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This work explores the properties of the velocity increment distributions for wakes
of contrasting local Reynolds number and nature of generation (a cylinder wake and
a multiscale-forced case, respectively). It makes use of a technique called gradual
wavelet reconstruction (GWR) to generate constrained randomizations of the original
data, the nature of which is a function of a parameter, J. This controls the proportion
of the energy between the Markov-Einstein length (~0.8 Taylor scales) and integral
scale that is fixed in place in the synthetic data. The properties of the increments for
these synthetic data are then compared to the original data as a function of . We write
a Fokker-Planck equation for the evolution of the velocity increments as a function
of spatial scale, r, and, in line with previous work, expand the drift and diffusion
terms in terms up to fourth order in the increments and find no terms are relevant
beyond the quadratic terms. Only the linear contribution to the expansion of the drift
coefficient is non-zero and it exhibits a consistent scaling with J for different flows
above a low threshold. For the diffusion coefficient, we find a local Reynolds number
independence in the relation between the constant term and ¢ for the multiscale-
forced wakes. This term characterizes small scale structure and can be contrasted
with the results for the Kolmogorov capacity of the zero-crossings of the velocity
signals, which measures structure over all scales and clearly distinguishes between
the types of forcing. Using GWR shows that results for the linear and quadratic terms
in the expansion of the diffusion coefficient are significant, providing a new means for
identifying intermittency and anomalous scaling in turbulence datasets. All our data
showed a similar scaling behavior for these parameters irrespective of forcing type
or Reynolds number, indicating a degree of universality to the anomalous scaling of
turbulence. Hence, these terms are a useful metric for testing the efficacy of synthetic
turbulence generation schemes used in large eddy simulation, and we also discuss
the implications of our approach for reduced order modeling of the Navier-Stokes
equations. © 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4907740]

. INTRODUCTION

Progress on the understanding of a stochastic description of turbulence since Kolmogorov!
(K41) has focused on Landau’s objection and the subsequent realisation that corrections to K412
imply that turbulence is intermittent.> However, as yet, no postulated model for intermittency has
received universal acceptance or has been derived directly from the Navier-Stokes equations at
high Reynolds number. Instead, a variety of phenomenological models have been proposed®™ (see
Dowker and Ohkitani® for a recent comparative analysis) and exactly how intermittency may be
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characterized is an open question, as is the manner in which it depends on the large scale forcing of
the flow.”

Classical theory is predicated on an assumed forcing at a single, large scale. Energy transfer
towards viscous scales self-organizes into a scaling region with a —5/3 slope. In K41 and else-
where, no dependence on the larger scales is assumed, although there are studies that interrogate
this assumption,”? as well as those studying the dependence between scales in general through
triadic interactions.’ In the last decade, there has been a concerted effort to understand the implica-
tions of forcing the flow at multiple scales.!®"'* This work has focused primarily on characterizing
the dissipation properties of freely decaying, multiscale-forced turbulence, with connections noted
to notions of exponential decay.'>! In addition, numerical simulation has elucidated the mech-
anisms by which multiscale forcing operates'”!8 and recent work has also begun to explore the
implications of multiscale forcing for pipe and boundary-layer flows.'>?° In a recent study of the
conditional probability distribution functions for the velocity increments of jets, cylinder wakes, and
multiscale-forced flows,?! it was found that the statistics for the velocity increments were indepen-
dent of Taylor Reynolds number, Re;, for the multiscale-forced cases. As a consequence, turbulence
decay for these flows differed from that classically assumed in the Richardson-Kolmogorov view of
turbulence.!??

The aim of this paper is to study the conditional velocity increment distribution functions
and thus, intermittency of jet and fractal-generated turbulence using a controlled randomization
technique (termed Gradual Wavelet Reconstruction (GWR)?®). Hence, in the strongly randomized
synthetic datasets, we try to destroy the properties of the turbulence. We then generate other
randomizations that gradually recover the properties of the original series. In this way, we can use
the synthetic data as null models to explore hypotheses regarding the effect that the forcing has
on the nature of turbulence. Section II of this paper explains the technique used for analysing the
increment statistics. We then explain the randomization method, before examining the properties of
the real data relative to the synthetic realizations, and the scaling of these results.

Il. ANALYZING VELOCITY INCREMENTS

A. Structure function and multifractal approaches

It is common in turbulence to analyze intermittency using longitudinal structure functions,?*

which are the moments of the probability distribution function (PDF) of the velocity increments,
pl&(r)], where &(r) = u(x + r) — u(x). The structure function of order n is given by S,, = (¢(r)"*) and
the non-intermittent K41 theory gives a relation between log r and log S,, with a constant slope of
¢ = %. Extensions to this work have characterised the spectrum of hypothesised singularities in the
flow using a multifractal analysis where, classically, one uses a Legendre transform to determine
the sets, S,, ., with a given Holder exponent, @, in the flow.?>?° The singularity spectrum, D(a,), is
then the set of values for a, for which S,, | is not empty. The Frisch-Parisi conjecture states that

D(ay) = min(ayn — S, + 1). (1)

Hence, the structure function and multifractal approaches may be related explicitly and the latter is
also closely related to the notion of the Kolmogorov capacity?’ (the scaling of the zero-crossings),
which we employ towards the end of this paper.

