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The ‘archetypal’ equation with rescaling is given

by y(x) =
∫∫

R2 y(a(x− b))µ(da, db) (x∈R), where

µ is a probability measure; equivalently, y(x) =

E{y(α(x− β))}, with random α, β and E denoting

expectation. Examples include: (i) functional equation

y(x) =
∑

i piy(ai(x− bi)); (ii) functional-differential

(‘pantograph’) equation y′(x) + y(x) =
∑

i piy(ai(x−

ci)) (pi > 0,
∑

i pi = 1). Interpreting solutions y(x)

as harmonic functions of the associated Markov

chain (Xn), we obtain Liouville-type results asserting

that any bounded continuous solution is constant.

In particular, in the ‘critical’ case E{ln|α|}= 0 such

a theorem holds subject to uniform continuity of

y(x); the latter is guaranteed under mild regularity

assumptions on β, satisfied e.g. for the pantograph

equation (ii). For equation (i) with ai = qmi (mi ∈

Z,
∑

i pimi = 0), the result can be proved without

the uniform continuity assumption. The proofs utilize

the iterated equation y(x) = E{y(Xτ )|X0 = x} (with

a suitable stopping time τ ) due to Doob’s optional

stopping theorem applied to the martingale y(Xn).

1. Introduction

(a) The archetypal equation

This paper concerns the equation with rescaling (referred

to as ‘archetypal’) of the form

y(x) =

∫∫
R2

y(a(x− b))µ(da, db), x∈R, (1.1)

where µ(da, db) is a probability measure on R
2. The

integral in (1.1) has the meaning of expectation with

c© The Author(s) Published by the Royal Society. All rights reserved.
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respect to a random pair (α, β) with distribution P{(α, β)∈ da× db}= µ(da, db); thus, equation

(1.1) can be written in compact form as

y(x) = E{y(α(x− β))}, x∈R. (1.2)

As has been observed by Derfel [1] (and will be illustrated below in §1(b)), this equation is a

rich source of various functional and functional-differential equations with rescaling, specified by

a suitable choice of the probability measure µ (i.e. the distribution of (α, β)). It is for that reason

that we propose to call (1.2) (as well as its integral counterpart (1.1)) the archetypal equation (AE).

The study of this equation allows one to enhance and unify earlier results for particular subclasses

of equations with rescaling, while making the analysis more transparent and efficient (cf. [2]).

Noting that any function y(x)≡ const satisfies the AE (1.2), it is natural to investigate whether

there are any non-trivial (i.e. non-constant) bounded continuous (b.c.) solutions. Such a question

naturally arises in the context of functional and functional-differential equations with rescaling,

where the possible existence of bounded solutions (e.g. periodic, almost periodic, compactly

supported, etc.) is of major interest in physical and other applications (see e.g. [3–6]). Solutions

under study may also be bounded by nature, e.g. representing a ruin probability as a function of

initial capital [7,8]. On the other hand, confining oneself to bounded solutions may be considered

as a first step towards a full description of the asymptotic behaviour of solutions.

Thus, the goal of the present paper is to give conditions on the distribution µ of the random

coefficients (α, β), under which any b.c.-solution of equation (1.2) is constant on R. For shorthand,

we refer to statements of this kind as Liouville-type theorems by analogy with similar results in

complex analysis and harmonic function theory, bearing in mind that y(x) in (1.2) is a weighted

average of other values, thus resembling the usual harmonic function. More details highlighting

the pertinence of ‘harmonicity’ in the context of equation (1.2) are provided in §1(d).

Remark 1.1. Continuity of y(x) (or some other regularity assumption) is needed to avoid

pathological solutions, as is well known in the theory of functional equations (cf. [9, Ch. 2]). For

example, all b.c.-solutions of the equation y(x) = py
(

1
2 (x+ 1)

)

+ (1− p)y
(

1
2 (x− 1)

)

(0≤ p≤ 1)

are constant by Theorem 1.1(a) stated below, but if the continuity requirement is dropped then

one can easily construct other bounded solutions, e.g. the Dirichlet function y(x) = 1Q(x) (i.e.

y(x) = 1 if x is rational and y(x) = 0 otherwise), which is everywhere discontinuous.

(b) Some subclasses of the archetypal equation; historical remarks

Before outlining our results, we illustrate the remarkable capacity of equation (1.2) justifying

the name ‘archetypal’. General surveys of functional and functional-differential equations with

rescaling are found in Derfel [10] and Baron & Jarczyk [11], both with extensive bibliographies.

(i) Functional equations and self-similar measures

To start with, in the simplest case α≡ 1 equations (1.1), (1.2) are reduced to

y(x) =

∫
R

y(x− t)µβ(dt) ⇐⇒ y(x) = E{y(x− β)}, (1.3)

where µβ(dt) := P(β ∈ dt). This equation (sometimes called the integrated Cauchy functional

equation [12]) plays a central role in potential theory and harmonic analysis on groups [13,14],

and is also prominent in probability theory in relation to renewal theorems [15, §XI.9], Markov

chains [16, Ch. 5], queues [17, §III.6], characterization of probability distributions [12, Ch. 2], etc.

A Liouville-type result in this case is rendered by the celebrated Choquet–Deny theorem [18] (see

also [12] and references therein).

Note that equation (1.3) can be written in the convolution1 form y= y ⋆ µβ . More generally, if

α has a discrete distribution (with atoms ai and masses pi) then, denoting by µi
β the conditional

1The convolution between function y(x) and measure σ in R is defined as y ⋆ σ(x) :=
∫
R
y(x − t)σ(dt).
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distribution of β given α= ai, the AE (1.2) is conveniently expressed in convolutions,

y(x) =
∑

i
piy(aix) ⋆ µ

i
β .

For a purely discrete measure µ, with atoms (ai, bi) and masses pi = P(α= ai, β = bi), the AE (1.2)

specializes to

y(x) =
∑

i
piy(ai(x− bi)). (1.4)

If all ai > 1 then (1.4) is an example of Hutchinson’s equation [19] for the distribution function of

a self-similar probability measure which is invariant under a family of contractions (here, affine

transformations x 7→ bi + x/ai). An important subclass of (1.4), with ai ≡ a> 1, is exemplified by

y(x) = 1
2 y(a(x+ 1)) + 1

2 y(a(x− 1)).

This equation describes the (self-similar) distribution function of the random series
∑∞

n=0 ±a−n,

where the signs are chosen independently with probability 1
2 . Characterization of this distribution

for different a> 1 is the topical Bernoulli convolutions problem [20].

Returning to equation (1.4) with ai ≡ a> 1, the density z(x) := y′(x) (if it exists) satisfies

z(x) = a
∑

i
piz(a(x− bi)), (1.5)

often called the two-scale difference equation or refinement equation [21]. Construction of compactly

supported continuous solutions of (1.5) plays a crucial role in wavelet theory [22,23] and also in

subdivision schemes and curve design [4,24], which is a rapidly growing branch of approximation

theory. A special version of (1.5) known as Schilling’s equation

z(x) = α
[

1
4 z(αx+ 1) + 1

2 z(αx) +
1
4 z(αx− 1)

]

arises in solid state physics in relation to spatially chaotic structures in amorphous materials

[5, p. 230], where the existence of compactly supported continuous solutions is again of major

interest; see [25] for a full characterization of this problem in terms of arithmetical properties of α.

