
This is a repository copy of Skeletons for Distributed Topological Computation.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/88285/

Version: Accepted Version

Proceedings Paper:
Duke, DJ and Hosseini, F (2015) Skeletons for Distributed Topological Computation. In:
Rompf, T and Mainland, G, (eds.) FHPC 2015 Proceedings of the 4th ACM SIGPLAN
Workshop on Functional High-Performance Computing. Functional High Performance
Computing, 03 Sep 2015, Vancouver, Canada. ACM Press , pp. 35-44. ISBN
978-1-4503-3807-3

https://doi.org/10.1145/2808091.2808095

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Skeletons for Distributed Topological Computation

David J. Duke Fouzhan Hosseini

School of Computing, University of Leeds, Leeds, UK

{D.J.Duke,F.Hosseini}@leeds.ac.uk

Abstract

Parallel implementation of topological algorithms is highly desir-
able, but the challenges, from reconstructing algorithms around in-
dependent threads through to runtime load balancing, have proven
to be formidable. This problem, made all the more acute by the di-
versity of hardware platforms, has led to new kinds of implementa-
tion platform for computational science, with sophisticated runtime
systems managing and coordinating large threadcounts to keep pro-
cessing elements heavily utilized. While simpler and more portable
than direct management of threads, these approaches still entangle
program logic with resource management. Similar kinds of highly
parallel runtime system have also been developed for functional
languages. Here, however, language support for higher-order func-
tions allows a cleaner separation between the algorithm and ‘skele-
tons’ that express generic patterns of parallel computation. We re-
port results on using this technique to develop a distributed version
of the Joint Contour Net, a generalization of the Contour Tree to
multifields. We present performance comparisons against a recent
Haskell implementation using shared-memory parallelism, and ini-
tial work on a skeleton for distributed memory implementation that
utilizes an innovative strategy to reduce inter-process communica-
tion overheads.

Categories and Subject Descriptors D. Software [D.1 Program-
ming Techniques]: D.1.1 Applicative (Functional) Programming

Keywords Computational Topology, Performance, Eden, Haskell

1. Introduction

Computational science has a long history of driving advances in
computing, from the development FORTRAN by Backus in the
1950s, through development of parallelism frameworks such as
OpenMP and MPI, to the emerging challenge of exa-scale comput-
ing. Our work is situated at the intersection of three recent advances
that have emerged in response to the continuing challenge of scale:

• Topological analysis to provide compact representations of
large datasets, and providing scaffolding for exploration and
analysis. This paper is concerned with one such technique, the
Joint Contour Net (JCN), a recent addition to the topological
toolbox that approximates the Reeb space for multifield data.

• Parallel runtime systems (RTS) that provide a level of ab-
straction above disparate parallel hardware platforms, facilitat-
ing resource management and inter-thread coordination. Well-
known examples in computational science include Charm++
[19] and UINTAH [25] in scientific computing, and VTK [33]
in pipelined visualization.

• Higher-level languages that reduce the programming effort
needed to create and manage parallelism, with or without RTS
support. Domain-Specific Languages (DSLs) are a recent trend
in this area, with examples including ViSlang [32] for parallel
volume rendering, and Liszt [8] for portable PDE solvers.

Rather than start from a special-purpose runtime system and
language, our work seeks to exploit advances elsewhere in the pro-
gramming system design space: parallel functional programming,
and specifically Haskell [28] and its distributed variant Eden [22].
Current Haskell compiler and RTS implementations have many of

the characteristics described above. For example, GHC1 has an ad-
vanced multi-core runtime system with very lightweight threads,
supporting work-stealing and coordination, while the Eden com-
piler implements language extensions for distributed processes via
MPI-based coordination similar to that underlying e.g. Charm++.

Previous work [12] reported on the utility of Haskell in imple-
menting the JCN algorithm, and results on shared-memory paral-
lelization using hand-crafted strategies for work allocation. Starting
from that baseline, this paper makes three contributions:

1. Describes and evaluates a distributed memory implementation
of the JCN algorithm in Eden, an essential step towards analysis
of larger-scale datasets such as hurricane simulation [16, 18].

2. Investigates the use of generic skeletons to simplify the task of
parallelization, and identifies limits to this approach linked to
properties of the application domain.

3. Implements a novel approach to computing the JCN as a dis-
tributed data structure, setting the stage for a new class of skele-
tons applicable to a range of computational science tasks.

Our application domain, multifield topological analysis for
computational science, is introduced in Section 2; we also sum-
marise progress to date on parallelization using conventional lan-
guages. We assume that the reader is familiar with functional pro-
gramming and simple features of Haskell (data type definitions,
higher order functions, and type classes), but in Section 3 we
provide an introduction to Eden’s approach to distributed paral-
lel programming. Section 4 describes the distributed-memory im-
plementation, and examines the use and performance of different
high-level skeletons to implement parallelization. A key finding is
the high cost imposed by inter-node communication. In section 6
we address this by developing a new skeleton that reduces com-
munication costs by using a technique of boundary updates. We

1 Glasgow Haskell Compiler

conclude the paper by reflecting on the tension between generic
‘reusable’ skeletons and the need in high-performance computing
to exploit domain-specific knowledge.

2. Background

Computational science involves the synthesis, collection and anal-
ysis of data sampled over some domain, where both the sampled
phenomena and underlying domain are continuous spaces. Appli-
cations are diverse and numerous, and the insight from these can
have profound implications for social policy, technological devel-
opment, or fundamental scientific insight. Examples include

• meteorological and climate models, at both global level and of
isolated phenomena such as storms;

• geophysical models of petroleum reservoirs, phenomena such
as the earth’s magnetic field, or events such as earthquakes;

• models of molecular structure, ranging in detail from quantum-
level studies of simple interactions through to macro-level mod-
els of biomolecular structure and function, for example of the
HIV virus [39];

• studies of physical materials and interaction, from the low-level
physical structure of materials for carbon capture through to
complex interactions in combustion and explosions.

These data are usually defined over a spatial domain that is home-
omorphic to a subset of R2 or R3. In many cases the data is part of
a time series in which case time can be treated as a further dimen-
sion, allowing for example, the interpolation of models between
discrete simulation steps [2]. In general we consider the phenomena
of interest to be finite samples taken from the continuous function

f : Rm(+1) → Rn, where m is the spatial domain dimension. The
range (Rn) of the function captures the properties being modeled
or observed, including scalars (e.g. temperature, pressure), vectors
(flow), and/or tensors (e.g. diffusion). In practice it is usual to sep-
arate the individual fields of interest. For example, a hurricane sim-
ulation studying three scalar fields (temperature, pressure, and pre-
cipitation) plus a single vector field (wind velocity) over a 3D time
series corresponds to a function f : R4 → R7, but would also be
considered as four functions defined over a common domain, temp,
pres, precip : R4 → R and vel : R4 → R3.

