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Abstract

A general framework for regression modeling using localized frequency char-
acteristics of explanatory variables is proposed. This novel framework can
be used in any application where the aim is to model an evolving process
sequentially based on multiple time series data. Furthermore, this frame-
work allows time series to be transformed and combined to simultaneously
boost important characteristics and reduce noise. A wavelet transform is
used to isolate key frequency structure and perform data reduction. The
method is highly adaptive, since wavelets are effective at extracting localized
information from noisy data. This adaptivity allows rapid identification of
changes in the evolving process. Finally, a regression model uses functions
of the wavelet coefficients to classify the evolving process into one of a set
of states which can then be used for automatic monitoring of the system.
As motivation and illustration, industrial process monitoring using electri-
cal tomography measurements is considered. This technique provides useful
data without intruding into the industrial process. Statistics derived from
the wavelet transform of the tomographic data can be enormously helpful
in monitoring and controlling the process. The predictive power of the pro-
posed approach is explored using real and simulated tomographic data. In
both cases, the resulting models successfully classify different flow regimes
and hence provide the basis for reliable online monitoring and control of
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industrial processes.

Keywords: Electrical tomography, Logistic regression, Process control,
Remote sensing, Wavelets

1. Introduction

High-frequency data are routinely collected in a wide range of monitoring
and forecasting applications such as financial trading, meteorology, environ-
mental science, industrial process engineering and internet marketing. Data
sets consist of multiple time series which accumulate rapidly and must be an-
alyzed in real-time. This may mean that wide-ranging analysis is impractical
and that the focus must be on answering well-defined questions. The aim is
to summarize the incoming data-stream without losing essential information.

An exemplary application is the monitoring of industrial processes, where
measurements taken while the process is evolving must be converted into pa-
rameters which can be used to monitor and control the process. Electrical
tomography is a widely used technique which aims to investigate the interior
of a region using voltages taken outside the region. This provides indirect
information about the internal conductivity distribution, which reflects the
state of the process. Such techniques are widely used in geophysical, in-
dustrial and medical investigations. The predominant method of analysis
estimates the conductivity at points forming a fine grid — see for example
Aykroyd (2015), Lionheart (2004) and Watzenig and Fox (2009). This leads
to an over-parameterized regression type problem, known as an ill-posed in-
verse problem. Stable solution then requires substantial regularization, which
can mask features of interest. Although image reconstruction is useful for
process visualization, for automatic control an image is unnecessary (Stitt
and James, 2003; Hoyle, 2004). Such reconstruction may be time-consuming
and the image will still require post-processing to obtain control parameters.
Hence direct control parameter estimation, rather than process visualization,
is the more appropriate output of a data analysis in many real situations.

Clearly, there is a need in many other applications, as well as industrial
monitoring, for methods which are simple, fast and can operate largely un-
supervised. Wavelets are an ideal tool for our purpose since their multiscale
nature enables the efficient description of both transient and long-term sig-
nals; this will be illustrated in §3. We propose the use of wavelets in relating
time-series measurements to the response variable in §4. In particular, func-
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Figure 1: Diagram of data collection protocol showing drive and measurement circuits
connecting electrode on the pipe boundary with bubbles passing through the pipe.

tions of wavelet coefficients, which emphasize key frequency information, are
proposed and used as explanatory variables in a predictive regression model.
Efficacy of the proposed method is demonstrated on simulated electrical to-
mography data in §5 and real data in §6. We initially illustrate our methods
by application to simulated data sets which we describe in the next section.

2. Description of simulated data

To motivate the data simulation, consider the flow of a gas upwards
through a liquid in a pipe. The gas fraction and bubble size are determined
by the inlet size and the input pressure. To control process efficiency it is
important to monitor the flow regime, and to adjust the input parameters
when necessary. In our simulation, bubble flow (many small bubbles) and
churn flow (few large bubbles) will be considered. The spatial distribution of
the bubbles then defines the conductivity distribution which determines the
measurements. To create conductivity distributions, bubbles enter the plane
of the electrodes at random with frequency and diameter determined by the
flow regime. The diameter of the bubbles also determines the length of time
the bubble remains in the plane of the electrodes.

