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Abstract

Reconstructions of salinity are used to diagnose changes in the hydrological cycle and ocean circulation.

A widely used method of determining past salinity uses oxygen isotope (δOw) residuals after the extraction

of the global ice volume and temperature components. This method relies on a constant relationship be-

tween δOw and salinity throughout time. Here we use the isotope-enabled fully coupled General Circulation

Model (GCM) HadCM3 to test the application of spatially and time-independent relationships in the recon-

struction of past ocean salinity. Simulations of the Late Holocene (LH), Last Glacial Maximum (LGM),

and Last Interglacial (LIG) climates are performed and benchmarked against existing compilations of stable

oxygen isotopes in carbonates (δOc), which primarily reflect δOw and temperature. We find that HadCM3

produces an accurate representation of the surface ocean δOc distribution for the LH and LGM. Our simula-

tions show considerable variability in spatial and temporal δOw-salinity relationships. Spatial gradients are

generally shallower but within ⇠50 % of the actual simulated LH to LGM and LH to LIG temporal gradients

and temporal gradients calculated from multi-decadal variability are generally shallower than both spatial

and actual simulated gradients. The largest sources of uncertainty in salinity reconstructions are found to

be caused by changes in regional freshwater budgets, ocean circulation, and sea ice regimes. These can

cause errors in salinity estimates exceeding 4 psu. Our results suggest that paleosalinity reconstructions in

the South Atlantic, Indian and Tropical Pacific Oceans should be most robust, since these regions exhibit

relatively constant δOw-salinity relationships across spatial and temporal scales. Largest uncertainties will

affect North Atlantic and high latitude paleosalinity reconstructions. Finally, the results show that it is diffi-

cult to generate reliable salinity estimates for regions of dynamic oceanography, such as the North Atlantic,

without additional constraints.

Keywords: Paleosalinity, isotopes, oxygen-18, Last Glacial Maximum, Last Interglacial,
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paleoceanography

1. Introduction1

Discussion of past and future climate change is often difficult without reference to the oceanic global2

thermohaline circulation, a wind and density driven circulation of mass, heat and salt (Wunsch, 2002; Munk3

and Wunsch, 1998; Ferrari and Ferreira, 2011). The transition between cold glacial and warm interglacial4

periods has been linked to large changes in global ocean density structure (Adkins, 2013). At a given5

pressure, density is determined by seawater temperature and salinity via the equation of state. Patterns6

of ocean surface salinity also reflect patterns of surface water fluxes (evaporation and precipitation [E-P])7

and have therefore been used to fingerprint changes in the global water cycle (e.g. Durack et al., 2012).8

Knowledge of past salinity is therefore important to characterise ocean circulation (Boyle, 2002; Adkins9

et al., 2002) as well as provide information on regional changes in hydrology (Stott et al., 2004; Durack10

et al., 2012). Although salinity can be measured in the modern ocean with very high accuracy, there are no11

direct measurements of past salinity before the historical era (Bingham, 2002). Thus, reconstructing past12

salinity changes in the ocean usually relies on proxies developed in marine sediment cores combined with13

a modern empirical calibration (Rohling and Bigg, 1998).14

Oxygen stable isotopes (δ 18O reported in units of o/oo with respect to Vienna standard mean ocean water15

[VSMOW]) are a common tool in paleoceanography (e.g. Shackleton, 1974; Fairbanks, 1989; Broecker,16

1989; Duplessy et al., 1993). Local changes in the δ 18O composition of seawater (δOw) tend to be dependent17

on changes in freshwater and ocean circulation (Waelbroeck et al., 2014; Duplessy et al., 1991; Delaygue18

et al., 2001; Benway and Mix, 2004; LeGrande and Schmidt, 2006; Abe et al., 2009; Munksgaard et al.,19

2012). Hence, δOw provides information about salinity changes and is indeed sometimes incorrectly called20

the ‘salinity effect’, given the tight coupling between salinity and δOw (Delaygue et al., 2000, 2001; Rohling21

and Bigg, 1998; Rohling, 2000). On timescales relevant for ice sheet processes, a global ice volume effect22

(known as the glacial effect) also influences δOw due to storage of the lighter isotope (16O) in ice sheets.23

Global δOw can therefore be used to reconstruct past global ice volume (Shackleton, 1967; Labeyrie et al.,24

1987; Fairbanks, 1989).25

The δOw of past seawater is not directly measurable. However, the δ 18O of CaCO3 in shells (δOc) can26

be measured from current and old foraminifera recovered from marine sediment cores (e.g. Shackleton,27

1974; Fairbanks, 1989; Broecker, 1989). Values of δOc are dependent on δOw, seawater temperature, and28
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species-specific offsets. Therefore, after species-specific corrections, measurements of δOc can be used to29

reconstruct past seawater temperature if δOw is known, or alternatively past δOw can be reconstructed if30

temperature can be independently constrained (Waelbroeck et al., 2014). An on going challenge in pa-31

leoceanography has therefore been to separate δOc into its individual temperature and δOw components32

(Shackleton, 1967; Labeyrie et al., 1987; Chappell and Shackleton, 1986; Broecker, 1989; Cutler et al.,33

2003).34

The δOw residual method is the most commonly used approach for paleosalinity reconstruction (Rohling35

and Bigg, 1998; Rohling, 2000). This method assumes that, once a δOw signal has been corrected for36

changes in global ice volume and the temperature signal has been independently constrained, the remain-37

ing δOw anomaly relates linearly to changes in ocean salinity via a calibration between modern δOw and38

salinity (e.g. Rostek et al., 1993; Weldeab, 2012; Hennissen et al., 2014; Broecker, 1989; Duplessy et al.,39

1991, 1993; Schmidt, 1999b; Duplessy et al., 1991). Early attempts to reconstruct paleosalinity assumed a40

globally uniform linear salinity versus δOw gradient. A linear regression between modern salinity and δOw41

measurements suggested a 0.5 o/oo increase in δOw for a 1 psu increase in salinity (Craig and Gordon, 1965;42

Broecker, 1989; Duplessy et al., 1993). Although this gradient may be representative of a global average43

(Schmidt, 1999b), additional measurements of surface ocean properties have demonstrated that consider-44

able geographical variability exists in this relationship (e.g. LeGrande and Schmidt, 2006; Conroy et al.,45

2014; Delaygue et al., 2001; McConnell et al., 2009; Bigg and Rohling, 2000; Schmidt, 1999a).46

As these calibrations are generally derived under present day conditions (Schmidt, 1999a), they thus47

rely on the assumption that the controls on the proxy relationship have not changed through the past. This48

is known as the stationary assumption and is arguably the largest uncertainty in the use of modern proxy49

relationships (Stott et al., 2004; Rohling, 2000; LeGrande and Schmidt, 2011; Furtado et al., 2009). For50

example, measurements and model output suggest that the δOw-salinity gradient can vary significantly over51

time due to local changes in sea ice cover, ocean circulation, and individual terms in the freshwater budget,52

such as local changes in the δ 18O of precipitation (e.g. Frew et al., 2000, 1995; Schmidt et al., 2007;53

LeGrande and Schmidt, 2011; Schmidt, 1999a; Leduc et al., 2013; Conroy et al., 2014; Rohling and Bigg,54

1998; Benway and Mix, 2004). Further investigations are thus needed to test the validity of the stationary55

assumption.56

Isotope enabled general circulation models (GCMs) allow isotopic variations to be interpreted beyond57

traditional single parameter reconstructions. The array of timescales accessible to models enables the sta-58
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tionary assumption to be rigorously tested. Isotope-enabled simulations have been used to reproduce the59

present-day climate (Tindall et al., 2009; Noone and Simmonds, 2002; Lee et al., 2007; Werner et al., 2011)60

as well as past climates, including warm interglacials (Schmidt et al., 2007; LeGrande and Schmidt, 2011;61

Masson-Delmotte et al., 2011; Sime et al., 2009, 2013; Tindall et al., 2010), and cold glacial climates,62

such as the Last Glacial Maximum (Lee et al., 2008; Roche et al., 2004; Caley et al., 2014). Indeed, the63

interpretation of surface temperature from ice core isotopic records has benefitted from isotope-enabled64

atmospheric GCMs (e.g. Noone and Simmonds, 2002; Jouzel et al., 2003; Sime et al., 2008, 2009, 2013;65