(ii) Functional-differential equations

Let us now turn to the situation where the distribution of β conditioned on α is absolutely

continuous (i.e. has a density). It appears that for certain simple densities the AE (1.2) produces

some well-known functional-differential equations. An important example is the celebrated

pantograph equation, introduced by Ockendon & Tayler [26] as a mathematical model of the

overhead current collection system on an electric locomotive.2 In its classical (one-dimensional)

form the pantograph equation reads

y′(x) = c0y(x) + c1y(αx). (1.6)

This equation and its ramifications have emerged in a striking range of applications, including

number theory [7], astrophysics [28], queues & risk theory [29], stochastic games [8], quantum

theory [6], and population dynamics [30]. The common feature of all such examples is some

self-similarity of the system under study. Thorough asymptotic analysis of equation (1.6) was

given by Kato & McLeod [31]. A more general first-order pantograph equation (with matrix

coefficients, and also allowing for a term with a rescaled derivative) was studied by Iserles

[27], where a fine geometric structure of almost-periodic solutions was also described. Further

developments include analysis in the complex domain [32], higher-order equations [27,33], and

stochastic versions [34]. Among recent important analytic results is a proof by da Costa et al. [35]

of the unimodality of solutions which plays a significant role in medical imaging of tumours [36].

A balanced version of the pantograph equation is given by (see [1,2])

y′(x) + y(x) =
∑

i
piy(ai(x− ci)), pi > 0,

∑

i
pi = 1. (1.7)

As explained in §3(c), equation (1.7) is essentially equivalent to the AE (1.2) whereby α is discrete,

with P(α= ai) = pi, and β conditioned on α= ai has the unit exponential distribution on (ci,∞),
2The term ‘pantograph equation’ was coined by Iserles [27].
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with the density function eci−t
1(ci,∞)(t). The discreteness of α is not significant here, and a

similar connection with the AE holds for more general integro-differential equations (cf. [37])

y′(x) + y(x) = E{y(α(x− γ)} ≡

∫∫
R2

y(a(x− c))µα,γ(da, dc), (1.8)

where γ is a random variable and µα,γ(da, dc) = P(α∈ da, γ ∈ dc) is the distribution of (α, γ).

Higher-order pantograph equations can also be deduced from the AE, e.g.

−y′′(x) + y(x) =
∑

i
piy(ai(x− ci)), pi > 0,

∑

i
pi = 1,

and more generally (cf. [2])

C2y
′′(x) + C1y

′(x) + y(x) = E{y(α(x− γ)} (C1, C2 ∈R, C2
1 − 4C2 ≥ 0).

For an example of a different kind, take α≡ 2 and assume that β has the unform distribution

on [− 1
2 ,

1
2 ], then equation (1.2) is reduced to

y(x) =

∫x+1/2

x−1/2
y(2u) du. (1.9)

Differentiating (1.9), for z(x) := y′(x) we obtain Rvachev’s equation [3]

z′(x) = 2
[

z(2x+ 1)− z(2x− 1)
]

. (1.10)

A compactly supported solution of (1.10) (called the ‘up-function’) and its generalizations (unified

under the name atomic functions) have extensive applications in approximation theory (see [3,24]

and references therein); all such functions can be obtained as solutions of suitable versions of the

AE (1.2) (see [1]).

(c) Main results

Let us summarize our results. First, certain degenerate cases warrant a separate analysis but

need to be excluded in general theory, namely: (i) α= 0 with positive probability; (ii) |α| ≡ 1; and

(iii) α(c− β)≡ c for some c∈R (resonance). Note that (ii) includes the case α≡ 1 settled in the

Choquet–Deny theorem mentioned in §1(b)-i; in §2(b) we generalize this result (Theorem 2.3). As

for cases (i) and (iii), a Liouville theorem holds here unconditionally, which is easy to prove for

(i), analytically and probabilistically alike (see Theorem 2.1). In the resonance case (iii), the proof

is more involved relying heavily on the Choquet–Deny theorem (see §2(c)), but the result itself is

quite lucid and appealing.

In the non-degenerate situation, existence of non-trivial b.c.-solutions is essentially governed

by the sign of K :=
∫∫

R2 ln|a|µ(da× db) = E{ln|α|}. More precisely, one can prove (see [38]) the

following dichotomy between the subcritical (K < 0) and supercritical (K > 0) regimes.

Theorem 1.1. Suppose that K = E{ln|α|} is finite and E{lnmax(|β|, 1)}<∞.

(a) If K < 0 then any b.c.-solution of the AE (1.2) is constant.

(b) If K > 0 and α> 0, then there is a b.c.-solution of (1.2) given by the distribution function

FΥ (x) := P(Υ ≤ x), where Υ :=
∑∞

n=1 βn
∏n−1

j=1 α−1
j and {(αn, βn)} is a sequence of

independent identically distributed (i.i.d.) random pairs with the same distribution µ as (α, β).

Remark 1.2. Almost sure (a.s.) convergence of the random series Υ (for α 6= 0) and continuity of

FΥ (x) on R were proved by Grintsevichyus [39].

Remark 1.3. The result of Theorem 1.1 was obtained by Derfel [1] under a stronger moment

condition E{|β|}<∞ and only for α> 0 (which is essential in (b) but not in (a)); however, his

arguments hold in the general case with minor changes.

Remark 1.4. In contrast with the subcritical case K < 0, which is insensitive to the sign of α (see

Theorem 1.1(a)), the supercritical case K > 0 is more delicate: if P(α< 0)> 0 then y= FΥ (x) is no
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longer a solution of the AE (1.2); e.g. if α< 0 (a.s.) then this function satisfies the equation y(x) =

1− E{y(α(x− β))} (cf. [39, Eq. (5)]). Moreover, one can prove [38] that any bounded solution of

(1.2) with limits at ±∞ is constant; thus, any non-trivial solution must be oscillating, which is

drastically different from the case α> 0 (a.s.).

The critical case K = 0 is much more challenging, and it has remained open since [1]. More

recently, for a pantograph equation (1.8) without shift (i.e. γ ≡ 0) and some second-order

extensions, a Liouville theorem in the case K = 0 was established by Bogachev et al. [2]. In the

present paper, we prove the following general result (cf. Theorem 3.1 below).

Theorem 1.2. Assume that P(|α| 6= 1}> 0 and K = E{ln|α|}= 0. If y(x) is a bounded solution of the

AE (1.2) which is uniformly continuous on R, then it is constant.

Although an unwanted restriction, the uniform continuity assumption can be shown to be

satisfied provided there exists the probability density of β conditioned on α (Theorem 3.3). An

alternative criterion tailored to the model β = γ + ξ with ξ independent of (α, γ) (Theorem 3.4)

is applicable to a large class of examples including the pantograph equation (1.8) and its

generalizations (§3(c)). As a consequence, we obtain a Liouville theorem for the general

(balanced) pantograph equation in the critical case (cf. Theorem 3.8), significantly extending the

result of Bogachev et al. [2]. In particular, for the first-order pantograph equation (1.8) we have

Theorem 1.3. If P(|α| 6= 1}> 0 and K = E{ln|α|}= 0, then any bounded solution of (1.8) is constant.

Remark 1.5. As explained in §3(d) below, Theorem 1.3 extends to the case |α|= 1 (a.s.) by virtue

of the generalized Choquet–Deny theorem proved in §2(b).