The data collection scheme is motivated by the widely used reference
protocol for an eight-electrode electrical tomography system; for details, see
West et al. (2005). Figure 1 shows a cross section through the pipe with the
eight electrodes on the boundary. To start the process a drive circuit passes
a current between the fixed reference electrode (E1) and a second electrode
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(E2). For each current pattern an induced potential field is created within
the pipe which depends on the electrodes in the drive circuit, and upon the
conductivity distribution within the pipe. Then a measurement circuit is
created connecting the reference electrode and each of the other electrodes
in turn and the voltage is recorded. In the diagram electrode E7 is part
of the measurement circuit. With the reference electrode fixed, seven other
electrodes can be part of each of the drive and measurement circuits, leading
to a total of 49 measurements. Further, the process is allowed to evolve for
n time points.

For each spatial conductivity distribution, c, the value of the potential
field, φ, within the pipe is found by solving a system of Maxwell’s equations,
∇·(c∇φ) = 0, with certain boundary conditions on the electrodes and on the
insulating pipe between electrodes, see West et al. (2005). This is a system
of second-order partial differential equations the solution of which requires
substantial numerical effort. Here the finite element method is implemented
using the EIDORS library (Polydorides and Lionheart, 2002) in MATLAB.
Once the potential field has been calculated, the voltages are then given
by the difference in the potential at the relevant locations. Once noise-
free voltages are obtained, uncorrelated Gaussian noise with mean zero and
variance τ 2 is added to yield the simulated data set.

Figure 2(a) shows a typical trace from a single sensor pair, with no noise in
(a) and increasing levels of noise corruption in (b)–(d). In each, the first half
of the trace corresponds to bubble flow and the second half to churn flow. In
the noise-free and low-noise cases, (a) and (b), the change of flow regime can
easily be seen. The signals from each of the flow regimes exhibit extremely
different behaviour, which can be explained in terms of the frequency of the
change in the measurements. The bubble flow, with its many small pockets
of gas in liquid, produces more rapidly varying measurements than the churn
flow. Even in (c), when the noise has τ = 0.05, it is just possible to distinguish
between the two flow regimes. By τ = 0.1 however it is almost impossible to
make any reliable judgement by eye.

The left and right columns of Figure 2 show standard regularized least-
squares reconstructions for the same noise levels as the central column using
total-variation regularization during bubble flow and churn flow respectively.
For a review of similar approaches see Lionheart (2004). For noise-free data
the reconstructions are clearly distinguishable. For the churn flow a dark
(gaseous) region in the top-left is clear. For the bubble flow there are no well-
defined bubbles, but it is clear that gaseous areas occur across the pipe. For
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Figure 2: Example simulated signals with increasing levels of noise and corresponding
image reconstructions.

low noise the picture is similar, though there is more random variation across
the pipe. For the moderate and high noise cases it is virtually impossible to
see any clear difference and any image-based classification will be unreliable.

3. Wavelet transforms of tomographic data

We propose using wavelets, a type of basis function, to analyze and clas-
sify our multiple time-series data. A brief introduction to wavelets and their
relevant properties is given here; for more details see, for example, Nason
(2008). Calculations were performed in the language R (R Development
Core Team, 2014) using the WaveThresh package (Nason, 2010).

For data such as tomography sensor traces, where the flow state changes
over time and different flow states have different frequency characteristics, a
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standard spectral analysis via Fourier expansion is clearly unsuitable. To
overcome this problem, wavelets can be used which are able to simulta-
neously represent a signal in the time and frequency domains. However,
wavelets only represent a data set of length n at ⌊log2(n)⌋ resolution levels
or scales. Wavelets at a fine scale (high frequency) resolution level are highly
localized, representing brief transient effects, while those at a coarser scale
measure lower frequency activity. Each resolution level represents activity at
approximately twice the frequency of the previous level.

We use the non-decimated discrete wavelet transform (Nason and Silver-
man, 1995; Coifman and Donoho, 1995). The NDWT has complete time
localization at each scale, resulting in an over-complete basis. We denote a
wavelet function by ψ(t), and create scaled and shifted copies via

ψjk(t) = 2j/2ψ(2j(t− k)),

where j = 1, 2, . . . , J − 1 and k = 0, 1, . . . , n − 1 represent the resolution
level and location respectively. The NDWT maps a discrete signal vector
y = (yi : i = 1, 2, . . . , n) to a collection of wavelet coefficients {djk} at levels
j = 1, 2, . . . , J − 1 and locations k = 0, 1, . . . , n− 1 defined by

djk =< y, ψjk > .