Masson-Delmotte et al., 2011). The inclusion of isotope tracers into oceanic GCMs has led to similar66

investigation of the relationship between seawater isotopes and salinity (e.g. Schmidt, 1999b; Delaygue67

et al., 2000). The δOw-salinity relationship is a key test for fully coupled isotope modelling and has been68

used to explore the validity of the stationary assumption in response to changes in orbital forcing (Schmidt69

et al., 2007; LeGrande and Schmidt, 2011). However, holes still exist in the scope of timescales invested;70

paleosalinity modelling investigations have primarily focussed on warm interglacial periods (e.g. Schmidt71

et al., 2007; LeGrande and Schmidt, 2006, 2011; Tindall and Haywood, submitted; Russon et al., 2013).72

Therefore, the question of whether uncertainties are similar during periods of drastically different boundary73

conditions, such as glacial periods, is still very much open.74

Here we explore the δOc, δOw, and salinity relationships using a set of water isotope (δOw) enabled pa-75

leoclimate simulations. The simulations cover the key Last Glacial Maximum period, when major changes76

in the thermohaline circulation affected climate (Adkins, 2013; Adkins et al., 2002; Annan and Hargreaves,77

2013; Ruddiman et al., 1984; Clark et al., 2009; MARGO Project Members, 2009), and the Last Interglacial78

period, the last climatic period with higher than present sea level (Kopp et al., 2009, 2013) and warmer than79

present temperatures (IPCC, 2013; Turney and Jones, 2010; Capron et al., 2014). The simulations enable80

us to characterise the magnitude of uncertainty induced by assumptions of geographical uniformity and81

stationarity. We outline the design of the model experiments and compare simulated ocean isotopes against82

observed δOc records. We then examine the relationships between δOw and salinity and test the application83

of spatially and time-independent relationships in the reconstruction of past ocean salinity; i.e. how large84

could errors in reconstructions of salinity over time be, if a gradient determined from the modern spatial85

δOw-salinity distribution were to be used? The implications of our results, in terms of possible changes in86

the δOw-salinity relationship through time, are then discussed.87
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2. Materials and Methods88

2.1. Model Description89

Experiments are set up using an isotope-enabled version of the Hadley Centre Coupled Model, version90

3 (HadCM3) GCM. HadCM3 consists of a linked atmosphere, ocean and sea ice model and has been91

widely used to study past, present and future climates (e.g. Solomon et al., 2007; IPCC, 2013). The ocean92

component of HadCM3 is a rigid lid model based on Cox (1984). The ocean has a fixed volume and93

the model conserves water through salinity conservation. This study uses the isotope-enabled version of94

HadCM3 to investigate links between δ 18O and salinity. For a detailed description of the implementation95

of isotopes into HadCM3, the reader is referred to Tindall et al. (2009). Ice sheets and sea ice in the model96

are initialised with a δ 18O value of -40 and -2 o/oo respectively. The isotope component of HadCM3 ignores97

the small fractionation associated with sea ice processes and thus makes the approximation that sea ice98

melting/formation is non-fractionating (Tindall et al., 2009; Pfirman et al., 2004).99

Model temperature and salinity have been evaluated in previous work for the modern climate (Gordon100

et al., 2000; Pardaens et al., 2003). Pardaens et al. (2003) concluded that the global hydrological cycle is101

well represented by the model, although its strength is overestimated compared to observations. Pardaens102

et al. (2003) observe a drift towards a more saline Atlantic Ocean throughout the simulation due to an103

overestimate of local evaporation. Gordon et al. (2000) evaluated the coupled model simulation of sea104

surface temperature (SST), sea ice and ocean heat transport, concluding a good representation, in broad105

agreement with observed estimates. A good balance between the ocean and atmosphere heat budgets results106

in no large SST drift and, consequently, no heat flux adjustments are required in HadCM3 (Gordon et al.,107

2000). Although there are drifts in salinity (<0.1 psu/100 years), the magnitude does not significantly108

effect the ocean circulation and thus do not impact on the coupled ocean-atmosphere simulation of climate109

(Gordon et al., 2000).110

Isotopic output has been validated for both the atmosphere only (Sime et al., 2008) and the coupled111

ocean-atmosphere model (Tindall et al., 2009, 2010; Xinping et al., 2012). Isotopic output has been com-112

pared against the Global Network of Isotopes in Precipitation (GNIP) observational database (Tindall et al.,113

2009; Xinping et al., 2012), the Masson-Delmotte et al. (2008) 20th century Antarctic surface snow δ 18O114

dataset (Sime et al., 2008), and the Waelbroeck et al. (2005) dataset of Late Holocene planktic foraminifera115

δOc (Tindall et al., 2010). Modelled isotope output captures the general spatial distribution of isotopes,116

including the latitude effect, amount effect, continental effect, and altitude effect, and is in good agreement117
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with present-day observations (Tindall et al., 2009; Sime et al., 2008). Modelled ocean isotopes have been118

combined with model temperature output to compute δOc and used to interpret pre-industrial coral (Russon119

et al., 2013) and ocean core records (Tindall et al., 2010). δOw has been converted to δOc using a variety120

of calibration equations and compared to ocean core top values, reproducing a zonal pattern that is in good121

agreement with data regardless of the chosen calibration equation (Tindall et al., 2010). The isotope compo-122

nent of HadCM3 has previously been used to investigate paleoclimates including the last interglacial (Sime123

et al., 2009, 2013), the Eocene (Tindall et al., 2010), the Pliocene (Tindall and Haywood, submitted), as124

well as periods of abrupt climate change (Tindall and Valdes, 2011).125

2.2. Model Simulations126

A Late-Holocene control simulation (hereafter LH) was run along with two sensitivity experiments;127

representing the period 21 thousand years BP (ka) and 125 ka. The period 21 ka represents the peak of the128

last glacial period, or the Last Glacial Maximum (hereafter LGM), a period of global cold and maximum129

ice sheet extent relative to the last glacial cycle (Adkins, 2013; Adkins et al., 2002; Annan and Hargreaves,130

2013; Ruddiman et al., 1984; Clark et al., 2009; MARGO Project Members, 2009). In contrast, the period131

125 ka corresponds to a minimum in global ice volume and characterises a period of global warmth during132

the last interglacial (hereafter LIG) (Dutton and Lambeck, 2012; Kukla et al., 2002; Shackleton et al., 2002;133

IPCC, 2013; Turney and Jones, 2010; Capron et al., 2014).134

HadCM3 does not include interactive ice sheets, carbon cycle, or methane. Any changes in orbit, GHG,135

dust, ozone and ice sheet evolution must be prescribed. The prescribed boundary conditions for each model136

integration are outlined in Table 1. Our LH simulation was set up following pre-industrial control guidelines137

from the Paleoclimate Model Intercomparison Project (PMIP), with atmospheric gas composition set to138

values for 1850 years BP (CO2 is 280 ppmv; CH4 is 760 ppbv; and N2O is 270 ppbv). Paleo changes139

in orbit and GHG concentrations are relatively well constrained. We adopt the same boundary forcing as140

applied by Singarayer and Valdes (2010) (see Table 1 for details). Sea level reconstructions suggest that sea141

levels were ⇠6 m higher than present during the last interglacial (Kopp et al., 2009, 2013). There is still large142

uncertainty as to the source and timing of this additional sea level contribution, with contributions likely143

from both Greenland and Antarctica (IPCC, 2013). Considering the magnitude of the sea level anomaly144

relative to the resolution of HadCM3, we follow the approach of Singarayer and Valdes (2010) and apply145

no ice sheet anomaly to our LIG simulation. For the LGM simulation, data suggest a roughly 120 m146

drop in sea level (Fairbanks, 1989). Again following Singarayer and Valdes (2010), we apply an LGM147
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ice sheet configuration based on the ICE-5G model (Peltier, 2004) used in the PMIP Phase 2 (PMIP2;148

https://pmip2.lsce.ipsl.fr/pmip2/, Braconnot et al., 2007) and a number of simulations included in PMIP3149

