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Abstract Diversification of autoimmunity to islet autoantigens is critical for progression to
Type 1 diabetes. B-cells participate in diversification by modifying antigen processing, thereby
influencing which peptides are presented to T-cells. In Type 1 diabetes, JM antibodies are
associated with T-cell responses to PTP domain peptides. We investigated whether this is the
consequence of close structural alignment of JM and PTP domain determinants on IA-2. Fab
fragments of IA-2 antibodies with epitopes mapped to the JM domain blocked IA-2 binding of
O
Rantibodies that recognise epitopes in the IA-2 PTP domain. Peptides from both the JM and PTP

domains were protected from degradation during proteolysis of JM antibody:IA-2 complexes and
included those representing major T-cell determinants in Type 1 diabetes. The results demonstrate
close structural relationships between JM and PTP domain epitopes on IA-2. Stabilisation of PTP
domain peptides during proteolysis in JM-specific B-cells may explain determinant spreading in IA-2
autoimmunity.
© 2015 Published by Elsevier Inc.
48 6280.
cl.ac.uk (M.R. Christie).
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1. Introduction

The development of Type 1 diabetes is associated with T-
and B-cell autoimmunity to multiple islet autoantigens
including proinsulin, glutamate decarboxylase, IA-2 and
zinc transporter-8 [1]. Studies on the natural history of
een major epitopes of the IA-2 autoantigen in Type 1 diabetes:
x.doi.org/10.1016/j.clim.2015.06.002
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Type 1 diabetes indicate that spreading of autoimmune
responses within and between these islet autoantigens is
crucial for disease progression, and individuals who maintain
a restricted response to single islet antigens have a low
risk of developing clinical disease [2–6]. The mechanisms
underlying the progressive spreading of autoimmune re-
sponses to determinants on islet self proteins are unknown.
Studies in animal models of autoimmune disease have
implicated B-cells in this process, specifically through their
roles as antigen presenting cells [7]. Autoantibody-secreting
B-cells are proposed to play a critical role in sustaining T-cell
responses to islet antigens by mediating their efficient
uptake via the B-cell receptor, facilitating the presentation
of peptides derived from antigens to T-cells [8]. Depletion of
B-cells impairs T-cell responses to islet antigens, thereby
preventing the development of diabetes in animal models
and prolonging beta cell function in human Type 1 diabetes
[9,10]. There are close links between T- and B-cell responses
to islet antigens when these are studied at the epitope level.
Thus, both T- and B-cell epitopes are clustered on the
structure of islet autoantigens [11–13] and T-cell responses
of peripheral blood lymphocytes from diabetic patients to
specific IA-2 peptides are associated with the presence of
antibodies to epitopes overlapping these peptides [12,13].
Furthermore, the binding of antigen to the B-cell receptor is
stable within antigen processing compartments and the
formation of such complexes may protect or expose sites at
which antigen is cleaved by processing enzymes, leading to
the stabilisation of specific peptides for presentation and
activation of autoreactive T-cells [14,15]. Such modification
of islet antigen processing and presentation may represent
one mechanism by which B-cells facilitate determinant
spreading in the autoimmune response in Type 1 diabetes.

Studies on autoimmunity to one of the major islet
autoantigens in human Type 1 diabetes, IA-2, illustrate the
importance of immune diversification in Type 1 diabetes.
Antibodies to IA-2 are detected in the majority of patients at
the time of diabetes onset and their appearance is strongly
predictive of disease progression in non-diabetic subjects
[16,17]. Analysis of binding of autoantibodies to deletion
mutants of IA-2 has identified several distinct regions of
antibody reactivity within the cytoplasmic domain, including
at least two linear epitopes between amino acids 621–630 of
the juxtamembrane (JM) domain [18,19] and conformational
epitopes within the tyrosine phosphatase (PTP) domain,
which include a major epitope represented by amino acids
within the 831–860 region of the molecule and a second that
includes residues 876–880 [12,20–22]. In the early autoimmune
response in pre-diabetes, IA-2 antibodies often recognise
epitopes in the JM domain of the protein, reactivity then
spreads to epitopes in the PTP domain and to the closely related
IA-2beta [5]. Recent studies have shown an increase in the
prevalence of antibodies to epitopes in the IA-2 PTP domain,
concurrent with rising diabetes prevalence [23,24]. Further-
more, diversification of the autoimmune response to multiple
epitopes on IA-2 in pre-diabetes increases Type 1 diabetes risk
[25], demonstrating that determinant spreading in IA-2 auto-
immunity is closely linked to diabetes progression.

