

This is a repository copy of Synthesis of the tricyclic core of manzamine A.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/88027/

Version: Accepted Version

Article:

Pathak, R.B., Dobson, B.C., Ghosh, N. et al. (4 more authors) (2015) Synthesis of the tricyclic core of manzamine A. Organic & Biomolecular Chemistry, 13 (11). 3331 - 3340. ISSN 1477-0520

https://doi.org/10.1039/c4ob02582b

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

ARTICLE

Synthesis of the tricyclic core of manzamine A

Cite this: DOI: 10.1039/x0xx00000x

Ravindra B. Pathak, Benjamin C. Dobson, Nandita Ghosh, Khalid A. Ageel, Madeha Alshawish, Rungroj Saruengkhanphasit and Iain Coldham*

Received ooth December 2014, Accepted ooth December 2014

DOI: 10.1039/x0xx00000x

www.rsc.org/

An efficient synthetic approach to the core structure of the manzamine alkaloids is reported, particularly in relation to incorporating a one-carbon unit in ring B from which the aldehyde in ircinal A or the beta-carboline unit in manzamine A could potentially be generated. The key steps involve a Johnson–Claisen rearrangement, enolate alkylation, dithiane alkylation and a stereoselective intramolecular dipolar cycloaddition of an azomethine ylide, which provided the desired tricyclic ABC core structure.

Introduction

The alkaloid manzamine A **1** (Fig. 1) was first reported in 1986 and has a complex pentacyclic ABCDE structure.¹ This compound, and related alkaloids,² have attracted much attention due to their intricate structures and their reported biological activities.³ Several syntheses of manzamine A **1** and ircinal **2** have been published to date.⁴ In addition, several approaches to the synthesis of the core ring system, especially of the ABC ring system, are known.⁵

Our research group has reported the synthesis of the core ring system of manzamine A,⁶ and several simpler analogues.⁷ Our synthetic approach has focused on the formation of rings B and C of manzamine A by using an intramolecular dipolar cycloaddition reaction of an azomethine ylide.⁸ The alcohol 3^9 was converted to the ester 4 by using a Johnson–Claisen rearrangement (Scheme 1). The ester 4 was converted in 5 steps to the aldehyde 8. Condensation with *N*-methyl glycine ethyl ester allowed *in situ* dipolar cycloaddition to give the tricyclic compound 9 as a single stereoisomer (stereochemistry verified by single crystal X-ray analysis). However, the aldehyde 8 was

found to be a poor substrate for reaction with other secondary amines. Fortunately, the aldehyde 10 (Scheme 2) was amenable to reaction with a variety of secondary amines including *N*-allyl glycine ethyl ester, which gave the desired product 11 as the major diastereomer. Alternatively, reaction with the primary amine glycine ethyl ester gave the tricyclic product 12, presumably arising from the W-shaped, rather than S-shaped, azomethine ylide.

Scheme 1 Synthetic studies with aldehyde **8**.^{6a} i, MeC(OEt)₃, xylene, 2,4dinitrophenol, heat, 63%; ii, LiAlH₄, THF, 89%; iii, I₂, Ph₃P, imidazole, THF, 81%; iv, *n*-BuLi, THF, HMPA, ethyl 1,3-dithiane-2-carboxylate, –40 °C to r.t., 96%; v, LiAlH₄, THF, 94%; vi, (COCl)₂, DMSO, CH₂Cl₂, –60 °C then Et₃N, 85%; vii, *N*-methyl glycine ethyl ester-HCl, ¹Pr₂NEt, PhMe, 110 °C, 45%.

Scheme 2 Synthetic studies with aldehyde **10**.^{6b} i, NCS, AgNO₃, collidine, THF, MeOH, followed directly by: ii, $(COCI)_2$, DMSO, CH_2CI_2 , -60 °C then Et_3N , 60% over two steps; iii, *N*-allyl glycine ethyl ester, PhMe, 110 °C, 43%; iv, glycine ethyl ester, PhMe, 130 °C, 52%.

The examples in Schemes 1 and 2 demonstrate that an intramolecular dipolar cycloaddition approach to the ABC ring system of the manzamine alkaloids is feasible and can provide the desired relative stereochemistry at four of the five stereocentres. One aspect that we were conscious of relates to the need for a strategy that allows the future incorporation of the β -carboline moiety. Except for the recent approach by Dixon and co-workers, the reported syntheses of manzamine A make use of the alkaloid ircinal A (2).⁴ We were therefore interested in developing chemistry that would allow the incorporation of a one-carbon unit in ring B that could be suitable for conversion to the aldehyde found in ircinal A (and hence to manzamine A itself). This paper describes our efforts in this area.

Results and discussion

Several approaches for the synthesis of a suitable precursor compound, with an extra carbon atom in ring B were investigated. Ideally this one-carbon unit would be introduced as part of the sequence of steps for the preparation of the aldehyde used in the key intramolecular dipolar cycloaddition step. One approach studied was to alter the Johnson-Claisen rearrangement using the alcohol 3. Based on a literature method,¹⁰ the alcohol 3 was heated with 3,3-diethoxyacrylic acid ethyl ester in toluene for just 90 min to give an almost quantitative yield of the diester 13 (Scheme 3). Reduction of the diester 13 gave the diol 14. Treatment of the diol 14 with acetic anhydride gave the monoester 15 (and 28% diester) as an inseparable mixture of diastereomers. Reaction of the diol 14 with sodium hydride and TBDPSCl or p-methoxybenzyl chloride gave the alcohols 16 or 17 respectively, but these also were a 1:1 inseparable mixture of diastereomers.

Scheme 3 Studies using diester 13. i, 3,3-diethoxyacrylic acid ethyl ester, 2,4dinitrophenol, PhMe, 110 °C, 97%: ii, LiAlH₄, THF, 64%; iii, Ac₂O, pyridine, DMAP, CH₂Cl₂, 15 68%, or NaH, THF, TBDPSCl, 16 99%, or NaH, THF, PMBCl, 17 80%.

As a possible way to distinguish the hydroxymethyl groups, we treated the diol **14** with iodine to give the tetrahydrofuran **18** (Scheme 4). This did result in some preference for cyclization of one of the alcohols, although the selectivity was not high (dr 3:1 by ¹H NMR spectroscopy) and the diastereomers were inseparable by column chromatography. Protection of the alcohol gave compound **19**, but these diastereomers were also inseparable. Despite this result, we treated compound **19** with zinc, which promoted ring opening to give the mixture (dr 3:1) of diastereomeric alcohols **17**. Therefore this method is able to provide the desired compound **17** with some selectivity (by ¹H NMR spectroscopy the major isomer was **17a**, see below), although this was insufficient for further studies.

Scheme 4 Studies using diol 14. i, iodine, NaHCO₃, CH₂Cl₂, 0 °C, 75%: ii, NaH, THF, PMBCl, 17 60%; iii, Zn dust, NH₄Cl, EtOH, 30 °C, 44%.

Two further methods to access a single diastereomer of alcohol **17** were investigated. Following precedent for asymmetric hydroxymethylation of aldehydes,¹¹ we treated the aldehyde **20**^{6b} with proline and aqueous formaldehyde (Scheme 5). However, this gave rise not to the desired α -hydroxymethyl aldehyde product but rather the alkene **21** resulting from elimination. Finally, we performed a simple deprotonation of the ester **4** with LDA followed by addition of formaldehyde (Scheme 5). This gave a mixture of the alcohols **22** and **23** which we were delighted to find were separable by careful column chromatography. Taking a mixture of these isomers through the subsequent chemistry described below gave diastereomeric products that in all cases were inseparable from each other, so it was important to separate alcohols **22** and **23** at this stage.

Scheme 5 Alkylation using 20 or 4. i, $CH_2O_{(aq)}$, proline, DMF, r.t., 89%: ii, LDA, THF, CH_2O , 63%, 22:23 1:1.

To determine the relative stereochemistry, we took the less polar isomer (which turned out to be compound **23**, see below) and treated it with *p*-bromobenzoyl chloride to obtain the ester **24** (Scheme 6). This compound was not crystalline, so the *N*-Boc group was removed with acid and the crude amine product was protected as the sulfonamide **25**. This compound was amenable to single crystal X-ray analysis, which showed the relative stereochemistry as depicted (Fig. 2).

Figure 2 X-ray structure of 25.

Scheme 7 Synthesis of the aldehyde **31**. i, PMBOC(=NH)CCl₃, CSA, CH₂Cl₂, 82%; ii, LiAlH₄, THF, -5 °C, 69%; iii, l₂, Ph₃P, imidazole, THF, 95%; iv, *n*-BuLi, THF, HMPA, ethyl 1,3-dithiane-2-carboxylate, -78 °C to r.t., 80%; v, LiAlH₄, THF, -5 °C, 93%; vi, NCS, AgNO₃, collidine, THF, MeOH, 49%; vii, (COCl)₂, DMSO, CH₂Cl₂, -60 °C then Et₃N, 80%.