In the 1980s the need to analyse (relatively) large volumes of
data from computer simulation and imaging devices led to the
emergence of scientific visualization [24]. This combines high-
performance computing and graphics to generate imagery that af-
fords insight into the data, and has led to a suite of widely used
visualization techniques such as isosurfacing and volume render-
ing for scalar fields, and streamlines, streamsurfaces, and LIC for
vector fields [33, 38]. However the challenge facing visualizaion
(and computational science generally) is that of scale: increasing
levels of ambition from domain experts, and the need for finer lev-
els of resolution to develop further insight into physical phenom-
ena. Dataset scale challenges visualization (i) through the computa-
tional cost of generating visual representations, and (ii) through the
mis-match between the volume of data to be represented, and the
capabilities of the human perceptual system. Topological abstrac-
tions appear the most promising solution to date, but still present
significant mathematical and computational challenges.

2.1 Computational Topology

The value of an abstraction lies in its ability to reduce the volume
of data while preserving important details in some context. One
of the most important details when understanding the behaviour of
continuous functions are the set of critical points, and relationships
between these points. Topological abstractions have been success-

8

4

3

7

5

6

1

2

9

5

9

1

8

3

7.5

6.5

5.5

4.5

3.5

7.5

1.5

Figure 1. A scalar field defined over a 2D domain, showing (left)
a set of contour lines, and (right) the contour tree.

ful precisely because they capture these points and their relation-
ships within a rigorous mathematical foundation that permits fur-
ther analysis. For scalar fields, the critical points consist of minima
and maxima (local and global), and saddle points. Two scalar topo-
logical abstractions that partition the domain into regions defined
in terms of critical points are the Reeb graph, and the Morse-Smale
complex.

1. The Reeb graph captures the nesting relationship between con-
tours of the function (connected components of the level sets).
Where the function is defined over a simple manifold, which is
often the case in computational science, the Reeb graph is an
unrooted tree and is called the Contour Tree.

2. The Morse-Smale complex partitions the domain into regions
based on gradient. The gradient of all points within a given
Morse-Smale region directs flow to a common sink, and dually
receives flow from a common source.

We will not expand further on the Morse-Smale complex, nor
do we discuss the considerable body of work on vector field topol-
ogy, or emerging results on tensor topology. Instead, as the results
presented in this paper concern a generalisation of the Contour Tree
we illustrate the latter via a small example in Figure 1. Each circle
in the figure represents a point, consisting of a location in 2D space
and a single scalar value, written inside. For the sake of illustra-
tion, these could be considered as height above sealevel arising in
a climate change simulation.

As we have only discrete samples, if we want to find the height
between samples we need a means of interpolation. This requires
partitioning the spatial domain into local regions called cells. There
are different schemes for partitioning and interpolation with known
trade-offs [6]; in this paper we use decomposition into simplicial
complexes (triangle meshes in 2D, tetrahedral meshes in 3D) and
then barycentric interpolation within each simplex.

2.2 The Joint Contour Net

Scientists and engineers can rarely work with a single phenomenon
in isolation. Most computational studies involve multiple scalar
fields (multifields), and progress often comes from qualitative
and quantitative insight into the complex interactions between the
fields. Examples of recent multifield studies include proton & neu-
tron density in nuclear physics [11, 34, 35], gas temperature, par-
ticle density and turbulence in astrophysics [10], and temperature,
pressure and precipitation in meteorology [16]. Our discussion of
multifield techniques is limited to multiple scalar fields; analysis
of interactions between scalar and vector/tensor fields is an open
research problem.

Unfortunately, finding topological abstractions for even the
‘simple’ case of scalar multifields has proved challenging. Work
to date has included the concept of the Jacobi Set [13], and of the
Reeb space [14] which generalises the Reeb graph for single scalar

8/7

4/4

3/1

6/2

slab 4/3

(3,1)

(4,1)

(3,2)

(4,2)

(4,3)

(5,2) (6,2) (7,2)

(4,4)

(5,4)

(6,5)

(7,6)

(8,7)

(7,7)

(6,6)

(5,5)

(6,7)

(5,4)

(6,4)

(6,3)

(6,8)

(1,9)
(2,9)(8,7)

(3,1)
(9,3)

(4,3)

a1

a2

a3

a4

a5

a6

b1

b2

b3

b4

b5

b6

b7

b8

b9

b10

b11

3/1 6/2

4/4
7.5

6.5

5.5

4.5

3.5

7.5

1.5

7 8 9

4

1

5

2

6

6.5

5.5

4.5

3.5

1.5

2.5

8

4

3

7

5

6

1

2

9

3

Figure 2. Construction of the Joint Contour Net for a 2-field dataset defined on a 2-dimensional domain, i.e. R2 → R2, shown on the left.

fields to a set of fields. However, there are few computationally
effective tools for analysis of the exact Reeb space generated from
a set of samples defined over a mesh.

The Joint Contour Net [5] is an approximation to the Reeb
space, constructed by first quantising the range of the function in
each of the n dimensions, and then constructing a graph represent-
ing adjacency in the spatial domain between the equivalence classes
(‘slabs’) induced by this quantisation. For each range dimension
1 6 i 6 n, the desired level of quantisation in dimension i is ex-
pressed as a slab width wi. Given a simplicial mesh with samples at
the vertices, the algorithm can be expressed in terms of two phases:

fragmentation: The simplicial cells are subdivided into polytope
fragments by families of parallel cutting planes, one family per
range dimension, where the distance between planes is defined
by the slabwidth of the respective dimension. At the end of the
phase, each cell’s fragments form a partition of that cell, and
collectively the fragments partition the original domain. Each
fragment is assigned a quantised coordinate in range space,
defined by the minimum point on the polytope.

merger: No two fragments derived from any one simplicial cell
will have the same quantised coordinate, but adjacent fragments
from neighbouring cells may do. Such equivalent fragment
polytopes are merged to produce slabs, which extend across
multiple cells and partition the domain into regions that are
equivalence classes of the quantised range values.

The Joint Contour Net J is the dual graph of the slab regions. It
has one node per slab, with an edge (u, v) in J just when the slabs
corresponding to u and v are adjacent in the domain.