We have recently shown that T-cell responses to a peptide
representing amino acids 841–860within the PTP domain of IA-2
are associated not only with PTP domain antibodies, but also
more significantly with antibodies to the JM domain [13]. We
Please cite this article as: K.A. McLaughlin, et al., Relationships betw
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hypothesised that B-cell receptor binding to the JM domainmay
facilitate loading of processed peptides in the PTP domain for
stimulation of T-cells, potentially as a consequence of these
regions being closely aligned on the three dimensional structure
of the protein. The aim of this study was to investigate
the relationships of antigenic sites within the IA-2 JM and
PTP domains by: i.) localising epitopes for monoclonal IA-2
antibodies to the JM and PTP domains by peptide inhibition and
site-directed mutagenesis; ii.) investigating possible juxtaposi-
tion of the epitopes on IA-2 by cross-competition studies and iii.)
determining the influence of JM and PTP domain monoclonal
antibodies on peptides generated during proteolytic processing
of IA-2:monoclonal antibody complexes.

2. Methods

2.1. Type 1 diabetic patients

Patients with Type 1 diabetes between the ages of 12 and 30
were recruited within 6 months of clinical onset from
diabetic clinics in Yorkshire, Durham and King's College
Hospital, London, UK, with informed consent and approval
from appropriate Ethics Committees. Serum samples from
IA-2 antibody-positive patients were selected for character-
isation of IA-2 autoantibody epitopes on the basis of strong
reactivity to deletion mutants and chimeric constructs
representing different regions of the IA-2 molecule [26].

2.2. IA-2 antibodies

Four mouse monoclonal antibodies, 76F, 5E3, 8B3 and 9B5,
that recognise epitopes in the JM domain of IA-2 overlapping
those for autoantibodies in human Type 1 diabetes [27,28],
and three human B cell clones 96/3, M13 and DS329 obtained
after EBV-transformation of B lymphocytes from Type 1
diabetic patients [12,28,29] and secreting antibodies to
epitopes in the IA-2 PTP domain, were used for epitope
characterisation. A polyclonal rabbit antiserum (R2B2; [20])
was also used for epitope studies. Monoclonal antibodies
were purified by protein A-sepharose chromatography from
tissue culture supernatants of these clones. For antibody
competition studies, Fab fragments of the antibodies were
prepared by papain digestion, as described [30].

2.3. Analysis of binding of IA-2 antibodies

Antibody binding to radiolabelled IA-2 constructs was analysed
by radioligand binding assay, as previously described [12,31].
IA-2 constructs used were the cytoplasmic domain of IA-2
(IA-2ic, residues 605–979), a chimeric construct representing
the juxtamembrane domain (JM, residues 605–693) fused to the
tyrosine phosphatase (PTP) domain of PTP1B, the IA-2 PTP
domain (residues 643–979) and the central region of the IA-2
PTP domain (residues 643–937). IA-2 cDNAs were transcribed
and translated in vitro in the presence of 35S-methionine
using the TNT Quick Coupled Transcription and Translation
System (Promega, Southampton, UK). Radiolabelled protein
was incubated with monoclonal antibody or test sera for
16 hours at 4 °C in wash buffer (10 mM HEPES, pH7.4,
150 mM NaCl, 20 mMmethionine, 0.5 mg/mml BSA and 0.5%
een major epitopes of the IA-2 autoantigen in Type 1 diabetes:
x.doi.org/10.1016/j.clim.2015.06.002
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3Relationships between major epitopes of the IA-2 autoantigen in Type 1 diabetes
Triton X-100). Immune complexes were captured on
Protein A-Sepharose and, after washing, the quantity of
immunoprecipitated radiolabelled antigen was determined by
liquid scintillation counting.

To evaluate their contribution to antibody binding, single
amino acids within the IA-2 sequence were substituted
for alanine using the QuikChange site-directed mutagenesis
kit (Agilent Technologies, Stockport, UK) according to the
manufacturer's instructions. Substitutions were verified
by sequencing. Mutated constructs were transcribed and
translated in vitro in the presence of 35S methionine and
used in radioligand binding assays as described above.
Binding of antibodies to mutated constructs was compared
with that to the wild type construct. Single amino acid
mutations were considered to have inhibitory effects on
antibody binding if binding was reduced by 50% or more.

Relationships between antibody epitopes were investigated
by competition studies using Fab fragments of monoclonal
antibodies of defined epitope specificity. Monoclonal antibodies
or sera from diabetic patients were incubated with 35S-labelled
IA-2 cytoplasmic domain (amino acids 605–979) in the presence
or absence of 5 μg of Fab fragments of the test antibody for 16 h
at 4 °C and radiolabelled protein immunoprecipitated deter-
mined as described above. Inhibitory effects on antibody
binding of Fab fragments of individual antibodies were tested
by analysis of variance.
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2.4. Proteolytic digestion of IA-2-antibody complexes
(“antibody footprinting”)

To generate protein for antibody footprinting, cDNA
representing the coding sequence of the cytoplasmic domain
of IA-2 (IA-2ic, residues 605–979) was cloned into the
pGEX-6P vector to generate a construct encoding an IA-2
fusion protein with an N-terminal glutathione-S-transferase
purification tag followed by a PreScission Protease cleavage
site. The recombinant protein was expressed in BL21 E.coli
cells and extracts prepared by lysozyme treatment of
bacterial pellets. Recombinant protein in bacterial extracts
was captured on Glutathione Sepharose 4b (GE Healthcare)
and treated on-column with PreScission Protease to cleave
the purification tag and elute the pure IA-2ic protein. The
protein was dialysed against phosphate-buffered saline and
was N90% pure by SDS-PAGE analysis.