With both single diastereomers 22 and 23 in hand, we selected one of these for further study. The less polar isomer 23 was protected to give the ether 26 and reduction gave the alcohol 17a (Scheme 7). Conversion of the alcohol to the iodide 27 and displacement with the anion of ethyl 1,3-dithiane-2-carboxylate gave the ester 28. This was converted in three steps (reduction, transacetalisation, and oxidation) to the aldehyde 31.

The key step in our synthetic route to the manzamine alkaloids involves an intramolecular dipolar cycloaddition with an aldehyde tethered to the 4-position of a 3-exomethylenepiperidine. We therefore heated aldehyde 31 with N-allyl glycine ethyl ester (Scheme 8). This gave the desired tricyclic product 32 as a single stereoisomer, but only in 20-30% yield. The yield did improve (to 38%) by using the hydrochloride salt of N-allyl glycine ethyl ester together with ¹Pr₂NEt. Other conditions (such as using excess amine or higher temperature) did not improve the yield. In all cases the product isolated was the enol ether 32, in which the cycloadduct had lost methanol. It is not clear why this loses methanol in comparison with the formation of cycloadduct 11 but sterics may play a part. As an alternative, the aldehyde 31 was heated with glycine ethyl ester to give the tricyclic product 33. The stereochemistry of these cycloadducts is assumed to be as shown, based on related chemistry (see Scheme 2).

By using the same chemistry as shown in Scheme 7 with a 1:1 unseparated mixture of the diastereomers 22 and 23, resulted in a 1:1 inseparable mixture of the aldehyde 31 and its diastereomer. Heating this mixture of stereoisomers with *N*-allyl glycine ethyl ester gave the same product 32 in 18% yield as the only product that could be isolated. This indicates that the stereoisomer derived from the ester 22 does not undergo the desired intramolecular dipolar cycloaddition reaction. Analysis of the conformations of the stereoisomers of the azomethine ylides suggests that a favourable conformation exists from the stereoisomer **31** (Fig. 3). The azomethine ylide derived from the other diastereomer of **31** would suffer from greater steric interactions. This may explain the preference for cycloaddition only from diastereomer **31**.

The successful synthesis of the tricyclic product **32** represents a stereoselective approach to the ABC core ring system of the manzamine alkaloids. One of the drawbacks of the chemistry discussed above is that a 1:1 mixture of the stereoisomers **22** and **23** is formed and only one of these is suitable for further elaboration. We have found that the undesired stereoisomer **22** can be converted to the desired compound **17a** by the sequence of reactions shown in Scheme 9. Protection of the alcohol **22** with methoxymethyl chloride followed by reduction of the ester gave the alcohol **35** (Scheme 9). Protection of this alcohol as its PMB ether and removal of the MOM group selectively with mild acid gave the product **17a**. Alternatively, it is possibly to simply treat the undesired isomer **22** with sodium ethoxide to

promote epimerization. The resulting 1:1 mixture of esters (quantitative yield) can be separated by column chromatography.

Scheme 9 Inversion of the undesired stereoisomer. i, MOMCI, ${}^{1}Pr_{2}NEt$, CH₂Cl₂, 0 °C, 86%; ii, LiAlH₄, THF, -5 °C, 87%; iii, PMBOC(=NH)CCl₃, CSA, CH₂Cl₂, 80%; iv, HCl (2 M), ${}^{1}PrOH$, 60 °C, 68%.

Conclusions

We have described a short and stereoselective route to prepare the ABC tricyclic ring system found in the manzamine alkaloids. This extends our previous work by demonstrating that a one-carbon unit can be located in ring B. This substituent could potentially be used to later generate the aldehyde functional group found in ircinal A and hence the betacarboline unit in manzamine A. Although a mixture of stereoisomers was formed when introducing this one-carbon unit, the undesired isomer can be isomerised. The key steps in the chemistry involve a Johnson-Claisen [3,3]-sigmatropic rearrangement, a dithiane alkylation, and an azomethine ylide dipolar cycloaddition. The dipolar cycloaddition was successful with only one diastereomer of the starting material. The yield in this key step was not particularly high, but the chemistry is significant as it demonstrates the importance of the choice of stereochemistry in such intramolecular cycloadditions when used as part of a synthetic endeavour.

Experimental

tert-Butoxycarbonyl-3-methylene-piperidin-4-yl-malonic acid diethyl ester 13

The alcohol **3** (10.0 g, 46.9 mmol), 3,3-diethoxyacrylic acid ethyl ester (17.65 g, 93.8 mmol) and 2,4-dinitrophenol (863 mg, 4.69 mmol) were heated in toluene (250 mL) at 110 °C. After 90 min, the solvent was evaporated and the residue was purified by column chromatography, eluting with petrol–EtOAc (9:1), to give the diester **13** (16.1 g, 97%) as an oil; R_f 0.33 [petrol–EtOAc 7:3]; v_{max} (neat)/cm⁻¹ 2965, 2925, 2865, 1725, 1695; ¹H NMR (500 MHz, CDCl₃) δ = 4.89 (1H, br s), 4.71 (1H, s), 4.15 (2H, q, *J* 7), 4.12–4.08 (2H, m), 3.94 (1H, br d, *J* 14), 3.76 (1H, d, *J* 14), 3.62 (1H, dd, *J* 11), 3.53 (1H, ddd, *J* 13.5, 7.5, 4), 3.36–3.29 (1H, m), 3.02 (1H, ddd, *J* 11, 7.5, 4), 1.75–1.67 (1H, m),

1.54–1.46 (1H, m), 1.39 (9H, s), 1.22 (3H, t, *J* 7), 1.18 (3H, t, *J* 7); ¹³C NMR (126 MHz, CDCl₃) δ =167.9, 154.5, 142.7, 111.2, 79.6, 61.5, 61.4, 53.6, 49.3 (br), 41.9 (br), 40.8, 29.5, 28.3, 14.0; HRMS (ES) Found MNa⁺ 378.1882. C₁₈H₂₉NO₆Na requires MNa⁺ 378.1893; LRMS *m*/*z* (ES) 378 (96%), 356 (4%), 256 (100%).

4-(2-Hydroxy-1-hydroxymethyl-ethyl)-3-methylenepiperidine-1-carboxylic acid *tert*-butyl ester 14

LiAlH₄ (18.5 mL, 18.5 mmol, 1.0 solution in THF) was added dropwise to the diester **13** (1.64 g, 4.63 mmol) in THF (15 mL) at 0 °C. After 1 h, water (10.8 mL) and NaOH (2.8 mL, 4 M) were added and the mixture was filtered through celite. The solvent was evaporated and the residue was purified by column chromatography, eluting with EtOAc, to give the diol **14** (0.80 g, 64%) as an oil; R_f 0.44 [EtOAc]; v_{max} (neat)/cm⁻¹ 3395, 2970, 2930, 1670, 1570; ¹H NMR (500 MHz, CDCl₃) δ = 4.96 (1H, br s), 4.82 (1H, s), 3.97–3.86 (2H, m), 3.82–3.64 (4H, m), 3.52–3.37 (4H, m), 2.43–2.34 (1H, m), 2.06–1.94 (1H, m), 1.79–1.55 (2H, m), 1.42 (9H, s); ¹³C NMR (126 MHz, CDCl₃) δ = 154.9, 143.8, 111.6, 79.8, 64.6, 63.2, 41.1 (br), 40.1, 38.6, 28.4, 28.3; HRMS (ES) Found MNa⁺ 294.1675. C₁₄H₂₅NO₄Na requires MNa⁺, 294.1681; LRMS *m/z* (ES) 294 (100%).