This paper focuses on the longitudinal velocity increments and, as such, follows previous work
that has adopted the Fokker-Planck approach to describing the evolution of turbulence structure.?®2°
However, the flows considered in this paper are anisotropic, and to help characterize the dynamics
in this situation, longitudinal structure function analysis is sometimes complemented by a consid-
eration of transverse structure functions.?! Differences have been observed in their scaling, with
some authors reporting greater intermittency for the transverse structure functions,>” and others
the opposite.*®> Hence, initial conditions, methodology (particularly identifying the scaling region),
inhomogeneity, Reynolds number, and large scale anisotropy may all impact on the results. In a
systematic exploration of these effects on jet flow, it was shown that large-scale anisotropy was the
primary control,>* although differences between the longitudinal and transverse structure functions
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do not necessarily affect the dynamics of the cascade, which can be shown to belong to the same
universality class concerning the hierarchical expression of intermittency despite differences in
the exponents.’ Hence, while an analysis of longitudinal increments may be complemented by a
study of transverse increments in anisotropic flows, significant value remains in the analysis of the
longitudinal increments, and the extension of the structure function approach to the full PDF of the
increments adds an extra richness to analysis.

B. Fokker-Planck equation for the velocity increments

The use of a Fokker-Planck equation to describe the evolution of the PDF of the velocity incre-
ments as a function of  was pioneered in several papers fifteen years ago.?®>*3¢ For scales greater
than the Markov-Einstein coherence length /gy, which is ~0.8),%7 experimental observations?!-?
show that the increment statistics have the Markov property across scales,

P(Ejléjv) = p€jléjv1.€jaas - - - EjaR)s (2)

where &; = £(r;) and R is the number of scales, each separated from the other by at least /gy. (In
fact, defining Ar = r;_; — r;, then Ig, is the smallest Ar for which Eq. (2) holds.)

Given that the Markov property holds, this method may then be used to evaluate the joint
distribution function for p(¢,... r) = p(&1,&2,. . .,&r) from the product of the conditional distri-
bution functions. The stochastic process for the conditional PDFs is given by a Kramers-Moyal
expansion, and Pawula’s theorem states that if the fourth order Kramers-Moyal coefficient is zero,
the expansion truncates at the second term to give a Fokker-Planck equation®®33

0 0
=1 El’(fﬂfo) = " 9E [DW(E,r)p(&€0)]
82
+ a—gz[D(z)(f,")P(ijo)], 3)

where r; < ry. Hence, the evolution of the PDF for the conditional increments is governed by
drift, D!V, and diffusion, D, coefficients in accord with an advective-diffusive stochastic process
generated by a Langevin equation

0
= rja&i(r) = DVEr) + | DOENS (). )

where f(r) is a d-correlated Gaussian white noise. Following previous work,” we estimate the
coefficients by

. r
D) = AI}I—I}O k\Ar

x / & — O ple(r — ADIEWNdE, 5)

00

where £* is the dummy integration variable. We then write the drift and diffusion terms as a function
of &, treating terms up to fourth order,

D& r) = dio(r) = du(r)é + dia(r)é® = di3(r)é’ + dua(r)€,

DP(E,r) = dao(r) = dn(r)é + do(r)€” = dos(r)é’ + doa(r)é*. ©)
It has then been shown previously for experimental data®!-3
linear expression in &,

that the drift term can be simplified to a

D& r) = —dyi(r)E, 7
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and the diffusion term as a quadratic in &,

D&, r) = dag(r) — dag(r)€ + doa(r)é>. (8)

We demonstrate that this is also the case for the data studied, here, below. Thus, we emphasize
that our use of this framework is to provide a more complete examination of the velocity incre-
ment distribution than a study of the moments. While our framework may be used for modeling
purposes,® it is used here to study the properties of turbulence datasets (in a similar way to work
examining the form of the intermittency in measured datasets*’). Hence, the intention is not to
inform a reduced order model for the dynamics,*'**? although at the end of the paper, we consider
the implications of our work for such an approach.

C. Structure functions and the Fokker-Planck approach

The PDF approach may be linked explicitly to classical tools for studying turbulence.'>** More
specifically, if only d;; was non-zero, one would obtain classical Kolmogorov-like linear scaling of
the structure functions as a function of moment order. Consequently, the terms associated with the
expansion of D® contain information on intermittency and anomalous scaling. The quadratic term
d» corresponds to the fluctuations expressed as a multiplicative noise, a phenomenon incorporated
into the log-normal model (K62).> The term da is then the departure from K62 responsible for
the quadratic tip of the increment PDFs for small r.2® This can be made explicit by considering a
simpler form for the drift and diffusion coefficients than is actually needed,

DX, r) = dié*. ©)

From the Kramer-Moyal expansion and the definition of the structure function of order n, S, = (¢"),
one can write*

0 = n!

—-r—3_S,(r) = —di S, 10
romSu(r) ;(n_k)! kSu(r) (10)

leading to scaling exponents

< n!
W= - —d 11

¢ ; o (1D
meaning that for {3 = 1 and no intermittency, we obtain d; = —%, while d; = —0.39 and d, = 0.026

are consistent with the K62 model.

D. Past work using the Fokker-Planck approach

Stresing and co-workers examined the increment statistics for free jets, wakes, and flows forced
by a fractal square grid using the Fokker-Planck framework set out above.”! While d; exhibited
a similar » dependence for different flows, with no significant Re; dependence, d»y was found to
depend on r and Re, for the jet data, but not the fractal wakes. Given the linear relation between
dyo and r/\, characterised by its slope d, it was shown that as Re; was varied from ~150 to
~800, d5, maintained a constant value of 0.08 for the fractal forced flows. In contrast, it varied
from d5, ~ 0.1 at Re;, ~ 80 to d5, ~ 0.02 at Re; ~ 1000 for free jet flows and from d3; ~ 0.09 at
Rey ~ 80 to d5, ~ 0.055 at Rey, ~ 350 for cylinder wake flows. The coefficients d; and d»; for jet
data have also been shown to exhibit a Re;, dependence,30 but no such relations were found with the
fractal-forced flows.

