases 2 and 3, where the (weakly) non-dominated routes are the ones that are best in at least one

of the qualities, the NCSUE model and the MSUE-NT model give similar results. The difference between the two is

illustrated in Case 1, where the NCSUE model is unable to assign a significant probability to Route 2 being chosen,

despite its position as a rational compromise between the more extreme choices of Routes 1 and 3. The MSUE-NT

model on the other hand assigns similar odds to all three non-dominated routes. In all three cases, the conventional

logit model highly favours only one of the non-dominated alternatives, the one which minimises the weighted sum of

utilities as in Eqn. (1).

In Figure 2 we show how the odds assigned to Routes 1 (O1) and Route 2 (O2) change with parameter β, which

varies between 0.01 and 0.5. Because the probabilities sum to 1, the probability of choosing Route 3 is implicit.

The parameter θ remains fixed at [3,3]. In the top row we compare the MSUE-NT model with the standard SUE

model, while the bottom row does the same for the NCSUE model. Notice that for β = 0.01 all models will allocate

almost equal probabilities to all three routes in all cases. As β increases, the trajectories of the standard SUE model

and our proposed models develop very differently, though. While the SUE model converges towards a solution with

probability of almost one on either Route 1 or 3, our models always allocate positive odds to at least two routes. The

plots also show that the NCSUE model does in all three cases converge to a solution which assigns significant odds to

the routes with the best values for individual qualities. This is not the case for the MSUE-NT model, which assigns

close to equal probabilities to all three non-dominated routes in Case 1, no matter what the value of β is.
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Fig. 3. A three-link example network.

4. A Three-link Example for the Equilibrium Models

In this section, we demonstrate and validate our concepts with a simple three-link example that considers flows

and therefore has expected travel time and standard deviation of travel time dependent on link flow. The details for

evaluation of travel time and network specifications are given in Section 4.1.

4.1. Network Specification

Our test three-link network is shown in Figure 3, where the link parameters are specified in Table 5. The parameters

of the travel time function (21) are α = 0.15 and γ = 4. The total demand is assumed to be fixed at 15,000 vehicles

per hour.

Table 5. Route characteristics of the three-link network.

Route Free flow travel time Capacity Reliability

a (min) (veh/hr) φa

1 12 4,000 0.5

2 30 5,400 0.7

3 40 4,800 0.9

Link travel time Ta depends on link flow xa according to the common BPR function (Bureau of Public Roads,

1964),

Ta (xa,Ca) = t0
a

[
1 + α

(
xa

Ca

)γ]
, (21)
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Fig. 4. Standard deviation against expected travel time for the three-link network.

where t0
a is free flow travel time, Ca is link capacity, and α and γ are parameters (we chose α = 0.15 and γ = 4).

We assume that link capacity follows a uniform distribution, defined by an upper bound (the design capacity) and

a lower bound (the worst-degraded capacity), which is a fraction, φa, of the design capacity, c̄a, i.e.

Ca ∼ U (φa · c̄a, c̄a) . (22)

As derived in Lo and Tung (2003), the path travel time Tp is normally distributed, Tp ∼ N
(
E
(
Tp

)
, σTp

)
with mean

and standard deviation that can be written as

E
(
Tp

)
=
∑

a

[
δ

p
a · E (Ta)

]
(23)

σTp =

√∑
a

[
δ

p
a · var (Ta)

]
. (24)

Here δ
p
a is the usual link-path incidence, i.e. δ

p
a = 1 if link a belongs to path p and 0 otherwise. By applying the

assumption of uniformly distributed arc capacity as expressed in Eqn. (22), Lo and Tung (2003) show that the mean

and standard deviation of the route travel time distribution are asymptotically

E
(
Tp

)
=
∑

a

⎧⎪⎪⎨⎪⎪⎩δp
a ·
⎡⎢⎢⎢⎢⎣t0

a + αt0
a xγa

1 − φ1−γ
a

c̄γa (1 − φa) (1 − γ)
⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭ , (25)

σTp =

√√√∑
a

⎡⎢⎢⎢⎢⎢⎢⎣δp
a · α2

(
t0
a

)2
x2γ

a

⎧⎪⎪⎨⎪⎪⎩ 1 − φ1−2γ
a

c̄2γ
a (1 − φa) (1 − 2γ)

−
⎡⎢⎢⎢⎢⎣ 1 − φ1−γ

a

c̄γa (1 − φa) (1 − γ)
⎤⎥⎥⎥⎥⎦

2⎫⎪⎪⎬⎪⎪⎭
⎤⎥⎥⎥⎥⎥⎥⎦. (26)

Note that in Table 5, we specify a travel time reliability parameter of φa for route a as defined in Eqn. (22). The

φ−value for Route 1 is the lowest, meaning that it is the route that could be most degradable although it is the shortest,

while Route 3 is assumed to be the most reliable with the highest φ−value.

