
This is a repository copy of Lower estimates near the origin for functional calculus on 
operator semigroups.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/88015/

Version: Accepted Version

Article:

Chalendar, I, Esterle, J and Partington, JR (2015) Lower estimates near the origin for 
functional calculus on operator semigroups. Journal of Functional Analysis, 269 (6). pp. 
1620-1635. ISSN 0022-1236 

https://doi.org/10.1016/j.jfa.2015.07.005

© 2015, Elsevier. Licensed under the Creative Commons 
Attribution-NonCommercial-NoDerivatives 4.0 International 
http://creativecommons.org/licenses/by-nc-nd/4.0/ 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Lower estimates near the origin for functional

calculus on operator semigroups

I. Chalendar∗, J. Esterle† and J.R. Partington‡

April 9, 2015

Abstract

This paper provides sharp lower estimates near the origin for the
functional calculus F (−uA) of a generator A of an operator semi-
group defined on the (strictly) positive real line; here F is given as the
Laplace transform of a measure or distribution. The results are linked
to the existence of an identity element or an exhaustive sequence of
idempotents in the Banach algebra generated by the semigroup. Both
the quasinilpotent and non-quasinilpotent cases are considered, and
sharp results are proved extending many in the literature.
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1 Introduction

This article is concerned with estimates for F (−uA) where A is the generator

of a strongly continuous semigroup (T (t))t>0 on a Banach space. Here F is an
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entire function with F (0) = 0, given as the Laplace transform of a measure

or distribution; the functional calculus defining F (−uA) is given by means

of an integral.

This can be seen as providing a wide generalization of results in [1, 4, 6],

for example, where quantities such as ∥T (t)− T (2t)∥ (or its spectral radius)

are estimated near the origin. For example, if ∥T (t) − T (2t)∥ < 1/4 on an

interval (0, t0), then, roughly speaking, (T (t))t>0 has a bounded infinitesimal

generator (see [1]).

There are two cases to consider, namely, the quasinilpotent and non-

quasinilpotent cases, and the techniques used are based on strong maximum

principles for analytic functions.

In Section 2, the case of quasinilpotent semigroups is considered. Then

in Section 3 the non-quasinilpotent case is analysed, providing conditions to

obtain either an identity in the closed algebra generated by the semigroup

or else an exhaustive sequence (Pn)n≥1 of idempotents such that (PnT (t))t

has a bounded generator. Here, the sharpness of the estimates is shown in

Remark 3.5.

Notation:

We write C+ = {z ∈ C : Re z > 0}, and similarly for C−.

Let D(a,R) denote the complex disc {|z − a| < R}.

For a Jordan curve Γ ⊂ C, we write int Γ (the interior of Γ) for the open

set of points in C about which the winding number of Γ is non-zero.

For S ⊂ C let Mc(S) denote the space of regular Borel measures having

compact support contained in S.
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2 Quasinilpotent semigroups

Suppose that (T (t))t>0 is a nontrivial strongly continuous semigroup of quasi-

nilpotent operators acting on a Banach space (X , ∥.∥). Then we write X0 =[∪
t>0 T (t)X

]−∥.∥
(closure in norm), and define a norm

∥x∥1 = sup
t≥0

∥T (t)x∥, where T (0)x = x,

on the subspace X1 := {x ∈ X0 : ∥x∥1 < ∞}, which is a Banach space under

the norm ∥.∥1. Further, we write

X̃1 :=

[
∪

t>0

T (t)X

]−∥.∥1

⊂ X1. (1)

The following result follows immediately from the main result of [5]. It

will be used to reduce the case of a quasinilpotent semigroup to that of a

contractive quasinilpotent semigroup.

Theorem 2.1 Let (T (t))t>0 be a nontrivial strongly continuous semigroup

of quasinilpotent operators acting on a Banach space (X , ∥.∥). Then with

(X̃1, ∥.∥1) defined as in (1) the semigroup (T (t)|X̃1
)t>0 is a strongly continuous

semigroup of quasinilpotent contractions. Moreover for all operators R in the

commutant {T (t) : t > 0}′ we have ∥R|X̃1
∥1 ≤ ∥R∥.