(http://pmip3.lsce.ipsl.fr/).150

Isotopes are added to simulations with climates that have already been spun up with the respective151

boundary conditions. All of our simulations are initialised with an isotopic value of 0 o/oo for δ 18O in the152

atmosphere and ocean. Once isotopes had been initialised, the LH and LIG simulations were integrated for153

a total of 600 years and the LGM for 800 years. By the end of all three simulations, surface and deep ocean154

δOw changes by <0.01 o/oo/100 years.155 Table 1

2.3. Reconstructing salinity from δOw residuals156

To use δ 18O as a proxy for spatial or temporal paleo-climate reconstruction, the relationship between157

the proxy and the desired, but unobservable, variable is often defined by the gradient of a linear relationship158

(e.g. Sime et al., 2008). For example, in the case of salinity, where δOw is the proxy and salinity (S) is the159

target variable, this would take the form δOw = αS+b, where the gradient α = ∆δOw/∆S. By definition of160

the linear relationship, the intercept value, b, is an indicator of the freshwater end-member (δF ), defined as161

the value of δOw when S=0 (Delaygue et al., 2001; LeGrande and Schmidt, 2006; Munksgaard et al., 2012).162

The slope of the relationship, α , can be applied to spatial or temporal δOw and S observations to obtain163

either a spatial or temporal gradient; i.e. by selecting either a stationary point in time and observing the co-164

variability of δOw and salinity across a defined spatial domain (the spatial gradient) or selecting a stationary165

point in space and observing the co-variability of δOw and salinity at that location with time (the temporal166

gradient). The gradient of the linear regression between spatial or temporal δOw and S is defined as αSPACE
167

and αT IME respectively. Changes to the temporal gradient are therefore; ∆αT IME
= ∂α/∂ t at a single168

point, where t is time, and changes in the spatial gradient are; ∆αSPACE
= ∂α/∂x at a single time, where169

x is a geographic location. The value of αSPACE can be measured in modern ocean water and is the value170

that is traditionally applied when reconstructing past oceanographic changes, assuming that the spatial and171

temporal relationships are the same, i.e. αSPACE
= αT IME .172

In order to define a measure of αT IME for each simulation, the methodology is applied to decadally aver-173

aged δOw and salinity output and defined as αDECADAL. To assess the temporal variability of the δOw-salinity174

relationship on long timescales, i.e. between simulations, αSLICE is defined as; αSLICE
LGM−LH = (

δ LGM
Ow −δ LH

Ow

SLGM−SLH ) and175

similarly for αSLICE
LIG−LH . Values of αSLICE are calculated by averaging S and δOw over the final 100 years of176

each simulation. αSLICE represents the ‘real’ value for α (in model world) between the two climates and177
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using this gradient will produce accurate estimates of past salinity. Therefore, because we only observe178

αSPACE (and to a lesser extent αDECADAL) in the modern ocean, a perfect estimate of past salinity could be179

provided by the δOw residual method if αSPACE
= αDECADAL

= αSLICE . Here, we test the extent to which this180

is true in model world. In the following sections we quantify the spatial and temporal bias in inferred salinity181

by evaluating the δOw-salinity gradient during the LH, LGM and LIG, using the notation; αSPACE
LH , αSPACE

LGM182

and αSPACE
LIG for spatial trends; αDECADAL

LH , αDECADAL
LGM and αDECADAL

LIG for intrinsic multi-decadal variability;183

and αSLICE
LGM−LH and αSLICE

LIG−LH to represent the simulated δOw-salinity relationship on long glacial-interglacial184

timescales.185

3. Results186

3.1. Benchmarking modelled δOw187

The performance of the isotope-enabled HadCM3 is first evaluated against the patterns observed in188

marine sediment core δOc records. We focus our benchmarking on the LH and LGM simulations as these189

time periods have most data coverage, can be accurately dated using 14C, and have sufficient confidence190

levels on the data (Waelbroeck et al., 2005; MARGO Project Members, 2009; Waelbroeck et al., 2014;191

Caley et al., 2014).192

To compare with marine sediment core foraminiferal calcite, modelled δOw is converted to δOc using the193

quadratic approximation of O’Neil et al. (1969), given in Shackleton (1974). Assuming that calcification194

temperature can be approximated by sea water temperature, modelled δOw and ocean temperature (T ) fields195

are used from the top model layer (0-5 m) to invert for δOc:196

δOc = δOw −0.27+21.9−
p

310.6+10T (1)

The factor -0.27 is the conversion between scales, from SMOW to PDB, according to Hut (1987) (δOw197

[VPDB] = δOw [VSMOW] - 0.27). We recognise that the use of surface ocean properties will introduce198

bias when comparing to observed δOc due to the variable depth habitat of different species of planktonic199

foraminifera. However, we find the choice of surface ocean depth has only minor affect on the following200

comparison. For comparative statistics, modelled δOc is taken from the nearest model grid point to the201

equivalent ocean core location. This means that our comparison is weighted to the non-uniform geographic202

distribution of available measurements.203 Figure 1

We compare modelled surface ocean δOc against planktonic foraminifer calcite δOc (Figure 1). The LH204

simulation is compared against the Late Holocene data synthesis of Waelbroeck et al. (2005). This synthesis205
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forms a Late Holocene time slice as part of the Multiproxy Approach for the Reconstruction of the Glacial206

Ocean surface (MARGO) project (MARGO Project Members, 2009) and is chronologically defined as the207

last 4 ka. For the LGM, modelled δOc anomalies are compared against the compilation of Caley et al.208

(2014). Caley et al. (2014) report anomalies as the difference between mean δOc between 19-23 ka for the209

LGM and the last 3 ka for the LH.210

Figure 1 shows a strong latitudinal trend in both modelled and observed δOc. Values are enriched in high211

latitude oceans and become progressively depleted towards the equator. This trend reflects the temperature212

dependent fractionation of calcification, approximately equalling a 0.2 o/oo depletion per ◦C increase in213

temperature (O’Neil et al., 1969). Consequently, the inverse of δOc closely approximates the merdional214

temperature gradient of surface waters. A strong temperature dependence is also evident in LGM δOc215

anomalies, which, after subtracting the glacial effect of 1 o/oo (see section 3.1.3.; Schrag et al., 1996; Adkins216

et al., 2002; Duplessy et al., 2002; Schrag et al., 2002), are positive over much of the global surface ocean,217

reflecting cooler glacial sea surface temperatures. In contrast, LGM δOc anomalies are negative in the high218

latitude Arctic. Meteoric waters, which feed surface and subsurface runoff, are more depleted than surface219

ocean δOw. During the LGM, high-latitude meteoric waters are significantly more depleted than during220

the LH and, consequently, act to deplete δOw in the surface ocean. This effect is amplified close to Arctic221

coastlines due the direct influence of glacial runoff. Therefore, strong negative δOc anomalies around the222

peripheries of the Eurasian ice sheet reflect highly depleted surface water δOw.223

Overall for the Late Holocene, planktonic foraminifera data compare well with modelled surface δOc,224

producing a Root Mean Squared Error (RMSE) of 0.82 o/oo. A small negative bias is evident from modelled225

δOc, with a Mean Bias Error (MBE) of -0.27 o/oo. This bias is significant in the mid-latitudes of the North226

Atlantic, where the model is more depleted than observations (Figure 1). However, modelled δOc shows a227

small positive bias in the Greenland, Iceland, Norwegian (GIN) seas and the Arctic Ocean, where modelled228

δOc values are more enriched than planktonic foraminifera δOc. The Waelbroeck et al. (2005) dataset was229

chosen as it provides the largest spatial coverage. More recent Late Holocene syntheses have been modified230

to increase the data confidence but this also reduces the quantity of data points (e.g. Waelbroeck et al.,231

2014; Caley et al., 2014). Comparing the model to more recent compilations improves the RMSE to 0.66232

and 0.77 o/oo for the Waelbroeck et al. (2014) and Caley et al. (2014) Late Holocene datasets respectively,233

but provides less information about spatial patterns. Waelbroeck et al. (2005) state the δOc composition of234

fossil foraminifera in the MARGO dataset to be 0.2-0.8 o/oo more enriched than that of living foraminifera.235
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This bias is related to the stratification of upper ocean waters and decreases with latitude (Waelbroeck et al.,236