4.2. Results

The results of the equilibrium models based on the SUE and MSUE-NT formulations are shown in Figures 4 and

5. Figure 4 shows the standard deviation SDT versus the mean travel time ET on the three routes with fixed β = 0.5
and three values of θ for both the SUE and MSUE-NT models. Figure 5 shows the flows on Route 2 (x2) versus Route

1 (x1) for both the SUE and MSUE-NT models at equilibrium for three fixed θ values and β ranging from 0.01 to 0.5.

4.2.1. Equilibrium route travel time standard deviation versus expected travel time
SUE versus MSUE-NT. In Figure 4, the SUE solutions seem to line up on a straight line. This is similar to what

we observed in Wang and Ehrgott (2013) that user equilibrium based on linear generalised cost corresponds to
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a linear utility function, illustrated by routes with positive flow all lying on a straight line when plotting one

quality against the other. This is expected as the utility of each alternative is derived based on a combined utility

value, i.e. a linear combination of the systematic components as shown in Eqn. (1). This feature is not evident

in the MSUE-NT solutions.

Importance of standard deviation (σTp ) versus mean travel time (E(Tp)). This is modelled by three different combi-

nations of θ values,

1. E(Tp) and σTp are equally important, θ = [1, 1]

2. σTp is ten times more important than E(Tp), θ = [1, 10]

3. E(Tp) is ten times more important than σTp , θ = [10, 1]

When we look at Figure 4, we can observe the range of standard deviation at equilibrium to be very different

for the three cases, while the range of expected travel time is quite similar. Note that when mean travel time

is ten times more important than reliability, as shown on the right of Figure 4, the range of standard deviation

is huge because reliability is relatively unimportant. The interesting thing here is that it seems that the relative

importance of standard deviation affects only the range of equilibrium standard deviation values but not that

much the mean travel time at all.

4.2.2. Flow on Route 2 versus Flow on Route 1
SUE vs MSUE-NT. If we look at Figure 5, the trajectories of the SUE solution generally follow the shape of an ‘S’

curve while the trajectories of the MSUE-NT case would bend as in our hypothetical example where all the

three routes are non-dominated. In this case, as shown in Figure 4, all three routes are indeed non-dominated.

Therefore, the observations made here are consistent with our hypothetical tests for both the SUE and MSUE-

NT models.

Impact of θ values on the trajectories of route flows. It is important to note the characteristics of our three routes.

Here Route 1 has the lowest free-flow travel time but has the highest probability of significant capacity reduction

caused by traffic incidents, in other words, it is the least reliable. At the other extreme, Route 3 has the longest

free-flow travel time but the least variability. Since we consider a fixed demand, the sum of the flows on the

three routes is a constant.

Due to the choice of θ values, we would expect that when mean travel time is important, more users would

choose Route 1 while when reliability is more important, more users would choose Route 3. Now if we look at

Figure 5, the equilibrium flow on Route 1 is indeed higher when expected travel time is more important. On the

other hand, when reliability is more important, Route 1 and 2 have lower flows as compared with Route 3.
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Fig. 5. Equilibrium flows for the three-link network with 0.01 ≤ β ≤ 0.5.
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Influence of sensitivity β and relative importance of qualities θ. Interestingly, when θ = [1, 1], i.e. when mean travel

time is equally important as reliability, both the SUE and MSUE-NT solution will move towards an equal split

between the three routes when β = 0.01, i.e. when users are all insensitive to the differences. Now the biggest

difference between the SUE and MSUE-NT models arises when mean travel time becomes very important,

i.e. θ = [10, 1], as shown in Figure 5. In this case, the SUE solution will have much higher flow on Route 1 as

compared with the MSUE-NT solution.

In summary, applying the SUE and MSUE-NT models for a simple three link network with congestion effects,

highlights the differences between the models, with the MSUE-NT model being in line with the non-dominance

principle from multi-objective decision making, whereas the conventional SUE model tends to produce more extreme

answers as the difference between the θ values increases.

5. Conclusions

In this paper, we have proposed three model formulations, that extend the conventional SUE model of route choice

to the case that travellers consider several qualities for route choice separately. The first, non-compensatory model

NCSUE in the limit favours routes that are best in some of the qualities, while the MSUE model and the MSUE-

NT model incorporate the principle of non-dominance from multi-objective decision-making. The MSUE model

requires the evaluation of conditional probabilities, which requires further research and may turn out to be possibly

computationally expensive, the MSUE-NT model allows closed form solution at the expense of not guaranteeing

transitivity of comparisons of utilities. It also requires the computation of probabilities according to the inclusion-

exclusion principle, which is exponential in the number of alternatives.

In future research, we will further develop the theoretical basis of multi-objective SUE models, and develop algo-

rithms that allow the application solutions of the proposed models for realistic networks systems.
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