2.1 Some complex function theory

Theorem 2.2 Let f : C+ → C be a continuous bounded nonconstant func-

tion, holomorphic on C+, such that f([0,∞)) ⊂ R, f(0) = 0, and with

limx→∞,x∈R f(x) = 0.

Suppose that α > 0 is such that f(α) ≥ |f(x)| for all x ∈ [0,∞). Then

there exist a1, a2 ∈ C+, a0 ∈ (α, a1) and a3 ∈ iR with Im aj > 0 for j = 1, 2, 3,

and Im a2 = Im a3, and a simple piecewise linear Jordan curve Γ1 joining a1

to a2 in the upper right half-plane {z ∈ C : Re z > 0, Im z > 0} and δ > 0

such that
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(i) |f(z)| ≥ f(α) + δ|z − α|m for all z ∈ [α, a1], where m (even) is the

smallest positive integer with f (m)(α) ̸= 0;

(ii) |f(z)| > |f(a0)| for all z ∈ Γ1 ∪ [a2, a3].

Proof : Since f is holomorphic in C+, we have, by Taylor’s theorem,

constants M > 0 and η > 0 such that

∣∣∣∣f(z)− f(α)−
(z − α)m

m!
f (m)(α)

∣∣∣∣ ≤ M |z − α|m+1,

whenever |z − α| < η. By choosing a1 with |a1 − α| sufficiently small and

with argument such that (a1 − α)m < 0 (e.g. arg(a1 − α) = π/m), we have

condition (i) and hence |f(a1)| > |f(α)| = f(α); we may then choose a point

a0 ∈ [α, a1] with

|f(α)| < |f(a0)| < |f(a1)|.

Let U = {z ∈ C+ : |f(z)| > |f(a0)|}. Since a1 ∈ U , this is a nonempty

open set; we let V denote the connected component of U containing a1.

We claim that ∂V ∩ iR ̸= ∅. Indeed, note that if z ∈ ∂V ∩ C+, then

|f(z)| ≤ |f(a0)|, as otherwise if |f(z)| > |f(a0)|, then by the continuity of |f |

a neighbourhood of z is contained in V . But we cannot have |f(z)| ≤ |f(a0)|

on the whole of ∂V , as then by the strong maximum principle (see, e.g. [7,

Thm. 9.4]) this inequality would hold for all z ∈ V including a1.

So there exists a3 ∈ ∂V ∩ iR with Im a3 > 0 and |f(a3)| > |f(a0)|. By the

continuity of |f |, there exists β > 0 such that |f(z)| > |f(a0)| for all z ∈ C+

with |z−a3| < β. It follows that there is a point a2 ∈ C+ with Im a2 = Im a3

and (a3, a2] ⊂ V .

Since V is open and connected, it is path-connected, and so we may join a1

to a2 by a polygonal path in V . We may also guarantee that it is simple (does

not cross itself): the only difficulty arises if it crosses itself on the arc (a0, a1),

when we may replace a1 by the crossing point closest to a0, or if it crosses itself

on the line (a2, a3), when we may replace a2 by the crossing point closest to a3.

�
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The curve constructed in the proof of Theorem 2.2 may be seen as the

upper part of Figure 1.

α

a0
a1

a2a3

Γ1

Figure 1: The curve constructed in the proof of Theorem 2.5

We shall also require the following easy result.

Lemma 2.3 Let f ∈ H(C) with f(0) = 0, f nonconstant. Then there is an

r > 0 such that for all u ∈ C \ {0}, with |u| < r, we have

sup
|z|≤ r

|u|

|f(zu)| < sup
x≥0

|f(xu)|.

Proof : Choose R > 0 such that f(z) ̸= 0 for all z with |z| = R. Let δ =

inf{|f(z)| : |z| = R} so that δ > 0. Now take r > 0 such that sup|z|≤r |f(z)| <

δ, using the continuity of f and the fact that f(0) = 0.

Then supx>0 |f(xu)| ≥ δ for all u ∈ C \ {0}, and the conclusion follows.

�
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2.2 The main result

Recall that if (T (t))t>0 is a uniformly bounded strongly continuous semigroup

with generator A, then

(A+ λI)−1 = −

∫ ∞

0

eλtT (t) dt,

for all λ ∈ C with Reλ < 0. Here the integral is taken in the sense of Bochner

with respect to the strong operator topology.