Monoclonal IA-2 antibodies were immobilised by chemical
cross-linking to protein G Sepharose. Antibodies were incubated
with beads for 1 h at room temperature and cross-linked with
dimethylpimelidate in borate buffer [30]. Unreacted sites
were blocked with 20 mM ethanolamine for 10 min. Unbound
antibody was removed by seqential washes in 100 mM
triethylamine pH 11.7, sodium acetate, pH 3.0 and PBS.

The influence of monoclonal antibody specificity on
proteolytic processing of IA-2 was performed by incubating
protein G Sepharose-conjugated antibodies with 20,000 cpm
of 35S-methioine-labelled IA-2ic and 10 μg of unlabelled
purified recombinant IA-2ic for 2 h at room temperature.
Non-bound IA-2 was removed by washing and complexes
incubated with trypsin (0.1 mg/ml) for times indicated in
the figure legend. Reactions were terminated by addition of
phenylmethanesulphonic acid (10 mM final concentration)
and non-bound proteolytic fragments removed by washing.
Please cite this article as: K.A. McLaughlin, et al., Relationships betw
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Bound fragments were eluted in 100 mM triethylamine,
eluates neutralised with 0.5 M NaH2PO4 and analysed by
SDS-PAGE and autoradiography.

For identification of the antibody-protected peptides by
mass spectrometry, bead-bound antibody-antigen complexes
were formed by incubating the immobilised antibody with
100 μg of purified IA-2 cytoplasmic domain protein for 2 h at
room temperature with slow rotation. Unbound antigen was
removed bywashingwith PBS and the complexes equilibrated in
chymotrypsin digestion buffer (100 mM Tris, 10 mM CaCl).
Activated chymotrypsin was added to the complex at an
enzyme:substrate ratio of 1:10 and incubated for 30 mins at
30 °C with occasional mixing. Unbound proteolytic fragments
were removed by washing with PBS and subsequently with
water. Antibody bound fragments were eluted in 100 mM
triethylamine pH 11.7. The eluates were vacuum dried and
stored at −20 °C prior to mass spectrometry analysis.

2.5. Mass spectrometry

Samples were analysed by LC-MS/MS on a ProteomeX machine
(Thermo Finnigan, Hemel Hempstead, UK). Dried chymotrypsin
digests were resuspended in 0.1% formic acid and chromatog-
raphy of aliquots of each sample performed on a 100- by
0.18-mm BioBasic C18 column (ThermoHypersil-Keystone,
Runcorn, UK). Peptides were eluted with aqueous acetonitrile
(5 to 65% over 30 min) containing 0.1% formic acid at a flow rate
of 2 μl per min. MS/MS data were acquired in data-dependent
mode with dynamic exclusion. Spectra were submitted against
the IA-2 sequence database using Bioworks v3.1/TurboSEQUEST
software (Thermo Electron, Langenselbold, Germany). Proteins
were considered to match entries in the database if XCorr
values for individual peptides were ≥1.5, ≥2, and ≥2.5 for
singly, doubly, and triply charged ions, respectively.

3. Results

3.1. Characterisation of epitopes for juxtamembrane
domain monoclonal antibodies

Epitopes for four mouse monoclonal antibodies to IA-2 have
been shown by competition studies to overlap with those for
autoantibodies in Type 1 diabetic patients' sera [27,28]. All
recognise epitopes within the JM domain of the protein. To
further define the epitopes for each of the four mouse
monoclonal antibodies, the influence of synthetic 20-mer
peptides on antibody binding to a chimeric protein representing
the 605–693 region of IA-2 fused to the PTP domain of PTP1B
was investigated. The four monoclonal antibodies to the JM
domain were inhibited differentially by synthetic peptides
within the 601–640 region of the protein (Fig. 1A). Binding of
antibody 76F was inhibited by the presence of the 621–640 IA-2
peptide, but not by peptides 601–620 or 611–630. Antibody 5E3
was inhibited only by the 611–630 peptide and 8B3 only by
601–620 (Fig. 1A). 9B5 showed no inhibition by any of the
peptides.