Figure 3 shows wavelet transforms of selected noise-free tomographic sig-
nals (column 1). The recorded signals are examples of bubble flow (a,c)
and churn flow (b,d). The top two rows show data from a measurement
circuit comprising adjacent electrodes; the bottom two rows correspond to
measurements between electrodes at opposite sides of the pipe. The second
column shows the non-decimated wavelet transform for each recorded signal.
Here, the numbers on the vertical axes indicate the resolution levels from
zero (coarsest) to 7 (finest). Columns 3 and 4 show the “activity measures”
which we shall define later in §4. Although the mean values in (a) and (b) are
similar, as are those in (c) and (d), the frequency patterns are very different,
and this is reflected in the corresponding wavelet coefficients and activity
measures. Finer resolution levels (5–7) show a lot of activity for bubble flow
and considerably less for churn flow. At the coarsest levels, there is slightly
less activity for bubble flow and more for churn flow. This indicates a dif-
ference in the frequencies at which the different signals are active, which is
detectable using the wavelet transform.
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Figure 3: Example data, showing four of the 49 time series, two each from bubble (a, c)
and churn (b, d).
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4. Methodology

Suppose we have a response and p explanatory variables connected by
some unknown relationship and training data which can be used to investi-
gate this relationship. The fitted model is then used to predict the unknown
response in test data where there is only knowledge of the explanatory vari-
ables.

Here two types of feature enhancing and data reducing transformations
will be proposed. Let dijt be the non-decimated wavelet coefficient of explana-
tory variable i at level j and at time t. In our application it is important to
have a measure which is invariant to relabelling of the explanatory variables.
This can be achieved by combining the explanatory variables at each time
point. It is important, however, to retain the distinct information at each
resolution level hence we consider two activity measures which aggregate over
explanatory variables using functions γ1 and γ2. The first retains separate
values for distinct resolutions and time points:

Z·jt = γ2

(

p
∑

i=1

γ1(dijt)

)

. (1)

As an example, and defining the case to be used later, let γ1(·) = |·| and γ2 be
the identity. This defines an absolute activity measure where the magnitudes
of the wavelet coefficients are summed over explanatory variables:

Z
(abs)
·jt =

p
∑

i=1

|dijt|. (2)

In the second measure, values are combined within a backwards facing time
window of length w (truncated at the start of the data trace):

Z·jt = γ2

(

p
∑

i=1

γ1
(

dij(max{1,t−w+1}), . . . , dijt
)

)

. (3)

As an example, and again defining the case to be used later, let γ1(·) = var(·)
and γ2 be the identity. This defines the variance activity measure where
variances of the wavelet coefficients over a time window are calculated and
summed over the explanatory variables:

Z
(var)
·jt =

p
∑

i=1

var
(

dij(max{1,t−w+1}), . . . , dijt
)

. (4)
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Figure 3 shows typical signals during bubble and churn flow. Also shown
are the corresponding wavelet decompositions and derived activity measures
in columns 3 and 4. When comparing corresponding bubble and churn sig-
nals, there are clear differences, although it is important not to be drawn to
transient patterns.

Consider classifying flow into one of two states using a logistic regression
model to predict the response yt from the activity measures z·jt. A step-wise
variable selection procedure is used to identify important resolution level
variables. Two optimization criteria will be considered: (i) minimizing AIC,
and (ii) maximizing the correct classification rate. In both cases the model
fitting procedure uses a training data set, but for final model assessment
the correct classification rate is calculated when the fitted model is used to
predict on an independent test data set.

Let V represent the set of included variables and V ′ the remaining vari-
ables, let AIC(V ) be the value of the AIC for the model containing variables
V , and let V−v and V+v represent the set of variables with v removed or
added. The variable selection procedures uses the following algorithm.