If, in addition, (T (t))t>0 is quasinilpotent, then

(A+ λI)−1 = −

∫ ∞

0

eλtT (t) dt,

for all λ ∈ C.

Similarly, if µ ∈ Mc(0,∞) with Laplace transform

F (s) := Lµ(s) =

∫ ∞

0

e−sξ dµ(ξ), (2)

and (T (t))t>0 is a strongly continuous semigroup of bounded operators on

X , then we have a functional calculus for its generator A, defined by

F (−A) =

∫ ∞

0

T (ξ) dµ(ξ),

in the sense of the strong operator topology; i.e.,

F (−A)x =

∫ ∞

0

T (ξ)x dµ(ξ), (x ∈ X ),

which exists as a Bochner integral.

Lemma 2.4 Let µ ∈ Mc(0,∞) and (T (t))t>0 a strongly continuous quasinilpo-

tent semigroup of contractions. Set F = Lµ. Then we have for Reλ ≥ 0,

∥∥(F (−A)− F (λ)I)(A+ λI)−1
∥∥ ≤

∫ ∞

0

t d|µ|(t).
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Proof : We have

F (−A)(A+ λI)−1 = −

(∫ ∞

0

T (t) dµ(t)

)(∫ ∞

0

eλsT (s) ds

)

= −

∫ ∞

0

e−λt

[∫ ∞

0

eλ(s+t)T (s+ t) ds

]
dµ(t)

= −

∫ ∞

0

e−λt

[∫ ∞

t

eλvT (v) dv

]
dµ(t),

where v = s+ t. This in turn equals

−

∫ ∞

0

e−λt

[∫ ∞

0

eλvT (v) dv

]
dµ(t) +

∫ ∞

0

e−λt

[∫ t

0

eλvT (v) dv

]
dµ(t)

= F (λ)(A+ λI)−1 +

∫ ∞

0

[∫ t

0

eλ(v−t)T (v) dv

]
dµ(t).

For Reλ ≥ 0, we have
∥∥∥∥
∫ t

0

eλ(v−t)T (v) dv

∥∥∥∥ ≤ t,

and so the conclusion follows.

�

The following theorem applies to several examples studied recently in

[1, 3, 4, 6]; these include µ = δ1 − δ2, the difference of two Dirac measures,

where F (s) := Lµ(s) = e−s − e−2s and F (−sA) = T (s) − T (2s). More

importantly, the theorem applies to many other examples, such as dµ(t) =

(χ[1,2] − χ[2,3])(t)dt and µ = δ1 − 3δ2 + δ3 + δ4, which are not accessible with

the methods of [1, 3, 4, 6].

Theorem 2.5 Let µ ∈ Mc(0,∞) be a nontrivial real measure such that∫ ∞

0

dµ(t) = 0, and let (T (t))t>0 be a nontrivial strongly continuous quasinilpo-

tent semigroup of bounded operators on a Banach space X . Set F = Lµ.

Then there is an η > 0 such that

∥F (−sA)∥ > max
x≥0

|F (x)| for 0 < s ≤ η.
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Proof : It follows from Theorem 2.1 that we may assume without loss of

generality that (T (t))t>0 is a strongly continuous quasinilpotent semigroup

of contractions. Let α > 0 be such that |F (x)| ≤ |F (α)| for all x ≥ 0, and

let s > 0. By considering −µ instead of µ, if necessary, we may suppose that

F (α) > 0.

By Lemma 2.4 applied to the semigroup (T (st))t>0, for Reλ ≥ 0 we

obtain

∥∥F (−sA)(sA+ λI)−1
∥∥ ≥

∥∥F (λ)(sA+ λI)−1
∥∥−

∫ ∞

0

t d|µ|(t).

It follows that

∥F (−sA)∥ ≥ |F (λ)| −
1

∥(sA+ λI)−1∥

∫ ∞

0

t d|µ|(t)

for s > 0 and Reλ ≥ 0.