2005). This offset could in part explain the small negative bias observed in modelled LH δOc (-0.24 o/oo).237

For the LGM, the model again compares well with observed δOc anomalies and produces a smaller238

RMSE of 0.61 o/oo. Subtraction of the glacial effect removes most of the model bias for the glacial climate239

(MBE = -0.07 o/oo). An ongoing paleoclimate debate surrounds the disagreement between models and data240

regarding the glacial North Atlantic zonal δOc gradient (Braconnot et al., 2007; MARGO Project Members,241

2009). The model simulates strongly enriched LGM δOc in the western Atlantic, decreasing towards the242

east. Once the data has been corrected for the global ice volume effect, observed anomalies are closer to243

zero in the west and increase towards the east. Similarly large positive model anomalies are observed in244

the North Pacific, associated with changes in the Kuroshio Current. However, a lack of data coverage in245

the central North Pacific precludes any assessment of this features accuracy. In the North Atlantic, the246

large positive anomalies during the LGM are associated with a southward shift of the Gulf Stream and247

intensification of the Subpolar Gyre. This region is no longer characterised by warm waters advected from248

the Florida Coast and is instead replaced by a strong Labrador Current advecting cold waters from the north.249

The positive δOc anomalies therefore reflect surface ocean cooling. The model disagreement with marine250

core δOc may thus be due to a poor simulation of the glacial Gulf Stream. Previous work has noted the251

stronger and more zonal Gulf Stream simulated by HadCM3 during the LGM (Hewitt et al., 2003), which252

is in disagreement with some reconstructions (e.g. Lynch-Stieglitz et al., 1999).253

For the LH, a significant model-data disagreement exists in the GIN seas and the high latitude Arctic.254

Foraminiferal blooms in these regions will be strongly seasonal due to light limitation. Schmidt and Mulitza255

(2002) found the standard error of modelled coretop δOc decreased from 1.2 o/oo, when assuming annual av-256

erage mixed layer equilibrium calcite, to 0.53 o/oo, when combined with their ecological model, including257

parameters for species temperature ranges, optimum temperatures, depth habitat, and amount of secondary258

calcification. Our model calculated δOc does not account for these factors. However, observed δOc values259

can be compared against simulated summer δOc (JJA for the northern hemisphere and DJF for the southern260

hemisphere) to test the effect of seasonality, assuming that δOc is primarily a summer signal. Using sim-261

ulated summer δOc has negligible effect on the LGM comparison (RMSE and MBE of 0.58 and -0.09 o/oo262

respectively) and slightly worsens the LH comparison (RMSE and MBE of 0.96 and -0.54 o/oo respectively).263

Other areas of model-data disagreement are concentrated in regions of dynamic oceanography and sharp264

oceanographic fronts. Model resolution limits the accurate simulation of δOc in regions such as the North265
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Atlantic and regions characterising water mass boundaries due to the presence of sharp property gradients.266

This considered, the model appears to simulate a polar front extent that largely agrees with the data in267

the North Atlantic and the Atlantic sector of the Southern Ocean, indicated by sharp horizontal gradients268

in δOc. Despite local discrepancies, the model-data comparison suggests a good overall representation of269

Late-Holocene and LGM δOc simulated by the isotope-enabled HadCM3 model.270

Although a compilation of δOc is not available for the LIG, the model suggests a similar surface ocean271

δOc distribution between the LIG and LH (Figure 1 bottom panels). LIG δOc is slightly more enriched in the272

tropics in response to the higher obliquity component during the LIG, and slightly more depleted around273

the coast of Greenland, reflecting changes in sea ice regime in response to the higher summer insolation.274

3.1.1. The glacial effect275

The bias between the LGM modelled and observed δOc for the surface ocean can in part be explained276

by the uncertainty in quantifying the glacial effect (∆δg). The precise value of the glacial effect is not well277

constrained. Early work suggested an enrichment of ∆δg = 0.012zsl ± 0.001o/oo, where zsl is the sea level278

drop in meters (Labeyrie et al., 1987; Shackleton, 1987; Fairbanks, 1989; Rohling, 2000). The uncertainty279

suggests a range for ∆δg of 1.32 to 1.56 o/oo for a 120 m drop in sea level. However, Schrag et al. (1996)280

argued that ∆δg = 0.008zsl is more appropriate. More recently, a number of approaches have converged281

towards the latter estimate, establishing a mean ocean δOw enrichment for the LGM of 1.0 ± 0.1 o/oo (Schrag282

et al., 1996; Adkins et al., 2002; Duplessy et al., 2002; Schrag et al., 2002). The full uncertainty in ∆δg283

is difficult to constrain, particularly because it is influenced by the size and isotopic composition of glacial284

reservoirs (Sima et al., 2006).285

Because the model simulations were initialised with a δOw value of 0 o/oo, the discrepancy between mod-286

elled and observed δOc can be used to suggest a model ‘best fit’ value for the glacial effect (e.g. Thresher,287

2004), if we assume an otherwise perfect simulation of LGM δOc and that the uncertainty in ∆δg is the only288

cause of model-data disagreement. The mean data-model error for the LGM provides a value for the glacial289

effect; ∆δg = (δd − δm) where δd and δm are the mean LGM data and model isotopic composition at the290

core site locations respectively. Dividing ∆δg by the inferred sea level fall in meters then gives a value for291

the glacial enrichment per meter of sea level change; i.e. η =
∆δg

zsl
, where η is the value for the isotopic292

enrichment per meter of sea level lowering. Solving this relation for the planktonic LGM data produces293

a value for ∆δg of 1.08 o/oo, and a value of η of 0.009 o/oo/m for both annual average and summer-only294

modelled δOc. This value of ∆δg sits between the range of previously suggested LGM glacial enrichments,295
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of 0.9 to 1.56 o/oo.296

3.2. Paleosalinity - δOw residual method297

In this section, the methodology set out in section 2.3. is applied to model salinity and δOw output298

to evaluate both spatial (αSPACE) and temporal (αDECADAL and αSLICE) relationships. We first assess the299

regional patterns of αSPACE for the LH followed by the variability in the δOw-salinity relationship during the300

LGM and LIG.301

3.2.1. Spatial variability in the δOw-salinity relationship302

Modelled LH αSPACE is compared to present-day observations from the Global Seawater Oxygen-18303

Database (Schmidt, 1999b; Bigg and Rohling, 2000, http://data.giss.nasa.gov/o18data/) (Figure 2). En-304

closed seas are masked for the comparison. Modelled regional δOw-salinity relationships for each simula-305

tion are presented in Table 2, including the gradient (αSPACE), the intercept (δF ) and associated r2 values306

from the spatial least squares linear regression.307 Figure 2

Variability in salinity and δOw is larger in the observations than the model (Figure 2). This will in part308

be due to model resolution smoothing out variability and, even though enclosed seas have been masked,309

most of the observations lie in coastal regions affected by fresh and depleted continental and river runoff.310

Observed gradients decrease in most regions when data within one grid cell of the coastlines are masked (not311

shown). Including all model grid points within each region, and not only where observations are available,312

HadCM3 simulates an open ocean (excluding marginal seas, the Arctic Ocean poleward of 60◦N and the313

Southern Ocean poleward of 60◦S) αSPACE of 0.18 o/oo/psu for the LH (data 0.23 o/oo/psu). If all observed314

and modelled ocean data are included in the analysis, δF becomes more depleted (from -8 to -13 and -6315

to -7 o/oo for the observations and model respectively) and the gradients steepen (from 0.23 to 0.38 and316

0.18 to 0.21 o/oo/psu respectively). The simulated values lie within previous estimates of the δOw-salinity317

gradient and intercept for the major ocean basins (LeGrande and Schmidt, 2006). In the Southern Ocean,318

the freshwater endmember is less depleted than other regions as it trends towards the value of sea ice melt319

water, prescribed in the model as -2 o/oo (Table 2; Southern Ocean LH δF = -2.45 o/oo). This affect, plus320

the over-active hydrological cycle in HadCM3 (Pardaens et al., 2003), helps explain the shallow gradients321

simulated in mid and high-latitudes.322

Spatial patterns in the δOw-salinity relationship remain similar between the LH and LIG simulations,323

but change significantly for the LGM. αSPACE remains similar in the glacial tropics but shows large and324