Interesting behavior of the velocity increment distributions was also recently observed in a
fractal-forced boundary layer wake.?’ Wakes were generated using four different fences at the same
fence-height Reynolds number. As shown in Fig. 1, the increment distributions for the fractal-forced
cases (gray lines) were very similar, with much broader distributions than for the single-scale forced
cases, even though the former two fences differed in their porosity (which is usually deemed to be
the primary control on wake structure behind fences) and the latter did not.
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FIG. 1. Distribution functions of the velocity increments for two choices of r, non-dimensionalised by the Kolmogorov
length, 17, for wake flows 1.25 heights downstream of a porous fence immersed in a boundary layer.”’ The black lines are for
two fences with a 50% porosity and forced at a single scale. The narrower distribution has a 5 mm gap between each element
in the fence, while it is 10 mm for the broader distribution. The gray lines are for two fences with a multiscale, fractal forcing
and 50% and 60% porosities.

lll. GRADUAL WAVELET RECONSTRUCTION (GWR)

Hypothesis testing for nonlinearity using synthetic data is a well-known method in nonlinear
dynamics.43 For a selected significance level, a = 2/(b + 1), and for a two-tailed statistical test, one
generates a total of b synthetic, surrogate series. A metric of nonlinearity (e.g., increment skewness,
correlation dimension, maximal Lyapunov exponent) is then applied to the original data and the
surrogates. If the value of the metric for the original data is greater or less than that for all the
surrogates, then a significant difference is deemed to exist.

Surrogate data generation methods such as the iterated amplitude adjusted Fourier transform
(IAAFT)* are extensions of the phase randomization techniques that have been applied for analyz-
ing the properties of turbulence datasets.* The IAAFT method is more suitable for formal hypoth-
esis testing than a simple phase randomization because not only the Fourier amplitudes but also the
values of the original data series are identical to those in the synthetic data. Gradual wavelet recon-
struction?? was introduced to study a rejection of the null hypothesis based on IAAFT surrogates
(finding nonlinearity). By constraining the degree of phase randomization, surrogate series closer in
nature to the original data are generated. Defining ¢ € {0,...,1}, where 0 is a phase-randomized
IAAFT surrogate and 1 is the original data, GWR permits synthetic series to be generated for
any choice of ¥. As explained below in greater detail, ¢ is expressed in terms of the proportion
of the time-frequency energy of the signal fixed in place in the synthetic series. For a nonlinear
dataset (i.e., one where the null hypothesis has been rejected for a given metric of nonlinearity
using IAAFT surrogates, or equivalently, for = 0), we may then undertake a number of tests for
increasing ¢ (using a Bonferroni corrected significance level) and identify the threshold, ©yesh, that
delimits rejection (¢ < Pyesn) and acceptance (9 > Pyyesn) Of the null hypothesis. For & > e,
the surrogates and data are similar and the former may be considered legitimate realisations of the
latter with respect to the metric of nonlinearity adopted. Thus, Jesh can be used to determine the
degree of nonlinearity in two datasets, to measure the sensitivity of metrics of nonlinearity applied
to turbulence time series,”® or as the value for which to generate synthetic data that preserve the
nonlinearity of a particular process.*® Alternatively, synthetic velocity time series may be generated
as a function of ¢ and used to form the inlet boundary conditions of eddy-resolving numerical
simulations, highlighting any dependencies on the prescribed inlet condition.*’
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A. Generating synthetic data with GWR

GWR makes use of a Maximal Overlap Discrete Wavelet Transform (MODWT) to fix in place
some of the temporal/spatial structure of the original data as a function of ©#. The MODWT is a per-
fect choice because unlike the continuous wavelet transform, it is exactly reconstructible, meaning
that we can recover a synthetic series from a set of wavelet coefficients by taking the inverse trans-
form. The discrete wavelet transform (DWT) also has this property but is a decimated transform
(the number of wavelet coefficients, w; x, varies as function of wavelet scale, j) and is restricted
to the analysis of data series of length N = 27, where J € Z. The MODWT is undecimated and is
not limited to data series where log N/log J = 2. Other advantages of this approach are given in
the text by Percival and Walden®® and the original GWR paper.2* The Appendix briefly reviews the
continuous, discrete, and MODWT wavelet methods.

A MODWT of a data series, u(x) consisting of N velocity measurements, gives J X N detail
coefficients, w; ¢, where k =1,...,N and j =1,...,J, where J is the number of wavelet scales
investigated. While this has been the way that GWR was used in the past (to randomize all frequen-
cies in the data series), in this study, we constrain the frequency decomposition of the signal such
that its lower limit corresponds to Iz, and J is set to an upper limit that is close to but includes the
integral scale, L.

The basic idea in GWR is to then to randomize the w; ; at a given j using the IAAFT algo-
rithm.*’ By preserving all the original values for the w;j x, there is no change to the moments of
the wavelet coefficients (whose variance at a given j is proportional to the Fourier energy at this
frequency band). By preserving the periodicities in the wavelet coefficients, the resulting series is a
potentially legitimate output from a wavelet transform at scale j. To couple our approach as closely
as possible to Fourier-based methods, the definition of ¢ is based on the wlz.’ i (which are stationary

and zero-mean).”® All J x N coefficients, sz. o are placed in an ordered set, A in descending rank