Suppose that there exists s ∈ (0, 1) such that ∥F (−sA)∥ ≤ F (α), and

consider the simple Jordan curve

Γ := [α, a1] ∪ Γ1 ∪ [a2, a3] ∪ [a3, a3] ∪ [a3, a2] ∪ Γ1 ∪ [a1, α],

where Γ1, a1, a2, a3 are defined as in Theorem 2.2, taking f = F (see Figure

1).

We now make various estimates of ∥(sA+ λI)−1∥ for λ on three different

parts of Γ.

1) For λ ∈ [α, a1] ∪ [a1, α] we have

F (α) ≥ ∥F (−sA)∥ ≥ |F (λ)| −
1

∥(sA+ λI)−1∥

∫ ∞

0

t d|µ|(t)

≥ F (α) + δ|λ− α|m −
1

∥(sA+ λI)−1∥

∫ ∞

0

t d|µ|(t).

Hence we obtain

∥∥(sA+ λI)−1
∥∥ ≤

1

δ|λ− α|m

∫ ∞

0

t d|µ|(t). (3)
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2) For λ ∈ Γ1 ∪ [a2, a3] ∪ [a3, a2] ∪ Γ1 we have

F (α) ≥ ∥F (−sA)∥ ≥ |F (λ)| −
1

∥(sA+ λI)−1∥

∫ ∞

0

t d|µ|(t)

≥ |F (a0)| −
1

∥(sA+ λI)−1∥

∫ ∞

0

t d|µ|(t).

It follows that

∥∥(sA+ λI)−1
∥∥ ≤

1

|F (a0)| − F (α)

∫ ∞

0

t d|µ|(t). (4)

3) For x ∈ R,

∥∥(A+ ixI)−1
∥∥ =

∥∥∥∥−
∫ ∞

0

T (t)eixt dt

∥∥∥∥

≤

∫ ∞

0

∥T (t)∥ dt < ∞,

since (T (t))t>0 is quasinilpotent and contractive. Therefore

∥∥(sA+ λI)−1
∥∥ =

1

s

∥∥∥∥∥

(
A+

λ

s
I

)−1
∥∥∥∥∥ ≤

1

s

∫ ∞

0

∥T (t)∥ dt (5)

for all λ ∈ [a3, a3].

We can now provide estimates for the quantity
∥∥∥(λ− α)m

(
A+ λ

s
I
)−1
∥∥∥

for λ on Γ. Let R = maxλ∈Γ |λ− α|.

By (3) ∥∥∥∥∥(λ− α)m
(
A+

λ

s
I

)−1
∥∥∥∥∥ ≤

s

δ

∫ ∞

0

t d|µ|(t)

for all λ ∈ [α, a1] ∪ [a1, α].

By (4)

∥∥∥∥∥(λ− α)m
(
A+

λ

s
I

)−1
∥∥∥∥∥ ≤

sRm

|F (a0)| − F (α)

∫ ∞

0

t d|µ|(t)

for all λ ∈ Γ1 ∪ [a2, a3] ∪ [a3, a2] ∪ Γ1.
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By (5) ∥∥∥∥∥(λ− α)m
(
A+

λ

s
I

)−1
∥∥∥∥∥ ≤ Rm

∫ ∞

0

∥T (t)∥ dt

for all λ ∈ [a3, a3].

Since 0 < s ≤ 1, for all z ∈ Γ ∪ int Γ we have

∥∥∥∥
(
A+

z

s
I
)−1
∥∥∥∥ ≤

M

|z − α|m
,

by the maximum modulus principle, where

M = max

(
Rm

∫ ∞

0

∥T (t)∥ dt,
Rm

|F (a0)| − F (α)

∫ ∞

0

t d|µ|(t),
1

δ

∫ ∞

0

t d|µ|(t)

)
.

Since by hypothesis F (0) = 0, there is an r ∈ (0, α) such that

sup
|z|≤r

|F (z)| < F (α).

Since D(0, r) ∩ Γ ∩ C+ = ∅, we have D(0, r) ∩ C+ ⊂ Γ ∪ int Γ.

Now if z ∈ D(0, r) with Re z > 0, we have |z − α| ≥ α − r, and thus we

have ∥∥∥∥
(
A+

z

s
I
)−1
∥∥∥∥ ≤

M

|z − α|m
≤

M

(α− r)m
.