On the other hand, for a subclass of functional equations (1.4) with multiplicatively

commensurable coefficients {ai} (i.e. ai = qmi , q > 1, mi ∈ Z), where the random shift β is

discrete and therefore the criteria of Theorems 3.3, 3.4 do not apply, the Liouville theorem in

the critical case K = 0 (i.e.
∑

i pimi = 0) can be proved by a different method that circumvents

the hypothesis of uniform continuity (Theorem 3.9).

(d) The method: associated Markov chain and iterations

In this subsection, we describe the probabilistic approach to the AE based on Markov chains

and martingales, and introduce some basic notation and definitions.

Consider a Markov chain (Xn) on R defined recursively by

Xn = αn(Xn−1 − βn) (n∈N), X0 = x, (1.11)

where {(αn, βn)}n∈N is a sequence of i.i.d. random pairs with the same distribution as (α, β)

(see (1.2)). Note that the AE (1.2) can then be expressed as

y(x) = Ex{y(X1)}, x∈R, (1.12)

where index x in the expectation refers to the initial condition in (1.11). That is to say, any solution

of the AE (1.2) is a harmonic function of the Markov chain (Xn) (cf. [16, p. 40]).

Remark 1.6. Bounded harmonic functions play a paramount role in the general theory of Markov

chains (see more details and some references in appendix B.

Remark 1.7. Stochastic recursion (1.11) is well known in the literature as the random difference

equation (see e.g. [40–43] and further references therein).
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Note that equation (1.12) propagates along the Markov chain (Xn), i.e. for any n∈N

y(x) = Ex{y(Xn)}, x∈R. (1.13)

Equivalently, an integral form of equation (1.13) can be obtained by iterating forward the AE (1.1).

The recursion (1.11) can also be iterated to give explicitly

Xn =Anx−Dn (n∈N), (1.14)

where

An :=
n
∏

k=1

αk, Dn :=
n
∑

k=1

βk

n
∏

j=k

αj . (1.15)

Recall that K = E{ln|α|}. In the subcritical case (K < 0), for the proof of Theorem 1.1(a) it

suffices to consider iterations (1.13) as n→∞. Indeed, Kolmogorov’s strong law of large numbers

implies that Sn :=
∑n

k=1 ln|αk| →−∞ and hence |An|= exp(Sn)→ 0 a.s.; in view of (1.14), this

indicates that the right-hand side of (1.13) eventually becomes x-free (see more details in [38]). In

the critical case (K = 0), the random walk (Sn) is recurrent but none the less lim infn→∞ Sn =−∞

(a.s.); hence, at some random times τǫ we have |Aτǫ |= exp(Sτǫ)< ǫ (for any ǫ > 0), which can be

used to infer that y(x)≡ const in a similar fashion as before.

Expanding this idea, our approach to the analysis of equation (1.2), first probed in [2], is

based on replacing a fixed n in the iterated equation (1.13) by a suitable stopping time τ , defined

as a random (integer-valued) variable such that for any n∈N the event {τ ≤ n} is determined

by (α1, β1), . . . , (αn, βn). It suffices for our purposes to work with ‘hitting times’ τB := inf{n≥

1: An ∈B} ≤∞,3 where An = α1 · · ·αn (see (1.15)) and B ⊂R is an interval or a single point.

We shall routinely use the following central lemma (where continuity of y(x) is not required).

Lemma 1.4. Let (Xn) be the associated Markov chain (1.11), and τ a stopping time such that τ <∞ a.s.

If y(x) is a bounded solution of the AE (1.2) then it satisfies the ‘stopped’ equation

y(x) = Ex{y(Xτ )}, x∈R. (1.16)

The crucial fact is that y(Xn) is a martingale (cf. [16, p. 43, Proposition 1.8]); indeed, by (1.11)

Ex{y(Xn)|(αk, βk), k < n}= Ex{y(αn(Xn−1 − βn))|Xn−1}= y(Xn−1) (a.s.), (1.17)

which verifies the martingale property [44, §10.3, p. 94]. The lemma then readily follows by

Doob’s optional stopping theorem (e.g. [44, p. 100, Theorem 10.10(b)]). For the sake of a more

self-contained exposition, a direct proof of Lemma 1.4 is included as appendix A.

Layout

The rest of the paper is organized as follows. In §2 we work out the degenerate cases

mentioned at the beginning of §1(c), namely: P(α= 0)> 0 (§2(a)), |α| ≡ 1 (§2(b)), and α(c− β)≡ c

(§2(c)). In §3(a) we prove our main result for the critical case (Theorem 3.1; cf. Theorem 1.2),

backed up in §3(b) by simple sufficient conditions for the uniform continuity of solutions

(Theorems 3.3 and 3.4). In §3(c) we explain in detail the remarkable link between the pantograph

equations and the AE, which enables us to prove a Liouville theorem for the general (integro-

differential) pantograph equation of any order (Theorem 3.8). This is complemented in §3(d) by

a Liouville theorem for the functional equation (1.4) with ai = qmi (Theorem 3.9). Appendix A

provides an elementary proof of Lemma 1.4, and appendix B gives a brief compendium of basic

facts illuminating the fundamental role of bounded harmonic functions in the general theory of

Markov chains.

3Here and below, we adopt the convention that inf ∅ :=∞.



7

rs
p

a
.ro

y
a

ls
o

c
ie

ty
p

u
b
lis

h
in

g
.o

rg
P

ro
c

R
S

o
c

A
0

0
0

0
0

0
0

..........................................................

2. Three degenerate cases

Before embarking on a general discussion of the AE, we need to study the problem of bounded

solutions in certain special cases of possible values of α and β, which will be excluded from

consideration thereafter. Recall the notation An :=
∏n

k=1 αk (see (1.15)).

(a) Vanishing of the scaling coefficient

Let us consider the case where the scaling coefficient α may take the value zero. Note that

continuity of solutions y(x) is not assumed a priori.

Theorem 2.1. Suppose p0 := P(α= 0)> 0. Then any bounded solution of the AE (1.2) is constant on R.

We first give an elementary ‘analytic’ proof of this simple theorem and then present another

proof to illustrate the method based on Lemma 1.4.

Proof of Theorem 2.1. With y0(x) := y(x)− y(0), equation (1.1) may be written in the form

y0(x) = (1− p0)

∫∫
R2\{a=0}

y0(a(x− b)) µ̃(da, db), x∈R, (2.1)

where µ̃ := (1− p0)
−1µ, so that µ̃(R2\{a= 0}) = 1. Denoting by ‖f‖ := supx∈R |f(x)| the sup-

norm on R, from (2.1) we obtain

|y0(x)| ≤ (1− p0)‖y0‖ (x∈R) =⇒ ‖y0‖ ≤ (1− p0)‖y0‖. (2.2)

Since 1− p0 < 1, the second inequality in (2.2) immediately implies that ‖y0‖= 0, and then the

first inequality gives y0(x)≡ 0, i.e. y(x)≡ y(0), as claimed.

Alternative proof of Theorem 2.1. Consider the stopping time τ0 := inf{n≥ 1: An = 0}. Note that

P(τ0 >n) = P(An 6= 0) = P(α1 6= 0, . . . , αn 6= 0) = (1− p0)
n → 0 (n→∞),

hence τ0 <∞ a.s. Now, using the iteration formulas (1.14), (1.15), and noting that Aτ0 = 0 a.s., by

Lemma 1.4 we obtain

y(x) = Ex{y(Xτ0)}= E{y(xAτ0 −Dτ0)}= E{y(−Dτ0)}, x∈R. (2.3)

Since the right-hand side of (2.3) does not depend on x, it follows that y(x) = const.