Figure 2 illustrates the approach using a dataset consisting of
two fields, 9 points, and 8 simplicial cells (triangles). Both fields
are quantised to a slab width of 1. The upper right of the figure
focuses on just two of the cells. Polygonal regions defined by the

cell boundaries and cutting planes define the first-phase fragments:
6 (a1-a6) in one cell, and 11 (b1-b11) in the second. Within a cell
each fragment is uniquely defined by its field values, for example
fragment ‘a4’ lies in the inverse image of the half-open interval
[3.5-4.5) for the first field, and [2.5,3.5) for the second, so would
be assigned the range coordinate (3.5, 2.5). The upper-right of the
figure shows the result of the merger phase. Two adjacent fragments
defined over the same interval, a4 and b5, have been merged,
producing the slab shown in yellow. The lower part of the figure
contains the graph of slab adjacency, with the newly-merged slab
marked by a yellow node. The JCN for the full dataset is shown
in the bottom-right. To date, implementation of the JCN algorithm
has used two intermediate structures [5]:

1. a disjoint set data structure, initialised to the set of fragments by
the first phase, and which then captures the union of equivalent
spatially adjacent fragments to eventually form the slabs; and

2. a graph G whose nodes are initially the fragments, with an edge
between two nodes iff the corresponding fragments are adjacent
but differ in one or more field intervals. Merger of fragments in
the spatial domain triggers merger of the corresponding nodes
in the graph; at completion of the second phase, G has been
reduced to the JCN graph J .

2.3 Parallel Computation of Topology

Given the challenge that scale poses across computational science
it is unsurprising that there has already been considerable interest in
exploiting parallel computing for constructing topological abstrac-
tions. Ironically, the very property that makes topology useful (that
it provides a global summary of data) has complicated development
of parallel algorithms, which want to operate on local subsets of the
domain.

To date, successful approaches to parallel computational topol-
ogy fall into two broad groups. Examples of the first group include
parallel computation of the Contour tree [29] and more recently
the Morse-Smale complex [17, 36, 37]. These implementations use
variants of the sequential algorithms that are able to compute lo-
cal fragments of the topological data structure across subdivisions
of the domain, and then employ a reduction strategy to generate
the global abstraction. Beyond the complexity of the algorithms,
the ‘cost’ is the additional data needed to perform reduction across
neighbouring regions; this can be significant, and has been a ma-
jor obstacle to greater parallel scalability. However recent work has
led to a new family of strategies that avoid generation of a global
abstraction, either

1. by using a distributed data structure [21, 26, 27], and/or

2. by terminating reduction once a desired level of refinement has
been reached [17, 21].

These strategies work when the topological abstraction is used
to answer queries, e.g. on the cells intersected by isosurfaces, or
where there is a rigorous strategy for simplification. Compared to
the Contour tree and Morse-Smale complex, development of the
JCN is still at an early stage, and current applications are lim-
ited to using the full structure for feature analysis, see for example
[34]. Ongoing work [7] may deliver a formal basis for simplifica-
tion/refinement of the JCN, but for the present paper our strategy
is to implement reduction to a global full-resolution graph that can
be visualized to gain insight into interaction between fields. How-
ever, in later sections of the paper we will return to the strategy of
building distributed data structures.

3. Distributed Functional Programming

While pure functions are side-effect free, high-performance paral-
lel and distributed programming requires some ability to control
the allocation of work to processing elements. This management
can be handled in two ways: through the underlying runtime sys-
tem, and/or through abstractions (monads) that ‘sandbox’ effectful
computation. Both routes have been exploited in Haskell imple-
mentations. The GHC compiler includes a primitive operation, par
for sparking speculative threads in the runtime system, and a fur-
ther primitive, seq for controlling when evaluation of an expression
actually takes place.

On top of this low-level substrate, a number of libraries pro-
vide combinators that capture common patterns of processing.
The ‘Par’ monad [23], for example, implements a deterministic
model of shared-memory parallelism on top of the GHC’s sup-
port for multiple execution contexts, with the standard bind and
return operators implementing suspension and resumption via
continuation-passing. With the addition of write-once mutable ref-
erences (IVars), this minimal set of forms underpins a rich set of
derived operators, from simple thread forking through to generic
divide-and-conquer and stream processing strategies. This frame-
work was used in [12] to develop a parallel shared-memory imple-
mentation of the JCN.

Although GHC/Haskell has monadic libraries that support dis-
tributed applications, efficient distributed processing currently re-
quires support at the RTS level. Eden [22] is a dialect of Haskell,
implemented as a branch of GHC tailored to distributed-memory
architectures. In place of the low-level ‘par’ operator for spark-
ing threads, Eden provides a process abstraction and methods
for remote process instantiation. The abstraction, process in Fig-
ure 3, converts a (pure) function of type a → b into a process
of type Process a b while the process instantiation operator, #,
launches a process abstraction as a child process, potentially on
a remote node, creates communication channels between the pro-

process :: (Trans a,Trans b) ⇒ (a → b) → Process a b

(#) :: (Trans a,Trans b) ⇒ Process a b → a → b

class NFData a ⇒ Trans a where

write :: a → IO ()
createComm :: IO (ChanName a, a)

parMap :: (Trans a,Trans b) ⇒ (a → b) → [a] → [b]

Figure 3. Eden constructs, and a simple parallel skeleton.

cesses, sends inputs to the child process, and retrieves the output
once the remote function has completed evaluation. The type con-
text (Trans a,Trans b) in Figure 3, indicates that types a and b
must belong to Trans type class, i.e. they are values that can be
transmitted via channels.

Eden extends the functionality of the GHC runtime system with
primitive operations that perform basic tasks such as creating a
process on another processor, creating communication channels,
and sending data over channels. These primitive operations are
then used to implement the higher-level Eden constructs such as
process , #, and the Trans type class.

While task placement, synchronisation, and data communica-
tion are handled by the parallel RTS, Eden also provides a rich
set of parallel skeleton libraries. In analogy to the monadic inter-
faces for shared-memory parallelism in GHC, these capture com-
mon patterns of distributed computation. For example, the ‘map
reduce’ paradigm can be expressed by the following small block of
code, the first two lines expressing map/reduction on a local node,
and the remainder specifying distribution across distributed nodes,
where noPe is a built-in primitive giving the number of available
processing elements [22].

mapRedr :: (b → c → c) → c → (a → b) → [a] → c

mapRedr g e f = (foldr g e) ◦ (map f)

parMapRedr :: (Trans a,Trans b)
⇒ (b → b → b)
→ b → (a → b)
→ [a] → b

parMapRedr g e f

= if noPe ≡ 1 then mapRedr g e f

else (foldr g e)
◦ (parMap (mapRedr g e f))
◦ (splitIntoN noPe)

During process creation static channels are created between
parent and child processes; hence they can only form a hierarchical
process topology. Although this is the default data communication
model, direct communication between child processes is possible
via dynamic channels; see [4, 22] for details.