order. If the total wavelet energy is J,;ca wl.z, then for a selected value of ¥, we seek a value g such
that
g 2
9= % (12)
DiieA w;
Thus, g is the smallest number of coefficients that fulfil the choice of ¢. By prioritizing the largest
magnitude coefficients, our method is in the spirit of wavelet denoising methods,>' where the |w; |
that fall below a threshold based on a Gaussian model for the coefficients at j = 1 are considered
as noise and are set to zero. Using Eq. (12), we then define F C A as the g length subset of fixed
coefficients and return these to their original locations on the J by N wavelet plane indexed by j
and k. We then return the unfixed coefficients, F€, to unique random positions along the time/space
axis for their original value for j and perform a scale-by-scale randomization similar to the IAAFT
but with the starting point that a subset of the wavelet coefficients is fixed rather than randomized.>®
Hence, in the lower limit of & = 0, no coefficients are fixed and we have a phase-randomized
synthetic series similar to the IAAFT method, while at the upper limit @ = 1, all coefficients are
fixed in place and no randomization occurs. The inverse wavelet transform is then used to recover a
data series.??0
An alternative to GWR would be an additive phase noise approach.’? Given a velocity signal,
u(x), with an associated phase spectrum, ¢, (k), that is a function of wave number, k, we may form
a new phase spectrum: ¢(k) = (1 — €)¢, (k) + epr(k), where 0 < € < 1 is a noise level and ¢r(k) is
a uniformly distributed random variate over wavenumber. The primary advantage of GWR is that
we can constrain the randomization to a specific range of scales, i.e., those between Iy and L. It
follows that we only define A and, thus, ) over this range of scales too. Another potential advantage
of GWR is that it constrains the degree of variation in a particular subsection of a signal based on
the extent to which the w;  are fixed. Given the acceptance of the null hypothesis of no significant
difference between original data and surrogate series at some choice for #, but the rejection at a
lower ¢, this permits the components of the signal that are essential for preserving a particular
property of the original data to be identified. In addition, the ability to constrain the values of the
synthetic signal to those of the original is also advantageous for hypothesis testing.**
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B. Use of GWR in this study

We generated synthetic series for ¢ € {0,0.25,0.4,0.5,0.6,0.7,0.8,0.9} for two wake datasets
and two fractal grid datasets described in Sec. IV. Figure 2 provides a qualitative assessment of
the way in which GWR works for four choices of . It is clear from the top panel that ¢ = 0 is
generating a phase-randomized signal (gray line) with no alignment with the original data (black
line). As 9 — 1, surrogates converge on the original data. Because there is higher energy at lower
frequencies, on average, in a turbulence signal, the larger scales are preferentially fixed in place first.
However, this is not something that is imposed by the method. As a consequence, highly energetic,
high frequency events will be fixed in preference to lower frequency features with less energy. We
then applied the method described in Sec. II to the original data and the synthetic data. Variation in
the coefficients in Egs. (7) and (8) as a function of ¢ provides an insight into the difference in the
nature of wakes forced by single and multiple scales.

IV. EXPERIMENTAL DATA

The cylinder wake data studied here were obtained in the far wake region behind a 0.02 m
diameter cylinder mounted on the center line of a wind tunnel. Measurements were taken with
hot wire anemometry on the center line at a distance one hundred diameters downstream of the
cylinder using a cross wire oriented to perpendicular to the cylinder. The velocities for the low and
high Reynolds number cases were 8.47 m s~! and 25.37 m s™/, respectively, and the corresponding
acquisition frequencies were 15 kHz and 85 kHz, respectively, with a turbulence intensity ~5%
for both cases.’” The fractal grid data examined here were obtained by Seoud and Vassilicos'? in
a wind tunnel with a 4.2 m long working section, a 0.212 m? cross section, and a background
turbulence intensity of 0.4%. Flow velocities were measured by hot wire anemometry with a 1 mm
long platinum element of 5 ym diameter at 80 kHz. The fractal grid has four iterations of a square
pattern and a blockage ratio of 25%. The effective mesh size, M.g,'" is 26.2 mm and the thickness
ratio between the largest square’s cross-stream thickness and that of the smallest is 17. The wakes
resulting from two different inlet velocities, Uy, € {7,16} m s~! are examined here. Measurements
were taken in the decay region where turbulence is homogeneous and isotropic at small scales.
The turbulence intensities’ downstream of the fractal grids was always less than 10% meaning that
Taylor’s hypothesis was used to produce a spatial velocity series.

v—Ag
‘v e {0, 1}
Es
27
v-"“g
” 9 e {0.25, 1}
Es ]
5
7
T T T T T T T T T T
d e {0.50, 1}
9 e {0.70, 1}
7
0 100 200 300 400 500 600 700 800 900 1000 1100

x (no. samples)

FIG. 2. An example of gradual wavelet reconstruction for our lower Re cylinder wake dataset. The original data (23 = 1) are
shown in black in each panel. The black dotted lines are surrogate series at ¥ € {0.00,0.25,0.50,0.70} from bottom to top,
respectively.
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V. RESULTS

Figure 3 examines the robustness of the estimation of the parameters in Egs. (7) and (8) as a
function of r for nine realizations of a synthetic series at a selected value for ¢ for the low Reynolds
number, fractal wake case. The different symbols represent the four parameters and the subpanels
are for realizations at different . There is almost no visible deviation in any of the estimated
values for any of the parameters at any ¢} across the nine realizations. Thus, a dataset of 3 000 000
values, equating to ~10000 integral scales, is sufficiently long to permit robust estimation of the
parameters in the Fokker-Planck equation for the increments. Based on this result, we reduced the
computational time significantly by generating one synthetic dataset for a given ?J for each original
dataset.

Figure 4 shows the evaluation of the terms in Eq. (6) as a function of 7. The lack of dependence
on ¥ for all coefficients except those included in Egs. (7) and (8) is clear for both the turbulence data
and the synthetic variants, in agreement with other studies.?'*® It is clear that phase randomization
has the greatest impact on the results for d»; and d»,, where the crosses and pluses equate to zero for
all r/l,,,. This confirms the explanation that it is these terms that contain direct information on the
anomalous scaling of the structure functions as a phase randomized variant (¢ = 0) will be similar
in nature to a fractional Brownian motion with any intermittency only remaining by chance.