To identify amino acids on IA-2 that participate in antibody
binding, reactivity to IA-2 JM constructs with single amino
acid-substitutions were evaluated. The inhibitory effects of
substitutions of residueswithin the 626–629 region on binding of
the 76F antibody [18] were confirmed in this study. However,
een major epitopes of the IA-2 autoantigen in Type 1 diabetes:
x.doi.org/10.1016/j.clim.2015.06.002
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the epitope for this antibody was found to extend beyond this
region, as indicated by inhibition by alanine substitutions of
amino acids L631, G632, H635 and M636 and of several amino
acid substitutions in the region 609–616 (Fig. 1B). Substitution
of amino acids between 626 and 629 did not affect binding of
the other three mouse monoclonal antibodies, but mutational
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mapping did show effects common to those seen for 76F.
Hence, substitution of amino acids L615, H635 and M636
inhibited binding of all four monoclonal antibodies (marked
red in Fig. 1B) andmutation of residues R611 and G616 inhibited
at least two antibodies (yellow in Fig. 1). Effects of other amino
acid substitutions were clone-specific (blue in Fig. 1B). Some
amino acid substitutions enhanced binding of some antibodies,
most notably of L612, E627, L631 and K639. The results
demonstrate that epitopes for the mouse IA-2 antibodies are
represented by two discontinuous regions within the 609–639
region of the IA-2 JM domain with common structural elements
for all four JM antibodies.
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antibodies to the central PTP domain of IA-2

We have previously localised the epitopes for three human
monoclonal IA-2 autoantibodies isolated from Type 1 diabetic
patients (96/3, M13 and DS329) to the 831–860 region of the
protein [12,20]. To further define the epitopes for these
antibodies, substitutions of those amino acids within the region
826–862 located on the surface of the crystal structure of IA-2
[32] were introduced into a truncated IA-2 PTP domain
construct (residues 643–937) and inhibitory effects of each
substitution on binding of the threemonoclonal antibodies were
investigated.

Alanine substitution of amino acids L831, V834, E836,
L839, K857, N858 and V859, that are clustered on the
surface of IA-2 in the structural model, inhibited binding to
all three monoclonal antibodies (red in Fig. 2A, 2B). Further
inhibition of binding was observed in two of the three
monoclonal antibodies (yellow in Fig. 2A, 2B) following
mutation of residues H833 (M13 and DS329) and Q862 (M13
and 96/3). Binding to M13 was additionally inhibited by the
substitution of amino acids E827 and Q860. A polyclonal
rabbit anti-serum to IA-2 (R2B2) was unaffected by any of
the mutations (Fig. 2A).

The effects of thesemutations were also assessed in thirteen
patient sera positive for antibodies to the central region.
Figure 1 Mapping of epitopes for mouse monoclonal antibod-
ies to the IA-2 JM domain by peptide blocking and site-directed
mutagenesis. A: Effect of synthetic peptides representing IA-2
residues 601–620 (black), 611–630 (red) or 621–640 (blue) on
binding of four mouse monoclonal antibodies to a radiolabelled
construct representing the IA-2 JM doman (amino acids 605–693)
fused to the PTP domain of PTP-1B. Data are expressed as % of
antibody binding to the construct in the absence of peptide and
substitutions reducing binding by 50% or more were considered
inhibitory. B: Influence of single amino acid substitutions on binding
of four mouse monoclonal antibodies to the radiolabelled JM
construct. Data are expressed as % of antibody binding to the
wild-type JM construct and bars representing each amino acid are
colour coded according to whether the substitution inhibits binding
of one (blue), two or three (yellow) or all four (red) monoclonal
antibodies by N50% (dashed lines). Grey bars indicate amino acids
where substitutions had no inhibitory effect. (For interpretation of
the references to colour in this figure legend, the reader is referred
to the web version of this article.)

een major epitopes of the IA-2 autoantigen in Type 1 diabetes:
x.doi.org/10.1016/j.clim.2015.06.002
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Substituted residues that inhibited binding to monoclonal
antibodies were also found to inhibit binding to antibodies in
Type 1 diabetic patients' sera, indicating a common area of
antibody recognition. Mutation of amino acids L831, V834,
E836, L839, K857, N858 and V859 inhibited binding to the IA-2
construct in at least 11/13 samples (Fig. 2C).

3.3. Inhibition of autoantibody binding to IA-2 by
Fab fragments of IA-2 monoclonal antibodies

To examine relationships between individual defined epi-
topes in the JM and PTP domains of IA-2, the ability of Fab
fragments of PTP and JM domain-reactive monoclonal IA-2
antibodies to compete for binding with monoclonal or serum
antibodies to IA-2 was investigated. Fab fragments of the
PTP domain autoantibody M13 abolished binding to other
monoclonal antibodies recognising similar PTP domain epitopes,
but had no effect on IA-2 binding of the JM domain-reactive
antibody, 76F (Fig. 3A). The rabbit polyclonal antibody to IA-2
was also unaffected. Fab fragments of the JMdomain antibodies
abolished (5E3) or partially inhibited (9B5) IA-2 binding of the
JM-reactive 76F antibody. However, Fab fragments of 5E3 and
8B3 JM antibodies also partially inhibited IA-2 binding of the
monoclonal antibodies M13, 96/3 and DS329 that are reactive to
the PTP domain epitope, and of the polyclonal rabbit IA-2
antibody. The results indicate that binding of Fab fragments of
antibodies to the JM domain are able to impair antibody binding
to epitopes within the PTP domain, possibly through steric
hindrance or conformational effects.