12



OBS LH LGM LIG

Region αSPACE δF r2 αSPACE δF r2 αSPACE δF r2 αSPACE δF r2

All Ocean 0.39 -13.40 0.80 0.21 -7.14 0.69 0.19 -6.35 0.34 0.22 -7.54 0.71

Open Ocean 0.23 -8.04 0.60 0.18 -5.97 0.89 0.10 -3.35 0.54 0.17 -5.74 0.85

Tropics (30N-30S) 0.16 -5.11 0.72 0.18 -5.99 0.89 0.16 -5.21 0.84 0.18 -5.87 0.88

Mid-lat (30-60N/S) 0.35 -12.34 0.79 0.16 -5.39 0.86 0.06 -2.26 0.39 0.15 -4.90 0.83

High-lat (60-90N/S) 0.52 -18.15 0.92 0.16 -5.70 0.83 0.56 -19.25 0.78 0.17 -6.03 0.69

Pacific 0.41 -14.31 0.92 0.17 -5.65 0.88 0.07 -2.46 0.42 0.16 -5.25 0.84

Trop Pacific 0.29 -9.71 0.58 0.18 -5.93 0.87 0.16 -5.30 0.72 0.17 -5.66 0.84

S. Atlantic 0.38 -13.04 0.52 0.19 -6.30 0.91 0.18 -5.94 0.80 0.18 -6.21 0.86

N. Atlantic 0.21 -7.41 0.53 0.16 -5.42 0.84 0.16 -5.26 0.65 0.17 -5.75 0.82

Tropical Atlantic 0.16 -5.11 0.80 0.16 -5.29 0.81 0.13 -4.28 0.84 0.15 -4.74 0.81

Indian 0.16 -5.41 0.31 0.18 -6.00 0.88 0.19 -6.54 0.74 0.17 -5.63 0.85

Arctic 0.53 -18.21 0.92 0.15 -5.30 0.71 0.41 -14.95 0.62 0.14 -5.18 0.49

Southern Ocean 0.40 -13.94 0.70 0.07 -2.45 0.74 0.05 -1.81 0.08 0.08 -2.84 0.72

Table 2: Gradient (αSPACE ), intercept (δF ) and r2 values from least squares linear regressions on spatial sea surface salinity and δOw data. Values are presented for

observations (OBS) from the Global Seawater Oxygen-18 Database (Schmidt, 1999b; Bigg and Rohling, 2000, http://data.giss.nasa.gov/o18data/) and for the LH, LGM and

LIG simulations. Observed values are biased to the spatial sampling coverage. Model values are calculated using all ocean grid points within each region and have been

re-gridded to an equal area 100km grid.
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opposing changes in mid and high-latitudes. During the LGM, αSPACE decreases by >60% in the mid-325

latitudes and more than triples at high latitudes. The high latitude steepening of αSPACE is concentrated in326

the Arctic in response to strongly depleted glacial precipitation and runoff, resulting in a reduced δF by327

⇠10 o/oo. For many regions, the LGM yields the lowest r2 values, suggesting that δOw and salinity are most328

decoupled during glacial climate. There is almost no correlation between δOw and salinity for the LGM329

Southern Ocean, when sea ice extent is largest and the signal-to-noise ratio becomes too low. Changes in330

αSPACE between the LH and LIG are within ±0.01 o/oo/psu for all regions.331

3.2.2. Temporal variability in paleosalinity reconstructions332

The following section evaluates the temporal relationship between δOw and salinity. Regional values333

of αDECADAL and αSLICE are presented in Table 3. Similar to Table 2, the gradient, intercept and r2 values334

are presented from the least squares linear regression between decadal δOw and salinity for each simulation335

and region. Correlations between decadal δOw and salinity are much weaker than the spatial relationships.336

Regional values of αSPACE , αDECADAL, and αSLICE are compared for each simulation in Figure 3. For337

most regions, values of αSPACE are steeper than αDECADAL, and αSLICE values are steeper than αSPACE
338

and αDECADAL. Over large regions (eg. mid latitudes) the gradient between climates (αSLICE) is relatively339

consistent with the LH spatial gradient (αSPACE
LH ), in agreement with results for the Pliocene presented by340

Tindall and Haywood (submitted).341 Figure 3

The spatial patterns of αDECADAL and αSLICE , calculated at each model grid point, are shown in Figures342

4 and 5 respectively. αDECADAL varies significantly across small spatial scales. The LGM αDECADAL anoma-343

lies (αDECADAL
LGM−LH ) are generally negative in the North Atlantic and positive in the Arctic. The North Atlantic344

anomalies coincide with changes in the location of the Gulf Stream in the west, and changes in the location345

of the polar front in the north-east. The LIG shows generally negative αDECADAL anomalies (αDECADAL
LIG−LH )346

along the equator and positive anomalies in the latitude band of the Antarctic Circumpolar Current (ACC).347

The spatial pattern of αSLICE differs from αDECADAL for both the LGM and LIG (Figure 5). For most of the348

ocean, values of αSLICE are steeper than αDECADAL. Exceptions to this are in the LIG equatorial Atlantic,349

where αSLICE
LIG−LH is negative close to regions of small/negligible salinity change (masked areas in Figure 5),350

and in the glacial western Arctic, where αSLICE
LGM−LH is also negative, suggesting that the δOw-salinity signal is351

too small compared to the noise component in the system.352 Figure 4

Figure 5Figure 6 presents the spatial and temporal δOw-salinity relationships for a selection of ocean regions.353

The gradients differ significantly in a number of regions, such as the North Atlantic. During the LH, there354
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LH LGM LIG αSLICE
LGM−LH αSLICE

LIG−LH

Region αDECADAL δF r2 αDECADAL δF r2 αDECADAL δF r2

All Ocean 0.10 -3.45 0.54 0.18 -6.24 0.50 0.07 -2.31 0.83 0.41 0.42

Open Ocean 0.04 -1.28 0.03 0.13 -4.26 0.51 0.08 -2.59 0.89 0.19 2.05

Tropics (30N-30S) 0.07 -2.25 0.42 0.12 -3.95 0.44 0.05 -1.40 0.52 0.20 -0.39

Mid-lat (30-60N/S) 0.04 -2.03 0.11 0.10 -3.52 0.33 0.08 -2.62 0.74 0.18 0.14

High-lat (60-90N/S) 0.06 -2.45 0.34 0.28 -10.02 0.53 0.04 -1.67 0.38 -0.19 -2.37

Pacific 0.12 -3.95 0.86 0.20 -6.74 0.66 0.15 -5.04 0.82 0.17 0.31

Trop Pacific 0.12 -3.91 0.60 0.21 -6.87 0.74 0.21 -7.03 0.88 0.20 0.29

S. Atlantic 0.13 -4.42 0.82 0.18 -5.97 0.83 0.12 -4.14 0.76 0.19 0.27

N. Atlantic 0.07 -2.02 0.08 0.08 -2.56 0.56 0.07 -2.03 0.70 0.34 0.16

Tropical Atlantic 0.09 -2.80 0.47 0.07 -2.06 0.19 0.07 -2.16 0.62 0.27 -0.25

Indian 0.11 -3.68 0.71 0.14 -4.83 0.69 0.10 -3.44 0.92 0.09 0.13

Arctic 0.04 -2.03 0.11 0.39 -13.96 0.70 0.03 -1.63 0.31 -0.69 2.34

Southern Ocean 0.04 -1.55 0.45 0.07 -2.53 0.77 0.06 -2.15 0.73 0.04 0.16

Table 3: As Table 2 but for temporal relationships. Gradient (αDECADAL), intercept (δF ) and r2 values from least squares linear regressions on decadally averaged surface

salinity and δOw data from the last 100 years of each simulation. Regional αSLICE values are also presented in the last two columns. Model values are calculated using all

ocean grid points within each region.
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is no significant relationship between decadal δOw and salinity in the North Atlantic (r2 < 0.1). Temporal355

gradients in the Southern Ocean remain <0.1 o/oo/psu for all but the LIG-LH gradient. For most regions, the356

spatial gradient (αSPACE) and the gradient between climates (αSLICE) are steeper than each climate’s intrinsic357

gradient (αDECADAL). Similar differences between the intrinsic and intra-simulation temporal gradients has358

been found for simulations covering the mid-Holocene and pre-industrial periods (Schmidt et al., 2007).359 Figure 6