4. Distributed Implementation of the JCN

Compared with other topological abstractions, parallelization of the
JCN is straightforward, and a parallel implementation of the JCN
on shared memory has already been reported [12]. In overview, an
implementation consists of the following three phases:

1. Divide the given dataset into a set of mutually disjoint subsets.

2. Compute the JCN for each subset, using a sequential implemen-
tation of the algorithm.

3. Merge the JCNs of subsets into a global JCN. As the original
algorithm includes a ‘merge’ phase in which fragments from
one cell are added to the evolving JCN, no other information
needs to be carried forward for parallel implementation.

data JCN d r = JCN {slabs :: [(Int , r)] -- Mapping from slab ids to quantized range coordinates

, edges :: [(Int , Int)] -- Edges between slabs

, border :: [(Int , d)] -- Domain coordinate of slab facet centers

, slabNo :: Int } -- Number of nodes in this JCN

Figure 4. JCN data representation.

Three issues have driven our distributed implementation:

1. Datasets in computational science often simply exceed the ca-
pacity of shared memory machines, and in practice there is a
need for implementations that can run on distributed memory
machines from modest clusters to supercomputers.

2. Even for small datasets, peak memory and churn were already
affecting performance of the shared memory implementation.
Distribution would allow further investigation into scalability.

3. Although parallelisation on shared memory was built on the
Par monad, extensive use was made of custom strategies. One
of the claimed benefits of higher-order programming is the abil-
ity to capture general patterns of computation, and for dis-
tributed Haskell, skeleton libraries appear to offer a useful start-
ing point for parallelisation.

Given point (3), we began our implementation by exploring
two of the generic strategies from the Eden skeleton library, divide
and conquer and workpool. However, before reporting this and
subsequent work, we first address the Haskell representation of the
JCN, and the general issue of IO in a distributed setting.

4.1 Data Representation

Figures 4 and 5 show, respectively, the data type used to represent
the JCN within nodes, and an instance of this data type for the
fragments generated from one of the initial cells in Figure 2. The
‘border’ field plays an important role in later developments. When
merging the JCNs of two regions, we need to determine which slabs
in the two regions are adjacent. By construction, polytope facets
on the boundaries of adjacent slabs will be identical: in the two-
dimensional case, the polytopes are the polygons, and their facets
are polygon edges. Determining adjacency between polytopes is
tricky; we can’t for example use vertex ids because the polytopes
have been generated by functions operating independently on the
different subdomains that happen to share a face. Our solution
exploits a geometric invariant: in a spatial partition, two polytopes
are adjacent iff each has a facet with same center. During the
fragmentation phase we compute the center of each facet, and then
use this during reduction to identify adjacent facets. Adjacent facets
are either merged (if they have the same range coordinate), or
contribute an edge to the JCN (if they don’t), so at each stage the
only facet centers that are carried forward as part of the JCN are
those that lie on the boundary of the (sub)domain.

4.2 Input/Output

There are two extreme choices in providing data to parallel tasks:

1. the parent reads data and transfers it to child processes, or

2. the child process is provided with a handle to the file(s) and an
index to determine the subset of the data that it requires.

Even on modest datasets, preliminary experiments showed that the
former approach generates significant communications overhead,
and would become untenable on larger data. Consequently, we have
taken option (2) in our implementations. Input files are stored in a
Lustre parallel filesystem, with one file per field in the dataset. In
following sections, references to ‘dividing the dataset’, should be

3/4

4/3 7/5(0,0)

1

0

2

3

4

5

6

(1,0)

(0,1)

(0,1/2)

(0,1/6) (0,5/12) (0,5/6)

(7/8,1/8)

(5/8,3/8)

(3/8,5/8)

(1/8,7/8)

(0,7/12)

slabs = [(0, (3, 3)), (1, (3, 4)), (2, (4, 3)), (3, (4, 4)), (4, (5, 3))

, (5, (5, 4)), (6, (6, 4))]

edges = [(0, 1), (0, 2), (2, 3), (1, 3), (2, 4), (3, 5), (4, 5), (5, 6)]

border = [(0, (0, 1 / 2)), (1, (1 / 8, 7 / 8)), (2, (0, 1 / 6))

, (3, (3 / 8, 5 / 8)), (4, (0, 5 / 12)), (5, (0, 7 / 12))

, (5, (5 / 8, 3 / 8)), (6, (7 / 8, 1 / 8)), (6, (0, 5 / 6))]

slabNo = 6

Figure 5. Data representation of a JCN.

understood as computing the bounds and indices of subdomains,
rather than subdivision of the data per se. This is an obvious strat-
egy, and one widely adopted in high performance computational
science, so as we will discuss in the conclusion it was surprising
that it was not well supported by distributed skeletons.

4.3 Divide and Conquer (DC)

Our first implementation used the divide-and-conquer disDC
skeleton from the Eden skeleton library[15]. The idea is to split the
input into a set of sub-problems, recursively compute the results of
each in parallel, and then merge these into a single solution. Recur-
sion terminates when a problem can be solved directly, or when the
ticket list used to manage allocation of work to processors is empty.
The skeleton assumes that problems are always split into the same
number of sub-problems, called the branching degree. If processor
i divides a problem into n subproblems [pi1, pi2..pin], processor
i continues with computation of pi1 and the remaining problems
are distributed across the processors available in the ticket list. The
skeleton has the following signature:

disDC :: (Trans a,Trans b)
⇒ Int -- the branching degree

→ Places -- ticket list

→ (a → Bool) -- is problem directly solvable?

→ (a → b) -- solve directly

→ (a → [a]) -- split

→ (a → [b] → b) -- merge

→ a -- input

→ b

We used a branching degree of two. Dataset size determined
whether the JCN could be computed directly; if not, the split func-
tion divided the dataset along the largest spatial dimension.

4.4 Basic Workpool

A well-understood problem with parallelization by domain decom-
position is that computational work does not depend on the size of
the domain, but on properties of the data. Vector field visualization,
where streamlines are calculated by integrating along paths from a
set of seed points, are one obvious example [31], but similar prob-
lems arise even with scalar field analysis. In the case of the JCN, the
number of subdivisions in a cell depends on the local gradient, and
datasets from many phenomena exhibit substantial variation across
the domain. Preprocessing data to find a more judicious partition is
one option, though potentially expensive. The second, and the cur-
rent method of choice in high-performance computational science,
is overdecomposition [19], breaking the input into many more sub-
domains than processing elements, and then maintaining a pool of
work that can be allocated to available processors to even out the
overall workload.