4-(2-Acetoxy-1-hydroxymethyl-ethyl)-3-methylenepiperidine-1-carboxylic acid *tert*-butyl ester 15

The diol 14 (0.20 g, 0.73 mmol), Ac₂O (0.10 mL, 0.75 mmol), pyridine (0.05 mL, 0.74 mmol) and 4-dimethylaminopyridine (~10 mg) in CH₂Cl₂ (10 mL) were stirred at room temperature. After 24 h, water (5 mL) was added and the solution was extracted with CH_2Cl_2 (3 × 5 mL). The combined organic layers were washed with brine (5 mL), dried (MgSO₄), and evaporated. The residue was purified by column chromatography, eluting with EtOAc, to give the acetate 15 (0.15 g, 68%) as a mixture of diastereomers (1:1) as an oil; R_f 0.64 [EtOAc]; v_{max} (neat)/cm⁻¹ 3445, 2950, 1735, 1665; ¹H NMR (400 MHz, CDCl₃) δ = 4.99 (2H, br s), 4.85 (1H, s), 4.83 (1H, s), 4.38 (1H, d, J 3.5), 4.35 (1H, d, J 3.5), 4.21 (1H, d, J 4.5), 4.18 (1H, d, J 4.5), 4.12 (1H, d, J 6.5), 4.09 (1H, d, J 6.5), 3.96 (1H, d, J 10), 3.93 (1H, d, J 10), 3.80-3.75 (2H, m), 3.74-3.72 (2H, m), 3.66-3.58 (1H, m), 3.54-3.46 (1H, m), 3.43-3.31 (2H, m), 2.46–2.36 (2H, m), 2.19–2.08 (4H, m), 2.08 (6H, s), 1.84–1.72 (2H, m), 1.71–1.62 (2H, m), 1.42 (18H, s); ¹³C NMR $(100 \text{ MHz}, \text{CDCl}_3) \delta = 171.6, 171.5, 154.7, 154.6, 143.8, 143.5,$ 111.9, 111.6, 79.7, 79.6, 63.6, 62.3, 61.5, 59.8, 40.8, 39.2, 39.0, 38.9, 38.7, 28.4, 28.3, 28.2, 20.9; HRMS (ES) found: MH⁺, 314.1974. $C_{16}H_{28}NO_5$ requires MH⁺, 314.1967; LRMS m/z (ES) 314 (100%).

4-[1-(*tert*-Butyl-diphenyl-silanyloxymethyl)-2-hydroxyethyl]-3-methylene-piperidine-1-carboxylic acid *tert*-butyl ester 16

NaH (220 mg, 5.4 mmol, 60% dispersion in oil) was added to the diol **14** (1.39 g, 5.2 mmol) in THF (30 mL) at 0 °C. After 50 min, *tert*-butyldiphenylsilyl chloride (1.47 mL, 5.6 mmol) was added dropwise. After 1 h, saturated aqueous NaHCO₃ (20 mL)

was added and the mixture was extracted with CH_2Cl_2 (3 × 20 mL), dried (MgSO₄) and evaporated. Purification by column chromatography, eluting with petrol-EtOAc (4:1), gave the alcohol 16 (2.59 g, 99%) as a mixture of diastereomers (1:1) as an oil; $R_f 0.33$ [petrol-EtOAc 4:1]; v_{max} (neat)/cm⁻¹ 3450, 3075, 2930, 2855, 1690, 1665, 1590; ¹H NMR (500 MHz, CDCl₃) $\delta =$ 7.68-7.63 (8H, m), 7.46-7.36 (12H, m), 4.92 (1H, s), 4.81 (1H, s), 4.75 (1H, s), 4.64 (1H, s), 3.96-3.87 (5H, m), 3.77-3.68 (7H, m), 3.57 (1H, d, J 14), 3.45–3.32 (3H, m), 3.21–3.14 (1H, m), 2.38–2.30 (2H, m), 2.02–1.95 (2H, m), 1.72–1.65 (1H, m), 1.62-1.52 (2H, m), 1.43 (9H, s), 1.43 (9H, s), 1.06 (9H, s), 1.06 (9H, s); ¹³C NMR (126 MHz, CDCl₃) δ =154.7, 143.8, 135.6, 132.9, 129.9, 127.8, 111.6, 79.5, 65.9, 64.2, 63.2, 49.0, 41.3, 40.8, 40.3, 38.9, 38.6, 28.4, 28.3, 26.9, 19.2; HRMS (ES) Found MNa⁺ 532.2856. C₃₀H₄₃NO₄NaSi requires MNa⁺ 532.2859; LRMS m/z (ES) 532 (100%), 510 (6%).

4-[2-hydroxy-1-(4-methoxy-benzyloxymethyl)-ethyl]-3methylene-piperidine-1-carboxylic acid tert-butyl ester 17

NaH (180 mg, 4.48 mmol, 60% dispersion in mineral oil) was added to the diol 14 (1.21 g, 4.48 mmol) in THF (20 mL) at 0 °C. After 50 min, 4-methoxybenzyl chloride (0.67 mL, 4.93 mmol) and tetrabutylammonium iodide (0.165 g, 4.48 mmol) in THF (5 mL) were dropwise. After 3 d, the solvent was evaporated and the residue was purified by column chromatography, eluting with petrol-EtOAc (1:1), to give the alcohol 17 (1.39 g, 80%) as a mixture of diastereomers (1:1) as an oil; $R_f 0.41$ [petrol-EtOAc 1:1]; v_{max} (neat)/cm⁻¹ 3450, 3075, 2970, 2920, 2860, 1680, 1610, 1585; ¹H NMR (500 MHz, CDCl₃) δ = 7.23–7.18 (4H, m), 6.88–6.84 (4H, m), 4.94 (2H, br s), 4.81 (1H, s), 4.75 (1H, s), 4.46-4.36 (4H, m), 3.89-3.81 (4H, m), 3.78 (3H, s), 3.77 (3H, s), 3.74-3.62 (4H, m), 3.58-3.43 (4H, m), 3.42-3.81 (4H, m), 2.47-2.41 (1H, m), 2.41-2.35 (1H, m), 2.11-2.02 (2H, m), 1.74-1.61 (2H, m), 1.61-1.59 (1H, m), 1.53–1.45 (1H, m), 1.43 (18H, s); ¹³C NMR (126 MHz, $CDCl_3$) $\delta = 163.4, 159.2, 154.7, 143.9, 129.8, 129.7, 129.2,$ 113.8, 111.4, 79.5, 73.2, 72.4, 70.5, 64.5, 63.5, 55.2, 49.5, 48.0, 40.9, 39.3, 38.9, 38.7, 38.5, 28.3, 28.2; HRMS (ES) Found MNa⁺, 414.2257. C₂₂H₃₃NO₅Na requires MNa⁺, 414.2256; LRMS m/z (ES) 414 (100%).

Alternatively, compound **17a** was prepared from **26** by the following method:

LiAlH₄ (96 mg, 2.5 mmol) was added to the ester **26** (1.0 g, 2.3 mmol) in THF (20 mL) at -5 °C. After 40 min, EtOAc (10 mL) was added, followed by addition of Na₂SO₄ until a while salt precipitated. The mixture was filtered through celite. The solvent was evaporated and the residue was purified by column chromatography, eluting with petrol–EtOAc (1:1), to give the alcohol **17a** (0.63 g, 69%) as an oil; data for single stereoisomer: ¹H NMR (400 MHz, CDCl₃) δ = 7.25 (2H, d, *J* 8), 6.90 (2H, d, *J* 8), 4.97 (1H, s), 4.79 (1H, s), 4.46–4.39 (2H, m), 3.97 (1H, d, *J* 14), 3.89 (1H, dd, *J* 11, 2), 3.82 (3H, s), 3.76–3.68 (2H, m), 3.60–3.47 (3H, m), 3.41–3.35 (1H, m), 2.50–2.45 (1H, m), 2.10–2.06 (1H, m), 1.78–1.62 (2H, m), 1.46 (9H, s); ¹³C NMR (126 MHz, CDCl₃) δ =159.3, 154.8, 143.8,

129.8, 129.3, 113.9, 111.6, 79.6, 73.3, 72.6, 63.8, 55.3, 48.8 (br), 40.9, 38.7, 38.5, 28.5, 28.3.

Alternatively, compound **17a** was prepared from **36** by the following method:

Aqueous hydrochloric acid (0.07 mL, 2 M) was added to the ether **36** (1.0 g, 2.30 mmol) in dry isopropyl alcohol (10 mL) and the mixture was heated at 60 °C. After 7 h, the mixture was allowed to cool to room temperature and saturated aqueous NaHCO₃ solution (20 mL) was added. The mixture was extracted with Et_2O (3 × 50 mL). The combined organic layers were washed with brine (10 mL), dried (MgSO₄) and evaporated. Purification by column chromatography, eluting with petrol–EtOAc (1:1), gave the alcohol **17a** (0.61 g, 68%) as an oil; data as above.

tert-Butyl 3-(Hydroxymethyl)-7a-(iodomethyl)octahydrofuro[2,3-c]pyridine-6-carboxylate 18