The simulated salinity anomalies for the LGM and LIG and the magnitude of error in the estimated360

salinity using the δOw residual method (applying the LH spatial δOw-salinity gradients to simulated δOw361

anomalies) are shown in Figure 7. The δOw residual method captures the correct large-scale pattern in362

salinity anomalies in the mid and low-latitudes for both climates (Figure 7a-d). However, regional biases363

in the estimated salinity can exceed ±4 psu for both the LGM and LIG (Figure 7e,f). The observed bias in364

the Mediterranean Sea will in part stem from the use of the open ocean δOw-salinity gradient in this region,365

chosen due to the coarse resolution of the enclosed sea on the GCM grid. The agreement between spatial366

and temporal gradients may thus be improved if a Mediterranean specific gradient were applied. In the367

glacial Arctic, the estimated salinity change is of opposing sign to the actual simulated salinity anomaly.368

The difference between the estimated and actual salinity anomalies in the glacial northeast Atlantic and369

south of Greenland suggests that the actual salinity change may be larger than that inferred using the LH370

spatial gradients. Further south the estimated salinity anomalies overestimate the actual changes. For the371

LIG, estimated salinity anomalies are larger than the actual changes around the coast of Greenland, in the372

GIN seas, and in the Tropical Atlantic. Estimated salinity anomalies are slightly weaker than the actual373

change in the northern Indian Ocean. Across both climates, the error in the estimated salinity is generally374

smallest in the South Atlantic, Indian and Tropical Pacific Oceans.375 Figure 7

4. Discussion376

4.1. Modelling insights for paleosalinity reconstruction377

Our model simulations do not help characterise paleosalinity reconstruction uncertainties due to dia-378

genetic errors, age uncertainties, species offsets or errors in the isolation of δOw from δOc. However, our379

simulations of the δOw-salinity relationship across the entire globe can provide insight into the interpretation380

of unevenly distributed isotope data for paleosalinity reconstruction.381

By comparing spatial and temporal relationships across regions it is possible to identify locations where382

paleosalinity reconstructions have low uncertainties and those with large uncertainties. Problem regions are383
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the North Atlantic, Tropical Atlantic and high latitude regions, where a small signal-to-noise ratio produces384

low r2 values between δOw and salinity for one or more of the simulations. High latitude regions are clearly385

problematic for glacial-interglacial paleosalinity reconstructions, where the ‘real’ simulated δOw-salinity386

relationship between climates (αSLICE) is negative and the largest differences between spatial and temporal387

gradients are observed (Table 2 and Figure 3). During the LIG, the smallest difference between αSLICE and388

each simulations multi-decadal δOw and salinity co-variability (αDECADAL) are found in the Indian Ocean389

and the Tropical Pacific, where αDECADAL is within 30 % of αSLICE , suggesting good agreement in the390

δOw-salinity relationship across temporal scales. For the LGM, the smallest differences are observed in the391

Tropical Pacific and South Atlantic, where αDECADAL is within 10 % of αSLICE . For both the LGM and392

LIG, αDECADAL is only within 50 % of αSLICE in the Tropical Pacific and within 55% in the South Atlantic,393

Indian and Pacific Oceans.394

4.2. Physical controls on the δOw-salinity relationship395

Below we address why spatial and temporal δOw-salinity gradients might not agree and discuss the396

sources of uncertainty in paleosalinity reconstruction, including how these may vary between glacial and397

interglacial climates.398

4.2.1. Hydrological cycle399

The coupling between δOw and salinity generally observed in the global ocean suggests that the pro-400

cesses affecting both δOw and salinity, such as regional E-P balance, dominate over processes which pref-401

erentially influence one variable over the other, such as a change in precipitation moisture source (Russon402

et al., 2013). However, these simulations show that changes in the distribution of insolation can produce403

feedbacks in the climate system that affect δOw independently of salinity and thus complicate the interpre-404

tation of δOw.405

During the LIG, when no ice sheet changes have been applied, changes in the δOw-salinity relationship406

are primarily driven by changes in the distribution of insolation. In this case, atmospheric water vapour407

pathways and conditions along an airmass trajectory are the fundamental cause of variability in δOw-salinity408

relationships in the main ocean basins (LeGrande and Schmidt, 2011). Pathways of water exchange de-409

termine a region’s freshwater end-member and any process that alters δF will lead to a changes in the410

δOw-salinity relationship. Studies in the mid-latitudes and tropics have interpreted values of δF in terms of411

river discharge (Munksgaard et al., 2012), the isotopic composition of regional precipitation (δOp) (Benway412
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and Mix, 2004; LeGrande and Schmidt, 2006; Abe et al., 2009), local evaporation regime (Conroy et al.,413

2014), and a mixture of evaporation, precipitation and runoff (Delaygue et al., 2001). Benway and Mix414

(2004) conclude that possible changes in the isotopic composition of freshwater budget terms is the largest415

source of error in paleosalinity reconstructions in the Panama Bight, estimating that a change in δOp of416

3.5 o/oo would cause a 2 psu error in inferred salinity. This magnitude of change in δOp is well within the417

regional anomalies between our simulations.418

The higher obliquity during the LIG and associated warmer northern hemisphere summer temperatures419

produces a reorganisation of the Intertropical Convergence Zone (ITCZ) and enriches δOp at high latitudes420

(thus enriching δF ). These changes cause significant uncertainties in salinity reconstruction in the tropics421

and in the Arctic. Past salinity values determined from δOw residuals alone may therefore require correcting422

for orbitally driven changes in atmospheric circulation in order to accurately isolate changes in E-P and thus423

the salinity signal, even during periods characterised by similar boundary conditions to today (LeGrande424

and Schmidt, 2009).425

4.2.2. Ice-sheets and freezing processes426

During glacial periods, changes in boundary conditions are larger and include the growth of ice sheets.427

Differences in δOw-salinity relationships are thus larger as additional feedbacks, such as meltwater pro-428

cesses, add to the orbitally driven biases. This is the case for our LGM simulation, when the large northern429

hemisphere ice sheets cause large changes in the temporal δOw-salinity gradient around its peripheries. The430

water stored in these ice sheets is highly depleted in δOw. When this water reaches the surface ocean it de-431

pletes δF and significantly steepens the δOw-salinity gradient (LeGrande and Schmidt, 2006; Schmidt et al.,432

2007).433

The highly depleted freshwater from high-latitude ice sheets has been linked to instability in the oceanic434

thermohaline circulation and large changes in climate (Tindall and Valdes, 2011; LeGrande and Schmidt,435

2008; Stouffer et al., 2007; Weaver et al., 2003). Miller et al. (2012) suggest that reduced basal melting436

around the fringes of the Antarctic ice sheet during the LGM may have played an important role in increas-437

ing the salinity of southern sourced waters. Changes in the freezing/melting regime around high latitude ice438

sheets can therefore significantly modify the δOw-salinity relationship in the surrounding surface ocean and439

have globally reaching effects on deep ocean properties, through variable inputs of depleted freshwater and440

variable subsurface salt fluxes.441

Decoupling of the δOw-salinity relationship can also occur in the high latitude oceans due to changes442
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in sea ice regime. Freezing processes result in salinity increases that are accompanied by essentially no443

observable change in seawater isotopic composition (Craig and Gordon, 1965; Lehmann and Siegenthaler,444

1991; Pfirman et al., 2004) and therefore HadCM3 treats sea ice formation as non-fractionating. Conse-445

quently, melting and freezing have opposed (shallowing and steepening) effects on the δOw-salinity gradient446

(Strain and Tan, 1993). The model visibly captures this effect in the response of α (e.g. Figure 4), however,447

we note that the approximate treatment of sea ice fractionation, as well as any imperfections in the model448

representation of sea ice, will introduce bias in the model results. Changes in the δOw-salinity relationship449

invoked by sea ice formation are largely seasonal and not necessary reversible (Rohling and Bigg, 1998).450