Inhibitory effects of Fab fragments of monoclonal antibodies
were also investigated using serum antibodies from IA-2
antibody-positive Type 1 diabetic patients categorised accord-
ing to antibody reactivity to the IA-2 JMdomain only (Fig. 3B), to
both JM and PTP domains (Fig. 3C) or to the PTP domain only
(Fig. 3D). Fab fragments of the JM domain reactive antibodies
abolished (5E3) or partially inhibited (8B3, 9B5) binding of
antibodies from patients with reactivity restricted to the IA-2
JM domain, whereas M13 Fab fragments had no effect (Fig. 3B).
Fab fragments of the JM domain antibodies inhibited IA-2
binding of autoantibodies from patients positive for both JM and
PTP domain antibodies (Fig. 3C), but also those negative for JM
antibodies (Fig. 3D). The ability of Fab fragments of JM
domain-reactive antibodies to inhibit binding of antibodies to
PTP domain epitopes points to structural interactions between
these two regions of autoantibody reactivity.

3.4. Characterisation of antibody epitopes by antibody
footprinting

Antibody footprinting is a technique by which structural
interactions between antibody and antigen are investigated
by limited digestion of antibody:antigen complexes with
proteases or hydroxyl radicals [33]. Antibody binding protects
regions close to the antibody epitope from cleavage and
identification of the protected regions defines the antibody
“footprint”. In this study, antibody footprinting was used to
compare and identify antibody-protected IA-2 proteolytic
fragments using monoclonal antibodies directed to epitopes
localised within the JM or PTP domains of the protein.

Initial studies used SDS-PAGE and autoradiography to
characterise radiolabelled proteolytic products generated
Please cite this article as: K.A. McLaughlin, et al., Relationships betw
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after trypsin digestion of complexes of bead-conjugated
monoclonal antibodies with 35S-methionine-labelled IA-2ic.
Time course studies demonstrated clear differences in the
dominant tryptic digestion products eluted from bead-
conjugated 5E3 (JM domain epitope) and M13 (PTP domain
epitope) antibodies, with predominant bands at Mr 3500 and
7000 for 5E3 and at Mr 11,000 and 23,000 for M13 (Fig. 4).
However, despite the differences in epitope recognition,
common bands were also eluted from both antibodies, in
particular, a trypsin product of 9000 Mr (Fig. 4).

To identify the regions protected by the JM and PTP
domain monoclonal antibodies, similar experiments were
performed using purified recombinant IA-2ic as antigen,
digesting antibody:IA-2ic complexes with chymotrypsin which,
being a more frequent cutter than trypsin, provides better
resolution of antibody-protected regions of the protein.
Chymotrypsin digestion products eluted from bead-conjugated
antibodies were identified by LC-MS/MS. A total of 39 distinct
peptides were identified in the eluates, and the percent
recovery of each of these peptides relative to the total number
of peptides identified is shown in Table 1. Several of the
peptides could be clustered according to the presence of a
common core sequence (bold font in Table 1) with varying
length extensions at the C- or N-terminus. Peptides containing
the core motif AALGPEGAHGTTF representing amino acids
613–626 of IA-2 were highly represented in eluates from the
JM epitope-reactive 5E3 antibody (21.4%), but almost absent
from the M13 eluates (0.2%; p b 0.0001, Fisher's exact test with
Bonferroni correction). These peptides include residues L615,
G616 and H621 that were identified as part of the 5E3 epitope in
the mutagenesis studies above. However, the majority of
peptides eluted from the 5E3 antibody were derived from the
PTP domain, with peptides containing the sequences SHTIADFW
(788–795, 21%), KNVQTQETRTL (857–867, 8.4%), TAVAEEVNAIL
(964–974, 21%) and NRMAKGVKEIDIAATL (927–942, 14.5%)
being highly represented (Table 1). These latter peptides were
also detected in eluates from the PTP domain-reactive M13
antibody. Peptides with the core sequences INASPIIEHDPRMPAY
(765–780, 32.7%) and SWPAEGTPASTRPL (874–887, 18.1%) were
detected in eluates from the M13 antibody, but found at low
abundance in eluates from 5E3 (2.7% and 1.5%, respectively;
p b 0.0001).
4. Discussion