1. Initialize with current model V empty and all variables in V ′.

2. Forward: Consider adding a variable to current model V :

• Let v′=argmin
u′∈V ′

AIC(V+u′), and move v′ toV ifAIC(V+v′) < AIC(V )

3. Backward: Consider removing a variable from current model V :

• Let v=argmin
u∈V

AIC(V−u), and move v to V
′ ifAIC(V−v) < AIC(V )

4. Swap: Consider swapping variables between V and V ′:

• Let (v, v′) = args min
u∈V,u′∈V ′

AIC(V−u+u′), and move v to V ′ and v′ to V

if AIC(V−v+v′) < AIC(V )

5. Repeat steps 2, 3 and 4 until there is no change in V and V ′.

6. Output V and calculate the correct classification rate using the

test data set.

A second approach maximizes the correct classification rate, but this time
the fitting algorithm proceeds until all variables are included and returns the
best model for each possible number of variables. The correct classification
rate is then calculated for each of these models using the test data set.
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5. Simulation results

We now discuss the results of applying our proposed method to simulated
tomographic data. Our interest is not only in the method’s performance on
the specific tomography application, but also in how one would select the best
approach for other data sets. Thus, we discuss a range of different variations
of our method and what criteria one might use to choose a preferred approach.
The Haar wavelet was used throughout; we have found other wavelets to give
similar or worse results.

Our proposed methods were trained on 100 sets of simulated data, in
each case testing the resulting model’s performance on a separate indepen-
dent test data set. Two training regimes were considered. One (“pure”)
calculates activity measures separately for 256 observations of bubble flow
and 256 observations of churn flow. The other (“mixed”) calculates activity
measures for a combined data set of 256 observations of bubble flow followed
by 256 observations of churn flow. In the mixed case, wavelet coefficients
near the transition from bubble to churn will include information from both
flow types, while in the pure case the coefficients will all represent uncor-
rupted information on the flow types. Some care must be taken since the
longer mixed data set results in one extra, more coarse, resolution level in the
wavelet decomposition. The test data sets consisted of 168 observations of
bubble flow, followed by 256 observations of churn flow, and finally another
88 observations of bubble flow, resulting in 512 observations in each case.

The most common statistical application of wavelets is denoising (Donoho
et al., 1995). Hence a further option is whether to threshold the wavelet
coefficients in an attempt to remove the noise. This may be helpful if the
recorded data are corrupted by measurement error which partially masks the
information contained in the signals.

Figure 4 shows a summary of the model fitting results. For each model-
ing approach, the correct classification rates on the test data from the 100
training/test pairs are summarized as a boxplot. The top row shows clas-
sification using wavelet absolute value, whereas the other rows are for the
wavelet variance activity measure with selected window widths w. Columns
represent low and high noise levels (similar results were seen for moderate
noise). Within each panel, the left-most boxplot is classification using the
raw data for comparison. The remaining boxplots can be divided into four
groups defined by type of training data (mixed or pure), and according to
whether wavelet thresholding was or was not used. Further, within each
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Figure 4: Box plots showing correct classification rates for the different classification
methods. The top row has the wavelet absolute value method whereas the other rows use
the wavelet variance method with selected window widths. Columns show low (left) and
high (right) noise levels. Dashed lines indicate the median correct classification rate for
the best method and the model using the raw data.
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group of 9, or 10, boxplots the first shows the results after model selection
using AIC, then the remainder show results using the best 1, 2,. . . variables
as determined by correct classification rate on the training data set. In each
panel, two horizontal dashed lines show the median correct classification rate
from (a) the best method and (b) using the raw data.

The first row of Figure 4 shows that, in general, when using the absolute
value activity measure, thresholded mixed training data is the preferred ap-
proach. However, in our application, wavelet variance generally works better.

The remaining three rows in Figure 4 correspond to the use of the wavelet
variance activity measure using window widths of 5, 15 and 50 time points.
Overall the patterns are reasonably consistent across window width and noise
levels. In general, the classification rates are better when using a window of
15, and the method without thresholding and trained on pure data performs
the worst. The other three approaches perform to a similar level, with the
approach trained on pure data and using thresholding on the best one or two
variables performing the best.

Table 1: Top 10 classification approaches for high noise level.

Measure Training Thresholded Levels Rate
1 Var pure Y 1 0.877
2 Var pure Y 2 0.874
3 Var pure Y 3 0.874
4 Var pure Y AIC 0.864
5 Var mix N 2 0.860
6 Var mix N 3 0.860
7 Var mix Y 2 0.857
8 Var mix N 4 0.853
9 Var mix Y 1 0.852
10 Var mix N 5 0.850
...