Higher surface salinities from sea ice formation can initiate convection and mix surface waters with the451

ocean interior (e.g. Frew et al., 1995, 2000) or sea ice can be exported and subsequently melted in a new452

location. The δOw-salinity relationship can thus become nonlinear (Rohling and Bigg, 1998; Strain and Tan,453

1993). The effects of changing sea ice regime on the δOw-salinity relationship can be seen around the coast454

of Antarctica and, more clearly, Greenland for both the LGM and LIG climate (Figure 7).455

4.2.3. Ocean reorganisation456

For periods with significant changes in boundary conditions (e.g. large ice sheets associated with glacial457

periods) ocean reorganisation can introduce large advective changes. Changes in the location of water458

mass boundaries or the position and magnitude of upwelling/downwelling fluxes will cause local salinity459

changes that may not reflect a change in the hydrological cycle. Additionally, because δOw and salinity in460

subsurface waters behave conservatively (Paren and Potter, 1984; Frew et al., 1995), a change in oceanic461

source characteristics will not only affect the δOw-salinity relationship of local seawater, but also in waters462

remote from the initial change (Rohling and Bigg, 1998). Thus Rohling and Bigg (1998) argue that the463

δOw-salinity relationship in many regions is determined by advection rather than the local water balance.464

Our simulations show the largest reorganisation of surface ocean currents during the LGM, when465

changes in orbit and ice volume increase the meridional temperature gradient. The North Atlantic in partic-466

ular is a key region of interest for salinity and wider paleoceanographic reconstruction over the last glacial467

cycle due to its dynamic role in the global thermohaline circulation (CLIMAP Project Members, 1976;468

Pflaumann et al., 2003; Sarnthein et al., 2003; Broecker, 1989; MARGO Project Members, 2009). However,469

advective changes in the North Atlantic cause large uncertainties in the δOw-salinity relationship. Conse-470

quently, during periods of significant climate change such as glacial-interglacial transitions, these results471

suggest that large salinity biases preclude traditional paleosalinity in locations of sharp gradients, unless it472
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is concerned with reconstructing the past migration of oceanic fronts themselves or assessing large-scale473

patterns of change (Schmidt, 1999a; Caley and Roche, 2013).474

5. Conclusion475

We present isotope-enabled simulations using HadCM3 covering the Late Holocene, the Last Glacial476

Maximum and the Last Interglacial. A model-data comparison suggests that the model captures the gen-477

eral spatial pattern of planktonic δOc during the Late Holocene and the Last Glacial Maximum, and we478

calculate a model ‘best-fit’ glacial enrichment of 1.08 o/oo. The simulations are used to investigate how the479

relationship between surface ocean δOw and salinity varies in response to past climate change. Modelled480

changes in δOw are closely coupled to changes in the hydrological cycle and thus correlate with changes481

in salinity. However, our simulations show that the interpretation of δOw as purely diagnosing changes in482

surface hydrology can be over-simplistic, especially on glacial-interglacial timescales.483

Our results suggest that the relationship between δOw and salinity can vary significantly over small spa-484

tial scales. This has implications when generalising a single value of α (the δOw-salinity gradient) across485

large ocean regions, as is typically done for the δOw residual method. Our results also suggest that the486

δOw-salinity relationship has varied significantly through the past, i.e. δOw-salinity spatial relationships487

do not necessarily equal δOw-salinity temporal relationships. We show that spatial gradients are generally488

shallower but within ⇠50 % of the actual simulated LH to LGM and LH to LIG temporal gradients. Tem-489

poral gradients calculated from each simulations multi-decadal variability are generally shallower than both490

spatial and actual simulated gradients.491

Changes in sea ice regime, ocean circulation, and the isotopic terms in a regions freshwater budget492

clearly influence δOw independent of salinity and can lead to uncertainties in salinity estimates exceeding493

±4 psu in regions that are sensitive to these processes. These results show that the relative importance of494

each control varies between glacial and interglacial climates. During the LIG, the different orbital config-495

urations lead to changes in atmospheric moisture pathways and thus changes in regional δOw-salinity rela-496

tionships. During the LGM, larger changes in boundary conditions lead to significant sea ice and oceanic497

reorganisation, which add to salinity biases driven by orbital forcing alone.498

Our simulations can help identify regions where spatial and temporal δOw-salinity gradients overlap,499

providing some support to the classical method for reconstructing paleosalinity from δOw in these locations.500

Our results suggest that the most robust paleosalinity reconstructions would be achieved in the South At-501
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lantic, Tropical Pacific and Indian Oceans. Glacial-interglacial variability in the δOw-salinity relationship is502

small in these regions.503

These simulations suggest that reliable paleosalinity estimates cannot be derived in the North Atlantic504

or in high latitude regions. This is due to glacial-interglacial variability in the δOw-salinity gradient. For505

these regions, additional constraints on the past freshwater budget or circulation, as well as multi-proxy506

approaches, may be necessary when attempting to reconstruct local salinity changes (e.g. Rohling, 2007;507

LeGrande and Schmidt, 2011).508
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based on present-day dataâĂŞmodel comparison for oxygen stable isotopes in carbonates. Geoscientific Model Development

6 (5), 1505–1516.

URL http://www.geosci-model-dev.net/6/1505/2013/

Caley, T., Roche, D. M., Waelbroeck, C., Michel, E., 2014. Oxygen stable isotopes during the Last Glacial Maximum climate:
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Tables

Exp Orbit CO2 CH4 N2O Orography

ka ppmv ppmv ppmv ka

LH 0 280 0.76 0.27 0

LGM 21 186 0.37 0.25 21

LIG 125 275 0.64 0.26 0

Table 1: List of isotope-enabled HadCM3 simulations and prescribed boundary conditions. We adopt the same boundary forcing as

applied by Singarayer and Valdes (2010): orbital parameters are taken from Berger and Loutre (1991); atmospheric CO2 is derived

from the Vostok ice core (Petit et al., 1999; Loulergue et al., 2008); and CH4 and N2O from the EPICA Dome-C ice core (Spahni

et al., 2005).
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Figure Captions

Figure 1. Modelled surface ocean δOc, calculated from the equation of Shackleton (1974). Superimposed

coloured dots represent individual planktonic foraminifera calcite δOc data. Model and data for the LH

(top left), LGM (middle left), and LIG (bottom left). The LGM-LH δOc anomaly, with a 1.0 o/oo glacial

enrichment subtracted from the data (middle right), and LIG-LH δOc anomaly (bottom right). Data for the

Late Holocene is from the Waelbroeck et al. (2005) dataset, defined as 0-4 ka, and LGM anomalies are from

the compilation of Caley et al. (2014), with the LGM defined as 19-23 ka and LH as 0-3 ka.

Figure 2. Regional relationships between spatial sea surface salinity and δOw for a selection of ocean re-

gions. Top left panel shows all observations from the GISS Global Seawater Oxygen-18 Database (Schmidt,

1999b; Bigg and Rohling, 2000, http://data.giss.nasa.gov/o18data/), coloured by degrees latitude. Subse-

quent panels show individual observations in black. All model grid points within each region are shown

in orange, after being re-gridded to an equal area 100km grid. The modelled values taken from the closest

ocean grid point to each observed value are shown in red. The least squares linear regression for observed

data (Obs), all model grid points within each region on an equal area grid (All Mod) and the model grid

points where observations are available (Mod) are also shown.

Figure 3. Comparison of spatial and temporal δOw-salinity gradients; αSPACE (the relative co-variability of

δOw and salinity over a region), αDECADAL (the decadal co-variability of δOw and salinity at a given point

in space), and αSLICE (the actual relationship between δOw and salinity between the Last Glacial Maximum

and Late Holocene [LGM-LH] or Last Interglacial and Late Holocene [LIG-LH] at a given point in space).