Studies on the appearance of autoantibodies to islet
antigens in early life [2,5], together with assessment of the
risk of development of Type 1 diabetes by detection of single
and multiple islet autoantibody specificities [16,34], have
emphasised the importance of determinant spreading for
progression from autoimmunity to disease. A key role for
B-cells in promoting determinant spreading has been
demonstrated in animal models of autoimmune disease
[35], probably through alterations in uptake, processing
and presentation of relevant antigens. We now demonstrate
a close structural relationship between determinants in two
distinct domains of amajor autoantigen in Type 1 diabetes that,
together with previous observations, point to an important role
for B-cells secreting antibodies to the JM domain of IA-2 in the
diversification of the immune response in human Type 1
diabetes. Thus: i.) antibodies to the JM domain appear early
een major epitopes of the IA-2 autoantigen in Type 1 diabetes:
x.doi.org/10.1016/j.clim.2015.06.002
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Figure 2 Influence of single amino acid substitutions on binding of humanmonoclonal antibodies and patients' sera to IA-2. A: Influence of
single amino acid substitutions on binding of three humanmonoclonal antibodies or a rabbit polyclonal antiserum to a radiolabelled construct
representing amino acids 643–937. Data are expressed as % of antibody binding to the wild-type IA-2 construct (n = 3). Substitutions that
reduced binding by 50% ormore (dashed line)were considered inhibitory and bars representing each amino acid are colour coded according to
whether the substitution inhibits binding of one (blue), two (yellow) or all three (red) monoclonal antibodies. Grey bars indicate amino acids
where mutations had no inhibitory effect. B: Influence of single amino acid substitutions on binding of recent onset Type 1 diabetic patients'
sera to the same IA-2 construct as in A. Data for each amino acid substitution are expressed as % of antibody binding to thewild-type construct
(mean ± SEM, n = 13). Numbers above bars indicate the number of individual patient sera from the panel of 13 in which the mutation
inhibited binding bymore than 50%. Bars are colour coded as in A. C: Localisation of substituted amino acids on amodel of the surface of IA-2
tyrosine phosphatase domain. The colour coding of individual amino acids are as in A. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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in the IA-2 autoimmune response and precede spreading to
epitopes in the IA-2 PTP domain and to the related autoantigen,
IA-2beta [5]; ii.) the presence of autoantibodies to the IA-2 JM
Please cite this article as: K.A. McLaughlin, et al., Relationships betw
Implications for determinant spreading, Clin. Immunol. (2015), http://d
domain in Type 1 diabetic patients is associated with T-cell
responses to a peptide in the PTP domain that itself overlaps a
major autoantibody epitope [13]; iii.) as shown in this study,
een major epitopes of the IA-2 autoantigen in Type 1 diabetes:
x.doi.org/10.1016/j.clim.2015.06.002
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Figure 3 Inhibitory effects of Fab fragments of monoclonal IA-2 antibodies on binding of antibodies to IA-2. The ability of Fab
fragments of monoclonal antibodies M13 (yellow bars), 5E3 (red bars), 8B3 (blue bars) or 9B5 (green bars) to compete for binding of
monoclonal IA-2 antibodies 76F, M13, 96/3 or DS329 (panel A; n = 4), polyclonal rabbit IA-2 antiserum R2B2 (A) or serum antibodies
from 12 recent onset diabetic patients (panels B–D) to radiolabelled construct representing amino acids 605–979 was tested. Diabetic
patients were categorised according to the presence of antibodies only to the JM domain of IA-2 (panel B), to both JM and PTP domain
epitopes (panel C), or only to PTP domain epitopes (panel D). The significance of effects of each Fab fragment on antibody binding
compared to that seen with phosphate buffered saline (PBS, black bars) was analysed by two way analysis of variance with Dunnet's
correction for multiple comparisons. Significant inhibition (p b 0.05) of antibody binding by each Fab was observed except where
indicated on figure (NS: not significant). (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

7Relationships between major epitopes of the IA-2 autoantigen in Type 1 diabetes
monoclonal antibodies to the JM domain block binding of
autoantibodies to the same PTP domain epitope, suggesting
juxtaposition of the two epitopes (Fig. 3); and iv.) these JM
domain antibodies protect and stabilise PTP domain peptides
containing major T-cell determinants during proteolysis of
antibody:antigen complexes (Fig. 4, Table 1). If similar
antibody-mediated stabilisation of PTP domain peptides occurs
within processing compartments of JM-specific B-cells, then
presentation of those PTP domain peptides to T-cells would
Please cite this article as: K.A. McLaughlin, et al., Relationships betw
Implications for determinant spreading, Clin. Immunol. (2015), http://d
be promoted, providing a mechanism underlying the associa-
tion of JM antibodies with T-cell responses to PTP domain
peptides in Type 1 diabetes [13] and for the spreading of
autoimmunity from JM to PTP domain determinants as disease
develops.