Also

sup
Re z≤0

∥∥(A+ zI)−1
∥∥ ≤

∫ ∞

0

∥T (t)∥ dt < ∞.

Now, since by Liouville’s theorem the function z 7→
∥∥(A+ zI)−1

∥∥ is un-

bounded on C, it follows that for all u > 0 sufficiently small the inequality

∥∥∥∥
(
A+

z

u
I
)−1
∥∥∥∥ ≤

M

(α− r)m

fails to hold for some z ∈ D(0, r) ∩ C+, depending on u.

It follows that there is an η > 0 such that

∥F (−uA)∥ > F (α) for all u ∈ (0, η].
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If µ ∈ Mc(0,∞) is now a complex measure, then we write F̃ (z) = F (z),

which is also an entire function, indeed, the Laplace transform of µ.

Corollary 2.6 Let µ ∈ Mc(0,∞) be a nontrivial complex measure such

that

∫ ∞

0

dµ(t) = 0, and let (T (t))t>0 be a nontrivial strongly continuous

quasinilpotent semigroup of bounded operators on a Banach space X . Set

F = Lµ. Then there is an η > 0 such that

∥F (−sA)F̃ (−sA)∥ > max
x≥0

|F (x)|2 for 0 < s ≤ η.

Proof : The result follows on applying Theorem 2.5 to the real measure

ν := µ ∗ µ, whose Laplace transform satisfies

Lν(s) = F (s)F̃ (s).

�

We now give similar results for smoother semigroups: let p > 0 be an

integer, and write U (p) for the class of semigroups (T (t))t>0 such that the

mapping t 7→ T (t) is p times continuous differentiable with respect to the

norm topology. Let E (p) denote the class of distributions of order p with

compact support in (0,∞). For ϕ ∈ E (p) its action on a Cp function f may

be specified in terms of measures µ0, . . . .µp, namely,

⟨f, ϕ⟩ =

p∑

j=0

∫ ∞

0

f (j)(t) dµj(t).

The Laplace transform of ϕ is given by

F (z) := Lϕ(z) =

p∑

j=0

∫ ∞

0

(−z)je−zt dµj(t).

We write Gj = Lµj and Fj(z) = (−z)jGj(z) for each j. Likewise

F (−A) =

p∑

j=0

AjGj(−A) =

p∑

j=0

∫ ∞

0

AjT (t) dµj(t). (6)

We begin with the counterpart of Lemma 2.4.
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Lemma 2.7 Let p ≥ 1 and ϕ ∈ E (p), and let (T (t))t>0 be a quasinilpotent

U (p) semigroup of contractions. Set F = Lϕ. Then we have for Reλ ≥ 0,

∥∥(F (−A)− F (λ)I)A−p(A+ λI)−1
∥∥ ≤

p∑

m=0

cm∥A
m−p∥ +

p∑

m=0

dm

(
m−1∑

k=0

|λ|k∥Am−1−k−p∥

)
,

where

cm =

∫ ∞

0

t d|µm|(t) and dm =

∫ ∞

0

d|µm|(t)

for m = 0, 1, . . . , p.

Proof : Write B := (F (−A) − F (λ)I)A−p(A + λI)−1. Then by (6) we

have

B =

p∑

m=0

A−p(AmGm(−A)− (−λ)mGm(λ)I)(A+ λI)−1.

This can be rewritten as

p∑

m=0

Am−p(Gm(−A)−Gm(λ))(A+ λI)−1

+

p∑

m=0

Gm(λ)A
−p(Am − (−λ)mI)(A+ λI)−1.

Thus

B =

p∑

m=0

Am−p(Gm(−A)−Gm(λ))(A+ λI)−1

+

p∑

m=0

Gm(λ)

[
m−1∑

k=0

Am−1−k(−λ)k

]
A−p.

Now the first terms can be estimated using Lemma 2.4, and for the second we

use the obvious estimate |Gm(λ)| ≤ dm for Reλ ≥ 0.

12



Theorem 2.8 Let p > 1 and ϕ ∈ E (p) be a nontrivial real distribution given

by measures µ0, . . . , µp such that
∫∞

0
dµ0(t) = 0, and let (T (t))t>0 be a non-

trivial quasinilpotent U (p) semigroup of bounded operators on a Banach space

X . Set F = Lϕ. Then there is an η > 0 such that

∥F (−sA)∥ > max
x≥0

|F (x)| for 0 < s ≤ η.