Iodine (1.73 g, 6.83 mmol) in CH₂Cl₂ (30 mL) was added to the diol 14 (1.76 g, 6.50 mmol) in saturated aqueous NaHCO₃ (20 mL) at 0 °C. After 2 h, aqueous Na₂SO₃ (10 mL) was added dropwise. The aqueous layer was separated and was extracted with CH_2Cl_2 (3 × 30 mL). The organic extracts were washed with water (20 mL) and brine (20 mL), dried (MgSO₄), evaporated and purified by column chromatography, eluting with EtOAc, to give iodide 18 (1.94 g, 75%) as mixture of diastereoisomers (3:1) as an oil; R_f 0.41 (EtOAc); v_{max} (neat)/cm⁻¹ 3450, 3310, 2930, 2850, 1695, 1610; ¹H NMR (400 MHz, CDCl₃, peaks for major diastereomer listed) $\delta = 4.09$ (1H, t, J7), 3.98–3.85 (1H, m), 3.79–3.67 (4H, m), 3.43 (1H, d, J 11), 3.35 (1H, d, J 11), 3.08-2.98 (2H, m), 2.55-2.50 (1H, m), 2.13–1.92 (2H, m), 1.83–1.70 (2H, m), 1.48 (9H, s); ¹³C NMR (100 MHz, CDCl₃, major diastereomer) $\delta = 154.8$, 80.6, 69.5, 63.5, 60.4, 47.6, 45.0, 43.6, 39.3, 28.4, 24.4, 14.3; HRMS (ES) Found MNa⁺ 420.0631. C₁₄H₂₄NO₄INa requires MNa⁺ 420.0648; LRMS m/z (ES) 420 (100%).

tert-Butyl 7a-(Iodomethyl)-3-{[(4methoxyphenyl)methoxy]methyl}-octahydrofuro[2,3c]pyridine-6-carboxylate 19

Alcohol 18 (2.14 g, 5.40 mmol) in THF (10 mL) was added via cannula to sodium hydride (0.2 g, 8.6 mmol) in THF (20 mL). After 30 min, the mixture was cooled to 0 °C and 4methoxybenzyl chloride (0.84 mL, 6.21 mmol) in THF (10 mL) was added. After 30 min the mixture was allowed to warm to room temperature. After 24 h, aqueous sodium chloride solution (20 mL) was added. The mixture was extracted with Et₂O (3 \times 20 mL), dried (MgSO₄), evaporated and purified by column chromatography, eluting with petrol-EtOAc (9:1), to give the iodide 19 (2.6 g, 60%) as a mixture of diastereomers (3:1) as an oil; $R_f 0.51$ (petrol-EtOAc 8:2); v_{max} (neat)/cm⁻¹ 2850, 1685, 1615, 1595; ¹H NMR (400 MHz, CDCl₃, peaks for major diastereomer listed) δ = 7.25 (2H, d, J 8.5), 6.90 (2H, d, J 8.5), 4.45 (2H, s), 4.08 (1H, t, J 7.5), 4.10-4.06 (1H, m), 3.83 (3H, s), 3.69 (1H, t, J 7.5), 3.57-3.47 (2H, m), 3.42 (1H, d, J 11), 3.32 (1H, d, J 11), 3.04-2.93 (2H, m), 2.62-2.57 (1H, m), 2.09-2.06 (1H, m), 1.77-1.71 (2H, m), 1.64-1.56 (1H, m), 1.48 (9H, s); ¹³C NMR (100 MHz, CDCl₃, major diastereomer) δ = 159.3, 154.7, 130.0, 129.2, 113.9, 80.5, 73.0, 71.0, 69.9, 69.5, 55.3, 47.3, 44.1, 42.1, 41.6, 28.4, 24.4, 14.4; HRMS (ES) Found MH⁺ 518.1392. C₂₂H₃₂NO₅I requires MH⁺ 518.1404; LRMS *m*/*z* (ES) 540 (100%, MNa⁺).

tert-Butyl 4-[2-(1-Oxo-propenyl)]-3-methylidenepiperidine-1-carboxylate 21

Aqueous formaldehyde (37%) (0.44 mL, 5.4 mmol) was added to the aldehyde **20^{6b}** (1.0 g, 4.2 mmol) and L-proline (48 mg, 0.42 mmol) in DMF (5 mL) at room temperature. After 5 h, brine (10 mL) was added. The mixture was extracted with EtOAc (3 \times 20 mL), dried (MgSO₄) and evaporated. The residue was purified by column chromatography, eluting with petrol-EtOAc (4:1), to give the aldehyde 21 (938 mg, 89%) as an oil; $R_f 0.40$ [petrol-EtOAc 4:1]; v_{max} (neat)/cm⁻¹ 2980, 1685; ¹H NMR (500 MHz, CDCl₃) δ = 9.46 (1H, s), 6.21 (1H, s), 6.15 (1H, s), 4.76 (1H, s), 4.34 (1H, s), 4.31 (1H, br s), 3.97 (1H, br s), 3.42 (1H, d, J13), 3.29 (1H, dd, J11, 5), 2.97–2.82 (1H, m), 1.67-1.56 (2H, m), 1.33 (9H, s); ¹³C NMR (126 MHz, CDCl₃) $\delta = 193.4, 154.2, 150.0, 143.4, 135.6, 109.9, 79.4, 49.7$ (br), 43.2, 39.9, 30.5, 28.1; HRMS (ES) Found MH⁺ 252.1589. C₁₄H₂₂NO₃ requires MH⁺ 252.1600; LRMS *m/z* (ES) 252 (27%), 196 (100%).

4-(1-Ethoxycarbonyl-2-hydroxy-ethyl)-3-methylenepiperidine-1-carboxylic acid *tert*-butyl ester 22 and 23

n-BuLi (8.12 mL, 16.2 mmol, 2.0 M in hexanes) was added to diisopropylamine (2.45 mL, 17.5 mmol) in THF (50 mL) at 0 °C. After 30 min the mixture was cooled to -78 °C and the ester 4 (3.83 g, 13.5 mmol) was added dropwise. After 3.5 h formaldehyde (1.22 g, 40.5 mmol) was added and the mixture was allowed to warm to room temperature over 16 h. Saturated NH₄Cl_(aq) (50 mL) was added and the mixture was extracted with Et₂O (4 × 50 mL). The organic layers were washed with water, dried (MgSO₄) and evaporated. Purification by column chromatography, eluting with petrol–EtOAc (3:2), gave a 1:1 separable mixture of alcohols 22 and 23 (2.66 g, 63%) as oils; Data for 22:

R_f 0.38 [petrol–EtOAc 1:1]; v_{max} (neat)/cm⁻¹ 3455, 2940, 2875, 1730, 1690, 1675; ¹H NMR (250 MHz, CDCl₃) δ = 4.91 (1H, br s), 4.79 (1H, s), 4.19–4.07 (2H, m), 3.97 (1H, d, *J* 14), 3.80– 3.90 (2H, m), 3.59–3.32 (3H, m), 2.91–2.82 (1H, m), 2.80–2.67 (1H, m), 2.30 (1H, br s), 1.84–1.63 (2H, m), 1.43 (9H, s), 1.23 (3H, t, *J* 7); ¹³C NMR (63 MHz, CDCl₃) δ = 174.5, 154.6, 143.1, 111.1, 79.7, 61.0, 60.6, 48.1, 41.4, 40.0, 28.4, 28.3, 14.1; HRMS (ES) Found MH⁺ 314.1964. C₁₆H₂₈NO₅ requires MH⁺ 314.1967; LRMS *m*/*z* (ES) 336 (43%), 314 (13%), 258 (100%). Data for **23**:

R_f 0.47 [petrol–EtOAc 1:1]; v_{max} (neat)/cm⁻¹ 3425, 2980, 2935, 1730, 1695; ¹H NMR (500 MHz, CDCl₃) δ = 4.91 (1H, br s), 4.80 (1H, s), 4.15–4.06 (2H, m), 4.00–3.86 (1H, m), 3.68–3.56 (3H, m), 3.55–3.45 (1H, m), 3.33–3.23 (1H, m), 3.03–2.74 (2H, m), 2.55–2.50 (1H, m), 1.68–1.57 (1H, m), 1.48–1.35 (1H, m), 1.35 (9H, s), 1.21–1.15 (3H, m); ¹³C NMR (126 MHz, CDCl₃) δ = 174.2, 154.6, 142.4, 112.5, 79.7, 62.4, 60.7, 48.8 (br), 47.4,

40.5, 40.0, 29.6, 28.3, 14.1; HRMS (ES) Found MNa⁺ 336.1785. $C_{16}H_{27}NO_5Na$ requires MNa⁺ 336.1787; LRMS *m/z* (ES) 336 (100%).