The study of determinant spreading at the B-cell level
requires a detailed understanding of the structures of dominant
autoantibody epitopes, most easily acquired through the
study of cloned antibodies. Although human mononoclonal
een major epitopes of the IA-2 autoantigen in Type 1 diabetes:
x.doi.org/10.1016/j.clim.2015.06.002
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Figure 4 Radiolabelled fragments generated after trypsin
treatment of complexes of 35S-methionine-labelled IA-2
with monoclonal antibodies to JM and central PTP domain
epitopes. 35S-methionine-labelled IA-2 constructs representing
amino acids 605–979 were incubated with monoclonal IA-2
antibodies to either JM (5E3) or PTP (M13) domain epitopes
cross-linked to protein G Sepharose and complexes treated with
trypsin (0.1 mg/ml) for the times incubated on the figure.
Non-bound IA-2 fragments were washed away and polypeptide
fragments remaining bound to antibody eluted and analysed by
SDS-PAGE and autoradiography. The figure illustrates major IA-2
tryptic fragments eluted from each antibody. The migration of
protein standards of relative molecular mass (Mr × 10−3) indicated
is shown.
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Rautoantibodies to IA-2 JM domain epitopes from Type 1 diabetic

patients have been reported [29], transformed B-cells secreting
these JM autoantibodies were unstable and are no longer
available for study (J Endl, personal communication). To our
knowledge, the only IA-2-specific B-cell clones from diabetic
patients that are currently available secrete antibodies to
overlapping PTP domain epitopes within the region 827–862 [12
and this study]. Analysis of amino acid substitutions affecting
binding of three human monoclonal antibodies to the PTP
domain suggest a core region of antibody binding represented
by amino acids 831, 834, 836, 839, 857, 858 and 859, with
individual B-cell clones showing different involvement of
residues peripheral to this common core (Fig. 2B). Analysis of
the effects of amino acid substitutions on binding of serum
antibodies from individual Type 1 diabetic patients demon-
strated that the pattern of reactivity to this region is typical of
B-cell responses in Type 1 diabetes generally, consistent with it
being a major target of autoantibody reactivity in disease. The
protein footprint of the M13 human monoclonal PTP domain
autoantibody included peptides with core regions 836–845 and
857–867 which encompass the amino acids implicated in the
autoantibody epitope (Table 1) and are included within major
T-cell determinants [12,13,36]. However, the antibody also
stabilised other PTP domain peptides extending beyond the
Please cite this article as: K.A. McLaughlin, et al., Relationships betw
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epitope, including those containing regions 765–780, 788–795,
874–887 and 964–974 (Table 1). Peptides from the JM domain
were rarely detected. Analysis of the crystal structure of the
IA-2 PTP domain shows the 765–780 region to be buried in the
molecule beneath the proposed epitope region [32]. The
874–887 region includes peptides immediately adjacent to
those harbouring the antibody epitope, but lies on the opposite
face of the protein to the epitope region in the 3-dimensional
structure [22,32]. The 874–887 motif includes the 876–880
sequence of amino acids, substitutions of which have been
shown previously to inhibit IA-2 autoantibody binding and that
may form part of a distinct PTP domain epitope [22,37].

Although no monoclonal IA-2 JM domain autoantibodies
derived from Type 1 diabetic patients are currently available
for study, there is good evidence that antibodies cloned
from IA-2-immunised mice show very similar JM epitope
specificities to those appearing in the human disease [28,38].
Studies to localise the epitopes of mousemonoclonal antibodies
to the JM domain show that synthetic peptides known to inhibit
serum antibodies from Type 1 diabetic patients (601–620,
611–630 and 621–640 [18]) also inhibit binding of three of the
mouse antibodies (Fig 1A). Site-directed mutagenesis indicated
that amino acids 615, 635 and 636 represent key residues for
antigen binding to all fourmonoclonal antibodies, with differing
contributions of amino acids within the 608–638 region of IA-2
to binding of individual antibodies. For the 76F antibody,
substitutions affecting binding included amino acids 626–629
which form part of the “JM2” and “JM3” epitopes described by
the Bonifacio group [18,19] and, for 5E3, residue 621 which
contributes to a “JM1” epitope [19]. Consistent with the
mutagenesis data, the protein footprint of the 5E3 antibody
included JM-localised peptides with a 613–626 core, that were
poorly represented in theM13 footprint, strongly supporting this
region as part of the 5E3 antibody epitope. However, peptides
within the PTP domain containing regions 788–795, 857–867,
927–942 and 964–974 were also highly represented in eluates
from the 5E3 antibody, again indicative of antibody-mediated
protection from proteolysis of peptides outside of the immedi-
ate epitope region. Fab fragments of 5E3 and other JM domain
antibodies were more effective than those of PTP domain
antibodies at blocking binding of serumantibodies to epitopes in
both the JM and PTP domain. These strong inhibitory effects of
JM-targetted antibodies on binding of antibodies to the PTP
domains is suggestive of close structural relationships between
the two epitopes and juxtaposition of the two epitopes may
explain the stabilisation of PTP-derived peptides by the JM
domain antibody.