(b) An extension of the Choquet–Deny theorem

(i) The classical case α≡ 1

As mentioned in §1(b), the AE (1.2) with α≡ 1 is reduced to

y(x) = E{y(x− β)}, x∈R. (2.4)

The famous Choquet–Deny theorem [18] (cf. [15, p. 382, Corollary] or [16, p. 161, Theorem 1.3])

asserts that any b.c.-solution of (2.4) is constant provided that (the distribution of) the shift β is

non-arithmetic, i.e. not supported on any set λZ= {λk, k ∈ Z} (with span λ∈R).

Remark 2.1. In connection with the uniform continuity condition in Theorem 1.2, it may be of

interest to note that some proofs of the Choquet–Deny theorem (e.g. [15, p. 382]) deploy the

convolution ỹ(x) = y ⋆ ϕ0,σ2(x) of a b.c.-solution y(x) with the density function ϕ0,σ2(x) of the

normal distribution with zero mean and variance σ2, whereby the function ỹ(x) is uniformly

continuous and still satisfies equation (2.4). Once it has been proved that ỹ(x) is constant, this is

extended to the original solution y(x) by taking the limit as σ→ 0.
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A discrete version of the Choquet–Deny theorem [18] (see also [45, §XIII.11] or [46, p. 276,

Theorem T1]) refers to the case where equation (2.4) is considered on Z and β is integer-

valued. Namely, assume that the smallest additive group containing the set {x∈ Z : P(β = x)> 0}

coincides with Z; then the theorem asserts that y(x)≡ const for all x∈ Z.

In the context of equation (2.4) on the whole line, this enables one to give a full description

of b.c.-solutions in the arithmetic case (excluding the degenerate case β ≡ 0). The next result is

essentially well known in folklore; we give its proof for the sake of completeness.

Theorem 2.2. Assume that the distribution of β is arithmetic, i.e. its support Λ is contained in the set

λZ with maximal span λ> 0. Then the general b.c.-solution of equation (2.4) is given by y(x) = g(x/λ),

where g(·) is any continuous periodic function of period 1.

Proof. We start by showing that the smallest additive subgroup G⊂ λZ generated by Λ coincides

with λZ. Indeed, for n∈N let dn ∈ λN be the greatest common divisor of the (finite) set Λn := {s∈

Λ : |s| ≤ λn} ⊂ G. By Bézout’s identity (see e.g. [47, §1.2]) we have dn =
∑

si∈Λn
misi with some

integers mi, and it follows that dn ∈ G (n∈N). Since the sequence dn/λ∈N is non-increasing,

there exists the limit k∗:= limn→∞ dn/λ= dn∗/λ∈N and so Λ⊂ k∗λZ. But λ> 0 is the maximal

span, hence k∗ = 1 and thus λ= dn∗∈ G, which implies G= λZ, as claimed.

Now, it is easy to see that equation (2.4) splits into separate discrete equations z̃(k) = E{z̃(k −

β/λ)} on every coset x0 + λZ (x0 ∈ [0, λ)), where z̃(k) := z(x0 + kλ) (k ∈ Z). The discrete

Choquet–Deny theorem shows that z̃(k) is constant on Z; in other words, any bounded solution

of (2.13) on R is λ-periodic, and the claim of the theorem easily follows.

Remark 2.2. It is evident that any function y(x) = g(x/λ) satisfies equation (2.4); the main point of

Theorem 2.2 is that there are no other b.c.-solutions.

Remark 2.3. Laczkovich [48] gives a full characterization of non-negative measurable solutions of

the equation y(x) =
∑ℓ

i=1 Ciy(x− bi) (with arbitrary coefficients C1, . . . , Cℓ > 0) in terms of the

real roots of the characteristic equation
∑ℓ

i=1 Ci e
−bis = 1.

Remark 2.4. The original proof by Choquet & Deny [18] (as well as many subsequent proofs

and extensions) is based on a reduction to a uniformly continuous solution (cf. Remark 2.1)

and establishing that the latter must reach its maximum at a finite point x0 ∈R. In view of the

martingale techniques used in the present paper for a general AE, it is of interest to point out an

elegant martingale proof found by Székely & Zeng [49] (cf. Rao & Shanbhag [12, Ch. 3]).

(ii) Case |α| ≡ 1

We prove here an extension of the Choquet–Deny theorem for α taking the values ±1; to the best

of our knowledge, such a result has not yet been mentioned in the literature.

Theorem 2.3. Suppose that |α| ≡ 1 and P(α= 1)< 1. Let β+, β− have the distribution of β conditioned

on α= 1 and α=−1, respectively (in case α≡−1, set β+≡ 0).

(a) If β+ is non-arithmetic then every b.c.-solution of equation (1.2) is constant.

(b) Let β+ be arithmetic with span λ 6= 0.

(b-i) If the distribution of β− is not supported on any set λ0 + λZ (λ0 ∈R), then every

b.c.-solution of equation (1.2) is constant.

(b-ii) Otherwise, the general b.c.-solution of equation (1.2) is of the form y(x) = g(x/λ), where

g(·) is a continuous 1-periodic function symmetric about point x0 =
1
2 λ0/λ, i.e. g(x0 −

x) = g(x0 + x) (x∈R).

Remark 2.5. In part (b-ii), all functions with the required symmetry property may be

represented (though not uniquely) as g(x) = g0(x− x0) + g0(−x+ x0), where g0(·) is an

arbitrary (continuous) 1-periodic function. It is straightforward to check that so constructed

functions y(x) = g(x/λ) satisfy equation (1.2) (with |α| ≡ 1), but part (b-ii) asserts that all

b.c.-solutions are contained in this class.
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Proof of Theorem 2.3. Consider the stopping time τ1 := inf{n≥ 1: An = 1}. With p1 := P(α= 1)<

1 and q1 := P(α=−1) = 1− p1 > 0, the distribution of τ1 is given by4

P(τ1 = 1) = p1, P(τ1 = n) = q21p
n−2
1 (n≥ 2), (2.5)

hence τ1 <∞ a.s. Since Aτ1 = 1 (a.s.), from (1.14) we have Xτ1 = x−Dτ1 , and by Lemma 1.4

y(x) = E{y(x−Dτ1)}, x∈R. (2.6)

Now, in view of the Choquet–Deny theorem, we need to investigate whether the random shift

Dτ1 is non-arithmetic, i.e. P(Dτ1∈ λZ)< 1 for any λ∈R.

Let (β+
n ) and (β−

n ) be two sequences of i.i.d. random variables each, with the same distribution

as β+ and β−, respectively. Conditioning on τ1 and using (1.15) and (2.5), we obtain

P(Dτ1∈ λZ) = p1 P(β
+
1 ∈ λZ) +

∞
∑

n=3

q21p
n−2
1 P(β−

1 − β+
2 − · · · − β+

n−1 − β−
n ∈ λZ)

≤ p1 + q21

∞
∑

n=2

pn−2
1 = 1. (2.7)

If p1 > 0 then (2.7) implies that P(Dτ1∈ λZ)< 1 unless β+
1 ∈ λZ (a.s.) and for all n≥ 2

β−
1 − β+

2 − · · · − β+
n−1 − β−

n ∈ λZ (a.s.). (2.8)

Since all β+
i are i.i.d., the first of these inclusions implies that β+

2 + · · ·+ β+
n−1 ∈ λZ a.s. for all

n≥ 2; hence, conditions (2.8) are reduced to β−
1 − β−

2 ∈ λZ (a.s.). In turn, the last condition is

equivalent to β−∈ λ0 + λZ for some λ0 ∈R. Indeed, applying Lebesgue’s decomposition theorem

[15, p. 142] to each of the i.i.d. random variables β−
1 and β−

2 , it is evident that the continuous part

of their common distribution must vanish, so that this distribution is purely discrete; furthermore,

its (countable) support {bi} satisfies the condition bi − bj ∈ λZ for all i, j, and the claim follows.