4-[2-(4-Bromo-benzoyloxy)-1-ethoxycarbonyl-ethyl]-3methylene-piperidine-1-carboxylic acid *tert*-butyl ester 24

4-Bromobenzovl chloride (352 mg, 1.60 mmol), Et₃N (0.27 mL, 1.92 mmol) and DMAP (78 mg, 0.64 mmol) were added to the alcohol 22 (more polar diastereomer) (200 mg, 0.64 mmol) in CH₂Cl₂ (10 mL). After 3 h, saturated aqueous NaHCO₃ (10 mL) was added. Extraction with CH_2Cl_2 (3 × 10 mL), drying (MgSO₄), and purification by column chromatography, eluting with petrol-EtOAc (4:1), gave the ester 24 (313 mg, 99%) as an oil; $R_f 0.18$ [petrol-EtOAc 7:3]; v_{max} (neat)/cm⁻¹ 3070, 2965, 2925, 2865, 1725, 1695, 1590; ¹H NMR (500 MHz, CDCl₃) δ = 7.82-7.77 (2H, m), 7.54-7.50 (2H, m), 5.01 (1H, br s), 4.92 (1H, br s), 4.48 (1H, dd, J 10.5, 4), 4.29 (1H, t, J 10.5), 4.15 (2H, q, J 7), 3.70 (1H, d, J 17), 3.65–3.56 (1H, m), 3.36–3.28 (1H, m), 3.20-3.14 (1H, m), 2.63 (1H, dt, J 11, 5), 1.77-1.68 (1H, m), 1.56–1.49 (1H, m), 1.41 (9H, s), 1.18 (3H, t, *J* 7); ¹³C NMR (126 MHz, CDCl₃) δ = 172.7, 165.3, 154.6, 141.9, 131.7, 131.0, 128.6, 128.3, 113.1, 79.7, 65.1, 60.9, 48.0 (br), 44.7, 40.5, 39.9 (br), 29.7, 28.3, 14.2; HRMS (ES) Found MH⁺ 496.1313. $C_{23}H_{31}^{79}BrNO_6$ requires MH⁺ 496.1335; LRMS *m/z* (ES) 498 (25%), 496 (28%), 442 (92%), 440 (100%), 398 (65%), 396 (68%).

4-Bromobenzoic acid 2-Ethoxycarbonyl-2-[3-methylene-1-(toluene-4-sulfonyl)-piperidin-4-yl]-ethyl ester 25

TFA (0.65, 8.52 mmol) was added to the ester 24 (1.05 g, 2.13 mmol) in CH₂Cl₂ (15 mL). After 16 h, further TFA (4.0 mL, 51.9 mmol) was added. After 2 h, saturated aqueous NaHCO₃ was added until the solution became basic and the mixture was extracted with CH_2Cl_2 (4 × 20 mL). The organic layers were combined, dried (MgSO₄) and evaporated to give the secondary amine as an oil. To this, in CH₂Cl₂ (10 mL) with Et₃N (0.33 mL, 2.34 mmol) at room temperature, was added tosyl chloride (446 mg, 2.34 mmol). After 19 h, water (20 mL) was added and the mixture was extracted with EtOAc (3×15 mL), washed with saturated aqueous NaHCO₃ (50 mL) and brine (50 mL), dried (MgSO₄) and evaporated. Purification by column chromatography, eluting with petrol-EtOAc (4:1), followed by recrystallisation from EtOAc, gave the ester 25 (729 mg, 62% over 2 steps) as needles; m.p. 153-154 °C; Rf 0.35 [petrol-EtOAc 4:1]; v_{max} (neat)/cm⁻¹ 2955, 2915, 2855, 1725, 1715, 1650, 1585, 1340, 1155; ¹H NMR (250 MHz, CDCl₃) δ = 7.77 (2H, d, J 8), 7.63 (2H, d, J 8), 7.52 (2H, d, J 8), 7.30 (2H, d, J 8), 5.12 (1H, br s), 5.02 (1H, br s), 4.40 (1H, dd, J 10.5, 3.5), 4.28-4.07 (3H, m), 3.73 (1H, d, J 12.5), 3.45-3.23 (2H, m), 3.07-2.85 (2H, m), 2.64-2.49 (1H, m), 2.42 (3H, s), 1.96-1.74 (1H, m), 1.72–1.51 (1H, m), 1.18 (3H, t, J 7); ¹³C NMR (63 MHz, CDCl₃, one C not observed) $\delta = 172.3$, 165.2, 143.7, 139.8, 133.2, 131.8, 131.0, 129.8, 128.4, 127.7, 114.8, 64.7, 61.1, 50.3, 44.5, 42.7, 39.8, 28.9, 21.5, 14.2; HRMS (ES) Found MNa⁺ 572.0706. C₂₅H₂₈⁷⁹BrNNaO₆S requires MNa⁺ 572.0718; LRMS m/z (ES) 574 (96%), 572 (100%); Found C,

4-{1-Hydroxy-3-[(4-

54.65; H, 4.91; N, 2.40; Br, 14.62; S, 5.88, $C_{25}H_{28}BrNO_6S$ requires C, 54.55; H, 5.13; N, 2.54; Br, 14.52; S, 5.82. For X-ray data, see CCDC 1025236 [Monoclinic, Unit cell dimensions: a 19.1472(17), b 5.7177(5), c 22.9157(19), Volume 2484.3(4) Å³, T = 150 K, P21/n, Z = 4].

tert-Butyl

methoxyphenyl)methoxy]propan-2-yl}-3-

methylidenepiperidine-1-carboxylate 26

p-Methoxybenzyl alcohol (5.57 mL, 20 mmol) was added to a suspension of NaH (0.62 g, 20 mmol) in Et₂O (15 mL) at room temperature. After 30 min, the mixture was cooled to 0 °C and Cl₃CCN (4.30 mL, 20 mmol) was added. The mixture was allowed to warm to room temperature. After 4 h, the solvent was evaporated. Petrol (30 mL) and MeOH (0.5 mL) were added, the mixture was filtered through celite and the solvent was evaporated to give the crude trichloroacetimidate. To this was added CH₂Cl₂ (35 mL), the alcohol 23 (3.1 g, 10 mmol) and CSA (0.3 g, 1.0 mmol) at room temperature. After 18 h, the saturated aqueous NaHCO₃ (15 mL) was added and the mixture was extracted with Et_2O (3 × 30 mL). The organic layers were washed with water and purified by column chromatography on silica, eluting with petrol-EtOAc (9:1), to give the ester 26 (3.51 g, 82%) as an oil; R_f 0.50 [petrol-EtOAc 9:1]; v_{max} (neat)/cm⁻¹ 2990, 2935, 1725, 1695, 1610; ¹H NMR (400 MHz, $CDCl_3$) $\delta = 7.21$ (2H, d, J 8), 6.89 (2H, d, J 8), 4.96 (1H, s), 4.83 (1H, s), 4.44 (1H, d, J 11.5), 4.39 (1H, d, J 11.5), 4.20 (2H, q, J 7), 3.81 (3H, s), 3.70-3.66 (1H, m), 3.64-3.59 (2H, m), 3.50 (1H, dd, J9, 4.5), 3.40-3.33 (1H, m), 3.09-3.01 (1H, m), 2.59-2.51 (1H, m), 1.76-1.65 (1H, m), 1.57-1.46 (2H, m), 1.45 (9H, s), 1.27 (3H, t, J 7); ¹³C NMR (100 MHz, CDCl₃, some peaks could not be observed) $\delta = 159.3$, 154.8, 144.0, 129.9, 129.3, 113.9, 111.6, 79.6, 73.3, 72.5, 65.8, 63.7, 55.3, 38.8, 38.6, 28.4, 28.3, 15.3; HRMS (ES) Found MH⁺ 434.2538. C₂₄H₃₆NO₆ requires MH⁺ 434.2543; LRMS *m/z* (ES) 456 $(100\%, MNa^{+}).$

tert-Butyl 4-{1-Iodo-3-[(4-methoxyphenyl)methoxy]propan-2-yl}-3-methylidenepiperidine-1-carboxylate 27

Imidazole (0.18 g, 2.8 mmol) and iodine (0.67 g, 2.8 mmol) were added to PPh₃ (0.74 g, 2.8 mmol) in CH₂Cl₂ (15 mL). After 10 min, the alcohol 17a (1.0 g, 2.55 mmol) in CH₂Cl₂ (5 mL) was added. After 5 min, the mixture was filtered through celite, washed with EtOAc (3 \times 15 mL) and evaporated. Purification by column chromatography, eluting with petrol-EtOAc (9:1), gave the iodide 27 (1.24 g, 95%) as an oil; $R_f 0.40$ (petrol-EtOAc 9:1); v_{max} (neat)/cm⁻¹ 2970, 2925, 2855, 1695, 1650, 1610, 1585; ¹H NMR (400 MHz, CDCl₃) δ = 7.27 (2H, d, J 8.5), 6.90 (2H, d, J 8.5), 4.99 (1H, m), 4.81 (1H, s), 4.44 (2H, s), 3.97 (1H, d, J 14), 3.83 (3H, s), 3.82-3.76 (1H, m), 3.67 (1H, dd, J 10, 2.5), 3.52-3.47 (2H, m), 3.41-3.31 (2H, m), 3.22 (1H, dd, J 10, 5.5), 2.33-2.28 (1H, m), 1.78-1.71 (2H, m), 1.62–1.55 (1H, m), 1.47 (9H, s); ¹³C NMR (100 MHz, CDCl₃) $\delta = 159.2, 154.7, 143.5, 130.3, 129.3, 113.8, 111.9, 79.7, 73.0,$ 70.6, 55.3, 42.0, 40.8 (br), 37.8, 28.4, 27.7, 10.4; HRMS (ES) Found MNa⁺ 524.1262. $C_{22}H_{32}NO_4INa$ requires MNa⁺ 524.1274; LRMS *m/z* (ES) 524 (100%).