A further advantage of synthetic data methods is clear: confidence can be placed on the results
for d,; and dj; such that, although the magnitudes are much smaller than d;y and dy;, they are
shown to be significantly different to zero. Hence, while it is understandable based on the relative
magnitudes of these coefficients that previous work has focused on dap,?! this study highlights that
the linear and quadratic terms are more sensitive markers of turbulence structure.

A. Gradual wavelet reconstruction of dyg

Previous work has focused on the derivative of dy with respect to r/l,, termed dj,*' because
of the linear scaling that can be seen in Fig. 4. The relation between d5, and # is given in Figure
5. The value for &3 increases for ¢ in an approximately linear fashion once ¢ > 0.25. That is,
once 25% of the wavelet energy is fixed in the synthetic data, the equation for the evolution of the
increments broadly respects the physics contained in the original data. There is then a linear conver-

gence upon the true result as a function of ¢ and the slope of this scaling, a d?o’ for0.25 <% <09

has the values given in Table 1. There is evidence here that not only is d5, a Reynolds number
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FIG. 3. The scaling of values for d; (circles), dag (squares), d; (diamonds), and d»; (triangles) against r /I gy for the low
Reynolds number fractal-forced dataset at four values for ©#. Although barely visible, nine symbols of a given type are plotted
at a given r /lgy to confirm precise estimation of these parameters for a synthetic data series generated at a particular .
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Reynolds number cylinder wake data, and circles are for the low Reynolds number fractal wake data. Surrogates at @ = 0 are
shown as crosses for the fractal wake and as pluses for the cylinder wake.

independent constant for fractal-forced flows,?! but also the rate at which fractal-forced flows attain
their true value as the nonlinear structure of the turbulence in the inertial regime is imposed is also
more constant than for turbulence forced in other ways, which we consider further in Sec. VII. The
cylinder wake results do not collapse when the difference in the values for d, for the original data is
accounted for, as is shown in Fig. 5(b); the high Reynolds number case for the cylinder wake is still
different in nature to the other cases, and the low Reynolds number cylinder wake has the highest
value for d &3/ dd.

B. Gradual wavelet reconstruction of d44

Figure 4 shows an approximately linear relation between d,; and r/l,,, for r/l,,, > 3 and Fig. 6

indicates the gradients of the fits to these data as a function of }, similar to Fig. 5. There is no
Reynolds independence for the fractal forced cases for d}, in Fig. 6(a), in contrast to the results seen
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FIG. 5. The relation between ¢ and d, for the four wake flows. In the bottom plot, these values are normalized by the result
at ¥} = 1. The circles are the fractal-forced wakes and the squares are wakes forced by the cylinder. The high Reynolds number
cases are indicated by a dotted line connecting the symbols.
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TABLE I. Scaling behavior of d;o, d}‘l, and K. against ¢ for the four
datasets: “wake” is the cylinder wake and “fractal” is the fractal square

grid-forced wake.

Re Flow type d dy/dd dd; /do dK./d®
Low Wake 0.0108 ~0.0138 0.0109
High Wake 0.0078 ~0.0105 0.0133
Low Ffractal 0.0101 ~0.0085 0.0092
Hhigh Fractal 0.0099 -0.0137 0.0081

*

in Fig. 5(a). However, when results are normalized by d7, @=1) in Fig. 6(b), it would appear that all
data follow a similar curve, with two important distinctions compared to Fig. 5(b): while the scaling
with ¢ appears to occur for ¢ > 0.25 for the fractal forced cases, this is true for ¢ > 0.40 for the
cylinder wakes, and although the two types of wake have a different scaling behavior for ¢ = 0.25 in
Fig. 6(b), these are Reynolds number independent and consistent within flow type. That the multi-
scale forced wake “locks on” to the scaling relation at a lower ¢ than the cylinder wake data, which
indicates that the synthetic increment structure for such a forcing is more “turbulence-like” more
readily. This is consistent with the observation that the increment moments for multiscale forced
wakes are more similar to homogeneous, isotropic turbulence (HIT) than for single-scale forced
flows? and is explained in terms of a “space-scale unfolding (SSU) mechanism”!” in Sec. VIL

C. Gradual wavelet reconstruction of d>; and ds»

Because the absolute values for d,; and d,, are much smaller than for dy; and d,g, their
behavior is difficult to discern in Figs. 3 and 4. Figure 7 provides a more complete view than Fig. 4
and it is clear that at ¢ = 0, the values for d»; and d;, are very close to zero for all cases, which
was not the case for dp). Hence, phase randomization can generate values for the constant term in
the expansion of the diffusion coefficient that is not dissimilar to the correct values (Fig. 5(b)), but
values for the linear and quadratic terms are certainly incorrect. By ¢ = 0.5, the series shown in
Fig. 7 contain significant real structure relative to the values for the original data, particularly for the
low Reynolds number, fractal-forced case. This clear ability to discriminate between real turbulence
and phase-randomized variants for relatively high order terms in the expansion of D’ demonstrates
the precision of the Fokker-Planck approach for studying the increments and also shows how GWR
is useful for placing confidence on these values when the absolute values are relatively small.

0
(a)
o
_ -0.02 @) ) o) o o o o o
- Q. ...
—0.04f 8 o o - Oro e R
o = o o o
[m]
_006 1 1 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
T
S (b)
1 1o o Q
.-8
< e
- 09+ © g e
< 08 o 8
= 8
‘o 07
Q 1 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

)

FIG. 6. The relation between ¢ and d7, for the four wake flows. In the bottom plot, these values are normalized by the result
at ¥} = 1. The circles are the fractal-forced wakes and the squares are wakes forced by the cylinder. The high Reynolds number
cases are indicated by a dotted line connecting the symbols.
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low Reynolds number high Reynolds number

FIG. 7. The scaling of the d»; and d»; coefficients against r /1., as a function of ¢ € {0.0,0.5, 1.0}. Squares are the cylinder
wake flows and circles are the fractal cases for ¢ =1.0. Diamonds and triangles are the cylinder and the fractal wake,
respectively, at ¢ =0.5. Values for d; and d»y at 9 =0.0 are similar to zero and are shown by crosses and pluses for the
fractal and single-scale forcings, respectively.