A similar argument is also valid for p1 = 0, whereby β+= 0, β−= β, and (2.7) simplifies to

P(Dτ1∈ λZ) = P(β1 − β2 ∈ λZ)≤ 1.

This completes the proof of parts (a) and (b-i).

Finally, we prove part (b-ii), whereby β+∈ λZ, β−∈ λ0 + λZ and Dτ1∈ λZ (a.s.). By Theorem

2.2, any b.c.-solution of equation (2.6) must be of the form y(x) = g(x/λ), with some 1-periodic

function g(·). Substituting this into the original equation (2.6) (with |α| ≡ 1) we get

g(x/λ) = p1 E{g((x− β+)/λ)}+ q1 E{g((−x+ β−)/λ)}

= p1g(x/λ) + q1g((−x+ λ0)/λ), (2.9)

and since q1 6= 0 it follows that g(·) satisfies the functional equation g(x) = g(−x+ λ0/λ) (x∈R),

which is equivalent to the symmetry condition stated in the theorem.

Remark 2.6. If α≡ 1 then β+≡ β, β−≡ 0, and parts (a) and (b-ii) of Theorem 2.3 formally recover

the Choquet–Deny theorem. No extra requirement on g(·) arises from (2.9), since q1 = 0.

Remark 2.7. Note that the values α= 1 and α=−1 (and the corresponding conditional

distributions of β represented by β+ and β−, respectively) feature in Theorem 2.3 in a non-

symmetric way: e.g. if β+ has a non-arithmetic distribution then, according to part (a), there are no

b.c.-solutions except constants, irrespectively of β−; however, if β+ is arithmetic with span λ 6= 0

whilst β− is non-arithmetic but supported on a set λ0 + λZ (i.e. with λ0 6= 0 incommensurable

with λ) then there exist non-trivial b.c.-solutions, according to part (b-ii).

Example 2.1. Theorem 2.3 with α≡−1 is exemplified by the equations

(a) y(x) =
∫∞
0 y(t− x) e−t dt (equivalent to the pantograph equation y′(x) + y(x) = y(−x),

cf. (1.7)), which by part (b-i) has only constant b.c.-solutions;

4These formulas include the case p1 = 0 (under the convention 00 := 1), whereby τ1 = 2 a.s.
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(b) y(x) = 1
3 y(−x+ 1) + 2

3 y(−x− 1), which has periodic solutions of the form y(x) = g(x) +

g(−x), in accordance with part (b-ii).

(c) The resonance case

Definition 2.1. The random coefficients α, β of the AE (1.2) are said to be in resonance if there is a

non-random constant c∈R such that α(c− β) = c (a.s.).

The special role of resonance is clear from the observation that if X0 = c then by recursion

(1.11) we have Xn = c (a.s.) for all n≥ 0. It turns out that a Liouville-type theorem is always true

in the resonance case. Recall that we assume α 6= 0 a.s.

Theorem 2.4. Let P(|α| 6= 1)> 0, and suppose that α, β are in resonance. Then any b.c.-solution of the

AE (1.2) is constant.

Proof. Let c∈R be such that α(c− β)≡ c. Observe that the substitution ỹ(x) := y(x+ c)

eliminates the random shift in equation (1.2),

ỹ(x) = y(x+ c) = E{αx+ α(c− β))}= E{y(αx+ c)}= E{ỹ(αx)}.

Thus, without loss of generality, we can consider the equation y(x) = E{y(αx)}. Denote τ+ :=

inf{n≥ 1: An > 0} and p := P(α> 0), then

P(τ+ >n) = (1− p) pn−1 → 0 (n→∞),

so that τ+ <∞ a.s. Hence, by virtue of Lemma 1.4 the equation y(x) = E{y(αx)} is reduced to

y(x) = E{y(α̃x)} with α̃ :=Aτ+ > 0 a.s.

We first check that P(α̃= 1)< 1. Indeed, with p= P(α> 0) as above we have

P(α̃= 1) = pP(A1 = 1) +

∞
∑

n=2

(1− p)2pn−2
P(An = 1)≤ p+ (1− p)2

∞
∑

n=2

pn−2 = 1. (2.10)

If the probability on the left-hand side of (2.10) equals 1 and p > 0, then we must have P(A1 = 1) =

P(α= 1) = 1, which contradicts the theorem’s hypothesis; similarly, if p= 0 then the inequality

(2.10) implies that A2 = α1α2 = 1 (a.s.), and since α1, α2 are i.i.d. the latter equality is possible

only if |α|= 1 a.s., which is again a contradiction.

Now, the equation y(x) = E{y(α̃x)} on R (with α̃ > 0) splits into two separate equations, for

x≥ 0 and x≤ 0, linked by the continuity condition at zero. For instance, consider the equation

y(x) = E{y(α̃x)} (x> 0), y(0) = lim
x→0+

y(x). (2.11)

Our aim is to show that y(x)≡ const for all x≥ 0. By the change of variables

t=− lnx∈R, z(t) = y(e−t), (2.12)

the initial value problem (2.11) is transformed into

z(t) = E{z(t− β̃)} (t∈R), lim
t→+∞

z(t) = y(0), (2.13)

which is an archetypal equation (1.2) with the unit rescaling coefficient and random shift β̃ := ln α̃

(such that P(β̃ 6= 0)> 0), subject to an additional limiting condition at +∞.

If β̃ is non-arithmetic then the Choquet–Deny theorem readily implies that all b.c.-solutions

of equation (2.13) are constant (even without the limit condition at +∞). In the arithmetic case,

by Theorem 2.2 any b.c.-solution of (2.13) is λ-periodic, but due to the limit in (2.13) it must

be constant. Returning to (2.11) via the substitution (2.12), we conclude that in all cases y(x)≡

const for x≥ 0. By symmetry, the same is true for x≤ 0, and the proof is completed by invoking

continuity of y(x) at x= 0.
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Assumption 2.1. Henceforth, unless explicitly stated otherwise, we assume that

(i) P(α 6= 0) = 1; (ii) P(|α| 6= 1)> 0; (iii) α, β are not in resonance.

3. The critical case

(a) Liouville theorem subject to uniform continuity

Recall the notation K := E{ln|α|}. The next theorem deals with the case K ≤ 0 (including the

critical case K = 0) under an additional a priori hypothesis of uniform continuity of the solution;

on the other hand, in contrast to Theorem 1.1 no moment conditions are imposed on β. Note that

conditions (i) and (ii) of Assumption 2.1 are in force, but (iii) is not needed.

Theorem 3.1. Assume that P(|α| 6= 1}> 0 and E{ln|α|} ≤ 0. Let y(x) be a bounded solution of the AE

(1.2) which is uniformly continuous on R. Then y(x)≡ const.