The results of this study point to close structural relation-
ships between twomajor regions targetted by autoantibodies in
Type 1 diabetes that may have implications for the diversifica-
tion of IA-2 autoimmunity in Type 1 diabetes. Confirmation that
these in vitro observations have pathophysiological relevance
requires analyses of the influence of B-cell epitope specificity
on peptides generated within cellular processing compart-
ments. Our identification of antibody epitopes, and core regions
of IA-2 protected by JM and PTP domain antibodies, will
facilitate studies to fully understand the natural history of
spreading of B- and T-cell responses to determinants during the
early stages of IA-2 autoimmunity. Such studies would identify
B- or T-cell responses to determinants most closely linked to
disease progression that would represent effective targets for
immunotherapy.
een major epitopes of the IA-2 autoantigen in Type 1 diabetes:
x.doi.org/10.1016/j.clim.2015.06.002
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Table 1t1:1 Proportion of total number of peptides detected (%).
t1:2
t1:3 Peptide Mass (Da) Sequence 5E3 M13

t1:4 606–612 1474.73 GPLGSMQQDKERL 0.5 0
t1:5 606–626 2783.34 GPLGSMQQDKERLAALGPEGAHGDTTF 2.3 0
t1:6 606–626 2532.18 GSMQQDKERLAALGPEGAHGDTTF 0.5 0
t1:7 613–626 1343.62 AALGPEGAHGDTTF 18.6 0.2
t1:8 643–661 2030.99 NRAEGPPEPSRVSSVSSQF 0 0.4
t1:9 747–753 852.50 DHARIKL 0.9 0.4
t1:10 754–764 1254.60 KVESSPSRSDY 1.4 0.4
t1:11 765–780 1823.91 INASPIIEHDPRMPAY 0.9 22.2
t1:12 765–787 2504.30 INASPIIEHDPRMPAYIATQGPL 1.8 10.5
t1:13 781–795 1656.84 IATQGPLSHTIADFW 0.5 5.5
t1:14 788–795 976.45 SHTIADFW 20.0 9.1
t1:15 788–799 1520.70 SHTIADFWQMVW 0.5 0.2
t1:16 800–831 3526.65 ESGCTVIVMLTPLVEDGVKQCDRYWPDEGASL 0 0.4
t1:17 800–832 3689.72 ESGCTVIVMLTPLVEDGVKQCDRYWPDEGASLY 1.8 0.7
t1:18 833–839 873.44 HVYEVNL 0 0.2
t1:19 833–845 1624.81 HVYEVNLVSEHIW 0.9 0.4
t1:20 836–845 1225.62 EVNLVSEHIW 0.5 0.2
t1:21 836–849 1719.77 EVNLVSEHIWCEDF 0 0.2
t1:22 855–867 1593.86 YLKNVQTQETRTL 4.1 4.5
t1:23 855–870 1970.03 YLKNVQTQETRTLTQF 0.5 0.5
t1:24 856–867 1430.80 LKNVQTQETRTL 2.3 1.3
t1:25 856–870 1806.97 LKNVQTQETRTLTQF 0 0.4
t1:26 857–867 1317.71 KNVQTQETRTL 1.4 0.5
t1:27 857–870 1693.89 KNVQTQETRTLTQF 0 0.4
t1:28 871–887 1866.95 HFLSWPAEGTPASTRPL 0.5 0.4
t1:29 873–887 1582.82 LSWPAEGTPASTRPL 0.5 7.5
t1:30 873–888 1695.91 LSWPAEGTPASTRPLL 0 0.2
t1:31 873–890 1958.00 LSWPAEGTPASTRPLLDF 0.5 0.2
t1:32 874–887 1469.74 SWPAEGTPASTRPL 0 9.6
t1:33 874–888 1582.82 SWPAEGTPASTRPLL 0 0.2
t1:34 920–926 832.48 ILIDMVL 1.4 0.4
t1:35 927–942 1729.96 NRMAKGVKEIDIAATL 14.5 8.7
t1:36 943–952 1206.63 EHVRDQRPGL 1.8 2.9
t1:37 943–961 2343.20 EHVRDQRPGLVRSKDQFEF 0.5 1.1
t1:38 953–959 879.46 VRSKDQF 0 0.4
t1:39 953–961 1155.58 VRSKDQFEF 0.5 1.5
t1:40 960–974 1589.84 EFALTAVAEEVNAIL 0.5 0.4
t1:41 962–974 1313.73 ALTAVAEEVNAIL 20.0 8.2
t1:42 964–974 1129.61 TAVAEEVNAIL 0.5 0.2

t1:43 Peptides generated after chymotrypsin treatment of complexes of IA-2 with monoclonal antibodies to JM and central region epitopes. Purified
t1:44 recombinant IA-2 representing amino acids 605–979 were incubated with monoclonal IA-2 antibodies to either JM (5E3) or PTP (M13) domain
t1:45 epitopes cross-linked to protein A Sepharose and complexes treatedwith chymotrypsin (0.1 mg/ml) for 30 min. After washing, peptides remaining
t1:46 bound to beadswere elutedwith triethylamine buffer, pH 11.7, dried and analysed by LC-MS/MS. Groups of peptideswere identifiedwith common
t1:47 core sequence (bold text), and the representation of each peptide as a percentage of the total number of peptides detected are presented.
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