Proof : The proof is very similar to the proof of Theorem 2.5, but using

Lemma 2.7, so we indicate the changes necessary. It will be convenient to

take 0 < s ≤ 1 and to write

K = K(s, λ) =

p∑

m=0

cm∥(sA)
m−p∥+

p∑

m=0

dm

(
m−1∑

k=0

|λ|k∥(sA)m−1−k−p∥

)
,

noting the dependence on s and λ. With the notation of the proof of Theo-

rem 2.5 we have three key estimates:

1) For λ ∈ [α, a1] ∪ [a1, α] we have

F (α) ≥ ∥F (−sA)∥ ≥ |F (λ)| −
K

∥(sA+ λI)−1(sA)−p∥

≥ F (α) + δ|λ− α|m −
K

∥(sA+ λI)−1(sA)−p∥
.

Hence we obtain

∥∥(sA+ λI)−1(sA)−p
∥∥ ≤

K

δ|λ− α|m
. (7)

2) For λ ∈ Γ1 ∪ [a2, a3] ∪ [a3, a2] ∪ Γ1 we have

F (α) ≥ ∥F (−sA)∥ ≥ |F (λ)| −
K

∥(sA+ λI)−1(sA)−p∥

≥ |F (a0)| −
K

∥(sA+ λI)−1(sA)−p∥
.

It follows that

∥∥(sA+ λI)−1(sA)−p
∥∥ ≤

K

|F (a0)| − F (α)
. (8)

13



3) For x ∈ R,

∥∥(A+ ixI)−1A−p
∥∥ =

∥∥∥∥−
∫ ∞

0

T (t)eixt dtA−p

∥∥∥∥

≤ ∥A−1∥p
∫ ∞

0

∥T (t)∥ dt < ∞,

since (T (t))t>0 is quasinilpotent and contractive. Therefore

∥∥(sA+ λI)−1(sA)−p
∥∥ ≤

1

sp+1
∥A−1∥p

∫ ∞

0

∥T (t)∥ dt (9)

for all λ ∈ [a3, a3].

We estimate
∥∥∥(λ− α)m

(
A+ λ

s
I
)−1

A−p

∥∥∥ for λ on Γ.

Let R = maxλ∈Γ |λ− α|. By (7)

∥∥∥∥∥(λ− α)m
(
A+

λ

s
I

)−1

A−p

∥∥∥∥∥ ≤
Ksp+1

δ

for all λ ∈ [α, a1] ∪ [a1, α].

By (8)

∥∥∥∥∥(λ− α)m
(
A+

λ

s
I

)−1

A−p

∥∥∥∥∥ ≤
Ksp+1Rm

|F (a0)| − F (α)

for all λ ∈ Γ1 ∪ [a2, a3] ∪ [a3, a2] ∪ Γ1.

By (9)

∥∥∥∥∥(λ− α)m
(
A+

λ

s
I

)−1

A−p

∥∥∥∥∥ ≤ Rm∥A−1∥p
∫ ∞

0

∥T (t)∥ dt

for all λ ∈ [a3, a3].

Since 0 < s ≤ 1, for all z ∈ Γ ∪ int Γ with |z| ≤ r we have

∥∥∥∥
(
A+

z

s
I
)−1

A−p

∥∥∥∥ ≤
M

|z − α|m
≤

M

(α− r)m
, (10)
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by the maximum modulus principle, where

M = sup
0<s≤1

z∈Γ∪int Γ

max

(
K(s, z)sp+1

δ
,
K(s, z)sp+1Rm

|F (a0)| − F (α)
, Rm∥A−1∥p

∫ ∞

0

∥T (t)∥ dt

)
,

which is finite.

With this new choice of M , the proof is now concluded as for the proof

of Theorem 2.5, using the observation that ∥(A + zI)−1A−p∥ is unbounded

on C, and obtaining a contradiction from (10).