Proof. By uniform continuity, for any ε > 0 there is δ= δ(ε)> 0 such that if |x1 − x2|< δ then

|y(x1)− y(x2)|< ε (x1, x2 ∈R). Furthermore, for a given x∈R choose M =M(δ, x)> 0 such that

|x| e−M < δ, and define the stopping time

τM := inf
{

n≥ 1: |An| ≤ e−M}

.

Since E{ln|α|} ≤ 0, it follows (see e.g. [15, pp. 395–397]) that

lim inf
n→∞

ln|An|= lim inf
n→∞

n
∑

k=1

ln|αk|=−∞ (a.s.),

implying that τM <∞ a.s. Hence, by Lemma 1.4 we have y(x) = Ex{y(XτM )} or, more explicitly

(using the iteration formulas (1.14), (1.15)),

y(x) = E{y(xAτM −DτM )}, x∈R. (3.1)

In particular, (3.1) with x= 0 gives y(0) = E{y(−DτM )}. Hence, from (3.1) we obtain

|y(x)− y(0)| ≤ E
∣

∣y(xAτM −DτM )− y(−DτM )
∣

∣. (3.2)

But according to the definition of the stopping time τM and the choice of M , we have
∣

∣(xAτM −DτM )− (−DτM )
∣

∣= |x| · |AτM | ≤ |x| e−M < δ.

Due to uniform continuity of y(x) (see above), this implies
∣

∣y(xAτM −DτM )− y(−DτM )
∣

∣< ε,

and from (3.2) we readily obtain |y(x)− y(0)| ≤ ε. Since ε > 0 is arbitrary, it follows that y(x)≡

y(0), which completes the proof.

(b) Sufficient conditions for the uniform continuity of solutions

Consider the general AE (1.2) with no restriction on the value K = E{ln|α|}. Simple sufficient

conditions for the uniform continuity of its solutions are based on the following well-known fact

from real analysis (see e.g. [50, p. 74, Proposition 2.5]).

Lemma 3.2. Suppose that f ∈L1(R). Then

lim
h→0

∫
R

|f(t+ h)− f(t)| dt= 0.

For continuous functions with compact support the lemma holds by dominated convergence;

the general case follows since such functions are dense in L1(R) [50, p. 71, Theorem 2.4(iii)].
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Theorem 3.3. Assume that for each a∈R in the support of the random variable α there exists the

conditional density function fβ(t|a) = P(β ∈ dt|α= a)/dt. Then any bounded solution of (1.2) is

uniformly continuous on R.

Proof. Let µα(da) := P(α∈ da). By Fubini’s theorem, equation (1.1) becomes

y(x) =

∫
R

µα(da)

∫
R

y(a(x− t)) fβ(t|a) du≡

∫
R

µα(da)

∫
R

y(−au) fβ(x+ u|a) du,

where we used the change of variables u= t− x. Hence, uniformly in x∈R

|y(x+ h)− y(x)| ≤

∫
R

µα(da)

∫
R

|y(−au)| ·
∣

∣fβ(x+ h+ u|a)− fβ(x+ u|a)
∣

∣ du

≤ ‖y‖

∫
R

µα(da)

∫
R

∣

∣fβ(t+ h|a)− fβ(t|a)
∣

∣dt→ 0 (h→ 0),

due to the bound ‖y‖<∞ and also using Lemma 3.2 (applied to fβ(·|a) for each a) and

Lebesgue’s dominated convergence theorem.

In many cases, another sufficient condition is more suitable. Let the random variable β in the

AE (1.2) be of the form β = γ + ξ, where ξ is independent of the random pair (α, γ) and has the

density function, fξ(t). Set

ϕ(x) := E{y(α(x− γ))} ≡

∫∫
R2

y(a(x− c))µα,γ(da, dc), (3.3)

where µα,γ(da, dc) := P(α∈ da, γ ∈ dc). For example, if the measure µα,γ is discrete, with atoms

(ai, ci) and respective masses pi, then

ϕ(x) =
∑

i
piy(ai(x− ci)), x∈R.

Observe that, by independence of ξ, we have

E{y(α(x− β))}= E{y(α(x− ξ − γ))}

=

∫
R

E{y(α(x− t− γ))}fξ(t) dt=

∫
R

ϕ(x− t) fξ(t) dt,

according to the definition (3.3). Hence, the AE (1.2) becomes

y(x) =

∫
R

ϕ(x− t) fξ(t) dt, x∈R. (3.4)

Theorem 3.4. Any bounded solution of equation (3.4) is uniformly continuous on R.

Proof. By the substitution u= x− t equation (3.4) is rewritten as

y(x) =

∫
R

ϕ(u) fξ(x− u) du, x∈R.

Hence, uniformly in x∈R

|y(x+ h)− y(x)| ≤ ‖ϕ‖

∫
R

∣

∣fξ(x+ h− u)− fξ(x− u)
∣

∣du

= ‖ϕ‖

∫
R

∣

∣fξ(t+ h)− fξ(t)
∣

∣ dt→ 0 (h→ 0),

according to Lemma 3.2, and the claim follows.

Remark 3.1. In both Theorems 3.3 and 3.4, continuity of solutions is not assumed a priori.
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(c) Pantograph equation

In this subsection, we explain the link pointed out in §1(b)-ii between the AE (1.2) and a class

of functional-differential ‘pantograph’ equations. We begin with an elementary proof for a first-

order pantograph equation (§3(c)-i), and then treat the general case (§3(c)-ii). In turn, this allows

us to establish the uniform continuity of solutions by virtue of Theorem 3.4, and hence to prove a

Liouville theorem using Theorem 3.1 (§3(c)-iii).

(i) First-order pantograph equation

Assume that the random variable β in (1.2) is independent of α and has the unit exponential

distribution, with the density function e−t
1(0,∞)(t). Then equation (1.2) specializes to (cf. (3.4))

y(x) =

∫∞
0

ϕ0(x− t) e−tdt, x∈R, (3.5)

where

ϕ0(x) := E{y(αx)} ≡

∫
R

y(ax)µα(da), µα(da) := P(α∈ da).

Proposition 3.5. Every b.c.-solution of (3.5) satisfies the pantograph equation

y′(x) + y(x) =ϕ0(x), x∈R. (3.6)

Conversely, any bounded solution of (3.6) satisfies equation (3.5).

Proof. The substitution u= x− t transforms equation (3.5) into y(x) = e−x ∫x
−∞ ϕ0(u) e

udu, and

it is now evident that the right-hand side is continuous and, moreover, differentiable in x∈R.

Hence, by the Newton–Leibniz theorem we readily obtain equation (3.6).

Conversely, let y(x) be a bounded solution of (3.6). Then by variation of constants

y(x) = y(0) e−x +

∫x
0
ϕ0(u) e

u−xdu. (3.7)

Since y(x) is bounded, we have y(x) ex → 0 as x→−∞, and it follows from (3.7) that y(0) =∫0
−∞ ϕ0(u) e

udu. Substituting this back into (3.7) and combining the integrals, we obtain

y(x) =

∫x
−∞

ϕ0(u) e
u−xdu=

∫∞
0

ϕ0(x− t) e−tdt,

which is exactly equation (3.5).