The results for da; scale linearly with r, at least for r/l., 2 5, meaning that a variable d7,
= d dy/dr may be formed in an analogous way to d;;, studied above, and this is plotted in Fig. 8
as a function of . In contrast, the results for d», generally attain a constant for r/l,,, = 5, and this
result is also observed in the GWR data at © = 0.5, indicating that there is a scale independence to
the quadratic term above a few Taylor scales, which presumably reflects the preferential removal of
vortices by viscosity at the smaller scales. Given the different behavior of d»;, instead of analyzing
d;, = d dx/dr, we examine the intercept, d;Z, of the fitted least squares relation between d; and r
as a function of ¥ (Fig. 9).

The results shown in Figs. 8 and 9 exhibit no clear dependence on Reynolds number or the
nature of the forcing. Figure 8(b) shows a convex convergence on the original value for &3, that
fits all the data over the full range of ¥, in contrast to the results for d;o at ¥ = 0 and for d’l‘ , at
9 € {0,0.25}. For d3,, by ¢ = 0.6, all data would appear to have converged on the asymptotic limit

2
with low error (Fig. 9(b)), and this value would appear to be a constant irrespective of forcing or
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FIG. 8. The relation between ¢ and d, for the four wake flows. In the bottom plot, these values are normalized by the result
at ¥} = 1. The circles are the fractal-forced wakes and the squares are wakes forced by the cylinder. The high Reynolds number
cases are indicated by a dotted line connecting the symbols.
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Reynolds number (Fig. 9(a)). In summary, GWR has facilitated an analysis of the linear and the
quadratic terms in Eq. (8), and there appears to be a universality in their scaling behavior with ,
meaning that the effect of forcing is concentrated on d; as suggested previously.”! However, GWR
has shown that phase randomized synthetic data (¢ = 0) are able to attain the values for 5, and dy,
(the left-hand side of Fig. 5(a) and Fig. 6(a)) but this is certainly not the case for 3, and d,. Thus, it
is with these latter parameters that true turbulence may be most readily distinguished from synthetic
variants in a fashion that appears to be forcing and Reynolds number independent. This result may
be useful as a test statistic for synthetic inlet turbulence generation schemes, an area that has been
recognized as of increasing importance for large-eddy simulations.*”>

VL. INTERPRETATION IN TERMS OF THE KOLMOGOROV CAPACITY, K.

In this section, we study an alternative property of turbulence that may be related to flow
topology and increment statistics, the Kolmogorov capacity, K..>* The study of K. is closely
related to the analysis of stochastic signals® and the average distance between each zero cross-
ing may be related to the viscous dissipation scale.’® Early work on the scaling properties of
these zero-crossings was undertaken by Kolmogorov?’ and the box counting dimension of the
zero-crossings of a fluctuating velocity signal has subsequently been termed the Kolmogorov ca-
pacity, K..°’ This measures how evenly energy is distributed across wavenumbers in Fourier space’”
and is defined as

Moc(r) ~ r~Ke, (13)

where r is the increment length and M), is the minimum number of balls with diameter r needed to
cover the zero-crossings of a velocity signal u(x). Hence, 0 < K. < 1 is the box-counting dimension
of the set of zero-crossing points on the line.

In contrast to Sec. V, which focus on small-scale intermittency (as we randomized between [,,,
and L), the Kolmogorov capacity will preferentially reflect intermittency at larger scales. This is
because excursions from the mean velocity (which on average will lead to a larger spacing of the
zero crossings of u(x)) will integrate the effect of fluctuations at all scales but will be dominated
on average by those at lower wavenumber. To illustrate this, Fig. 10(a) shows a fractional Brow-
nian motion,’® m,, with a constant Holder exponent of a(t) = 1/3, i.e., it obeys Kolmogorov’s 2/3
law. This may be contrasted with the multifractional Brownian motion,>® m,, shown in Fig. 10(b),
which also obeys the 2/3 law on average (a = 1/3), but intermittency is imposed according to a()
= 0.33 + 0.15 sin(87¢). Both time series were generated using a Gaussian random field generation
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FIG. 10. A fractional Brownian motion () and a multifractional Brownian motion () generated from the same random
seed. The generating Holder exponent function, (), is shown in each case above the respective stochastic signal [straight
line for (a), sine wave for (b)].

algorithm,%° using the same random seed in each case so that m; and m, are broadly similar in
shape. Values for K, for these two cases were 0.613 (m;) and 0.6224 (m,), highlighting the more
intermittent nature of the energy distribution in the latter case.