...
...

...
...

...
24 Abs mix Y 6 0.794
...

...
...

57 RAW 0.649
...

...
...

When the approaches are ranked by correct classification rate, Table 1,
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the best approaches all use the variance activity measure with thresholding
and trained on pure data. The first uses only the best single variable, then
two variables and then three variables. Notably, the approach selecting vari-
ables using AIC is the fourth best. Most of the rest of the approaches shown
use mixed training data with the wavelet variance activity measure, but some
use thresholding and some do not, and there are a wide variety of number of
variables included. It is only at rank 24 when the best approach using the
wavelet absolute value activity measure appears.

In summary, the preferred approach for the simulated tomographic data
is to use:

• wavelet thresholding,

• variance activity measure with a window width of 15,

• the single best resolution level, and

• trained on pure data.

For other applications, ideally one should conduct a simulation study to
identify the best approach. If, however, it is not possible to perform such
an investigation to choose the best resolution levels, then using AIC variable
selection performs well.

We now study the preferred approach more closely, presenting more de-
tailed results using the same 100 pairs of training/testing data. Figure 5
shows results from approaches using the wavelet variance activity measure
with a window width of 15 for both training approaches and with and with-
out thresholding. The diagram shows the joint relative frequency that each
wavelet resolution level appears as best or second-best in terms of correct
classification rate. In each graph, the vertical axis identifies the best, and
the horizontal axis identifies the second best. The left hand column, marked
“M”, gives the marginal distribution of the best level.

When using mixed data it is clear that the useful information is contained
in levels 4 and 5. Without thresholding, once level 4 or 5 is included, then
the second most important is level 8. For mixed data with thresholding,
levels 4 and 5 are still the most important but high levels are also sometimes
included as the most important. This time there is no clear-cut second best
with most levels being represented.

For the pure data without thresholding, the pattern is very different. The
best levels are, almost equally, any of 1 to 4, and with all other levels equally
second best. The picture for pure data with thresholding is very similar to
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Figure 5: Distribution of best variables (vertical axis) and second best (horizontal axis)
using the correct classification rate criterion for wavelet variance method.

the case of mixed data without thresholding. The best are levels 4 and 5
with the highest level appearing often as second best.

Figure 6 shows the performance of the four approaches, along with clas-
sification using the raw data, for varying noise levels. It can clearly be seen
that for low noise levels the selected methods have similar correct classifica-
tion rates, but as the noise increases the methods’ relative performance of
the approaches changes.

When the best model is chosen by AIC, (a), three of the approaches have
very similar high correct classification rates. These are mixed data with
and without thresholding, and pure data with thresholding. For low and
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Figure 6: Correct classification rate, using wavelet variance method, for different noise
levels: (a) Variables selected by AIC, and (b)–(d) best 1–3 variables respectively, selected
by best correct classification rate. Explanatory variables are raw data (dotted line), activ-
ity measures trained on mixed data (grey) and trained on pure data (black). Solid lines
denote no thresholding and dashed lines thresholding.

moderate noise levels the best is pure data with thresholding, but for high
noise levels this becomes the worst of the three. The performance using pure
data without thresholding is always lower than the others.

When the correct classification rate using the best 1–3 variables are con-
sidered, in panels (b)–(d), the general pattern is similar. In all cases using
pure data without thresholding is the worst approach. Using only the best
single variable thresholding is better, and with pure data in particular, but
as the number of variables included increases the approaches using mixed
data improve and eventually become the better.
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Figure 7: Correct classification rate over 100 test-training pairs for wavelet variance using
different window widths.

Figure 7 shows how the correct classification rate varies with window
width. The approach uses wavelet thresholding and training on pure data.
The approach performs badly if the window width is very small, then rapidly
improves until about 10, then is stable until about 20 after which it gradually
worsens. From this we see that the approach is not too sensitive to the exact
choice of window width though in the range 15 to 20 appears best.

Clearly, if a very narrow window is used then the resulting flow prediction
is less reliable due to random variation. As the width increases, the effect
of variability reduces and prediction becomes more reliable. However, as the
width further increases the prediction is slower to detect a change in flow
regime and hence the classification becomes less reliable.