�

3 The non-quasinilpotent case

Let (T (t))t>0 be a semigroup of non-quasinilpotent operators, and let AT

denote the closed (commutative) algebra generated by the semigroup. We

write ÂT for the maximal ideal space of AT . Recall that this is compact if

and only if AT/Rad(AT ) is unital; otherwise it is locally compact, and the

function â : χ 7→ χ(a) is continuous on ÂT for every a ∈ AT .

Recall that AT is said to have an exhaustive sequence of idempotents

(Pn)n≥1 if P
2
n = PnPn+1 = Pn for all n and for every χ ∈ ÂT there is a p such

that χ(Pn) = 1 for all n ≥ p.

The following result is part of the folklore of the subject, and it is partly

contained in [4, Lem. 3.1] and [1, Lem. 3.1]. It enables us to regard A itself

as an element of C(ÂT ) by defining an appropriate value χ(A) = −aχ for

each χ ∈ ÂT .

Lemma 3.1 For a strongly continuous and eventually norm-continuous semi-

group (T (t))t>0 and a nontrivial character χ ∈ ÂT there is a unique aχ ∈ C

such that χ(T (t)) = e−taχ for all t > 0. Moreover, the mapping χ 7→ aχ is

continuous, and χ(F (−uA)) = F (uaχ) in the case that F = Lµ, as in (2).

Proof : The existence of aχ is given in [4], and its uniqueness is clear since

the values of e−taχ for t > 0 determine aχ uniquely.
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For the continuity, note that

χ(T (1)) = e−aχ

and

χ

(
eλ
∫ ∞

1

T (t)e−λt dt

)
=

1

aχ + λ
e−aχ

if λ is taken sufficiently large that the integral converges. Thus if we have

a net χα → χ then e−aχα → e−aχ and 1
aχα

+λ
e−aχα → 1

aχ+λ
e−aχ , which easily

implies that aχα
→ aχ.

The final observation follows from an easy argument using Bochner inte-

grals.

�

The following result will also be required.

Lemma 3.2 Let (T (t))t>0 be a non-quasinilpotent and eventually norm-con-

tinuous semigroup in a Banach algebra, with infinitesimal generator A; let

AT be the subalgebra generated by the semigroup and Λ = {aχ : χ ∈ ÂT}, as

in Lemma 3.1. Then the following conditions are equivalent:

(i) AT has an exhaustive sequence of idempotents.

(ii) For each integer m ≥ 1 the set Λm := {λ ∈ Λ : Reλ ≤ m} is contained

in a compact relatively open subset of Λ.

Proof : (i) ⇒ (ii) : Let θ : χ → aχ be the homeomorphism given by

Lemma 3.1. Now K := θ−1(Λm) is a closed subset of the compact space

ÂT ∪ {0}, since Re aχ ≤ m if and only if |χ(T (1))| ≥ e−m. Hence K is

compact. If (i) holds, then for each χ ∈ ÂT , then there is an nχ > 0 be such

that χ(Pn) = 1 for n ≥ nχ. So
(
{χ ∈ ÂT : χ(Pn) = 1}

)
n
is an open cover of

K. By compactness, there is an N such that χ(PN) = 1 for all χ ∈ K, so

K ⊂ {χ ∈ ÂT : χ(PN) = 1}, and θ(K) is compact, open in Λ, and contains

Λm.
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(ii) ⇒ (i) : Conversely, if (ii) holds, then for each m ≥ 1, the set Λm is

contained in a compact relatively open set Ωm ⊂ Λ. So θ−1(Ωm) ⊂ AT is

compact and open; hence by Shilov’s idempotent theorem [2, Thm. 2.4.33]

there is an idempotent Pm in AT such that χ(Pm) = 1 for χ ∈ θ−1(Ωm) and

0 otherwise. Now (Pm)m≥1 is an exhaustive sequence of idempotents in AT .

�

Theorem 3.3 Let (T (t))t>0 be a nontrivial strongly continuous and even-

tually norm-continuous non-quasinilpotent semigroup on a Banach space X ,

with generator A. Let F = Lµ, where µ ∈ Mc(0,∞) is a real measure such

that
∫∞

0
dµ = 0. If there exists (uk)k ⊂ (0,∞) with uk → 0 such that

ρ(F (−ukA)) < sup
x>0

|F (x)|, (11)

then the algebra AT possesses an exhaustive sequence of idempotents (Pn)n≥1

such that each semigroup (PnT (t))t>0 has a bounded generator.