tert-Butyl 4-{1-[2-(Ethoxycarbonyl)-1,3-dithian-2-yl]-3-[(4-methoxyphenyl)methoxy]propan-2-yl}-3methylidenepiperidine-1-carboxylate 28

methyndenepiperiume-i-carboxylate 28

To a solution of ethyl 1,3-dithiane-2-carboxylate (0.80 mL, 5.08 mmol) in THF (20 mL) at -78 °C was added nBuLi (2.0 mL, 5.08 mmol, 2.5 M in hexane) and HMPA (CAUTION, toxic) (3.1 mL, 17.6 mmol). After 10 min, the mixture was warmed to -40 °C, and the iodide 27 (2.0 g, 4.0 mmol) in THF (10 ml) was added. The mixture was allowed to warm to room temperature. After 24 h, water (40 mL) was added and the mixture was extracted with EtOAc (4 × 40 mL), dried (MgSO₄), evaporated, and purified by column chromatography, eluting with petrol-EtOAc (9:1), to give ester 28 (1.8 g, 80%) as an oil; R_f 0.38 (petrol-EtOAc, 8:2); v_{max} (neat)/cm⁻¹ 3065, 2970, 2865, 1720, 1695, 1610, 1585; ¹H NMR (400 MHz, CDCl₃) δ = 7.25 (2H, d, J 8), 6.88 (2H, d, J 8), 4.97 (1H, s), 4.92 (1H, s), 4.34 (2H, s), 4.21 (2H, q, J7), 3.95 (1H, d, J14), 3.82 (3H, s), 3.79-3.75 (2H, m), 3.57-3.50 (1H, m), 3.46-3.41 (2H, m), 3.37-3.30 (1H, m), 3.19-3.12 (1H, m), 2.72-2.67 (2H, m), 2.53-2.32 (3H, m), 2.15-2.02 (2H, m), 1.93-1.83 (1H, m), 1.71–1.63 (2H, m), 1.47 (9H, s), 1.31 (3H, t, J 7); ¹³C NMR $(100 \text{ MHz}, \text{CDCl}_3) \delta = 171.1, 159.1, 154.8, 144.0, 130.6, 129.2,$ 113.6, 111.7, 79.4, 72.6, 70.7, 69.5, 62.0, 55.3, 53.8, 42.3, 41.3 (br), 37.0, 34.4, 28.5, 28.2, 27.3, 24.4, 14.1; HRMS (ES) Found MH^+ 566.2604. $C_{29}H_{44}NO_6S_2$ requires MH^+ 566.2610; LRMS *m/z* (ES) 588 (100%), 566 (92%).

tert-Butyl 4-{1-[2-(Hydroxymethyl)-1,3-dithian-2-yl]-3-[(4-methoxyphenyl)methoxy]propan-2-yl}-3methylidenepiperidine-1-carboxylate 29

LiAlH₄ (1.40 mL, 2.78 mmol, 2.0 M in THF) was added to the ester 28 (1.45 g, 2.57 mmol) in THF (40 mL) at -5 °C. After 40 min, the EtOAc (20 mL) and then saturated aqueous Na₂SO₄ were added until a white salt precipitated. After 15 min, the mixture was filtered through celite, evaporated and purified by column chromatography, eluting with petrol-EtOAc (1:1), to give the alcohol **29** (1.15 g, 85%); alternatively, using $LiAlH_4$ (37.5 mg, 0.95 mmol) with the ester 28 (500 mg, 0.88 mmol) gave the alcohol 29 (440 mg, 93%) as an oil; R_f 0.39 (petrol-EtOAc, 1:1); v_{max} (neat)/cm⁻¹ 3450, 3075, 2930, 2855, 1685, 1610, 1580; ¹H NMR (400 MHz, CDCl₃) δ = 7.25 (2H, d, J 8), 6.88 (2H, d, J 8), 4.95 (1H, br s), 4.86 (1H, s), 4.38 (2H, s), 4.10-3.90 (1H, m), 3.83 (3H, s), 3.79 (2H, s), 3.74-3.64 (1H, m), 3.54-3.47 (4H, m), 3.00-2.91 (2H, m), 2.77-2.69 (1H, br s), 2.63-2.59 (2H, m), 2.40-2.36 (1H, m), 2.29-2.23 (1H, m), 2.13-2.07 (1H, m), 2.03-1.98 (1H, m), 1.88-1.75 (3H, m), 1.72-1.63 (1H, m), 1.47 (9H, s); ¹³C NMR (100 MHz, CDCl₃) $\delta = 159.2, 154.8, 144.4, 130.2, 129.4, 113.7, 111.8, 79.4, 72.8,$ 72.0, 63.4, 55.3, 54.7, 43.8, 37.2, 33.7, 28.5, 26.0, 25.9, 24.8; HRMS (ES) Found MH^+ 524.2484. $C_{27}H_{41}NO_5S_2$ requires MH^+ 524.2504; LRMS m/z (ES) 546 (38%), 524 (100%).

tert-Butyl 4-{5-Hydroxy-4,4-dimethoxy-1-[(4methoxyphenyl)methoxy]pentan-2-yl}-3methylidenepiperidine-1-carboxylate 30

The alcohol 29 (1.15 g, 2.20 mmol) in THF (10 mL) was added to AgNO₃ (1.70 g, 5.17 mmol), 2,4,6-collidine (2.33 mL, 17.6 mmol) and N-chlorosuccinimide (1.15 g, 8.80 mmol) in THF (20 mL) and MeOH (30 mL) at 0 °C. After 1 h, saturated aqueous Na₂CO₃ (15 mL) and brine (15 mL) were added and the mixture was filtered through celite, washed with CH₂Cl₂, dried (MgSO₄), evaporated and purified by column chromatography, eluting with petrol-EtOAc (6:4), to give alcohol **30** (0.52 g, 49%) as an oil; R_f 0.64 (petrol-EtOAc, 1:1); v_{max} (neat)/cm⁻¹ 3450, 2970, 2930, 2860, 1690, 1610, 1590; ¹H NMR (400 MHz, CDCl₃) δ = 7.26–7.24 (2H, m), 6.91–6.88 (2H, m), 4.94 (1H, s), 4.86 (1H, s), 4.44-4.38 (2H, m), 4.00-3.98 (1H, m), 3.82 (3H, s), 3.73-3.70 (1H, m), 3.65-3.55 (2H, m), 3.49-3.45 (2H, m), 3.40-3.34 (1H, m), 3.22 (6H, s), 3.04 (1H, s), 2.55 (1H, s), 2.35-2.31 (2H, m), 2.20 (1H, br s), 1.80-1.76 (2H, m), 1.67–1.63 (1H, m), 1.47 (9H, s); ¹³C NMR (100 MHz, CDCl₃) $\delta = 160.0$, 154.8, 143.4, 129.6, 129.3, 113.8, 111.5, 102.4, 79.5, 73.1, 71.9, 70.3, 58.6, 54.3, 48.3, 48.1, 43.9, 32.7, 31.9, 31.5, 28.4, 27.2; HRMS (ES) Found MNa⁺ 502.2749, C₂₆H₄₁NO₇Na requires MNa⁺ 502.2724; LRMS *m/z* (ES) 502 (100%).

tert-Butyl 4-{4,4-Dimethoxy-1-[(4-methoxyphenyl)methoxy]-5-oxopentan-2-yl}-3-methylidenepiperidine-1-carboxylate 31

DMSO (0.14 mL, 1.99 mmol) in CH₂Cl₂ (1 mL) was added to oxalyl chloride (0.084 mL, 0.99 mmol) in CH2Cl2 (4 mL) at -60 °C. After 10 min, alcohol **30** (0.40 g, 0.83 mmol) in CH₂Cl₂ (1.5 mL) was added. After 10 min, Et₃N (0.52 mL, 3.73 mmol) was added and the mixture was allowed to warm to room temperature. After 1 h, CH₂Cl₂ (5 mL) and water (5 mL) were added and the mixture was filtered through celite, washed with CH_2Cl_2 (3 × 10 mL), dried (MgSO₄), evaporated and purified by column chromatography, eluting with petrol-EtOAc (7:3), to give aldehyde 31 (0.32 g, 80%) as an oil; $R_f 0.79$ (petrol-EtOAc 1:1); v_{max} (neat)/cm⁻¹ 2975, 2930, 2860, 2835, 1745, 1690, 1645, 1610, 1585; ¹H NMR (400 MHz, CDCl₃) δ = 9.33 (1H, s), 7.24 (2H, d, J 8), 6.88 (2H, d, J 8), 4.96 (1H, br s), 4.78 (1H, s), 4.26 (2H, s), 4.00-3.92 (1H, m), 3.82 (3H, s), 3.70 (1H, d, J 14), 3.44-3.39 (2H, m), 3.31 (3H, s), 3.25 (3H, s), 2.46-2.42 (1H, m), 1.99-1.87 (3H, m), 1.71-1.59 (4H, m), 1.47 (9H, s); ¹³C NMR (100 MHz, CDCl₃) δ = 198.7, 160.4, 154.6, 143.3, 129.6, 129.3, 113.9, 111.2, 102.2, 79.4, 72.8, 71.3, 55.5, 54.3, 49.7, 49.6, 43.6, 41.3, 32.7, 30.5, 28.5, 27.8; HRMS (ES) Found MNa⁺ 500.2649. C₂₆H₃₉NO₇Na requires MNa⁺ 500.2624; LRMS m/z (ES) 500 (100%) 478 (10%).