Top panels show the LGM gradients as filled triangles (far left panel also shows LH gradients as filled

circles). Bottom panels show the LIG gradients as filled squares. Left panels: difference between αSPACE

and αDECADAL for each ocean region, representing the difference between the δOw residual method, based

on modern spatial gradients, and decadal δOw-salinity co-variability. Middle panels: as left but between

αSPACE and αSLICE , representing the comparison between the δOw residual method and the actual modelled

δOw-salinity gradient. Right panels: as left and middle but between αDECADAL and αSLICE . Regional values

of αSLICE for the LGM-LH and LIG-LH that lie outside the axis limits on the middle and right panel are
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quoted below the figure. Filled colours denote each region that the gradient has been averaged over and are

shown in the legend on the far right. The one-to-one line, representing perfect agreement between gradients,

is also plotted (black dashed line).

Figure 4. Multi-decadal co-variability of salinity and δOw at each model grid point. Top: Gradient of the

local linear regression on multi-decadal variability between sea surface salinity and sea surface δOw over

the last 100 years of the LH simulation (αDECADAL
LH ). Middle: Difference in αDECADAL between the LGM

and LH simulations (αDECADAL
LGM−LH ). Bottom: Difference in αDECADAL between the LIG and LH simulations

(αDECADAL
LIG−LH ).

Figure 5. Modelled temporal δOw-salinity gradient (αSLICE) between the LGM and LH (top; αSLICE
LGM−LH) and

LIG and LH (bottom; αSLICE
LIG−LH). Regions are masked where the change in salinity is small using a threshold

of 0.1σ for the LGM-LH (0.24 psu) and 0.14σ for the LIG-LH (0.11 psu). A filled black circle, triangle,

and square represent the locations plotted in the left, middle and right panels of Figure S3 respectively (see

Supplementary Information).

Figure 6. Variability between δOw-salinity gradients across selected ocean regions. Filled circles represent

decadally averaged δOw and salinity values for the LH (black), LGM (blue) and LIG (red). Filled squares

represent average δOw and salinity values calculated over the final 100 years of the LH (green), LGM

(mauve) and LIG (orange) simulations. Lines show the linear relationships between multi-decadal data

(solid lines), centennially averaged data (dashed lines), and spatially averaged data (light grey, light blue

and light red for LH, LGM, and LIG respectively, dot-dashed lines). The values of αSPACE , αDECADAL, and

αSLICE are also shown on the figure with the associated r2 values for αDECADAL and αSPACE .

Figure 7. The δOw residual method. Top panels: Salinity anomalies between a) the LGM-LH and b) the

LIG-LH. Middle panels: Inferred salinity anomalies using the δOw residual method for c) the LGM and

d) the LIG (calculated by applying the LH spatial slopes to the LGM-LH and LIG-LH δOw anomalies

respectively). Bottom panels show the difference between the modelled salinity anomalies (top panels)

and inferred salinity anomalies using the δOw residual method (middle panels) for e) the LGM-LH and

f) the LIG-LH. For subplots c-f, spatial slopes are calculated regionally over the North Atlantic, South

Atlantic, Tropical Atlantic, extratropical Pacific, Tropical Pacific, Indian, Southern and Arctic Ocean (see

32



Supplementary Information). Estimated salinity anomalies for areas of the surface ocean outside these

regional definitions and in marginal seas were calculated using the open ocean spatial slope.
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Figures

Figure 1: Modelled surface ocean δOc, calculated from the equation of Shackleton (1974). Superimposed coloured dots represent

individual planktonic foraminifera calcite δOc data. Model and data for the LH (top left), LGM (middle left), and LIG (bottom left).

The LGM-LH δOc anomaly, with a 1.0 o/oo glacial enrichment subtracted from the data (middle right), and LIG-LH δOc anomaly

(bottom right). Data for the Late Holocene is from the Waelbroeck et al. (2005) dataset, defined as 0-4 ka, and LGM anomalies are

from the compilation of Caley et al. (2014), with the LGM defined as 19-23 ka and LH as 0-3 ka.
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Figure 2: Regional relationships between spatial sea surface salinity and δOw for a selection of ocean regions. Top left

panel shows all observations from the GISS Global Seawater Oxygen-18 Database (Schmidt, 1999b; Bigg and Rohling, 2000,

http://data.giss.nasa.gov/o18data/), coloured by degrees latitude. Subsequent panels show individual observations in black. All

model grid points within each region are shown in orange, after being re-gridded to an equal area 100km grid. The modelled values

taken from the closest ocean grid point to each observed value are shown in red. The least squares linear regression for observed

data (Obs), all model grid points within each region on an equal area grid (All Mod) and the model grid points where observations

are available (Mod) are also shown.
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Figure 3: Comparison of spatial and temporal δOw-salinity gradients; αSPACE (the relative co-variability of δOw and salinity over

a region), αDECADAL (the decadal co-variability of δOw and salinity at a given point in space), and αSLICE (the actual relationship

between δOw and salinity between the Last Glacial Maximum and Late Holocene [LGM-LH] or Last Interglacial and Late Holocene

[LIG-LH] at a given point in space). Top panels show the LGM gradients as filled triangles (far left panel also shows LH gradients

as filled circles). Bottom panels show the LIG gradients as filled squares. Left panels: difference between αSPACE and αDECADAL

for each ocean region, representing the difference between the δOw residual method, based on modern spatial gradients, and decadal

δOw-salinity co-variability. Middle panels: as left but between αSPACE and αSLICE , representing the comparison between the δOw

residual method and the actual modelled δOw-salinity gradient. Right panels: as left and middle but between αDECADAL and

αSLICE . Regional values of αSLICE for the LGM-LH and LIG-LH that lie outside the axis limits on the middle and right panel are

quoted below the figure. Filled colours denote each region that the gradient has been averaged over and are shown in the legend on

the far right. The one-to-one line, representing perfect agreement between gradients, is also plotted (black dashed line).
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Figure 4: Multi-decadal co-variability of salinity and δOw at each model grid point. Top: Gradient of the local linear regression on

multi-decadal variability between sea surface salinity and sea surface δOw over the last 100 years of the LH simulation (αDECADAL
LH ).

Middle: Difference in αDECADAL between the LGM and LH simulations (αDECADAL
LGM−LH ). Bottom: Difference in αDECADAL between

the LIG and LH simulations (αDECADAL
LIG−LH ).
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Figure 5: Modelled temporal δOw-salinity gradient (αSLICE ) between the LGM and LH (top; αSLICE
LGM−LH ) and LIG and LH (bottom;

αSLICE
LIG−LH ). Regions are masked where the change in salinity is small using a threshold of 0.1σ for the LGM-LH (0.24 psu) and

0.14σ for the LIG-LH (0.11 psu). A filled black circle, triangle, and square represent the locations plotted in the left, middle and

right panels of Figure S3 respectively (see Supplementary Information).
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Figure 6: Variability between δOw-salinity gradients across selected ocean regions. Filled circles represent decadally averaged δOw

and salinity values for the LH (black), LGM (blue) and LIG (red). Filled squares represent average δOw and salinity values calcu-

lated over the final 100 years of the LH (green), LGM (mauve) and LIG (orange) simulations. Lines show the linear relationships

between multi-decadal data (solid lines), centennially averaged data (dashed lines), and spatially averaged data (light grey, light

blue and light red for LH, LGM, and LIG respectively, dot-dashed lines). The values of αSPACE , αDECADAL, and αSLICE are also

shown on the figure with the associated r2 values for αDECADAL and αSPACE .
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Figure 7: The δOw residual method. Top panels: Salinity anomalies between a) the LGM-LH and b) the LIG-LH. Middle panels:

Inferred salinity anomalies using the δOw residual method for c) the LGM and d) the LIG (calculated by applying the LH spatial

slopes to the LGM-LH and LIG-LH δOw anomalies respectively). Bottom panels show the difference between the modelled salinity

anomalies (top panels) and inferred salinity anomalies using the δOw residual method (middle panels) for e) the LGM-LH and f)

the LIG-LH. For subplots c-f, spatial slopes are calculated regionally over the North Atlantic, South Atlantic, Tropical Atlantic,

extratropical Pacific, Tropical Pacific, Indian, Southern and Arctic Ocean (see Supplementary Information). Estimated salinity

anomalies for areas of the surface ocean outside these regional definitions and in marginal seas were calculated using the open

ocean spatial slope.
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