Figure 8 shows how the correct classification rate and the probability
of churn changes with time using the preferred approach. As expected the
correct classification rate, panel (a), is generally high. Initially, the correct
classification rate is almost 99%, but at the first switch in flow regime this
drops to zero before more slowly returning to a high level. The rate again
dips at the second change of regime. Notice that the method has a higher
correct classification rate for bubble than for churn, that the drop in rate
is much more rapid than the recovery, and also that when changing from
bubble to churn the dip in rate is slightly more dramatic and the recovery
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Figure 8: Using the best wavelet variance method, (a) shows the correct classification rate
along the trace and (b) shows boxplots of estimated probability of churn.

more rapid than when changing from churn to bubble.
Panel (b) shows boxplots (drawn without outliers) of the estimated prob-

ability of churn for the 100 training/test data set pairs at different points
along the trace, along with a dotted line showing the mean values. Over most
of the trace the range of estimates is so narrow that the box and whiskers
appear as a single line. The location of the mean, however, shows that we
are dealing with a skew distribution caused by the (omitted) outliers. Only
at the change of regime does this pattern differ. At the first change, from
bubble to churn, the box covers the entire range of possible values. For the
second change, from churn to bubble the box is not so wide, but is still more
than half the allowable range with the whiskers covering the full range.

6. Detecting flow change in real data

We now consider detecting the change in flow characteristics on data
gathered in a laboratory experiment. Rice was allowed to flow down a vertical
tube surrounded by eight sensors, leading to 49 data traces. In this case, the
presence or absence of flow can be detected easily using the mean level of
the recorded voltages. To validate our method, the mean level was first
removed using a wavelet smoother and the resulting residuals analyzed for
local frequency characteristics which could diagnose the presence or absence
of flow. Figure 9 shows a typical trace (dots), the fitted local mean level,
and the residuals remaining after removal of the local mean. The local mean
was used to classify observations as two types, “flow” and “no flow”, with an

17



0 100 200 300 400 500

50

52

54

56

58
Vo

lta
ge

Time point

−0.8

−0.4

0.0

0.4

0.8
R

esidual

A
B

Figure 9: Example trace from rice flow data. The plot shows raw data as dots with a
smoothed local mean curve. The vertical lines dividing the trace into “flow”, “interme-
diate” and “no flow” states based on the local mean. The trace across the centre shows
the residuals after removal of the local mean, with bars at the bottom of the figure show
classification to “flow” (A) or “no flow” (B) using our wavelet-based approach.

indeterminate intermediate stage; these segments are separated in the figure
with vertical dashed lines. The intermediate values were not used in training.
In our application, this intermediate stage is not a clearly distinguished flow
type in its own right, and hence there is no interest in classifying observations
to an intermediate state and our response variable is binary. Of course, other
applications may have more than two states of interest and hence require
different classification methods.

The data were analyzed using the best classification approach found in
our simulation study (wavelet variance, pure training data with thresholding,
using the single best resolution level). Three replicate experiments were
conducted, giving six possible training/test combinations. For each pair of
training and test data sets, correct classification rates were computed based
only on the observations classified by mean level as flow or no flow. Across
the six train/test pairings, the correct classification rate ranged from 97%–
100% with mean 99%. One reason for this excellent performance is that the

18



duration of the intermediate stage of around 150 observations is longer than
the wavelet variance window (15 observations). Therefore, once the “no flow”
observations commence there is no carry-over effect from the “flow” data.

Other applications may have no intermediate stage. Then carry-over ef-
fects following the abrupt change from type A to type B may lead to the
first few type B observations being classified as type A. For our data, re-
moving intermediate-stage measurements in the test data, results in correct
classification rates of 88.3% to 97.3%, with mean 92.4%.

Figure 9 shows an example of the actual classification, including during
the intermediate phase. It is clear that the vast majority of “flow” or “no
flow” observations are correctly classified with very little uncertainty. In
the intermediate stage, we see blocks of observations being classified to each
of “flow” and “no flow”. This may occur if the remaining rice is flowing
irregularly rather than as a smooth reduction in the flow rate.

7. Discussion

We have proposed a general framework which uses localized frequency
variables derived from wavelet coefficients to construct regression models
which use transient signal features as predictors. As an explicit example we
used this approach to classify the flow regime from electrical tomography
data, but many other possible uses can be considered.