2-tert-Butyl9-Ethyl7-Methoxy-5-{[(4-methoxyphenyl)methoxy]methyl}-8-(prop-2-en-1-yl)-1H,2H,3H,4H,5H,7aH,8H,9H,10H,10bH-pyrrolo[2,3-j]isoquinoline-2,9-dicarboxylate 32

N-Allylglycine ethyl ester hydrochloride salt (0.23 g, 1.26 mmol), the aldehyde **31** (300 mg, 0.63 mmol) and ${}^{i}Pr_{2}NEt$ (0.22

mL, 1.26 mmol) in toluene (5 mL) were heated under reflux with a Dean-Stark trap. After 2 d, the solvent was evaporated and the residue was purified by column chromatography, eluting with petrol-EtOAc (4:1), to give the cycloadduct 32 (140 mg, 38%) as an oil; R_f 0.14 (petrol-EtOAc, 4:1); v_{max} (neat)/cm⁻¹ 2930, 2860, 1730, 1690, 1610, 1590; 1 H NMR (400 MHz, CDCl₃) δ = 7.26 (2H, d, J 8), 6.90 (2H, d, J 8), 5.86–5.73 (1H, m), 5.08 (1H, br d, J 17), 4.96 (1H, br d, J 10), 4.83 (1H, br s, vinyl ether CH), 4.52–4.44 (2H, ABq), 4.14 (2H, q, J 7), 3.95-3.87 (1H, br m), 3.82 (3H, s), 3.71 (1H, dd, J9, 4), 3.67-3.52 (2H, m), 3.52 (3H, s), 3.38-3.25 (3H, m), 2.90-2.73 (2H, m), 2.62-2.58 (1H, m), 2.19-2.11 (1H, m), 1.90-1.45 (5H, m), 1.43 (9H, s), 1.27 (3H, t, J 7); ¹³C NMR (100 MHz, CDCl₃, data from JMOD and HSQC) $\delta = 174.4$ (C=O), 159.2 (C), 155.0 (C=O), 153.2 (Cvinyl ether), 136.7 (CH), 130.4 (C), 129.1 (CH), 115.9 (CH₂), 113.8 (CH), 97.4 (CH_{vinyl ether}), 79.3 (C), 74.7 (CH₂), 72.8 (CH₂), 64.2 (CH), 61.6 (CH), 60.1 (CH₂), 55.2 (CH₃), 54.0 (CH₃), 52.6 (CH₂), ~49.0 (sometimes could discern very broad, possible NCH₂), 45.0 (C), ~39.0 (sometimes could discern very broad, possible NCH₂), 38.6 (CH₂), 35.7 (CH), 35.5 (CH), 28.4 (CH₃), 23.7 (CH₂), 14.3 (CH₃); HRMS (ES) Found MH⁺ 571.3374. C₃₂H₄₇N₂O₇ requires MH⁺ 571.3383; LRMS m/z (ES) 571 (100%).

2-*tert*-Butyl 9-Ethyl 7,7-Dimethoxy-5-{[(4methoxyphenyl)methoxy]methyl}-dodecahydropyrrolo[2,3j]isoquinoline-2,9-dicarboxylate 33

The aldehyde 31 (0.25 g, 0.52 mmol), glycine ethyl ester hydrochloride salt (0.15 g, 1.05 mmol) and ⁱPr₂NEt (0.18 mL, 1.05 mmol) were heated in toluene (5 mL) were heated under reflux with a Dean-Stark trap. After 3 d, the solvent was evaporated and the residue was purified by column chromatography, eluting with petrol-EtOAc (3:2), to give the cycloadduct 33 (0.17 g, 60%) as an oil; $R_f 0.10$ (petrol-EtOAc 3:2); v_{max} (neat)/cm⁻¹ 3285, 2930, 1690, 1615; ¹H NMR (400 MHz, CDCl₃) δ = 7.23 (2H, d, J 8.5), 6.88 (2H, d, J 8.5), 4.41 (2H, q, J 7), 4.26-4.10 (2H, m), 4.05-3.78 (2H, m), 3.82 (3H, s), 3.58-3.30 (4H, m), 3.27 (3H, s), 3.21 (3H, s), 3.12-2.87 (1H, m), 2.83–2.61 (1H, m), 2.41–1.95 (4H, m), 1.94–1.51 (4H, m), 1.46 (9H, s), 1.24 (3H, t, *J* 7); ¹³C NMR (100 MHz, CDCl₃) $\delta = 174.5, 159.1, 154.8, 130.5, 129.0, 113.7, 100.4, 79.5, 72.7,$ 72.5, 71.1, 61.3, 56.9, 55.3, 48.0, 47.6, 45.7, 40.9, 36.9, 32.0, 31.7, 28.5, 23.9, 22.5, 20.8, 14.1; HRMS (ES) Found MH⁺ 563.3304. $C_{30}H_{47}N_2O_8$ requires MH⁺ 563.3332; LRMS m/z(ES) 563 (100%).

tert-Butyl 4-[1-Ethoxy-3-(methoxymethoxy)-1-oxopropan-2-yl]-3-methylidenepiperidine-1-carboxylate 34

Chloromethyl methyl ether (0.44 mL, 5.76 mmol) was added to the alcohol **22** (1.50 g, 4.80 mmol) and diisopropyl ethylamine (6.33 mL, 6.24 mmol) in CH₂Cl₂ (25 mL) at 0 °C. After 1 h, H₂O (20 mL) was added and the mixture was extracted with Et₂O (2 × 30 mL). The organic layers were washed with aqeuous HCl (10 mL, 1 M) and brine (10 mL), dried (MgSO₄) and evaporated. Purification by column chromatography, eluting with petrol–EtOAc (7:3), gave the ester **34** (1.47 g, 86%) as an oil; R_f 0.69 (petrol–EtOAc, 3:2); v_{max} (neat)/cm⁻¹ 2930, 2860, 1735, 1695; ¹H NMR (400 MHz, CDCl₃) δ = 4.92 (1H, s), 4.79 (1H, s), 4.59 (2H, s), 4.17–4.08 (2H, m), 3.99 (1H, d, *J* 14), 3.85–3.76 (2H, m), 3.73–3.68 (1H, m), 3.60–3.53 (1H, m), 3.42–3.34 (1H, m), 3.33 (3H, s), 2.99 (1H, td, *J* 7, 4), 2.65– 2.57 (1H, m), 1.81–1.73 (1H, m), 1.55–1.46 (1H, m), 1.44 (9H, s), 1.23 (3H, t, *J* 7); ¹³C NMR (100 MHz, CDCl₃) δ = 173.4, 154.6, 143.4, 111.2, 96.5, 79.6, 66.7, 60.5, 55.3, 46.7, 41.5 (br), 40.7, 28.6, 28.4, 14.2; HRMS (ES) Found MH⁺ 358.2247. C₁₈H₃₂NO₆ requires MH⁺ 358.2230; LRMS *m/z* (ES) 358 (50%), 302 (100%).

tert-Butyl 4-[1-Hydroxy-3-(methoxymethoxy)propan-2-yl]-3-methylidenepiperidine-1-carboxylate 35