(ii) Higher-order pantograph equations

The correspondence demonstrated in §3(c)-i can be extended to more general equations, including

higher orders. Like in Theorem 3.4, suppose that β = γ + ξ, where ξ is independent of (α, γ) and

has density fξ(t). Following [1], fix r ∈N and (real) constants κ1, . . . , κr 6= 0 (some or all of which

may coincide), and let fξ(t) be given by

fξ(t) = g1 ⋆ · · · ⋆ gr(t), gj(t) := |κj | g0(κj t) (i= 1, . . . , r),

where ⋆ denotes convolution and g0(t) := e−t
1(0,∞)(t). On the other hand, consider the

pantograph equation of order r

r
∏

j=1

(

1 +
D

κj

)

y(x) =ϕ(x), D :=
d

dx
, (3.8)

where (see (3.3))

ϕ(x) = E{y(α(x− γ))}, x∈R. (3.9)

Finally, recall from (3.4) that the AE (1.2) is equivalently rewritten as

y(x) =

∫
R

ϕ(x− t) fξ(t) dt, x∈R. (3.10)
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Proposition 3.6. Every b.c.-solution of (3.10) satisfies the pantograph equation (3.8). Conversely, any

bounded solution of (3.8) satisfies equation (3.10).

Proof. Let y(x) be a b.c.-solution of (3.10). Then the function ϕ(x) defined in (3.9) is bounded,

‖ϕ‖ ≤ ‖y‖<∞; furthermore, it is continuous by virtue of dominated convergence. Therefore, one

can apply the convolution inversion formula (see [51, p. 28, Theorem 7.1]), which readily yields

that y(x) satisfies equation (3.8).

If y(x) is a bounded (continuous) solution of (3.8), then ϕ(x) is again b.c. and it follows that

y(x) satisfies equation (3.10) thanks to [51, p. 34, Theorem 9.3].

Example 3.1. The following are three simple examples illustrating Proposition 3.6.

(a) Take r= 1 and κ1 = 1, then equation (3.8) is reduced to y′(x) + y(x) =ϕ(x) (cf. (3.6)).

Here, ξ has the unit exponential density, fξ(t) = g0(t). Thus, Proposition 3.6 extends

Proposition 3.5 to pantograph equations with the right-hand side ϕ(x) given by (3.9).

(b) For r= 2 and κ1 = 1, κ2 =−1, equation (3.8) specializes to −y′′(x) + y(x) =ϕ(x). This

corresponds to a symmetric (two-sided) exponential density fξ(t) = g0(t) ⋆ g0(−t) =
1
2 e

−|t| (t∈R).

(c) Likewise, with r= 2 and κ1 = κ2 = 1 we have y′′(x) + 2y′(x) + y(x) =ϕ(x). Here,

fξ(t) = g0 ⋆ g0(t) = te−t (t > 0).

(iii) Liouville theorem for the pantograph equation

By virtue of Proposition 3.6, Theorem 3.4 implies the following

Proposition 3.7. Any bounded solution of the pantograph equation (3.8) is uniformly continuous.

The next result settles a Liouville theorem for the general class of the pantograph equations

(3.8) in the critical and subcritical cases (cf. Theorem 1.3 stated in §1(c)).

Theorem 3.8. If K = E{ln|α|} ≤ 0 then any bounded solution of equation (3.8) is constant.

Proof. By Proposition 3.7, bounded solutions of equation (3.8) are uniformly continuous; hence, if

P(|α|= 1)< 1 then the claim readily follows by Theorem 3.1. If |α|= 1 a.s. then we can apply the

generalized Choquet–Deny theorem (Theorem 2.3), noting that either β+or β− (i.e. β conditioned

on α= 1 or α=−1, respectively) must have a continuous distribution, because β = γ + ξ and ξ is

exponentially distributed independently of (α, γ). Thus, the theorem is proved.

(d) q-Difference equations with shifts

For the purely functional equation (cf. (1.4))

y(x) =
ℓ

∑

i=1

piy(ai(x− bi)) (x∈R), pi > 0,
ℓ

∑

i=1

pi = 1, (3.11)

where the above criteria of uniform continuity (Theorems 3.3, 3.4) are not usable, no general

results of the Liouville type are currently available in the critical case, except for equations with

α≡ 1 treated by the Choquet–Deny theorem (see §§1(a)-i, 2(b)) and its generalization to the case

|α| ≡ 1 (Theorem 2.3), and also equations without shifts (i.e. β ≡ 0) covered by Theorem 2.4.

In this subsection, we consider an important subclass of functional equations (3.11), for

which a Liouville theorem (in the critical case) can be proved without the a priori hypothesis

of uniform continuity. Namely, assume that the coefficients ai > 0 in (3.11) are multiplicatively

commensurable, i.e. ai = qmi with some q > 1 and mi ∈ Z (i= 1, . . . , ℓ). The resulting equations

y(x) =
∑ℓ

i=1 piy(q
mi(x− bi)) are known as q-difference equations; the general theory of such

equations (albeit without shifts bi) was developed by Birkhoff [52] and Adams [53].

To avoid trivialities, we assume in (3.11) that ℓ≥ 2 and (ai, bi) 6= (1, 0) for all i= 1, . . . , ℓ. We

also exclude the case a1 = · · ·= aℓ = 1, which is covered by the Choquet–Deny theorem (see (1.3)).

The theorem below handles the critical case, K =
∑ℓ

i=1 pi ln ai = 0.
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Theorem 3.9. Assume that
∑ℓ

i=1 pimi = 0. Then any b.c.-solution of equation (3.11) is constant.

Proof. Set

ρi :=
bi

1− a−1
i

, i= 1, . . . , ℓ. (3.12)

If ai = 1 (but bi 6= 0) then (3.12) is understood as ρi :=∞. Note that if ρ1 = · · ·= ρℓ = c∈R then

equations (3.12) are combined as α(c− β)≡ c; that is to say, α and β are in resonance (see

Definition 2.1), and the desired result readily follows by Theorem 2.4.

Assuming now that not all ρi are the same, let us follow a similar martingale strategy as in the

proof of Theorems 2.1, 2.3 and 3.1, but based on the stopping time τ0 := inf{n≥ 1: Sn = 0} of the

random walk Sn :=
∑n

j=1 logq αj (S0 = 0). Since E{logq α}=
∑ℓ

i=1 pimi = 0, the random walk

Sn is recurrent (see e.g. [46, p. 33, Theorem T1]), hence τ0 <∞ a.s. Thus, by Lemma 1.4

E{y(x−Dτ0)}= y(x), x∈R, (3.13)

where the sequence (Dn) is defined in (1.15). By the Choquet–Deny theorem (see §2(b)), every

b.c.-solution of (3.13) is constant on R provided that the distribution of the shift Dτ0 is non-arithmetic.

In the rest of the proof, our aim is to verify the last condition.

Due to recurrence of the random walk (Sn), there are integers k1, . . . , kℓ ≥ 0 such that

k1m1 + · · ·+ kℓmℓ = 0, k1|m1|+ · · ·+ kℓ|mℓ|> 0. (3.14)

This corresponds to paths {Sj 6≡ 0, 0≤ j ≤ k∗:= k1 + · · ·+ kℓ} with exactly ki steps logq α=mi

(i= 1, . . . , ℓ), so that Sk∗ = 0. Let us choose a sequence of these steps so that Sj > 0 for all

j = 1, . . . , k∗− 1, which would ensure that k∗ is a possible value of the return time τ0 occurring

with probability P(τ0 = k∗) = pk1

1 · · · pkℓ

ℓ > 0. To this end, split the indices i= 1, . . . , ℓ into disjoint

groups with the same value ρi in each group. Due to the balance condition in (3.14), the integers

mi cannot all have the same sign, and recalling that not all ρi coincide, it is easy to see that one

can find two indices i∗ and j∗ such that

ρi∗ 6= ρj∗, mi∗> 0, mj∗< 0,

which also implies that ρi∗ , ρj∗ are finite. Hence, by a suitable relabelling of a1, . . . , aℓ (so that i∗

and j∗ become 1 and ℓ, respectively), we can assume without loss of generality that ρ1 6= ρℓ and

m1 > 0, m2, . . . ,mr ≥ 0, mr+1, . . . ,mℓ−1 ≤ 0, mℓ < 0.