In the case of Eden, the library provides a family of ‘workpool’
skeletons with dynamic load balancing capability. Workpool eval-
uation is a form of parallel map, with the ‘list’ replaced by a pool
of tasks; the skeleton applies a given function to each element of
the list. For the JCN, we created a pool of processes to perform the
fragmentation phase. Reduction of the intermediate JCNs into the
final result was performed by the master process, and unsurpris-
ingly limited scalability as the number of processors increased.

Such bottlenecks are not peculiar to the JCN algorithm. In an-
ticipation, Eden’s skeleton library includes extensions to the simple
workpool model that integrate map and reduction operations [1, 9].
Unfortunately, these all allow the merger of intermediate results in
arbitrary order. Merger of non-adjacent JCNs results in a disjoint
graph and no opportunity for simplification.

4.5 A New Skeleton: Multilevel Map-Reduce Workpool

Our initial work using Eden’s generic skeleton library identified
limitations: either too little flexibility, in the case of the disDC
decomposition strategy, or too much flexibility in the form of un-
constrained reduction in workpool . Motivated by the success of
overdecomposition in other computational science applications, we
decided to develop a more specialised workpool model that would:

1. permit dynamic load balancing across both fragmentation
(map) and merger (reduce) stages of the JCN algorithm; and

2. allow multi-level reductions, but with constraint on reduction
order capturing, in our case, spatial adjacency.

The skeleton is parameterised over four functions and the initial
input. Figure 6 shows a schematic of the skeleton including internal
components; its type signature and (outline) definition are given
below. Note that construction of the task list (ts) from merge tasks
(mts) and reduction tasks (rts) exploits lazy evaluation.

newWorkpool :: (Trans t ,Trans r)
⇒ (t → ([t],RedOrder)) -- split function

→ (t → r) -- map function

→ (r → r → r) -- reduce function

→ (r → Int) -- inquiry function

→ t

→ r

newWorkpool split mf rf qf p

= fetch ◦ snd ◦ last $ ir
where

(mts, redOrd) = split p

ir = workpoolSorted noPe 3 (mapRed mf rf qf) ts
ts = mts ++ rts

rts = mergerTask (map snd ir) redOrd

Master

Worker 1 Worker nWorker 2 ...

++

mf pi mf pj rf (pi , pj)

result of pi

result of pj

[..pi, pj..]

Figure 6. Structure of the newWorkpool skeleton. This figure also
shows that Worker 1 and 2 are assigned to apply the ‘map’
function on sub-problems pi and pj , respectively, and Worker n is
assigned to merge their result. Dynamic links are created between
these workers.

To expand on the implementation,

1. split subdivides a given problem, returning a list of sub-
problems along with a reduction order, a list of integers which
represent the number of subsets in each dimension. Reduction
order is used in the merger phase to identify spatially-adjacent
subdomains.

2. map is applied to each sub-problem returned by split. To obtain
dynamic load balancing, Eden’s basic workpool skeleton is
used to apply map function to the sub-problems, creating a set
of worker processes and distributing the map tasks among them.

3. mergerTasks uses the reduction order to match intermediate
results in a multi-level scheme. Its implementation again uses
the workpool skeleton for dynamic load balancing.

4. reduce effects the merger of two JCNs.

As shown in Fig. 6, a worker is usually assigned to perform
a merger task on two JCNs that are computed by other workers.
In our implementation, to reduce the overhead of communication
to the master process, dynamic communication links are created

between workers to transfer the intermediate JCNs2.

5. Performance and Evaluation

This section reports performance results obtained from a cluster
running CentOS 6. Each node has a dual socket with 2.6GHz 8-
core Intel E5-2670 processors (thus 16 cores per node), 32GB of
RAM, and 500Gb local hard drive. Storage is provide via a Lustre
filesystem delivering 4GB/s via an InfiniBand network. We have
used two datasets:

1. Scission: a simulation of nuclear fragmentation, previously re-
ported in [11, 12]. It consists of two scalar fields over a 40 ×
40× 66 mesh, with one byte per sample. Slab width was set to
2. Input dataset size is 211KB; the final JCN has in the order
of 17K vertices and 34K edges, derived from 2.9M fragments
produced in the first phase.

2. Isabel: The hurricane Isabel simulation developed by the Na-
tional Center for Atmospheric Research in the United States
[18]. While this consists of multiple time-varying scalar and
vector fields, for present purposes we work with two fields,

2 The inquiry function passed as a parameter to the skeleton is an unfortu-
nate implementation detail. We use Eden’s ‘remote data’ capability to avoid
the overhead of Eden’s default hierarchical data transfers. However, passing
the remote data back to the parent process does not force the computation
on a child process. Instead, the parent process can ask the child process, via
the inquiry function, for a datum, evaluation of which will force the child
computation. The overhead of sending this datum back to the parent is much
less than sending the whole results.

2 4 8 16 32 64
10

0

10
1

10
2

Scission Dataset − 40 x 40 x 66

Number of Cores

S
p

ee
d

u
p

DivConq Workpool Linear Speedup

2 4 8 16 32 64 128
10

0

10
1

10
2

10
3

Isabel Dataset − 125 x 125 x 100

Number of Cores

S
p

ee
d

u
p

DivConq Workpool Linear Speedup

2 4 8 16 32 64 128
10

0

10
1

10
2

10
3

Isabel Dataset − 250 x 250 x 50

Number of Cores

S
p

ee
d

u
p

DivConq Workpool Linear Speedup

2 4 8 16 32 64 128
10

0

10
1

10
2

10
3

Number of Cores

S
p

ee
d

u
p

Isabel Dataset − 500 x 500 x 100

DivConq Workpool Linear Speedup

Figure 7. Speedup of the JCN computation relative to best sequential runtime (log-log plot).

Table 1. Isabel Runtime (s) for Divide and Conquer (DC) and newWorkpool (WP), and with non-merger (WoM).

Resolution 125× 125× 100 250× 250× 50 500× 500× 100
Nr Cores DC WP DC WP WoM DC WP WoM

1 224.76 273.94 452.54 597 448.2 3351.06 5097.65 3354.78
2 125.55 132.33 247.81 280.69 226.18 1727.59 2083.81 1700.77
4 80.8 72.02 157.99 147.73 120.63 1024.73 1061.33 876.33
8 59.6 43.21 106.16 94.01 68.65 645.81 580.33 457.56
16 44.53 36.92 79.89 59.88 47.09 455.86 386.22 275.88
32 33.02 18.03 49.3 40.02 23.88 267.35 251.9 160.99
64 22.58 13.29 31.15 24.38 12.83 185.42 181.16 76.33
96 15.51 13.09 28.68 21.96 9.2 175.81 158.72 52.44
128 14.99 12.56 27.64 23.12 8.17 155.25 143.96 41.83

‘precip’ and ‘cloud’, from timestep 10. Fields are stored as 4-
byte floating point values. The native resolution of the mesh is
500 × 500 × 100, but we also used down-sampled versions,
at 250 × 250 × 50 and 125 × 125 × 100 resolution. The slab
widths for the precip and cloud fields were set to 0.0005 and
0.00007, respectively. At full resolution the input dataset size
is 200MB; the JCN has in the order of 17K vertices and 30K
edges constructed from 6M fragments.