Each resolution level corresponds to a frequency band and by considering
which levels are most useful in a model we may learn about the frequencies
where the processes differ. Using our preferred model (pure data, threshold-
ing, single best resolution level) on the simulated data, we see from Figure 5
that the preferred level is 4 or 5, compared to a finest resolution at level
8. Hence, we deduce that the difference between bubble and churn flow is
most striking at a frequency corresponding to some 16–32 observations. (Al-
though we note that the estimation of the instantaneous wavelet variance
uses a window of coefficients, thus incorporating data from a wider window.)

It is worth noting that there can be “leakage” between different levels of
the NDWT. When the key underlying frequency is somewhere between two
levels, there may be difficulty in choosing a single “best” level. This may
account for the fact that levels 4 and 5 are preferred almost equally often in
our simulation. In such cases, it is possible that averaging activity measures
across different resolution levels may be helpful.
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We have discussed the use of wavelet variances since the key information
in our application lies in the amount of “activity” at given frequencies. De-
pending on the application, the important information in the signal may be
in the mean value of the explanatory variables, in their frequency component,
or in other characteristics of the data. Many of these can also be encoded
by suitable statistics derived from the NDWT. For example, scaling coeffi-
cients are computed as part of the wavelet transform. These are effectively
local weighted averages and could be used (possibly via activity measures)
to encode localized mean level data as the time series progresses.

Other authors have also considered the use of wavelet coefficients as
predictors in other settings; for example Ramsey and Lamport (1998) con-
structed regression models relating the DWT of both covariate and response
time series in economic data and Küçük and Ağiralioğlu (2006) construct
similar models in streamflow modeling. Further, wavelet packets (a gen-
eralisation of wavelets which results in a much richer set of potential basis
functions) have been used in modeling transient underwater signals (Learned
and Willsky, 1995), sales data (Michis, 2009), wastewater filtering (Lee et al.,
2009), sleep state modeling (Nason et al., 2001) and wind speed prediction
(Hunt and Nason, 2001; Nason and Sapatinas, 2002). The greater flexibil-
ity of wavelet packets comes at a price; the number of potential covariates
given n observations on a single predictor variable is log2(n) when using the
non-decimated wavelet transform, but 2n− 2 when using the non-decimated
wavelet packet transform. Some form of dimension reduction is required to
construct a regression model.

Similar wavelet variances to the ones we use have been considered by
Maharaj and Alonso (2007, 2014). These authors use wavelet variances and
correlations evaluated on disjoint blocks in classifying seismic, EEG, and
ECG data. An alternative statistic which can be computed from the NDWT
is the evolutionary wavelet spectrum (EWS) based on the locally stationary
wavelet process (LSW) model due to Nason et al. (2000); Fryzlewicz and
Ombao (2009) and Krzemieniewska et al. (2014) use selected (j, k) pairs from
the EWS in classifying seismic and acoustic time series. In these applications,
the interest was in allocating an entire time series to one of a number of
classes, in contrast to our goal of segmenting a time series as it evolves.

Sanderson et al. (2010) developed a multivariate LSW process model,
which Cho and Fryzlewicz (2015) have used in segmentation of multiple
locally stationary time series, while Park et al. (2014) have developed es-
timators for the dependence structure between the multivariate time series.
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This multivariate LSW model could be used to extend our approach if the
structure of the multiple explanatory time series is of interest.

The obvious use of our models is online monitoring of an evolving process.
Wavelets, being computationally efficient and effective at modeling transient
features, are well suited to this purpose. Moreover, we note that as new data
become available only the most “recent” wavelet coefficients would need re-
computing (the exact number being different at the varying resolution levels).
Further work would be required to develop efficient algorithms which update
only the necessary wavelet coefficients. On the other hand, if the purpose is
retrospective analysis of an entire data set, there would be no need to restrict
our wavelet coefficients to backward-looking time windows.