LiAlH₄ (2.03 mL, 2.78 mmol, 2.0 M in THF) was added to the ester 34 (1.45 g, 4.06 mmol) in THF (40 mL) at -5 °C. After 40 min, the EtOAc (20 mL) and then saturated aqueous Na₂SO₄ were added until a white salt precipitated. After 15 min, the mixture was filtered through celite, evaporated and purified by column chromatography, eluting with petrol-EtOAc (3:2), to give the alcohol 35 (1.11 g, 87%) as an oil; R_f 0.23 (petrol-EtOAc, 3:2); v_{max} (neat)/cm⁻¹ 3430, 2925, 2860, 1690, 1670; ¹H NMR (400 MHz, CDCl₃) δ = 5.02 (1H, s), 4.88 (1H, s), 4.64 (2H, ABq), 3.95 (1H, d, J 14), 3.86 (1H, d, J 14), 3.82 (1H, dd, J 10, 4), 3.75 (1H, dd, J 10, 4), 3.70 (1H, dd, J 10, 7), 3.65 (1H, dd, J 10, 7), 3.47 (2H, t, J 6), 3.39 (3H, s), 2.46-2.41 (1H, m), 2.17-2.10 (2H, m), 1.79-1.70 (1H, m), 1.66-1.57 (1H, m), 1.47 (9H, s); ¹³C NMR (100 MHz, CDCl₃) δ = 155.0, 144.1, 111.4, 96.8, 79.6, 67.8, 64.1, 55.5, 49.3, 41.3, 39.4, 39.1, 28.4, 28.3; HRMS (ES) Found MH⁺ 316.2112. C₁₆H₃₀NO₅ requires MH⁺ 316.2124; LRMS *m/z* (ES) 316 (25%), 260 (100%).

tert-Butyl 4-[1-(Methoxymethoxy)-3-[(4-methoxyphenyl)methoxy]propan-2-yl]-3-

methylidenepiperidine-1-carboxylate 36

To a solution of alcohol 35 (450 mg, 1.42 mmol) in CH₂Cl₂ (10 mL) was added 4-methoxybenzyl 2,2,2-trichloroacetimidate (722 mg, 2.55 mmol) and CSA (33 mg, 0.14 mmol) at room temperature. After 24 h, saturated aqueous NaHCO₃ (5 mL) was added and the mixture was extracted with Et₂O (3×30 mL). The organic layers were combined, washed with water, dried (MgSO₄) and evaporated. Purification by column chromatography on silica, eluting with petrol-EtOAc (3:2), gave the ether 36 (490 mg, 80%) as an oil; Rf 0.60 (petrol-EtOAc, 3:2); v_{max} (neat)/cm⁻¹ 2930, 2835, 1615, 1515; ¹H NMR (400 MHz, CDCl₃) δ = 7.25 (2H, d, J 8.5), 6.89 (2H, d, J 8.5), 4.96 (1H, s), 4.82 (1H, s), 4.61 (2H, s), 4.41 (2H, s), 3.88 (2H, s), 3.82 (3H, s), 3.72 (1H, dd, J 10, 3.5), 3.55 (1H, dd, J 10, 6), 3.45-3.52 (2H, m), 3.37-3.45 (2H, m), 3.35 (3H, s), 2.40-2.49 (1H, m), 2.15-2.24 (1H, m), 1.68-1.79 (1H, m), 1.55-1.66 (1H, m), 1.46 (9H, s); ¹³C NMR (100 MHz, CDCl₃) δ = 159.1, 154.8, 144.3, 130.6, 129.2, 113.7, 111.0, 96.7, 79.6, 72.8, 69.1, 65.6, 55.3, 48.8, 41.4, 39.4, 38.2, 28.5, 28.1; HRMS (ES) Found MH⁺ 436.2692. C₂₄H₃₈NO₆ requires MH⁺ 436.2699; LRMS m/z (ES) 436 (100%).

Acknowledgements

We are grateful for support from the Royal Society, the Libyan Ministry of Higher Education, the Thai Government and the University of Sheffield. We are grateful to Steven Pih, Chirag Patel, Laura Butler and Rungroj Saruengkhanphasit for related studies.

Notes and references

Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, UK S3 7HF; e-mail: i.coldham@sheffield.ac.uk

- R. Sakai, T. Higa, C. W. Jefford and G. Bernardinelli, J. Am. Chem. Soc., 1986, 108, 6404.
- See, for example: (a) A. H. El-Desoky, H. Kato, K. Eguchi, T. Kawabata, Y. Fujiwara, F. Losung, R. E. P. Mangindaan, N. J. de Voogd, M. Takeya, H. Yokosawa, S. Tsukamoto, *J. Nat. Prod.*, 2014, 77, 1536; (b) M. Yamada, Y. Takahashi, T. Kubota, J. Fromont, A. Ishiyama, K. Otoguro, H. Yamada, S. Omura, J. Kobayashi, *Tetrahedron*, 2009, 65, 2313; (c) K. V. Rao, M. S. Donia, J. Peng, E. Garcia-Palomero, D. Alonso, A. Martinez, M. Medina, S. G. Franzblau, B. L. Tekwani, S. I. Khan, S. Wahyuono, K. L. Willett, M. T. Hamann, *J. Nat. Prod.*, 2006, 69, 1034.
- For bioactivity, see, for example: (a) K. Eguchi, Y. Fujiwara, A. Hayashida, H. Horlad, H. Kato, H. Rotinsulu, F. Losung, R. E. P. Mangindaan, N. J. de Voogd, M. Takeya, S. Tsukamoto, *Bioorg. Med. Chem.*, 2013, 21, 3831; (b) E. A. Guzmán, J. D. Johnson, P. A. Linley, S. E. Gunasekera, A. E. Wright, *Inv. New Drugs*, 2011, 29, 777; (c) A. G. Shilabin, N. Kasanah, B. L. Tekwani, M. T. Hamann, *J. Nat. Prod.*, 2008, 71, 1218; (d) M. Hamann, D. Alonso, E. Martín-Aparicio, A. Fuertes, M. J. Pérez-Puerto, A. Castro, S. Morales, M. L. Navarro, M. del Monte-Millán, M. Medina, H. Pennaka, A. Balaiah, J. Peng, J. Cook, S. Wahyuono, A. Martinez, *J. Nat. Prod.*, 2007, 70, 1397.
- 4 (a) J. D. Winkler and J. M. Axten, J. Am. Chem. Soc., 1998, 120, 6425; (b) S. F. Martin, J. M. Humphrey, A. Ali and M. C. Hillier, J. Am. Chem. Soc., 1999, 121, 866; (c) J. M. Humphrey, Y. Liao, A. Ali, T. Rein, Y.-L. Wong, H.-J. Chen, A. K. Courtney and S. F. Martin, J. Am. Chem. Soc., 2002, 124, 8584; (d) T. Toma, Y. Kita and T. Fukuyama, J. Am. Chem. Soc., 2010, 132, 10233; (e) P. Jakubec, A. Hawkins, W. Felzmann and D. J. Dixon, J. Am. Chem. Soc., 2012, 134, 17482.
- 5 For recent examples, see: (a) A. Hawkins, P. Jakubec, A. Ironmonger, D. J. Dixon, *Tetrahedron Lett.*, 2013, 54, 365; (b) C.-M. Chau, K.-M. Liu, C.-K. Sha, *Tetrahedron Lett.*, 2011, 52, 5068; (c) Y. Kita, T. Toma, T. Kan, T. Fukuyama, Org. Lett., 2008, 10, 3251; (d) J.-C. Wypych, T. M. Nguyen, P. Nuhant, M. Bénéchie, C. Marazano, Angew. Chem. Int. Ed., 2008, 47, 5418; (e) K. A. El Sayed, A. A. Khalil, M. Yousaf, G. Labadie, G. M. Kumar, S. G. Franzblau, A. M. S. Mayer, M. A. Avery, M. T. Hamann, J. Nat. Prod., 2008, 71, 300; (f) T. Matsumura, M. Akiba, S. Arai, M. Nakagawa, A. Nishida, *Tetrahedron Lett.*, 2007, 48, 1265; (g) K. Tokumaru, S. Arai, A. Nishida, Org. Lett., 2006, 8, 27.
- (a) I. Coldham, S. J. Coles, K. M. Crapnell, J.-C. Fernàndez, T. F. N. Haxell, M. B. Hursthouse, J. D. Moseley and A. B. Treacy, *Chem. Commun.*, 1999, 1757; (b) I. Coldham, K. M. Crapnell, J.-C.

Fernàndez, J. D. Moseley and R. Rabot, *J. Org. Chem.*, 2002, **67**, 6181; (c) I. Coldham, S. M. Pih and R. Rabot, *Synlett*, 2005, 1743.

- 7 Y. Boursereau and I. Coldham, *Bioorg. Med. Chem. Lett.*, 2004, 14, 5841.
- 8 I. Coldham and R. Hufton, Chem. Rev., 2005, 105, 2765.
- 9 J. D. Winkler, J. Axten, A. H. Hammach, Y.-S. Kwak, U. Lengweiler, M. J. Lucero and K. N. Houk, *Tetrahedron*, 1998, 54, 7045.
- 10 S. Raucher, K.-W. Chi and D. S. Jones, *Tetrahedron Lett.*, 1985, 26, 6261.
- J. Casas, H, Sundén and A. Córdova, *Tetrahedron Lett.*, 2004, 45, 6117.