Figure 7 gives the speedup obtained for different datasets us-
ing two parallel skeletons: Divide and Conquer (DC) and new-
Workpool (WP). Table 1 gives the corresponding runtimes. Run-
time results, backed by inspection of profiling data via Eden’s trace
viewer show some benefit from the use of dynamic load balancing
in the WP skeleton, while performance of the DC skeleton suffers
from under-utilization of processing elements during the merger
phase. However, the DC skeleton gains from lower communica-
tion overheads than WP: each processing element involved in a
merger already has computed one of the two JCNs, and therefore
has that data locally. WP, in contrast, has no such guarantee, and
does not consider the overhead of data communication when as-
signing merger tasks to processing elements. These costs are signif-
icant: Figure 7 shows that particularly for the full-resolution Isabel
dataset, as communication overhead for WP wipes out any benefit
from greater PE utilization, and performance of the two skeletons

converges. This result is confirmed by a separate scalability study,
where speedup of the full JCN implementation was compared with
speedup over just the low-communication fragmentation phase, i.e.
with no merger. Raw runtimes for the Isabel dataset are reported in
the ‘WoM’ columns of Table 1 and are plotted in Fig. 8. With small
numbers of cores, merger makes little difference to overall speedup,
but the cost increases with core count; for the full-resolution Isabel
dataset, the speedup obtained without merger is nearly four times
that of the whole computation.

These results underline the work reported in the next section,
on alternative approaches to distributed processing to reduce com-
munication costs by limiting the amount of data transferred. But
to conclude this section we compare performance of the distributed
implementation with the shared-memory implementation [12]. This
is not a straightforward comparison, particularly due to differences
in IO: in the distributed implementation each process accesses the
input files directly, while in the shared memory implementation the
main process reads the input files and then copies the relevant sub-
sets to child processes. However, Table 2 sets out the performance
of both implementations. The distributed implementations, using
either DC or WP skeletons, have shorter runtime and scale better,
and significantly the shared memory implementation does not scale
beyond 8 cores, due to the overhead of garbage collection and the
need to suspend threads on all cores while collection takes place.

2 4 8 16 32 64
10

0

10
1

10
2

Number of Cores

S
p

ee
d

u
p

Scission Dataset − 40 x 40 x 66

JCN Without merger Linear Speedup

2 4 8 16 32 64 128
10

0

10
1

10
2

10
3

Number of Cores

S
p

ee
d

u
p

Isabel Dataset − 125 x 125 x 100

JCN Without merger Linear Speedup

2 4 8 16 32 64 128
10

0

10
1

10
2

10
3

Number of Cores

S
p

ee
d

u
p

Isabel Dataset − 250 x 250 x 50

JCN Without merger Linear Speedup

2 4 8 16 32 64 128
10

0

10
1

10
2

10
3

Number of Cores

S
p

ee
d

u
p

Isabel Dataset − 500 x 500 x 100

JCN Without merger Linear Speedup

Figure 8. Speedup of the JCN without merger relative to the sequential baseline

Table 2. Performance of Shared Memory implementation com-
pared with Distributed Memory skeletons (nuclear dataset)

Run-time (s) Speedup
Nr Cores SM DC WP SM DC WP

1 119.2 73.1 72.8 1 1 1
2 77.6 39.2 38.5 1.5 1.9 1.9
4 50.2 22.7 21.8 2.4 3.2 3.3
8 36.6 14.9 16.5 3.3 4.9 4.4
16 36.6 11.6 9.4 3.3 6.3 7.8

We do not have performance data for an imperative implementa-
tion on the cluster hardware. However, as a crude benchmark, on a
MacBook Air with a 2GHZ Intel i7 processor, 8GB RAM, running
OSX 10.10.4, the sequential C++/VTK implementation described
in [5] takes 106s for the ‘scission’ dataset, and 123s for the full-
resolution ‘Isabel’.

6. Distributing the Data Structure

Our strategy of distributing the computation of local JCNs and then
reducing these to a single global result does not scale well due to
the communication costs in the merger phase. This problem is not
unique to the JCN algorithm, and as reported in Section 2.3 has re-
cently motivated innovative work on distributed data structures and
incremental computation for other kinds of topological abstraction.

We have therefore begun to investigate an alternative strategy
for computing the JCN, consisting of a distributed representation
and an incremental update strategy. The approach is based on the
following observation: when merging JCNs, only the nodes lying
on the boundary will be affected (merged with or linked to other
nodes). To merge two JCNs a and b, we first extract and merge

their boundary nets, a and b to give c. Given this, we can locally
update a and b to a′ and b′, respectively, such that the simple set-
union of the nodes and edges in a′ and b′ will be equal to the full
merger of a and b. The cost saving comes from (a) for non-trivial
data, the size of the boundary JCN will be significantly smaller than
the full JCN, and (b) that the final ‘union’ operator can be effected
cheaply by e.g. writing the distributed sub-graphs into a single file.

Figure 9 illustrates the approach. Part (a) shows the input
dataset, a bi-variate field divided into two sub-domains, each with
two simplicial cells. In (b) the sub-domains have been indepen-
dently fragmented into sets of slabs on the two fields (subdivisions
over the first field shown by solid red lines between circled points,
over the right field shown by dashed blue lines between points
marked by bars). Part (c) of the figure shows the locally-computed
JCNs, with non-border (interior) edges indicated by blue-dashed
lines, Finally, part (d) shows the distributed merger of the two
JCNs. The two subgraphs are stored on their local nodes, with
edges at the boundary allocated to the node with lower PE num-
ber depending on a classification of nodes and edges as bound-
ary/internal.

On each node the JCN is implemented as a map structure from
node ids to its range value and neighboring node ids. A more
compact unboxed (UJCN) representation, built on unboxed vectors,
is used for communication between processors.

data JCN d r = JCN {net :: IntMap (r , [Int])
, kdtree ::KDtree d Int

, size :: Int }

data UJCN d r = UJCN {slabs :: Vector (Int , r)
, edges :: Vector (Int , Int)
, border :: Vector (d , Int)
, slabNo :: Int }

A skeleton is parameterised over (a) the number of divisions
in each dimension, the number of communication rounds required,
and a list of the spatial subdomains ordered based on spatial ad-
jacency. It implements a series of boundary exchanges across an
expanding frontier. Each node first computes its local JCN and
boundary JCN, then goes through a number of exchange rounds.
In each round it (a) transmits its boundary JCN to the nodes of
JCNs on the frontier, and (b) on receiving the boundary JCN from
a neighbour, merges that with its local boundary. After each round
the frontier for each subdomain expands outwards, so that the num-
ber of rounds can be bounded above by ⌈log3 n⌉ of the maximum
number n of domain divisions across all spatial dimensions.