Many modern applications collect multiple time series data which need
to be analyzed sequentially and in real time. The wavelet-based classifica-
tion approach described here concentrates characteristic features into a small
number of variables which are then used in the classification steps. Although
we have only used local frequency characteristics, one might also wish to
include mean level information. This could easily be done within our frame-
work by including additional activity measures based on the scaling function
coefficients. Our framework produces a method which is fast and allows
rapid identification of changes in the monitored process. Although here it is
applied to electrical tomography data, the same framework can be used to
produce similar classification methods in a wide range of applications.
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Küçük, M., Ağiralioğlu, N., 2006. Wavelet regression technique for streamflow
prediction. Journal of Applied Statistics 33, 943–960.

Learned, R. E., Willsky, A. S., 1995. A wavelet packet approach to tran-
sient signal classification. Applied and Computational Harmonic Analysis
2, 265–278.

Lee, H. W., Lee, M. W., Park, J. M., 2009. Multi-scale extension of PLS
algorithm for advanced on-line process monitoring. Chemometrics and In-
telligent Laboratory Systems 98, 201–212.

Lionheart, W. R. B., 2004. EIT reconstruction algorithms: pitfalls, challenges
and recent developments. Physiological Measurements 25, 125–1142.

Maharaj, E., Alonso, A., 2007. Discrimination of locally stationary time series
using wavelets. Computational Statistics and Data Analysis 52, 879–895.

Maharaj, E., Alonso, A., 2014. Discriminant analysis of multivariate time
series: Application to diagnosis based on ECG signals. Computational
Statistics and Data Analysis 70, 67–87.

22



Michis, A. A., 2009. Forecasting brand sales with wavelet decompositions
of related causal series. International Journal of Business Forecasting and
Marketing Intelligence 1, 95–110.

Nason, G. P., 2008. Wavelet Methods in Statistics with R. Springer, New
York.

Nason, G. P., 2010. wavethresh: Wavelets statistics and transforms. R pack-
age version 4.5.
URL http://CRAN.R-project.org/package=wavethresh

Nason, G. P., Sapatinas, T., 2002. Wavelet packet transfer function modelling
of nonstationary time series. Statistics and Computing 12, 45–56.

Nason, G. P., Sapatinas, T., Sawczenko, A., 2001. Wavelet packet modelling
of infant sleep state using heart rate data. Sankhya B 63, 199–217.

Nason, G. P., Silverman, B. W., 1995. The stationary wavelet transform and
some statistical applications. In: Antoniadis, A., Oppenheim, G. (Eds.),
Wavelets and Statistics. Vol. 103 of Lecture Notes in Statistics. Springer-
Verlag, New York, pp. 281–300.

Nason, G. P., von Sachs, R., Kroisandt, G., 2000. Wavelet processes and
adaptive estimation of the evolutionary wavelet spectrum. J. R. Statist.
Soc. B 62, 271–292.

Park, T., Eckley, I. A., Ombao, H. C., 2014. Estimating time-evolving par-
tial coherence between signals via multivariate locally stationary wavelet
processes. IEEE Transactions on Signal Processing 62 (20), 5240.

Polydorides, N., Lionheart, W., 2002. A MATLAB toolkit for three-
dimensional electrical impedance tomography: a contribution to the elec-
trical impedance and diffuse optical reconstruction software project. Mea-
surement Science and Technology 13, 1871–1883.

R Development Core Team, 2014. R: A Language and Environment for Sta-
tistical Computing. R Foundation for Statistical Computing, Vienna, Aus-
tria.
URL http://www.R-project.org

23



Ramsey, J. B., Lamport, C., 1998. The decomposition of economic relation-
ships by time scale using wavelets: expenditure and income. Studies in
Nonlinear Dynamics and Econometrics 3, 2342.

Sanderson, J., Fryzlewicz, P., Jones, M., 2010. Estimating linear dependence
between nonstationary time series using the locally stationary wavelet
model. Biometrika 97 (2), 435–446.

Stitt, E. H., James, K., 2003. Process tomography and particle tracking: Re-
search tool and commercial diagnostic tool. In: Proc. 3rd World Congress
on Industrial Process Tomography. Banff, pp. 2–10.

Watzenig, D., Fox, C., 2009. A review of statistical modelling and inference
for electrical capacitance tomography. Measurement Science and Technol-
ogy 20, 1–22.

West, R. M., Meng, S., Aykroyd, R. G., Williams, R. A., 2005. Spatial-
temporal modeling for electrical impedance imaging of a mixing process.
Review of Scientific Instruments 76 (7), 073703.

24