Figure 11 shows K. as a function of @ for the four wakes, and the values for d K./d¢ for
¥ > 0.4 are given in Table I. Note that the difference between K (¢ = 0.25) and K. (9 = 1.0) is
approximately 0.07, which is a similar order to the results for m; and m, from Fig. 10. Hence, the
scaling of K. with ¢ may be related to the recovery of intermittency in the synthetic data once
the basic nonlinear structure has been imposed at © = 0.25. There are some similarities and some
differences with the results for d3. In terms of the similarities,

o the unconstrained randomization at ¢ = O can yield feasible values for K; a higher value of ¢
is needed to “lock” the properties of the synthetic data to the original;

o this “locking” value for © is lower for the multiscale forced cases than the cylinder wakes
(¥ = 0.25 as opposed to ¥ = 0.40);

o there is then an approximately linear scaling, and the values for d K./d?¥ are similar for the
two fractal-forced cases with the cylinder wakes exhibiting a stronger Reynolds dependence to
the rate of convergence on the original K.
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FIG. 11. The relation between ¢ and the Kolmogorov capacity for the four wake flows. The circles are the fractal-forced
wakes and the squares are wakes forced by the cylinder. The high Reynolds number cases are indicated by a dotted line
connecting the symbols.
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An obvious difference is that while the high Reynolds number cylinder wake has a much lower
value for d d;,/d?) than the other datasets, it has the highest for d K./d¥. Furthermore, d K./d?¥
clearly partitions the cylinder wakes and multiscale-forced wakes, with the latter having lower
values, indicating that the relevant nonlinear structure to attain K, is imposed earlier with the multi-
scale forcing. Hence, the nature of the forcing would appear clearly distinguished in K. with higher
values for single scale forcings, while in the scaling region, the single-scale forcing contrasts with
that at multiple scales by exhibiting greater Reynolds dependence.

VIl. DISCUSSION
A. A space-scale unfolding mechanism for multiscale forcing

Recent numerical simulations of turbulence decay behind otherwise similar regular and fractal
grids have shown that the former generates a peak average turbulence intensity more than three
times higher than the fractal case and, consistent with this, a much higher peak average pressure
drop.'” However, while the average turbulence intensity (u/?)/Uy has decayed to less than 1%
by ten effective mesh lengths for the regular grid, it is still a few percent at fifty effective mesh
lengths for the fractal grid, with a concomitant reduction in the rate of pressure recovery.'” These
authors explain this in terms of a space-scale unfolding mechanism (SSU). In effect, the turbulence
generated by the fractal grid is distributed along the longitudinal direction, reducing the peak in
turbulence intensity because wakes generated by different sized elements interact at different dis-
tances” downstream. Diffusivity increases as a consequence of this mechanism'# because, from a
Lagrangian perspective, a fluid element may potentially move from one wake to a larger one as it
progresses downstream, with each larger wake having a larger eddy turnover time. In the theory of
decaying homogeneous turbulence, it is usually considered that®’

o3

u

7 14
where o, is the standard deviation of the velocity, L is the integral scale, and C, is a constant
that is potentially a function of boundary conditions. Note that this is a Reynolds number inde-
pendent result, hence, as Reynolds number increases, L/ increases,where A is the Taylor scale, as
more scales are excited. In contrast, the wakes for fractal space filling grids have been shown to
obey L/\ = (C./15)Re), with an additional dependence between C, and the grid Reynolds number
and an absence of a Richardson-Kolmogorov cascade.®? This process is complicated by transverse
turbulence transport'“%* as explained from a Lagrangian perspective, above.

This SSU mechanism can also be used to interpret the results presented here concerning the
behavior of d K./d¢ and d d;)/d?¥. The intermittency for multi-scale generated wakes is higher
than for single-scale generation mechanisms.?*%* For a single scale forcing that is ~L, the scales
between /., and L are exhibiting decay in the Richardson-Kolmogorov sense. For multi-scale forced
flow, there is a response to direct forcing at scales smaller than L, enhancing large-scale intermit-
tency. Thus, from the perspective of GWR, at  ~ 0.25, where phase randomization is constrained,
but relatively little nonlinear structure has yet to be imposed, the fixed wavelet coefficients for
the single-scale forcing will essentially all be large scale coefficients. In contrast, enhanced inter-
mittency means that there is an increased probability that the wavelet coefficients fixed for the
multiscale forcing reflect both the energy cascade and the intermittency. Hence, features pertinent to
the definition of K, are fixed at a lower ¥ in this case. Thus, the values for d K./d are lower for the
multiscale forced wakes. Related to this is the lack of Reynolds number dependence for d d,/d?)
for the multiscale forcing: the vortex structure imposed by SSU dominates Reynolds number effects
for the multiscale forcing, explaining why d d3,/d?¥ ~ 0.01 for both Re.

e =C,

B. Implications of the results for reduced order modeling

Reduced order modeling of turbulent flows using dimensional reduction methods such as
Proper Orthogonal Decomposition (POD)%% extends back to the 1980s.*! Having defined an
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acceptable number of modes, a Galerkin system of evolution equations is written for the modes
in terms of advective and dissipative terms, with the latter modeled to prevent excessive en-
ergy build-up (some form of cascade is required). Approaches are inspired by an eddy-viscosity
approach,*! with more advanced closures incorporating linear approximations to the nonlinear
terms®’ or nonlinear interactions directly,’® and comparative analyses demonstrating the utility of
these more advanced formulations.*> While dyadic wavelet modes are locally correlated at singu-
larities (providing the basis for multifractal methods®), they provide an approximately orthogonal
or orthonormal basis that is also conditioned on frequency. Thus, while POD enforces orthogonality
but any scale separation is implicit, wavelets enforce the latter. Applying GWR at a given choice of
¥ means some wj ;. are fixed but the randomisation of others at a given scale, j, acts to alter singu-
larity structure while preserving energy at that j. Consequently, employing GWR in the context of a
POD and studying how the closure to the Galerkin system responds would be a novel way to gain an
insight into reduced order modeling methods.

In addition, it has been shown previously how the PDF method used in this study can be used
to simulate stochastic systems with a given (multifractal) structure.?* Hence, a modified Galerkin
system based on a stochastic model would be an alternative nonlinear closure. Our results imply
that for r/l,,, > 5, a constant value of d»; is appropriate that should be a weak function of Reynolds
number. In contrast, dq; and d,; can be modeled as linear functions of scale, d;; ~ —0.04r/l,,,,
dy; ~ 0.004r/1,,,, with the results for the latter (left-hand side of Fig. 6(b)) implying that enough
POD modes are needed to ensure that quality results are a consequence of accurate modeling, not
random variation in the residual modeling. A similar point applies to the modeling of d», where
a Reynolds number dependence exists for the cylinder wakes and not the multiscale forcing. This
latter result implies that with some knowledge of the large scale forcing, it may be possible to tune
the closure appropriately. However, the results for K. highlight that information on the nature of the
forcing exists and a more complex model would be needed to couple large and small scales.