Preliminary runtime results show a reduction in communication
overhead, but further work is required before we can confidently

3/4

4/3

5/1

7/5

8/3

6/2

5/1

7/5

3/4

4/3

5/1

7/5

8/3

6/2

5/1

7/5

3/4

4/3

5/1

7/5

8/3

6/2

5/1

7/5

3/4

4/3

8/3

6/2

5 4 6

5 4 6

3 4 2

3 4 2

2

6/3

4

2

6/3

4

6 2 7

6 2 7

4 3

4 3

7

7

4

5

6

4

5

6

4

4

Figure 9. Distributed construction of the JCN.

report the level of performance improvement; outstanding concerns
include the cost of converting between different representations of
the JCN, and whether these can be avoided.

7. Conclusions

Programmer productivity has had a long influence on language de-
sign, with Backus, remarking on the development of FORTRAN,
reported as stating “Much of my work has come from being lazy. I
didn’t like writing programs ... I started work on a programming
system to make it easier to write programs.” [3]. As computer sci-
ence has matured, and sub-specialisms have emerged, there is a
danger that this tight and productive coupling between program-
ming language and applications research has become obscured.
Skeletons for distributed functional programming are a case in
point; extending the benefits of higher-order functions to provide
generic patterns for distributed processing has resulted in concep-
tually elegant ideas that work well on a number of problems, but
exposure to wider computational challenges, such as computational
topology, will inevitably improve the robustness and utility of these
abstractions. Dually, much of the progress in computational sci-
ence, even within highly innovative and effective systems [19],
draws heavily on systems and language technologies already estab-
lished in those communities. One of the longer term goals of this
research is to explore whether functional technology can disrupt
this equilibrium, delivering a more profound change in approach in
the face of the emerging challenges of extreme-scale computing.

Implementation of the JCN algorithm using Haskell/Eden’s
high level support for distributed memory parallelism has allowed
us to explore rapidly different distributed processing strategies and
examine the performance trade-offs. Our implementation benefits
from a clear separation between the fundamental algorithm and
the skeletons that implement distribution; indeed significant parts
of the implementation have been carried over from the original
sequential version reported in [12]. We have improved scalability
from the shared-memory implementation, but have also run into a
significant barrier in the form of communication costs. Work on
overcoming that barrier by adopting a distributed representation of
the JCN is ongoing.

The introduction of the paper noted the growing adoptation
of run-time systems and DSLs for high-performance computing.

Production systems such as Charm++ [19], and experimental plat-
forms like Galois [30] and LVish [20] include sophisticated support
for workpools, including flexible schedulers and work allocation
strategies. Further work is needed to understand the relationship
between these platforms, and to identify where opportunities exist
to transfer insights into, for example, workpool models specialised
for problems in computational science.

Beyond the general lesson of communication costs, our work to
date has flagged up three points related to Eden:

1. Even well-developed functional programs are not immune from
correctness issues, particularly when applied to extreme cases:
in the course of developing the new workpool skeleton we
uncovered a subtle issue where the existing skeleton was more
eager than it need be; we are grateful to Eden developers for
assistance in finding and correcting this.

2. Although Eden’s trace viewer was useful in understanding as-
pects of distributed performance, significantly more work is re-
quired on making these interfaces scalable, for example to pro-
cesses running on 1000s of cores (our next target).

3. Further work is needed on the foundations for distributed skele-
tons and process abstractions, in particular on dealing with the
interface to distributed filesystems. The current process abstrac-
tion sits uneasily with the need for distributed processes to do
their own IO (i.e. to run inside the IO monad), and our cur-
rent solution relies rather awkwardly on Haskell’s trap-door,
unsafePerformIO .

To conclude, we return to the question of skeletons as a generic
building blocks for (high performance) distributed processing.
Higher-order functions succeed for (at least) two reasons: they
capture widely occurring patterns of computation, and advances in
compiler technology have made their use relatively cost-free. Given
the communication overhead, distribution of processing across a
cluster implies greater understanding of the domain, and assump-
tions about the interaction between the sub-processes. The scope
and effectiveness of truly ‘generic’ skeletons is therefore less clear.
One could however envisage a skeleton library specialised to an
application domain, with its behaviour constrained by type classes

associated with its inputs. One test for the maturity of distributed
Haskell may well be whether such libraries begin to emerge.

Acknowledgments

The work reported in this paper was funded through EPSRC Grant
EP/J013072/1 (Multifield Extensions of Topological Analysis). We
particularly thank Jost Berthold, Thomas Horstmeyer, and Hans-
Wolfgang Loidl for assistance with distributed Haskell and Eden.
Our thanks also to the anonymous reviewers for their constructive
comments on how to improve the paper.

References

[1] J. Berthold, M. Dieterle, R. Loogen, and S. Priebe. Hierarchi-
cal master-worker skeletons. In Proceedings of the 10th Interna-

tional Conference on Practical Aspects of Declarative Languages

(PADL’08), pages 248–264, 2008.

[2] J. Biddiscombe, B. Geveci, K. Martin, K. Moreland, and D. Thomp-
son. Time dependent processing in a parallel pipeline architecture.
Trans. on Vis. and Computer Graphics, 13(6):1376–1383, 2007.

[3] E. Blum and W. Savitch. The software side of computer science
- computer programming. In Computer Science: The Hardware,

Software and Heart of It. Springer, 2011.

[4] S. Breitinger, U. Klusik, and R. Loogen. From (sequential) haskell
to (parallel) eden: An implementation point of view. In In PLILP’98.

Springer LNCS 1490, pages 318–334, 1998.

[5] H. Carr and D. Duke. Joint contour nets. Trans. on Vis. and Comp.

Graphics, 20(8):1100–1113, 2014.

[6] H. Carr, T. Möller, and J. Snoeyink. Simplicial subdivisions and
sampling artifacts. In Proc. of the Conference on Visualization ’01,
pages 99–106. IEEE Computer Society, 2001.

[7] A. Chattopadhyay, H. Carr, D. Duke, and Z. Geng. Simplifying
multivariate topology (extended abstract). In Computer Graphics and

Visual Computing. Eurographics Association, 2014.