If, further, ∥F (−ukA)∥ < supx>0 |F (x)|, then
∪

n≥1 PnAT is dense in AT .

Proof : For m ≥ 1 let Λm = {aχ : Re aχ ≤ m}, where χ(T (t)) = e−aχt as

in Lemma 3.1.

Let K := θ−1(Λm), which is a compact set, as seen in the proof of Lemma

3.2. Hence, Λm = θ(K) is compact, since θ : χ 7→ aχ is continuous by Lemma

3.1.

Therefore, there is an Rm > 0 such that Λm ⊂ D(0, Rm). Note that, by

the definition of Λm, we have

Λ ∩ C− = Λ ∩ C− ⊂ D(0, Rm).

By hypothesis there exists a uk > 0 such that

|uk| <
r

Rm

,

where r > 0 is given by Lemma 2.3 and

ρ(F (−ukA)) < sup
x>0

|F (xuk)|.
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It follows that Λm ⊂ D(0, Rm) ⊂ D(0, r/|uk|) and

|F (ukaχ)| < sup
x>0

|F (ukx)|

for all aχ ∈ Λm. Let αk be such that supx>0 |F (xuk)| = |F (αkuk)|.

By Theorem 2.2 there exists a curve Γk,0 in {z : Re z ≥ 0, Im z > 0}

joining αk ∈ R+ to vk ∈ iR+ with |vk| > Rm on which |F (ukz)| ≥ |F (αkuk)|.

Let Γk = Γk,0 ∪ {z ∈ C : Re z < 0, |z| = |vk|} ∪ Γk,0 (see Figure 2).

αk

Γk

vk
r/|uk|

Figure 2: Diagram for the proof of Theorem 3.3

Then Λ∩Γk = ∅ since |F (ukaχ)| = |χ(F (−ukA))| < |F (ukαk)| for aχ ∈ Λ

and |F (ukz)| > |F (ukαk)| for z ∈ Γk,0 ∪ Γk,0, so Λ ∩ (Γk,0 ∪ Γk,0) = ∅. Also

Λ ∩ C− = Λm ∩ C− so Λ ∩ {z ∈ C− : |z| = |vk|} = ∅.

Now Λm = Λ∩ int Γk, which is compact (since Λ∩Γk = ∅) and relatively

open in Λ, so we may now apply Lemma 3.2 to deduce that AT has an ex-

haustive sequence of idempotents.

If P is an idempotent of AT , then
∪

t>0 PT (t)AT is dense in the unital

Banach algebra PAT . Hence PAT =
∪

t>0 PT (t)AT ; also PT (t) is invertible
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in PAT for some, and hence for all, t > 0, and then limt→0+ ∥P−PT (t)∥ = 0,

since the semigroup is eventually continuous.

For the last observation, it follows from Theorem 2.5 that π(T (t)) = 0

for every t > 0, where π : AT → AT/
∪

n≥1 PnAT denotes the canonical

surjection.

�

Remark 3.4 A similar result holds for complex measures µ ∈ Mc(0,∞);

namely, we replace

ρ(F (−ukA)) < sup
x>0

|F (x)|,

by the symmetrised version

ρ(F (−ukA)F̃ (−ukA)) < sup
x>0

|F (x)|2,

as in Corollary 2.6.

Remark 3.5 The following example is given in [1], and shows that Theo-

rem 3.3 is sharp. Indeed, consider C0[0, 1], the Banach algebra of all con-

tinuous complex-valued functions on [0, 1] that vanish at 0, equipped with the

supremum norm, and the semigroup (S(t))t>0 defined by x 7→ xt for x ∈ [0, 1].

We see that

F (−uA) =

∫ ∞

0

S(uξ) dµ(ξ) =

∫ ∞

0

xuξ dµ(ξ),

and for s > 0 we have

F (s) =

∫ ∞

0

e−sξ dµ(ξ).

Thus we obtain equality in (11), choosing xu = e−s0, where s0 is defined by

|F (s0)| = sups>0 |F (s)|. Note that the norm and spectral radius are equal in

C0[0, 1] and that the algebra does not possess any non-trivial idempotents.
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