VIlIl. CONCLUSION

The definition of the parameter ¢ in GWR has been modified in this study to consider only
the energy between the integral and Markov lengths. Based on this, four wake datasets have been
randomized for eight choices of ¥} and the properties of the increment distributions as a function
of scale, r, compared to the original data. Consistent with previous work that identified a Reynolds
number independence for fractal wakes for the value for &), we have found that the scaling for this
term as a function of # is also Reynolds number independent. Any such dependence for dj, only
occurred at low . The result for d d;o/dﬂ, which indicates a clear difference in behavior for the
single- and multi-scale forcing, is related to smaller scale structure. We also studied the scaling of
the Kolmogorov capacity with ¢, d K./d¢, which concerns larger scale intermittency in the flow.
This scaling for K. was lower for the multiscale forced cases and these results may be interpreted
with respect to the “space-scale unfolding mechanism,” proposed recently to explain differences in
turbulence structure between single- and multiscale-forced wakes.'”

The use of GWR has provided confidence in the analysis of the values for d,; and dy; as a
function of r/l,,,. As with dyo and d;;, with dy|, there is a linear dependence on scale, meaning that
d3, = d da1/dr[l,, can be studied as a function of ¥ and shown to follow a similar curve irrespective
of flow type or Reynolds number (Fig. 8(b)). For d», an asymptotic value, dJ,, appears to be
obtained at some r/I,,, for the majority of the data, and this value is a constant of ~0.03 for all cases
and is preserved with high accuracy for ©} > 0.6. While the values for d;, and d, exhibit a similar
scaling with ¥ for all cases, it is these values that are critical for discriminating between real and
synthetic turbulence time series because of their connection to anomalous scaling.

Values for d3, and d3, for high ¢ are very different to those for # = 0.0. In contrast, the phase
randomization that occurs at ¢ = 0.0 means that values for dj,, d,, and K. may be a similar
magnitude as the original data. For these cases, a higher choice of ¥ = 0.25 or ¢ = 0.4 is needed to
constrain the variation in these parameters such that they then converge on the original data in a sta-

ble way. Hence, feasible values for d; and dy can arise by chance in a phase randomization. That
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this is not the case for d5, and d, and that the results for these parameters are similar irrespective of
forcing type and Reynolds number make them a more useful means for defining true turbulence and,
therefore, evaluating synthetic turbulence generation algorithms.
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APPENDIX: WAVELET TRANSFORMS

A continuous wavelet transform>>%70 yields wavelet coefficients, w(j, k) of a time series x(¢) at

ascale, j > 0, and a position, k € R, from a convolution of the time series with a wavelet function,
¥, whose integral is zero and whose square integrates to unity,

1 too )
wum=3?[ O - K j)dt, (AD)

where * is the complex conjugate. An additional admissibility constraint on the form of the wavelet
function, which permits a reconstruction of the original signal, is that its Fourier transform

v = [ wwea (A2)
is such that 0 < C, < oo, where
) 2
Cy= / _|W(f)| df. (A3)
0 f

As such, it follows that

/sz(t) dt = - /oo [/W w?(j, k) dt] ﬂ (A4)
—oo Cy Jo —o0 J

which shows that w?(j, k)/j? is the energy function of the signal decomposed over different scales
and positions, explaining the definition of 1% in the main text.

Because surrogate data algorithms involve a deconstruction of an original signal, a manipu-
lation, and a subsequent reconstruction, the integral formulation for the inverse transform in (A1)
makes reconstruction using the continuous transform problematic. The DWT is based on a hierar-
chical set of filtering operations, aiding accurate reconstruction. A DWT of a time series sampled
at N =27 points can be formulated over the dyadic scales 2, j=1,...,J using a filter bank of
low and high pass quadrature mirror filters of even filter width. Although the DWT gives a compact
representation of the signal, it has the following limitations:*®

e circularly shifting x() by some amount cannot be represented by applying a similar shift to the
Wj, k>

e because the wavelet filters are not zero phase, aligning the coefficients with the original time
series is not straightforward;

e circularly shifting x(¢), taking the discrete transform, and determining the wavelet power
spectrum do not necessarily return the same wavelet spectrum as for x(z).

The first and last points are particularly important for surrogate generation as estimations of the
local energy content of the signal should be robust to a rotation of the data and preservation of
linear features of the original data in the surrogates is important. Consequently, the wavelet power
spectrum should retain a simple relation to the Fourier power spectrum.

The translation invariant, stationary, or MODWT is an undecimated variant of the discrete
transform that avoids some of the above issues. Effectively, a discrete transform is undertaken for
all N circular rotations of x(¢). For any given minimum rotation of x(¢), most coefficients will
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be identical to those at the previous iteration meaning that the computation of the MODWT is
O(N log,N) and not O(N?)."!

Defining the filter width at scale j as L; = (2 — 1)(L — 1) + 1, the jth level MODWT high and
low pass filters are given as

hjy=hj/2/2,
g1 =802 (AS)

These MODWT filters are related to those used in the DWT except for a rescaling to account for the
lack of downsampling. Hence, the MODWT wavelet and approximation coefficients are given as*®

1
wj g = Z R} 1Xk—1 mod N>
=0

Li-1
Ajr = Z &j,1Xk—~1 mod N~ (A6)
1=0
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