[8] Z. DeVito, N. Joubert, F. Palacios, S. Oakley, M. Medina, M. Barrien-
tos, E. Elsen, F. Ham, A. Aiken, K. Duraisamy, E. Darve, J. Alonso,
and P. Hanrahan. Liszt: A domain specific language for building
portable mesh-based pde solvers. In Proc. of 2011 Intl. Conf. for High

Performance Computing, Networking, Storage and Analysis, pages
9:1–9:12. ACM, 2011.

[9] M. Dieterle, J. Berthold, and R. Loogen. A skeleton for distributed
work pools in eden. In Proceedings of the 10th International

Conference on Functional and Logic Programming (FLOPS’10),
pages 337–353. Springer-Verlag, 2010.

[10] D. Duke, R. Borgo, C. Runciman, and M. Wallace. Huge data but
small programs: Visualization design via multiple embedded DSLs.
In Proc. Practical Applications of Declarative Languages, volume
5418, pages 31–45. Springer Verlag, 2009.

[11] D. Duke, H. Carr, A. Knoll, N. Schunck, H. Nam, and A. Staszczak.
Visualizing nuclear scission through a multifield extension of
topological analysis. Trans. on Vis. and Comp. Graphics, 18(12):
2033–2040, 2012.

[12] D. Duke, F. Hosseini, and H. Carr. Parallel computation of
multifield topology: Experience of Haskell in a computational science
application. In Functional High Performance Computing. ACM Press,
2014.

[13] H. Edelsbrunner and J. Harer. Jacobi sets of multiple Morse functions,
pages 37–57. Cambridge University Press, 2004.

[14] H. Edelsbrunner, J. Harer, and A. K. Patel. Reeb spaces of piecewise
linear mappings. In SCG ’08: Proceedings of the twenty-fourth annual

symposium on Computational geometry. ACM Press, 2008.

[15] Eden. Eden Skeleton Library.
https://hackage.haskell.org/package/edenskel.

[16] Z. Geng, D. Duke, H. Carr, and A. Chattopadhyay. Visual analysis of
hurricane data using joint contour net. In Proc. Computer Graphics

and Visual Computing. Eurographics, 2014.

[17] A. Gyulassy, V. Pascucci, T. Peterka, and R. Ross. The parallel
computation of morse-smale complexes. In Parallel Distributed

Processing Symposium, pages 484–495. IEEE Press, 2012.

[18] Isabel. IEEE visualization 2004 contest, 2004.
http://vis.computer.org/vis2004contest/index.html.

[19] L. Kale and A. Bhatele. Parallel Science and Engineering Applica-

tions: The Charm++ Approach. CRC Press, 2013.

[20] L. Kuper, A. Todd, S. Tobin-Hochstadt, and R. R. Newton. Taming
the parallel effect zoo: Extensible deterministic parallelism with lvish.
In Proc of Programming Language Design and Implementation, pages
2–14. ACM Press, 2014.

[21] A. G. Landge, V. Pascucci, A. Gyulassy, J. C. Bennett, H. Kolla,
J. Chen, and P.-T. Bremer. In-situ feature extraction of large scale
combustion simulations using segmented merge trees. In Proc. of

High Performance Computing, Networking, Storage and Analysis,
pages 1020–1031. IEEE Press, 2014.

[22] R. Loogen, Y. Ortega-mallén, and R. Peña marı́. Parallel functional
programming in eden. J. Funct. Program., 15(3):431–475, 2005.

[23] S. Marlow, R. Newton, and S. Peyton Jones. A monad for deterministic
parallelism. In Proc. of Haskell Symposium, pages 71–82. ACM, 2011.

[24] B. McCormick, T. DeFanti, and M. Brown. Visualization in scientific
computing. Computer Graphics, 21(6), 1987.

[25] Q. Meng, A. Humphrey, and M. Berzins. The Uintah framework: A
unified heterogeneous task scheduling and runtime system. In High

Performance Computing, Networking, Storage and Analysis (SCC),

2012 SC Companion:, pages 2441–2448. IEEE, 2012.

[26] D. Morozov and G. Weber. Distributed merge trees. SIGPLAN Not.,
48(8):93–102, 2013.

[27] D. Morozov and G. H. Weber. Distributed contour trees. In Topologi-

cal Methods in Data Analysis and Visualization III, Mathematics and
Visualization, pages 89–102. Springer, 2014.

[28] B. O’Sullivan, J. Goerzen, and D. Stewart. Real World Haskell.
O’Reilly Media, Inc., 2008.

[29] V. Pascucci and K. Cole-McLaughlin. Parallel computation of the
topology of level sets. Algorithmica, 38(1):249–268, 2004.

[30] K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher, M. A. Hassaan,
R. Kaleem, T.-H. Lee, A. Lenharth, R. Manevich, M. Méndez-Lojo,
D. Prountzos, and X. Sui. The tao of parallelism in algorithms. In
Proc. of Programming Language Design and Implementation, pages
12–25. ACM Press, 2011.

[31] D. Pugmire, T. Peterka, and C. Garth. Parallel integral curves. in:

High Performance Visualization, 2012.

[32] P. Rautek, S. Bruckner, M. E. Gröller, and M. Hadwiger. ViSlang:
A system for interpreted domain-specific languages for scientific
visualization. Trans. on Vis. and Comp. Graphics, 20(12):2388–2396,
2014.

[33] W. Schroeder, K. Martin, and B. Lorensen. The Visualization Toolkit:

An Object-Oriented Approach to 3D Graphics. Kitware, 2006.

[34] N. Schunck, D. Duke, H. Carr, and A. Knoll. Description of induced
nuclear fission with skyrme energy functionals: I. Static potential
energy surfaces and fission fragment properties. Physical Review C,
90(5), 2014.

[35] N. Schunck, D. Duke, and H. Carr. Description of induced nuclear
fission with skyrme energy functionals: II. Finite temperature effects.
Physical Review C, 91(3), 2015.

[36] N. Shivashankar and V. Natarajan. Parallel computation of 3D morse-
smale complexes. Comp. Graph. Forum, 31(3):965–974, 2012.

[37] N. Shivashankar, S. M, and V. Natarajan. Parallel computation of 2D
morse-smale complexes. Trans. on Visualization and Comp. Graphics,
18(10):1757–1770, 2012.

[38] A. Telea. Data Visualization: Principles and Practice. A.K. Peters,
2008.

[39] G. Zhao, J. Perilla, E. Yufenyuy, X. Meng, B. Chen, J. Ning, J. Ahn,
A. Gronenborn, K. Schulten, C. Aiken, and P. Zhang. Mature HIV-1
capsid structure by cryo-electron microscopy and all-atom molecular
dynamics. Nature, 497(7451), 2013.