In particular, it follows that

si := k1m1 + · · ·+ kimi > 0, i= 1, . . . , ℓ− 1. (3.15)

Now, recalling that ak1

1 · · · akℓ

ℓ = qk1m1+···+kℓmℓ = q0 = 1, we obtain

θn :=
ℓ

∑

i=1

ρi(1− a−nki

i )
ℓ
∏

j=i

a
nkj

j =
ℓ

∑

i=1

ρi(1− a−nki

i )

i−1
∏

j=1

a
−nkj

j , n∈N. (3.16)

Equation (3.16) means that θn belongs to the support of the random variable Dτ0 . Expanding and

rearranging (3.16), and using conditions (3.15), we have

θn =
ℓ

∑

i=1

ρi

i−1
∏

j=1

a
−nkj

j −
ℓ

∑

i=1

ρi

i
∏

j=1

a
−nkj

j

= ρ1 +

ℓ−1
∑

i=1

(ρi+1 − ρi)

i
∏

j=1

a
−nkj

j − ρℓ

ℓ
∏

j=1

a
−nkj

j

= ρ1 +

ℓ−1
∑

i=1

(ρi+1 − ρi) q
−nsi − ρℓ → ρ1 − ρℓ 6= 0 (n→∞).
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Hence, for any ε > 0 there are n, n′ ∈N such that 0 6= |θn − θn′ |< ε, which implies that the

distribution of Dτ0 is non-arithmetic, as required.

Appendix A. Direct proof of Lemma 1.4

The idea of the proof of the identity (1.16) is to propagate equation (1.12) according to the

(random) value of stopping time τ , resulting in the relation

y(x) =
n
∑

i=1

Ex
{

y(Xi)I{τ=i}

}

+ Ex
{

y(Xn)I{τ>n}

}

, n∈N, (A 1)

where IA is the indicator of event A (i.e. IA = 1 if A occurs and IA = 0 otherwise).

We prove formula (A 1) by mathematical induction. For n= 1 it is reduced to (1.12). Suppose

now that (A 1) holds for some n∈N. For shorthand, denote Fn := σ{(αk, βk), k≤ n}, i.e. the

smallest σ-algebra containing all events {αk ≤ a, βk ≤ b} (a, b∈R, k= 1, . . . , n). The assumption

of the lemma that τ is a stopping time (relative to (Fn)) means that {τ ≤ n} ∈ Fn (n∈N). By the

total expectation formula [44, §9.7(a)] we can write

Ex{y(Xn+1)I{τ>n}}= Ex
{

Ex
[

y(Xn+1)I{τ>n}|Fn
]}

= Ex
{

I{τ>n} Ex
[

y(Xn+1)|Fn
]}

= Ex
{

y(Xn)I{τ>n}

}

, (A 2)

thanks to the martingale property (1.17); note that I{τ>n} = 1− I{τ≤n} is Fn-measurable, so can

be taken outside the conditional expectation Ex(·|Fn) [44, §9.7(j)]. Now, substituting equality

(A 2) into (A 1) and noting that

Ex{y(Xn+1)I{τ>n}}= Ex
{

y(Xn+1)I{τ=n+1}

}

+ Ex
{

y(Xn+1)I{τ>n+1}

}

,

we conclude that the induction step is complete, and hence (A 1) holds for all n∈N.

Finally, since ‖y‖ := supx∈R |y(x)|<∞ and τ <∞ a.s., we have
∣

∣Ex
{

y(Xn)I{τ>n}

}
∣

∣≤ ‖y‖Px(τ > n)→ 0, n→∞.

Hence, passing to the limit in (A 1) as n→∞ yields

y(x) =

∞
∑

i=1

Ex{y(Xi)I{τ=i}}= Ex{y(Xτ )I{τ<∞}}= Ex{y(Xτ )},

and the identity (1.16) is proved.

Appendix B. Harmonic functions and asymptotics of Markov

chains

Here, we provide a brief summary of some facts pertaining to the role of harmonic functions in

the asymptotic classification of general Markov chains. For a more systematic exposition, we refer

the reader to monographs by Revuz [16] and Meyn & Tweedie [54].

Consider a general (time-homogeneous) Markov chain (Xn) with state space R. Denote by Px

the probability law of (Xn) started from X0 = x∈R, and by Ex the corresponding expectation.

Let R∞ be the space of real sequences x̄= (x0, x1, . . . ) and B
∞ the smallest σ-algebra containing

all cylinder sets {x̄∈R
∞ : (x0, . . . , xm)∈Bm} with a Borel base Bm ⊂R

m+1. Event A is said

to be invariant if there exists B̄ ∈B
∞ such that A= {(Xm, Xm+1, . . . )∈ B̄} for every m≥ 0. For

example, the event {limn→∞ Xn =∞} is clearly invariant because it is not affected by the shifts

(Xn) 7→ (Xn+m) (m∈N). The class of all invariant events is a σ-algebra denoted I; a random

variable Y is called invariant if it is I-measurable.

Recall that a function y(x) is called harmonic if y(x) = Ex{y(X1)} for all x∈R. A fundamental

result (see e.g. [16, p. 56, Proposition 3.2] or [54, p. 425, Theorem 17.1.3]) is that there is a one-to-

one correspondence between bounded harmonic functions and (equivalence classes of) bounded
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invariant random variables, expressed by the pair of relations

Y = lim
n→∞

y(Xn) (a.s.), y(x) = Ex{Y } (x∈R). (B 1)

This result highlights the significance of information about bounded harmonic functions in the

asymptotic characterization of Markov chains, especially with regard to transience vs. recurrence.

For a Borel set B ⊂R, put NB :=
∑∞

n=0 1B(Xn) (= the total number of visits to B). Since {NB =

∞}∈ I, by (B 1) the function hB(x) := Px(NB =∞) is (bounded) harmonic. We say [16, §2.3] that

B is transient if hB(x)≡ 0 and recurrent (or Harris recurrent [54, Ch. 9]) if hB(x)≡ 1. The following

criterion is valid [16, p. 58, Proposition 3.8]: in order that every (Borel) set be either transient or

recurrent, it is necessary and sufficient that either of the two equivalent conditions hold: (i) I is

trivial (up to a.s.-equivalence); (ii) all bounded harmonic functions are constant.

This criterion can be illustrated by our result on the existence of a non-constant (continuous)

solution of the AE (1.2) in the supercritical case K > 0, described in Theorem 1.1(b). Namely, take

B = (b,∞) (b∈R), then by inspection of the proof (see details in [38]) it is evident that the function

hB(x) coincides with the solution FΥ (x) = P(Υ ≤ x), where the random series Υ is defined in the

theorem; thus, any such B is neither transient nor recurrent.
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